WorldWideScience

Sample records for hydrostatic pressure studied

  1. High hydrostatic pressure for disinfection of bone grafts and biomaterials: an experimental study.

    Science.gov (United States)

    Gollwitzer, Hans; Mittelmeier, Wolfram; Brendle, Monika; Weber, Patrick; Miethke, Thomas; Hofmann, Gunther O; Gerdesmeyer, Ludger; Schauwecker, Johannes; Diehl, Peter

    2009-01-29

    Autoclaving, heat, irradiation or chemical detergents are used to disinfect autografts, allografts and biomaterials for tissue reconstruction. These methods are often associated with deterioration of mechanical, physical, and biological properties of the bone grafts and synthetic implants. High hydrostatic pressure has been proposed as a novel method preserving biomechanical and biological properties of bone, tendon and cartilage. This is the first study to assess the inactivation of clinically relevant bacteria on biomaterials and human bone by high hydrostatic pressure. Bacterial suspensions of Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecium, implants covered with infected blood, human bone infected in vitro, and biopsies of patients with chronic osteomyelitis were subjected to different protocols of high hydrostatic pressure up to 600 MPa. Bacterial survival after high hydrostatic pressure treatment was determined and compared with bacterial growth in untreated controls. S. aureus and P. aeruginosa in suspension were completely inactivated by high hydrostatic pressure (> 5log levels), whereas E. faecium showed barotolerance up to 600 MPa. Blood and adherence to metal implants did not significantly alter inactivation of bacteria, and complete disinfection was achieved with barotolerant bacteria (S. aureus and P. aeruginosa). However, osteoarthritic bone demonstrated a non-homogeneous baroprotective effect, with single bone samples resistant to treatment resulting in unaltered bacterial growth, and complete disinfection of artificially infected bone specimens was achieved in 66% for S. aureus, 60% for P. aeruginosa and 0% for E. faecium. Human bone samples of patients with chronic osteomyelitis could be completely disinfected in 2 of 37 cases. High hydrostatic pressure offers new perspectives for disinfection of sensitive biomaterials and bone grafts, and contamination by blood did not significantly affect bacterial inactivation rates

  2. High Hydrostatic Pressure for Disinfection of Bone Grafts and Biomaterials: An Experimental Study

    OpenAIRE

    Gollwitzer, Hans; Mittelmeier, Wolfram; Brendle, Monika; Weber, Patrick; Miethke, Thomas; Hofmann, Gunther O; Gerdesmeyer, Ludger; Schauwecker, Johannes; Diehl, Peter

    2009-01-01

    Background: Autoclaving, heat, irradiation or chemical detergents are used to disinfect autografts, allografts and biomaterials for tissue reconstruction. These methods are often associated with deterioration of mechanical, physical, and biological properties of the bone grafts and synthetic implants. High hydrostatic pressure has been proposed as a novel method preserving biomechanical and biological properties of bone, tendon and cartilage. This is the first study to assess the inactivation...

  3. Starch Gelatinization Induced by High Hydrostatic Pressure

    National Research Council Canada - National Science Library

    Kazutaka YAMAMOTO

    2013-01-01

    .... Starch gelatinization can also be induced by high hydrostatic pressure. Requirements for pressure gelatinization may also differ depending on botanical origin of starch, pressure, water, and temperature...

  4. Optical spectroscopic study of Al2O3:Ti3+ under hydrostatic pressure

    NARCIS (Netherlands)

    García-Revilla, S.; Rodríguez, F.; Hernández, I.; Valiente, R.; Pollnau, Markus

    2002-01-01

    This work investigates the effect of hydrostatic pressure on the excitation, emission and lifetime of Ti3+-doped Al2O3 in the 0–110 kbar range. The application of pressure induces band shifts that are correlated with the corresponding local structural changes undergone by the TiO6 complex. The

  5. A Statistical Study on the Effect of Hydrostatic Pressure on Metastable Pitting Corrosion of X70 Pipeline Steel

    OpenAIRE

    Zixuan Yang; Bo Kan; Jinxu Li; Lijie Qiao; Alex A. Volinsky; Yanjing Su

    2017-01-01

    Hydrostatic pressure effects on pitting initiation and propagation in X70 steel are investigated by evaluating metastable pitting probability using electrochemical methods and immersion corrosion tests in containing chlorine ion solution. Potentiodynamic tests indicated that hydrostatic pressure can decrease the breakdown potential and lead to a reduced transpassivity region. Metastable test results revealed that hydrostatic pressure can increase metastable pitting formation frequency and pro...

  6. Antibodies under pressure: A Small-Angle X-ray Scattering study of Immunoglobulin G under high hydrostatic pressure.

    Science.gov (United States)

    König, Nico; Paulus, Michael; Julius, Karin; Schulze, Julian; Voetz, Matthias; Tolan, Metin

    2017-05-26

    In the present work two subclasses of the human antibody Immunoglobulin G (IgG) have been investigated by Small-Angle X-ray Scattering under high hydrostatic pressures up to 5kbar. It is shown that IgG adopts a symmetric T-shape in solution which differs significantly from available crystal structures. Moreover, high-pressure experiments verify the high stability of the IgG molecule. It is not unfolded by hydrostatic pressures of up to 5kbar but a slight increase of the radius of gyration was observed at elevated pressures. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Theoretical study of BTF/TNA cocrystal: Effects of hydrostatic pressure and temperature

    Directory of Open Access Journals (Sweden)

    Peng-yuan Chen

    2015-06-01

    Full Text Available Cocrystallization is a promising technique for the design and preparation of new explosives, and the stability of cocrystal is highly concerned by the researchers. In order to make a better understanding of the behavior of cocrystal under the extreme conditions, DFT (density functional theory calculation is performed to investigate the effect of hydrostatic pressure on geometrical and electronic structures of the cocrystal BTF (benzotrifuroxan/TNA (2,4,6-trinitroaniline. When the hydrostatic pressure is applied, the lattice constants, volume, density and total energy change gradually except at the pressures of 40 GPa and 79–83 GPa. It is noteworthy that new chemical bonds form when the pressure is up to 83 GPa. The band gap of the cocrystal becomes smaller when the pressure is applied, and finally the cocrystal shows a characteristic of metal. The mechanical property of cocrystal is calculated by MD (molecular dynamics simulation. The results show that the cocrystal has a better ductibility at low temperature, and has the best tenacity at 295 K.

  8. A Statistical Study on the Effect of Hydrostatic Pressure on Metastable Pitting Corrosion of X70 Pipeline Steel

    Science.gov (United States)

    Yang, Zixuan; Kan, Bo; Li, Jinxu; Su, Yanjing; Qiao, Lijie; Volinsky, Alex A.

    2017-01-01

    Hydrostatic pressure effects on pitting initiation and propagation in X70 steel are investigated by evaluating metastable pitting probability using electrochemical methods and immersion corrosion tests in containing chlorine ion solution. Potentiodynamic tests indicated that hydrostatic pressure can decrease the breakdown potential and lead to a reduced transpassivity region. Metastable test results revealed that hydrostatic pressure can increase metastable pitting formation frequency and promote stabilization of metastable pitting growth. Electrochemical impedance spectroscopy (EIS) results indicate that Hydrostatic pressure decreases the charge transfer resistance and increases the dissolution rate within the cavities. Corrosion test results also indicated that pitting initiation and propagation are accelerated by hydrostatic pressure. Result validity was verified by evaluating metastable pitting to predict pitting corrosion resistance. PMID:29135912

  9. A Statistical Study on the Effect of Hydrostatic Pressure on Metastable Pitting Corrosion of X70 Pipeline Steel

    Directory of Open Access Journals (Sweden)

    Zixuan Yang

    2017-11-01

    Full Text Available Hydrostatic pressure effects on pitting initiation and propagation in X70 steel are investigated by evaluating metastable pitting probability using electrochemical methods and immersion corrosion tests in containing chlorine ion solution. Potentiodynamic tests indicated that hydrostatic pressure can decrease the breakdown potential and lead to a reduced transpassivity region. Metastable test results revealed that hydrostatic pressure can increase metastable pitting formation frequency and promote stabilization of metastable pitting growth. Electrochemical impedance spectroscopy (EIS results indicate that Hydrostatic pressure decreases the charge transfer resistance and increases the dissolution rate within the cavities. Corrosion test results also indicated that pitting initiation and propagation are accelerated by hydrostatic pressure. Result validity was verified by evaluating metastable pitting to predict pitting corrosion resistance.

  10. Donor spectroscopy at large hydrostatic pressures and transport studies in compound semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Leonardo [Univ. of California, Berkeley, CA (United States)

    1997-06-01

    In the first part of this work, the author describes studies of donors in AlSb and in GaAs at large hydrostatic pressures, two materials in which the conduction band minimum is not parabolic, but has a camel`s back shape. These donors were found to display only one or two absorption lines corresponding to ground to bound excited state transitions. It is shown that due to the non-parabolic dispersion, camel's back donors may have as few as one bound excited state and that higher excited states are auto-ionized. Thus, it is possible that transitions to these other states may be lost in the continuum. In the second part, calculations of mobilities in GaN and other group III-Nitride based structures were performed. GaN is interesting in that the carriers in nominally undoped material are thought to originate from impurities which have an ionization energy level resonant with the conduction band, rather than located in the forbidden gap. These donors have a short range potential associated with them which can be effective in scattering electrons in certain situations. It was found that effects of these resonant donors can be seen only at high doping levels in III-Nitride materials and in AlxGa1-xN alloys, where the defect level can be pushed into the forbidden gap. Calculations were also performed to find intrinsic mobility limits in AlxGa1-xN/GaN modulation doped heterostructures. Theoretical predictions show that electron mobilities in these devices are capable of rivaling those found in the best AlxGa1-xAs/GaAs heterostructures structures today. However, the currently available nitride heterostructures, while displaying mobilities superior to those in bulk material, have sheet carrier concentrations too large to display true two-dimensional electron gas behavior.

  11. In situ study starch gelatinization under ultra-high hydrostatic pressure using synchrotron SAXS

    KAUST Repository

    Yang, Zhi

    2015-12-13

    The gelatinization of waxy (very low amylose) corn and potato starches by high hydrostatic pressure (HHP) (up to ∼1 GPa) was investigated in situ using synchrotron small-angle X-ray scattering (SAXS) on samples held in a diamond anvil cell (DAC). The starch pastes, made by mixing starch and water in a 1:1 ratio (by weight), were pressurized and measured at room temperature. During HHP, both SAXS peak areas (corresponding to the lamellar phase) of waxy corn and potato starches decreased suggesting the starch gelatinization increases with increasing pressure. As pressure increased, lamellar peak broadened and the power law exponent increased in low q region. 1D linear correlation function was further employed to analyse SAXS data. For both waxy potato and waxy corn starches, the long period length and the average thickness of amorphous layers decreased when the pressure increased. While for both of waxy starches, the thickness of the crystalline layer first increased, then decreased when the pressure increased. The former is probably due to the out-phasing of starch molecules, and the latter is due to the water penetrating into the crystalline region during gelatinization and to pressure induced compression.

  12. Liquid crystalline fiber optic colorimeter for hydrostatic pressure measurement

    Science.gov (United States)

    Wolinski, Tomasz R.; Bajdecki, Waldemar K.; Domanski, Andrzej W.; Karpierz, Miroslaw A.; Konopka, Witold; Nasilowski, T.; Sierakowski, Marek W.; Swillo, Marcin; Dabrowski, Roman S.; Nowinowski-Kruszelnicki, Edward; Wasowski, Janusz

    2001-08-01

    This paper presents results of tests performed on a fiber optic system of liquid crystalline transducer for hydrostatic pressure monitoring based on properties of colorimetry. The system employs pressure-induced deformations occurring in liquid crystalline (LC) cells configured in a homogeneous Frederiks geometry. The sensor is compared of a round LC cell placed inside a specially designed pressure chamber. As a light source we used a typical diode operating at red wavelength and modulated using standard techniques. The pressure transducer was connected to a computer with a specially designed interface built on the bas of advanced ADAM modules. Results indicate that the system offers high response to pressure with reduced temperature sensitivity and, depending on the LC cell used, can be adjusted for monitoring of low hydrostatic pressures up to 6 MPa. These studies have demonstrated the feasibility of fiber optic liquid crystal colorimeter for hydrostatic pressure sensing specially dedicated to pipe- lines, mining instrumentation, and process-control technologies.

  13. A self-contained, portable variable-pressure hydrostatic cell for use in low gauge pressure electromagnetic, ultrasonic, and photoacoustic studies

    Science.gov (United States)

    Oakley, Barbara; Wright, Forrest; Barber, Gary; Latcha, Michael; Kobus, Chris; Grim, Pamela

    1999-01-01

    A simple, manually adjustable hydrostatic cell for electromagnetic, ultrasonic, and photoacoustic studies in absolute pressure ranges from 40 kPa to 5.5 MPa is described. The cell consists of two 3-mm-thick quartz windows enclosing a 1.3-cm-diameter hole bored through a 2.54-cm-long cube block of stainless steel. Four 3-mm-diameter counterbored and taper-threaded holes on the cube walls provide minimally intrusive, chemically inert ports for temperature and acoustical monitoring. Pressure is easily varied within the cell by means of a stainless steel threaded shaft with an O-ring seal at the end, situated inside a matched internally threaded housing. An example of photoacoustic waveforms acquired under conditions of varying hydrostatic pressure is provided.

  14. Coupling and single-photon purity of a quantum dot-cavity system studied using hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, P. Y.; Wu, X. F.; Ding, K.; Dou, X. M.; Zha, G. W.; Ni, H. Q.; Niu, Z. C.; Zhu, H. J.; Jiang, D. S. [State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Zhao, C. L. [College of Physics and Electronic Information, Inner Mongolia University for Nationalities, Tongliao 028043 (China); Sun, B. Q., E-mail: bqsun@semi.ac.cn [State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); College of Physics and Electronic Information, Inner Mongolia University for Nationalities, Tongliao 028043 (China)

    2015-01-07

    We propose an approach to tune the emission of a single semiconductor quantum dot (QD) to couple with a planar cavity using hydrostatic pressure without inducing temperature variation during the process of measurement. Based on this approach, we studied the influence of cavity mode on the single-photon purity of an InAs/GaAs QD. Our measurement demonstrates that the single-photon purity degrades when the QD emission resonates with the cavity mode. This negative influence of the planar cavity is mainly caused by the cavity feeding effect.

  15. Use of genetic algorithms for high hydrostatic pressure inactivation ...

    African Journals Online (AJOL)

    Use of genetic algorithms for high hydrostatic pressure inactivation of microorganisms. ... Depending on the properties of HHP equipment (maximum operating pressure) or the type of the food product (heat-sensitive), it could be possible to select the suitable P-T-t trio among the alternatives. This study reveals that GAs could ...

  16. Acoustic cymbal performance under hydrostatic pressure

    Science.gov (United States)

    Jenne, Kirk E.; Huang, Dehua; Howarth, Thomas R.

    2004-05-01

    Continual awareness about the need to develop light-weight, low-volume, broadband, underwater acoustic projector and receive arrays that perform consistently in diverse environments is evident in recent Navy acoustic system initiatives. Acoustic cymbals, so named for resemblance to the percussive musical instruments, are miniature flextensional transducers that may perhaps meet the performance criteria for consistent performance under hydrostatic pressure after modifications in the design. These acoustic cymbals consist of a piezoceramic disk (or ring) bonded to two opposing cymbal-shaped metal shells. Operating as mechanical transformers, the two metal shells convert the large generative force inherently within the disk's radial mode into increased volume displacement at the metal shell surface to obtain volume displacement that translates into usable source levels and/or sensitivities at sonar frequencies in a relatively broad band. The air-backed design for standard acoustic cymbal transducers presents a barrier to deepwater applications. A new acoustic cymbal design for high-pressure applications will be presented for the first time. This practical pressure compensation is designed to diminish the effects of hydrostatic pressure to maintain consistent acoustic cymbal performance. Transmit and receive performance data, determined at the Naval Undersea Warfare Center's (NUWC) Acoustic Pressure Tank Facility (APTF), is presented.

  17. Band gap dependence of the recombination processes in InAs/GaAs quantum dots studied using hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Marko, I.P.; Adams, A.R.; Sweeney, S.J.; Masse, N.F. [Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom); Krebs, R.; Reithmaier, J.P.; Forchel, A. [Technische Physik, Universitaet Wuerzburg, Am Hubland, Wuerzburg (Germany); Mowbray, D.J.; Skolnick, M.S.; Liu, H.Y.; Groom, K.M. [University of Sheffield, Sheffield, S3 7RH (United Kingdom); Hatori, N. [Fujitsu Laboratories LTD. 10-1 Morinosato-Wakamiya, Atsugi 243-0197 (Japan); Sugawara, M. [Fujitsu Laboratories LTD. 10-1 Morinosato-Wakamiya, Atsugi 243-0197 (Japan); QDL Laser Inc., Kudankita 1-14-17-5F, Chiyoda-ku, Tokyo 102-0073 (Japan)

    2007-01-15

    We present the results based upon a systematic study of the properties of quantum dot (QD) lasers with emission wavelengths around 0.98 and 1.3 {mu}m at room temperature and atmospheric pressure. To investigate the radiative and non-radiative components of the threshold current, we studied the temperature and high hydrostatic pressure dependencies of spontaneous and stimulated emission. Although important parameters such as lasing wavelength, QD density, ridge width, cavity length, threshold current density (J{sub th}) varied greatly, we found that all the lasers have nearly the same dependence of the radiative component, J{sub rad}, on band gap when it was tuned by the application of high pressure. It was observed that J{sub rad} increases strongly with band gap. Therefore the different dependencies of J{sub th} are explained in terms of the relative importance of different non-radiative recombination mechanisms, such as Auger recombination and thermal carrier escape. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. High hydrostatic pressure treatment of porcine oocytes induces parthenogenetic activation

    DEFF Research Database (Denmark)

    Lin, Lin; Pribenszky, Csaba; Molnár, Miklós

    2010-01-01

    An innovative technique called high hydrostatic pressure (HHP) treatment has recently been reported to improve the cryosurvival of gametes and embryos in certain mammalian species, including the mouse, pig, and cattle. In the present study the parthenogenetic activation (PA) of pig oocytes caused...

  19. The difference in endolymphatic hydrostatic pressure elevation induced by isoproterenol between the ampulla and the cochlea.

    Science.gov (United States)

    Inamoto, Ryuhei; Miyashita, Takenori; Matsubara, Ai; Hoshikawa, Hiroshi; Mori, Nozomu

    2017-06-01

    The purpose of the study was to investigate the difference in the responses of endolymphatic hydrostatic pressure to isoproterenol, β-adrenergic receptor agonist, between pars superior and pars inferior. The hydrostatic pressure of endolymph and perilymph and endolymphatic potential in the ampulla and the cochlea during the intravenous administration of isoproterenol were recorded using a servo-null system in guinea pigs. The hydrostatic pressure of endolymph and perilymph in the ampulla and cochlea was similar in magnitude. Isoproterenol significantly increased hydrostatic pressure of ampullar and cochlear endolymph and perilymph with no change in the ampullar endolymphatic potential and endocochlear potential, respectively. The isoproterenol-induced maximum change of endolymphatic hydrostatic pressure in ampulla was significantly (ppressure in the ampulla disappeared like that in the cochlea. Isoproterenol elevates endolymphatic hydrostatic pressure in different manner between the vestibule and the cochlea. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Transcriptional activation in chondrocytes submitted to hydrostatic pressure.

    Science.gov (United States)

    Sironen, R; Elo, M; Kaarniranta, K; Helminen, H J; Lammi, M J

    2000-01-01

    At present, only a little is known about the transcriptional regulation in chondrocytes submitted to various physicomechanical factors known to exist in articular cartilage. Recently, we have investigated the effects of hydrostatic pressure on transcriptional control in chondrocytes using human chondrosarcoma and immortalized chondrocyte cell lines for the experiments. Hydrostatic pressure was applied on the cells in a special computer-controlled, water-filled pressure chamber, where cyclic and static pressures up to 32 MPa can be created. Differential display RT-PCR and probing of cDNA arrays are the methods we have used to study differential gene expression due to hydrostatic pressure. By differential display RT-PCR experiments, we have observed several differentially expressed cDNA bands under continuous 30 MPa hydrostatic pressure, while 30 MPa cyclic pressure at 1 Hz produced much fewer changes. In the first phase of our studies, we have focused on the effects of 30 MPa hydrostatic pressure because it causes a unique hsp70-mediated stress response in immortalized chondrocytes. Differential display RT-PCR screening provided us with several clones that derive from low-abundance mRNAs, such as death-associated protein 3 (DAP3), a nucleotide-binding protein which increases due to interferon-gamma induced cell death; PTZ-17 (or p311), a seizure-related protein; H-NUC, a nuclear DNA binding protein; and one new gene of unknown function. In Northern blots, an induction was confirmed for the new gene, DAP3 and PTZ-17 were down-regulated in some but not in all parallel experiments; however, basal level of H-NUC mRNA was too low to be detected in Northern blots. We then chose to widen our screening to a number of known genes arrayed as cDNA blots. Under 30 MPa continuous hydrostatic pressure, four different time points were chosen (0, 3, 6 and 24 h) for the experiments. The screening of 588 cDNAs showed 15 up-regulated and 6 down-regulated genes. Consistently with our

  1. Systematic study of the itinerant ferromagnet MnSi at ambient and high hydrostatic pressures

    Science.gov (United States)

    Stishov, S. M.; Petrova, A. E.; Khasanov, S.; Panova, G. Kh.; Shikov, A. A.; Lashley, J. C.; Wu, D.; Lograsso, T. A.

    2008-04-01

    The intermetallic compound MnSi experiences a phase transition at a temperature slightly below 30 K, acquiring helical magnetic structure and becoming a weak itinerant ferromagnet. We have carried out precise resistivity and ac susceptibility measurements of MnSi single crystals across the phase transition line at ambient and high pressures, using a compressed helium technique. In addition, heat capacity, thermal expansion and dc magnetic susceptibility were measured at ambient pressure. Conclusions drawn from these experiments propose that the phase transition in MnSi is of first order at ambient pressure and may become continuous at high pressure and low temperature.

  2. Effect of high hydrostatic pressure on overall quality parameters of watermelon juice.

    Science.gov (United States)

    Liu, Y; Zhao, X Y; Zou, L; Hu, X S

    2013-06-01

    High hydrostatic pressure as a kind of non-thermal processing might maintain the quality of thermo-sensitive watermelon juice. So, the effect of high hydrostatic pressure treatment on enzymes and quality of watermelon juice was investigated. After high hydrostatic pressure treatment, the activities of polyphenol oxidase, peroxidase, and pectin methylesterase of juice decreased significantly with the pressure (P  0.05). No significant difference was observed in lycopene and total phenolics after high hydrostatic pressure treatment when compared to the control (P > 0.05). Cloudiness and viscosity increased with pressure (P  0.05). a*- and b*-value both unchanged after high hydrostatic pressure treatment (P > 0.05) while L*-value increased but the values had no significant difference among treated juices. Browning degree after high hydrostatic pressure treatment decreased with increase in pressure and treatment time (P high hydrostatic pressure had little effect on color of juice. The results of this study demonstrated the efficacy of high hydrostatic pressure in inactivating enzymes and maintaining the quality of watermelon juice.

  3. Insights into the role of hydration in protein structure and stability obtained through hydrostatic pressure studies

    Directory of Open Access Journals (Sweden)

    C.A. Royer

    2005-08-01

    Full Text Available A thorough understanding of protein structure and stability requires that we elucidate the molecular basis for the effects of both temperature and pressure on protein conformational transitions. While temperature effects are relatively well understood and the change in heat capacity upon unfolding has been reasonably well parameterized, the state of understanding of pressure effects is much less advanced. Ultimately, a quantitative parameterization of the volume changes (at the basis of pressure effects accompanying protein conformational transitions will be required. The present report introduces a qualitative hypothesis based on available model compound data for the molecular basis of volume change upon protein unfolding and its dependence on temperature.

  4. X-ray reflectivity measurements of liquid/solid interfaces under high hydrostatic pressure conditions.

    Science.gov (United States)

    Wirkert, Florian J; Paulus, Michael; Nase, Julia; Möller, Johannes; Kujawski, Simon; Sternemann, Christian; Tolan, Metin

    2014-01-01

    A high-pressure cell for in situ X-ray reflectivity measurements of liquid/solid interfaces at hydrostatic pressures up to 500 MPa (5 kbar), a pressure regime that is particularly important for the study of protein unfolding, is presented. The original set-up of this hydrostatic high-pressure cell is discussed and its unique properties are demonstrated by the investigation of pressure-induced adsorption of the protein lysozyme onto hydrophobic silicon wafers. The presented results emphasize the enormous potential of X-ray reflectivity studies under high hydrostatic pressure conditions for the in situ investigation of adsorption phenomena in biological systems.

  5. Hydrostatic paradox: experimental verification of pressure equilibrium

    Science.gov (United States)

    Kodejška, Č.; Ganci, S.; Říha, J.; Sedláčková, H.

    2017-11-01

    This work is focused on the experimental verification of the balance between the atmospheric pressure acting on the sheet of paper, which encloses the cylinder completely or partially filled with water from below, where the hydrostatic pressure of the water column acts against the atmospheric pressure. First of all this paper solves a theoretical analysis of the problem, which is based, firstly, on the equation for isothermal process and, secondly, on the equality of pressures inside and outside the cylinder. From the measured values the confirmation of the theoretical quadratic dependence of the air pressure inside the cylinder on the level of the liquid in the cylinder is obtained, the maximum change in the volume of air within the cylinder occurs for the height of the water column L of one half of the total height of the vessel H. The measurements were made for different diameters of the cylinder and with plates made of different materials located at the bottom of the cylinder to prevent liquid from flowing out of the cylinder. The measured values were subjected to statistical analysis, which demonstrated the validity of the zero hypothesis, i.e. that the measured values are not statistically significantly different from the theoretically calculated ones at the statistical significance level α  =  0.05.

  6. High hydrostatic pressure upon the vasa vasorum of the greater saphenous and splenic vein walls: a comparative study.

    Science.gov (United States)

    Tao, W; Wei, H; Rui, X; Xiaoji, Z; Haibo, C; Lingyan, J; Meihong, W; Yongbo, X

    2015-12-01

    Hypoxia and high hydrostatic pressure can induce an increase in the thickness of the tunica media and intima; secondary vasa vasorum (VV) increase to fit the remodeling of the vessel wall. We aimed to investigate the impact of high hydrostatic pressure on VV in the varicose greater saphenous veins (VGSVs) and diseased splenic veins (DSVs). We collected 34 VGSVs and DSVs. Thirty-four normal greater saphenous veins (GSVs) and splenic veins (SVs) were also collected (control group). Samples were cut into slices, and observed under both light and electron microscopy. The mean density and cross-sectional areas of the VV in the adventitia were measured. In both VGSVs and DSVs, VV density increased, in the adventitia and exterior tunica media, offering an intensive linear distribution. However, sporadic distribution of the interior tunica media and intima were seen on light microscopy. The integrated structure of the cell nucleus of endothelial cells in VV, normal morphology and distribution of chromatin, partially hyperchromatic mitochondria matrix, fuzzy or fractured mitochondria cristae, and medullary cristae changes were observed by electron microscopy. Mean density and cross-sectional areas of VV in the adventitia of GSVs and SVs were significantly different. Under high hydrostatic pressure conditions, the number of VV were increased in the wall of VGSVs and DSVs. There was heterogeneity between both types of veins. The splenic vein has a higher number of VV, but the greater saphenous vein has a higher average cross-sectional area. The same ultrastructural changes are seen in the endothelial cells of the VV in both vessels.

  7. Food processing by high hydrostatic pressure.

    Science.gov (United States)

    Yamamoto, Kazutaka

    2017-04-01

    High hydrostatic pressure (HHP) process, as a nonthermal process, can be used to inactivate microbes while minimizing chemical reactions in food. In this regard, a HHP level of 100 MPa (986.9 atm/1019.7 kgf/cm2) and more is applied to food. Conventional thermal process damages food components relating color, flavor, and nutrition via enhanced chemical reactions. However, HHP process minimizes the damages and inactivates microbes toward processing high quality safe foods. The first commercial HHP-processed foods were launched in 1990 as fruit products such as jams, and then some other products have been commercialized: retort rice products (enhanced water impregnation), cooked hams and sausages (shelf life extension), soy sauce with minimized salt (short-time fermentation owing to enhanced enzymatic reactions), and beverages (shelf life extension). The characteristics of HHP food processing are reviewed from viewpoints of nonthermal process, history, research and development, physical and biochemical changes, and processing equipment.

  8. Sensor of hydrostatic pressure based on gallium antimonide microcrystals

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.

    2015-08-01

    Full Text Available Currently, silicon and germanium, the most common materials in the production of discrete semiconductor devices and integrated circuits, do not always meet all the requirements to the sensing elements of mechanical quantities sensors. Therefore, it is logical to research the properties of other semiconductor materials that could be used as sensing elements in such sensors. A3B5 semiconductor compounds seem promising for such purpose. Effect of hydrostatic pressure up to 5000 bar on the resistance of n-type antimonide gallium whiskers doped by Se or Te was studied. Coefficient of hydrostatic pressure for this crystals was determined, it equals Kh = (16,5—20,0•10–5 bar–1 at 20°N. Temperature dependence of resistance and coefficient Kh for this crystals in the temperature range ±60°N was studied. Design of the developed hydrostatic pressure sensor based on GaSb whiskers and its characteristics are presented. The possibility to decrease the temperature dependence of sensitive element resistance by mounting GaSb whiskers on the substrates fabricated from materials with different temperature coefficient of expansion was examined. It was shown that mounting of GaSb crystals on Cu substrate gives the optimal result, in this case the temperature coefficient decrease to 0,05%•°N–1, that leads to decrease of output temperature dependence. The main advantages of developed pressure sensor are: the simplified design in comparison with pressure sensors with strain gauges mounted on spring elements; the high sensitivity to pressure that is constant in the wide pressure range; the improvement of sensors metrological characteristics owing to hysteresis absence. The possible application fields of developed sensors are measuring of high and extremely high pressure, chemical and oil industries, measuring of pressure in oil bore-holes, investigation of explosive processes.

  9. Use of genetic algorithms for high hydrostatic pressure inactivation ...

    African Journals Online (AJOL)

    Jane

    2011-10-24

    ) for high hydrostatic pressure (HHP) inactivation of Bacillus cereus spores, Bacillus subtilis spores and cells,. Staphylococcus aureus and Listeria monocytogenes, all in milk buffer, were used to demonstrate the utility of ...

  10. High hydrostatic pressure extraction of phenolic compounds from ...

    African Journals Online (AJOL)

    Ergin Murat ALTUNER

    2012-01-12

    , Niğde, Turkey. 3Food Engineering Department, Middle East Technical University, TR-06800, Ankara, Turkey. Accepted 7 December, 2011. High hydrostatic pressure processing (HHPP) is a food processing method, in which ...

  11. Glycine insertion makes yellow fluorescent protein sensitive to hydrostatic pressure.

    Directory of Open Access Journals (Sweden)

    Tomonobu M Watanabe

    Full Text Available Fluorescent protein-based indicators for intracellular environment conditions such as pH and ion concentrations are commonly used to study the status and dynamics of living cells. Despite being an important factor in many biological processes, the development of an indicator for the physicochemical state of water, such as pressure, viscosity and temperature, however, has been neglected. We here found a novel mutation that dramatically enhances the pressure dependency of the yellow fluorescent protein (YFP by inserting several glycines into it. The crystal structure of the mutant showed that the tyrosine near the chromophore flipped toward the outside of the β-can structure, resulting in the entry of a few water molecules near the chromophore. In response to changes in hydrostatic pressure, a spectrum shift and an intensity change of the fluorescence were observed. By measuring the fluorescence of the YFP mutant, we succeeded in measuring the intracellular pressure change in living cell. This study shows a new strategy of design to engineer fluorescent protein indicators to sense hydrostatic pressure.

  12. Investigating the nucleation of protein crystals with hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kadri, A [Departement ' Mecanismes et Macromolecules de la Synthese Proteique et Cristallogenese' UPR 9002, Institut de Biologie Moleculaire et Cellulaire du CNRS, 15 rue Rene Descartes, F-67084 Strasbourg Cedex (France); Damak, M [Laboratoire de Chimie des Substances Naturelles, Faculte des Sciences de Sfax, BP 802, 3018 Sfax (Tunisia); Jenner, G [Laboratoire de Piezochimie Organique, UMR 7123, Faculte de Chimie, Universite Louis Pasteur, 1 rue Blaise Pascal, F-67008 Strasbourg Cedex (France); Lorber, B [Departement ' Mecanismes et Macromolecules de la Synthese Proteique et Cristallogenese' UPR 9002, Institut de Biologie Moleculaire et Cellulaire du CNRS, 15 rue Rene Descartes, F-67084 Strasbourg Cedex (France); Giege, R [Departement ' Mecanismes et Macromolecules de la Synthese Proteique et Cristallogenese' UPR 9002, Institut de Biologie Moleculaire et Cellulaire du CNRS, 15 rue Rene Descartes, F-67084 Strasbourg Cedex (France)

    2003-12-17

    Hydrostatic pressure in the 0.1-75 MPa range has been used as a non-invasive tool to study the crystallization process of the tetragonal crystal form of the protein thaumatin (M{sub r} 22 200). Crystals were prepared within agarose gel and at temperatures in the range from 283 to 303 K. The solubility, i.e. the concentration of soluble macromolecules remaining in equilibrium with the crystals, decreases when the pressure increases and when the temperature decreases. High pressure was used to probe the nucleation behaviour of thaumatin. The pressure dependence of the nucleation rate leads to an activation volume of -46.5cm{sup 3} mol{sup -1}. It is shown that an increase in pressure decreases the enthalpy, the entropy and the free energy of crystallization of thaumatin. The data are discussed in the light of the results of crystallographic analyses and of the structure of the protein.

  13. DX centers in III-V semiconductors under hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, Jeffrey Alan [Univ. of California, Berkeley, CA (United States)

    1992-11-01

    DX centers are deep level defects found in some III-V semiconductors. They have persistent photoconductivity and large difference between thermal and optical ionization energies. Hydrostatic pressure was used to study microstructure of these defects. A new local vibrational mode (LVM) was observed in hydrostatically stressed, Si-doped GaAs. Corresponding infrared absorption peak is distinct from the SiGa shallow donor LVM peak, which is the only other LVM peak observed in our samples, and is assigned to the Si DX center. Analysis of the relative intensities of the Si DX LVM and the Si shallow donor LVM peaks, combined with Hall effect and resistivity indicate that the Si DX center is negatively charged. Frequency of this new mode provides clues to the structure of this defect. A pressure induced deep donor level in S-doped InP was also discovered which has the properties of a DX center. Pressure at which the new defect becomes more stable than the shallow donor is 82 kbar. Optical ionization energy and energy dependence of the optical absorption cross section was measured for this new effect. Capture barrier from the conduction band into the DX state were also determined. That DX centers can be formed in InP by pressure suggests that DX states should be common in n-type III-V semiconductors. A method is suggested for predicting under what conditions these defects will be the most stable form of the donor impurity.

  14. Photoluminescence studies on self-organized 1.55-μm InAs/InGaAsP/InP quantum dots under hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, P. Y.; Dou, X. M.; Wu, X. F.; Ding, K.; Jiang, D. S.; Sun, B. Q., E-mail: bqsun@semi.ac.cn [State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Luo, S.; Yang, T.; Zhu, H. J. [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China)

    2014-07-14

    We report an experimental study on the optical properties of the self-organized 1.55-μm InAs/InGaAsP/InP quantum dots (QDs) under hydrostatic pressure up to 9.5 GPa at 10 K. The obtained pressure coefficients of emissions from InGaAsP to InAs QDs are 92 meV/GPa and 76 meV/GPa, respectively. Their photoluminescence intensities are found to decrease significantly with increasing pressure due to the pressure-induced Γ-X mixing of InGaAsP at about 8.5 GPa. The lifetime of excitonic emission from QDs decreases from about 1.15 at zero pressure to about 1.05 ns at 7.41 GPa. The wavelength of QD emission was tuned from 1.55 to 0.9 μm by applying a pressure of 8 GPa, displaying the feasibility for indirectly characterizing the individual InAs/InGaAsP/InP QDs of 1.55-μm emission (at zero pressure) under high-pressure using silicon avalanche photodiode.

  15. High hydrostatic pressure extraction of phenolic compounds from ...

    African Journals Online (AJOL)

    High hydrostatic pressure processing (HHPP) is a food processing method, in which food is subjected to the elevated pressure which is mostly between 100 to 800 MPa. HHPP is seen not only in food engineering, but also have other application areas, such as extraction of active ingredients from natural biomaterials.

  16. Effect of hydrostatic pressure on the structural, elastic and electronic ...

    Indian Academy of Sciences (India)

    The results showed a phase transition pressure from the zinc blende to rock-salt phase at around 1.56 Mbar, which is in good agreement with the theoretical data reported in the literature. Keywords. Hydrostatic pressure effect; structural, elastic and electronic properties; (B3) boron phosphide. PACS Nos 45.10.Ab; 62.20.

  17. One hundred years of pressure hydrostatics from Stevin to Newton

    CERN Document Server

    Chalmers, Alan F

    2017-01-01

    This monograph investigates the development of hydrostatics as a science. In the process, it sheds new light on the nature of science and its origins in the Scientific Revolution. Readers will come to see that the history of hydrostatics reveals subtle ways in which the science of the seventeenth century differed from previous periods. The key, the author argues, is the new insights into the concept of pressure that emerged during the Scientific Revolution. This came about due to contributions from such figures as Simon Stevin, Pascal, Boyle and Newton. The author compares their work with Galileo and Descartes, neither of whom grasped the need for a new conception of pressure. As a result, their contributions to hydrostatics were unproductive. The story ends with Newton insofar as his version of hydrostatics set the subject on its modern course. He articulated a technical notion of pressure that was up to the task. Newton compared the mathematical way in hydrostatics and the experimental way, and sided with t...

  18. PPARγ ligands decrease hydrostatic pressure-induced platelet aggregation and proinflammatory activity.

    Directory of Open Access Journals (Sweden)

    Fang Rao

    Full Text Available Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ. We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg or increased (120, 180, 240 mmHg hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg. The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs. These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure.

  19. Dynamic Culturing of Cartilage Tissue: The Significance of Hydrostatic Pressure

    Science.gov (United States)

    Pereira, Ana L.; Duarte, Ana R.C.; Frias, Ana M.; Pedro, Adriano J.; Oliveira, João T.; Sousa, Rui A.; Reis, Rui L.

    2012-01-01

    Human articular cartilage functions under a wide range of mechanical loads in synovial joints, where hydrostatic pressure (HP) is the prevalent actuating force. We hypothesized that the formation of engineered cartilage can be augmented by applying such physiologic stimuli to chondrogenic cells or stem cells, cultured in hydrogels, using custom-designed HP bioreactors. To test this hypothesis, we investigated the effects of distinct HP regimens on cartilage formation in vitro by either human nasal chondrocytes (HNCs) or human adipose stem cells (hASCs) encapsulated in gellan gum (GG) hydrogels. To this end, we varied the frequency of low HP, by applying pulsatile hydrostatic pressure or a steady hydrostatic pressure load to HNC-GG constructs over a period of 3 weeks, and evaluated their effects on cartilage tissue-engineering outcomes. HNCs (10×106 cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 3 weeks: (1) 0.4 MPa Pulsatile HP; (2) 0.4 MPa Steady HP; and (3) Static. Subsequently, we applied the pulsatile regimen to hASC-GG constructs and varied the amplitude of loading, by generating both low (0.4 MPa) and physiologic (5 MPa) HP levels. hASCs (10×106 cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 4 weeks: (1) 0.4 MPa Pulsatile HP; (2) 5 MPa Pulsatile HP; and (3) Static. In the HNC study, the best tissue development was achieved by the pulsatile HP regimen, whereas in the hASC study, greater chondrogenic differentiation and matrix deposition were obtained for physiologic loading, as evidenced by gene expression of aggrecan, collagen type II, and sox-9; metachromatic staining of cartilage extracellular matrix; and immunolocalization of collagens. We thus propose that both HNCs and hASCs detect and respond to physical forces, thus resembling joint loading, by enhancing cartilage tissue development in a frequency- and

  20. Effect of hydrostatic pressure on the structural, elastic and electronic ...

    Indian Academy of Sciences (India)

    In this paper we present the results obtained from first-principles calculations of the effect of hydrostatic pressure on the strucural, elastic and electronic properties of (B3) boron phosphide, using the pseudopotential plane-wave method (PP-PW) based on density functional theory within the Teter and Pade ...

  1. Porcine radial artery decellularization by high hydrostatic pressure.

    Science.gov (United States)

    Negishi, Jun; Funamoto, Seiichi; Kimura, Tsuyoshi; Nam, Kwangoo; Higami, Tetsuya; Kishida, Akio

    2015-11-01

    Many types of decellularized tissues have been studied and some have been commercially used in clinics. In this study, small-diameter vascular grafts were made using HHP to decellularize porcine radial arteries. One decellularization method, high hydrostatic pressure (HHP), has been used to prepare the decellularized porcine tissues. Low-temperature treatment was effective in preserving collagen and collagen structures in decellularized porcine carotid arteries. The collagen and elastin structures and mechanical properties of HHP-decellularized radial arteries were similar to those of untreated radial arteries. Xenogeneic transplantation (into rats) was performed using HHP-decellularized radial arteries and an untreated porcine radial artery. Two weeks after transplantation into rat carotid arteries, the HHP-decellularized radial arteries were patent and without thrombosis. In addition, the luminal surface of each decellularized artery was covered by recipient endothelial cells and the arterial medium was fully infiltrated with recipient cells. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Measuring bacterial activity and community composition at high hydrostatic pressure using a novel experimental approach: a pilot study.

    Science.gov (United States)

    Wannicke, Nicola; Frindte, Katharina; Gust, Giselher; Liskow, Iris; Wacker, Alexander; Meyer, Andreas; Grossart, Hans-Peter

    2015-05-01

    In this pilot study, we describe a high-pressure incubation system allowing multiple subsampling of a pressurized culture without decompression. The system was tested using one piezophilic (Photobacterium profundum), one piezotolerant (Colwellia maris) bacterial strain and a decompressed sample from the Mediterranean deep sea (3044 m) determining bacterial community composition, protein production (BPP) and cell multiplication rates (BCM) up to 27 MPa. The results showed elevation of BPP at high pressure was by a factor of 1.5 ± 1.4 and 3.9 ± 2.3 for P. profundum and C. maris, respectively, compared to ambient-pressure treatments and by a factor of 6.9 ± 3.8 fold in the field samples. In P. profundum and C. maris, BCM at high pressure was elevated (3.1 ± 1.5 and 2.9 ± 1.7 fold, respectively) compared to the ambient-pressure treatments. After 3 days of incubation at 27 MPa, the natural bacterial deep-sea community was dominated by one phylum of the genus Exiguobacterium, indicating the rapid selection of piezotolerant bacteria. In future studies, our novel incubation system could be part of an isopiestic pressure chain, allowing more accurate measurement of bacterial activity rates which is important both for modeling and for predicting the efficiency of the oceanic carbon pump. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. APPLICATIONS OF HIGH HYDROSTATIC PRESSURE IN THE FOOD INDUSTRY

    Directory of Open Access Journals (Sweden)

    Yahya TÜLEK

    2006-03-01

    Full Text Available Nowadays, thermal processes are used in order to preserve food from microbiologic and enzymatic changes and extend the shelf life. Thermal treatments are particularly safe, assures a total inactivation of vegetative microorganism cells and spore. On the other hand it present some disadvantages related to the high temperature employed, such as denaturation of proteins, vitamins, productions of toxic compound, undesirable organoleptic features. The last decade, non-thermal inactivation techniques have been a major research issue, driven by an increased consumer demand for nutritious, fresh like food products with a high organoleptical quality and an acceptable shelf life. Present article represents studies on application aspects and effects of high hydrostatic pressure in foods.

  4. High hydrostatic pressure: Can we trust published data?

    Directory of Open Access Journals (Sweden)

    Németh Cs.

    2015-01-01

    Full Text Available There are numerous new technologies whose implementation in food industry is hampered by the fact that people hesitate to invest in expensive systems which they cannot be sure will work or at least are questionable in terms of a given product. Until recently, preservation by HHP, high hydrostatic pressure, was such a technology, and still is today in some branches of the food industry. Investigations were conducted to answer the question of whether the literature, the laboratory, and the industrial (or at least pilot plant measurements and results agree with one another. We compared the literature data with two HHP systems which were significantly different in terms of treatment capacity, but their efficiency in killing microbes was studied under the same treatment parameters. Our results show that in nearly all cases only minimal differences exist between the data in the literature and the measurements taken on the two appliances.

  5. DC Electrical Ageing of XLPE under Hydrostatic Pressure

    Directory of Open Access Journals (Sweden)

    Fadila Benlizidia Lalam

    2017-01-01

    Full Text Available The experimental electrical ageing, of cross-linked polyethylene films 100 μm thick, was investigated under high hydrostatic pressure of 300 bar and at atmospheric pressure. The tests are conducted on direct current (dc for up to 1000 h ageing and at temperature of 70°C. The use of the Weibull statistic, with the estimation of confidence bounds at 90%, has shown that the hydrostatic pressure has a real effect on the lifetime. These lifetime data are qualitatively analyzed with the inverse power model. It was found that thermally activated process is able to describe the pressure effect on the electrical ageing of XLPE.

  6. Hydrostatic Pressure Sensing with High Birefringence Photonic Crystal Fibers

    Science.gov (United States)

    Fávero, Fernando C.; Quintero, Sully M. M.; Martelli, Cicero; Braga, Arthur M.B.; Silva, Vinícius V.; Carvalho, Isabel C. S.; Llerena, Roberth W. A.; Valente, Luiz C. G.

    2010-01-01

    The effect of hydrostatic pressure on the waveguiding properties of high birefringence photonic crystal fibers (HiBi PCF) is evaluated both numerically and experimentally. A fiber design presenting form birefringence induced by two enlarged holes in the innermost ring defining the fiber core is investigated. Numerical results show that modal sensitivity to the applied pressure depends on the diameters of the holes, and can be tailored by independently varying the sizes of the large or small holes. Numerical and experimental results are compared showing excellent agreement. A hydrostatic pressure sensor is proposed and demonstrated using an in-fiber modal interferometer where the two orthogonally polarized modes of a HiBi PCF generate fringes over the optical spectrum of a broad band source. From the analysis of experimental results, it is concluded that, in principle, an operating limit of 92 MPa in pressure could be achieved with 0.0003% of full scale resolution. PMID:22163435

  7. Hydrostatic Pressure Sensing with High Birefringence Photonic Crystal Fibers

    Directory of Open Access Journals (Sweden)

    Roberth W. A. Llerena

    2010-11-01

    Full Text Available The effect of hydrostatic pressure on the waveguiding properties of high birefringence photonic crystal fibers (HiBi PCF is evaluated both numerically and experimentally. A fiber design presenting form birefringence induced by two enlarged holes in the innermost ring defining the fiber core is investigated. Numerical results show that modal sensitivity to the applied pressure depends on the diameters of the holes, and can be tailored by independently varying the sizes of the large or small holes. Numerical and experimental results are compared showing excellent agreement. A hydrostatic pressure sensor is proposed and demonstrated using an in-fiber modal interferometer where the two orthogonally polarized modes of a HiBi PCF generate fringes over the optical spectrum of a broad band source. From the analysis of experimental results, it is concluded that, in principle, an operating limit of 92 MPa in pressure could be achieved with 0.0003% of full scale resolution.

  8. First-principle study of the structural, electronic, and optical properties of cubic InN{sub x}P{sub 1-x} ternary alloys under hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hattabi, I. [Ibn Khaldoun Univ. de Tiaret (Algeria). Lab. Synthese et Catalyse; Abdiche, A.; Riane, R. [Sidi-bel-Abbes Univ. (Algeria). Applied Materials Lab.; Moussa, R. [Sidi-bel-Abbes Univ. (Algeria). Physic Dept.; Hadji, K. [Ibn Khaldoun Univ. de Tiaret (Algeria). Science and Technology Dept.; Soyalp, F. [Yuezuencue Yil Univ., Van (Turkey). Dept. of Physics; Varshney, Dinesh [Devi Ahilya Univ., Indore (India). Materials Science Lab.; Syrotyuk, S.V. [National Univ. ' Lviv Polytechnic' , Lviv (Ukraine). Semiconductor Electronics Dept.; Khenata, R. [Mascara Univ. (Algeria). Lab. de Physique Quantique et de Modelisation Mathematique (LPQ3M)

    2016-07-01

    In this article, we present results of the first-principle study of the structural, electronic, and optical properties of the InN, InP binary compounds and their related ternary alloy InN{sub x}P{sub 1-x} in the zinc-blend (ZB) phase within a nonrelativistic full potential linearised augmented plan wave (FP-LAPW) method using Wien2k code based on the density functional theory (DFT). Different approximations of exchange-correlation energy were used for the calculation of the lattice constant, bulk modulus, and first-order pressure derivative of the bulk modulus. Whereas the lattice constant decreases with increasing nitride composition x. Our results present a good agreement with theoretical and experimental data. The electronic band structures calculated using Tran-Blaha-modified Becke-Johnson (TB-mBJ) approach present a direct band gap semiconductor character for InN{sub x}P{sub 1-x} compounds at different x values. The electronic properties were also calculated under hydrostatic pressure for (P=0.00, 5.00, 10.0, 15.0, 20.0, 25.0 GPa) where it is found that the InP compound change from direct to indirect band gap at the pressure P≥7.80 GPa. Furthermore, the pressure effect on the dielectric function and the refractive index was carried out. Results obtained in our calculations present a good agreement with available theoretical reports and experimental data.

  9. Sensor of hydrostatic pressure based on gallium antimonide microcrystals

    OpenAIRE

    Druzhinin A. A.; Maryamova I. I.; Kutrakov A. P.; Liakh-Kaguy N. S.

    2015-01-01

    Currently, silicon and germanium, the most common materials in the production of discrete semiconductor devices and integrated circuits, do not always meet all the requirements to the sensing elements of mechanical quantities sensors. Therefore, it is logical to research the properties of other semiconductor materials that could be used as sensing elements in such sensors. A3B5 semiconductor compounds seem promising for such purpose. Effect of hydrostatic pressure up to 5000 bar on the res...

  10. Structural phases arising from reconstructive and isostructural transitions in high-melting-point oxides under hydrostatic pressure: A first-principles study

    Science.gov (United States)

    Tian, Hao; Kuang, Xiao-Yu; Mao, Ai-Jie; Yang, Yurong; Xu, Changsong; Sayedaghaee, S. Omid; Bellaiche, L.

    2018-01-01

    High-melting-point oxides of chemical formula A B O3 with A =Ca , Sr, Ba and B =Zr , Hf are investigated as a function of hydrostatic pressure up to 200 GPa by combining first-principles calculations with a particle swarm optimization method. Ca- and Sr-based systems: (1) first undergo a reconstructive phase transition from a perovskite state to a novel structure that belongs to the post-post-perovskite family and (2) then experience an isostructural transition to a second, also new post-post-perovskite state at higher pressures, via the sudden formation of a specific out-of-plane B -O bond. In contrast, the studied Ba compounds evolve from a perovskite phase to a third novel post-post-perovskite structure via another reconstructive phase transition. The original characteristics of these three different post-post-perovskite states are emphasized. Unusual electronic properties, including significant piezochromic effects and an insulator-metal transition, are also reported and explained.

  11. Challenging oil bioremediation at deep-sea hydrostatic pressure

    Directory of Open Access Journals (Sweden)

    Alberto Scoma

    2016-08-01

    Full Text Available The Deepwater Horizon (DWH accident has brought oil contamination of deep-sea environments to worldwide attention. The risk for new deep-sea spills is not expected to decrease in the future, as political pressure mounts to access deep-water fossil reserves, and poorly tested technologies are used to access oil. This also applies to the response to oil-contamination events, with bioremediation the only (biotechnology presently available to combat deep-sea spills. Many questions about the fate of petroleum-hydrocarbons at deep-sea remain unanswered, as much as the main constraints limiting bioremediation under increased hydrostatic pressures and low temperatures. The microbial pathways fueling oil take up are unclear, and the mild upregulation observed for beta-oxidation-related genes in both water and sediments contrasts with the high amount of alkanes present in the spilled-oil. The fate of solid alkanes (tar and that of hydrocarbons degradation rates was largely overlooked, as the reason why the most predominant hydrocarbonoclastic genera were not enriched at deep-sea, despite being present at hydrocarbon seeps at the Gulf of Mexico. This mini-review aims at highlighting the missing information in the field, proposing a holistic approach where in situ and ex situ studies are integrated to reveal the principal mechanisms accounting for deep-sea oil bioremediation.

  12. Use of an Ethanol-Driven Pressure Cell to Measure Hydrostatic Pressure Response of Protein-Stabilized Gold Nanoclusters

    Science.gov (United States)

    2016-01-01

    ARL-TR-7577 ● JAN 2016 US Army Research Laboratory Use of an Ethanol -Driven Pressure Cell to Measure Hydrostatic Pressure...ARL-TR-7577 ● JAN 2016 US Army Research Laboratory Use of an Ethanol -Driven Pressure Cell to Measure Hydrostatic Pressure Response of...DATES COVERED (From - To) May 2014–September 2014 4. TITLE AND SUBTITLE Use of an Ethanol -Driven Pressure Cell to Measure Hydrostatic Pressure

  13. Induction of rice mutations by high hydrostatic pressure.

    Science.gov (United States)

    Zhang, Wei; Liu, Xuncheng; Zheng, Feng; Zeng, Songjun; Wu, Kunlin; da Silva, Jaime A Teixeira; Duan, Jun

    2013-09-01

    High hydrostatic pressure (HHP) is an extreme thermo-physical factor that affects the synthesis of DNA, RNA and proteins and induces mutagenesis in microorganisms. Our previous studies showed that exposure to 25-100 MPa HHP for 12 h retarded the germination and affected the viability of rice (Oryza sativa L.) seeds, increased the tolerance of rice plants to cold stress and altered gene expression patterns in germinating rice seeds. However, the mutagenic effect of HHP on rice remains unknown. In this study, exposure to 25, 50, 75 or 100 MPa for 12 h HHP could efficiently induce variation in rice plants. Furthermore, presoaking time and HHP strength during HHP treatment affected the efficiency of mutation. In addition, the Comet assay revealed that exposure to 25-100 MPa HHP for 12 h induced DNA strand breakage in germinating seeds and may have been the source of mutations. Our results suggest that HHP is a promising physical mutagen in rice breeding. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. Electronic structure computation and differential capacitance profile in δ-doped FET as a function of hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Carlos-Pinedo, C.; Rodríguez-Vargas, I.; Martínez-Orozco, J. C. [Unidad Académica de Física. Universidad Autónoma de Zacatecas. Calzada Solidaridad Esquina con Paseo la Bufa S/N. C.P. 98060, Zacatecas, Zac. (Mexico)

    2014-05-15

    In this work we present the results obtained from the calculation of the level structure of a n-type delta-doped well Field Effect Transistor when is subjected to hydrostatic pressure. We study the energy level structure as a function of hydrostatic pressure within the range of 0 to 6 kbar for different Schottky barrier height (SBH). We use an analytical expression for the effect of hydrostatic pressure on the SBH and the pressure dependence of the basic parameters of the system as the effective mass m(P) and the dielectric constant ε(P) of GaAs. We found that due to the effects of hydrostatic pressure, in addition to electronic level structure alteration, the profile of the differential capacitance per unit area C{sup −2} is affected.

  15. Effects of high hydrostatic pressure and thermal processing on bioactive compounds, antioxidant activity, and volatile profile of mulberry juice.

    Science.gov (United States)

    Wang, Fan; Du, Bao-Lei; Cui, Zheng-Wei; Xu, Li-Ping; Li, Chun-Yang

    2017-03-01

    The aim of this study was to investigate the effects of high hydrostatic pressure and thermal processing on microbiological quality, bioactive compounds, antioxidant activity, and volatile profile of mulberry juice. High hydrostatic pressure processing at 500 MPa for 10 min reduced the total viable count from 4.38 log cfu/ml to nondetectable level and completely inactivated yeasts and molds in raw mulberry juice, ensuring the microbiological safety as thermal processing at 85 ℃ for 15 min. High hydrostatic pressure processing maintained significantly (p pressure processing enhanced the volatile compound concentrations of mulberry juice while thermal processing reduced them in comparison with the control. These results suggested that high hydrostatic pressure processing could be an alternative to conventional thermal processing for production of high-quality mulberry juice.

  16. High hydrostatic pressure induces pro-osteoarthritic changes in cartilage precursor cells: A transcriptome analysis.

    Science.gov (United States)

    Montagne, Kevin; Onuma, Yasuko; Ito, Yuzuru; Aiki, Yasuhiko; Furukawa, Katsuko S; Ushida, Takashi

    2017-01-01

    Due to the high water content of cartilage, hydrostatic pressure is likely one of the main physical stimuli sensed by chondrocytes. Whereas, in the physiological range (0 to around 10 MPa), hydrostatic pressure exerts mostly pro-chondrogenic effects in chondrocyte models, excessive pressures have been reported to induce detrimental effects on cartilage, such as increased apoptosis and inflammation, and decreased cartilage marker expression. Though some genes modulated by high pressure have been identified, the effects of high pressure on the global gene expression pattern have still not been investigated. In this study, using microarray technology and real-time PCR validation, we analyzed the transcriptome of ATDC5 chondrocyte progenitors submitted to a continuous pressure of 25 MPa for up to 24 h. Several hundreds of genes were found to be modulated by pressure, including some not previously known to be mechano-sensitive. High pressure markedly increased the expression of stress-related genes, apoptosis-related genes and decreased that of cartilage matrix genes. Furthermore, a large set of genes involved in the progression of osteoarthritis were also induced by high pressure, suggesting that hydrostatic pressure could partly mimic in vitro some of the genetic alterations occurring in osteoarthritis.

  17. High hydrostatic pressure activates transcription factors involved in Saccharomyces cerevisiae stress tolerance.

    Science.gov (United States)

    Bravim, Fernanda; da Silva, Lucas F; Souza, Diego T; Lippman, Soyeon I; Broach, James R; Fernandes, A Alberto R; Fernandes, Patricia M B

    2012-12-01

    A number of transcriptional control elements are activated when Saccharomyces cerevisiae cells are submitted to various stress conditions, including high hydrostatic pressure (HHP). Exposure of Saccharomyces cerevisiae cells to HHP results in global transcriptional reprogramming, similar to that observed under other industrial stresses, such as temperature, ethanol and oxidative stresses. Moreover, treatment with a mild hydrostatic pressure renders yeast cells multistress tolerant. In order to identify transcriptional factors involved in coordinating response to high hydrostatic pressure, we performed a time series microarray expression analysis on a wild S. cerevisiae strain exposed to 50 MPa for 30 min followed by recovery at atmospheric pressure (0.1 MPa) for 5, 10 and 15 min. We identified transcription factors and corresponding DNA and RNA motifs targeted in response to hydrostatic pressure. Moreover, we observed that different motif elements are present in the promoters of induced or repressed genes during HHP treatment. Overall, as we have already published, mild HHP treatment to wild yeast cells provides multiple protection mechanisms, and this study suggests that the TFs and motifs identified as responding to HHP may be informative for a wide range of other biotechnological and industrial applications, such as fermentation, that may utilize HHP treatment.

  18. The behavior of high-strength unidirectional composites under tension with superposed hydrostatic pressure

    NARCIS (Netherlands)

    Zinoviev, P.A.; Tsvetkov, S.V.; Kulish, G.G.; Berg, van den R.W.; Schepdael, van L.J.M.M.

    2001-01-01

    Three types of high-strength unidirectional composite materials were studied under longitudinal tension with superposed high hydrostatic pressure. Reinforcing fibers were T1000G carbon, S2 glass and Zylon PBO fibers; the Ciba 5052 epoxy resin was used as matrix. The composites were tested under

  19. Inactivation of human norovirus in contaminated oysters and clams by high-hydrostatic pressure

    Science.gov (United States)

    Human norovirus (NoV) is the most frequent causative agent of foodborne disease associated with shellfish consumption. In this study, the effect of high-hydrostatic pressure (HHP) on inactivation of NoV was determined. Genogroup I.1 (GI.1) or Genogroup II.4 (GII.4) NoV were inoculated into oyster ho...

  20. Ultrasonic study of the temperature and hydrostatic-pressure dependences of the elastic properties of polycrystalline cementite (Fe{sub 3}C)

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, S.P.; Saunders, G.A. [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom); Cankurtaran, M. [Hacettepe University, Department of Physics, Beytepe, 06532 Ankara (Turkey); James, B. [DSTL-Chertsey (Armour Group), Chobham Lane, Chertsey, Surrey KT16 OEE (United Kingdom); Acet, M. [Tieftemperaturephysik, Universitaet Duisburg, 47048 Duisburg (Germany)

    2003-08-01

    Pulse-echo-overlap measurements of ultrasonic wave velocity have been used to determine the dependences of the elastic stiffness moduli of polycrystalline cementite (Fe{sub 3}C) on temperature in the range 75-295 K and hydrostatic pressure up to 0.1 GPa at room temperature. The longitudinal stiffness (C{sub L}) and adiabatic bulk modulus (B{sup S}) stiffen, while the shear stiffness ({mu}) and Young's modulus (E) soften with decreasing temperature. The ultrasonic velocities increase approximately linearly with pressure, much more steeply for the longitudinal than the shear mode. The values obtained at 295 K for the hydrostatic-pressure derivatives ({partial_derivative}C{sub L}/{partial_derivative}P){sub P=0}, ({partial_derivative}{mu}/{partial_derivative}P){sub P=0} and ({partial_derivative}B{sup S}/{partial_derivative}P){sub P=0} of cementite are 7.9{+-} 1.7, 1.4{+-}0.1 and 6.1{+-}1.7, respectively: the zone-centre acoustic phonons stiffen under pressure. The longitudinal ({gamma}{sub L}), shear ({gamma}{sub S}) and mean ({gamma}{sup el}) acoustic-mode Grueneisen parameters of cementite are positive; {gamma}{sub S} is markedly smaller than {gamma}{sub L} indicating that the shear acoustic modes are less anharmonic than the longitudinal modes. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  1. Transcriptomics reveal several gene expression patterns in the piezophile Desulfovibrio hydrothermalis in response to hydrostatic pressure.

    Directory of Open Access Journals (Sweden)

    Amira Amrani

    Full Text Available RNA-seq was used to study the response of Desulfovibrio hydrothermalis, isolated from a deep-sea hydrothermal chimney on the East-Pacific Rise at a depth of 2,600 m, to various hydrostatic pressure growth conditions. The transcriptomic datasets obtained after growth at 26, 10 and 0.1 MPa identified only 65 differentially expressed genes that were distributed among four main categories: aromatic amino acid and glutamate metabolisms, energy metabolism, signal transduction, and unknown function. The gene expression patterns suggest that D. hydrothermalis uses at least three different adaptation mechanisms, according to a hydrostatic pressure threshold (HPt that was estimated to be above 10 MPa. Both glutamate and energy metabolism were found to play crucial roles in these mechanisms. Quantitation of the glutamate levels in cells revealed its accumulation at high hydrostatic pressure, suggesting its role as a piezolyte. ATP measurements showed that the energy metabolism of this bacterium is optimized for deep-sea life conditions. This study provides new insights into the molecular mechanisms linked to hydrostatic pressure adaptation in sulfate-reducing bacteria.

  2. High hydrostatic pressure as a method to preserve fresh-cut Hachiya persimmons: A structural approach.

    Science.gov (United States)

    Vázquez-Gutiérrez, José Luis; Quiles, Amparo; Vonasek, Erica; Jernstedt, Judith A; Hernando, Isabel; Nitin, Nitin; Barrett, Diane M

    2016-12-01

    The "Hachiya" persimmon is the most common astringent cultivar grown in California and it is rich in tannins and carotenoids. Changes in the microstructure and some physicochemical properties during high hydrostatic pressure processing (200-400 MPa, 3 min, 25 ℃) and subsequent refrigerated storage were analyzed in this study in order to evaluate the suitability of this non-thermal technology for preservation of fresh-cut Hachiya persimmons. The effects of high-hydrostatic pressure treatment on the integrity and location of carotenoids and tannins during storage were also analyzed. Significant changes, in particular diffusion of soluble compounds which were released as a result of cell wall and membrane damage, were followed using confocal microscopy. The high-hydrostatic pressure process also induced changes in physicochemical properties, e.g. electrolyte leakage, texture, total soluble solids, pH and color, which were a function of the amount of applied hydrostatic pressure and may affect the consumer acceptance of the product. Nevertheless, the results indicate that the application of 200 MPa could be a suitable preservation treatment for Hachiya persimmon. This treatment seems to improve carotenoid extractability and tannin polymerization, which could improve functionality and remove astringency of the fruit, respectively. © The Author(s) 2016.

  3. Effects of High Hydrostatic Pressure on Coastal Bacterial Community Abundance and Diversity

    Science.gov (United States)

    Marietou, Angeliki

    2014-01-01

    Hydrostatic pressure is an important parameter influencing the distribution of microbial life in the ocean. In this study, the response of marine bacterial populations from surface waters to pressures representative of those under deep-sea conditions was examined. Southern California coastal seawater collected 5 m below the sea surface was incubated in microcosms, using a range of temperatures (16 to 3°C) and hydrostatic pressure conditions (0.1 to 80 MPa). Cell abundance decreased in response to pressure, while diversity increased. The morphology of the community also changed with pressurization to a predominant morphotype of small cocci. The pressure-induced community changes included an increase in the relative abundance of Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, and Flavobacteria largely at the expense of Epsilonproteobacteria. Culturable high-pressure-surviving bacteria were obtained and found to be phylogenetically similar to isolates from cold and/or deep-sea environments. These results provide novel insights into the response of surface water bacteria to changes in hydrostatic pressure. PMID:25063663

  4. Effects of high hydrostatic pressure on coastal bacterial community abundance and diversity.

    Science.gov (United States)

    Marietou, Angeliki; Bartlett, Douglas H

    2014-10-01

    Hydrostatic pressure is an important parameter influencing the distribution of microbial life in the ocean. In this study, the response of marine bacterial populations from surface waters to pressures representative of those under deep-sea conditions was examined. Southern California coastal seawater collected 5 m below the sea surface was incubated in microcosms, using a range of temperatures (16 to 3°C) and hydrostatic pressure conditions (0.1 to 80 MPa). Cell abundance decreased in response to pressure, while diversity increased. The morphology of the community also changed with pressurization to a predominant morphotype of small cocci. The pressure-induced community changes included an increase in the relative abundance of Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, and Flavobacteria largely at the expense of Epsilonproteobacteria. Culturable high-pressure-surviving bacteria were obtained and found to be phylogenetically similar to isolates from cold and/or deep-sea environments. These results provide novel insights into the response of surface water bacteria to changes in hydrostatic pressure. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Effect of high-hydrostatic pressure and moderate-intensity pulsed electric field on plum.

    Science.gov (United States)

    García-Parra, J; González-Cebrino, F; Delgado-Adámez, J; Cava, R; Martín-Belloso, O; Élez-Martínez, P; Ramírez, R

    2018-03-01

    Moderate intensity pulse electric fields were applied in plum with the aim to increase bioactive compounds content of the fruit, while high-hydrostatic pressure was applied to preserve the purées. High-hydrostatic pressure treatment was compared with an equivalent thermal treatment. The addition of ascorbic acid during purée manufacture was also evaluated. The main objective of this study was to assess the effects on microorganisms, polyphenoloxidase, color and bioactive compounds of high-hydrostatic pressure, or thermal-processed plum purées made of moderate intensity pulse electric field-treated or no-moderate intensity pulse electric field-treated plums, after processing during storage. The application of moderate intensity pulse electric field to plums slightly increased the levels of anthocyanins and the antioxidant activity of purées. The application of Hydrostatic-high pressure (HHP) increased the levels of bioactive compounds in purées, while the thermal treatment preserved better the color during storage. The addition of ascorbic acid during the manufacture of plum purée was an important factor for the final quality of purées. The color and the bioactive compounds content were better preserved in purées with ascorbic acid. The no inactivation of polyphenoloxidase enzyme with treatments applied in this study affected the stability purées. Probably more intense treatments conditions (high-hydrostatic pressure and thermal treatment) would be necessary to reach better quality and shelf life during storage.

  6. A preliminary study about the influence of high hydrostatic pressure processing in parallel with oak chip maceration on the physicochemical and sensory properties of a young red wine.

    Science.gov (United States)

    Tao, Yang; Sun, Da-Wen; Górecki, Adrian; Błaszczak, Wioletta; Lamparski, Grzegorz; Amarowicz, Ryszard; Fornal, Józef; Jeliński, Tomasz

    2016-03-01

    The influence of high hydrostatic pressure (HHP) processing in parallel with oak chip maceration on the physicochemical and sensory properties of a young red wine was investigated preliminarily. Wines were treated by HHP at 250, 450 and 650MPa for up to 45min and French oak chips (5g/L) were added. HHP enhanced the extraction of phenolics from oak chips. The phenolic contents and antioxidant activity of the wine increased after HHP processing in the presence of oak chips. Meanwhile, the anthocyanin content and wine color intensity decreased in the first 5min of pressure treatment and then increased gradually. The multivariate analysis revealed that "pressure holding time" was the key factor affecting wine physicochemical characteristics during HHP processing in the presence of oak chips. Furthermore, oak chip maceration with and without HHP processing weakened the intensities of several sensory attributes and provided the wine with an artificial taste. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. High Hydrostatic Pressure Pretreatment of Whey Protein Isolates Improves Their Digestibility and Antioxidant Capacity

    OpenAIRE

    Michèle M. Iskandar; Lands, Larry C.; Kebba Sabally; Behnam Azadi; Brian Meehan; Nadir Mawji; Cameron D. Skinner; Stan Kubow

    2015-01-01

    Whey proteins have well-established antioxidant and anti-inflammatory bioactivities. High hydrostatic pressure processing of whey protein isolates increases their in vitro digestibility resulting in enhanced antioxidant and anti-inflammatory effects. This study compared the effects of different digestion protocols on the digestibility of pressurized (pWPI) and native (nWPI) whey protein isolates and the antioxidant and anti-inflammatory properties of the hydrolysates. The pepsin-pancreatin di...

  8. Effects of High Hydrostatic Pressure Processing on the Number of Bacteria and Texture of Beef Liver

    Directory of Open Access Journals (Sweden)

    Hirokazu Ogihara

    2017-01-01

    Full Text Available Providing beef liver for raw consumption was banned in Japan on July 1, 2012. To lift the ban, the establishment of effective countermeasures for safe raw consumption is necessary. In this study, we examined the effects of high hydrostatic pressure processing on raw beef liver. Beef liver samples subjected to 300 MPa of pressure or higher for 10 min at 25°C became firmer and showed a paler color and were considered unsuitable for raw consumption. More than 3.0 log reductions of bacteria were seen after treatments at 400 and 500 MPa, but the treatment with lower pressure did not show enough microcidal effects for safe consumption. Histological and ultrastructural analysis revealed that high hydrostatic pressure processing increased mitochondrial swelling and reduced rough endoplasmic reticula in hepatocytes, and such changes might be related to the observed changes of texture in the treated raw beef liver.

  9. DFT study of the effect of hydrostatic pressure on formation and migration enthalpies of intrinsic point defects in single crystal Si

    Energy Technology Data Exchange (ETDEWEB)

    Sueoka, Koji; Kamiyama, Eiji; Kariyazaki, Hiroaki [Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197 (Japan); Vanhellemont, Jan [Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, 9000 Gent (Belgium)

    2012-10-15

    The dependence of the formation enthalpy (H{sub f}) of the self-interstitial I and the vacancy V on the hydrostatic pressure P was obtained by calculating the formation energy (E{sub f}) and the relaxation volume (v{sub f}). The dependence of the migration enthalpy (H{sub m}) of I and V on the pressure P was also obtained by calculating the change of H{sub f} during the migration. Density functional theory calculations were used with 216-atom supercells and with special attention for the convergence of the calculations. The neutral I and V are found to have quasi constant formation energies E{sub f}{sup I} and E{sub f}{sup V} for pressures between - 1 GPa to 1 GPa. For the relaxation volume, v{sub f}{sup I} is almost constant while v{sub f}{sup V} decreases with increasing pressure P. The formation and migration enthalpies H{sub f}{sup I} and H{sub m}{sup I}, respectively, at the [110] dumbbell site are given by H{sub f}{sup I} = 3.425 - 0.055 x P (eV) and H{sub m}{sup I} = 0.981 - 0.039 x P (eV) with hydrostatic pressure P given in GPa. The H{sub f}{sup V} and H{sub m}{sup V} dependencies on P are given by H{sub f}{sup V} =3.543 - 0.024 x P{sup 2}- 0.009 x P (eV) and H{sub m}{sup V} = 0.249 + 0.005 x P{sup 2} - 0.030 x P (eV). These results indicate that hydrostatic pressure leads to a slight increase of the equilibrium concentration and diffusion of vacancies but this increase is considerably smaller than that of self-interstitials (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. A mechanical refractory period of chondrocytes after dynamic hydrostatic pressure.

    Science.gov (United States)

    Cao, Xu; Xia, Hansong; Li, Na; Xiong, Kun; Wang, Zili; Wu, Song

    2015-06-01

    Mechanical stimulation, a crucial factor for maintaining the cartilaginous phenotype and promoting the chondrogenesis, has been widely used in autologous chondrocyte transplantation. This study was designed to investigate a novel concept of mechanical refractory period of chondrocytes after dynamic hydrostatic pressure (dHP). dHP protocols (0.1 Hz, 2 MPa) were applied. The variation in type II collagen (Col II) expression induced by each dHP unit was measured. The dynamic remodeling of F-actin during the mechanical protocols was observed morphologically and mechanically by laser confocal microscopy and optical magnetic twisting cytometry (OMTC), respectively. About 20 ng/ml VEGF was used to stabilize the F-actin and restrain the mechanical refractory period. Compared with the remarkable increase of Col II (16-fold) induced by the initial dHP unit, the chondrocytes entered a mechanical refractory period and the second unit hardly elevated Col II expression (only 2.9-fold). This refractory period recovered partially within 2 h. The uniform, parallel, and coarse fibers of F-actin before dHP became thin, sparse, and disordered, and the cell stiffness decreased concomitantly. The variations in both the morphology and the mechanical property of F-actin were highly synchronous to the mechanical refractory period and recovered in a time-dependent manner. VEGF postponed the appearance of this refractory period and maintained the high expression of Col II by VEGF/p38/MAPKAPK-2/LIMK/cofilin pathway. A mechanical refractory period of chondrocytes has been discovered and defined in this study. The F-actin depolymerization is the putative mechanism, and this refractory period can be postponed by VEGF-induced F-actin stabilization.

