WorldWideScience

Sample records for hydroponically grown wheat

  1. Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics

    DEFF Research Database (Denmark)

    Rizwan, M.; Meunier, J. D.; Davidian, J. C.

    2016-01-01

    We investigated the potential role of silicon in improving tolerance and decreasing cadmium (Cd) toxicity in durum wheat (Triticum turgidum L. durum) either through a reduced Cd uptake or exclusion/sequestration in non-metabolic tissues. For this, plants were grown in hydroponic conditions for 10...

  2. Root Zone Respiration on Hydroponically Grown Wheat Plant Systems

    Science.gov (United States)

    Soler-Crespo, R. A.; Monje, O. A.

    2010-01-01

    Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.

  3. Survival of Potentially Pathogenic Human-Associated Bacteria in the Rhizosphere of Hydroponically Grown Wheat

    Science.gov (United States)

    Morales, Anabelle; Garland, Jay L.; Lim, Daniel V.

    1996-01-01

    Plants may serve as reservoirs for human-associated bacteria (H-AB) in long-term space missions containing bioregenerative life support systems. The current study examined the abilities of five human-associated potential pathogens, Pseudomonas aeruginosa, Pseudomonas cepacia, Staphylococcus aureus, Streptococcus pyogenes, and Escherichia coli, to colonize and grow in the rhizosphere of hydroponically grown wheat, a candidate crop for life support. All of these bacteria have been recovered from past NASA missions and present potential problems for future missions. The abilities of these organisms to adhere to the roots of axenic five-day-old wheat (Triticum aestivum L. cv. Yecora rojo) were evaluated by enumeration of the attached organisms after a one hour incubation of roots in a suspension (approximately 10(exp 8 cu/ml)) of the H-AB. Results showed that a greater percentage of P. aeruginosa cells adhered to the wheat roots than the other four H-AB. Similarly incubated seedlings were also grown under attempted axenic conditions for seven days to examine the potential of each organism to proliferate in the rhizosphere (root colonization capacity). P. cepacia and P. aeruginosa showed considerable growth. E. coli and S. aureus showed no significant growth, and S. pyogenes died off in the wheat rhizosphere. Studies examining the effects of competition on the survival of these microorganisms indicated that P. aeruginosa was the only organism that survived in the rhizosphere of hydroponically grown wheat in the presence of different levels of microbial competition.

  4. Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics.

    Science.gov (United States)

    Rizwan, M; Meunier, J-D; Davidian, J-C; Pokrovsky, O S; Bovet, N; Keller, C

    2016-01-01

    We investigated the potential role of silicon in improving tolerance and decreasing cadmium (Cd) toxicity in durum wheat (Triticum turgidum L. durum) either through a reduced Cd uptake or exclusion/sequestration in non-metabolic tissues. For this, plants were grown in hydroponic conditions for 10 days either in presence or absence of 1 mM Si and for 11 additional days in various Cd concentrations (0, 0.5, 5.0 and 50 μM). After harvesting, morphological and physiological parameters as well as elemental concentrations were recorded. Cadmium caused reduction in growth parameters, photosynthetic pigments and mineral nutrient concentrations both in shoots and roots. Shoot and root contents of malate, citrate and aconitate increased, while contents of phosphate, nitrate and sulphate decreased with increasing Cd concentrations in plants. Addition of Si to the nutrient solution mitigated these adverse effects: Cd concentration in shoots decreased while concentration of Cd adsorbed at the root cell apoplasmic level increased together with Zn uptake by roots. Overall, total Cd uptake decreased in presence of Si. There was no co-localisation of Cd and Si either at the shoot or at the root levels. No Cd was detected in leaf phytoliths. In roots, Cd was mainly detected in the cortical parenchyma and Si at the endodermis level, while analysis of the outer thin root surface of the plants grown in the 50 μM Cd + 1 mM Si treatment highlighted non-homogeneous Cd and Si enrichments. These data strongly suggest the existence of a root localised protection mechanism consisting in armoring the root surface by Si- and Cd-bearing compounds and in limiting root-shoot translocation.

  5. Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu.

    Science.gov (United States)

    Keller, C; Rizwan, M; Davidian, J-C; Pokrovsky, O S; Bovet, N; Chaurand, P; Meunier, J-D

    2015-04-01

    Aqueous Si limits Cu uptake by a Si-accumulating plant via physicochemical mechanisms occurring at the root level. Sufficient Si supply may alleviate Cu toxicity in Cu-contaminated soils. Little information is available on the role of silicon (Si) in copper (Cu) tolerance while Cu toxicity is widespread in crops grown on Cu-contaminated soils. A hydroponic study was set up to investigate the influence of Si on Cu tolerance in durum wheat (Triticum turgidum L.) grown in 0, 0.7, 7.0 and 30 µM Cu without and with 1.0 mM Si, and to identify the mechanisms involved in mitigation of Cu toxicity. Si supply alleviated Cu toxicity in durum wheat at 30 µM Cu, while Cu significantly increased Si concentration in roots. Root length, photosynthetic pigments concentrations, macroelements, and organic anions (malate, acetate and aconitate) in roots, were also increased. Desorption experiments, XPS analysis of the outer thin root surface (≤100 Å) and µXRF analyses showed that Si increased adsorption of Cu at the root surface as well as Cu accumulation in the epidermis while Cu was localised in the central cylinder when Si was not applied. Copper was not detected in phytoliths. This study provides evidences for Si-mediated alleviation of Cu toxicity in durum wheat. It also shows that Si supplementation to plants exposed to increasing levels of Cu in solution induces non-simultaneous changes in physiological parameters. We propose a three-step mechanism occurring mainly at the root level and limiting Cu uptake and translocation to shoots: (i) increased Cu adsorption onto the outer thin layer root surface and immobilisation in the vicinity of root epidermis, (ii) increased Cu complexation by both inorganic and organic anions such as aconitate and, (iii) limitation of translocation through an enhanced thickening of a Si-loaded endodermis.

  6. Degradation of Surfactants in Hydroponic Wheat Root Zones

    Science.gov (United States)

    Monje, Oscar; McCoy, Lashelle; Flanagan, Aisling

    Hygiene water recycling in recirculating hydroponic systems can be enhanced by plant roots by providing a substrate and root exudates for bacterial growth. However, reduced plant growth can occur during batch mode additions of high concentrations of surfactant. An analog hygiene water stream containing surfactants (Steol CS330, Mirataine CB) was added to a hydroponically-grown wheat plant root zone. The plants were grown at 700 mol mol-1 CO2, a photosynthetic photon flux of 300 mol m-2 s-1, and a planting density of 380 plants m-2. Volumetric oxygen mass transfer coefficients were determined using the fermentative/dynamic outgassing method to maintain adequate oxygen mass transfer rates in the root zone. This analysis suggested an optimal flow rate of the hydroponic solution of 5 L min-1. The hydroponic system was inoculated with biofilm from a bioreactor and rates of surfactant degradation were measured daily based on reduction in chemical oxygen demand (COD). The COD decreased from 400 to 100 mg L-1 after 2 days following batch addition of the analog hygiene water to the hydroponic system. Measurements of dissolved oxygen concentration and solution temperature suggest that the root zone was provided adequate aeration to meet both oxygen demands from plant and microbial respiration during the degradation of the surfactant. Results from this study show that hydroponic systems can be used to enhance rates of hygiene water processing.

  7. Growth stage-based modulation in physiological and biochemical attributes of two genetically diverse wheat (Triticum aestivum L.) cultivars grown in salinized hydroponic culture.

    Science.gov (United States)

    Ashraf, Muhammad Arslan; Ashraf, Muhammad

    2016-04-01

    Hydroponic experiment was conducted to appraise variation in the salt tolerance potential of two wheat cultivars (salt tolerant, S-24, and moderately salt sensitive, MH-97) at different growth stages. These two wheat cultivars are not genetically related as evident from randomized polymorphic DNA analysis (random amplified polymorphic DNA (RAPD)) which revealed 28% genetic diversity. Salinity stress caused a marked reduction in grain yield of both wheat cultivars. However, cv. S-24 was superior to cv. MH-97 in maintaining grain yield under saline stress. Furthermore, salinity caused a significant variation in different physiological attributes measured at different growth stages. Salt stress caused considerable reduction in different water relation attributes of wheat plants. A significant reduction in leaf water, osmotic, and turgor potentials was recorded in both wheat cultivars at different growth stages. Maximal reduction in leaf water potential was recorded at the reproductive stage in both wheat cultivars. In contrast, maximal turgor potential was observed at the boot stage. Salt-induced adverse effects of salinity on different water relation attributes were more prominent in cv. MH-97 as compared to those in cv. S-24. Salt stress caused a substantial decrease in glycine betaine and alpha tocopherols. These biochemical attributes exhibited significant salt-induced variation at different growth stages in both wheat cultivars. For example, maximal accumulation of glycine betaine was evident at the early growth stages (vegetative and boot). However, cv. S-24 showed higher accumulation of this organic osmolyte, and this could be the reason for maintenance of higher turgor than that of cv. MH-97 under stress conditions. Salt stress significantly increased the endogenous levels of toxic ions (Na(+) and Cl(-)) and decreased essential cations (K(+) and Ca(2+)) in both wheat cultivars at different growth stages. Furthermore, K(+)/Na(+) and Ca(2+)/Na(+) ratios

  8. Wheat response to differences in water and nutritional status between zeoponic and hydroponic growth systems

    Science.gov (United States)

    Steinberg, S. L.; Ming, D. W.; Henderson, K. E.; Carrier, C.; Gruener, J. E.; Barta, D. J.; Henninger, D. L.

    2000-01-01

    Hydroponic culture has traditionally been used for controlled environment life support systems (CELSS) because the optimal environment for roots supports high growth rates. Recent developments in zeoponic substrate and microporous tube irrigation (ZPT) also offer high control of the root environment. This study compared the effect of differences in water and nutrient status of ZPT or hydroponic culture on growth and yield of wheat (Triticum aestivum L. cv. USU-Apogee). In a side-by-side test in a controlled environment, wheat was grown in ZPT and recirculating hydroponics to maturity. Water use by plants grown in both culture systems peaked at 15 to 20 L m-2 d-1 up to Day 40, after which it declined more rapidly for plants grown in ZPT culture due to earlier senescence of leaves. No consistent differences in water status were noted between plants grown in the two culture systems. Although yield was similar, harvest index was 28% lower for plants grown in ZPT than in hydroponic culture. Sterile green tillers made up 12 and 0% of the biomass of plants grown in ZPT and hydroponic culture, respectively. Differences in biomass partitioning were attributed primarily to NH4-N nutrition of plants grown in ZPT compared with NO3-N in hydroponic nutrient solution. It is probable that NH4-N-induced Ca deficiency produced excess tillering and lower harvest index for plants grown in ZPT culture. These results suggest that further refinements in zeoponic substrate would make ZPT culture a viable alternative for achieving high productivity in a CELSS.

  9. Hormonal regulation of wheat growth during hydroponic culture

    Science.gov (United States)

    Wetherell, Donald

    1988-01-01

    Hormonal control of root growth has been explored as one means to alleviate the crowding of plant root systems experienced in prototype hydroponic biomass production chambers being developed by the CELSS Breadboard Project. Four plant hormones, or their chemical analogs, which have been reported to selectively inhibit root growth, were tested by adding them to the nutrient solutions on day 10 of a 25 day growth test using spring wheat in hydroponic cultures. Growth and morphological changes is both shoot and root systems were evaluated. In no case was it possible to inhibit root growth without a comparable inhibition of shoot growth. It was concluded that this approach is unlikely to prove useful for wheat.

  10. Excess nutrients in hydroponic solutions alter nutrient content of rice, wheat, and potato

    Science.gov (United States)

    McKeehen, J. D.; Mitchell, C. A.; Wheeler, R. M.; Bugbee, B.; Nielsen, S. S.

    1996-01-01

    Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS.

  11. Selection and hydroponic growth of bread wheat cultivars for bioregenerative life support systems

    Science.gov (United States)

    Page, V.; Feller, U.

    2013-08-01

    As part of the ESA-funded MELiSSA program, the suitability, the growth and the development of four bread wheat cultivars were investigated in hydroponic culture with the aim to incorporate such a cultivation system in an Environmental Control and Life Support System (ECLSS). Wheat plants can fulfill three major functions in space: (a) fixation of CO2 and production of O2, (b) production of grains for human nutrition and (c) production of cleaned water after condensation of the water vapor released from the plants by transpiration. Four spring wheat cultivars (Aletsch, Fiorina, Greina and CH Rubli) were grown hydroponically and compared with respect to growth and grain maturation properties. The height of the plants, the culture duration from germination to harvest, the quantity of water used, the number of fertile and non-fertile tillers as well as the quantity and quality of the grains harvested were considered. Mature grains could be harvested after around 160 days depending on the varieties. It became evident that the nutrient supply is crucial in this context and strongly affects leaf senescence and grain maturation. After a first experiment, the culture conditions were improved for the second experiment (stepwise decrease of EC after flowering, pH adjusted twice a week, less plants per m2) leading to a more favorable harvest (higher grain yield and harvest index). Considerably less green tillers without mature grains were present at harvest time in experiment 2 than in experiment 1. The harvest index for dry matter (including roots) ranged from 0.13 to 0.35 in experiment 1 and from 0.23 to 0.41 in experiment 2 with modified culture conditions. The thousand-grain weight for the four varieties ranged from 30.4 to 36.7 g in experiment 1 and from 33.2 to 39.1 g in experiment 2, while market samples were in the range of 39.4-46.9 g. Calcium levels in grains of the hydroponically grown wheat were similar to those from field-grown wheat, while potassium, magnesium

  12. The uptake of 131I by some hydroponically grown crops

    International Nuclear Information System (INIS)

    Asprer, G.A.; Lansangan, L.M.; de la Paz, L.R.

    1982-01-01

    Biologically labelled vegetables which include kangkong and sweet potato tops were grown hydroponically in a modified Hoagland-Arnon nutrient solution containing radioiodine with 0.5% non-radioactive Nal solution as the medium. The crops considered in this study are commonly eaten by Filipinos. The concentration of the solution as well as the uptake in the plant system were determined at various time intervals. The extent of radioiodine uptake through air-water-plant pathway is one of the parameters needed for calculating the dose that the general populace could be exposed to, due to radioactivity in the environment. (author)

  13. Possible Internalization of an Enterovirus in Hydroponically Grown Lettuce.

    Science.gov (United States)

    Carducci, Annalaura; Caponi, Elisa; Ciurli, Adriana; Verani, Marco

    2015-07-17

    Several studies have shown that enteric viruses can be transferred onto the surface of vegetables and fruits through spray irrigation, but, recently, reports have suggested viral contamination of vegetables sub-irrigated with reused wastewater. Hydroponic cultures, used to grow ready to eat fresh lettuce, have also been used to study the possibility of viral absorption through roots. This study was conducted to assess a possible risk of viral contamination in lettuce from contaminated water. The leaves of lettuce plants grown in hydroponic cultures where the roots were exposed to water containing Coxsakievirus B2, were analysed for evidence of the virus. The plants and water were sampled at different times and virus was measured using quantitative RT-PCR and infectivity assay. In leaf samples, the lowest observed infective data were lower than the qRT-PCR detection limits, suggesting that free viral RNA or damaged viruses are eliminated rapidly while infectious particles remain stable for a longer time. The obtained data revealed that the leaves were contaminated at a water concentration of 4.11 ± 1 Log Most Probable Number/L (8.03 ± 1 Log GC/L) a concentration observed in contaminated untreated water of wastewater treatment plants. However, the absorption dynamics and whether the virus is inactive in the leaves still remains to be clarified. Nevertheless, this work has practical implications for risk management in using reclaimed water for agricultural use; when irrigated vegetables are destined for raw consumption, virological contamination in water sources should be evaluated.

  14. Polyethylene Glycol (PEG-Treated Hydroponic Culture Reduces Length and Diameter of Root Hairs of Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Arif Hasan Khan Robin

    2015-10-01

    Full Text Available Wheat is an important cereal crop worldwide that often suffers from moisture deficits at the reproductive stage. Polyethylene glycol (PEG-treated hydroponic conditions create negative osmotic potential which is compared with moisture deficit stress. An experiment was conducted in a growth chamber to study the effects of PEG on root hair morphology and associated traits of wheat varieties. Plants of 13 wheat varieties were grown hydroponically and three different doses of PEG 6000 (w/v: 0% (control, 0.3% and 0.6% (less than −1 bar were imposed on 60 days after sowing for 20 days’ duration. A low PEG concentration was imposed to observe how initial low moisture stress might affect root hair development. PEG-treated hydroponic culture significantly decreased root hair diameter and length. Estimated surface area reduction of root hairs at the main axes of wheat plants was around nine times at the 0.6% PEG level compared to the control plants. Decrease in root hair diameter and length under PEG-induced culture decreased “potential” root surface area per unit length of main root axis. A negative association between panicle traits, length and dry weight and the main axis length of young roots indicated competition for carbon during their development. Data provides insight into how a low PEG level might alter root hair development.

  15. Possible Internalization of an Enterovirus in Hydroponically Grown Lettuce

    Directory of Open Access Journals (Sweden)

    Annalaura Carducci

    2015-07-01

    Full Text Available Several studies have shown that enteric viruses can be transferred onto the surface of vegetables and fruits through spray irrigation, but, recently, reports have suggested viral contamination of vegetables sub-irrigated with reused wastewater. Hydroponic cultures, used to grow ready to eat fresh lettuce, have also been used to study the possibility of viral absorption through roots. This study was conducted to assess a possible risk of viral contamination in lettuce from contaminated water. The leaves of lettuce plants grown in hydroponic cultures where the roots were exposed to water containing Coxsakievirus B2, were analysed for evidence of the virus. The plants and water were sampled at different times and virus was measured using quantitative RT-PCR and infectivity assay. In leaf samples, the lowest observed infective data were lower than the qRT-PCR detection limits, suggesting that free viral RNA or damaged viruses are eliminated rapidly while infectious particles remain stable for a longer time. The obtained data revealed that the leaves were contaminated at a water concentration of 4.11 ± 1 Log Most Probable Number/L (8.03 ± 1 Log GC/L a concentration observed in contaminated untreated water of wastewater treatment plants. However, the absorption dynamics and whether the virus is inactive in the leaves still remains to be clarified. Nevertheless, this work has practical implications for risk management in using reclaimed water for agricultural use; when irrigated vegetables are destined for raw consumption, virological contamination in water sources should be evaluated.

  16. Preliminary investigations of the rhizosphere nature of hydroponically grown lettuces

    Science.gov (United States)

    Antunes, Inês; Paille, Christel; Lasseur, Christophe

    Due to capabilities of current launchers, future manned exploration beyond the Earth orbit will imply long journeys and extended stays on planet surfaces. For this reason, it is of a great importance to develop a Regenerative Life Support System that enables the crew to be, to a very large extent, metabolic consumables self-sufficient. In this context, the European Space Agency, associated with a scientific and engineering con-sortium, initiated in 1989 the Micro-Ecological Life Support System Alternative (MELiSSA) project. This concept, inspired on a terrestrial ecosystem (i.e. a lake), comprises five intercon-nected compartments inhabited by micro-organisms and higher-plants aiming to produce food, fresh water, and oxygen from organic waste, carbon dioxide, and minerals. Given the important role of the higher-plant compartment for the consumption of carbon dioxide and the production of oxygen, potable water, and food, it was decided to study the microbial communities present in the root zone of the plants (i.e. the rhizosphere), and their synergistic and antagonistic influences in the plant growth. This understanding is important for later investigations concerning the technology involved in the higher plant compartment, since the final goal is to integrate this compartment inside the MELiSSA loop and to guarantee a healthy and controlled environment for the plants to grow under reduced-gravity conditions. To perform a preliminary assessment of the microbial populations of the root zone, lettuces were grown in a hydroponic system and their growth was characterized in terms of nutrient uptake, plant diameter, and plant wet and dry weights. In parallel, the microbial population, bacteria and fungi, present in the hydroponic medium and also inside and outside the roots were analyzed in terms of quantity and nature. The goal of this presentation is to give a preliminary review in the plant root zone of the micro-organisms communities and as well their proportions

  17. Biological Control of Diseases of Vegetables Grown Hydroponically in Thailand: Challenge and Opportunity.

    Science.gov (United States)

    Kanjanamaneesathian, Mana

    2015-01-01

    In Thailand, yield loss due to plant diseases in vegetables grown hydroponically is very high as a result of the growers` lack of knowledge for controlling diseases and their un- willingness to invest in setting-up the proper hydroponic system from the beginning. Severe root rot disease caused by Pythium spp. is frequent and can be anticipated in the hot climate in Thailand. This review focuses on the diseases in temperate lettuces which have been produced hydroponically and have been attacked by plant pathogens, particularly Pythium spp. Biological control of vegetable diseases grown hydroponically has been investigated in Thailand. Research is being carried out to identify effective strains of the antagonists, formulating the applicable products and delivering them appropriately to control the disease. Products of Bacillus subtilis, Chaetomium globosom and Trichoderma harzianum have been recommended for use to control diseases in vegetables grown hydroponically. Control efficacy of these products is varied as the biological products have been used by the growers in the paradigm of using chemical fungicide for disease control in hydroponic production system, overlooking the intrinsic characteristics of the biological control products. The recent patent, which minimizes the effects of sunlight and heat on the nutrient solution without the use of an external energy for cooling the nutrient, should be applied in producing hydroponic vegetables to mitigate poor plant growth and root rot disease outbreak in Thailand.

  18. Continuous hydroponic wheat production using a recirculating system

    Science.gov (United States)

    Mackowiak, C. L.; Owens, L. P.; Hinkle, C. R.; Prince, R. P.

    1989-01-01

    Continuous crop production, where plants of various ages are growing simultaneously in a single recirculating nutrient solution, is a possible alternative to batch production in a Controlled Ecological Life Support System. A study was conducted at John F. Kennedy Space Center where 8 trays (0.24 sq m per tray) of Triticum aestivum L. Yecora Rojo were grown simultaneously in a growth chamber at 23 C, 65 percent relative humidity, 1000 ppm CO2, continuous light, with a continuous flow, thin film nutrient delivery system. The same modified Hoagland nutrient solution was recirculated through the plant trays from an 80 L reservoir throughout the study. It was maintained by periodic addition of water and nutrients based on chemical analyses of the solution. The study was conducted for 216 days, during which 24 trays of wheat were consecutively planted (one every 9 days), 16 of which were grown to maturity and harvested. The remaining 8 trays were harvested on day 216. Grain yields averaged 520 g m(exp -2), and had an average edible biomass of 32 percent. Consecutive yields were unaffected by nutrient solution age. It was concluded that continual wheat production will work in this system over an extended period of time. Certain micronutrient deficiencies and toxicities posed problems and must be addressed in future continuous production systems.

  19. Root exudation of phytosiderophores from soil-grown wheat

    Science.gov (United States)

    Oburger, Eva; Gruber, Barbara; Schindlegger, Yvonne; Schenkeveld, Walter D C; Hann, Stephan; Kraemer, Stephan M; Wenzel, Walter W; Puschenreiter, Markus

    2014-01-01

    For the first time, phytosiderophore (PS) release of wheat (Triticum aestivum cv Tamaro) grown on a calcareous soil was repeatedly and nondestructively sampled using rhizoboxes combined with a recently developed root exudate collecting tool. As in nutrient solution culture, we observed a distinct diurnal release rhythm; however, the measured PS efflux was c. 50 times lower than PS exudation from the same cultivar grown in zero iron (Fe)-hydroponic culture. Phytosiderophore rhizosphere soil solution concentrations and PS release of the Tamaro cultivar were soil-dependent, suggesting complex interactions of soil characteristics (salinity, trace metal availability) and the physiological status of the plant and the related regulation (amount and timing) of PS release. Our results demonstrate that carbon and energy investment into Fe acquisition under natural growth conditions is significantly smaller than previously derived from zero Fe-hydroponic studies. Based on experimental data, we calculated that during the investigated period (21–47 d after germination), PS release initially exceeded Fe plant uptake 10-fold, but significantly declined after c. 5 wk after germination. Phytosiderophore exudation observed under natural growth conditions is a prerequisite for a more accurate and realistic assessment of Fe mobilization processes in the rhizosphere using both experimental and modeling approaches. PMID:24890330

  20. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods.

    Science.gov (United States)

    Barbosa, Guilherme Lages; Gadelha, Francisca Daiane Almeida; Kublik, Natalya; Proctor, Alan; Reichelm, Lucas; Weissinger, Emily; Wohlleb, Gregory M; Halden, Rolf U

    2015-06-16

    The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with literature values. Yields of lettuce per greenhouse unit (815 m2) of 41 ± 6.1 kg/m2/y had water and energy demands of 20 ± 3.8 L/kg/y and 90,000 ± 11,000 kJ/kg/y (±standard deviation), respectively. In comparison, conventional production yielded 3.9 ± 0.21 kg/m2/y of produce, with water and energy demands of 250 ± 25 L/kg/y and 1100 ± 75 kJ/kg/y, respectively. Hydroponics offered 11 ± 1.7 times higher yields but required 82 ± 11 times more energy compared to conventionally produced lettuce. To the authors' knowledge, this is the first quantitative comparison of conventional and hydroponic produce production by example of lettuce grown in the southwestern United States. It identified energy availability as a major factor in assessing the sustainability of hydroponics, and it points to water-scarce settings offering an abundance of renewable energy (e.g., from solar, geothermal, or wind power) as particularly attractive regions for hydroponic agriculture.

  1. Root uptake and translocation of perfluorinated alkyl acids by three hydroponically grown crops

    NARCIS (Netherlands)

    Felizeter, S.; McLachlan, M.S.; de Voogt, P.

    2014-01-01

    Tomato, cabbage, and zucchini plants were grown hydroponically in a greenhouse. They were exposed to 14 perfluorinated alkyl acids (PFAAs) at four different concentrations via the nutrient solution. At maturity the plants were harvested, and the roots, stems, leaves, twigs (where applicable), and

  2. Uptake and translocation of sulfamethazine by alfalfa grown under hydroponic conditions.

    Science.gov (United States)

    Kurwadkar, Sudarshan; Struckhoff, Garrett; Pugh, Kameron; Singh, Om

    2017-03-01

    Antibiotics are routinely used in intensive animal agriculture operations collectively known as Concentrated Animal Feed Operations (CAFO) which include dairy, poultry and swine farms. Wastewater generated by CAFOs often contains low levels of antibiotics and is typically managed in an anaerobic lagoon. The objective of this research is to investigate the uptake and fate of aqueous sulfamethazine (SMN) antibiotic by alfalfa (Medicago sativa) grass grown under hydroponic conditions. Uptake studies were conducted using hydroponically grown alfalfa in a commercially available nutrient solution supplemented with 10mg/L of SMN antibiotic. Analysis of alfalfa sap, root zone, middle one-third, and top portion of the foliage showed varying uptake rate and translocation of SMN. The highest average amount of SMN (8.58μg/kg) was detected in the root zone, followed by the top portion (1.89μg/kg), middle one-third (1.30μg/kg), and sap (0.38μg/kg) samples, indicating a clear distribution of SMN within the sampled regions. The ultraviolet (UV) spectra of parent SMN and translocated SMN identified in different parts of the plant present the possibility of metabolization during the uptake process. Uptake of SMN using alfalfa grown under hydroponic conditions has potential as a promising remediation technology for removal of similar antibiotics from wastewater lagoons. Copyright © 2016. Published by Elsevier B.V.

  3. Interaction between copper and radiocesium in Indian mustard and sunflower grown in the hydroponic solution

    International Nuclear Information System (INIS)

    Shirong Tang; Xiaochang Wang

    2002-01-01

    Both Indian mustard and sunflower were grown in a hydroponic solution treated with different concentration activities of 134 Cs or with different amounts of copper or with both in order to investigate the interaction between copper and radiocesium. It was found that 134 Cs activity concentration applied in the nutrient solution exerted more influence on the uptake and translocation of copper by Indian mustard than by sunflower. Indian mustard grown in hydroponic solution containing certain levels of copper and being treated with higher 134 Cs activity concentration showed higher uptake of copper than sunflower. However, in the case of root copper concentrations, sunflower showed significantly higher copper immobilization by roots than Indian mustard. It was also found that the presence of copper the the hydroponic solution did modify radiocesium uptake by both species. The application of 1 mg/l in the growth medium could greatly increase the uptake of 134 Cs by both species. With 3 mg/l concentration of copper amended to the solution, the accumulation of 134 Cs by both species was decreased compared to the 1 mg/l copper treatment. These lines of evidence show that there is stronger interaction between copper and radiocesium in Indian mustard than in sunflower during the root uptake through nutrient solution. (author)

  4. Implicitly defined criteria for vector optimization in technological process of hydroponic germination of wheat grain

    Science.gov (United States)

    Koneva, M. S.; Rudenko, O. V.; Usatikov, S. V.; Bugaets, N. A.; Tereshchenko, I. V.

    2018-05-01

    To reduce the duration of the process and to ensure the microbiological purity of the germinated material, an improved method of germination has been developed based on the complex use of physical factors: electrochemically activated water (ECHA-water), electromagnetic field of extremely low frequencies (EMF ELF) with round-the-clock artificial illumination by LED lamps. The increase in the efficiency of the "numerical" technology for solving computational problems of parametric optimization of the technological process of hydroponic germination of wheat grains is considered. In this situation, the quality criteria are contradictory and part of them is given by implicit functions of many variables. A solution algorithm is offered without the construction of a Pareto set in which a relatively small number of elements of a set of alternatives is used to obtain a linear convolution of the criteria with given weights, normalized to their "ideal" values from the solution of the problems of single-criterion private optimizations. The use of the proposed mathematical models describing the processes of hydroponic germination of wheat grains made it possible to intensify the germination process and to shorten the time of obtaining wheat sprouts "Altayskaya 105" for 27 hours.

  5. Inflorescence and leaves essential oil composition of hydroponically grown Ocimum basilicum L

    Directory of Open Access Journals (Sweden)

    MOHAMMAD BAGHER HASSANPOURAGHDAM

    2010-10-01

    Full Text Available In order to characterize the essential oils of leaves and inflorescences, water distilled volatile oils of hydroponically grown Ocimum basilicum L. were analyzed by GC/EI-MS. Fifty components were identified in the inflorescence and leaf essential oils of the basil plants, accounting for 98.8 and 99.9 % of the total quantified components respectively. Phenylpropanoids (37.7 % for the inflorescence vs. 58.3 % for the leaves were the predominant class of oil constituents, followed by sesquiterpenes (33.3 vs. 19.4 % and monoterpenes (27.7 vs. 22.1 %. Of the monoterpenoid compounds, oxygenated monoterpenes (25.2 vs. 18.9 % were the main subclass. Sesquiterpene hydrocarbons (25 vs. 15.9 % were the main subclass of sesquiterpenoidal compounds. Methyl chavicol, a phenylpropane derivative, (37.2 vs. 56.7 % was the principle component of both organ oils, with up to 38 and 57 % of the total identified components of the inflorescence and leaf essential oils, respectively. Linalool (21.1 vs. 13.1 % was the second common major component followed by α-cadinol (6.1 vs. 3 %, germacrene D (6.1 vs. 2.7 % and 1,8-cineole (2.4 vs. 3.5 %. There were significant quantitative but very small qualitative differences between the two oils. In total, considering the previous reports, it seems that essential oil composition of hydroponically grown O. basilicum L. had volatile constituents comparable with field grown counterparts, probably with potential applicability in the pharmaceutical and food industries.

  6. Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics.

    Science.gov (United States)

    Sagardoy, R; Morales, F; López-Millán, A-F; Abadía, A; Abadía, J

    2009-05-01

    The effects of high Zn concentration were investigated in sugar beet (Beta vulgaris L.) plants grown in a controlled environment in hydroponics. High concentrations of Zn sulphate in the nutrient solution (50, 100 and 300 microm) decreased root and shoot fresh and dry mass, and increased root/shoot ratios, when compared to control conditions (1.2 microm Zn). Plants grown with excess Zn had inward-rolled leaf edges and a damaged and brownish root system, with short lateral roots. High Zn decreased N, Mg, K and Mn concentrations in all plant parts, whereas P and Ca concentrations increased, but only in shoots. Leaves of plants treated with 50 and 100 microm Zn developed symptoms of Fe deficiency, including decreases in Fe, chlorophyll and carotenoid concentrations, increases in carotenoid/chlorophyll and chlorophyll a/b ratios and de-epoxidation of violaxanthin cycle pigments. Plants grown with 300 microm Zn had decreased photosystem II efficiency and further growth decreases but did not have leaf Fe deficiency symptoms. Leaf Zn concentrations of plants grown with excess Zn were high but fairly constant (230-260 microg.g(-1) dry weight), whereas total Zn uptake per plant decreased markedly with high Zn supply. These data indicate that sugar beet could be a good model to investigate Zn homeostasis mechanisms in plants, but is not an efficient species for Zn phytoremediation.

  7. Ion distribution and gas exchange of hydroponically grown sunflower plants as affected by salinity

    Directory of Open Access Journals (Sweden)

    Anna Rita Rivelli

    2006-09-01

    Full Text Available This paper reports the results of a trial carried out on sunflower plants (Helianthus annuus L., Romsun HS90 grown in the greenhouse using inert substrate and two automatic and closed hydroponic systems: one of them hosting the control (C with plants grown under optimal conditions on Hoagland nutrient solution, the other one, the salt treatment (S, with plants exposed to constant salt stress through adding 150 mM of NaCl to the nutrient solution. Salt supply caused a sharp reduction in leaf area development and dry matter production, especially in the first 4 weeks when leaves showed to be more sensitive than stem and roots. Such a reduction is attributable to the drop in net CO2 assimilation rate, transpiration and stomatal conductance and it was, on average, equal to 30, 26 and 40%, respectively, with respect to the control. The investigated genotype was not able to exclude Cl- and Na+ and considerable amounts accumulated in leaves, stem and roots. Concentration increased in leaves in the basipetal direction. Though sunflower has an efficient endogenous adaptation system by which it redistributes ions in the whole plant, with greater accumulation in older leaves, growth inhibition could be attributed to specific ion toxicity effects, and of chlorine in particular, on metabolic processes and thus on photosynthesis.

  8. Ion distribution and gas exchange of hydroponically grown sunflower plants as affected by salinity

    Directory of Open Access Journals (Sweden)

    Anna Rita Rivelli

    Full Text Available This paper reports the results of a trial carried out on sunflower plants (Helianthus annuus L., Romsun HS90 grown in the greenhouse using inert substrate and two automatic and closed hydroponic systems: one of them hosting the control (C with plants grown under optimal conditions on Hoagland nutrient solution, the other one, the salt treatment (S, with plants exposed to constant salt stress through adding 150 mM of NaCl to the nutrient solution. Salt supply caused a sharp reduction in leaf area development and dry matter production, especially in the first 4 weeks when leaves showed to be more sensitive than stem and roots. Such a reduction is attributable to the drop in net CO2 assimilation rate, transpiration and stomatal conductance and it was, on average, equal to 30, 26 and 40%, respectively, with respect to the control. The investigated genotype was not able to exclude Cl- and Na+ and considerable amounts accumulated in leaves, stem and roots. Concentration increased in leaves in the basipetal direction. Though sunflower has an efficient endogenous adaptation system by which it redistributes ions in the whole plant, with greater accumulation in older leaves, growth inhibition could be attributed to specific ion toxicity effects, and of chlorine in particular, on metabolic processes and thus on photosynthesis.

  9. Mutants with Enhanced Nitrogenase Activity in Hydroponic Azospirillum brasilense-Wheat Associations

    Science.gov (United States)

    Pereg Gerk, Lily; Gilchrist, Kate; Kennedy, Ivan R.

    2000-01-01

    The effect of a mutation affecting flocculation, differentiation into cyst-like forms, and root colonization on nitrogenase expression by Azospirillum brasilense is described. The gene flcA of strain Sp7 restored these phenotypes in spontaneous mutants of both strains Sp7 and Sp245. Employing both constitutive pLA-lacZ and nifH-lacZ reporter fusions expressed in situ, the colony morphology, colonization pattern, and potential for nitrogenase activity of spontaneous mutants and flcA Tn5-induced mutants were established. The results of this study show that the ability of Sp7 and Sp245 mutant strains to remain in a vegetative form improved their ability to express nitrogenase activity in association with wheat in a hydroponic system. Restoring the cyst formation and colonization pattern to the spontaneous mutant Sp7-S reduced nitrogenase activity rates in association with plants to that of the wild-type Sp7. Although Tn5-induced flcA mutants showed higher potentials for nitrogenase expression than Sp7, their potentials were lower than that of Sp7-S, indicating that other factors in this strain contribute to its exceptional nitrogenase activity rates on plants. The lack of lateral flagella is not one of these factors, as Sp7-PM23, a spontaneous mutant impaired in swarming and lateral-flagellum production but not in flocculation, showed wild-type nitrogenase activity and expression. The results also suggest factors of importance in evolving an effective symbiosis between Azospirillum and wheat, such as increasing the availability of microaerobic niches along the root, increased supply of carbon sources by the plant, and the retention of the bacterial cells in vegetative form for faster metabolism. PMID:10788397

  10. Optimization of soaking stage in technological process of wheat germination by hydroponic method when objective function is defined implicitly

    Science.gov (United States)

    Koneva, M. S.; Rudenko, O. V.; Usatikov, S. V.; Bugayets, N. A.; Tamova, M. Yu; Fedorova, M. A.

    2018-05-01

    The increase in the efficiency of the "numerical" technology for solving computational problems of parametric optimization of the technological process of hydroponic germination of wheat grains is considered. In this situation, the quality criteria are contradictory and a part of them is given by implicit functions of many variables. One of the main stages, soaking, determining the time and quality of germinated wheat grain is studied, when grain receives the required amount of moisture and air oxygen for germination and subsequently accumulates enzymes. A solution algorithm for this problem is suggested implemented by means of software packages Statistica v.10 and MathCAD v.15. The use of the proposed mathematical models describing the processes of hydroponic soaking of spring soft wheat varieties made it possible to determine optimal conditions of germination. The results of investigations show that the type of aquatic environment used for soaking has a great influence on the process of water absorption, especially the chemical composition of the germinated material. The use of the anolyte of electrochemically activated water (ECHA-water) intensifies the process from 5.83 to 4 hours for wheat variety «Altayskaya 105» and from 13 to 8.8 hours - for «Pobla Runo».

  11. Production and characterization of cyanocobalamin-enriched lettuce (Lactuca sativa L.) grown using hydroponics.

    Science.gov (United States)

    Bito, Tomohiro; Ohishi, Noriharu; Hatanaka, Yuka; Takenaka, Shigeo; Nishihara, Eiji; Yabuta, Yukinori; Watanabe, Fumio

    2013-04-24

    When lettuces (Lactuca sativa L.) grown for 30 days in hydroponic culture were treated with various concentrations of cyanocobalamin for 24 h, its content in their leaves increased significantly from nondetectable to 164.6 ± 74.7 ng/g fresh weight. This finding indicated that consumption of only two or three of these fresh leaves is sufficient to meet the Recommended Dietary Allowance for adults of 2.4 μg/day. Analyses using a cobalamin-dependent Escherichia coli 215 bioautogram and LC/ESI-MS/MS demonstrated that the cyanocobalamin absorbed from the nutrient solutions by the leaves did not alter any other compounds such as coenzymes and inactive corrinoids. Gel filtration indicated that most (86%) of the cyanocobalamin in the leaves was recovered in the free cyanocobalamin fractions. These results indicated that cyanocobalamin-enriched lettuce leaves would be an excellent source of free cyanocobalamin, particularly for strict vegetarians or elderly people with food-bound cobalamin malabsorption.

  12. Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system

    Energy Technology Data Exchange (ETDEWEB)

    Solis-Dominguez, F.A. [CINVESTAV-IPN, Dpto. de Biotecnologia y Bioingenieria, Av. Instituto Politecnico Nacional No. 2508, 07360 Mexico, D.F. (Mexico); Gonzalez-Chavez, M.C. [Colegio de Postgraduados en Ciencias Agricolas, IRENAT, Carr. Mex-Texcoco km 36.5, Montecillo, Estado de Mexico 56230 (Mexico); Carrillo-Gonzalez, R. [Colegio de Postgraduados en Ciencias Agricolas, IRENAT, Carr. Mex-Texcoco km 36.5, Montecillo, Estado de Mexico 56230 (Mexico); Rodriguez-Vazquez, R. [CINVESTAV-IPN, Dpto. de Biotecnologia y Bioingenieria, Av. Instituto Politecnico Nacional No. 2508, 07360 Mexico, D.F. (Mexico)]. E-mail: rerovaz@yahoo.com.mx

    2007-03-22

    Phytoremediation is a technology for extracting or inactivating pollutants. Echinochloa polystachya [(H.B.K.) Hitchcock] (Poaceae) is a fast-growing perennial grass that is common in tropical areas and is often found in oil-polluted soils that contain high concentrations of heavy metals. However, its tolerance to heavy metals, and its ability to accumulate them, has yet to be investigated. Here we test the hypothesis that E. polystachya is able to accumulate high concentrations of cadmium (Cd). Plants were grown hydroponically with different levels of Cd{sup 2+} (0, 0.25, 1, 2, 10, 50, and 100 mg L{sup -1}), and were found to be tolerant to Cd{sup 2+} at all levels. No metal-toxicity symptoms were observed at any Cd{sup 2+} level. Root and leaves Cd concentrations were 299 {+-} 13.93 and 233 {+-} 8.77 mg kg{sup -1} (on a dry weight basis), respectively. Scanning electron microscopy showed the inclusion of Cd within the xylem; this result was confirmed by energy dispersive X-ray spectrometry. Leaf tissues also accumulated Cd, especially within the bulliform cells of the epidermis. We conclude that E. polystachya is a hyperaccumulator of Cd. While data for other metals are not yet available, E. polystachya shows promise in the phytoextraction of Cd from polluted tropical sites.

  13. Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system

    International Nuclear Information System (INIS)

    Solis-Dominguez, F.A.; Gonzalez-Chavez, M.C.; Carrillo-Gonzalez, R.; Rodriguez-Vazquez, R.

    2007-01-01

    Phytoremediation is a technology for extracting or inactivating pollutants. Echinochloa polystachya [(H.B.K.) Hitchcock] (Poaceae) is a fast-growing perennial grass that is common in tropical areas and is often found in oil-polluted soils that contain high concentrations of heavy metals. However, its tolerance to heavy metals, and its ability to accumulate them, has yet to be investigated. Here we test the hypothesis that E. polystachya is able to accumulate high concentrations of cadmium (Cd). Plants were grown hydroponically with different levels of Cd 2+ (0, 0.25, 1, 2, 10, 50, and 100 mg L -1 ), and were found to be tolerant to Cd 2+ at all levels. No metal-toxicity symptoms were observed at any Cd 2+ level. Root and leaves Cd concentrations were 299 ± 13.93 and 233 ± 8.77 mg kg -1 (on a dry weight basis), respectively. Scanning electron microscopy showed the inclusion of Cd within the xylem; this result was confirmed by energy dispersive X-ray spectrometry. Leaf tissues also accumulated Cd, especially within the bulliform cells of the epidermis. We conclude that E. polystachya is a hyperaccumulator of Cd. While data for other metals are not yet available, E. polystachya shows promise in the phytoextraction of Cd from polluted tropical sites

  14. Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically.

    Science.gov (United States)

    Kumar, Abhay; Prasad, M N V; Sytar, Oksana

    2012-11-01

    Talinum species have been used to investigate a variety of environmental problems for e.g. determination of metal pollution index and total petroleum hydrocarbons in roadside soils, stabilization and reclamation of heavy metals (HMs) in dump sites, removal of HMs from storm water-runoff and green roof leachates. Species of Talinum are popular leaf vegetables having nutrient antinutrient properties. In this study, Talinum triangulare (Jacq.) Willd (Ceylon spinach) grown hydroponically were exposed to different concentrations of lead (Pb) (0, 0.25, 0.5, 0.75, 1.0 and 1.25 mM) to investigate the biomarkers of toxicity and tolerance mechanisms. Relative water content, cell death, photosynthetic pigments, sulphoquinovosyldiacylglycerol (SQDG), anthocyanins, α-tocopherol, malondialdehyde (MDA), reactive oxygen species (ROS) glutathione (GSH and GSSG) and elemental analysis have been investigated. The results showed that Pb in roots and shoots gradually increased as the function of Pb exposure; however Pb concentration in leaves was below detectable level. Chlorophylls and SQDG contents increased at 0.25 mM of Pb treatment in comparison to control at all treated durations, thereafter decreased. Levels of carotenoid, anthocyanins, α-tocopherol, and lipid peroxidation increased in Pb treated plants compared to control. Water content, cells death and elemental analysis suggested the damage of transport system interfering with nutrient transport causing cell death. The present study also explained that Pb imposed indirect oxidative stress in leaves is characterized by decreases in GSH/GSSG ratio with increased doses of Pb treatment. Lead-induced oxidative stress was alleviated by carotenoids, anthocyanins, α-tocopherol and glutathione suggesting that these defense responses as potential biomarkers for detecting Pb toxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Changes in Leaf Anatomical Traits Enhanced Photosynthetic Activity of Soybean Grown in Hydroponics with Plant Growth-Promoting Microorganisms.

    Science.gov (United States)

    Paradiso, Roberta; Arena, Carmen; De Micco, Veronica; Giordano, Maria; Aronne, Giovanna; De Pascale, Stefania

    2017-01-01

    The use of hydroponic systems for cultivation in controlled climatic conditions and the selection of suitable genotypes for the specific environment help improving crop growth and yield. We hypothesized that plant performance in hydroponics could be further maximized by exploiting the action of plant growth-promoting organisms (PGPMs). However, the effects of PGPMs on plant physiology have been scarcely investigated in hydroponics. Within a series of experiments aimed to identify the best protocol for hydroponic cultivation of soybean [ Glycine max (L.) Merr.], we evaluated the effects of a PGPMs mix, containing bacteria, yeasts, mycorrhiza and trichoderma beneficial species on leaf anatomy, photosynthetic activity and plant growth of soybean cv. 'Pr91m10' in closed nutrient film technique (NFT). Plants were grown in a growth chamber under semi-aseptic conditions and inoculated at seed, seedling and plant stages, and compared to non-inoculated (control) plants. Light and epi-fluorescence microscopy analyses showed that leaves of inoculated plants had higher density of smaller stomata (297 vs. 247 n/mm 2 ), thicker palisade parenchyma (95.0 vs. 85.8 μm), and larger intercellular spaces in the mesophyll (57.5% vs. 52.2%), compared to non-inoculated plants. The modifications in leaf functional anatomical traits affected gas exchanges; in fact starting from the reproductive phase, the rate of leaf net photosynthesis (NP) was higher in inoculated compared to control plants (8.69 vs. 6.13 μmol CO 2 m -2 s -1 at the beginning of flowering). These data are consistent with the better maximal PSII photochemical efficiency observed in inoculated plants (0.807 vs. 0.784 in control); conversely no difference in leaf chlorophyll content was found. The PGPM-induced changes in leaf structure and photosynthesis lead to an improvement of plant growth (+29.9% in plant leaf area) and seed yield (+36.9%) compared to control. Our results confirm that PGPMs may confer benefits in

  16. Changes in Leaf Anatomical Traits Enhanced Photosynthetic Activity of Soybean Grown in Hydroponics with Plant Growth-Promoting Microorganisms

    Directory of Open Access Journals (Sweden)

    Roberta Paradiso

    2017-05-01

    Full Text Available The use of hydroponic systems for cultivation in controlled climatic conditions and the selection of suitable genotypes for the specific environment help improving crop growth and yield. We hypothesized that plant performance in hydroponics could be further maximized by exploiting the action of plant growth-promoting organisms (PGPMs. However, the effects of PGPMs on plant physiology have been scarcely investigated in hydroponics. Within a series of experiments aimed to identify the best protocol for hydroponic cultivation of soybean [Glycine max (L. Merr.], we evaluated the effects of a PGPMs mix, containing bacteria, yeasts, mycorrhiza and trichoderma beneficial species on leaf anatomy, photosynthetic activity and plant growth of soybean cv. ‘Pr91m10’ in closed nutrient film technique (NFT. Plants were grown in a growth chamber under semi-aseptic conditions and inoculated at seed, seedling and plant stages, and compared to non-inoculated (control plants. Light and epi-fluorescence microscopy analyses showed that leaves of inoculated plants had higher density of smaller stomata (297 vs. 247 n/mm2, thicker palisade parenchyma (95.0 vs. 85.8 μm, and larger intercellular spaces in the mesophyll (57.5% vs. 52.2%, compared to non-inoculated plants. The modifications in leaf functional anatomical traits affected gas exchanges; in fact starting from the reproductive phase, the rate of leaf net photosynthesis (NP was higher in inoculated compared to control plants (8.69 vs. 6.13 μmol CO2 m-2 s-1 at the beginning of flowering. These data are consistent with the better maximal PSII photochemical efficiency observed in inoculated plants (0.807 vs. 0.784 in control; conversely no difference in leaf chlorophyll content was found. The PGPM-induced changes in leaf structure and photosynthesis lead to an improvement of plant growth (+29.9% in plant leaf area and seed yield (+36.9% compared to control. Our results confirm that PGPMs may confer benefits in

  17. Hydroponic leeks

    NARCIS (Netherlands)

    Nichols, M.; Os, van E.A.

    2011-01-01

    Hydroponic and greenhouse technologies offer the promise of growing many crops traditionally grown in soil. A comparative study in The Netherlands has demonstrated that it is now possible to grow leeks in soilless culture using protected cropping technologies with increased production and yields and

  18. Detection of QTLs for seedling characteristics in barley (Hordeum vulgare L.) grown under hydroponic culture condition.

    Science.gov (United States)

    Wang, Qifei; Sun, Genlou; Ren, Xifeng; Wang, Jibin; Du, Binbin; Li, Chengdao; Sun, Dongfa

    2017-11-07

    Seedling characteristics play significant roles in the growth and development of barley (Hordeum vulgare L.), including stable stand establishment, water and nutrients uptake, biotic resistance and abiotic stresses, and can influence yield and quality. However, the genetic mechanisms underlying seedling characteristics in barley are largely unknown and little research has been done. In the present work, 21 seedling-related characteristics are assessed in a barley double haploid (DH) population, grown under hydroponic conditions. Of them, leaf age (LAG), shoot height (SH), maximum root length (MRL), main root number (MRN) and seedling fresh weight (SFW) were investigated at the 13th, 20th, 27th, and 34th day after germination. The objectives were to identify quantitative trait loci (QTLs) underlying these seedling characteristics using a high-density linkage map and to reveal the QTL expression pattern by comparing the QTLs among four different seedling growth stages. A total of 70 QTLs were distributed over all chromosomes except 4H, and, individually, accounted for 5.01%-77.78% of phenotypic variation. Out of the 70 detected QTLs, 23 showed a major effect on 14 seedling-related characteristics. Ten co-localized chromosomal regions on 2H (five regions), 3H (two regions) and 7H (three regions) involved 39 QTLs (55.71%), each simultaneously influenced more than one trait. Meanwhile, 9 co-localized genomic regions involving 22 QTLs for five seedling characteristics (LAG, SH, MRL, MRN and SFW) at the 13th, 20th, 27th and 34th day-old seedling were common for two or more growth stages of seedling. QTL in the vicinity of Vrs1 locus on chromosome 2H with the favorable alleles from Huadamai 6 was found to have the largest main effects on multiple seedling-related traits. Six QTL cluster regions associated with 16 seedling-related characteristics were observed on chromosome 2H, 3H and 7H. The majority of the 29 regions identified for five seedling characteristics were

  19. Reduced phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities and lignin synthesis in wheat grown under low pressure sodium lamps

    Science.gov (United States)

    Guerra, D.; Anderson, A. J.; Salisbury, F. B.