  11. An Experimental Study of the Effects of External Physiological Parameters on the Photoplethysmography Signals in the Context of Local Blood Pressure (Hydrostatic Pressure Changes)

    OpenAIRE

    Yuan, Hongwei; Poeggel, Sven; Newe, Thomas; Lewis, Elfed; Viphavakit, Charusluk; Leen, Gabriel

    2017-01-01

    A comprehensive study of the effect of a wide range of controlled human subject motion on Photoplethysmographic signals is reported. The investigation includes testing of two separate groups of 5 and 18 subjects who were asked to undertake set exercises whilst simultaneously monitoring a wide range of physiological parameters including Breathing Rate, Heart Rate and Localised Blood Pressure using commercial clinical sensing systems. The unique finger mounted PPG probe equipped with miniature ...

  12. An Experimental Study of the Effects of External Physiological Parameters on the Photoplethysmography Signals in the Context of Local Blood Pressure (Hydrostatic Pressure Changes)

    Science.gov (United States)

    Yuan, Hongwei; Poeggel, Sven; Newe, Thomas; Lewis, Elfed; Viphavakit, Charusluk; Leen, Gabriel

    2017-01-01

    A comprehensive study of the effect of a wide range of controlled human subject motion on Photoplethysmographic signals is reported. The investigation includes testing of two separate groups of 5 and 18 subjects who were asked to undertake set exercises whilst simultaneously monitoring a wide range of physiological parameters including Breathing Rate, Heart Rate and Localised Blood Pressure using commercial clinical sensing systems. The unique finger mounted PPG probe equipped with miniature three axis accelerometers for undertaking this investigation was a purpose built in-house version which is designed to facilitate reproducible application to a wide range of human subjects and the study of motion. The subjects were required to undertake several motion based exercises including standing, sitting and lying down and transitions between these states. They were also required to undertake set arm movements including arm-swinging and wrist rotation. A comprehensive set of experimental results corresponding to all motion inducing exercises have been recorded and analysed including the baseline (BL) value (DC component) and the amplitude of the oscillation of the PPG. All physiological parameters were also recorded as a simultaneous time varying waveform. The effects of the motion and specifically the localised Blood Pressure (BP) have been studied and related to possible influences of the Autonomic Nervous System (ANS) and hemodynamic pressure variations. It is envisaged that a comprehensive study of the effect of motion and the localised pressure fluctuations will provide valuable information for the future minimisation of motion artefact effect on the PPG signals of this probe and allow the accurate assessment of total haemoglobin concentration which is the primary function of the probe. PMID:28287428

  13. An Experimental Study of the Effects of External Physiological Parameters on the Photoplethysmography Signals in the Context of Local Blood Pressure (Hydrostatic Pressure Changes

    Directory of Open Access Journals (Sweden)

    Hongwei Yuan

    2017-03-01

    Full Text Available A comprehensive study of the effect of a wide range of controlled human subject motion on Photoplethysmographic signals is reported. The investigation includes testing of two separate groups of 5 and 18 subjects who were asked to undertake set exercises whilst simultaneously monitoring a wide range of physiological parameters including Breathing Rate, Heart Rate and Localised Blood Pressure using commercial clinical sensing systems. The unique finger mounted PPG probe equipped with miniature three axis accelerometers for undertaking this investigation was a purpose built in-house version which is designed to facilitate reproducible application to a wide range of human subjects and the study of motion. The subjects were required to undertake several motion based exercises including standing, sitting and lying down and transitions between these states. They were also required to undertake set arm movements including arm-swinging and wrist rotation. A comprehensive set of experimental results corresponding to all motion inducing exercises have been recorded and analysed including the baseline (BL value (DC component and the amplitude of the oscillation of the PPG. All physiological parameters were also recorded as a simultaneous time varying waveform. The effects of the motion and specifically the localised Blood Pressure (BP have been studied and related to possible influences of the Autonomic Nervous System (ANS and hemodynamic pressure variations. It is envisaged that a comprehensive study of the effect of motion and the localised pressure fluctuations will provide valuable information for the future minimisation of motion artefact effect on the PPG signals of this probe and allow the accurate assessment of total haemoglobin concentration which is the primary function of the probe.

  14. Stabilization of partially folded states in protein folding/misfolding transitions by hydrostatic pressure

    Directory of Open Access Journals (Sweden)

    S.T. Ferreira

    2005-08-01

    Full Text Available In the last few years, hydrostatic pressure has been extensively used in the study of both protein folding and misfolding/aggregation. Compared to other chemical or physical denaturing agents, a unique feature of pressure is its ability to induce subtle changes in protein conformation, which allow the stabilization of partially folded intermediate states that are usually not significantly populated under more drastic conditions (e.g., in the presence of chemical denaturants or at high temperatures. Much of the recent research in the field of protein folding has focused on the characterization of folding intermediates since these species appear to be involved in a variety of disease-causing protein misfolding and aggregation events. The exact mechanisms of these biologicalphenomena, however, are still poorly understood. Here, we review recent examples of the use of hydrostatic pressure as a tool to obtain insight into the forces and energetics governing the productive folding or the misfolding and aggregation of proteins.

  15. Photoluminescence of doped ZnS nanoparticles under hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.H.; Su, F.H.; Ma, B.S.; Ding, K. [National Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Xu, S.J. [Department of Physics and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Chen, W. [Nomadics, Inc., 1024 South Innovation Way, Stillwater, OK 74074 (United States)

    2004-11-01

    The pressure dependence of the photoluminescence from ZnS:Mn{sup 2+}, ZnS:Cu{sup 2+}, and ZnS:Eu{sup 2+} nanoparticles were investigated under hydrostatic pressure up to 6 GPa at room temperature. Both the orange emission from the {sup 4}T{sub 1}-{sup 6}A{sub 1} transition of Mn{sup 2+} ions and the blue emission from the DA pair transition in the ZnS host were observed in the Mn-doped samples. The measured pressure coefficients are -34.3(8) meV/GPa for the Mn-related emission and -3(3) meV/GPa for the DA band, respectively. The emission corresponding to the 4f{sup 6}5d{sup 1}-4f{sup 7} transition of Eu{sup 2+} ions and the emission related to the transition from the conduction band of ZnS to the t{sub 2} level of Cu{sup 2+} ions were observed in the Eu- and Cu-doped samples, respectively. The pressure coefficient of the Eu-related emission was found to be 24.1(5) meV/GPa, while that of the Cu-related emission is 63.2(9) meV/GPa. The size dependence of the pressure coefficients for the Mn-related emission was also investigated. The Mn emission shifts to lower energies with increasing pressure and the shift rate (the absolute value of the pressure coefficient) is larger in the ZnS:Mn{sup 2+} nanoparticles than in bulk. Moreover, the absolute pressure coefficient increases with the decrease of the particle size. The pressure coefficients calculated based on the crystal field theory are in agreement with the experimental results. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Comparative study of the hydrostatic pressure and temperature effects on the impurity-related optical properties in single and double GaAs-Ga{sub 1-x}Al{sub x}As quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Odhiambo Oyoko, H. [Department of Physics, Westville Campus, University of KwaZulu-Natal, Private Bag X 54001, Durban 4000 (South Africa); Porras-Montenegro, N. [Departamento de Fisica, Universidad del Valle, AA 25360, Cali (Colombia); Lopez, S.Y. [Facultad de Educacion, Universidad de Antioquia, AA 1226, Medellin (Colombia); Duque, C.A. [Instituto de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia)

    2007-07-01

    Using a variational technique within the effective mass approximation we have carried out a comparative study of the effect of hydrostatic pressure and temperature on the shallow-impurity related optical absorption spectra in GaAs-Ga{sub 1-x}Al{sub x}As single and double quantum wells. The results show a pressure dependent read-shift and a temperature dependent blue-shift in the optical absorption spectra. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. O deficient LaAlO3/SrTiO3(110) and (001) superlattices under hydrostatic pressure: a comparative first principles study

    KAUST Repository

    Albar, Arwa

    2017-03-17

    We compare the electronic properties of O deficient LaAlO3/SrTiO3 superlattices oriented along the (001) and (110) directions, taking into account the effect of hydrostatic compression and tension. Interfacial O vacancies turn out to be less likely in the case of the (110) orientation, with compression (tension) reducing (enhancing) the energy cost for both orientations. The presence of O vacancies results in the formation of a two-dimensional electron gas, for which we observe a distinct spatial pattern of carrier density that depends strongly on the amount of applied pressure. We clarify the interrelation between structural features and the properties of this electron gas (confinement, carrier density, and mobility).

  18. Multi-Pulsed High Hydrostatic Pressure Treatment of Foods

    Directory of Open Access Journals (Sweden)

    Sencer Buzrul

    2015-05-01

    Full Text Available Multi-pulsed high hydrostatic pressure (mpHHP treatment of foods has been investigated for more than two decades. It was reported that the mpHHP treatment, with few exceptions, is more effective than the classical or single-pulsed HHP (spHHP treatment for inactivation of microorganisms in fruit juice, dairy products, liquid whole egg, meat products, and sea foods. Moreover, the mpHHP treatment could be also used to inactivate enzymes in foods and to increase the shelf-life of foods. The effects of the mpHHP treatment of foods are summarized and the differences between the mpHHP and spHHP are also emphasized.

  19. Characterization of high hydrostatic pressure-injured Bacillus subtilis cells.

    Science.gov (United States)

    Inaoka, Takashi; Kimura, Keitarou; Morimatsu, Kazuya; Yamamoto, Kazutaka

    2017-06-01

    High hydrostatic pressure (HHP) affects various cellular processes. Using a sporulation-deficient Bacillus subtilis strain, we characterized the properties of vegetative cells subjected to HHP. When stationary-phase cells were exposed to 250 MPa of HHP for 10 min at 25 °C, approximately 50% of cells were viable, although they exhibited a prolonged growth lag. The HHP-injured cells autolyzed in the presence of NaCl or KCl (at concentrations ≥100 mM). Superoxide dismutase slightly protected the viability of HHP-treated cells, whereas vegetative catalases had no effect. Thus, unlike HHP-injured Escherichia coli, oxidative stress only slightly affected vegetative B. subtilis subjected to HHP.

  20. High hydrostatic pressure and biology: a brief history.

    Science.gov (United States)

    Demazeau, Gérard; Rivalain, Nolwennig

    2011-03-01

    Pressure as a thermodynamical parameter was successively introduced in physics, hydrometallurgy, geochemistry, and biology. In all cases, the main objective was to recreate a natural phenomenon (gas or liquid compressibility, synthesis or crystal growth of minerals, survival of deep sea microorganisms…). The introduction of high hydrostatic pressure (HHP) in Biology was an important scientific feature over the last hundred years. This paper describes the different steps that have led to the spreading of pressure in biology and the opening of new frontiers either in basic and applied researches due to the specific characteristics of the pressure parameter. Because of the low energy conveyed by this parameter, leading to the preservation of most organoleptic properties of foods, and its ability to inactivate many pathogens, the use of HHP began to spread at the end of the twentieth century into the food industry, in particular for the development of pathogen inactivation processes. Today, even if this field is still the first application domain for HHP, more and more research works have shown that this parameter could be of great interest in health and medicine sciences.

  1. Recent Advances in Food Processing Using High Hydrostatic Pressure Technology.

    Science.gov (United States)

    Wang, Chung-Yi; Huang, Hsiao-Wen; Hsu, Chiao-Ping; Yang, Binghuei Barry

    2016-01-01

    High hydrostatic pressure is an emerging non-thermal technology that can achieve the same standards of food safety as those of heat pasteurization and meet consumer requirements for fresher tasting, minimally processed foods. Applying high-pressure processing can inactivate pathogenic and spoilage microorganisms and enzymes, as well as modify structures with little or no effects on the nutritional and sensory quality of foods. The U.S. Food and Drug Administration (FDA) and the U.S. Department of Agriculture (USDA) have approved the use of high-pressure processing (HPP), which is a reliable technological alternative to conventional heat pasteurization in food-processing procedures. This paper presents the current applications of HPP in processing fruits, vegetables, meats, seafood, dairy, and egg products; such applications include the combination of pressure and biopreservation to generate specific characteristics in certain products. In addition, this paper describes recent findings on the microbiological, chemical, and molecular aspects of HPP technology used in commercial and research applications.

  2. High hydrostatic pressure adaptive strategies in an obligate piezophile Pyrococcus yayanosii

    KAUST Repository

    Michoud, Gregoire

    2016-06-02

    Pyrococcus yayanosii CH1, as the first and only obligate piezophilic hyperthermophilic microorganism discovered to date, extends the physical and chemical limits of life on Earth. It was isolated from the Ashadze hydrothermal vent at 4,100 m depth. Multi-omics analyses were performed to study the mechanisms used by the cell to cope with high hydrostatic pressure variations. In silico analyses showed that the P. yayanosii genome is highly adapted to its harsh environment, with a loss of aromatic amino acid biosynthesis pathways and the high constitutive expression of the energy metabolism compared with other non-obligate piezophilic Pyrococcus species. Differential proteomics and transcriptomics analyses identified key hydrostatic pressure-responsive genes involved in translation, chemotaxis, energy metabolism (hydrogenases and formate metabolism) and Clustered Regularly Interspaced Short Palindromic Repeats sequences associated with Cellular apoptosis susceptibility proteins.

  3. Physicochemical properties of natural actomyosin from threadfin bream (Nemipterus spp.) induced by high hydrostatic pressure.

    Science.gov (United States)

    Zhou, Aimei; Lin, Liying; Liang, Yan; Benjakul, Soottawat; Shi, Xiaoling; Liu, Xin

    2014-08-01

    Changes of physicochemical properties in natural actomyosin (NAM) from threadfin bream (Nemipterus spp.) induced by high hydrostatic pressure (200, 400, 600MPa for 10, 30, 50min) were studied. The increase in turbidity of NAM was coincidental with the decrease in protein solubility with increasing pressure and time, suggesting the formation of protein aggregates. SDS-PAGE showed that polymerisation and degradation of myosin heavy chain were induced by high pressure. Ca(2+)-ATPase activity of NAM treated by high pressure was lost, suggesting the denaturation of myosin and the dissociation of actomyosin complex. Surface hydrophobicity of NAM increased when the pressure and pressurization time increased, indicating that the exposed hydrophobic residues increased upon application of high pressure. Decrease in total sulfhydryl content and increase in surface-reactive sulfhydryl content of NAM samples were observed with the extension of pressurizing time, indicating the formation of disulphide bonds through oxidation of SH groups or disulphide interchanges. The above changes of physicochemical properties suggested conformational changes of NAM from muscle of threadfin bream induced by high hydrostatic pressure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Numerical and Experimental Study of Friction Loss in Hydrostatic Motor

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Mørk; Hansen, Michael R.; Mouritsen, Ole Ø.

    2012-01-01

    This paper presents a numerical and experimental study of the losses in a hydrostatic motor principle. The motor is designed so that the structural de ections and lubricating regimes between moving surfaces and, subsequently, the leakage and friction losses, can be controlled during operation....... This is done by means of additional pressure volumes that in uence the stator de ection. These pressures are referred to as compensation pressures and the main emphasis is on friction or torque loss modeling of the motor as a function of the compensation pressures and the high and low pressures related...... to the load torque. The torque loss modeling is identied as a Stribeck curve which depends on gap height. The asperity friction is decreasing exponentially with an increase in gap height. The parameters of the torque loss model are based on prototype measurements that include the structural de ections...

  5. Effect of hydrostatic pressure on prokaryotic heterotrophic activity in the dark ocean

    Science.gov (United States)

    Amano, C.; Sintes, E.; Utsumi, M.; Herndl, G. J.

    2016-02-01

    The pioneering work of ZoBell in the 1940s revealed the existence of piezophilic bacteria in the deep ocean, capable of growing only under high-pressure conditions. However, it is still unclear to what extent the bulk prokaryotic community inhabiting the deep ocean is affected by hydrostatic pressure. Essentially, the fractions of the bulk microbial community being piezophilic, piezotolerant and piezosensitive remain unknown. To determine the influence of hydrostatic pressure on the heterotrophic microbial activity, an in situ microbial incubator (ISMI) was deployed in the North Atlantic Ocean at depths down to 3200 m. Natural prokaryotic communities were incubated under both in situ hydrostatic pressure and atmospheric pressure conditions at in situ temperature following the addition of 5 nM 3H-leucine. Bulk leucine incorporation rates and single cell activity assessed by microautoradiography combined with catalyzed reporter deposition fluorescence in situ hybridization (MICRO-CARD-FISH) were determined. Prokaryotic leucine incorporation rates obtained under in situ pressure conditions were generally lower than under atmospheric pressure conditions, suggesting that hydrostatic pressure inhibits overall heterotrophic activity in the deep sea. The ratio of leucine incorporation rates obtained under in situ pressure conditions to atmospheric pressure conditions decreased with depth for the bulk prokaryotic community. Moreover, MICRO-CARD-FISH revealed that specific prokaryotic groups are apparently more affected by hydrostatic pressure than others. Taken together, our results indicate varying sensitivities of prokaryotic groups to hydrostatic pressure.

  6. Effect of high hydrostatic pressure on murine norovirus in Manila clams.

    Science.gov (United States)

    Arcangeli, G; Terregino, C; De Benedictis, P; Zecchin, B; Manfrin, A; Rossetti, E; Magnabosco, C; Mancin, M; Brutti, A

    2012-04-01

    Eating raw or insufficiently cooked bivalve molluscs contaminated with human noroviruses (NVs) can result in acute cases of gastroenteritis in humans. Manila clams (Ruditapes philippinarum) are particularly prone to exposure to NVs due to the brackish environment in which they are farmed which is known to be susceptible to human faecal contamination. High hydrostatic pressure processing (HHP) is a food treatment technique that has been shown to inactivate NV. In this study we investigated the ability of HHP to inactivate murine norovirus (MNV-1), a recognised surrogate for NV, in experimentally contaminated manila clams. Pools of contaminated live clams were subjected to hydrostatic pressure ranging from 300 to 500 MPa for different time intervals of between one and 10 min. The trial was repeated three times, at monthly intervals. Virus vitality post-treatment was assessed and the data obtained indicates that the use of high hydrostatic pressures of at least 500 MPa for 1 min was effective in inactivating MNV-1. HHP results to be an effective technique that could be applied to industrial process to obtain safe Manila clams ready to eat. © No claim to Italian Government works. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  7. Hydrostatic pressure sensation in cells: integration into the tensegrity model.

    Science.gov (United States)

    Myers, Kenneth A; Rattner, Jerome B; Shrive, Nigel G; Hart, David A

    2007-10-01

    Hydrostatic pressure (HP) is a mechanical stimulus that has received relatively little attention in the field of the cell biology of mechanotransduction. Generalized models, such as the tensegrity model, do not provide a detailed explanation of how HP might be detected. This is significant, because HP is an important mechanical stimulus, directing cell behaviour in a variety of tissues, including cartilage, bone, airways, and the vasculature. HP sensitivity may also be an important factor in certain clinical situations, as well as under unique environmental conditions such as microgravity. While downstream cellular effects have been well characterized, the initial HP sensation mechanism remains unclear. In vitro evidence shows that HP affects cytoskeletal polymerization, an effect that may be crucial in triggering the cellular response. The balance between free monomers and cytoskeletal polymers is shifted by alterations in HP, which could initiate a cellular response by releasing and (or) activating cytoskeleton-associated proteins. This new model fits well with the basic tenets of the existing tensegrity model, including mechanisms in which cellular HP sensitivity could be tuned to accommodate variable levels of stress.

  8. Analysis and investigation of temperature and hydrostatic pressure effects on optical characteristics of multiple quantum well slow light devices.

    Science.gov (United States)

    Abdolhosseini, Saeed; Kohandani, Reza; Kaatuzian, Hassan

    2017-09-10

    This paper represents the influences of temperature and hydrostatic pressure variations on GaAs/AlGaAs multiple quantum well slow light systems based on coherence population oscillations. An analytical model in non-integer dimension space is used to study the considerable effects of these parameters on optical properties of the slow light apparatus. Exciton oscillator strength and fractional dimension constants have special roles on the analytical model in fractional dimension. Hence, the impacts of hydrostatic pressure and temperature on exciton oscillator strength and fractional dimension quantity are investigated theoretically in this paper. Based on the achieved results, temperature and hydrostatic pressure play key roles on optical parameters of the slow light systems, such as the slow down factor and central energy of the device. It is found that the slope and value of the refractive index real part change with alterations of temperature and hydrostatic pressure in the range of 5-40 deg of Kelvin and 1 bar to 2 kbar, respectively. Thus, the peak value of the slow down factor can be adjusted by altering these parameters. Moreover, the central energy of the device shifts when the hydrostatic pressure is applied to the slow light device or temperature is varied. In comparison with previous reported experimental results, our simulations follow them successfully. It is shown that the maximum value of the slow down factor is estimated close to 5.5×104 with a fine adjustment of temperature and hydrostatic pressure. Meanwhile, the central energy shift of the slow light device rises up to 27 meV, which provides an appropriate basis for different optical devices in which multiple quantum well slow light is one of their essential subsections. This multiple quantum well slow light device has potential applications for use as a tunable optical buffer and pressure/temperature sensors.

  9. Effect of high hydrostatic pressure on antioxidant content of 'Ataulfo' mango during postharvest maturation

    Directory of Open Access Journals (Sweden)

    Viviana Guadalupe Ortega

    2013-09-01

    Full Text Available The objective of this study was to evaluate the effect of pressurization on the concentration of some antioxidant compounds and the antiradical efficiency during the ripening process of 'Ataulfo' mango. The fruits at physiological maturity stage were pressurized at 15, 30, or 60 MPa for 10 or 20 min. Control fruits were not pressurized. The fruits were stored at 25 °C and changes in the concentration of ascorbic acid, total phenols, total flavonoids, total carotenoids, and antiradical efficiency were evaluated. It was demonstrated that in 'Ataulfo' mango high hydrostatic pressure treatments at 60 and 30 MPa for 20 minutes induced the synthesis of ascorbic acid during storage maybe as a consequence of physiological changes and possible structural modification of the cells, while the fruits pressurized at 15 MPa showed no effect on this parameter. On the other hand, the use of 15 MPa for 10 minutes increased the synthesis of phenols, flavonoids, carotenoids, and antiradical efficiency in 'Ataulfo' mango compared to that of the control fruit. In conclusion, this behavior seemed to be due to the low hydrostatic pressure treatments (15 Mpa, which stimulated the synthesis of antioxidants in the mango fruit and ripening was not inhibited.

  10. Effects of High Hydrostatic Pressure Processing on Hen Egg Compounds and Egg Products

    National Research Council Canada - National Science Library

    Naderi, Nassim; House, James D; Pouliot, Yves; Doyen, Alain

    2017-01-01

    High hydrostatic pressure (HHP), used alone or with other processes, is an emerging technology increasingly used in the food industry to improve microbial safety, and the functionality and bioactive properties of food products...

  11. Use of pulsed-high hydrostatic pressure treatment to decrease patulin in apple juice

    Science.gov (United States)

    Avsaroglu, M. D.; Bozoglu, F.; Alpas, H.; Largeteau, A.; Demazeau, G.

    2015-04-01

    This study was aimed at reducing patulin content of apple juice using a non-thermal method, namely pulsed-high hydrostatic pressure (p-HHP). Commercially available clear apple juice was contaminated artificially with different concentrations of patulin (5, 50 and 100 ppb). Then, the samples were processed 5 min at different pressure treatments (300-500 MPa) in combination with different temperatures (30-50°C) and pulses (6 pulses × 50 s and 2 pulses × 150 s). To compare the impact of pulses, single pulse of high hydrostatic pressure (HHP) treatment was also applied with the same pressure/temperature combinations and holding time. Results indicated that pressure treatment in combination with mild heat and pulses reduced the levels of patulin in clear apple juice up to 62.11%. However, reduction rates did not follow a regular pattern. p-HHP was found to be more effective in low patulin concentrations, whereas HHP was more effective for high patulin concentrations. To the best of our knowledge, this is the first study using p-HHP to investigate the reduction of patulin content in apple juice.

  12. Hydrostatic pressure and strain effects in short period InN/GaN superlattices

    DEFF Research Database (Denmark)

    Gorczyca, I.; Suski, T.; Christensen, Niels Egede

    2012-01-01

    The electronic structures of short-period pseudomorphically grown superlattices (SLs) of the form mInN/nGaN are calculated and the band gap variation with the well and the barrier thicknesses is discussed including hydrostatic pressure effects. The calculated band gap shows a strong dependence on...... strongly on the strain conditions and SL geometry, but weakly on the applied external hydrostatic pressure....

  13. Data analysis of the inactivation of foodborne microorganisms under high hydrostatic pressure to establish global kinetic parameters and influencing factors

    NARCIS (Netherlands)

    Santillana Farakos, S.M.; Zwietering, M.H.

    2011-01-01

    The inactivation rate of foodborne microorganisms under high hydrostatic pressure (HHP) is influenced by factors such as substrate, species, strain, temperature, pH, and stage of growth of the cell. In this study, 445 DP-values from previously published data were analyzed, including those from

  14. High hydrostatic pressure leads to free radicals accumulation in yeast cells triggering oxidative stress.

    Science.gov (United States)

    Bravim, Fernanda; Mota, Mainã M; Fernandes, A Alberto R; Fernandes, Patricia M B

    2016-08-01

    Saccharomyces cerevisiae is a unicellular organism that during the fermentative process is exposed to a variable environment; hence, resistance to multiple stress conditions is a desirable trait. The stress caused by high hydrostatic pressure (HHP) in S. cerevisiae resembles the injuries generated by other industrial stresses. In this study, it was confirmed that gene expression pattern in response to HHP displays an oxidative stress response profile which is expanded upon hydrostatic pressure release. Actually, reactive oxygen species (ROS) concentration level increased in yeast cells exposed to HHP treatment and an incubation period at room pressure led to a decrease in intracellular ROS concentration. On the other hand, ethylic, thermic and osmotic stresses did not result in any ROS accumulation in yeast cells. Microarray analysis revealed an upregulation of genes related to methionine metabolism, appearing to be a specific cellular response to HHP, and not related to other stresses, such as heat and osmotic stresses. Next, we investigated whether enhanced oxidative stress tolerance leads to enhanced tolerance to HHP stress. Overexpression of STF2 is known to enhance tolerance to oxidative stress and we show that it also leads to enhanced tolerance to HHP stress. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Chondroitin sulphate extracted from antler cartilage using high hydrostatic pressure and enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Chong-Tai Kim

    2014-12-01

    Full Text Available Chondroitin sulphate (CS, a major glycosaminoglycan, is an essential component of the extracellular matrix in cartilaginous tissues. Wapiti velvet antlers are a rich source of these molecules. The purpose of the present study was to develop an effective isolation procedure of CS from fresh velvet antlers using a combination of high hydrostatic pressure (100 MPa and enzymatic hydrolysis (papain. High CS extractability (95.1 ± 2.5% of total uronic acid was obtained following incubation (4 h at 50 °C with papain at pH 6.0 in 100 MPa compared to low extractability (19 ± 1.1% in ambient pressure (0.1 MPa. Antler CS fractions were isolated by Sephacryl S-300 chromatography and identified by western blot using an anti-CS monoclonal antibody. The antler CS fraction did not aggregate with hyaluronic acid in CL-2B chromatography and possessed DPPH radical scavenging activity at 78.3 ± 1.5%. The results indicated that high hydrostatic pressure and enzymatic hydrolysis procedure may be a useful tool for the isolation of CS from antler cartilaginous tissues.

  16. Effects of hydrostatic pressure on the thermoelectric properties of the ɛ-polytype of InSe, GaSe, and InGaSe2 semiconductor compounds: an ab initio study

    Science.gov (United States)

    Elsayed, H.; Olguín, D.; Cantarero, A.

    2017-12-01

    This work presents an ab initio study of the effects of hydrostatic pressure on the Seebeck coefficients and thermoelectric power factors of the ɛ-polytype of InSe, GaSe, and InGaSe2 semiconductor compounds. Our study is performed using the semi-classical Boltzmann theory and the rigid band approach. The electronic band structures of these materials are calculated using the full-potential linearized augmented plane-wave method. The obtained thermoelectric properties are discussed in terms of the results of the electronic structure calculations. As we will show, our calculated Seebeck coefficient values indicate that these materials are good alternatives to other well-studied thermoelectric systems.

  17. Low-fat set yogurt made from milk subjected to combinations of high hydrostatic pressure and thermal processing.

    Science.gov (United States)

    Harte, F; Luedecke, L; Swanson, B; Barbosa-Cánovas, G V

    2003-04-01

    The combined use of high hydrostatic pressure (300 to 676 MPa, 5 min) and thermal treatment (85 degrees C, 30 min) in milk for the manufacture of low-fat yogurt was studied. The objective was to reduce syneresis and improve the rheological properties of yogurt, reducing the need for thickeners and stabilizers. The use of high hydrostatic pressure alone, or after thermal treatment, reduced the lightness and increased the viscosity of skim milk. However, milk recovered its initial lightness and viscosity when thermal treatment was applied after high hydrostatic pressure. The MALDI-TOF spectra of skim milk presented monomers of whey proteins after a treatment of 676 MPa for 5 min. Yogurts made from skim milk subjected to 400 to 500 MPa and thermal treatment showed increased yield stress, resistance to normal penetration, and elastic modulus, while having reduced syneresis when compared to yogurts from thermally treated or raw milks. The combined use of thermal treatment and high hydrostatic pressure assures extensive whey protein denaturation and casein micelle disruption, respectively. Although reaggregation of casein submicelles occurs during fermentation, the net effect of the combined HHP and thermal treatment is the improvement of yogurt yield stress and reduction of syneresis.

  18. Enhancing the thermal stability of inulin fructotransferase with high hydrostatic pressure.

    Science.gov (United States)

    Li, Yungao; Miao, Ming; Liu, Miao; Chen, Xiangyin; Jiang, Bo; Feng, Biao

    2015-03-01

    The thermal stability of inulin fructotransferase (IFTase) subjected to high hydrostatic pressure (HHP) was studied. The value of inactivation rate of IFTase in the range of 70-80°C decreased under the pressure of 100 or 200 MPa, indicating that the thermostability of IFTase under high temperature was enhanced by HHP. Far-UV CD and fluorescence spectra showed that HHP impeded the unfolding of the conformation of IFTase under high temperature, reflecting the antagonistic effect between temperature and pressure on IFTase. The new intramolecular disulfide bonds in IFTase were formed under a combination of HHP and high temperature. These bonds might be related to the stabilization of IFTase at high temperature. All the above results suggested that HHP had the protective effect on IFTase against high temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Factors Affecting Bacterial Inactivation during High Hydrostatic Pressure Processing of Foods: A Review.

    Science.gov (United States)

    Syed, Qamar-Abbas; Buffa, Martin; Guamis, Buenaventura; Saldo, Jordi

    2016-01-01

    Although, the High Hydrostatic Pressure (HHP) technology has been gaining gradual popularity in food industry since last two decades, intensive research is needed to explore the missing information. Bacterial inactivation in food by using HHP applications can be enhanced by getting deeper insights of the process. Some of these aspects have been already studied in detail (like pressure, time, and temperature, etc.), while some others still need to be investigated in more details (like pH, rates of compression, and decompression, etc.). Selection of process parameters is mainly dependent on type of matrix and target bacteria. This intensive review provides comprehensive information about the variety of aspects that can determine the bacterial inactivation potential of HHP process indicating the fields of future research on this subject including pH shifts of the pressure treated samples and critical limits of compression and decompression rates to accelerate the process efficacy.

  20. High hydrostatic pressure treatment of porcine oocytes before handmade cloning improves developmental competence and cryosurvival

    DEFF Research Database (Denmark)

    Dupont, Yoko; Lin, Lin; Schmidt, Mette

    2008-01-01

    An innovative technique, called the high hydrostatic pressure (HHP) treatment, has been recently reported to improve the cryosurvival of gametes or embryos in certain mammalian species. The aim of the present study was to investigate the in vitro and in vivo developmental competence and cryotoler......An innovative technique, called the high hydrostatic pressure (HHP) treatment, has been recently reported to improve the cryosurvival of gametes or embryos in certain mammalian species. The aim of the present study was to investigate the in vitro and in vivo developmental competence......, respectively) before they were used for HMC. After 7 days of in vitro culture, blastocyst rates and mean cell numbers were determined. Randomly selected blastocysts were vitrified with the Cryotop method based on minimum volume cooling procedure. The blastocyst rate was higher in the HHP2 group than...... on day 5 of the estrous cycle. One recipient was diagnosed pregnant and gave birth to two healthy piglets by naturally delivery on day 122 of gestation. This pilot study proved that the sublethal HHP treatment of porcine oocytes before HMC results in improved in vitro developmental competence...

  1. Increases of heat shock proteins and their mRNAs at high hydrostatic pressure in a deep-sea piezophilic bacterium, Shewanella violacea.

    Science.gov (United States)

    Sato, Hiroshi; Nakasone, Kaoru; Yoshida, Takao; Kato, Chiaki; Maruyama, Tadashi

    2015-07-01

    When non-extremophiles encounter extreme environmental conditions, which are natural for the extremophiles, stress reactions, e.g., expression of heat shock proteins (HSPs), are thought to be induced for survival. To understand how the extremophiles live in such extreme environments, we studied the effects of high hydrostatic pressure on cellular contents of HSPs and their mRNAs during growth in a piezophilic bacterium, Shewanella violacea. HSPs increased at high hydrostatic pressures even when optimal for growth. The mRNAs and proteins of these HSPs significantly increased at higher hydrostatic pressure in S. violacea. In the non-piezophilic Escherichia coli, however, their mRNAs decreased, while their proteins did not change. Several transcriptional start sites (TSSs) for HSP genes were determined by the primer extension method and some of them showed hydrostatic pressure-dependent increase of the mRNAs. A major refolding target of one of the HSPs, chaperonin, at high hydrostatic pressure was shown to be RplB, a subunit of the 50S ribosome. These results suggested that in S. violacea, HSPs play essential roles, e.g., maintaining protein complex machinery including ribosomes, in the growth and viability at high hydrostatic pressure, and that, in their expression, the transcription is under the control of σ(32).

  2. Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration.

    Science.gov (United States)

    Elder, Benjamin D; Athanasiou, Kyriacos A

    2009-03-01

    Cartilage has a poor intrinsic healing response, and neither the innate healing response nor current clinical treatments can restore its function. Therefore, articular cartilage tissue engineering is a promising approach for the regeneration of damaged tissue. Because cartilage is exposed to mechanical forces during joint loading, many tissue engineering strategies use exogenous stimuli to enhance the biochemical or biomechanical properties of the engineered tissue. Hydrostatic pressure (HP) is emerging as arguably one of the most important mechanical stimuli for cartilage, although no optimal treatment has been established across all culture systems. Therefore, this review evaluates prior studies on articular cartilage involving the use of HP, with a particular emphasis on the treatments that appear promising for use in future studies. Additionally, this review addresses HP bioreactor design, chondroprotective effects of HP, the use of HP for chondrogenic differentiation, the effects of high pressures, and HP mechanotransduction.

  3. The Rapid Inactivation of Porcine Skin by Applying High Hydrostatic Pressure without Damaging the Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Naoki Morimoto

    2015-01-01

    Full Text Available We previously reported that high hydrostatic pressure (HHP of 200 MPa for 10 minutes could induce cell killing. In this study, we explored whether HHP at 200 MPa or HHP at lower pressure, in combination with hyposmotic distilled water (DW, could inactivate the skin, as well as cultured cells. We investigated the inactivation of porcine skin samples 4 mm in diameter. They were immersed in either a normal saline solution (NSS or DW, and then were pressurized at 100 and 200 MPa for 5, 10, 30, or 60 min. Next, we explored the inactivation of specimens punched out from the pressurized skin 10 × 2 cm in size. The viability was evaluated using a WST-8 assay and an outgrowth culture. The histology of specimens was analyzed histologically. The mitochondrial activity was inactivated after the pressurization at 200 MPa in both experiments, and no outgrowth was observed after the pressurization at 200 MPa. The arrangement and proportion of the dermal collagen fibers or the elastin fibers were not adversely affected after the pressurization at 200 MPa for up to 60 minutes. This study showed that a HHP at 200 MPa for 10 min could inactivate the skin without damaging the dermal matrix.

  4. The rapid inactivation of porcine skin by applying high hydrostatic pressure without damaging the extracellular matrix.

    Science.gov (United States)

    Morimoto, Naoki; Mahara, Atsushi; Shima, Kouji; Ogawa, Mami; Jinno, Chizuru; Kakudo, Natsuko; Kusumoto, Kenji; Fujisato, Toshia; Suzuki, Shigehiko; Yamaoka, Tetsuji

    2015-01-01

    We previously reported that high hydrostatic pressure (HHP) of 200 MPa for 10 minutes could induce cell killing. In this study, we explored whether HHP at 200 MPa or HHP at lower pressure, in combination with hyposmotic distilled water (DW), could inactivate the skin, as well as cultured cells. We investigated the inactivation of porcine skin samples 4 mm in diameter. They were immersed in either a normal saline solution (NSS) or DW, and then were pressurized at 100 and 200 MPa for 5, 10, 30, or 60 min. Next, we explored the inactivation of specimens punched out from the pressurized skin 10×2 cm in size. The viability was evaluated using a WST-8 assay and an outgrowth culture. The histology of specimens was analyzed histologically. The mitochondrial activity was inactivated after the pressurization at 200 MPa in both experiments, and no outgrowth was observed after the pressurization at 200 MPa. The arrangement and proportion of the dermal collagen fibers or the elastin fibers were not adversely affected after the pressurization at 200 MPa for up to 60 minutes. This study showed that a HHP at 200 MPa for 10 min could inactivate the skin without damaging the dermal matrix.

  5. Islet amyloid polypeptide and high hydrostatic pressure: towards an understanding of the fibrillization process

    Science.gov (United States)

    Lopes, D. H. J.; Smirnovas, V.; Winter, R.

    2008-07-01

    Type II Diabetes Mellitus is a disease which is characterized by peripheral insulin resistance coupled with a progressive loss of insulin secretion that is associated with a decrease in pancreatic islet β-cell mass and the deposition of amyloid in the extracellular matrix of β-cells, which lead to islet cell death. The principal component of the islet amyloid is a pancreatic hormone called islet amyloid polypeptide (IAPP). High-pressure coupled with FT-IR, CD, ThT fluorescence spectroscopic and AFM studies were carried out to reveal information on the aggregation pathway as well as the aggregate structure of IAPP. Our data indicate that IAPP pre-formed fibrils exhibit a strong polymorphism with heterogeneous structures very sensitive to high hydrostatic pressure, indicating a high percentage of ionic and hydrophobic interactions being responsible for the stability the IAPP fibrils.

  6. The application of response surface methodology in studying the effect of heat and high hydrostatic pressure on anthocyanins, polyphenol oxidase, and peroxidase of mulberry (Morus nigra) juice.

    Science.gov (United States)

    Engmann, Felix N; Ma, Yongkun; Zhang, Haining; Yu, Lizhi; Deng, Nana

    2014-08-01

    Mulberry juice is an excellent source of phytochemicals with medicinal properties. The effects of four independent variables (temperature, heating time, pressure, and pressurising time) on three response variables [% anthocyanin retained, and % residual activities of the enzymes polyphenol oxidase (PPO), and peroxidase (POD)] of mulberry juice were studied using response surface methodology. Mathematical models and optimum levels of the response variables were generated. Temperature had the greatest effect on all the response variables. The synergistic effect of temperature and pressure had significant effect (P heating time, pressure, and pressurising time. At these levels, the corresponding response variables were 91.68%, 44.69% and 20.17% for the amounts of anthocyanin retained, and residual activities of PPO and POD, respectively. The desirability index obtained was 0.741. The results were desirable and the mathematical models developed could be used to predict the outcome of the response variables to a high degree of accuracy. © 2014 Society of Chemical Industry.

  7. Infectious Causes of Cholesteatoma and Treatment of Infected Ossicles prior to Reimplantation by Hydrostatic High-Pressure Inactivation

    Science.gov (United States)

    Hinz, Rebecca

    2015-01-01

    Chronic inflammation, which is caused by recurrent infections, is one of the factors contributing to the pathogenesis of cholesteatoma. If reimplantation of autologous ossicles after a surgical intervention is intended, inactivation of planktonic bacteria and biofilms is desirable. High hydrostatic pressure treatment is a procedure, which has been used to inactivate cholesteatoma cells on ossicles. Here we discuss the potential inactivating effect of high hydrostatic pressure on microbial pathogens including biofilms. Recent experimental data suggest an incomplete inactivation at a pressure level, which is tolerable for the bone substance of ossicles and results at least in a considerable reduction of pathogen load. Further studies are necessary to access how far this quantitative reduction of pathogens is sufficient to prevent ongoing chronic infections, for example, due to forming of biofilms. PMID:25705686

  8. Effect of high hydrostatic pressure and retrogradation treatments on structural and physicochemical properties of waxy wheat starch.

    Science.gov (United States)

    Hu, Xiao-Pei; Zhang, Bao; Jin, Zheng-Yu; Xu, Xue-Ming; Chen, Han-Qing

    2017-10-01

    In this study, the effects of high hydrostatic pressure and retrogradation (HHPR) treatments on in vitro digestibility, structural and physicochemical properties of waxy wheat starch were investigated. The waxy wheat starch slurries (10%, w/v) were treated with high hydrostatic pressures of 300, 400, 500, 600MPa at 20°C for 30min, respectively, and then retrograded at 4°C for 4d. The results indicated that the content of slowly digestible starch (SDS) in HHPR-treated starch samples increased with increasing pressure level, and it reached the maximum (31.12%) at 600MPa. HHPR treatment decreased the gelatinization temperatures, the gelatinization enthalpy, the relative crystallinity and the peak viscosity of the starch samples. Moreover, HHPR treatment destroyed the surface and interior structures of starch granules. These results suggest that the in vitro digestibility, physicochemical, and structural properties of waxy wheat starch are effectively modified by HHPR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Bottom-pressure observations of deep-sea internal hydrostatic and non-hydrostatic motions

    NARCIS (Netherlands)

    van Haren, H.

    2013-01-01

    In the ocean, sloping bottom topography is important for the generation and dissipation of internal waves. Here, the transition of such waves to turbulence is demonstrated using an accurate bottom-pressure sensor that was moored with an acoustic Doppler current profiler and high-resolution

  10. Influence of the hydrostatic pulpal pressure on droplets formation in current etch-and-rinse and self-etch adhesives: a video rate/TSM microscopy and fluid filtration study.

    Science.gov (United States)

    Sauro, Salvatore; Mannocci, Francesco; Toledano, Manuel; Osorio, Raquel; Thompson, Ian; Watson, Timothy F

    2009-11-01

    The aim of this study was to investigate the droplet formation using a real-time/confocal microscopy technique, when different self-etching and etch-and-rinse adhesives were applied in the presence or absence of pulpal pressure. Resin-dentin permeability (%P) was also evaluated. Optibond FL, Silorane adhesive, Scotchbond 1XT, G-Bond and DC-Bond were bonded in the presence or in absence of simulated pulpal pressure. A fluid-transport model was used to measure the water permeability through resin-bonded dentin. Half of the specimens bonded in the presence of the hydrostatic pulpal pressure (20 cm H2O) were light cured, whereas the remnant half received no light curing. The same was done with the half of the specimens bonded under no pulpal pressure. The specimens were investigated under a confocal TSM. Optibond FL and G-Bond had the lowest dentin permeability. Optibond FL adhesive showed few water droplets on the polymerized external surface and within the resin-dentin interface. G-Bond showed static interfacial globular-like droplet formation. DC-Bond and Scotchbond 1XT were the most water permeable adhesives both in the presence and in absence of pulpal pressure. A dynamic interfacial non-globular-like droplet formation was observed. Severe droplet formation was observed on the polymerized external surface. The presence of the pulpal pressure may cause increasing in fluid filtration and droplet formation in simplified adhesives containing HEMA. The adhesives containing 4-META (G-Bond) may be affected by static phase separation but by very low osmotic droplets formation and water permeability. The three-step adhesives are less affected by these problems.

  11. Electrical transport measurements of thin film samples under high hydrostatic pressure.

    Science.gov (United States)

    Zabaleta, J; Parks, S C; Baum, B; Teker, A; Syassen, K; Mannhart, J

    2017-03-01

    We present a method to perform electrical measurements of epitaxial films and heterostructures a few nanometers thick under high hydrostatic pressures in a diamond anvil cell (DAC). Hydrostatic pressure offers the possibility to tune the rich landscape of properties shown by epitaxial heterostructures, systems in which the combination of different materials, performed with atomic precision, can give rise to properties not present in their individual constituents. Measuring electrical conductivity under hydrostatic pressure in these systems requires a robust method that can address all the challenges: the preparation of the sample with side length and thickness that fits in the DAC setup, a contacting method compatible with liquid media, a gasket insulation that resists high forces, as well as an accurate procedure to place the sample in the pressure chamber. We prove the robustness of the method described by measuring the resistance of a two dimensional electron system buried at the interface between two insulating oxides under hydrostatic conditions up to ∼5 GPa. The setup remains intact until ∼10 GPa, where large pressure gradients affect the two dimensional conductivity.

  12. Effect of high hydrostatic pressure on the physiology of Manila mango.

    Science.gov (United States)

    Vargas-Ortiz, M A; De la Cruz-Medina, J; de Los Monteros, J J Espinosa; Oliart-Ros, R M; Rebolledo-Martinez, A; Ramírez, J A; García, H S

    2013-06-01

    Manila mangoes (Mangifera indica L.) have sensory characteristics that make them attractive for consumption as a fresh fruit. A large portion of the annual yield of this fruit is infested by the Mexican fruit fly (Anastrepha ludens), adversely impacting the quality of the crop. Hence, it is necessary to develop economically viable postharvest treatments to reduce the damage caused by this insect. Currently, high hydrostatic pressures are used to guarantee the safety of many processed foods. The objective of this work was to assess the effects of high hydrostatic pressure on mangoes at their physiological maturity. High hydrostatic pressures were applied to mangoes at three levels: 50, 100 and 200 megapascals applied for four different time periods (0, 5, 10 and 20 min). Physiologically mature mangoes were more resistant to changes in response to the pressure of 50 MPa. Reduction of physiological activity by application of high hydrostatic pressure opens a new avenue for the research on treatments intended to enhance preservation of whole fresh fruit.

  13. Thermograms of the combined High Hydrostatic Pressure and Sous-vide treated Longissimus dorsi of pork

    Science.gov (United States)

    Kenesei, Gy; Jónás, G.; Salamon, B.; Dalmadi, I.

    2017-10-01

    In this work, slices of Longissimus dorsi of pork was used as raw material to establish the effects of the sous-vide technology and the high hydrostatic pressure treatments (and their combinations) on meat. The state of the proteins in meat has a very important effect on several quality parameters of the product, such as weight loss, water holding capacity, organoleptic properties. Therefore it is important to follow and analyse the denaturation of the protein content during food processing. The samples were cooked sous-vide (60 °C, 5-480 minutes) or pressurized (100-600 MPa, 5 minutes, room temperature). Also two steps treatments were studied combining both technologies, applying high hydrostatic pressure treatment (300 or 600 MPa, 5 minutes, room temperature) after or previous to sous-vide cooking (60 °C, 30 minutes). The changes in the condition of meat proteins were followed by a differential scanning calorimeter. The DSC curves were analysed using the unit’s own software where denaturation heat was determined. Thermograms show through the change of the sample’s protein state the dissimilar effect of the treatments. Using the Polar Qualification System -previously proved to be effective with NIR measurements- the spectral information was reduced to a two dimensional polar co-ordinate system where each DSC curve is represented by a “quality point”. As a new experiment the applied PQS data reduction method compared to the traditional thermal analysis data processing gave us less information on the differences of our samples although the results are promising as we were able to detect the same trends and characteristics.

  14. An Integrative Genomic Island Affects the Adaptations of Piezophilic Hyperthermophilic Archaeon Pyrococcus yayanosii to High Temperature and High Hydrostatic Pressure

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2016-11-01

    Full Text Available Deep-sea hydrothermal vent environments are characterized by high hydrostatic pressure and sharp temperature and chemical gradients. Horizontal gene transfer is thought to play an important role in the microbial adaptation to such an extreme environment. In this study, a 21.4-kb DNA fragment was identified as a genomic island, designated PYG1, in the genomic sequence of the piezophilic hyperthermophile Pyrococcus yayanosii. According to the sequence alignment and functional annotation, the genes in PYG1 could tentatively be divided into five modules, with functions related to mobility, DNA repair, metabolic processes and the toxin-antitoxin system. Integrase can mediate the site-specific integration and excision of PYG1 in the chromosome of P. yayanosii A1. Gene replacement of PYG1 with a SimR cassette was successful. The growth of the mutant strain ∆PYG1 was compared with its parent strain P. yayanosii A2 under various stress conditions, including different pH, salinity, temperature and hydrostatic pressure. The ∆PYG1 mutant strain showed reduced growth when grown at 100 °C, while the biomass of ∆PYG1 increased significantly when cultured at 80 MPa. Differential expression of the genes in module Ⅲ of PYG1 was observed under different temperature and pressure conditions. This study demonstrates the first example of an archaeal integrative genomic island that could affect the adaptation of the hyperthermophilic piezophile P. yayanosii to high temperature and high hydrostatic pressure.

  15. A class-A GPCR solubilized under high hydrostatic pressure retains its ligand binding ability

    Science.gov (United States)

    The effect of high hydrostatic pressure (HHP) on the solubilization of a class-A G protein-coupled receptor, the silkmoth pheromone biosynthesis-activating neuropeptide receptor (PBANR), was investigated. PBANR was expressed in expresSF+ insect cells as a C-terminal fusion protein with EGFP. The mem...

  16. Effect of high hydrostatic pressure processing on in vitro digestion of milk proteins and fats

    Science.gov (United States)

    The use of high hydrostatic pressure processing (HPP) is increasing in popularity in the food industry. Its ability to modify milk proteins and fats suggests that it may be useful in creating foods that suppress appetite; however, its effect on the digestibility of proteins and fats is unclear. The...

  17. The hydrostatic pressure indifference point underestimates orthostatic redistribution of blood in humans

    DEFF Research Database (Denmark)

    Petersen, L G; Carlsen, Jonathan F.; Nielsen, Michael Bachmann

    2014-01-01

    The hydrostatic indifference point (HIP; where venous pressure is unaffected by posture) is located at the level of the diaphragm and is believed to indicate the orthostatic redistribution of blood, but it remains unknown whether HIP coincides with the indifference point for blood volume (VIP). D...

  18. Partial alignment and measurement of residual dipolar couplings of proteins under high hydrostatic pressure.

    Science.gov (United States)

    Fu, Yinan; Wand, A Joshua

    2013-08-01

    High-pressure NMR spectroscopy has emerged as a complementary approach for investigating various structural and thermodynamic properties of macromolecules. Noticeably absent from the array of experimental restraints that have been employed to characterize protein structures at high hydrostatic pressure is the residual dipolar coupling, which requires the partial alignment of the macromolecule of interest. Here we examine five alignment media that are commonly used at ambient pressure for this purpose. We find that the spontaneous alignment of Pf1 phage, d(GpG) and a C12E5/n-hexnanol mixture in a magnetic field is preserved under high hydrostatic pressure. However, DMPC/DHPC bicelles and collagen gel are found to be unsuitable. Evidence is presented to demonstrate that pressure-induced structural changes can be identified using the residual dipolar coupling.

  19. Partial alignment and measurement of residual dipolar couplings of proteins under high hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yinan; Wand, A. Joshua, E-mail: wand@mail.med.upenn.edu [University of Pennsylvania, Department of Biochemistry and Biophysics, Johnson Research Foundation (United States)

    2013-08-15

    High-pressure NMR spectroscopy has emerged as a complementary approach for investigating various structural and thermodynamic properties of macromolecules. Noticeably absent from the array of experimental restraints that have been employed to characterize protein structures at high hydrostatic pressure is the residual dipolar coupling, which requires the partial alignment of the macromolecule of interest. Here we examine five alignment media that are commonly used at ambient pressure for this purpose. We find that the spontaneous alignment of Pf1 phage, d(GpG) and a C12E5/n-hexnanol mixture in a magnetic field is preserved under high hydrostatic pressure. However, DMPC/DHPC bicelles and collagen gel are found to be unsuitable. Evidence is presented to demonstrate that pressure-induced structural changes can be identified using the residual dipolar coupling.

  20. Disruption of the Accidental Dirac Semimetal State in ZrTe5 under Hydrostatic Pressure

    Science.gov (United States)

    Zhang, J. L.; Guo, C. Y.; Zhu, X. D.; Ma, L.; Zheng, G. L.; Wang, Y. Q.; Pi, L.; Chen, Y.; Yuan, H. Q.; Tian, M. L.

    2017-05-01

    We study the effect of hydrostatic pressure on the magnetotransport properties of zirconium pentatelluride. The magnitude of resistivity anomaly gets enhanced with increasing pressure, but the transition temperature T* is insensitive to it up to 2.5 GPa. In the case of H ∥b , the quasilinear magnetoresistance decreases drastically from 3300% (9 T) at ambient pressure to 230% (9 T) at 2.5 GPa. Besides, the change of the quantum oscillation phase from topological nontrivial to trivial is revealed around 2 GPa. Both demonstrate that the pressure breaks the accidental Dirac node in ZrTe5. For H ∥c , in contrast, subtle changes can be seen in the magnetoresistance and quantum oscillations. In the presence of pressure, ZrTe5 evolves from a highly anisotropic to a nearly isotropic electronic system, which accompanies the disruption of the accidental Dirac semimetal state. It supports the assumption that ZrTe5 is a semi-3D Dirac system with linear dispersion along two directions and a quadratic one along the third.

  1. Effects of high hydrostatic pressure on the growth and beta-carotene production of Rhodotorula glutinis.

    Science.gov (United States)

    Wang, Sui-Lou; Chen, De-Jing; Deng, Bai-Wan; Wu, Xiao-Zong

    2008-04-01

    The effects of high hydrostatic pressure (HHP) on the biomass and beta-carotene biosynthesis of Rhodotorula glutinis R68 were studied. After treatment with five repeated cycles at 300 MPa for 15 min, the barotolerant mutant PR68 was obtained. After 72 h of culture, the biomass of mutant PR68 was 21.6 g/l, decreased by 8.5% compared to the parental strain R68, but its beta-carotene production reached 19.4 mg/l, increased by 52.8% compared to the parental strain R68. The result of restriction fragment length polymorphism (RFLP) analysis suggested that mutant strain PR68 was likely to change in nucleic acid level, and thus enhanced beta-carotene production in this strain as a result of gene mutation induced by HHP treatment. (c) 2008 John Wiley & Sons, Ltd.

  2. Effect of Si δ-doped layer position on optical absorption in GaAs quantum well under hydrostatic pressure

    Science.gov (United States)

    Dakhlaoui, Hassen; Almansour, Shaffa; Algrafy, Emane

    2015-01-01

    In this paper, the effects of hydrostatic pressure, the position and the concentration of Si δ-doped layer on the intersubband transitions and absorption lineshape in GaAs quantum well are studied. The electron energy structure and the optical absorption coefficient are calculated by solving Poisson and Schrödinger equations self-consistently. The obtained theoretical results show that the energy differences between the consecutives levels, the confining potential and the optical absorption coefficient depend not only on the hydrostatic pressure but also on the Si δ-doped layer position. Especially, we have found that the optical absorption coefficient can be red or blue shifted by moving the Si δ-doped layer from the middle of the quantum well to the interface with the quantum barrier. This behavior in optical absorption gives us a new degree of freedom in different device applications based on electronic transitions.

  3. Dipole moment and polarizability of impurity doped quantum dots driven by noise: Influence of hydrostatic pressure and temperature

    Science.gov (United States)

    Bera, Aindrila; Ghosh, Manas

    2017-06-01

    Present study examines the pattern of variation of electric dipole moment (μ) and polarizability (αp) of impurity doped GaAs quantum dots (QDs) under combined presence of hydrostatic pressure and temperature and in presence of noise. Noise term carries a Gaussian white character and it has been introduced to the system via two different pathways; additive and multiplicative. Profiles of μ and αp have been monitored against the variations of hydrostatic pressure (HP), temperature and the noise strength. Under a given condition of HP and temperature, application of noise prominently influences the above two properties. However, the extent of influence depends on the noise strength and the pathway through which noise is introduced. The findings divulge feasible routes to control the dipole moment and polarizability of doped QD system through the interplay between HP, temperature and noise.

  4. High hydrostatic pressure specifically affects molecular dynamics and shape of low-density lipoprotein particles

    Science.gov (United States)

    Golub, M.; Lehofer, B.; Martinez, N.; Ollivier, J.; Kohlbrecher, J.; Prassl, R.; Peters, J.

    2017-04-01

    Lipid composition of human low-density lipoprotein (LDL) and its physicochemical characteristics are relevant for proper functioning of lipid transport in the blood circulation. To explore dynamical and structural features of LDL particles with either a normal or a triglyceride-rich lipid composition we combined coherent and incoherent neutron scattering methods. The investigations were carried out under high hydrostatic pressure (HHP), which is a versatile tool to study the physicochemical behavior of biomolecules in solution at a molecular level. Within both neutron techniques we applied HHP to probe the shape and degree of freedom of the possible motions (within the time windows of 15 and 100 ps) and consequently the flexibility of LDL particles. We found that HHP does not change the types of motion in LDL, but influences the portion of motions participating. Contrary to our assumption that lipoprotein particles, like membranes, are highly sensitive to pressure we determined that LDL copes surprisingly well with high pressure conditions, although the lipid composition, particularly the triglyceride content of the particles, impacts the molecular dynamics and shape arrangement of LDL under pressure.

  5. Conformational changes in human Hsp70 induced by high hydrostatic pressure produce oligomers with ATPase activity but without chaperone activity.

    Science.gov (United States)

    Araujo, Thaís L S; Borges, Julio Cesar; Ramos, Carlos H; Meyer-Fernandes, José Roberto; Oliveira Júnior, Reinaldo S; Pascutti, Pedro G; Foguel, Debora; Palhano, Fernando L

    2014-05-13

    We investigated the folding of the 70 kDa human cytosolic inducible protein (Hsp70) in vitro using high hydrostatic pressure as a denaturing agent. We followed the structural changes in Hsp70 induced by high hydrostatic pressure using tryptophan fluorescence, molecular dynamics, circular dichroism, high-performance liquid chromatography gel filtration, dynamic light scattering, ATPase activity, and chaperone activity. Although monomeric, Hsp70 is very sensitive to hydrostatic pressure; after pressure had been removed, the protein did not return to its native sate but instead formed oligomeric species that lost chaperone activity but retained ATPase activity.

  6. Single-Molecule Analysis of the Rotation of F1-ATPase under High Hydrostatic Pressure

    Science.gov (United States)

    Okuno, Daichi; Nishiyama, Masayoshi; Noji, Hiroyuki

    2013-01-01

    F1-ATPase is the water-soluble part of ATP synthase and is an ATP-driven rotary molecular motor that rotates the rotary shaft against the surrounding stator ring, hydrolyzing ATP. Although the mechanochemical coupling mechanism of F1-ATPase has been well studied, the molecular details of individual reaction steps remain unclear. In this study, we conducted a single-molecule rotation assay of F1 from thermophilic bacteria under various pressures from 0.1 to 140 MPa. Even at 140 MPa, F1 actively rotated with regular 120° steps in a counterclockwise direction, showing high conformational stability and retention of native properties. Rotational torque was also not affected. However, high hydrostatic pressure induced a distinct intervening pause at the ATP-binding angles during continuous rotation. The pause was observed under both ATP-limiting and ATP-saturating conditions, suggesting that F1 has two pressure-sensitive reactions, one of which is evidently ATP binding. The rotation assay using a mutant F1(βE190D) suggested that the other pressure-sensitive reaction occurs at the same angle at which ATP binding occurs. The activation volumes were determined from the pressure dependence of the rate constants to be +100 Å3 and +88 Å3 for ATP binding and the other pressure-sensitive reaction, respectively. These results are discussed in relation to recent single-molecule studies of F1 and pressure-induced protein unfolding. PMID:24094404

  7. Leonardo on hydrostatic force: a research engineering approach towards the idea of hydrostatic pressure?

    OpenAIRE

    Cavagnero, Paolo

    2014-01-01

    As evidenced by many scholars, hydraulics was one of the main interests of Leonardo da Vinci; his manuscripts are full of drawings and projects on water, accompanied by a variety of notes, subtle meditations, and some remarkable considerations. Leonardo's expertise in this field surely comes, first of all, from the well-established technical tradition of his time. But the particular approach that he often adopts to study and solve the problems encountered in his activity as an engineer someti...

  8. Γ-X intervalley transfer in single AlAs barriers under hydrostatic pressure

    Science.gov (United States)

    Carbonneau, Y.; Beerens, J.; Cury, L. A.; Liu, H. C.; Buchanan, M.

    1993-04-01

    We have investigated the contribution of Γ-X intervalley transfer to the tunneling current in single AlAs barrier heterostructures grown on a GaAs substrate by measuring I-V characteristics at low temperature and under hydrostatic pressure up to 9 kbar. The application of hydrostatic pressure affects the contribution of the Γ-X transfer process to the total tunneling current at a given bias voltage. Experimental results are compared with current-voltage characteristics calculated with a model taking into account the Γ-X transfer at heterointerfaces. Only transfer processes involving the longitudinal X valley in AlAs are considered in the calculations. Very good agreement is found for low bias conditions at all pressures.

  9. The effect of hydrostatic pressure on the combustion synthesis of Y 2O 3:Bi nanophosphor

    Science.gov (United States)

    Jacobsohn, L. G.; Tappan, B. C.; Tornga, S. C.; Blair, M. W.; Luther, E. P.; Mason, B. A.; Bennett, B. L.; Muenchausen, R. E.

    2010-03-01

    The effects of pressurized Ar environments during the solution combustion synthesis (SCS) of Y 2O 3:Bi nanophosphor were investigated. Three fuels were used urea, glycine and hexamethylenetetramine (HMT) and the nanopowders were characterized by X-ray diffraction, scanning electron microscopy, photoluminescence, fluorescence lifetime, and thermoluminescence measurements. The dominant crystallographic phase was cubic, with crystallite size being insensitive to the hydrostatic pressure but increasing for fuels with higher heat of combustion. At least for nanopowders obtained using fuels with higher heats of combustion, higher Ar hydrostatic pressures lead to lower photoluminescence output. Fluorescence lifetime measurements on HMT-prepared samples yielded lifetimes of 330 and 900 ns for Bi 3+ ions in S 6 and C 2 sites, respectively, and no variation in these values was observed for hydrostatic pressures from 0.1 to 9.7 MPa. Shorter lifetime values than reported for conventional SCS are likely related to higher concentration of quenching defects. In agreement with these results, thermoluminescence measurements showed that higher concentrations of electronic traps are present in samples synthesized under higher pressures.

  10. Pico gauges for minimally invasive intracellular hydrostatic pressure measurements.

    Science.gov (United States)

    Knoblauch, Jan; Mullendore, Daniel L; Jensen, Kaare H; Knoblauch, Michael

    2014-11-01

    Intracellular pressure has a multitude of functions in cells surrounded by a cell wall or similar matrix in all kingdoms of life. The functions include cell growth, nastic movements, and penetration of tissue by parasites. The precise measurement of intracellular pressure in the majority of cells, however, remains difficult or impossible due to their small size and/or sensitivity to manipulation. Here, we report on a method that allows precise measurements in basically any cell type over all ranges of pressure. It is based on the compression of nanoliter and picoliter volumes of oil entrapped in the tip of microcapillaries, which we call pico gauges. The production of pico gauges can be accomplished with standard laboratory equipment, and measurements are comparably easy to conduct. Example pressure measurements are performed on cells that are difficult or impossible to measure with other methods. © 2014 American Society of Plant Biologists. All Rights Reserved.

  11. Pico gauges for minimally invasive intracellular hydrostatic pressure measurements

    DEFF Research Database (Denmark)

    Knoblauch, Jan; Mullendore, Daniel L.; Jensen, Kaare Hartvig

    2014-01-01

    in the tip of microcapillaries, which we call pico gauges. The production of pico gauges can be accomplished with standard laboratory equipment, and measurements are comparably easy to conduct. Example pressure measurements are performed on cells that are difficult or impossible to measure with other methods.......Intracellular pressure has a multitude of functions in cells surrounded by a cell wall or similar matrix in all kingdoms of life. The functions include cell growth, nastic movements, and penetration of tissue by parasites. The precise measurement of intracellular pressure in the majority of cells......, however, remains difficult or impossible due to their small size and/or sensitivity to manipulation. Here, we report on a method that allows precise measurements in basically any cell type over all ranges of pressure. It is based on the compression of nanoliter and picoliter volumes of oil entrapped...

  12. Hydrostatic pressure promotes the proliferation and osteogenic/chondrogenic differentiation of mesenchymal stem cells: The roles of RhoA and Rac1

    Directory of Open Access Journals (Sweden)

    Yin-Hua Zhao

    2015-05-01

    Full Text Available Our previous studies have shown that hydrostatic pressure can serve as an active regulator for bone marrow mesenchymal stem cells (BMSCs. The current work further investigates the roles of cytoskeletal regulatory proteins Ras homolog gene family member A (RhoA and Ras-related C3 botulinum toxin substrate 1 (Rac1 in hydrostatic pressure-related effects on BMSCs. Flow cytometry assays showed that the hydrostatic pressure promoted cell cycle initiation in a RhoA- and Rac1-dependent manner. Furthermore, fluorescence assays confirmed that RhoA played a positive and Rac1 displayed a negative role in the hydrostatic pressure-induced F-actin stress fiber assembly. Western blots suggested that RhoA and Rac1 play central roles in the pressure-inhibited ERK phosphorylation, and Rac1 but not RhoA was involved in the pressure-promoted JNK phosphorylation. Finally, real-time polymerase chain reaction (PCR experiments showed that pressure promoted the expression of osteogenic marker genes in BMSCs at an early stage of osteogenic differentiation through the up-regulation of RhoA activity. Additionally, the PCR results showed that pressure enhanced the expression of chondrogenic marker genes in BMSCs during chondrogenic differentiation via the up-regulation of Rac1 activity. Collectively, our results suggested that RhoA and Rac1 are critical to the pressure-induced proliferation and differentiation, the stress fiber assembly, and MAPK activation in BMSCs.

  13. Effects of high hydrostatic pressure or hydrophobic modification on thermal stability of xanthine oxidase.

    Science.gov (United States)

    Halalipour, Ali; Duff, Michael R; Howell, Elizabeth E; Reyes-De-Corcuera, José I

    2017-08-01

    The effect of high hydrostatic pressure (HHP) on the kinetics of thermal inactivation of xanthine oxidase (XOx) from bovine milk was studied. Inactivation of XOx followed pseudo-first-order kinetics at 0.1-300MPa and 55.0-70.0°C. High pressure up to at least 300MPa stabilized XOx at all the studied temperatures. The highest stabilization effect of HHP on XOx was at 200-300MPa at 55.0 and 58.6°C, and at 250-300MPa at 62.3-70.0°C. The stability of XOx increased 9.5 times at 300MPa and 70.0°C compared to atmospheric pressure at the same temperature. The activation energy of inactivation of XOx decreased with pressure and was 1.9 times less at 300MPa (97.0±8.2kJmol-1) than at 0.1MPa (181.7±12.1kJmol-1). High pressure decreased the dependence of the rate constant of inactivation to temperature effects compared to atmospheric pressure. The stabilizing effect of HHP on XOx was highest at 70.0°C where the activation volume of inactivation of XOx was 28.9±2.9cm3mol-1. A second approach to try to increase XOx stability involved hydrophobic modification using aniline or benzoate. However, the thermal stability of XOx remained unaffected after 8-14 modifications of carboxyl side groups per XOx monomer with aniline, or 12-17 modifications of amino side groups per XOx monomer with benzoate. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. High Hydrostatic Pressure Pretreatment of Whey Protein Isolates Improves Their Digestibility and Antioxidant Capacity.

    Science.gov (United States)

    Iskandar, Michèle M; Lands, Larry C; Sabally, Kebba; Azadi, Behnam; Meehan, Brian; Mawji, Nadir; Skinner, Cameron D; Kubow, Stan

    2015-05-28

    Whey proteins have well-established antioxidant and anti-inflammatory bioactivities. High hydrostatic pressure processing of whey protein isolates increases their in vitro digestibility resulting in enhanced antioxidant and anti-inflammatory effects. This study compared the effects of different digestion protocols on the digestibility of pressurized (pWPI) and native (nWPI) whey protein isolates and the antioxidant and anti-inflammatory properties of the hydrolysates. The pepsin-pancreatin digestion protocol was modified to better simulate human digestion by adjusting temperature and pH conditions, incubation times, enzymes utilized, enzyme-to-substrate ratio and ultrafiltration membrane molecular weight cut-off. pWPI showed a significantly greater proteolysis rate and rate of peptide appearance regardless of digestion protocol. Both digestion methods generated a greater relative abundance of eluting peptides and the appearance of new peptide peaks in association with pWPI digestion in comparison to nWPI hydrolysates. Hydrolysates of pWPI from both digestion conditions showed enhanced ferric-reducing antioxidant power relative to nWPI hydrolysates. Likewise, pWPI hydrolysates from both digestion protocols showed similar enhanced antioxidant and anti-inflammatory effects in a respiratory epithelial cell line as compared to nWPI hydrolysates. These findings indicate that regardless of considerable variations of in vitro digestion protocols, pressurization of WPI leads to more efficient digestion that improves its antioxidant and anti-inflammatory properties.

  15. High Hydrostatic Pressure Pretreatment of Whey Protein Isolates Improves Their Digestibility and Antioxidant Capacity

    Directory of Open Access Journals (Sweden)

    Michèle M. Iskandar

    2015-05-01

    Full Text Available Whey proteins have well-established antioxidant and anti-inflammatory bioactivities. High hydrostatic pressure processing of whey protein isolates increases their in vitro digestibility resulting in enhanced antioxidant and anti-inflammatory effects. This study compared the effects of different digestion protocols on the digestibility of pressurized (pWPI and native (nWPI whey protein isolates and the antioxidant and anti-inflammatory properties of the hydrolysates. The pepsin-pancreatin digestion protocol was modified to better simulate human digestion by adjusting temperature and pH conditions, incubation times, enzymes utilized, enzyme-to-substrate ratio and ultrafiltration membrane molecular weight cut-off. pWPI showed a significantly greater proteolysis rate and rate of peptide appearance regardless of digestion protocol. Both digestion methods generated a greater relative abundance of eluting peptides and the appearance of new peptide peaks in association with pWPI digestion in comparison to nWPI hydrolysates. Hydrolysates of pWPI from both digestion conditions showed enhanced ferric-reducing antioxidant power relative to nWPI hydrolysates. Likewise, pWPI hydrolysates from both digestion protocols showed similar enhanced antioxidant and anti-inflammatory effects in a respiratory epithelial cell line as compared to nWPI hydrolysates. These findings indicate that regardless of considerable variations of in vitro digestion protocols, pressurization of WPI leads to more efficient digestion that improves its antioxidant and anti-inflammatory properties.

  16. Effect of high hydrostatic pressure on the supramolecular structure of corn starch with different amylose contents.

    Science.gov (United States)

    Yang, Zhi; Swedlund, Peter; Hemar, Yacine; Mo, Guang; Wei, Yanru; Li, Zhihong; Wu, Zhonghua

    2016-04-01

    Corn starches with amylose contents ranging from 0 to 80% were suspended in 60 wt% water or ethanol and subjected to high hydrostatic pressure (HHP) up to 600 MPa. The impact of HHP treatment on the granule morphology, lamellae structures, and crystalline characteristics were examined with a combination of SAXS, WAXS and optical microscopy. All starch dispersed in water showed a decrease in area of the lamellar peak in the SAXS data at q∼0.6 nm(-1). The lamellae thickness (d) increased for pressurized waxy, normal, and Gelose80 corn starches, suggesting water is forced into starch lamellae during HHP. However, for Gelose50 corn starch, the d remained constant over the whole pressure range and light microscopy showed no obvious granule swelling. WAXS studies demonstrated that HHP partially converted A-type starches (waxy and normal corn) to starches with a faint B-type pattern while starches with a B+V-type pattern (Gelose50 and Gelose80), were not affected by HHP. All corn starches suspended in ethanol showed no detectable changes in either granule morphology, or the fractal, the lamellae, and the crystalline structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. High hydrostatic pressure increases amino acid requirements in the piezo-hyperthermophilic archaeon Thermococcus barophilus.

    Science.gov (United States)

    Cario, Anaïs; Lormières, Florence; Xiang, Xiao; Oger, Philippe

    2015-11-01

    We have established a defined growth medium for the piezophilic hyperthermophilic archaeon Thermococcus barophilus, which allows growth yields of ca. 10(8) cells/ml under both atmospheric and high hydrostatic pressure. Our results demonstrate a major impact of hydrostatic pressure on amino acid metabolism, with increases from 3 amino acids required at atmospheric pressure to 17 at 40 MPa. We observe in T. barophilus and other Thermococcales a similar discrepancy between the presence/absence of amino acid synthesis pathways and amino acid requirements, which supports the existence of alternate, but yet unknown, amino acid synthesis pathways, and may explain the low number of essential amino acids observed in T. barophilus and other Thermococcales. T. barophilus displays a strong metabolic preference for organic polymers such as polypeptides and chitin, which may constitute a more readily available resource of carbon and energy in situ in deep-sea hydrothermal vents. We hypothesize that the low energy yields of fermentation of organic polymers, together with energetic constraints imposed by high hydrostatic pressure, may render de novo synthesis of amino acids ecologically unfavorable. Induction of this metabolic switch to amino acid recycling can explain the requirement for non-essential amino acids by Thermococcales for efficient growth in defined medium. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. 49 CFR 178.605 - Hydrostatic pressure test.

    Science.gov (United States)

    2010-10-01

    ... packaging design types intended to contain liquids and be performed periodically as specified in § 178.601(e... packagings and composite packagings other than plastic (e.g., glass, porcelain or stoneware), including their closures, must be subjected to the test pressure for 5 minutes. Plastic packagings and composite packagings...

  19. Effects of high hydrostatic pressure and temperature increase on Escherichia coli spp. and pectin methyl esterase inactivation in orange juice.

    Science.gov (United States)

    Torres, E F; González-M, G; Klotz, B; Rodrigo, D

    2016-03-01

    The aim of this study was to evaluate the effect of high hydrostatic pressure treatment combined with moderate processing temperatures (25 ℃-50 ℃) on the inactivation of Escherichia coli O157: H7 (ATCC 700728), E. coli K12 (ATCC 23716), and pectin methyl esterase in orange juice, using pressures of 250 to 500 MPa with times ranging between 1 and 30 min. Loss of viability of E. coli O157:H7 increased significantly as pressure and treatment time increased, achieving a 6.5 log cycle reduction at 400 MPa for 3 min at 25 ℃ of treatment. With regard to the inactivation of pectin methyl esterase, the greatest reduction obtained was 90.05 ± 0.01% at 50 ℃ and 500 MPa of pressure for 15 min; therefore, the pectin methyl esterase enzyme was highly resistant to the treatments by high hydrostatic pressure. The results obtained in this study showed a synergistic effect between the high pressure and moderate temperatures in inactivating E. coli cells. © The Author(s) 2016.

  20. Modulation of the Cardiomyocyte Contraction inside a Hydrostatic Pressure Bioreactor: In Vitro Verification of the Frank-Starling Law

    Directory of Open Access Journals (Sweden)

    Lorenzo Fassina

    2015-01-01

    Full Text Available We have studied beating mouse cardiac syncytia in vitro in order to assess the inotropic, ergotropic, and chronotropic effects of both increasing and decreasing hydrostatic pressures. In particular, we have performed an image processing analysis to evaluate the kinematics and the dynamics of those pressure-loaded beating syncytia starting from the video registration of their contraction movement. By this analysis, we have verified the Frank-Starling law of the heart in in vitro beating cardiac syncytia and we have obtained their geometrical-functional classification.

  1. Hydrostatic pressure cells development for X-ray and neutrons experiments

    Energy Technology Data Exchange (ETDEWEB)

    Passamai Junior, Jose Luis; Pinheiro, Christiano J.G.; Orlando, Marcos Tadeu D.; Passos, Carlos A.C. [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Dept. de Fisica; Correa, Hamilton P.S. [Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil); Rossi, Jesualdo L.; Mazzocchi, Vera L.; Parente, Carlos B.R.; Mestnik Filho, Jose; Martinez, Luis G., E-mail: jelrossi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Melo, Francisco C.L. de, E-mail: frapi@iae.cta.br [Centro Tecnologico da Aeronautica (CTA), Sao Jose dos Campos, SP (Brazil). Dept. de Ciencia e Tecnologia Aeroespacial

    2011-07-01

    A set of hydrostatic pressure cells was specially developed in order to be applied in X-ray diffraction, X-ray absorption and neutron diffraction experiments. For the experiments where X-rays are used, the pressure cells are built in a CuBe alloy body with two B{sub 4}C anvils in order to allow the low absorption of the radiation. The B{sub 4}C anvils were specially prepared in CTA - Centro Tecnico Aeroespacial - Sao Jose dos Campos - Brazil, in order to present enhanced X-ray transparency and high hardness. One of the advantage of the CuBe-body cell with B{sub 4}C anvil is that it can be also used under magnetic fields, for instance for measurements of AC magnetic susceptibility under high hydrostatic pressures. The X-ray cells work in transmission mode and present a 2 mm diameter hole for the beam path. The X-ray beam pass through the hole and outgoing to the detector positioned in front of the pressure cell. A second type of pressure cell was developed in order to be used in neutron elastic scattering experiments, especially in neutron diffraction experiments. The neutron cell pressure cell was constructed in Zirconium alloy reinforced with carbon fibers composite in order to improve the mechanical resistance of his cylindrical geometry. The B{sub 4}C pressure cells are available to users of the techniques of X-ray diffraction and absorption in the Brazilian National Synchrotron Laboratory - LNLS, at Campinas City. The neutron pressure cell is available to users at the neutron powder diffraction facility installed at the Nuclear and Energy Research Institute - IPEN, Sao Paulo. In this work will be shown details and drawings of the two types of hydrostatic pressure cells. (author)

  2. Effect of high hydrostatic pressure on mycelial development, spore viability and enzyme activity of Penicillium Roqueforti.

    Science.gov (United States)

    Martínez-Rodríguez, Yamile; Acosta-Muñiz, Carlos; Olivas, Guadalupe I; Guerrero-Beltrán, José; Rodrigo-Aliaga, Dolores; Mujica-Paz, Hugo; Welti-Chanes, Jorge; Sepulveda, David R

    2014-01-03

    This study investigated the effect of high hydrostatic pressure treatments on mycelial development, spore viability, and total proteolytic and lipolytic activity of Penicillium roqueforti PV-LYO 10 D. Fungus growing in liquid medium was pressure-treated at 300, 400, and 500 MPa for 10 min at 20°C following seven days of incubation at 25°C and analyzed periodically up to day 9 after treatments to evaluate the effect on fungal growth. Mycelial mass of P. roqueforti was significantly affected at all pressure treatments evaluated, being 15.48%, 22.28%, 30.03%, and 12.53% lower than controls on day 1, 3, 6, and 9 after 300 MPa treatment, respectively. In a similar way, at 400 and 500 MPa, mycelial mass was 31.08% and 60.34% lower than controls one day after treatments and 49.74% and 80.85% lower on day 9, respectively. The viability of P. roqueforti spores decreased by 36.53% at 300 MPa, and complete inactivation took place at ≥400 MPa from an initial count of 7 log cfu/mL. Total proteolytic activity was not significantly affected at 300 MPa but was reduced by 18.22% at 400 MPa and by 43.18% at 500 MPa. Total lipolytic activity also decreased as the intensity of the pressure treatments increased. 21.69%, 39.12%, and 56.26% activity reductions were observed when treatments of 300, 400 and 500 MPa were applied, respectively. The results from this study show that pressure treatments are able to control growth, inactivate spores, and alter enzyme activity of P. roqueforti, which could be of interest in extending the shelf-life of blue-veined cheeses and other food products. © 2013.

  3. Hydrostatic Pressure in Articular Cartilage Tissue Engineering: From Chondrocytes to Tissue Regeneration

    OpenAIRE

    Elder, Benjamin D.; Athanasiou, Kyriacos A.

    2009-01-01

    Cartilage has a poor intrinsic healing response, and neither the innate healing response nor current clinical treatments can restore its function. Therefore, articular cartilage tissue engineering is a promising approach for the regeneration of damaged tissue. Because cartilage is exposed to mechanical forces during joint loading, many tissue engineering strategies use exogenous stimuli to enhance the biochemical or biomechanical properties of the engineered tissue. Hydrostatic pressure (HP) ...

  4. Modelling of noble anaesthetic gases and high hydrostatic pressure effects in lipid bilayers.

    Science.gov (United States)

    Moskovitz, Yevgeny; Yang, Hui

    2015-03-21

    Our objective was to study molecular processes that might be responsible for inert gas narcosis and high-pressure nervous syndrome. The classical molecular dynamics trajectories (200 ns) of dioleoylphosphatidylcholine (DOPC) bilayers simulated by the Berger force field were evaluated for water and the atomic distribution of noble gases around DOPC molecules in the pressure range of 1-1000 bar and at a temperature of 310 K. Xenon and argon have been tested as model gases for general anaesthetics, and neon has been investigated for distortions that are potentially responsible for neurological tremors in hyperbaric conditions. The analysis of stacked radial pair distribution functions of DOPC headgroup atoms revealed the explicit solvation potential of the gas molecules, which correlates with their dimensions. The orientational dynamics of water molecules at the biomolecular interface should be considered as an influential factor, while excessive solvation effects appearing in the lumen of membrane-embedded ion channels could be a possible cause of inert gas narcosis. All the noble gases tested exhibit similar order parameter patterns for both DOPC acyl chains, which are opposite of the patterns found for the order parameter curve at high hydrostatic pressures in intact bilayers. This finding supports the 'critical volume' hypothesis of anaesthesia pressure reversal. The irregular lipid headgroup-water boundary observed in DOPC bilayers saturated with neon in the pressure range of 1-100 bar could be associated with the possible manifestation of neurological tremors at the atomic scale. The non-immobiliser neon also demonstrated the highest momentum impact on the normal component of the DOPC diffusion coefficient representing the monolayer undulation rate, which indicates that enhanced diffusivity rather than atomic size is the key factor.

  5. High hydrostatic pressure: a new way to improve in vitro developmental competence of porcine matured oocytes after vitrification

    DEFF Research Database (Denmark)

    Du, Y; Pribenszky, C S; Molnár, M

    2008-01-01

    The purpose of the present study was to improve cryotolerance using high hydrostatic pressure (HHP) pretreatment of porcine in vitro matured (IVM) oocytes, to facilitate their further developmental competence after parthenogenetic activation. A total of 1668 porcine IVM oocytes were used in our...... present study. The pressure tolerance and optimal duration of recovery after HHP treatment were determined. Oocytes were treated with either 20 or 40 MPa (200 and 400 times greater than atmospheric pressure) for 60 min, with an interval of 10, 70, and 130 min between pressure treatment and subsequent...... vitrification under each pressure parameter. Oocytes from all vitrification groups had much lower developmental competence than fresh oocytes (Ppressure, with either 70...

  6. Effect of high hydrostatic pressure on the barrier properties of polyamide-6 films.

    Science.gov (United States)

    Schmerder, A; Richter, T; Langowski, H-C; Ludwig, H

    2005-08-01

    Little is known about the barrier properties of polymer films during high pressure processing of prepackaged foods. In order to learn more about this, we examined the influence of high hydrostatic pressure on the permeation of raspberry ketone (dissolved in ethanol/water) through polyamide-6 films at temperatures between 20 and 60 degrees C. Permeation was lowered by increasing pressure at all temperatures. At 23 degrees C, the increasing pressure sequence 0.1, 50, 100, 150, and 200 MPa correlated with the decreasing permeation coefficients P/(10(9) cm(2) s-1) of 6.2, 3.8, 3.0, 2.2, and 1.6. Analysis of the permeation kinetics indicated that this effect was due to a reduced diffusion coefficient. Pressure and temperature acted antagonistically to each other. The decrease in permeation at 200 MPa was compensated for by a temperature increase of 20 degrees C. After release of pressure, the former permeation coefficients were recovered, which suggests that this 'pressure effect' is reversible. Taken together, our data revealed no detrimental effects of high hydrostatic pressure on the barrier properties of polymer films.

  7. Effect of high hydrostatic pressure on the barrier properties of polyamide-6 films

    Directory of Open Access Journals (Sweden)

    Schmerder A.

    2005-01-01

    Full Text Available Little is known about the barrier properties of polymer films during high pressure processing of prepackaged foods. In order to learn more about this, we examined the influence of high hydrostatic pressure on the permeation of raspberry ketone (dissolved in ethanol/water through polyamide-6 films at temperatures between 20 and 60ºC. Permeation was lowered by increasing pressure at all temperatures. At 23°C, the increasing pressure sequence 0.1, 50, 100, 150, and 200 MPa correlated with the decreasing permeation coefficients P/(10(9 cm² s-1 of 6.2, 3.8, 3.0, 2.2, and 1.6. Analysis of the permeation kinetics indicated that this effect was due to a reduced diffusion coefficient. Pressure and temperature acted antagonistically to each other. The decrease in permeation at 200 MPa was compensated for by a temperature increase of 20ºC. After release of pressure, the former permeation coefficients were recovered, which suggests that this `pressure effect' is reversible. Taken together, our data revealed no detrimental effects of high hydrostatic pressure on the barrier properties of polymer films.

  8. Effects of high hydrostatic pressure on secondary structure and emulsifying behavior of sweet potato protein

    Science.gov (United States)

    Mehmood Khan, Nasir; Mu, Tai-Hua; Sun, Hong-Nan; Zhang, Miao; Chen, Jing-Wang

    2015-04-01

    In this study, secondary structures of sweet potato protein (SPP) after high hydrostatic pressure (HHP) treatment (200-600 MPa) were evaluated and emulsifying properties of emulsions with HHP-treated SPP solutions in different pH values (3, 6, and 9) were investigated. Circular dichroism analysis confirmed the modification of the SPP secondary structure. Surface hydrophobicity increased at pH 3 and decreased at 6 and 9. Emulsifying activity index at pH 6 increased with an increase in pressure, whereas emulsifying stability index increased at pH 6 and 9. Oil droplet sizes decreased, while volume frequency distribution of the smaller droplets increased at pH 3 and 6 with the HHP treatment. Emulsion viscosity increased at pH 6 and 9 and pseudo-plastic flow behaviors were not altered for all emulsions produced with HHP-treated SPP. These results suggested that HHP could modify the SPP structure for better emulsifying properties, which could increase the use of SPP emulsion in the food industry.

  9. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate

    KAUST Repository

    Yang, Zhi

    2016-05-24

    High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*). The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution) measured by FTIR and G* is proposed.

  10. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate.

    Directory of Open Access Journals (Sweden)

    Zhi Yang

    Full Text Available High hydrostatic pressure (HHP has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*. The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution measured by FTIR and G* is proposed.

  11. Reversible Morphological Control of Tubulin-Encapsulating Giant Liposomes by Hydrostatic Pressure.

    Science.gov (United States)

    Hayashi, Masahito; Nishiyama, Masayoshi; Kazayama, Yuki; Toyota, Taro; Harada, Yoshie; Takiguchi, Kingo

    2016-04-19

    Liposomes encapsulating cytoskeletons have drawn much recent attention to develop an artificial cell-like chemical-machinery; however, as far as we know, there has been no report showing isothermally reversible morphological changes of liposomes containing cytoskeletons because the sets of various regulatory factors, that is, their interacting proteins, are required to control the state of every reaction system of cytoskeletons. Here we focused on hydrostatic pressure to control the polymerization state of microtubules (MTs) within cell-sized giant liposomes (diameters ∼10 μm). MT is the cytoskeleton formed by the polymerization of tubulin, and cytoskeletal systems consisting of MTs are very dynamic and play many important roles in living cells, such as the morphogenesis of nerve cells and formation of the spindle apparatus during mitosis. Using real-time imaging with a high-pressure microscope, we examined the effects of hydrostatic pressure on the morphology of tubulin-encapsulating giant liposomes. At ambient pressure (0.1 MPa), many liposomes formed protrusions due to tubulin polymerization within them. When high pressure (60 MPa) was applied, the protrusions shrank within several tens of seconds. This process was repeatedly inducible (around three times), and after the pressure was released, the protrusions regenerated within several minutes. These deformation rates of the liposomes are close to the velocities of migrating or shape-changing living cells rather than the shortening and elongation rates of the single MTs, which have been previously measured. These results demonstrate that the elongation and shortening of protrusions of giant liposomes is repeatedly controllable by regulating the polymerization state of MTs within them by applying and releasing hydrostatic pressure.

  12. Improvement of In Vitro Three-Dimensional Cartilage Regeneration by a Novel Hydrostatic Pressure Bioreactor.

    Science.gov (United States)

    Chen, Jie; Yuan, Zhaoyuan; Liu, Yu; Zheng, Rui; Dai, Yao; Tao, Ran; Xia, Huitang; Liu, Hairong; Zhang, Zhiyong; Zhang, Wenjie; Liu, Wei; Cao, Yilin; Zhou, Guangdong

    2017-03-01

    In vitro three-dimensional (3D) cartilage regeneration is a promising strategy for repair of cartilage defects. However, inferior mechanical strength and tissue homogeneity greatly restricted its clinical translation. Simulation of mechanical stress through a bioreactor is an important approach for improving in vitro cartilage regeneration. The current study developed a hydrostatic pressure (HP) bioreactor based on a novel pressure-transmitting mode achieved by slight deformation of a flexible membrane in a completely sealed stainless steel device. The newly developed bioreactor efficiently avoided the potential risks of previously reported pressure-transmitting modes and simultaneously addressed a series of important issues, such as pressure scopes, culture chamber sizes, sealability, contamination control, and CO2 balance. The whole bioreactor system realized stable long-term (8 weeks) culture under high HP (5-10 MPa) without the problems of medium leakage and contamination. Furthermore, the results of in vitro 3D tissue culture based on a cartilage regeneration model revealed that HP provided by the newly developed bioreactor efficiently promoted in vitro 3D cartilage formation by improving its mechanical strength, thickness, and homogeneity. Detailed analysis in cell proliferation, cartilage matrix production, and cross-linking level of collagen macromolecules, as well as density and alignment of collagen fibers, further revealed the possible mechanisms that HP regulated in vitro cartilage regeneration. The current study provided a highly efficient and stable bioreactor system for improving in vitro 3D cartilage regeneration and thus will help to accelerate its clinical translation. Stem Cells Translational Medicine 2017;6:982-991. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  13. Proteomic identification of responsive proteins of Vibrio parahaemolyticus under high hydrostatic pressure.

    Science.gov (United States)

    Fu, Ling-Lin; Wang, Rui; Wang, Yanbo; Lin, Junda

    2014-10-01

    High hydrostatic pressure (HHP) processing is currently being used as a treatment for certain foods to inhibit spoilage organisms and control the presence of foodborne pathogens. In this study proteome profiles were performed by two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF/TOF identification to determine the effects of HHP (50, 100, 150 and 200 MPa, each for 10 min) on Vibrio parahaemolyticus ATCC 17802 (∼8 log CFU mL⁻¹) in order to understand how it responds to mechanical stress injury. Multiple comparisons of 2-DE revealed that the majority of changes in protein abundance occurred in a pressure-dependent fashion. A total of 18 differentially expressed protein spots were successfully identified by MALDI-TOF/TOF analysis. Moreover, quantitative RT-PCR and immunoblotting also substantiated the changes of transcriptional and translational levels of representative proteins. Our results suggested that V. parahaemolyticus may respond to HHP treatment through suppression of membrane stability and functionality (PfaC, Alr2, MltA, PLA2 and PatH), depression of biosynthesis and cellular processes (NadB, PyrB and ArgB), decreased levels of transcription (RpoD) and translation (RpsA, RplJ and PheS), and effective activation of protein folding and stress-related elements (GroES, DnaK and GroEL). This study may provide insight into the nature of the cellular targets of high pressure and in high-pressure resistance mechanisms in V. parahaemolyticus. © 2014 Society of Chemical Industry.

  14. Enzyme-assisted extraction of cactus bioactive molecules under high hydrostatic pressure.

    Science.gov (United States)

    Kim, Jae Hwan; Park, Yooheon; Yu, Kwang Won; Imm, Jee-Young; Suh, Hyung Joo

    2014-03-30

    To improve the extraction and recovery of bioactive materials from cactus, the present study investigated the effect of polysaccharide-degrading enzymes [Rapidase-Viscozyme mixture, 1/3 (v/v)] treatment under high hydrostatic pressure (HHP). The dry weight of the extract increased with the use of increasing pressure regardless of enzyme treatment. However, the polyphenol content showed a tendency to decrease with the increase in pressure in the cactus extract with or without enzyme treatment. The enzyme-assisted extraction resulted in an increase of dry weight and polyphenol content in the cactus extract. The total sugar and reducing sugar contents of the cactus extract increased with increasing pressure in enzyme-assisted extraction. The uronic acid content of the cactus extract showed a pattern similar to that of the reducing sugars. The enzyme-assisted extraction also increased the contents of taxifolin, quercetin and isorhametin. The cactus extract obtained through enzyme-assisted extraction showed intense scavenging activity of both DPPH and ABTS radicals. The crude polysaccharides isolated from the extract (51.2% at 1000 µg mL⁻¹ for HHP extraction at 300 MPa) had higher anti-complementary activity than the others except for lipopolysaccharide (60.00% at 1000 µg mL⁻¹). HHP extraction and enzyme-assisted extraction using HHP showed an increase of anti-complementary activity compared with the heat and enzyme controls, respectively. Overall, the use of HHP in enzyme-assisted extraction resulted in more efficient extraction than the use of enzyme treatment alone. © 2013 Society of Chemical Industry.

  15. Evaluation of Different Dose-Response Models for High Hydrostatic Pressure Inactivation of Microorganisms

    Science.gov (United States)

    2017-01-01

    Modeling of microbial inactivation by high hydrostatic pressure (HHP) requires a plot of the log microbial count or survival ratio versus time data under a constant pressure and temperature. However, at low pressure and temperature values, very long holding times are needed to obtain measurable inactivation. Since the time has a significant effect on the cost of HHP processing it may be reasonable to fix the time at an appropriate value and quantify the inactivation with respect to pressure. Such a plot is called dose-response curve and it may be more beneficial than the traditional inactivation modeling since short holding times with different pressure values can be selected and used for the modeling of HHP inactivation. For this purpose, 49 dose-response curves (with at least 4 log10 reduction and ≥5 data points including the atmospheric pressure value (P = 0.1 MPa), and with holding time ≤10 min) for HHP inactivation of microorganisms obtained from published studies were fitted with four different models, namely the Discrete model, Shoulder model, Fermi equation, and Weibull model, and the pressure value needed for 5 log10 (P5) inactivation was calculated for all the models above. The Shoulder model and Fermi equation produced exactly the same parameter and P5 values, while the Discrete model produced similar or sometimes the exact same parameter values as the Fermi equation. The Weibull model produced the worst fit (had the lowest adjusted determination coefficient (R2adj) and highest mean square error (MSE) values), while the Fermi equation had the best fit (the highest R2adj and lowest MSE values). Parameters of the models and also P5 values of each model can be useful for the further experimental design of HHP processing and also for the comparison of the pressure resistance of different microorganisms. Further experiments can be done to verify the P5 values at given conditions. The procedure given in this study can also be extended for enzyme

  16. Evaluation of Different Dose-Response Models for High Hydrostatic Pressure Inactivation of Microorganisms

    Directory of Open Access Journals (Sweden)

    Sencer Buzrul

    2017-09-01

    Full Text Available Modeling of microbial inactivation by high hydrostatic pressure (HHP requires a plot of the log microbial count or survival ratio versus time data under a constant pressure and temperature. However, at low pressure and temperature values, very long holding times are needed to obtain measurable inactivation. Since the time has a significant effect on the cost of HHP processing it may be reasonable to fix the time at an appropriate value and quantify the inactivation with respect to pressure. Such a plot is called dose-response curve and it may be more beneficial than the traditional inactivation modeling since short holding times with different pressure values can be selected and used for the modeling of HHP inactivation. For this purpose, 49 dose-response curves (with at least 4 log10 reduction and ≥5 data points including the atmospheric pressure value (P = 0.1 MPa, and with holding time ≤10 min for HHP inactivation of microorganisms obtained from published studies were fitted with four different models, namely the Discrete model, Shoulder model, Fermi equation, and Weibull model, and the pressure value needed for 5 log10 (P5 inactivation was calculated for all the models above. The Shoulder model and Fermi equation produced exactly the same parameter and P5 values, while the Discrete model produced similar or sometimes the exact same parameter values as the Fermi equation. The Weibull model produced the worst fit (had the lowest adjusted determination coefficient (R2adj and highest mean square error (MSE values, while the Fermi equation had the best fit (the highest R2adj and lowest MSE values. Parameters of the models and also P5 values of each model can be useful for the further experimental design of HHP processing and also for the comparison of the pressure resistance of different microorganisms. Further experiments can be done to verify the P5 values at given conditions. The procedure given in this study can also be extended for

  17. Response of Renal Podocytes to Excessive Hydrostatic Pressure: a Pathophysiologic Cascade in a Malignant Hypertension Model.

    Science.gov (United States)

    Abu Hamad, Ramzia; Berman, Sylvia; Hachmo, Yafit; Stark, Moshe; Hasan, Fadia; Doenyas-Barak, Keren; Efrati, Shai

    2017-12-07

    Renal injuries induced by increased intra-glomerular pressure coincide with podocyte detachment from the glomerular basement membrane (GBM). In previous studies, it was demonstrated that mesangial cells have a crucial role in the pathogenesis of malignant hypertension. However, the exact pathophysiological cascade responsible for podocyte detachment and its relationship with mesangial cells has not been fully elucidated yet and this was the aim of the current study. Rat renal mesangial or podocytes were exposed to high hydrostatic pressure in an in-vitro model of malignant hypertension. The resulted effects on podocyte detachment, apoptosis and expression of podocin and integrinβ1 in addition to Angiotensin-II and TGF-β1 generation were evaluated. To simulate the paracrine effect podocytes were placed in mesangial cell media pre-exposed to pressure, or in media enriched with Angiotensin-II, TGF-β1 or receptor blockers. High pressure resulted in increased Angiotensin-II levels in mesangial and podocyte cells. Angiotensin-II via the AT1 receptors reduced podocin expression and integrinβ1, culminating in detachment of both viable and apoptotic podocytes. Mesangial cells exposed to pressure had a greater increase in Angiotensin-II than pressure-exposed podocytes. The massively increased concentration of Angiotensin-II by mesangial cells, together with increased TGF-β1 production, resulted in increased apoptosis and detachment of non-viable apoptotic podocytes. Unlike the direct effect of pressure on podocytes, the mesangial mediated effects were not related to changes in adhesion proteins expression. Hypertension induces podocyte detachment by autocrine and paracrine effects. In a direct response to pressure, podocytes increase Angiotensin-II levels. This leads, via AT1 receptors, to structural changes in adhesion proteins, culminating in viable podocyte detachment. Paracrine effects of hypertension, mediated by mesangial cells, lead to higher levels of both

  18. Numerical and experimental study of hydrostatic displacement machine

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Mørk; Hansen, Michael; Mouritsen, Ole Ø.

    2012-01-01

    This paper presents a simulation tool to determine the structural deflections and corresponding leakage flow in a hydrostatic displacement motor. The simulation tool is applied to a new motor principle that is categorized as an extreme low-speed high-torque motor with dimensions that calls...... for attention to the volumetric efficiency. To counteract structural deflections the motor is equipped with compensation pressure volumes that may be used to limit the leakage flow across the end faces of the circular rotor. This leakage flow is investigated by solving Reynolds equation for the pressure...... distribution across both end faces. The fluid pressure is combined with structural calculations in a fluid structural interaction simulation, which evaluates the influence of structural deflections on the gaps and the leakage flow. The numerical work is validated by prototype tests. Both deflections...

  19. Cell morphology, budding propensity and cell death of Saccharomyces cerevisiae at high hydrostatic pressure

    Science.gov (United States)

    Nguyen, Khanh; Lewis, Jeffrey; Kumar, Pradeep

    A large biomass on earth thrives in extremes of physical and chemical conditions including high pressure and temperature. Budding yeast, S. cerevisiae, is a eukaryotic model organism due to its amenability to molecular biology tools. To understand the effects of hydrostatic pressure on a eukaryotic cell, we have performed quantitative experiments of the growth, the propensity of budding, and cell death of S. cerevisiae in a wide range of pressures. An automated image analysis method for the quantification of the budding index was developed and applied along with a continuum model of budding to investigate the effects of pressure on cell division and cell morphology. We find that the growth, the budding propensity, the average cell size, and the ellipticity of the cells decrease with increasing pressure. Furthermore, large hydrostatic pressure led to the small but finite probability of cell death. Our experiments suggest that the decrease of budding propensity arises from cellular arrest at the cell cycle checkpoints during different stages of cell division.

  20. Shape evolution of a core-shell spherical particle under hydrostatic pressure.

    Science.gov (United States)

    Colin, Jérôme

    2012-03-01

    The morphological evolution by surface diffusion of a core-shell spherical particle has been investigated theoretically under hydrostatic pressure when the shear modulii of the core and shell are different. A linear stability analysis has demonstrated that depending on the pressure, shear modulii, and radii of both phases, the free surface of the composite particle may be unstable with respect to a shape perturbation. A stability diagram finally emphasizes that the roughness development is favored in the case of a hard shell with a soft core.

  1. Effect of high hydrostatic pressure processing on the background microbial loads and quality of cantaloupe puree.

    Science.gov (United States)

    Mukhopadhyay, Sudarsan; Sokorai, Kimberly; Ukuku, Dike; Fan, Xuetong; Juneja, Vijay

    2017-01-01

    The objective of this study was to investigate and evaluate the effects of high hydrostatic pressure (HHP) applied to cantaloupe puree (CP) on microbial loads and product quality during storage for 10days at 4°C. Freshly prepared, double sealed and double bagged CP (ca. 5g) was pressure treated at 300, 400 and 500MPa at 8°C and 15°C for 5min. Microflora populations, soluble solid content, pH, color, antioxidant activity, appearance and aroma were measured at 1, 6, and 10d of storage. Results showed that high pressure treatment of 300MPa (8°C and 15°C) resulted in reduction of total aerobic plate count from 3.3 to 1.8logCFU/g. The treatment reduced the populations of native aerobic plate count to non-detectable levels (detection limit 1logCFU/g) at 400MPa and 500MPa pressures at 15°C. Pressure treatment completely inactivated mold and yeast in puree below the limits of detection at day 1 and no regrowth was observed during 10days of storage at 4°C while mold and yeast in untreated puree survived during the storage. High pressure treatment did not show any adverse impact on physical properties as soluble solid content (SSC, 11.2°Brix) and acidity (pH, 6.9). The instrumental color parameters (L*, a*, b*) were affected due to HHP treatment creating a slightly lighter product, compared to control, as indicated by higher L.* and lower a* values. However the change was not detected by the sensory panel while evaluating appearance scores. Pressure treatment did not affect the antioxidant capacity of puree product compared to control. Visual appearance and sniffing aroma test by panel revealed no adverse changes in the sensory parameters as a result of HHP treatment. HHP method described in this study appears to be a promising way to inactivate spoilage microorganisms in the cantaloupe puree and maintain quality. This study provides a viable option for preservation and marketing this product. Published by Elsevier Ltd.

  2. Effect of hydrostatic pressure on the stress strain behavior of potassium and lead at liquid nitrogen temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chua, J.O.

    1975-06-01

    The hypothesis that at low homologous temperature, the pressure effect on the yielding of metals is closely related to the effect of pressure on the elastic constants was tested. An apparatus in which tension tests can be made at liquid nitrogen temperature and high hydrostatic pressure was designed and constructed. Tension tests for potassium and lead were carried out at liquid nitrogen temperature and as a function of pressure up to 5.15 kbars. The results show that the effect of hydrostatic pressure was to raise the stress strain curves of both potassium and lead at liquid nitrogen temperature.

  3. Role of osmotic and hydrostatic pressures in bacteriophage genome ejection

    NARCIS (Netherlands)

    Lemay, S.G.; Panja, D.|info:eu-repo/dai/nl/370992105; Molineux, I.J.

    2013-01-01

    A critical step in the bacteriophage life cycle is genome ejection into host bacteria. The ejection process for double-stranded DNA phages has been studied thoroughly in vitro, where after triggering with the cellular receptor the genome ejects into a buffer. The experimental data have been

  4. DX centers in III-V semiconductors under hydrostatic pressure. [GaAs:Si; InP:S

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, J.A.

    1992-11-01

    DX centers are deep level defects found in some III-V semiconductors. They have persistent photoconductivity and large difference between thermal and optical ionization energies. Hydrostatic pressure was used to study microstructure of these defects. A new local vibrational mode (LVM) was observed in hydrostatically stressed, Si-doped GaAs. Corresponding infrared absorption peak is distinct from the Si[sub Ga] shallow donor LVM peak, which is the only other LVM peak observed in our samples, and is assigned to the Si DX center. Analysis of the relative intensities of the Si DX LVM and the Si shallow donor LVM peaks, combined with Hall effect and resistivity indicate that the Si DX center is negatively charged. Frequency of this new mode provides clues to the structure of this defect. A pressure induced deep donor level in S-doped InP was also discovered which has the properties of a DX center. Pressure at which the new defect becomes more stable than the shallow donor is 82 kbar. Optical ionization energy and energy dependence of the optical absorption cross section was measured for this new effect. Capture barrier from the conduction band into the DX state were also determined. That DX centers can be formed in InP by pressure suggests that DX states should be common in n-type III-V semiconductors. A method is suggested for predicting under what conditions these defects will be the most stable form of the donor impurity.

  5. Changes in microbial diversity of brined green asparagus upon treatment with high hydrostatic pressure.

    Science.gov (United States)

    Toledo Del Árbol, Julia; Pérez Pulido, Rubén; La Storia, Antonietta; Grande Burgos, Maria José; Lucas, Rosario; Ercolini, Danilo; Gálvez, Antonio

    2016-01-04

    The application of high hydrostatic pressure (HHP, 600MPa, 8 min) on brined green asparagus and the changes in bacterial diversity after treatments and during storage at 4 °C (30 days) or 22 °C (10 days) were studied. HHP treatments reduced viable cell counts by 3.6 log cycles. The residual surviving population did not increase during storage at 4 °C. However, bacterial counts significantly increased at 22 °C by day 3, leading to rapid spoilage. The microbiota of green asparagus was composed mainly by Proteobacteria (mainly Pantoea and Pseudomonas), followed by Firmicutes (mainly Lactococcus and Enterococcus) and to a less extent Bacteroidetes and Actinobacteria. During chill storage of untreated asparagus, the relative abundance of Proteobacteria as well as Enterococcus and Lactococcus decreased while Lactobacillus increased. During storage of untreated asparagus at 22 °C, the abundance of Bacteroidetes decreased while Proteobacteria increased during late storage. The HHP treatment determined a reduction of the Proteobacteria both early after treatment and during chill storage. In the HHP treated samples stored at 22 °C, the relative abundance of Pseudomonas rapidly decreased at day 1, with an increase of Bacteroidetes. This was followed by a marked increase in Enterobacteriaceae (Escherichia) simultaneously with increase in viable counts and spoilage. Results from the study indicate that the effect of HHP treatments on the viability ofmicrobial populations in foods also has an impact on the dynamics of microbial populations during the storage of the treated foods.

  6. Evaluation of batch and semicontinuous application of high hydrostatic pressure on foodborne pathogens in salsa.

    Science.gov (United States)

    Raghubeer, E V; Dunne, C P; Farkas, D F; Ting, E Y

    2000-12-01

    The effects of high hydrostatic pressure (HPP; 545 MPa) on strains of Escherichia coli O157:H7, Listeria monocytogenes, enterotoxigenic Staphylococcus aureus, and nonpathogenic microorganisms were studied in tomato-based salsa. Products were evaluated for the survival of the inoculated pathogens following HPP treatment and after storage at 4 degrees C and 21 to 23 degrees C for up to 2 months. Inoculated samples without HPP treatment, stored under the same conditions, were also evaluated to determine the effects of the acid environment of salsa on the survival of inoculated strains. None of the inoculated pathogens were detected in the HPP-treated samples for all treatments throughout the storage period. Inoculated pathogens were detected in the non-HPP-treated samples stored at 4 degrees C after 1 month, with L. monocytogenes showing the highest level of survivors. In the non-HPP-treated samples stored at 21 to 23 degrees C, E. coli and S. aureus were not detected after 1 week, but L. monocytogenes was detected in low levels. Studies with nonpathogenic strains of the pathogens were conducted at Oregon State University using HPP treatments in a semicontinuous production system. The nonpathogenic microorganisms (E. coli, Listeria innocua, Listeria welshimeri, and nonenterotoxigenic S. aureus) were inoculated together into a feeder tank containing 100 liters of salsa. Microbiological results of samples collected before HPP treatment and from the aseptic filler were similar to those obtained for the pathogenic strains. No survivors were detected in any of the HPP-treated samples.

  7. Molecular Mechanisms for High Hydrostatic Pressure-Induced Wing Mutagenesis in Drosophila melanogaster.

    Science.gov (United States)

    Wang, Hua; Wang, Kai; Xiao, Guanjun; Ma, Junfeng; Wang, Bingying; Shen, Sile; Fu, Xueqi; Zou, Guangtian; Zou, Bo

    2015-10-08

    Although High hydrostatic pressure (HHP) as an important physical and chemical tool has been increasingly applied to research of organism, the response mechanisms of organism to HHP have not been elucidated clearly thus far. To identify mutagenic mechanisms of HHP on organisms, here, we treated Drosophila melanogaster (D. melanogaster) eggs with HHP. Approximately 75% of the surviving flies showed significant morphological abnormalities from the egg to the adult stages compared with control flies (p melanogaster induced by HHP were used to investigate the mutagenic mechanisms of HHP on organism. Thus 285 differentially expressed genes associated with wing mutations were identified using Affymetrix Drosophila Genome Array 2.0 and verified with RT-PCR. We also compared wing development-related central genes in the mutant flies with control flies using DNA sequencing to show two point mutations in the vestigial (vg) gene. This study revealed the mutagenic mechanisms of HHP-induced mutagenesis in D. melanogaster and provided a new model for the study of evolution on organisms.

  8. Oenological and Quality Characteristic on Young White Wines (Sauvignon Blanc: Effects of High Hydrostatic Pressure Processing

    Directory of Open Access Journals (Sweden)

    Vilbett Briones-Labarca

    2017-01-01

    Full Text Available High hydrostatic pressure (HHP has shown to have an effect of enhancing some properties without detrimental effects on important quality characteristics, such as colour, pH, and turbidity. This suggests that this technique can be used as an alternative to the existing methods used in wine industry processing. The aim of this study was to investigate the effects of HHP on aroma compounds and also sensory and quality properties of young white wine. HHP treatment did not influence physicochemical parameters, total phenols, and flavonoid contents of white wine; however, the results from analysis of wine indicate that there was a great variation in the concentration of free and total sulphur dioxide (SO2 values and antioxidant capacity of white wine after HHP application. The sensory attributes, such as taste, odour, and overall quality, were not affected by HHP processing at 300 MPa. The chromatic characteristics changed slightly after applying HHP, but these changes could not be visually perceived because they were less than 5%. The use of this technique has the potential to decrease the amount of SO2 added to raw grapes thus maintaining the same properties found in untreated wine. This study provided valuable insights into the biochemical and sensory composition of commercial white wine and how this might change during HHP processing.

  9. Effect of Hydrostatic Pressure on the 3D Porosity Distribution and Mechanical Behavior of a High Pressure Die Cast Mg AZ91 Alloy

    Science.gov (United States)

    Sket, Federico; Fernández, Ana; Jérusalem, Antoine; Molina-Aldareguía, Jon M.; Pérez-Prado, María Teresa

    2015-09-01

    A limiting factor of high pressure die cast (HPDC) Mg alloys is the presence of porosity, which has a detrimental effect on the mechanical strength and gives rise to a large variability in the ductility. The application of hydrostatic pressure after casting is known to be beneficial to improve the mechanical response of HPDC Mg alloys. In this study, a combined experimental and simulation approach has been developed in order to investigate the influence of pressurization on the 3D porosity distribution and on the mechanical behavior of an HPDC Mg AZ91 alloy. Examination of about 10,000 pores by X-ray computed microtomography allowed determining the effect of hydrostatic pressure on the bulk porosity volume fraction, as well as the change in volume and geometry of each individual pore. The evolution of the 3D porosity distribution and mechanical behavior of a sub-volume containing 200 pores was also simulated by finite element analysis. Both experiments and simulations consistently revealed a decrease in the bulk porosity fraction and a bimodal distribution of the individual volume changes after the application of the pressure. This observation is associated with pores containing internal pressure as a result of the HPDC process. Furthermore, a decrease in the complexity factor with increasing volume change is observed experimentally and predicted by simulations. The pressure-treated samples have consistently higher plastic flow strengths.

  10. Effect of hydrostatic pressure on structural and electronic properties of TGS crystals (first-principle calculations

    Directory of Open Access Journals (Sweden)

    B.Andriyevsky

    2007-01-01

    Full Text Available First principle calculations of the effect of hydrostatic pressure on the structural and electronic parameters of TGS crystals have been carried out within the framework of density functional theory using the CASTEP code. The volume dependence of total electronic energy E(V of the crystal unit cell satisfies the third-order Birch-Murnaghan isothermal equation of state. For the pressure range of -5...5 GPa, the bulk modulus was found to be equal to K=45 ± 5 GPa. The relative pressure changes of the unit cell parameters were found to be linear in the range of -5...5 GPa. Crossing of the pressure dependencies of enthalpy corresponding to the ferroelectric and non-ferroelectric phases at P=7.7 GPa testifies to the probable pressure induced phase transition in TGS crystal.

  11. Glucose oxidase stabilization against thermal inactivation using high hydrostatic pressure and hydrophobic modification.

    Science.gov (United States)

    Halalipour, Ali; Duff, Michael R; Howell, Elizabeth E; Reyes-De-Corcuera, José I

    2017-03-01

    High hydrostatic pressure (HHP) stabilized glucose oxidase (GOx) against thermal inactivation. The apparent first-order kinetics of inactivation of GOx were investigated at 0.1-300 MPa and 58.8-80.0°C. At 240 MPa and 74.5°C, GOx inactivated at a rate 50 times slower than at atmospheric pressure at the same temperature. The apparent activation energy of inactivation at 300 MPa was 281.0 ± 17.4 kJ mol(-1) or 1.3-fold smaller than for the inactivation at atmospheric pressure (378.1 ± 25.6 kJ mol(-1) ). The stabilizing effect of HHP was greatest at 74.5°C, where the activation volume of 57.0 ± 12.0 cm(3)  mol(-1) was highest compared to all other studied temperatures. Positive apparent activation volumes for all the treatment temperatures confirmed that HHP favors GOx stabilization. A second approach to increase GOx stability involved crosslinking with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and either aniline or benzoate. The modified enzyme remained fully active with only slight increases in KM (1.3-1.9-fold increases for aniline and benzoate modification, respectively). The thermal stability of GOx increased by 8°C with aniline modification, while it decreased by 0.9°C upon modification with benzoate. Biotechnol. Bioeng. 2017;114: 516-525. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Identification of sigma factor SigmaB-controlled genes and their impact on acid stress, high hydrostatic pressure, and freeze survival in Listeria monocytogenes EGD-e

    NARCIS (Netherlands)

    Wemekamp-Kamphuis, H.H.; Wouters, J.A.; Leeuw, de P.P.L.A.; Hain, T.; Chakraborty, T.; Abee, T.

    2004-01-01

    The gene encoding the alternative sigma factor sigma(B) in Listeria monocytogenes is induced upon exposure of cells to several stresses. In this study, we investigated the impact of a sigB null mutation on the survival of L. monocytogenes EGD-e at low pH, during high-hydrostatic-pressure treatment,

  13. Identification of Microorganisms in Duck Meat Products Available in Korea and the Effect of High Hydrostatic Pressure

    OpenAIRE

    Kim, Hyun-Joo; Yong, Hae In; Lee, Hyun Jung; Jung, Samooel; Kwon, Joong-Ho; Heo, Kang Nyung; Jo, Cheorun

    2016-01-01

    The objective of this study was to investigate the microbial count of duck meat and duck meat products commercially available in Korea. High hydrostatic pressure (HHP) treatment was applied at 0.1, 300, 400, and 500 MPa for 5 min to enhance the microbiological safety of duck meats. The levels of total aerobic bacteria were in the ranges of 3.53-6.19 and 3.62-6.85 Log CFU/g in raw and smoked duck products, respectively. By DNA sequence analysis, we identified microorganisms responsible for spo...

  14. Improving the catalytic behavior of inulin fructotransferase under high hydrostatic pressure.

    Science.gov (United States)

    Li, Yungao; Miao, Ming; Chen, Xiangyin; Jiang, Bo; Liu, Miao; Feng, Biao

    2015-10-01

    The demand for difructose anhydride III (DFA III), a novel functional sweetener, is growing continuously. It is produced from inulin by inulin fructotransferase (IFTase). In this study, high hydrostatic pressure (HHP), as a clean technology, was first applied to further improve the catalytic efficiency of IFTase in the process. The maximum activity of IFTase was obtained under 200 MPa at 60 °C. Meanwhile, HHP lowered the energy barrier necessary for the enzymatic reaction and decreased the volume between the reactants and the transition state. Under this condition, the optimal pH for the enzymatic reaction shifted from 5.5 to 6.0. The activity was further enhanced by 65.2% in the presence of 1.5 mol L(-1) NaCl. The catalytic reaction of IFTase was performed under HHP for the first time. HHP, as a promising green technology for bioconversion, significantly accelerated the enzymatic reaction under the appropriate operational conditions. © 2015 Society of Chemical Industry.

  15. High hydrostatic pressure induces immunogenic cell death in human tumor cells.

    Science.gov (United States)

    Fucikova, Jitka; Moserova, Irena; Truxova, Iva; Hermanova, Ivana; Vancurova, Irena; Partlova, Simona; Fialova, Anna; Sojka, Ludek; Cartron, Pierre-Francois; Houska, Milan; Rob, Lukas; Bartunkova, Jirina; Spisek, Radek

    2014-09-01

    Recent studies have identified molecular events characteristic of immunogenic cell death (ICD), including surface exposure of calreticulin (CRT), the heat shock proteins HSP70 and HSP90, the release of high-mobility group box protein 1 (HMGB1) and the release of ATP from dying cells. We investigated the potential of high hydrostatic pressure (HHP) to induce ICD in human tumor cells. HHP induced the rapid expression of HSP70, HSP90 and CRT on the cell surface. HHP also induced the release of HMGB1 and ATP. The interaction of dendritic cells (DCs) with HHP-treated tumor cells led to a more rapid rate of DC phagocytosis, upregulation of CD83, CD86 and HLA-DR and the release of interleukin IL-6, IL-12p70 and TNF-α. DCs pulsed with tumor cells killed by HHP induced high numbers of tumor-specific T cells. DCs pulsed with HHP-treated tumor cells also induced the lowest number of regulatory T cells. In addition, we found that the key features of the endoplasmic reticulum stress-mediated apoptotic pathway, such as reactive oxygen species production, phosphorylation of the translation initiation factor eIF2α and activation of caspase-8, were activated by HHP treatment. Therefore, HHP acts as a reliable and potent inducer of ICD in human tumor cells. © 2014 UICC.

  16. Effect of treatment temperature on collagen structures of the decellularized carotid artery using high hydrostatic pressure.

    Science.gov (United States)

    Negishi, Jun; Funamoto, Seiichi; Kimura, Tsuyoshi; Nam, Kwangoo; Higami, Tetsuya; Kishida, Akio

    2011-09-01

    Decellularized tissues have attracted a great deal of attention as regenerating transplantation materials. A decellularizing method based on high hydrostatic pressure (HHP) has been developed, and the preparation of many types of decellularized tissues has been investigated, including aorta, cornea, and dermis. The preparation of a small-diameter vascular graft was studied using a carotid artery from the viewpoint of collagen denaturation and leakage. After HHP, the carotid artery was washed at two washing temperatures (37 and 4°C). Histological evaluation, collagen content measurement and circular dichroism (CD) measurement indicated that the washing temperatures clearly affected the collagen structure of the decellularized carotid artery. The amount of collagen decreased in the carotid artery decellularized by HHP washed at 37°C (HHP/37°C). On the other hand, the amount and structure of collagen were preserved in the carotid artery washed at 4°C after HHP (HHP/4°C). In rat carotid artery syngeneic transplantation, the HHP/37°C decellularized carotid artery occluded after 2 weeks, but the HHP/4°C decellularized one did not. These results indicate that collagen denaturation and leakage of the decellularized carotid artery affect the in vivo performance of the carotid artery.

  17. Enzymatic production of γ-aminobutyric acid in soybeans using high hydrostatic pressure and precursor feeding.

    Science.gov (United States)

    Ueno, Shigeaki; Katayama, Takumi; Watanabe, Takae; Nakajima, Kanako; Hayashi, Mayumi; Shigematsu, Toru; Fujii, Tomoyuki

    2013-01-01

    The effects were investigated of the glutamic acid (Glu) substrate concentration on the generation and kinetics of γ-aminobutyric acid (GABA) in soybeans treated under high hydrostatic pressure (HHP; 200 MPa for 10 min at 25 °C). The conversion of Glu to GABA decreased with increasing initial Glu concentration in the soybeans. The crude glutamate decarboxylase (GAD) obtained from the HHP-treated soybeans showed substrate inhibition. The GABA production rate in the HHP-treated soybeans fitted the following substrate inhibition kinetic equation: v0=(VmaxS0)/(Km+S0+(S0)2/Ki). The Km value for the HHP-treated soybeans was significantly higher than that of the untreated soybeans. The Km values in this study show the affinity between Glu and GAD, and indicate that the HHP-treated soybeans had lower affinity between Glu and GAD than the untreated soybeans. GAD extracted from the HHP-treated soybeans showed a similar value to that in the HHP-treated soybeans. The intact biochemical system was so damaged in the HHP-treated soybeans that it showed substrate inhibition kinetics similar to that of the extracted GAD. The combination of HHP and precursor feeding proved to be a novel tool that can be used to increase the concentration of a target component.

  18. Improving quality of an innovative pea puree by high hydrostatic pressure.

    Science.gov (United States)

    Klug, Tâmmila Venzke; Martínez-Sánchez, Ascensión; Gómez, Perla A; Collado, Elena; Aguayo, Encarna; Artés, Francisco; Artés-Hernández, Francisco

    2017-10-01

    The food industry is continuously innovating to fulfill consumer demand for new, healthy, ready-to-eat products. Pea purees could satisfy this trend by increasing the intake of legumes, which are an important source of nutrients. Moreover, sensorial properties like viscosity could be improved by high hydrostatic pressure (HHP). In this study the effect of a boiling treatment (10 min) followed by HHP at 550 kPa (0, 5 or 10 min) on the rheological properties, associated with enzymatic activity and particle size, as well as on the microbial and sensory quality of a pea-based puree stored for 36 days at 5 °C, has been assessed. The particle size of pea puree decreased after all processing treatments, but increased during storage in HHP-treated samples. Conversely, boiling treatment showed an increase in polygalacturonase activity at the end of the storage period, with a decrease in particle size, viscosity and stability. However, 5 min of 550 kPa HHP showed the highest mean particle size, mean surface diameter and viscosity regarding the remaining treatments. The microbial load remained low during storage. HHP treatment can be used by the food industry to improve the rheological properties, viscosity and stability of pea purees. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Modification of deoiled cumin dietary fiber with laccase and cellulase under high hydrostatic pressure.

    Science.gov (United States)

    Ma, Mengmei; Mu, Taihua

    2016-01-20

    In this study, we evaluated the effects of high hydrostatic pressure (HHP) and enzyme (laccase and cellulase) treatment on the structural, physicochemical, and functional properties and antioxidant activity of deoiled cumin dietary fiber (DF). HHP-enzyme treatment increased the contents of soluble dietary fiber (SDF) (30.37 g/100g), monosaccharides (except for glucose), uronic acids, and total polyphenol. HHP-enzyme treatment altered the honey-comb structure of DF and generated new polysaccharides. DF modified by HHP-enzyme treatment exhibited improved water retention capacity (10.02 g/g), water swelling capacity (11.19 mL/g), fat and glucose absorption capacities (10.44 g/g, 22.18-63.54 mmol/g), α-amylase activity inhibition ration (37.95%), and bile acid retardation index (48.85-52.58%). The antioxidant activity of DF was mainly correlated to total polyphenol content (R=0.8742). Therefore, DF modified by HHP-enzyme treatment from deoiled cumin could be used as a fiber-rich ingredient in functional foods. Copyright © 2015. Published by Elsevier Ltd.

  20. The effect of high hydrostatic pressure on the physiological and biochemical properties of pepper (Capsicum annuum L.) seedlings

    Science.gov (United States)

    İşlek, Cemil; Murat Altuner, Ergin; Alpas, Hami

    2015-10-01

    High hydrostatic pressure is a non-thermal food processing technology, which also has several successful applications in different areas besides food processing. In this study, Capsicum annuum L. (pepper) seeds are subjected to 50, 100, 200 and 300 MPa pressure for 5 min at 25°C and the seedlings of HHP processed seeds are used to compare percentage of seed germination and biochemical properties such as chlorophyll a, b and a/b, proline content, total protein, carotenoid, malondialdehyde, glucose, fructose and phenolic compounds concentrations. As a result of the study, it was observed that there are remarkable changes in terms of biochemical properties especially for seedlings, whose seeds were pressurized at 200 and 300 MPa. More detailed studies are needed to put forward the mechanism behind the changes in biochemical properties.

  1. Crystallization of a Li2O2SiO2 Glass under High Hydrostatic Pressures

    Science.gov (United States)

    Fuss, T.; Day, D. E.; Lesher, C. E.; Ray, C. S.

    2004-01-01

    The crystallization behavior of a Li2O.2SiO2 (LS2) glass subjected to a uniform hydrostatic pressure of 4.5 or 6 GPa was investigated between 550 and 800 C using XRD, IR, Raman, TEM, NMR, and DTA. The density of the glass subjected to 6 GPa was between 2.52 plus or minus 0.01 and 2.57 plus or minus 0.01 grams per cubic centimeters, depending upon the processing temperatures, and was higher than that of the stoichiometric LS2 crystals, 2.46 plus or minus 0.01 grams per cubic centimeter. Thus, crystallization in 6 GPa glass occurred in a condition of negative volume dilatation, deltaV = V(sub glass) - V(sub crystal), while that for the 4.5 GPa glass occurred in the condition deltaV greater than 0. For deltaV greater than 0, which also includes the control glass at ambient (one atmosphere) pressure, the glasses always crystallize Li2Si2O5 (orthorhombic, Ccc2) crystals, but for deltaV less than 0 (6 GPa), the glasses crystallize Li2SiO3 crystals with a slightly deformed structure. The crystal growth rate vs. temperature curve moved to higher temperature with increasing pressure, and was independent of the sign of deltaV. These results for the effect of hydrostatic pressure on the crystallization of LS2 glass were discussed from thermodynamic considerations.

  2. Combination of hydrostatic pressure and lacticin 3147 causes increased killing of Staphylococcus and Listeria.

    Science.gov (United States)

    Morgan, S M; Ross, R P; Beresford, T; Hill, C

    2000-03-01

    The use of hydrostatic pressure and lacticin 3147 treatments were evaluated in milk and whey with a view to combining both treatments for improving the quality of minimally processed dairy foods. The system was evaluated using two foodborne pathogens: Staphylococcus aureus ATCC6538 and Listeria innocua DPC1770. Trials against Staph. aureus ATCC6538 were performed using concentrated lacticin 3147 prepared from culture supernatant. The results demonstrated a more than additive effect when both treatments were used in combination. For example, the combination of 250 MPa (2.2 log reduction) and lacticin 3147 (1 log reduction) resulted in more than 6 logs of kill. Similar results were obtained when a foodgrade powdered form of lacticin 3147 (developed from a spray dried fermentatation of reconstituted demineralized whey powder) was evaluated for the inactivation of L. innocua DPC1770. Furthermore, it was observed that treatment of lacticin 3147 preparations with pressures greater than 400 MPa yielded an increase in bacteriocin activity (equivalent to a doubling of activity). These results indicate that a combination of high pressure and lacticin 3147 may be suitable for improving the quality of minimally processed foods at lower hydrostatic pressure levels.

  3. Effect of high hydrostatic pressure on the microbiological, biochemical characteristics of white shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Li, Xiu-Xia; Tian, Xin; Li, Jian-Rong

    2016-06-01

    Using thermal processing (TP) treatment (100 ℃, 1-8 min) as a control, the effects of high hydrostatic pressure (HHP, 200-500 MPa, 2.5-20 min) on the microbiological and biochemical characteristics of white shrimp Litopenaeus vannamei were investigated. The results showed that the efficiency of polyphenol oxidase (PPO) inactivation and log reduction of total plate count (TPC) by HHP treatment were all significantly lower than by TP treatment (p pressure and holding time (p pressure of 300-500 MPa was higher than TP-treated samples, while the yield loss of HHP treatment was significantly lower than with TP treatment (p high pressure of HHP treatment turned the appearance of shrimps slightly pink. © The Author(s) 2015.

  4. Melanin pigments in the melanocytic nevus regress spontaneously after inactivation by high hydrostatic pressure.

    Science.gov (United States)

    Sakamoto, Michiharu; Morimoto, Naoki; Jinno, Chizuru; Mahara, Atsushi; Ogino, Shuichi; Suzuki, Shigehiko; Kusumoto, Kenji; Yamaoka, Tetsuji

    2017-01-01

    We report a novel treatment for giant congenital melanocytic nevi (GCMN) that involves the reuse of resected nevus tissue after high hydrostatic pressurization (HHP). However, the remaining melanin pigments in the inactivated nevus tissue pose a problem; therefore, we performed a long-term observation of the color change of inactivated nevus tissue after HHP. Pressurized nevus specimens (200 MPa group, n = 9) and non-pressurized nevus tissues (control group, n = 9) were subcutaneously implanted into nude mice (BALB/c-nu) and then harvested 3, 6, and 12 months later. Color changes of the nevus specimens were evaluated. In the 200 MPa group, the specimen color gradually regressed and turned white, and brightness values were significantly higher in the 200 MPa group than in the control group after 6 months. This indicated that melanin pigments in the pressurized nevus tissue had spontaneously degraded and regressed. Therefore, it is not necessary to remove melanin pigments in HHP-treated nevus tissue.

  5. Rheological and thermophysical properties of carragenan and β-lactoglobulin model systems treated with high hydrostatic pressure

    Directory of Open Access Journals (Sweden)

    Edita Juraga

    2006-03-01

    Full Text Available The aim of this paper is to examine the influence of high hydrostatic pressure treatment on the rheological and thermophisical properties of β-lactoglobulin and carragenan model systems. Suspensions of β-lactoglobulin were treated with a high hydrostatic pressure in a range of 300 to 600 MPa. Holding period was 5 and 10 minutes.Measurements were performed using rotational viscosimeter Rheometric Scientific RM-180 at 20 oC. The rheological parameters were determined by the Ostwald de Waele law. The results of the investigation have shown that all investigated systems are non-Newtonian – pseudoplastic. All samples treated with high hydrostatic pressure have changed rheological characteristics. The extent of protein denaturation was proportional to the intensity of applied pressure and holding time. The phase transition temperatures were determined by differential thermal analysis (DTA. High pressure treatment caused depression of freezing point and melting point, respectively. Carragenan acts as a crioprotectant.

  6. Improvement of In Vitro Three‐Dimensional Cartilage Regeneration by a Novel Hydrostatic Pressure Bioreactor

    Science.gov (United States)

    Chen, Jie; Yuan, Zhaoyuan; Liu, Yu; Zheng, Rui; Dai, Yao; Tao, Ran; Xia, Huitang; Liu, Hairong; Zhang, Zhiyong; Zhang, Wenjie; Liu, Wei; Cao, Yilin

    2016-01-01

    Abstract In vitro three‐dimensional (3D) cartilage regeneration is a promising strategy for repair of cartilage defects. However, inferior mechanical strength and tissue homogeneity greatly restricted its clinical translation. Simulation of mechanical stress through a bioreactor is an important approach for improving in vitro cartilage regeneration. The current study developed a hydrostatic pressure (HP) bioreactor based on a novel pressure‐transmitting mode achieved by slight deformation of a flexible membrane in a completely sealed stainless steel device. The newly developed bioreactor efficiently avoided the potential risks of previously reported pressure‐transmitting modes and simultaneously addressed a series of important issues, such as pressure scopes, culture chamber sizes, sealability, contamination control, and CO2 balance. The whole bioreactor system realized stable long‐term (8 weeks) culture under high HP (5–10 MPa) without the problems of medium leakage and contamination. Furthermore, the results of in vitro 3D tissue culture based on a cartilage regeneration model revealed that HP provided by the newly developed bioreactor efficiently promoted in vitro 3D cartilage formation by improving its mechanical strength, thickness, and homogeneity. Detailed analysis in cell proliferation, cartilage matrix production, and cross‐linking level of collagen macromolecules, as well as density and alignment of collagen fibers, further revealed the possible mechanisms that HP regulated in vitro cartilage regeneration. The current study provided a highly efficient and stable bioreactor system for improving in vitro 3D cartilage regeneration and thus will help to accelerate its clinical translation. Stem Cells Translational Medicine 2017;6:982–991 PMID:28297584

  7. [Effects of high hydrostatic pressure on energy metabolism of Lactobacillus plantarum].

    Science.gov (United States)

    Gao, Yu-long; Ju, Xing-rong; Jiang, Han-hu

    2006-02-01

    Effects of high hydrostatic pressure on energy metabolism were investigated with Lactobacillus plantarum ATCC8014 as the test microorganism in this work. An INT colorimetric method of oxidation-reduction was established to measure INT metabolic activity of deoxidization of L. plantarum ATCC8014 cells. The utilization of glucose and INT metabolic activity of deoxidization of the cells after HPP treatment were determined using colorimetric methods. The experimental results showed that survival counts of ATCC8014 cells on MRS agar medium and INT metabolic activity of deoxidization decreased significantly, and little changes of utilization of glucose took place with increasing pressure ranging from 150 to 250 MPa for 15 min. Utilization of glucose also reduced evidently at high pressure ( > 300 MPa) for 15 min. Whereas survival cell counts on MRS agar medium were below the detection limit and INT metabolic activity of deoxidization of ATCC8014 was 0% after a 15-min pressure holding time at 400MPa, utilization of glucose of the cells retained 56.1% compared with that of untreated cells. In summary, it can be concluded that enzymes absorbing and transporting glucose in cellular membrane appear to have a high resistance to pressure, enzymes and biological regulating systems involved in glycolysis are more resistant to pressure than those in TCA (tricarboxylic acid cycle) system, TCA of ATCC8014 is more sensitive to pressure than glycolysis, and the decrease of INT metabolic activity of deoxidization is highly related to cell reduction during HHP, which provide some theoretical evidences for mechanisms of HHP sterilization. Inhibition of TCA metabolism is a very important cause of ATCC8014 inactivation by HHP. High hydrostatic pressure can be used as an effective tool to explore pathways of biological metabolism.

  8. GAAS-ALGAS superlattice band structure under hydrostatic pressure: An analysis based on the envelope function approximation

    Science.gov (United States)

    Leburton, J. P.; Kahen, K.

    We propose new interface connection rules to determine the electronic properties of superlattices. Although similar to the so-called two-band model, these new rules are more general. Our approach is used to study the electronic structure of superlattices under high hydrostatic pressure. In our model, the influence of the pressure is taken into account by considering the modification of the energy gap and layer width of each material separately. It is demonstrated that the low value observed in the experimental determination of the pressure coefficient θSL of the GaAs layers is a consequence of the increasing rigidity of the energy band for energies away from the edges. Moreover the apparent homogeneity of θSL (GaAs) is the result of two opposing effects—the variation of the band rigidity and the narrowing of the layer thickness—which compensate each other.

  9. Combined effects of high hydrostatic pressure and sodium nitrite on color, water holding capacity and texture of frankfurter

    Science.gov (United States)

    Jonas, G.; Csehi, B.; Palotas, P.; Toth, A.; Kenesei, Gy; Pasztor-Huszar, K.; Friedrich, L.

    2017-10-01

    The aim of this study was to investigate the effect of sodium nitrite and high hydrostatic pressure on the color, water holding capacity (WHC) and texture characteristics of frankfurter. Three hundred, 450 and 600 MPa (5 minutes; 20 °C) and 50, 75, 100 and 125 ppm (calculated on weight of meat) sodium nitrite were applied. Parameters were measured right after the pressure treatment. Data were evaluated with two-way analysis of variance (p 0.05) with pressure levels and sodium nitrite amounts as factors. Nitrite reduction significantly increased lightness (L*) and resulted in decreased redness (a*) value. The pressure treatments decreased the lightness at all nitrite concentrations and did not significantly affect the red color of frankfurters. Fifty and 75 ppm nitrite and pressurization at 300 or 450 MPa improved the water holding property of frankfurter. The pressure treatment did not significantly affect the WHC but changing the nitrite amount had significant effect on it. Interactive effect occurred between pressure levels and nitrite concentrations for hardness. The pressure treatment increased and the nitrite reduction decreased hardness. Significant changes were found in cohesiveness at 450 and 600 MPa in frankfurters containing 50 and 75 ppm nitrite: pressure treatment at higher levels and nitrite reduction decreased the value of cohesiveness.

  10. Hydrostatic pressure effect on PNIPAM cononsolvency in water-methanol solutions.

    Science.gov (United States)

    Pica, Andrea; Graziano, Giuseppe

    2017-12-01

    When methanol is added to water at room temperature and 1atm, poly (N-isopropylacrylamide), PNIPAM, undergoes a coil-to-globule collapse transition. This intriguing phenomenon is called cononsolvency. Spectroscopic measurements have shown that application of high hydrostatic pressure destroys PNIPAM cononsolvency in water-methanol solutions. We have developed a theoretical approach that identifies the decrease in solvent-excluded volume effect as the driving force of PNIPAM collapse on increasing the temperature. The same approach indicates that cononsolvency, at room temperature and P=1atm, is caused by the inability of PNIPAM to make all the attractive energetic interactions that it could be engaged in, due to competition between water and methanol molecules. The present analysis suggests that high hydrostatic pressure destroys cononsolvency because the coil state becomes more compact, and the quantity measuring PNIPAM-solvent attractions increases in magnitude due to the solution density increase, and the ability of small water molecules to substitute methanol molecules on PNIPAM surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effect of high hydrostatic pressure extract of fresh ginseng on adipogenesis in 3T3-L1 adipocytes.

    Science.gov (United States)

    Lee, Mak-Soon; Jung, Sunyoon; Oh, Soojung; Shin, Yoonjin; Kim, Chong-Tai; Kim, In-Hwan; Kim, Yangha

    2015-09-01

    Red ginseng is produced by steaming and drying fresh ginseng. Through this processing, chemical compounds are modified, and then biological activities are changed. In the food-processing industry, high hydrostatic pressure (HHP) has become an alternative to heat processing to make maximum use of bioactive compounds in food materials. This study comparatively investigated the anti-adipogenic effects of water extract of red ginseng (WRG) and high hydrostatic pressure extract of fresh ginseng (HPG) in 3T3-L1 adipocytes. Both WRG and HPG inhibited the accumulation of intracellular lipids and triglycerides, and the activity of glycerol-3-phosphate dehydrogenase (GPDH), a key enzyme in triglyceride biosynthesis. Intracellular lipid content and GPDH activity were significantly lower in the HPG group compared to the WRG group. In addition, mRNA expression of adipogenic genes, including CEBP-α, SREBP-1c and aP2, were lower in HPG-treated cells compared to WRG-treated cells. HPG significantly increased the activity of AMPK, and WRG did not. Results suggested that HPG may have superior beneficial effects on the inhibition of adipogenesis compared with WRG. The anti-adipogenic effects of HPG were partially associated with the inhibition of GPDH activity, suppression of adipogenic gene expression and activation of AMPK in 3T3-L1 adipocytes. © 2014 Society of Chemical Industry.

  12. Evaluation of platelet-rich plasma and hydrostatic pressure regarding cell differentiation in nucleus pulposus tissue engineering.

    Science.gov (United States)

    Mietsch, Antje; Neidlinger-Wilke, Cornelia; Schrezenmeier, Hubert; Mauer, Uwe Max; Friemert, Benedikt; Wilke, Hans-Joachim; Ignatius, Anita

    2013-03-01

    Generation of a biological nucleus pulposus (NP) replacement by tissue engineering appears to be a promising approach for the therapy of early stages of intervertebral disc degeneration. Thereby, autologous mesenchymal stem cells (MSCs) represent an attractive cell source compared to cells of the NP that are already altered in their phenotype due to degenerative processes. This study compares the influence of 3D pellet culture and alginate beads, as well as that of different media compositions, by the addition of human platelet-rich plasma (PRP) or transforming growth factor (TGF-β1 ) in interaction with hydrostatic pressure on chondrogenic differentiation of human MSCs compared to NP cells. We found that gene expression of the chondrogenic markers aggrecan, collagen type 2 and collagen type 1 and Sox9 was considerably lower in cells cultivated with PRP compared to TGF-β1 . Immunohistology confirmed this result at protein level in pellet culture. Additionally, the pellet culture system was found to be more suitable than alginate beads. A positive influence of hydrostatic pressure could only be shown for individual donors. In summary, in comparison to TGF-β1 , human PRP did not induce adequate chondrogenic differentiation for both culture systems and cell types used. The mixture of growth factors in PRP promoted proliferation rather than chondrogenic differentiation. Based on these results, an application of PRP in human NP tissue-engineering approaches cannot be recommended. Copyright © 2011 John Wiley & Sons, Ltd.

  13. X-ray diffraction investigation of amorphous calcium phosphate and hydroxyapatite under ultra-high hydrostatic pressure

    Science.gov (United States)

    Lam, Elisa; Gu, Qinfen; Swedlund, Peter J.; Marchesseau, Sylvie; Hemar, Yacine

    2015-11-01

    The changes in the crystal structures of synthetically prepared amorphous calcium phosphate (ACP) and hydroxyapatite (HAP) in water (1:1 mass ratio) were studied by synchrotron X-ray diffraction (XRD) under ultra-high hydrostatic pressures as high as 2.34 GPa for ACP and 4 GPa for HAP. At ambient pressure, the XRD patterns of the ACP and HAP samples in capillary tubes and their environmental scanning electron micrographs indicated amorphous and crystalline characteristics for ACP and HAP, respectively. At pressures greater than 0.25 GPa, an additional broad peak was observed in the XRD pattern of the ACP phase, indicating a partial phase transition from an amorphous phase to a new high-pressure amorphous phase. The peak areas and positions of the ACP phase, as obtained through fitting of the experimental data, indicated that the ACP exhibited increased pseudo-crystalline behavior at pressures greater than 0.96 GPa. Conversely, no structural changes were observed for the HAP phase up to the highest applied pressure of 4 GPa. For HAP, a unit-cell reduction during compression was evidenced by a reduction in both refined lattice parameters a and c. Both ACP and HAP reverted to their original structures when the pressure was fully released to ambient pressure.

  14. Evidence for superior current carrying capability of iron pnictide tapes under hydrostatic pressure

    Science.gov (United States)

    Shabbir, Babar; Huang, He; Yao, Chao; Ma, Yanwei; Dou, Shixue; Johansen, Tom H.; Hosono, Hideo; Wang, Xiaolin

    2017-09-01

    High critical current density (Jc) values in superconducting wires/tapes are desirable for high magnetic field applications. Recently developed pnictide wires/tapes exhibit exceptional superconducting properties such as high critical temperature (Tc), upper critical field (Hc 2), and almost field-independent Jc. Despite the great fabrication efforts, however, the newly discovered pnictide wires/tapes are still not able to replace low-temperature superconductors such as N b3Sn , due to their inferior Jc values. Ag-clad S r0.6K0.4F e2A s2 tapes have demonstrated significant superconducting performance, although their low Jc in comparison to N b3Sn is still a major challenge. By successfully employing hydrostatic pressure, a remarkably significant enhancement of Jc by an order of magnitude can be achieved in S r0.6K0.4F e2A s2 tapes in both low and high fields. This is a promising technological step forward towards high-field applications, as the record high Jc values (˜2 ×1 05A /c m2 at 4.2 K and 13 T, P =1.1 GPa ) obtained for S r0.6K0.4F e2A s2 tape are superior to those of N b3Sn and other pnictide wires/tapes. Here, we used magnetic Jc data for comparison to the other reported transport Jc data, due to the lack of transport measurement facility under hydrostatic pressure. Our systematic analysis shows that pressure-induced pinning centers are the main source of Jc enhancement, along with a fractional contribution from geometric changes around the grain boundaries under pressure. We expect that utilization of an appropriate pressure approach will be a way to significantly enhance Jc to beyond the cutoff (maximum) values in various superconductors produced using other existing methods for Jc enhancement.

  15. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling

    Science.gov (United States)

    Marshall, John; Hill, Chris; Perelman, Lev; Adcroft, Alistair

    1997-03-01

    Ocean models based on consistent hydrostatic, quasi-hydrostatic, and nonhydrostatic equation sets are formulated and discussed. The quasi-hydrostatic and nonhydrostatic sets are more accurate than the widely used hydrostatic primitive equations. Quasi-hydrostatic models relax the precise balance between gravity and pressure gradient forces by including in a consistent manner cosine-of-latitude Coriolis terms which are neglected in primitive equation models. Nonhydrostatic models employ the full incompressible Navier Stokes equations; they are required in the study of small-scale phenomena in the ocean which are not in hydrostatic balance. We outline a solution strategy for the Navier Stokes model on the sphere that performs efficiently across the whole range of scales in the ocean, from the convective scale to the global scale, and so leads to a model of great versatility. In the hydrostatic limit the Navier Stokes model involves no more computational effort than those models which assume strict hydrostatic balance on all scales. The strategy is illustrated in simulations of laboratory experiments in rotating convection on scales of a few centimeters, simulations of convective and baroclinic instability of the mixed layer on the 1- to 10-km scale, and simulations of the global circulation of the ocean.

  16. Impact of High Hydrostatic Pressure on the Shelling Efficacy, Physicochemical Properties, and Microstructure of Fresh Razor Clam (Sinonovacula constricta).

    Science.gov (United States)

    Xuan, Xiao-Ting; Cui, Yan; Lin, Xu-Dong; Yu, Jing-Feng; Liao, Xiao-Jun; Ling, Jian-Gang; Shang, Hai-Tao

    2018-01-22

    The effects of high hydrostatic pressure (HHP) treatments (200, 300, and 400 MPa for 1, 3, 5 and 10 min) on the shelling efficacy (the rate of shelling, the rate of integrity and yield of razor clam meat) and the physicochemical (drip loss, water-holding capacity, pH, conductivity, lipid oxidation, Ca2+ -ATPase activity, myofibrillar protein content), microbiological (total viable counts) and microstructural properties of fresh razor clam (Sinonovacula constricta) were investigated. HHP treatments significantly (P clam showed lower levels of microorganisms and drip loss than untreated razor clam. Levels of thiobarbituric acid reacting substances (TBA) in HHP-treated razor clam were greatly increased (up to 0.93 ± 0.09 mg MDA/kg at 400 MPa for 10 min) which was caused by the formation of hydroperoxides during HHP treatment. All HHP treatments were found to have adverse effects on the activity of Ca2+ -ATPase and the content of myofibrillar protein (MP), which might be due to the substantial damage to the tertiary structure of proteins at high pressure. Moreover, scanning electron microscopy (SEM) revealed the compaction of the muscle fibers and a decrease in the extracellular space with increasing pressure and holding time. This phenomenon was mainly correlated with the compaction of muscle fibers and denaturation, aggregation, and gelation of muscle protein triggered by high pressure. In general, HHP could be applied as a safe and effective nonthermal technology to produce high-quality shelled razor clam. High hydrostatic pressure (HHP) is now well known as a nonthermal processing technology and becoming increasingly acknowledged. However, it has not been widely applied to shell seafood due to its uncertain influence on its quality and shelling property. This study could provide valuable information regarding the shelling efficacy, physicochemical properties, and microstructure of razor clam treated by HHP. And it demonstrated that HHP showed a positive impact on

  17. High hydrostatic pressure inactivation of murine norovirus and human noroviruses on green onions and in salsa.

    Science.gov (United States)

    Sido, Robert F; Huang, Runze; Liu, Chuhan; Chen, Haiqiang

    2017-02-02

    In this study, high hydrostatic pressure (HHP) was evaluated as an intervention for human noroviruses (HuNoVs) in green onions and salsa. To determine the effect of water during HHP treatment on virus inactivation, a HuNoV surrogate, murine norovirus 1 (MNV-1), was inoculated onto green onions and then HHP-treated at 350MPa with or without water at 4 or 20°C. The presence of water enhanced HHP inactivation of MNV-1 on green onions at 4°C but not at 20°C. To test the temperature effect on HHP inactivation of MNV-1, inoculated green onions were HHP-treated at 300MPa at 1, 4 and 10°C. As the temperature decreased, MNV-1 became more sensitive to HHP treatment. HHP inactivation curves of MNV-1 on green onions and salsa were obtained at 300 or 350MPa for 0.5-3min at 1°C. All three inactivation curves showed a linear relationship between log reduction of MNV-1 and time. D values of HHP inactivation of MNV-1 on green onions were 1.10 and 0.61min at 300 and 350MPa, respectively. The D value of HHP inactivation of MNV-1 in salsa at 300MPa was 0.63min. HHP inactivation of HuNoV GI.1 and GII.4 on green onions and salsa was also conducted. To achieve >3 log reduction of HuNoV GI.1, HHP treatments for 2min at 1°C should be conducted at 600MPa and 500MPa for green onions and salsa, respectively. To achieve >3 log reduction of HuNoV GII.4, HHP treatments for 2min at 1°C should be conducted at 500MPa and 300MPa for green onions and salsa, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. High Hydrostatic Pressure Extract of Ginger Exerts Antistress Effects in Immobilization-Stressed Rats.