    1985-01-01

    Wheat (Triticum aestivum L. cv Fremont) grown in hydroponic culture under 24-hour continuous irradiation at 560 to 580 micromoles per square meter per second from either metalhalide (MH), high pressure sodium (HPS), or low pressure sodium (LPS) lamps reached maturity in 70 days. Grain yields were similar under all three lamps, although LPS-grown plants lodged at maturity. Phenylalanine ammonia-lyase (PAL) and a tyrosine ammonia lyase (TAL) with lesser activity were detected in all extracts of leaf, inflorescence, and stem. Ammonia-lyase activities increased with age of the plant, and plants grown under the LPS lamp displayed PAL and TAL activities lower than wheat cultured under MH and HPS radiation. Greenhouse solar-grown wheat had the highest PAL and TAL activities. Lignin content of LPS-grown wheat was also significantly reduced from that of plants grown under MH or HPS lamps or in the greenhouse, showing a correlation with the reduced PAL and TAL activities. Ratios of far red-absorbing phytochrome to total phytochrome were similar for all three lamps, but the data do not yet warrant a conclusion about specific wavelengths missing from the LPS lamps that might have induced PAL and TAL activities in plants under the other lamps.

  20. Effect of external potassium (K) supply on the uptake of 137Cs by spring wheat (Triticum aestivum cv. Tonic): a large-scale hydroponic study

    International Nuclear Information System (INIS)

    Zhu, Y.-G.

    2001-01-01

    A large-scale hydroponic experiment was carried out in a non-controlled greenhouse. Spring wheat plants were grown to maturity at four levels of external K concentration (2, 4, 20 and 40 mg l -1 ) and one concentration of radiocaesium (8 Bq ml -1 ). Concentrations of K and radiocaesium in the growth solution were closely monitored, and replenishments were made upon depletion. K effectively competed with radiocaesium in terms of root uptake. Activity concentrations of radiocaesium in plants differed significantly between the four K treatments; the activity concentration at the lowest external K concentration being 100 times higher than that at the highest K level. The relationship between radiocaesium uptake and external K level could be described by a negative power function; this showed that when the K level reached around 12 mg l -1 , further increases in the external K level resulted only in slight changes in its inhibitory effect. As a result of this inhibitory effect of potassium supply, concentrations of radiocaesium in plant tissues, grains in particular, were greatly reduced at high external K concentration. Mechanisms involved in Cs-K interaction in root uptake are also discussed

  1. Effect of external potassium (K) supply on the uptake of {sup 137}Cs by spring wheat (Triticum aestivum cv. Tonic): a large-scale hydroponic study

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Y.-G. E-mail: yongguan.zhu@adelaide.edu.au

    2001-07-01

    A large-scale hydroponic experiment was carried out in a non-controlled greenhouse. Spring wheat plants were grown to maturity at four levels of external K concentration (2, 4, 20 and 40 mg l{sup -1}) and one concentration of radiocaesium (8 Bq ml{sup -1}). Concentrations of K and radiocaesium in the growth solution were closely monitored, and replenishments were made upon depletion. K effectively competed with radiocaesium in terms of root uptake. Activity concentrations of radiocaesium in plants differed significantly between the four K treatments; the activity concentration at the lowest external K concentration being 100 times higher than that at the highest K level. The relationship between radiocaesium uptake and external K level could be described by a negative power function; this showed that when the K level reached around 12 mg l{sup -1}, further increases in the external K level resulted only in slight changes in its inhibitory effect. As a result of this inhibitory effect of potassium supply, concentrations of radiocaesium in plant tissues, grains in particular, were greatly reduced at high external K concentration. Mechanisms involved in Cs-K interaction in root uptake are also discussed.

  2. Biochemical and physiological characterization of oil palm interspecific hybrids (elaeis oleifera x elaeis guineensis) grown in hydroponics

    International Nuclear Information System (INIS)

    Rivera Mendez, Yurany Dayanna; Moreno Chacon, Andres Leonardo; Romero, Hernan Mauricio

    2013-01-01

    The interspecific hybrid, Elaeis oleifera x Elaeis guineensis (OxG) is an alternative for improving the competitiveness and sustainability of the Latin American oil palm agro-industry, because of its partial resistance to some lethal diseases and also because of the high quality of its oil. A comparative characterization was conducted of the physiological and biochemical performance of seedlings of six OxG hybrids grown in hydroponics. Gas exchange, vegetative growth, protein, sugar and photosynthetic pigment content, and antioxidant system activity were determined. With the exception of gas exchange, the other variables showed significant differences between materials. The U1273 and U1737 materials showed greater vegetative growth with no expression of biochemical traits, while the U1914 and U1990 materials showed high levels of reducing and total sugars, photosynthetic pigments, and antioxidant system activities, characteristics that could confer them adaptation to stress conditions. With the standardized hydroponics technique, the optimal conditions for the growth of seedlings were ensured, the differences between materials were established, and so those with promising features from the physiological and biochemical standpoint were identified. Finally, it could be used to study in a simple, fast, clean and inexpensive way, the effect of levels and sources of mineral nutrients on the growth and development of oil palm.

  3. Developmental, nutritional and hormonal anomalies of weightlessness-grown wheat

    Science.gov (United States)

    Carman, J. G.; Hole, P.; Salisbury, F. B.; Bingham, G. E.

    2015-07-01

    The behavior of water in weightlessness, as occurs in orbiting spacecraft, presents multiple challenges for plant growth. Soils remain saturated, impeding aeration, and leaf surfaces remain wet, impeding gas exchange. Herein we report developmental and biochemical anomalies of "Super Dwarf" wheat (Triticum aestivum L.) grown aboard Space Station Mir during the 1996-97 "Greenhouse 2" experiment. Leaves of Mir-grown wheat were hyperhydric, senesced precociously and accumulated aromatic and branched-chain amino acids typical of tissues experiencing oxidative stress. The highest levels of stress-specific amino acids occurred in precociously-senescing leaves. Our results suggest that the leaf ventilation system of the Svet Greenhouse failed to remove sufficient boundary layer water, thus leading to poor gas exchange and onset of oxidative stress. As oxidative stress in plants has been observed in recent space-flight experiments, we recommend that percentage water content in apoplast free-spaces of leaves be used to evaluate leaf ventilation effectiveness. Mir-grown plants also tillered excessively. Crowns and culms of these plants contained low levels of abscisic acid but high levels of cytokinins. High ethylene levels may have suppressed abscisic acid synthesis, thus permitting cytokinins to accumulate and tillering to occur.

  4. The Impact of Phosphorus Supply on Selenium Uptake During Hydroponics Experiment of Winter Wheat (Triticum aestivum) in China.

    Science.gov (United States)

    Liu, Hongen; Shi, Zhiwei; Li, Jinfeng; Zhao, Peng; Qin, Shiyu; Nie, Zhaojun

    2018-01-01

    Selenium (Se) is a necessary trace element for humans and animals, and Se fertilization is an efficient way to increase Se concentration in the edible parts of crops, thus enhance the beneficiary effects of Se in human and animal health. Due to the similarity of physical and chemical properties between phosphate () and selenite (), phosphorus (P) supply often significantly impacts the absorption of Se in plants, but little is known about how P supply influences the subcellular distribution and chemical forms of Se. In this study, the effects of P supply on subcellular distribution and chemical forms of Se in winter wheat were investigated in a hydroponic trial with medium Se level (0.1 mg Se L -1 ). P was applied with three concentrations (0.31, 3.1, and 31 mg P L -1 ) in the experiment. The results showed that increasing P supply significantly decreased the concentration and accumulation of Se in the roots, stems, and leaves of winter wheat. An increase in P supply significantly inhibited Se accumulation in the root cell wall, but enhanced Se distribution in the organelles and soluble fraction of root cells. These findings suggest that increased P supply inhibited the root-to-shoot transport of Se. An increase in P supply enhanced Se accumulation in the cell wall of plant stems (both apical and axillary stem) and cell organelles of plants leaves, but inhibited Se distribution in the soluble fraction of stems and leaves. This suggests that P supply enhances Se transportation across the cell membrane in shoots of winter wheat. In addition, increased P supply also altered the chemical forms of Se in tissues of winter wheat. These findings will help in understanding of the regulation grain Se accumulation and provide a practical way to enhance Se intake for humans inform Se-enriched grains.

  5. Arsenic- and mercury-induced phytotoxicity in the Mediterranean shrubs Pistacia lentiscus and Tamarix gallica grown in hydroponic culture.

    Science.gov (United States)

    Moreno-Jiménez, E; Esteban, E; Carpena-Ruiz, R O; Peñalosa, J M

    2009-09-01

    Hg and As resistance and bioaccumulation were studied in hydroponically grown Pistacia lentiscus and Tamarix gallica plants. Both elements caused growth inhibition in roots and shoots, with mercury showing greater phytotoxicity than arsenic. Accumulation of both elements by plants increased in response to element supply, with the greatest uptake found in T. gallica. Both elements affected P and Mn status in plants, reduced chlorophyll a concentration and increased MDA and thiol levels. These stress indices showed good correlations with As and Hg concentration in plant tissues, especially in the roots. Toxic responses to mercury were more evident than for arsenic, especially in shoot tissues. T. gallica showed higher resistance to both Hg and As than P. lentiscus, as well accumulating more As and Hg.

  6. The effect of aluminium on enzyme activities in two wheat cultivars ...

    African Journals Online (AJOL)

    The effect of aluminium on enzyme activities in two wheat cultivars. ... African Journal of Biotechnology ... and Maroon (Al-tolerant) were grown on hydroponic solution (non modified Hoagland solution) containing AlCl3 (0-100-200-300 M).

  7. Effects of phosphate and thiosulphate on arsenic accumulation in Brassica juncea plants grown in soil and in hydroponic culture

    Science.gov (United States)

    Pezzarossa, Beatrice; Petruzzelli, Gianniantonio; Grifoni, Martina; Rosellini, Irene; Malagoli, Mario; Schiavon, Michela

    2013-04-01

    Arsenic is recognised as a toxic metalloid and a strong pollutant in soils of many countries. Thus, the reclamation of contaminated areas is fundamental in order to protect both human health and agricultural production. This study is focused on the assisted phytoextraction, a technology for reclaiming polluted soils that takes advantage of the capability of some plants to extract inorganic elements from soils with the aid of additive agents. The nutrients phosphorus, as phosphate, and sulphur, as thiosulphate, can compete with the form more oxidised of arsenic, both in soil and plant. This study examined the capability of thiosulphate (Th) and phosphate (Ph) to promote the release of As from soil surfaces in order to improve the phytoavailability and thus the absorption of As by Brassica juncea plants. In the first experiment B. juncea plants were grown on a soil that had been sampled from an industrial area strongly contaminated by As (790 mg As kg-1 soil). The second experiment was carried out in hydroponics where As has been added at a concentration (100 microM) similar to the As available concentration measured in soil. In both trials ammonium thiosulphate (at the concentration of 0.27 M in soil, and 400 microM in hydroponics) and potassium hydrogen phosphate (at the concentration of 0.05 M in soil, and 112 microM in hydroponics) were added. The biomass of B. juncea was determined and the accumulation of P, S and As in root and in the above-ground tissues have been analyzed. Our results showed that thiosulphate and phosphate acted either as nutrients and detoxifying agents, due to the stimulation of plant defensive systems, and influenced either the biomass production and the As accumulation in plant tissues. In the plants grown in soil, As accumulated at higher levels in the above-ground part than in the roots and the addition of Th induced a higher biomass production and a higher total As accumulation (concentration x biomass) in the above-ground tissues

  8. MINERAL NUTRITION OF CRISPHEAD LETTUCE GROWN IN A HYDROPONIC SYSTEM WITH BRACKISH WATER

    Directory of Open Access Journals (Sweden)

    HAMMADY RAMALHO E SOARES

    2016-01-01

    Full Text Available Water availability in the Brazilian semiarid is restricted and often the only water source available has high salt concentrations. Hydroponics allows using these waters for production of various crops, including vegetables, however, the water salinity can cause nutritional disorders. Thus, two experiments were conducted in a greenhouse at the Department of Agricultural Engineering of the Federal Rural University of Pernambuco, to evaluate the effects of salinity on the mineral nutrition of crisphead lettuce, cultivar Taina, in a hydroponic system (Nutrient Film Technique, using brackish water in the nutrient solution, which was prepared by adding NaCl to the local water (0.2 dS m-1. A randomized blocks experimental design was used in both experiments. The treatments consisted of water of different salinity levels (0.2, 1.2, 2.2, 3.2, 4.2 and 5.2 dS m-1 with four replications, totaling 24 plots for each experiment. The water added to compensate for the water-depth loss due to evapotranspiration (WCET was the brackish water of each treatment in Experiment I and the local water without modifications in Experiment II. The increase in the salinity of the water used for the nutrient solution preparation reduced the foliar phosphorus and potassium contents and increased the chloride and sodium contents, regardless of the WCET. Foliar nitrogen, calcium, magnesium and sulfur contents were not affected by increasing the water salinity used for the nutrient solution preparation.

  9. Citric acid enhanced the antioxidant defense system and chromium uptake by Lemna minor L. grown in hydroponics under Cr stress.

    Science.gov (United States)

    Sallah-Ud-Din, Rasham; Farid, Mujahid; Saeed, Rashid; Ali, Shafaqat; Rizwan, Muhammad; Tauqeer, Hafiz Muhammad; Bukhari, Syed Asad Hussain

    2017-07-01

    Phytoextraction is a cost-effective and eco-friendly technique for the removal of pollutants, mainly heavy metal(loids) especially from polluted water and metal-contaminated soils. The phytoextraction of heavy metals is, in general, limited due to the low availability of heavy metals in the growth medium. Organic chelators can help to improve the phytoextraction by increasing metal mobility and solubility in the growth medium. The present research was carried out to examine the possibility of citric acid (CA) in improving chromium (Cr) phytoextraction by Lemna minor (duckweed). For this purpose, healthy plants were collected from nearby marsh and grown in hydroponics under controlled conditions. Initial metal contents of both marsh water and plant were measured along with physico-chemical properties of the marsh water. Different concentrations of Cr and CA were applied in the hydroponics in different combinations after defined intervals. Continuous aeration was supplied and pH maintained at 6.5 ± 0.1. Results showed that increasing concentration of Cr significantly decreased the plant biomass, photosynthetic pigments, leaf area, and antioxidant enzyme activities (like catalase, ascorbate peroxidase, superoxide dismutase, peroxidase). Furthermore, Cr stress increased the Cr concentrations, electrolyte leakage, hydrogen peroxide, and malondialdehyde contents in plants. The addition of CA alleviated the Cr-induced toxicity in plants and further enhanced the Cr uptake and its accumulation in L. minor. The addition of CA enhanced the Cr concentration in L. minor by 6.10, 26.5, 20.5, and 20.2% at 0, 10, 100, and 200 μM Cr treatments, respectively, compared to the respective Cr treatments without CA. Overall, the results of the present study showed that CA addition may enhance the Cr accumulation and tolerance in L. minor by enhancing the plant growth and activities of antioxidant enzymes.

  10. [Analysis of inorganic elements in hydroponic Taraxacum mongolicum grown under different spectrum combinations by ICP-AES].

    Science.gov (United States)

    Chen, Xiao-li; Morewane, M B; Xue, Xu-zhang; Guo, Wen-zhong; Wang, Li-chun

    2015-02-01

    Dandelion (Taraxacum mongolicum) was hydroponically cultured in a completely enclosed plant factory, in which fluorescence and LED emitting spectra of different bands were used as the sole light source for plant growth. Effects of spectral component on the growth of dandelion were studied and the contents of ten inorganic elements such as K, P, Ca, Mg, Na, Fe, Mn, Zn, Cu and B in dandelion were analyzed by ICP-AES technology. The results showed that: (1) Under the condition of similar photosynthetic active radiation (PAR), single R or combined spectrums of FLRB were beneficial for biomass accumulation, while single B was the contrary; (2) Macroelements content ratio in Taraxacum mongolicum grown under FLwas K:Ca:P:Mg : Na=79.74:32.39:24.32:10.55:1.00, microelements content ratio was Fe:Mn:B:Zn:Cu = 9.28:9.71:3.82:2.08:1.00; (3) Red light (peak at 660 nm) could promote the absorptions of Ca, Fe, Mn, Zn, while absorption of Cu was not closely related to spectral conditions; (4) Thehighest accumulation of Ca, Na, Mn and Zn were obtained in aerial parts of Taraxacum mongolicum plants grown under pure red spectrum R, while the accumulation of the rest six elements reached the highest level under the mixed spectrum FLRB.

  11. Uptake, translocation and biotransformation of N-ethyl perfluorooctanesulfonamide (N-EtFOSA) by hydroponically grown plants.

    Science.gov (United States)

    Zhao, Shuyan; Zhou, Tao; Zhu, Lingyan; Wang, Bohui; Li, Ze; Yang, Liping; Liu, Lifen

    2018-04-01

    N-ethyl perfluorooctane sulfonamide (N-EtFOSA) is an important perfluorooctanesulfonate (PFOS) precursor (PreFOS) which is used in sulfluramid. The present work studied the uptake, translocation and metabolism of N-EtFOSA in wheat (Triticum aestivum L.), soybean (Glycine max L. Merrill) and pumpkin (Cucurbita maxima L.) by hydroponic exposure. Except for parent N-EtFOSA, its metabolites of perfluorooctane sulfonamide acetate (FOSAA), perfluorooctane sulfonamide (PFOSA), PFOS, perfluorohexane sulfonate (PFHxS) and perfluorobutane sulfonate (PFBS) were detected in the roots and shoots of all the three plant species examined. This suggested that plant roots could take up N-EtFOSA from solutions efficiently, and translocate to shoots. A positive correlation was found between root concentration factors (RCFs) of N-EtFOSA and root lipid content. Much higher proportion of N-EtFOSA transformation products in plant tissues than in the solutions suggested that N-EtFOSA could be in vivo metabolized in plant roots and shoots to FOSAA, PFOSA and PFOS, and other additional shorter-chain perfluoroalkane sulfonates (PFSAs), including PFHxS and PFBS. The results suggested that plants had biotransformation pathways to N-EtFOSA that were different than those from microorganisms and animals. This study provides important information about the uptake and metabolism of PreFOSs in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Structural analysis of Gossypium hirsutum fibers grown under greenhouse and hydroponic conditions.

    Science.gov (United States)

    Natalio, Filipe; Tahir, Muhammad Nawaz; Friedrich, Norman; Köck, Margret; Fritz-Popovski, Gerhard; Paris, Oskar; Paschke, Reinhard

    2016-06-01

    Cotton is the one of the world's most important crops. Like any other crop, cotton growth/development and fiber quality is highly dependent on environmental factors. Increasing global weather instability has been negatively impacting its economy. Cotton is a crop that exerts an intensive pressure over natural resources (land and water) and demands an overuse of pesticides. Thus, the search for alternative cotton culture methods that are pesticide-free (biocotton) and enable customized standard fiber quality should be encouraged. Here we describe a culture of Gossypium hirsutum ("Upland" Cotton) utilizing a greenhouse and hydroponics in which the fibers are morphological similar to conventional cultures and structurally fit into the classical two-phase cellulose I model with 4.19nm crystalline domains surrounded by amorphous regions. These fibers exhibit a single crystalline form of cellulose I-Iß, monoclinic unit cell. Fiber quality bulk analysis shows an improved length, strength, whiteness when compared with soil-based cultures. Finally, we show that our fibers can be spun, used for production of non-woven fabrics and indigo-vat stained demonstrating its potential in industrial and commercial applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Spectral quality affects disease development of three pathogens on hydroponically grown plants

    Science.gov (United States)

    Schuerger, A. C.; Brown, C. S.; Sager, J. C. (Principal Investigator)

    1997-01-01

    Plants were grown under light-emitting diode (LED) arrays with various spectra to determine the effects of light quality on the development of diseases caused by tomato mosaic virus (ToMV) on pepper (Capsicum annuum L.), powdery mildew [Sphaerotheca fuliginea (Schlectend:Fr.) Pollaci] on cucumber (Cucumis sativus L.), and bacterial wilt (Pseudomonas solanacearum Smith) on tomato (Lycopersicon esculentum Mill.). One LED (660) array supplied 99% red light at 660 nm (25 nm bandwidth at half-peak height) and 1% far-red light between 700 to 800 nm. A second LED (660/735) array supplied 83% red light at 660 nm and 17% far-red light at 735 nm (25 nm bandwidth at half-peak height). A third LED (660/BF) array supplied 98% red light at 660 nm, 1% blue light (BF) between 350 to 550 nm, and 1% far-red light between 700 to 800 nm. Control plants were grown under broad-spectrum metal halide (MH) lamps. Plants were grown at a mean photon flux (300 to 800 nm) of 330 micromoles m-2 s-1 under a 12-h day/night photoperiod. Spectral quality affected each pathosystem differently. In the ToMV/pepper pathosystem, disease symptoms developed slower and were less severe in plants grown under light sources that contained blue and UV-A wavelengths (MH and 660/BF treatments) compared to plants grown under light sources that lacked blue and UV-A wavelengths (660 and 660/735 LED arrays). In contrast, the number of colonies per leaf was highest and the mean colony diameters of S. fuliginea on cucumber plants were largest on leaves grown under the MH lamp (highest amount of blue and UV-A light) and least on leaves grown under the 660 LED array (no blue or UV-A light). The addition of far-red irradiation to the primary light source in the 660/735 LED array increased the colony counts per leaf in the S. fuliginea/cucumber pathosystem compared to the red-only (660) LED array. In the P. solanacearum/tomato pathosystem, disease symptoms were less severe in plants grown under the 660 LED array, but the

  14. Effect of Ni and Urea on Growth, Nitrate and Nutrients Concentration in Lettuce (Lactuca sativa Grown in Hydroponics

    Directory of Open Access Journals (Sweden)

    Hosein Nazari Mamaqani

    2017-02-01

    Full Text Available Introduction: The N source used in commercial hydroponic culture of vegetables is mainly NO3-N. The rate of NO3- uptake is usually high, particularly in leafy vegetables and it can be markedly increased when the NO3- supply in the environment is high. An abundant N supply leads to a high NO3-N absorption and accumulation in plants. When NO3- rich vegetables are consumed, various harmful effects on human health may occur such as met-hemoglobinemia (Blue Baby Syndrome and cancer. Keeping levels of NO3- below limits of FAO seems to be impossible without changing conventional fertilizer application techniques. The suitability of urea for the cultivation of field crops has been well documented. Urea is used as the main source of N fertilizer for crops grown in soil. Its use as N source for crops grown under the hydroponic system has yet to be evaluated. To hydrolyze urea, the enzyme urease requires Ni as a component. Substitution of urea for commonly used N03-N fertilizers in hydroponic culture of vegetables would not only enable to avoid excessive accumulation of N03- in plants but would also reduce the cost of production. Leafy vegetable crops, such as lettuce and spinach, contain large amounts of N03-N. Therefore, it is important to reduce N03- concentrations in hydroponically grown with lowest negative effects on yield. Materials and Methods: The experiments were carried outin greenhouse hydroponicsResearchFaculty of Agriculture, University of Tabriz in randomized complete block designwithtwo factors ureaatfivelevels of 0,25, 50, 75and100milligrams perliter(U0, U25,U50, U75, U100andnickelattwo levels of0and2mg per liter (Ni0, Ni2ofnickelsulfate(NiSO4in4replicatesusinglettuce(Lactuca sativa cv. Siyahoo. Plants fed with the modifiedHoagland solutionorhalf theconcentration. Treatments added to nutrient solution when plants were in four leaf stage. Plants were harvested 50 days after treatment. Different organs (leaves, stems and roots were separated

  15. Role of curli and plant cultivation conditions on Escherichia coli O157:H7 internalization into spinach grown on hydroponics and in soil.

    Science.gov (United States)

    Macarisin, Dumitru; Patel, Jitendra; Sharma, Vijay K

    2014-03-03

    Contamination of fresh produce could represent a public health concern because no terminal kill step is applied during harvest or at the processing facility to kill pathogens. In addition, once contaminated, pathogens may internalize into produce and be protected from disinfectants during the postharvest processing step. The objective of the current study was to determine the potential internalization of Escherichia coli O157:H7 into spinach roots and subsequent transfer to the edible parts. Because curli are involved in biofilm formation, we investigated whether their presence influence the internalization of E. coli O157:H7 into spinach. Further, the effect of the spinach cultivar on E. coli O157:H7 internalization was evaluated. Spinach plants were grown in contaminated soil as well as hydroponically to prevent mechanical wounding of the roots and inadvertent transfer of pathogens from the contamination source to the non-exposed plant surfaces. Results showed that E. coli O157:H7 could internalize into hydroponically grown intact spinach plants through the root system and move to the stem and leaf level. The incidence of internalization was significantly higher in hydroponically grown plants when roots were exposed to 7 log CFU/mL compared to those exposed to 5 log CFU/mL. The effect of cultivar on E. coli O157:H7 internalization was not significant (P>0.05) for the analyzed spinach varieties, internalization incidences showing almost equal distribution between Space and Waitiki, 49.06% and 50.94% respectively. Wounding of the root system in hydroponically grown spinach increased the incidence of E. coli O157:H7 internalization and translocation to the edible portions of the plant. Experimental contamination of the plants grown in soil resulted in a greater number of internalization events then in those grown hydroponically, suggesting that E. coli O157:H7 internalization is dependent on root damage, which is more likely to occur when plants are grown in soil

  16. The effect of EDDS and citrate on the uptake of lead in hydroponically grown Matthiola flavida.

    Science.gov (United States)

    Mohtadi, Ahmad; Ghaderian, Seyed Majid; Schat, Henk

    2013-10-01

    Root and shoot lead concentrations and the impact of chelating agents on these were investigated in two populations of the novel metallophyte Matthiola flavida. Plants were exposed in hydroponics to Pb(NO3)2, supplied alone, or in combination with citric acid, or EDDS. When supplied at concentrations expected to bind about 95% of the Pb in a solution containing 1-μM Pb (1000 μM citrate or 3.1 μM EDDS, respectively), the root and shoot Pb concentrations were dramatically lowered, in comparison with a 1-μM free ionic Pb control exposure. A 1-mM EDDS+1-μM Pb treatment decreased the plants' Pb concentrations further, even to undetectable levels in one population. At 100 μM Pb in a 1-mM EDDS-amended solution the Pb concentration increased strongly in shoots, but barely in roots, in comparison with the 1-μM Pb+1-mM EDDS treatment, without causing toxicity symptoms. Further increments of the Pb concentration in the 1-mM EDDS-amended solution, i.e. to 800 and 990 μM, caused Pb hyperaccumulation, both in roots and in shoots, associated with a complete arrest of root growth and foliar necrosis. M. flavida seemed to be devoid of constitutive mechanisms for uptake of Pb-citrate or Pb-EDDS complexes. Hyperaccumulation of Pb-EDDS occurred only at high exposure levels. Pb-EDDS was toxic, but is much less so than free Pb. Free EDDS did not seem to be toxic at the concentrations tested. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Effects of cadmium on cork oak (Quercus suber L.) plants grown in hydroponics.

    Science.gov (United States)

    Gogorcena, Yolanda; Larbi, Ajmi; Andaluz, Sofia; Carpena, Ramón O; Abadía, Anunciación; Abadía, Javier

    2011-12-01

    Cork oak (Quercus suber L.) is an autochthonous tree species that is being used for reforestation in heavy-metal-contaminated areas in Spain. A hydroponics experiment was carried out to characterize the effects of Cd on several morphological and physiological parameters in this species, including shoot length, nutrient concentrations and allocation in different organs, leaf pigment concentrations, photosynthetic efficiency, root ferric chelate reductase (FCR) activity and organic acid concentrations in xylem sap. Four different Cd treatments were applied, adding Cd chelated with EDTA or as chloride salt at two different concentrations (10 and 50 µM Cd). After 1 month of Cd treatment, plant growth was significantly inhibited in all treatments. Results indicate that Cd accumulates in all organs 7- to 500-fold when compared with control plants. The highest Cd concentration was found in the 50 µM CdCl(2) treatment, which led to concentrations of ~30, 123 and 1153 µg Cd g(-1) dry weight in leaves, stems and roots, respectively. In the strongest Cd treatments the concentrations of P and Ca decreased in some plant parts, whereas the Mn leaf concentrations decreased with three of the four Cd treatments applied. The concentrations of chlorophyll and carotenoids on an area basis decreased, whereas the (zeaxanthin plus antheraxanthin)/(total violaxanthin cycle carotenoids) ratio and the non-photochemical quenching increased significantly in all Cd treatments. Cadmium treatments caused significant increases in the activity of the enzyme FCR in roots and in the concentrations of organic acids in xylem sap. Some of the physiological changes found support the fact that Cd induces a deficiency of Fe in cork oak, although the plant Fe concentrations were not reduced significantly. At higher concentrations the effects of Cd were more pronounced, and were more marked when Cd was in the free ion form than when present in the form of Cd-EDTA.

  18. Internalization and Dissemination of Human Norovirus and Animal Caliciviruses in Hydroponically Grown Romaine Lettuce

    Science.gov (United States)

    DiCaprio, Erin; Ma, Yuanmei; Purgianto, Anastasia; Hughes, John

    2012-01-01

    Fresh produce is a major vehicle for the transmission of human norovirus (NoV) because it is easily contaminated during both pre- and postharvest stages. However, the ecology of human NoV in fresh produce is poorly understood. In this study, we determined whether human NoV and its surrogates can be internalized via roots and disseminated to edible portions of the plant. The roots of romaine lettuce growing in hydroponic feed water were inoculated with 1 × 106 RNA copies/ml of a human NoV genogroup II genotype 4 (GII.4) strain or 1 × 106 to 2 × 106 PFU/ml of animal caliciviruses (Tulane virus [TV] and murine norovirus [MNV-1]), and plants were allowed to grow for 2 weeks. Leaves, shoots, and roots were homogenized, and viral titers and/or RNA copies were determined by plaque assay and/or real-time reverse transcription (RT)-PCR. For human NoV, high levels of viral-genome RNA (105 to 106 RNA copies/g) were detected in leaves, shoots, and roots at day 1 postinoculation and remained stable over the 14-day study period. For MNV-1 and TV, relatively low levels of infectious virus particles (101 to 103 PFU/g) were detected in leaves and shoots at days 1 and 2 postinoculation, but virus reached a peak titer (105 to 106 PFU/g) at day 3 or 7 postinoculation. In addition, human NoV had a rate of internalization comparable with that of TV as determined by real-time RT-PCR, whereas TV was more efficiently internalized than MNV-1 as determined by plaque assay. Taken together, these results demonstrated that human NoV and animal caliciviruses became internalized via roots and efficiently disseminated to the shoots and leaves of the lettuce. PMID:22729543

  19. Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa)

    NARCIS (Netherlands)

    Felizeter, S.; McLachlan, M.; de Voogt, P.

    2012-01-01

    An uptake study was carried out to assess the potential human exposure to perfluorinated alkyl acids (PFAAs) through the ingestion of vegetables. Lettuce (Lactuca sativa) was grown in PFAA-spiked nutrient solutions at four different concentrations, ranging from 10 ng/L to 10 μg/L. Eleven

  20. The possible role of hydroxylation in the detoxification of atrazine in mature vetiver (Chrysopogon zizanioides Nash) grown in hydroponics.

    Science.gov (United States)

    Marcacci, Sylvie; Raventon, Muriel; Ravanel, Patrick; Schwitzguébel, Jean-Paul

    2005-01-01

    The resistance mechanism of vetiver (Chrysopogon zizanioides) to atrazine was investigated to evaluate its potential for phytoremediation of environment contaminated with the herbicide. Plants known to metabolise atrazine rely on hydroxylation mediated by benzoxazinones, conjugation catalyzed by glutathione-S-transferases and dealkylation probably mediated by cytochromes P450. All three possibilities were explored in mature vetiver grown in hydroponics during this research project. Here we report on the chemical role of benzoxazinones in the transformation of atrazine. Fresh vetiver roots and leaves were cut to extract and study their content in benzoxazinones known to hydroxylate atrazine, such as 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one (DIBOA), 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) and their mono- and di-glucosylated forms. Identification of benzoxazinones was performed by thin layer chromatography (TLC) and comparison of retention factors (Rf) and UV spectra with standards: although some products exhibited the same Rf as standards, UV spectra were different. Furthermore, in vitro hydroxylation of atrazine could not be detected in the presence of vetiver extracts. Finally, vetiver organs exposed to [14C]-atrazine did not produce any significant amount of hydroxylated products, such as hydroxyatrazine (HATR), hydroxy-deethylatrazine (HDEA), and hydroxy-deisopropylatrazine (HDIA). Altogether, these metabolic features suggest that hydroxylation was not a major metabolic pathway of atrazine in vetiver.

  1. An experimental set-up to study carbon, water, and nitrate uptake rates by hydroponically grown plants.

    Science.gov (United States)

    Andriolo, J L; Le Bot, J; Gary, C; Sappe, G; Orlando, P; Brunel, B; Sarrouy, C

    1996-01-01

    The experimental system described allows concomitant hourly measurements of CO2, H2O, and NO3 uptake rates by plants grown hydroponically in a greenhouse. Plants are enclosed in an airtight chamber through which air flows at a controlled speed. Carbon dioxide exchange and transpiration rates are determined from respective differences of concentrations of CO2 and water vapor of the air at the system inlet and outlet. This set-up is based on the "open-system" principle with improvements made on existing systems. For instance, propeller anemometers are used to monitor air flow rates in the chamber. From their signal it is possible to continuously adjust air speed to changing environmental conditions and plant activity. The air temperature inside the system therefore never rises above that outside. Water and NO3 uptake rates are calculated at time intervals from changes in the volume and the NO3 concentration of the nutrient solution in contact with the roots. The precise measurement of the volume of solution is achieved using a balance which has a higher precision than any liquid level sensors. Nitrate concentration is determined in the laboratory from aliquots of solution sampled at time intervals. A number of test runs are reported which validate the measurements and confirm undisturbed conditions within the system. Results of typical diurnal changes in CO2, H2O, and NO3 uptake rates by fruiting tomato plants are also presented.

  2. Influence of chelating ligands on arsenic uptake by hydroponically grown rice seedlings (Oryza sativa L.): a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Mohammad A.; Hasegawa, Hiroshi; Ueda, Kazumasa; Maki, Teruya [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa (Japan); Rahman, M.M. [Department of Botany, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2008-06-15

    Ferric (oxyhydro-)oxides (FeO{sub x}) precipitate in the rhizosphere at neutral or alkaline pH and are adsorbed on the plant root surfaces. Consequently, the higher binding affinity of arsenate to FeO{sub x} and the low iron phytoavailability of the precipitated FeO{sub x} make the phytoremediation of arsenic difficult. In the present study, the influence of chelating ligands on arsenic and iron uptake by hydroponically grown rice seedlings (Oryza sativa L.) was investigated. When chelating ligands were not treated to the growth medium, about 63 and 71% of the total arsenic and iron were distributed in the root extract (outer root surfaces) of rice, respectively. On the other hand, ethylenediaminetetraacetic acid (EDTA), ethylenediaminedisuccinic acid (EDDS) and hydroxyiminodisuccinic acid (HIDS) desorbed a significant amount of arsenic from FeO{sub x} of the outer root surfaces. Therefore, the uptake of arsenic and iron into the roots and their subsequent translocation to the shoots of the rice seedlings increased significantly. The order of increasing arsenic uptake by chelating ligands was HIDS > EDTA > EDDS. Methylglycinediacetic acid (MGDA) and iminodisuccinic acid (IDS) might not be effective in arsenic solubilization from FeO{sub x}. The results suggest that EDDS and HIDS would be a good and environmentally safe choice to accelerate arsenic phytoavailability in the phytoremediation process because of their biodegradability and would be a competent alternative to the widely used non-biodegradable and environmentally persistent EDTA. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  3. Effects of elevated atmospheric carbon dioxide concentrations on water and acid requirements of soybeans grown in a recirculating hydroponic system

    Science.gov (United States)

    Mackowiak, C. L.; Wheeler, R. M.; Lowery, W.; Sager, J. C.

    1990-01-01

    Establishing mass budgets of various crop needs, i.e. water and nutrients, in different environments is essential for the Controlled Ecological Life Support System (CELSS). The effects of CO2 (500 and 1000 umol mol (exp -1)) on water and acid use (for pH control) by soybeans in a recirculating hydroponic system were examined. Plants of cvs. McCall and Pixie were grown for 90 days using the nutrient film technique (NFT) and a nitrate based nutrient solution. System acid use for both CO2 levels peaked near 4 weeks during a phase of rapid vegetative growth, but acid use decreased more rapidly under 500 compared to 1000 umol mol (exp GR) CO2. Total system water use by 500 and 1000 umol mol (exp -1) plants was similar, leaving off at 5 weeks and declining as plants senesced (ca. 9 weeks). However, single leaf transpiration rates were consistently lower at 1000 umol mol (exp -1). The data suggest that high CO2 concentrations increase system acid (and nutrient) use because of increased vegetative growth, which in turn negates the benefit of reduced water use (lower transpiration rates) per unit leaf area.

  4. Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa).

    Science.gov (United States)

    Felizeter, Sebastian; McLachlan, Michael S; de Voogt, Pim

    2012-11-06

    An uptake study was carried out to assess the potential human exposure to perfluorinated alkyl acids (PFAAs) through the ingestion of vegetables. Lettuce (Lactuca sativa) was grown in PFAA-spiked nutrient solutions at four different concentrations, ranging from 10 ng/L to 10 μg/L. Eleven perfluorinated carboxylic acids (PFCAs) and three perfluorinated sulfonic acids (PFSAs) were analyzed by HPLC-MS/MS. At the end of the experiment, the major part of the total mass of each of the PFAAs (except the short-chain, C4-C7, PFCAs) taken up by plants appeared to be retained in the nonedible part, viz. the roots. Root concentration factors (RCF), foliage/root concentration factors (FRCF), and transpiration stream concentration factors (TSCF) were calculated. For the long chained PFAAs, RCF values were highest, whereas FRCF were lowest. This indicates that uptake by roots is likely governed by sorption of PFAAs to lipid-rich root solids. Translocation from roots to shoots is restricted and highly depending on the hydrophobicity of the compounds. Although the TSCF show that longer-chain PFCAs (e.g., perfluorododecanoic acid) get better transferred from the nutrient solution to the foliage than shorter-chain PFCAs (e.g., perfluoroheptanoic acid), the major fraction of longer-chain PFCAs is found in roots due to additional adsorption from the spiked solution. Due to the strong electron-withdrawing effect of the fluorine atoms the role of the negative charge of the dissociated PFAAs is likely insignificant.

  5. Uptake of azoles by lamb's lettuce (Valerianella locusta L.) grown in hydroponic conditions.

    Science.gov (United States)

    García-Valcárcel, Ana I; Loureiro, Iñigo; Escorial, Concepción; Molero, Encarnación; Tadeo, José L

    2016-02-01

    An uptake and translocation study of azole compounds was performed in lamb's lettuce (Valerianella locusta L.) grown in nutrient solution fortified with different azoles. Three azoles, (clotrimazole, fluconazole and propiconazole), which have different physico-chemical properties and are ubiquitous in the aquatic environment, were the compounds selected. An analytical method, based on matrix solid phase dispersion (MSPD) followed by LC-MS/MS determination, was developed to quantify these compounds in aqueous solution and in roots and leaves. The physicochemical properties of azoles are the main factors governing the uptake and plant accumulation. These azoles were detected in leaves indicating their transport within lamb's lettuce. Translocation from nutrient solution to the aerial part of lamb's lettuce was found to be highly dependent on the hydrophobicity of the azole. Clotrimazole accumulates in roots causing necrosis in roots and leaves, whereas fluconazole was the azole with the highest concentration in leaves without causing apparent phytotoxicity symptoms. The assessment of the levels of these azoles in leaves indicates that the risk for human health is negligible. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Interactive effects of temperature and UVB radiation on methane emissions from different organs of pea plants grown in hydroponic system.

    Science.gov (United States)

    Abdulmajeed, Awatif M; Derby, Samantha R; Strickland, Samantha K; Qaderi, Mirwais M

    2017-01-01

    There is no information on variation of methane (CH 4 ) emissions from plant organs exposed to multiple environmental factors. We investigated the interactive effects of temperature and ultraviolet-B (UVB) radiation on CH 4 emissions from different organs of pea (Pisum sativum L. var. UT234 Lincoln). Plants were grown hydroponically under two temperatures (22/18°C and 28/24°C; 16h day/8h night) and two levels of UVB radiation [0 and 5kJm -2 d -1 ] in controlled-environment growth chambers for ten days, after two weeks of initial growth under ambient temperatures. Methane emission, dry mass, growth index, electrical conductivity (EC), pectin, total chlorophyll content, gas exchange and flavonoids were measured in the appropriate plant organs - leaf, stem and root. Higher temperatures increased CH 4 emissions, leaf mass ratio, and shoot: root mass ratio. Neither temperature nor UVB had significant effects on leaf, stem, root and total dry mass, EC, pectin, total chlorophyll, as well as specific leaf mass. Among plant organs, there were differences in CH 4 , EC, pectin and total chlorophyll. Methane and EC were highest for the stem and lowest for the leaf; leaf had highest, but stem had lowest, pectin content; total chlorophyll was highest in the leaf but lowest in the root. Higher temperatures decreased leaf flavonoids, net carbon dioxide assimilation, and water use efficiency. Overall, environmental stressors increased aerobic CH 4 emission rates, which varied with plant organs. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Mechanisms of Fe biofortification and mitigation of Cd accumulation in rice (Oryza sativa L.) grown hydroponically with Fe chelate fertilization.

    Science.gov (United States)

    Chen, Zhe; Tang, Ye-Tao; Zhou, Can; Xie, Shu-Ting; Xiao, Shi; Baker, Alan J M; Qiu, Rong-Liang

    2017-05-01

    Cadmium contaminated rice from China has become a global food safety issue. Some research has suggested that chelate addition to substrates can affect metal speciation and plant metal content. We investigated the mitigation of Cd accumulation in hydroponically-grown rice supplied with EDTANa 2 Fe(II) or EDDHAFe(III). A japonica rice variety (Nipponbare) was grown in modified Kimura B solution containing three concentrations (0, 10, 100 μΜ) of the iron chelates EDTANa 2 Fe(II) or EDDHAFe(III) and 1 μΜ Cd. Metal speciation in solution was simulated by Geochem-EZ; growth and photosynthetic efficiency of rice were evaluated, and accumulation of Cd and Fe in plant parts was determined. Net Cd fluxes in the meristematic zone, growth zone, and maturation zone of roots were monitored by a non-invasive micro-test technology. Expression of Fe- and Cd-related genes in Fe-sufficient or Fe-deficient roots and leaves were studied by QRT-PCR. Compared to Fe deficiency, a sufficient or excess supply of Fe chelates significantly enhanced rice growth by elevating photosynthetic efficiency. Both Fe chelates increased the Fe content and decreased the Cd content of rice organs, except for the Cd content of roots treated with excess EDDHAFe(III). Compared to EDDHAFe(III), EDTANa 2 Fe(II) exhibited better mitigation of Cd accumulation in rice by generating the EDTANa 2 Cd complex in solution, decreasing net Cd influx and increasing net Cd efflux in root micro-zones. Application of EDTANa 2 Fe(II) and EDDHAFe(III) also reduced Cd accumulation in rice by inhibiting expression of genes involved in transport of Fe and Cd in the xylem and phloem. The 'win-win' situation of Fe biofortification and Cd mitigation in rice was achieved by application of Fe chelates. Root-to-stem xylem transport of Cd and redistribution of Cd in leaves by phloem transport can be regulated in rice through the use of Fe chelates that influence Fe availability and Fe-related gene expression. Fe fertilization

  8. Effect of bacterial root symbiosis and urea as source of nitrogen on performance of soybean plants grown hydroponically for Bioregenerative Life Support Systems (BLSSs).

    Science.gov (United States)

    Paradiso, Roberta; Buonomo, Roberta; Dixon, Mike A; Barbieri, Giancarlo; De Pascale, Stefania

    2015-01-01

    Soybean is traditionally grown in soil, where root symbiosis with Bradyrhizobium japonicum can supply nitrogen (N), by means of bacterial fixation of atmospheric N2. Nitrogen fertilizers inhibit N-fixing bacteria. However, urea is profitably used in soybean cultivation in soil, where urease enzymes of telluric microbes catalyze the hydrolysis to ammonium, which has a lighter inhibitory effect compared to nitrate. Previous researches demonstrated that soybean can be grown hydroponically with recirculating complete nitrate-based nutrient solutions. In Space, urea derived from crew urine could be used as N source, with positive effects in resource procurement and waste recycling. However, whether the plants are able to use urea as the sole source of N and its effect on root symbiosis with B. japonicum is still unclear in hydroponics. We compared the effect of two N sources, nitrate and urea, on plant growth and physiology, and seed yield and quality of soybean grown in closed-loop Nutrient Film Technique (NFT) in growth chamber, with or without inoculation with B. japonicum. Urea limited plant growth and seed yield compared to nitrate by determining nutrient deficiency, due to its low utilization efficiency in the early developmental stages, and reduced nutrients uptake (K, Ca, and Mg) throughout the whole growing cycle. Root inoculation with B. japonicum did not improve plant performance, regardless of the N source. Specifically, nodulation increased under fertigation with urea compared to nitrate, but this effect did not result in higher leaf N content and better biomass and seed production. Urea was not suitable as sole N source for soybean in closed-loop NFT. However, the ability to use urea increased from young to adult plants, suggesting the possibility to apply it during reproductive phase or in combination with nitrate in earlier developmental stages. Root symbiosis did not contribute significantly to N nutrition and did not enhance the plant ability to use

  9. Management Effects On Quality of Organically Grown Winter Wheat

    DEFF Research Database (Denmark)

    Thomsen, Ingrid Kaag; Schweinzer, A.; Friedel, J. K.

    2013-01-01

    The potential for improving wheat grain quality by management strategies involving crop rotation, catch crops, and organic manure was tested in organic long-term experiments in Denmark and Austria. Growing grass clover in a four-year rotation resulted in a higher wheat yield increase that could n...

  10. THE EFFECT OF OZONE ON BELOW-GROUND CARBON ALLOCATION IN WHEAT

    Science.gov (United States)

    Short term 14CO2 pulse and chase experiments were conducted in order to investigate the effect ozone on below-ground carbon allocation in spring wheat seedlings (Triticum aestivumL. ?ANZA'). Wheat seedlings were grown in a sand-hydroponic system and exposed to either high ozone ...

  11. Leaf and stripe rust resistance among Ethiopian grown wheat ...

    African Journals Online (AJOL)

    The result indicated that 20 varieties and lines harbor resistance to the leaf rust and 26 to the stripe rust pathotypes showing infection types <2+. Twelve bread wheat varieties and lines (Et-13 A2, HAR 1407 [Tusie], HAR 1775 [Tura], HAR 1920, HAR 2192, HAR 2534, HAR 2536, HAR 2561, HAR 2563 and three durum lines ...

  12. Hands-On Hydroponics

    Science.gov (United States)

    Carver, Jeffrey; Wasserman, Bradley

    2012-01-01

    Hydroponics is a process in which plants are grown using nutrient-rich water instead of soil. Because this process maximizes the use of water and nutrients--providing only what the plant uses in controlled and easily maintained systems--it is a viable alternative to traditional farming methods. The amount of control in these systems also ensures…

  13. Silica Deposition on the Leaves of Mir- and Earth-Grown Super Dwarf Wheat

    Science.gov (United States)

    Campbell, William F.; Bubenheim, David L.; Salisbury, Frank B.; Bingham, Gail E.; McManus, William R.; Biesinger, H. D.; Strickland, D. T.; Levinskikh, Maragarita; Sytchev, Vladimir N.; Podolsky, Igor

    2000-01-01

    Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) microanalysis were used to investigate the nature of crystals deposited on leaves of Mir- and Earth-grown Super Dwarf wheat (Triticum aestivum L.) plants. Leaves from these plants exhibited dense and uniformly distributed crystals on leaf abaxial surfaces when viewed by SEM. Young leaves showed that crystals initially accumulated around the stomata on the adaxial surface, but became more dense and uniformly distributed as the leaves aged. EDX microanalyses of the Balkanine (a nutrient charged clinoptilolite zeolite) medium in which the wheat plants were grown showed an elemental pattern similar to that observed on the wheat leaves. The absence of N and P in the Balkanine suggests that they were completely utilized by the plants. Only Si and O were evident in the drying agent, Sorb-it-Silica (trademark), and perhaps could have accounted for some of the Si observed on the plant tissue.

  14. Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions.

    Science.gov (United States)

    Driever, Steven M; Simkin, Andrew J; Alotaibi, Saqer; Fisk, Stuart J; Madgwick, Pippa J; Sparks, Caroline A; Jones, Huw D; Lawson, Tracy; Parry, Martin A J; Raines, Christine A

    2017-09-26

    To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf photosynthesis in wheat, the level of the Calvin-Benson cycle enzyme sedoheptulose-1,7-biphosphatase (SBPase) has been increased through transformation and expression of a Brachypodium distachyon SBPase gene construct. Transgenic lines with increased SBPase protein levels and activity were grown under greenhouse conditions and showed enhanced leaf photosynthesis and increased total biomass and dry seed yield. This showed the potential of improving yield potential by increasing leaf photosynthesis in a crop species such as wheat. The results are discussed with regard to future strategies for further improvement of photosynthesis in wheat.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Authors.

  15. Deciphering Phosphate Deficiency-Mediated Temporal Effects on Different Root Traits in Rice Grown in a Modified Hydroponic System

    Science.gov (United States)

    Negi, Manisha; Sanagala, Raghavendrarao; Rai, Vandna; Jain, Ajay

    2016-01-01

    Phosphate (Pi), an essential macronutrient for growth and development of plant, is often limiting in soils. Plants have evolved an array of adaptive strategies including modulation of root system architecture (RSA) for optimal acquisition of Pi. In rice, a major staple food, RSA is complex and comprises embryonically developed primary and seminal roots and post-embryonically developed adventitious and lateral roots. Earlier studies have used variant hydroponic systems for documenting the effects of Pi deficiency largely on primary root growth. Here, we report the temporal effects of Pi deficiency in rice genotype MI48 on 15 ontogenetically distinct root traits by using easy-to-assemble and economically viable modified hydroponic system. Effects of Pi deprivation became evident after 4 days- and 7 days-treatments on two and eight different root traits, respectively. The effects of Pi deprivation for 7 days were also evident on different root traits of rice genotype Nagina 22 (N22). There were genotypic differences in the responses of primary root growth along with lateral roots on it and the number and length of seminal and adventitious roots. Notably though, there were attenuating effects of Pi deficiency on the lateral roots on seminal and adventitious roots and total root length in both these genotypes. The study thus revealed both differential and comparable effects of Pi deficiency on different root traits in these genotypes. Pi deficiency also triggered reduction in Pi content and induction of several Pi starvation-responsive (PSR) genes in roots of MI48. Together, the analyses validated the fidelity of this modified hydroponic system for documenting Pi deficiency-mediated effects not only on different traits of RSA but also on physiological and molecular responses. PMID:27200025

  16. Effect of Ni and Urea on Growth, Nitrate and Nutrients Concentration in Lettuce (Lactuca sativa) Grown in Hydroponics

    OpenAIRE

    Hosein Nazari Mamaqani; Seyed Jalal Tabatabaei

    2017-01-01

    Introduction: The N source used in commercial hydroponic culture of vegetables is mainly NO3-N. The rate of NO3- uptake is usually high, particularly in leafy vegetables and it can be markedly increased when the NO3- supply in the environment is high. An abundant N supply leads to a high NO3-N absorption and accumulation in plants. When NO3- rich vegetables are consumed, various harmful effects on human health may occur such as met-hemoglobinemia (Blue Baby Syndrome) and cancer. Keeping level...