    Science.gov (United States)

    Moon, Sohee; Lee, Mak-Soon; Jung, Sunyoon; Kang, Bori; Kim, Seog-Young; Park, Seonyoung; Son, Hye-Yeon; Kim, Chong-Tai; Jo, Young-Hee; Kim, In-Hwan; Kim, Young Soon; Kim, Yangha

    2017-09-01

    Stress contributes to physiological changes such as weight loss and hormonal imbalances. The aim of the present study was to investigate antistress effects of high hydrostatic pressure extract of ginger (HPG) in immobilization-stressed rats. Male Sprague-Dawley rats (n = 24) were divided into three groups as follows: control (C), immobilization stress (2 h daily, for 2 weeks) (S), and immobilization stress (2 h daily, for 2 weeks) plus oral administration of HPG (150 mg/kg body weight/day) (S+G). Immobilization stress reduced the body weight gain and thymus weight by 50.2% and 31.3%, respectively, compared to the control group. The levels of serum aspartate transaminase, alanine transaminase, and corticosterone were significantly higher in the stress group, compared to the control group. Moreover, immobilization stress elevated the mRNA levels of tyrosine hydroxylase (Th), dopamine beta-hydroxylase (Dbh), and cytochrome P450 side-chain cleavage (P450scc), which are related to catecholamine and corticosterone synthesis in the adrenal gland. HPG administration also increased the body weight gain and thymus weight by 12.7% and 16.6%, respectively, compared to the stress group. Furthermore, the mRNA levels of Th, Dbh, phenylethanolamine-N-methyltransferase, and P450scc were elevated by the HPG treatment when compared to the stress group. These results suggest that HPG would have antistress effects partially via the reversal of stress-induced physiological changes and suppression of mRNA expression of genes related to corticosterone and catecholamine synthetic enzymes.

  19. Inactivation of human norovirus in contaminated oysters and clams by high hydrostatic pressure.

    Science.gov (United States)

    Ye, Mu; Li, Xinhui; Kingsley, David H; Jiang, Xi; Chen, Haiqiang

    2014-04-01

    Human norovirus (NoV) is the most frequent causative agent of food-borne disease associated with shellfish consumption. In this study, the effect of high hydrostatic pressure (HHP) on inactivation of NoV was determined. Genogroup I.1 (GI.1) or genogroup II.4 (GII.4) NoV was inoculated into oyster homogenates and treated at 300 to 600 MPa at 25, 6, and 1°C for 5 min. After HHP, samples were treated with RNase and viral particles were extracted with porcine gastric mucin (PGM)-conjugated magnetic beads (PGM-MBs). Viral RNA was then quantified by real-time reverse transcription (RT)-PCR. Since PGM contains histo-blood group-like antigens, which can act as receptors for NoV, deficiency for binding to PGM is an indication of loss of infectivity of NoV. After binding to PGM-MBs, RT-PCR-detectable NoV RNA in oysters was reduced by 0.4 to >4 log10 by HHP at 300 to 600 MPa. The GI.1 NoV was more resistant to HHP than the GII.4 NoV (P oysters (P 4 log10 reduction of GI.1 NoV in both oyster and clam homogenates. It is therefore concluded that HHP could be applied as a potential intervention for inactivating NoV in raw shellfish. The method of pretreatment of samples with RNase, extraction of viral particles using PGM-MB binding, and quantification of viral RNA using RT-PCR can be explored as a practical means of distinguishing between infectious and noninfectious NoV.

  20. High hydrostatic pressure processing reduces the glycemic index of fresh mango puree in healthy subjects.

    Science.gov (United States)

    Elizondo-Montemayor, Leticia; Hernández-Brenes, Carmen; Ramos-Parra, Perla A; Moreno-Sánchez, Diana; Nieblas, Bianca; Rosas-Pérez, Aratza M; Lamadrid-Zertuche, Ana C

    2015-04-01

    Dietary guidelines recommend the daily consumption of fruits; however, healthy and type 2 diabetes mellitus (T2DM) subjects receive conflicting messages regarding ingestion of fruits, such as mango, because of its sugar content. We investigated the effects of high hydrostatic pressure (HHP) processing of fresh mango puree (MP) on the glycemic indexes (GIs) and postprandial glycemic responses of 38 healthy Mexican subjects in a randomized cross-over clinical trial. Physicochemical characterization of MP included sugar profiles by HPLC-ELSD, starch, fibers, moisture, viscosity, swelling capacity and solubility properties of alcohol insoluble residue (AIR). The mean GI for HHP-MP was significantly lower (32.7 ± 13.4) than that of unprocessed-MP (42.7 ± 19.5). A significantly higher proportion of subjects showed a low GI following the consumption of HHP-MP compared to unprocessed-MP and none of them showed a high GI for the HHP-MP, compared to a significantly higher proportion for the unprocessed-MP. The viscosity and AIR solubility values of HHP-MP samples were significantly higher, which influenced glucose peaking later (Tmax) at 45 minutes and induced 20% lower AUC values than unprocessed-MP, corresponding to greater retardation indexes. The study findings support data stating that low GI fruits are appropriate for glycemic control and that mango may be included as part of healthy subjects' diets and potentially T2DM subjects' diets. Furthermore, HHP processing of mango may offer additional benefits for glycemic control, as its performance regarding GI, AUC and Tmax was significantly better than that of the unprocessed-MP. To our knowledge, this is the first report on the impact of this commercial non-thermal pasteurization technology on glucose metabolism.

  1. Innovation in the development and improvement of meat products: High hydrostatic pressures

    Directory of Open Access Journals (Sweden)

    Gallardo, Claudia

    2015-08-01

    Full Text Available One focus of interest in the development of products and processes of the food industry is related to the reduction in the use of additives that could have negative effects on consumer health. This view called cleaning nutritional label is aimed at the partial or total substitution of additives by other factors that do not have these negative effects and maintain the safety and quality of the products processed. The high hydrostatic pressure (HHP is one of the new conservation factors used to reduce the content of sodium chloride and nitrites in meat products. HHP technology is increasingly being applied to produce safe with high quality and minimal effects on food sensory and nutritional characteristics. In this context the present review describes the current status in the development of processed meat products, specifically ham, as well as alternative use of high pressure in the product and its future development prospects.

  2. Sorbitol counteracts high hydrostatic pressure-induced denaturation of inulin fructotransferase.

    Science.gov (United States)

    Li, Yungao; Miao, Ming; Liu, Miao; Jiang, Bo; Zhang, Tao; Chen, Xiangyin

    2014-09-01

    Inulin fructotransferase (IFTase), a novel hydrolase for inulin, was exposed to high hydrostatic pressure (HHP) at 400 and 600 MPa for 15 min in the presence or absence of sorbitol. Sorbitol protected the enzyme against HHP-induced activity loss. The relative residual activity increased nearly 3.1- and 3.8-fold in the presence of 3 mol/L sorbitol under 400 MPa and 600 MPa for 15 min, respectively. Circular dichroism results indicated that the original chaotic unfolding conformation of the enzyme under HHP shifted toward more ordered and impact with 3 mol/L sorbitol. Fluorescence and UV spectra results suggested that sorbitol prevented partially the unfolding of the enzyme and stabilized the conformation under high pressure. These results might be attributed to the binding of sorbitol on the surface of IFTase to rearrange and strengthen intra- and intermolecular hydrogen bonds. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Variability of hydrostatic hepatic vein and ascitic fluid pressure, and of plasma and ascitic fluid colloid osmotic pressure in patients with liver cirrhosis

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl

    1980-01-01

    The variability of hydrostatic hepatic vein and ascitic fluid pressures and of plasma and ascitic fluid colloid osmotic (oncotic) pressures was assessed during hepatic venous catheterization by repeated measurements on different days and at different locations in patients with cirrhosis of the li......The variability of hydrostatic hepatic vein and ascitic fluid pressures and of plasma and ascitic fluid colloid osmotic (oncotic) pressures was assessed during hepatic venous catheterization by repeated measurements on different days and at different locations in patients with cirrhosis...... during catheterization give a good reproducibility in determination of the hydrostatic pressures in hepatic vein and ascitic fluid and of the colloid osmotic (oncotic) pressure in plasma and ascitic fluid in the resting supine patient with cirrhosis, which substantiates the use of measurements during...

  4. Effects of high hydrostatic pressure (HHP) on the protein structure and thermal stability of Sauvignon blanc wine.

    Science.gov (United States)

    Tabilo-Munizaga, Gipsy; Gordon, Trudy Ann; Villalobos-Carvajal, Ricardo; Moreno-Osorio, Luis; Salazar, Fernando N; Pérez-Won, Mario; Acuña, Sergio

    2014-07-15

    Protein haze development in bottled white wines is attributed to the slow denaturation of unstable proteins, which results in their aggregation and flocculation. These protein fractions can be removed by using bentonite; however, a disadvantage of this technique is its cost. The effects of high hydrostatic pressure (HHP) on wine stability were studied. Fourier transform infrared spectroscopy experiments were performed to analyse the secondary structure of protein, thermal stability was evaluated with differential scanning calorimetry, while a heat test was performed to determine wine protein thermal stability. The results confirmed that high pressure treatments modified the α-helical and β-sheet structures of wine proteins. Throughout the 60 days storage period the α-helix structure in HHP samples decreased. Structural changes by HHP (450 MPa for 3 and 5 min) improve thermal stability of wine proteins and thus delay haze formation in wine during storage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effects of High Hydrostatic Pressure on Bacterial Growth on Human Ossicles Explanted from Cholesteatoma Patients

    Science.gov (United States)

    Ostwald, Jürgen; Lindner, Tobias; Zautner, Andreas Erich; Arndt, Kathleen; Pau, Hans Wilhelm; Podbielski, Andreas

    2012-01-01

    Background High hydrostatic pressure (HHP) treatment can eliminate cholesteatoma cells from explanted human ossicles prior to re-insertion. We analyzed the effects of HHP treatment on the microbial flora on ossicles and on the planktonic and biofilm states of selected isolates. Methodology Twenty-six ossicles were explanted from cholesteatoma patients. Five ossicles were directly analyzed for microbial growth without further treatment. Fifteen ossicles were cut into two pieces. One piece was exposed to HHP of 350 MPa for 10 minutes. Both the treated and untreated (control) pieces were then assessed semi-quantitatively. Three ossicles were cut into two pieces and exposed to identical pressure conditions with or without the addition of one of two different combinations of antibiotics to the medium. Differential effects of 10-minute in vitro exposure of planktonic and biofilm bacteria to pressures of 100 MPa, 250 MPa, 400 MPa and 540 MPa in isotonic and hypotonic media were analyzed using two patient isolates of Staphylococcus epidermidis and Neisseria subflava. Bacterial cell inactivation and biofilm destruction were assessed by colony counting and electron microscopy. Principal Findings A variety of microorganisms were isolated from the ossicles. Irrespective of the medium, HHP treatment at 350 MPa for 10 minutes led to satisfying but incomplete inactivation especially of Gram-negative bacteria. The addition of antibiotics increased the efficacy of elimination. A comparison of HHP treatment of planktonic and biofilm cells showed that the effects of HPP were reduced by about one decadic logarithmic unit when HPP was applied to biofilms. High hydrostatic pressure conditions that are suitable to inactivate cholesteatoma cells fail to completely sterilize ossicles even if antibiotics are added. As a result of the reduced microbial load and the viability loss of surviving bacteria, however, there is a lower risk of re-infection after re-insertion. PMID:22291908

  6. Effects of high hydrostatic pressure on bacterial growth on human ossicles explanted from cholesteatoma patients.

    Directory of Open Access Journals (Sweden)

    Steffen Dommerich

    Full Text Available BACKGROUND: High hydrostatic pressure (HHP treatment can eliminate cholesteatoma cells from explanted human ossicles prior to re-insertion. We analyzed the effects of HHP treatment on the microbial flora on ossicles and on the planktonic and biofilm states of selected isolates. METHODOLOGY: Twenty-six ossicles were explanted from cholesteatoma patients. Five ossicles were directly analyzed for microbial growth without further treatment. Fifteen ossicles were cut into two pieces. One piece was exposed to HHP of 350 MPa for 10 minutes. Both the treated and untreated (control pieces were then assessed semi-quantitatively. Three ossicles were cut into two pieces and exposed to identical pressure conditions with or without the addition of one of two different combinations of antibiotics to the medium. Differential effects of 10-minute in vitro exposure of planktonic and biofilm bacteria to pressures of 100 MPa, 250 MPa, 400 MPa and 540 MPa in isotonic and hypotonic media were analyzed using two patient isolates of Staphylococcus epidermidis and Neisseria subflava. Bacterial cell inactivation and biofilm destruction were assessed by colony counting and electron microscopy. PRINCIPAL FINDINGS: A variety of microorganisms were isolated from the ossicles. Irrespective of the medium, HHP treatment at 350 MPa for 10 minutes led to satisfying but incomplete inactivation especially of gram-negative bacteria. The addition of antibiotics increased the efficacy of elimination. A comparison of HHP treatment of planktonic and biofilm cells showed that the effects of HPP were reduced by about one decadic logarithmic unit when HPP was applied to biofilms. High hydrostatic pressure conditions that are suitable to inactivate cholesteatoma cells fail to completely sterilize ossicles even if antibiotics are added. As a result of the reduced microbial load and the viability loss of surviving bacteria, however, there is a lower risk of re-infection after re-insertion.

  7. Effects of different hydrostatic pressure on lesions in ex vivo bovine livers induced by high intensity focused ultrasound.

    Science.gov (United States)

    He, Min; Zhong, Zhiqiang; Li, Xing; Gong, Xiaobo; Wang, Zhibiao; Li, Faqi

    2017-05-01

    It is well-known that acoustic cavitation associated with the high intensity focused ultrasound (HIFU) treatment often would change the morphology and size of lesions in its treatment. In most studies reported in literature, high ambient hydrostatic pressure was used to suppress the cavitation completely. Investigation of the effects by varying the ambient hydrostatic pressure (Pstat) is still lacking. In this paper, the effects of HIFU on lesions in ex vivo bovine liver specimens under various Pstat are systematically investigated. A 1MHz HIFU transducer, with an aperture diameter of 70mm and a focal length of 55mm, was used to generate two groups US exposure of different acoustic intensities and exposure time (6095W/cm(2)×8s and 9752W/cm(2)×5s), while keeping the same acoustic energies per unit area (48760J/cm(2)). The peak acoustic negative pressures (p(-)) of the two groups were p1(-)=9.58MPa and p2(-)=10.82MPa, respectively, with the difference pd(-)=p2(-)-p1(-)=1.24MPa. A passive cavitation detection (PCD) was used to monitor the ultrasonic cavitation signal during exposure of the two groups. The US exposures were done under the following ambient hydrostatic pressures, Pstat: atmospheric pressure, 0.5MPa, 1.0MPa, 1.5MPa, 2.0MPa, 2.5MPa and3.0MPa, respectively. The result of PCD showed that there was a statistically significant increase above background noise level in broadband emissions at dose of 9752W/cm(2)×5s, but not at dose of 6095W/cm(2)×8s under atmospheric pressure; i.e., the acoustic cavitation took place for p2(-) but not for p1(-) when under atmospheric pressure. The results also showed that there was no statistically difference of the morphology and size of lesions for 6095W/cm(2)×8s exposure under the aforementioned different ambient hydrostatic pressures. But the lesions generated at 9752W/cm(2)×5s exposure under Pstat=atmospheric pressure, 0.5MPa, 1.0MPa (all of them are less than pd(-)), were larger than those under 1.5MPa, 2.0MPa, 2

  8. ANSYS Modeling of Hydrostatic Stress Effects

    Science.gov (United States)

    Allen, Phillip A.

    1999-01-01

    Classical metal plasticity theory assumes that hydrostatic pressure has no effect on the yield and postyield behavior of metals. Plasticity textbooks, from the earliest to the most modem, infer that there is no hydrostatic effect on the yielding of metals, and even modem finite element programs direct the user to assume the same. The object of this study is to use the von Mises and Drucker-Prager failure theory constitutive models in the finite element program ANSYS to see how well they model conditions of varying hydrostatic pressure. Data is presented for notched round bar (NRB) and "L" shaped tensile specimens. Similar results from finite element models in ABAQUS are shown for comparison. It is shown that when dealing with geometries having a high hydrostatic stress influence, constitutive models that have a functional dependence on hydrostatic stress are more accurate in predicting material behavior than those that are independent of hydrostatic stress.

  9. High hydrostatic pressure influences the in vitro response to xenobiotics in Dicentrarchus labrax liver

    Energy Technology Data Exchange (ETDEWEB)

    Lemaire, Benjamin; Mignolet, Eric; Debier, Cathy [Institut des Sciences de la Vie, Université Catholique de Louvain, Croix du Sud 2, B-1348 Louvain-la-Neuve (Belgium); Calderon, Pedro Buc [Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B-1200 Woluwé-Saint-Lambert (Belgium); Thomé, Jean Pierre [Laboratoire d’Ecologie Animale et Ecotoxicologie, Université de Liège, Allée du 6 août 15, B-4000 Liège (Belgium); Rees, Jean François, E-mail: jf.rees@uclouvain.be [Institut des Sciences de la Vie, Université Catholique de Louvain, Croix du Sud 2, B-1348 Louvain-la-Neuve (Belgium)

    2016-04-15

    Highlights: • The methodology of precision-cut liver slices was applied to the European seabass. • Liver slices remained viable and functional in short-term co-exposure studies. • CYP1A induction was blocked in slices exposed to an AhR agonist at high pressure. • HSP70 induction was lower in slices exposed to an AhR agonist at high pressure. • Oxidative stress responses to tBHP were less pronounced at high pressure. - Abstract: Hydrostatic pressure (HP) increases by about 1 atmosphere (0.1 MPa) for each ten-meter depth increase in the water column. This thermodynamical parameter could well influence the response to and effects of xenobiotics in the deep-sea biota, but this possibility remains largely overlooked. To grasp the extent of HP adaptation in deep-sea fish, comparative studies with living cells of surface species exposed to chemicals at high HP are required. We initially conducted experiments with precision-cut liver slices of a deep-sea fish (Coryphaenoides rupestris), co-exposed for 15 h to the aryl hydrocarbon receptor (AhR) agonist 3-methylcholanthrene at HP levels representative of the surface (0.1 MPa) and deep-sea (5–15 MPa; i.e., 500–1500 m depth) environments. The transcript levels of a suite of stress-responsive genes, such as the AhR battery CYP1A, were subsequently measured (Lemaire et al., 2012; Environ. Sci. Technol. 46, 10310–10316). Strikingly, the AhR agonist-mediated increase of CYP1A mRNA content was pressure-dependently reduced in C. rupestris. Here, the same co-exposure scenario was applied for 6 or 15 h to liver slices of a surface fish, Dicentrarchus labrax, a coastal species presumably not adapted to high HP. Precision-cut liver slices of D. labrax were also used in 1 h co-exposure studies with the pro-oxidant tert-butylhydroperoxide (tBHP) as to investigate the pressure-dependence of the oxidative stress response (i.e., reactive oxygen production, glutathione and lipid peroxidation status). Liver cells remained

  10. Effects of high hydrostatic pressure on the functional and rheological properties of the protein fraction extracted from pine nuts.

    Science.gov (United States)

    Cao, Baiying; Fang, Li; Liu, Chunlei; Min, Weihong; Liu, Jingsheng

    2017-01-01

    High hydrostatic pressure treatments could increase the protein solubility (200 MPa), water holding capacity (400 MPa), and oil holding capacity (400 MPa) of pine nuts protein fractions, respectively. The exposed sufhydryl content for albumin was highest at 100 MPa while for other fractions it was 400 MPa, contrary for total sufhydryl content-generally it was at 100 MPa, except glutelin (400 MPa). Pine nuts protein fractions demonstrated the typical behavior of weak gels (G' > G″). After the treatments of high hydrostatic pressure the specific surface area of pine nuts protein particle was increased upon pressure, and the surface of protein became rough which increased the particle size. The functional groups of protein were found to be unchanged, but the characteristic peaks of pine nuts protein moved to a low-band displacement and the value of peaks was amplified accordingly to the pressure. The high hydrostatic pressure treatments were found to improve the functional properties of pine nuts protein isolates by enhancing the heat-induced gel strength of pine nuts protein isolates which make proteins more stretchable. These results suggest that high hydrostatic pressure treatments can increase the functional properties and alter the rheological properties of pine nuts protein fractions which will broaden its applications in food industry.

  11. Surface pressure drag for hydrostatic two-layer flow over axisymmetric mountains

    Energy Technology Data Exchange (ETDEWEB)

    Leutbecher, M.

    2000-07-01

    The effect of partial reflections on surface pressure drag is investigated for hydrostatic gravity waves in two-layer flow with piecewise constant buoyancy frequency. The variation of normalized surface pressure drag with interface height is analyzed for axisymmetric mountains. The results are compared with the familiar solution for infinitely long ridges. The drag for the two-layer flow is normalized with the drag of one-layer flow, which has the buoyancy frequency of the lower layer. An analytical expression for the normalized drag of axisymmetric mountains is derived from linear theory of steady flow. Additionally, two-layer flow over finite-height axisymmetric mountains is simulated numerically for flow with higher stability in the upper layer. The temporal evolution of the surface pressure drag is examined in a series of experiments with different interface and mountain heights. The focus is on the linear regime and the nonlinear regime of nonbreaking gravity waves. The dispersion of gravity waves in flow over isolated mountains prevents that the entire wave spectrum is in resonance at the same interface height, which is the case in hydrostatic flow over infinitely long ridges. In consequence, the oscillation of the normalized drag with interface height is smaller for axisymmetric mountains than for infinitely long ridges. However, even for a reflection coefficient as low as 1/3 the drag of an axisymmetric mountain can be amplified by 50% and reduced by 40%. The nonlinear drag becomes steady in the numerical experiments in which no wave breaking occurs. The steady state nonlinear drag agrees quite well with the prediction of linear theory if the linear drag is computed for a slightly lowered interface. (orig.)

  12. Successful disinfection of femoral head bone graft using high hydrostatic pressure.

    Science.gov (United States)

    van de Sande, Michiel A J; Bovée, Judith V M G; van Domselaar, Mark; van Wijk, Marja J; Sanders, Ingrid; Kuijper, Ed

    2017-12-20

    The current standard for sterilization of potentially infected bone graft by gamma irradiation and thermal or chemical inactivation potentially deteriorates the biomechanical properties of the graft. We performed an in vitro experiment to evaluate the use of high hydrostatic pressure (HHP); which is widely used as a disinfection process in the food processing industry, to sterilize bone grafts. Four femoral heads were divided into five parts each, of which 16 were contaminated (in duplicate) with 10 5 -10 7  CFU/ml of Staphylococcus epidermidis, Bacillus cereus, or Pseudomonas aeruginosa or Candida albicans, respectively. Of each duplicate, one sample was untreated and stored similarly as the treated sample. The remaining four parts were included as sterile control and non-infected control. The 16 parts underwent HHP at the high-pressure value of 600 MPa. After HHP, serial dilutions were made and cultured on selective media and into enrichment media to recover low amounts of microorganism and spores. Three additional complete femoral heads were treated with 0, 300 and 600 MPa HHP respectively for histological evaluation. None of the negative-control bone fragments contained microorganisms. The measured colony counts in the positive-control samples correlated excellent with the expected colony count. None of the HHP treated bone fragments grew on culture plates or enrichment media. Histological examination of three untreated femoral heads showed that the bone structure remained unchanged after HHP. Sterilizing bone grafts by high hydrostatic pressure was successful and is a promising technique with the possible advantage of retaining biomechanical properties of bone tissue.

  13. The metastable state of nucleocapsids of enveloped viruses as probed by high hydrostatic pressure.

    Science.gov (United States)

    Gaspar, L P; Terezan, A F; Pinheiro, A S; Foguel, D; Rebello, M A; Silva, J L

    2001-03-09

    Enveloped viruses fuse their membranes with cellular membranes to transfer their genomes into cells at the beginning of infection. What is not clear, however, is the role of the envelope (lipid bilayer and glycoproteins) in the stability of the viral particle. To address this question, we compared the stability between enveloped and nucleocapsid particles of the alphavirus Mayaro using hydrostatic pressure and urea. The effects were monitored by intrinsic fluorescence, light scattering, and binding of fluorescent dyes, including bis(8-anilinonaphthalene-1-sulfonate) and ethidium bromide. Pressure caused a drastic dissociation of the nucleocapsids as determined by tryptophan fluorescence, light scattering, and gel filtration chromatography. Pressure-induced dissociation of the nucleocapsids was poorly reversible. In contrast, when the envelope was present, pressure effects were much less marked and were highly reversible. Binding of ethidium bromide occurred when nucleocapsids were dissociated under pressure, indicating exposure of the nucleic acid, whereas enveloped particles underwent no changes. Overall, our results demonstrate that removal of the envelope with the glycoproteins leads the particle to a metastable state and, during infection, may serve as the trigger for disassembly and delivery of the genome. The envelope acts as a "Trojan horse," gaining entry into the host cell to allow release of a metastable nucleocapsid prone to disassembly.

  14. Hydrostatic pressure effect on the transport properties in TiO superconducting thin films

    Science.gov (United States)

    Liu, X.; Zhang, C.; Hao, F. X.; Wang, T. Y.; Fan, Y. J.; Yin, Y. W.; Li, X. G.

    2017-09-01

    The superconducting properties of the TiO epitaxial thin films were systematically investigated under hydrostatic pressures (P ) up to 2.13 GPa. At ambient pressure, the normal state resistivity increases with decreasing temperature, and steeply increases below Tkink˜ 115 K . With further reducing temperature to Tc˜ 5.99 K , the thin film enters into a superconducting state. Interestingly, the superconducting temperature Tc gradually decreases upon increasing P , and the decreasing rate of Tc with P is much larger than the McMillan theoretical expectation. In contrast, Tkink increases with P and a remarkable resistivity enhancement was observed in the temperature range between Tkink and Tc. The variations of Tc,Tkink , and normal state resistivity under high pressure may be induced by the charge localization related to the atomic vacancies rearrangement in TiO thin film. Furthermore, the temperature dependencies of the upper critical field Hc 2(T ) indicate that both the orbital and Pauli-paramagnetic pair-breaking effects should be taken into account. Finally, the thermally activated flux flow investigations under different pressures suggest that the pressure will suppress the thermal activate energy.

  15. Tracking the behavior of Maillard browning in lysine/arginine-sugar model systems under high hydrostatic pressure.

    Science.gov (United States)

    Ma, Xiao-Juan; Gao, Jin-Yan; Tong, Ping; Li, Xin; Chen, Hong-Bing

    2017-12-01

    High-pressure processing is gaining popularity in the food industry. However, its effect on the Maillard reaction during high-pressure-assisted pasteurization and sterilization is not well documented. This study aimed to investigate the effects of high hydrostatic pressure on the Maillard reaction during these processes using amino acid (lysine or arginine)-sugar (glucose or fructose) solution models. High pressure retarded the intermediate and final stages of the Maillard reaction in the lysine-sugar model. For the lysine-glucose model, the degradation rate of Amadori compounds was decelerated, while acceleration was observed in the arginine-sugar model. Increased temperature not only accelerated the Maillard reaction over time but also formed fluorescent compounds with different emission wavelengths. Lysine reacted with the sugars more readily than arginine under the same conditions. In addition, it was easier for lysine to react with glucose, whereas arginine reacted more readily with fructose under high pressure. High pressure exerts different effects on lysine-sugar and arginine-sugar models. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. High Hydrostatic Pressure Induces Counterclockwise to Clockwise Reversals of the Escherichia coli Flagellar Motor

    Science.gov (United States)

    Sowa, Yoshiyuki; Kimura, Yoshifumi; Homma, Michio; Ishijima, Akihiko; Terazima, Masahide

    2013-01-01

    The bacterial flagellar motor is a reversible rotary machine that rotates a left-handed helical filament, allowing bacteria to swim toward a more favorable environment. The direction of rotation reverses from counterclockwise (CCW) to clockwise (CW), and vice versa, in response to input from the chemotaxis signaling circuit. CW rotation is normally caused by binding of the phosphorylated response regulator CheY (CheY-P), and strains lacking CheY are typically locked in CCW rotation. The detailed mechanism of switching remains unresolved because it is technically difficult to regulate the level of CheY-P within the concentration range that produces flagellar reversals. Here, we demonstrate that high hydrostatic pressure can induce CW rotation even in the absence of CheY-P. The rotation of single flagellar motors in Escherichia coli cells with the cheY gene deleted was monitored at various pressures and temperatures. Application of >120 MPa pressure induced a reversal from CCW to CW at 20°C, although at that temperature, no motor rotated CW at ambient pressure (0.1 MPa). At lower temperatures, pressure-induced changes in direction were observed at pressures of pressure in a sigmoidal fashion, as it does in response to increasing concentrations of CheY-P. Application of pressure generally promotes the formation of clusters of ordered water molecules on the surfaces of proteins. It is possible that hydration of the switch complex at high pressure induces structural changes similar to those caused by the binding of CheY-P. PMID:23417485

  17. Suppression of first cleavage in the Mexican axolotl (Ambystoma mexicanum) by heat shock or hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.L.; Armstrong, J.B.

    1981-12-01

    Androgenetic diploid axolotls were produced by ultraviolet inactivation of the egg pronucleus shortly after fertilization, followed by suppression of the first cleavage division by hydrostatic pressure or heat shock. After treatment at 14,000 psi for 8 minutes, diploidy was restored in 74% of the embryos, but only 0.8% survived to hatching. A 36-37 degrees C heat shock of 10-minutes duration, applied 5.5 hours after the eggs were collected, yielded a slightly lower percentage of diploids. However, the proportion surviving to hatching was significantly greater (up to 4.6%). A second generation of androgenetic diploids was produced from one of the oldest of the first generation males with a similar degree of success. The lack of significant improvement suggests that the low survival is due to the heat shock per se and not to the uncovering of recessive lethal genes carried by the parent.

  18. Inactivation of Salmonella typhimurium DT 104 in UHT whole milk by high hydrostatic pressure.

    Science.gov (United States)

    Guan, Dongsheng; Chen, Haiqiang; Hoover, Dallas G

    2005-10-15

    Cell suspensions of Salmonella typhimurium DT 104 in ultra-high temperature (UHT) whole milk were exposed to high hydrostatic pressure at 350, 400, 450, 500, 550, and 600 MPa at ambient temperature (ca. 21 degrees C). Tailing was observed in all survival curves, and sigmoidal survival curves were observed at relatively high pressure (500-600 MPa). Four modeling methods (linear and nonlinear including Weibull, modified Gompertz, and log-logistic models) were fitted to these data at 500, 550, and 600 MPa. Performances of the modeling methods were compared using mean square error (MSE). The linear regression model at these three pressure levels had a mean square error (MSE) of 1.260-2.263. Nonlinear regressions using Weibull, modified Gompertz, and log-logistic models had MSE values in the range of 0.334-0.764, 0.601-1.479, and 0.359-0.523, respectively. Modeling results indicated that first-order kinetics could not accurately describe pressure inactivation of S. typhimurium DT 104 in UHT milk; the log-logistic model produced the best fit to data.

  19. Insights into alternative prion protein topologies induced under high hydrostatic pressure

    Science.gov (United States)

    Torrent, Joan; Alvarez-Martinez, Maria Teresa; Heitz, Frédéric; Liautard, Jean-Pierre; Balny, Claude; Lange, Reinhard

    2004-04-01

    The critical step in the pathogenesis of transmissible spongiform encephalopathies (TSEs) appears to be a conformational transition of a normal prion protein (PrPC) into a misfolded isoform (PrPSc). To gain insight into the structural conversion of the prion protein we have exploited the use of high hydrostatic pressure combined with various spectroscopic techniques. In vitro transitions of the recombinant PrP to a scrapie-like form have never resulted in an infectious structure. It is our hypothesis that the acquisition of the disease-causing conformation depends on folding pathways which are difficult to attain. We attempt to favour, via specific reaction conditions at high pressure, alternative routes of misfolding leading to a stable infectious amyloidogenic conformer. Our results have demonstrated the potential of high pressure to reveal various prion structural changes, which are inaccessible by conventional methods. Especially, we have characterized a pressure-induced conformer in which the normal agr-helical structure is changed into a highly aggregated bgr-sheet conformation showing markedly increased resistance to proteolysis (key markers of potential infectious agents). Our work may have important implications, not only for ultimately proving the protein-only hypothesis and for understanding the basic mechanism of the disease, but also for developing preventative and therapeutic measures.

  20. Recrystallization characteristics of high hydrostatic pressure gelatinized normal and waxy corn starch.

    Science.gov (United States)

    Li, Wenhao; Tian, Xiaoling; Wang, Peng; Saleh, Ahmed S M; Luo, Qingui; Zheng, Jianmei; Ouyang, Shaohui; Zhang, Guoquan

    2016-02-01

    High hydrostatic pressure (HHP) can lead to starch gelatinization at room temperature, while the retrogradation mechanism of HHP gelatinized starch is not well known. HHP gelatinized normal and waxy corn starches were stored at room temperature for 192 h in order to investigate the retrogradation characteristics. The scanning electron microscopy (SEM), polarised light microscopy and differential scanning calorimetric (DSC) analysis showed that the pressurization of normal and waxy corn starch suspensions with concentration of 30% (w/v) at 600 MPa for 15 min resulted in a complete gelatinization. In addition, the pressure-gelatinized normal and waxy corn starch gels were stored and subjected to X-ray diffraction (XRD) analysis, resistant starch content determination, swelling power and pasting behavior. The retrograded normal maize and waxy maize starch showed a substantial loss of A-type crystallinity. Both pressure-gelatinized normal and waxy corn starches showed an increase in resistant starch content and relative crystallinity degree with the increase of storage time. In addition, restricted starch swelling power and lower pasting viscosities were observed for these two retrograded starches. The amylose molecule within starch granules has been regarded as the main factor to affect the structural and physicochemical properties during the retrogradation process of HHP-gelatinized starch granules. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Melanin pigments in the melanocytic nevus regress spontaneously after inactivation by high hydrostatic pressure.

    Directory of Open Access Journals (Sweden)

    Michiharu Sakamoto

    Full Text Available We report a novel treatment for giant congenital melanocytic nevi (GCMN that involves the reuse of resected nevus tissue after high hydrostatic pressurization (HHP. However, the remaining melanin pigments in the inactivated nevus tissue pose a problem; therefore, we performed a long-term observation of the color change of inactivated nevus tissue after HHP. Pressurized nevus specimens (200 MPa group, n = 9 and non-pressurized nevus tissues (control group, n = 9 were subcutaneously implanted into nude mice (BALB/c-nu and then harvested 3, 6, and 12 months later. Color changes of the nevus specimens were evaluated. In the 200 MPa group, the specimen color gradually regressed and turned white, and brightness values were significantly higher in the 200 MPa group than in the control group after 6 months. This indicated that melanin pigments in the pressurized nevus tissue had spontaneously degraded and regressed. Therefore, it is not necessary to remove melanin pigments in HHP-treated nevus tissue.

  2. Depletion of arginine in yeast cells decreases the resistance to hydrostatic pressure

    Science.gov (United States)

    Nomura, Kazuki; Iwahashi, Hitoshi; Iguchi, Akinori; Shigematsu, Toru

    2015-07-01

    High hydrostatic pressure (HP) inhibits growth and inactivates microorganisms by destabilizing non-covalent molecular interactions. Arginine contributes to stress resistance because it has a guanidine side chain, which assists in the refolding of aggregated proteins. We attempted to analyze the contribution of arginine to high HP stress using a pressure-sensitive mutant strain of Saccharomyces cerevisiae and a metabolomics approach. Our results showed that the content of 136 out of 250 detected metabolites differed in the mutant and parent strains. Decreased metabolites were involved in the tricarboxylic acid cycle and arginine biosynthesis. The expression of genes contributing to arginine biosynthesis was significantly lower in the mutant strain than in the parent strain. When arginine was supplemented to the medium, the mutant strain showed more tolerance to pressure. These results suggest that yeast cells survived due to the contribution of arginine to high pressure resistance. This indicates that depletion of arginine caused by decreased activity of the biosynthesis pathway confers sensitivity to HP.

  3. First principles calculations of La2O3/GaAs interface properties under biaxial strain and hydrostatic pressure

    Science.gov (United States)

    Shi, Li-Bin; Li, Ming-Biao; Xiu, Xiao-Ming; Liu, Xu-Yang; Zhang, Kai-Cheng; Li, Chun-Ran; Dong, Hai-Kuan

    2017-04-01

    La2O3 is a potential dielectric material with high permittivity (high-κ) for metal-oxide-semiconductor (MOS) devices. However, band offsets and oxide defects should still be concerned. Smaller band offsets and carrier traps increase leakage current, and degenerate performance of the devices. In this paper, the interface behaviors of La2O3/GaAs under biaxial strain and hydrostatic pressure are investigated, which is performed by first principles calculations based on density functional theory (DFT). Strain engineering is attempted to improve performance of the metal/La2O3/GaAs devices. First of all, we creatively realize band alignment of La2O3/GaAs interface under biaxial strain and hydrostatic pressure. The proper biaxial tensile strain can effectively increase valence band offsets (VBO) and conduction band offsets (CBO), which can be used to suppress leakage current. However, the VBO will decrease with the increase of hydrostatic pressure, indicating that performance of the devices is degenerated. Then, a direct tunneling leakage current model is used to investigate current and voltage characteristics of the metal/La2O3/GaAs. The impact of biaxial strain and hydrostatic pressure on leakage current is discussed. At last, formation energies and transition levels of oxygen interstitial (Oi) and oxygen vacancy (VO) in La2O3 are assessed. We investigate how they will affect performance of the devices.

  4. Inactivation of Salmonella enterica and Listeria monocytogenes in cantaloupe puree by high hydrostatic pressure with/without added ascorbic acid

    Science.gov (United States)

    The objective of this research was to evaluate and develop a method for inactivation of Salmonella enterica and Listeria monocytogenes in cantaloupe puree (CP) by high hydrostatic pressure (HHP). Cantaloupe being the most netted varieties of melons presents a greater risk of pathogen transmission. ...

  5. Identification of Microorganisms in Duck Meat Products Available in Korea and the Effect of High Hydrostatic Pressure.

    Science.gov (United States)

    Kim, Hyun-Joo; Yong, Hae In; Lee, Hyun Jung; Jung, Samooel; Kwon, Joong-Ho; Heo, Kang Nyung; Jo, Cheorun

    2016-01-01

    The objective of this study was to investigate the microbial count of duck meat and duck meat products commercially available in Korea. High hydrostatic pressure (HHP) treatment was applied at 0.1, 300, 400, and 500 MPa for 5 min to enhance the microbiological safety of duck meats. The levels of total aerobic bacteria were in the ranges of 3.53-6.19 and 3.62-6.85 Log CFU/g in raw and smoked duck products, respectively. By DNA sequence analysis, we identified microorganisms responsible for spoilage, with the most common species in the raw and smoked duck products being Aeromonas spp. or Pseudomonas spp. and Leuconostoc mesenteroides, respectively. HHP treatment significantly reduced the levels of total aerobic bacteria in raw and smoked duck products. This study demonstrates that HHP treatment may be used to effectively improve the safety of raw and smoked duck meat products.

  6. Identification of Microorganisms in Duck Meat Products Available in Korea and the Effect of High Hydrostatic Pressure

    Science.gov (United States)

    Kim, Hyun-Joo; Jung, Samooel; Kwon, Joong-Ho; Heo, Kang Nyung

    2016-01-01

    The objective of this study was to investigate the microbial count of duck meat and duck meat products commercially available in Korea. High hydrostatic pressure (HHP) treatment was applied at 0.1, 300, 400, and 500 MPa for 5 min to enhance the microbiological safety of duck meats. The levels of total aerobic bacteria were in the ranges of 3.53-6.19 and 3.62-6.85 Log CFU/g in raw and smoked duck products, respectively. By DNA sequence analysis, we identified microorganisms responsible for spoilage, with the most common species in the raw and smoked duck products being Aeromonas spp. or Pseudomonas spp. and Leuconostoc mesenteroides, respectively. HHP treatment significantly reduced the levels of total aerobic bacteria in raw and smoked duck products. This study demonstrates that HHP treatment may be used to effectively improve the safety of raw and smoked duck meat products. PMID:27194939

  7. In vitro release of theophylline from starch-based matrices prepared via high hydrostatic pressure treatment and autoclaving.

    Science.gov (United States)

    Błaszczak, Wioletta; Buciński, Adam; Górecki, Adrian R

    2015-03-06

    Recent works have demonstrated that release behavior of bioactive compounds varies with the nature of the matrix regarding its chemical composition, morphology and surface properties. Starch matrices varying in amylose content (maize, sorghum, Hylon VII) or pure amylopectin ones (waxy maize, amaranth starch), containing theophylline (10 mg, 50 mg/0.5 g of starch), were obtained via high hydrostatic pressure treatment (650 MPa/9 min) and autoclaving (120 °C/20 min). Both the treatment used and drug dose affected the theophylline release profiles from the matrices studied. The profiles of amylopectin starch matrices satisfactorily fitted with selected mathematical models, indicating a controlled theophylline release. The principal component analysis confirmed substantial differences in drug release between the amylose and amylopectin matrices. The differences in matrix morphology, internal surface area and porosity (mesopore diameter, cumulative pore volume) between the matrices studied were found to be key factors affecting the theophylline dissolution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Sensory shelf-life limiting factor of high hydrostatic pressure processed avocado paste.

    Science.gov (United States)

    Jacobo-Velázquez, D A; Hernández-Brenes, C

    2011-08-01

    High hydrostatic pressure (HHP) processing pasteurizes avocado paste without a significant impact on flavor. Although HHP-treated avocado paste stored under refrigeration is safe for human consumption for months, sensory changes taking place during storage cause the rejection of the product by consumers within days. Although it is known that the shelf life of the product ends before its microbial counts are high, its sensory shelf life limiting factor remains unknown. The present study focused on the use of a trained panel and a consumer panel to determine the sensory shelf life limiting factor of HHP-treated avocado paste. The trained panel identified sour and rancid flavors as the main sensory descriptors (critical descriptors) that differentiated stored from freshly processed samples. Further data obtained from consumers identified sour flavor as the main cause for a significant decrease in the acceptability (shelf life limiting factor) of refrigerated HHP-treated avocado paste. The study allowed the elucidation of a proposed deterioration mechanism for HHP-treated avocado paste during its refrigerated shelf life. The information through this work enhances scientific knowledge of the product and proposes the sour flavor development during storage as a relevant sensory attribute that needs to be improved in order to enhance the product shelf life. At present, HHP is the most effective commercial nonthermal technology to process avocado paste when compared to thermal and chemical alternatives. HHP-treated avocado paste is a microbiologically stable food for a period of at least 45 d stored under refrigeration. However, previous published work indicated that consumers rejected the product after approximately 19 d of storage due to sensory changes. This manuscript presents a sensory study that permitted the identification of the critical sensory descriptor that is acting as the sensory shelf life limiting factor of the product. The data presented herein along with

  9. Ultrasonic Parameters as a Function of Absolute Hydrostatic Pressure. I. A Review of the Data for Organic Liquids

    Science.gov (United States)

    Oakley, Barbara A.; Barber, Gary; Worden, Tony; Hanna, Darrin

    2003-12-01

    This review provides an overview of experimental results involving ultrasonic parameters as a function of absolute hydrostatic pressure in organic liquids. Major topics of discussion include the pioneering work of Litovitz and Carnevale involving deduction of the chemical and structural properties of liquids from acoustical properties as a function of pressure; modern general ultrasonic studies of a broad range of organic liquids; work accomplished by Russians and others from the former Soviet block countries, particularly the work headed by Otpuschennikov at the Kursk Pedagogical Institute; the studies involving refrigerants published by Takagi at the Kyoto Institute of Technology; tribological and petroleum industry studies related to oils; Brillouin scattering experiments; and thermodynamic methods of B/A measurement. The importance of ultrasonic parameters as a function of pressure to the understanding of a variety of processes is highlighted. A table of 325 liquids and liquid mixtures with a total of 366 entries indexed by chemical name is provided. Publications involving a specific liquid are cited within the table under the entry for that liquid, with the author's name, aim of the study (e.g., speed of sound or absorption studies), methodology, and pressure/temperature ranges of the experimentation also given (197 references).

  10. The effect of ascitic fluid hydrostatic pressure on albumin extravasation rate in patients with cirrhosis of the liver

    DEFF Research Database (Denmark)

    Henriksen, J H; Parving, H H; Christiansen, Lasse

    1981-01-01

    Overall transvascular escape rate of albumin [TERalb, i.e. the fraction of intravascular mass of albumin (IVMalb) passing to the extravascular space per unit time] was determined from the disappearance of i.v. injected radioiodinated serum albumin. Patients with tense ascites due to liver cirrhosis...... and pigs with posthepatic portal hypertension and intraperitoneally instilled fluid were studied before and after abdominal paracentesis in order to evaluate the effect of ascitic fluid hydrostatic pressure on the transvascular escape rate of albumin. TERalb of the ascitic patients (n = 6) were on average...... 7.8% IVMalb.h-1, which is somewhat higher but not significantly above normal (mean 5.6% IVMalb.h-1). After paracentesis and removal of the ascitic fluid, TERalb rose significantly to an average of 11.9% IVMalb.h-1 (P less than 0.05). The fraction of IVMalb passing into the peritoneal cavity...

  11. Effects of high hydrostatic pressure on physicochemical and functional properties of walnut (Juglans regia L.) protein isolate.

    Science.gov (United States)

    Qin, Zihan; Guo, Xingfeng; Lin, Yan; Chen, Jiluan; Liao, Xiaojun; Hu, Xiaosong; Wu, Jihong

    2013-03-30

    Walnut (Juglans regia L.) is a good source of protein that has potential application in new product formation and fortification. The main objectives of this study were to investigate the effects of high hydrostatic pressure (HHP) treatment (300-600 MPa 20 min) on physicochemical and functional properties of walnut protein isolate (WPI) using various analytical techniques at room temperature. The results showed significant modification of solubility, free sulfhydryl content and surface hydrophobicity with increased levels of HHP treatment, indicating partial denaturation and aggregation of proteins. Differential scanning calorimetry and fluorescence spectrum analyses demonstrated that HHP treatment resulted in gradual unfolding of protein structure. Emulsifying activity index was significantly (P food ingredient. © 2012 Society of Chemical Industry.

  12. High hydrostatic pressure influences the in vitro response to xenobiotics in Dicentrarchus labrax liver.

    Science.gov (United States)

    Lemaire, Benjamin; Mignolet, Eric; Debier, Cathy; Calderon, Pedro Buc; Thomé, Jean Pierre; Rees, Jean François

    2016-04-01

    Hydrostatic pressure (HP) increases by about 1 atmosphere (0.1MPa) for each ten-meter depth increase in the water column. This thermodynamical parameter could well influence the response to and effects of xenobiotics in the deep-sea biota, but this possibility remains largely overlooked. To grasp the extent of HP adaptation in deep-sea fish, comparative studies with living cells of surface species exposed to chemicals at high HP are required. We initially conducted experiments with precision-cut liver slices of a deep-sea fish (Coryphaenoides rupestris), co-exposed for 15h to the aryl hydrocarbon receptor (AhR) agonist 3-methylcholanthrene at HP levels representative of the surface (0.1MPa) and deep-sea (5-15MPa; i.e., 500-1500m depth) environments. The transcript levels of a suite of stress-responsive genes, such as the AhR battery CYP1A, were subsequently measured (Lemaire et al., 2012; Environ. Sci. Technol. 46, 10310-10316). Strikingly, the AhR agonist-mediated increase of CYP1A mRNA content was pressure-dependently reduced in C. rupestris. Here, the same co-exposure scenario was applied for 6 or 15h to liver slices of a surface fish, Dicentrarchus labrax, a coastal species presumably not adapted to high HP. Precision-cut liver slices of D. labrax were also used in 1h co-exposure studies with the pro-oxidant tert-butylhydroperoxide (tBHP) as to investigate the pressure-dependence of the oxidative stress response (i.e., reactive oxygen production, glutathione and lipid peroxidation status). Liver cells remained viable in all experiments (adenosine triphosphate content). High HP precluded the AhR agonist-mediated increase of CYP1A mRNA expression in D. labrax, as well as that of glutathione peroxidase, and significantly reduced that of heat shock protein 70. High HP (1h) also tended per se to increase the level of oxidative stress in liver cells of the surface fish. Trends to an increased resistance to tBHP were also noted. Whether the latter observation truly

  13. High Hydrostatic Pressure (HHP-Induced Structural Modification of Patatin and Its Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Rizwan Elahi

    2017-03-01

    Full Text Available Patatin represents a group of homologous primary storage proteins (with molecular weights ranging from 40 kDa to 45 kDa found in Solanum tuberosum L. This group comprises 40% of the total soluble proteins in potato tubers. Here, patatin (40 kDa was extracted from potato fruit juice using ammonium sulfate precipitation (ASP and exposed to high hydrostatic pressure (HHP treatment (250, 350, 450, and 550 MPa. We investigated the effect of HHP treatment on the structure, composition, heat profile, and antioxidant potential, observing prominent changes in HHP-induced patatin secondary structure as compared with native patatin (NP. Additionally, significant (p < 0.05 increases in β-sheet content along with decreases in α-helix content were observed following HHP treatment. Thermal changes observed by differential scanning calorimetry (DSC also showed a similar trend following HHP treatment; however, the enthalpy of patatin was also negatively affected by pressurization, and free sulfhydryl content and surface hydrophobicity significantly increased with pressurization up to 450 MPa, although both interactions progressively decreased at 550 MPa. The observed physicochemical changes suggested conformational modifications in patatin induced by HHP treatment. Moreover, our results indicated marked enhancement of antioxidant potential, as well as iron chelation activities, in HHP-treated patatin as compared with NP. These results suggested that HHP treatment offers an effective and green process for inducing structural modifications and improving patatin functionality.

  14. High Hydrostatic Pressure (HHP)-Induced Structural Modification of Patatin and Its Antioxidant Activities.

    Science.gov (United States)

    Elahi, Rizwan; Mu, Tai-Hua

    2017-03-10

    Patatin represents a group of homologous primary storage proteins (with molecular weights ranging from 40 kDa to 45 kDa) found in Solanum tuberosum L. This group comprises 40% of the total soluble proteins in potato tubers. Here, patatin (40 kDa) was extracted from potato fruit juice using ammonium sulfate precipitation (ASP) and exposed to high hydrostatic pressure (HHP) treatment (250, 350, 450, and 550 MPa). We investigated the effect of HHP treatment on the structure, composition, heat profile, and antioxidant potential, observing prominent changes in HHP-induced patatin secondary structure as compared with native patatin (NP). Additionally, significant (p pressurization, and free sulfhydryl content and surface hydrophobicity significantly increased with pressurization up to 450 MPa, although both interactions progressively decreased at 550 MPa. The observed physicochemical changes suggested conformational modifications in patatin induced by HHP treatment. Moreover, our results indicated marked enhancement of antioxidant potential, as well as iron chelation activities, in HHP-treated patatin as compared with NP. These results suggested that HHP treatment offers an effective and green process for inducing structural modifications and improving patatin functionality.

  15. Effects of High Hydrostatic Pressure on Water Absorption of Adzuki Beans

    Directory of Open Access Journals (Sweden)

    Shigeaki Ueno

    2015-05-01

    Full Text Available The effect of high hydrostatic pressure (HHP treatment on dried soybean, adzuki bean, and kintoki kidney bean, which are low-moisture-content cellular biological materials, was investigated from the viewpoint of water absorption. The samples were vacuum-packed with distilled water and pressurized at 200 MPa and 25 °C for 10 min. After the HHP treatment, time courses of the moisture contents of the samples were measured, and the dimensionless moisture contents were estimated. Water absorption in the case of soybean could be fitted well by a simple water diffusion model. High pressures were found to have negligible effects on water absorption into the cotyledon of soybean and kintoki kidney bean. A non-linear least square method based on the Weibull equation was applied for the adzuki beans, and the effective water diffusion coefficient was found to increase significantly from 8.6 × 10−13 to 6.7 × 10−10 m2/s after HHP treatment. Approximately 30% of the testa of the adzuki bean was damaged upon HHP treatment, which was comparable to the surface area of the testa in the partially peeled adzuki bean sample. Thus, HHP was confirmed to promote mass transfer to the cotyledon of legumes with a tight testa.

  16. Physicochemical properties and in vitro digestibility of sorghum starch altered by high hydrostatic pressure.

    Science.gov (United States)

    Liu, Hang; Fan, Huanhuan; Cao, Rong; Blanchard, Christopher; Wang, Min

    2016-11-01

    A nonthermal processing technology, high hydrostatic pressure (HHP) treatment, was investigated to assess its influence on the physicochemical properties and in vitro digestibility of sorghum starch (SS). There was no change in the 'A'-type crystalline pattern of SS after the pressure treatments at 120-480MPa. However, treatment at 600MPa produced a pattern similar to 'B'-type crystalline. HHP treatment also resulted in SS granules with rough surfaces. Measured amylose content, water absorption capacity, alkaline water retention, pasting temperature and thermostability increased with increasing pressure levels, while the oil absorption capacity, swelling power, relative crystallinity and viscosity decreased. Compared with native starch, HHP-modified SS samples had lower in vitro hydrolysis, reduced amount of rapidly digestible starch, as well as increased levels of slowly digestible starch and resistant starch. These results indicate that HHP treatment is an effective modification method for altering in vitro digestibility and physicochemical properties of SS. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Effects of hydrostatic pressure on growth and luminescence of a moderately-piezophilic luminous bacteria Photobacterium phosphoreum ANT-2200

    OpenAIRE

    Séverine Martini; Badr Al Ali; Marc Garel; David Nerini; Vincent Grossi; Muriel Pacton; Laurence Casalot; Philippe Cuny; Christian Tamburini

    2013-01-01

    Bacterial bioluminescence is commonly found in the deep sea and depends on environmental conditions. Photobacterium phosphoreum ANT-2200 has been isolated from the NW Mediterranean Sea at 2200-m depth (in situ temperature of 13 degrees C) close to the ANTARES neutrino telescope. The effects of hydrostatic pressure on its growth and luminescence have been investigated under controlled laboratory conditions, using a specifically developed high-pressure bioluminescence system. The growth rate an...

  18. Effect of high hydrostatic pressure on the enzymatic hydrolysis of bovine serum albumin.

    Science.gov (United States)

    De Maria, Serena; Ferrari, Giovanna; Maresca, Paola

    2017-08-01

    The extent of enzymatic proteolysis mainly depends on accessibility of the peptide bonds, which stabilize the protein structure. The high hydrostatic pressure (HHP) process is able to induce, at certain operating conditions, protein displacement, thus suggesting that this technology can be used to modify protein resistance to the enzymatic attack. This work aims at investigating the mechanism of enzymatic hydrolysis assisted by HHP performed under different processing conditions (pressure level, treatment time). Bovine serum albumin was selected for the experiments, solubilized in sodium phosphate buffer (25 mg mL-1 , pH 7.5) with α-chymotrypsin or trypsin (E/S ratio = 1/10) and HPP treatment (100-500 MPa, 15-25 min). HHP treatment enhanced the extent of the hydrolysis reaction of globular proteins, being more effective than conventional hydrolysis. At HHP treatment conditions maximizing the protein unfolding, the hydrolysis degree of proteins was increased as a consequence of the increased exposure of peptide bonds to the attack of proteolytic enzymes. The maximum hydrolysis degree (10% and 7% respectively for the samples hydrolyzed with α-chymotrypsin and trypsin) was observed for the samples processed at 400 MPa for 25 min. At pressure levels higher than 400 MPa the formation of aggregates was likely to occur; thus the degree of hydrolysis decreased. Protein unfolding represents the key factor controlling the efficiency of HHP-assisted hydrolysis treatments. The peptide produced under high pressure showed lower dimensions and a different structure with respect to those of the hydrolysates obtained when the hydrolysis was carried out at atmospheric pressure, thus opening new frontiers of application in food science and nutrition. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Magnetic properties of (Nd ,Ca )(Ba ,La ) C o2O5 +δ tuned by the site-selected charge doping, oxygen disorder, and hydrostatic pressure

    Science.gov (United States)

    Pietosa, J.; Kolesnik, S.; Puzniak, R.; Wisniewski, A.; Poudel, B.; Dabrowski, B.

    2017-11-01

    Comprehensive study of magnetic properties of the layer-ordered perovskites N d1 -xC axB a1 -yL ayC o2O5 +δ is presented as a function of the site-selected charge doping [ c =(x -y )/2 +δ -0.5 ,x ≤0.2 and y ≤0.1 ,0.07 disorder, and hydrostatic pressure P 0 ) and electron (c disorder. Maximum of the Néel temperature TN at c =0 was found rapidly disappearing at c =0.05 for Ca/Nd substitution while it was maintained for La/Ba substitution, indicating that the oxygen vacancy disorder, especially for δ >0.5 , has a larger effect on antiferromagnetic phase than the charge doping. The temperature of metal-insulator transition TMIT was found practically unchanged by either charge doping or disorder. The application of hydrostatic pressure slightly suppressed TC and increased TN by stabilization of the antiferromagnetic phase with the largest observed value of d TN/d P =5.75 K /kbar . Complex magnetic behavior affected by hydrostatic pressure was accounted for by ferro- and antiferromagnetic interactions resulting from the charge separation and spin transitions.

  20. Design and Development of a Pressure Transducer for High Hydrostatic Pressure Measurements up to 200 MPa

    Science.gov (United States)

    Kumar, Anuj; Yadav, Sanjay; Agarwal, Ravinder

    2017-08-01

    A number of pressure transducers, based on strain gauge, capacitance/inductance type, frequency resonators, are commercially available and are being used for sensing and producing an electrical output proportional to applied pressure. These sensors have their own advantages and limitations due to operational ease, measurement uncertainty and the costs. Strain gauge type transducers are now well established devices for accurate and precise measurement of pressure within measurement uncertainty up to 0.1 % of full scale. In the present research work, an indigenous strain gauge pressure transducer has been designed, developed, tested and calibrated for pressure measurement up to 200 MPa. The measurement uncertainty estimated using the pressure transducer was found better than 0.1 % of full scale. This transducer was developed using four foil type strain gauges, bonded, two in axial direction while other two in radial direction, to the controlled stress zones of a tubular maraging steel active cylinder working also as diaphragm. The strain gages were then connected to a Wheatstone bridge arrangement to measure stress generated strains. The pressure was applied through matching connector designed in the same tubular transducer active element. The threaded unique design in a single piece through collar, ferule and tubing arrangement provides leak proof pressure connections with external devices without using additional seals. The calibration and performance checking of the pressure transducer was carried out using dead weight type national pressure standard using the internationally accepted calibration procedure.

  1. The dietary fiber profile of fruit peels and functionality modifications induced by high hydrostatic pressure treatments.

    Science.gov (United States)

    Tejada-Ortigoza, Viridiana; García-Amezquita, Luis Eduardo; Serna-Saldívar, Sergio O; Welti-Chanes, Jorge

    2017-07-01

    The effect of high hydrostatic pressure (HHP) and temperature on composition of non-conventional dietary fiber (DF) sources and functional properties were evaluated. Mango, orange, or prickly pear peels were processed at 600 MPa during 10 min at 22 ℃ and 55 ℃. Total (TDF), soluble (SDF), and insoluble (IDF) dietary fiber, water/oil holding, and retention capacity, solubility, swelling capacity, and bulk density were assayed. An increment in the SDF content was observed due to the effect of pressure with the greatest changes noticed in mango peel, increasing from 37.4% (control) to 45.7% (SDF/TDF) in the HHP-treated (55 ℃) sample. Constant values of TDF after the treatments suggest a conversion of IDF to SDF in mango (38.9%-40.5% dw) and orange (49.0%-50.8% dw) peels. The highest fiber solubility values were observed for mango peel ranging between 80.3% and 83.9%, but the highest increase, from 55.1% to 62.3%, due to treatment was displayed in orange peel processed at 22 ℃. A relationship between DF modifications induced by HHP treatment and changes in the functional properties of the materials was established. Application of HHP opens up the opportunity to modify non-conventional sources of DF and to obtain novel functional properties for different food applications.

  2. Biomechanical and immunohistochemical properties of meniscal cartilage after high hydrostatic pressure treatment.

    Science.gov (United States)

    Naal, Florian D; Schauwecker, Johannes; Steinhauser, Erwin; Milz, Stefan; von Knoch, Fabian; Mittelmeier, Wolfram; Diehl, Peter

    2008-10-01

    Meniscal allograft processing procedures, in particular gamma irradiation, deteriorate the biomechanical and biological properties of the transplanted tissue. High hydrostatic pressure (HHP) treatment, widely used in food technology to inactivate microorganisms while preserving natural compounds, might serve as a gentle alternative to gamma irradiation in the processing of meniscal allografts. We therefore investigated the effects of HHP treatment on the biomechanical and immunohistochemical properties of meniscal cartilage. Specimens of bovine menisci were treated with HHP for 10 min (20 degrees C) at 300 MPa and 600 MPa. Untreated control samples were left at room temperature and ambient pressure. We performed repetitive cycling indentation-tests to assess the biomechanical properties-in particular the viscoelastic behavior-of HHP treated and untreated meniscal specimens. Immunohistochemical analysis for collagens type I, II, and III and for the proteoglycans versican, aggrecan and for link-protein was performed by immunolabeling cross-sections of untreated and at 600 MPa HHP treated specimens. Comparing untreated and HHP treated meniscal specimens there were no significant differences for all tested biomechanical parameters. All cross-sections of untreated and HHP treated specimens stained positive for the collagens and proteoglycans. We demonstrated that meniscal cartilage can be treated by HHP at levels as high as 600 MPa without affection of the biomechanical and immunochistochemical properties. Therefore, HHP treatment might serve as a gentle alternative to gamma irradiation in the processing of meniscal allografts. Further research is necessary to verificate the present results in vivo. (c) 2008 Wiley Periodicals, Inc.

  3. Impact of high hydrostatic pressure on non-volatile and volatile compounds of squid muscles.

    Science.gov (United States)

    Yue, Jin; Zhang, Yifeng; Jin, Yafang; Deng, Yun; Zhao, Yanyun

    2016-03-01

    The effects of high hydrostatic pressure processing (HHP at 200, 400 or 600MPa) on non-volatile and volatile compounds of squid muscles during 10-day storage at 4°C were investigated. HHP increased the concentrations of Cl(-) and volatile compounds, reduced the level of PO4(3-), but did not affect the contents of 5'-uridine monophosphate (UMP), 5'-guanosine monophosphate (GMP), 5'-inosine monophosphate (IMP), Na(+) and Ca(2+) in squids on Day 0. At 600MPa, squids had the highest levels of 5'-adenosine monophosphate, Cl(-) and lactic acid, but the lowest contents of CMP and volatile compounds on Day 10. Essential free amino acids and succinic acids were lower on Day 0 than on Day 10. HHP at 200MPa caused higher equivalent umami concentration (EUC) on Day 0, and the EUC decreased with increasing pressure on Day 10. Generally, HHP at 200MPa was beneficial for improving EUC and volatile compounds of squids. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effects of High Hydrostatic Pressure on the Physical, Microbial, and Chemical Attributes of Oysters (Crassostrea virginica).

    Science.gov (United States)

    Lingham, Talaysha; Ye, Mu; Chen, Haiqiang; Chintapenta, Lathadevi Karuna; Handy, Eunice; Zhao, Jing; Wu, Changqing; Ozbay, Gulnihal

    2016-05-01

    The change in the quality attributes (physical, microbial, and chemical) of oysters (Crassostrea virginica) after high hydrostatic pressure (HHP) treatment at 300 MPa at room temperature (RT, 25 °C) 300, 450, and 500 MPa at 0 °C for 2 min and control oysters without treatment were evaluated over 3 wk. The texture and tissue yield percentages of oysters HHP treated at 300 MPa, RT increased significantly (P control. Aerobic and psychrotrophic bacteria in control oysters reached the spoilage point of 7 log CFU/g after 15 d. Coliform counts (log MPN/g) were low during storage with total and fecal coliforms less than 3.5 and 1.0. High pressure treated oysters at 500 MPa at 0 °C were significantly higher (P control. The glycogen content of control oysters at 3 wk was significantly higher (P control. Based on our results, HHP prolongs the physical, microbial, and chemical quality of oysters. © 2016 Institute of Food Technologists®

  5. HIGH HYDROSTATIC PRESSURE EXTRACTION OF ANTIOXIDANTS FROM MORINDA CITRIFOLIA FRUIT – PROCESS PARAMETERS OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    PRAVEEN KUMAR

    2006-06-01

    Full Text Available A modified version of high hydrostatic pressure extraction has been performed for extraction of antioxidants from M. citrifolia fruit at 5, 15, 25 bar and temperature 30° to 70°C for time duration 1, 2, 4 and 6 hours. The antioxidant activity of the extracts was determined by di-phenylpicrylhydrazyl radical scavenging method. The process parameters were optimized for antioxidant activity by central composite design method of response surface methodology using the statistical package, design expert. The results are expressed as 3D surface graphs. The optimum antioxidant activity was achieved at 58°C and 5 hours for 25bar. The optimal result achieved was within the region of response surface methodology. The statistical results were compared with the experimental result at 25bar, 2hour and 30° to 70°C and were found to be in proximate. The antioxidant activities of the extracts were found to increase with increase in pressure. It was also found that the response surface methodology works effectively for shorter range of parameters considered.

  6. The preservation of Listeria-critical foods by a combination of endolysin and high hydrostatic pressure.

    Science.gov (United States)

    Misiou, Ourania; van Nassau, Tomas J; Lenz, Christian A; Vogel, Rudi F

    2018-02-02

    The aim of this work was to examine the combination of endolysin PlyP825 and high hydrostatic pressure (HHP) processing against a cocktail of stationary phase Listeria monocytogenes cells in several Listeria-critical food products (i.e. milk, mozzarella and smoked salmon). In order to determine the efficacy of the combined application, both challenge-lethality tests and storage tests were performed. In milk and mozzarella, we could demonstrate that the application of PlyP825 prior to HHP processing allowed for a synergistic inactivation of cells, a reduction in the pressure level with equal antimicrobial efficacy and an enhanced eradication of L. monocytogenes during storage at abuse temperatures. For smoked salmon, no such effects were detected. Although the efficacy of the method was highly dependent on the food vehicle and parameters applied, we hereby demonstrated the potential of the combined endolysin-HHP application for complete eradication of L. monocytogenes from foods at milder processing conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. An Experimental Study of Dynamic Tensile Failure of Rocks Subjected to Hydrostatic Confinement

    Science.gov (United States)

    Wu, Bangbiao; Yao, Wei; Xia, Kaiwen

    2016-10-01

    It is critical to understand the dynamic tensile failure of confined rocks in many rock engineering applications, such as underground blasting in mining projects. To simulate the in situ stress state of underground rocks, a modified split Hopkinson pressure bar system is utilized to load Brazilian disc (BD) samples hydrostatically, and then exert dynamic load to the sample by impacting the striker on the incident bar. The pulse shaper technique is used to generate a slowly rising stress wave to facilitate the dynamic force balance in the tests. Five groups of Laurentian granite BD samples (with static BD tensile strength of 12.8 MPa) under the hydrostatic confinement of 0, 5, 10, 15, and 20 MPa were tested with different loading rates. The result shows that the dynamic tensile strength increases with the hydrostatic confining pressure. It is also observed that under the same hydrostatic pressure, the dynamic tensile strength increases with the loading rate, revealing the so-called rate dependency for engineering materials. Furthermore, the increment of the tensile strength decreases with the hydrostatic confinement, which resembles the static tensile behavior of rock under confining pressure, as reported in the literature. The recovered samples are examined using X-ray micro-computed tomography method and the observed crack pattern is consistent with the experimental result.

  8. Polymorphic transformation of anhydrous caffeine upon grinding and hydrostatic pressurizing analyzed by low-frequency raman spectroscopy.

    Science.gov (United States)

    Hédoux, Alain; Guinet, Yannick; Paccou, Laurent; Danède, Florence; Derollez, Patrick

    2013-01-01

    Low-frequency Raman investigations were carried out upon pressurizing and grinding both crystalline forms of anhydrous caffeine at room temperature. These investigations have led to the detection of metastable states under stress. Upon moderated hydrostatic compression, only form I transform into a metastable state characterized by a Raman band-shape resembling that of form II. Above 2 GPa, both pressurized forms convert into an identical disordered state, suggesting a pressure-induced amorphization. In contrast to hydrostatic compression, grinding induces transformation of each phase into the other, leading to an intermediate state only stabilized under long enough grinding. The origin of these metastable states induced by stress was related to the disordered nature of both crystalline forms of caffeine and the stability conditions at room temperature of form I. Copyright © 2012 Wiley Periodicals, Inc.

  9. High hydrostatic pressure activates gene expression that leads to ethanol production enhancement in a Saccharomyces cerevisiae distillery strain

    Science.gov (United States)

    Bravim, Fernanda; Lippman, Soyeon I.; da Silva, Lucas F.; Souza, Diego T.; Fernandes, A. Alberto R.; Masuda, Claudio A.; Broach, James R.

    2016-01-01

    High hydrostatic pressure (HHP) is a stress that exerts broad effects on microorganisms with characteristics similar to those of common environmental stresses. In this study, we aimed to identify genetic mechanisms that can enhance alcoholic fermentation of wild Saccharomyces cerevisiae isolated from Brazilian spirit fermentation vats. Accordingly, we performed a time course microarray analysis on a S. cerevisiae strain submitted to mild sublethal pressure treatment of 50 MPa for 30 min at room temperature, followed by incubation for 5, 10 and 15 min without pressure treatment. The obtained transcriptional profiles demonstrate the importance of post-pressurisation period on the activation of several genes related to cell recovery and stress tolerance. Based on these results, we over-expressed genes strongly induced by HHP in the same wild yeast strain and identified genes, particularly SYM1, whose over-expression results in enhanced ethanol production and stress tolerance upon fermentation. The present study validates the use of HHP as a biotechnological tool for the fermentative industries. PMID:22915193

  10. Effect of High Hydrostatic Pressure Combined with Moderate Heat to Inactivate Pressure-Resistant Bacteria in Water-Boiled Salted Duck.

    Science.gov (United States)

    Ye, Keping; Feng, Yulin; Wang, Kai; Bai, Yun; Xu, Xinglian; Zhou, Guanghong

    2015-06-01

    The objective of this work was to study the effect of high hydrostatic pressure combined with moderate heat to inactivate pressure-resistant bacteria in water-boiled salted duck meat (WBSDM), and to establish suitable procedures to improve the quality of WBSDM. The conditions (300 MPa/60 °C, 400 MPa/60 °C, and 500 MPa/50 °C) effectively inactivated the pressure-resistant bacteria (Bacillus cereus and Staphylococcus warneri) in WBSDM. Although more pressure-resistant than S. warneri, the above treatment conditions inactivated B. cereus more than 10(7) CFU/mL in buffer, and more than 10(6) CFU/g in WBSDM, and did not cause any changes in color, texture, or moisture content of products. The interaction between pressure and temperature is a more significant factor than only pressure in inactivating both B. cereus and S. warneri, the treatment of WBSDM at 400 MPa/ 60 °C/ 10 min is the most practical condition for postprocess of WBSDM after cooking. © 2015 Institute of Food Technologists®

  11. Electronic phase transitions under hydrostatic pressure in LaMnO3 (111) bilayers sandwiched between LaAlO3

    Science.gov (United States)

    Tahini, H. A.; Cossu, F.; Singh, N.; Smith, S. C.; Schwingenschlögl, U.

    2016-01-01

    Using ab initio calculations, we investigate the effect of hydrostatic pressure on the electronic structure of LaMnO3 (111) bilayers sandwiched between LaAlO3. In the ideal heterostructure we observe Dirac cones at the Fermi energy. However, octahedral tiltings open a band gap and thus destroy the Dirac nature. We show that the effect of the tiltings can be suppressed by hydrostatic pressure from 40 GPa to 60 GPa. At higher pressure further phase transitions are encountered.

  12. Electronic phase transitions under hydrostatic pressure in LaMnO3 (111) bilayers sandwiched between LaAlO3

    KAUST Repository

    Tahini, Hassan Ali

    2016-01-13

    Using ab initio calculations, we investigate the effect of hydrostatic pressure on the electronic structure of LaMnO3 (111) bilayers sandwiched between LaAlO3. In the ideal heterostructure we observe Dirac cones at the Fermi energy. However, octahedral tiltings open a band gap and thus destroy the Dirac nature. We show that the effect of the tiltings can be suppressed by hydrostatic pressure from 40 GPa to 60 GPa. At higher pressure further phase transitions are encountered.

  13. Acidic electrolyzed water as a novel transmitting medium for high hydrostatic pressure reduction of bacterial loads on shelled fresh shrimp

    Directory of Open Access Journals (Sweden)

    Suping eDu

    2016-03-01

    Full Text Available Acidic electrolyzed water (AEW, a novel non-thermal sterilization technology, is widely used in the food industry. In this study, we firstly investigated the effect of AEW as a new pressure transmitting medium for high hydrostatic pressure (AEW-HHP processing on microorganisms inactivation on shelled fresh shrimp. The optimal conditions of AEW-HHP for Vibrio parahaemolyticus inactivation on sterile shelled fresh shrimp were obtained using response surface methodology: NaCl concentration to electrolysis 1.5 g/L, treatment pressure 400 MPa, treatment time 10 min. Under the optimal conditions mentioned above, AEW dramatically enhanced the efficiency of HHP for inactivating V. parahaemolyticus and Listeria monocytogenes on artificially contaminated shelled fresh shrimp, and the log reductions were up to 6.08 and 5.71 log10 CFU/g respectively, while the common HHP could only inactivate the two pathogens up to 4.74 and 4.31 log10 CFU/g respectively. Meanwhile, scanning electron microscopy (SEM showed the same phenomenon. For the naturally contaminated shelled fresh shrimp, AEW-HHP could also significantly reduce the micro flora when examined using plate count and PCR-DGGE. There were also no significant changes, histologically, in the muscle tissues of shrimps undergoing the AEW-HHP treatment. In summary, using AEW as a new transmitting medium for HHP processing is an innovative non thermal technology for improving the food safety of shrimp and other aquatic products.