  17. Influence of Hydroponically Grown Hoyt Soybeans and Radiation Encountered on Mars Missions on the Yield and Quality of Soymilk and Tofu

    Science.gov (United States)

    Wilson, Lester A.

    2005-01-01

    Soybeans were chosen for hmar and planetary missions due to their nutritive value and ability to produce oil and protein for further food applications. However, soybeans must be processed into foods prior to crew consumption. Wilson et al. (2003) raised questions about (1) the influence of radiation (on germination and functional properties) that the soybeans would be exposed to during bulk storage for a Mars mission, and (2) the impact of using hydroponically grown versus field grown soybeans on the yield and quality of soyfoods. The influence of radiation can be broken down into two components: (A) affect of surface pasteurization to ensure the astronauts safety from food-borne illnesses (a Hazard Analysis Critical Control Point), and (B) affect of the amount of radiation the soybeans receive during a Mars mission. Decreases in the amount of natural antioxidants and free radical formation and oxidation induced changes in the soybean (lipid, protein, etc.) will influence the nutritional value, texture, quality, and safety of soyfoods made from them. The objectives of this project are to (1) evaluate the influence of gamma and electron beam radiation on bulk soybeans (HACCP, CCP) on the microbial load, germination, ease of processing, and quality of soymilk and tofu; (2) provide scale up and mass balance data for Advanced Life Support subsystems including Biomass, Solid Waste Processing, and Water Recovery Systems; and (3) to compare Hoyt field grown to hydroponically grown Hoyt soybeans for soymilk and tofu production. The soybean cultivar Hoyt, a small standing, high protein cultivar that could grow hydroponically in the AIMS facility on Mars) was evaluated for the production of soymilk and tofu. The quality and yield of the soymilk and tofu from hydroponic Hoyt, was compared to Vinton 81 (a soyfood industry standard), field Hoyt, IA 2032LS (lipoxygenase-free), and Proto (high protein and antioxidant potential). Soymilk and tofu were produced using the Japanese

  18. Root distribution of paddy and wheat grown on differing soil and water conditions

    International Nuclear Information System (INIS)

    Jha, M.N.; Subbiah, B.V.

    1977-01-01

    Two varieties of paddy and one variety of wheat were grown on two soil texture types - paddy on silty clay loam and wheat on sandy loam. Wheat crop was grown on a well drained plot and given normally scheduled irrigation while paddy was given normal and restricted irrigation. The root distribution pattern of these crops was determined. Under normal irrigation, NP 130 showed greater proportion of roots in a soil zone of 16 cm depth and 16.5 cm lateral distance. In case of Padma, the trend was similar to NP 130. More roots were found in a soil zone of 8 cm depth and 22.5 cm lateral distance. Under restricted irrigation, NP 130 showed greater proportion upto 16 cm depth and 22.5 cm lateral distance. In case of Padma, larger proportion of roots was found to be in a soil zone of 8 cm depth and 16.5 cm lateral distance. The root distribution of wheat described almost cylindrical geometry with little overall lateral growth. Regardless of treatments, roots showed a tendency to describe a cylindrical geometry (of about 1.5 cm dia and 32 cm depth). Water stress does effect the root distribution pattern of crops. Other conditions remaining the same, the narrow root cylinder described by the crops of paddy and wheat could possibly be a genetically controlled behaviour. 32 P plant injection technique was used in the study. (author)

  19. Differential effects of aluminium on the seedling parameters of wheat ...

    African Journals Online (AJOL)

    Differential effects of aluminium on the seedling parameters of wheat. ... African Journal of Biotechnology ... and Maroon (Al tolerant) were grown on hydroponic solution (non modified Hoagland) containing AlCl3 (0-100-200-300 μM). Factorial ...

  20. Impact of rhizobial inoculation and reduced N supply on biomass production and biological N2 fixation in common bean grown hydroponically.

    Science.gov (United States)

    Kontopoulou, Charis-Konstantina; Liasis, Epifanios; Iannetta, Pietro Pm; Tampakaki, Anastasia; Savvas, Dimitrios

    2017-10-01

    Testing rhizobial inoculation of common bean (Phaseolus vulgaris L.) in hydroponics enables accurate quantification of biological N 2 fixation (BNF) and provides information about the potential of reducing inorganic N fertilizer use. In view of this background, common bean grown on pumice was inoculated with Rhizobium tropici CIAT899 (Rt) and supplied with either full-N (total nitrogen 11.2 mmol L -1 ), 1/3 of full-N or N-free nutrient solution (NS). BNF was quantified at the early pod-filling stage using the 15 N natural abundance method. Full-N supply to Rt-inoculated plants resulted in markedly smaller nodules than less- or zero-N supply, and no BNF. Rt inoculation of full-N-treated plants did not increase biomass and pod yield compared with non-inoculation. Restriction (1/3 of full-N) or omission of inorganic N resulted in successful nodulation and BNF (54.3 and 49.2 kg N ha -1 , corresponding to 58 and 100% of total plant N content respectively) but suppressed dry shoot biomass from 191.7 (full-N, +Rt) to 107.4 and 43.2 g per plant respectively. Nutrient cation uptake was reduced when inorganic N supply was less or omitted. Rt inoculation of hydroponic bean provides no advantage when full-N NS is supplied, while 1/3 of full-N or N-free NS suppresses plant biomass and yield, partly because the restricted NO 3 - supply impairs cation uptake. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Impact of two iron(III) chelators on the iron, cadmium, lead and nickel accumulation in poplar grown under heavy metal stress in hydroponics.

    Science.gov (United States)

    Mihucz, Victor G; Csog, Árpád; Fodor, Ferenc; Tatár, Enikő; Szoboszlai, Norbert; Silaghi-Dumitrescu, Luminiţa; Záray, Gyula

    2012-04-15

    Poplar (Populus jacquemontiana var. glauca cv. Kopeczkii) was grown in hydroponics containing 10 μM Cd(II), Ni(II) or Pb(II), and Fe as Fe(III) EDTA or Fe(III) citrate in identical concentrations. The present study was designed to compare the accumulation and distribution of Fe, Cd, Ni and Pb within the different plant compartments. Generally, Fe and heavy-metal accumulation were higher by factor 2-7 and 1.6-3.3, respectively, when Fe(III) citrate was used. Iron transport towards the shoot depended on the Fe(III) chelate and, generally, on the heavy metal used. Lead was accumulated only in the root. The amounts of Fe and heavy metals accumulated by poplar were very similar to those of cucumber grown in an identical way, indicating strong Fe uptake regulation of these two Strategy I plants: a cultivar and a woody plant. The Strategy I Fe uptake mechanism (i.e. reducing Fe(III) followed by Fe(II) uptake), together with the Fe(III) chelate form in the nutrient solution had significant effects on Fe and heavy metal uptake. Poplar appears to show phytoremediation potential for Cd and Ni, as their transport towards the shoot was characterized by 51-54% and 26-48% depending on the Fe(III) supply in the nutrient solution. Copyright © 2012 Elsevier GmbH. All rights reserved.

  2. Do rhizospheric processes linked to P nutrition participate in U absorption by Lupinus albus grown in hydroponics?

    International Nuclear Information System (INIS)

    Tailliez, Antoine; Pierrisnard, Sylvie; Camilleri, Virginie; Keller, Catherine; Henner, Pascale

    2013-01-01

    Phosphate (P) is an essential element for plant development but is generally present in limiting amount in the soil solution. Plant species have developed different mechanisms promoting the solubilization of this element in soils to ensure a sufficient supply for their growth. One of these mechanisms is based on the ability of certain species such as L. albus to exude large amounts of citrate through specific tertiary roots called cluster-roots. Uranium (U) is an ubiquitous contaminant known firstly for its chemical toxicity and secondly for its high affinity for P with which it forms low-soluble complexes in soils. We highlight the effects of P–U interaction on the physiology of L. albus and particularly on citrate exudation, and the impact of this root process on the phytoavailability of U and its accumulation in plants in a hydroponic study. Different levels of P (1 and 100 μM) and U (0 and 20 μM) have been tested. Our results show no toxicity of U on the development of L. albus with an adequate P supply, whereas the effects of P starvation are amplified by the presence of U in the growth medium, except for the production of cluster-roots. Citrate exudation is totally inhibited by U in a low-P environment whereas it increases in the presence of U when its toxicity is lowered by the addition of P. The differences observed in terms of toxicity and accumulation are partly explained by the microphotographs obtained by electron microscopy (TEM-EDX): in the absence of P, U penetrates deep into the roots and causes lethal damages, whereas in presence of P, we observe the formation of U–P complexes which limit the internalization of the pollutant and so its toxicity. -- Highlights: • The behavior of white lupine ±P and ±U exposure is studied in hydroponics. • The toxicity of 20 μM U is the strongest under low-P-condition. • P starvation induces citrate exudation only in P deficient plant not exposed to U. • U promotes exudation of citrate in P

  3. Cell wall degrading enzymes in Trichoderma asperellum grown on wheat bran

    DEFF Research Database (Denmark)

    Bech, Lasse; Busk, Peter Kamp; Lange, Lene

    2015-01-01

    . asperellum was grown on wheat bran, the greatest range of enzymes activity was detected and a total of 175 glycoside hydrolases from 48 glycoside hydrolase families were identified in the transcriptome. The glycoside hydrolases were identified on a functional level using the bioinformatical tool Peptide...... the theory that the glycoside hydrolases have evolved from a common ancestor, followed by a specialization in which saprotrophic fungi such as T. reesei and T. longibrachiatum lost a significant number of genes including several glycoside hydrolases....

  4. Improvement of wheat yield grown under drought stress by boron foliar application at different growth stages

    Directory of Open Access Journals (Sweden)

    F.M.F. Abdel-Motagally

    2018-04-01

    Full Text Available Two field experiments were conducted to determine the effect of boron foliar application and water stress on yield of wheat plant grown in calcareous soil during 2013/2014 and 2014/2015 seasons. The highest mean values obtained against boron application time were potential contributor to total grains mass by improving the plant height (99.42 and 98.32 cm, spike length (11.86 and 11.72 cm, number of spikelets m−2 (332.65 and 324.35, grain yield plant−1 (21.56 and 20.26 g, 1000-grain weight (35.2 and 37.4 g and grain yield (1.87 and 1.85 ton fed.−1, which were recorded at normal irrigation level (100% from the amount of water consumption for wheat with boron spraying at booting stage (B1 in the first and second seasons, respectively. Furthermore, boron application significantly enhanced all studied growth traits under water stress levels (50% from the amount of water consumption for wheat compared to B-untreated plants. Boron spraying at booting stage enhances also plant pigments contents recording its highest mean values under normal water level (100% from the amount of water consumption for wheat. The reduction in stress markers (proline and H2O2 and the enhancement of plant pigments content under water stress levels (50% from the amount of water consumption for wheat by B spraying suggests an alleviating effect of boron foliar application to water stress in the test plant. This alleviating effect was more pronounced when B applied at booting stage. Therefore, booting stage was found to be the best time for boron application to get higher grains production and consequently, better economic returns of wheat. Keywords: Wheat, Growth stages, Boron application time, Water stress, Crop yield, Plant pigments, Proline, H2O2

  5. Do rhizospheric processes linked to P nutrition participate in U absorption by Lupinus albus grown in hydroponics?

    Science.gov (United States)

    Tailliez, Antoine; Pierrisnard, Sylvie; Camilleri, Virginie; Keller, Catherine; Henner, Pascale

    2013-10-01

    Phosphate (P) is an essential element for plant development but is generally present in limiting amount in the soil solution. Plant species have developed different mechanisms promoting the solubilization of this element in soils to ensure a sufficient supply for their growth. One of these mechanisms is based on the ability of certain species such as L. albus to exude large amounts of citrate through specific tertiary roots called cluster-roots. Uranium (U) is an ubiquitous contaminant known firstly for its chemical toxicity and secondly for its high affinity for P with which it forms low-soluble complexes in soils. We highlight the effects of P-U interaction on the physiology of L. albus and particularly on citrate exudation, and the impact of this root process on the phytoavailability of U and its accumulation in plants in a hydroponic study. Different levels of P (1 and 100 μM) and U (0 and 20 μM) have been tested. Our results show no toxicity of U on the development of L. albus with an adequate P supply, whereas the effects of P starvation are amplified by the presence of U in the growth medium, except for the production of cluster-roots. Citrate exudation is totally inhibited by U in a low-P environment whereas it increases in the presence of U when its toxicity is lowered by the addition of P. The differences observed in terms of toxicity and accumulation are partly explained by the microphotographs obtained by electron microscopy (TEM-EDX): in the absence of P, U penetrates deep into the roots and causes lethal damages, whereas in presence of P, we observe the formation of U-P complexes which limit the internalization of the pollutant and so its toxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Biochar filters reduced the toxic effects of nickel on tomato (Lycopersicon esculentum L.) grown in nutrient film technique hydroponic system.

    Science.gov (United States)

    Mosa, Ahmed; El-Banna, Mostafa F; Gao, Bin

    2016-04-01

    This work used the nutrient film technique to evaluate the role of biochar filtration in reducing the toxic effects of nickel (Ni(2+)) on tomato growth. Three hydroponic treatments: T1 (control), T2 (with Ni(2+)), and T3 (with Ni(2+) and biochar) were used in the experiments. Scanning electron microscopy equipped with energy dispersive X-ray spectroscopy and Fourier transform spectroscopy was used to characterize the pre- and post-treatment biochar samples. The results illustrated that precipitation, ion exchange, and complexation with surface functional groups were the potential mechanisms of Ni(2+) removal by biochar. In comparison to the control, the T2 treatment showed severe Ni-stress with alterations in cell wall structure, distortions in cell nucleus, disturbances in mitochondrial system, malformations in stomatal structure, and abnormalities in chloroplast structure. The biochar filters in T3 treatment reduced dysfunctions of cell organelles in root and shoot cells. Total chlorophyll concentration decreased by 41.6% in T2 treatment. This reduction, however, was only 20.8% due to the protective effect of the biochar filters. The presence of Ni(2+) in the systems reduced the tomato fruit yield 58.5% and 31.9% in T2 and T3, respectively. Nickel concentrations reached the toxic limit in roots, shoots, and fruits in T2, which were not observed in T3. Biochar filters in T3 also minimized the dramatic reductions in nutrients concentration in roots, shoots, and fruits, which occurred in T2 treatment due to the severe Ni-stress. Findings from this work suggested that biochar filters can be used on farms as a safeguard for wastewater irrigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Nutrient and salinity concentrations effects on quality and storability of cherry tomato fruits grown by hydroponic system

    Directory of Open Access Journals (Sweden)

    Mohammad Zahirul Islam

    2018-04-01

    Full Text Available ABSTRACT This study was conducted to investigate the effects of nutrient and salinity concentrations on the quality of deepflow technique hydroponic system cultivated cherry tomatoes (Lycopersicon esculentum Mill ‘Unicorn’. The conditions were: (1 control (NS-1 × nutrient Solution, Electrical Conductivity – EC: 2.5 mS∙cm–1; (2 2 × NS (2 × NS-Double NS, EC: 5 mS∙cm–1; (3 NS + 4.23 mM NaCl (NaCl-Sodium Chloride, EC: 5 mS∙cm–1; and (4 NS + 13.70 mM Sea Water – SW (EC: 7.5 mS∙cm–1. NS + 13.70 mM SW treatment showed the lowest fresh weight loss. Visual quality as well as shelf life was the longest in NS (1 × nutrient solution treated tomato fruits. The longest shelf life at 5 °C, 11 °C, and 24 °C were 21, 16, and 8 days, respectively, in NS (1 × nutrient solution treated tomato fruits. The highest firmness was recorded in NS (1 × nutrient solution treated tomato fruits, which was retained after storage. Moreover, NS + 13.70 mM SW treatment increased the cherry tomato fruit’s quality, especially soluble solids and sugar contents. These results indicate that salinity concentration has effect the soluble solids and sugar of cherry tomato fruits. In addition, nutrient concentration influenced the shelf life and firmness of cherry tomato fruits.

  8. Role of arbuscular mycorrhiza in alleviating salinity stress in wheat (Triticum aestivum L.) grown under ambient and elevated CO2

    DEFF Research Database (Denmark)

    Zhu, X.; Song, F.; Liu, S.

    2016-01-01

    fungi enhanced NUE by altering plant C assimilation and N uptake. AM plants had higher soluble sugar concentration and [K+]: [Na+] ratio compared with non-AM plants. It is concluded that AM symbiosis improves wheat plant growth at vegetative stages through increasing stomatal conductance, enhancing NUE...... role of AM fungus in alleviating salinity stress in wheat (Triticum aestivum L.) plants grown under ambient and elevated CO2 concentrations. Wheat plants inoculated or not inoculated with AM fungus were grown in two glasshouses with different CO2 concentrations (400 and 700 μmol l−1) and salinity......, accumulating soluble sugar, and improving ion homeostasis in wheat plants grown at elevated CO2 and salinity stress....

  9. Impact of nitrogen source and supply level on growth, yield and nutritional value of two contrasting ecotypes of Cichorium spinosum L. grown hydroponically.

    Science.gov (United States)

    Chatzigianni, Martina; Alkhaled, Bara'a; Livieratos, Ioannis; Stamatakis, Aristidis; Ntatsi, Georgia; Savvas, Dimitrios

    2018-03-01

    In the present study, two contrasting stamnagathi (Cichorium spinosum L.) ecotypes originating either from a mountainous or from a seaside habitat were grown hydroponically and supplied with a nutrient solution differing in the total-N level (4 or 16 mmol L -1 ) and the N source (NH 4 + -N/total-N: 0.05, 0.25 or 0.50). The aim was to search for genotypic differences in nitrogen nutrition. At commercial maturity, the dry weight of mountainous plants was higher than that of seaside plants. The shoot mineral concentrations were higher in seaside plants than in mountainous plants in both harvests. The leaf nitrate concentration was influenced by the levels of both total-N and NH 4 + -N/total-N at both harvests, whereas plants with a seaside origin exhibited higher nitrate concentrations than those originating from a mountainous site in all total-N and NH 4 + -N/total-N treatments. The two stamnagathi ecotypes differed considerably in their responses to nitrogen nutrition and tissue nitrate content. The mountainous ecotype was superior in terms of growth, tissue nitrate concentration and antioxidant capacity, whereas the seaside ecotype accumulated more nutrient microcations in leaves. A low total-N concentration (up to 4 mmol L -1 ) combined with a high NH 4 + -N/total-N ratio (up to 0.05) could minimize tissue NO 3 - concentrations without compromising yield. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Accumulation and distribution of iron, cadmium, lead and nickel in cucumber plants grown in hydroponics containing two different chelated iron supplies.

    Science.gov (United States)

    Csog, Árpád; Mihucz, Victor G; Tatár, Eniko; Fodor, Ferenc; Virág, István; Majdik, Cornelia; Záray, Gyula

    2011-07-01

    Cucumber plants grown in hydroponics containing 10 μM Cd(II), Ni(II) and Pb(II), and iron supplied as Fe(III) EDTA or Fe(III) citrate in identical concentrations, were investigated by total-reflection X-ray fluorescence spectrometry with special emphasis on the determination of iron accumulation and distribution within the different plant compartments (root, stem, cotyledon and leaves). The extent of Cd, Ni and Pb accumulation and distribution were also determined. Generally, iron and heavy-metal contaminant accumulation was higher when Fe(III) citrate was used. The accumulation of nickel and lead was higher by about 20% and 100%, respectively, if the iron supply was Fe(III) citrate. The accumulation of Cd was similar. In the case of Fe(III) citrate, the total amounts of Fe taken up were similar in the control and heavy-metal-treated plants (27-31 μmol/plant). Further, the amounts of iron transported from the root towards the shoot of the control, lead- and nickel-contaminated plants were independent of the iron(III) form. Although Fe mobility could be characterized as being low, its distribution within the shoot was not significantly affected by the heavy metals investigated. Copyright © 2011 Elsevier GmbH. All rights reserved.

  11. Sensory, yield and quality differences between organically and conventionally grown winter wheat.

    Science.gov (United States)

    Arncken, Christine M; Mäder, Paul; Mayer, Jochen; Weibel, Franco P

    2012-11-01

    Consumers expect organic produce to have higher environmental, health and sensory related qualities than conventional produce. In order to test sensory differences between bio-dynamically, bio-organically and conventionally grown winter wheat (Triticum aestivum L., cv. Runal), we performed double-blinded triangle tests with two panels on dry wholemeal flour from the harvest years 2006, 2007 and 2009 and from two field replicates of the 'DOK' long-term farming system comparison field trial near Basel, Switzerland. Yield and quality parameters were also assessed. Significant farming system effects were found for yield (up to 42% reduction in the organic system), thousand kernel weight, hectolitre weight and crude protein content across the three years. In the triangle tests one out of 12 pair-wise farming system comparisons (PFSCs) on wholemeal flour made from the different wheat samples showed significant sensory differentiation (between bio-dynamically and conventionally grown wheat). When all data from the three harvest years and two panels were aggregated, a statistically significant effect (P = 0.045) of PFSCs on the number of correct answers became evident. Although testing of dry wholemeal flour was very challenging for panellists, we were able to show that sensory differences between farming systems can occur. Copyright © 2012 Society of Chemical Industry.

  12. Reuse of hydroponic waste solution.

    Science.gov (United States)

    Kumar, Ramasamy Rajesh; Cho, Jae Young

    2014-01-01

    Attaining sustainable agriculture is a key goal in many parts of the world. The increased environmental awareness and the ongoing attempts to execute agricultural practices that are economically feasible and environmentally safe promote the use of hydroponic cultivation. Hydroponics is a technology for growing plants in nutrient solutions with or without the use of artificial medium to provide mechanical support. Major problems for hydroponic cultivation are higher operational cost and the causing of pollution due to discharge of waste nutrient solution. The nutrient effluent released into the environment can have negative impacts on the surrounding ecosystems as well as the potential to contaminate the groundwater utilized by humans for drinking purposes. The reuse of non-recycled, nutrient-rich hydroponic waste solution for growing plants in greenhouses is the possible way to control environmental pollution. Many researchers have successfully grown several plant species in hydroponic waste solution with high yield. Hence, this review addresses the problems associated with the release of hydroponic waste solution into the environment and possible reuse of hydroponic waste solution as an alternative resource for agriculture development and to control environmental pollution.

  13. Stem base diseases of winter wheat grown after forecrops of the family Brassicaceae

    Directory of Open Access Journals (Sweden)

    Barbara Majchrzak

    2012-12-01

    Full Text Available A study into the sanitary state of roots and culm base of winter wheat was carried out in 1999-2002 in the Production and Experimental Station in Bałcyny near Ostróda. Experimental wheat was cultivated after spring cross plants such as spring oilseed rape (Brassica napus ssp. oleiferus Metz., white mustard (Sinapis alba L, chinese mustard (Brassica juncea L., oleiferous radish (Raphanus sativus var. oleiferus L., false flax (Camelina sativa L., crambe (Crambe abbysinica Hoechst. and after oats (Avena sativa L. as a control. The other experimental factor was the method of after-harvest residue management, i.e. ploughing in the stubble, ploughing in the stubble and straw, ploughing in the stubble and straw with nitrogen added. The occurrence of root rot and stem base diseases was affected by weather conditions and forecrop species. Winter wheat roots were attacked to the lowest degree when spring rape and radish were used as forecrops, and to the highest degree - when grown after oat. The culm base was most intensely infected with fusarium foot rot (Fusarium spp.. The remaining root-rot diseases occurred every year but with different intensity. The method of utilization of after-harvest residues did not have a clear effect on the intensity of infection of the roots and culm base of winter wheat.

  14. Effect of biweekly shoot tip harvests on the growth and yield of Georgia Jet sweet potato grown hydroponically

    Science.gov (United States)

    Ogbuehi, Cyriacus R.; Loretan, Phil A.; Bonsi, C. K.; Hill, Walter A.; Morris, Carlton E.; Biswas, P. K.; Mortley, Desmond G.

    1989-01-01

    Sweet potato shoot tips have been shown to be a nutritious green vegetable. A study was conducted to determine the effect of biweekly shoot tip harvests on the growth and yield of Georgia Jet sweet potato grown in the greenhouse using the nutrient film technique (NFT). The nutrient solution consisted of a modified half Hoagland solution. Biweekly shoot tip harvests, beginning 42 days after planting, provided substantial amounts of vegetable greens and did not affect the fresh and dry foliage weights or the storage root number and fresh and dry storage root weights at final harvest. The rates of anion and cation uptake were not affected by tip harvests.

  15. Hydroponic Culture

    Science.gov (United States)

    Steucek, G. L.; Yurkiewicz, W. J.

    1973-01-01

    Describes a hydroponic culture technique suitable for student exercises in biology. This technique of growing plants in nutrient solutions enhances plant growth, and is an excellent way to obtain intact plants with root systems free of soil or other particulate matter. (JR)

  16. Hydroponic Gardening

    Science.gov (United States)

    Julinor, Helmut

    1976-01-01

    In addition to being an actual source of foodstuffs in inhospitable climates and a potential source of a large portion of the world's food supply, hydroponic gardening is a useful technique in the classroom for illustrating the role of plant life in the world's food chain. (MB)

  17. The effects of foliar fertilization with iron sulfate in chlorotic leaves are limited to the treated area. A study with peach trees (Prunus persica L. Batsch grown in the field and sugar beet (Beta vulgaris L. grown in hydroponics

    Directory of Open Access Journals (Sweden)

    Hamdi eEl-Jendoubi

    2014-01-01

    Full Text Available Crop Fe deficiency is a worldwide problem. The aim of this study was to assess the effects of foliar Fe applications in two species grown in different environments: peach (Prunus persica L. Batsch trees grown in the field and sugar beet (Beta vulgaris L. cv. ‘Orbis’ grown in hydroponics. The distal half of Fe-deficient, chlorotic leaves was treated with Fe sulfate by dipping and using a brush in peach trees and sugar beet plants, respectively. The re-greening of the distal (Fe-treated and basal (untreated leaf areas was monitored, and the nutrient and photosynthetic pigment composition of the two areas were also determined. Leaves were also studied using chlorophyll fluorescence imaging, low temperature-scanning electron microscopy microanalysis, scanning transmission ion microscopy-particle induced X-ray emission and Perls Fe staining. The distal, Fe-treated leaf parts of both species showed a significant increase in Fe concentrations (across the whole leaf volume and marked re-greening, with significant increases in the concentrations of all photosynthetic pigments, as well as decreases in de-epoxidation of xanthophyll cycle carotenoids and increases in photochemical efficiency. In the basal, untreated leaf parts, Fe concentrations increased slightly, but little re-greening occurred. No changes in the concentrations of other nutrients were found. Foliar Fe fertilization was effective in re-greening treated leaf areas both in peach trees and sugar beet plants. Results indicate that the effects of foliar Fe-sulfate fertilization in Fe-deficient, chlorotic leaves were minor outside the leaf surface treated, indicating that Fe mobility within the leaf is a major constraint for full fertilizer effectiveness in crops where Fe-deficiency is established and leaf chlorosis occurs.

  18. The effects of foliar fertilization with iron sulfate in chlorotic leaves are limited to the treated area. A study with peach trees (Prunus persica L. Batsch) grown in the field and sugar beet (Beta vulgaris L.) grown in hydroponics.

    Science.gov (United States)

    El-Jendoubi, Hamdi; Vázquez, Saúl; Calatayud, Angeles; Vavpetič, Primož; Vogel-Mikuš, Katarina; Pelicon, Primož; Abadía, Javier; Abadía, Anunciación; Morales, Fermín

    2014-01-01

    Crop Fe deficiency is a worldwide problem. The aim of this study was to assess the effects of foliar Fe applications in two species grown in different environments: peach (Prunus persica L. Batsch) trees grown in the field and sugar beet (Beta vulgaris L. cv. "Orbis") grown in hydroponics. The distal half of Fe-deficient, chlorotic leaves was treated with Fe sulfate by dipping and using a brush in peach trees and sugar beet plants, respectively. The re-greening of the distal (Fe-treated) and basal (untreated) leaf areas was monitored, and the nutrient and photosynthetic pigment composition of the two areas were also determined. Leaves were also studied using chlorophyll fluorescence imaging, low temperature-scanning electron microscopy microanalysis, scanning transmission ion microscopy-particle induced X-ray emission and Perls Fe staining. The distal, Fe-treated leaf parts of both species showed a significant increase in Fe concentrations (across the whole leaf volume) and marked re-greening, with significant increases in the concentrations of all photosynthetic pigments, as well as decreases in de-epoxidation of xanthophyll cycle carotenoids and increases in photochemical efficiency. In the basal, untreated leaf parts, Fe concentrations increased slightly, but little re-greening occurred. No changes in the concentrations of other nutrients were found. Foliar Fe fertilization was effective in re-greening treated leaf areas both in peach trees and sugar beet plants. Results indicate that the effects of foliar Fe-sulfate fertilization in Fe-deficient, chlorotic leaves were minor outside the leaf surface treated, indicating that Fe mobility within the leaf is a major constraint for full fertilizer effectiveness in crops where Fe-deficiency is established and leaf chlorosis occurs.

  19. Bemisia tabaci MED Population Density as Affected by Rootstock-Modified Leaf Anatomy and Amino Acid Profiles in Hydroponically Grown Tomato

    Directory of Open Access Journals (Sweden)

    Katja Žanić

    2018-02-01

    Full Text Available Bemisia tabaci is one of the most devastating pests in tomato greenhouse production. Insecticide resistance management for B. tabaci requires a novel approach that maximizes non-chemical methods for pest control. The aim of this study was to test the effects of rootstocks on B. tabaci populations in hydroponically grown tomato plants. In order to contribute to the better understanding of the mechanisms defining the attractiveness of plant to the aerial pest, the effects of rootstocks on leaf anatomy and the amino acid composition of phloem sap were assessed. A two-factorial experimental design was adopted using cultivars (rootstock cultivars and Clarabella grown as either non-grafted or grafted with cultivar Clarabella as a scion. The rootstock cultivars included Arnold, Buffon, Emperador, and Maxifort. A reduction in B. tabaci density was observed using all rootstock cultivars. The number of adult individuals per leaf was 2.7–5.4 times lower on rootstock cultivars than on Clarabella. The number of large nymphs per square centimeter was at least 24% higher on non–grafted Clarabella compared with all other treatments. The leaf lamina thickness and mesophyll thickness were lower in self-grafted Clarabella than in non-grafted or in one grafted on rootstock cultivars; however, the extent of this reduction depended on the rootstock. The leaves with thinner laminae were generally less attractive to B. tabaci. Eighteen amino acids were detected in the exudates of phloem sap. In all treatments, the most abundant amino acid was γ-aminobutyric acid (GABA, followed by proline, serine, alanine, and histidine. The scion cultivar Clarabella was the most attractive to B. tabaci and had a higher content of leucine than did rootstock cultivars, and a higher content of lysine compared to Buffon and Maxifort. The features modified by rootstock such are changes in leaf anatomy can affect the attractiveness of plants to B. tabaci. Thus, the grafting of tomato

  20. Effects of Disinfectants in Water on Mir- and Earth-Grown Wheat

    Science.gov (United States)

    Campbell, William .F.; Bubenheim, D. L.; Bugbee, B.; Salisbury, F. B.; Bingham, G. E.; Levinskikh, M.; Sytchev, V. N.; Ivanova, I.; Chernova, L.; Podolsky, I.

    2002-01-01

    -based post-flight analyses, the levels of iodine- and/or silver fluoride-treated water used on Mir-grown plants onboard the Mir did not cause the poor growth and development of the wheat plants.

  1. Hydration kinetics of some durum and bread wheat varieties grown in south-eastern region of turkey

    International Nuclear Information System (INIS)

    Yildirm, A.

    2017-01-01

    Hydration kinetics of wheat varieties grown in South-Eastern Region of Turkey, covering a temperature range from 25 to 50 degree C was examined. Peleg's model together with Arrhenius relationship were successfully used to evaluate water uptake of some Durum (Local names; Zenit and BurgosBurgos) and Bread (Local names; Dariyel and Karatopak) wheat varieties during soaking at a temperature range of 25-50 degree C. Model was found to be suitable for describing the soaking behaviour of wheat kernels with a coefficient of determination (R2) and Root mean square error (RMSE) greater than 0.9805, and less than 0.051, respectively. The Peleg rate and capacity constants, K1 and K2, were affected by temperature and wheat varieties. Activation energy values of Zenit, BurgosBurgos, Dariyel and Karatopak wheats were found as 39.94, 38.03, 36.25 and 29.54 kJ mol-1, respectively. Zenit wheat was the least hydrated while Karatopak was the most hydrated one due to kernel size and protein content. General equations to describe the water uptake of wheat varieties as a function of soaking time, temperature and initial moisture content were developed. These derived equations can be used for wheat operations such as tempering, mixing, knedding etc. (author)

  2. Heavy metal accumulation in different varieties of wheat (Triticum aestivum L.) grown in soil amended with domestic sewage sludge

    International Nuclear Information System (INIS)

    Jamali, Muhammad K.; Kazi, Tasneem G.; Arain, Muhammad B.; Afridi, Hassan I.; Jalbani, Nusrat; Kandhro, Ghulam A.; Shah, Abdul Q.; Baig, Jameel A.

    2009-01-01

    The concentrations of heavy metals (HMs) in plants served to indicate the metal contamination status of the site, and also revealed the abilities of various plant species to take up and accumulate them from the soil dressed with sewage sludge. A study to comprehend the mobility and transport of HMs from soil and soil amended with untreated sewage sludge to different newly breaded varieties of wheat (Anmol, TJ-83, Abadgar and Mehran-89) in Pakistan. A pot-culture experiment was conducted to study the transfer of HMs to wheat grains, grown in soil (control) and soil amended with sewage sludge (test samples). The total and ethylenediaminetetraaceticacid (EDTA)-extractable HMs in agricultural soil and soil amended with domestic sewage sludge (SDWS) and wheat grains were analysed by flame atomic absorption spectrometer/electrothermal atomic absorption spectrometer, prior to microwave-assisted wet acid digestion method. The edible part of wheat plants (grains) from test samples presented high concentration of all HMs understudy (mg kg -1 ). Significant correlations were found between metals in exchangeable fractions of soil and SDWS, with total metals in control and test samples of wheat grains. The bio-concentration factors of all HMs were high in grains of two wheat varieties, TJ-83 and Mehran-89, as compared to other varieties, Anmol and Abadgar grown in the same agricultural plots.

  3. Wheat: The Whole Story.

    Science.gov (United States)

    Oklahoma State Dept. of Education, Oklahoma City.

    This publication presents information on wheat. Wheat was originally a wild grass and not native to the United States. Wheat was not planted there until 1777 (and then only as a hobby crop). Wheat is grown on more acres than any other grain in this country. Soft wheats are grown east of the Mississippi River, and hard wheats are grown west of the…

  4. Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat.

    Science.gov (United States)

    Renuka, Nirmal; Prasanna, Radha; Sood, Anjuli; Ahluwalia, Amrik S; Bansal, Radhika; Babu, Santosh; Singh, Rajendra; Shivay, Yashbir S; Nain, Lata

    2016-04-01

    Microalgae possess the ability to grow and glean nutrients from wastewater; such wastewater-grown biomass can be used as a biofertilizer for crops. The present investigation was undertaken to evaluate two formulations (formulation with unicellular microalgae (MC1) and formulation with filamentous microalgae (MC2); T4 and T5, respectively), prepared using wastewater-grown microalgal biomass, as a biofertilizer (after mixing with vermiculite/compost as a carrier) in wheat crop (Triticum aestivum L. HD2967) under controlled conditions. The highest values of available nitrogen (N), phosphorus (P), and potassium (K) in soil and nitrogen-fixing potential were recorded in treatment T5 (75% N + full-dose PK + formulation with filamentous microalgae (MC2). Microbial biomass carbon was significantly enhanced by 31.8-67.0% in both the inoculated treatments over control (recommended dose of fertilizers), with highest values in T4 (75% N + full-dose PK + formulation with unicellular microalgae (MC1)). Both the microalgal formulations significantly increased the N, P, and K content of roots, shoots, and grains, and the highest total N content of 3.56% in grains was observed in treatment T5. At harvest stage, the treatments inoculated with microalgal formulations (T4 and T5) recorded a 7.4-33% increase in plant dry weight and up to 10% in spike weight. The values of 1000-grain weight showed an enhancement of 5.6-8.4%, compared with T1 (recommended doses of fertilizers). A positive correlation was observed between soil nutrient availability at mid crop stage and plant biometrical parameters at harvest stage. This study revealed the promise of such microalgal consortia as a biofertilizer for 25% N savings and improved yields of wheat crop.

  5. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Aziz, H.M.M.; Hasaneen, M.N.A.; Ome, A.M.

    2016-11-01

    Nanofertilizers have become a pioneer approach in agriculture research nowadays. In this paper we investigate the delivery of chitosan nanoparticles loaded with nitrogen, phosphorus and potassium (NPK) for wheat plants by foliar uptake. Chiotsan-NPK nanoparticles were easily applied to leaf surfaces and entered the stomata via gas uptake, avoiding direct interaction with soil systems. The uptake and translocation of nanoparticles inside wheat plants was investigated by transmission electron microscopy. The results revealed that nano particles were taken up and transported through phloem tissues. Treatment of wheat plants grown on sandy soil with nano chitosan-NPK fertilizer induced significant increases in harvest index, crop index and mobilization index of the determined wheat yield variables, as compared with control yield variables of wheat plants treated with normal non-fertilized and normal fertilized NPK. The life cycle of the nano-fertilized wheat plants was shorter than normal-fertilized wheat plants with the ratio of 23.5% (130 days compared with 170 days for yield production from date of sowing). Thus, accelerating plant growth and productivity by application of nanofertilizers can open new perspectives in agricultural practice. However, the response of plants to nanofertilizers varies with the type of plant species, their growth stages and nature of nanomaterials. (Author)

  6. Concentration of benzoxazinoids in roots of field-grown wheat (Triticum aestivum L.) varieties.

    Science.gov (United States)

    Stochmal, Anna; Kus, Jan; Martyniuk, Stefan; Oleszek, Wieslaw

    2006-02-22

    Benzoxazinones are naturally occurring secondary metabolites of some Gramineae plants, responsible for their resistance to some pathogenic fungi and for their allelopathic action. Six varieties of winter wheat grown in fields under organic or conventional systems and 11 old accessions were tested for two consecutive seasons and three plant development stages for the concentration in their roots of cyclic hydroxamic acids and their degradation products. This is the first report of six benzoxazinones analyzed in plants grown in the field. An analytical technique employing LC-DAD was used for determination. It was shown that 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one, its degradation product 6-methoxybenzoxazolin-2-one, and the lactam 2-hydroxy-7-methoxy-1,4-benzoxazin-2-one were predominant compounds in all tested samples. Their concentrations significantly differed with plant development stage and season, but no significant differences were found between varieties and between plant cultivation systems. The concentrations of 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and its degradation product benzoxazolin-2-one (BOA) were much lower, ranging from 60 to 430 mg/kg of dry matter, depending on accession, stage of development, and season. There was no significant difference found between plants grown in different cultivation systems, but there were significant differences between old and new varieties; concentrations of DIBOA and its derivatives were significantly lower in old accessions. It was concluded that the concentrations of DIBOA and BOA, which are precursors of highly fungicidal 2-aminophenol, 2-amino-3H-phenoxazin-3-one, and 2-acetylamino-3H-phenoxazin-3-one, are theoretically high enough to protect plants against some soilborne pathogens.

  7. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat

    Energy Technology Data Exchange (ETDEWEB)

    Dimkpa, Christian O., E-mail: cdimkpa@usu.edu [Utah State University, Department of Biological Engineering (United States); McLean, Joan E. [Utah State University, Utah Water Research Laboratory (United States); Latta, Drew E. [Argonne National Laboratory, Biosciences Division (United States); Manangon, Eliana [University of Utah, Department of Geology and Geophysics (United States); Britt, David W. [Utah State University, Department of Biological Engineering (United States); Johnson, William P. [University of Utah, Department of Geology and Geophysics (United States); Boyanov, Maxim I. [Argonne National Laboratory, Biosciences Division (United States); Anderson, Anne J. [Utah State University, Department of Biological Engineering (United States)

    2012-09-15

    Metal oxide nanoparticles (NPs) are reported to impact plant growth in hydroponic systems. This study describes the impact of commercial CuO (<50 nm) and ZnO (<100 nm) NPs on wheat (Triticum aestivum) grown in a solid matrix, sand. The NPs contained both metallic and non-metallic impurities to different extents. Dynamic light scattering and atomic force microscopy (AFM) assessments confirmed aggregation of the NPs to submicron sizes. AFM showed transformation of ZnO NPs from initial rhomboid shapes in water to elongated rods in the aqueous phase of the sand matrix. Solubilization of metals occurred in the sand at similar rates from CuO or ZnO NPs as their bulk equivalents. Amendment of the sand with 500 mg Cu and Zn/kg sand from the NPs significantly (p = 0.05) reduced root growth, but only CuO NPs impaired shoot growth; growth reductions were less with the bulk amendments. Dissolved Cu from CuO NPs contributed to their phytotoxicity but Zn release did not account for the changes in plant growth. Bioaccumulation of Cu, mainly as CuO and Cu(I)-sulfur complexes, and Zn as Zn-phosphate was detected in the shoots of NP-challenged plants. Total Cu and Zn levels in shoot were similar whether NP or bulk materials were used. Oxidative stress in the NP-treated plants was evidenced by increased lipid peroxidation and oxidized glutathione in roots and decreased chlorophyll content in shoots; higher peroxidase and catalase activities were present in roots. These findings correlate with the NPs causing increased production of reactive oxygen species. The accumulation of Cu and Zn from NPs into edible plants has relevance to the food chain.

  8. Glycine betaine and salicylic acid induced modification in productivity of two different cultivars of wheat grown under water stress

    Directory of Open Access Journals (Sweden)

    Heshmat S. Aldesuquy

    2012-05-01

    Full Text Available A pot experiment was conducted to evaluate the beneficial effect of foliar application of glycine betaine (10mM, grain presoaking in salicylic acid (0.05 M and their interaction on drought tolerance of two wheat (Triticum aestivum L. cultivars (sensitive, Sakha 94 and resistant, Sakha 93. Water stress decreased wheat yield components (spike length, number of spikelets / main spike, 100 kernel weight, grain number / spike, grain yield / spike, grain yield / plant, straw yield / plant, crop yield / plant, harvest, mobilization and crop indices and the biochemical aspects of grains(grain biomass, carbohydrates, total protein, total phosphorus, ions content and amino acids in both wheat cultivars. The applied chemicals appeared to alleviate the negative effects of water stress on wheat productivity (particularly the sensitive one and the biochemical aspects of yielded grains. The effect was more pronounced with GB+SA treatment. This improvement would result from the repairing effect of the provided chemicals on growth and metabolism of wheat plants grown under water deficit condition. In response to the applied water stress and the used chemicals, the grain yield of the sensitive and resistant wheat cultivars was strongly correlated with all the estimated yield components (shoot length, spike length, plant height, main spike weight, number of spikelets per main spike, 100 kernel weight, grain number per spike, grain weight per plant, straw weight per plant, crop yield per plant, harvest, mobilization and crop indices.

  9. Tolerance of wheat and lettuce plants grown on human mineralized waste to high temperature stress

    Science.gov (United States)

    Ushakova, Sofya A.; Tikhomirov, Alexander A.; Shikhov, Valentin N.; Gros, Jean-Bernard; Golovko, Tamara K.; Dal'ke, Igor V.; Zakhozhii, Ilya G.

    2013-06-01

    The main objective of a life support system for space missions is to supply a crew with food, water and oxygen, and to eliminate their wastes. The ultimate goal is to achieve the highest degree of closure of the system using controlled processes offering a high level of reliability and flexibility. Enhancement of closure of a biological life support system (BLSS) that includes plants relies on increased regeneration of plant waste, and utilization of solid and liquid human wastes. Clearly, the robustness of a BLSS subjected to stress will be substantially determined by the robustness of the plant components of the phototrophic unit. The aim of the present work was to estimate the heat resistance of two plants (wheat and lettuce) grown on human wastes. Human exometabolites mineralized by hydrogen peroxide in an electromagnetic field were used to make a nutrient solution for the plants. We looked for a possible increase in the heat tolerance of the wheat plants using changes in photosynthetically active radiation (PAR) intensity during heat stress. At age 15 days, plants were subjected to a rise in air temperature (from 23 ± 1 °C to 44 ± 1 °С) under different PAR intensities for 4 h. The status of the photosynthetic apparatus of the plants was assessed by external СО2 gas exchange and fluorescence measurements. The increased irradiance of the plants during the high temperature period demonstrated its protective action for both the photosynthetic apparatus of the leaves and subsequent plant growth and development. The productivity of the plants subjected to temperature changes at 250 W m-2 of PAR did not differ from that of controls, whereas the productivity of the plants subjected to the same heat stress but in darkness was halved.

  10. Carrot Cultivar Evaluation: Soilless Media vs. Hydroponics

    OpenAIRE

    Pinnock, Derek R.; Bugbee, Bruce

    2002-01-01

    Nine cultivars of carrots were grown in a growth chamber. Each cultivar was grown both in hydroponic and soil-less media root-zone for sixty days. Three 30L tubs were used for each root-zone treatment. Three cultivars were planted in each tub, initially at 180 plants m-2 then thinned to 90 plants m-2 on day 45.

  11. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes.

    Science.gov (United States)

    Tuberosa, Roberto; Sanguineti, Maria Corinna; Landi, Pierangelo; Giuliani, Marcella Michela; Salvi, Silvio; Conti, Sergio

    2002-01-01

    We investigated the overlap among quantitative trait loci (QTLs) in maize for seminal root traits measured in hydroponics with QTLs for grain yield under well-watered (GY-WW) and water-stressed (GY-WS) field conditions as well as for a drought tolerance index (DTI) computed as GY-WS/GY-WW. In hydroponics, 11, 7, 9, and 10 QTLs were identified for primary root length (R1L), primary root diameter (R1D), primary root weight (R1W), and for the weight of the adventitious seminal roots (R2W), respectively. In the field, 7, 8, and 9 QTLs were identified for GY-WW, GY-WS, and DTI, respectively. Despite the weak correlation of root traits in hydroponics with GY-WW, GY-WS, and DTI, a noticeable overlap between the corresponding QTLs was observed. QTLs for R2W most frequently and consistently overlapped with QTLs for GY-WW, GY-WS, and/or DTI. At four QTL regions, an increase in R2W was positively associated with GY-WW, GY-WS, and/or DTI. A 10 cM interval on chromosome 1 between PGAMCTA205 and php20644 showed the strongest effect on R1L, R1D, R2W, GY-WW, GY-WS, and DTI. These results indicate the feasibility of using hydroponics in maize to identify QTL regions controlling root traits at an early growth stage and also influencing GY in the field. A comparative analysis of the QTL regions herein identified with those described in previous studies investigating root traits in different maize populations revealed a number of QTLs in common.

  12. Predicting the yield and quality of winter wheat grown on calcareous chernozem in the lower Don Region

    Directory of Open Access Journals (Sweden)

    Olga Biryukova

    2015-07-01

    Full Text Available Long-term studies have revealed a system of indicators for predicting the yield of winter wheat grown on a calcareous chernozem. It has been established that the prediction and integrated assessment of the yield and quality of grain should be performed with consideration for the balance of macro- and micronutrients in the grain and the above-ground biomass of plants. It has been shown that the contents of protein and gluten in winter wheat grain are mainly determined by the supply of plants with nitrogen and its balance with Mn, Р, Fe, Zn, and K. Possibility of predicting the contents of macro- and micronutrients in wheat grain from the chemical composition of plants at the shooting stage has been revealed.

  13. Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2

    DEFF Research Database (Denmark)

    Zhu, Xiancan; Song, Fengbin; Liu, Shengqun

    2016-01-01

    Effects of the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis on plant growth, carbon (C) and nitrogen (N) accumulation, and partitioning was investigated in Triticum aestivum L. plants grown under elevated CO2 in a pot experiment. Wheat plants inoculated or not inoculated with the AM...... and higher plant biomass than the non-AM plants. CO2 elevation did not affect C and N partitioning in plant organs, while AM symbiosis increased C and N allocation into the roots. In addition, plant C and N accumulation, (15)N recovery rate, and N use efficiency (NUE) were significantly higher in AM plants...... than in non-AM controls under CO2 enrichment. It is concluded that AM symbiosis favors C and N partitioning in roots, increases C accumulation and N uptake, and leads to greater NUE in wheat plants grown at elevated CO2....

  14. Physico-Chemical Characteristics and Rheolgical Properties of Different Wheat Varieties Grown in Sindh

    International Nuclear Information System (INIS)

    Chana, M.J.; Ghanghro, A.B.; Sheikh, S.A.; Nizamani, S.M.

    2015-01-01

    This study was designed to investigate the physico-chemical and rheological properties of 17 wheat varieties (TJ-83, Jouhar, TD-1, Anmool, Mehran, Indus-66, Sindh B-1, Abadgar, Bhittai, Imdad, Mexi-Pak, Soughat, Blue Silver, Moomal, Marvi, Kiran, and Pak-70 ) commercially grown on experimental field of Agriculture Research Institute, Tandojam. The results revealed that moisture percentage were in range of 11 to 12 among all varieties, high protein content of about 15.2 percentage was found in Mehran and Blue silver varieties, starch was found high in Maxi-pak (70.6 percentage), high hardness values in Imdad (70.1percentage) and Jouhar (70.2 percentage). However, zeleny content was found high in Marvi, Abadgaar and Mehran i.e. 71 percentage. Amylographic results showed that among all varieties the Bhittai variety required maximum temperature up to 65.7 Degree C for the beginning of gelatinization as compared to other varieties. The highest gelatinization temperature was noted up to 96.7 Degree C in Moomal whereas others had temperature from 82.7 to 89.0 Degree C. Highest gelatinization maxima (1782AU) acquired by T.J-83 variety. The results of Farinograph showed that highest water absorption was noted in Anmool variety. The highest dough development time and dough stability were found highest in Kiran and Indus-66, respectively. T.D-1 and Jouhar varieties had highest break down time as well as highest Farinograph quality. (author)

  15. Effect of zinc fertilization on cadmium toxicity in durum and bread wheat grown in zinc-deficient soil

    International Nuclear Information System (INIS)

    Koeleli, Nurcan; Eker, Selim; Cakmak, Ismail

    2004-01-01

    The effect of increasing application of zinc (Zn) and cadmium (Cd) on shoot dry weight and shoot concentrations of Zn and Cd was studied in bread and durum wheat cultivars. Plants were grown in severely Zn-deficient calcareous soil treated with increasing Zn (0 and 10 mg kg -1 soil) and Cd (0, 10 and 25 mg kg -1 soil) and harvested after 35 and 65 days of growth under greenhouse conditions. Growing plants without Zn fertilization caused severe depression in shoot growth, especially in durum wheat and at high Cd treatment. Cadmium treatments resulted in rapid development of necrotic patches on the base and sheath parts of the oldest leaves of both wheat cultivars, but symptoms were more severe in durum wheat and under Zn deficiency. Decreases in shoot dry weight from increasing Cd application were more severe in Zn-deficient plants. Severity of Cd toxicity symptoms in durum and bread wheat at different Zn treatments did not show any relation to the Cd concentrations in shoot. Increasing Cd application to Zn-deficient plants tended to decrease Zn concentrations in Zn-deficient plants, whereas in plants with adequate Zn, concentrations of Zn were either not affected or increased by Cd. The results show that durum wheat was more sensitive to both Zn deficiency and Cd toxicity as compared to bread wheat. Cadmium toxicity in the shoot was alleviated by Zn treatment, but this was not accompanied by a corresponding decrease in shoot concentrations of Cd. Our results are compatible with the hypothesis that Zn protects plants from Cd toxicity by improving plant defense against Cd-induced oxidative stress and by competing with Cd for binding to critical cell constituents such as enzymes and membrane protein and lipids

  16. Mineral Composition of Organically Grown Wheat Genotypes: Contribution to Daily Minerals Intake

    Science.gov (United States)

    Hussain, Abrar; Larsson, Hans; Kuktaite, Ramune; Johansson, Eva

    2010-01-01

    In this study, 321 winter and spring wheat genotypes were analysed for twelve nutritionally important minerals (B, Cu, Fe, Se, Mg, Zn, Ca, Mn, Mo, P, S and K). Some of the genotypes used were from multiple locations and years, resulting in a total number of 493 samples. Investigated genotypes were divided into six genotype groups i.e., selections, old landraces, primitive wheat, spelt, old cultivars and cultivars. For some of the investigated minerals higher concentrations were observed in selections, primitive wheat, and old cultivars as compared to more modern wheat material, e.g., cultivars and spelt wheat. Location was found to have a significant effect on mineral concentration for all genotype groups, although for primitive wheat, genotype had a higher impact than location. Spring wheat was observed to have significantly higher values for B, Cu, Fe, Zn, Ca, S and K as compared to winter wheat. Higher levels of several minerals were observed in the present study, as compared to previous studies carried out in inorganic systems, indicating that organic conditions with suitable genotypes may enhance mineral concentration in wheat grain. This study also showed that a very high mineral concentration, close to daily requirements, can be produced by growing specific primitive wheat genotypes in an organic farming system. Thus, by selecting genotypes for further breeding, nutritional value of the wheat flour for human consumption can be improved. PMID:20948934

  17. Hydroponics in the Classroom.

    Science.gov (United States)

    Sell, Merran

    1997-01-01

    Summarizes the benefits of using hydroponics in school for investigational work. Lists requirements and includes advice on suitable plant choices. Outlines the various growing systems and growing media and provides suggestions for science investigations using hydroponics. (DDR)

  18. Comparative Analysis of Root Traits and the Associated QTLs for Maize Seedlings Grown in Paper Roll, Hydroponics and Vermiculite Culture System.

    Science.gov (United States)

    Liu, Zhigang; Gao, Kun; Shan, Shengchen; Gu, Riling; Wang, Zhangkui; Craft, Eric J; Mi, Guohua; Yuan, Lixing; Chen, Fanjun

    2017-01-01

    Root system architecture (RSA) plays an important role in the acquisition of both nitrogen (N) and phosphorus (P) from the environment. Currently RSA is rarely considered as criteria for selection to improve nutrient uptake efficiency in crop breeding. Under field conditions roots can be greatly influenced by uncontrolled environment factors. Therefore, it is necessary to develop fast selection methods for evaluating root traits of young seedlings in the lab which can then be related to high nutrient efficiency of adult plants in the field. Here, a maize recombination inbred line (RILs) population was used to compare the genetic relationship between RSA and nitrogen and phosphorous efficiency traits. The phenotypes of eight RSA-related traits were evaluated in young seedlings using three different growth systems (i.e., paper roll, hydroponics and vermiculite), and then subjected to correlation analysis with N efficiency and P efficiency related traits measured under field conditions. Quantitative trait loci (QTL) of RSA were determined and QTL co-localizations across different growth systems were further analyzed. Phenotypic associations were observed for most of RSA traits among all three culture systems. RSA-related traits in hydroponics and vermiculite weakly correlated with Nitrogen (NupE) uptake efficiency ( r = 0.17-0.31) and Phosphorus (PupE) uptake efficiency ( r = 0.22-0.34). This correlation was not found in the paper roll growth system. A total of 14 QTLs for RSA were identified in paper rolls, 18 in hydroponics, and 14 in vermiculite. Co-localization of QTLs for RSA traits were identified in six chromosome regions of bin 1.04/1.05, 1.06, 2.04/2.05, 3.04, 4.05, and 5.04/5.05. The results suggest the problem of using the phenotype from one growth system to predict those in another growth system. Assessing RSA traits at the seedling stage using either hydroponics or a vermiculite system appears better suited than the paper roll system as an important index

  19. Hydroponic cultivation of Oncidium baueri

    Directory of Open Access Journals (Sweden)

    Daniele Brandstetter Rodrigues

    2017-08-01

    Full Text Available In Brazil, orchid cultivation has been increasing steadily over the last few years and contributing significantly to the economy. It has been reported that several vegetable crops and ornamentals have been successfully grown by soilless cultivation. The orchid Oncidium baueri Lindl. is grown on pot substrates. Nevertheless, hydroponics is an excellent alternative, especially for the production of cut flowers and bare root plants. The objective of this study was to evaluate the development of Oncidium baueri on two soilless systems: (a pots containing Amafibra® coconut fiber, carbonized rice husk, and pine bark (1:1:1 irrigated with nutrient solution every 15 d; and (b a nutrient film technique (NFT hydroponic system irrigated with nutrient solution daily. Shoot height, pseudobulb diameter, and number of sprouts were evaluated monthly. The number of flowering plants, number of flowers, dry mass of shoots, and dry mass of roots were evaluated 11 months after onset of experiment. The pot cultivation system yielded more flowers and higher values for all vegetative parameters than the NFT hydroponic system.

  20. Nitrogen uptake, nitrate leaching and root development in winter-grown wheat and fodder radish

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Hansen, Elly Møller; Thomsen, Ingrid Kaag

    2017-01-01

    Early seeding of winter wheat (Triticum aestivum L.) has been proposed as a means to reduce N leaching as an alternative to growing cover crops like fodder radish (Raphanus sativus L.). The objective of this study was to quantify the effect of winter wheat, seeded early and normally, and of fodder...

  1. Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2.

    Science.gov (United States)

    Zhu, Xiancan; Song, Fengbin; Liu, Shengqun; Liu, Fulai

    2016-02-01

    Effects of the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis on plant growth, carbon (C) and nitrogen (N) accumulation, and partitioning was investigated in Triticum aestivum L. plants grown under elevated CO2 in a pot experiment. Wheat plants inoculated or not inoculated with the AM fungus were grown in two glasshouse cells with different CO2 concentrations (400 and 700 ppm) for 10 weeks. A (15)N isotope labeling technique was used to trace plant N uptake. Results showed that elevated CO2 increased AM fungal colonization. Under CO2 elevation, AM plants had higher C concentration and higher plant biomass than the non-AM plants. CO2 elevation did not affect C and N partitioning in plant organs, while AM symbiosis increased C and N allocation into the roots. In addition, plant C and N accumulation, (15)N recovery rate, and N use efficiency (NUE) were significantly higher in AM plants than in non-AM controls under CO2 enrichment. It is concluded that AM symbiosis favors C and N partitioning in roots, increases C accumulation and N uptake, and leads to greater NUE in wheat plants grown at elevated CO2.

  2. Hydroponic vs. Soilless Media: Interaction with Plant Density

    OpenAIRE

    Pinnock, Derek R.; Bugbee, Bruce

    2000-01-01

    Water stress can cause early heading in some plant species. ‘Super Dwarf’ rice was grown in hydroponic culture and soilless media to determine if a slight water stress, caused by the soilless media, would cause earlier heading.

  3. [Cytoembryologic studies of super dwarf wheat grown in "Svet" greenhouse in the ground-based experiments

    Science.gov (United States)

    Levinskikh, M. A.; Veselova, T. D.; Il'ina, G. M.; Dzhalilova, Kh Kh; Sychev, V. N.; Derendiaeva, T. A.; Salisbury, F.; Cambell, W.; Bubenheim, D.; Campbell, W. (Principal Investigator)

    1998-01-01

    The Project of scientific programs MIR/SHUTTLE and MIR/NASA was allowed for studying the productional, cytoembryological, morphological, biomechanical and other characteristics of superclub wheat on cultivation in the Svet greenhouse on-board orbital complex. This work was aimed at studying the duration of the complete cycle of ontogenesis of wheat and its individual stages, the peculiarities of forming the reproductive organs, processes, fertilization and formation of the seed production while cultivating in the Svet greenhouse under terrestrial conditions. Superclub wheat has been the object of experimentation. On cultivation of superclub wheat in the Svet greenhouse at designated conditions it was found that the cycle duration "from seed to seed" was 90-97 days. The number of granules in the wheat-ears studied was quite low and ranged from 15 to 30%. Performed studies with applying the light microscopy have indicated that in superclub wheat the embryological processes occur in compliance with those regularities which are described for the other forms of soft wheat.

  4. Spectroscopic analysis of essential elements in different varieties of wheat grown in Sindh

    International Nuclear Information System (INIS)

    Shar, G.Q.; Kazi, T.G.; Jakhrani, M.A.; Sahito, S.R.

    2002-01-01

    Atomic absorption spectrometry (AAS) has been used to characterize essential elements in wheat. The procedure has been validated by analyzing a certified sample obtained from the Federal Seed Certification and Registration Department. Several wheat samples of known origin, variety and crop year have been analysed to determine the content of sodium, potassium, calcium, magnesium, iron and zinc by means of Atomic Absorption Spectrophotometric. Considerable amount of essential elements was to be found in each variety of wheat. The values of each element were compared with certified samples, which is at the 95 to 98 % confidence limit. The resulting compositions of the different samples have been used to assess species, origin and variety of the examined wheat. (author)

  5. The effects of selenate and sulphate supply on the accumulation and volatilization of Se by cabbage, kohlrabi and alfalfa plants grown hydroponically

    Directory of Open Access Journals (Sweden)

    R. HAJIBOLAND

    2008-12-01

    Full Text Available The effect of Selenium (Se supplementation at five levels of 0 (control, 5, 10, 15, 20 ìM in plants supplied with one of four concentrations of sulphur (S including 0.05, 0.25, 0.5 and 1.0 mM was investigated in two varieties of Brassica oleracea (cabbage and kohlrabi and alfalfa (Medicago sativa L. in a hydroponic experiment. In severely S deficient plants (0.05 mM, Se acted as a toxic element, alfalfa was the most susceptible plant that died at this treatment. However, in plants supplied with near adequate (0.5 mM or adequate (1.0 mM S, Se acted as a growth promoting element. The most pronounced stimulation of growth was observed in cabbage and the lowest in alfalfa. Increasing S concentration in the medium, reduced Se uptake and transport. In contrast, S uptake and transport increased in response to Se addition. Se volatilization was higher in alfalfa than cabbage and kohlrabi when expressed on unit shoot dry weight or leaf area basis, but not when expressed per plant. Results suggested that Se supplementation of plants supplied with adequate S, not only had beneficial effects on plants growth but also can have application in enrichment of livestock fodder and human food.;

  6. Dynamics of Short-Term Phosphorus Uptake by Intact Mycorrhizal and Non-mycorrhizal Maize Plants Grown in a Circulatory Semi-Hydroponic Cultivation System.

    Science.gov (United States)

    Garcés-Ruiz, Mónica; Calonne-Salmon, Maryline; Plouznikoff, Katia; Misson, Coralie; Navarrete-Mier, Micaela; Cranenbrouck, Sylvie; Declerck, Stéphane

    2017-01-01

    A non-destructive cultivation system was developed to study the dynamics of phosphorus (Pi) uptake by mycorrhizal and non-mycorrhizal maize plantlets. The system consisted of a plant container connected via silicon tubes to a glass bottle containing a nutrient solution supplemented with Pi. The nutrient solution is pumped with a peristaltic pump to the upper part of the container via the silicon tubes and the solution percolate through the plantlet container back into the glass bottle. Pi is sampled from the glass bottle at regular intervals and concentration evaluated. Maize plantlets were colonized by the AMF Rhizophagus irregularis MUCL 41833 and Pi uptake quantified at fixed intervals (9, 21, and 42 h) from the depletion of the Pi in the nutrient solution flowing through the plantlets containers. Plants and fungus grew well in the perlite substrate. The concentration of Pi in the bottles followed an almost linear decrease over time, demonstrating a depletion of Pi in the circulating solution and a concomitant uptake/immobilization by the plantlet-AMF associates in the containers. The Pi uptake rate was significantly increased in the AMF-colonized plantlets (at 9 and 21 h) as compared to non-colonized plantlets, although no correlation was noticed with plant growth or P accumulation in shoots. The circulatory semi-hydroponic cultivation system developed was adequate for measuring Pi depletion in a nutrient solution and by corollary Pi uptake/immobilization by the plant-AMF associates. The measurements were non-destructive so that the time course of Pi uptake could be monitored without disturbing the growth of the plant and its fungal associate. The system further opens the door to study the dynamics of other micro and macro-nutrients as well as their uptake under stressed growth conditions such as salinity, pollution by hydrocarbon contaminants or potential toxic elements.

  7. Dynamics of Short-Term Phosphorus Uptake by Intact Mycorrhizal and Non-mycorrhizal Maize Plants Grown in a Circulatory Semi-Hydroponic Cultivation System

    Directory of Open Access Journals (Sweden)

    Mónica Garcés-Ruiz

    2017-08-01

    Full Text Available A non-destructive cultivation system was developed to study the dynamics of phosphorus (Pi uptake by mycorrhizal and non-mycorrhizal maize plantlets. The system consisted of a plant container connected via silicon tubes to a glass bottle containing a nutrient solution supplemented with Pi. The nutrient solution is pumped with a peristaltic pump to the upper part of the container via the silicon tubes and the solution percolate through the plantlet container back into the glass bottle. Pi is sampled from the glass bottle at regular intervals and concentration evaluated. Maize plantlets were colonized by the AMF Rhizophagus irregularis MUCL 41833 and Pi uptake quantified at fixed intervals (9, 21, and 42 h from the depletion of the Pi in the nutrient solution flowing through the plantlets containers. Plants and fungus grew well in the perlite substrate. The concentration of Pi in the bottles followed an almost linear decrease over time, demonstrating a depletion of Pi in the circulating solution and a concomitant uptake/immobilization by the plantlet-AMF associates in the containers. The Pi uptake rate was significantly increased in the AMF-colonized plantlets (at 9 and 21 h as compared to non-colonized plantlets, although no correlation was noticed with plant growth or P accumulation in shoots. The circulatory semi-hydroponic cultivation system developed was adequate for measuring Pi depletion in a nutrient solution and by corollary Pi uptake/immobilization by the plant-AMF associates. The measurements were non-destructive so that the time course of Pi uptake could be monitored without disturbing the growth of the plant and its fungal associate. The system further opens the door to study the dynamics of other micro and macro-nutrients as well as their uptake under stressed growth conditions such as salinity, pollution by hydrocarbon contaminants or potential toxic elements.

  8. Hydroponic training visit

    NARCIS (Netherlands)

    Os, van Erik; Waked, Laith; Blok, Chris

    2016-01-01

    From January 25-29 2016 Wageningen UR Greenhouse Horticulture organized a Hydroponic Training for Jordan researcher and consultants. The order was supplied by Ecoconsult (Hydroponic Green Farming Initiative) from Jordan and funded by USAID. Presentations were delivered in the field of growing

  9. Assessment of toxic metals in wheat crops grown on selected soils, irrigated by different water sources

    Directory of Open Access Journals (Sweden)

    Zeid A. Al-Othman

    2016-11-01

    Full Text Available We describe a comparative study of the concentration of different metals (e.g., Cd, Pb, As, Ni, Cu, Zn, Mn, and Cr in various parts of wheat plants (e.g., roots, stem, leaves and seeds collected at several locations in Khyber Pukhtoon Khaw, Pakistan. The wheat crop in these areas was irrigated using different irrigation sources, including rain, tube well, river, and canal. In wheat samples, the concentration of metals was analyzed using an atomic absorption spectrophotometer. Among the various parts of the plant, the roots had the highest levels of heavy metals, followed by the vegetative parts. By comparison, the seeds and grains had the lowest levels of heavy metals. The levels of heavy metals in all of the studied areas were not significantly localized to any particular area. The general order for the accumulation of studied metals in wheat was found to be Mn > Zn > Cu > Ni > Cr > As > Pb > Cd.

  10. Increased sbpase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions

    NARCIS (Netherlands)

    Driever, Steven M.; Simkin, Andrew J.; Alotaibi, Saqer; Fisk, Stuart J.; Madgwick, Pippa J.; Sparks, Caroline A.; Jones, Huw D.; Lawson, Tracy; Parry, Martin A.J.; Raines, Christine A.

    2017-01-01

    To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf

  11. Phosphorus Response and Fertilizer Recommendations for Wheat Grown on Nitisols in the Central Ethiopian Highlands

    NARCIS (Netherlands)

    Agegnehu, Getachew; Nelson, Paul N.; Bird, Michael I.; Beek, van Christy

    2015-01-01

    The provision of farmers with proper and balanced fertilizer recommendations is becoming increasingly important, for reasons of crop productivity, food security, and sustainability. Phosphorus (P) response trials with wheat were conducted on Nitisols at 14 sites in the central Ethiopian highlands

  12. [Cyto-embryologic investigation of super dwarf wheat grown on board of the Mir orbital complex

    Science.gov (United States)

    Veselova, T. D.; Il'ina, G. M.; Dzhaliova, Kh Kh; Levinskikh, M. A.; Sychev, V. N.; Salisbury, F. B.; Campbell, W. F.

    1999-01-01

    The cytoembryologic analysis of wet and dry samples of super dwarf wheat cultivated in greenhouse SVET aboard the MIR station over the whole cycle of vegetation was made with the use of light microscopy. Characteristic features of wheat development in space flight are plentiful early tillering, and formation and rapid growth of side shoots. Elementary spikelets in the composite head were more numerous but the top spikelets were rudimentary and, therefore, the ripe head contained less of these spikelets as compared with the ground controls (9-13 and 14, respectively). The number of florets in a spike was also higher reaching 14-16 vs. 7-8 in the control. Typically, no more than 4 to 5 florets vs. 3 in the control were fully differentiated while the others died off earlier in development. The fact that there were no caryopses found in the flight crop is explained by absolute male sterility appearing at different stages of staminal development: before archesporium formation, on the stage of differentiated archesporium, during meiosis, on the stage of microspores or uninucleate "pollen". The female generative system developed mainly without abnormalities. An assumption was made that elevated ethylene concentrations in the MIR atmosphere at the time of the wheat experiment were the cause for abnormal development of the male generative system which led to barrenness of the super dwarf wheat crop.

  13. Phytoremediation assessment of Gomphrena globosa and Zinnia elegans grown in arsenic-contaminated hydroponic conditions as a safe and feasible alternative to be applied in arsenic-contaminated soils of the Bengal Delta.

    Science.gov (United States)

    Signes-Pastor, A J; Munera-Picazo, S; Burló, F; Cano-Lamadrid, M; Carbonell-Barrachina, A A

    2015-06-01

    Several agricultural fields show high contents of arsenic because of irrigation with arsenic-contaminated groundwater. Vegetables accumulate arsenic in their edible parts when grown in contaminated soils. Polluted vegetables are one of the main sources of arsenic in the food chain, especially for people living in rural arsenic endemic villages of India and Bangladesh. The aim of this study was to assess the feasibility of floriculture in the crop rotation system of arsenic endemic areas of the Bengal Delta. The effects of different arsenic concentrations (0, 0.5, 1.0, and 2.0 mg As L(-1)) and types of flowering plant (Gomphrena globosa and Zinnia elegans) on plant growth and arsenic accumulation were studied under hydroponic conditions. Total arsenic was quantified using atomic absorption spectrometer with hydride generation (HG-AAS). Arsenic was mainly accumulated in the roots (72 %), followed by leaves (12 %), stems (10 %), and flowers (phytoremediation capacities as other wild species, such as ferns. However, they behaved as arsenic tolerant plants and grew and bloomed well, without showing any phytotoxic signs. This study proves that floriculture could be included within the crop rotation system in arsenic-contaminated agricultural soils, in order to improve food safety and also food security by increasing farmer's revenue.

  14. Phytoremediation potential of Cd and Zn by wetland plants, Colocasia esculenta L. Schott., Cyperus malaccensis Lam. and Typha angustifolia L. grown in hydroponics.

    Science.gov (United States)

    Chayapan, P; Kruatrachue, M; Meetam, M; Pokethitiyook, P

    2015-09-01

    Cadmium and zinc phytoremediation potential of wetland plants, Colocasia esculenta, Cyperus malaccensis, and Typha angustifolia, was investigated. Plants were grown for 15 days in nutrient solutions containing various concentrations of Cd (0, 5, 10, 20, 50 mg l(-1)) and Zn (0, 10, 20, 50, 100 mg l(-1)). T angustifolia was tolerant to both metals as indicated by high RGR when grown in 50 mg I(-1) Cd and 100 mg I(-1) Zn solutions. All these plants accumulated more metals in their underground parts and > 100 mg kg(-1) in their aboveground with TF values 10,000 mg kg(-1) in its aboveground parts with TF > 1. T angustifolia exhibited highest biomass production and highest Cd and Zn uptake, confirming that this plant is a suitable candidate for treating of Cd contaminated soil/sediments.

  15. Management of ammonium sulfate fertilization on productive performance of corn grown after oats and wheat

    Directory of Open Access Journals (Sweden)

    Maria Anita Gonçalves Silva

    2014-02-01

    Full Text Available The time, dose and applied nutrients in corn have a direct effect on its productivity. Therefore, the objective was to study the application of N and S in corn as ammonium sulfate, in succession to wheat and oats and evaluate different forms of fertilizer management. The experiment was conducted in a randomized block design in Oxisol (Hapludox. The five treatments with N, at a dose of 120 kg ha-1 were applied in 20 plots (5x4, according to the management of fertilizer: T1-N (120 kg ha-1 full at sowing, T2-N (120 kg ha-1 total coverage; T3 –N (40 kg ha-1 at sowing and N (80 kg ha-1 in coverage; T4-N advance in wheat sowing and sowing oats (120 kg ha-1, T5- (control. The S doses were corresponding to their concentrations in the fertilizer. Only wheat received a dose of 24 kg N ha-1 at sowing all plots and oats received 24 kg N ha- 1 at sowing only the portions related to treatment with anticipation of corn N ( T4 . We evaluated the biomass production of winter crops (oats and wheat, according to the fertilization at sowing, and also the influence of winter crops and management of ammonium sulfate, the corn yield. The oats produced more dry matter in relation to wheat, positively influencing the corn yield, regardless of fertilizer management. The anticipation of ammonium sulfate, the sowing of oats, was favorable to corn yield, equating to other forms of management of fertilizer. Rotation corn and oats, forms management, ammonium sulphate, at seeding, topdressing or applied in split were equally efficient in corn yields.

  16. Productive performance and industrial quality of wheat genotypes grown in two environments

    Directory of Open Access Journals (Sweden)

    Omar Possatto Junior

    Full Text Available ABSTRACT Wheat flour can be allocated for manufacturing various products, but each purpose requires specificities defined by the industrial quality. The objective of this study was to evaluate the performance of experimental lines and commercial cultivars of wheat, in South and Southeast of Brazil and to identify genotypes with favorable characteristics of industrial quality. Twenty lines in the stage of cultivation and use and three commercial cultivars were evaluated for grain yield components (hectoliter weight and thousand-grain weight and features related to the industrial quality of the flour (protein, flour stability, sedimentation with sodium dodecyl sulfate and color. The genotypes CRX/CD104//ALC, LAJ96010/JSP//ALC and CRX/ALC//ALC showed favorable characteristics for biscuit production, while the genotypes ORL97061/ORL00241//CD104, SUZ6/WEAVER//TUI/3/SUP/4/CD104, ORL99396/ORL97061//SUP, CRX/CD104//ALC, ORL98231/IOR00131//ÔNIX, ORL94346/ALC//AVT/3/ÔNIX, CEP0033/ÔNIX/3/ÔNIX*2//TC14/2*SPEAR, Campo Real/VAN//ÔNIX, ORL97061/CD 104 and PMP/ORL98231//CRX have aptitude for baking. The evaluations were efficient for the classification and selection of genotypes in the wheat breeding program.

  17. Phytoaccumulation of antimicrobials by hydroponic Cucurbita pepo.

    Science.gov (United States)

    Aryal, Niroj; Reinhold, Dawn

    2013-01-01

    Consumer use of antimicrobial-containing products continuously introduces triclocarban and triclosan into the environment. Triclocarban and triclosan adversely affect plants and animals and have the potential to affect human health. Research examined the phytoaccumulation of triclocarban and triclosan by pumpkin (Cucurbita pepo cultivar Howden) and zucchini (Cucurbita pepo cultivar Gold Rush) grown hydroponically. Pumpkin and zucchini were grown in nutrient solution spiked with 0.315 microg/mL triclocarban and 0.289 microg/mL triclosan for two months. Concentrations of triclocarban and triclosan in nutrient solutions were monitored weekly. At the end of the trial, roots and shoots were analyzed for triclocarban and triclosan. Research demonstrated that pumpkin and zucchini accumulated triclocarban and triclosan. Root accumulation factors were 1.78 and 0.64 and translocation factors were 0.001 and 0.082 for triclocarban and triclosan, respectively. The results of this experiment were compared with a previous soil column study that represented environmentally relevant exposure of antimicrobials from biosolids and had similar root mass. Plants were not as efficient in removing triclocarban and triclosan in hydroponic systems as in soil systems. Shoot concentrations of antimicrobials were the same or lower in hydroponic systems than in soil columns, indicating that hydroponic system does not overpredict the concentrations of antimicrobials.

  18. Production of deuterated switchgrass by hydroponic cultivation.

    Science.gov (United States)

    Evans, Barbara R; Bali, Garima; Foston, Marcus; Ragauskas, Arthur J; O'Neill, Hugh M; Shah, Riddhi; McGaughey, Joseph; Reeves, David; Rempe, Caroline S; Davison, Brian H

    2015-07-01

    The bioenergy crop switchgrass was grown hydroponically from tiller cuttings in 50 % D 2 O to obtain biomass with 34 % deuterium substitution and physicochemical properties similar to those of H 2 O-grown switchgrass controls. Deuterium enrichment of biological materials can potentially enable expanded experimental use of small angle neutron scattering (SANS) to investigate molecular structural transitions of complex systems such as plant cell walls. Two key advances have been made that facilitate cultivation of switchgrass, an important forage and biofuel crop, for controlled isotopic enrichment: (1) perfusion system with individual chambers and (2) hydroponic growth from tiller cuttings. Plants were grown and maintained for several months with periodic harvest. Photosynthetic activity was monitored by measurement of CO2 in outflow from the growth chambers. Plant morphology and composition appeared normal compared to matched controls grown with H2O. Using this improved method, gram quantities of switchgrass leaves and stems were produced by continuous hydroponic cultivation using growth medium consisting of basal mineral salts in 50 % D2O. Deuterium incorporation was confirmed by detection of the O-D and C-D stretching peaks with FTIR and quantified by (1)H- and (2)H-NMR. This capability to produce deuterated lignocellulosic biomass under controlled conditions will enhance investigation of cell wall structure and its deconstruction by neutron scattering and NMR techniques.

  19. Concentração e conteúdo de nutrientes em lisianto, cultivado em hidroponia, em sistema NFT = Concentration and nutrient content in lisianthus grown in a hydroponic NFT system

    Directory of Open Access Journals (Sweden)

    Fernanda Alice Antonello Londero Backes

    2008-10-01

    Full Text Available O diagnóstico nutricional é fundamental para determinar as exigências das plantas quanto aos nutrientes, de forma a se proceder a um manejo adequado, de acordo com a espécie. Assim, para determinar as concentrações e conteúdos nutricionais adequados à produção e qualidade de plantas de lisianto em cultivo hidropônico, instalou-se um experimento onde as plantas foram cultivadas em sistema NFT, em diferentes soluções nutritivas. O experimento foi conduzido, segundo delineamento experimental em blocos casualizados, em esquema fatorial 4x3, totalizando 12 tratamentos, com três repetições. Ostratamentos foram compostos de quatro cultivares (Echo Champagne, Mariachi Pure White, Balboa Yellow e Ávila Blue Rim e três soluções nutritivas (Teste, Steiner modificada e Barbosa. Foram avaliadas as concentrações e os conteúdos dos nutrientes nas folhas e conteúdos na parte aérea das plantas. As plantas cultivadas nas soluções Barbosa eTeste apresentaram resultados satisfatórios quanto às concentrações e aos conteúdos de nutrientes, enquanto a solução Steiner modificada produziu plantas com limitações nutricionais.The nutritional diagnosis is fundamental for determining plantnutrients, in order to correctly manage the nutritional requirements for each species. Thus, in order to determine the ideal nutrient amount and concentration for obtaining the best yield and quality of lisianthus grown hydroponically, an experiment was conducted inwhich the plants were grown under the NFT system in different nutrient solutions. The experiment was conducted according to a random block design arrangement in a 4x3 factorial scheme, totaling 12 treatments with three repetitions. The treatments werecomprised of four cultivars (Echo Champagne, Mariachi Pure White, Balboa Yellow and Ávila Blue Rim and three nutrient solutions (Test, modified Steiner and Barbosa. In the leaves, nutrient concentration and content were evaluated; in the aerial

  20. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber

    Science.gov (United States)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  1. Glutamine nitrogen and ammonium nitrogen supplied as a nitrogen source is not converted into nitrate nitrogen of plant tissues of hydroponically grown pak-choi (Brassica chinensis L.).

    Science.gov (United States)

    Wang, H-J; Wu, L-H; Tao, Q-N; Miller, D D; Welch, R M

    2009-03-01

    Many vegetables, especially leafy vegetables, accumulate NO(-) (3)-N in their edible portions. High nitrate levels in vegetables constitute a health hazard, such as cancers and blue baby syndrome. The aim of this study was to determine if (1) ammonium nitrogen (NH(+) (4)-N) and glutamine-nitrogen (Gln-N) absorbed by plant roots is converted into nitrate-nitrogen of pak-choi (Brassica chinensis L.) tissues, and (2) if nitrate-nitrogen (NO(-) (3)-N) accumulation and concentration of pak-choi tissues linearly increase with increasing NO(-) (3)-N supply when grown in nutrient solution. In experiment 1, 4 different nitrogen treatments (no nitrogen, NH(+) (4)-N, Gln-N, and NO(-) (3)-N) with equal total N concentrations in treatments with added N were applied under sterile nutrient medium culture conditions. In experiment 2, 5 concentrations of N (from 0 to 48 mM), supplied as NO(-) (3)-N in the nutrient solution, were tested. The results showed that Gln-N and NH(+) (4)-N added to the nutrient media were not converted into nitrate-nitrogen of plant tissues. Also, NO(-) (3)-N accumulation in the pak-choi tissues was the highest when plants were supplied 24 mM NO(-) (3)-N in the media. The NO(-) (3)-N concentration in plant tissues was quadratically correlated to the NO(-) (3)-N concentration supplied in the nutrient solution.

  2. Effect of different irrigated conditions on some morphological traits of wheat genotypes grown in Saudi Arabia

    International Nuclear Information System (INIS)

    Albokari, A. A.; Majeed, A.; Almuwalid, A.

    2016-01-01

    The Kingdom of Saudi Arabia being one of the driest countries globally needs drought tolerant wheat varieties. Breeding studies were conducted to determine the effects of different irrigation levels on some morphological traits of 4 wheat varieties. A pot-house experiment was conducted in split plot design using two different irrigations (well-watered and partial moisture stress) levels. Presently, the study was laid on different traits viz. plant height (cm), tiller number/plant, number of leaves/plant, leaf length (cm), flowering time (days), maturity time (days), 1000-grain weight (g) and grain yield/plant (g). The mean square from pooled analysis of variance revealed that the genotypes, treatments and genotype x treatment interaction were highly significant (p>0.05) for the traits leaf length, plant height, maturity time,1000-grain weight, grain yield per plot; however, number of leaves, number of tillers/plant, flowering time and 1000-grain weight showed non-significant difference. Similarly, genotype x reading interaction was also highly significant (p>0.05) leaf length, number of tillers per plant and plant height. The varieties Nukrat Zahran, Samrra Najran and Halba Najran and showed better performance for grain yield and maximum 1000-grain weight under both environments. Plant height showed highly significant positive correlation with number of leaves per plant and number of tillers per plant. At partial stress, 1000-grain weight showed highly significant (p>0.01) correlation (r=0.8608) with grain yield and maturity time (r=0.9948). The knowledge obtained through this research will be helpful while selection of best varieties with better tolerance to environmental stresses. (author)

  3. Genetic insight into yield-associated traits of wheat grown in multiple rain-fed environments.

    Directory of Open Access Journals (Sweden)

    Xianshan Wu

    Full Text Available BACKGROUND: Grain yield is a key economic driver of successful wheat production. Due to its complex nature, little is known regarding its genetic control. The goal of this study was to identify important quantitative trait loci (QTL directly and indirectly affecting grain yield using doubled haploid lines derived from a cross between Hanxuan 10 and Lumai 14. METHODOLOGY/PRINCIPAL FINDINGS: Ten yield-associated traits, including yield per plant (YP, number of spikes per plant (NSP, number of grains per spike (NGS, one-thousand grain weight (TGW, total number of spikelets per spike (TNSS, number of sterile spikelets per spike (NSSS, proportion of fertile spikelets per spike (PFSS, spike length (SL, density of spikelets per spike (DSS and plant height (PH, were assessed across 14 (for YP to 23 (for TGW year × location × water regime environments in China. Then, the genetic effects were partitioned into additive main effects (a, epistatic main effects (aa and their environment interaction effects (ae and aae by using composite interval mapping in a mixed linear model. CONCLUSIONS/SIGNIFICANCE: Twelve (YP to 33 (PH QTLs were identified on all 21 chromosomes except 6D. QTLs were more frequently observed on chromosomes 1B, 2B, 2D, 5A and 6B, and were concentrated in a few regions on individual chromosomes, exemplified by three striking yield-related QTL clusters on chromosomes 2B, 1B and 4B that explained the correlations between YP and other traits. The additive main-effect QTLs contributed more phenotypic variation than the epistasis and environmental interaction. Consistent with agronomic analyses, a group of progeny derived by selecting TGW and NGS, with higher grain yield, had an increased frequency of QTL for high YP, NGS, TGW, TNSS, PFSS, SL, PH and fewer NSSS, when compared to low yielding progeny. This indicated that it is feasible by marker-assisted selection to facilitate wheat production.

  4. Fine-mapping of qRL6.1, a major QTL for root length of rice seedlings grown under a wide range of NH4+ concentrations in hydroponic conditions

    Science.gov (United States)

    Tamura, Wataru; Ebitani, Takeshi; Yano, Masahiro; Sato, Tadashi; Yamaya, Tomoyuki

    2010-01-01

    Root system development is an important target for improving yield in cereal crops. Active root systems that can take up nutrients more efficiently are essential for enhancing grain yield. In this study, we attempted to identify quantitative trait loci (QTL) involved in root system development by measuring root length of rice seedlings grown in hydroponic culture. Reliable growth conditions for estimating the root length were first established to renew nutrient solutions daily and supply NH4+ as a single nitrogen source. Thirty-eight chromosome segment substitution lines derived from a cross between ‘Koshihikari’, a japonica variety, and ‘Kasalath’, an indica variety, were used to detect QTL for seminal root length of seedlings grown in 5 or 500 μM NH4+. Eight chromosomal regions were found to be involved in root elongation. Among them, the most effective QTL was detected on a ‘Kasalath’ segment of SL-218, which was localized to the long-arm of chromosome 6. The ‘Kasalath’ allele at this QTL, qRL6.1, greatly promoted root elongation under all NH4+ concentrations tested. The genetic effect of this QTL was confirmed by analysis of the near-isogenic line (NIL) qRL6.1. The seminal root length of the NIL was 13.5–21.1% longer than that of ‘Koshihikari’ under different NH4+ concentrations. Toward our goal of applying qRL6.1 in a molecular breeding program to enhance rice yield, a candidate genomic region of qRL6.1 was delimited within a 337 kb region in the ‘Nipponbare’ genome by means of progeny testing of F2 plants/F3 lines derived from a cross between SL-218 and ‘Koshihikari’. Electronic supplementary material The online version of this article (doi:10.1007/s00122-010-1328-3) contains supplementary material, which is available to authorized users. PMID:20390245

  5. Agronomic traits and deoxynivalenol contamination of two tetraploid wheat species (Triticum turgidum spp. durum, Triticum turgidum spp. turanicum grown strictly under low input conditions

    Directory of Open Access Journals (Sweden)

    Giovanni Dinelli

    2014-09-01

    Full Text Available An evaluation of the agronomic performance of two tetraploid wheat varieties (Triticum turgidum spp. durum, Claudio; Triticum turgidum spp. turanicum, Kamut® grown strictly under low input conditions was carried out over three consecutive cropping years. The study reported grain yield values ranging from 1.8 to 2.6 t ha-1. Productivity showed to be primarily affected by environmental conditions, while no differences were observed between the two genotypes. The study of the yield components highlighted that the durum wheat variety had a higher plant density than Kamut®, but this discrepancy was offset by a greater number of kernels per spike and the kernel weight of khorasan wheat. The investigated wheat genotypes were also analysed to assess the mycotoxin (DON levels of wholegrain semolina and the efficiency of cleaning treatments to reduce contamination. Results showed that both wheat varieties had a good hygienic and sanitary quality with a DON content ranging from 0.35 to 1.31 mg kg-1, which was lower than the maximum acceptable level set by the European regulation at 1.75 mg kg-1. In addition, our research work investigated the effects of premilling cleaning procedures, such as water washing and brushing, on mycotoxin levels, which yielded interesting results in terms of decontamination efficiency. These methods were particularly efficient with Kamut® semolina (46-93% DON reduction, suggesting that mycotoxins accumulate in this variety at more superficial levels than in the durum wheat variety. On the whole, our study provided additional knowledge on the traits to be further improved to respond to low input requirements and to enhance the potential adaptability of wheat genotypes to organic agriculture. Our results emphasized the need to develop wheat varieties that can provide adequate performance without high levels of nitrogen inputs by selecting specific traits, such as kernel weight, spike length and kernel/spike. This may help

  6. Growth and nutrient absorption by Raisa tomato cultivar grown in hydroponic system/ Crescimento e marcha de absorção de nutrientes em tomateiro cultivar Raísa cultivado em sistema hidropônico

    Directory of Open Access Journals (Sweden)

    Arthur Bernardes Cecílio Filho

    2011-03-01

    Full Text Available The production and quality of tomatoes has increased with the emergence of new genotypes and cropping systems such as hydroponics, however, there are few studies on the nutrition of plants. The objective was to evaluate the growth and motion of absorption of nutrients by Raisa tomato cultivar, grown in hydroponic system. The experimental design was randomized blocks with eight treatments consisting of the times of sampling: 15, 25, 35, 45, 55, 65, 75 and 85 days after transplanting (DAT and five replications. The tomato seedlings were transplanted to pots of 8 dm3 (on 31-03-2008, filled with the base substrate of coconut fiber, constantly irrigated with Hoagland and Arnon nutrient solution. During the experimental period and focuses on the development of plants and dry leaves, stems, fruits and roots. The dry matter accumulation of leaves and roots of tomato cultivar Raisa was relatively faster than the national stem and fruit, over cultivation, with predominance of dry fruits (45% on the leaves (27%, the stem (24% and roots (3% at the end of the cycle. The accumulation of nutrients and micronutrients by the tomato cultivar Raisa was fit with linear increase throughout the cultivation, except for Mn which was quadratic. Most of the tomato nutritional requirement for nutrients was K, N and Ca and micronutrients was Fe, Zn and Mn.A produção e a qualidade do tomate têm aumentado com o surgimento de novos genótipos e sistemas de cultivo como o hidropônico, entretanto, são poucas as pesquisas sobre a nutrição das plantas. Assim, a presente pesquisa teve o objetivo de avaliar o crescimento e a marcha de absorção de nutrientes pelo tomateiro cultivar Raísa, cultivado em sistema hidropônico. O delineamento experimental adotado foi em blocos casualizados com oito tratamentos constituídos pelas épocas de amostragem: 15; 25; 35; 45; 55; 65; 75 e 85 dias após o transplante (DAT e cinco repetições. As mudas de tomateiro foram transplantas

  7. Hydroponic systems and water management in aquaponics: A review

    Directory of Open Access Journals (Sweden)

    Carmelo Maucieri

    2017-09-01

    Full Text Available Aquaponics (AP, the integrated multi-trophic fish and plants production in quasi-closed recirculating system, is one of the newest sustainable food production systems. The hydroponic component of the AP directly influences water quality (in turn influencing fish growth and health, and water consumption (through evapotranspiration of the entire system. In order to assess the role of the design and the management of the hydroponic component on the overall performance, and water consumption of the aquaponics, 122 papers published from 1979 to 2017 were reviewed. Although no unequivocal results were found, the nutrient film technique appears in several aspects less efficient than medium-based or floating raft hydroponics. The best system performance in terms of fish and plant growth, and the highest nutrient removal from water was achieved at water flow between 0.8 L min–1 and 8.0 L min–1. Data on water consumption of aquaponics are scarce, and no correlation between the ratio of hydroponic unit surface/fish tank volume and the system water loss was found. However, daily water loss was positively correlated with the hydroponic surface/fish tank volume ratio if the same experimental conditions and/or systems were compared. The plant species grown in hydroponics influenced the daily water loss in aquaponics, whereas no effect was exerted by the water flow (reciprocating flood/drain cycle or constant flow or type (medium-based, floating or nutrient film technique of hydroponics.

  8. Wheat Landraces Are Better Qualified as Potential Gene Pools at Ultraspaced rather than Densely Grown Conditions

    Directory of Open Access Journals (Sweden)

    Elissavet G. Ninou

    2014-01-01

    Full Text Available The negative relationship between the yield potential of a genotype and its competitive ability may constitute an obstacle to recognize outstanding genotypes within heterogeneous populations. This issue was investigated by growing six heterogeneous wheat landraces along with a pure-line commercial cultivar under both dense and widely spaced conditions. The performance of two landraces showed a perfect match to the above relationship. Although they lagged behind the cultivar by 64 and 38% at the dense stand, the reverse was true with spaced plants where they succeeded in out-yielding the cultivar by 58 and 73%, respectively. It was concluded that dense stand might undervalue a landrace as potential gene pool in order to apply single-plant selection targeting pure-line cultivars, attributable to inability of plants representing high yielding genotypes to exhibit their capacity due to competitive disadvantage. On the other side, the yield expression of individuals is optimized when density is low enough to preclude interplant competition. Therefore, the latter condition appears ideal to identify the most promising landrace for breeding and subsequently recognize the individuals representing the most outstanding genotypes.

  9. Hydroponics or soilless culture

    Science.gov (United States)

    Chapman, H. D.

    1963-01-01

    Historically, hydroponics is not a new field; plant physiologists have known and used it for some 100 years. Inevitably, some enthusiasts got carried away.Claims were made of enormous potential yields; skyscraper tops were said to be capable of producing enough food for all of their occupants; and closets, basements, garages, etc. were wishfully converted into fields for hydroponic culture. Numerous publications on the subject appeared during this period. Basic requirements for hydropinc techniques are given along with examples of where soilless culture has been used commercially.

  10. Performance of Pleurotus pulmonarius mushroom grown on maize stalk residues supplemented with various levels of maize flour and wheat bran

    Directory of Open Access Journals (Sweden)

    Senzosenkosi Surprise MKHIZE

    2017-10-01

    Full Text Available Abstract The use of supplemented agricultural waste in mushroom cultivation can be one of the environmentally friendly strategies for poverty alleviation. The study evaluated the performance of Pleurotus pulmonarius mushroom grown on maize stalk supplemented with varying levels of wheat bran (WB and maize flour (MF. A completely random design was used for the experiments. It was observed that Pleurotus pulmonarius was significantly affected by varying levels of supplementation, as 20% WB supplementation encountered higher contamination. The lower supplementation levels gave significantly shorter colonisation period with better mycelial growth rate (MGR. The 2% MF, 2% WB and 4% WB gave significantly higher MGR and faster colonisation. The shortest pinning time (TP was observed at the first flush with the minimum of 2 days. Higher supplementation levels gave maximum yield and biological efficiency (BE. With further increase of supplementation above a 12% WB and 14% MF, the BE and yield declined. Lower supplementation levels resulted in quicker colonisation period and improved growth rate, whereas high supplementation gave better production in terms of yield and BE. Therefore, for the purpose of maximum production, 12% WB and 14% MF may be recommended while for fast production time, 2% MF and 2% WB are recommended.

  11. Evaluation of growth and gas exchange rates of two local saudi wheat cultivars grown under heat stress conditions

    International Nuclear Information System (INIS)

    Boutraa, T.; Akhkha, A.; Shoaibi, A.K.

    2015-01-01

    The present study investigated the effects of three temperature regimes, low (20 degree C), moderate (25 degree C) and high (30 degree C), on growth and physiological parameters of two local Saudi wheat (Triticum durum) cultivars, Hab-Ahmar and Algaimi. Plants were grown under controlled environment in growth chambers. After four weeks plants were harvested and the following growth parameters were measured; plant height, number of tillers, leaf area, root length, fresh and dry weight. Physiological traits include chlorophyll content, photosynthesis rates, stomatal conductance, dark respiration and chlorophyll fluorescence parameters; Fo, Fm and Fv/Fm. In cultivar Hab-Ahmar, moderate and high temperatures caused significant decrease in most growth and physiological parameters such as plant height, number of tillers, leaf area, fresh and dry weight, chlorophyll content, photosynthesis rates, stomatal conductance, dark respiration and the maximum quantum yield of photosystem II (Fv/Fm). In contrast, cv. Algaimi was shown to be more thermotolerant to moderate and high temperatures, with the exception of some growth parameters that were decreased. Unlike cultivar Hab-Ahmar, cultivar Algaimi had an increased rate of dark respiration when temperature was high (30 degree C). Stomatal behavior is shown to be positively correlated with the rates of photosynthesis in both cultivars; however, in cultivar Hab-Ahmar such correlation decreased as temperature increased. (author)

  12. Effects of grown origin, genotype, harvest year, and their interactions of wheat kernels on near infrared spectral fingerprints for geographical traceability.

    Science.gov (United States)

    Zhao, Haiyan; Guo, Boli; Wei, Yimin; Zhang, Bo

    2014-01-01

    The effects of origin, genotype, harvest year, and their interactions on wheat near infrared (NIR) spectra were studied to find the reasons for differences in NIR fingerprints of wheat from different geographical origins and the stability of NIR fingerprints among different years. Ten varieties were grown in three regions of China for 2 years. 180 kernel samples were analysed by NIR. The spectra after pre-treatment were analysed by principal component analysis, multi-way analysis of variance, and discriminant partial least-squares. The results showed that origin, genotype, year, and their interactions all had significant effects on wheat NIR fingerprints. The second overtones of N-H and C-H stretching vibrations and a combination of stretch and deformation of C-H group in wheat were mainly influenced by the geographical origin. The wavelength ranges 975-990 nm, 1200 nm, and 1355-1380 nm contained plenty of origin information to build robust discriminant models of wheat geographical origin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Effect of repeated addition of irradiated and normal sewage sludges on the uptake of macro - and micronutrients by wheat and sunflower crops grown successively on an inceptisol

    International Nuclear Information System (INIS)

    Ramachandran, V.; Patel, D.U.; Athalye, V.V.; D'Souza, T.J.

    2003-01-01

    Microplot field experiments were conducted to evaluate the uptake of macro - and micronutrients by wheat (Triticum sativum L. cv. Kalyan Sona) and sunflower (Helianthus annuus L. cv. Morden) as 5th and 6th crops. respectively, grown on an inceptisol amended with normal sewage sludge (NSS) and irradiated sewage sludge (ISS) at the application rates of 0, 2, 4, 6 and 8 t ha -1 . Results indicated no significant differences in the dry matter yield (DMY) between the various treatments of either shoot or grain of both the crops. In general DMY of shoot was more than that of grain and also the DMY of wheat crop was more than that of sunflower. Data on the N, P, K contents of the two crops revealed no significant differences at the different treatments of both NSS and ISS; however, the different levels of NSS and ISS significantly enhanced the shoot N content of wheat, whereas grain P content of sunflower was significantly reduced. Nitrogen and P uptake in grain was higher than that of shoot of both the crops, but reverse was true for K. In general, N and P contents were higher in sunflower crop as compared to wheat crop and the opposite trend was obtained for K content. Results on the micronutrient contents of the two crops indicated an enhancement in the Cu and Zn contents of wheat crop by both NSS and ISS at different rates of application. Copper and Mn contents in wheat shoot were higher than that of wheat grain and the reverse was obtained for Zn. Copper, Zn and Mn contents of wheat shoot were lower than that of previous crops. Data on the micronutrient contents of sunflower crop indicated no significant differences between the different levels of NSS and ISS application. Manganese content of sunflower grain was higher than that of shoot and the opposite trend was noticed for Cu and Zn. Soil analysis after harvest of wheat crop indicated a significant enhancement in the soil characteristics such as pH, organic C and total N due to various levels of NSS and ISS

  14. The occurrence of fungi on the stem base and roots of spring wheat (Triticum aestivum L. grown in monoculture depending on tillage systems and catch crops

    Directory of Open Access Journals (Sweden)

    Piotr Kraska

    2012-12-01

    Full Text Available The present study was carried out in the period 2006-2008 based on an experiment established in 2005. The study evaluated the effect of conservation and plough tillage as well as of four catch crops on the level of infection by fungal pathogens of the stem base and roots of the spring wheat cultivar ‘Zebra’ grown in monoculture. The species composition of fungi colonizing the stem base and roots of spring wheat was determined. The split-plot design of the experiment set up on rendzina soil included plough tillage and conservation tillage with autumn and spring disking of catch crops. The experiment used four methods for regeneration of the spring wheat monoculture stand using the following: undersown red clover and Westerwolds ryegrass crops as well as lacy phacelia and white mustard stubble crops. Plots without catch crops were the control treatment. Red clover and Westerwolds ryegrass catch crops as well as lacy phacelia and white mustard stubble crops had a significant effect on the decrease in the stem base and root infection index of spring wheat compared to the control without catch crops. The disease indices in the tillage treatments under evaluation did not differ significantly from one another. The stem base and roots of spring wheat were most frequently infected by fungi of the genus Fusarium, with F. culmorum being the dominant pathogen of cereals. Compared to conservation tillage, in plough tillage the pathogenic fungus Bipolaris sorokiniana was not found to occur on the stem base and roots. The Westerwolds ryegrass catch crop promoted the occurrence of F. culmorum, both on the stem base and roots of spring wheat.

  15. Phenotyping of field-grown wheat in the UK highlights contribution of light response of photosynthesis and flag leaf longevity to grain yield.