  14. Effect of hydrostatic pressure on the structural and electronic properties of Cd0.75Cr0.25S

    Science.gov (United States)

    Rani, Anita; Kaur, Kulwinder; Dhiman, Shobna; Kumar, Ranjan

    2016-05-01

    In this paper we present the results obtained from first principle calculations of the effect of hydrostatic pressure on the structural and electronic properties of Cd1-xCrxS diluted magnetic semiconductor in Zinc Blende (B3) phase at x=0.25. High pressure behavior of Cd1-xCrxS has been investigated between 0 GPa to100 GPa The calculations have been performed using Density functional theory as implemented in the Spanish Initiative for Electronic Simulations with Thousands of Atoms code using local density approximation as exchange-correlation (XC) potential. Calculated electronic band structures of Cd1-xCrxS are discussed in terms of contribution of Cr 3d5 4s1, Cd 4d10 5s2, S 3s2 3p4 orbital's. Study of band structures shows half-metallic ferromagnetic nature of Cd0.75Cr0.25S with 100% spin polarization. Under application of external pressure, the valence band and conduction band are shifted upward which leads to modification of electronic structure

  15. Allergenic response to squid (Todarodes pacificus) tropomyosin Tod p1 structure modifications induced by high hydrostatic pressure.

    Science.gov (United States)

    Jin, Yafang; Deng, Yun; Qian, Bingjun; Zhang, Yifeng; Liu, Zhenmin; Zhao, Yanyun

    2015-02-01

    The structural and allergenic modifications of tropomyosin Tod p1 (TMTp1) in fresh squids induced by high hydrostatic pressure (HHP) were investigated. The α-helix in TMTp1 decreased along with increasing pressure from 200 to 600 MPa, where almost 53% α-helix was converted into β-sheet and random coils at 600 MPa. The free sulfhydryl group dropped significantly as pressure went up, but the surface hydrophobicity increased at 200 and 400 MPa, while it slightly decreased at 600 MPa. Based on in vitro gastrointestinal digestion test, digestibility of TMTp1 was promoted by HHP treatment, in which 400 and 600 MPa were more effective in reducing the allergenicity than 200 MPa based on indirect ELISA. This study suggested that HHP can decrease allergenicity of TMTp1 by protein unfolding and secondary structure modification, thus providing potential for alleviating allergenicity of squid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Effects of High-Hydrostatic Pressure on Inactivation of Human Norovirus and Physical and Sensory Characteristics of Oysters.

    Science.gov (United States)

    Ye, Mu; Lingham, Talaysha; Huang, Yaoxin; Ozbay, Gulnihal; Ji, Lin; Karwe, Mukund; Chen, Haiqiang

    2015-06-01

    The purpose of the study was to determine the effect of high-hydrostatic pressure (HHP) on inactivation of human norovirus (HuNoV) in oysters and to evaluate organoleptic characteristics of oysters treated at pressure levels required for HuNoV inactivation. Genogroup I.1 (GI.1) or Genogroup II.4 (GII.4) HuNoV was inoculated into oysters and treated at 300 to 600 MPa at 25 and 0 °C for 2 min. After HHP, viral particles were extracted by porcine gastric mucin-conjugated magnetic beads (PGM-MBs) and viral RNA was quantified by real-time RT-PCR. Lower initial temperature (0 °C) significantly enhanced HHP inactivation of HuNoV compared to ambient temperature (25 °C; P oysters, respectively. HHP treatments did not significantly change color or texture of oyster tissue. A 1- to 5-scale hedonic sensory evaluation on appearance, aroma, color, and overall acceptability showed that pressure-treated oysters received significantly higher quality scores than the untreated control (P oysters. Oysters treated at 0 °C had slightly lower acceptability than the group treated at room temperature on day 1 (P 0.05). © 2015 Institute of Food Technologists®

  17. Effect of high hydrostatic pressure on functional properties and quality characteristics of Aloe vera gel (Aloe barbadensis Miller).

    Science.gov (United States)

    Vega-Gálvez, Antonio; Miranda, Margarita; Aranda, Mario; Henriquez, Karem; Vergara, Judith; Tabilo-Munizaga, Gipsy; Pérez-Won, Mario

    2011-12-01

    The aim of this study was to evaluate the effects of high hydrostatic pressure treatment at three pressure levels (300, 400 and 500Mpa) on the functional and quality characteristics of Aloe vera gel including vitamin C and E, aloin, minerals, phenolic content and antioxidant activity. The results show that HHP exerted a clear influence on minerals content, vitamin C and E content, antioxidant activity, total phenolic and aloin content. After 35days of storage all treated samples presented a decrease in mineral content, except for phosphorus. Total phenolic content and vitamin C and E content decreased at high pressures (500MPa), while all pressurised samples showed a higher antioxidant activity and aloin content than untreated sample after 35days of storage. The maximum values of antioxidant activity and aloin were 6.55±1.26μg/ml at 300MPa and 24.23±2.27mg/100g d.m. at 400MPa. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Age of donor alters the effect of cyclic hydrostatic pressure on production by human macrophages and osteoblasts of sRANKL, OPG and RANK

    Directory of Open Access Journals (Sweden)

    Mylchreest S

    2006-03-01

    Full Text Available Abstract Background Cyclic hydrostatic pressure within bone has been proposed both as a stimulus of aseptic implant loosening and associated bone resorption and of bone formation. We showed previously that cyclical hydrostatic pressure influenced macrophage synthesis of several factors linked to osteoclastogenesis. The osteoprotegerin/soluble receptor activator of NF-kappa β ligand /receptor activator of NF-kappa β (OPG/ RANKL/ RANK triumvirate has been implicated in control of bone resorption under various circumstances. We studied whether cyclical pressure might affect bone turnover via effects on OPG/ sRANKL/ RANK. Methods In this study, cultures of human osteoblasts or macrophages (supplemented with osteoclastogenic factors or co-cultures of macrophages and osteoblasts (from the same donor, were subjected to cyclic hydrostatic pressure. Secretion of OPG and sRANKL was assayed in the culture media and the cells were stained for RANK and osteoclast markers. Data were analysed by nonparametric statistics. Results In co-cultures of macrophages and osteoblasts, pressure modulated secretion of sRANKL or OPG in a variable manner. Examination of the OPG:sRANKL ratio in co cultures without pressurisation showed that the ratio was greater in donors 70 years. However, with pressure the difference in the OPG:sRANKL ratios between young and old donors was not significant. It was striking that in some patients the OPG:sRANKL ratio increased with pressure whereas in some it decreased. The tendency was for the ratio to decrease with pressure in patients younger than 70 years, and increase in patients ≥ 70 years (Fishers exact p Cultures of osteoblasts alone showed a significant increase in both sRANKL and OPG with pressure, and again there was a decrease in the ratio of OPG:RANKL. Secretion of sRANKL by cultures of macrophages alone was not modulated by pressure. Only sRANKL was assayed in this study, but transmembrane RANKL may also be important in

  19. Examining the role of Microcracks in Modelling the Permeability Evolution of Crustal Rocks at Elevated Hydrostatic Pressure.

    Science.gov (United States)

    Benson, P. M.; Schubnel, A.; Meredith, P. G.; Young, P.

    2005-12-01

    A key consequence of the presence of void space within rock is its significant influence upon fluid transport properties. This observation is fundamental to our understanding of crustal evolution and energy resource management, for example the efficient recovery of hydrocarbon and water resources, and the safe disposal of hazardous waste. However, the processes responsible for porosity formation are diverse, ranging from depositional processes such as sedimentary sorting and grain alignment, through diagenetic processes such as compaction and cementation, to deformational processes such as microcracking. The porosity that evolves from the superposition of these processes over time may therefore have a complex geometry or fabric. In addition, many of these processes have an inherent directionality which may lead to anisotropy of the void space, and all have been shown to play important roles in influencing the fluid transport properties of rock. The measurement of permeability at elevated pressures and the calculation of permeability from other data (such as elastic wave velocity) remains non-trivial. In particular, in order to test models that predict such relations, ideally both elastic wave velocity and permeability should be measured simultaneously. In this study, we use a novel apparatus in order to measure elastic wave velocities (P and S) contemporaneously with permeability and porosity for three rock types, a high porosity sandstone (Bentheim), a tight sandstone (Crab Orchard), and a microcracked granite (Takidani). This laboratory data is then used with permeability models of Gueguen and Dienes and Kozeny-Carman to investigate the role that void space of differing apertures imparts on the measured permeability of different rock types. Using the Kachanov non-interactive effective medium theory, measured elastic wave velocities are inverted using a least square fit, permitting the recovery of crack density evolution with increasing hydrostatic pressure. This

  20. Microbial and Sensory Effects of Combined High Hydrostatic Pressure and Dense Phase Carbon Dioxide Process on Feijoa Puree.

    Science.gov (United States)

    Duong, Trang; Balaban, Murat; Perera, Conrad; Bi, Xiufang

    2015-11-01

    High hydrostatic pressure (HHP) is used for microbial inactivation in foods. Addition of carbon dioxide (CO2) to HHP can improve microbial and enzyme inactivation. This study investigated microbial effects of combined HHP and CO2 on Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae, and evaluated sensory attributes of treated feijoa fruit puree (pH 3.2). Microorganisms in their growth media and feijoa puree were treated with HHP alone (HHP), or saturated with CO2 at 1 atm (HHPcarb), or 0.4%w/w of CO2 was injected into the package (HHPcarb+CO2). Microbial samples were processed at 200 to 400 MPa, 25 °C, 2 to 6 min. Feijoa samples were processed at 600 MPa, 20 °C, 5 min, then served with and without added sucrose (10%w/w). Treated samples were analyzed for microbial viability and sensory evaluation. Addition of CO2 enhanced microbial inactivation of HHP from 1.7-log to 4.3-log reduction in E. coli at 400 MPa, 4 min, and reduction of >6.5 logs in B. subtilis (vegetative cells) starting at 200 MPa, 2 min. For yeast, HHPcarb+CO2 increased the inactivation of HHP from 4.7-log to 6.2-log reduction at 250 MPa, 4 min. The synergistic effect of CO2 with HHP increased with increasing time and pressure. HHPcarb+CO2 treatment did not alter the appearance and color, while affecting the texture and flavor of unsweetened feijoa samples. There were no differences in sensory attributes and preferences between HHPcarb+CO2 and fresh sweetened products. Addition of CO2 in HHP treatment can reduce process pressure and time, and better preserve product quality. A higher microbial inactivation of Escherichia coli, Bacillus subtilis and Saccharomyces cerevisiae by combining dense phase carbon dioxide and high hydrostatic pressure was observed. For sweetened products there were no significant differences in sensory attributes and preferences between samples treated by the combined method and the fresh samples. In conclusion, addition of CO2 in HHP treatment of juices could

  1. Effects of High Hydrostatic Pressure on Expression Profiles of In Vitro Produced Vitrified Bovine Blastocysts.

    Science.gov (United States)

    Jiang, Zongliang; Harrington, Patrick; Zhang, Ming; Marjani, Sadie L; Park, Joonghoon; Kuo, Lynn; Pribenszky, Csaba; Tian, Xiuchun Cindy

    2016-02-17

    High hydrostatic pressure (HHP) has been used to pre-condition embryos before essential, yet potentially detrimental procedures such as cryopreservation. However, the mechanisms for HHP are poorly understood. We treated bovine blastocysts with three different HHP (40, 60 and 80 MPa) in combination with three recovery periods (0, 1 h, 2 h post HHP). Re-expansion rates were significantly higher at 40 and 60 but lower at 80 MPa after vitrification-warming in the treated groups than controls. Microarray analysis revealed 399 differentially expressed transcripts, representing 254 unique genes, among different groups. Gene ontology analysis indicated that HHP at 40 and 60 MPa promoted embryo competence through down-regulation of genes in cell death and apoptosis, and up-regulation of genes in RNA processing, cellular growth and proliferation. In contrast, 80 MPa up-regulated genes in apoptosis, and down-regulated protein folding and cell cycle-related genes. Moreover, gene expression was also influenced by the length of the recovery time after HHP. The significantly over-represented categories were apoptosis and cell death in the 1 h group, and protein folding, response to unfolded protein and cell cycle in the 2 h group compared to 0 h. Taken together, HHP promotes competence of vitrified bovine blastocysts through modest transcriptional changes.

  2. Nonthermal Pasteurization of Fermented Green Table Olives by means of High Hydrostatic Pressure Processing

    Directory of Open Access Journals (Sweden)

    Anthoula A. Argyri

    2014-01-01

    Full Text Available Green fermented olives cv. Halkidiki were subjected to different treatments of high hydrostatic pressure (HHP processing (400, 450, and 500 MPa for 15 or 30 min. Total viable counts, lactic acid bacteria and yeasts/moulds, and the physicochemical characteristics of the product (pH, colour, and firmness were monitored right after the treatment and after 7 days of storage at 20°C to allow for recovery of injured cells. The treatments at 400 MPa for 15 and 30 min, 450 MPa for 15 and 30 min, and 500 MPa for 15 min were found insufficient as a recovery of the microbiota was observed. The treatment at 500 MPa for 30 min was effective in reducing the olive microbiota below the detection limit of the enumeration method after the treatment and after 1 week of storage and was chosen as being more appropriate for storing olives for an extended time period (5 months. After 5 months of storage at 20°C, no microbiota was detected in treated samples, while significant changes for both HHP treated and untreated olives were observed for colour parameters only (minor degradation. In conclusion, HHP treatment may introduce a reliable nonthermal pasteurization method to extend the microbiological shelf-life of fermented table olives.

  3. Effects of High Hydrostatic Pressure on Expression Profiles of In Vitro Produced Vitrified Bovine Blastocysts

    Science.gov (United States)

    Jiang, Zongliang; Harrington, Patrick; Zhang, Ming; Marjani, Sadie L.; Park, Joonghoon; Kuo, Lynn; Pribenszky, Csaba; Tian, Xiuchun (Cindy)

    2016-01-01

    High hydrostatic pressure (HHP) has been used to pre-condition embryos before essential, yet potentially detrimental procedures such as cryopreservation. However, the mechanisms for HHP are poorly understood. We treated bovine blastocysts with three different HHP (40, 60 and 80 MPa) in combination with three recovery periods (0, 1 h, 2 h post HHP). Re-expansion rates were significantly higher at 40 and 60 but lower at 80 MPa after vitrification-warming in the treated groups than controls. Microarray analysis revealed 399 differentially expressed transcripts, representing 254 unique genes, among different groups. Gene ontology analysis indicated that HHP at 40 and 60 MPa promoted embryo competence through down-regulation of genes in cell death and apoptosis, and up-regulation of genes in RNA processing, cellular growth and proliferation. In contrast, 80 MPa up-regulated genes in apoptosis, and down-regulated protein folding and cell cycle-related genes. Moreover, gene expression was also influenced by the length of the recovery time after HHP. The significantly over-represented categories were apoptosis and cell death in the 1 h group, and protein folding, response to unfolded protein and cell cycle in the 2 h group compared to 0 h. Taken together, HHP promotes competence of vitrified bovine blastocysts through modest transcriptional changes. PMID:26883277

  4. Influence of High Hydrostatic Pressure Technology on Wine Chemical and Sensorial Characteristics: Potentialities and Drawbacks.

    Science.gov (United States)

    Nunes, Cláudia; Santos, Mickael C; Saraiva, Jorge A; Rocha, Sílvia M; Coimbra, Manuel A

    During last years, scientific research on high hydrostatic pressure (HHP) as a nonthermal processing technology for preservation or aging of wine has increased substantially. HHP between 200 and 500MPa is able to inactivate bacteria and yeasts in red and white wines, suggesting that it may be used for wine preservation. However, these treatments have been shown to promote changes on sensorial and physicochemical characteristics in both red and white wines, not immediately in the first month, but along storage. The changes are observed in wine color, aroma, and taste due mainly to reactions of phenolic compounds, sugars, and proteins. These reactions have been associated with those observed during wine aging, leading to aged-like wine characteristics perceived by sensorial analysis. This chapter will present the influence of HHP technology on wine chemical and sensorial characteristics, criticaly discussing its potentialities and drawbacks. The appropriate use of HHP, based on the scientific knowledge of the reactions occuring in wine promoted by HHP, will allow to exploit this technology for wine production achieving distinct characteristics to address particular market and consumer demands. © 2017 Elsevier Inc. All rights reserved.

  5. Super-fine rice-flour production by enzymatic treatment with high hydrostatic pressure processing

    Science.gov (United States)

    Kido, Miyuki; Kobayashi, Kaneto; Chino, Shuji; Nishiwaki, Toshikazu; Homma, Noriyuki; Hayashi, Mayumi; Yamamoto, Kazutaka; Shigematsu, Toru

    2013-06-01

    In response to the recent expansion of rice-flour use, we established a new rice-flour manufacturing process through the application of high hydrostatic pressure (HP) to the enzyme-treated milling method. HP improved both the activity of pectinase, which is used in the enzyme-treated milling method and the water absorption capacity of rice grains. These results indicate improved damage to the tissue structures of rice grains. In contrast, HP suppressed the increase in glucose, which may have led to less starch damage. The manufacturing process was optimized to HP treatment at 200 MPa (40°C) for 1 h and subsequent wet-pulverization at 11,000 rpm. Using this process, rice flour with an exclusively fine mean particle size less than 20 μm and starch damage less than 5% was obtained from rice grains soaked in an enzyme solution and distilled water. This super-fine rice flour is suitable for bread, pasta, noodles and Western-style sweets.

  6. bcc-to-hcp transformation pathways for iron versus hydrostatic pressure: Coupled shuffle and shear modes

    Science.gov (United States)

    Liu, J. B.; Johnson, D. D.

    2009-04-01

    Using density-functional theory, we calculate the potential-energy surface (PES), minimum-energy pathway (MEP), and transition state (TS) versus hydrostatic pressure σhyd for the reconstructive transformation in Fe from body-centered cubic (bcc) to hexagonal closed-packed (hcp). At fixed σhyd , the PES is described by coupled shear (γ) and shuffle (η) modes and is determined from structurally minimized hcp-bcc energy differences at a set of (η,γ) . We fit the PES using symmetry-adapted polynomials, permitting the MEP to be found analytically. The MEP is continuous and fully explains the transformation and its associated magnetization and volume discontinuity at TS. We show that σhyd (while not able to induce shear) dramatically alters the MEP to drive reconstruction by a shuffle-only mode at ≤30GPa , as observed. Finally, we relate our polynomial-based results to Landau and nudge-elastic-band approaches and show they yield incorrect MEP in general.

  7. Molecular basis of the behavior of hepatitis a virus exposed to high hydrostatic pressure.

    Science.gov (United States)

    D'Andrea, Lucía; Pérez-Rodríguez, Francisco J; Costafreda, M Isabel; Beguiristain, Nerea; Fuentes, Cristina; Aymerich, Teresa; Guix, Susana; Bosch, Albert; Pintó, Rosa M

    2014-10-01

    Food-borne hepatitis A outbreaks may be prevented by subjecting foods at risk of virus contamination to moderate treatments of high hydrostatic pressure (HHP). A pretreatment promoting hepatitis A virus (HAV) capsid-folding changes enhances the virucidal effect of HHP, indicating that its efficacy depends on capsid conformation. HAV populations enriched in immature capsids (125S provirions) are more resistant to HHP, suggesting that mature capsids (150S virions) are more susceptible to this treatment. In addition, the monoclonal antibody (MAb) K24F2 epitope contained in the immunodominant site is a key factor for the resistance to HHP. Changes in capsid folding inducing a loss of recognition by MAb K24F2 render more susceptible conformations independently of the origin of such changes. Accordingly, codon usage-associated folding changes and changes stimulated by pH-dependent breathings, provided they confer a loss of recognition by MAb K24F2, induce a higher susceptibility to HHP. In conclusion, the resistance of HAV to HHP treatments may be explained by a low proportion of 150S particles combined with a good accessibility of the epitope contained in the immunodominant site close to the 5-fold axis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Electromagnetically induced transparency in a two-dimensional quantum dot: Effects of impurity, external fields, hydrostatic pressure and temperature

    Science.gov (United States)

    Rezaei, G.; Kish, S. Shojaeian; Vaseghi, B.; Taghizadeh, S. F.

    2014-08-01

    In this paper effects of external electric and magnetic fields, hydrostatic pressure and temperature on the electromagnetically induced transparency of a two-dimensional quantum dot are investigated. To do this, absorption as well as refractive index and the group velocity of the probe light pulse in the presence of external electric and magnetic fields are discussed. The results show that the electromagnetically induced transparency occurs in the system and its frequency, transparency window and group velocity of the probe field are strongly affected by the confinement potential, external fields, hydrostatic pressure and temperature. It is found that, in comparison with the atomic systems, electromagnetically induced transparency and the group velocity of light can be controlled via the confinement potential and external perturbations.

  9. Application and possible benefits of high hydrostatic pressure or high-pressure homogenization on beer processing: A review.

    Science.gov (United States)

    Santos, Lígia Mr; Oliveira, Fabiano A; Ferreira, Elisa Hr; Rosenthal, Amauri

    2017-10-01

    Beer is the most consumed beverage in the world, especially in countries such as USA, China and Brazil.It is an alcoholic beverage made from malted cereals, and the barley malt is the main ingredient, added with water, hops and yeast. High-pressure processing is a non-traditional method to preserve food and beverages. This technology has become more interesting compared to heat pasteurization, due to the minimal changes it brings to the original nutritional and sensory characteristics of the product, and it comprises two processes: high hydrostatic pressure, which is the most industrially used process, and high-pressure homogenization. The use of high pressure almost does not affect the molecules that are responsible for the aroma and taste, pigments and vitamins compared to the conventional thermal processes. Thus, the products processed by high-pressure processing have similar characteristics compared to fresh products, including beer. The aim of this paper was to review what has been investigated about beer processing using this technology regarding the effects on physicochemical, microbiology and sensory characteristics and related issues. It is organized by processing steps, since high pressure can be applied to malting, mashing, boiling, filtration and pasteurization. Therefore, the beer processed with high-pressure processing may have an extended shelf-life because this process can inactivate beer spoilage microorganisms and result in a superior sensory quality related to freshness and preservation of flavors as it does to juices that are already commercialized. However, beyond this application, high-pressure processing can modify protein structures, such as enzymes that are present in the malt, like α- and β-amylases. This process can activate enzymes to promote, for example, saccharification, or instead inactivate at the end of mashing, depending on the pressure the product is submitted, besides being capable of isomerizing hops to raise beer bitterness

  10. Enzymatic and phytochemical stabilization of orange-strawberry-banana beverages by high hydrostatic pressure and mild heat.

    Science.gov (United States)

    Escobedo-Avellaneda, Zamantha; Pérez-Simón, Izaskun; Lavilla-Martín, María; Baranda-González, Ana; Welti-Chanes, Jorge

    2017-03-01

    A new approach to the use of high hydrostatic pressure is its combination with high and intermediate temperatures applied to obtain safe foods of high quality. The effect of high hydrostatic pressure on color, residual polyphenol oxidase and pectin methylesterase activity, and total phenolic and l-ascorbic acid contents of orange-strawberry-banana beverages was evaluated. Beverages were treated at 500 and 600 MPa at 19-64 ℃ during 2-10 min. The effect of the come up time was also evaluated and results were compared with the untreated and the thermally processed (80 ℃/7 min) products. Untreated beverages had total phenolic content of 210.2±12.3 mg gallic acid/100 g and 19.1 ± 0.6 mg l-ascorbic acid/100 g. For most high hydrostatic pressure treatment conditions, total phenolic content, l-ascorbic acid, and color did not change significantly. Maximum levels of inactivation of polyphenol oxidase and pectin methylesterase were 96.2 and 48% at 600 MPa/64 ℃/10 min, while the thermal treatment led to inactivation of 99.6 and 94.1% of both enzymes, but with negative color changes. l-ascorbic acid content was slightly decreased with the thermal treatment while total phenolic content was not affected. High hydrostatic pressure treatments of beverages at 600 MPa/64 ℃/10 min are recommended to retain maximal total phenolic content and l-ascorbic acid and achieve an acceptable polyphenol oxidase inactivation level.

  11. Strain test and stress intensity assessment of a CPR1000 Nuclear Power Plant pressurizer during pre-delivery hydrostatic test

    OpenAIRE

    Lin, Lei; Xu, Decheng; Yu, Min; Xue, Fei; Jiang, Jiawang; Zhang,Guodong; Zhao, Wensheng

    2014-01-01

    Strain gages are applied to get the strain and stress of a CPR1000 Nuclear Power Plant (NPP) pressurizer during the pre-delivery hydrostatic test. The measured strain curves are discussed to find the deformation features of the cylinder. The stresses of cylindrical base metal, longitudinal welds and girth welds are calculated and compared with the theoretical values. The stresses in girth welds and upper head nozzle welds show non-uniformity at these areas. The possible reasons are discussed ...

  12. Hydrostatic pressure does not cause detectable changes in survival of human retinal ganglion cells.

    Directory of Open Access Journals (Sweden)

    Andrew Osborne

    Full Text Available PURPOSE: Elevated intraocular pressure (IOP is a major risk factor for glaucoma. One consequence of raised IOP is that ocular tissues are subjected to increased hydrostatic pressure (HP. The effect of raised HP on stress pathway signaling and retinal ganglion cell (RGC survival in the human retina was investigated. METHODS: A chamber was designed to expose cells to increased HP (constant and fluctuating. Accurate pressure control (10-100 mmHg was achieved using mass flow controllers. Human organotypic retinal cultures (HORCs from donor eyes (<24 h post mortem were cultured in serum-free DMEM/HamF12. Increased HP was compared to simulated ischemia (oxygen glucose deprivation, OGD. Cell death and apoptosis were measured by LDH and TUNEL assays, RGC marker expression by qRT-PCR (THY-1 and RGC number by immunohistochemistry (NeuN. Activated p38 and JNK were detected by Western blot. RESULTS: Exposure of HORCs to constant (60 mmHg or fluctuating (10-100 mmHg; 1 cycle/min pressure for 24 or 48 h caused no loss of structural integrity, LDH release, decrease in RGC marker expression (THY-1 or loss of RGCs compared with controls. In addition, there was no increase in TUNEL-positive NeuN-labelled cells at either time-point indicating no increase in apoptosis of RGCs. OGD increased apoptosis, reduced RGC marker expression and RGC number and caused elevated LDH release at 24 h. p38 and JNK phosphorylation remained unchanged in HORCs exposed to fluctuating pressure (10-100 mmHg; 1 cycle/min for 15, 30, 60 and 90 min durations, whereas OGD (3 h increased activation of p38 and JNK, remaining elevated for 90 min post-OGD. CONCLUSIONS: Directly applied HP had no detectable impact on RGC survival and stress-signalling in HORCs. Simulated ischemia, however, activated stress pathways and caused RGC death. These results show that direct HP does not cause degeneration of RGCs in the ex vivo human retina.

  13. Hydrostatic Pressure Does Not Cause Detectable Changes in Survival of Human Retinal Ganglion Cells

    Science.gov (United States)

    Osborne, Andrew; Aldarwesh, Amal; Rhodes, Jeremy D.; Broadway, David C.; Everitt, Claire; Sanderson, Julie

    2015-01-01

    Purpose Elevated intraocular pressure (IOP) is a major risk factor for glaucoma. One consequence of raised IOP is that ocular tissues are subjected to increased hydrostatic pressure (HP). The effect of raised HP on stress pathway signaling and retinal ganglion cell (RGC) survival in the human retina was investigated. Methods A chamber was designed to expose cells to increased HP (constant and fluctuating). Accurate pressure control (10-100mmHg) was achieved using mass flow controllers. Human organotypic retinal cultures (HORCs) from donor eyes (<24h post mortem) were cultured in serum-free DMEM/HamF12. Increased HP was compared to simulated ischemia (oxygen glucose deprivation, OGD). Cell death and apoptosis were measured by LDH and TUNEL assays, RGC marker expression by qRT-PCR (THY-1) and RGC number by immunohistochemistry (NeuN). Activated p38 and JNK were detected by Western blot. Results Exposure of HORCs to constant (60mmHg) or fluctuating (10-100mmHg; 1 cycle/min) pressure for 24 or 48h caused no loss of structural integrity, LDH release, decrease in RGC marker expression (THY-1) or loss of RGCs compared with controls. In addition, there was no increase in TUNEL-positive NeuN-labelled cells at either time-point indicating no increase in apoptosis of RGCs. OGD increased apoptosis, reduced RGC marker expression and RGC number and caused elevated LDH release at 24h. p38 and JNK phosphorylation remained unchanged in HORCs exposed to fluctuating pressure (10-100mmHg; 1 cycle/min) for 15, 30, 60 and 90min durations, whereas OGD (3h) increased activation of p38 and JNK, remaining elevated for 90min post-OGD. Conclusions Directly applied HP had no detectable impact on RGC survival and stress-signalling in HORCs. Simulated ischemia, however, activated stress pathways and caused RGC death. These results show that direct HP does not cause degeneration of RGCs in the ex vivo human retina. PMID:25635827

  14. Impact of high hydrostatic pressure processing on individual cellular resuscitation times and protein aggregates in Escherichia coli.

    Science.gov (United States)

    Govers, Sander K; Aertsen, Abram

    2015-11-20

    Live cell biology approaches can contribute to a more comprehensive understanding of heterogeneous injury and resuscitation phenomena in stressed populations of foodborne pathogens and spoilage microorganisms, and in turn lead to better insights in the mechanisms and dynamics of inactivation that can improve food safety and preservation measures. Especially in the context of designing minimal processing strategies, which depend on a synergistic combination of different mild stresses to ensure sufficient microbial reduction, a more profound understanding of the impact of each such stress or hurdle is mandatory. High hydrostatic pressure (HHP) stress is an interesting hurdle in this concept since cells that manage to survive this stress nevertheless tend to be injured and sensitized to subsequent stresses. In this study, populations of Escherichia coli were subjected to different HHP intensities and studied at the single-cell level with time-lapse fluorescence microscopy while monitoring resuscitation times and protein aggregate integrity at the single-cell level. This approach revealed that higher pressure intensities lead to longer and more variable resuscitation times of surviving cells as well as an increased dispersal of intracellular protein aggregates. Interestingly, at mild HHP exposure, cells within the population incurring less dispersion of protein aggregates appeared to have a higher probability of survival. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Effects of high hydrostatic pressure on the structure and potential allergenicity of the major allergen bovine β-lactoglobulin.

    Science.gov (United States)

    Meng, Xuanyi; Bai, Yuxin; Gao, Jinyan; Li, Xin; Chen, Hongbing

    2017-03-15

    Bovine β-lactoglobulin (β-Lg) is recognized as a significant milk allergen in several countries. In this study, β-Lg was isolated and treated with high hydrostatic pressure (HHP) at 100, 200, 300, 400, and 500MPa. The allergenic properties of the HHP-treated β-Lg were characterized by indirect competitive enzyme-linked immunosorbent assay with anti-β-Lg rabbit antibody and the sera of patients allergic to cows' milk. The conformation of the HHP-treated β-Lg was examined with ultraviolet absorption spectroscopy, endogenous fluorescence spectroscopy, exogenous fluorescence spectroscopy, and circular dichroism spectroscopy analyses. The results indicated that IgG binding increased with treatment pressure, and IgE binding was lowest at 200MPa and highest at 400MPa. The tertiary structure of β-Lg changed significantly after HHP, whereas the primary and secondary structures remained stable. Overall, this study suggests that the conformational changes in HHP-treated β-Lg contribute to its altered allergenicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effects of hydrostatic pressure on growth and luminescence of a moderately-piezophilic luminous bacteria Photobacterium phosphoreum ANT-2200.

    Directory of Open Access Journals (Sweden)

    Séverine Martini

    Full Text Available Bacterial bioluminescence is commonly found in the deep sea and depends on environmental conditions. Photobacterium phosphoreum ANT-2200 has been isolated from the NW Mediterranean Sea at 2200-m depth (in situ temperature of 13°C close to the ANTARES neutrino telescope. The effects of hydrostatic pressure on its growth and luminescence have been investigated under controlled laboratory conditions, using a specifically developed high-pressure bioluminescence system. The growth rate and the maximum population density of the strain were determined at different temperatures (from 4 to 37°C and pressures (from 0.1 to 40 MPa, using the logistic model to define these two growth parameters. Indeed, using the growth rate only, no optimal temperature and pressure could be determined. However, when both growth rate and maximum population density were jointly taken into account, a cross coefficient was calculated. By this way, the optimum growth conditions for P. phosphoreum ANT-2200 were found to be 30°C and, 10 MPa defining this strain as mesophile and moderately piezophile. Moreover, the ratio of unsaturated vs. saturated cellular fatty acids was found higher at 22 MPa, in agreement with previously described piezophile strains. P. phosphoreum ANT-2200 also appeared to respond to high pressure by forming cell aggregates. Its maximum population density was 1.2 times higher, with a similar growth rate, than at 0.1 MPa. Strain ANT-2200 grown at 22 MPa produced 3 times more bioluminescence. The proposed approach, mimicking, as close as possible, the in situ conditions, could help studying deep-sea bacterial bioluminescence and validating hypotheses concerning its role into the carbon cycle in the deep ocean.

  17. Effects of hydrostatic pressure on growth and luminescence of a moderately-piezophilic luminous bacteria Photobacterium phosphoreum ANT-2200.

    Science.gov (United States)

    Martini, Séverine; Al Ali, Badr; Garel, Marc; Nerini, David; Grossi, Vincent; Pacton, Muriel; Casalot, Laurence; Cuny, Philippe; Tamburini, Christian

    2013-01-01

    Bacterial bioluminescence is commonly found in the deep sea and depends on environmental conditions. Photobacterium phosphoreum ANT-2200 has been isolated from the NW Mediterranean Sea at 2200-m depth (in situ temperature of 13°C) close to the ANTARES neutrino telescope. The effects of hydrostatic pressure on its growth and luminescence have been investigated under controlled laboratory conditions, using a specifically developed high-pressure bioluminescence system. The growth rate and the maximum population density of the strain were determined at different temperatures (from 4 to 37°C) and pressures (from 0.1 to 40 MPa), using the logistic model to define these two growth parameters. Indeed, using the growth rate only, no optimal temperature and pressure could be determined. However, when both growth rate and maximum population density were jointly taken into account, a cross coefficient was calculated. By this way, the optimum growth conditions for P. phosphoreum ANT-2200 were found to be 30°C and, 10 MPa defining this strain as mesophile and moderately piezophile. Moreover, the ratio of unsaturated vs. saturated cellular fatty acids was found higher at 22 MPa, in agreement with previously described piezophile strains. P. phosphoreum ANT-2200 also appeared to respond to high pressure by forming cell aggregates. Its maximum population density was 1.2 times higher, with a similar growth rate, than at 0.1 MPa. Strain ANT-2200 grown at 22 MPa produced 3 times more bioluminescence. The proposed approach, mimicking, as close as possible, the in situ conditions, could help studying deep-sea bacterial bioluminescence and validating hypotheses concerning its role into the carbon cycle in the deep ocean.

  18. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings.

    Science.gov (United States)

    Teng, Lei; Zhang, Hongying; Dong, Yongkang; Zhou, Dengwang; Jiang, Taofei; Gao, Wei; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi

    2016-09-15

    A temperature-compensated distributed hydrostatic pressure sensor based on Brillouin dynamic gratings (BDGs) is proposed and demonstrated experimentally for the first time, to the best of our knowledge. The principle is to measure the hydrostatic pressure induced birefringence changes through exciting and probing the BDGs in a thin-diameter pure silica polarization-maintaining photonic crystal fiber. The temperature cross-talk to the hydrostatic pressure sensing can be compensated through measuring the temperature-induced Brillouin frequency shift (BFS) changes using Brillouin optical time-domain analysis. A distributed measurement of hydrostatic pressure is demonstrated experimentally using a 4-m sensing fiber, which has a high sensitivity, with a maximum measurement error less than 0.03 MPa at a 20-cm spatial resolution.

  19. Dynamic structural changes in microbial membranes in response to high hydrostatic pressure analyzed using time-resolved fluorescence anisotropy measurement.

    Science.gov (United States)

    Abe, Fumiyoshi

    2013-12-15

    High hydrostatic pressure has a profound physiological impact on lipid membranes, primarily resulting in tighter packing and restriction of acyl-chain motion. To fulfill membrane protein functions in high-pressure environments, deep-sea organisms possess specialized cell membranes. Although the effects of high-pressure on model membranes have been investigated in great detail, high-pressure-induced structural changes in living cell membranes remain to be elucidated. Of the spectroscopic techniques available to date, fluorescence anisotropy measurement is a common useful method that provides information on dynamic membrane properties. This mini-review focuses on pressure-induced changes in natural cell membranes, analyzed by means of high-pressure time-resolved fluorescence anisotropy measurement (HP-TRFAM). Specifically, the role of eicosapentaenoic acid in deep-sea piezophiles is described in terms of the structural integrity of the membrane under high pressure. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Genes Required for Growth at High Hydrostatic Pressure in Escherichia coli K-12 Identified by Genome-Wide Screening

    Science.gov (United States)

    Black, S. Lucas; Dawson, Angela; Ward, F. Bruce; Allen, Rosalind J.

    2013-01-01

    Despite the fact that much of the global microbial biosphere is believed to exist in high pressure environments, the effects of hydrostatic pressure on microbial physiology remain poorly understood. We use a genome-wide screening approach, combined with a novel high-throughput high-pressure cell culture method, to investigate the effects of hydrostatic pressure on microbial physiology in vivo. The Keio collection of single-gene deletion mutants in Escherichia coli K-12 was screened for growth at a range of pressures from 0.1 MPa to 60 MPa. This led to the identification of 6 genes, rodZ, holC, priA, dnaT, dedD and tatC, whose products were required for growth at 30 MPa and a further 3 genes, tolB, rffT and iscS, whose products were required for growth at 40 MPa. Our results support the view that the effects of pressure on cell physiology are pleiotropic, with DNA replication, cell division, the cytoskeleton and cell envelope physiology all being potential failure points for cell physiology during growth at elevated pressure. PMID:24040140

  1. The Alteration of the Epidermal Basement Membrane Complex of Human Nevus Tissue and Keratinocyte Attachment after High Hydrostatic Pressurization

    Directory of Open Access Journals (Sweden)

    Naoki Morimoto

    2016-01-01

    Full Text Available We previously reported that human nevus tissue was inactivated after high hydrostatic pressure (HHP higher than 200 MPa and that human cultured epidermis (hCE engrafted on the pressurized nevus at 200 MPa but not at 1000 MPa. In this study, we explore the changes to the epidermal basement membrane in detail and elucidate the cause of the difference in hCE engraftment. Nevus specimens of 8 mm in diameter were divided into five groups (control and 100, 200, 500, and 1000 MPa. Immediately after HHP, immunohistochemical staining was performed to detect the presence of laminin-332 and type VII collagen, and the specimens were observed by transmission electron microscopy (TEM. hCE was placed on the pressurized nevus specimens in the 200, 500, and 1000 MPa groups and implanted into the subcutis of nude mice; the specimens were harvested at 14 days after implantation. Then, human keratinocytes were seeded on the pressurized nevus and the attachment was evaluated. The immunohistochemical staining results revealed that the control and 100 MPa, 200 MPa, and 500 MPa groups were positive for type VII collagen and laminin-332 immediately after HHP. TEM showed that, in all of the groups, the lamina densa existed; however, anchoring fibrils were not clearly observed in the 500 or 1000 MPa groups. Although the hCE took in the 200 and 500 MPa groups, keratinocyte attachment was only confirmed in the 200 MPa group. This result indicates that HHP at 200 MPa is preferable for inactivating nevus tissue to allow its reuse for skin reconstruction in the clinical setting.

  2. Stability of different influenza subtypes: How can high hydrostatic pressure be a useful tool for vaccine development?

    Science.gov (United States)

    Dumard, Carlos Henrique; Barroso, Shana P C; Santos, Ana Clara V; Alves, Nathalia S; Couceiro, José Nelson S S; Gomes, Andre M O; Santos, Patricia S; Silva, Jerson L; Oliveira, Andréa C

    2017-04-06

    Avian influenza A viruses can cross naturally into mammals and cause severe diseases, as observed for H5N1. The high lethality of human infections causes major concerns about the real risk of a possible pandemic of severe diseases to which human susceptibility may be high and universal. High hydrostatic pressure (HHP) is a valuable tool for studies regarding the folding of proteins and the assembly of macromolecular structures such as viruses; furthermore, HHP has already been demonstrated to promote viral inactivation. Here, we investigated the structural stability of avian and human influenza viruses using spectroscopic and light-scattering techniques. We found that both particles have similar structural stabilities and that HHP promotes structural changes. HHP induced slight structural changes to both human and avian influenza viruses, and these changes were largely reversible when the pressure returned to its initial level. The spectroscopic data showed that H3N2 was more pressure-sensitive than H3N8. Structural changes did not predict changes in protein function, as H3N2 fusion activity was not affected, while H3N8 fusion activity drastically decreased. The fusion activity of H1N1 was also strongly affected by HHP. In all cases, HHP caused inactivation of the different influenza viruses. HHP may be a useful tool for vaccine development, as it induces minor and reversible structural changes that may be associated with partial preservation of viral biological activities and may potentiate their immunogenic response while abolishing their infectivity. We also confirmed that, although pressure does not promote drastic changes in viral particle structure, it can distinctly affect viral fusion activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Phospholipids fatty acids of drinking water reservoir sedimentary microbial community: Structure and function responses to hydrostatic pressure and other physico-chemical properties.

    Science.gov (United States)

    Chai, Bei-Bei; Huang, Ting-Lin; Zhao, Xiao-Guang; Li, Ya-Jiao

    2015-07-01

    Microbial communities in three drinking water reservoirs, with different depth in Xi'an city, were quantified by phospholipids fatty acids analysis and multivariate statistical analysis was employed to interpret their response to different hydrostatic pressure and other physico-chemical properties of sediment and overlying water. Principle component analyses of sediment characteristics parameters showed that hydrostatic pressure was the most important effect factor to differentiate the overlying water quality from three drinking water reservoirs from each other. NH4+ content in overlying water was positive by related to hydrostatic pressure, while DO in water-sediment interface and sediment OC in sediment were negative by related with it. Three drinking water reservoir sediments were characterized by microbial communities dominated by common and facultative anaerobic Gram-positive bacteria, as well as, by sulfur oxidizing bacteria. Hydrostatic pressure and physico-chemical properties of sediments (such as sediment OC, sediment TN and sediment TP) were important effect factors to microbial community structure, especially hydrostatic pressure. It is also suggested that high hydrostatic pressure and low dissolved oxygen concentration stimulated Gram-positive and sulfate-reducing bacteria (SRB) bacterial population in drinking water reservoir sediment. This research supplied a successful application of phospholipids fatty acids and multivariate analysis to investigate microbial community composition response to different environmental factors. Thus, few physico-chemical factors can be used to estimate composition microbial of community as reflected by phospholipids fatty acids, which is difficult to detect.

  4. Effect of hydrostatic pressure on the superconducting properties of quasi-1D superconductor K2Cr3As3.

    Science.gov (United States)

    Sun, J P; Jiao, Y Y; Yang, C L; Wu, W; Yi, C J; Wang, B S; Shi, Y G; Luo, J L; Uwatoko, Y; Cheng, J-G

    2017-10-19

    K 2 Cr 3 As 3 is a newly discovered quasi-1D superconductor with a T c   =  6.1 K and an upper critical field µ 0 H c2 (0)  ≈  40 T three times larger than the Pauli paramagnetic limit µ 0 H p that is suggestive of a spin-triplet Cooper pairing. In this paper, we have investigated the effects of hydrostatic pressure on its T c and µ 0 H c2 by measuring the ac magnetic susceptibility χ'(T) under magnetic fields at various hydrostatic pressures up to 7.5 GPa. The major findings include: (1) T c is suppressed gradually to below 2 K at 7.5 GPa; (2) the estimated µ 0 H c2 (0) decreases dramatically to below µ 0 H p above ~2 GPa and becomes slight lower than the orbital limiting field [Formula: see text] estimated from the initial slope of upper critical field via [Formula: see text]  =  -0.73T c dH c2 /[Formula: see text] in the clean limit; (3) the estimated Maki parameter α  =  √2[Formula: see text]/H p drops from 4 at ambient pressure to well below 1 at P  >  2 GPa, suggesting the crossover from Pauli paramagnetic limiting to orbital limiting in the pair breaking process upon increasing pressure. These observations suggested that the application of hydrostatic pressure could drive K 2 Cr 3 As 3 away from the ferromagnetic instability and lead to a breakdown of the spin-triplet pairing channel. We have also made a side-by-side comparison and discussed the distinct effects of chemical and physical pressures on the superconducting properties of K 2 Cr 3 As 3 .

  5. Effect of hydrostatic pressure on the superconducting properties of quasi-one-dimensional superconductor K2Cr3As3.

    Science.gov (United States)

    Sun, Jianping; Jiao, Yuanyuan; Yang, Chongli; Wu, Wei; Yi, Changjiang; Wang, Bosen; Shi, You Guo; Luo, Jian Lin; Uwatoko, Yoshiya; Cheng, Jinguang

    2017-09-14

    K2Cr3As3 is a newly discovered quasi-one-dimensional superconductor with a Tc = 6.1 K and an upper critical field μ0Hc2(0) ~ 40 T three times larger than the Pauli paramagnetic limit μ0Hp that is suggestive of a spin-triplet Cooper pairing. In this paper, we have investigated the effects of hydrostatic pressure on its Tc and μ0Hc2 by measuring the ac magnetic susceptibility χ(T) under magnetic fields at various hydrostatic pressures up to 7.5 GPa. The major findings include: (1) Tc is suppressed gradually to below 2 K at 7.5 GPa; (2) the estimated μ0Hc2(0) decreases dramatically to below μ0Hp above ~2 GPa and becomes slight lower than the orbital limiting field μ0Hc2orb(0) estimated from the initial slope of upper critical field via μ0Hc2orb(0) = -0.73TcdHc2/dTc|Tc in the clean limit; (3) the estimated Maki parameter α = √2Hc2orb(0)/Hp drops from 4 at ambient pressure to well below 1 at P >2 GPa, suggesting the crossover from Pauli paramagnetic limiting to orbital limiting in the pair breaking process upon increasing pressure. These observations suggested that the application of hydrostatic pressure could drive K2Cr3As3 away from the ferromagnetic instability and lead to a breakdown of the spin-triplet pairing channel. We have also made a side-by-side comparison and discussed the distinct effects of chemical and physical pressures on the superconducting properties of K2Cr3As3. © 2017 IOP Publishing Ltd.

  6. Effects of Combined High Hydrostatic Pressure and Dense Phase Carbon Dioxide on the Activity, Structure and Size of Polyphenoloxidase.

    Science.gov (United States)

    Duong, Trang; Balaban, Murat; Perera, Conrad

    2015-11-01

    High hydrostatic pressure (HHP) may activate undesirable enzymes such as polyphenoloxidase (PPO). Carbon dioxide (CO2 ) addition to HHP could increase enzyme inactivation. We investigated the inactivation of combined HHP and dense phase carbon dioxide process on activity, secondary conformation and size of pure PPO from mushroom. Solutions (2.35μM, in phosphate buffer pH 6.8) were treated with HHP alone (HHP), or 3.6% w/w of CO2 was injected into the package (HHP+CO2). Treatment conditions were 600 MPa, 20 °C, for 1, 3, 5, 7, and 9 min. HHP+CO2 treatment significantly decreased residual enzyme activity (REA) to 30% to 12% after 1 to 9 min, respectively, whereas only HHP had no significant effect. Both HHP and HHP+CO2 treatments caused changes in secondary conformations, however HHP+CO2 changes were more extensive. Alpha-helix fractions were reduced by 32% and 41%, while β sheet, turn and unordered increased by 63% and 213%, 100% and 71%, and 118% and 82% for HHP and HHP+CO2, respectively after 9 min. The protein size in HHP+CO2 samples was 5- to 6-fold larger than that of Control and HHP treatment, and this increase was inversely correlated with REA. The best inactivation kinetics of HHP+CO2 model was the 2-fractional model with 2 simultaneous 1st-order steps, contributing 70% and 30% to original enzyme activity, with k(labile) = 12.15 min(-1) and k(stable) = 0.07 min(-1), respectively. No recovery in activity, secondary conformation and size in all samples were observed after 1-mo storage. Addition of CO2 in HHP treatment can improve enzyme inactivation, and therefore product shelf-life and quality. High hydrostatic pressure (HHP) achieves the safety of foods as a nonthermal method, but it may activate undesirable enzymes resulting in short shelf life due to, for example flavor and color changes. Our study determined that addition of CO2 to HHP has significant effects on enzyme inactivation, secondary conformational and molecular size changes of mushroom PPO

  7. Impact of Radio Frequency, Microwaving, and High Hydrostatic Pressure at Elevated Temperature on the Nutritional and Antinutritional Components in Black Soybeans.

    Science.gov (United States)

    Zhong, Yu; Wang, Zhuyi; Zhao, Yanyun

    2015-12-01

    In this study, the effects of high hydrostatic pressure (HHP) at elevated temperature (60 °C) and 2 dielectric heating (DH) methods (radio frequency [RF], and microwaving [MW]) on the nutritional compositions and removal of antinutritional factors in black soybeans were studied. Each treatment caused 22% in DH treated samples. MW and HHP led to higher in vitro protein digestibility, RF and MW promoted protein aggregation from atomic force microscope topography, but HHP caused more damages on protein subunits as seen from SDS-PAGE image. © 2015 Institute of Food Technologists®

  8. Resonant x-ray scattering reveals possible disappearance of magnetic order under hydrostatic pressure in the Kitaev candidate γ -Li2IrO3

    Science.gov (United States)

    Breznay, Nicholas P.; Ruiz, Alejandro; Frano, Alex; Bi, Wenli; Birgeneau, Robert J.; Haskel, Daniel; Analytis, James G.

    2017-07-01

    Honeycomb iridates such as γ -Li2IrO3 are argued to realize Kitaev spin-anisotropic magnetic exchange, along with Heisenberg and possibly other couplings. While systems with pure Kitaev interactions are candidates to realize a quantum spin-liquid ground state, in γ -Li2IrO3 it has been shown that the presence of competing magnetic interactions leads to an incommensurate spiral spin order at ambient pressure below 38 K. We study the pressure sensitivity of this magnetically ordered state in single crystals of γ -Li2IrO3 using resonant x-ray scattering (RXS) under applied hydrostatic pressures of up to 3 GPa. RXS is a direct probe of electronic order, and we observe the abrupt disappearance of the qsp=(0.57 ,0 ,0 ) spiral order at a critical pressure Pc=1.4 GPa with no accompanying change in the symmetry of the lattice.

  9. Hydrostatic Pressure Regulates MicroRNA Expression Levels in Osteoarthritic Chondrocyte Cultures via the Wnt/β-Catenin Pathway

    Directory of Open Access Journals (Sweden)

    Sara Cheleschi

    2017-01-01

    Full Text Available Mechanical loading and hydrostatic pressure (HP regulate chondrocytes’ metabolism; however, how mechanical stimulation acts remain unclear. MicroRNAs (miRNAs play an important role in cartilage homeostasis, mechanotransduction, and in the pathogenesis of osteoarthritis (OA. This study investigated the effects of a cyclic HP (1–5 MPa, in both normal and OA human chondrocytes, on the expression of miR-27a/b, miR-140, miR-146a/b, and miR-365, and of their target genes (MMP-13, ADAMTS-5, IGFBP-5, and HDAC-4. Furthermore, we assessed the possible involvement of Wnt/β-catenin pathway in response to HP. Chondrocytes were exposed to HP for 3h and the evaluations were performed immediately after pressurization, and following 12, 24, and 48 h. Total RNA was extracted and used for real-time PCR. β-catenin was detected by Western blotting analysis and immunofluorescence. In OA chondrocytes, HP induced a significant increase (p < 0.01 of the expression levels of miR-27a/b, miR-140, and miR-146a, and a significant reduction (p < 0.01 of miR-365 at all analyzed time points. MMP-13, ADAMTS-5, and HDAC-4 were significantly downregulated following HP, while no significant modification was found for IGFBP-5. β-catenin levels were significantly increased (p < 0.001 in OA chondrocytes at basal conditions and significantly reduced (p < 0.01 by HP. Pressurization did not cause any significant modification in normal cells. In conclusion, in OA chondrocytes, HP restores the expression levels of some miRNAs, downregulates MMP-13, ADAMTS-5, and HDAC-4, and modulates the Wnt/β-catenin pathway activation.

  10. Anti-Inflammatory and Antioxidant Properties of Casein Hydrolysate Produced Using High Hydrostatic Pressure Combined with Proteolytic Enzymes.

    Science.gov (United States)

    Bamdad, Fatemeh; Shin, Seulki Hazel; Suh, Joo-Won; Nimalaratne, Chamila; Sunwoo, Hoon

    2017-04-10

    Casein-derived peptides are shown to possess radical scavenging and metal chelating properties. The objective of this study was to evaluate novel anti-inflammatory properties of casein hydrolysates (CH) produced by an eco-friendly process that combines high hydrostatic pressure with enzymatic hydrolysis (HHP-EH). Casein was hydrolysed by different proteases, including flavourzyme (Fla), savinase (Sav), thermolysin (Ther), trypsin (Try), and elastase (Ela) at 0.1, 50, 100, and 200 MPa pressure levels under various enzyme-to-substrate ratios and incubation times. Casein hydrolysates were evaluated for the degree of hydrolysis (DH), molecular weight distribution patterns, and anti-inflammatory properties in chemical and cellular models. Hydrolysates produced using HHP-EH exhibited higher DH values and proportions of smaller peptides compared to atmospheric pressure-enzymatic hydrolysis (AP-EH). Among five enzymes, Fla-digested HHP-EH-CH (HHP-Fla-CH) showed significantly higher antioxidant properties than AP-Fla-CH. The anti-inflammatory properties of HHP-Fla-CH were also observed by significantly reduced nitric oxide and by the suppression of the synthesis of pro-inflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) revealed that 59% of the amino acids of the peptides in HHP-Fla-CH were composed of proline, valine, and leucine, indicating the potential anti-inflammatory properties. In conclusion, the HHP-EH method provides a promising technology to produce bioactive peptides from casein in an eco-friendly process.

  11. Improvement of Coenzyme Q10 Production: Mutagenesis Induced by High Hydrostatic Pressure Treatment and Optimization of Fermentation Conditions

    Directory of Open Access Journals (Sweden)

    Yahong Yuan

    2012-01-01

    Full Text Available Coenzyme Q10 (CoQ10, ubiquinone, a potent antioxidative dietary supplement, was produced by submerged fermentation using Agrobacterium tumefaciens instead of chemical synthesis or solvent extraction. Agrobacterium tumefaciens 1.2554 was subjected to mutagenesis using a series of treatments including high hydrostatic pressure (HHP treatment, UV irradiation, and diethyl sulfate (DES treatment to obtain mutant strains showing higher CoQ10 production than wild-type strains. A mutant strain PK38 with four genetic markers was isolated: the specific CoQ10 content of the mutant strain increased by 52.83% compared with the original strain. Effects of carbon and nitrogen sources on CoQ10 production with PK38 were studied. Sucrose at concentration of 30 g/l was tested as the best carbon source, and yeast extract at concentration of 30 g/l supplemented with 10 g/l of ammonium sulfate was identified to be the most favorable for CoQ10 production using PK38. Fed-batch culture strategy was then used for increasing production of CoQ10 in 5-l fermentor. Using the exponential feeding fed-batch culture of sucrose, cell growth and CoQ10 formation were significantly improved. With this strategy, the final cell biomass, CoQ10 production, and specific CoQ10 production increased by 126.11, 173.12, and 22.76%, respectively, compared to those of batch culture.

  12. In vitro anti-inflammatory and antioxidant activities and protein quality of high hydrostatic pressure treated squids (Todarodes pacificus).

    Science.gov (United States)

    Zhang, Yifeng; Dai, Bona; Deng, Yun; Zhao, Yanyun

    2016-07-15

    This study investigated the in vitro anti-inflammatory and antioxidant properties, protein quality, and other related characteristics obtained by the single-cycle and two-cycle high hydrostatic pressure (HHP at 200, 400 and 600 MPa) treatment of squids (Todarodes pacificus). The soluble protein nitrogen content and in vitro protein digestibility increased significantly (p<0.05) after all HHP treatments, and the two-cycle 600 MPa HHP treatments yielded the highest values, 7.59% and 84.42%, respectively. The estimated protein efficiency ratios, and antioxidant and anti-inflammatory properties of squids significantly increased by all HHP treatments. (1)H nuclear magnetic resonance (NMR) showed that the main spectral changes associated to the anti-inflammatory properties of proteins following HHP treatment were in the range of 3.00-3.19 and 3.60-3.79 ppm. This indicates that the HHP treatments modified the protein and functional properties of squids and gave the relevant chemical shifts in NMR signals, either migrated or disappeared. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effect of Proteolysis with Alkaline Protease Following High Hydrostatic Pressure Treatment on IgE Binding of Buckwheat Protein.

    Science.gov (United States)

    Lee, Chaeyoon; Lee, Wonhui; Han, Youngshin; Oh, Sangsuk

    2017-03-01

    Buckwheat is a popular food material in many Asian countries and it contains major allergenic proteins. This study was performed to analyze the effects of hydrolysis with alkaline protease following high hydrostatic pressure (HHP) treatment on the IgE binding of buckwheat protein. Extracted buckwheat protein was treated with HHP at 600 MPa for 30 min and hydrolyzed with alkaline protease for 240 min. IgE binding was examined using an enzyme-linked immunosorbent assay (ELISA) with serum samples from 14 patients who were allergic to buckwheat. Depending on the serum samples, HHP treatment of buckwheat protein without enzymatic hydrolysis decreased the IgE binding by 8.9% to 73.2% or increased by 31% to 78%. The IgE binding of buckwheat protein hydrolyzed with alkaline protease decreased by 73.8% to 100%. The IgE binding of buckwheat protein hydrolyzed with alkaline protease following HHP treatment decreased by 83.8% to 100%. This suggested that hydrolysis with alkaline protease following HHP treatment could be applied to reduce the IgE binding of buckwheat protein. © 2017 Institute of Food Technologists®.

  14. Effect of High Hydrostatic Pressure Processing Strategies on Retention of Antioxidant Phenolic Bioactives in Foods and Beverages – a Review

    Directory of Open Access Journals (Sweden)

    Tokuşoğlu Özlem

    2016-12-01

    Full Text Available Phenolic compounds, especially flavonoids have health-promoting benefits that play some important roles in foods as visual appearance, taste, aroma and represent an abundant antioxidant component of the human and animal diet. High hydrostatic pressure processing (HHPP conditions (300–700 MPa at moderate initial temperatures (around ambient are generally sufficient to inactivate vegetative pathogens for pasteurization processes, some enzymes, or spoilage organisms to extend the shelf-life. The aim of the review is to reveal the effect of high hydrostatic pressure processing strategies on the retention of antioxidant phenolic bioactives in foods and beverages. HHPP can increase extraction capacity of phenolic constituents, and ensure higher levels of preserved bioactive constituents. High pressure extraction (HPE can shorten processing times, provide higher extraction yields while having less negative effects on the structure and antioxidant activity of bioactive constituents. HPE enhances mass transfer rates, increases cell permeability, increases diffusion of phenolics and retains higher levels of bioactive compounds. Total phenolics in HHPP-treated foods were either unaffected or actually increased in concentration and/or extractability following treatment with high pressure.

  15. Effect of a previous high hydrostatic pressure treatment on lipid damage in chilled Chilean jack mackerel (Trachurus murphyi

    Directory of Open Access Journals (Sweden)

    Maluenda, D.

    2013-12-01

    Full Text Available Lipid damage evolution was analyzed in chilled Chilean jack mackerel (Trachurus murphyi previously treated with high hydrostatic pressure (HHP technology. Different pressure levels and pressure holding times were tested. In addition, fish corresponding to pre- and post-rigor mortis (RM stages were comparatively studied. Previous HHP treatment led to a marked lipid hydrolysis inhibition in chilled fish. Increasing the pressure level and pressure holding time led to a lower free fatty acid content, with the effect of pressure being more relevant. According to the analysis of different types of lipid oxidation indexes, no effect of the previous HHP treatment on the lipid oxidation development could be determined in chilled jack mackerel. Concerning the effect of the RM stage of raw fish, a higher primary and secondary lipid oxidation development was observed in fish corresponding to the post-RM condition throughout the chilled storage; although a definite effect on lipid hydrolysis could not be found.Se estudió la evolución de la alteración lipídica en jurel chileno (Trachurus murphyi refrigerado previamente tratado a altas presiones hidrostáticas (HHP. Se aplicaron distintos valores de presión y tiempo de presurización; asimismo, se analizó de forma comparativa la respuesta al proceso del pescado inicial en estados pre- y post-rigor mortis (RM. El tratamiento previo por HHP produjo inhibición de la hidrólisis lipídica en pescado refrigerado, siendo más intenso el efecto de la presión que el del tiempo de presurización. De acuerdo con el análisis de distintos índices de oxidación, no se concluyó un efecto determinante sobre la oxidación lipídica por parte del tratamiento previo de HHP. En relación al efecto del estado de RM del pescado inicial, se observó una oxidación primaria y secundaria mayor en jurel correspondiente a la condición post-RM durante la conservación en refrigeración; sin embargo, no se detectó un efecto

  16. Ultrasonic Parameters as a Function of Absolute Hydrostatic Pressure. II. Mathematical Models of the Speed of Sound in Organic Liquids

    Science.gov (United States)

    Oakley, Barbara A.; Hanna, Darrin; Shillor, Meir; Barber, Gary

    2003-12-01

    Polynomial expressions for the speed of sound as a function of pressure for 68 different organic liquids are presented in tabular form. (The liquids form a subset of those discussed in the companion paper: Ultrasonic parameters as a function of absolute hydrostatic pressure. I. A review of the data for organic liquids.) The polynomial expressions are based upon the experimental results reported by many different researchers. For some common liquids, such as benzene, hexane, ethanol, and carbon tetrachloride, the results of as many as five different researchers are reported. These results sometimes vary widely—far more than would be expected from calculated experimental uncertainties. An analysis is presented of how well pressure-dependent polynomials fit the experimental data when the number of coefficients is increased. The error in the polynomial fit is also explored when both pressure and temperature dependencies are present. Finally, differences between ultrasonic and Brillouin scattering experimental results are discussed.

  17. Survival and High-Hydrostatic Pressure Inactivation of Foodborne Pathogens in Salmorejo, a Traditional Ready-to-Eat Food.

    Science.gov (United States)

    Toledo Del Árbol, Julia; Pérez Pulido, Rubén; Grande, Ma José; Gálvez, Antonio; Lucas, Rosario

    2015-11-01

    Salmorejo is a traditional tomato-based creamy product. Because salmorejo is not heat-processed, there is a risk of contamination with foodborne pathogens from raw materials. Even though bacterial growth in salmorejo is strongly inhibited because of its acidic pH (close to 3.9), the growth and survival of 3 foodborne pathogens in this food has not been studied before. In this study, 3 cocktails consisting of Escherichia coli O157, Salmonella enterica serovar Enteritidis, and Listeria monocytogenes strains were inoculated in freshly prepared salmorejo. The food was treated by high hydrostatic pressure (HHP) at 400, 500, or 600 MPa for 8 min, or left untreated, and stored at 4 °C for 30 d. Viable cell counts were determined on selective media and also by the triple-layer agar method in order to detect sublethally injured cells. In control samples, L. monocytogenes viable cells decreased by 2.4 log cycles at day 7 and were undetectable by day 15. S. enterica cells decreased by 0.5 or 2.4 log cycles at days 7 and 15 respectively, but still were detectable at day 30. E. coli O157 cells survived much better in salmorejo, decreasing only by 1.5 log cycles at day 30. Treatments at pressures of 400 MPa or higher reduced viable counts of L. monocytogenes and S. enterica to undetectable levels. HHP treatments significantly (P food, usually produced on a small scale. HHP treatment at 600 MPa for 8 min can be an efficient nonthermal method for industrial-scale preparation of preservative-free salmorejo with improved safety against transmission of foodborne pathogens L. monocytogenes serotyes 4a and 4b, S. enterica serovar Enteritidis, and E. coli O157. © 2015 Institute of Food Technologists®

  18. Full inactivation of human influenza virus by high hydrostatic pressure preserves virus structure and membrane fusion while conferring protection to mice against infection.

    Directory of Open Access Journals (Sweden)

    Carlos H Dumard

    Full Text Available Whole inactivated vaccines (WIVs possess greater immunogenicity than split or subunit vaccines, and recent studies have demonstrated that WIVs with preserved fusogenic activity are more protective than non-fusogenic WIVs. In this work, we describe the inactivation of human influenza virus X-31 by high hydrostatic pressure (HHP and analyze the effects on the structure by spectroscopic measurements, light scattering, and electron microscopy. We also investigated the effects of HHP on the glycoprotein activity and fusogenic activity of the viral particles. The electron microscopy data showed pore formation on the viral envelope, but the general morphology was preserved, and small variations were seen in the particle structure. The activity of hemagglutinin (HA during the process of binding and fusion was affected in a time-dependent manner, but neuraminidase (NA activity was not affected. Infectious activity ceased after 3 hours of pressurization, and mice were protected from infection after being vaccinated. Our results revealed full viral inactivation with overall preservation of viral structure and maintenance of fusogenic activity, thereby conferring protection against infection. A strong response consisting of serum immunoglobulin IgG1, IgG2a, and serum and mucosal IgA was also detected after vaccination. Thus, our data strongly suggest that applying hydrostatic pressure may be an effective method for developing new vaccines against influenza A as well as other viruses.

  19. The role of hydrostatic pressure on developmental stages of Pomatoceros lamarcki (Polychaeta: Serpulidae) exposed to water accommodated fractions of crude oil and positive genotoxins at simulated depths of 1000-3000 m

    Energy Technology Data Exchange (ETDEWEB)

    Vevers, William F., E-mail: william.vevers@plymouth.ac.u [Marine Biological Association, Laboratory, Citadel Hill, Plymouth PL1 2PB (United Kingdom); National Oceanography Centre, Empress Dock, Southampton SO14 3ZH (United Kingdom); School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Dixon, David R. [Marine Biological Association, Laboratory, Citadel Hill, Plymouth PL1 2PB (United Kingdom); National Oceanography Centre, Empress Dock, Southampton SO14 3ZH (United Kingdom); Dixon, Linda R.J. [Marine Biological Association, Laboratory, Citadel Hill, Plymouth PL1 2PB (United Kingdom)

    2010-05-15

    The effect of high hydrostatic pressures on the ecotoxicological profile of pollutants is an unexplored research area. Using Pomatoceros lamarcki as a surrogate organism for this eco-barotoxicological study, it was found that in a 48 h larval bioassay with water accommodated fractions (WAF) of crude oil of up to 15.1 mg L{sup -1} (total hydrocarbon content) and hydrostatic pressures up to 300 bar (3000 m), an additive response was found (p < 0.001) rather than any synergism (p = 0.881). Comprehensive cytogenetic analysis of 6-h (15 deg. C) embryos exposed to WAF (0.19 mg L{sup -1}) at 100 bar showed no effects on mitotic fidelity or cell division rate over the 1 bar treatment. However, embryo's treated with the clastogen mitomycin-c at 100 bar exhibited a significant increase in mitotic aberrations over 1 bar treated as was the case with hypo/hypersaline treatments (p < 0.05). Conversely, an increase in hydrostatic pressure actually reduced the effects of spindle inhibition by the aneugen colchicine (p < 0.05). - The synergistic eco-barotoxicological relationship between chemical stress and elevations in hydrostatic pressure is largely a membrane integrity phenomenon.

  20. Use of a simple intraoperative hydrostatic pressure test to assess the relationship between mobility of the ventricular stoma and success of third ventriculostomy.

    LENUS (Irish Health Repository)

    Kamel, Mahmoud Hamdy

    2012-02-03

    OBJECT: Neuroendoscopists often note pulsatility or flabbiness of the floor of the third ventricle during endoscopic third ventriculostomy (ETV) and believe that either is a good indication of the procedure\\'s success. Note, however, that this belief has never been objectively measured or proven in a prospective study. The authors report on a simple test-the hydrostatic test-to assess the mobility of the floor of the third ventricle and confirm adequate ventricular flow. They also analyzed the relationship between a mobile floor (a positive hydrostatic test) and prospective success of ETV. METHODS: During a period of 3 years between July 2001 and July 2004, 30 ETVs for obstructive hydrocephalus were performed in 22 male and eight female patients. Once the stoma had been created, the irrigating Ringer lactate solution was set at a 30-cm height from the external auditory meatus, and the irrigation valve was opened while the other ports on the endoscope were closed. The ventricular floor ballooned downward and stabilized. The irrigation valve was then closed and ports of the endoscope were opened. The magnitude of the upward displacement of the floor was then assessed. Funneling of the stoma was deemed to be a good indicator of floor mobility, adequate flow, and a positive hydrostatic test. All endoscopic procedures were recorded using digital video and recordings were subsequently assessed separately by two blinded experienced neuroendoscopists. Patients underwent prospective clinical follow up during a mean period of 11.2 months (range 1 month-3 years), computerized tomography and\\/or magnetic resonance imaging studies of the brain, and measurements of cerebrospinal fluid pressure through a ventricular reservoir when present. Failure of ETV was defined as the subsequent need for shunt implantation. The overall success rate of the ETV was 70% and varied from 86.9% in patients with a mobile stoma and a positive hydrostatic test to only 14.2% in patients with a

  1. The influence of temperature, pH, and water immersion on the high hydrostatic pressure inactivation of GI.1 and GII.4 human noroviruses.

    Science.gov (United States)

    Li, Xinhui; Chen, Haiqiang; Kingsley, David H

    2013-10-15

    Detection of human norovirus (HuNoV) usually relies on molecular biology techniques, such as qRT-PCR. Since histo-blood group antigens (HBGAs) are the functional receptors for HuNoV, HuNoV can bind to porcine gastric mucin (PGM), which contains HBGA-like antigens. In this study, PGM-conjugated magnetic beads were used to collect and quantify potentially infectious HuNoV strains GI.1 and GII.4 treated by high hydrostatic pressure (HHP). Both GI.1 and GII.4 strains used in this study showed increasing pressure sensitivity as judged by loss of PGM binding with decreasing temperature over a range of 1 to 35 °C. Both GI.1 and GII.4 were more resistant to pressure at pH4 than at neutral pH. Because GI.1 was significantly more resistant to pressure than GII.4, it was used to evaluate HuNoV pressure inactivation in blueberries. GI.1 on dry blueberries was very resistant to pressure while immersion of blueberries in water during pressure treatments substantially enhanced the inactivation. For example, a 2 min-600 MPa treatment of dry blueberries at 1 and 21 °C resulted in pressure processing parameters (pressure, temperature, and time) and product formulations (such as pH) to inactivate HuNoV in high-risk foods such as berries. © 2013.

  2. Vitrification of bovine blastocysts pretreated with sublethal hydrostatic pressure stress: evaluation of post-thaw in vitro development and gene expression.

    Science.gov (United States)

    Siqueira Filho, E; Caixeta, E S; Pribenszky, C; Molnar, M; Horvath, A; Harnos, A; Franco, M M; Rumpf, R

    2011-01-01

    Sublethal stress treatment has been reported to enhance gametes' performance in subsequent procedures, such as cryopreservation. The aim of the present study was to evaluate the effect of different equilibration times between the termination of a sublethal hydrostatic pressure (HP) stress treatment and the initiation of vitrification on the post-thaw survival, continued in vitro development, hatching rate and gene expression of selected candidate genes of in vitro-produced (IVP) expanded bovine blastocysts. Day 7 IVP blastocysts were subjected to 600 bar pressure for 60 min at 32°C. Immediately after pressure treatment (HP0h) or after 1 or 2h incubation (HP1h and HP2h groups, respectively), embryos were either vitrified and warmed using the open pulled straw method, followed by 72 h in vitro culture or were stored at -80°C until gene expression analysis. Re-expansion and hatching rates after vitrification-warming were significantly (Pbovine embryos.

  3. Impurity states and the diamagnetic susceptibility of a donor in a GaAs/AlxGa1-xAs Triangular Quantum Well under hydrostatic pressure

    Science.gov (United States)

    Kalpana, Panneer Selvam; Jayakumar, Kalyanasundaram

    2017-11-01

    We study the effect of Γ-X band crossover due to the application of hydrostatic pressure of a hydrogenic donor confined in a Triangular GaAs/Al1-xGaxAs Quantum Well (TQW) for x = 0.3 and the diamagnetic susceptibility (χdia) for such an impurity in 1s and some few low lying excited states have been investigated. The Schrodinger equation has been solved using variational technique in the effective mass approximation. The results show that the diamagnetic susceptibility (χdia) of a hydrogenic donor abruptly increases at a particular pressure for 1s and 2p± states but a steady increase for 2s state as a function of applied pressure.

  4. Combined influence of hydrostatic pressure and temperature on interband emission energy of impurity doped quantum dots in presence of noise

    Science.gov (United States)

    Bera, Aindrila; Ghosh, Manas

    2016-11-01

    We explore the profiles of interband emission energy (IEE) of impurity doped quantum dots (QDs) under the simultaneous influence of hydrostatic pressure (HP) and temperature (T) and in presence and absence of Gaussian white noise. Noise has been incorporated to the system additively and multiplicatively. In this regard, modulation of IEE by the variation of several other relevant quantities such as electric field, magnetic field, confinement potential, dopant location, dopant potential and aluminium concentration has also been investigated. Gradual alteration of HP and T affects IEE discernibly. Inclusion of noise has been found to enhance or deplete the IEE depending upon its mode of application. Moreover, under given conditions of temperature and pressure, the difference between the impurity-free ground state energy and the binding energy appears to be crucial in determining whether or not the profiles of IEE would resemble that of binding energy. The findings reveal fascinating role played by noise in tailoring the IEE of doped QD system under conspicuous presence of hydrostatic pressure and temperature.

  5. Effect of high hydrostatic pressure treatment on isoquercetin production from rutin by commercial α-L-rhamnosidase.

    Science.gov (United States)

    Kim, Do-Yeon; Yeom, Soo-Jin; Park, Chang-Su; Kim, Yeong-Su

    2016-10-01

    To optimize conversion of rutin to isoquercetin by commercial α-L-rhamnosidase using high hydrostatic pressure (HHP). The de-rhamnosylation activity of α-L-rhamnosidase for isoquercetin production was maximal at pH 6.0 and 50 °C using HHP (150 MPa). The enzyme showed high specificity for rutin. The specific activity for rutin at HHP was 1.5-fold higher than that at atmospheric pressure. The enzyme completely hydrolysed 20 mM rutin in tartary buckwheat extract after 2 h at HHP, with a productivity of 10 mM h(-1). The productivity and conversion were 2.2- and 1.5-fold higher at HHP than at atmospheric pressure, respectively. This is the first report concerning the enzymatic hydrolysis of isoquercetin in tartary buckwheat at HHP.