    Science.gov (United States)

    Carmo-Silva, Elizabete; Andralojc, P John; Scales, Joanna C; Driever, Steven M; Mead, Andrew; Lawson, Tracy; Raines, Christine A; Parry, Martin A J

    2017-06-15

    Improving photosynthesis is a major target for increasing crop yields and ensuring food security. Phenotyping of photosynthesis in the field is critical to understand the limits to crop performance in agricultural settings. Yet, detailed phenotyping of photosynthetic traits is relatively scarce in field-grown wheat, with previous studies focusing on narrow germplasm selections. Flag leaf photosynthetic traits, crop development, and yield traits were compared in 64 field-grown wheat cultivars in the UK. Pre-anthesis and post-anthesis photosynthetic traits correlated significantly and positively with grain yield and harvest index (HI). These traits included net CO2 assimilation measured at ambient CO2 concentrations and a range of photosynthetic photon flux densities, and traits associated with the light response of photosynthesis. In most cultivars, photosynthesis decreased post-anthesis compared with pre-anthesis, and this was associated with decreased Rubisco activity and abundance. Heritability of photosynthetic traits suggests that phenotypic variation can be used to inform breeding programmes. Specific cultivars were identified with traits relevant to breeding for increased crop yields in the UK: pre-anthesis photosynthesis, post-anthesis photosynthesis, light response of photosynthesis, and Rubisco amounts. The results indicate that flag leaf longevity and operating photosynthetic activity in the canopy can be further exploited to maximize grain filling in UK bread wheat. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Weed infestation of spring common wheat (Triticum aestivum L. grown in monoculture depending on the cover crop and weed control method

    Directory of Open Access Journals (Sweden)

    Dorota Gawęda

    2012-10-01

    Full Text Available The aim of this 3-year field study was to evaluate the effect of some stubble crops and in-crop weed control methods on the species composition, number and air-dry weight of weeds in a wheat crop grown in short-term monoculture. The study was conducted in the period 2009-2011 in the Uhrusk Experimental Farm on mixed rendzina soil classified as very good rye soil complex. It included various types of stubble crops ploughed in each year (control treatment without cover crop, white mustard, lacy phacelia, a mixture of legumes – narrow-leaf lupin + field pea and methods of weed control in spring wheat (mechanical, mechanical and chemical, chemical weed control. On average during the study period, all stubble crops used reduced the air-dry weight of weds in the treatments with mechanical weed management relative to the control treatment. Irrespective of the weed control method, the number of weeds in the wheat crop was significantly lower only after the ploughing in of white mustard. Mechanical weed management proved to be less effective in reducing the number and dry weight of weeds compared to other weed control methods. The white mustard and legume mixture cover crops had a reducing effect on the number of weed species in relation to the treatment without cover crops. The highest floristic diversity of weed communities was found in the spring wheat crop in which only mechanical weeding alone was used.

  17. Análise sensorial, teores de nitrato e de nutrientes de alface cultivada em hidroponia sob águas salinas Sensory analysis, nitrate and nutrient concentration of lettuce grown in hydroponics under saline water

    Directory of Open Access Journals (Sweden)

    Dalva Paulus

    2012-03-01

    nutrients and nitrate and perform sensory analysis of lettuce in hydroponic system under saline water. The experiment was carried out in a greenhouse from December, 2007 to January, 2008, in Piracicaba. The experimental design was randomized blocks and factorial scheme (five salinity levels obtained with the addition of NaCl that resulted in different electrical conductivities of the water (dS m-1: 0.42, 1.53, 3.52, 5.55, 7.43 and two cultivas of lettuce (Veronica and Pira Roxa. The evaluations were: sensory analysis applying hedonic scale and through this, which sample presented the best and the least taste, the purchase intent and consumption, nitrate, absorption of nutrients by leaves and determination of nutrients in the nutrient solution. For the attribute of cultivars, Veronica received the highest marks in salt level 1.53 and 5.55 dS m-1. For cultivar Pira Roxa was awarded the best grade for lettuce grown in non-saline water. For other attributes there was no significant difference in levels of salinity. To purchase intention, it was found that cv. Verônica and Pira Roxa had good market acceptance. The lowest levels of nitrate (1960 mg kg-1 and 2620 mg kg-1 fresh weight of Verônica and Pira Roxa, respectively, were related to the electrical conductivity of 0.42 dS m-1, increasing water salinity to 7.43 dS m-1, the leaf content of nitrate increased to 2500 mg kg-1 and 3420 mg kg-1 for the cultivars Verônica and Pira Roxa. As the time of exposure to salt in a hydroponic system was short, around 25 days, there were no symptoms of nutrient deficiency and whole lettuce was classified as suitable for human consumption.

  18. Vigorous root growth is a better indicator of early nutrient uptake than root hair traits in spring wheat grown under low fertility

    DEFF Research Database (Denmark)

    Wang, Yaosheng; Thorup-Kristensen, Kristian; Jensen, Lars Stoumann

    2016-01-01

    . Vigorous root growth, however, was a better indicator of early nutrient acquisition than RHL and RHD. Vigorous root growth and long and dense root hairs ensured efficient acquisition of macro- and micronutrients during early growth and a high root length to shoot dry matter ratio favored high macronutrient......A number of root and root hair traits have been proposed as important for nutrient acquisition. However, there is still a need for knowledge on which traits are most important in determining macro- and micronutrient uptake at low soil fertility. This study investigated the variations in root growth...... vigor and root hair length (RHL) and density (RHD) among spring wheat genotypes and their relationship to nutrient concentrations and uptake during early growth. Six spring wheat genotypes were grown in a soil with low nutrient availability. The root and root hair traits as well as the concentration...

  19. Microbial Community Dynamics and Response to Plant Growth-Promoting Microorganisms in the Rhizosphere of Four Common Food Crops Cultivated in Hydroponics.

    Science.gov (United States)

    Sheridan, C; Depuydt, P; De Ro, M; Petit, C; Van Gysegem, E; Delaere, P; Dixon, M; Stasiak, M; Aciksöz, S B; Frossard, E; Paradiso, R; De Pascale, S; Ventorino, V; De Meyer, T; Sas, B; Geelen, D

    2017-02-01

    Plant growth promoting microorganisms (PGPMs) of the plant root zone microbiome have received limited attention in hydroponic cultivation systems. In the framework of a project aimed at the development of a biological life support system for manned missions in space, we investigated the effects of PGPMs on four common food crops (durum and bread wheat, potato and soybean) cultivated in recirculating hydroponic systems for a whole life cycle. Each crop was inoculated with a commercial PGPM mixture and the composition of the microbial communities associated with their root rhizosphere, rhizoplane/endosphere and with the recirculating nutrient solution was characterised through 16S- and ITS-targeted Illumina MiSeq sequencing. PGPM addition was shown to induce changes in the composition of these communities, though these changes varied both between crops and over time. Microbial communities of PGPM-treated plants were shown to be more stable over time. Though additional development is required, this study highlights the potential benefits that PGPMs may confer to plants grown in hydroponic systems, particularly when cultivated in extreme environments such as space.

  20. Wheat Yield Production Grown on Sandy Soil as Fertilized by Different N-Sources Using 15N-Technique

    International Nuclear Information System (INIS)

    Ismail, M. M.; Soliman, S. M.; El-Akel, E. A.; El-Sherbieny, A. E.; Awad, E. A. M.

    2007-01-01

    A pot experiment was carried out to evaluate the ability of some plant residues to meet total N demand of wheat crop in sandy soil and their performance to reduce chemical N fertilizer requirements. Residue-N sources, i.e. soybean and wheat residues were compared to ammonium sulfate as inorganic N source as well as mixtures of residue-N sources and (NH 4 )SO 4 in ratios of (3:1), (1:1) and (1:3), respectively. The nitrogen application rate in all amended pots was kept at 100 mg N pot -1 . The obtained results could be summarized as follows: 1) ry weight of straw and grains of wheat crop was significantly increased this at the addition of nitrogen sources as a result of N-uptake increased. The highest value was observed at the application treatment ratios of (1:1) and (1:3) on the basis of (residue: ammonium sulfate), which can be arranged in this order: Soybean > wheat + soybean > wheat residues. 2) he value of N derived from residues (Ndfr) and fertilizer (Ndff), as well as 15N -recovery ratios can be arranged in this order: Ammonium sulfate > soybean residue > Soybean + wheat residue > wheat residue. 3) he values indicated that 15N -labelled soybean residue in combination with ordinary, ammonium sulfate at the ratios of (*25: 75) and (*50: 50), respectively was found to be effective on 15N -recovery ratios in the straw and grains of wheat crop. 4) he present study indicates that the entire N requirements of wheat crop cannot be met by the separate application of any residue-N source examined.

  1. Characterization of Root and Shoot Traits in Wheat Cultivars with Putative Differences in Root System Size

    Directory of Open Access Journals (Sweden)

    Victoria Figueroa-Bustos

    2018-07-01

    Full Text Available Root system size is a key trait for improving water and nitrogen uptake efficiency in wheat (Triticum aestivum L.. This study aimed (i to characterize the root system and shoot traits of five wheat cultivars with apparent differences in root system size; (ii to evaluate whether the apparent differences in root system size observed at early vegetative stages in a previous semi-hydroponic phenotyping experiment are reflected at later phenological stages in plants grown in soil using large rhizoboxes. The five wheat cultivars were grown in a glasshouse in rhizoboxes filled to 1.0 m with field soil. Phenology and shoot traits were measured and root growth and proliferation were mapped to quantify root length density (RLD, root length per plant, root biomass and specific root length (SRL. Wheat cultivars with large root systems had greater root length, more root biomass and thicker roots, particularly in the top 40 cm, than those with small root systems. Cultivars that reached anthesis later had larger root system sizes than those that reached anthesis earlier. Later anthesis allowed more time for root growth and proliferation. Cultivars with large root systems had 25% more leaf area and biomass than those with small root systems, which presumably reflects high canopy photosynthesis to supply the demand for carbon assimilates to roots. Wheat cultivars with contrasting root system sizes at the onset of tillering (Z2.1 in a semi-hydroponic phenotyping system maintained their size ranking at booting (Z4.5 when grown in soil. Phenology, particularly time to anthesis, was associated with root system size.

  2. A recirculating hydroponic system for studying peanut (Arachis hypogaea L.)

    Science.gov (United States)

    Mackowiak, C. L.; Wheeler, R. M.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Sager, J. C. (Principal Investigator)

    1998-01-01

    Peanut (Arachis hypogaea L.) plants were grown hydroponically, using continuously recirculating nutrient solution. Two culture tray designs were tested; one tray design used only nutrient solution, while the other used a sphagnum-filled pod development compartment just beneath the cover and above the nutrient solution. Both trays were fitted with slotted covers to allow developing gynophores to reach the root zone. Peanut seed yields averaged 350 gm-2 dry mass, regardless of tray design, suggesting that substrate is not required for hydroponic peanut production.

  3. Exploring Classroom Hydroponics. Growing Ideas.

    Science.gov (United States)

    National Gardening Association, Burlington, VT.

    Growing Ideas, the National Gardening Association's series for elementary, middle, and junior high school educators, helps teachers engage students in using plants and gardens as contexts for developing a deeper, richer understanding of the world around them. This volume's focus is on hydroponics. It presents basic hydroponics information along…

  4. Effect of exo-polysaccharides producing bacterial inoculation on growth of roots of wheat(Triticum aestivum L. ) plants grown in a salt-affected soil

    International Nuclear Information System (INIS)

    Ashraf, M.; Hasnain, S.; Berge, O.

    2006-01-01

    Effect of soil salinity on physico-chemical and biological properties renders the salt-affected soils unsuitable for soil microbial processes and growth of the crop plants. Soil aggregation around roots of the plants is a function of the bacterial exo-polysaccharides, however, such a role of the EPS-producing bacteria in the saline environments has rarely been investigated. Pot experiments were conducted to observe the effects of inoculating six strains of exo-polysaccharides-producing bacteria on growth of primary (seminal) roots and its relationship with saccharides, cations (Ca 2+, Na +, K +) contents and mass of rhizosheath soils of roots of the wheat plants grown in a salt-affected soil. A strong positive relationship of RS with different root growth parameters indicated that an integrated influence of various biotic and abiotic RS factors would have controlled and promoted growth of roots of the inoculated wheat plants. The increase in root growth in turn could help inoculated wheat plants to withstand the negative effects of soil salinity through an enhanced soil water uptake, a restricted Na +i nflux in the plants and the accelerated soil microbial process involved in cycling and availability of the soil nutrients to the plants. It was concluded that inoculation of the exo- polysaccharides producing would be a valuable tool for amelioration and increasing crop productivity of the salt-affected soils

  5. Assessing the impact of ambient ozone on growth and yield of a rice (Oryza sativa L.) and a wheat (Triticum aestivum L.) cultivar grown in the Yangtze Delta, China, using three rates of application of ethylenediurea (EDU)

    International Nuclear Information System (INIS)

    Wang Xiaoke; Zheng Qiwei; Yao Fangfang; Chen Zhan; Feng Zhaozhong; Manning, W.J.

    2007-01-01

    Foliar applications of ethylenediurea (abbreviated as EDU) were made at 0, 150, 300 or 450 ppm to field-grown rice and wheat in the Yangtze Delta in China. Rice and wheat responded differently to ambient ozone and EDU applications. For wheat, some growth characteristics, such as yield, seed number per plant, seed set rate and harvest index, increased significantly at 300 ppm EDU treatment, while for rice no parameters measured were statistically different regarding EDU application. The reason may be that the wheat cultivar used may be more sensitive to ozone than the rice cultivar. EDU was effective in demonstrating ozone effects on the wheat cultivar, but not on the rice cultivar. Cultivar sensitivity might be an important consideration when assessing the effects of ambient ozone on plants. - Cultivar sensitivity should be considered when using protective chemical to assess the effects of ambient ozone on plants

  6. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil.

    Science.gov (United States)

    Delhaize, Emmanuel; Taylor, Phillip; Hocking, Peter J; Simpson, Richard J; Ryan, Peter R; Richardson, Alan E

    2009-06-01

    Barley (Hordeum vulgare L.), genetically modified with the Al(3+) resistance gene of wheat (TaALMT1), was compared with a non-transformed sibling line when grown on an acidic and highly phosphate-fixing ferrosol supplied with a range of phosphorus concentrations. In short-term pot trials (26 days), transgenic barley expressing TaALMT1 (GP-ALMT1) was more efficient than a non-transformed sibling line (GP) at taking up phosphorus on acid soil, but the genotypes did not differ when the soil was limed. Differences in phosphorus uptake efficiency on acid soil could be attributed not only to the differential effects of aluminium toxicity on root growth between the genotypes, but also to differences in phosphorus uptake per unit root length. Although GP-ALMT1 out-performed GP on acid soil, it was still not as efficient at taking up phosphorus as plants grown on limed soil. GP-ALMT1 plants grown in acid soil possessed substantially smaller rhizosheaths than those grown in limed soil, suggesting that root hairs were shorter. This is a probable reason for the lower phosphorus uptake efficiency. When grown to maturity in large pots, GP-ALMT1 plants produced more than twice the grain as GP plants grown on acid soil and 80% of the grain produced by limed controls. Expression of TaALMT1 in barley was not associated with a penalty in either total shoot or grain production in the absence of Al(3+), with both genotypes showing equivalent yields in limed soil. These findings demonstrate that an important crop species can be genetically engineered to successfully increase grain production on an acid soil.

  7. Recycling of treated domestic effluent from an on-site wastewater treatment system for hydroponics.

    Science.gov (United States)

    Oyama, N; Nair, J; Ho, G E

    2005-01-01

    An alternative method to conserve water and produce crops in arid regions is through hydroponics. Application of treated wastewater for hydroponics will help in stripping off nutrients from wastewater, maximising reuse through reduced evaporation losses, increasing control on quality of water and reducing risk of pathogen contamination. This study focuses on the efficiency of treated wastewater from an on-site aerobic wastewater treatment unit. The experiment aimed to investigate 1) nutrient reduction 2) microbial reduction and 3) growth rate of plants fed on wastewater compared to a commercial hydroponics medium. The study revealed that the chemical and microbial quality of wastewater after hydroponics was safe and satisfactory for irrigation and plant growth rate in wastewater hydroponics was similar to those grown in a commercial medium.

  8. Improved wheat for baking.

    Science.gov (United States)

    Faridi, H; Finley, J W

    1989-01-01

    To bakers, wheat quality means the performance characteristics of the flour milled from the wheat when used in specific wheat products. The tremendous increase in the number of wheat cultivars grown in the U.S. in recent years, along with the unusual climate, new advances in milling technology, and increased automation of baking lines, have resulted in bakery production problems partly attributed to wheat flour quality. In this review various factors affecting wheat quality are explained. Concerns of bread and cookie/cracker manufacturers on deterioration of the wheat quality are discussed, and, finally, some solutions are proposed.

  9. Effects of Al and Mn, alone and in combination, on growth and nutrient status of red pine seedlings hydroponically grown in nutrient culture solution; Suiko saibaishita akamatsunae no seicho oyobi eiyo jotai ni taisuru Al to Mn no tandoku oyobi fukugo eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.; Izuta, T.; Aoki, M.; Totsuka, T. [Tokyo University of Agriculture and Technology, Tokyo (Japan). Faculty of Agriculture

    1997-09-10

    Experiments have made clear the effects of Al and Mn on growth of red pine seedlings hydroponically grown. Analysis was performed on components of plants grown in culture solution into which Al and Mn were added alone or in combination. Photosynthesis velocity and dark respiration velocity of the seedlings were measured when they have fully grown. The following results were obtained: the Al addition reduces dry seedling weight, the T/R ratio (T is dry weight of a seedling above the ground and R is that under the ground) decreases as the addition amount is increased, and the photosynthesis velocity decreases; Al accumulates in roots reducing physiological function of the roots and concentrations of Ca and Mg; the dry weight decreases with increasing Mn addition, but does not affect the T/R ratio; the Mn addition reduces the photosynthesis velocity lowering chlorophyll content in needle leaves; the dark respiration velocity decreases as the Mn amount is increased, but does not affect that for trunks; Ca and Mg concentrations decrease in the trunks and roots; no significant compound effects of Al and Mn are recognized, and the effects are additive; and the concentration at which growth decrease appears is 10 ppm or higher for Al and 60 ppm or higher for Mn. 32 refs., 2 figs., 11 tabs.

  10. Analisis de la comunidad de malezas en trigo cultivado sobre distintos antecesores Analysis of weed community in wheat crop grown on different precedent crops

    Directory of Open Access Journals (Sweden)

    E. Requesens

    1996-01-01

    Full Text Available Comparou-se a composição e freqüência relativa das espécies e dos índices de diversidade e dominância da comunidade infestante de três áreas de trigo que foram cultivadas com trigo, milho e batata anteriormente. O estudo foi realizado na região de Mar del Plata, Província de Buenos Aires Argentina. Em cada área, realizou-se 40 amostragens de 1m2, dispostos de forma regular no campo, antes da aplicação dos herbicidas. Foram observadas pequenas diferenças entre as três comunidades florísticas levantadas, porém importantes mudanças foram verificadas na freqüência relativa de algumas espécies. Stellaria media foi a espécie mais freqüente, quando a cultura foi procedida de trigo e milho e sendo apenas superada por Solanum tuberosum quando a cultura do trigo teve como antecessor a cultura da batata. Algumas espécies como Chenopodium album, Zea maiz, Solanum tuberosum, Polygonum aviculares, Ammi viznaga, Veronica persica e Taraxacum officinalis incrementaram suas freqüências relativas nas áreas de trigo precedidas de milho e batata. Por outro lado, a freqüência relativa de outras espécies como Apium leptophyllum, Polygonum aviculares e Matricaria chamomilla decresceram nos mesmos locais. As mudanças específicas nas freqüências relativas não afetaram os parâmetros estruturais das comunidades infestantes, os quais mostraram valores similares de alta diversidade específica e baixa dominância.Relative frequency of species, diversity and dominance indexes of the weed community in three wheat crops grown in field of 40 ha where wheat, corn or potato were grown int he previous season, were analyzed. The study was performed in Mar del Plata, Province of Buenos Aires (Argentina. The ocurring species were registred in each of forth 1 m2 samples distributed in a regular arrangement at each field. This was done previous to application of herbicides. Small differences between communities in floristic composition and richness

  11. Supplementary material from "Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions"

    NARCIS (Netherlands)

    Driever, S.M.; Simkin, Andrew J.; Alotaibi, Saqer; Fisk, Stuart J.; Madgwick, Pippa J.; Sparks, Caroline A.; Jones, Huw D.; Lawson, Tracy; Parry, Martin A.J.; Raines, Christine A.

    2017-01-01

    To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf

  12. Effect of Genetically Modified Pseudomonas putida WCS358r on the Fungal Rhizosphere Microflora of Field-Grown Wheat

    NARCIS (Netherlands)

    Glandorf, D.C.M.; Verheggen, Patrick; Jansen, Timo; Jorritsma, J.-W.; Smit, Eric; Leeflang, Paula; Wernars, Karel; Thomashow, L.S.; Laureijs, Eric; Thomas-Oates, J.E.; Bakker, P.A.H.M.; Loon, L.C. van

    2001-01-01

    We released genetically modified Pseudomonas putida WCS358r into the rhizospheres of wheat plants. The two genetically modified derivatives, genetically modified microorganism (GMM) 2 and GMM 8, carried the phz biosynthetic gene locus of strain P. fluorescens 2-79 and constitutively produced the

  13. Saline soil properties, quality and productivity of wheat grown with bagasse ash and thiourea in different climatic zones.

    Science.gov (United States)

    Seleiman, Mahmoud F; Kheir, Ahmed M S

    2018-02-01

    Soil salinity and atmosphere temperature change have negative impacts on crop productivity and its quality and can pose a significant risk to soil properties in semi-arid regions. We conducted two field experiments in North (first zone) and South (second zone) of Egypt to investigate the effects of soil bagasse ash (10 ton ha -1 ), foliar thiourea (240 g ha -1 ) and their combination in comparison to the control treatment on saline soil properties and productivity and quality traits of wheat. All studied treatments were received the recommended rate of N, P and K fertilizations. Combination of soil bagasse ash and foliar thiourea application resulted in a significant improvement of most studied soil properties (i.e. EC, compaction, hydraulic conductivity, OM and available P, K, N contents) after harvest in comparison to other treatments in both of zones. Also, it enhanced growth and grain yield of wheat in terms of photosynthesis related attributes and yield components. Moreover, combination of soil bagasse ash and foliar thiourea application resulted in superior grain quality traits in terms of carbohydrate, fibre, protein and ash contents than separated application of soil bagasse ash, foliar thiourea or even control treatment. In conclusion, combination of soil bagasse ash and foliar thiourea application can be used as suitable option to enhance plant nutrition, wheat productivity and improve wheat grain quality and soil traits in saline soil as well as can alleviate heat stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Yield and size of oyster mushroom grown on rice/wheat straw basal substrate supplemented with cotton seed hull.

    Science.gov (United States)

    Yang, Wenjie; Guo, Fengling; Wan, Zhengjie

    2013-10-01

    Oyster mushroom (Pleurotus ostreatus) was cultivated on rice straw basal substrate, wheat straw basal substrate, cotton seed hull basal substrate, and wheat straw or rice straw supplemented with different proportions (15%, 30%, and 45% in rice straw substrate, 20%, 30%, and 40% in wheat straw substrate) of cotton seed hull to find a cost effective substrate. The effect of autoclaved sterilized and non-sterilized substrate on growth and yield of oyster mushroom was also examined. Results indicated that for both sterilized substrate and non-sterilized substrate, oyster mushroom on rice straw and wheat basal substrate have faster mycelial growth rate, comparatively poor surface mycelial density, shorter total colonization period and days from bag opening to primordia formation, lower yield and biological efficiency, lower mushroom weight, longer stipe length and smaller cap diameter than that on cotton seed hull basal substrate. The addition of cotton seed hull to rice straw and wheat straw substrate slowed spawn running, primordial development and fruit body formation. However, increasing the amount of cotton seed hull can increase the uniformity and white of mycelium, yield and biological efficiency, and increase mushroom weight, enlarge cap diameter and shorten stipe length. Compared to the sterilized substrate, the non-sterilized substrate had comparatively higher mycelial growth rate, shorter total colonization period and days from bag opening to primordia formation. However, the non-sterilized substrate did not gave significantly higher mushroom yield and biological efficiency than the sterilized substrate, but some undesirable characteristics, i.e. smaller mushroom cap diameter and relatively long stipe length.

  15. Spectral Quantitation Of Hydroponic Nutrients

    Science.gov (United States)

    Schlager, Kenneth J.; Kahle, Scott J.; Wilson, Monica A.; Boehlen, Michelle

    1996-01-01

    Instrument continuously monitors hydroponic solution by use of absorption and emission spectrometry to determine concentrations of principal nutrients, including nitrate, iron, potassium, calcium, magnesium, phosphorus, sodium, and others. Does not depend on extraction and processing of samples, use of such surrograte parameters as pH or electrical conductivity for control, or addition of analytical reagents to solution. Solution not chemically altered by analysis and can be returned to hydroponic process stream after analysis.

  16. Efeito do armazenamento sobre as propriedades tecnológicas da farinha, de variedades de trigo cultivadas no Brasil Effect of storage on technological properties of wheat flour of Brazilian grown wheats

    Directory of Open Access Journals (Sweden)

    Mônica R. Pirozi

    1998-06-01

    Full Text Available The aim of this work was to evaluate changes in technological properties of newly milled flours of BR-23, BR-35 and Anahuac varieties (Brazilian grown wheat during storage for 180 days. Quality of samples was analysed for their rheological properties, acidity, falling number, glutomatic test and baking test, after periods of 0, 7, 15, 30, 60, 90, 120, 150 and 180 days. Most evident changes were the increase in flour acitidy and dough elasticity. The other characteristics did not show expressive changes. The flour of Anahuac variety was less influenced by the storage than the other ones. The results showed an increment in the flour quality, during 60-90 days of storage, althoug the baking test did not show expressive changes during all the period of storage.

  17. Early sowing increases nitrogen uptake and yields of winter wheat grown with cattle slurry or mineral fertilizers

    DEFF Research Database (Denmark)

    Suarez, Alfonso; Rasmussen, Jim; Thomsen, Ingrid Kaag

    2018-01-01

    of the two cultivars did not differ consistently with respect to the effect of early sowing on crop yield, N concentration and offtake, or ANR. Within the north-west European climatic region, moving the sowing time of winter wheat from mid-September to mid-August provides a significant yield and N offtake......The current study evaluated the effect of sowing date (early, mid-August or timely, mid-September) on two winter wheat (Triticum aestivum L.) cultivars (Hereford, Mariboss) with different rates of nitrogen (N) (0–225 kg total N/ha) applied as animal manure (AM; cattle slurry) or mineral fertilizers...... (N: phosphorus: potassium; NPK). Overwinter plant N uptake and soil mineral N content were determined during 2014/15, while harvest yields (grain, straw, N content) were determined during 2014/15 and 2015/16. Overwinter uptake of N was 14 kg N/ha higher in early than in timely-sown wheat. Despite...

  18. COMPARED ANALYSIS OF CATALASE AND PEROXIDASE ACTIVITY IN CELLULOLYTIC FUNGUS TRICHODERMA REESEI GROWN ON MEDIUM WITH DIFFERENT CONCENTRATIONS OF GRINDED WHEAT AND BARLEY STRAWS

    Directory of Open Access Journals (Sweden)

    Mihaela Cristica

    2010-09-01

    Full Text Available The purpose of this study was to assess the evolution of catalase and peroxidase activity in Trichoderma reesei grown on medium containing grinded wheat and barley straws. Carbon source of cultivation medium - glucose was replaced by various concentrations of grinded wheat and barley straws, finally resulting three experimental variants as follows: V1 = 20 g/l, V2 = 30 g/l, V3 = 40 g/l. ĂŽn addition to these variants a control sample was added in which composition remainded unchanged. The catalase activity was determined by spectrophotometric Sinha method (Artenie et al., 2008 while peroxidase activity was assesed using the o-dianisidine method (Cojocaru, 2009. Enzymatic determinations were carried out at 7 and 14 days from inoculation, in both fungus mycelium and culture liquid. The enzymatic assay showed significant differences between determinations intervals and work variants. Enzyme activity is influenced by the age of fungus and by the different nature of the substrate used.

  19. Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field.

    Science.gov (United States)

    Hassan, Tamoor Ul; Bano, Asghari; Naz, Irum

    2017-06-03

    The aim of the study was to determine tolerance of plant growth promoting rhizobacteria (PGPR) in different concentrations of Cu, Cr, Co, Cd, Ni, Mn, and Pb and to evaluate the PGPR-modulated bioavailability of different heavy metals in the rhizosphere soil and wheat tissues, grown in saline sodic soil. Bacillus cereus and Pseudomonas moraviensis were isolated from Cenchrus ciliaris L. growing in the Khewra salt range. Seven-day-old cultures of PGPR were applied on wheat as single inoculum, co-inoculation and carrier-based biofertilizer (using maize straw and sugarcane husk as carrier). At 100 ppm of Cr and Cu, the survival rates of rhizobacteria were decreased by 40%. Single inoculation of PGPR decreased 50% of Co, Ni, Cr and Mn concentrations in the rhizosphere soil. Co-inoculation of PGPR and biofertilizer treatment further augmented the decreases by 15% in Co, Ni, Cr and Mn over single inoculation except Pb and Co where decreases were 40% and 77%, respectively. The maximum decrease in biological concentration factor (BCF) was observed for Cd, Co, Cr, and Mn. P. moraviensis inoculation decreases the biological accumulation coefficient (BAC) as well as translocation factor (TF) for Cd, Cr, Cu Mn, and Ni. The PGPR inoculation minimized the deleterious effects of heavy metals, and the addition of carriers further assisted the PGPR.

  20. Accumulation of anthropogenic radionuclides in crops in conditions of water stream and classical hydroponics

    Energy Technology Data Exchange (ETDEWEB)

    Mayrapetyan, Khachatur; Hovsepyan, Albert; Daryadar, Mahsa; Alexanyan, Julietta; Tovmasyan, Anahit; Ghalachyan, Laura; Tadevosyan, Anna; Mayrapetyan, Stepan [Institute of Hydroponics Problems, NAS, Noragyugh 108, 0082, Yerevan (Armenia)

    2014-07-01

    Natural and artificial radionuclides (RN) dangerous for health are emitted into ecosystems because of human anthropogenic activities in the field of nuclear energetics. Biologically artificial RN {sup 90}Sr(T{sub 1/2}=28,6 years) and {sup 137}Cs (T{sub 1/2}=30,1 years)are very dangerous. Therefore obtaining radio-ecologically safe raw material of high quality is a very urgent problem now. Taking into account the above mentioned, in order to obtain ecologically safe raw material we carried out comparative radiochemical investigations on essential oil and medicinal plants peppermint(Mentha piperita L.) and sweet basil (Ocimum basilicum L.) grown in new water-stream (continuous, gully, cylindrical) and classical hydroponics, with the aim of revealing accumulation peculiarities of {sup 90}Sr and {sup 137}Cs. The results of experiments have shown that in classical hydroponics peppermint and sweet basil exceeded the same indices of water-stream hydroponics with {sup 90}Sr and {sup 137}Cs content 1,1-1,2; 1,2-1,3 and 1,5-1,8; 1,4-1,8 times, respectively. Moreover, sweet basil exceeded peppermint in water-stream hydroponics {sup 90}Sr 1,3-1,6; {sup 137}Cs 1,2-1,4 times and in classical hydroponics {sup 90}Sr 1,6; {sup 137}Cs 1,2 times. The content of controlled artificial RN in raw material did not exceed the allowed concentration limit (ACL). New water-stream hydroponics system worked out in Institute of Hydroponics Problems is a radio-ecologically more profitable method for producing raw material than classical hydroponics. At the same time water-stream hydroponics system in comparison with classical hydroponics promoted productivity (dry raw material) increase of peppermint and sweet basil 1,1-1,4 times. (authors)

  1. Uptake of radionuclides by wheat roots with respect to location of contamination below the surface

    International Nuclear Information System (INIS)

    Suvornmongkhol, Narumon.

    1996-01-01

    The behaviour of 85 Sr, 137 Cs, 54 Mn and 60 Co in terms of plant availability in near surface soil and their root uptake was studied as a function of the location of contamination in the soil profile. Wheat (Triticum aestivum) was employed and the study programme involved both column and hydroponic studies. In the column studies, columns were packed with sandy soil, and either homogeneously or discretely contaminated with the radionuclides, and the water table maintained manually at 3 cm from the bottom. In the discrete contamination, the location of contamination was varied (0-5, 25-30 or 45-50 cm from the top). Wheat plants were grown to maturity in these columns, and harvested at different growth stages to examine radioactivity uptake and its subsequent translocation within the plants. The movement of radionuclides within the soil as well as the soil physicochemical properties were also investigated. The short term uptake kinetics of the hydroponically grown plants during ontogenesis were also studied, both with excised roots and intact plants. The excised root experiment was aimed at investigating the radionuclide by roots of different orders. (author)

  2. The effect of soil extracts from a monoculture of spring wheat (Triticum aestivum L. grown under different tillage systems on the germination of its seeds

    Directory of Open Access Journals (Sweden)

    Piotr Kraska

    2012-12-01

    Full Text Available The present experiment was carried out in the period 2006-2008. The aim of this study was to determine the effect of aqueous soil extracts from the soil of a spring wheat monoculture on seed germination energy and capacity, the length of the first leaf and of the longest radicle as well as the number of radicles. Moreover, the content of 0-dihydroxyphenols in the soil was compared in the last year of the study. The soil used to prepare the solutions came from a field experiment established on medium heavy mixed rendzina soil. Spring wheat, cv. Zebra, was grown using plough tillage and two conservation tillage methods in the presence of undersown crops (red clover, Westerwolds ryegrass and stubble crops (lacy phacelia, white mustard. Germination energy of the seeds watered with the soil extracts from the ploughed plots was significantly higher than this trait in the seeds watered with the extracts from the conservation tillage treatments with spring disking of the catch crops. Germination energy and capacity of spring wheat in the control treatment watered with distilled water were significantly higher compared to the other treatments under evaluation. Spring wheat watered with the aqueous extract prepared from the soil obtained from the plough tillage treatment produced a significantly longer first leaf compared to the treatments in which both conservation tillage methods had been used. The shortest leaf and the lowest number of radicles were produced by the seedlings watered with the soil extract from the treatment with the white clover stubble crop. Radicle length was not significantly differentiated by the soil extracts under consideration. The content of 0-dihydroxyphenols in the rendzina soil determined during the spring period was higher than that determined in the autumn. The content of 0-dihydroxyphenols in the soil was lower in the conservation tillage treatments with autumn incorporation of the catch crops than in the plots in which

  3. Hydroponic phytoremediation of heavy metals and radionuclides

    International Nuclear Information System (INIS)

    Hartong, J.; Szpak, J.; Hamric, T.; Cutright, T.

    1998-01-01

    It is estimated that the Departments of Defense, Energy, and Agriculture will spend up to 300 billion federal dollars on environmental remediation during the next century. Current remediation processes can be expensive, non-aesthetic, and non-versatile. Therefore, the need exists for more innovative and cost effective solutions. Phytoremediation, the use of vegetation for the remediation of contaminated sediments, soils, and ground water, is an emerging technology for treating several categories of persistent, toxic contaminants. Although effective, phytoremediation is still in a developmental stage, and therefore is not a widely accepted technology by regulatory agencies and public groups. Research is currently being conducted to validate the processes effectiveness as well as increase regulatory and community acceptance. This research will focus on the ability of plants to treat an aquifer contaminated with heavy metals and radionuclides. Specifically, the effectiveness of hydroponically grown dwarf sunflowers and mustard seed will be investigated

  4. Hydroponic phytoremediation of heavy metals and radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Hartong, J; Szpak, J; Hamric, T; Cutright, T

    1998-07-01

    It is estimated that the Departments of Defense, Energy, and Agriculture will spend up to 300 billion federal dollars on environmental remediation during the next century. Current remediation processes can be expensive, non-aesthetic, and non-versatile. Therefore, the need exists for more innovative and cost effective solutions. Phytoremediation, the use of vegetation for the remediation of contaminated sediments, soils, and ground water, is an emerging technology for treating several categories of persistent, toxic contaminants. Although effective, phytoremediation is still in a developmental stage, and therefore is not a widely accepted technology by regulatory agencies and public groups. Research is currently being conducted to validate the processes effectiveness as well as increase regulatory and community acceptance. This research will focus on the ability of plants to treat an aquifer contaminated with heavy metals and radionuclides. Specifically, the effectiveness of hydroponically grown dwarf sunflowers and mustard seed will be investigated.

  5. Solution Culture Hydroponics: History and Inexpensive Equipment.

    Science.gov (United States)

    Hershey, David R.

    1994-01-01

    Describes historical accounts dating back to as early as 604-562 BC of the various uses of hydroponics. Throughout the article, diagrams and simple instructions are provided to aid in classroom use of hydroponics. (ZWH)

  6. Closed-Cycle Nutrient Supply For Hydroponics

    Science.gov (United States)

    Schwartzkopf, Steven H.

    1991-01-01

    Hydroponic system controls composition and feed rate of nutrient solution and recovers and recycles excess solution. Uses air pressure on bladders to transfer aqueous nutrient solution. Measures and adjusts composition of solution before it goes to hydroponic chamber. Eventually returns excess solution to one of tanks. Designed to operate in microgravity, also adaptable to hydroponic plant-growing systems on Earth.

  7. Gene expression profiling of ramie roots during hydroponic induction and adaption to aquatic environment

    Directory of Open Access Journals (Sweden)

    Gang Gao

    2017-12-01

    Full Text Available Ramie (Boehmeria nivea (L. Gaud. is a traditionally terrestrial fiber crop. However, hydroponic technology can enhance the quantity and quality of disease free Ramie plant seedlings for field cultivation. To date, few studies have attempted to examine the hydroponic induction of ramie roots and the molecular responses of ramie roots to aquatic environment. In this study, ramie tender stems was grown in the soil or in a hydroponic water solution, and cultured in the same environmental conditions. Root samples of terrestrial ramie, and different developmental stages of hydroponic ramie (5 days, 30 days, were firstly pooled for reference transcriptome sequencing by Illumina Hiseq 2000. Gene expression levels of each samples were quantified using the BGISEQ500 platform to help understand the distribution of aquatic root development related genes at the macro level (GSE98903. Our data resources provided an opportunity to elucidate the adaptation mechanisms of ramie seedlings roots in aquatic environment.

  8. Effect of Phosphorous and Potassium Fertilization on Nitrogen Utilized by wheat Grown in Saline Soil Amended with Organic Manures

    International Nuclear Information System (INIS)

    Soliman, S.M.; Gadalla, A.M.; Kotb, E.A.; Mostafa, S.M.A.; Mansour, M.M.F.

    2008-01-01

    This study was carried out on poor saline soil located at Wad Ras Sudr, South Saini Governorate, and suffers from shortage of water resources. Therefore, we aimed to utilize this soil as well as the saline ground water for plant production. Organic fertilizers such as green manure(GM) or poultry manure(PM) can be used as nutrient sources, where it improves the physical, chemical and biological properties of the soil. Economically, the yield improvement and nutrient supply will reflect the potential use of such organic materials. Also, phosphorus and/or potassium supplementation separately or in combination with green or poultry manures improved the growth of wheat plants under such adverse condition of salinity. Application of 15 N technique indicated that labeled nitrogen added as ammonium sulphate (AS) to investigate and discrimination between the different N sources i.e. nitrogen derived from fertilizer (Ndff) and nitrogen derived from soil (Ndfs) as well as nitrogen use efficiency (FUE %)

  9. Desempenho de cultivares de alface crespa em dois ambientes de cultivo em sistema hidropônico Performance of lettuce cultivars grown in two environments, in the NFT hydroponic system

    Directory of Open Access Journals (Sweden)

    SF Blat

    2011-03-01

    Full Text Available Este trabalho foi desenvolvido em Ribeirão Preto-SP, de 06/02 a 07/04 de 2006. O objetivo foi avaliar o desempenho de cinco cultivares de alface (Pira Roxa, Belíssima, Locarno, Crespona Gigante e Verônica em dois ambientes de cultivo (casa de vegetação climatizada e não climatizada em sistema hidropônico NFT. O delineamento experimental foi em blocos casualizados para cada ambiente com três repetições sendo cinco cultivares. Os ambientes foram comparados por meio de análise conjunta. Avaliaram-se a massa fresca e seca da parte aérea, massas fresca e seca do caule, massa fresca e seca da raiz, número de folhas maiores que 10 cm e número total de folhas. Não houve efeito significativo da interação cultivares e ambientes, demonstrando que as cultivares tiveram comportamento similar em ambos os ambientes.This research was carried out in Ribeirão Preto, São Paulo State, Brazil, from February to April, 2006. The performance of five lettuce cultivars (Pira Roxa, Belíssima, Locarno, Crespona Gigante and Verônica was evaluated, growing the plants in two environments (conventional and acclimatized greenhouse in hydroponic system NFT. A randomized-block experimental design was used for each environment, with three replications and five cultivars. The environments were compared through joint analysis. Evaluations were done for fresh and dry mater of the aboveground part, stem, and roots; number of leaves larger than 10 cm and total number of leaves. The cultivars Crespona Gigante and Verônica were prominent with regard to green and dry mass of the aboveground part, leaves, and roots, as well as to the number of leaves larger than 10 cm. The interaction cultivar x environment was not significant, demonstrating that the cultivars had similar behavior in both environments.

  10. Performance of Pleurotus ostreatus mushroom grown on maize stalk residues supplemented with various levels of maize flour and wheat bran

    Directory of Open Access Journals (Sweden)

    Senzosenkosi Surprise MKHIZE

    Full Text Available Abstract Improving the performance of mushroom in terms of high production and fast growth rate is essential in mushroom cultivation. In the present study the performance of Pleurotus ostreatus was evaluated using varying levels of wheat bran (WB and maize flour (MF. The results indicated that Pleurotus ostreatus was highly influenced by different levels of supplementation, with 8% WB, 18% WB and 2% MF having higher contamination rate. The low levels of supplementation gave significantly better mycelial growth rate (MGR and shorter colonisation period as observed that the control had highest MGR whereby 20% MF had lowest MGR. The pinning time (TP was shortest at the first flush with minimum of 3 days (12% MF. The higher levels of supplementation showed maximum biological efficiency (BE such as 14% MF, 12% WB and 14% WB. The yield was also higher at high levels of supplementation such as 20% MF and 8% MF being the exception in the lower levels. Based on the results it was observed that for fast production of oyster mushroom there is no need to supplement the maize stalk substrate but for improved productivity supplements can be added up to certain limits such as 14% MF and 12 WB.

  11. Recycling crop residues for use in recirculating hydroponic crop production

    Science.gov (United States)

    Mackowiak, C. L.; Garland, J. L.; Sager, J. C.

    1996-01-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.

  12. An improved, low-cost, hydroponic system for growing Arabidopsis and other plant species under aseptic conditions.

    Science.gov (United States)

    Alatorre-Cobos, Fulgencio; Calderón-Vázquez, Carlos; Ibarra-Laclette, Enrique; Yong-Villalobos, Lenin; Pérez-Torres, Claudia-Anahí; Oropeza-Aburto, Araceli; Méndez-Bravo, Alfonso; González-Morales, Sandra-Isabel; Gutiérrez-Alanís, Dolores; Chacón-López, Alejandra; Peña-Ocaña, Betsy-Anaid; Herrera-Estrella, Luis

    2014-03-21

    Hydroponics is a plant growth system that provides a more precise control of growth media composition. Several hydroponic systems have been reported for Arabidopsis and other model plants. The ease of system set up, cost of the growth system and flexibility to characterize and harvest plant material are features continually improved in new hydroponic system reported. We developed a hydroponic culture system for Arabidopsis and other model plants. This low cost, proficient, and novel system is based on recyclable and sterilizable plastic containers, which are readily available from local suppliers. Our system allows a large-scale manipulation of seedlings. It adapts to different growing treatments and has an extended growth window until adult plants are established. The novel seed-holder also facilitates the transfer and harvest of seedlings. Here we report the use of our hydroponic system to analyze transcriptomic responses of Arabidopsis to nutriment availability and plant/pathogen interactions. The efficiency and functionality of our proposed hydroponic system is demonstrated in nutrient deficiency and pathogenesis experiments. Hydroponically grown Arabidopsis seedlings under long-time inorganic phosphate (Pi) deficiency showed typical changes in root architecture and high expression of marker genes involved in signaling and Pi recycling. Genome-wide transcriptional analysis of gene expression of Arabidopsis roots depleted of Pi by short time periods indicates that genes related to general stress are up-regulated before those specific to Pi signaling and metabolism. Our hydroponic system also proved useful for conducting pathogenesis essays, revealing early transcriptional activation of pathogenesis-related genes.

  13. Greenhouse (III): Gas-Exchange and Seed-to-Seed Experiments on the Russian Space Station MIR and Earth-grown, Ethylene-Treated Wheat Plants

    Science.gov (United States)

    Campbell, William F.; Bingham, Gail; Carman, John; Bubenheim, David; Levinskikh, Margarita; Sytchev, Vladimir N.; Podolsky, Igor B.; Chernova, Lola; Nefodova, Yelena

    2001-01-01

    The Mir Space Station provided an outstanding opportunity to study long-term plant responses when exposed to a microgravity environment. Furthermore, if plants can be grown to maturity in a microgravity environment, they might be used in future bioregenerative life-support systems (BLSS). The primary objective of the Greenhouse experiment onboard Mir was to grow Super Dwarf and Apogee wheat through complete life cycles in microgravity; i.e., from seed-to-seed-to-seed. Additional objectives were to study chemical, biochemical, and structural changes in plant tissues as well as photosynthesis, respiration, and transpiration (evaporation of water from plants). Another major objective was to evaluate the suitability clothe facilities on Mir for advanced research with plants. The Greenhouse experiment was conducted in the Russian/Bulgarian plant growth chamber, the Svet, to which the United States added instrumentation systems to monitor changes in CO2 and water vapor caused by the plants (with four infrared gas analyzers monitoring air entering and leaving two small plastic chambers). In addition, the US instrumentation also monitored O2; air, leaf (IR), cabin pressure; photon flux; and substrate temperature and substrate moisture (16 probes in the root module). Facility modifications were first performed during the summer of 1995 during Mir 19, which began after STS-72 left Mir. Plant development was monitored by daily observations and some photographs.

  14. Wheat Quality Council, Hard Spring Wheat Technical Committee, 2017 Crop

    Science.gov (United States)

    Nine experimental lines of hard spring wheat were grown at up to six locations in 2017 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spring...

  15. Hydroponic food production: a definitive guidebook for the advanced home gardener and the commercial hydroponic grower

    National Research Council Canada - National Science Library

    Resh, Howard M

    2013-01-01

    Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower details advances that have taken place in this field since the publication of the previous edition in 2001...

  16. Hydroponic food production: a definitive guidebook for the advanced home gardener and the commercial hydroponic grower

    National Research Council Canada - National Science Library

    Resh, Howard M

    2013-01-01

    .... Meant for hobby and commercial growers, the book shows readers how to set up a hydroponic operation with the options of using any of the many hydroponic cultures presently used in the industry to grow vegetable crops...

  17. Produção e indicadores fisiológicos de alface sob hidroponia com água salina Production and physiologic indicators of lettuce grown in hydroponics with saline water

    Directory of Open Access Journals (Sweden)

    Dalva Paulus

    2010-03-01

    at the moment an essential activity, facing the rising demand of fresh water, as for the agricultural activity as for the urban and industrial supplying. This study aimed to evaluate production and physiologic indicators of lettuce in hydroponic system with the use of saline waters. The experiment was carried out in a greenhouse in the period from December 2007 to January 2008, in Piracicaba, Brazil. The experimental design was randomized blocks in factorial scheme - five salinity levels obtained with the addition of NaCl, which resulted in different water electrical conductivity levels (dS m-1: 0,42, 1,53, 3,52, 5,55, 7,43 - and two cultivars of lettuce - Veronica and Pira Roxa. It was determined the fresh and dry mass of leaves, stem, roots and shoot and the content of nitrate, proline and chlorophyll. The increase of water salinity reduced lineally the fresh and dry mass of leaves, stem, roots and shoot. The cv Verônica produced 36% and 57% more shoot fresh and dry mass, respectively, than Pira Roxa. The cv. Pira Roxa accumulated 25% more nitrate (3008 mg L-1, presented 50% more total chlorophyll (1,46 mg g-1fresh mass and 71,43% more proline (0,21 µM g fresh mass- 1 than the cv Verônica, showing a mechanism of avoiding salinity stress. Cultivars Pira Roxa and Veronica presented loss of 69% and 64% of commercial productivity, respectively, when the most saline water (7,43 dS m-1 was used. In the other hand dry matter was reduced in 53% and 44%, respectively, for cv. Pira Roxa and Verônica in the most saline water. The results obtained in this study can indicate the possibility of using saline water as an alternative for the production of vegetables, specially for growers that have saline water available but restricted fresh water, even with reduction of productivity.

  18. Hydroponics--Studies in Plant Culture With Historical Roots.

    Science.gov (United States)

    Lopez, Luz Maria

    1981-01-01

    Presents methods for demonstrating and applying scientific principles by growing plants through water culture (hydroponics), including a review of the history of hydroponics, re-creating some early experiments, and setting up a modern hydroponic system. (CS)

  19. Effects of salinity on the development of rocket grown on different substrates hydroponic. = Efeitos da salinidade sobre o desenvolvimento de rúcula cultivada em diferentes substratos hidropônicos.

    Directory of Open Access Journals (Sweden)

    Maria Lilia de Souza Neta

    2013-08-01

    Full Text Available This study evaluated the effects of salinity on the nutrient solution on the production of rocket, grown on different substrates. The test was developed in an environment protected by the Department of Environmental Sciences and Technology, Federal Rural University of the Semi-Arid in Mossoró-RN, housed in a completely randomized design in a factorial 3 x 5 with three replications. Five salinity levels of nutrient solution were used, obtained with or without the fish farming wastewater (S1-0.5, S2-2.0, S3-3.5, S4-5.0 and S5-6.5 dS m-1 and three substrates (SUB1-Mix coconut fibre + sand + rice husk (1:1:1, SUB2-Cambisol and SUB3-SUB1 reused in the previous experiment. Harvesting of rocket was performed at 35 days aftersowing and evaluated the following variables: plant height, leaf number, leaf area, fresh weight, and dry weight. The salinityof the nutrient solution negatively affected the development of the rocket grown, having effect varying according to the type of substrate used. The plants grown on the substrate formed by the mixture of coconut fibre + sand + rice hulls (1:1:1 showed higher tolerance to salinity. The substrate formed by mixing coir + sand + rice husk can be recommended for growing rocket containers, but cannot be reused without treatment. = Objetivou-se com este trabalho avaliar o efeito da salinidade na solução nutritiva sobre a produção de rúcula, cultivada em diferentes substratos. O ensaio foi desenvolvido em ambiente protegido do Departamento de Ciências Ambientais e Tecnológicas da Universidade Federal Rural do Semi-Árido em Mossoró-RN, e instalado em delineamento experimental inteiramente casualizado, em esquema fatorial 5 x 3, com três repetições. Foram utilizados cinco níveis de salinidade na solução nutritiva, obtidos com ou sem uso de água residuária da piscicultura (S1-0,5; S2-2,0; S3-3,5; S4-5,0 e S5-6,5 dS m-1 e três substratos (SUB1-Mistura de fibra de coco + areia + casca de arroz (1

  20. Qualidade de melões (Cucumis melo L. var. cantalupensis Naud., híbrido Torreon, produzidos em hidroponia e armazenados em embalagens de polietileno Quality of Torreon hybrid melon fruits (Cucumis melo L. var. cantalupensis Naud. grown in hydroponic system and stored in polyethylene packaging

    Directory of Open Access Journals (Sweden)

    Auri Brackmann

    2006-08-01

    Full Text Available Este experimento teve por objetivos avaliar a permeabilidade de filmes de polietileno de diferentes espessuras e densidades ao O2 e ao CO2, a composição gasosa (O2, CO2 e etileno formada no interior das embalagens e a qualidade físico-química de melões (Cucumis melo L. var. cantalupensis Naud., híbrido Torreon, produzidos no sistema hidropônico "Nutrient Film Technique" (NFT e armazenados em embalagens de polietileno. Os tratamentos avaliados foram: (1 armazenamento refrigerado (sem uso de filme; (2 polietileno de baixa densidade (PEBD de 40µm; (3 PEBD de 60µm; (4 PEBD de 90µm; (5 polietileno de média densidade (PEMD de 40µm; (6 PEMD de 60µm. Os frutos permaneceram armazenados durante 25 dias a 3,8±0,2°C e por mais dois dias a 20°C. Os filmes de PEBD de 60 e 90µm e o PEMD de 60µm apresentaram menor permeabilidade ao CO2, mantendo as maiores concentrações de CO2 nas embalagens. O filme de PEBD de 90µm apresentou menor permeabilidade ao O2. A menor concentração de etileno foi obtida com o uso de PEBD de 40µm. O uso de filmes reduziu drasticamente a perda de massa dos frutos, quando comparados aos frutos não embalados. Os frutos acondicionados na embalagem de PEBD de 40µm mantiveram uma maior firmeza da polpa após o período de armazenamento, não diferindo estatisticamente dos frutos armazenados em PEMD de 40µm. Já a incidência de podridões foi significativamente menor nos frutos armazenados em PEMD de 60µm. De modo geral, os filmes avaliados mantêm semelhante a qualidade físico-química de melões híbrido Torreon produzidos hidroponicamente no sistema NFT.This study was carried out to evaluate the permeability to O2 and CO2, and gas composition (O2, CO2 and ethylene inside packages of different thickness and density polyethylene films. Moreover, the physical and chemical quality of Torreon hybrid melon fruit (Cucumis melo L. var. cantalupensis Naud. grown in a Nutrient Film Technique hydroponic system and stored

  1. Stimulating productivity of hydroponic lettuce in controlled environments with triacontanol

    Science.gov (United States)

    Knight, S. L.; Mitchell, C. A.

    1987-01-01

    Triacontanol (1-triacontanol) applied as a foliar spray at 10(-7) M to 4-day-old, hydroponically grown leaf lettuce (Lactuca sativa L.) seedlings in a controlled environment increased leaf fresh and dry weight 13% to 20% and root fresh and dry weight 13% to 24% 6 days after application, relative to plants sprayed with water. When applied at 8 as well as 4 days after seeding, triacontanol increased plant fresh and dry weight, leaf area, and mean relative growth rate 12% to 37%. There was no benefit of repeating application of triacontanol in terms of leaf dry weight gain.

  2. Green Fodder Production and Water Use Efficiency of Some Forage Crops under Hydroponic Conditions

    OpenAIRE

    Ghazi N. Al-Karaki; M. Al-Hashimi

    2012-01-01

    The objectives of this study were to evaluate five forage crops (alfalfa (Medicago sativa), barley (Hordeum vulgare), cowpea (Vigna unguiculata), sorghum (Sorghum bicolor), and wheat (Triticum aestivum)) for green fodder production and water use efficiency under hydroponic conditions. The experiment has been conducted under temperature-controlled conditions (24 ± 1°C) and natural window illumination at growth room of Soilless Culture Laboratory, Arabian Gulf University, Manama, Bahrain. The r...

  3. Características tecnológicas de genótipos de trigo (Triticum aestivum L. cultivados no cerrado Technological characteristics of wheat (Triticum aestivum L. genotypes grown in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Gutkoski

    2007-06-01

    Full Text Available Realizou-se este estudo com o objetivo de estudar as características grau de extração, proteína bruta, número de queda, alveografia, farinografia, volume específico e escore de pontos dos pães obtidos de amostras de grãos de genótipos de trigo (Triticum aestivum L. plantados no cerrado brasileiro. Amostras de grãos de trigo dos genótipos Embrapa 22, Embrapa 42, Önix, Taurum e Fundacep 27, plantados no cerrado brasileiro, safra 2003/2004 foram avaliadas em delineamento inteiramente casualizado, no laboratório de Cereais do Centro de Pesquisa em Alimentação da Universidade de Passo Fundo, sendo os resultados experimentais analisados pelo emprego da análise de variância (Anova e nos modelos significativos as médias comparadas entre si pelo teste de Tukey a 5% de probabilidade de erro. As cultivares de trigo foram classificadas com base na alveografia e número de queda em melhorador, pão e brando. Nos trigos classificados como melhoradores as propriedades funcionais dos pães foram inferiores, o que define a utilização destas farinhas para mesclas com trigos de menor força de glúten. No cerrado brasileiro é possível produzir trigo classe melhorador.The aim of this study was to investigate the characteristics of flour extraction grade, protein content, falling number, alveography, farinography, specific volume and point score of bread made from samples of grain of wheat genotypes grown in the Brazilian Cerrado. Samples of wheat grains of genotypes Embrapa 22, Embrapa 42, Önix, Taurum and Fundacep 27, grown in the Brazilian Cerrado, 2003/2004 crop, were disposed in fully randomized design, in the Cereal Laboratory at the Centro de Pesquisa em Alimentação of the University of Passo Fundo. The results were analyzed by variance analysis and the means compared by Tukey's test at 5% error probability. The wheat cultivars were classified according to alveography and falling number in improved, bread and bland. In the wheat

  4. QTLs for seedling traits under salinity stress in hexaploid wheat

    OpenAIRE

    Ren, Yongzhe; Xu, Yanhua; Teng, Wan; Li, Bin; Lin, Tongbao

    2018-01-01

    ABSTRACT: Soil salinity limits agricultural production and is a major obstacle for increasing crop yield. Common wheat is one of the most important crops with allohexaploid characteristic and a highly complex genome. QTL mapping is a useful way to identify genes for quantitative traits such as salinity tolerance in hexaploid wheat. In the present study, a hydroponic trial was carried out to identify quantitative trait loci (QTLs) associated with salinity tolerance of wheat under 150mM NaCl co...

  5. Anatomical Peculiarities in Wheat (Triticum Aestivum L.) varieties Under Copper Stress

    International Nuclear Information System (INIS)

    Atabayeva, S.; Nurmahanova, A.; Akhmetova, A.; Narmuratova, M.; Asrandina, S.; Alybayeva, R.

    2016-01-01

    The effect of different concentrations (0.25 mM, 0.5 mM) of Cu/sup 2+/ on anatomical parameters of leaves and roots was investigated in hydroponically grown five wheat (Triticum aestivum L.) varieties (Kazakhstanskaya rannaya, Kazakhstanskaya-3, Melturn, Kaiyr and Shagala). The results showed that wheat varieties exposed to 0.5 mM Cu/sup 2+/ exhibited significant alterations in anatomical structure of leaves and roots. The thickness of the upper and lower epidermis, diameter of vascular bundles of leaves of almost all varieties showed a tendency to decrease under copper stress. Our experiments showed an activation of defense responses in the root anatomical structure like exodermis thickening in some varieties in the presence of copper in growth medium as compared to the control. This indicates that copper ions increase the thickness of exodermis, which reduce the absorption of toxic elements by root cells. Copper stress caused a decrease in the thickness of the lower and upper epidermis to varying degrees and reduction in the diameter of vascular bundles of wheat leaves. Copper stress caused a reduction in endodermis thickness thereby decreasing the diameter of the central cylinder of wheat roots. (author)

  6. Accumulation of some heavy metals in spice herbs in open-air hydroponics and soil cultures of the Ararat valley

    International Nuclear Information System (INIS)

    Ghalachyan, L.M.; Kocharyan, K.A.; Aristakesyan, A.A.; Asatryan, A.Z.

    2015-01-01

    Peculiarities of some heavy metals (HM), (Mn, Ni, Ti, V, Co, Cu, Pb, Mo, Cr, Zr) accumulation have been studied in spice herbs (basil, dill, coriander, savory) grown in open-air hydroponics and soil cultures of the Ararat Valley. It turned out that the amount of HM content in spice herbs grown in open-air hydroponic conditions was less than in the ones grown in soil conditions. The content of Pb and Ni in spice herbs exceeded the allowed concentration limits (ACL), especially in soil plants. Practical recommendations on obtaining ecologically safe agricultural products have been prepared. The biotechnological hydroponics method of producing spice herbs in the Ararat Valley is ecologically more beneficial than the soil method. Practical proposals of obtaining ecologically safe agricultural products have been developed

  7. Hydroponic cultivation improves the nutritional quality of soybean and its products.

    Science.gov (United States)

    Palermo, Mariantonella; Paradiso, Roberta; De Pascale, Stefania; Fogliano, Vincenzo

    2012-01-11

    Hydroponic cultivation allows the control of environmental conditions, saves irrigation water, increases productivity, and prevents plant infections. The use of this technique for large commodities such as soybean is not a relevant issue on fertile soils, but hydroponic soybean cultivation could provide proteins and oil in adverse environmental conditions. In this paper, the compositions of four cultivars of soybean seeds and their derivates, soy milk and okara, grown hydroponically were compared to that of the same cultivar obtained from soil cultivation in an open field. Besides proximal composition, the concentrations of phytic acid and isoflavones were monitored in the seeds, soy milk, and okara. Results demonstrated that, independent from the cultivar, hydroponic compared to soil cultivation promoted the accumulation of fats (from 17.37 to 21.94 g/100 g dry matter) and total dietary fiber (from 21.67 to 28.46 g/100 g dry matter) and reduced isoflavones concentration (from 17.04 to 7.66 mg/kg dry matter), whereas protein concentration was unaffected. The differences found in seed composition were confirmed in the respective okara products, but the effect of cultivation system was not significant looking at the soy milk composition. Data showed that hydroponic cultivation improved the nutritional quality of soybean seeds with regard to fats and dietary fiber. They also suggest that specific cultivars should be selected to obtain the desired nutritional features of the soybean raw material depending on its final destination.

  8. Selenium in bread and durum wheats grown under a soil-supplementation regime in actual field conditions, determined by cyclic and radiochemical neutron activation analysis

    Czech Academy of Sciences Publication Activity Database

    Galinha, C.; Pacheco, A. M. G.; Freitas, M. C.; Fikrle, Marek; Kučera, Jan; Coutinho, J.; Macas, B.; Almeida, A. S.; Wolterbeek, H. T.

    2014-01-01

    Roč. 2014, AUG (2014), s. 3499 ISSN 1588-2780 R&D Projects: GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : agronomy * biofortification * Selenium * supplementation * wheat * NAA Subject RIV: GM - Food Processing

  9. Thallium and potassium uptake kinetics and competition differ between durum wheat and canola.

    Science.gov (United States)

    Renkema, Heidi; Koopmans, Amy; Hale, Beverley; Berkelaar, Edward

    2015-02-01

    Thallium (Tl) is very toxic to mammals but little is known about its accumulation by plants, and it would be useful if prediction of Tl accumulation could be done using potassium (K) accumulation models. The objectives of this study were to compare the uptake kinetics of Tl(+) and K(+), and to determine how readily K(+) can inhibit Tl(+) uptake. Durum wheat (Triticum turgidum L.) and spring canola (Brassica napus L.) were grown hydroponically and exposed to 0-75 μM Tl or 0-250 μM K for up to 150 min (kinetics experiment), or to 0.1 or 10 μM Tl with Tl to K ratios of 1:1 to 1:10,000 for up to 300 min (competition experiment). The rate of uptake of Tl(+) by canola was about three to five times faster than by wheat, while the rate of Tl(+) uptake in wheat was the same as the rate of K(+) uptake by either species. Uptake of Tl(+) was more readily suppressed by K(+) in wheat than in canola. When exposed to 0.1 uM Tl for 300 min with 100 or 1,000 uM K(+), Tl(+) uptake by wheat was reduced by 20 % and 50 %, respectively, while Tl(+) uptake by canola was not reduced. Our results suggest that predicting Tl accumulation using a K accumulation model with a correction factor may be possible for canola, but would be much more difficult for wheat, since uptake of Tl(+) is very sensitive to levels of K(.)

  10. Search for a plant for phytoremediation--what can we learn from field and hydroponic studies?

    Science.gov (United States)

    Zabłudowska, E; Kowalska, J; Jedynak, L; Wojas, S; Skłodowska, A; Antosiewicz, D M

    2009-10-01

    The main aim of the study was to evaluate the strategies for coping with arsenic toxicity developed by the mine species (Calamagrostis arundinacea, Fragaria vesca, Stachys sylvatica, and Epilobium parviflorum), and to compare results obtained from plants exposed to arsenic present in contaminated soil (2000-3500 mg/kg dw) and in hydroponic solution (2 microM and 12 microM arsenate). Here we report basic differences in plant responses to arsenic depending on growth conditions (hydroponic/soil) with respect to uptake, root-to-shoot translocation, distribution, and detoxification/speciation. Calamagrostis has the highest level of As-tolerance among the tested species. When grown in soil, it accumulated the highest amount of As in roots and shoots relative to other species, however, when exposed to arsenic in hydroponics, it had lower As concentrations. The efficiency of arsenic root-to-shoot translocation was also different, being less effective in soil-grown Calamagrostis compared with hydroponics. Furthermore, in Calamagrostis exposed to arsenate in liquid medium, As(III) was the predominant arsenic form, in contrast to plants grown in As-contaminated soil, in which As(V) predominated. In addition, comparison of the level of phytochelatins showed that only PC2 was detected in plants from hydroponics, whereas in those from soil, additionally PC3 and PC4 were found. The results show that the basic components of a plant's response to arsenic, including uptake, accumulation as well as detoxification, change depending on the experimental conditions (arsenic in liquid medium or contaminated soil).

  11. Effects of the inoculations using bacteria producing ACC deaminase on ethylene metabolism and growth of wheat grown under different soil water contents.

    Science.gov (United States)

    Zhang, Guozhuang; Sun, Yonglin; Sheng, Hao; Li, Haichao; Liu, Xiping

    2018-04-01

    Crop growth and productivity are often impacted by the increased ethylene content induced by adverse environmental conditions such drought. Inoculations with bacteria producing ACC deaminase is considered as a potential biological approach to improve the growth and tolerance of stressed plants by lowering endogenous ethylene level. In this study, germinated wheat seeds were inoculated using three species of the rhizobacteria, which were isolated from the rhizosphere of wheat growing in dryland, and sown in pots. After three weeks, wheat seedlings were exposed to non-limiting water condition, medium drought and severe drought, respectively, for six weeks. The results showed that, irrespective of rhizobacterial inoculations, decreased soil water contents stimulated wheat ethylene metabolism, which was reflected by the significantly increased activity of ACC synthetase and ACC oxidase, besides an increased content of ACC both in the roots and leaves, and an enhanced capacity of leaves to release ethylene, concomitant with a significant decline in shoot and roots biomass. The inoculations of all three rhizobacterial species under each water condition reduced ACC content in wheat leaves, but effects of the inoculations on ACC synthase and ACC oxidase activity in the leaves and roots, ACC content in the roots, the capacity of leaves to release ethylene, and wheat growth varied with water conditions and bacterial species. Hence, both soil water conditions and rhizobacterial inoculations acted on all the processes of ethylene metabolism, with the former being dominant. The inoculations under non-limiting water condition and medium drought promoted shoot and root growth of wheat plants. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. A Simplified Integrated Fish Culture Hydroponics System.

    Science.gov (United States)

    Emberger, Gary

    1991-01-01

    Investigations that facilitate experimental design, the concept of replication, data analysis, and other aspects of scientific study are described. A list of materials, the recommended plants, and the directions for building the hydroponics unit are included. (KR)

  13. Uranium uptake by hydroponically cultivated crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Soudek, Petr; Petrova, Sarka [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Benesova, Dagmar [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Faculty of Environment Technology, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); Dvorakova, Marcela [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic); Vanek, Tomas, E-mail: vanek@ueb.cas.cz [Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i. and Crop Research Institute, v.v.i., Rozvojova 263, 162 05 Prague 6 (Czech Republic)

    2011-06-15

    Hydroponicaly cultivated plants were grown on medium containing uranium. The appropriate concentrations of uranium for the experiments were selected on the basis of a standard ecotoxicity test. The most sensitive plant species was determined to be Lactuca sativa with an EC{sub 50} value about 0.1 mM. Cucumis sativa represented the most resistant plant to uranium (EC{sub 50} = 0.71 mM). Therefore, we used the uranium in a concentration range from 0.1 to 1 mM. Twenty different plant species were tested in hydroponic solution supplemented by 0.1 mM or 0.5 mM uranium concentration. The uranium accumulation of these plants varied from 0.16 mg/g DW to 0.011 mg/g DW. The highest uranium uptake was determined for Zea mays and the lowest for Arabidopsis thaliana. The amount of accumulated uranium was strongly influenced by uranium concentration in the cultivation medium. Autoradiography showed that uranium is mainly localized in the root system of the plants tested. Additional experiments demonstrated the possibility of influencing the uranium uptake from the cultivation medium by amendments. Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba up to 2.8 times or 1.9 times, respectively. Phosphate deficiency increased uranium uptake up to 4.5 times or 3.9 times, respectively, by Brassica oleracea and S. alba. In the case of deficiency of iron or presence of cadmium ions we did not find any increase in uranium accumulation. - Highlights: > The uranium accumulation in twenty different plant species varied from 0.160 to 0.011 mg/g DW. > Uranium is mainly localized in the root system. > Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba. > The phosphates deficiency increase the uranium uptake.

  14. Uranium uptake by hydroponically cultivated crop plants

    International Nuclear Information System (INIS)

    Soudek, Petr; Petrova, Sarka; Benesova, Dagmar; Dvorakova, Marcela; Vanek, Tomas

    2011-01-01

    Hydroponicaly cultivated plants were grown on medium containing uranium. The appropriate concentrations of uranium for the experiments were selected on the basis of a standard ecotoxicity test. The most sensitive plant species was determined to be Lactuca sativa with an EC 50 value about 0.1 mM. Cucumis sativa represented the most resistant plant to uranium (EC 50 = 0.71 mM). Therefore, we used the uranium in a concentration range from 0.1 to 1 mM. Twenty different plant species were tested in hydroponic solution supplemented by 0.1 mM or 0.5 mM uranium concentration. The uranium accumulation of these plants varied from 0.16 mg/g DW to 0.011 mg/g DW. The highest uranium uptake was determined for Zea mays and the lowest for Arabidopsis thaliana. The amount of accumulated uranium was strongly influenced by uranium concentration in the cultivation medium. Autoradiography showed that uranium is mainly localized in the root system of the plants tested. Additional experiments demonstrated the possibility of influencing the uranium uptake from the cultivation medium by amendments. Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba up to 2.8 times or 1.9 times, respectively. Phosphate deficiency increased uranium uptake up to 4.5 times or 3.9 times, respectively, by Brassica oleracea and S. alba. In the case of deficiency of iron or presence of cadmium ions we did not find any increase in uranium accumulation. - Highlights: → The uranium accumulation in twenty different plant species varied from 0.160 to 0.011 mg/g DW. → Uranium is mainly localized in the root system. → Tartaric acid was able to increase uranium uptake by Brassica oleracea and Sinapis alba. → The phosphates deficiency increase the uranium uptake.

  15. Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination.

    Science.gov (United States)

    Rizwan, Muhammad; Meunier, Jean-Dominique; Miche, Hélène; Keller, Catherine

    2012-03-30

    Agricultural soil contamination and subsequently crops still require alternative solutions to reduce associated environmental risks. The effects of silica application on alleviating cadmium (Cd) phytotoxicity in wheat plants were investigated in a 71-day pot experiment conducted with a historically contaminated agricultural soil. We used amorphous silica (ASi) that had been extracted from a diatomite mine for Si distribution at 0, 1, 10 and 15 ton ASi ha(-1). ASi applications increased plant biomass and plant Si concentrations, reduced the available Cd in the soil and the Cd translocation to shoots, while Cd was more efficiently sequestrated in roots. But ASi is limiting for Si uptake by plants. We conclude that significant plant-available Si in soil contributes to decreased Cd concentrations in wheat shoots and could be implemented in a general scheme aiming at controlling Cd concentrations in wheat. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat

    Science.gov (United States)

    Dimkpa, Christian O.; McLean, Joan E.; Latta, Drew E.; Manangón, Eliana; Britt, David W.; Johnson, William P.; Boyanov, Maxim I.; Anderson, Anne J.

    2012-09-01

    Metal oxide nanoparticles (NPs) are reported to impact plant growth in hydroponic systems. This study describes the impact of commercial CuO (release did not account for the changes in plant growth. Bioaccumulation of Cu, mainly as CuO and Cu(I)-sulfur complexes, and Zn as Zn-phosphate was detected in the shoots of NP-challenged plants. Total Cu and Zn levels in shoot were similar whether NP or bulk materials were used. Oxidative stress in the NP-treated plants was evidenced by increased lipid peroxidation and oxidized glutathione in roots and decreased chlorophyll content in shoots; higher peroxidase and catalase activities were present in roots. These findings correlate with the NPs causing increased production of reactive oxygen species. The accumulation of Cu and Zn from NPs into edible plants has relevance to the food chain.

  17. Effects of Different Metals on Photosynthesis: Cadmium and Zinc Affect Chlorophyll Fluorescence in Durum Wheat

    Directory of Open Access Journals (Sweden)

    Momchil Paunov

    2018-03-01

    Full Text Available A comparative study of the effects of exposure to high Cd2+ (50 µM and excess Zn2+ (600 µM on photosynthetic performance of hydroponically-grown durum wheat seedlings was performed. At day 8, Cd and Zn were added to the nutrient solution. After 7-days exposure, the chosen concentrations of both metals resulted in similar relative growth rate (RGR inhibitions of about 50% and comparable retardations of the CO2 assimilation rates (about 30% in the second developed leaf of wheat seedlings. Analysis of chlorophyll a fluorescence indicated that both metals disturbed photosynthetic electron transport processes which led to a 4- to 5-fold suppression of the efficiency of energy transformation in Photosystem II. Non-specific toxic effects of Cd and Zn, which prevailed, were an inactivation of part of Photosystem II reaction centres and their transformation into excitation quenching forms as well as disturbed electron transport in the oxygen-evolving complex. The specificity of the Cd and Zn modes of action was mainly expressed in the intensity of the toxicity effects: despite the similar inhibitions of the CO2 assimilation rates, the wheat photochemistry showed much more sensitivity to Cd than to Zn exposure.

  18. Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination

    International Nuclear Information System (INIS)

    Rizwan, Muhammad; Meunier, Jean-Dominique

    2012-01-01

    Highlights: ► Metal stress alleviation in wheat supplemented with amorphous Si (ASi). ► Pot experiment with a metal-contaminated soil and increased doses of ASi. ► Effects are observed both at the soil and the plant levels. ► ASi increases plant biomass and Cd content in roots and decreases Cd in shoots. ► ASi decreases soil-available Cd but is limiting for Si uptake. - Abstract: Agricultural soil contamination and subsequently crops still require alternative solutions to reduce associated environmental risks. The effects of silica application on alleviating cadmium (Cd) phytotoxicity in wheat plants were investigated in a 71-day pot experiment conducted with a historically contaminated agricultural soil. We used amorphous silica (ASi) that had been extracted from a diatomite mine for Si distribution at 0, 1, 10 and 15 ton ASi ha −1 . ASi applications increased plant biomass and plant Si concentrations, reduced the available Cd in the soil and the Cd translocation to shoots, while Cd was more efficiently sequestrated in roots. But ASi is limiting for Si uptake by plants. We conclude that significant plant-available Si in soil contributes to decreased Cd concentrations in wheat shoots and could be implemented in a general scheme aiming at controlling Cd concentrations in wheat.

  19. Abiotic conditions leading to FUM gene expression and fumonisin accumulation by Fusarium proliferatum strains grown on a wheat-based substrate.

    Science.gov (United States)

    Cendoya, Eugenia; Pinson-Gadais, Laetitia; Farnochi, María C; Ramirez, María L; Chéreau, Sylvain; Marcheguay, Giselè; Ducos, Christine; Barreau, Christian; Richard-Forget, Florence

    2017-07-17

    Fusarium proliferatum produces fumonisins B not only on maize but also on diverse crops including wheat. Using a wheat-based medium, the effects of abiotic factors, temperature and water activity (a W ), on growth, fumonisin biosynthesis, and expression of FUM genes were compared for three F. proliferatum strains isolated from durum wheat in Argentina. Although all isolates showed similar profiles of growth, the fumonisin production profiles were slightly different. Regarding FUM gene transcriptional control, both FUM8 and FUM19 expression showed similar behavior in all tested conditions. For both genes, expression at 25°C correlated with fumonisin production, regardless of the a w conditions. However, at 15°C, these two genes were as highly expressed as at 25°C although the amounts of toxin were very weak, suggesting that the kinetics of fumonisin production was slowed at 15°C. This study provides useful baseline data on conditions representing a low or a high risk for contamination of wheat kernels with fumonisins. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Selenium in bread and durum wheats grown under a soil-supplementation regime in actual field conditions, determined by cyclic and radiochemical neutron activation analysis

    Czech Academy of Sciences Publication Activity Database

    Galinha, C.; Pacheco, A. M. G.; Freitas, C.; Fikrle, Marek; Kučera, Jan; Coutinho, J.; Macas, B.; Almeida, A. S.; Wolterbeek, H. T.

    2015-01-01

    Roč. 304, APR (2015), s. 139-143 ISSN 0236-5731 R&D Projects: GA MŠk LM2011019 EU Projects: European Commission(XE) 283883 - NMI3-II Institutional support: RVO:61389005 Keywords : agronomy * biofortification * Selenium * supplementation * wheat * NAA Subject RIV: GM - Food Processing Impact factor: 0.983, year: 2015

  1. Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination

    Energy Technology Data Exchange (ETDEWEB)

    Rizwan, Muhammad, E-mail: rizwan@cerege.fr [Aix-Marseille Universite, Centre National de la Recherche Scientifique, Institut pour la Recherche et le Developpement, College de France, CEREGE (Centre Europeen de Recherche et d' Enseignement en Geosciences de l' Environnement), Europole mediterraneen de l' Arbois, BP 80, 13454 Aix-en-Provence, Cedex 4 (France); Meunier, Jean-Dominique, E-mail: meunier@cerege.fr [Aix-Marseille Universite, Centre National de la Recherche Scientifique, Institut pour la Recherche et le Developpement, College de France, CEREGE (Centre Europeen de Recherche et d' Enseignement en Geosciences de l' Environnement), Europole mediterraneen de l' Arbois, BP 80, 13454 Aix-en-Provence, Cedex 4 (France); and others

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Metal stress alleviation in wheat supplemented with amorphous Si (ASi). Black-Right-Pointing-Pointer Pot experiment with a metal-contaminated soil and increased doses of ASi. Black-Right-Pointing-Pointer Effects are observed both at the soil and the plant levels. Black-Right-Pointing-Pointer ASi increases plant biomass and Cd content in roots and decreases Cd in shoots. Black-Right-Pointing-Pointer ASi decreases soil-available Cd but is limiting for Si uptake. - Abstract: Agricultural soil contamination and subsequently crops still require alternative solutions to reduce associated environmental risks. The effects of silica application on alleviating cadmium (Cd) phytotoxicity in wheat plants were investigated in a 71-day pot experiment conducted with a historically contaminated agricultural soil. We used amorphous silica (ASi) that had been extracted from a diatomite mine for Si distribution at 0, 1, 10 and 15 ton ASi ha{sup -1}. ASi applications increased plant biomass and plant Si concentrations, reduced the available Cd in the soil and the Cd translocation to shoots, while Cd was more efficiently sequestrated in roots. But ASi is limiting for Si uptake by plants. We conclude that significant plant-available Si in soil contributes to decreased Cd concentrations in wheat shoots and could be implemented in a general scheme aiming at controlling Cd concentrations in wheat.

  2. Ultra-violet radiation for the inactivation of microorganisms in hydroponics

    International Nuclear Information System (INIS)

    Buyanosvsky, G.; Gale, J.; Degani, N.

    1981-01-01

    The growth of microorganisms in the nutrient solution of a circulating hydroponic system was suppressed by ultra-violet radiation. Applied for three hours daily (572 Jm -2 h -1 ) throughout experiments in which tomato and corn were grown, it was effective in reducing the population of microorganisms from between 500-800 x 10 3 to 10-50 x 10 3 cells per ml. (orig.)

  3. Coal ash as a substrate in hydroponics: chemical and agronomical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Giusquiani, P L; Gigliotti, G; Businelli, D; Varallo, G [University of Perugia, Perugia (Italy)

    1995-05-01

    Tomato plants were grown in hydroponics using pelleted fly and heavy ash as substrates. The water stability of the substrates and their ability in a nutrient solution to sorb or desorb ions have been studied. Both substrates showed a satisfactory stability to water treatments. Interactions between the nutrient solution and the substrates did not influence the ion uptake by tomato plants nor plant growth and productivity.

  4. Ultra-violet radiation for the inactivation of microorganisms in hydroponics

    Energy Technology Data Exchange (ETDEWEB)

    Buyanosvsky, G; Gale, J [Ben-Gurion Univ. of the Negev, Beersheva (Israel). Jacob Blaustein Inst. for Desert Research; Degani, N [Israel Atomic Energy Commission, Beersheba. Nuclear Research Center-Negev

    1981-01-01

    The growth of microorganisms in the nutrient solution of a circulating hydroponic system was suppressed by ultra-violet radiation. Applied for three hours daily (572 Jm/sup -2/h/sup -1/) throughout experiments in which tomato and corn were grown, it was effective in reducing the population of microorganisms from between 500-800 x 10/sup 3/ to 10-50 x 10/sup 3/ cells per ml.

  5. Carotenoid composition of hydroponic leafy vegetables.

    Science.gov (United States)

    Kimura, Mieko; Rodriguez-Amaya, Delia B

    2003-04-23

    Because hydroponic production of vegetables is becoming more common, the carotenoid composition of hydroponic leafy vegetables commercialized in Campinas, Brazil, was determined. All samples were collected and analyzed in winter. Lactucaxanthin was quantified for the first time and was found to have concentrations similar to that of neoxanthin in the four types of lettuce analyzed. Lutein predominated in cress, chicory, and roquette (75.4 +/- 10.2, 57.0 +/- 10.3, and 52.2 +/- 12.6 microg/g, respectively). In the lactucaxanthin-containing lettuces, beta-carotene and lutein were the principal carotenoids (ranging from 9.9 +/- 1.5 to 24.6 +/- 3.1 microg/g and from 10.2 +/- 1.0 to 22.9 +/- 2.6 microg/g, respectively). Comparison of hydroponic and field-produced curly lettuce, taken from neighboring farms, showed that the hydroponic lettuce had significantly lower lutein, beta-carotene, violaxanthin, and neoxanthin contents than the conventionally produced lettuce. Because the hydroponic farm had a polyethylene covering, less exposure to sunlight and lower temperatures may have decreased carotenogenesis.

  6. Hydroponics on a chip: analysis of the Fe deficient Arabidopsis thylakoid membrane proteome.

    Science.gov (United States)

    Laganowsky, Arthur; Gómez, Stephen M; Whitelegge, Julian P; Nishio, John N

    2009-04-13

    The model plant Arabidopsis thaliana was used to evaluate the thylakoid membrane proteome under Fe-deficient conditions. Plants were cultivated using a novel hydroponic system, called "hydroponics on a chip", which yields highly reproducible plant tissue samples for physiological analyses, and can be easily used for in vivo stable isotope labeling. The thylakoid membrane proteome, from intact chloroplasts isolated from Fe-sufficient and Fe-deficient plants grown with hydroponics on a chip, was analyzed using liquid chromatography coupled to mass spectrometry. Intact masses of thylakoid membrane proteins were measured, many for the first time, and several proteins were identified with post-translational modifications that were altered by Fe deficiency; for example, the doubly phosphorylated form of the photosystem II oxygen evolving complex, PSBH, increased under Fe-deficiency. Increased levels of photosystem II protein subunit PSBS were detected in the Fe-deficient samples. Antioxidant enzymes, including ascorbate peroxidase and peroxiredoxin Q, were only detected in the Fe-deficient samples. We present the first biochemical evidence that the two major LHC IIb proteins (LHCB1 and LHCB2) may have significantly different functions in the thylakoid membrane. The study illustrates the utility of intact mass proteomics as an indispensable tool for functional genomics. "Hydroponics on a chip" provides the ability to grow A. thaliana under defined conditions that will be useful for systems biology.

  7. Hydroponic isotope labeling of entire plants and high-performance mass spectrometry for quantitative plant proteomics.

    Science.gov (United States)

    Bindschedler, Laurence V; Mills, Davinia J S; Cramer, Rainer

    2012-01-01

    Hydroponic isotope labeling of entire plants (HILEP) combines hydroponic plant cultivation and metabolic labeling with stable isotopes using (15)N-containing inorganic salts to label whole and mature plants. Employing (15)N salts as the sole nitrogen source for HILEP leads to the production of healthy-looking plants which contain (15)N proteins labeled to nearly 100%. Therefore, HILEP is suitable for quantitative plant proteomic analysis, where plants are grown in either (14)N- or (15)N-hydroponic media and pooled when the biological samples are collected for relative proteome quantitation. The pooled (14)N-/(15)N-protein extracts can be fractionated in any suitable way and digested with a protease for shotgun proteomics, using typically reverse phase liquid chromatography nanoelectrospray ionization tandem mass spectrometry (RPLC-nESI-MS/MS). Best results were obtained with a hybrid ion trap/FT-MS mass spectrometer, combining high mass accuracy and sensitivity for the MS data acquisition with speed and high-throughput MS/MS data acquisition, increasing the number of proteins identified and quantified and improving protein quantitation. Peak processing and picking from raw MS data files, protein identification, and quantitation were performed in a highly automated way using integrated MS data analysis software with minimum manual intervention, thus easing the analytical workflow. In this methodology paper, we describe how to grow Arabidopsis plants hydroponically for isotope labeling using (15)N salts and how to quantitate the resulting proteomes using a convenient workflow that does not require extensive bioinformatics skills.

  8. [Plant hydroponics and its application prospect in medicinal plants study].

    Science.gov (United States)

    Zeng, Yan; Guo, Lan-Ping; Huang, Lu-Qi; Sun, Yu-Zhang

    2007-03-01

    This article introduced the theorem and method of hydroponics. Some examples of studies in agriculture and forestry were presented, the effects of elements, environmental stress and hormones on physiology of medicinal plants by using hydroponics were analyzed. It also introduced the feasibility and advantage of hydroponics in intermediate propagation and allelopathy of medicinal plant. And finally it made the conclusion that the way of hydroponics would be widely used in medicinal plant study.

  9. Microbial ecosystem constructed in water for successful organic hydroponics

    OpenAIRE

    Makoto Shinohara; Hiromi Ohmori; Yoichi Uehara

    2008-01-01

    Conventional hydroponics systems generally use only chemical fertilisers, not organic ones, since there are no microbial ecosystems present in such systems to mineralise organic compounds to inorganic nutrients. Addition of organic compounds to the hydroponic solution generally has phytotoxic effects and causes poor plant growth. We developed a novel hydroponic culture method using organic fertiliser. A microbial ecosystem was constructed in hydroponic solution by regulating the amounts of or...

  10. Influence of the nitrate concentration and source in the incorporation of 14CO2 by the RuBP-carboxylase from wheat (triticum aestivum) and maize (zea mays)

    International Nuclear Information System (INIS)

    Saez Angulo, R.M.; Gines Diaz, M.J.; Garcia Pineda, M.D.

    1982-01-01

    The effect of the concentration and source of nitrogen in the culture media has been studied regarding its influence in the activity of the RuBP-carboxylase from wheat and maize during the first month of development. Wheat and maize has been chosen as plants representatives of two different types of CO 2 assimilation: C3 and M- respectively. Plants have been grown in hydroponic media and under temperature, humidity and nutrient salts control. A negative effect of NH 4 has been observed in the enzymatic activity of wheat seedlings, being this effect more remarkable as NH 4 concentration increases and as long the time of treatment. In our experimental conditions the most favorable source of nitrogen has been N0 3 NH 4 . The specific activity of the enzyme from wheat is about four times higher than in maize, even it decreases with time. This decreasing has not been observed in maize, with the exception of total absence of nitrogen in the media. We have not seen significant differences between the two photo periods which have been tested. Also, no differences have been found in the enzyme activities at the different NO 3 NH 4 concentrations assayed, and it seems that RuBP-carboxylase metabolism is only affected in the case of absolute stress. (Author) 20 refs

  11. Influence of hydroponic and soil cultivation on quality and shelf life of ready-to-eat lamb's lettuce (Valerianella locusta L. Laterr).

    Science.gov (United States)

    Manzocco, Lara; Foschia, Martina; Tomasi, Nicola; Maifreni, Michela; Dalla Costa, Luisa; Marino, Marilena; Cortella, Giovanni; Cesco, Stefano

    2011-06-01

    Nowadays, there is an increasing interest in the hydroponic floating system to cultivate leafy vegetables for ready-to-eat salads. It is reasonable that different growing systems could affect the quality and shelf life of these salads. The quality and shelf life of ready-to-eat lamb's lettuce grown in protected environment in soil plot or in soil-less system over hydroponic solution with or without the addition of 30 µmol L⁻¹ silicon were evaluated. Minimum effects were observed on colour, firmness and microbial counts. Hydroponic cultivation largely affected plant tissue hydration, leading to weight loss and structural modifications during refrigerated storage. The shelf life of lamb's lettuce was limited by the development of visually detectable unpleasant sensory properties. Shelf life, calculated by survival analysis of consumer acceptability data, resulted about 7 days for soil-cultivated salad and 2 days for the hydroponically grown ones. The addition of silicon to the hydroponic solution resulted in an interesting strategy to increase plant tissue yield and reduce nitrate accumulation. Although hydroponic cultivation may have critical consequences on product quality and shelf life, these disadvantages could be largely counterbalance by increased yield and a reduction of nitrate accumulation when cultivation is performed on nutritive solutions with supplemental addition of silicon. Copyright © 2011 Society of Chemical Industry.

  12. An improved, simple, inexpensive and highly flexible hydroponic setup for root mitochondria isolation from arabidopsis and nicotiana pants

    International Nuclear Information System (INIS)

    Hameed, M. W.; Udddin, A.

    2015-01-01

    Hydroponic setups are frequently developed and improved as they are convenient platforms for studying whole plant physiology. Mostly, the available systems produce small amounts of plant material and are therefore, unsuitable for studies requiring large quantities of plant material like isolation of mitochondria. To address this issue, we have modified a hydroponic setup that can sustain hundreds of Arabidopsis and tobacco plants until adult plants are established. The setup is very flexible and easy to construct. It is based on the use of recyclable and sterilizable plastic-net-pots and media containers, which are easily available from the local suppliers. The modified seed-pots and styrofoam sheets facilitate the transfer and harvesting of seedlings. We have used the Percoll based two-step density gradient centrifugation method for the isolation of root mitochondria from the hydroponically grown plants. (author)

  13. Integrating biological treatment of crop residue into a hydroponic sweetpotato culture

    Science.gov (United States)

    Trotman, A. A.; David, P. P.; Bonsi, C. K.; Hill, W. A.; Mortley, D. G.; Loretan, P. A.

    1997-01-01

    Residual biomass from hydroponic culture of sweetpotato [Ipomoea batatas (L.) Lam.] was degraded using natural bacterial soil isolates. Sweetpotato was grown for 120 days in hydroponic culture with a nutrient solution comprised of a ratio of 80% modified half Hoagland solution to 20% filtered effluent from an aerobic starch hydrolysis bioreactor. The phytotoxicity of the effluent was assayed with `Waldmann's Green' lettuce (Lactuca sativa L.) and the ratio selected after a 60-day bioassay using sweetpotato plants propagated vegetatively from cuttings. Controlled environment chamber experiments were conducted to investigate the impact of filtrate from biological treatment of crop residue on growth and storage root production with plants grown in a modified half Hoagland solution. Incorporation of bioreactor effluent, reduced storage root yield of `Georgia Jet' sweetpotato but the decrease was not statistically significant when compared with yield for plants cultured in a modified half Hoagland solution without filtrate. However, yield of `TU-82-155' sweetpotato was significantly reduced when grown in a modified half Hoagland solution into which filtered effluent had been incorporated. Total biomass was significantly reduced for both sweetpotato cultivars when grown in bioreactor effluent. The leaf area and dry matter accumulation were significantly (P < 0.05) reduced for both cultivars when grown in solution culture containing 20% filtered effluent.

  14. Investigation on the root distributions of Sivas 111/33 and Gerek A-79 wheat varieties grown under Central Anatolian conditions, using tracer techniques

    International Nuclear Information System (INIS)

    Ozbek, N.; Halitligil, M.B.; Ozdemir, E.

    1988-01-01

    In order to determine the vertical root distributions of Sivas 111/33 and Gerek-79 wheat varieties in the soil profile, two field experiments were conducted at Haymana in 1986, and at Lodumlu in 1987 using tracer techniques and 32 p as a tracer. Randomized complete blocks design as four replications was used. The plot size was 12 m 2 (240 m by 5.00 m) in which 32 p isotope plots were established with dimensions of 0.07 mxl. 25 m=0.875 m 2 . They included 4 rows of wheat and in the middle of these rows, 15 holes (25 cam apart) were opened with a portable drill. The holes either had depths of 30, 60 or 90 cm depending on the treatment selected. 4 ml carrier-free 32 p solutions were injected into the holes with the help of plastic tubes at two times, one after seedling emergence and the other at early spring. Plant samples for radioactivity measurements were taken at four different growth stages, namely tillering, shooting, heading and full maturity. The results obtained from these investigations clearly showed that: 1. The root growth of plants showed differences depending on growth stage and variety. 2. At tillering stage the roots of both wheat varieties were not able to reach to the 90 cm soil depth, however, Sivas 111/33 had relatively shallow rotting system and Gerek-79 had deep rooting system at this stage. 3. At shooting, heading and full maturity stages Sivas 111/33 had more roots than Gerek-79, while at 30 and especially 60 cm soil depths Gerek-79 had more roots. Nearly 26%, 32% and 42% of the total roots of Sivas 111/33, and 15%, 42% and 43% of the total roots of Gerek-79 were found at 90, 60 and 30 cm soil depths, respectively. 4. When compared with Gerek-79, Sivas 111/33 was found to be more suitable for drought conditions

  15. Genomic Prediction with Pedigree and Genotype × Environment Interaction in Spring Wheat Grown in South and West Asia, North Africa, and Mexico

    Directory of Open Access Journals (Sweden)

    Sivakumar Sukumaran

    2017-02-01

    Full Text Available Developing genomic selection (GS models is an important step in applying GS to accelerate the rate of genetic gain in grain yield in plant breeding. In this study, seven genomic prediction models under two cross-validation (CV scenarios were tested on 287 advanced elite spring wheat lines phenotyped for grain yield (GY, thousand-grain weight (GW, grain number (GN, and thermal time for flowering (TTF in 18 international environments (year-location combinations in major wheat-producing countries in 2010 and 2011. Prediction models with genomic and pedigree information included main effects and interaction with environments. Two random CV schemes were applied to predict a subset of lines that were not observed in any of the 18 environments (CV1, and a subset of lines that were not observed in a set of the environments, but were observed in other environments (CV2. Genomic prediction models, including genotype × environment (G×E interaction, had the highest average prediction ability under the CV1 scenario for GY (0.31, GN (0.32, GW (0.45, and TTF (0.27. For CV2, the average prediction ability of the model including the interaction terms was generally high for GY (0.38, GN (0.43, GW (0.63, and TTF (0.53. Wheat lines in site-year combinations in Mexico and India had relatively high prediction ability for GY and GW. Results indicated that prediction ability of lines not observed in certain environments could be relatively high for genomic selection when predicting G×E interaction in multi-environment trials.

  16. Selenium in bread and durum wheats grown under a soil-supplementation regime in actual field conditions, determined by cyclic and radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Catarina Galinha; Maria do Carmo Freitas; Marek Fikrle; Jan Kucera; Wolterbeek, H.T.

    2015-01-01

    This work focuses on the ability of bread and durum wheat to accumulate selenium (Se) via a soil-addition procedure at sowing time. Total Se in mature-grain samples was determined by neutron activation analysis (cyclic and radiochemical). Results show that Se-supplementation at the top rate (100 g Se ha -1 ) can increase Se contents up to 2, 16, 18 and 20 times for Jordao, Roxo, Marialva and Celta cultivars, respectively, when compared to their unsupplemented crops. These findings do not preclude the need for weighing up an eventual trade-off between agrochemical costs, field logistics and Se recovery for alternative Se-biofortification methods. (author)

  17. High-Throughput Phenotyping of Wheat and Barley Plants Grown in Single or Few Rows in Small Plots Using Active and Passive Spectral Proximal Sensing

    OpenAIRE

    Barmeier, Gero;Schmidhalter, Urs

    2017-01-01

    In the early stages of plant breeding, breeders evaluate a large number of varieties. Due to limited availability of seeds and space, plot sizes may range from one to four rows. Spectral proximal sensors can be used in place of labour-intensive methods to estimate specific plant traits. The aim of this study was to test the performance of active and passive sensing to assess single and multiple rows in a breeding nursery. A field trial with single cultivars of winter barley and winter wheat w...

  18. Detection of nitrogen deficiency QTL in juvenile wild barley introgression lines growing in a hydroponic system.

    Science.gov (United States)

    Hoffmann, Astrid; Maurer, Andreas; Pillen, Klaus

    2012-10-20

    In this report we studied the genetic regulation of juvenile development of wild barley introgression lines (S42ILs) under two contrasting hydroponic nitrogen (N) supplies. Ten shoot and root related traits were examined among 42 S42ILs and the recurrent parent 'Scarlett'. The traits included tiller number, leaf number, plant height, leaf and root length, leaf to root length ratio, shoots and root dry weight, shoot to root weight ratio, and chlorophyll content. Our aims were (1) to test the suitability of a hydroponic system for early detection of favourable S42ILs, (2) to locate quantitative trait loci (QTL) that control the examined traits, (3) to identify favourable wild barley alleles that improve trait performances in regard to N treatment and, finally, (4) to validate the identified QTL through comparison with previously reported QTL originating from the same parental cross. The phenotypic data were analysed in a mixed model association study to detect QTL. The post-hoc Dunnett test identified 28 S42ILs that revealed significant (P hydroponic N study corresponded to QTL that were also detected in field trials with adult plants of a similar S42IL set or of the original S42 population. For instance, S42IL-135, -136 and -137, revealed increasing Hsp effects for tiller number, leaf number, leaf length, plant height and leaf to root ratio on the long arm of chromosome 7H. These QTL correspond to QTL for ears per plant and plant height that were previously detected in field trials conducted with the same S42ILs or with the S42 population. Our results suggest that the QTL we identified under hydroponic N cultivation partly correspond to QTL detected in field experiments. Due to this finding, screening of plants in early developmental stages grown in a hydroponic system may be a fast and cost effective method for early QTL detection and marker-assisted allelic selection, potentially speeding up elite barley breeding programs.

  19. Hydroponic cultivation of soybean for Bioregenerative Life Support Systems (BLSSs)

    Science.gov (United States)

    De Pascale, Stefania; De Micco, Veronica; Aronne, Giovanna; Paradiso, Roberta

    For long time our research group has been involved in experiments aiming to evaluate the possibility to cultivate plants in Space to regenerate resources and produce food. Apart from investigating the response of specific growth processes (at morpho-functional levels) to space factors (namely microgravity and ionising radiation), wide attention has been dedicated to agro-technologies applied to ecologically closed systems. Based on technical and human dietary requirements, soybean [Glycine max (L.) Merr.] is studied as one of the candidate species for hydroponic (soilless) cultivation in the research program MELiSSA (Micro-Ecological Life Support System Alternative) of the European Space Agency (ESA). Soybean seeds show high nutritional value, due to the relevant content of protein, lipids, dietary fiber and biologically active substances such as isoflavones. They can produce fresh sprouts or be transformed in several edible products (soymilk and okara or soy pulp). Soybean is traditionally grown in open field where specific interactions with soil microrganisms occur. Most available information on plant growth, seed productivity and nutrient composition relate to cultivated varieties (cultivars) selected for soil cultivation. However, in a space outpost, plant cultivation would rely on soilless systems. Given that plant growth, seed yield and quality strictly depend on the environmental conditions, to make successful the cultivation of soybean in space, it was necessary to screen all agronomic information according to space constraints. Indeed, selected cultivars have to comply with the space growth environment while providing a suitable nutritional quality to fulfill the astronauts needs. We proposed an objective criterion for the preliminary theoretical selection of the most suitable cultivars for seed production, which were subsequently evaluated in bench tests in hydroponics. Several Space-oriented experiments were carried out in a closed growth chamber to

  20. Hydroponic systems: hype or new perspective

    NARCIS (Netherlands)

    Vermeulen, T.; Weel, van P.A.; Ruijs, M.N.A.; Buwalda, F.; Os, van E.A.; Giacomelli, G.; Samperio Ruiz, G.

    2014-01-01

    Over the past five to ten years internationally a renewed interest can be observed in systems that require little or no substrate, such as deep flow technique and nutrient film technique - here dubbed hydroponic systems. Interestingly these systems have been around for over 40 years, but have only

  1. Metabolomics Suggests That Soil Inoculation with Arbuscular Mycorrhizal Fungi Decreased Free Amino Acid Content in Roots of Durum Wheat Grown under N-Limited, P-Rich Field Conditions.

    Science.gov (United States)

    Saia, Sergio; Ruisi, Paolo; Fileccia, Veronica; Di Miceli, Giuseppe; Amato, Gaetano; Martinelli, Federico

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) have a major impact on plant nutrition, defence against pathogens, a plant's reaction to stressful environments, soil fertility, and a plant's relationship with other microorganisms. Such effects imply a broad reprogramming of the plant's metabolic activity. However, little information is available regarding the role of AMF and their relation to other soil plant growth-promoting microorganisms in the plant metabolome, especially under realistic field conditions. In the present experiment, we evaluated the effects of inoculation with AMF, either alone or in combination with plant growth-promoting rhizobacteria (PGPR), on the metabolome and changes in metabolic pathways in the roots of durum wheat (Triticum durum Desf.) grown under N-limited agronomic conditions in a P-rich environment. These two treatments were compared to infection by the natural AMF population (NAT). Soil inoculation with AMF almost doubled wheat root colonization by AMF and decreased the root concentrations of most compounds in all metabolic pathways, especially amino acids (AA) and saturated fatty acids, whereas inoculation with AMF+PGPR increased the concentrations of such compounds compared to inoculation with AMF alone. Enrichment metabolomics analyses showed that AA metabolic pathways were mostly changed by the treatments, with reduced amination activity in roots most likely due to a shift from the biosynthesis of common AA to γ-amino butyric acid. The root metabolome differed between AMF and NAT but not AMF+PGPR and AMF or NAT. Because the PGPR used were potent mineralisers, and AMF can retain most nitrogen (N) taken as organic compounds for their own growth, it is likely that this result was due to an increased concentration of mineral N in soil inoculated with AMF+PGPR compared to AMF alone.

  2. Genetics of Na+ exclusion and salinity tolerance in Afghani durum wheat landraces

    KAUST Repository

    Shamaya, Nawar Jalal; Shavrukov, Yuri; Langridge, Peter; Roy, Stuart John; Tester, Mark A.