  6. Effect of high hydrostatic pressure on the color and texture parameters of refrigerated Caiman (Caiman crocodilus yacare) tail meat.

    Science.gov (United States)

    Canto, A C V C S; Lima, B R C C; Cruz, A G; Lázaro, C A; Freitas, D G C; Faria, Jose A F; Torrezan, R; Freitas, M Q; Silva, T P J

    2012-07-01

    The effect of applying high hydrostatic pressure (HHP) on the instrumental parameters of color and texture and sensory characteristics of alligator meat were evaluated. Samples of alligator tail meat were sliced, vacuum-packed, pressurized and distributed into four groups: control, treated with 200 MPa/10 min, 300 MPa/10 min and 400 MPa/10 min, then stored at 4°C±1°C for 45 days. Instrumental color, texture profile and a sensory profiling using quantitative descriptive analysis were carried out on the 1st, 15th, 30th and 45th days of storage. HHP was shown to affect the color and texture of the product, and the sensory descriptors (pmeat, especially low pressures (200 MPa) which can have positive effects on the quality of the product. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Effect of hydrostatic pressure on the hole effective mass in a strained InGaAs/GaAs quantum well

    Science.gov (United States)

    Ridene, S.; Bouchriha, H.

    2014-02-01

    A systematic analysis of the hydrostatic pressure effects on the effective masses of holes in strained single InxGa1-xAs/GaAs quantum-well (Qw) is performed. The strain effect on the shift of the subband energies and the effective masses is also investigated. A 14-band k.p Hamiltonian matrix is used in the calculations and solved by iteration with the Bir-Pikus Hamiltonian. Numerical results have been presented over a pressure range from 0 to 16 kbar. Our results show that especially for the calculation of the light-hole mass, it is necessary to use the 14-band and not the 8-band k.p model. This is supported by the fact that the 8-band k.p model predicts an increasing mass with pressure which does not reproduce the experimental results. Finally our calculations clearly confirm the available experimental results given in the literature.

  8. Elevated hydrostatic pressures induce apoptosis and oxidative stress through mitochondrial membrane depolarization in PC12 neuronal cells: A cell culture model of glaucoma.

    Science.gov (United States)

    Tök, Levent; Nazıroğlu, Mustafa; Uğuz, Abdülhadi Cihangir; Tök, Ozlem

    2014-10-01

    Despite the importance of oxidative stress and apoptosis through mitochondrial depolarization in neurodegenerative diseases, their roles in etiology of glaucoma are poorly understood. We aimed to investigate whether oxidative stress and apoptosis formation are altered in rat pheochromocytoma-derived cell line-12 (PC12) neuronal cell cultures exposed to elevated different hydrostatic pressures as a cell culture model of glaucoma. Cultured PC12 cells were subjected to 0, 15 and 70 mmHg hydrostatic pressure for 1 and 24 h. Then, the following values were analyzed: (a) cell viability; (b) lipid peroxidation and intracellular reactive oxygen species production; (c) mitochondrial membrane depolarization; (d) cell apoptosis; (e) caspase-3 and caspase-9 activities; (f) reduced glutathione (GSH) and glutathione peroxidase (GSH-Px). The hydrostatic pressures (15 and 70 mmHg) increased oxidative cell damage through a decrease of GSH and GSH-Px values, and increasing mitochondrial membrane potential. Additionally, 70 mmHg hydrostatic pressure for 24 h indicated highest apoptotic effects, as demonstrated by plate reader analyses of apoptosis, caspase-3 and -9 values. The present data indicated oxidative stress, apoptosis and mitochondrial changes in PC12 cell line during different hydrostatic pressure as a cell culture model of glaucoma. This findings support the view that mitochondrial oxidative injury contributes early to glaucomatous optic neuropathy.

  9. Distributed hydrostatic pressure sensor using a thin-diameter and polarization-maintaining photonics crystal fiber based on Brillouin dynamic gratings

    Science.gov (United States)

    Teng, Lei; Dong, Yongkang; Zhou, Dengwang; Bao, Xiaoyi; Chen, Liang

    2017-04-01

    A distributed hydrostatic pressure sensor based on Brillouin dynamic gratings (BDGs) was proposed and demonstrated for the first time to the best of our knowledge. Through measuring the pressure-induced birefringence changes through exciting and probing the BDGs, the hydrostatic pressure sensing is realized. The thin-diameter PM-PCF is used as the fiber under test. The temperature can be compensated by measuring the temperature-induced Brillouin frequency shift (BFS) through differential pulse-width pair Brillouin optical time-domain analysis (DPP-BOTDA). A distributed measurement is reported with a 20-cm spatial resolution and measurement accuracy as high as 0.025 MPa.

  10. Double pulse laser induced breakdown spectroscopy of a solid in water: Effect of hydrostatic pressure on laser induced plasma, cavitation bubble and emission spectra

    Science.gov (United States)

    López-Claros, M.; Dell'Aglio, M.; Gaudiuso, R.; Santagata, A.; De Giacomo, A.; Fortes, F. J.; Laserna, J. J.

    2017-07-01

    There is a growing interest in the development of sensors use in exploration of the deep ocean. Techniques for the chemical analysis of submerged solids are of special interest, as they show promise for subsea mining applications where a rapid sorting of materials found in the sea bottom would improve efficiency. Laser-Induced Breakdown Spectroscopy (LIBS) has demonstrated potential for this application thanks to its unique capability of providing the atomic composition of submerged solids. Here we present a study on the parameters that affect the spectral response of metallic targets in an oceanic pressure environment. Following laser excitation of the solid, the plasma persistence and the cavitation bubble size are considerably reduced as the hydrostatic pressure increases. These effects are of particular concern in dual pulse excitation as reported here, where a careful choice of the interpulse timing is required. Shadowgraphic images of the plasma demonstrate that cavitation bubbles are formed early after the plasma onset and that the effect of hydrostatic pressure is negligible during the early stage of plasma expansion. Contrarily to what is observed at atmospheric pressure, emission spectra observed at high pressures are characterized by self-absorbed atomic lines on continuum radiation resulting from strong radiative recombination in the electron-rich confined environment. This effect is much less evident with ionic lines due to the much higher energy of the levels involved and ionization energy of ions, as well as to the lower extent of absorption effects occurring in the inner part of the plasma, where ionized species are more abundant. As a result of the smaller shorter-lived cavitation bubble, the LIBS intensity enhancement resulting from dual pulse excitation is reduced when the applied pressure increases.

  11. Synergistic Effects of High Hydrostatic Pressure, Mild Heating, and Amino Acids on Germination and Inactivation of Clostridium sporogenes Spores

    Science.gov (United States)

    Ishimori, Takateru; Takahashi, Katsutoshi; Goto, Masato; Nakagawa, Suguru; Kasai, Yoshiaki; Konagaya, Yukifumi; Batori, Hiroshi; Kobayashi, Atsushi

    2012-01-01

    The synergistic effects of high hydrostatic pressure (HHP), mild heating, and amino acids on the germination of Clostridium sporogenes spores were examined by determining the number of surviving spores that returned to vegetative growth after pasteurization following these treatments. Pressurization at 200 MPa at a temperature higher than 40°C and treatment with some of the 19 l-amino acids at 10 mM or higher synergistically facilitated germination. When one of these factors was omitted, the level of germination was insignificant. Pressures of 100 and 400 MPa were less effective than 200 MPa. The spores were effectively inactivated by between 1.8 and 4.8 logs by pasteurization at 80°C after pressurization at 200 MPa at 45°C for 120 min with one of the amino acids with moderate hydrophobicity, such as Leu, Phe, Cys Met, Ala, Gly, or Ser. However, other amino acids showed poor inactivation effects of less than 0.9 logs. Spores in solutions containing 80 mM of either Leu, Phe, Cys, Met, Ala, Gly, or Ser were successfully inactivated by pasteurization by more than 5.4 logs after pressurization at 200 MPa at 70°C for 15 to 120 min. Ala and Met reduced the spore viability by 2.8 and 1.8 logs, respectively, by pasteurization at a concentration of 1 mM under 200 MPa at 70°C. These results indicate that germination of the spores is facilitated by a combination of high hydrostatic pressure, mild heating, and amino acids. PMID:22983975

  12. Preparation of Ginseng Extract with Enhanced Levels of Ginsenosides Rg1 and Rb1 Using High Hydrostatic Pressure and Polysaccharide Hydrolases.

    Science.gov (United States)

    Palaniyandi, Sasikumar Arunachalam; Suh, Joo-Won; Yang, Seung Hwan

    2017-01-01

    Ginsenosides are the principal components responsible for the pharmacological activities of ginseng. Ginsenosides Rg1 and Rb1 are the major compounds recognized as marker substances for quality control of ginseng-based products. These major compounds can be transformed to several pharmacologically active minor ginsenosides by chemical, microbial, and enzymatic means. In the present study, a combination of polysaccharide hydrolases and high hydrostatic pressure (HHP) were used to extract ginseng saponins enriched with ginsenosides Rg1 and Rb1. Temperature, pH, time, ginseng-to-water ratio, and pressure were optimized to obtain the maximum amount of Rg1 and Rb1 in the resulting extract using commercial polysaccharide hydrolases. This study showed that treatment with a combination of cellulase, amylase, and pectinase at 100 MPa pressure, pH 4.8, and 45°C for 12 h resulted in higher Rg1 and Rb1 levels in the extract. This study describes a cheap and ecofriendly method for preparing ginseng extract enriched with Rg1 and Rb1. Ginsenosides are the principal bioactive components present in ginsengGinsenosides Rg1 and Rb1 are the most abundant compounds in ginsengHigh hydrostatic pressure (HHP) and Polysaccharide hydrolases (PH) were combined to extract ginseng saponins enriched with Rg1 and Rb1Extraction conditions were optimized to obtain the maximum amount of Rg1 and Rb1Extraction with a combination of cellulase, amylase, and pectinase at 100 MPa pressure at pH 4.8, and 45°C for 12 h resulted in higher levels of Rg1 and Rb1 in the ginseng extract Abbreviations used: ATCC: American Type Culture Collection, Mpa: Mega Pascal.

  13. Effect of hydrostatic pressure on the superconducting properties of quasi-1D superconductor K2Cr3As3

    Science.gov (United States)

    Sun, J. P.; Jiao, Y. Y.; Yang, C. L.; Wu, W.; Yi, C. J.; Wang, B. S.; Shi, Y. G.; Luo, J. L.; Uwatoko, Y.; Cheng, J.-G.

    2017-11-01

    K2Cr3As3 is a newly discovered quasi-1D superconductor with a T c  =  6.1 K and an upper critical field µ 0 H c2(0)  ≈  40 T three times larger than the Pauli paramagnetic limit µ 0 H p that is suggestive of a spin-triplet Cooper pairing. In this paper, we have investigated the effects of hydrostatic pressure on its T c and µ 0 H c2 by measuring the ac magnetic susceptibility χ'(T) under magnetic fields at various hydrostatic pressures up to 7.5 GPa. The major findings include: (1) T c is suppressed gradually to below 2 K at 7.5 GPa (2) the estimated µ 0 H c2(0) decreases dramatically to below µ 0 H p above ~2 GPa and becomes slight lower than the orbital limiting field {μ0}Hc2orb(0) estimated from the initial slope of upper critical field via {μ0}Hc2orb(0)   =  ‑0.73T cdH c2/d{{T}c}{{|}{{Tc}}} in the clean limit; (3) the estimated Maki parameter α  =  √2Hc2orb(0) /H p drops from 4 at ambient pressure to well below 1 at P  >  2 GPa, suggesting the crossover from Pauli paramagnetic limiting to orbital limiting in the pair breaking process upon increasing pressure. These observations suggested that the application of hydrostatic pressure could drive K2Cr3As3 away from the ferromagnetic instability and lead to a breakdown of the spin-triplet pairing channel. We have also made a side-by-side comparison and discussed the distinct effects of chemical and physical pressures on the superconducting properties of K2Cr3As3.

  14. Hydrostatic pressure and shear stress affect endothelin-1 and nitric oxide release by endothelial cells in bioreactors.

    Science.gov (United States)

    Vozzi, Federico; Bianchi, Francesca; Ahluwalia, Arti; Domenici, Claudio

    2014-01-01

    Abundant experimental evidence demonstrates that endothelial cells are sensitive to flow; however, the effect of fluid pressure or pressure gradients that are used to drive viscous flow is not well understood. There are two principal physical forces exerted on the blood vessel wall by the passage of intra-luminal blood: pressure and shear. To analyze the effects of pressure and shear independently, these two stresses were applied to cultured cells in two different types of bioreactors: a pressure-controlled bioreactor and a laminar flow bioreactor, in which controlled levels of pressure or shear stress, respectively, can be generated. Using these bioreactor systems, endothelin-1 (ET-1) and nitric oxide (NO) release from human umbilical vein endothelial cells were measured under various shear stress and pressure conditions. Compared to the controls, a decrease of ET-1 production by the cells cultured in both bioreactors was observed, whereas NO synthesis was up-regulated in cells under shear stress, but was not modulated by hydrostatic pressure. These results show that the two hemodynamic forces acting on blood vessels affect endothelial cell function in different ways, and that both should be considered when planning in vitro experiments in the presence of flow. Understanding the individual and synergic effects of the two forces could provide important insights into physiological and pathological processes involved in vascular remodeling and adaptation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effect of Admixtures on the Yield Stresses of Cement Pastes under High Hydrostatic Pressures

    Directory of Open Access Journals (Sweden)

    Hong Jae Yim

    2016-03-01

    Full Text Available When cement-based materials are transported at a construction site, they undergo high pressures during the pumping process. The rheological properties of the materials under such high pressures are unknown, and estimating the workability of the materials after pumping is a complex problem. Among various influential factors on the rheology of concrete, this study investigated the effect of mineral and chemical admixtures on the high-pressure rheology. A rheometer was fabricated that could measure the rheological properties while maintaining a high pressure to simulate the pumping process. The effects of superplasticizer, silica fume, nanoclay, fly ash, or ground granulated blast furnace slag were investigated when mixed with two control cement pastes. The water-to-cement ratios were 0.35 and 0.50.

  16. Electromodulation spectroscopy of direct optical transitions in Ge{sub 1−x}Sn{sub x} layers under hydrostatic pressure and built-in strain

    Energy Technology Data Exchange (ETDEWEB)

    Dybała, F.; Żelazna, K.; Maczko, H.; Gladysiewicz, M.; Misiewicz, J.; Kudrawiec, R., E-mail: robert.kudrawiec@pwr.wroc.pl [Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław (Poland); Lin, H.; Chen, R.; Shang, C.; Huo, Y.; Kamins, T. I.; Harris, J. S. [Solid State and Photonics Laboratory, Stanford University, Stanford, California 94305-4075 (United States)

    2016-06-07

    Unstrained Ge{sub 1−x}Sn{sub x} layers of various Sn concentration (1.5%, 3%, 6% Sn) and Ge{sub 0.97}Sn{sub 0.03} layers with built-in compressive (ε = −0.5%) and tensile (ε = 0.3%) strain are grown by molecular beam epitaxy and studied by electromodulation spectroscopy (i.e., contactless electroreflectance and photoreflectance (PR)). In order to obtain unstrained GeSn layers and layers with different built-in in-plane strains, virtual InGaAs substrates of different compositions are grown prior to the deposition of GeSn layers. For unstrained Ge{sub 1−x}Sn{sub x} layers, the pressure coefficient for the direct band gap transition is determined from PR measurements at various hydrostatic pressures to be 12.2 ± 0.2 meV/kbar, which is very close to the pressure coefficient for the direct band gap transition in Ge (12.9 meV/kbar). This suggests that the hydrostatic deformation potentials typical of Ge can be applied to describe the pressure-induced changes in the electronic band structure of Ge{sub 1−x}Sn{sub x} alloys with low Sn concentrations. The same conclusion is derived for the uniaxial deformation potential, which describes the splitting between heavy-hole (HH) and light-hole (LH) bands as well as the strain-related shift of the spin-orbit (SO) split-off band. It is observed that the HH, LH, and SO related transitions shift due to compressive and tensile strain according to the Bir-Pikus theory. The dispersions of HH, LH, and SO bands are calculated for compressive and tensile strained Ge{sub 0.97}Sn{sub 0.03} with the 8-band kp Hamiltonian including strain effects, and the mixing of HH and LH bands is discussed. In addition, the dispersion of the electronic band structure is calculated for unstrained Ge{sub 1−x}Sn{sub x} layers (3% and 6% Sn) at high hydrostatic pressure with the 8-band kp Hamiltonian, and the pressure-induced changes in the electronic band structure are discussed.

  17. Electromodulation spectroscopy of direct optical transitions in Ge1-xSnx layers under hydrostatic pressure and built-in strain

    Science.gov (United States)

    Dybała, F.; Żelazna, K.; Maczko, H.; Gladysiewicz, M.; Misiewicz, J.; Kudrawiec, R.; Lin, H.; Chen, R.; Shang, C.; Huo, Y.; Kamins, T. I.; Harris, J. S.

    2016-06-01

    Unstrained Ge1-xSnx layers of various Sn concentration (1.5%, 3%, 6% Sn) and Ge0.97Sn0.03 layers with built-in compressive (ɛ = -0.5%) and tensile (ɛ = 0.3%) strain are grown by molecular beam epitaxy and studied by electromodulation spectroscopy (i.e., contactless electroreflectance and photoreflectance (PR)). In order to obtain unstrained GeSn layers and layers with different built-in in-plane strains, virtual InGaAs substrates of different compositions are grown prior to the deposition of GeSn layers. For unstrained Ge1-xSnx layers, the pressure coefficient for the direct band gap transition is determined from PR measurements at various hydrostatic pressures to be 12.2 ± 0.2 meV/kbar, which is very close to the pressure coefficient for the direct band gap transition in Ge (12.9 meV/kbar). This suggests that the hydrostatic deformation potentials typical of Ge can be applied to describe the pressure-induced changes in the electronic band structure of Ge1-xSnx alloys with low Sn concentrations. The same conclusion is derived for the uniaxial deformation potential, which describes the splitting between heavy-hole (HH) and light-hole (LH) bands as well as the strain-related shift of the spin-orbit (SO) split-off band. It is observed that the HH, LH, and SO related transitions shift due to compressive and tensile strain according to the Bir-Pikus theory. The dispersions of HH, LH, and SO bands are calculated for compressive and tensile strained Ge0.97Sn0.03 with the 8-band kp Hamiltonian including strain effects, and the mixing of HH and LH bands is discussed. In addition, the dispersion of the electronic band structure is calculated for unstrained Ge1-xSnx layers (3% and 6% Sn) at high hydrostatic pressure with the 8-band kp Hamiltonian, and the pressure-induced changes in the electronic band structure are discussed.

  18. Randomized, Double-Blinded Clinical Trial for Human Norovirus Inactivation in Oysters by High Hydrostatic Pressure Processing ▿ †

    Science.gov (United States)

    Leon, Juan S.; Kingsley, David H.; Montes, Julia S.; Richards, Gary P.; Lyon, G. Marshall; Abdulhafid, Gwen M.; Seitz, Scot R.; Fernandez, Marina L.; Teunis, Peter F.; Flick, George J.; Moe, Christine L.

    2011-01-01

    Contamination of oysters with human noroviruses (HuNoV) constitutes a human health risk and may lead to severe economic losses in the shellfish industry. There is a need to identify a technology that can inactivate HuNoV in oysters. In this study, we conducted a randomized, double-blinded clinical trial to assess the effect of high hydrostatic pressure processing (HPP) on Norwalk virus (HuNoV genogroup I.1) inactivation in virus-seeded oysters ingested by subjects. Forty-four healthy, positive-secretor adults were divided into three study phases. Subjects in each phase were randomized into control and intervention groups. Subjects received Norwalk virus (8FIIb, 1.0 × 104 genomic equivalent copies) in artificially seeded oysters with or without HPP treatment (400 MPa at 25°C, 600 MPa at 6°C, or 400 MPa at 6°C for 5 min). HPP at 600 MPa, but not 400 MPa (at 6° or 25°C), completely inactivated HuNoV in seeded oysters and resulted in no HuNoV infection among these subjects, as determined by reverse transcription-PCR detection of HuNoV RNA in subjects' stool or vomitus samples. Interestingly, a white blood cell (granulocyte) shift was identified in 92% of the infected subjects and was significantly associated with infection (P = 0.0014). In summary, these data suggest that HPP is effective at inactivating HuNoV in contaminated whole oysters and suggest a potential intervention to inactivate infectious HuNoV in oysters for the commercial shellfish industry. PMID:21705552

  19. Randomized, double-blinded clinical trial for human norovirus inactivation in oysters by high hydrostatic pressure processing.

    Science.gov (United States)

    Leon, Juan S; Kingsley, David H; Montes, Julia S; Richards, Gary P; Lyon, G Marshall; Abdulhafid, Gwen M; Seitz, Scot R; Fernandez, Marina L; Teunis, Peter F; Flick, George J; Moe, Christine L

    2011-08-01

    Contamination of oysters with human noroviruses (HuNoV) constitutes a human health risk and may lead to severe economic losses in the shellfish industry. There is a need to identify a technology that can inactivate HuNoV in oysters. In this study, we conducted a randomized, double-blinded clinical trial to assess the effect of high hydrostatic pressure processing (HPP) on Norwalk virus (HuNoV genogroup I.1) inactivation in virus-seeded oysters ingested by subjects. Forty-four healthy, positive-secretor adults were divided into three study phases. Subjects in each phase were randomized into control and intervention groups. Subjects received Norwalk virus (8FIIb, 1.0 × 10(4) genomic equivalent copies) in artificially seeded oysters with or without HPP treatment (400 MPa at 25°C, 600 MPa at 6°C, or 400 MPa at 6°C for 5 min). HPP at 600 MPa, but not 400 MPa (at 6° or 25°C), completely inactivated HuNoV in seeded oysters and resulted in no HuNoV infection among these subjects, as determined by reverse transcription-PCR detection of HuNoV RNA in subjects' stool or vomitus samples. Interestingly, a white blood cell (granulocyte) shift was identified in 92% of the infected subjects and was significantly associated with infection (P = 0.0014). In summary, these data suggest that HPP is effective at inactivating HuNoV in contaminated whole oysters and suggest a potential intervention to inactivate infectious HuNoV in oysters for the commercial shellfish industry.

  20. Photoluminescence energy transitions in GaAs-Ga{sub 1-x}Al{sub x}As double quantum wells: Electric and magnetic fields and hydrostatic pressure effects

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, S.Y. [Grupo de Educacion en Ciencias Experimentales y Matematicas-GECEM, Facultad de Educacion, Universidad de Antioquia, AA 1226 Medellin (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.c [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia)

    2009-12-15

    The photoluminescence energy transitions in GaAs-Ga{sub 1-x}Al{sub x}As coupled double quantum wells are presented by considering the simultaneous effects of applied electric and magnetic fields and hydrostatic pressure. Calculations have been made in the framework of the effective mass and parabolic band approximations and using a variational procedure. The electric field is taken to be oriented along the growth direction of the heterostructure whereas for the magnetic field both in-plane and in-growth directions have been considered. The results show that the hydrostatic pressure and the applied electric field are two useful tools to tune the direct and indirect exciton transitions in such heterostructures. Our results are in good agreement with previous experimental findings in double quantum wells under applied electric field and hydrostatic pressure.

  1. Hydrostatic Pressure and Temperature Measurements Using an In-Line Mach-Zehnder Interferometer Based on a Two-Mode Highly Birefringent Microstructured Fiber.

    Science.gov (United States)

    Statkiewicz-Barabach, Gabriela; Olszewski, Jacek; Mergo, Pawel; Urbanczyk, Waclaw

    2017-07-18

    We present a comprehensive study of an in-line Mach-Zehnder intermodal interferometer fabricated in a boron-doped two-mode highly birefringent microstructured fiber. We observed different interference signals at the output of the interferometer, related to the intermodal interference of the fundamental and the first order modes of the orthogonal polarizations and a beating of the polarimetric signal related to the difference in the group modal birefringence between the fundamental and the first order modes, respectively. The proposed interferometer was tested for measurements of hydrostatic pressure and temperature for different alignments of the input polarizer with no analyzer at the output. The sensitivities to hydrostatic pressure of the intermodal interference signals for x- and y-polarizations had an opposite sign and were equal to 0.229 nm/MPa and -0.179 nm/MPa, respectively, while the temperature sensitivities for both polarizations were similar and equal 0.020 nm/°C and 0.019 nm/°C. In the case of pressure, for the simultaneous excitation of both polarization modes, we observed a displacement of intermodal fringes with a sensitivity depending on the azimuth of the input polarization state, as well as on the displacement of their envelope with a sensitivity of 2.14 nm/MPa, accompanied by a change in the fringes visibility. Such properties of the proposed interferometer allow for convenient adjustments to the pressure sensitivity of the intermodal fringes and possible applications for the simultaneous interrogation of temperature and pressure.

  2. Hydrostatic Pressure and Temperature Measurements Using an In-Line Mach-Zehnder Interferometer Based on a Two-Mode Highly Birefringent Microstructured Fiber

    Directory of Open Access Journals (Sweden)

    Gabriela Statkiewicz-Barabach

    2017-07-01

    Full Text Available We present a comprehensive study of an in-line Mach-Zehnder intermodal interferometer fabricated in a boron-doped two-mode highly birefringent microstructured fiber. We observed different interference signals at the output of the interferometer, related to the intermodal interference of the fundamental and the first order modes of the orthogonal polarizations and a beating of the polarimetric signal related to the difference in the group modal birefringence between the fundamental and the first order modes, respectively. The proposed interferometer was tested for measurements of hydrostatic pressure and temperature for different alignments of the input polarizer with no analyzer at the output. The sensitivities to hydrostatic pressure of the intermodal interference signals for x- and y-polarizations had an opposite sign and were equal to 0.229 nm/MPa and −0.179 nm/MPa, respectively, while the temperature sensitivities for both polarizations were similar and equal 0.020 nm/°C and 0.019 nm/°C. In the case of pressure, for the simultaneous excitation of both polarization modes, we observed a displacement of intermodal fringes with a sensitivity depending on the azimuth of the input polarization state, as well as on the displacement of their envelope with a sensitivity of 2.14 nm/MPa, accompanied by a change in the fringes visibility. Such properties of the proposed interferometer allow for convenient adjustments to the pressure sensitivity of the intermodal fringes and possible applications for the simultaneous interrogation of temperature and pressure.

  3. Generation of dendritic cell-based vaccine using high hydrostatic pressure for non-small cell lung cancer immunotherapy.

    Directory of Open Access Journals (Sweden)

    Nada Hradilova

    Full Text Available High hydrostatic pressure (HHP induces immunogenic death of tumor cells which confer protective anti-tumor immunity in vivo. Moreover, DC pulsed with HHP-treated tumor cells induced therapeutic effect in mouse cancer model. In this study, we tested the immunogenicity, stability and T cell stimulatory activity of human monocyte-derived dendritic cell (DC-based HHP lung cancer vaccine generated in GMP compliant serum free medium using HHP 250 MPa. DC pulsed with HHP-killed lung cancer cells and poly(I:C enhanced DC maturation, chemotactic migration and production of pro-inflammatory cytokines after 24h. Moreover, DC-based HHP lung cancer vaccine showed functional plasticity after transfer into serum-containing media and stimulation with LPS or CD40L after additional 24h. LPS and CD40L stimulation further differentially enhanced the expression of costimulatory molecules and production of IL-12p70. DC-based HHP lung cancer vaccine decreased the number of CD4+CD25+Foxp3+ T regulatory cells and stimulated IFN-γ-producing tumor antigen-specific CD4+ and CD8+ T cells from non-small cell lung cancer (NSCLC patients. Tumor antigen specific CD8+ and CD4+ T cell responses were detected in NSCLC patient's against a selected tumor antigens expressed by lung cancer cell lines used for the vaccine generation. We also showed for the first time that protein antigen from HHP-killed lung cancer cells is processed and presented by DC to CD8+ T cells. Our results represent important preclinical data for ongoing NSCLC Phase I/II clinical trial using DC-based active cellular immunotherapy (DCVAC/LuCa in combination with chemotherapy and immune enhancers.

  4. New insights into conformational and functional stability of human alpha-thrombin probed by high hydrostatic pressure.

    Science.gov (United States)

    Lima, Luis Mauricio T R; Zingali, Russolina B; Foguel, Débora; Monteiro, Robson Q

    2004-09-01

    The effects of high hydrostatic pressure (HHP) and urea on conformational transitions of human alpha-thrombin structure were studied by fluorescence spectroscopy and by measuring the catalytic activity of the enzyme. Treatment of thrombin with urea produced a progressive red shift in the center of mass of the intrinsic fluorescence emission spectrum, with a maximum displacement of 650 cm(-1). HHP (270 MPa) shifted the centre of mass by only 370 cm(-1). HHP combined with a subdenaturing urea concentration (1.5 m) displaced the centre of mass by approximately 750 cm(-1). The binding of the fluorescent probe bis(8-anilinonaphthalene-1-sulfonate) to thrombin was increased by 1.8-, 4.0-, and 2.7-fold after treatment with high urea concentration, HHP or HHP combined with urea, respectively, thus suggesting that all treatments convert the enzyme to partially folded intermediates with exposed hydrophobic regions. On the other hand, treatment of thrombin with urea (but not HHP) combined with dithiothreitol progressively displaced the fluorescent probe, thus suggesting that this condition converts the enzyme to a completely unfolded state. Urea and HHP also led to different conformations when changes in the thrombin catalytic site environment were assessed using the fluorescence emission of fluorescein-d-Phe-Pro-Arg-cloromethylketone-alpha-thrombin: addition of urea up to 2 m gradually decreased the fluorescence emission of the probe to 65% of the initial intensity, whereas HHP caused a progressive increase in fluorescence. Hydrolysis of the synthetic substrate S-2238 was enhanced (35%) in 2 m urea and gradually abolished at higher concentrations, while HHP (270 MPa) inhibited the enzyme's catalytic activity by 45% and abolished it when 1.5 m urea was also present. Altogether, analysis of urea and HHP effects on thrombin structure and activity indicates the formation of dissimilar intermediate states during denaturation by these agents.

  5. High hydrostatic pressure enables almost 100% refolding of recombinant human ciliary neurotrophic factor from inclusion bodies at high concentration.

    Science.gov (United States)

    Wang, Qi; Liu, Yongdong; Zhang, Chun; Guo, Fangxia; Feng, Cui; Li, Xiunan; Shi, Hong; Su, Zhiguo

    2017-05-01

    Protein refolding from inclusion bodies (IBs) often encounters a problem of low recovery at high protein concentration. In this study, we demonstrated that high hydrostatic pressure (HHP) could simultaneously achieve high refolding concentration and high refolding yield for IBs of recombinant human ciliary neurotrophic factor (rhCNTF), a potential therapeutic for neurodegenerative diseases. The use of dilution refolding obtained 18% recovery at 3 mg/mL, even in the presence of 4 M urea. In contrast, HHP refolding could efficiently increase the recovery up to almost 100% even at 4 mg/mL. It was found that in the dilution, hydrophobic aggregates were the off-path products and their amount increased with the protein concentration. However, HHP could effectively minimize the formation of hydrophobic aggregates, leading to almost complete conversion of the rhCNTF IBs to the correct configuration. The stable operation range of concentration is 0.5-4.0 mg/mL, in which the refolding yield was almost 100%. Compared with the literatures where HHP failed to increase the refolding yield beyond 90%, the reason could be attributed to the structural difference that rhCNTF has no disulfide bond and is a monomeric protein. After purification by one-step of anionic chromatography, the purity of rhCNTF reached 95% with total process recovery of 54.1%. The purified rhCNTF showed similar structure and in vitro bioactivity to the native species. The whole process featured integration of solubilization/refolding, a high refolding yield of 100%, a high concentration of 4 mg/mL, and a simple chromatography to ensure a high productivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Physicochemical characteristics and quality parameters of a beef product subjected to chemical preservatives and high hydrostatic pressure.

    Science.gov (United States)

    Giménez, Belén; Graiver, Natalia; Califano, Alicia; Zaritzky, Noemí

    2015-02-01

    The use of high hydrostatic pressure (HHP) on fresh beef causes a deleterious effect on red colour. A beef product subjected to HHP exhibiting acceptable colour and microbiological stability was developed; the process requires as a first step the immersion in a preservative solution containing ascorbic acid, sodium nitrite, and sodium chloride. Desirability functions were used to optimise the composition of this solution in order to maintain the colour attributes minimising the concentration of sodium nitrite. The product was packed in low gas permeability film before HHP treatment. The effect of the applied pressure (300, 600 MPa) on quality parameters (colour,texture) was analysed. The stability of the product during storage at 4 °C was determined by microbial counts, colour, texture, and exudate. The combination of treatments provided acceptable colour and microbiological stability during four and six weeks of refrigerated storage after the product has been subjected to 300 and 600 MPa, respectively.

  7. In vitro digestibility and changes in physicochemical and structural properties of common buckwheat starch affected by high hydrostatic pressure.

    Science.gov (United States)

    Liu, Hang; Wang, Lijing; Cao, Rong; Fan, Huanhuan; Wang, Min

    2016-06-25

    High hydrostatic pressure (HHP), a non-thermal processing technology, was applied at 120, 240, 360, 480, and 600MPa to assess its effect on the in vitro digestibility, physicochemical, and structural properties of common buckwheat starch (CBS). HHP treatment resulted in CBS granules with more rough surfaces. With the increasing pressure level, amylose content, pasting temperature, and thermal stability substantially increased and relative crystallinity, hardness, swelling power, and viscosity decreased. At 120-480MPa, HHP did not affect the 'A'-type crystalline pattern of CBS. However, at 600MPa, HHP contributed to a similar 'B'-type pattern. Compared with native starch, HHP-modified CBS samples had lower in vitro hydrolysis, reduced content of rapidly digestible starch, and increased levels of slowly digestible starch and resistant starch. These results revealed that the in vitro digestibility, physicochemical, and structural properties of CBS are effectively modified by HHP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Pretreatment of flaxseed protein isolate by high hydrostatic pressure: Impacts on protein structure, enzymatic hydrolysis and final hydrolysate antioxidant capacities.

    Science.gov (United States)

    Perreault, Véronique; Hénaux, Loïc; Bazinet, Laurent; Doyen, Alain

    2017-04-15

    The effect of high hydrostatic pressure (HHP) on flaxseed protein structure and peptide profiles, obtained after protein hydrolysis, was investigated. Isolated flaxseed protein (1%, m/v) was subjected to HHP (600MPa, 5min or 20min at 20°C) prior to hydrolysis with trypsin only and trypsin-pronase. The results demonstrated that HHP treatment induced dissociation of flaxseed proteins and generated higher molecular weight aggregates as a function of processing duration. Fluorescence spectroscopy showed that HHP treatment, as well as processing duration, had an impact on flaxseed protein structure since exposition of hydrophobic amino acid tyrosine was modified. Except for some specific peptides, the concentrations of which were modified, similar peptide profiles were obtained after hydrolysis of pressure-treated proteins using trypsin. Finally, hydrolysates obtained using trypsin-pronase had a greater antioxidant capacity (ORAC) than control samples; these results confirmed that HHP enhanced the generation of antioxidant peptides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Osmotic stress confers enhanced cell integrity to hydrostatic pressure but impairs growth in Alcanivorax borkumensis SK2

    Directory of Open Access Journals (Sweden)

    Alberto eScoma

    2016-05-01

    Full Text Available Alcanivorax is a hydrocarbonoclastic genus dominating oil spills worldwide. While its presence has been detected in oil-polluted seawaters, marine sediment and salt marshes under ambient pressure, its presence in deep-sea contaminated environments is negligible. Recent laboratory evidences highlighted the piezosensitive nature of some Alcanivorax species, whose growth yields are highly impacted by mild hydrostatic pressures (HPs. In the present study, osmotic stress was used as a tool to increase HP resistance in the type strain A. borkumensis SK2. Control cultures grown under standard conditions of salinity and osmotic pressure with respect to seawater (35.6 ppt or 1136 mOsm kg-1, respectively were compared with cultures subjected to hypo- and hyperosmosis (330 and 1720 mOsm kg-1, or 18 and 62 ppt in salinity, equivalent to brackish and brine waters, respectively, under atmospheric or increased HP (0.1 and 10MPa. Osmotic stress had a remarkably positive impact on cell metabolic activity in terms of CO2 production (thus, oil bioremediation and O2 respiration under hyperosmosis, as acclimation to high salinity enhanced cell activity under 10MPa by a factor of 10. Both osmotic shocks significantly enhanced cell protection by reducing membrane damage under HP, with cell integrities close to 100% under hyposmosis. The latter was likely due to intracellular water-reclamation as no trace of the piezolyte ectoine was found, contrary to hyperosmosis. Notably, ectoine production was equivalent at 0.1MPa in hyperosmosis-acclimated cells and at 10MPa under isosmotic conditions, supporting the hypothesis that ectoine synthesis may be primarily triggered by HP rather than osmotic stress. While stimulating cell metabolism and enhancing cell integrity, osmotic stress had always a negative impact on culture growth and performance. No net growth was observed during 4-day incubation tests, and CO2:O2 ratios and pH values indicated that culture performance in

  10. Effect of high hydrostatic pressure on seed germination, microbial quality, anatomy-morphology and physiological characteristics of garden cress (Lepidium sativum) seedlings

    Science.gov (United States)

    İşlek, Cemil; Murat Altuner, Ergin; Çeter, Talip; Alpas, Hami

    2013-06-01

    High hydrostatic pressure is a non-thermal food processing technology that is found to increase the percentage of germination, decrease the germination time and improve the microbial quality of seeds. In this study, pressures of 100-400 MPa for 10 min at 30°C are used to compare the percentage of germination, the microbial quality of seeds, chlorophyll a and b, and total phenolic compounds concentrations in seedlings, and the anatomy-morphology characteristics of garden cress. Enhanced reductions of total aerobic mesophilic bacteria, total and fecal coliforms, and yeast and mould populations in seeds were observed, especially at 300 MPa. In addition, the percentage of germination, chlorophyll content and phenolic compounds concentrations, fresh and dry weights, and hypocotyl lengths of the seedlings are higher than those of all samples, where the percentage of germination is equal to controls but higher than other samples, and radicula length is lower than controls but higher than others.

  11. LONG TERM STABILITY STUDY AT FNAL AND SLAC USING BINP DEVELOPED HYDROSTATIC LEVEL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Seryi, Andrei

    2003-05-28

    Long term ground stability is essential for achieving the performance goals of the Next Linear Collider. To characterize ground motion on relevant time scales, measurements have been performed at three geologically different locations using a hydrostatic level system developed specifically for these studies. Comparative results from the different sites are presented in this paper.

  12. High-pressure deformation of calcite marble and its transformation to aragonite under non-hydrostatic conditions

    Science.gov (United States)

    Hacker, B.R.; Kirby, S.H.

    1993-01-01

    We conducted deformation experiments on Carrara marble in the aragonite and calcite stability fields to observe the synkinematic transformation of calcite to aragonite, and to identify any relationships between transformation and deformation or sample strength. Deformation-induced microstructures in calcite crystals varied most significantly with temperature, ranging from limited slip and twinning at 400??C, limited recrystallization at 500??C, widespread recrystallization at 600 and 700??C, to grain growth at 800-900??C. Variations in confining pressure from 0.3 to 2.0 GPa have no apparent effect on calcite deformation microstructures. Aragonite grew in 10-6-10-7 s-1strain rate tests conducted for 18-524 h at confining pressures of 1.7-2.0 GPa and temperatures of 500-600??C. As in our previously reported hydrostatic experiments on this same transformation, the aragonite nucleated on calcite grain boundaries. The extent of transformation varied from a few percent conversion near pistons at 400??C, 2.0 GPa and 10-4 s-1 strain rate in a 0.8 h long experiment, to 98% transformation in a 21-day test at a strain rate of 10-7 s-7, a temperature of 600??C and a pressure of 2.0 GPa. At 500??C, porphyroblastic 100-200 ??m aragonite crystals grew at a rate faster than 8 ?? 10-1m s-1. At 600??C, the growth of aragonite neoblasts was slower, ???6 ?? 10-1 m s -1, and formed 'glove-and-finger' cellularprecipitation-like textures identical to those observed in hydrostatic experiments. The transformation to aragonite is not accompanied by a shear instability or anisotropic aragonite growth, consistent with its relatively small volume change and latent heat in comparison with compounds that do display those features. ?? 1993.

  13. Evaluation of high hydrostatic pressure inactivation of human norovirus on strawberries, blueberries, raspberries and in their purees.

    Science.gov (United States)

    Huang, Runze; Ye, Mu; Li, Xinhui; Ji, Lin; Karwe, Mukund; Chen, Haiqiang

    2016-04-16

    Human norovirus (HuNoV) has been an increasing concern of foodborne illness related to fresh and frozen berries. In this study, high hydrostatic pressure (HHP) inactivation of HuNoV on fresh strawberries, blueberries, and raspberries and in their purees was investigated. Porcine gastric mucin (PGM)-conjugated magnetic beads (PGM-MBs) and real-time reverse transcriptional polymerase chain reaction (RT-qPCR) were utilized for infectious HuNoV discrimination and quantification. Strawberry puree inoculated with HuNoV genogroup I.1 (GI.1) strain was HHP-treated at 450, 500 and 550 MPa for 2 min each at initial sample temperatures of 0, 4 and 20 °C. HuNoV GI.1 strain became more sensitive to HHP treatment as the temperature decreased from 20 to 0 °C. HuNoV GI.1 or genogroup II.4 (GII.4) strains were inoculated into three types of berries and their purees and treated at pressure levels from 250 to 650 MPa for 2 min at initial sample temperature of 0 °C. For the purees, the HHP condition needed to achieve >2.9 log reduction of HuNoV GI.1 strain and >4.0 log reduction of HuNoV GII.4 strain was found to be ≥ 550 MPa for 2 min at 0 °C. HHP treatment showed better inactivation effect of HuNoV on blueberries than on strawberry quarters and raspberries. HuNoV GI.1 strain was more resistant to HHP treatment than HuNoV GII.4 strain under different temperatures and environment. The physical properties and sensory qualities of HHP-treated and untreated blueberries and the three types of berry purees were evaluated. Color, pH and viscosity of blueberries and three berry purees showed no or slight changes after HHP treatment. Sensory evaluation demonstrated that HHP treatment of 550 MPa for 2 min at 0 °C did not significantly reduced the sensory qualities of three berry purees. The results demonstrated that the HHP treatment of 550 MPa for 2 min at 0 °C could be a potential nonthermal intervention for HuNoV in berry purees without adversely affecting their sensory qualities

  14. Hydrostatic Stress Effects in Metal Plasticity

    Science.gov (United States)

    Wilson, Christopher D.

    1999-01-01

    Since the 1940s, the theory of plasticity has assumed that hydrostatic stress does not affect the yield or postyield behavior of metals. This assumption is based on the early work of Bridgman. Bridgman found that hydrostatic pressure (compressive stress) does not affect yield behavior until a substantial amount of pressure (greater than 100 ksi) is present. The objective of this study was to determine the effect of hydrostatic tension on yield behavior. Two different specimen geometries were examined: an equal-arm bend specimen and a double edge notch specimen. The presence of a notch is sufficient to develop high enough hydrostatic tensile stresses to affect yield. The von Mises yield function, which does not have a hydrostatic component, and the Drucker-Prager yield function, which includes a hydrostatic component, were used in finite element analyses of the two specimen geometries. The analyses were compared to test data from IN 100 specimens. For both geometries, the analyses using the Drucker-Prager yield function more closely simulated the test data. The von Mises yield function lead to 5-10% overprediction of the force-displacement or force-strain response of the test specimens.

  15. Microbiological, physicochemical and sensory parameters of dry fermented sausages manufactured with high hydrostatic pressure processed raw meat.

    Science.gov (United States)

    Omer, M K; Prieto, B; Rendueles, E; Alvarez-Ordoñez, A; Lunde, K; Alvseike, O; Prieto, M

    2015-10-01

    The aim of this trial was to describe physicochemical, microbiological and organoleptic characteristics of dry fermented sausages produced from high hydrostatic pressure (HHP) pre-processed trimmings. During ripening of the meat products pH, weight, water activity (aw), and several microbiological parameters were measured at zero, eight, fifteen days and after 6weeks. Sensory characteristics were estimated at day 15 and after six weeks by a test panel by using several sensory tests. Enterobacteriaceae were not detected in sausages from HHP-processed trimmings. Fermentation was little affected, but weight and aw of the HHP-processed sausages decreased faster during ripening. HHP-treated sausages were consistently less favoured than non HHP-treated sausages, but the strategy may be an alternative approach if the process is optimized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Effects of high hydrostatic pressure on emulsifying properties of sweet potato protein in model protein-hydrocolloids system.

    Science.gov (United States)

    Khan, Nasir Mehmood; Mu, Tai-Hua; Ali, Farman; Arogundade, Lawrence A; Khan, Zia Ullah; Zhang, Maio; Ahmad, Shujaat; Sun, Hong-Nan

    2015-02-15

    The effects of high hydrostatic pressure (HHP) on emulsifying properties of sweet potato protein (SPP) in presence of 0.1%, 0.3% and 0.5% (w/v) of guar gum (GG) and glycerol monostearate (GMS) were investigated. Emulsifying stability index (ESI) of the SPP with GG revealed significant increase (P<0.05) in ESI value at 600MPa treatment, while the stability of SPP-GMS emulsions significantly decreased with increase in GMS concentrations and HHP treatments (200-600MPa). HHP treatment considerably reduced the creaming rate for SPP-GG model while such case was not observed for SPP-GMS model. The flow index for SPP-GG emulsion model was found to decrease with increase in HHP treatment and had non-Newtonian behaviour. The SPP-GMS emulsion models with HHP treatments showed comparatively lower viscosities but had more Newtonian flow character. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Reduction of Listeria innocua contamination in vacuum-packaged dry-cured Italian pork products after high hydrostatic pressure treatment

    Directory of Open Access Journals (Sweden)

    Giuseppe Merialdi

    2015-06-01

    Full Text Available The present work aims to present the results of the application of a treatment with high hydrostatic pressure (HHP on Italian fermented and dry-cured pork products. The products used in this study were portioned cured ham, portioned bacon and salami, vacuumpackaged and produced by a single processing company. Two studies were conducted on a single batch of the three products by means of an artificial contamination with Listeria innocua as a surrogate of L. monocytogenes. In the first trial a superficial contamination was obtained by immersion for 3 min in the culture broth with a concentration of approximately 9 log cfu/mL. At the end of the inoculum step, the pieces were dred at room temperature and vacuum packaged. In the second trial 50 kg of minced pork meat were contaminated before production of salami. In both cases the inoculum contained 5 strains of L. innocua. Subsequently, in both trials, 10 samples were randomly divided into two groups of 5 pieces each: i TH group, samples treated with HHP; ii group C, control samples, not subjected to any treatment. All samples were stored at refrigeration temperature at the end of HHP treatments (if applied, and analyzed for the determination of the surface (1st trial and deep (2nd trial quantitative contamination of L. innocua. pH and aW were also determined on 3 pieces of each products belonging to group C. The difference between the medians of the log cfu/cm2 or g established between controls and treated were compared using the non-parametric test (Kruskal-Wallis test with P<0.01. In all products and in both trials the level of contamination detected in treatment groups was always significantly lower than in controls (P<0.01. In particular, in vacuum-packaged ham, bacon and salami viability logarithmic viability reductions equal to -2.29, -2.54 and -2.51 were observed, respectively. This study aimed to evaluate a not-thermal treatment on Italian cured or fermented pork products. The results of

  18. Inactivation and sublethal injury of Escherichia coli and Listeria innocua by high hydrostatic pressure in model suspensions and beetroot juice

    Science.gov (United States)

    Sokołowska, Barbara; Skąpska, Sylwia; Niezgoda, Jolanta; Rutkowska, Małgorzata; Dekowska, Agnieszka; Rzoska, Sylwester J.

    2014-01-01

    Cells exposed to different physical and chemical treatments, including high hydrostatic pressure (HHP), suffer from injuries that could be reversible in food materials when stored. Escherichia coli and Listeria innocua cells suspended in phosphate-buffered saline (PBS) (model suspensions), and acidified beetroot juice were subjected to a pressure of 400 MPa at a temperature of 20°C for up to 10 min. The difference between the viable and non-injured cells was used to estimate the number of injured survivors. The reduction in E. coli cell number was 3.4-4.1 log after 10 min pressurization in model suspensions and 6.2 log in beetroot juice. Sublethally injured cells in PBS accounted for up to 2.7 log after 10 min HHP treatment and 0.8 log in beetroot juice. The reduction in L. innocua cell number after 10 min pressure treatment reached from 3.8 to 4.8 log, depending on the initial concentration in model suspensions. Among the surviving L. innocua cells, even up to 100% were injured. L. innocua cells were completely inactivated after 1 min HHP treatment in beetroot juice.

  19. Effects of ionizing irradiation and hydrostatic pressure on Escherichia coli O157:H7 inactivation, chemical composition, and sensory acceptability of ground beef patties.

    Science.gov (United States)

    Schilling, M W; Yoon, Y; Tokarskyy, O; Pham, A J; Williams, R C; Marshall, D L

    2009-04-01

    A randomized complete block design with three replications was utilized to determine the effects of ionizing irradiation and hydrostatic pressure on the inactivation of Escherichia coli O157:H7, volatile composition, and consumer acceptability (n=155) of frozen ground beef patties. E-beam and X-ray irradiation (2kGy) inactivated E. coli O157:H7 below the limit of detection, while hydrostatic pressure treatment (300mPa for 5min at 4°C) did not inactivate this pathogen. Solid-phase microextraction (SPME) was used to extract volatile compounds from treated ground beef patties. Irradiation and hydrostatic pressure altered the volatile composition (Pbeef patties in respect to radiolytic products. However, results were inconclusive on whether these differences were great enough to use this method to differentiate between irradiated and non-irradiated samples in a commercial setting. Irradiation did not affect (P>0.05) consumer acceptability of ground beef patties when compared to untreated samples, but hydrostatic pressure caused decreased acceptability (P<0.05) when compared to other treatments.

  20. Effect of Hydraulic Accumulator on Pressure Surge of a Hydrostatic Transmission System

    Science.gov (United States)

    Kumar, Ajit; Das, Jayanta; Dasgupta, Kabir; Barnwal, Manish Kumar

    2017-05-01

    Hydraulic power system is generally used in off-road vehicles for power transmission such as Heavy Earth Moving Machineries (HEMM). Their energy efficiency and unsubstantial failure becomes an extensive subject of analysis. Various arrangements in the system are compassed along with the utilization of some appropriate components. Application of a hydraulic accumulator is one among them. Benefits of accumulator is its multi-purpose usages like energy saving and pressure surge damping. This paper deals with the control of pressure surges in the hydraulic system and energy saving from the surges by using accumulator. For this purpose, the simulation of the hydraulic system is done in MATLAB/SimulinkR environment and an external disturbance is introduced to generate the pressure surge. The surge absorptivity of the accumulator is studied for different sizes at different pre-charged conditions of the accumulator. The discharge characteristics of different sized accumulators are also analyzed in this paper. It is observed that the ability to absorb the surge and stabilize the system is high in the smaller capacity accumulator. However the energy delivery time of larger sized accumulator is high.

  1. Pressure estimation for diamond anvils cell under very-low pressures, hydrostatic conditions -evaluation for quartz Raman peak shifts-

    Science.gov (United States)

    Kubo, K.; Okamoto, K.

    2016-12-01

    Pressure shift of the ruby R1 luminescent shift has been used as primary pressure gauge in diamond-anvils experiments. However, the pressure calibration under low-pressure conditions (quartz Raman-shift pressure gauge reported by Schmidt and Ziemenn (2000). At pressure lower than 1 GPa, their pressure calibration give 0.2 GPa lower conditions than the Ruby pressure gauge at 1 GPa.

  2. Synchronous effects of temperature, hydrostatic pressure, and salinity on growth, phospholipid profiles, and protein patterns of four Halomonas species isolated from deep-sea hydrothermal-vent and sea surface environments.

    Science.gov (United States)

    Kaye, Jonathan Z; Baross, John A

    2004-10-01

    Four strains of euryhaline bacteria belonging to the genus Halomonas were tested for their response to a range of temperatures (2, 13, and 30 degrees C), hydrostatic pressures (0.1, 7.5, 15, 25, 35, 45, and 55 MPa), and salinities (4, 11, and 17% total salts). The isolates were psychrotolerant, halophilic to moderately halophilic, and piezotolerant, growing fastest at 30 degrees C, 0.1 MPa, and 4% total salts. Little or no growth occurred at the highest hydrostatic pressures tested, an effect that was more pronounced with decreasing temperatures. Growth curves suggested that the Halomonas strains tested would grow well in cool to warm hydrothermal-vent and associated subseafloor habitats, but poorly or not at all under cold deep-sea conditions. The intermediate salinity tested enhanced growth under certain high-hydrostatic-pressure and low-temperature conditions, highlighting a synergistic effect on growth for these combined stresses. Phospholipid profiles obtained at 30 degrees C indicated that hydrostatic pressure exerted the dominant control on the degree of lipid saturation, although elevated salinity slightly mitigated the increased degree of lipid unsaturation caused by increased hydrostatic pressure. Profiles of cytosolic and membrane proteins of Halomonas axialensis and H. hydrothermalis performed at 30 degrees C under various salinities and hydrostatic pressure conditions indicated several hydrostatic pressure and salinity effects, including proteins whose expression was induced by either an elevated salinity or hydrostatic pressure, but not by a combination of the two. The interplay between salinity and hydrostatic pressure on microbial growth and physiology suggests that adaptations to hydrostatic pressure and possibly other stresses may partially explain the euryhaline phenotype of members of the genus Halomonas living in deep-sea environments.

  3. Short communication: low-fat ice cream flavor not modified by high hydrostatic pressure treatment of whey protein concentrate.

    Science.gov (United States)

    Chauhan, J M; Lim, S-Y; Powers, J R; Ross, C F; Clark, S

    2010-04-01

    The purpose of this study was to examine flavor binding of high hydrostatic pressure (HHP)-treated whey protein concentrate (WPC) in a real food system. Fresh Washington State University (WSU, Pullman) WPC, produced by ultrafiltration of separated Cheddar cheese whey, was treated at 300 MPa for 15 min. Commercial WPC 35 powder was reconstituted to equivalent total solids as WSU WPC (8.23%). Six batches of low-fat ice cream were produced: A) HHP-treated WSU WPC without diacetyl; B) and E) WSU WPC with 2 mg/L of diacetyl added before HHP; C) WSU WPC with 2 mg/L of diacetyl added after HHP; D) untreated WSU WPC with 2 mg/L of diacetyl; and F) untreated commercial WPC 35 with 2 mg/L of diacetyl. The solution of WSU WPC or commercial WPC 35 contributed 10% to the mix formulation. Ice creams were produced by using standard ice cream ingredients and processes. Low-fat ice creams containing HHP-treated WSU WPC and untreated WSU WPC were analyzed using headspace-solid phase microextraction-gas chromatography. Sensory evaluation by balanced reference duo-trio test was carried out using 50 untrained panelists in 2 sessions on 2 different days. The headspace-solid phase microextraction-gas chromatography analysis revealed that ice cream containing HHP-treated WSU WPC had almost 3 times the concentration of diacetyl compared with ice cream containing untreated WSU WPC at d 1 of storage. However, diacetyl was not detected in ice creams after 14 d of storage. Eighty percent of panelists were able to distinguish between low-fat ice creams containing untreated WSU WPC with and without diacetyl, confirming panelists' ability to detect diacetyl. However, panelists were not able to distinguish between low-fat ice creams containing untreated and HHP-treated WSU WPC with diacetyl. These results show that WPC diacetyl-binding properties were not enhanced by 300-MPa HHP treatment for 15 min, indicating that HHP may not be suitable for such applications. Copyright (c) 2010 American Dairy

  4. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    KAUST Repository

    Scoma, Alberto

    2016-03-29

    Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO43− uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential.

  5. Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?

    Science.gov (United States)

    Scoma, Alberto; Barbato, Marta; Hernandez-Sanabria, Emma; Mapelli, Francesca; Daffonchio, Daniele; Borin, Sara; Boon, Nico

    2016-03-01

    Oil spills represent an overwhelming carbon input to the marine environment that immediately impacts the sea surface ecosystem. Microbial communities degrading the oil fraction that eventually sinks to the seafloor must also deal with hydrostatic pressure, which linearly increases with depth. Piezosensitive hydrocarbonoclastic bacteria are ideal candidates to elucidate impaired pathways following oil spills at low depth. In the present paper, we tested two strains of the ubiquitous Alcanivorax genus, namely A. jadensis KS_339 and A. dieselolei KS_293, which is known to rapidly grow after oil spills. Strains were subjected to atmospheric and mild pressure (0.1, 5 and 10 MPa, corresponding to a depth of 0, 500 and 1000 m, respectively) providing n-dodecane as sole carbon source. Pressures equal to 5 and 10 MPa significantly lowered growth yields of both strains. However, in strain KS_293 grown at 10 MPa CO2 production per cell was not affected, cell integrity was preserved and PO43- uptake increased. Analysis of its transcriptome revealed that 95% of its genes were downregulated. Increased transcription involved protein synthesis, energy generation and respiration pathways. Interplay between these factors may play a key role in shaping the structure of microbial communities developed after oil spills at low depth and limit their bioremediation potential.

  6. Hydrostatic pressure dependence of Brillouin frequency shift in polymer optical fibers

    Science.gov (United States)

    Mizuno, Yosuke; Lee, Heeyoung; Hayashi, Neisei; Nakamura, Kentaro

    2018-01-01

    We experimentally investigate the pressure dependence of the Brillouin frequency shift (BFS) in a polymer optical fiber. The BFS dependence on pressure shows a hysteresis, but after several cycles of increasing/decreasing pressure, the hysteresis is mitigated. The pressure dependence coefficient at this state is +4.3 MHz/MPa, the absolute value of which is 5.8 times as large as that of bare silica fibers (the sign is opposite). The reason for this unique behavior is discussed. This result indicates that, by using plastic optical fibers instead of silica fibers, distributed pressure sensing with a higher sensitivity is potentially feasible.

  7. Simultaneous effects of hydrostatic pressure and applied electric field on the impurity-related self-polarization in GaAs/Ga{sub 1-x}Al{sub x}As multiple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, R.L.; Miranda, Guillermo L. [Fisica Teorica y Aplicada, Escuela de Ingenieria de Antioquia, A.A. 7516 Medellin (Colombia); Duque, C.A., E-mail: cduque_echeverri@yahoo.e [Instituto de Fisica, Universidad de Antioquia, A.A. 1226 Medellin (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico)

    2011-05-15

    A detailed theoretical study of the combined effects of hydrostatic pressure and in-growth direction applied electric field on the binding energy and self-polarization of a donor impurity in a system of GaAs-(Ga,Al)As coupled square quantum wells is presented. The study is performed in the framework of the effective mass and parabolic band approximations and using a variational procedure. The electron effective mass, the dielectric constant, the barrier height, the well sizes, all them varying with the hydrostatic pressure are taken into account within the study. The results obtained show that the impurity binding energy and its self-polarization bear strong dependencies with the hydrostatic pressure, the strength of the applied electric field, the width of the confining potential barriers, and the impurity position. - Research highlights: {yields} Impurity binding energy and self-polarization have a conjugate behavior in MQWs. {yields} Binding energy (self-polarization) is an increasing (decreasing) function of HP. {yields} For on-center impurity, the binding energy decreases with EF. {yields} For on-center impurity the self-polarization increases with EF.

  8. Vibrational spectroscopy at very high pressures. Part 28. Raman and far-infrared spectra of some complex chlorides A2MCl6 under hydrostatic pressure

    DEFF Research Database (Denmark)

    Adams, David M.; Berg, Rolf W.; Williams, Alan D.

    1981-01-01

    Raman and far-IR mode frequency shifts with pressure have been observed under hydrostatic conditions in a gasketed diamond anvil cell (d.a.c.). Using compressibilities calculated from unit cell constants and lattice energies, Grüneisen parameters gammai have been obtained for all observed modes...... pressure curves for K2SnCl6 and [(CH3)4N]2MCl6 (M=Sn, Te, Pt) are discussed in relation to their structures. Shifts of nu-tilde i with temperature for K2ReCl6 and K2PtCl6 are analyzed into explicit and implicit anharmonic contributions. The Journal of Chemical Physics is copyrighted by The American...

  9. Combined of ultrasound irradiation with high hydrostatic pressure (US/HHP) as a new method to improve immobilization of dextranase onto alginate gel.

    Science.gov (United States)

    Bashari, Mohanad; Abbas, Shabbar; Xu, Xueming; Jin, Zhengyu

    2014-07-01

    In this research work, dextranase was immobilized onto calcium alginate beads by the combination of ultrasonic irradiation and high hydrostatic pressure (US/HHP) treatments. Effects of US/HHP treatments on loading efficiency and immobilization yield of dextranase enzyme onto calcium alginate beads were investigated. Furthermore, the activities of immobilized enzymes prepared with and without US/HHP treatments and that prepared with ultrasonic irradiation (US) and high hydrostatic pressure (HHP), as a function of pH, temperature, recyclability and enzyme kinetic parameters, were compared with that for free enzyme. The maximum loading efficiency and the immobilization yield were observed when the immobilized dextranase was prepared with US (40 W at 25 kHz for 15 min) combined with HHP (400 MPa for 15 min), under which the loading efficiency and the immobilization yield increased by 88.92% and 80.86%, respectively, compared to immobilized enzymes prepared without US/HHP treatment. On the other hand, immobilized enzyme prepared with US/HHP treatment showed Vmax, KM, catalytic and specificity constants values higher than that for the immobilized enzyme prepared with HHP treatment, indicated that, this new US/HHP method improved the catalytic kinetics activity of immobilized dextranase at all the reaction conditions studied. Compared to immobilized enzyme prepared either with US or HHP, the immobilized enzymes prepared with US/HHP method exhibited a higher: pH optimum, optimal reaction temperature, thermal stability and recyclability, and lower activation energy, which, illustrating the effectiveness of the US/HHP method. These results indicated that, the combination of US and HHP treatments could be an effective method for improving the immobilization of enzymes in polymers. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. High hydrostatic pressure effects on Listeria monocytogenes and L. innocua: Evidence for variability in inactivation behaviour and in resistance to pediocin bacHA-6111-2.

    Science.gov (United States)

    Bruschi, Carolina; Komora, Norton; Castro, Sónia Marília; Saraiva, Jorge; Ferreira, Vânia Borges; Teixeira, Paula

    2017-06-01

    The effect of high hydrostatic pressure (HHP) on the survival of 14 strains of Listeria monocytogenes from food or clinical origins, selected to represent different pheno and genotypes, was evaluated. Stationary phase cells were submitted to 300, 400 and 500 MPa at 10 °C, for 5 min. A high variability in the resistance of L. monocytogenes to pressure was observed, and particularly two strains isolated from food were significantly more baroresistant than the rest. Strains of L. monocytogenes resistant to one or more antibiotics exhibited significantly higher levels of survival after the high pressure treatment at 400 MPa. No correlation was found between strains' origin or thermal tolerance and resistance to HHP. The suitability of two strains of L. innocua as surrogates of L. monocytogenes, was also investigated. These exhibited significantly higher sensitivities to HHP than observed for some L. monocytogenes. The antimicrobial effect of the antilisterial bacteriocin (bacHA-6111-2) increased after L. monocytogenes cells had been exposed to pressure. The data obtained underlines the importance of strain selection for studies aiming to evaluate HHP efficacy to ensure safety of HHP-treated foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Structure and stability of ZrSiO4 under hydrostatic pressure

    DEFF Research Database (Denmark)

    Marques, M.; Florez, M.; Recio, J.M.

    2006-01-01

    played by the oxygen atoms in the description of this property. The zircon-reidite equilibrium phase transition pressure is computed around 5 GPa. No other post-scheelite phase is found stable above this pressure though a decomposition into ZrO2 (cottunite) and SiO2 (stishovite) is predicted at about 6...

  12. Noise-modulated self-polarization effect of impurity doped quantum dots under simultaneous presence of hydrostatic pressure and temperature

    Science.gov (United States)

    Bera, Aindrila; Ghosh, Manas

    2017-10-01

    We explore the profiles of self-polarization effect (SPE) of doped GaAs QD under simultaneous presence of hydrostatic pressure (HP), temperature and in presence of noise. Noise term carries Gaussian white character and it has been administered to the system via two different pathways; additive and multiplicative. Profiles of SPE have been monitored as a function of HP, temperature and noise strength. Under a given condition of HP and temperature, noise marks its prominent signature on the SPE profile. However, the extent to which noise affects the SPE profile visibly depends on the noise strength and the pathway through which noise is introduced. As interesting observations we have found that SPE exhibits minimization at a pressure of ∼ 170 kbar in absence of noise and at ∼ 150 kbar when noise is present. Furthermore, in presence of multiplicative noise SPE exhibits a very faint decrease with increase in T up to T ∼ 420 K. However, beyond T ∼ 420 K, further increase in temperature causes abrupt fall of SPE in a highly sharp way. The findings highlight viable ways of tuning SPE of doped QD system through subtle interplay between HP, temperature and noise.

  13. Suppression of the ferromagnetic order in the Heusler alloy Ni{sub 50}Mn{sub 35}In{sub 15} by hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Salazar Mejía, C., E-mail: Catalina.Salazar@cpfs.mpg.de; Mydeen, K.; Naumov, P.; Medvedev, S. A.; Wang, C.; Schwarz, U.; Felser, C.; Nicklas, M., E-mail: nicklas@cpfs.mpg.de [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); Hanfland, M. [ESRF, BP220, 38043 Grenoble (France); Nayak, A. K. [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany)

    2016-06-27

    We report on the effect of hydrostatic pressure on the magnetic and structural properties of the shape-memory Heusler alloy Ni{sub 50}Mn{sub 35}In{sub 15}. Magnetization and x-ray diffraction experiments were performed at hydrostatic pressures up to 5 GPa using diamond anvil cells. Pressure stabilizes the martensitic phase, shifting the martensitic transition to higher temperatures, and suppresses the ferromagnetic austenitic phase. Above 3 GPa, where the martensitic-transition temperature approaches the Curie temperature in the austenite, the magnetization shows no longer indications of ferromagnetic ordering. We further find an extended temperature region with a mixture of martensite and austenite phases, which directly relates to the magnetic properties.

  14. Influence of magnetic field, chemical pressure and hydrostatic pressure on the structural and magnetocaloric properties of the Mn–Ni–Ge system

    Science.gov (United States)

    Taubel, Andreas; Gottschall, Tino; Fries, Maximilian; Faske, Tom; Skokov, Konstantin P.; Gutfleisch, Oliver

    2017-11-01

    The magnetic, structural and thermomagnetic properties of the MM’X material system of MnNiGe are evaluated with respect to their utilization in magnetocaloric refrigeration. The effects of separate and simultaneous substitution of Fe for Mn and Si on the Ge site are analysed in detail to highlight the benefits of the isostructural alloying method. A large range of compounds with precisely tunable structural and magnetic properties and the tuning of the phase transition by chemical pressure are compared to the effect of hydrostatic pressure on the martensitic transition. We obtained very large isothermal entropy changes Δ S_iso of up to -37.8 J kg-1 K-1 based on magnetic measurements for (Mn,Fe)NiGe in moderate fields of 2 T. The enhanced magnetocaloric properties for transitions around room temperature are demonstrated for samples with reduced Ge, a resource critical element. An adiabatic temperature change of 1.3 K in a magnetic field change of 1.93 T is observed upon direct measurement for a sample with Fe and Si substitution. However, the high volume change of 2.8% results in an embrittlement of large particles into several smaller fragments and leads to a sensitivity of the magnetocaloric properties towards sample shape and size. On the other hand, this large volume change enables to induce the phase transition with a large shift of the transition temperature by application of hydrostatic pressure (72 K GPa-1 ). Thus, the effect of 1.88 GPa is equivalent to a substitution of 10% Fe for Mn and can act as an additional stimulus to induce the phase transition and support the low magnetic field dependence of the phase transition temperature for multicaloric applications.

  15. Pico Gauges for Minimally Invasive Intracellular Hydrostatic Pressure Measurements1[C][W][OPEN

    Science.gov (United States)

    Knoblauch, Jan; Mullendore, Daniel L.; Jensen, Kaare H.; Knoblauch, Michael

    2014-01-01

    Intracellular pressure has a multitude of functions in cells surrounded by a cell wall or similar matrix in all kingdoms of life. The functions include cell growth, nastic movements, and penetration of tissue by parasites. The precise measurement of intracellular pressure in the majority of cells, however, remains difficult or impossible due to their small size and/or sensitivity to manipulation. Here, we report on a method that allows precise measurements in basically any cell type over all ranges of pressure. It is based on the compression of nanoliter and picoliter volumes of oil entrapped in the tip of microcapillaries, which we call pico gauges. The production of pico gauges can be accomplished with standard laboratory equipment, and measurements are comparably easy to conduct. Example pressure measurements are performed on cells that are difficult or impossible to measure with other methods. PMID:25232014

  16. Assessment of Clostridium perfringens spore response to high hydrostatic pressure and heat with nisin.

    Science.gov (United States)

    Gao, Yulong; Qiu, Weifen; Wu, Ding; Fu, Qiang

    2011-08-01

    The elimination of spores from low-acid foods presents food-processing and food-safety challenges to high-pressure processing (HPP) developers as bacterial spores are extremely resistant to pressure. Therefore, the effects of pressure (400-800 MPa), temperature (35-95 °C), and nisin (0-496 IU/mL) on the inactivation of Clostridium perfringens AS 64701 spores at various pressure-holding times (7.5-17.5 min) were explored. A second-order polynomal equation for HPP- and nisin-induced inactivation of C. perfringens spores was constructed with response surface methodology. Experiment results showed that the experimental values were shown to be significantly in agreement with the predicted values because the adjusted determination coefficient (R (Adj)²) was 0.9708 and the level of significance was P nisin concentration of 328 IU/mL. The validation of the model equation for predicting the optimum response values was verified effectively by ten test points that were not used in the establishment of the model. Compared with conventional HPP techniques, the main process advantages of HPP-nisin combination sterilization in the UHT milk are, lower pressure, temperature, natural preservative (nisin), and in a shorter treatment time. The synergistic inactivation of bacteria by HPP-nisin combination is a promising and natural method to increase the efficiency and safety of high-pressure pasteurization.

  17. Hydrostatic pressure on optical absorption and refractive index changes of a shallow hydrogenic impurity in a GaAs/GaAlAs quantum wire

    Science.gov (United States)

    Santhi, M.; John Peter, A.; Yoo, ChangKyoo

    2012-08-01

    The effect of hydrostatic pressure on the binding energy of a hydrogenic impurity in a GaAs/GaAlAs quantum wire is discussed. Calculations have been performed using Bessel functions as an orthonormal basis within a single band effective mass approximation. Pressure induced photoionization cross section of the hydrogenic impurity is investigated. The total optical absorption and the refractive index changes as a function of normalized photon energy between the ground and the first excited state in the presence of pressure are analysed. The optical absorption coefficients and the refractive index changes strongly depend on the incident optical intensity and the pressure.

  18. Nonlinear optical rectification in a vertically coupled lens-shaped InAs/GaAs quantum dots with wetting layers under hydrostatic pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ben Mahrsia, R.; Choubani, M., E-mail: mohsenchoubani3@yahoo.fr; Bouzaiene, L.; Maaref, H.

    2016-06-25

    In this paper we explore the structure parameters, hydrostatic pressure and temperature effects on Nonlinear optical rectification (NOR) in an asymmetric vertically coupled lens-shaped InAs/GaAs quantum dots. During epitaxial growth, lens-shaped quantum dots (QDs) are formed on the wetting layer (WL). Many theoretical works have neglected WL and its effect on nonlinear optical properties of QD-based systems for sake of simplicity. However, in this work the WL has been shown to be so influential in the intersubband energy and nonlinear optical rectification magnitude. Also, a detailed and comprehensive study of the nonlinear optical rectification is theoretical investigated within the framework of the compact density-matrix approach and finite difference method (FDM). It's found that nonlinear optical rectification coefficient is strongly affected not only by the WL, but also by the pressure, temperature and the coupled width between the QDs. Obtained results revealed that a red or a blue shift cane be observed. This behavior in the NOR gives a new degree of freedom in regions of interest for device applications. - Highlights: • Vertically coupled lens-shaped InAs/GaAs quantum dots is investigated. • Photon energy shifts towards the red with increasing pressure. • Photon energy shifts towards the blue with increasing temperature. • Intersubband energy decreases with increasing the wetting layer width. • Nonlinear optical rectification magnitude is controlled and adjusted.

  19. Effect of hydrostatic pressure on the structural and electronic properties of Cd{sub 0.75}Cr{sub 0.25}S

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Anita [Guru Nanak College for Girls, Sri Muktsar Sahib Punjab-152026 (India); Kaur, Kulwinder; Kumar, Ranjan [Department of Physics, Panjab University Chandigarh-160014 (India); Dhiman, Shobna [Department of Applied Science, PEC, University of Technology, Chandigarh-160011 (India)

    2016-05-23

    In this paper we present the results obtained from first principle calculations of the effect of hydrostatic pressure on the structural and electronic properties of Cd{sub 1-x}Cr{sub x}S diluted magnetic semiconductor in Zinc Blende (B3) phase at x=0.25. High pressure behavior of Cd{sub 1-x}Cr{sub x}S has been investigated between 0 GPa to 100 GPa The calculations have been performed using Density functional theory as implemented in the Spanish Initiative for Electronic Simulations with Thousands of Atoms code using local density approximation as exchange-correlation (XC) potential. Calculated electronic band structures of Cd{sub 1-x}Cr{sub x}S are discussed in terms of contribution of Cr 3d{sup 5} 4s{sup 1}, Cd 4d{sup 10} 5s{sup 2}, S 3s{sup 2} 3p{sup 4} orbital’s. Study of band structures shows half-metallic ferromagnetic nature of Cd{sub 0.75}Cr{sub 0.25}S with 100% spin polarization. Under application of external pressure, the valence band and conduction band are shifted upward which leads to modification of electronic structure.