    2017-01-01

    BackgroundSelecting for low concentration of Na+ in the shoot provides one approach for tackling salinity stress that adversely affects crop production. Novel alleles for Na+ exclusion can be identified and then introduced into elite crop cultivars.ResultsWe have identified loci associated with lower Na+ concentration in leaves of durum wheat landraces originating from Afghanistan. Seedlings of two F2 populations derived from crossings between Australian durum wheat (Jandaroi) and two Afghani landraces (AUS-14740 and AUS-14752) were grown hydroponically and evaluated for Na+ and K+ concentration in the third leaf. High heritability was found for both third leaf Na+ concentration and the K+/Na+ ratio in both populations. Further work focussed on line AUS-14740. Bulk segregant analysis using 9 K SNP markers identified two loci significantly associated with third leaf Na+ concentration. Marker regression analysis showed a strong association between all traits studied and a favourable allele originating from AUS-14740 located on the long arm of chromosome 4B.ConclusionsThe candidate gene in the relevant region of chromosome 4B is likely to be the high affinity K+ transporter B1 (HKT1;5-B1). A second locus associated with third leaf Na+ concentration was located on chromosome 3BL, with the favourable allele originating from Jandaroi; however, no candidate gene can be identified.

  3. Genetics of Na+ exclusion and salinity tolerance in Afghani durum wheat landraces

    KAUST Repository

    Shamaya, Nawar Jalal

    2017-11-21

    BackgroundSelecting for low concentration of Na+ in the shoot provides one approach for tackling salinity stress that adversely affects crop production. Novel alleles for Na+ exclusion can be identified and then introduced into elite crop cultivars.ResultsWe have identified loci associated with lower Na+ concentration in leaves of durum wheat landraces originating from Afghanistan. Seedlings of two F2 populations derived from crossings between Australian durum wheat (Jandaroi) and two Afghani landraces (AUS-14740 and AUS-14752) were grown hydroponically and evaluated for Na+ and K+ concentration in the third leaf. High heritability was found for both third leaf Na+ concentration and the K+/Na+ ratio in both populations. Further work focussed on line AUS-14740. Bulk segregant analysis using 9 K SNP markers identified two loci significantly associated with third leaf Na+ concentration. Marker regression analysis showed a strong association between all traits studied and a favourable allele originating from AUS-14740 located on the long arm of chromosome 4B.ConclusionsThe candidate gene in the relevant region of chromosome 4B is likely to be the high affinity K+ transporter B1 (HKT1;5-B1). A second locus associated with third leaf Na+ concentration was located on chromosome 3BL, with the favourable allele originating from Jandaroi; however, no candidate gene can be identified.

  4. Nutritional status and ion uptake response of Gynura bicolor DC. between Porous-tube and traditional hydroponic growth systems

    Science.gov (United States)

    Wang, Minjuan; Fu, Yuming; Liu, Hong

    2015-08-01

    Hydroponic culture has traditionally been used for Bioregenerative Life Support Systems (BLSS) because the optimal environment for roots supports high growth rates. Recent developments in Porous-tube Nutrient Delivery System (PTNDS) also offer high control of the root environment which is designed to provide a means for accurate environmental control and to allow for two-phase flow separation in microgravity. This study compared the effects of PTNDS and traditional hydroponic cultures on biomass yield, nutritional composition and antioxidant defense system (T-AOC, GSH, H2O2 and MDA) of G. bicolor, and ionic concentration (NH4+, K+, Mg2+, Ca2+, NO3-, H2 PO4-, SO42-) of nutrient solution during planting period in controlled environment chambers. The results indicated that the biomass production and yield of G. bicolor grown in PTNDS were higher than in hydroponic culture, although Relative water content (RWC), leaf length and shoot height were not significantly different. PTNDS cultivation enhanced calories from 139.5 to 182.3 kJ/100 g dry matter, and carbohydrate from 4.8 to 7.3 g/100 g dry matter and reduced the amount of protein from 7.3 to 4.8 g/100 g dry matter and ash from 1.4 to1.0 g/100 g dry matter, compared with hydroponic culture. PTNDS cultivation accumulated the nutrition elements of Ca, Cu, Fe and Zn, and reduced Na concentration. T-AOC and GSH contents were significantly lower in PTNDS than in hydroponic culture in the first harvest. After the first harvest, the contents of MDA and H2O2 were significantly higher in PTNDS than in hydroponic culture. However, the activity of T-AOC and GSH and H2O2 and MDA contents had no significant differences under both cultures after the second and third harvest. Higher concentrations of K+, Mg2+ and Ca2+ were found in nutrient solution of plants grown in hydroponics culture compared to PTNDS, wherein lower concentrations of NO3-, H2 PO4- and SO42- occurred. Our results demonstrate that PTNDS culture has more

  5. High-Throughput Phenotyping of Wheat and Barley Plants Grown in Single or Few Rows in Small Plots Using Active and Passive Spectral Proximal Sensing

    Directory of Open Access Journals (Sweden)

    Gero Barmeier

    2016-11-01

    Full Text Available In the early stages of plant breeding, breeders evaluate a large number of varieties. Due to limited availability of seeds and space, plot sizes may range from one to four rows. Spectral proximal sensors can be used in place of labour-intensive methods to estimate specific plant traits. The aim of this study was to test the performance of active and passive sensing to assess single and multiple rows in a breeding nursery. A field trial with single cultivars of winter barley and winter wheat with four plot designs (single-row, wide double-row, three rows, and four rows was conducted. A GreenSeeker RT100 and a passive bi-directional spectrometer were used to assess biomass fresh and dry weight, as well as aboveground nitrogen content and uptake. Generally, spectral passive sensing and active sensing performed comparably in both crops. Spectral passive sensing was enhanced by the availability of optimized ratio vegetation indices, as well as by an optimized field of view and by reduced distance dependence. Further improvements of both sensors in detecting the performance of plants in single rows can likely be obtained by optimization of sensor positioning or orientation. The results suggest that even in early selection cycles, enhanced high-throughput phenotyping might be able to assess plant performance within plots comprising single or multiple rows. This method has significant potential for advanced breeding.

  6. AQUAPONICS: INTEGRATION BETWEEN AQUACULTURE AND HYDROPONICS

    Directory of Open Access Journals (Sweden)

    Guilherme Crispim Hundley2

    2013-12-01

    and hydroponics in recirculating systems for water and nutrients. Furthermore, Aquaponics presents itself as a real alternative for the production of food with reduced impact to the environment for its sustainability characteristics. Thus, Aquaponics is among the sustainable techniques involving fish and vegetable integrated production, capable of benefiting both. This integration allows the plant to use the nutrients from the water provided by the fish, thus improving water quality.

  7. Lettuce seeds production in hydroponic system

    OpenAIRE

    Menezes, Nilson Lemos de; Santos, Osmar Souza dos; Schmidt, Denise

    2001-01-01

    Sementes de alface das cultivares Deyse e Regina foram produzidas em estufa, no sistema hidropônico, com elevados rendimentos por planta e boa qualidade de sementes, quando comparados a resultados de sistema convencional, de canteiros em campo. Esses dados sugerem estudos de produção de sementes de alface em cultivo protegido.Lettuce seeds of Deyse and Regina cultivars were produced in greenhouse, in hydroponic system, with excelents rendiments per plant and seed quality, when compared to con...

  8. Hydroponics reducing effluent's heavy metals discharge.

    Science.gov (United States)

    Rababah, Abdellah; Al-Shuha, Ahmad

    2009-01-01

    This paper investigates the capacity of Nutrient Film Technique (NFT) to control effluent's heavy metals discharge. A commercial hydroponic system was adapted to irrigate lettuces with primary treated wastewater for studying the potential heavy metals removal. A second commercial hydroponic system was used to irrigate the same type of lettuces with nutrient solution and this system was used as a control. Results showed that lettuces grew well when irrigated with primary treated effluent in the commercial hydroponic system. The NFT-plant system heavy metals removal efficiency varied amongst the different elements, The system's removal efficiency for Cr was more than 92%, Ni more than 85%, in addition to more than 60% reduction of B, Pb, and Zn. Nonetheless, the NFT-plants system removal efficiencies for As, Cd and Cu were lower than 30%. Results show that lettuces accumulated heavy metals in leaves at concentrations higher than the maximum acceptable European and Australian levels. Therefore, non-edible plants such as flowers or pyrethrum are recommended as value added crops for the proposed NFT.

  9. Nutrient Film Technique (NFT Hydroponic Monitoring System

    Directory of Open Access Journals (Sweden)

    Helmy Helmy

    2016-10-01

    Full Text Available Plant cultivation using hydroponic is very popular today. Nutrient Film Technique (NFT hydroponic system is commonly used by people. It can be applied indoor or outdoor. Plants in this systemneed nutrient solution to grow well. pH, TDS and temperature of the nutrient solution must be check to ensure plant gets sufficient nutrients. This research aims todevelop monitoring system of NFT hydroponic. Farmer will be able to monitor pH, TDS and temperature online. It will ease farmer to decide which plant is suitable to be cultivated and time to boost growth.Delay of the system will be measured to know system performance. Result shows that pH is directly proportional with TDS. Temperature value has no correlation with pH and TDS. System has highest delay during daylight and afternoon but it will decline in the night and morning. Average of delay in the morning is 11 s, 28.5 s in daylight, 32 s in the afternoon and 17.5 s in the night.

  10. Using Ridge Regression Models to Estimate Grain Yield from Field Spectral Data in Bread Wheat (Triticum Aestivum L. Grown under Three Water Regimes

    Directory of Open Access Journals (Sweden)

    Javier Hernandez

    2015-02-01

    Full Text Available Plant breeding based on grain yield (GY is an expensive and time-consuming method, so new indirect estimation techniques to evaluate the performance of crops represent an alternative method to improve grain yield. The present study evaluated the ability of canopy reflectance spectroscopy at the range from 350 to 2500 nm to predict GY in a large panel (368 genotypes of wheat (Triticum aestivum L. through multivariate ridge regression models. Plants were treated under three water regimes in the Mediterranean conditions of central Chile: severe water stress (SWS, rain fed, mild water stress (MWS; one irrigation event around booting and full irrigation (FI with mean GYs of 1655, 4739, and 7967 kg∙ha−1, respectively. Models developed from reflectance data during anthesis and grain filling under all water regimes explained between 77% and 91% of the GY variability, with the highest values in SWS condition. When individual models were used to predict yield in the rest of the trials assessed, models fitted during anthesis under MWS performed best. Combined models using data from different water regimes and each phenological stage were used to predict grain yield, and the coefficients of determination (R2 increased to 89.9% and 92.0% for anthesis and grain filling, respectively. The model generated during anthesis in MWS was the best at predicting yields when it was applied to other conditions. Comparisons against conventional reflectance indices were made, showing lower predictive abilities. It was concluded that a Ridge Regression Model using a data set based on spectral reflectance at anthesis or grain filling represents an effective method to predict grain yield in genotypes under different water regimes.

  11. The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations

    NARCIS (Netherlands)

    Martre, P.; Reynolds, M.P.; Asseng, S.; Ewert, F.; Alderman, P.D.; Cammarano, D.; Maiorano, Andrea; Ruane, A.C.; Aggarwal, P.K.; Anothai, J.; Supit, I.; Wolf, J.

    2017-01-01

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during

  12. Yield and Quality of Lettuce and Rocket Grown in Floating Culture System

    OpenAIRE

    Spyridon Alexandros PETROPOULOS; Eleni CHATZIEUSTRATIOU; Eleni CONSTANTOPOULOU; Georgios KAPOTIS

    2016-01-01

    In recent years, there has been a growing trend towards cultivating leafy vegetables in hydroponic systems. Floating system is an alternative hydroponic system suitable for the production of baby vegetable products, ready-to eat salads and minimally processed leafy vegetables. However, the implementation of this system for the production of fully grown leafy vegetables is not sufficiently studied. The aim of the present study was to examine the potential of floating system as an alternative g...

  13. Screening of willow species for resistance to heavy metals: comparison of performance in a hydroponics system and field trials.

    Science.gov (United States)

    Watson, C; Pulford, I D; Riddell-Black, D

    2003-01-01

    The aim of this study was to ascertain whether metal resistance in willow (Salix) clones grown in a hydroponics screening test correlated with data from the same clones grown independently in a field trial. If so, results from a short-term, glasshouse-based system could be extrapolated to the field, allowing rapid identification of willows suitable for planting in metal-contaminated substrates without necessitating longterm field trials. Principal Components Analysis was used to show groups of clones and to assess the relative importance of the parameters measured in both the hydroponics system and the field; including plant response factors such as increase in stem height, as well as metal concentrations in plant tissues. The clones tested fell into two distinct groups. Salix viminalis clones and the basket willow Black Maul (S. triandra) were less resistant to elevated concentrations of heavy metals than a group of hardier clones, including S. burjatica 'Germany,' S.x dasyclados, S. candida and S. spaethii. The more resistant clones produced more biomass in the glasshouse and field, and had higher metal concentrations in the wood. The less resistant clones had greater concentrations of Cu and Ni in the bark, and produced less biomass in the glasshouse and field. Significant relationships were found between the response of the same clones grown the in short-term glasshouse hydroponics system and in the field.

  14. Detection of nitrogen deficiency QTL in juvenile wild barley introgression lines growing in a hydroponic system

    Directory of Open Access Journals (Sweden)

    Hoffmann Astrid

    2012-10-01

    Full Text Available Abstract Background In this report we studied the genetic regulation of juvenile development of wild barley introgression lines (S42ILs under two contrasting hydroponic nitrogen (N supplies. Ten shoot and root related traits were examined among 42 S42ILs and the recurrent parent ‘Scarlett’. The traits included tiller number, leaf number, plant height, leaf and root length, leaf to root length ratio, shoots and root dry weight, shoot to root weight ratio, and chlorophyll content. Our aims were (1 to test the suitability of a hydroponic system for early detection of favourable S42ILs, (2 to locate quantitative trait loci (QTL that control the examined traits, (3 to identify favourable wild barley alleles that improve trait performances in regard to N treatment and, finally, (4 to validate the identified QTL through comparison with previously reported QTL originating from the same parental cross. Results The phenotypic data were analysed in a mixed model association study to detect QTL. The post-hoc Dunnett test identified 28 S42ILs that revealed significant (P Hsp effects for tiller number, leaf number, leaf length, plant height and leaf to root ratio on the long arm of chromosome 7H. These QTL correspond to QTL for ears per plant and plant height that were previously detected in field trials conducted with the same S42ILs or with the S42 population. Conclusion Our results suggest that the QTL we identified under hydroponic N cultivation partly correspond to QTL detected in field experiments. Due to this finding, screening of plants in early developmental stages grown in a hydroponic system may be a fast and cost effective method for early QTL detection and marker-assisted allelic selection, potentially speeding up elite barley breeding programs.

  15. Safety assessment of greenhouse hydroponic tomatoes irrigated with reclaimed and surface water.

    Science.gov (United States)

    Lopez-Galvez, Francisco; Allende, Ana; Pedrero-Salcedo, Francisco; Alarcon, Juan Jose; Gil, Maria Isabel

    2014-11-17

    The impact of reclaimed and surface water on the microbiological safety of hydroponic tomatoes was assessed. Greenhouse tomatoes were irrigated with reclaimed and surface water and grown on two hydroponic substrates (coconut fiber and rock wool). Water samples (n=208) were taken from irrigation water, with and without the addition of fertilizers and drainage water, and hydroponic tomatoes (n=72). Samples were analyzed for indicator microorganisms, generic Escherichia coli and Listeria spp., and pathogenic bacteria such as Salmonella spp. and Shiga-toxigenic E. coli (STEC), using multiplex real-time PCR (RT-PCR) after enrichment. The correlation between climatological parameters such as temperature and the levels of microorganisms in water samples was also determined. In irrigation water, generic E. coli counts were higher in reclaimed than in surface water whereas Listeria spp. numbers increased after adding the fertilizers in both water sources. In drainage water, no clear differences in E. coli and Listeria numbers were observed between reclaimed and surface water. No positive samples for STEC were found in irrigation water. Presumptive positives for Salmonella spp. were found in 7.7% of the water samples and 62.5% of these samples were reclaimed water. Salmonella-positive samples by RT-PCR could not be confirmed by conventional methods. Higher concentrations of E. coli were associated with Salmonella-presumptive positive samples. Climatological parameters, such as temperature, were not correlated with the E. coli and Listeria spp. counts. Tomato samples were negative for bacterial pathogens, while generic E. coli and Listeria spp. counts were below the detection limit. The prevalence of presumptive Salmonella spp. found in irrigation water (reclaimed and surface water) was high, which might present a risk of contamination. The absence of pathogens on greenhouse hydroponic tomatoes indicates that good agricultural practices (GAP) were in place, avoiding the

  16. Nitrogen fixation associated with development and localization of mixed populations of Cellulomonas species and Azospirillium brasilense grown on cellulose or wheat straw

    Energy Technology Data Exchange (ETDEWEB)

    Halsall, D.M.; Goodchild, D.J.

    1986-04-01

    Mixed cultures of Cellulomonas sp. and Azospirillum brasilense were grown with straw or cellulose as the carbon source under conditions favoring the fixation of atmospheric nitrogen. Rapid increases in cell numbers, up to 10/sup 9/ cells per g of substrate, were evident after 4 and 5 days of incubation at 30 degrees C for cellulose and straw, respectively. Nitrogen fixation (detected by acetylene reduction measured on parallel cultures) commenced after 2 and 4 days of incubation for straw and cellulose, respectively, and continued for the duration of the experiment. Pure cultures of Cellulomonas sp. showed an increase in cell numbers, but CO/sub 2/ production was low, and acetylene reduction was not detected on either cellulose or straw. Pure cultures of A. brasilense on cellulose showed an inital increase in cell numbers (10/sup 7/ cells per g of substrate) over 4 days, followed by a decline presumably caused by the exhaustion of available carbon substrate. On straw, A. brasilense increased to 10/sup 9/ cells per g of substrate over 5 days and then declined slowly; this growth was accompanied by acetylene reduction. Scanning electron micrographs of straw incubated with a mixture under the above conditions for 8 days showed cells of both species in close proximity to each other. Evidence was furnished that the close spatial relatioship of cells from the two species facilitated the mutally beneficial association between them and thus increased the efficiency with which the products of straw breakdown were used for nitrogen fixation. 17 references.

  17. Wheat Allergy

    Science.gov (United States)

    ... of reactions. Learn more here. Milk Egg Peanut Tree Nuts Soy Wheat Fish Shellfish Sesame Other Food ... federal law. Download our resource on how to identify wheat on food labels. Avoid foods that contain ...

  18. The humic acid-induced changes in the water status, chlorophyll fluorescence and antioxidant defense systems of wheat leaves with cadmium stress.

    Science.gov (United States)

    Ozfidan-Konakci, Ceyda; Yildiztugay, Evren; Bahtiyar, Mustafa; Kucukoduk, Mustafa

    2018-07-15

    The using of bio-stimulant in plants grown under stress conditions for enhancing nutrition efficiency and crop quality traits is an effective approach. One of the bio-stimulants, humus material, is defined as humic acid (HA). HA application as a promotion of plant growth to plants grown in the heavy metals-contaminated soils has promised hope in terms of effects on plants but the its limiting effect is the application dose. Therefore, the wheat seedlings were grown in hydroponic culture for 21 d and the various concentrations of humic acid (HA; 750 or 1500 mg L -1 ) were treated alone or in combination with cadmium (Cd) stress (100 or 200 μM) for 7 d. The results showed that after Cd stress treatment, water content (RWC), osmotic potential (Ψ Π ) and chlorophyll fluorescence parameters decreased and proline content (Pro) increased for 7 d. In spite of activated peroxidase (POX) and ascorbate peroxidase (APX), stress induced the toxic levels of hydrogen peroxide (H 2 O 2 ) accumulation. Cd stress triggered lipid peroxidation (TBARS content). HA application successfully eliminated the negative effects of stress on RWC, Ψ Π and photosynthetic parameters. In the presence of HA under stress, the increased activation of superoxide dismutase (SOD), catalase (CAT) and NADPH-oxidase (NOX) enzymes and ascorbate, glutathione and GSH/GSSG ratio observed. Only 750 mg L -1 HA under stress conditions induced the activities of monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), and dehydroascorbate (DHA) content. After the combined application of HA and Cd stress, the low contents of H 2 O 2 and TBARS maintained in wheat leaves. Hence, HA successfully eliminated the toxicity of Cd stress by modulating the water status, photosynthetic apparatus and antioxidant activity in wheat leaves. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Occurrence of ochratoxin A in Danish wheat and rye, 1992-99

    DEFF Research Database (Denmark)

    Jørgensen, Kevin; Jacobsen, J.S.

    2002-01-01

    Ochratoxin A concentrations in rye and wheat in Denmark for 1992-99 are reported. The results show that the concentration of ochratoxin A is higher in rye than in wheat for both conventionally and organically grown rye and wheat. The levels in organically grown rye are higher than in conventionally...

  20. Natural Variation in Grain Composition of Wheat and Related Cereals

    OpenAIRE

    Shewry, Peter R; Hawkesford, Malcolm J; Piironen, Vieno; Lampi, Anna-Maija; Gebruers, Kurt; Boros, Danuta; Andersson, Annica AM; Åman, Per; Rakszegi, Mariann; Bedo, Zoltan; Ward, Jane L

    2013-01-01

    The wheat grain comprises three groups of major components, starch, protein, and cell wall polysaccharides (dietary fiber), and a range of minor components that may confer benefits to human health. Detailed analyses of dietary fiber and other bioactive components were carried out under the EU FP6 HEALTHGRAIN program on 150 bread wheat lines grown on a single site, 50 lines of other wheat species and other cereals grown on the same site, and 23−26 bread wheat lines grown in six environments. P...

  1. Natural variation in grain composition of wheat and related cereals.

    Science.gov (United States)

    Shewry, Peter R; Hawkesford, Malcolm J; Piironen, Vieno; Lampi, Ann-Maija; Gebruers, Kurt; Boros, Danuta; Andersson, Annica A M; Åman, Per; Rakszegi, Mariann; Bedo, Zoltan; Ward, Jane L

    2013-09-04

    The wheat grain comprises three groups of major components, starch, protein, and cell wall polysaccharides (dietary fiber), and a range of minor components that may confer benefits to human health. Detailed analyses of dietary fiber and other bioactive components were carried out under the EU FP6 HEALTHGRAIN program on 150 bread wheat lines grown on a single site, 50 lines of other wheat species and other cereals grown on the same site, and 23-26 bread wheat lines grown in six environments. Principal component analysis allowed the 150 bread wheat lines to be classified on the basis of differences in their contents of bioactive components and wheat species (bread, durum, spelt, emmer, and einkorn wheats) to be clearly separated from related cereals (barley, rye, and oats). Such multivariate analyses could be used to define substantial equivalence when novel (including transgenic) cereals are considered.

  2. Alleviation of Osmotic Stress Effects by Exogenous Application of Salicylic or Abscisic Acid on Wheat Seedlings

    Science.gov (United States)

    Marcińska, Izabela; Czyczyło-Mysza, Ilona; Skrzypek, Edyta; Grzesiak, Maciej T.; Janowiak, Franciszek; Filek, Maria; Dziurka, Michał; Dziurka, Kinga; Waligórski, Piotr; Juzoń, Katarzyna; Cyganek, Katarzyna; Grzesiak, Stanisław

    2013-01-01

    The aim of the study was to assess the role of salicylic acid (SA) and abscisic acid (ABA) in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1) and drought resistant (CS) wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM) or ABA (0.1 μM) to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa). The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA) was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant activity

  3. Alleviation of Osmotic Stress Effects by Exogenous Application of Salicylic or Abscisic Acid on Wheat Seedlings

    Directory of Open Access Journals (Sweden)

    Katarzyna Cyganek

    2013-06-01

    Full Text Available The aim of the study was to assess the role of salicylic acid (SA and abscisic acid (ABA in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1 and drought resistant (CS wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM or ABA (0.1 μM to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa. The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant

  4. Rice-arsenate interactions in hydroponics: whole genome transcriptional analysis.

    Science.gov (United States)

    Norton, Gareth J; Lou-Hing, Daniel E; Meharg, Andrew A; Price, Adam H

    2008-01-01

    Rice (Oryza sativa) varieties that are arsenate-tolerant (Bala) and -sensitive (Azucena) were used to conduct a transcriptome analysis of the response of rice seedlings to sodium arsenate (AsV) in hydroponic solution. RNA extracted from the roots of three replicate experiments of plants grown for 1 week in phosphate-free nutrient with or without 13.3 muM AsV was used to challenge the Affymetrix (52K) GeneChip Rice Genome array. A total of 576 probe sets were significantly up-regulated at least 2-fold in both varieties, whereas 622 were down-regulated. Ontological classification is presented. As expected, a large number of transcription factors, stress proteins, and transporters demonstrated differential expression. Striking is the lack of response of classic oxidative stress-responsive genes or phytochelatin synthases/synthatases. However, the large number of responses from genes involved in glutathione synthesis, metabolism, and transport suggests that glutathione conjugation and arsenate methylation may be important biochemical responses to arsenate challenge. In this report, no attempt is made to dissect differences in the response of the tolerant and sensitive variety, but analysis in a companion article will link gene expression to the known tolerance loci available in the BalaxAzucena mapping population.

  5. Rice–arsenate interactions in hydroponics: whole genome transcriptional analysis

    Science.gov (United States)

    Norton, Gareth J.; Lou-Hing, Daniel E.; Meharg, Andrew A.; Price, Adam H.

    2008-01-01

    Rice (Oryza sativa) varieties that are arsenate-tolerant (Bala) and -sensitive (Azucena) were used to conduct a transcriptome analysis of the response of rice seedlings to sodium arsenate (AsV) in hydroponic solution. RNA extracted from the roots of three replicate experiments of plants grown for 1 week in phosphate-free nutrient with or without 13.3 μM AsV was used to challenge the Affymetrix (52K) GeneChip Rice Genome array. A total of 576 probe sets were significantly up-regulated at least 2-fold in both varieties, whereas 622 were down-regulated. Ontological classification is presented. As expected, a large number of transcription factors, stress proteins, and transporters demonstrated differential expression. Striking is the lack of response of classic oxidative stress-responsive genes or phytochelatin synthases/synthatases. However, the large number of responses from genes involved in glutathione synthesis, metabolism, and transport suggests that glutathione conjugation and arsenate methylation may be important biochemical responses to arsenate challenge. In this report, no attempt is made to dissect differences in the response of the tolerant and sensitive variety, but analysis in a companion article will link gene expression to the known tolerance loci available in the Bala×Azucena mapping population. PMID:18453530

  6. Phytoremediation of arsenic by Trapa natans in a hydroponic system.

    Science.gov (United States)

    Baruah, Sangita; Borgohain, Jayasree; Sarma, K P

    2014-05-01

    Phytoremediation of arsenic (As) by water chestnut (Trapa natans) in a hydroponic system was studied. Plants were grown at two concentrations of arsenic, 1.28 mg/L and 10.80 mg/L, in a single metal solution. Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) confirmed highest arsenic concentration in the roots, followed by shoots and leaves. SEM-EDX also confirmed internalization of arsenic in T. natans and the damage caused due to arsenic exposure. Fourier Transform Infra Red Spectroscopy (FT-IRS) indicated that the binding characteristics of the arsenic ions involved the hydroxyl, amide, amino, and thiol groups in the biomass. Chlorophyll concentration decreased with increasing metal concentration and duration of exposure, but proline content increases with increasing concentration in the plant. Morphological changes were studied on the 3rd, 5th and 7th day. Unhealthy growth and chlorosis were found to be related with arsenic toxicity. From the above studies it is clear that T. natans can be used successfully for the removal of arsenic ions by a phytoremediation process.

  7. Evaluating irrigation scheduling of hydroponic tomato in Navarra, Spain

    NARCIS (Netherlands)

    Lizarraga, H.J.; Boesveld, H.; Huibers, F.P.; Robles, H.

    2003-01-01

    The correct supply of water and nutrients is important in hydroponic growing systems in order to use water efficiently, avoid stress situations, and control production. The present study was conducted to evaluate two irrigation scheduling techniques for hydroponic tomato production in Navarra,

  8. Agronomic factors related to the quality of wheat for the starch industry; part I: Sprout damage

    NARCIS (Netherlands)

    Kelfkens, M.; Hamer R.J.

    1991-01-01

    The wheat starch industry in the Netherlands processes about 300.000 t of wheat annually. However, only a small percentage of this wheat is grown in the Netherlands although it has been demonstrated that Dutch wheat varieties can also be successfully processed. Climatological and cultural aspects

  9. Hydroponic Green Farming Initiative : increasing water use efficiency by use of hydroponic cultivation methods in Jordan : final report

    NARCIS (Netherlands)

    Blok, Chris; Os, van Erik; Daoud, Raed; Waked, Laith; Hasan, A.

    2017-01-01

    Hydroponic Green Farming Initiative was executed in Jordan. Wageningen UR Greenhouse Horticultureanalysed the present situation at hydroponic farmers with the aim to adapt and to improve where possibleand to disseminate results and knowledge to other farmers in training sessions. With large amounts

  10. Influence of the nitrate concentration and source in the incorporation of 14{sub C}O2 by the RuBP-carboxylase from wheat (triticum aestivum) and maize (zea mays); Influencia de la concentracion y fuente de nitrogeno en la incorporacion de 14{sub C}O2 por la RuBp-carboxilasa de trigo (triticum aewtivum) y maiz (zea mays)

    Energy Technology Data Exchange (ETDEWEB)

    Saez Angulo, R M; Gines Diaz, M J; Garcia Pineda, M D

    1982-07-01

    The effect of the concentration and source of nitrogen in the culture media has been studied regarding its influence in the activity of the RuBP-carboxylase from wheat and maize during the first month of development. Wheat and maize has been chosen as plants representatives of two different types of CO{sub 2} assimilation: C3 and M- respectively. Plants have been grown in hydroponic media and under temperature, humidity and nutrient salts control. A negative effect of NH{sub 4} has been observed in the enzymatic activity of wheat seedlings, being this effect more remarkable as NH{sub 4} concentration increases and as long the time of treatment. In our experimental conditions the most favorable source of nitrogen has been N0{sub 3}NH{sub 4}. The specific activity of the enzyme from wheat is about four times higher than in maize, even it decreases with time. This decreasing has not been observed in maize, with the exception of total absence of nitrogen in the media. We have not seen significant differences between the two photo periods which have been tested. Also, no differences have been found in the enzyme activities at the different NO{sub 3}NH{sub 4} concentrations assayed, and it seems that RuBP-carboxylase metabolism is only affected in the case of absolute stress. (Author) 20 refs.

  11. Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics.

    Science.gov (United States)

    Touliatos, Dionysios; Dodd, Ian C; McAinsh, Martin

    2016-08-01

    Vertical farming systems (VFS) have been proposed as an engineering solution to increase productivity per unit area of cultivated land by extending crop production into the vertical dimension. To test whether this approach presents a viable alternative to horizontal crop production systems, a VFS (where plants were grown in upright cylindrical columns) was compared against a conventional horizontal hydroponic system (HHS) using lettuce ( Lactuca sativa L . cv. "Little Gem") as a model crop. Both systems had similar root zone volume and planting density. Half-strength Hoagland's solution was applied to plants grown in perlite in an indoor controlled environment room, with metal halide lamps providing artificial lighting. Light distribution (photosynthetic photon flux density, PPFD) and yield (shoot fresh weight) within each system were assessed. Although PPFD and shoot fresh weight decreased significantly in the VFS from top to base, the VFS produced more crop per unit of growing floor area when compared with the HHS. Our results clearly demonstrate that VFS presents an attractive alternative to horizontal hydroponic growth systems and suggest that further increases in yield could be achieved by incorporating artificial lighting in the VFS.

  12. Identification of suitable media based on hydroponic culture for production Zucchini squash

    Directory of Open Access Journals (Sweden)

    TP Suvo

    2016-12-01

    Full Text Available An experiment was conducted to identify the hydroponic culture based suitable media for the production of Zucchini Squash in the Biochemistry Laboratory, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh during 2014. Zucchini plant (Cucurbita pepo L. were grown in closed soilless systems to determine the effect of four different hydroponics media on plant growth, yield and nutrient contents (fruit moisture content, ascorbic acid content on fruit, fruit protein content, protein content in leaves. Three types of substrates (coconut husk, jute, cotton along with Hoagland solution were used in this experiment. Result revealed that media using Jute fiber showed significant effect on plant growth and nutritional values than the other media (media of cotton with Hoagland solution, coconut husk with Hoagland solution and only Hoagland solution. The plant grown using jute media showed the highest plant height (60.33 cm, number of leaves (17.33, yield (1.5 kg plant-1, fruit moisture content (97.33%, Ascorbic acid content in fruit (28.73 mg 100g-1, protein percentage in fruit (1.406% and percentage (1.326% in leaves than the other media. Therefore, with the controlled nutrient supply, less expense, less labor, no use of pesticides or fertilizer with controlled environment the use of jute fiber as a substrate with Hoagland solution can be an effective one.

  13. Computer model of hydroponics nutrient solution pH control using ammonium.

    Science.gov (United States)

    Pitts, M; Stutte, G

    1999-01-01

    A computer simulation of a hydroponics-based plant growth chamber using ammonium to control pH was constructed to determine the feasibility of such a system. In nitrate-based recirculating hydroponics systems, the pH will increase as plants release hydroxide ions into the nutrient solution to maintain plant charge balance. Ammonium is an attractive alternative to traditional pH controls in an ALSS, but requires careful monitoring and control to avoid overdosing the plants with ammonium. The primary advantage of using NH4+ for pH control is that it exploits the existing plant nutrient uptake charge balance mechanisms to maintain solution pH. The simulation models growth, nitrogen uptake, and pH of a l-m2 stand of wheat. Simulation results indicated that ammonium-based control of nutrient solution pH is feasible using a proportional integral controller. Use of a 1 mmol/L buffer (Ka = 1.6 x 10(-6)) in the nutrient solution is required.

  14. Proliferation of Escherichia coli O157:H7 in Soil-Substitute and Hydroponic Microgreen Production Systems.

    Science.gov (United States)

    Xiao, Zhenlei; Bauchan, Gary; Nichols-Russell, Lydia; Luo, Yaguang; Wang, Qin; Nou, Xiangwu

    2015-10-01

    Radish (Raphanus sativus var. longipinnatus) microgreens were produced from seeds inoculated with Escherichia coli O157:H7 by using peat moss-based soil-substitute and hydroponic production systems. E. coli populations on the edible and inedible parts of harvested microgreen plants (7 days postseeding) and in growth medium were examined. E. coli O157:H7 was shown to survive and proliferate significantly during microgreen growth in both production systems, with a higher level in the hydroponic production system. At the initial seed inoculation level of 3.7 log CFU/g, E. coli O157:H7 populations on the edible part of microgreen plants reached 2.3 and 2.1 log CFU/g (overhead irrigation and bottom irrigation, respectively) for microgreens from the soil-substitute production system and reached 5.7 log CFU/g for those hydroponically grown. At a higher initial inoculation of 5.6 log CFU/g seeds, the corresponding E. coli O157:H7 populations on the edible parts of microgreens grown in these production systems were 3.4, 3.6, and 5.3 log CFU/g, respectively. Examination of the spatial distribution of bacterial cells on different parts of microgreen plants showed that contaminated seeds led to systematic contamination of whole plants, including both edible and inedible parts, and seed coats remained the focal point of E. coli O157:H7 survival and growth throughout the period of microgreen production.

  15. Drought resistance in durum wheat

    NARCIS (Netherlands)

    Simane, B.

    1993-01-01

    Durum wheat is widely grown as a rainfed crop in the semi-arid tropics. Its production is low and variable from season to season due to frequent drought-stress. Characterization of target environment and employing both analytical and empirical breeding approaches would speed up progress in

  16. Accumulation of phenanthrene by roots of intact wheat (Triticum acstivnm L. seedlings: passive or active uptake?

    Directory of Open Access Journals (Sweden)

    Jiang Ting-Hui

    2010-03-01

    Full Text Available Abstract Background Polycyclic aromatic hydrocarbons (PAHs are of particular concern due to their hydrophobic, recalcitrant, persistent, potentially carcinogenic, mutagenic and toxic properties, and their ubiquitous occurrence in the environment. Most of the PAHs in the environment are present in surface soil. Plants grown in PAH-contaminated soils or water can become contaminated with PAHs because of their uptake. Therefore, they may threaten human and animal health. However, the mechanism for PAHs uptake by crop roots is little understood. It is important to understand exactly how PAHs are transported into the plant root system and into the human food chain, since it is beneficial in governing crop contamination by PAHs, remedying soils or waters polluted by PAHs with plants, and modeling potential uptake for risk assessment. Results The possibility that plant roots may take up phenanthrene (PHE, a representative of PAHs, via active process was investigated using intact wheat (Triticum acstivnm L. seedlings in a series of hydroponic experiments. The time course for PHE uptake into wheat roots grown in Hoagland solution containing 5.62 μM PHE for 36 h could be separated into two periods: a fast uptake process during the initial 2 h and a slow uptake component thereafter. Concentration-dependent PHE uptake was characterized by a smooth, saturable curve with an apparent Km of 23.7 μM and a Vmax of 208 nmol g-1 fresh weight h-1, suggesting a carrier-mediated uptake system. Competition between PHE and naphthalene for their uptake by the roots further supported the carrier-mediated uptake system. Low temperature and 2,4-dinitrophenol (DNP could inhibit PHE uptake equally, indicating that metabolism plays a role in PHE uptake. The inhibitions by low temperature and DNP were strengthened with increasing concentration of PHE in external solution within PHE water solubility (7.3 μM. The contribution of active uptake to total absorption was almost 40

  17. Effect of EDTA on Pb(II) Uptake and Translocation by Tumbleweed (Salsola Kali): Agar and Hydroponics Studies

    Energy Technology Data Exchange (ETDEWEB)

    de la Rosa, Guadalupe; Gardea-Torresdey, Jorge L.; Peralta-Videa, Jose R.; Aldrich, Mary

    2004-03-31

    Environmental accumulation of Pb represents a worldwide health hazard. While conventional cleanup techniques are generally expensive and soil disturbing, phytoremediation represents an inexpensive friendly option for the removal of contaminants from soil and water. In this research, tumbleweed (Salsola kali) plants exposed for 15 days to Pb(NO3)2 at 80 and 125 ppm in hydroponics and agar media, demonstrated a high capacity to uptake lead. The results showed that the plants cultivated in agar accumulated 25563, 5534 and 2185 mg Pb kg-1 DW in roots, stems and leaves, respectively. Moreover, Pb concentrations found in hydroponically grown tumbleweed plants tissues were 30744, 1511 and 1421 mg kg-1 DW in roots, stems and leaves, respectively. It was observed that EDTA enhanced Pb translocation. No Pb phytotoxic effects were observed during the experimental time period. Cellular structural features were also observed using TEM.

  18. Antihyperglycemic and Antihyperlipidemic Activity of Hydroponic Stevia rebaudiana Aqueous Extract in Hyperglycemia Induced by Immobilization Stress in Rabbits

    Directory of Open Access Journals (Sweden)

    Anush Aghajanyan

    2017-01-01

    Full Text Available Diabetes mellitus (DM is a serious worldwide problem related to human hyperglycemia. Thus, herbal preparations with antihyperglycemic properties especially leaf extracts of hydroponic Stevia rebaudiana (SR would be useful in hyperglycemia treatment. The antihyperglycemic potential of this medicinal plant grown using hydroponics methods has been evaluated. Significant reduction of some biochemical characteristics for sugars and fatty acids in blood, liver, and muscle especially fasting glucose levels, serum triglycerides, LDL-cholesterol, total cholesterol levels, and increased HDL-cholesterol ones was shown with SR aqueous extract treatment. Therefore, the aqueous extract of SR is suggested to have antihyperglycemic and antihyperlipidemic activity and to restore liver and muscle glycogen levels (hepatoprotective effects in hyperglycemia induced by immobilization stress in rabbits and might be recommended for treatment of DM (hyperglycemia.

  19. Antihyperglycemic and Antihyperlipidemic Activity of Hydroponic Stevia rebaudiana Aqueous Extract in Hyperglycemia Induced by Immobilization Stress in Rabbits

    Science.gov (United States)

    Aghajanyan, Anush; Movsisyan, Zaruhi

    2017-01-01

    Diabetes mellitus (DM) is a serious worldwide problem related to human hyperglycemia. Thus, herbal preparations with antihyperglycemic properties especially leaf extracts of hydroponic Stevia rebaudiana (SR) would be useful in hyperglycemia treatment. The antihyperglycemic potential of this medicinal plant grown using hydroponics methods has been evaluated. Significant reduction of some biochemical characteristics for sugars and fatty acids in blood, liver, and muscle especially fasting glucose levels, serum triglycerides, LDL-cholesterol, total cholesterol levels, and increased HDL-cholesterol ones was shown with SR aqueous extract treatment. Therefore, the aqueous extract of SR is suggested to have antihyperglycemic and antihyperlipidemic activity and to restore liver and muscle glycogen levels (hepatoprotective effects) in hyperglycemia induced by immobilization stress in rabbits and might be recommended for treatment of DM (hyperglycemia). PMID:28758125

  20. Biocompatibility of sweetpotato and peanut in a hydroponic system

    Science.gov (United States)

    Mortley, D. G.; Loretan, P. A.; Hill, W. A.; Bonsi, C. K.; Morris, C. E.; Hall, R.; Sullen, D.

    1998-01-01

    'Georgia Red' peanut (Arachis hypogaea L.) and TU-82-155 sweetpotato [Ipomoea batatas (L.) Lam] were grown in monocultured or intercropped recirculating hydroponic systems in a greenhouse using the nutrient film technique (NFT). The objective was to determine whether growth and subsequent yield would be affected by intercropping. Treatments were sweetpotato monoculture (SP), peanut monoculture (PN), and sweetpotato and peanut grown in separate NFT channels but sharing a common nutrient solution (SP-PN). Greenhouse conditions ranged from 24 to 33 degrees C, 60% to 90% relative humidity (RH), and photosynthetic photon flux (PPF) of 200 to 1700 micromoles m-2 s-1. Sweetpotato cuttings (15 cm long) and 14-day-old seedlings of peanuts were planted into growth channels (0.15 x 0.15 x 1.2 m). Plants were spaced 25 cm apart within and 25 cm apart between growing channels. A modified half-Hoagland solution with a 1 N: 2.4 K ratio was used. Solution pH was maintained between 5.5 and 6.0 for treatments involving SP and 6.4 and 6.7 for PN. Electrical conductivity (EC) ranged between 1100 and 1200 microS cm-1. The number of storage roots per sweetpotato plant was similar for both SP and SP-PN. Storage root fresh and dry mass were 29% and 36% greater, respectively, for plants in the SP-PN treatment than for plants in the SP treatment. The percent dry mass of the storage roots, dry mass of fibrous and pencil roots, and the length-to-diameter ratio of storage roots were similar for SP and SP-PN sweetpotato plants. Likewise, foliage fresh and dry mass and harvest index were not significantly influenced by treatment. Total dry mass was 37% greater for PN than for SP-PN peanut plants, and pod dry mass was 82% higher. Mature and total seed dry mass and fibrous root dry mass were significantly greater for PN than for SP-PN plants. Harvest index (HI) was similar for both treatments. Root length tended to be lower for seedlings grown in the nutrient solution from the SP-PN treatment.

  1. Survival and Transfer of Murine Norovirus within a Hydroponic System during Kale and Mustard Microgreen Harvesting

    Science.gov (United States)

    Wang, Qing

    2015-01-01

    Hydroponically grown microgreens are gaining in popularity, but there is a lack of information pertaining to their microbiological safety. The potential risks associated with virus contamination of crops within a hydroponic system have not been studied to date. Here a human norovirus (huNoV) surrogate (murine norovirus [MNV]) was evaluated for its ability to become internalized from roots to edible tissues of microgreens. Subsequently, virus survival in recirculated water without adequate disinfection was assessed. Kale and mustard seeds were grown on hydroponic pads (for 7 days with harvest at days 8 to 12), edible tissues (10 g) were cut 1 cm above the pads, and corresponding pieces (4 cm by 4 cm) of pads containing only roots were collected separately. Samples were collected from a newly contaminated system (recirculated water inoculated with ∼3 log PFU/ml MNV on day 8) and from a previously contaminated system. (A contaminated system without adequate disinfection or further inoculation was used for production of another set of microgreens.) Viral titers and RNA copies were quantified by plaque assay and real-time reverse transcription (RT)-PCR. The behaviors of MNV in kale and mustard microgreens were similar (P > 0.05). MNV was detected in edible tissues and roots after 2 h postinoculation, and the levels were generally stable during the first 12 h. Relatively low levels (∼2.5 to ∼1.5 log PFU/sample of both edible tissues and roots) of infectious viruses were found with a decreasing trend over time from harvest days 8 to 12. However, the levels of viral RNA present were higher and consistently stable (∼4.0 to ∼5.5 log copies/sample). Recirculated water maintained relatively high levels of infectious MNV over the period of harvest, from 3.54 to 2.73 log PFU/ml. Importantly, cross-contamination occurred easily; MNV remained infectious in previously contaminated hydroponic systems for up to 12 days (2.26 to 1.00 PFU/ml), and MNV was detected in both

  2. Survival and Transfer of Murine Norovirus within a Hydroponic System during Kale and Mustard Microgreen Harvesting.

    Science.gov (United States)

    Wang, Qing; Kniel, Kalmia E

    2016-01-15

    Hydroponically grown microgreens are gaining in popularity, but there is a lack of information pertaining to their microbiological safety. The potential risks associated with virus contamination of crops within a hydroponic system have not been studied to date. Here a human norovirus (huNoV) surrogate (murine norovirus [MNV]) was evaluated for its ability to become internalized from roots to edible tissues of microgreens. Subsequently, virus survival in recirculated water without adequate disinfection was assessed. Kale and mustard seeds were grown on hydroponic pads (for 7 days with harvest at days 8 to 12), edible tissues (10 g) were cut 1 cm above the pads, and corresponding pieces (4 cm by 4 cm) of pads containing only roots were collected separately. Samples were collected from a newly contaminated system (recirculated water inoculated with ∼3 log PFU/ml MNV on day 8) and from a previously contaminated system. (A contaminated system without adequate disinfection or further inoculation was used for production of another set of microgreens.) Viral titers and RNA copies were quantified by plaque assay and real-time reverse transcription (RT)-PCR. The behaviors of MNV in kale and mustard microgreens were similar (P > 0.05). MNV was detected in edible tissues and roots after 2 h postinoculation, and the levels were generally stable during the first 12 h. Relatively low levels (∼2.5 to ∼1.5 log PFU/sample of both edible tissues and roots) of infectious viruses were found with a decreasing trend over time from harvest days 8 to 12. However, the levels of viral RNA present were higher and consistently stable (∼4.0 to ∼5.5 log copies/sample). Recirculated water maintained relatively high levels of infectious MNV over the period of harvest, from 3.54 to 2.73 log PFU/ml. Importantly, cross-contamination occurred easily; MNV remained infectious in previously contaminated hydroponic systems for up to 12 days (2.26 to 1.00 PFU/ml), and MNV was detected in both

  3. Protocol: optimising hydroponic growth systems for nutritional and physiological analysis of Arabidopsis thaliana and other plants

    Science.gov (United States)

    2013-01-01

    Background Hydroponic growth systems are a convenient platform for studying whole plant physiology. However, we found through trialling systems as they are described in the literature that our experiments were frequently confounded by factors that affected plant growth, including algal contamination and hypoxia. We also found the way in which the plants were grown made them poorly amenable to a number of common physiological assays. Results The drivers for the development of this hydroponic system were: 1) the exclusion of light from the growth solution; 2) to simplify the handling of individual plants, and 3) the growth of the plant to allow easy implementation of multiple assays. These aims were all met by the use of pierced lids of black microcentrifuge tubes. Seed was germinated on a lid filled with an agar-containing germination media immersed in the same solution. Following germination, the liquid growth media was exchanged with the experimental solution, and after 14-21 days seedlings were transferred to larger tanks with aerated solution where they remained until experimentation. We provide details of the protocol including composition of the basal growth solution, and separate solutions with altered calcium, magnesium, potassium or sodium supply whilst maintaining the activity of the majority of other ions. We demonstrate the adaptability of this system for: gas exchange measurement on single leaves and whole plants; qRT-PCR to probe the transcriptional response of roots or shoots to altered nutrient composition in the growth solution (we demonstrate this using high and low calcium supply); producing highly competent mesophyll protoplasts; and, accelerating the screening of Arabidopsis transformants. This system is also ideal for manipulating plants for micropipette techniques such as electrophysiology or SiCSA. Conclusions We present an optimised plant hydroponic culture system that can be quickly and cheaply constructed, and produces plants with similar

  4. Nutrient Management in Recirculating Hydroponic Culture

    Science.gov (United States)

    Bugbee, Bruce

    2004-01-01

    There is an increasing need to recirculate and reuse nutrient solutions in order to reduce environmental and economic costs. However, one of the weakest points in hydroponics is the lack of information on managing the nutrient solution. Many growers and research scientists dump out nutrient solutions and refill at weekly intervals. Other authors have recommended measuring the concentrations of individual nutrients in solution as a key to nutrient control and maintenance. Dumping and replacing solution is unnecessary. Monitoring ions in solution is not always necessary; in fact the rapid depletion of some nutrients often causes people to add toxic amounts of nutrients to the solution. Monitoring ions in solution is interesting, but it is not the key to effective maintenance.

  5. Visual, instrumental, mycological and mycotoxicological characterization of wheat inoculated with and protected against Alternaria spp.

    OpenAIRE

    Janić-Hajnal Elizabet P.; Belović Miona M.; Plavšić Dragana V.; Mastilović Jasna S.; Bagi Ferenc F.; Budakov Dragana B.; Kos Jovana J.

    2016-01-01

    The aim of this work was to characterize visual properties, instrumentally measured colour properties, field fungi presence and Alternaria toxins levels in wheat samples grown under conditions aimed at inhibition and stimulation of wheat infection with fungi from the Alternaria genus. Experiment was carried out on the wheat treated by fungicide and wheat inoculated by Alternaria spp., while non treated wheat was used as a control. Statistically significant ...

  6. Childhood hypersensitivity pneumonitis associated with fungal contamination of indoor hydroponics.

    Science.gov (United States)

    Engelhart, Steffen; Rietschel, Ernst; Exner, Martin; Lange, Lars

    2009-01-01

    Childhood hypersensitivity pneumonitis (HP) is often associated with exposure to antigens in the home environment. We describe a case of HP associated with indoor hydroponics in a 14-year-old girl. Water samples from hydroponics revealed Aureobasidium pullulans as the dominant fungal micro-organism (10(4)CFU/ml). The diagnosis is supported by the existence of serum precipitating antibodies against A. pullulans, lymphocytic alveolitis on bronchoalveolar lavage (BAL) fluid, a corresponding reaction on a lung biopsy, and the sustained absence of clinical symptoms following the removal of hydroponics from the home. We conclude that hydroponics should be considered as potential sources of fungal contaminants when checking for indoor health complaints.

  7. Uptake of cadmium from hydroponic solutions by willows ( Salix spp ...

    African Journals Online (AJOL)

    Salix integra 'Weishanhu') and Yizhibi (S. integra 'Yizhibi') were chosen as model plants to evaluate their potential for uptake of cadmium from hydroponic culture and relative uptake mechanism. Cadmium uptake showed a linear increase in the ...

  8. Effects of different hydroponic substrate combinations and watering ...

    African Journals Online (AJOL)

    Background: Production of medicinal plants in controlled environments, particularly hydroponic technology, provides opportunities for high quality biomass accumulation and optimizes production of secondary metabolites. Applying special watering regimes in combination with efficient soil draining is an encouraging new ...