  20. Hydrostatic pressure affects selective tidal stream transport in the North Sea brown shrimp (Crangon crangon).

    Science.gov (United States)

    Tielmann, Moritz; Reiser, Stefan; Hufnagl, Marc; Herrmann, Jens-Peter; Eckardt, André; Temming, Axel

    2015-10-01

    The brown shrimp (Crangon crangon) is a highly abundant invertebrate in the North Sea, with its life cycle stages ranging from deep offshore spawning to shallow onshore nursery areas. To overcome the long distances between these two habitats, brown shrimp are suspected to use selective tidal stream transport (STST), moving with the cyclic tide currents towards their preferred water depths. However, it is not known which stimulus actually triggers STST behavior in brown shrimp. In this work, we determined the influence of different hyperbaric pressures on STST behavior of juvenile brown shrimp. Brown shrimp activity was recorded in a hyperbaric pressure chamber that supplied constant and dynamic pressure conditions simulating different depths, with and without a tidal cycle. Subsequent wavelet and Fourier analysis were performed to determine the periodicity in the activity data. The results of the experiments show that STST behavior in brown shrimp varies with pressure and therefore with depth. We further show that STST behavior can be initiated by cyclic pressure changes. However, an interaction with one or more other environmental triggers remains possible. Furthermore, a security ebb-tide activity was identified that may serve to avoid potential stranding in shallow waters and is 'remembered' by shrimp for about 1.5 days without contact with tidal triggers. © 2015. Published by The Company of Biologists Ltd.

  1. Thriving at high hydrostatic pressure: the example of ammonoids (extinct cephalopods).

    Science.gov (United States)

    De Blasio, Fabio Vittorio

    2006-09-01

    Ammonoids are a group of extinct mollusks belonging to the same class of the living genus Nautilus (cephalopoda). In both Nautili and ammonoids, the (usually planospiral) shell is divided into chambers separated by septa that, during their lifetime, are filled with gas at atmospheric pressure. The intersection of septa with the external shell generates a curve called the suture line, which in living and most fossil Nautili is fairly uncomplicated. In contrast, suture lines of ancient ammonoids were gently curved and during the evolution of the group became highly complex, in some cases so extensively frilled as to be considered as fractal curves. Numerous theories have been put forward to explain the complexity of suture ammonoid lines. Calculations presented here lend support to the hypothesis that complex suture lines aided in counteracting the effect of the external water pressure. Additionally, it is suggested that complex suture lines diminished shell shrinkage caused by water pressure, and thus aided in improving buoyancy. Understanding the reason for complex sutures in ammonoids represents an important issue in paleobiology with potential applications to the problem of the resistance of hollow mechanical structures subjected to high pressure.

  2. Sterilization by high hydrostatic pressure : increasing efficiency and product quality by improved temperature control

    NARCIS (Netherlands)

    Heij, de W.B.C.; Schepdael, van L.J.M.M.; Moezelaar, R.; Berg, van den R.W.

    2003-01-01

    A product being pressurized will heat up due to compressive heating. Due to heat transfer, products close to the vessel wall will cool down, a process which may result in a non-homogeneous product temperature profile in radial direction. If the proper technological features are implemented these

  3. Optimization of beta-carotene production by Rhodotorula glutinis using high hydrostatic pressure and response surface methodology.

    Science.gov (United States)

    Wang, S-L; Sun, J-S; Han, B-Z; Wu, X-Z

    2007-10-01

    Rhodotorula glutinis RG6 was treated by high hydrostatic pressure (HHP) of 300 MPa for 15 min for improving its ability of beta-carotene production. After the treatments of 5 repeated cycles, the mutant strain RG6p was obtained, beta-carotene production of which reached 10.01 mg/L, increased by 57.89% compared with 6.34 mg/L from parent strain RG6. To optimize the medium for beta-carotene fermentation by mutant RG6p, a response surface methodology (RSM) approach was used in conjunction with a factorial design and a central composite design, and the maximum yield of beta-carotene (13.43 mg/L), an increase of 34.17% compared to the control, was obtained at a pH 6.7 with an optimum medium (40 mL/250 mL) of yeast extract (4.23 g/L), glucose (12.11 g/L), inoculum (30 mL/L), tomato extract (2.5 mL/L), peanut oil (0.5 mL/L), and (NH(4))(2)SO(4) (5 g/L).

  4. Oenological characteristics, amino acids and volatile profiles of Hongqu rice wines during pottery storage: Effects of high hydrostatic pressure processing.

    Science.gov (United States)

    Tian, Yuting; Huang, Jiamei; Xie, Tingting; Huang, Luqiang; Zhuang, Weijin; Zheng, Yafeng; Zheng, Baodong

    2016-07-15

    Hongqu rice wines were subjected to high hydrostatic pressure (HHP) treatments of 200 MPa and 550 MPa at 25 °C for 30 min and effects on wine quality during pottery storage were examined. HHP treatment can significantly (pfusel-like alcohols and maintain the concentration of lactones in these wines. After 18 months of storage, the HHP-treated wines exhibited a more rapid decrease in total sugars (9.3-15.3%), lower free amino acid content (e.g. lysine content decreased by 45.0-84.5%), and higher ketone content (e.g. 6- and 14-fold increase for 2-nonanone). These changes could be attributed to the occurrence of Maillard and oxidation reactions. The wines treated at 550 MPa for 30 min developed about twice as rapidly during pottery storage than untreated wines based on principal component analysis. After only 6 months, treated wines had a volatile composition and an organoleptic quality similar to that of untreated wines stored in pottery for 18 months. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. In situ compressibility of carbonated hydroxyapatite in tooth dentine measured under hydrostatic pressure by high energy X-ray diffraction.

    Science.gov (United States)

    Forien, Jean-Baptiste; Fleck, Claudia; Krywka, Christina; Zolotoyabko, Emil; Zaslansky, Paul

    2015-10-01

    Tooth dentine and other bone-like materials contain carbonated hydroxyapatite nanoparticles within a network of collagen fibrils. It is widely assumed that the elastic properties of biogenic hydroxyapatites are identical to those of geological apatite. By applying hydrostatic pressure and by in situ measurements of the a- and c- lattice parameters using high energy X-ray diffraction, we characterize the anisotropic deformability of the mineral in the crowns and roots of teeth. The collected data allowed us to calculate the bulk modulus and to derive precise estimates of Young׳s moduli and Poisson׳s ratios of the biogenic mineral particles. The results show that the dentine apatite particles are about 20% less stiff than geological and synthetic apatites and that the mineral has an average bulk modulus K=82.7 GPa. A 5% anisotropy is observed in the derived values of Young׳s moduli, with E11≈91 GPa and E33≈96 GPa, indicating that the nanoparticles are only slightly stiffer along their long axis. Poisson׳s ratio spans ν≈0.30-0.35, as expected. Our findings suggest that the carbonated nanoparticles of biogenic apatite are significantly softer than previously thought and that their elastic properties can be considered to be nearly isotropic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effects of high hydrostatic pressure on distribution dynamics of free amino acids in water soaked brown rice grain

    Energy Technology Data Exchange (ETDEWEB)

    Shigematsu, T; Nakajima, K; Uno, Y; Sakano, A; Murakami, M; Narahara, Y; Fujii, T [Department of Food Sci., Niigata University Pharm. Appl. Life Sci. (NUPALS), Niigata, Niigata, 956-8603 (Japan); Hayashi, M [Niigata Industrial Creation Organization (NICO), Niigata, Niigata, 950-0078 (Japan); Ueno, S, E-mail: shige@nupals.ac.j [Grad. School of Agric. Sci., Tohoku University, Sendai, Miyagi, 981-8555 (Japan)

    2010-03-01

    High hydrostatic pressure (HP) with approximately below 400 MPa can induce a transformation of food materials to an alternative form, where membrane systems are damaged but certain enzymes are still active. HP treatment of water soaked brown rice grain could modify the mass transfer inside and apparent activities of enzymes, resulting in HP-dependent change of distribution of free amino acids. Thus, the distribution of free amino acids in brown rice grain during preservation after HP treatment was analyzed. Just after HP treatment at 200 MPa for 10 min, the distribution of free amino acids was not apparently different from that of untreated control. In contrast, after 1 to 4 days preservation at 25{sup 0}C, amino acids, such as Ala, Glu, Gly, Asp and Val, showed higher concentrations than those in control. This result suggested that HP treatment induced proteolysis to produce free amino acids. However, Gln, Thr and Cys, showed no apparent difference, suggesting that conversion of certain amino acids produced by proteolysis occurred. Moreover, the concentration of {gamma}-aminobutyric acid (GABA) in HP-treated sample was higher than that in untreated control. These results suggested that HP treatment induced alteration of distribution of free amino acids of rice grains via proteolysis and certain amino acids metabolism pathways.

  7. An impaired metabolic response to hydrostatic pressure explains Alcanivorax borkumensis recorded distribution in the deep marine water column

    KAUST Repository

    Scoma, Alberto

    2016-08-12

    Alcanivorax borkumensis is an ubiquitous model organism for hydrocarbonoclastic bacteria, which dominates polluted surface waters. Its negligible presence in oil-contaminated deep waters (as observed during the Deepwater Horizon accident) raises the hypothesis that it may lack adaptive mechanisms to hydrostatic pressure (HP). The type strain SK2 was tested under 0.1, 5 and 10 MPa (corresponding to surface water, 500 and 1000 m depth, respectively). While 5 MPa essentially inactivated SK2, further increase to 10 MPa triggered some resistance mechanism, as indicated by higher total and intact cell numbers. Under 10 MPa, SK2 upregulated the synthetic pathway of the osmolyte ectoine, whose concentration increased from 0.45 to 4.71 fmoles cell-1. Central biosynthetic pathways such as cell replication, glyoxylate and Krebs cycles, amino acids metabolism and fatty acids biosynthesis, but not β-oxidation, were upregulated or unaffected at 10 MPa, although total cell number was remarkably lower with respect to 0.1 MPa. Concomitantly, expression of more than 50% of SK2 genes was downregulated, including genes related to ATP generation, respiration and protein translation. Thus, A. borkumensis lacks proper adaptation to HP but activates resistance mechanisms. These consist in poorly efficient biosynthetic rather than energy-yielding degradation-related pathways, and suggest that HP does represent a major driver for its distribution at deep-sea.

  8. A transcriptome resource for the deep-sea bacterium Shewanella piezotolerans WP3 under cold and high hydrostatic pressure shock stress.

    Science.gov (United States)

    Jian, Huahua; Li, Shengkang; Tang, Xixiang; Xiao, Xiang

    2016-12-01

    Low temperature and high hydrostatic pressure (HHP) are two of the most remarkable environmental factors influencing deep-sea ecosystem. The adaptive mechanisms of microorganisms which live in these extreme environments to low temperature and high pressure warrant investigation. In this study, the global gene expression patterns of the deep-sea bacterium Shewanella piezotolerans WP3 in response to cold (0 °C) and HHP (50 MPa) shock were evaluated through DNA microarray analysis. Results revealed that 22, 66, and 106 genes were differentially expressed after WP3 was respectively exposed to cold shock for 30, 60, and 90 min. Of these genes, 16 genes were identified as common differentially expressed genes (DEGs). After 30 min and 120 min of HHP shock, 5 and 10 genes were respectively identified as DEGs. The hierarchical clustering analysis of the DEG pattern indicated that WP3 may employ different adaptive strategies to cope with cold and HHP shock stress. Taken together, our study provided a transcriptome resource for deep-sea bacterial responses to cold and HHP stress. This study also established a basis for further investigations on environmental adaptive mechanisms utilized by benthic bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Inactivation of Salmonella enterica and Listeria monocytogenes in cantaloupe puree by high hydrostatic pressure with/without added ascorbic acid.

    Science.gov (United States)

    Mukhopadhyay, Sudarsan; Sokorai, Kimberly; Ukuku, Dike; Fan, Xuetong; Juneja, Vijay; Sites, Joseph; Cassidy, Jennifer

    2016-10-17

    The objective of this research was to evaluate and develop a method for inactivation of Salmonella enterica and Listeria monocytogenes in cantaloupe puree (CP) by high hydrostatic pressure (HHP). Cantaloupe being the most netted varieties of melons presents a greater risk of pathogen transmission. Freshly prepared CP with or without 0.1% ascorbic acid (AA) was inoculated with a bacterial cocktail composed of a three serotype mixture of S. enterica (S. Poona, S. Newport H1275 and S. Stanley H0558) and a mixture of three strains of L. monocytogenes (Scott A, 43256 and 51742) to a population of ca. 10(8)CFU/g. Double sealed and double bagged inoculated CP (ca. 5g) were pressure treated at 300, 400 and 500MPa at 8°C and 15°C for 5min. Data indicated increased inactivation of both Salmonella and Listeria spp. with higher pressure. Log reduction for CP at 300MPa, 8°C for 5min was 2.4±0.2 and 1.6±0.5logCFU/g for Salmonella and Listeria, respectively. Survivability of the pathogens was significantly compromised at 400MPa and 8°C, inactivating 4.5±0.3logCFU/g of Salmonella and 3.0±0.4logCFU/g of Listeria spp. Complete inactivation of the pathogens in the puree (log reduction >6.7logCFU/g), with or without AA, was achieved when the pressure was further increased to 500MPa, except that for Listeria containing no AA at 8°C. Listeria presented higher resistance to pressure treatment compared to Salmonella spp. Initial temperatures (8 and 15°C) had no significant influence on Salmonella log reductions. Log reduction of pathogens increased but not significantly with increase of temperature. AA did not show any significant antimicrobial activity. Viable counts were about 0.2-0.4logCFU/g less in presence of 0.1% AA. These data validate that HHP can be used as an effective method for decontamination of cantaloupe puree. Published by Elsevier B.V.

  10. Effects of High Hydrostatic Pressure on Escherichia coli Ultrastructure, Membrane Integrity and Molecular Composition as Assessed by FTIR Spectroscopy and Microscopic Imaging Techniques

    Directory of Open Access Journals (Sweden)

    María Prieto-Calvo

    2014-12-01

    Full Text Available High hydrostatic pressure (HHP is a novel food processing technology that is considered as an attractive alternative to conventional heat treatments for the preservation of foods, due to its lethal effects on pathogenic and spoilage microorganisms, while causing minor effects on food quality and sensorial attributes. This study is aimed at investigating how HHP treatments at varying intensities in the range 50–900 MPa affect the viability, membrane integrity, ultrastructure and molecular composition of Escherichia coli. Results of membrane integrity tests (measurement of cellular leakage and monitoring of propidium iodide uptake through fluorescence microscopy and ultrastructural observations by transmission electron microscopy demonstrated that HHP gave rise to cellular enlargement, membrane damage or detachment, DNA and protein denaturation and loss of intracellular contents. Fourier-transform infrared (FTIR spectroscopy analyses evidenced minor changes in molecular composition in response to high pressures, which were mostly observed on the spectral region w4 (1200–900 cm−1, mainly informative of carbohydrates and polysaccharides of the cell wall. These findings suggest that exposure of E. coli cells to HHP causes alterations in their physical integrity while producing minor modifications in biochemical cellular composition. The current study increases the knowledge on the mechanisms of E. coli inactivation by HHP and provides valuable information for the design of more effective food preservation regimes based on the integration of mild HHP in combination with other food preservation strategies into a multi-target hurdle technology approach.

  11. Hydrostatic pressure testing of graphite/epoxy cylinder C6-1

    Energy Technology Data Exchange (ETDEWEB)

    Blake, H.W.; Starbuck, J.M.

    1992-07-01

    This report details the design, fabrication, and testing of IM6 graphite cylinder C6-1, which achieved a record pressure in hydrotest without failure. Included are the details of the cylinder construction, the design calculations for stress and buckling, and the cylinder failure predictions. Also provided are the design details of the metal end closures including the design calculations for the linear tapered end plugs. Finally, the test data and observations from the hydrotest are summarized. This work is performed under the Oak Ridge National Laboratory, Laboratory Directed Research and Development Program. The project is funded by the Director as a three-year project.

  12. Diffusion coalescence in НоBa2Cu3O7-x single crystals under the application of hydrostatic pressure

    Science.gov (United States)

    Boiko, Y. I.; Bogdanov, V. V.; Vovk, R. V.; Khadzhaj, G. Ya; Kamchatnaya, S. N.; Goulatis, I. L.; Chroneos, A.

    2017-09-01

    Experimental results on the effect of external hydrostatic pressure up to 5 kbar on the ρ(T) dependence in the ab plane of HoBa2Cu3O7-x single crystals (x  ≈  0.35) in the temperature range from 300 K to the superconducting transition temperature T c are presented and discussed. It was established that the application of external hydrostatic pressure P  =  5 kbar significantly intensified the process of diffusion coalescence of oxygen clusters, causing the growth of their average size. This leads to an increase in the number of negative U-centers, the presence of which results to the appearance of a phase capable of generating paired carriers of electric charge and, correspondingly, characterized by a higher transition temperature T c. Employing this hypothesis that concerns the mechanism of the diffusion coalescence of oxygen clusters, the change in the form of the temperature and time dependences of the electrical resistivity under the application of external hydrostatic pressure is discussed.

  13. Preparation of a Nanoscaled Poly(vinyl alcohol/Hydroxyapatite/DNA Complex Using High Hydrostatic Pressure Technology for In Vitro and In Vivo Gene Delivery

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Kimura

    2011-01-01

    Full Text Available Our previous research showed that poly(vinyl alcohol (PVA nanoparticles incorporating DNA with hydrogen bonds obtained by high hydrostatic pressurization are able to deliver DNA without any significant cytotoxicity. To enhance transfection efficiency of PVA/DNA nanoparticles, we describe a novel method to prepare PVA/DNA nanoparticles encapsulating nanoscaled hydroxyapatites (HAps prepared by high hydrostatic pressurization (980 MPa, which is designed to facilitate endosomal escape induced by dissolving HAps in an endosome. Scanning electron microscopic observation and dynamic light scattering measurement revealed that HAps were significantly encapsulated in PVA/HAp/DNA nanoparticles. The cytotoxicity, cellular uptake, and transgene expression of PVA/HAp/DNA nanoparticles were investigated using COS-7 cells. It was found that, in contrast to PVA/DNA nanoparticles, their internalization and transgene expression increased without cytotoxicity occurring. Furthermore, a similar level of transgene expression between plasmid DNA and PVA/HAp/DNA nanoparticles was achieved using in vivo hydrodynamic injection. Our results show a novel method of preparing PVA/DNA nanoparticles encapsulating HAp nano-crystals by using high hydrostatic pressure technology and the potential use of HAps as an enhancer of the transfection efficiency of PVA/DNA nanoparticles without significant cytotoxicity.

  14. Inactivation of Anisakis simplex L3 in the flesh of white spotted conger (Conger myriaster) by high hydrostatic pressure and its effect on quality.

    Science.gov (United States)

    Lee, Ki-Hoon; Park, Shin Young; Ha, Sang-Do

    2016-06-01

    Koreans consume much seafood; the country is surrounded on the east, west and south by the sea. Koreans have eaten raw sashimi for a long time. However, a concern in the raw sea food industry is that the parasitic nematode Anisakis simplex L3 occurs naturally in marine fish. Thus, the fishery industry needs a non-thermal processing method. High hydrostatic pressure (HPP) has been demonstrated to be effective. White spotted conger flesh containing 20 live larvae was exposed to different pressures (150 and 200 MPa for 1 and 5 min; 250 and 300 MPa each for 1 min). The viability of A. simplex L3 was significantly (p  0.05) in any of the Hunter colour ('L', 'a' and 'b') values were found after HPP at 200 MPa for 5 min. The fresh treated at 300 MPa for 1 min scored 4.0 (the defect limit of quality) of flavour, texture and overall acceptability in untrained sensory evaluation using a seven-point hedonic scale. However, the flesh treated at 200 MPa for 5 min scored > 5.0 ('like') for all sensory parameters. This study suggested that HPP at 200 MPa for 5 min could potentially be used for the inactivation of A. simplex L3 in raw fishery food products without any concomitant changes in their colour or sensory qualities.

  15. Changes of phenolic-acids and vitamin E profiles on germinated rough rice (Oryza sativa L.) treated by high hydrostatic pressure.

    Science.gov (United States)

    Kim, Min Young; Lee, Sang Hoon; Jang, Gwi Yeong; Li, Meishan; Lee, Youn Ri; Lee, Junsoo; Jeong, Heon Sang

    2017-02-15

    This study was performed to investigate changes in the phenolic acid and vitamin E profiles of germinated rough rice following high hydrostatic pressure treatment (HPT). Rough rice was germinated at 37°C for two days and subjected to 0.1, 10, 30, 50, and 100MPa pressures for 24h. The total phenolic acid content increased from 85.37μg/g at 0.1MPa to 183.52μg/g at 100MPa. The highest gallic acid (4.29μg/g), catechin (9.55μg/g), p-coumaric acid (8.36μg/g), ferulic acid (14.99μg/g), salicylic acid (14.88μg/g), naringin (6.18μg/g), trans-cinnamic acid (45.23μg/g), and kaempferol (40.95μg/g) contents occurred in the sample treated at 100MPa after germination. The maximum vitamin E content of about 2.56 (BG) and 4.34mg/100g (AG) were achieved at 30MPa. These result suggest that a combination of HPT and germination are efficient method for enhancement of functionality in rough rice, and clarify the influence of HPT conditions on the vitamin E and phenolic acid in germination rough rice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Pressure to kill or pressure to boost: a review on the various effects and applications of hydrostatic pressure in bacterial biotechnology.

    Science.gov (United States)

    Follonier, Stéphanie; Panke, Sven; Zinn, Manfred

    2012-03-01

    Much knowledge has been gained for the last 30 years about the effects of pressure on bacteria, and various pressure-based technologies have been designed. The development of modern molecular biology techniques (e.g., DNA microarrays) as well as the technological advances realized in the manufacturing of robust sampling and high-pressure devices has allowed these advances. Not only the direct effects on cell components (membranes, proteins, and nucleic acids) have been unraveled, but also the cellular response to pressure has been investigated by means of transcriptome and proteome analyses. Initially, research was performed by marine biologists who studied the microorganisms living in the deep sea at pressures of 1,000 bar. In parallel, food technologists developed pressure-based methods for inactivating microorganisms without altering the food properties as much as with temperature treatment. The preservation of specific product properties is also the rationale for pressure-based methods for the disinfection of biomaterials and for vaccine production. Therefore, attention was first focused on the “killing” potential of high pressure. On the other hand, there has been a growing interest in using elevated pressures (up to ~10 bar) for enhancing the productivity of bioprocesses. In this case, no killing effect was sought, but pressure was applied to “boost” the process by enhancing the oxygen transfer to the cell culture. This paper gives an overview on the effects of pressures in the range of 1 bar to 10 kbar on bacteria and presents the major and most recent achievements realized in the development of pressure-based biotechnological applications.

  17. Cell counts and survival to vitrification of bovine in vitro produced blastocysts subjected to sublethal high hydrostatic pressure.

    Science.gov (United States)

    Trigal, B; Muñoz, M; Gómez, E; Caamaño, J N; Martin, D; Carrocera, S; Casais, R; Diez, C

    2013-04-01

    This work analyses the effects of a high hydrostatic pressure (HHP) treatment on in vitro survival of in vitro produced (IVP) bovine embryos vitrified with the Cryologic Vitrification Method (CVM). Consequences on embryo quality in terms of cell proliferation and differentiation, and levels of embryonic Heat Shock Protein 70 (Hsp-70) were also examined. Day 7 and 8 bovine in vitro-produced blastocysts were submitted to an HHP treatment (60 MPa, at 32 °C for 1 h) and allowed to recover for 1 or 2 h in culture medium. The HHP treatment did not improve blastocyst survival rates after vitrification/warming. Survival (24 h post-warming) and hatching (48 h post-warming) rates were 79.3 ± 4.9 and 51.8 ± 4.2 vs 73.9 ± 4.2 and 44.7 ± 4.1 for untreated controls and HHP-treated embryos, respectively. Total cell numbers measured in fresh embryos were reduced after 1 h at 32 °C, with or without HHP treatment, indicating that cell proliferation was stopped as a result of stress. Vitrified HHP-treated embryos that hatched at 48 h after warming showed increased cell numbers in their ICM compared with untreated controls (50.2 ± 3.1 vs 38.8 ± 2.7), indicating higher embryo quality. Treatment of blastocysts with HHP did not alter the level of the Hsp-70 protein. In our conditions, HHP treatment did not affect the cryoresistance of these embryos. However, combination of HHP treatment and vitrification in fibreplugs resulted in an increase in the ICM cell number of hatched embryos 48 h post-warming. © 2012 Blackwell Verlag GmbH.

  18. Synergistic combinations of high hydrostatic pressure and essential oils or their constituents and their use in preservation of fruit juices.

    Science.gov (United States)

    Espina, Laura; García-Gonzalo, Diego; Laglaoui, Amin; Mackey, Bernard M; Pagán, Rafael

    2013-01-15

    This work addresses the inactivation achieved with Escherichia coli O157:H7 and Listeria monocytogenes EGD-e by combined processes of high hydrostatic pressure (HHP) and essential oils (EOs) or their chemical constituents (CCs). HHP treatments (175-400 MPa for 20 min) were combined with 200 μL/L of each EO (Citrus sinensis L., Citrus lemon L., Citrus reticulata L., Thymus algeriensis L., Eucalyptus globulus L., Rosmarinus officinalis L., Mentha pulegium L., Juniperus phoenicea L., and Cyperus longus L.) or each CC ((+)-limonene, α-pinene, β-pinene, p-cymene, thymol, carvacrol, borneol, linalool, terpinen-4-ol, 1,8-cineole, α-terpinyl acetate, camphor, and (+)-pulegone) in buffer of pH 4.0 or 7.0. The tested combinations achieved different degrees of inactivation, the most effective being (+)-limonene, carvacrol, C. reticulata L. EO, T. algeriensis L. EO and C. sinensis L. EO which were capable of inactivating about 4-5 log(10) cycles of the initial cell populations in combination with HHP, and therefore showed outstanding synergistic effects. (+)-Limonene was also capable of inactivating 5 log(10) cycles of the initial E. coli O157:H7 population in combination with HHP (300 MPa for 20 min) in orange and apple juices, and a direct relationship was established between the inactivation degree caused by the combined process with (+)-limonene and the occurrence of sublethal injury after the HHP treatment. This work shows the potential of EOs and CCs in the inactivation of foodborne pathogens in combined treatments with HHP, and proposes their possible use in liquid food such as fruit juices. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. High hydrostatic pressure modification of whey protein concentrate for improved body and texture of lowfat ice cream.

    Science.gov (United States)

    Lim, S-Y; Swanson, B G; Ross, C F; Clark, S

    2008-04-01

    Previous research demonstrated that application of high hydrostatic pressure (HHP), particularly at 300 MPa for 15 min, can enhance foaming properties of whey protein concentrate (WPC). The purpose of this research was to determine the practical impact of HHP-treated WPC on the body and texture of lowfat ice cream. Washington State University (WSU)-WPC was produced by ultrafiltration of fresh separated whey received from the WSU creamery. Commercial whey protein concentrate 35 (WPC 35) powder was reconstituted to equivalent total solids as WSU-WPC (8.23%). Three batches of lowfat ice cream mix were produced to contain WSU-WPC without HHP, WSU-WPC with HHP (300 MPa for 15 min), and WPC 35 without HHP. All lowfat ice cream mixes contained 10% WSU-WPC or WPC 35. Overrun and foam stability of ice cream mixes were determined after whipping for 15 min. Ice creams were produced using standard ice cream ingredients and processing. The hardness of ice creams was determined with a TA-XT2 texture analyzer. Sensory evaluation by balanced reference duo-trio test was carried out using 52 volunteers. The ice cream mix containing HHP-treated WSU-WPC exhibited the greatest overrun and foam stability, confirming the effect of HHP on foaming properties of whey proteins in a complex system. Ice cream containing HHP-treated WSU-WPC exhibited significantly greater hardness than ice cream produced with untreated WSU-WPC or WPC 35. Panelists were able to distinguish between ice cream containing HHP-treated WSU-WPC and ice cream containing untreated WPC 35. Improvements of overrun and foam stability were observed when HHP-treated whey protein was used at a concentration as low as 10% (wt/wt) in ice cream mix. The impact of HHP on the functional properties of whey proteins was more pronounced than the impact on sensory properties.

  20. Sustained hydrostatic pressure tolerance of the shallow water shrimp Palaemonetes varians at different temperatures: insights into the colonisation of the deep sea.

    Science.gov (United States)

    Cottin, Delphine; Brown, Alastair; Oliphant, Andrew; Mestre, Nélia C; Ravaux, Juliette; Shillito, Bruce; Thatje, Sven

    2012-08-01

    We investigated the tolerance of adult specimens of the shallow-water shrimp Palaemonetes varians to sustained high hydrostatic pressure (10 MPa) across its thermal tolerance window (from 5 to 27 °C) using both behavioural (survival and activity) and molecular (hsp70 gene expression) approaches. To our knowledge, this paper reports the longest elevated hydrostatic pressure exposures ever performed on a shallow-water marine organism. Behavioural analysis showed a 100% survival rate of P. varians after 7 days at 10 MPa and 5 or 10 °C, whilst cannibalism was observed at elevated temperature (27 °C), suggesting no impairment of specific dynamic action. A significant interaction of pressure and temperature was observed for both behavioural and molecular responses. Elevated pressure was found to exacerbate the effect of temperature on the behaviour of the animals by reducing activity at low temperature and by increasing activity at high temperature. In contrast, only high pressure combined with low temperature increased the expression of hsp70 genes. We suggest that the impressive tolerance of P. varians to sustained elevated pressure may reflect the physiological capability of an ancestral species to colonise the deep sea. Our results also support the hypothesis that deep-sea colonisation may have occurred during geological periods of time when the oceanic water column was warm and vertically homogenous. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. An increase in Tc under hydrostatic pressure in the superconducting doped topological insulator Nb 0.25 Bi 2 Se 3

    Energy Technology Data Exchange (ETDEWEB)

    Smylie, M. P.; Willa, K.; Ryan, K.; Claus, H.; Kwok, W. -K.; Qiu, Y.; Hor, Y. S.; Welp, U.

    2017-12-01

    We report a positive hydrostatic pressure derivative of the superconducting transition temperature in the doped topological insulator Nb0.25Bi2Se3 via dc SQUID magnetometry in pressures up to 0.6 GPa. This result is contrary to reports on the homologues CuxBi2Se3 and SrxBi2Se3 where smooth suppression of T-c is observed. This difference may be attributable to an electronic structure composed of multiple bands whereas the other materials in the superconducting doped Bi2Se3 family are believed to be single-band.

  2. An increase in Tc under hydrostatic pressure in the superconducting doped topological insulator Nb0.25Bi2Se3

    Science.gov (United States)

    Smylie, M. P.; Willa, K.; Ryan, K.; Claus, H.; Kwok, W.-K.; Qiu, Y.; Hor, Y. S.; Welp, U.

    2017-12-01

    We report a positive hydrostatic pressure derivative of the superconducting transition temperature in the doped topological insulator Nb0.25Bi2Se3 via dc SQUID magnetometry in pressures up to 0.6 GPa. This result is contrary to reports on the homologues CuxBi2Se3 and SrxBi2Se3 where smooth suppression of Tc is observed. This difference may be attributable to an electronic structure composed of multiple bands whereas the other materials in the superconducting doped Bi2Se3 family are believed to be single-band.

  3. Using high hydrostatic pressures to retain the antioxidant compounds and to reduce the enzymatic activity of a pitaya-pineapple (Stenocereus sp.-Fragaria ananassa) beverage.

    Science.gov (United States)

    Sandate-Flores, Luisaldo; Rostro-Alanis, Magdalena de J; Mancera-Andrade, Elena Ivonne; Esquivel-Hernandez, Diego A; Brambila-Paz, Carlos; Parra-Saldívar, Roberto; Welti-Chanes, Jorge; Escobedo-Avellaneda, Zamantha; Rodríguez-Rodríguez, José

    2017-03-01

    Pitaya (Stenocereus sp.) is a fruit native to arid and semiarid areas of Mexico. It has high antioxidant activity mainly due to its contents of betalains and phenolics, but its consumption is limited due to very short shelf-life and not very recognized flavor. A beverage of pitaya and pineapple was formulated to improve sensory properties. A high hydrostatic pressure (HHP) study at 400-600 MPa and 25 °C for 2-10 min was applied in the beverage and the effect on the contents of vitamin C, total phenolics and betalains, and the pectin methylesterase (PME) activity of pitaya-pineapple beverages, was evaluated. The effect of the come up time (CUT) was also studied. Vitamin C contents increased from 5% at 600 MPa-CUT to 64% at 400 MPa/CUT. Total phenolic concentrations decreased (20-48%) at all processing conditions tested at 400 MPa/CUT, total betacyanins were retained. At 500 MPa/10 min losses of betaxanthins of up to 6% occurred. The maximum PME activity decrease was 23% at 600 MPa 5 min, but an increase of PME activity 7% was observed at 400 MPa/10 min. HHP seem to be a good option to retain most of the antioxidant compounds in pitaya-pineapple beverage, but more studies are necessary to inactivate PME.

  4. Effect of single- and two-cycle high hydrostatic pressure treatments on water properties, physicochemical and microbial qualities of minimally processed squids (todarodes pacificus).

    Science.gov (United States)

    Zhang, Yifeng; Jiao, Shunshan; Lian, Zixuan; Deng, Yun; Zhao, Yanyun

    2015-05-01

    This study investigated the effect of single- and two-cycle high hydrostatic pressure (HHP) treatments on water properties, physicochemical, and microbial qualities of squids (Todarodes pacificus) during 4 °C storage for up to 10 d. Single-cycle treatments were applied at 200, 400, or 600 MPa for 20 min (S-200, S-400, and S-600), and two-cycle treatments consisted of two 10 min cycles at 200, 400, or 600 MPa, respectively (T-200, T-400, and T-600). HHP-treated samples had higher (P pressure level caused no significant difference in water state of squids. The two-cycle HHP treatment was more effective in controlling total volatile basic nitrogen, pH, and total plate counts (TPC) of squids during storage, in which TPC of S-600 and T-600 was 2.9 and 1.8 log CFU/g at 10 d, respectively, compared with 7.5 log CFU/g in control. HHP treatments delayed browning discoloration of the squids during storage, and the higher pressure level and two-cycle HHP were more effective. Water properties highly corresponded with color and texture indices of squids. This study demonstrated that the two-cycle HHP treatment was more effective in controlling microbial growth and quality deterioration while having similar impact on the physicochemical and water properties of squids in comparison with the single-cycle treatment, thus more desirable for extending shelf-life of fresh squids. © 2015 Institute of Food Technologists®

  5. Effects of high hydrostatic pressure on genomic expression profiling of porcine parthenogenetic activated and cloned embryos

    DEFF Research Database (Denmark)

    Lin, Lin; Luo, Yonglun; Sørensen, Peter

    2014-01-01

    cellular differentiation, gene expression and cell-to-cell signalling. We found that 44 transcripts were altered by HHP treatment, with most exhibiting lower expression in HHP-treated oocytes. Genes involved in embryonic development were prominent among the transcripts affected by HHP. Two of these genes...... mechanism underlying the effects of HHP treatment on embryonic development is poorly understood and so was investigated in the present study. Thus, in the present study, we undertook genome-wide gene expression analysis in HHP-treated and untreated oocytes, as well as in 4-cell and blastocyst stage embryos...... derived by PA or HMC. Hierarchical clustering depicted stage-specific genomic expression profiling. At the 4-cell and blastocyst stages, 103 and 163 transcripts were differentially expressed between the HMC and PA embryos, respectively (P involved in regulating...

  6. Spinal Cord Swelling and Alterations in Hydrostatic Pressure After Acute Injury

    Science.gov (United States)

    2017-10-01

    study that we performed showed a tremendous (and frankly, amazing) improvement in locomotor function in the duraplasty-treated animals . In our repeat...Regulatory Protocols No human subjects research will be performed to complete the Statement of Work • Use of Human Cadavers for RDT&E, Education or Training...No RDT&E, education or training activities involving human cadavers will be performed to complete the Statement of Work SC130008 Kwon - Annual

  7. Effects of high hydrostatic pressure, ultraviolet light-C, and far-infrared treatments on the digestibility, antioxidant and antihypertensive activity of α-casein.

    Science.gov (United States)

    Hu, Guanlan; Zheng, Yuanrong; Liu, Zhenmin; Xiao, Yang; Deng, Yun; Zhao, Yanyun

    2017-04-15

    Alpha-casein is the most important bioactive protein in processing technologies. This study investigated the digestibility, antioxidant and antihypertensive activities of α-casein when treated by high hydrostatic pressure (HPP), ultraviolet light-C (UV-C), and far-infrared radiation (FIR). The in vitro digestibility was modified after treatments, especially after 5min/200MPa HHP treatment. Ultra-performance liquid chromatography-tandem mass spectrometry analysis showed that one 5min/200MPa HHP treatment resulted in the highest yield of peptides. Based on the in vitro gastrointestinal digestion and antioxidant and antihypertensive activity assays, HHP increased the angiotensin converting enzyme inhibitory activity at different levels. The 15min UV-C treatment resulted in the highest antioxidant DPPH radical-scavenging activity, while the 15min UV-C and FIR treatments had higher angiotensin converting enzyme inhibitory and antioxidant activities than those of 5min treatments. This study revealed that HHP, UV-C and FIR treatments increased the antioxidant and antihypertensive activities of α-casein. Copyright © 2016. Published by Elsevier Ltd.

  8. Inactivation of Listeria in Foods Packed in Films Activated with Enterocin AS-48 plus Thymol Singly or in Combination with High-Hydrostatic Pressure Treatment

    Directory of Open Access Journals (Sweden)

    Irene Ortega Blázquez

    2017-11-01

    Full Text Available The aim of the present study was to determine the efficacy of films activated with enterocin AS-48 plus thymol singly, or in combination with high-hydrostatic pressure (HHP on the inactivation of Listeria innocua in sea bream fillets and in fruit puree stored under refrigeration for 10 days. L. innocua proliferated in control fish fillets during storage. The activated film reduced viable Listeria counts in fillets by 1.76 log cycles and prevented growth of survivors until mid-storage. Application of HHP treatment to fillets packed in films without antimicrobials reduced Listeria counts by 1.83 log cycles, but did not prevent the growth of survivors during storage. The combined treatment reduced viable counts by 1.88 log cycles and delayed growth of survivors during the whole storage period. L. innocua survived in puree during storage. The activated film reduced Listeria counts by 1.80 and 2.0 log cycles at days 0 and 3. After that point, Listeria were below the detection limit. No viable Listeria were detected in the purees after application of HHP treatment singly, or in combination with the activated film. Results from the study indicate that the efficacy of activated films against Listeria is markedly influenced by the food type.

  9. Effect of High Hydrostatic Pressure Processing on Microbiological Shelf-Life and Quality of Fruits Pretreated with Ascorbic Acid or SnCl2

    Directory of Open Access Journals (Sweden)

    Anthoula A. Argyri

    2014-01-01

    Full Text Available In the current study, the processing conditions required for the inactivation of Paenibacillus polymyxa and relevant spoilage microorganisms by high hydrostatic pressure (HHP treatment on apricot, peach, and pear pieces in sucrose (22°Brix solution were assessed. Accordingly, the shelf-life was determined by evaluating both the microbiological quality and the sensory characteristics (taste, odor, color, and texture during refrigerated storage after HHP treatment. The microbiological shelf-life of apricots, peaches, and pears was prolonged in the HHP-treated products in comparison with the untreated ones. In all HHP-treated packages for apricots, peaches, and pears, all populations were below the detection limit of the method (1 log CFU/g and no growth of microorganisms was observed until the end of storage. Overall, no differences of the L*, a*, or b* value among the untreated and the HHP-treated fruit products were observed up to the time at which the unpressurized product was characterized as spoiled. HHP treatment had no remarkable effect on the firmness of the apricots, peaches, and pears. With regard to the sensory assessment, the panelists marked better scores to HHP-treated products compared to their respective controls, according to taste and total evaluation during storage of fruit products.

  10. Investigation on solubilization protocols in the refolding of the thioredoxin TsnC from Xylella fastidiosa by high hydrostatic pressure approach.

    Science.gov (United States)

    Lemke, Laura Simoni; Chura-Chambi, Rosa Maria; Rodrigues, Daniella; Cussiol, Jose Renato Rosa; Malavasi, Natalia Vallejo; Alegria, Thiago Geronimo Pires; Netto, Luis Eduardo Soares; Morganti, Ligia

    2015-02-01

    The lack of efficient refolding methodologies must be overcome to take full advantage of the fact that bacteria express high levels of aggregated recombinant proteins. High hydrostatic pressure (HHP) impairs intermolecular hydrophobic and electrostatic interactions, dissociating aggregates, which makes HHP a useful tool to solubilize proteins for subsequent refolding. A process of refolding was set up by using as a model TsnC, a thioredoxin that catalyzes the disulfide reduction to a dithiol, a useful indication of biological activity. The inclusion bodies (IB) were dissociated at 2.4 kbar. The effect of incubation of IB suspensions at 1-800 bar, the guanidine hydrochloride concentration, the oxidized/reduced glutathione (GSH/GSSG) ratios, and the additives in the refolding buffer were analyzed. To assess the yields of fully biologically active protein obtained for each tested condition, it was crucial to analyze both the TsnC solubilization yield and its enzymatic activity. Application of 2.4 kbar to the IB suspension in the presence of 9 mM GSH, 1mM GSSG, 0.75 M guanidine hydrochloride, and 0.5M arginine with subsequent incubation at 1 bar furnished high refolding yield (81%). The experience gained in this study shall help to establish efficient HHP-based protein refolding processes for other proteins. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Photo-ionization cross-section of donor-related in (In,Ga)N/GaN core/shell under hydrostatic pressure and electric field effects

    Science.gov (United States)

    El Ghazi, Haddou; John Peter, A.

    2017-04-01

    Hydrogenic-like donor-impurity related self and induced polarizations, bending energy and photo-ionization cross section in spherical core/shell zinc blende (In,Ga)N/GaN are computed. Based on the variational approach and within effective-mass and one parabolic approximations, the calculations are made under finite potential barrier taking into account of the discontinuity of the effective-mass and the constant dielectric. The photo-ionization cross section is studied according to the photon incident energy considering the effects of hydrostatic pressure, applied electric field, structure's radius, impurity's position and indium composition in the core. It is obtained that the influences mentioned above lead to either blue shifts or redshifts of the resonant peak of the photo-ionization cross section spectrum. The unusual behavior related to the structure radius is discussed which is as a consequence of the finite potential confinement. We have shown that the photo-ionization cross section can be controlled with adjusting the internal and external factors. These properties can be useful for producing some device applications such as quantum dot infrared photodetectors.

  12. Processing of Copper by Hydrostatic Extrusion – Studies of Microstructure and Properties

    Directory of Open Access Journals (Sweden)

    Leszczyńska-Madej B.

    2016-09-01

    Full Text Available The present study attempts to apply HE to 99.99% pure copper. The microstructure of the samples was investigated by both light microscopy and scanning transmission electron microscopy (STEM. Additionally, the microhardness was measured, the tensile test was made, and statistical analysis of the grains and subgrains was performed. Based on Kikuchi diffraction patterns, misorientation was determined. The obtained results show that microstructure of copper deformed by hydrostatic extrusion (HE is rather inhomogeneous. The regions strongly deformed with high dislocation density exist near cells and grains/subgrains free of dislocations. The measurements of the grain size have revealed that the sample with an initial in annealed-state grain size of about 250 μm had this grain size reduced to below 0.35μm when it was deformed by HE to the strain ε=2.91. The microhardness and UTS are stable within the whole investigated range of deformation.

  13. Intrinsic scatter of caustic masses and hydrostatic bias: An observational study

    Science.gov (United States)

    Andreon, S.; Trinchieri, G.; Moretti, A.; Wang, J.

    2017-10-01

    All estimates of cluster mass have some intrinsic scatter and perhaps some bias with true mass even in the absence of measurement errors for example caused by cluster triaxiality and large scale structure. Knowledge of the bias and scatter values is fundamental for both cluster cosmology and astrophysics. In this paper we show that the intrinsic scatter of a mass proxy can be constrained by measurements of the gas fraction because masses with higher values of intrinsic scatter with true mass produce more scattered gas fractions. Moreover, the relative bias of two mass estimates can be constrained by comparing the mean gas fraction at the same (nominal) cluster mass. Our observational study addresses the scatter between caustic (I.e., dynamically estimated) and true masses, and the relative bias of caustic and hydrostatic masses. For these purposes, we used the X-ray Unbiased Cluster Sample, a cluster sample selected independently from the intracluster medium content with reliable masses: 34 galaxy clusters in the nearby (0.050 < z < 0.135) Universe, mostly with 14 < log M500/M⊙ ≲ 14.5, and with caustic masses. We found a 35% scatter between caustic and true masses. Furthermore, we found that the relative bias between caustic and hydrostatic masses is small, 0.06 ± 0.05 dex, improving upon past measurements. The small scatter found confirms our previous measurements of a highly variable amount of feedback from cluster to cluster, which is the cause of the observed large variety of core-excised X-ray luminosities and gas masses.

  14. Synergistic effect of high hydrostatic pressure (HHP) and marination treatment on the inactivation of hepatitis a virus in mussels (Mytilus galloprovincialis).

    Science.gov (United States)

    Pavoni, Enrico; Arcangeli, Giuseppe; Dalzini, Elena; Bertasi, Barbara; Terregino, Calogero; Montesi, Francesco; Manfrin, Amedeo; Bertoli, Elena; Brutti, Andrea; Varisco, Giorgio; Losio, Marina Nadia

    2015-03-01

    Consumption of raw or insufficiently cooked mussels contaminated with hepatitis A virus (HAV) is a major cause of infection to humans. The origin of mussels commonly used for the preparation of marinated seafood salads is often unknown, since different producers worldwide undergo a precooking treatment at the original collection site with methods and parameters not always indicated. These treatments could be insufficient for the inactivation of HAV, which is characterized by a high temperature resistance. Both high hydrostatic pressure (HHP) and marinade treatments have been shown to affect HAV vitality. In this study, two treatments (HHP and marinating) were combined in order to assess a potential synergistic effect on the virus vitality. A kinetic test was conducted by subjecting the experimentally-contaminated mussels (HAV titre: 10(6)/ml TCID50) to marinating, and to different HHP treatment (4,000; 5,000; and 6,000 bar for 1, 5, and 9 min). Virus post-treatment vitality was assessed by its ability to grow on cell cultures and by quantitative real-time RT-PCR to evaluate virus resistance under such conditions. Marinating treatment alone (final pH 4.3, and NaCl 2 %) did not inactivate the virus. On the other hand, the use of HHP treatment alone on non-marinated HAV-contaminated mussels was effective only above 5,000 bar for 5 min. The results of the present study elucidate the synergistic effect of a combination between marination and HHP treatments on the inactivation of the virus.

  15. High-pressure Raman study of microcrystalline WO{sub 3} tungsten oxide

    Energy Technology Data Exchange (ETDEWEB)

    Boulova, M. [Laboratoire d' Electrochimie et de Physico-Chimie des Materiaux et des Interfaces (CNRS UMR 5631), ENSEEG-INPG, St. Martin d' Heres (France); Chemistry Department, Moscow State University, Moscow (Russian Federation); Rosman, N.; Bouvier, P.; Lucazeau, G. [Laboratoire d' Electrochimie et de Physico-Chimie des Materiaux et des Interfaces (CNRS UMR 5631), ENSEEG-INPG, St. Martin d' Heres (France)

    2002-06-17

    A high-pressure Raman study of microcrystalline tungsten oxide was performed in the 0.1 MPa-30 GPa pressure range under hydrostatic and non-hydrostatic conditions. Two phase transitions are evidenced; they take place below 0.1 GPa and at about 22 GPa and are of first order. Two spectral anomalies are observed at about 3 and 10 GPa; they may be related to diffuse weak structural transitions. The number of observed Raman bands remains practically unchanged in the 0.1-30 GPa range and thus the symmetry changes are likely to be small. Surprisingly, the non-hydrostatic conditions do not induce inhomogeneous band broadening and do not modify the transition sequence observed in hydrostatic conditions. The compressibilities of the different observed phases are estimated from spectral data and discussed within Hazen's polyhedral approach. (author)

  16. High-pressure Raman study of microcrystalline WO3 tungsten oxide

    Science.gov (United States)

    Boulova, M.; Rosman, N.; Bouvier, P.; Lucazeau, G.

    2002-06-01

    A high-pressure Raman study of microcrystalline tungsten oxide was performed in the 0.1 MPa-30 GPa pressure range under hydrostatic and non-hydrostatic conditions. Two phase transitions are evidenced; they take place below 0.1 GPa and at about 22 GPa and are of first order. Two spectral anomalies are observed at about 3 and 10 GPa they may be related to diffuse weak structural transitions. The number of observed Raman bands remains practically unchanged in the 0.1-30 GPa range and thus the symmetry changes are likely to be small. Surprisingly, the non-hydrostatic conditions do not induce inhomogeneous band broadening and do not modify the transition sequence observed in hydrostatic conditions. The compressibilities of the different observed phases are estimated from spectral data and discussed within Hazen's polyhedral approach.

  17. Individual and combined application of dry heat with high hydrostatic pressure to inactivate Salmonella and Escherichia coli O157:H7 on alfalfa seeds.

    Science.gov (United States)

    Neetoo, Hudaa; Chen, Haiqiang

    2011-02-01

    Alfalfa sprouts are recurrently implicated in outbreaks of food-borne illnesses as a result of contamination with Salmonella or Escherichia coli O157:H7. In the majority of these outbreaks, the seeds themselves have been shown to be the most likely source of contamination. The aims of this study were to comparatively assess the efficacy of dry heat treatments alone or in conjunction with high hydrostatic pressure (HHP) to eliminate a ∼5 log CFU/g load of Salmonella and E. coli O157:H7 on alfalfa seeds. Dry heat treatments at mild temperatures of 55 and 60 °C achieved ≤1.6 and 2.2 log CFU/g reduction in the population of Salmonella spp. after a 10-d treatment, respectively. However, subjecting alfalfa seeds to more aggressive temperatures of 65 °C for 10 days or 70 °C for 24 h eliminated a ∼5 log population of Salmonella and E. coli O157:H7. We subsequently showed that the sequential application of dry heating followed by HHP could substantially reduce the dry heating exposure time while achieving equivalent decontamination results. Dry heating at 55, 60, 65 and 70 °C for 96, 24, 12 and 6 h, respectively followed by a pressure treatment of 600 MPa for 2 min at 35 °C were able to eliminate a ∼5 log CFU/g initial population of both pathogens. Finally, we evaluated the impact of selected treatments on the seed germination percentages and yield ratios and showed that dry heating at 65 °C for 10 days did not bring about any considerable decrease in the germination percentage. However, the sprout yield of treated alfalfa seeds was reduced by 21%. Dry heating at 60 and 65 °C for 24 and 12 h respectively followed by the pressure treatment of 600 MPa for 2 min at 35 °C did not significantly (P > 0.05) affect the germination percentage of alfalfa seeds although a reduction in the sprouting yield was observed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Pressure effect studies in molecular magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Guetlich, Philipp [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universitaet, Staudinger Weg 9, D-55099 Mainz (Germany); Gaspar, Ana B [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universitaet, Staudinger Weg 9, D-55099 Mainz (Germany); Ksenofontov, Vadim [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universitaet, Staudinger Weg 9, D-55099 Mainz (Germany); Garcia, Yann [Departement de Chimie, Universite Catholique de Louvain, Place Louis Pasteur 1, B-1348 Louvain-la-Neuve (Belgium)

    2004-04-14

    We report on temperature dependent magnetic susceptibility and Moessbauer effect studies of the influence of hydrostatic pressure (up to 1.2 GPa) on dynamic electronic structure phenomena in 3d transition metal coordination compounds. The systems under investigation are mononuclear spin crossover compounds of iron (II) and chromium (II), dinuclear complexes of iron (II) exhibiting coexistence of intramolecular antiferromagnetic coupling and thermal spin crossover, 1D, 2D and 3D polynuclear spin crossover complexes of iron (II), a valence tautomeric system of cobalt (II) showing a thermal transition from a high spin [Co{sup II} (semiquinone)] to a low spin [Co{sup II} (catecholate)] species on lowering the temperature and a photomagnetically active Prussian blue type system with temperature- and pressure induced electron transfer. It is demonstrated that pressure effect studies can be very helpful in elucidating the mechanisms and cooperative interactions of solid state compounds with electronic bistability.

  19. Effect of Process Temperature on Virus Inactivation during High Hydrostatic Pressure Processing of Contaminated Fruit Puree and Juice.

    Science.gov (United States)

    Pan, Hao; Buenconsejo, Matthew; Reineke, Karl F; Shieh, Y Carol

    2016-09-01

    High pressure processing (HPP) can inactivate pathogens and retain fruit qualities. Elevated HPP pressure or time increases virus inactivation, but the effect of temperature is not consistently observed for norovirus and hepatitis A virus. In the present study, the effectiveness of HPP holding temperatures (puree using a 24-liter HPP system. The holding temperature was established by setting the HPP initial temperature via pretrials. All trials were able to arrive at the designated holding pressure and holding temperature simultaneously. MNV inactivation in juices was conducted at 300 MPa for 3 min with various holding temperatures (10 to 30°C). A regression equation was derived, Y = -0.08 × X + 2.6 log PFU, R2 = 0.96, where Y is the log reduction and X is the holding temperature. The equation was used to predict a 2.6-log reduction in juices at 0°C holding temperature and indicated that MNV inactivation was inversely proportional to temperature increase. MNV survival during HPP did not differ significantly in pomegranate and strawberry juices. However, MS2 coliphage inactivation was greater as the holding temperature increased (from 15 to 38°C) at 600 MPa for 3 min. The increased inactivation trend is presumably similar to that for hepatitis A virus, but the holding temperature was not correlated with the reduction of HPP-resistant MS2 in strawberry puree. When the HPP holding pressure was evaluated independently in strawberry puree, a 5-log reduction of MNV was predicted through regression analysis at the holding pressure of 424 MPa for 3 min at 20°C. These parameters should inactivate >5 log PFU of MNV in juices, based upon a greater inactivation in berry juice than in puree (1.16-versus 0.74-log reduction at 300 MPa). This research illustrates use of predictive inactivation and a feasible means for manipulating HPP parameters for effective virus inactivation in fruit juices and puree.

  20. Effect of high hydrostatic pressure on phenolic compounds, ascorbic acid and antioxidant activity in cashew apple juice

    Science.gov (United States)

    Queiroz, C.; Moreira, C. F. F.; Lavinas, F. C.; Lopes, M. L. M.; Fialho, E.; Valente-Mesquita, V. L.

    2010-12-01

    The cashew apple is native to Brazil, but there is insufficient information regarding the nutritional properties of this fruit. The objective of this study was to evaluate the impact of high pressure processing (HPP) at room temperature (25 °C) on phenolic compound and ascorbic acid contents and antioxidant capacity of cashew apple juice. This study showed that HPP at 250 or 400 MPa for 3, 5 and 7 min did not change pH, acidity, total soluble solids, ascorbic acid or hydrolysable polyphenol contents. However, juice pressurized for 3 and 5 min showed higher soluble polyphenol contents. Antioxidant capacity, measured by the ferric-reducing antioxidant power method, was not altered by HPP, but when treated at 250 MPa for 3 min, it resulted in an increased value when 2,2-diphenyl-1-picrylhydrazyl was used. These data demonstrate that HPP can be used in the food industry for the generation of products with higher nutritional quality.

  1. Dendritic cells pulsed with tumor cells killed by high hydrostatic pressure induce strong immune responses and display therapeutic effects both in murine TC-1 and TRAMP-C2 tumors when combined with docetaxel chemotherapy

    Czech Academy of Sciences Publication Activity Database

    Mikyšková, Romana; Štěpánek, Ivan; Indrová, Marie; Bieblová, Jana; Šímová, Jana; Truxová, I.; Moserová, I.; Fučíková, J.; Bartunkova, J.; Špíšek, R.; Reiniš, Milan

    2016-01-01

    Roč. 48, č. 3 (2016), s. 953-964 ISSN 1019-6439 R&D Projects: GA MŠk(CZ) LM2011032; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : dendritic cells * docetaxel * high hydrostatic pressure * immunotherapy * cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.079, year: 2016

  2. Hydrostatic pressure effects on the {gamma}-X conduction band mixing and the binding energy of a donor impurity in GaAs-Ga{sub 1-x}Al{sub x}As quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Duque, C.A. [Instituto de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia); Lopez, S.Y. [Facultad de Educacion, Universidad de Antioquia, AA 1226, Medellin (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, C.P. 62210, Cuernavaca (Mexico)

    2007-06-15

    Mixing between {gamma} and X valleys of the conduction band in GaAs-Ga{sub 1-x}Al{sub x}As quantum wells is investigated taken into account the effect of applied hydrostatic pressure. This effect is introduced via the pressure-dependent values of the corresponding energy gaps and the main band parameters. The mixing is considered along the lines of a phenomenological model. Variation of the confined ground state in the well as a function of the pressure is reported. The dependencies of the variationally calculated binding energy of a donor impurity with the hydrostatic pressure and well width are also presented. It is shown that the inclusion of the {gamma}-X mixing explains the non-linear behavior in the photoluminescence peak of confined exciton states that has been observed for pressures above 20 kbar. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Analysis of the effect of high hydrostatic pressure treatment and enterocin AS-48 addition on the bacterial communities of cherimoya pulp.

    Science.gov (United States)

    Pérez Pulido, Rubén; Toledo, Julia; Grande, M José; Gálvez, Antonio; Lucas, Rosario

    2015-03-02

    In the present study, pulp obtained from cherimoya pulp (Annona cherimola) was inoculated with epiphytic microbiota collected from cherimoya fruits, and supplemented or not with the circular bacteriocin enterocin AS-48 (50μg/g) and then packed under vacuum. Samples supplemented or not with enterocin were treated by high hydrostatic pressure (600MPa, 8min) and then stored at 5°C for 30days. The single AS-48 treatment only delayed microbial growth non-significantly (p>0.05). HHP treatment reduced microbial counts by five log cycles, but it did not prevent further growth of survivors by day 7. The combined treatment (AS-48+HHP) was the most effective, keeping bacterial cell densities at ≤1.5 log CFU/g for up to 15days. 16S rRNA gene pyrosequencing analysis was done on amplicon libraries from the growth on TSA plates seeded with ten-fold dilutions of pulp suspensions and incubated at 22°C for 24h. The results obtained are limited by the experimental conditions used in the study, and only concern the bacterial fraction that was selected by the TSA and growth conditions used. Pantoea (Pantoea agglomerans, Pantoea vagans) were the operational taxonomic units (OTUs) detected at highest relative abundance in bacterial biomass grown from control samples for the first 7days of storage, followed by Enterococcus gallinarum and Leuconostoc mesenteroides during late storage. The single HHP treatment significantly reduced the relative abundance of OTUs belonging to Pantoea and strongly increased that of endosporeformers (mainly Bacillus firmus and Bacillus stratosphericus) early after treatment, although Pantoea became again the predominant OTUs during storage. Samples singly treated with enterocin AS-48 revealed a strong inhibition of E. gallinarum as well as an early decrease in the relative abundance of Pantoea and an increased relative abundance of OTUs belonging to other Gram-negative species (mainly from genera Serratia and Pseudomonas). The strong microbial

  4. Hydrostatic and hybrid bearing design

    CERN Document Server

    Rowe, W B

    1983-01-01

    Hydrostatic and Hybrid Bearing Design is a 15-chapter book that focuses on the bearing design and testing. This book first describes the application of hydrostatic bearings, as well as the device pressure, flow, force, power, and temperature. Subsequent chapters discuss the load and flow rate of thrust pads; circuit design, flow control, load, and stiffness; and the basis of the design procedures and selection of tolerances. The specific types of bearings, their design, dynamics, and experimental methods and testing are also shown. This book will be very valuable to students of engineering des

  5. Comparison of microbiological loads and physicochemical properties of raw milk treated with single-/multiple-cycle high hydrostatic pressure and ultraviolet-C light

    Science.gov (United States)

    Hu, Guanglan; Zheng, Yuanrong; Wang, Danfeng; Zha, Baoping; Liu, Zhenmin; Deng, Yun

    2015-07-01

    The effects of ultraviolet-C radiation (UV-C, 11.8 W/m2), single-cycle and multiple-cycle high hydrostatic pressure (HHP at 200, 400 or 600 MPa) on microbial load and physicochemical quality of raw milk were evaluated. Reductions of aerobic plate count (APC) and coliform count (CC) by HHP were more than 99.9% and 98.7%, respectively. Inactivation efficiency of microorganisms increased with pressure level. At the same pressure level, two-cycle treatments caused lower APC, but did not show CC differences compared with single-cycle treatments. Reductions of APC and CC by UV-C were somewhere between 200 MPa and 400/600 MPa. Both HHP and UV-C significantly decreased lightness and increased pH, but did not change soluble solids content and thiobarbituric acid-reactive substances' values. Two 2.5 min cycles of HHP at 600 MPa caused minimum APC and CC, and maximum conductivity. Compared with HHP, UV-C markedly increased protein oxidation and reduced darkening.

  6. Hydrostatic Compression Behavior and High-Pressure Stabilized β-Phase in γ-Based Titanium Aluminide Intermetallics

    Directory of Open Access Journals (Sweden)

    Klaus-Dieter Liss

    2016-07-01

    Full Text Available Titanium aluminides find application in modern light-weight, high-temperature turbines, such as aircraft engines, but suffer from poor plasticity during manufacturing and processing. Huge forging presses enable materials processing in the 10-GPa range, and hence, it is necessary to investigate the phase diagrams of candidate materials under these extreme conditions. Here, we report on an in situ synchrotron X-ray diffraction study in a large-volume press of a modern (α2 + γ two-phase material, Ti-45Al-7.5Nb-0.25C, under pressures up to 9.6 GPa and temperatures up to 1686 K. At room temperature, the volume response to pressure is accommodated by the transformation γ → α2, rather than volumetric strain, expressed by the apparently high bulk moduli of both constituent phases. Crystallographic aspects, specifically lattice strain and atomic order, are discussed in detail. It is interesting to note that this transformation takes place despite an increase in atomic volume, which is due to the high ordering energy of γ. Upon heating under high pressure, both the eutectoid and γ-solvus transition temperatures are elevated, and a third, cubic β-phase is stabilized above 1350 K. Earlier research has shown that this β-phase is very ductile during plastic deformation, essential in near-conventional forging processes. Here, we were able to identify an ideal processing window for near-conventional forging, while the presence of the detrimental β-phase is not present under operating conditions. Novel processing routes can be defined from these findings.

  7. Effect of high hydrostatic pressure on the polyphenols and antioxidant activity of plantain pulp (Musa paradisiaca AAB).

    Science.gov (United States)

    Jiménez-Martínez, Miriam C; Montalvo-González, Efigenia; Sáyago-Ayerdi, Sonia G; Mercado-Mercado, Gilberto; Ramírez-de León, José A; Paz-Gamboa, Ernestina; Vivar-Vera, Maria A

    2017-06-01

    The impact of high-pressure processing (HPP) on the polyphenol (PP) content and antioxidant activity (AOX) of plantain pulp was evaluated. Pressures of 400, 500 and 600 MPa were applied to plantain pulp for 90 and 180 s at room temperature (25 °C). Polyphenoloxidase activity, extractable (EPP) and non-extractable PP (NEPP) contents, flavonoid content and AOX (FRAP, ABTS•+ ) were evaluated. In addition, PP identification was performed using high-performance liquid chromatography. Polyphenoloxidase activity was inhibited after HPP under all of the conditions studied. Increases of 110.80% and 137.40% in EPP content under conditions of 500 MPa/180 s and 600 MPa/90 s were observed with a simultaneous improvement in the AOX with increments of up to 128.71%. The treatment under conditions of 500 MPa/90 s had the highest total PP content, including the highest content of flavonoids (0.22 g ellagic acid equivalents kg-1  dry weight) and the proportion of NEPP that contained hydrolysable PPs (91.12 g gallic acid equivalents kg-1  dry weight with high AOX. The identified PPs included catechin, quercetin, gallic and hydroxybenzoic acids. HPP performed at a room temperature can be used for improving the total content of PP compounds in plantain pulp under specific pressure and time conditions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Effects of high-hydrostatic pressure and pH treatments on the emulsification properties of gum arabic.

    Science.gov (United States)

    Ma, Fanyi; Bell, Alan E; Davis, Fred J

    2015-10-01

    This study investigated the emulsification properties of the native gums and those treated at high pressure (800 MPa) both at their "natural" pH (4.49 and 4.58, respectively) and under "acidic and basic" pH (2.8 and 8.0) conditions. The emulsification behaviour of KLTA gum was found to be superior to that of the GCA gum. High pressure and pH treatment changed the emulsification properties of both gums. The acidic amino acids in gum arabic were shown to play an important role in their emulsification behaviour, and mechanisms of emulsification for the two gums were suggested to be different. The highly "branched" nature of the carbohydrate in GCA gum was also thought to be responsible for the "spreading" of droplet size distributions observed. Coomassie brilliant blue binding was used to indicate conformational changes in protein structure and Ellman's assay was used to estimate any changes in levels of free thiols present. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Hydrostatic pressure effect on the spin reorientation transition of ferromagnetic Sm0.7-xLaxSr0.3MnO3 (x = 0, 0.1) polycrystals

    Science.gov (United States)

    Thiyagarajan, R.; Arumugam, S.; Sivaprakash, P.; Kannan, M.; Saravanan, C.; Yang, Wenge

    2017-06-01

    The hydrostatic pressure effect on the resistivity and magnetization of the narrow band gap manganite Sm0.7-xLaxSr0.3MnO3 (x = 0, 0.1) systems has been investigated. At ambient pressure measurements, the parent compound Sm0.7Sr0.3MnO3 showed a ferromagnetic-insulating nature, whereas the 10% La-doped compound Sm0.6La0.1Sr0.3MnO3 showed a ferromagnetic-metallic nature. Furthermore, both samples showed a spin-reorientation transition (TSR) below Curie temperature, which originated from the Mn sublattice and was supported by an antiferromagnetic Sm(4f)-Mn(3d) interaction. Both samples exhibited a normal and inverse magnetocaloric effect as a result of these two different magnetic transitions. Magnetization measurements on Sm0.7Sr0.3MnO3 under pressure did not show an appreciable change in the Curie temperature, but enhanced TSR, whereas an insulator-metallic transition was observed during resistivity measurements under pressure. On the other hand, for Sm0.6La0.1Sr0.3MnO3, TC increased and TSR reduced upon the application of pressure. The metallic nature which is observed at ambient pressure resistivity measurement was further enhanced with 97% of piezoresistance. The pressure did not change the normal magnetocaloric effect of Sm0.7Sr0.3MnO3, but increased it in Sm0.6La0.1Sr0.3MnO3. However, there was not much change in the inverse magnetocaloric effect of both compounds. These studies were analyzed based on the pressure effect on the activation energy and scattering interaction factors.

  10. Evaluation of resistance development and viability recovery by toxigenic and non-toxigenic Staphylococcus aureus strains after repeated cycles of high hydrostatic pressure.

    Science.gov (United States)

    Baptista, Inês; Queirós, Rui P; Cunha, Angela; Rocha, Sílvia M; Saraiva, Jorge A; Almeida, Adelaide

    2015-04-01

    In this work, the development of resistance and the recovery of growth after several consecutive cycles of high hydrostatic pressure (HPP) were for the first time evaluated in different strains of Staphylococcus aureus. Three strains of this important and highly resilient to HPP foodborne pathogen were used: a non-enterotoxigenic ATCC 6538 strain, treated with 600 MPa for 30 min at 20 °C, and the toxigenic strains 2153 MA (with enterotoxin A) and 2065 MA (with the enterotoxins A, G and I), treated with 600 MPa for 15 min at 20 °C. After the first treatment, surviving colonies were used to produce new bacterial cultures. This procedure was repeated nine times more for each bacterium or until total inactivation occurred. The inactivation profile of non-enterotoxic strain and the two enterotoxic strains did not change after consecutive cycles, but the toxic strain with three enterotoxins was completely inactivated after the fourth cycle. The three strains did not recover their viability after 14 days. The results indicate that HPP effectively inactivates non-toxigenic and toxigenic strains of S. aureus after a single treatment. The surviving bacteria did not develop resistance after 10 cycles of pressurization and did not recover their viability after 14 days of incubation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Structure and IgE-binding properties of α-casein treated by high hydrostatic pressure, UV-C, and far-IR radiations.

    Science.gov (United States)

    Hu, Guanglan; Zheng, Yuanrong; Liu, Zhenmin; Deng, Yun; Zhao, Yanyun

    2016-08-01

    α-Casein was treated by high hydrostatic pressure (HHP), UV-C, or far-IR (FIR). These treatments increased roughness, α-helicity, and β-turn, but decreased β-sheet and IgE-binding reactivity. One 5-min cycle at 600-MPa pressure caused maximum α-helicity, β-turn, and surface hydrophobicity (Ho), but minimum stimulated intestinal fluid from α-casein. UV-C (15min) produced the maximum kurtosis, free sulfhydryl content (FSC), and stimulated intestinal fluid, minimum Ho, R, and simulated gastric fluid. FIR (15min) caused the minimum α-helicity and FSC, but maximum R and β-sheet. The NMR peaks of the main allergenic characteristics affected were 15-17, 23-26, 40, 53, 59 and 85-88, respectively. Generally, all treatments decreased the allergenicity of α-casein by modifying its morphology, ultrastructure, characteristic domains, and peptides. Based on the stimulated digestion tests, UV-C (15min) was more efficient for lowering α-casein allergenicity, thus decreasing the allergenicity of milk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. High hydrostatic pressure treatments enhance volatile components of pre-germinated brown rice revealed by aromatic fingerprinting based on HS-SPME/GC-MS and chemometric methods.

    Science.gov (United States)

    Xia, Qiang; Mei, Jun; Yu, Wenjuan; Li, Yunfei

    2017-01-01

    Germination favors to significantly enhance functional components and health attributes of whole-grain brown rice (BR), but the production of germinated BR (GBR) compromises the typical rice flavor perception due to soaking process. Simultaneously, high hydrostatic pressure (HHP) is considered as an effective processing technique to enhance micronutrients utilization efficiency of GBR and improve products flavor, but no information about the effects of HHP treatments on volatile fingerprinting of GBR has been reported. Therefore, the objective of this work was to apply HHP to improve the flavor and odor of GBR grains by exploring HHP-induced changes in aroma compounds. GBR grains were obtained by incubating at 37°C for 36h, and subsequently subjected to HHP treatments at pressures 100, 300 and 500MPa for 15min, using 0.1MPa as control. Headspace solid-phase micro extraction coupled to gas chromatography mass spectrometry was used to characterize process-induced shifts of volatile organic compounds fingerprinting, followed by multivariate analysis. Our results confirmed the significant reduction of total volatile fractions derived from germination process. Contrarily, the following HHP treatments greatly enhanced the flavor components of GBR, particularly characteristic odorants including aldehydes, ketones, and alcohols. Principal component analysis further indicated the different influence of germination and high pressure on the changes in volatile components. Partial least square-discrimination analysis suggested that 4-vinylguaiacol was closely linked to germination, whereas E,E-2,4-decadienal, E-2-hexenal, E,E-2,4-heptadienal and benzyl alcohol could be considered as volatile biomarkers of high pressure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Volumetric Growth of the Liver in the Human Fetus: An Anatomical, Hydrostatic, and Statistical Study

    Directory of Open Access Journals (Sweden)

    Michał Szpinda

    2015-01-01

    Full Text Available Using anatomical, hydrostatic, and statistical methods, liver volumes were assessed in 69 human fetuses of both sexes aged 18–30 weeks. No sex differences were found. The median of liver volume achieved by hydrostatic measurements increased from 6.57 cm3 at 18–21 weeks through 14.36 cm3 at 22–25 weeks to 20.77 cm3 at 26–30 weeks, according to the following regression: y = −26.95 + 1.74 × age ± Z  × (−3.15 + 0.27 × age. The median of liver volume calculated indirectly according to the formula liver volume = 0.55 × liver length × liver transverse diameter × liver sagittal diameter increased from 12.41 cm3 at 18–21 weeks through 28.21 cm3 at 22–25 weeks to 49.69 cm3 at 26–30 weeks. There was a strong relationship (r=0.91, p<0.001 between the liver volumes achieved by hydrostatic (x and indirect (y methods, expressed by y = −0.05 + 2.16x  ± 7.26. The liver volume should be calculated as follows liver volume = 0.26 × liver length × liver transverse diameter × liver sagittal diameter. The age-specific liver volumes are of great relevance in the evaluation of the normal hepatic growth and the early diagnosis of fetal micro- and macrosomias.

  14. Effect of processing by hydrostatic high pressure of two ready to heat vegetable meals and stability after refrigerated storage.

    Science.gov (United States)

    Masegosa, Rosa; Delgado-Adámez, Jonathan; Contador, Rebeca; Sánchez-Íñiguez, Francisco; Ramírez, Rosario

    2014-12-01

    The effect of high pressure processing (HPP) (400 and 600 MPa for 1 and 5 min) and the stability during storage were studied in two ready to heat vegetable meals: meal A, mainly composed by pumpkin and broccoli, and meal B, mainly composed by eggplant, zucchini, chard and spinach. The treatment at 600 MPa/5 min was the most effective to reduce the initial microbial loads of the meals and maintained better the microbial safety during storage. HPP had no effect on the physico-chemical and sensory properties. HPP at 600 MPa increased the antioxidant activity of the meal A. In contrast HPP reduced the antioxidant activity of the meal B, although in general high levels of antioxidants were maintained after processing and during storage. In conclusion, treatments at 600 MPa for 5 min were the most suitable to increase the shelf-life of the meals without affecting their physico-chemical, antioxidant and sensory properties. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  15. The effect of high hydrostatic pressure on the microbiological quality and safety of carrot juice during refrigerated storage.

    Science.gov (United States)

    Patterson, Margaret F; McKay, Alan M; Connolly, Malachy; Linton, Mark

    2012-05-01

    The microbial quality of untreated and pressure-treated carrot juice was compared during storage at 4, 8 and 12 °C. High pressure treatment at 500 MPa and 600 MPa (1 min/20 °C) reduced the total counts by approximately 4 log CFU ml⁻¹ and there was very little growth of the survivors during storage at 4 °C for up to 22 days. Total counts increased during storage of pressure-treated juice at 8 °C and 12 °C but took significantly longer to reach maximum levels compared to the untreated juice. The microflora in the untreated juice consisted predominantly of Gram-negative bacteria, identified as mostly Pantoea spp., Erwinia spp. and Pseudomonas spp. Initially the pressure-treated juice contained low numbers of spore-forming bacteria (Bacillus spp. and Paenibacillus spp.) and Gram-positive cocci; the spore-formers continued to dominate during storage. When irradiation-sterilised juice was inoculated with a cocktail of Listeria monocytogenes, numbers decreased during storage at 4 °C and 8 °C by 1.50 and 0.56 log CFU ml⁻¹ respectively. When the inoculated carrot juice was pressure treated (500 MPa/1 min/20 °C) no L. monocytogenes were found immediately after pressure treatment or during storage at 4, 8 and 12 °C (>6 log inactivation). In contrast, pressure treatment in TSBYE only resulted in 1.65 log inactivation and survivors grew rapidly. This suggests that the antilisterial effect of carrot juice is enhanced by HPP. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Slurry pipeline hydrostatic testing

    Energy Technology Data Exchange (ETDEWEB)

    Betinol, Roy G.; Navarro Rojas, Luis Alejandro [BRASS Chile S.A., Santiago (Chile)

    2009-07-01

    The transportation of concentrates and tailings through long distance pipeline has been proven in recent years to be the most economic, environmentally friendly and secure means of transporting of mine products. This success has led to an increase in the demand for long distance pipeline throughout the mining industry. In year 2007 alone, a total of over 500 km of pipeline has been installed in South America alone and over 800 km are in the planning stages. As more pipelines are being installed, the need to ensure its operating integrity is ever increasing. Hydrostatic testing of long distance pipeline is one of the most economical and expeditious way to proving the operational integrity of the pipe. The intent of this paper is to show the sound reasoning behind construction hydro testing and the economic benefit it presents. It will show how hydro test pressures are determined based on ASME B31.11 criteria. (author)

  17. High hydrostatic pressure processing of murine norovirus 1-contaminated oysters inhibits oral infection in STAT-1(-/-)-deficient female mice.

    Science.gov (United States)

    Gogal, R M; Kerr, R; Kingsley, D H; Granata, L A; LeRoith, T; Holliman, S D; Dancho, B A; Flick, G J

    2011-02-01

    We have previously demonstrated that high pressure processing (HPP) is effective in preventing in vitro replication of murine norovirus strain 1 (MNV-1), a human norovirus surrogate, in a monocyte cell line following extraction from MNV-1-contaminated oysters. In the present study, the efficacy of HPP to prevent in vivo replication within mice fed HPP-treated MNV-1-seeded oyster extracts was evaluated. Oyster homogenate extracts seeded with MNV-1 were given 5-min, 400-MPa (58,016-psi) treatments and orally gavaged into immunodeficient (STAT-1(-/-)) female mice. Mice orally gavaged with HPP-treated MNV-1 showed significant (P ≤ 0.05) weight loss leading to enhanced morbidity, whereas those given 100 and 200 PFU of HPP-treated MNV-1 were comparable to uninfected controls. MNV-1 was detected, via real-time PCR, within the liver, spleen, and brain of all mice fed non-HPP-treated homogenate but was not detected in the tissues of mice fed HPP-treated homogenates or in uninfected control mice. Hepatocellular necrosis and lymphoid depletion in the spleen were observed in non-HPP-treated MNV-1 mice only. These results clearly show that HPP prevents MNV-1 infection in vivo and validates that viral inactivation by HPP in vitro is essentially equivalent to that in vivo. Further, the data suggest that HPP may be an effective food processing intervention for norovirus-contaminated shellfish and thus may decrease risk to both immunocompromised and immunocompetent individuals who consume shellfish. Copyright ©, International Association for Food Protection

  18. Investigation of magnetic and transport properties of La0.8Sm0.2O0.5F0.5BiS2 superconductor under external hydrostatic pressure

    Science.gov (United States)

    Kalai Selvan, G.; Arumugam, S.

    2017-10-01

    The dc electrical resistivity and magnetization measurements as a function of temperature 1.8-300 K were formed at external hydrostatic pressures on normal and superconducting state of new polycrystalline BiS2 based layered La0.2Sm0.8BiS2O00.5F0.5 superconductor. In situ, electrical resistivity measurements, At ambient pressure the superconducting transition temperature (T c ) at ~3 K which are enhanced substantially under external pressure to 10.3 K at 1.74 GPa with positive pressure coefficient, dT c /dP= 4.19 K/GPa. Further increasing pressure T c has been decreased upto 6.2 K at 1.96 GPa with negative pressure coefficient dT c /dP= -2.09 K/GPa. From the normal state resistivity exhibits the strong suppression of the semiconducting behavior in La/SmO0.5F0.5BiS2 compounds suggests that the Fermi surface is in the vicinity of some instability. We report here the enhancement of T c from 2.83 to 5.86 K with small increase in pressure upto 0.8 GPa with similar pressure coefficient of dT c /dP= 3.78 K/GPa. However, it should be noted that either chemical substitution or physical pressure on these systems show a dome shaped T c variation which means that the enhancement may not be achieved for higher doping concentration and (or) pressure s beyond an optimum level. In our results, exhibits which higher T c may be achieved lies around 1.74 GPa. Above this pressure the T c may decrease and exhibit a dome shaped behavior similar to other rare –earth systems of BiS2 and Fe-based superconductors. Substantial enhancement of superconductivity under moderate pressure in studied new BiS2 based superconductors call for the attention of condensed matter physics community.

  19. Phenomenological description of the association of protein subunits subjected to conformational drift. Effects of dilution and of hydrostatic pressure.

    Science.gov (United States)

    Weber, G

    1986-06-17

    The native conformation of oligomers may be expected to undergo reversible changes when they separate upon dissociation of the original aggregate. When these changes are slow in comparison with the time of an association-dissociation (AD) cycle, they give rise to characteristic effects in the dependence of the dissociation: upon dilution, at constant pressure, and upon the applied pressure, at constant concentration. The phenomenological description of these effects is examined by comparing two possible models: The first model assumes a continuous loss in free energy of association with the extent of dissociation; the second supposes the existence of two or more distinct aggregates differing in subunit affinity and present in proportions that vary with the extent of dissociation. The latter model fits better the experimental data available, with regard to both the concentration and the pressure dependence of the association, and gives a particularly simple explanation of the hysteresis phenomena observed in several oligomeric proteins after application of pressure. The validity of the principle of detailed balance, often assumed in dealing with complex equilibria, is discussed in detail as it does not appear possible to reconcile it with some of the experimental observations or with the proposed model.

  20. Population diversity of Listeria monocytogenes LO28: phenotypic and genotypic characterization of variants resistant to high hydrostatic pressure

    NARCIS (Netherlands)

    Boeijen, van K.H.; Chavaroche, A.A.E.; Valderrama, W.B.; Moezelaar, R.; Zwietering, M.H.; Abee, T.

    2010-01-01

    A comparative phenotype analysis of 24 Listeria monocytogenes LO28 stress-resistant variants obtained after high-pressure treatment was performed to assess their robustness and growth performance under a range of food-relevant conditions. In addition, genetic analysis was conducted to characterize

  1. Raman spectroscopic study of DL valine under pressure up to 20 GPa

    Science.gov (United States)

    Rêgo, F. S. C.; Lima, J. A.; Freire, P. T. C.; Melo, F. E. A.; Mendes Filho, J.; Polian, A.

    2016-04-01

    DL-valine crystal was studied by Raman spectroscopy under hydrostatic pressure using a diamond anvil cell from ambient pressure up to 19.4 GPa in the spectral range from 40 to 3300 cm-1. Modifications in the spectra furnished evidence of the occurrence of two structural phase transitions undergone by this racemic amino acid crystal. The classification of the vibrational modes, the behavior of their wavenumber as a function of the pressure and the reversibility of the phase transitions are discussed.

  2. Refolding in high hydrostatic pressure of recombinant proteins from inclusion bodies in Escherichia Coli; Renaturacao em altas pressoes hidrostaticas de proteinas recombinantes agregadas em corpos de inclusao produzidos em Escherichia Coli

    Energy Technology Data Exchange (ETDEWEB)

    Balduino, Keli Nunes

    2009-07-01

    The expression of proteins as inclusion bodies in bacteria is a widely used alternative for production of recombinant protein. However, the aggregation is a problem often encountered during refolding of these proteins. High hydrostatic pressure are able to solubilise the inclusion bodies in the presence of low concentrations of denaturant reagents, encouraging refolding protein with high efficiency and reduce costs. This work aims to refolding of recombinant proteins expressed in Escherichia coli from inclusion bodies using high hydrostatic pressure. Three toxins, all featuring five or more disulfide bonds were studied: NXH8, Natterin 2 and Bothropstoxin 1. Suspensions of inclusion bodies of the three proteins were pressurized to 2000 bars for 16 hours. The buffers were optimized for refolding of the three proteins. The buffer used in the refolding of NXH8 was 50 mM Tris HCl, pH 9.0 with proportion of 1GSH: 4GSSG at a concentration of 6 mM and 2 M GdnHCl. Inclusion bodies were used in O.D. (A600nm) of 0.5. After refolding process, dialysis was performed at pH 7.0. The final yield of obtaining soluble NXH8 was 40% (28,6 mg of soluble NXH8/L of culture medium). The refolding of Bothropstoxin 1 was obtained in refolding buffer of Tris HCl 50 mM, pH 7,5 with proportion of 2 GSH: GSSG 3 and concentration of 3 mM and 1 M GdnHCl. Use with a suspension of O.D. (A600nm) of 0.5. The final yield of recovery of Bothropstoxin 1 refolded was 32% (9,2 mg of refolded Bothropstoxin 1/L of culture medium). The refolding of Natterin 2 was performed in the refolding buffer: 20 mM Tris HCl pH 9.0 at a ratio of 2 GSH: 3GSSG and concentration of 10 mM and 1 M GdnHCl and inclusion bodies O.D. (A600nm) of 6.0. The yield of Natterin 2 refolded was 20% (3,7 mg/L of culture medium). Physico-chemical and biological analysis were performed by SDS-PAGE, western blot, scanning electron microscopy, biological tests in vivo and in vitro and structural. The analysis conducted in NXH8 did not show

  3. Compression of α-cristobalite under different hydrostatic conditions

    Science.gov (United States)

    Cernok, Ana; Marquardt, Katharina; Bykova, Elena; Liermann, Hanns-Peter; Dubrovinsky, Leonid

    2015-04-01

    The response of α-cristobalite to high-pressure has been a subject of numerous experimental and theoretical studies for more than two decades. The results indicated prolific polymorphism under high pressures, yet no consensus has emerged on what is the sequence of these pressure-induced transformations. In particular, the structure of the high-pressure polymorph that appears above ~10 GPa (hereafter cristobalite X-I), which is believed to be a direct link between the low-pressure (silicon in SiO4 tetrahedra) and the high-pressure (SiO6 octahedra) forms of silica remained elusive. This study examined the response of α-cristobalite when compressed at different levels of hydrostaticity, with the special focus on formation and stability of cristobalite X-I. The structural behavior of cristobalite under pressure was investigated up to ~80 GPa and at ambient temperature. We investigated behavior of single crystals and powders, in either (quasy)-hydrostatic or non-hydrostatic environment. In situ high pressure transformation path and structural behavior was studied by means of Raman spectroscopy and synchrotron X-ray diffraction (XRD). The samples recovered after pressure release were additionally investigated by transmission electron microscopy (TEM). Low- or α-cristobalite responds differently to high pressure depending on the degree of the hydrostaticity. The highest attainable hydrostaticity preserves the initial structure of cristobalite at least up to ~15 GPa. When the crystal experiences even slight stresses during an experiment, transformation sequence leads to cristobalite X-I - a monoclinic polymorph with silicon in octahedral coordination. This polymorph belongs to the family of the high-pressure silica phases that are comprised of distorted close-packed array of oxygen ions in which silicon atoms fully or partially occupy octahedral sites. The reflections collected on a single crystal at ~11 GPa can be indexed by a monoclinic unit cell a=6.658(9) Å, b=4

  4. The Virtual Hydrostatic Test.

    Science.gov (United States)

    Mazuchowski, Edward L; Franco, Dori M; Berran, Philip J; Harcke, H Theodore

    2017-03-01

    The hydrostatic test is used to help determine if there has been a live birth. Computed tomography (CT), with its ability to detect and localize air/gas in the body, offers a rapid, noninvasive tool for assessment.Four baby deaths (20 to 25 weeks' gestation) in which the hydrostatic test, radiographs, and CT were performed before autopsy are presented. In 2 cases, considered stillbirths, the lungs and liver sank, and there was no air seen in the lungs or gas in the liver on CT. Histology of the lungs showed collapsed alveoli. In 1 case, concluded to be a live birth, the lungs floated, the liver sank, and air was seen in the trachea, bronchi, and both lungs on CT. Histology of the lungs showed multiple areas of expanded alveoli. In 1 case, where both the lungs and liver floated, the CT showed gas widely distributed in the soft tissues. This reflected decomposition, and no conclusion could be made regarding birth status.Assessment of live birth is a critical and difficult decision. Postmortem CT offers another technique to consider in this determination, and it has significant advantages over radiography. Continued study and correlation with existing methods seem warranted.

  5. Relationship between Sublethal Injury and Microbial Inactivation by the Combination of High Hydrostatic Pressure and Citral or tert-Butyl Hydroquinone ▿

    Science.gov (United States)

    Somolinos, Maria; García, Diego; Pagán, Rafael; Mackey, Bernard

    2008-01-01

    The aim was to investigate (i) the occurrence of sublethal injury in Listeria monocytogenes, Escherichia coli, and Saccharomyces cerevisiae after high hydrostatic pressure (HHP) treatment as a function of the treatment medium pH and composition and (ii) the relationship between the occurrence of sublethal injury and the inactivating effect of a combination of HHP and two antimicrobial compounds, tert-butyl hydroquinone (TBHQ) and citral. The three microorganisms showed a high proportion of sublethally injured cells (up to 99.99% of the surviving population) after HHP. In E. coli and L. monocytogenes, the extent of inactivation and sublethal injury depended on the pH and the composition of the treatment medium, whereas in S. cerevisiae, inactivation and sublethal injury were independent of medium pH or composition under the conditions tested. TBHQ alone was not lethal to E. coli or L. monocytogenes but acted synergistically with HHP and 24-h refrigeration, resulting in a viability decrease of >5 log10 cycles of both organisms. The antimicrobial effect of citral depended on the microorganism and the treatment medium pH. Acting alone for 24 h under refrigeration, 1,000 ppm of citral caused a reduction of 5 log10 cycles of E. coli at pH 7.0 and almost 3 log10 cycles of L. monocytogenes at pH 4.0. The combination of citral and HHP also showed a synergistic effect. Our results have confirmed that the detection of sublethal injury after HHP may contribute to the identification of those treatment conditions under which HHP may act synergistically with other preserving processes. PMID:18952869

  6. A PIP1 Aquaporin Contributes to Hydrostatic Pressure-Induced Water Transport in Both the Root and Rosette of Arabidopsis1[C][W

    Science.gov (United States)

    Postaire, Olivier; Tournaire-Roux, Colette; Grondin, Alexandre; Boursiac, Yann; Morillon, Raphaël; Schäffner, Anton R.; Maurel, Christophe

    2010-01-01

    Aquaporins are channel proteins that facilitate the transport of water across plant cell membranes. In this work, we used a combination of pharmacological and reverse genetic approaches to investigate the overall significance of aquaporins for tissue water conductivity in Arabidopsis (Arabidopsis thaliana). We addressed the function in roots and leaves of AtPIP1;2, one of the most abundantly expressed isoforms of the plasma membrane intrinsic protein family. At variance with the water transport phenotype previously described in AtPIP2;2 knockout mutants, disruption of AtPIP1;2 reduced by 20% to 30% the root hydrostatic hydraulic conductivity but did not modify osmotic root water transport. These results document qualitatively distinct functions of different PIP isoforms in root water uptake. The hydraulic conductivity of excised rosettes (Kros) was measured by a novel pressure chamber technique. Exposure of Arabidopsis plants to darkness increased Kros by up to 90%. Mercury and azide, two aquaporin inhibitors with distinct modes of action, were able to induce similar inhibition of Kros by approximately 13% and approximately 25% in rosettes from plants grown in the light or under prolonged (11–18 h) darkness, respectively. Prolonged darkness enhanced the transcript abundance of several PIP genes, including AtPIP1;2. Mutant analysis showed that, under prolonged darkness conditions, AtPIP1;2 can contribute to up to approximately 20% of Kros and to the osmotic water permeability of isolated mesophyll protoplasts. Therefore, AtPIP1;2 can account for a significant portion of aquaporin-mediated leaf water transport. The overall work shows that AtPIP1;2 represents a key component of whole-plant hydraulics. PMID:20034965

  7. Pressure- and temperature-induced unfolding and aggregation of recombinant human interferon-gamma: a Fourier transform infrared spectroscopy study.

    OpenAIRE

    Goossens, Koen; Haelewyn, Joost; Meersman, Filip; De Ley, Marc; Heremans, Karel

    2003-01-01

    The effect of hydrostatic pressure on the secondary structure of recombinant human interferon-gamma (rhIFN-gamma) and its biologically inactive truncated form rhIFN-Delta C15 has been studied using Fourier-transform IR (FTIR) spectroscopy. In situ observation of the pressure-induced changes using the diamond anvil cell shows that the alpha-helical structure is mainly transformed into disordered structure at high pressure. Increasing pressure also induces the formation of a gel. Addition of 0....

  8. Effects of hydrostatic pressure and temperature on the electron paramagnetic resonance spectrum of off-centre Jahn-Teller [CuF sub 4 F sub 4] sup 6 sup - complexes in SrF sub 2 crystal

    CERN Document Server

    Ulanov, V A; Hoffmann, S K; Zaripov, M M

    2003-01-01

    Pressure and temperature variations of the spin-Hamiltonian parameters and electron paramagnetic resonance (EPR) linewidths of non-central Jahn-Teller [CuF sub 4 F sub 4] sup 6 sup - complexes in SrF sub 2 crystal were studied by continuous-wave EPR. It was found that the static spin-Hamiltonian parameters, found at T = 85 K and at normal pressure (g sub | sub | = 2.491, g sub p sub e sub r sub p sub e sub n sub d sub i sub c sub u sub l sub a sub r = 2.083, a sub p sub a sub r sub a sub l sub l sub e sub l = 360, a sub p sub e sub r sub p sub e sub n sub d sub i sub c sub u sub l sub a sub r = 26, A sub x sub ' sub ' = 96, A sub y sub ' sub ' = 99, A sub z sub ' sub ' = 403 and beta sub e sub x sub p = 17 diameter), are slightly changed with hydrostatic pressure and, at T = 85 K and P = 550 MPa, become equal to g sub | sub | = 2.489, g sub p sub e sub r sub p sub e sub n sub d sub i sub c sub u sub l sub a sub r = 2.083, a sub | sub | 348, a sub p sub e sub r sub p sub e sub n sub d sub i sub c sub u sub l s...

  9. Influence of the Lubricant Thermo-Piezo-Viscous Property on Hydrostatic Bearings in Oil Hydraulics

    DEFF Research Database (Denmark)

    Johansen, Per; Roemer, Daniel Beck; Andersen, Torben O.

    2016-01-01

    In fluid power machinery hydrostatic bearings are frequently used, and a first approximation approach to design is determination of a balance ratio by analytical calculations of the hydrostatic presure force. Usually this is performed assuming that the thermo-piezo-viscous property can be neglect...... that design engineers need to understand the thermodynamics of hydrostatic bearings, when using the conventional simple analytical approach, neglecting thermo-piezo-viscosity, in hydrostatic pressure force calculations.......In fluid power machinery hydrostatic bearings are frequently used, and a first approximation approach to design is determination of a balance ratio by analytical calculations of the hydrostatic presure force. Usually this is performed assuming that the thermo-piezo-viscous property can be neglected...... adds to the discrepancy of such simple design approach. In this paper the hydrostatic pressure force calculation is reviewed in terms of thermohydrodynamic (THD) lubrication theory, and simple analytical approximations of the hydrostatic pressure force, incorporating the piezo-viscous and thermo...

  10. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Science.gov (United States)

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test. The... 49 Transportation 4 2010-10-01 2010-10-01 false Hydrostatic testing of boilers. 230.36 Section 230...

  11. Low-sodium Cheddar cheese: Effect of fortification of cheese milk with ultrafiltration retentate and high-hydrostatic pressure treatment of cheese.

    Science.gov (United States)

    Ozturk, M; Govindasamy-Lucey, S; Jaeggi, J J; Johnson, M E; Lucey, J A

    2015-10-01

    Low-sodium cheeses often exhibit an acidic flavor due to excessive acid production during the manufacturing and the initial stage of ripening, which is caused by ongoing starter culture activity facilitated by the low salt-in-moisture levels. We proposed that this excessive starter-induced acidity could be prevented by the fortification of cheese milk with ultrafiltration (UF) retentates (to increase curd buffering), and by decreasing microbial activity using the application of high-hydrostatic pressure (HHP) treatment (that is, to reduce residual starter numbers). Camel chymosin was also used as a coagulant to help reduce bitterness development (a common defect in low-sodium cheeses). Three types of low-Na (0.8% NaCl) Cheddar cheeses were manufactured: non-UF fortified, no HHP applied (L-Na); UF-fortified (cheese milk total solids = 17.2 ± 0.6%), no HHP applied (L-Na-UF); and UF-fortified, HHP-treated (L-Na-UF-HHP; 500 MPa for 3 min applied at 1 d post-cheese manufacture). Regular salt (2% NaCl) non-UF fortified, non-HHP treated (R-Na) cheese was also manufactured for comparison purposes. Analysis was performed at 4 d, 2 wk, and 1, 3, and 6 mo after cheese manufacture. Cheese functionality during ripening was assessed using texture profile analysis and dynamic low-amplitude oscillatory rheology. Sensory Spectrum and quantitative descriptive analysis was conducted with 9 trained panelists to evaluate texture and flavor attributes using a 15-point scale. At 4 d and 2 wk of ripening, L-Na-UF-HHP cheese had ~2 and ~4.5 log lower starter culture numbers, respectively, than all other cheeses. Retentate fortification of cheese milk and HHP treatment resulted in low-Na cheeses having similar insoluble calcium concentrations and pH values compared with R-Na cheese during ripening. The L-Na-UF cheese exhibited significantly higher hardness values (measured by texture profile analysis) compared with L-Na cheese until 1 mo of ripening; however, after 1 mo, all low-Na cheeses

  12. Impurity-related optical properties in rectangular-transverse section GaAs-Ga{sub 1-x}Al{sub x}As quantum well wires: Hydrostatic pressure and electric field effects

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J.W.; Duque, C.A. [Instituto de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia); Lopez, S.Y. [Facultad de Educacion, Universidad de Antioquia, AA 1226, Medellin (Colombia); Rodriguez, A.H. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico (UNAM), Apdo. Postal 20-364, San Angel 01000, Mexico DF (Mexico); Porras-Montenegro, N. [Departamento de Fisica, Universidad del Valle, AA 25360, Cali (Colombia)

    2007-01-15

    Using a variational procedure within the effective mass approximation, we have calculated the influence of an applied electric field and hydrostatic pressure on the shallow-impurity-related optical properties in a rectangular-transverse section GaAs-Ga{sub 1-x}Al{sub x}As quantum well wire. The electric field is applied in the plane of the transverse section of the wire and different angular directions have been considered. The results presented are for the impurity binding energy, its corresponding density of impurity states, and impurity-related transition energy and polarizability. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Donor impurity-related optical absorption spectra in GaAs-Ga{sub 1-x}Al{sub x}As quantum wells: hydrostatic pressure and {gamma}-X conduction band mixing effects

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209, Cuernavaca, MOR (Mexico); Inst. de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain); Lopez, S.Y. [Fac. de Educacion, Universidad de Antioquia, AA 1226, Medellin (Colombia); Duque, C.A. [Inst. de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia); Velasco, V.R. [Inst. de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)

    2007-07-01

    Using a variational procedure within the effective mass approximation, the mixing between the {gamma} and X conduction band valleys in GaAs-Ga{sub 1-x}Al{sub x}As quantum wells is investigated by taking into account the effect of applied hydrostatic pressure. Some optical properties such as donor and/or acceptor binding energy and impurity-related transition energies are calculated and comparisons with available experimental data are presented. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Hydrostatic Pressure and Built-In Electric Field Effects on the Donor Impurity States in Cylindrical Wurtzite GaN/AlxGa1−xN Quantum Rings

    Directory of Open Access Journals (Sweden)

    Guangxin Wang

    2015-01-01

    Full Text Available Within the framework of the effective mass approximation, the ground-state binding energy of a hydrogenic impurity is investigated in cylindrical wurtzite GaN/AlxGa1-xN strained quantum ring (QR by means of a variational approach, considering the influence of the applied hydrostatic pressure along the QR growth direction and the strong built-in electric field (BEF due to the piezoelectricity and spontaneous polarization. Numerical results show that the donor binding energy for a central impurity increases inchmeal firstly as the QR radial thickness (ΔR decreases gradually and then begins to drop quickly. In addition, the donor binding energy is an increasing (a decreasing function of the inner radius (height. It is also found that the donor binding energy increases almost linearly with the increment of the applied hydrostatic pressure. Moreover, we also found that impurity positions have an important influence on the donor binding energy. The physical reasons have been analyzed in detail.

  15. External Squeeze-Film Damper For Hydrostatic Bearing

    Science.gov (United States)

    Buckmann, Paul S.

    1992-01-01

    External squeeze-film damping device suppresses vibrations of rapidly turning shaft supported by pivoted-pad hydrostatic bearing in high-pressure/high-power-density turbomachine. Stacked disks provide damping and clearance for alignment.

  16. High-pressure microbiology

    National Research Council Canada - National Science Library

    Michiels, Chris; Bartlett, Douglas Hoyt; Aertsen, Abram

    2008-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. High Hydrostatic Pressure Effects in the Biosphere: from Molecules to Microbiology * Filip Meersman and Karel Heremans . . . . . . . . . . . . 2. Effects...

  17. The Research Status and Progress of Heavy/Large Hydrostatic Thrust Bearing

    Directory of Open Access Journals (Sweden)

    Xibing Li

    2014-03-01

    Full Text Available How to improve the rotation speed of heavy/large CNC vertical lathe, the machining efficiency, and machining precision is one of the key issues which need to be solved urgently. Hydrostatic thrust bearing is the key part to the heavy/large CNC vertical lathe; its performance directly affects the machining quality and operation efficiency. This paper analyses the latest research results from the perspective of the mechanical properties of hydrostatic thrust bearing, oil film lubrication, static pressure bearing thermal deformation, and the high efficiency refrigeration and evaluates the future scientific research direction in this area. Analysis shows that with the development of hydrostatic thrust bearing to the high speed, high precision, high efficiency, high stability, high multifunction, and high power, the study of hydrostatic thrust bearing will focus on the optimal design of the oil chamber to produce the least amount of heat, how to control the thermal deformation of hydrostatic thrust bearing, and the high efficiency refrigeration to ensure the machining accuracy of CNC equipment.

  18. In situ spectroscopic study of the plastic deformation of amorphous silicon under non-hydrostatic conditions induced by indentation.

    Science.gov (United States)

    Gerbig, Y B; Michaels, C A; Bradby, J E; Haberl, B; Cook, R F

    2015-12-01

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique. Quantitative analyses of the generated in situ Raman maps provide unique, new insight into the phase behavior of as-implanted a-Si. In particular, the occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were measured. The experimental results are linked with previously published work on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a sequence for the development of deformation of a-Si under indentation loading. The sequence involves three distinct deformation mechanisms of a-Si: (1) reversible deformation, (2) increase in coordination defects (onset of plastic deformation), and (3) phase transformation. Estimated conditions for the occurrence of these mechanisms are given with respect to relevant intrinsic and extrinsic parameters, such as indentation stress, volumetric strain, and bond angle distribution (a measure for the structural order of the amorphous network). The induced volumetric strains are accommodated solely by reversible deformation of the tetrahedral network when exposed to small indentation stresses. At greater indentation stresses, the increased volumetric strains in the tetrahedral network lead to the formation of predominately five-fold coordination defects, which seems to mark the onset of irreversible or plastic deformation of the a-Si thin film. Further increase in the indentation stress appears to initiate the formation of six-fold coordinated atomic arrangements. These six-fold coordinated arrangements may maintain their amorphous tetrahedral structure with a high density of coordination defects or nucleate as a new crystalline

  19. Study of pressure influence on thermal transition in spin-crossover nanomaterials

    OpenAIRE

    Gudyma, Iurii V; Maksymov, Artur Iu; Ivashko, Victor V.

    2014-01-01

    The thermal transition accompanied by the variation of the molecular volume in nanoparticles of spin-crossover materials has been studied on the basis of microscopic Ising-like model solved using Monte Carlo methods. For considered model, we examined the spin-crossover phenomenon with applied hydrostatic pressure and thus was shown the possibility to shift transition temperature toward its room value. The obtained results of numerical simulations are in agreement with the experimental ones.

  20. Study of pressure influence on thermal transition in spin-crossover nanomaterials.

    Science.gov (United States)

    Gudyma, Iurii V; Maksymov, Artur Iu; Ivashko, Victor V

    2014-12-01

    The thermal transition accompanied by the variation of the molecular volume in nanoparticles of spin-crossover materials has been studied on the basis of microscopic Ising-like model solved using Monte Carlo methods. For considered model, we examined the spin-crossover phenomenon with applied hydrostatic pressure and thus was shown the possibility to shift transition temperature toward its room value. The obtained results of numerical simulations are in agreement with the experimental ones.

  1. Study of pressure influence on thermal transition in spin-crossover nanomaterials

    Science.gov (United States)

    Gudyma, Iurii V.; Maksymov, Artur Iu; Ivashko, Victor V.

    2014-12-01

    The thermal transition accompanied by the variation of the molecular volume in nanoparticles of spin-crossover materials has been studied on the basis of microscopic Ising-like model solved using Monte Carlo methods. For considered model, we examined the spin-crossover phenomenon with applied hydrostatic pressure and thus was shown the possibility to shift transition temperature toward its room value. The obtained results of numerical simulations are in agreement with the experimental ones.

  2. Inactivation of Escherichia coli O157:H7 and Salmonella spp. in strawberry puree by high hydrostatic pressure with/without subsequent frozen storage.

    Science.gov (United States)

    Huang, Yaoxin; Ye, Mu; Chen, Haiqiang

    2013-01-01

    The objectives of this study were to investigate the survival of Escherichia coli O157:H7 and Salmonella spp. in frozen strawberry puree and to assess the application of high pressure processing (HPP) to decontaminate strawberry puree from both pathogens. Fresh strawberry puree was inoculated with high (~6 log CFU/g) and low (~3 log CFU/g) levels of E. coli O157:H7 or Salmonella spp. and stored at -18°C for 12 weeks. Both pathogens were able to persist for at least 4weeks and samples with high inoculums were still positive for both pathogens after 12 weeks. Pressure treatment of 450 MPa for 2 min at 21°C was able to eliminate both pathogens in strawberry puree. Frozen storage at -18°C after pressure treatment substantially enhanced the inactivation of both pathogens and 4-8 days of frozen storage was able to reduce the pressure level needed for elimination of both pathogens to 250-300 MPa. Natural yeasts and molds in strawberry puree were effectively reduced by pressure of 300 MPa for 2 min at 21°C. No adverse impacts on physical properties such as color, soluble solids content, pH and viscosity of strawberry puree was found for pressure-treated samples. Therefore, the treatment of 300 MPa for 2 min at 21°C followed by 4 days frozen storage at -18°C was recommended for the minimal processing of strawberry puree with great retention of fresh-like sensory properties. HPP could be a promising alternative to traditional thermal processing for berry purees. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Significance of uniaxial and hydrostatic pressure studies on ancient oceanic rocks in tectonics

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, K.V.L.N.S.; Ramana, Y.V.

    the ancient oceanic crust (ophiolites). The relationship between the number of cracks/m to compressional wave velocity have been established. These results can be compared with the dredged samples of oceanic crustal rocks of other regions in drilling since...

  4. Effect of hydrostatic pressure, temperature, and solvent on the rate of the Diels-Alder reaction between 9,10-anthracenedimethanol and maleic anhydride

    Science.gov (United States)

    Kiselev, V. D.; Kornilov, D. A.; Anikin, O. V.; Latypova, L. I.; Konovalov, A. I.

    2017-03-01

    The rate of the reaction between 9,10-anthracenedimethanol and maleic anhydride in 1,4-dioxane, acetonitrile, trichloromethane, and toluene is studied at 25, 35, 45°C in the pressure range of 1-1772 bar. The rate constants, enthalpies, entropies and activation volumes are determined. It is shown that the rate of reaction with 9,10-anthracenedimethanol is approximately one order of magnitude higher than with 9-anthracenemethanol.

  5. Early Days of Pressure Denaturation Studies of Proteins.

    Science.gov (United States)

    Suzuki, Keizo

    2015-01-01

    The denaturation of protein by pressure has been generally well known since the findings of the perfect coagulation of egg white by a pressure of 7,000 atm within 30 min by Bridgman (J Biol Chem 19:511-512, 1914), and Kiyama and Yanagimoto (Rev Phys Chem Jpn 21:41-43, 1951) confirmed that the coagulation occurs above 3,880 kg cm(-2). Grant et al. (Science 94:616, 1941) and Suzuki and Kitamura (Abstracts of 30th annual meeting of Japanese Biochemical Society, 1957) found that SH groups are detected at the compressed sample of ovalbumin. On the other hand, Johnson and Campbell (J Cell Comp Physiol 26:43-49, 1945), Tongur (Kolloid Zhur 11:274-279, 1949; Biokhimiya 17:495-503, 1952) and Suzuki et al. (Mem Res Inst Sci Eng Ritsumeikan Univ 3:1-4, 1958) reported that the thermal denaturation of proteins is retarded in a few examples by the low pressure of about 1,000 atm. Before 1960, the studies of denaturation under high pressure were, however, rare and almost qualitative compared with those by heat, acid, urea and so on, so that there was no theory for the influence of hydrostatic pressure on the mechanism of denaturation. Here I review how I started experiments and analysis on pressure denaturation of proteins in early days of 1950s and 1960s in my laboratory and others.

  6. The powerful high pressure tool for protein conformational studies

    Directory of Open Access Journals (Sweden)

    Marchal S.

    2005-01-01

    Full Text Available The pressure behavior of proteins may be summarized as a the pressure-induced disordering of their structures. This thermodynamic parameter has effects on proteins that are similar but not identical to those induced by temperature, the other thermodynamic parameter. Of particular importance are the intermolecular interactions that follow partial protein unfolding and that give rise to the formation of fibrils. Because some proteins do not form fibrils under pressure, these observations can be related to the shape of the stability diagram. Weak interactions which are differently affected by hydrostatic pressure or temperature play a determinant role in protein stability. Pressure acts on the 2º, 3º and 4º structures of proteins which are maintained by electrostatic and hydrophobic interactions and by hydrogen bonds. We present some typical examples of how pressure affects the tertiary structure of proteins (the case of prion proteins, induces unfolding (ataxin, is a convenient tool to study enzyme dissociation (enolase, and provides arguments to understand the role of the partial volume of an enzyme (butyrylcholinesterase. This approach may have important implications for the understanding of the basic mechanism of protein diseases and for the development of preventive and therapeutic measures.

  7. Research on Parameter Design of Multi - axis Hydrostatic Transmission Vehicle

    Directory of Open Access Journals (Sweden)

    Zhao Liang

    2017-01-01

    Full Text Available In order to obtain reasonable parameters in the design of driving system of multi-axis hydrostatic transmission vehicle, the working principle of single-side drive of hydrostatic transmission vehicle is introduced. The matching and control of engine and hydraulic pump are analyzed. According to the driving equation of vehicle, The driving force required for driving system is determined, and the parameters of hydraulic motor, hydraulic pump, system working pressure and braking system are designed and calculated, which provides the parameter design for driving system of multi-axis hydrostatic transmission Reliable theoretical basis.

  8. High-pressure study on borides, nanocrystals and negative thermal expansion materials

    Science.gov (United States)

    Chen, Bin

    2001-07-01

    By the use of Mao-Bell diamond anvil cell, employed with x-ray diffraction, optical absorption, Raman and Fourier Transform Infrared (FTIR) spectroscopy, iron borides, nanocrystalline Ni, Fe, Ni3Fe, Al2O 3, Negative Thermal Expansion (NTE) materials such as HfW2O 8, ZrW2O8, ZrMo2O8 have been studied under high pressure. The results of a synchrotron x-ray diffraction study of Fe2B under quasi-hydrostatic conditions from 0 to 50 GPa are reported. Over this pressure range, no phase change or disproportionation has been observed. A value of the bulk modulus, K, of 192 +/- 14 GPa and the first pressure derivative of the bulk modulus, K', of 2.6 +/- 0.6, are obtained. The compression is found to be anisotropic, with the a-axis being more incompressible than the c-axis. X-ray diffraction data of nanocrystalline Ni, Fe and Ni3Fe, using a synchrotron source, was collected under nonhydrostatic and quasi-hydrostatic conditions up to 60 GPa. The bulk moduli, of 185.4 +/- 10 GPa, 171 +/- 5 GPa, 179.4 +/- 8.1 GPa, 168.3 +/- 2.6 GPa, are determined from quasi-hydrostatic compression data of nanocrystalline Ni, alpha-Fe, epsilon-Fe and Ni3Fe, respectively, which are found similar to those of large-grained counterparts. Their phase transformations are studied and compared with their bulk counterparts. A new phase of Al2O3 formed by compression of the nanocrystalline gamma-phase has been detected. This high-pressure phase is metastable upon decompression to ambient pressure, and has a bulk modulus of 251 +/- 10 GPa for Al2O3 of 67 nm. From hydrostatic compression, bulk moduli of K67 = 238 +/- 3 GPa and K37 = 172 +/- 3 GPa are obtained for the 67 nm and 37 nm gamma-Al2O3 particles, respectively, which are significantly higher than that found in a previous study of smaller sized nanocrystals of gamma-alumina (K20 = 162 +/- 14 GPa for 20 nm crystallites). High pressure optical absorption, Raman and FTIR measurements are carried out on negative thermal expansion materials: HfW2O8, ZrW2O

  9. HYDROSTATIC PRESSURE, ACOUSTIC TRAVEL TIME, and others in Indian Ocean from 2010-04-13 to 2013-02-24 (NCEI Accession 0156605)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Acoustic roundtrip travel time, pressure, ocean velocity, and temperature recorded by Current- and Pressure-recording Inverted Echo Sounders (CPIES) instruments at...

  10. Gap flows and pressure fields in sealing and bearing gaps of hydrostatic machines. Final report; Spaltstroemungen und Druckfelder in Dicht- und Lagerfugen hydrostatischer Maschinen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kleist, A.

    1997-07-01

    The `hydrostatic machines` project was concerned with the examination of sealing and bearing gaps in hydraulic machines with the aim of creating a useful simulation tool for designing these gaps. In order to achieve this difficult target, extensive experimental investigations were carried out. A simulation program for the static calculation of sealing and bearing gaps was developed for the key gap bearing and the valve gap. The third main point of the experimental investigations was the examination of the piston/cylinder gap of a radial piston pump. The simulation was able to be verified from experimental results. (orig./AKF) [Deutsch] Das Projekt `Hydrostatische Maschinen` befasste sich mit der Untersuchung hydrostatischen Dicht- und Lagerfugen in hydraulischen Maschinen mit Ziel, fuer die Auslegung dieser Spalte ein handhabbares Simulationswerkzeug zu schaffen. Um dieses hochgesteckte Ziel zu erreichen, wurden umfangreiche experimentelle Untersuchungen durchgefuehrt. Fuer die Keilspaltlagerung und den Ventilsplat wurde ein Simulationsprogramm fuer die stationaere Berechnung von Dicht- und Lagerfugen entwickelt. Der dritte Schwerpunkt der experimentellen Untersuchungen war die Untersuchung des Kolben-Zylinder-Spaltes einer Radialkolbenpumpe. Die Simulation konnte anhand der experimentellen Ergebnisse verifiziert werden. (orig./AKF)

  11. The Exergetic, Environmental and Economic Effect of the Hydrostatic Design Static Pressure Level on the Pipe Dimensions of Low-Energy District Heating Networks

    Directory of Open Access Journals (Sweden)

    Hakan İbrahim Tol

    2013-01-01

    Full Text Available Low-Energy District Heating (DH systems, providing great energy savings by means of very low operating temperatures of 55 °C and 25 °C for supply and return respectively, were considered to be the 4th generation of the DH systems for a low-energy future. Low-temperature operation is considered to be used in a low-energy DH network to carry the heat produced by renewable and/or low grade energy sources to low-energy Danish buildings. In this study, a comparison of various design considerations with different levels of maximum design static pressures was performed, and their results evaluated in terms of energetic, exergetic, economic, and environmental perspectives.

  12. Evaluation of the Growth Environment of a Hydrostatic Force Bioreactor for Preconditioning of Tissue-Engineered Constructs

    Science.gov (United States)

    Reinwald, Yvonne; Leonard, Katherine H.L.; Henstock, James R.; Whiteley, Jonathan P.; Osborne, James M.; Waters, Sarah L.; Levesque, Philippe

    2015-01-01

    Bioreactors have been widely acknowledged as valuable tools to provide a growth environment for engineering tissues and to investigate the effect of physical forces on cells and cell-scaffold constructs. However, evaluation of the bioreactor environment during culture is critical to defining outcomes. In this study, the performance of a hydrostatic force bioreactor was examined by experimental measurements of changes in dissolved oxygen (O2), carbon dioxide (CO2), and pH after mechanical stimulation and the determination of physical forces (pressure and stress) in the bioreactor through mathematical modeling and numerical simulation. To determine the effect of hydrostatic pressure on bone formation, chick femur skeletal cell-seeded hydrogels were subjected to cyclic hydrostatic pressure at 0–270 kPa and 1 Hz for 1 h daily (5 days per week) over a period of 14 days. At the start of mechanical stimulation, dissolved O2 and CO2 in the medium increased and the pH of the medium decreased, but remained within human physiological ranges. Changes in physiological parameters (O2, CO2, and pH) were reversible when medium samples were placed in a standard cell culture incubator. In addition, computational modeling showed that the distribution and magnitude of physical forces depends on the shape and position of the cell-hydrogel constructs in the tissue culture format. Finally, hydrostatic pressure was seen to enhance mineralization of chick femur skeletal cell-seeded hydrogels. PMID:24967717

  13. UA-ICON - A non-hydrostatic global model for studying gravity waves from the troposphere to the thermosphere

    Science.gov (United States)

    Borchert, Sebastian; Zängl, Günther; Baldauf, Michael; Zhou, Guidi; Schmidt, Hauke; Manzini, Elisa

    2017-04-01

    In numerical weather prediction as well as climate simulations, there are ongoing efforts to raise the upper model lid, acknowledging the possible influence of middle and upper atmosphere dynamics on tropospheric weather and climate. As the momentum deposition of gravity waves (GWs) is responsible for key features of the large scale flow in the middle and upper atmosphere, the upward model extension has put GWs in the focus of atmospheric research needs. The Max Planck Institute for Meteorology (MPI-M) and the German Weather Service (DWD) have been developing jointly the non-hydrostatic global model ICON (Zängl et al, 2015) which features a new dynamical core based on an icosahedral grid. The extension of ICON beyond the mesosphere, where most GWs deposit their momentum, requires, e.g., relaxing the shallow-atmosphere and other traditional approximations as well as implementing additional physical processes that are important to the upper atmosphere. We would like to present aspects of the model development and its evaluation, and first results from a simulation of a period of the DEEPWAVE campaign in New Zealand in 2014 (Fritts et al, 2016) using grid nesting up to a horizontal mesh size of about 1.25 km. This work is part of the research unit: Multi-Scale Dynamics of Gravity Waves (MS-GWaves: sub-project GWING, https://ms-gwaves.iau.uni-frankfurt.de/index.php), funded by the German Research Foundation. Fritts, D.C. and Coauthors, 2016: "The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere". Bull. Amer. Meteor. Soc., 97, 425 - 453, doi:10.1175/BAMS-D-14-00269.1 Zängl, G., Reinert, D., Ripodas, P., Baldauf, M., 2015: "The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core". Quart. J. Roy. Met. Soc., 141, 563 - 579, doi:10.1002/qj.2378

  14. Hydrostatic extrusion of magnesium alloys

    NARCIS (Netherlands)

    Sillekens, W.H.; Bohlen, J.

    2012-01-01

    This chapter deals with the capabilities and limitations of the hydrostatic extrusion process for the manufacturing of magnesium alloy sections. Firstly, the process basics for the hydrostatic extrusion of materials in general and of magnesium in particular are introduced. Next, some recent research

  15. Effects of germination and high hydrostatic pressure processing on mineral elements, amino acids and antioxidants in vitro bioaccessibility, as well as starch digestibility in brown rice (Oryza sativa L.).

    Science.gov (United States)

    Xia, Qiang; Wang, Liping; Xu, Congcong; Mei, Jun; Li, Yunfei

    2017-01-01

    The effects of germination and high hydrostatic pressure (HHP) processing on the in vitro bioaccessibility of mineral elements, amino acids (AAs), antioxidants and starch in brown rice (BR) were investigated. Germinated BR (GBR) was obtained by incubating at 37°C for 36h and then subjected to HHP treatments at 0.1, 100, 300 and 500MPa for 10min. The in vitro bioaccessibility of calcium and copper was increased by 12.59-52.17% and 2.87-23.06% after HHP, respectively, but bioaccessible iron was decreased. In addition, HHP significantly improved individual AAs, particularly indispensable AAs and gama-aminobutyric acid, as well as bioaccessible total antioxidant activities and starch resistance to enzymatic hydrolysis. However, germination greatly increased starch digestibility. Atomic force microscopy characterization suggested an obvious structural change in bran fraction at pressures above 300MPa. These results can help to understand the effects of germination and HHP technologies on nutrients bioaccessibility and develop appropriate processing conditions. Copyright © 2016. Published by Elsevier Ltd.

  16. Acoustic Travel Time and Hydrostatic Pressure in Sermilik Fjord in Southeastern Greenland from 2011-08-23 to 2016-08-11 (NCEI Accession 0163212)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data records are time series of (1) round trip surface to bottom acoustic travel time, (2) bottom pressure and (3) bottom temperature (with the latter internal...

  17. Chain-length-dependent intermolecular packing in polyphenylenes: a high pressure study

    CERN Document Server

    Heimel, G; Oehzelt, M; Hummer, K; Koppelhuber-Bitschnau, B; Porsch, F; Ambrosch-Draxl, C; Resel, R

    2003-01-01

    We report on pressure-induced structural changes in crystalline oligo(para-phenylenes) containing two to six phenyl rings. The results are discussed with particular emphasis put on the implications these changes in intermolecular distances and molecular arrangement have on important bulk properties of this class of materials, such as optical response and charge transport. We performed energy dispersive x-ray diffraction in a systematic study on polycrystalline powders of biphenyl, para-terphenyl, p-quaterphenyl, p-quinquephenyl and p-sexiphenyl under hydrostatic pressure up to 60 kbar. Revisiting the crystal structures at ambient conditions reveals details in the packing principle. A linear relationship between the density at ambient conditions and the number of phenyl rings is found. High pressure data not only yields pressure-dependent lattice parameters and hints towards pressure-induced changes in the molecular arrangement but also allows for an analysis of the equations of state of these substances as a ...

  18. Microbial Evolution at High Pressure: Deep Sea and Laboratory Studies

    Science.gov (United States)

    Bartlett, D. H.

    2011-12-01

    Elevated hydrostatic pressures are present in deep-sea and deep-Earth environments where this physical parameter has influenced the evolution and characteristics of life. Piezophilic (high-pressure-adapted) microbes have been isolated from diverse deep-sea settings, and would appear likely to occur in deep-subsurface habitats as well. In order to discern the factors enabling life at high pressure my research group has explored these adaptations at various levels, most recently including molecular analyses of deep-sea trench communities, and through the selective evolution of the model microbe Escherichia coli in the laboratory to progressively higher pressures. Much of the field work has focused on the microbes present in the deeper portions of the Puerto Rico Trench (PRT)and in the Peru-Chile Trench (PCT), from 6-8.5 km below the sea surface (~60-85 megapascals pressure). Culture-independent phylogenetic data on the Bacteria and Archaea present on particles or free-living, along with data on the microeukarya present was complemented with genomic analyses and the isolation and characterization of microbes in culture. Metagenomic analyses of the PRT revealed increased genome sizes and an overrepresentation at depth of sulfatases for the breakdown of sulfated polysaccharides and specific categories of transporters, including those associated with the transport of diverse cations or carboxylate ions, or associated with heavy metal resistance. Single-cell genomic studies revealed several linneages which recruited to the PRT metagenome far better than existing marine microbial genome sequences. analyses. Novel high pressure culture approaches have yielded new piezophiles including species preferring very low nutrient levels, those living off of hydrocarbons, and those adapted to various electron donor/electron acceptor combinations. In order to more specifically focus on functions enabling life at increased pressure selective evolution experiments were performed with

  19. Biotelemetric Wireless Intracranial Pressure Monitoring: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Mohammad H. Behfar

    2015-01-01

    Full Text Available Assessment of intracranial pressure (ICP is of great importance in management of traumatic brain injuries (TBIs. The existing clinically established ICP measurement methods require catheter insertion in the cranial cavity. This increases the risk of infection and hemorrhage. Thus, noninvasive but accurate techniques are attractive. In this paper, we present two wireless, batteryless, and minimally invasive implantable sensors for continuous ICP monitoring. The implants comprise ultrathin (50 μm flexible spiral coils connected in parallel to a capacitive microelectromechanical systems (MEMS pressure sensor. The implantable sensors are inductively coupled to an external on-body reader antenna. The ICP variation can be detected wirelessly through measuring the reader antenna’s input impedance. This paper also proposes novel implant placement to improve the efficiency of the inductive link. In this study, the performance of the proposed telemetry system was evaluated in a hydrostatic pressure measurement setup. The impact of the human tissues on the inductive link was simulated using a 5 mm layer of pig skin. The results from the in vitro measurement proved the capability of our developed sensors to detect ICP variations ranging from 0 to 70 mmHg at 2.5 mmHg intervals.

  20. A model for hydrostatic consolidation of Pierre shale

    Science.gov (United States)

    Savage, W.Z.; Braddock, W.A.

    1991-01-01

    This paper presents closed-form solutions for consolidation of transversely isotropic porous media under hydrostatic stress. The solutions are applied to model the time variation of pore pressure, volume strain and strains parallel and normal to bedding, and to obtain coefficients of consolidation and permeability, as well as other properties, and the bulk modulus resulting from hydrostatic consolidation of Pierre shale. It is found that the coefficients consolidation and permeability decrease and the bulk moduli increase with increasing confining pressure, reflecting the closure of voids in the rock. ?? 1991.

  1. Development And Application Of Non-Hydrostatic Model To The Coastal Engineering Problems

    Science.gov (United States)

    Maderych, V.; Brovchenko, I.; Fenical, S.; Nikishov, V.; Terletska, K.

    2007-12-01

    The 3D non-hydrostatic free surface model developed by Kanarska and Maderich (2003) for stratified flows was further improved and has been used to simulate coastal processes. In the model the surface elevation, hydrostatic and non-hydrostatic components of pressure and velocity are calculated at sequential stages. Unlike most non-hydrostatic models, the 2-D depth-averaged momentum and continuity equations were integrated explicitly, whereas the 3-D equations were solved semi-implicitly at subsequent stages. The RANS and subgrid- scale eddy viscosity and diffusivity parameterization were implemented in the model to parameterize small-scale mixing. The model was applied to three coastal engineering problems. First, we used the model coupled with a 3D Lagrangian sediment transport model to predict scour caused by propeller jets of slowly maneuvering ships. The results of the simulations show good agreement with laboratory experiments and field ADCP measurements with tug boats. Second, the model was applied, while nested into the hydrostatic far-field counterpart model, for near-field simulation of cooling water discharge through submerged outfalls. Third, laboratory experiments and simulations were performed to estimate effects of large-amplitude internal solitary waves (ISW) on submerged structures and coastal bottom sediments. In the first series of experiments and simulations, the interaction of ISW-depressions with a rectangular bottom obstacle was investigated. In the second series, the ISW-depression was studied passing through a smooth local lateral constriction. The third series of laboratory experiments and simulations was conducted to investigate the dynamics of ISW of depressions reflecting from a steep slope. Contribution of V. Maderych in this work was supported by Hankuk University of Foreign Studies Research Fund of 2007.

  2. [Laser flash photolysis, EPR and Raman studies of liquids at elevated pressures

    Energy Technology Data Exchange (ETDEWEB)

    Eyring, E.M.

    1992-01-01

    The proposed research will solve a number of analytical chemical problems in solutions with measurement techniques that benefit from the use of elevated hydrostatic pressures: stopped-flow spectrophotometry (Gd[sup 3+] + L(ligand), [RuL[sub 5]H[sub 2]O][sup 2+], laser flash photolysis of Mo(CO)[sub 6] + L, flash photolysis of binuclear metalloproteins), EPR spectroscopy (Gd[sup 3+] ion-exchanged into ETS-10 and ETAS-10 molecular sieves), laser flash photolysis kinetic studies of Mo(CO)[sub 6]-2,2'-bipyridine, and electrochemical studies of metalloporphyrins using resonance Raman spectroscopy.

  3. [Laser flash photolysis, EPR and Raman studies of liquids at elevated pressures

    Energy Technology Data Exchange (ETDEWEB)

    Eyring, E.M.

    1992-10-01

    The proposed research will solve a number of analytical chemical problems in solutions with measurement techniques that benefit from the use of elevated hydrostatic pressures: stopped-flow spectrophotometry (Gd{sup 3+} + L(ligand), [RuL{sub 5}H{sub 2}O]{sup 2+}, laser flash photolysis of Mo(CO){sub 6} + L, flash photolysis of binuclear metalloproteins), EPR spectroscopy (Gd{sup 3+} ion-exchanged into ETS-10 and ETAS-10 molecular sieves), laser flash photolysis kinetic studies of Mo(CO){sub 6}-2,2`-bipyridine, and electrochemical studies of metalloporphyrins using resonance Raman spectroscopy.

  4. Neutron scattering techniques for betaine calcium chloride dihydrate under applied external field (temperature, electric field and hydrostatic pressure); Etude par diffusion de neutrons du chlorure de calcium et de betaine dihydrate sous champ externe applique (temperature, champ electrique et pression hydrostatique)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, O

    1997-11-17

    We have studied with neutron scattering techniques betaine calcium chloride dihydrate (BCCD), a dielectric aperiodic crystal which displays a Devil`s staircase type phase diagram made up of several incommensurate and commensurate phases, having a range of stability very sensitive to temperature, electric field and hydrostatic pressure. We have measured a global hysteresis of {delta}(T) of about 2-3 K in the two incommensurate phases. A structural study of the modulated commensurate phases 1/4 and 1/5 allows us to evidence that the atomic modulation functions are anharmonic. The relevance of the modelization of the modulated structure by polar Ising pseudo-spins is then directly established. On the basis of group theory calculation in the four dimensional super-space, we interpret this anharmonic modulation as a soliton regime with respect to the lowest-temperature non modulated ferroelectric phase. The continuous character of the transition to the lowest-temperature non modulated phase and the diffuse scattering observed in this phase are accounted for the presence of ferroelectric domains separated by discommensurations. Furthermore, we have shown that X-rays induce in BCCD a strong variation with time of irradiation of the intensity of satellite peaks, and more specifically for third order ones. This is why the `X-rays` structural model is found more harmonic than the `neutron` one. Under electric field applied along the vector b axis, we confirm that commensurate phases with {delta} = even/odd are favoured and hence are polar along this direction. We have evidenced at 10 kV / cm two new higher order commensurate phases in the phase INC2, corroborating the idea of a `complete` Devil`s air-case phase diagram. A phenomenon of generalized coexistence of phases occurs above 5 kV / cm. We have characterized at high field phase transitions between `coexisting` phases, which are distinguishable from classical lock-in transitions. Under hydrostatic pressure, our results

  5. Hydrostatic continuously variable transmission

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, T.; Saito, M.; Matsuto, T.; Nakajima, Y.; Sakakibara, K.; Yakigaya, N.; Nakamura, K.

    1989-05-09

    A hydrostatic continuously variable transmission is described, comprising: a swashplate type hydraulic pump having a pump swashplate and annularly arranged pump plungers whose suction and discharge strokes are provided by the pump swashplate; a swashplate type hydraulic motor having a motor swashplate and annularly arranged motor plungers whose expansion and shrinkage strokes are provided by the motor swashplate; and a hydraulic closed circuit formed between the hydraulic pump and the hydraulic motor. The transmission has at least one of a relationship that a middle point of a discharge region of the hydraulic pump is angularly delayed at a given angle in a direction of rotation of the hydraulic pump relative to a tilting axis of the pump swashplate and a relationship that a middle point of an expansion region of the hydraulic motor is angularly advanced at a given angle in a direction of rotation of the hydraulic motor relative to a tilting axis of the motor swashplate, wherein the transmission has at least one of a relationship that a suction region of the hydraulic pump is set at an angle larger than that of the discharge region thereof and a relationship that a shrinkage region of the hydraulic motor is set at an angle larger than that of the expansion region of the motor.

  6. Double nanoplate-based NEMS under hydrostatic and electrostatic actuations

    Science.gov (United States)

    Ebrahimi, Farzad; Hosseini, S. H. S.

    2016-05-01

    Presented herein is a comprehensive investigation on the nonlinear vibration behavior of nanoplate-based nano electromechanical systems (NEMS) under hydrostatic and electrostatic actuations based on nonlocal elasticity and Gurtin-Murdoch theory. Using nonlinear strain-displacement relations, the geometrical nonlinearity is modeled. Based on Kelvin-Voigt model, the influence of the viscoelastic coefficient is also discussed. Nonlocal plate theory and Hamilton's principle are utilized for deriving the governing equations. Furthermore, the differential quadrature method (DQM) is employed to compute the nonlinear frequency. In addition, pull-in voltage and hydrostatic pressure are considered by comparing the results obtained from nanoplates made of two different materials including aluminum (Al) and silicon (Si). Finally, the influences of important parameters including the small scale, thickness of the nanoplate, center gap and Winkler coefficient in the actuated nanoplate are thoroughly studied. The plots for the ratio of nonlinear-to-linear frequencies against thickness, maximum transverse amplitude and non-dimensional center gap of nanoplate are also presented.

  7. Theoretical calculations of high-pressure phases of NiF2: An ab initio constant-pressure study

    Science.gov (United States)

    Kürkçü, Cihan; Merdan, Ziya; Öztürk, Hülya

    2016-12-01

    We have studied the structural properties of the antiferromagnetic NiF2 tetragonal structure with P42/ mnm symmetry using density functional theory (DFT) under rapid hydrostatic pressure up to 400 GPa. For the exchange correlation energy we used the local density approximation (LDA) of Ceperley and Alder (CA). Two phase transformations are successfully observed through the simulations. The structures of XF2-type compounds crystallize in rutile-type structure. NiF2 undergoes phase transformations from the tetragonal rutile-type structure with space group P42/ mnm to orthorhombic CaCl2-type structure with space group Pnnm and from this orthorhombic phase to monoclinic structure with space group C2/ m at 152 GPa and 360 GPa, respectively. These phase changes are also studied by total energy and enthalpy calculations. According to these calculations, we perdict these phase transformations at about 1.85 and 30 GPa.

  8. Diving under a microscope--a new simple and versatile in vitro diving device for fluorescence and confocal microscopy allowing the controls of hydrostatic pressure, gas pressures, and kinetics of gas saturation.

    Science.gov (United States)

    Wang, Qiong; Belhomme, Marc; Guerrero, François; Mazur, Aleksandra; Lambrechts, Kate; Theron, Michaël

    2013-06-01

    How underwater diving effects the function of the arterial wall and the activities of endothelial cells is the focus of recent studies on decompression sickness. Here we describe an in vitro diving system constructed to achieve real-time monitoring of cell activity during simulated dives under fluorescent microscopy and confocal microscopy. A 1-mL chamber with sapphire windows on both sides and located on the stage of an inverted microscope was built to allow in vitro diving simulation of isolated cells or arteries in which activities during diving are monitored in real-time via fluorescent microscopy and confocal microscopy. Speed of compression and decompression can range from 20 to 2000 kPa/min, allowing systemic pressure to range up to 6500 kPa. Diving temperature is controlled at 37°C. During air dive simulation oxygen partial pressure is optically monitored. Perfusion speed can range from 0.05 to 10 mL/min. The system can support physiological viability of in vitro samples for real-time monitoring of cellular activity during diving. It allows regulations of pressure, speeds of compression and decompression, temperature, gas saturation, and perfusion speed. It will be a valuable tool for hyperbaric research.

  9. Blue emitting organic semiconductors under high pressure

    DEFF Research Database (Denmark)

    Knaapila, Matti; Guha, Suchismita

    2016-01-01

    highlighted by high pressure optical spectroscopy whilst analogous x-ray diffraction experiments remain less frequent. By focusing on a class of blue-emitting π-conjugated polymers, polyfluorenes, this article reviews optical spectroscopic studies under hydrostatic pressure, addressing the impact of molecular......This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure...... and intermolecular self-organization that typically determine transport and optical emission in π-conjugated oligomers and polymers. In this context, hydrostatic pressure through diamond anvil cells has proven to be an elegant tool to control structure and interactions without chemical intervention. This has been...

  10. Identification of yellow luminescence centers in Be-doped GaN through pressure-dependent studies

    Science.gov (United States)

    Teisseyre, Henryk; Lyons, John L.; Kaminska, Agata; Jankowski, Dawid; Jarosz, Dawid; Boćkowski, Michał; Suchocki, Andrzej; Van de Walle, Chris G.

    2017-06-01

    Effective acceptor doping of wide-band-gap semiconductors is still an outstanding problem. Beryllium has been suggested as a shallow acceptor in GaN, but despite sporadic announcements, Be-induced p-type doping has never been practically realized. Be-doped GaN possesses two luminescence bands; one at 3.38 eV and a second near 2.2 eV at an energy close to that of the parasitic yellow luminescence often found in undoped GaN crystals. We have performed high hydrostatic pressure studies of bulk, Be-doped gallium nitride crystals using the diamond anvil cell technique. We observed a splitting of the yellow luminescence line under hydrostatic pressure into two components, one which is strongly dependent on applied pressure and another whose pressure dependence is more modest. Together with hybrid functional calculations, we attribute the strongly-varying component to the beryllium-oxygen complex. The second component of the yellow luminescence possesses very similar pressure behavior to the yellow luminescence observed in undoped samples grown by the same method, behavior which we find consistent with the CN acceptor. At higher pressure, we observe the vanishing of yellow luminescence and a rapid increase in luminescence intensity of the UV line. We explain this as the pressure-induced transformation of the Be-O complex from a highly localized state with large lattice relaxation to a delocalized state with limited lattice relaxation.

  11. LAVA Pressure Transducer Trade Study

    Science.gov (United States)

    Oltman, Samuel B.

    2016-01-01

    The Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) payload will transport the (LAVA) subsystem to hydrogen-rich locations on the moon supporting NASA's in-situ resource utilization (ISRU) programs. There, the LAVA subsystem will analyze volatiles that evolve from heated regolith samples in order to quantify how much water is present. To do this, the system needs resilient pressure transducers (PTs) to calculate the moles in the gas samples. The PT trade study includes a comparison of newly-procured models to a baseline unit with prior flight history in order to determine the PT model with the best survivability in flight-forward conditions.

  12. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  13. Analysis of hydrostatic journal bearings with end seals

    Science.gov (United States)

    San Andres, L. A.

    1992-10-01

    An approximate analysis for the pressure field and dynamic force coefficients in turbulent flow, centered hydrostatic journal bearings (HJBs) with fluid inertia and liquid compressibility effects is presented. Results from the analysis show that HJBs with end seals have increased damping, better dynamic stability characteristics, as well as lower flow rates, than conventional HJBs. However, hydrostatic (direct) stiffness may be lost if excessively tight end seals are used. End seals are shown to compensate for the effect of liquid compressibility within the recess volume, and prescribe a net reduction in the whirl frequency ratio for hybrid operation. Hydrostatic squeeze film dampers (HSFD) with end seals are shown to be a viable alternative in applications where a tight control of the bearing leakage is important such as in jet-engines. Furthermore, HSFDs with end seals could be used as an active device to control the available damping in a typical application.

  14. Spectroscopic Study of the Effects of Pressure Media on High-Pressure Phase Transitions in Natrolite

    Energy Technology Data Exchange (ETDEWEB)

    D Liu; W Lei; Z Liu; Y Lee

    2011-12-31

    Structural phase transitions in natrolite have been investigated as a function of pressure and different hydrostatic media using micro-Raman scattering and synchrotron infrared (IR) spectroscopy. Natrolite undergoes two reversible phase transitions at 0.86 and 1.53 GPa under pure water pressure medium. These phase transitions are characterized by the changes in the vibrational frequencies of four- and eight-membered rings related to the variations in the bridging T-O-T angles and the geometry of the elliptical eight-ring channels under pressure. Concomitant to the changes in the framework vibrational modes, the number of the O-H stretching vibrational modes of natrolite changes as a result of the rearrangements of the hydrogen bonds in the channels caused by a successive increase in the hydration level under hydrostatic pressure. Similar phase transitions were also observed at relatively higher pressures (1.13 and 1.59 GPa) under alcohol-water pressure medium. Furthermore, no phase transition was found up to 2.52 GPa if a lower volume ratio of the alcohol-water to natrolite was employed. This indicates that the water content in the pressure media plays a crucial role in triggering the pressure-induced phase transitions in natrolite. In addition, the average of the mode Grueneisen parameters is calculated to be about 0.6, while the thermodynamic Grueneisen parameter is found to be 1.33. This might be attributed to the contrast in the rigidity between the TO{sub 4} tetrahedral primary building units and other flexible secondary building units in the natrolite framework upon compression and subsequent water insertion.

  15. High-pressure transport properties of CrB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Regnat, Alexander; Becker, Julian; Spallek, Jan; Bauer, Andreas; Chacon, Alfonso; Ritz, Robert; Pfleiderer, Christian [Physik-Department, Technische Universitaet Muenchen, D-85748 Garching (Germany); Blum, Christian; Wurmehl, Sabine [Leibniz Institute for Solid State and Materials Research IFW, D-01171 Dresden (Germany)

    2015-07-01

    High quality single crystals of the itinerant antiferromagnet CrB{sub 2}, T{sub N} = 88 K, were grown by means of optical float zoning. Bulk, transport and de Haas-van Alphen measurements were carried out. Here, we present a comprehensive study of the high-pressure transport properties. Samples were investigated under hydrostatic, uniaxial and quasi-hydrostatic conditions. As a result we are able to attribute contradictory reports for the pressure dependence of T{sub N} to uniaxial strain. Perhaps most interestingly, we find a pronounced low temperature resistivity anomaly around 3 GPa in the quasi-hydrostatic case.

  16. Does pressure antagonize anesthesia? High-pressure stopped-flow study of firefly luciferase and anatomy of initial flash.

    Science.gov (United States)

    Ueda, I; Minami, H; Matsuki, H; Inoue, T

    1999-01-01

    The antagonizing effect of high pressure against anesthesia is well known. With purified firefly luciferase, however,. Biophys. J. 60:1309-1314) reported that high pressure did not affect the initial flash intensity. Firefly luciferase emits a burst of light when the substrates luciferin and ATP are added in the presence of O2. The light intensity decays rapidly and the weak light lasts for hours. The initial flash is a transient event and is not in a steady state. The steady state is represented by the slope of the linear part of the integral of the light output. The present study used a high-pressure stopped-flow system to compare the pressure effects on the initial flash intensity and the steady-state light intensity. The flash intensity did not change by the application of hydrostatic pressure in the presence or absence of chloroform or 1-octanol. In contrast, high pressure increased the steady-state light intensity. The application of 12 MPa pressure increased the steady-state light intensity of firefly luciferase inhibited by 5 mM chloroform or 0.7 mM 1-octanol by 19.7% and 18.8%, respectively. When analyzed by the rapid reaction kinetics of the transition state theory, the initial peak intensity represents the total amount of active enzyme and is unrelated to the reaction rate. Anesthetics inhibited the initial flash by unfolding the protein, thereby decreasing the concentration of the active enzyme. Pressure affected the steady-state light intensity by changing the reaction rates.

  17. Perilymphatic pressure dynamics following posture change in patients with Meniere's disease and in normal hearing subjects

    NARCIS (Netherlands)

    Rosingh, HJ; Wit, HP; Albers, FWJ

    The hydrostatic pressure of the inner ear depends on the cerebrospinal fluid pressure through the cochlear aqueduct. The time-course of inner ear pressure change following rapid change in cerebrospinal fluid pressure is related to the aqueduct patency. In this study the patency of the cochlear

  18. Annular Pressure Seals and Hydrostatic Bearings

    National Research Council Canada - National Science Library

    San Andres, Luis

    2006-01-01

    ..., in particular those handling large density fluids. Highlights on the bulk-flow analysis of annular seals are given with details on the performance of two water seals long and short, featuring the advantages of an anti-swirl brake to enhance the seal...

  19. Annular Pressure Seals and Hydrostatic Bearings

    Science.gov (United States)

    2006-11-01

    scale). The equation below presents a close form expression for estimation of the added mass coefficient (MXX) in a seal or squeeze film damper [14...Arauz & L. San Andrés, “ASME Journal of Tribology, 120, pp. 221-233, 1998. [14] Squeeze Film Dampers : Operation, Models and Technical Issues, L. San...fluid film bearing technology with very low number of parts and no DN limit operation. Details on the bulk- flow analysis of turbulent flow

  20. The gem anvil cell: high-pressure behaviour of diamond and related materials

    CERN Document Server

    Xu Jian; Hemley, R J

    2002-01-01

    The moissanite anvil cell has been used to study the high-pressure behaviour of diamond. The first-order Raman shift of diamond shows a strong dependence on hydrostaticity, with very different pressure dependences observed under hydrostatic and non-hydrostatic conditions. The shift of the second-order Raman band under hydrostatic pressures was determined for the first time. Sapphire has almost no peaks above 1000 cm sup - sup 1 in the Raman spectrum and no absorption in the ultraviolet range; it is therefore especially useful for studies in those spectral regions. A sapphire anvil cell was used in a study of graphite up to 24 GPa. A phase transition was found near 18 GPa, consistent with previous reports, and no peaks characteristic of diamond in the 1330 cm sup - sup 1 range were found, indicating that the phase is not diamond.

  1. Effect of hydrostatic pressure on magnetic and magnetocaloric properties in La{sub 0.35}Pr{sub 0.35}Ca{sub 0.3}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Thiyagarajan, R. [Centre for High Pressure Research, School of Physics, Bharathidasan University, Tiruchirapalli 620024, Tamil Nadu (India); Esakki Muthu, S. [Centre for High Pressure Research, School of Physics, Bharathidasan University, Tiruchirapalli 620024, Tamil Nadu (India); Univ. Grenoble Alpes and CEA, INAC-SPSMS, F-38000 Grenoble (France); Manikandan, K. [Centre for High Pressure Research, School of Physics, Bharathidasan University, Tiruchirapalli 620024, Tamil Nadu (India); Arumugam, S., E-mail: sarumugam1963@yahoo.com [Centre for High Pressure Research, School of Physics, Bharathidasan University, Tiruchirapalli 620024, Tamil Nadu (India)

    2016-01-15

    Magnetization of polycrystalline La{sub 0.35}Pr{sub 0.35}Ca{sub 0.3}MnO{sub 3} sample has been measured as a function of temperature (T) and magnetic field (H) under various external hydrostatic pressures (P) up to ~1 GPa. At ambient P, the sample exhibits paramagnetic (PM)–ferromagnetic (FM) transition (T{sub C}) at 167 K and 173 K in cooling and warming cycles respectively under the magnetic field (µ{sub 0}.H) of 0.1 T. It also shows a hysteresis during both temperature- and field- dependence of magnetization measurements at ambient P, suggests the presence of a first-order transition. Moreover, the field dependence of magnetization shows S type field-induced metamagnetic transition (FIMMT) over a temperature range below T{sub C} in the FM state. The application of P in M(T) increases T{sub C} at a rate [dT{sub C}/dP] of 13.9 K/GPa, but the thermally-driven first-order transition is not affected by P. However, the applied P suppresses FIMMT and reduces field-driven first-order transition in the magnetization isotherms [M(H)]below T{sub C}. H increases both magnetic entropy change (∆S{sub m}) and Relative Cooling Power (RCP), whereas the P slightly increases ∆S{sub m}{sup max} and no appreciable change in RCP. These results suggest that H and P can be used as a tool to enhance magnetocaloric values in the phase separated manganites. - Highlights: • At ambient P, La{sub 0.35}Pr{sub 0.35}Ca{sub 0.3}MnO{sub 3} sample shows first-order PM–FM transition. • P increases the T{sub C} at a rate of 13.9 K/GPa, thermal hysteresis is not affected. • P diminishes the field-driven first-order PM–FM transition, suppresses FIMMMT. • H increases ∆S{sub m} and RCP. P slightly increases ∆S{sub m}{sup max}, but no change in RCP by P.

  2. Pressure Effect on Extensional Viscosity

    DEFF Research Database (Denmark)

    Christensen, Jens Horslund; Kjær, Erik Michael

    1999-01-01

    The primary object of these experiments was to investigate the influence of hydrostatic pressure on entrance flow. The effect of pressure on shear and extensional viscosity was evaluated using an axis symmetric capillary and a slit die where the hydrostatic pressure was raised with valves....... The experiments show a significant increase in extensional viscosity with increasing pressure....

  3. Efeito da alta pressão hidrostática na atividade de enzimas da polpa de açaí High hydrostatic pressure effect on enzyme activity of açai pulp

    Directory of Open Access Journals (Sweden)

    Ellen Mayra da Silva Menezes

    2008-12-01

    case, High Hydrostatic Pressure (HHP use can be an alternative to traditional processing techniques for enzyme activation or inactivation. Peroxidases (POD and Polyphenoloxidases (PPO are the main enzymes responsible for undesirable changes in the original characteristics of vegetable products, but using HHP to inactivate them, it is possible to avoid enzymatic browning maintaining sensorial properties. Aiming to evaluate HHP effect on POD and PPO, present in the açaí pulp, the variables pressure, temperature, and time were adopted. Enzyme activities, expressed in percentages, indicate a more stable POD, achieving percentages close to 100% (control. The lowest activities were at 90.74%, and when applied 300 and 500 MPa, 25 °C for 5 minutes treatments, the activities increased (112.34 and 132.98%, respectively. PPO activity rose up to 83.03% in relation to the to control even though inactivation was present in most of the processes (35 °C/5 minutes at 300 and 500 MPa, 53.25, and 53.75%, respectively. Under the experimental conditions, HHP proved effective for the partial inactivation of açaí pulp oxidases.

  4. Pellissier H5 hydrostatic level

    CERN Document Server

    Imfeld, H L

    2003-01-01

    Conventional spirit leveling using double scale invar rods has been in use at SLAC for some time as the standard method of obtaining very precise height difference information. Typical accuracy of +- 100 (micro)m and better can routinely be achieved. Procedures and software have evolved to the point where the method is relatively fast and reliable. However, recent projects such as the Final Focus Test Beam have pushed the requested vertical positioning tole