  9. Hydroponic technology for lily flowers and bulbs production using ...

    African Journals Online (AJOL)

    Aghomotsegin

    2015-07-22

    Jul 22, 2015 ... the utilization of the hydroponic technology to produce flower and bulb of Asiatic ... when they became 2 cm long and mother bulb scales were removed at ..... cell layer culture system in Lilium:Rgeneration and transformation.

  10. A thin film hydroponic system for plant studies

    Science.gov (United States)

    Hines, Robert; Prince, Ralph; Muller, Eldon; Schuerger, Andrew

    1990-01-01

    The Land Pavillion, EPCOT Center, houses a hydroponic, thin film growing system identical to that residing in NASA's Biomass Production Chamber at Kennedy Space Center. The system is targeted for plant disease and nutrition studies. The system is described.

  11. Eat Wheat!

    Science.gov (United States)

    Idaho Wheat Commission, Boise.

    This pamphlet contains puzzles, games, and a recipe designed to teach elementary school pupils about wheat. It includes word games based on the U.S. Department of Agriculture Food Guide Pyramid and on foods made from wheat. The Food Guide Pyramid can be cut out of the pamphlet and assembled as a three-dimensional information source and food guide.…

  12. Differential response of hexaploid and tetraploid wheat to interactive effects of elevated [CO2] and low phosphorus.

    Science.gov (United States)

    Pandey, Renu; Lal, Milan Kumar; Vengavasi, Krishnapriya

    2018-06-04

    Hexaploid wheat is more responsive than tetraploid to the interactive effects of elevated [CO 2 ] and low P in terms of carboxylate efflux, enzyme activity and gene expression (TaPT1 and TaPAP). Availability of mineral nutrients to plants under changing climate has become a serious challenge to food security and economic development. An understanding of how elevated [CO 2 ] influences phosphorus (P) acquisition processes at the whole-plant level would be critical in selecting cultivars as well as to maintain optimum yield in limited-P conditions. Wheat (Triticum aestivum and T. durum) grown hydroponically with sufficient and low P concentration were exposed to elevated and ambient [CO 2 ]. Improved dry matter partitioning towards root resulted in increased root-to-shoot ratio, root length, volume, surface area, root hair length and density at elevated [CO 2 ] with low P. Interaction of low P and [CO 2 ] induced activity of enzymes (phosphoenolpyruvate carboxylase, malate dehydrogenase and citrate synthase) in root tissue resulting in twofold increase in carboxylates and acid phosphatase exudation. Physiological absorption capacity of roots showed that plants alter their uptake kinetics by increasing affinity (low K m ) in response to elevated [CO 2 ] under low P supply. Increased relative expression of genes, purple acid phosphatase (TaPAP) and high-affinity Pi transporter (TaPT1) in roots induced by elevated [CO 2 ] and low P supported our physiological observations. Hexaploid wheat (PBW-396) being more responsive to elevated [CO 2 ] at low P supply as compared to tetraploid (PDW-233) necessitates the ploidy effect to be explored further which might be advantageous under changing climate.

  13. Comparison of two possible routes of pathogen contamination of spinach leaves in a hydroponic cultivation system.

    Science.gov (United States)

    Koseki, Shigenobu; Mizuno, Yasuko; Yamamoto, Kazutaka

    2011-09-01

    The route of pathogen contamination (from roots versus from leaves) of spinach leaves was investigated with a hydroponic cultivation system. Three major bacterial pathogens, Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes, were inoculated into the hydroponic solution, in which the spinach was grown to give concentrations of 10⁶ and 10³ CFU/ml. In parallel, the pathogens were inoculated onto the growing leaf surface by pipetting, to give concentrations of 10⁶ and 10³ CFU per leaf. Although contamination was observed at a high rate through the root system by the higher inoculum (10⁶ CFU) for all the pathogens tested, the contamination was rare when the lower inoculum (10³ CFU) was applied. In contrast, contamination through the leaf occurred at a very low rate, even when the inoculum level was high. For all the pathogens tested in the present study, the probability of contamination was promoted through the roots and with higher inoculum levels. The probability of contamination was analyzed with logistic regression. The logistic regression model showed that the odds ratio of contamination from the roots versus from the leaves was 6.93, which suggested that the risk of contamination from the roots was 6.93 times higher than the risk of contamination from the leaves. In addition, the risk of contamination by L. monocytogenes was about 0.3 times that of Salmonella enterica subsp. enterica serovars Typhimurium and Enteritidis and E. coli O157:H7. The results of the present study indicate that the principal route of pathogen contamination of growing spinach leaves in a hydroponic system is from the plant's roots, rather than from leaf contamination itself.

  14. Automated pH Control of Nutrient Solution in a Hydroponic Plant Growth System

    Science.gov (United States)

    Smith, B.; Dogan, N.; Aglan, H.; Mortley, D.; Loretan, P.

    1998-01-01

    Over, the years, NASA has played an important role in providing to and the development of automated nutrient delivery and monitoring, systems for growing crops hydroponically for long term space missions. One example are the systems used in the Biomass Production Chamber (BPC) at Kennedy Space Center (KSC). The current KSC monitoring system is based on an engineering workstation using standard analog/digital input/output hardware and custom written software. The monitoring system uses completely separate sensors to provide a check of control sensor accuracy and has the ability to graphically display and store data form past experiment so that they are available for data analysis [Fortson, 1992]. In many cases, growing systems have not been fitted with the kind of automated control systems as used at KSC. The Center for Food and Environmental Systems for Human Exploration of Space (CFESH) located on the campus of Tuskegee University, has effectively grown sweetpotatoes and peanuts hydroponically for the past five years. However they have adjusted the pH electrical conductivity and volume of the hydroponic nutrient solution only manually at times when the solution was to be replenished or changed out according to its protocol (e.g. one-week, two-week, or two-day cycle). But the pH of the nutrient solution flowing through the channel is neither known nor controlled between the update, change out, or replenishment period. Thus, the pH of the nutrient solution is not held at an optimum level over the span of the plant's growth cycle. To solve this dilemma, an automated system for the control and data logging of pH data relative to sweetpotato production using the nutrient film technique (NFT) has been developed, This paper discusses a microprocessor-based system, which was designed to monitor, control, and record the pH of a nutrient solution used for growing sweetpotatoes using NFT.

  15. Cs phytoremediation by Sorghum bicolor cultivated in soil and in hydroponic system.

    Science.gov (United States)

    Wang, Xu; Chen, Can; Wang, Jianlong

    2017-04-03

    Cs accumulation characteristics by Sorghum bicolor were investigated in hydroponic system (Cs level at 50-1000 μmol/L) and in soil (Cs-spiked concentration was 100 and 400 mg/kg soil). Two varieties of S. bicolor Cowly and Nengsi 2# grown on pot soil during the entire growth period (100 days) did not show significant differences on the height, dry weight (DW), and Cs accumulation. S. bicolor showed the potential phytoextraction ability for Cs-contaminated soil with the bioaccumulation factor (BCF) and the translocation factor (TF) values usually higher than 1 in soil system and in hydroponic system. The aerial parts of S. bicolor contributed to 86-92% of the total removed amounts of Cs from soil. Cs level in solution at 100 μmol/L gave the highest BCF and TF values of S. bicolor. Cs at low level tended to transfer to the aerial parts, whereas Cs at high level decreased the transfer ratio from root to shoot. In soil, the plant grew well when Cs spiked level was 100 mg/kg soil, but was inhibited by Cs at 400 mg/kg soil with Cs content in sorghum reaching 1147 mg/kg (roots), 2473 mg/kg (stems), and 2939 mg/kg (leaves). In hydroponic system, average Cs level in sorghum reached 5270 mg/kg (roots) and 4513 mg/kg (aerial parts), without significant damages to its biomass at 30 days after starting Cs treatment. Cs accumulation in sorghum tissues was positively correlated with the metal concentration in medium.

  16. Effect of Protein Molecular Weight Distribution on Kernel and Baking Characteristics and Intra-varietal Variation in Hard Spring Wheats

    Science.gov (United States)

    Specific wheat protein fractions are known to have distinct associations with wheat quality traits. Research was conducted on 10 hard spring wheat cultivars grown at two North Dakota locations to identify protein fractions that affected wheat kernel characteristics and breadmaking quality. SDS ext...

  17. Effect of chelating agents and metal ions on nickel bioavailability and chlorophyll fluorescence response in wheat- An approach for attenuation of Ni stress

    Directory of Open Access Journals (Sweden)

    Nilima Patnaik

    2012-08-01

    Full Text Available The objectives of the study are to analyze the physiological changes, biochemical alterations and attenuation of nickel toxicity effects in wheat seedlings under combined applications of Ni ions, metal chelators (EDTA/Citric Acid and metal ions (Zn2+ /Mg2+. Wheat (Triticum aestivum L cv UP262 seedlings were grown hydroponically using different concentrations of Ni up to 7 days along with chelators and metal ions for study. The seedling growth was maximum with NiCl2–Zn2+ (100μM and minimum with NiCl2–EDTA (100μM treatments. Total chlorophyll content was maximum in the seedlings treated with NiCl2-Zn2+ (100μM and minimum in NiCl2-EDTA (100μM treatments. NiCl2–EDTA (100μM showed less Fo and Fm values and therefore, a trend in the decrease in OJIP transient indicates the maximum alteration of photochemical activity of PS-II in presence of NiCl2–EDTA (100μM treatment. Similar observation was found by NiCl2 –EDTA (200μM treatment where Fo and Fm values were noted to decline. High nickel content in roots of the seedlings was noted as compared to shoots.

  18. [Effects of LED spectrum combinations on the absorption of mineral elements of hydroponic lettuce].

    Science.gov (United States)

    Chen, Xiao-Li; Guo, Wen-Zhong; Xue, Xu-Zhang; Mmanake Beauty, Morewane

    2014-05-01

    Lettuce (Lactuca sativa) was hydroponically cultured in a completely enclosed plant factory, in which spectrum proportion-adjustable LED panels were used as sole light source for plant growth. Absorption and content of eleven mineral elements such as K, P, Ca, Mg, Na, Fe, Mn, Zn, Cu, B and Mo in Lactuca sativa under different spectral component conditions were studied by ICP -AES technology. The results showed that: (1) Single or combined spectrums corresponding to the absorbing peaks of chlorophyll a and b (450, 660 nm) could enhance the absorbing ability of roots especially for mineral elements Na, Fe, Mn, Cu and Mo, the single red spectrum had the most significant promoting effect under which contents of those four elements were respectively 7. 8, 4. 2, 4. 0 and 3. 7 times more than that under FL; (2) Absorption of K and B was the highest under FL which was 10. 309 mg g-1 and 32. 6 microg g-1 while the values decreased significantly under single or combined spectrum of red and blue; (3) Plants grown under single blue spectrum had the lowest absorption of Ca and Mg which respectively decreased by 35% and 33% than FL; (4) Lettuce grown under the spectrum combination of 30% blue and 70% red had the highest accumulations of biomass while those grown under 20% blue and 80% red had the highest accumulations of the following seven elements Ca, Mg, Na, Fe, Mn, Zn and B. The results provided theoretical basis for adjusting nutrient solution formula and selecting light spectrum of hydroponic lettuce.

  19. Solução nutritiva e composição mineral de três espécies de menta cultivadas no sistema hidropônico Nutrient solution and mineral composition of three mint species grown in hydroponic system

    Directory of Open Access Journals (Sweden)

    Tânea Maria Bisognin Garlet

    2008-08-01

    Full Text Available O objetivo do estudo foi determinar o teor e a acumulação de nutrientes em três espécies de Mentha e testar o desempenho de solução nutritiva calculada para o cultivo de menta, a partir de dados anteriores de produção de matéria seca e de quantidade de nutrientes extraídos por M. arvensis, no sistema hidropônico NFT Técnica do Fluxo Laminar de Nutrientes (NFT. O trabalho foi conduzido em casa de vegetação de 250m² do Departamento de Fitotecnia da UFSM, RS, Brasil, no período de outubro a dezembro de 2004. Empregou-se delineamento experimental inteiramente casualizado, com três tratamentos (órgãos da planta e cinco repetições. Estacas de plantas matrizes foram enraizadas em espuma fenólica por 20 dias em berçário e após foram transferidas para bancadas de produção final. As plantas foram colhidas aos 62 (M. arvensis, 69 (M. x gracilis e 76 (M. x piperita var. citrata dias após o plantio, separadas em partes (raízes, hastes, folhas e secas em estufa a 70°C para determinação de matéria seca e análise de tecidos. Nitrogênio, cálcio e potássio foram os macronutrientes com maior concentração em todas as partes das plantas, já os micronutrientes foram ferro, manganês e zinco. Houve maior acúmulo de macronutrientes nas folhas, seguidas pelas hastes e raízes. Constatou-se que a solução nutritiva elaborada garantiu elevada produção de fitomassa, sem que as plantas apresentassem sintomas visuais de deficiência ou toxicidade de macro e micronutrientes.The intention of this study was to determine the levels and accumulation of nutrients in three Mentha species and to test the performance of the nutrient solution for the growth of mint, obtained from previous data of dry matter production and quantity of nutrients extracted by M. arvensis, in NFT (Nutrient Film Technique hydroponic system. The research was carried out at the Departament of Fitotecny, Universidade Federal de Santa Maria (UFSM, RS, Brazil, from

  20. Garlic exerts allelopathic effects on pepper physiology in a hydroponic co-culture system

    Directory of Open Access Journals (Sweden)

    Haiyan Ding

    2016-05-01

    Full Text Available A hydroponic co-culture system was adopted to determine the allelopathic potential of garlic on the growth of pepper plants. Different numbers of garlic plants (0, 2, 4, 8 and 12 were hydroponically co-cultured with two pepper plants to investigate allelopathic effects on the growth attributes and antioxidative defense system of the test pepper plants. The responses of the pepper plants depended on the number of garlic plants included in the co-culture system, indicating an association of pepper growth with the garlic root exudate concentration. When grown at a pepper/garlic ratio of 1:1 or 1:2, the pepper plant height, chlorophyll content, and peroxidase (POD, catalase (CAT and phenylalanine ammonia-lyase (PAL activities were significantly increased after 30 days of co-culture; in contrast, reduction in methane dicarboxylic aldehyde (MDA content was observed. However, when the pepper/garlic ratio was 1:4 or higher, these morphological indices and protective enzyme activities were significantly inhibited, whereas MDA levels in the pepper leaves were significantly increased due to severe membrane lipid peroxidation. The results indicate that although low concentrations of garlic root exudates appear to induce protective enzyme systems and promote pepper growth, high concentrations have deleterious effects. These findings suggest that further investigations should optimize the co-culture pepper/garlic ratio to reduce continuous cropping obstacles in pepper production.

  1. Tomato Productivity and Quality in Aquaponics: Comparison of Three Hydroponic Methods

    Directory of Open Access Journals (Sweden)

    Zala Schmautz

    2016-11-01

    Full Text Available Aquaponics (AP is a food production system that combines hydroponic (HP crop production with recirculating aquaculture. Different types of hydroponic systems have been used for growing crops in aquaponics. However, very few studies have compared their suitability and efficiency in an aquaponic context. The study presented here compares tomato yield, morphological (external and biochemical (internal fruit quality, and overall tomato plant vitality from three different HP systems (nutrient film technique, drip irrigation system, and floating raft culture and examines the distribution of nutrients in different parts of the tomato plant. Three replicate AP systems were set up, each incorporating the three different HP systems coupled with a separate recirculating aquaculture unit growing Nile tilapia. The results showed that the choice of the cultivation system had little influence on most of the above-mentioned properties. Tomato fruit mineral content was found to be in similar range for N, P, K, Ca, Mg, Fe, and Zn as reported in the literature. Yield and fruit quality were similar in all three systems. However, the drip irrigation system did perform slightly better. The slightly higher oxygen radical absorbance capacity (ORAC of the fruits grown in AP in comparison to commercially produced and supermarket derived tomatoes might indicate a potential for producing fruits with higher health value for humans.

  2. Effect of corn steep liquor on lettuce root rot (Fusarium oxysporum f.sp. lactucae) in hydroponic cultures.

    Science.gov (United States)

    Chinta, Yufita D; Kano, Kazuki; Widiastuti, Ani; Fukahori, Masaru; Kawasaki, Shizuka; Eguchi, Yumi; Misu, Hideyuki; Odani, Hiromitsu; Zhou, Songying; Narisawa, Kazuhiko; Fujiwara, Kazuki; Shinohara, Makoto; Sato, Tatsuo

    2014-08-01

    Recent reports indicate that organic fertilisers have a suppressive effect on the pathogens of plants grown under hydroponic systems. Furthermore, microorganisms exhibiting antagonistic activity to diseases have been observed in organic hydroponic systems. This study evaluated the effect of corn steep liquor (CSL) on controlling lettuce root rot disease [Fusarium oxysporum f.sp. lactucae (FOL)] in a hydroponic system. The effect of CSL and Otsuka A (a chemical fertiliser) on the inhibition of FOL in terms of mycelial growth inhibition was tested in vivo. Addition of CSL suppressed FOL infection rates. CSL inhibited FOL infection by 26.3-42.5% from 2 days after starting incubation. In comparison, Otsuka A inhibited FOL growth by 5.5-19.4%. In addition, four of 10 bacteria isolated from the nutrient media containing CSL exhibited inhibition zones preventing FOL mycelial growth. We found that CSL suppressed FOL in lettuce via its antifungal and biostimulatory effects. We suggest that activation of beneficial microorganisms present in CSL may be used to decrease lettuce root rot disease and contribute to lettuce root growth. © 2014 Society of Chemical Industry.

  3. Stable isotopic composition of perchlorate and nitrate accumulated in plants: Hydroponic experiments and field data.

    Science.gov (United States)

    Estrada, Nubia Luz; Böhlke, J K; Sturchio, Neil C; Gu, Baohua; Harvey, Greg; Burkey, Kent O; Grantz, David A; McGrath, Margaret T; Anderson, Todd A; Rao, Balaji; Sevanthi, Ritesh; Hatzinger, Paul B; Jackson, W Andrew

    2017-10-01

    Natural perchlorate (ClO 4 - ) in soil and groundwater exhibits a wide range in stable isotopic compositions (δ 37 Cl, δ 18 O, and Δ 17 O), indicating that ClO 4 - may be formed through more than one pathway and/or undergoes post-depositional isotopic alteration. Plants are known to accumulate ClO 4 - , but little is known about their ability to alter its isotopic composition. We examined the potential for plants to alter the isotopic composition of ClO 4 - in hydroponic and field experiments conducted with snap beans (Phaseolus vulgaris L.). In hydroponic studies, anion ratios indicated that ClO 4 - was transported from solutions into plants similarly to NO 3 - but preferentially to Cl - (4-fold). The ClO 4 - isotopic compositions of initial ClO 4 - reagents, final growth solutions, and aqueous extracts from plant tissues were essentially indistinguishable, indicating no significant isotope effects during ClO 4 - uptake or accumulation. The ClO 4 - isotopic composition of field-grown snap beans was also consistent with that of ClO 4 - in varying proportions from irrigation water and precipitation. NO 3 - uptake had little or no effect on NO 3 - isotopic compositions in hydroponic solutions. However, a large fractionation effect with an apparent ε ( 15 N/ 18 O) ratio of 1.05 was observed between NO 3 - in hydroponic solutions and leaf extracts, consistent with partial NO 3 - reduction during assimilation within plant tissue. We also explored the feasibility of evaluating sources of ClO 4 - in commercial produce, as illustrated by spinach, for which the ClO 4 - isotopic composition was similar to that of indigenous natural ClO 4 - . Our results indicate that some types of plants can accumulate and (presumably) release ClO 4 - to soil and groundwater without altering its isotopic characteristics. Concentrations and isotopic compositions of ClO 4 - and NO 3 - in plants may be useful for determining sources of fertilizers and sources of ClO 4 - in their growth

  4. Growth and Tissue Elemental Composition Response of Spinach (Spinacia oleracea) to Hydroponic and Aquaponic Water Quality Conditions

    OpenAIRE

    Daniel A. Vandam; Tyler S. Anderson; David de Villiers; Michael B. Timmons

    2017-01-01

    Spinach (Spinacia oleracea cv. Carmel) was grown in a conventional glass greenhouse under three different nutrient solution treatments. Lighting and temperature conditions were identical. Six growing systems were used to provide a duplicate trough system for each of these three treatments. Six trials were harvested from each system over a two month time period. Two treatments received hydroponic nutrient inputs, with one treatment at pH 7.0 (referred to as H7) and the other at pH 5.8 (H5), an...

  5. QTLs for seedling traits under salinity stress in hexaploid wheat

    Directory of Open Access Journals (Sweden)

    Yongzhe Ren

    2018-03-01

    Full Text Available ABSTRACT: Soil salinity limits agricultural production and is a major obstacle for increasing crop yield. Common wheat is one of the most important crops with allohexaploid characteristic and a highly complex genome. QTL mapping is a useful way to identify genes for quantitative traits such as salinity tolerance in hexaploid wheat. In the present study, a hydroponic trial was carried out to identify quantitative trait loci (QTLs associated with salinity tolerance of wheat under 150mM NaCl concentration using a recombinant inbred line population (Xiaoyan 54×Jing 411. Values of wheat seedling traits including maximum root length (MRL, root dry weight (RDW, shoot dry weight (SDW, total dry weight (TDW and the ratio of TDW of wheat plants between salt stress and control (TDWR were evaluated or calculated. A total of 19QTLs for five traits were detected through composite interval mapping method by using QTL Cartographer version 2.5 under normal and salt stress conditions. These QTLs distributed on 12 chromosomes explained the percentage of phenotypic variation by individual QTL varying from 7.9% to 19.0%. Among them, 11 and six QTLs were detected under normal and salt stress conditions, respectively and two QTLs were detected for TDWR. Some salt tolerance related loci may be pleiotropic. Chromosome 1A, 3A and 7A may harbor crucial candidate genes associated with wheat salt tolerance. Our results would be helpful for the marker assisted selection to breed wheat varieties with improved salt tolerance.

  6. The role of fluorescent pseudo monad's siderophore on Zn absorption in wheat by using 65Zn

    International Nuclear Information System (INIS)

    Rasouli Sadaghiani, M. H.; Malakouti, M. J.; Khavazi, K.; Ghannadi Maragheh, M.

    2008-01-01

    The objective of this investigation was to determine the potentials of some indigenous fluorescent Pseudomonads for siderophore production and their effects on 65Z n absorption in 2005. For this purpose, 201 strains of Pseudomonas putida, P. fluorescence, and P. aeruginosa were isolated from different locations representing rhizosphere of wheat (Triticum aestivum L.). The potentials of these strains for siderophore production were evaluated by chrome azo rel-S assay (CAS blue agar) through color change. High siderophore producing super-strains were selected for the extraction of siderophores. These isolates were grown in standard succinate medium for 72 hours at 28 d eg C . The bacterial cells were removed by centrifugation (10000 g for 20 minutes) and the supernatant was filtered through filter membrane (0.22 μ) and used as the source of siderophore source. The evaluations of Zn uptake and translocation were carried out with the complexes of bacterial siderophores and 65Z n compared with the standard siderophore Desferrioxamine in a randomized complete block design with three replications. This experiment was conducted on two wheat genotypes different in Zn-efficiency under hydroponic condition. The results revealed that among the three most effective siderophores producing strains considered, the P. putida produced a siderophore complex that showed efficiencies of 83% compared with the standard siderophore (DFOB) in the uptake of Zn and was statistically in the same group as the control. The effect of bacterial siderophores in the uptake of labeled 65Z n by wheat was significant, indicating that the chemical structures of the siderophores from different strains were different. The effects of wheat variety on 65Z n translocation to shoots was also significant, where the efficient Tabasi variety contained 46% more Zn in shoots than the inefficient Yavarous variety. It was concluded that the siderophore complex from P. putida was the most effective in translocation

  7. The Effect of Supplemental Irrigation on Canopy Temperature Depression, Chlorophyll Content, and Water Use Efficiency in Three Wheat (Triticum aestivum L. and T. durum Desf. Varieties Grown in Dry Regions of Jordan

    Directory of Open Access Journals (Sweden)

    Abdul Latief A. Al-Ghzawi

    2018-05-01

    Full Text Available One critical challenge facing the world is the need to satisfy the food requirements of the dramatically growing population. Drought stress is one of the main limiting factors in the wheat-producing regions; therefore, wheat yield stability is a major objective of wheat-breeding programs in Jordan, which experience fluctuating climatic conditions in the context of global climate change. In the current study, a two-year field experiment was conducted for exploring the effect of four different water regimes on the yield, yield components, and stability of three wheat (Triticum aestivum L.; T. durum Desf. Jordanian cultivars as related to Canopy Temperature Depression (CTD, and Chlorophyll Content (measured by Soil-Plant Analysis Development, SPAD. A split plot design was used in this experiment with four replicates. Water treatment was applied as the main factor: with and without supplemental irrigation; 0%, 50%, 75%, and 100% of field capacity were applied. Two durum wheat cultivars and one bread wheat cultivar were split over irrigation treatments as a sub factor. In both growing seasons, supplemental irrigation showed a significant increase in grain yield compared to the rain-fed conditions. This increase in grain yield was due to the significantly positive effect of water availability on yield components. Values of CTD, SPAD, harvest index, and water use efficiency (WUE were increased significantly with an increase in soil moisture and highly correlated with grain yield. Ammon variety produced the highest grain yield across the four water regimes used in this study. This variety was characterized by the least thermal time to maturity and the highest values of CTD and SPAD. It was concluded that Ammon had the highest stability among the cultivars tested. Furthermore, CTD and SPAD can be used as important selection parameters in breeding programs in Jordan to assist in developing high-yielding genotypes under drought and heat stress conditions.

  8. Genotypic variation in phytoremediation potential of Indian mustard exposed to nickel stress: a hydroponic study.

    Science.gov (United States)

    Ansari, Mohd Kafeel Ahmad; Ahmad, Altaf; Umar, Shahid; Zia, Munir Hussain; Iqbal, Muhammad; Owens, Gary

    2015-01-01

    Ten Indian mustard (Brassica juncea L.) genotypes were screened for their nickel (Ni) phytoremediation potential under controlled environmental conditions. All ten genotypes were grown hydroponically in aqueous solution containing Ni concentrations (as nickel chloride) ranging from 0 to 50 μM and changes in plant growth, biomass and total Ni uptake were evaluated. Of the ten genotypes (viz. Agrini, BTO, Kranti, Pusa Basant, Pusa Jai Kisan, Pusa Bahar, Pusa Bold, Vardhan, Varuna, and Vaibhav), Pusa Jai Kisan was the most Ni tolerant genotype accumulating up to 1.7 μg Ni g(-1) dry weight (DW) in its aerial parts. Thus Pusa Jai Kisan had the greatest potential to become a viable candidate in the development of practical phytoremediation technologies for Ni contaminated sites.

  9. PIXE analysis on the absorption of strontium by plants under hydroponic culture

    International Nuclear Information System (INIS)

    Oguri, Yoshiyuki; Kondo, Kotaro

    2016-01-01

    90 Sr is one of the most toxic radioactive nuclides emitted from nuclear disasters. By experiments using the compounds of stable isotopes of Sr, the behavior of this nuclide in plants can be simulated very well (R. S. Russell and H. M. Squire: J. Exp. Bot., Vol. 9, No. 2, pp. 262-276 (1958)). In this paper, we present an application of PIXE (Particle-Induced X-ray Emission) analysis (S. A. E. Johansson, et al.: Particle-Induced X-Ray Emission Spectrometry (PIXE), Wiley-Interscience, New York, ISBN-13: 978-0471589440 (1995)) in the study of Sr absorption by a herbal plant grown in a compact hydroponic setup. (J.P.N.)

  10. Performance test of nutrient control equipment for hydroponic plants

    Science.gov (United States)

    Rahman, Nurhaidar; Kuala, S. I.; Tribowo, R. I.; Anggara, C. E. W.; Susanti, N. D.

    2017-11-01

    Automatic control equipment has been made for the nutrient content in irrigation water for hydroponic plants. Automatic control equipment with CCT53200E conductivity controller to nutrient content in irrigation water for hydroponic plants, can be used to control the amount of TDS of nutrient solution in the range of TDS numbers that can be set according to the range of TDS requirements for the growth of hydroponically cultivated crops. This equipment can minimize the work time of hydroponic crop cultivators. The equipment measurement range is set between 1260 ppm up to 1610 ppm for spinach plants. Caisim plants were included in this experiment along with spinach plants with a spinach plants TDS range. The average of TDS device is 1450 ppm, while manual (conventional) is 1610 ppm. Nutrient solution in TDS controller has pH 5,5 and temperature 29,2 °C, while manual is pH 5,6 and temperature 31,3 °C. Manually treatment to hydroponic plant crop, yields in an average of 39.6 grams/plant, greater than the yield of spinach plants with TDS control equipment, which is in an average of 24.6 grams / plant. The yield of caisim plants by manual treatment is in an average of 32.3 grams/crop, less than caisim crop yields with TDS control equipment, which is in an average of 49.4 grams/plant.

  11. Growth of Escherichia coli O157:H7, Non-O157 Shiga Toxin-Producing Escherichia coli , and Salmonella in Water and Hydroponic Fertilizer Solutions.

    Science.gov (United States)

    Shaw, Angela; Helterbran, Kara; Evans, Michael R; Currey, Christopher

    2016-12-01

    The desire for local, fresh produce year round is driving the growth of hydroponic growing systems in the United States. Many food crops, such as leafy greens and culinary herbs, grown within hydroponics systems have their root systems submerged in recirculating nutrient-dense fertilizer solutions from planting through harvest. If a foodborne pathogen were introduced into this water system, the risk of contamination to the entire crop would be high. Hence, this study was designed to determine whether Escherichia coli O157:H7, non-O157 Shiga toxin-producing E. coli , and Salmonella were able to survive and reproduce in two common hydroponic fertilizer solutions and in water or whether the bacteria would be killed or suppressed by the fertilizer solutions. All the pathogens grew by 1 to 6 log CFU/ml over a 24-h period, depending on the solution. E. coli O157:H7 reached higher levels in the fertilizer solution with plants (3.12 log CFU/ml), whereas non-O157 Shiga toxin-producing E. coli and Salmonella reached higher levels in the fertilizer solution without plants (1.36 to 3.77 log CFU/ml). The foodborne pathogens evaluated here survived for 24 h in the fertilizer solution, and populations grew more rapidly in these solutions than in plain water. Therefore, human pathogens entering the fertilizer solution tanks in hydroponic systems would be expected to rapidly propagate and spread throughout the system and potentially contaminate the entire crop.

  12. Lettuce (Lactuca sativa L. var. Sucrine) growth performance in complemented aquaponic solution outperforms hydroponics

    NARCIS (Netherlands)

    Delaide, Boris; Goddek, Simon; Gott, James; Soyeurt, Hélène; Jijakli, M.H.

    2016-01-01

    Plant growth performance is optimized under hydroponic conditions. The comparison between aquaponics and hydroponics has attracted considerable attention recently, particularly regarding plant yield. However, previous research has not focused on the potential of using aquaponic solution

  13. Influence of soft kernel texture on the flour and baking quality of durum wheat

    Science.gov (United States)

    Durum wheat is predominantly grown in semi-arid to arid environments where common wheat does not flourish, especially in the Middle East, North Africa, Mediterranean Basin, and portions of North America. Durum kernels are extraordinarily hard when compared to their common wheat counterparts. Due to ...

  14. Lettuce (Lactuca sativa L. var. Sucrine) growth performance in complemented aquaponic solution outperforms hydroponics

    OpenAIRE

    Delaide, Boris; Goddek, Simon; Gott, James; Soyeurt, Hélène; Jijakli, M.H.

    2016-01-01

    Plant growth performance is optimized under hydroponic conditions. The comparison between aquaponics and hydroponics has attracted considerable attention recently, particularly regarding plant yield. However, previous research has not focused on the potential of using aquaponic solution complemented with mineral elements to commercial hydroponic levels in order to increase yield. For this purpose, lettuce plants were put into AeroFlo installations and exposed to hydroponic (HP), aquaponic (AP...

  15. Nitrogen economy in relay intercropping systems of wheat and cotton

    NARCIS (Netherlands)

    Zhang, L.Z.; Spiertz, J.H.J.; Zhang, S.; Li, B.; Werf, van der W.

    2008-01-01

    Relay intercropping of wheat and cotton is practiced on a large scale in China. Winter wheat is thereby grown as a food crop from November to June and cotton as a cash crop from April to October. The crops overlap in time, growing as an intercrop, from April till June. High levels of nitrogen are

  16. The role of seed size in the non-genetic variation exhibited in salt tolerance studies involving the bread wheat cv. chinese spring

    Directory of Open Access Journals (Sweden)

    P. K. Martin

    2014-01-01

    Full Text Available The intention of this study was to confirm the role of seed size in the non-genetic variation exhibited during salinity tolerance experiments involving the bread wheat cv. Chinese Spring. The nutrient film/rockwool hydroponics technique was utilised. This study concluded that seed size does not play a significant role in the non-genetic variation generated during a study of salinity tolerance of the bread wheat cv. Chinese Spring.

  17. Stimulation of nodulation in field peas (Pisum sativum) by low concentrations of ammonium in hydroponic culture

    Science.gov (United States)

    Waterer, J. G.; Vessey, J. K.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1992-01-01

    Although the inhibitory effects of high concentrations of mineral N (> 1.0 mM) on nodule development and function have often been studied, the effects of low, static concentrations of NH4+ (hydroponic culture on nodule establishment and nitrogenase activity in field peas [Pisum sativum L. cv. Express (Svalof AB)] for the initial 28 days after planting (DAP). Peas grown in the presence of low concentrations of NH4+ had significantly greater nodule numbers (up to 4-fold) than plants grown without NH4+. Nodule dry weight per plant was significantly higher at 14, 21 and 28 DAP in plants grown in the presence of NH4+, but individual nodule mass was lower than in plants grown without NH4+. The nodulation pattern of the plants supplied with NH4+ was similar to that often reported for supernodulating mutants, however the plants did not express other growth habits associated with supernodulation. Estimates of N2 fixation indicate that the plus-NH4+ peas fixed as much or more N2 than the plants supplied with minus-NH4+ nutrient solution. There were no significant differences in nodule numbers, nodule mass or NH4+ uptake between the plants grown at the two concentrations of NH4+. Nodulation appeared to autoregulate by 14 DAP in the minus-NH4+ treatment. Plant growth and N accumulation in the minus-NH4+ plants lagged behind those of the plus-NH4+ treatments prior to N2 fixation becoming well established in the final week of the experiment. The plus-NH4+ treatments appeared not to elicit autoregulation and plants continued to initiate nodules throughout the experiment.

  18. Pushing Wheat

    DEFF Research Database (Denmark)

    Sharp, Paul Richard

    This paper documents the evolution of variables central to understanding the creation of an Atlantic Economy in wheat between the US and the UK in the nineteenth century. The cointegrated VAR model is then applied to the period 1838-1913 in order to find long-run relationships between these varia......This paper documents the evolution of variables central to understanding the creation of an Atlantic Economy in wheat between the US and the UK in the nineteenth century. The cointegrated VAR model is then applied to the period 1838-1913 in order to find long-run relationships between...

  19. High-Throughput Screening of Sensory and Nutritional Characteristics for Cultivar Selection in Commercial Hydroponic Greenhouse Crop Production

    Directory of Open Access Journals (Sweden)

    Atef M. K. Nassar

    2015-01-01

    Full Text Available Hydroponic greenhouse-grown and store-bought cultivars of tomato (cherry and beefsteak, cucumbers, bibb lettuce, and arugula were investigated to see if they could be distinguished based on sensory qualities and phytonutrient composition. Only the more dominant sensory criteria were sufficiently robust to distinguish between cultivars and could form the core of a consolidated number of criteria in a more discriminating sensory evaluation test. Strong determinants for cultivar selection within each crop included the following: mineral analysis (particularly Cu, Fe, K, Mg, and P; total carotenoids (particularly β-carotene, lycopene, and lutein; total carbohydrate (except in arugula; organic acids; total phenolics and total anthocyanins (except in cucumber. Hydroponically grown and store-bought produce were of similar quality although individual cultivars varied in quality. Storage at 4°C for up to 6 days did not affect phytonutrient status. From this, we conclude that “freshness,” while important, has a longer duration than the 6 days used in our study. Overall, the effect of cultivar was more important than the effect of growing method or short-term storage at 4°C under ideal storage conditions.

  20. Comparison of aerobically-treated and untreated crop residue as a source of recycled nutrients in a recirculating hydroponic system

    Science.gov (United States)

    Mackowiak, C. L.; Garland, J. L.; Strayer, R. F.; Finger, B. W.; Wheeler, R. M.

    1996-01-01

    This study compared the growth of potato plants on nutrients recycled from inedible potato biomass. Plants were grown for 105 days in recirculating, thin-film hydroponic systems containing four separate nutrient solution treatments: (1) modified half-strength Hoagland's (control), 2) liquid effluent from a bioreactor containing inedible potato biomass, 3) filtered (0.2 micrometer) effluent, and 4) the water soluble fraction of inedible potato biomass (leachate). Approximately 50% of the total nutrient requirement in treatments 2-4 were provided (recycled) from the potato biomass. Leachate had an inhibitory effect on leaf conductance, photosynthetic rate, and growth (50% reduction in plant height and 60% reduction in tuber yield). Plants grown on bioreactor effluent (filtered or unfiltered) were similar to the control plants. These results indicated that rapidly degraded, water soluble organic material contained in the inedible biomass, i.e., material in leachate, brought about phytotoxicity in the hydroponic culture of potato. Recalcitrant, water soluble organic material accumulated in all nutrient recycling treatments (650% increase after 105 days), but no increase in rhizosphere microbial numbers was observed.

  1. Dataset on the mean, standard deviation, broad-sense heritability and stability of wheat quality bred in three different ways and grown under organic and low-input conventional systems.

    Science.gov (United States)

    Rakszegi, Marianna; Löschenberger, Franziska; Hiltbrunner, Jürg; Vida, Gyula; Mikó, Péter

    2016-06-01

    An assessment was previously made of the effects of organic and low-input field management systems on the physical, grain compositional and processing quality of wheat and on the performance of varieties developed using different breeding methods ("Comparison of quality parameters of wheat varieties with different breeding origin under organic and low-input conventional conditions" [1]). Here, accompanying data are provided on the performance and stability analysis of the genotypes using the coefficient of variation and the 'ranking' and 'which-won-where' plots of GGE biplot analysis for the most important quality traits. Broad-sense heritability was also evaluated and is given for the most important physical and quality properties of the seed in organic and low-input management systems, while mean values and standard deviation of the studied properties are presented separately for organic and low-input fields.

  2. Rust fungi on some poaceous weeds of wheat crops in Pakistan

    OpenAIRE

    NAJAM-UL-SEHAR AFSHAN*; ABDUL REHMAN NIAZI

    2013-01-01

    The article enlists common poaceous weeds found in wheat crop sand their specific parasitic rust fungi. In this study, four (04) plant taxa of Poaceae infected with rust fungi are collected from different wheat crops grown in different areas of Pakistan. The rust fungi are isolated, characterized and identified. All these host plants are known weeds of wheat crop in Pakistan. This work would help to identify and enlist the potential rust fungi on weeds of wheat crop that could be utilized to ...

  3. Techniques for intrinsically labeling wheat with 65Zn

    International Nuclear Information System (INIS)

    Starks, T.L.; Johnson, P.E.

    1985-01-01

    Several techniques of intrinsically labeling wheat with 65 Zn were compared: stem injection of 65 Zn, stem injection of 65 Zn + ZnSO 4 , foliar application of 65 Zn, and the addition of 65 Zn to a hydroponic solution. Incorporation levels of 65 Zn into the grain were 62.6% stem injection, 45.2% stem-injected 65 Zn + ZnSO 4 , 57.5% foliar application, and 2.3% hydroponic solution. Four protein fractions were extracted from fat-free whole wheat flour. Distribution of 65 Zn into the protein fractions for all treatments, was 8.5-20.3% in albumins and globulins, 47.4-60.3% in glutenins, 1-2.6% in gliadins, and 9.8-28.3% in the remaining proteins. Separation of the fractions by gel chromatography showed that protein and Zn distributions were similar among the treatments and when compared to the controls. Zinc-65 distribution was similar to the natural Zn distribution. These data illustrate that stem-injected 65 Zn is incorporated in the same manner and ratios as Zn naturally utilized by wheat

  4. Rethinking the role of aquatic ecology in hydroponic cultivation

    NARCIS (Netherlands)

    Vermeulen, T.; Streminska, M.; Beerens, N.; Eveleens, B.; Blok, C.

    2017-01-01

    Hydroponic production systems are challenged by root diseases, but can be made less susceptible to infection. While the systems are mostly unchallenged by nematodes, pathogens that can live and spread though water still cause loss of yield. Common diseases would be Phytophthora, Pythium, Fusarium

  5. Hydroponic Technology for Lily Flowers and Bulbs Production Using ...

    African Journals Online (AJOL)

    This experiment was carried out to investigate the potential of nutrient film technique (NFT) hydroponic system for flowers and bulbs production of the Asiatic hybrid lily cv. "Blackout" using rainwater and some common nutrient solutions (Hoagland No. 2 Basal Salt Mixture, Murashige and Skoog Basal Salt Mixture and ...

  6. Determination of oxidative stress in wheat leaves as influenced by boron toxicity and NaCl stress.

    Science.gov (United States)

    Masood, Sajid; Saleh, Livia; Witzel, Katja; Plieth, Christoph; Mühling, Karl H

    2012-07-01

    Boron (B) toxicity symptoms are visible in the form of necrotic spots and may worsen the oxidative stress caused by salinity. Hence, the interactive effects of combined salinity and B toxicity stress on antioxidative activities (TAC, LUPO, SOSA, CAT, and GR) were investigated by novel luminescence assays and standard photometric procedures. Wheat plants grown under hydroponic conditions were treated with 2.5 μM H₃BO₃ (control), 75 mM NaCl, 200 μM H₃BO₃, or 75 mM NaCl + 200 μM H₃BO₃, and analysed 6 weeks after germination. Shoot fresh weight (FW), shoot dry weight (DW), and relative water content (RWC) were significantly reduced, whereas the antioxidative activity of all enzymes was increased under salinity compared with the control. High B application led to necrotic leaf spots but did not influence growth parameters. Following NaCl + B treatment, shoot DW, RWC, SOSA, GR, and CAT activities remained the same compared with NaCl alone, whereas the TAC and LUPO activities were increased under the combined stress compared with NaCl alone. However, shoot FW was significantly reduced under NaCl + B compared with NaCl alone, as an additive effect of combined stress. Thus, we found an adjustment of antioxidative enzyme activity to the interactive effects of NaCl and high B. The stress factor "salt" mainly produced more oxidative stress than that of the factor "high B". Furthermore, addition of higher B in the presence of NaCl increases TAC and LUPO demonstrating that increased LUPO activity is an important physiological response in wheat plants against multiple stresses. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  7. Hydroponic system for the treatment of anaerobic liquid.

    Science.gov (United States)

    Krishnasamy, K; Nair, J; Bäuml, B

    2012-01-01

    The effluent from anaerobic digestion process has high concentrations of nutrients, particularly nitrogen, essential for plant growth but is not suitable for direct disposal or application due to high chemical oxygen demand (COD), low dissolved oxygen (DO), odour issues and is potentially phytotoxic. This research explored the optimum conditions of anaerobic effluent for application and dilutions of the effluent required to obtain better plant growth. A small-scale hydroponic system was constructed in a glasshouse to test different concentrations of anaerobic effluent against a commercial hydroponic medium as the control for the growth of silverbeet. It was found that the survival of silverbeet was negatively affected at 50% concentration due to low DO and NH(4) toxicity. The concentration of 20% anaerobic liquid was found to be the most efficient with highest foliage yield and plant growth. The hydroponic system with 20% concentrated effluent had better utilisation of nutrients for plant growth and a COD reduction of 95% was achieved during the 50-day growth period. This preliminary evaluation revealed that the growth and development of silverbeet was significantly lower in anaerobic effluent compared with a commercial hydroponic plant growth solution. The nutrient quality of anaerobic effluent could be highly variable with the process and the waste material used and dilution may depend on the nutrient content of the effluent. It is recommended that, a pre-treatment of the effluent to increase DO and reduce ammonium content is required before plant application, and simple dilution by itself is not suitable for optimum plant growth in a hydroponic system.

  8. Suitability of Gray Water for Hydroponic Crop Production Following Biological and Physical Chemical and Biological Subsystems

    Science.gov (United States)

    Bubenheim, David L.; Harper, Lynn D.; Wignarajah, Kanapathipillai; Greene, Catherine

    1994-01-01

    The water present in waste streams from a human habitat must be recycled in Controlled Ecological Life Support Systems (CELSS) to limit resupply needs and attain self-sufficiency. Plants play an important role in providing food, regenerating air, and producing purified water via transpiration. However, we have shown that the surfactants present in hygiene waste water have acute toxic effects on plant growth (Bubenheim et al. 1994; Greene et al., 1994). These phytotoxic affects can be mitigated by allowing the microbial population on the root surface to degrade the surfactant, however, a significant suppression (several days) in crop performance is experienced prior to reaching sub-toxic surfactant levels and plant recovery. An effective alternative is to stabilize the microbial population responsible for degradation of the surfactant on an aerobic bioreactor and process the waste water prior to utilization in the hydroponic solution (Wisniewski and Bubenheim, 1993). A sensitive bioassay indicates that the surfactant phytotoxicity is suppressed by more than 90% within 5 hours of introduction of the gray water to the bioreactor; processing for more than 12 hours degrades more than 99% of the phytotoxin. Vapor Compression Distillation (VCD) is a physical / chemical method for water purification which employees sequential distillation steps to separate water from solids and to volatilize contaminants. The solids from the waste water are concentrated in a brine and the pure product water (70 - 90% of the total waste water volume depending on operating conditions) retains non of the phytotoxic effects. Results of the bioassay were used to guide evaluations of the suitability of recovered gray water following biological and VCD processing for hydroponic lettuce production in controlled environments. Lettuce crops were grown for 28 days with 100% of the input water supplied with recovered water from the biological processor or VCD. When compared with the growth of plants

  9. Starch accumulation during hydroponic growth of spinach and basil plants under carbon dioxide enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Holbrook, G P; Hansen, J; Wallick, K; Zinnen, T M [North Illinois University, de Kalb, IL (USA). Dept. of Biological Sciences

    1993-04-01

    The effects of CO[sub 2] enrichment, photoperiod duration, and inorganic phosphate levels on growth and starch accumulaton by spinach and basil plants were studied in a commercial hydroponic facility. During a 3-week growth period, both species exhibited increased whole-plant fresh weight as a result of an increase in atmospheric CO[sub 2] concentration from 400 to 1500 mul/1. However, basil leaves exhibited a 1.5- to 2-fold greater increase in specific leaf weight (SLW), and accumulated starch to much greater levels than did leaves of spinach. At 1500 mul CO[sub 2]/1, starch accounted for up to 38% of SLW with basil compared to [lt] 10% of SLW with spinach. The maximum ratio of starch/chlorophyll was 55.0 in basil leaves vs 8.0 in spinach leaves. High ratio values were associated with the appearance of chlorotic symptoms in leaves of basil grown under CO[sub 2] enrichment, whereas spinach did not exhibit chlorosis. Increasing inorganic phosphate concentrations from 0.7 to 1.8 mM in the hydroponic medium did not appreciably affect leaf starch accumulation in either species. Starch accumulation in basil leaves was not consistently related to the duration of the photoperiod. However, photoperiod-induced changes in leaf starch levels were much greater in basil than spinach. The results clearly indicate that different horticultural crops can show diverse responses to CO[sub 2] enrichment, and thus highlight the need to develop individual growth strategies to optimize production quality of each species.

  10. Aquaponics: integrating fish feeding rates and ion waste production for strawberry hydroponics

    International Nuclear Information System (INIS)

    Villarroel, M.; Alvarino, J. M. R.; Duran, J. M.

    2011-01-01

    Aquaponics is the science of integrating intensive fish aquaculture with plant production in recirculating water systems. Although ion waste production by f ish cannot satisfy all plant requirements, less is known about the relationship between total feed provided for f ish and the production of milliequivalents (mEq) of different macronutrients for plants, especially for nutrient flow hydroponics used for strawberry production in Spain. That knowledge is essential to consider the amount of macronutrients available in aquaculture systems so that farmers can estimate how much nutrient needs to be supplemented in the waste water from fish, to produce viable plant growth. In the present experiment, tilapia (Oreochromis niloticus L.) were grown in a small-scale recirculating system at two different densities while growth and feed consumption were noted every week for five weeks. At the same time points, water samples were taken to measure pH, EC 2 5, HCO3 - , Cl - , NH + 4 , NO 2 - , NO 3 - , H 2 PO 4 - , SO 4 2 -, Na + , K + , Ca 2 + and Mg 2 + build up. The total increase in mEq of each ion per kg of feed provided to the fish was highest for NO 3 - , followed, in decreasing order, by Ca 2 +, H 2 PO 4 - , K + , Mg 2 + and SO 4 2 -. The total amount of feed required per mEq ranged from 1.61- 13.1 kg for the four most abundant ions (NO 3 - , Ca 2 +, H 2 PO 4 - and K + ) at a density of 2 kg fish m3, suggesting that it would be rather easy to maintain small populations of fish to reduce the cost of hydroponic solution supplementation for strawberries. (Author) 16 refs.

  11. Soybean cultivation for Bioregenerative Life Support Systems (BLSSs): The effect of hydroponic system and nitrogen source

    Science.gov (United States)

    Paradiso, Roberta; Buonomo, Roberta; Dixon, Mike A.; Barbieri, Giancarlo; De Pascale, Stefania

    2014-02-01

    Soybean [Glycine max (L.) Merr.] is one of the plant species selected within the European Space Agency (ESA) Micro-Ecological Life Support System Alternative (MELiSSA) project for hydroponic cultivation in Biological Life Support Systems (BLSSs), because of the high nutritional value of seeds. Root symbiosis of soybean with Bradirhizobium japonicum contributes to plant nutrition in soil, providing ammonium through the bacterial fixation of atmospheric nitrogen. The aim of this study was to evaluate the effects of two hydroponic systems, Nutrient Film Technique (NFT) and cultivation on rockwool, and two nitrogen sources in the nutrient solution, nitrate (as Ca(NO3)2 and KNO3) and urea (CO(NH2)2), on root symbiosis, plant growth and seeds production of soybean. Plants of cultivar 'OT8914', inoculated with B. japonicum strain BUS-2, were grown in a growth chamber, under controlled environmental conditions. Cultivation on rockwool positively influenced root nodulation and plant growth and yield, without affecting the proximate composition of seeds, compared to NFT. Urea as the sole source of N drastically reduced the seed production and the harvest index of soybean plants, presumably because of ammonium toxicity, even though it enhanced root nodulation and increased the N content of seeds. In the view of large-scale cultivation for space colony on planetary surfaces, the possibility to use porous media, prepared using in situ resources, should be investigated. Urea can be included in the nutrient formulation for soybean in order to promote bacterial activity, however a proper ammonium/nitrate ratio should be maintained.

  12. Hydroponics Database and Handbook for the Advanced Life Support Test Bed

    Science.gov (United States)

    Nash, Allen J.

    1999-01-01

    During the summer 1998, I did student assistance to Dr. Daniel J. Barta, chief plant growth expert at Johnson Space Center - NASA. We established the preliminary stages of a hydroponic crop growth database for the Advanced Life Support Systems Integration Test Bed, otherwise referred to as BIO-Plex (Biological Planetary Life Support Systems Test Complex). The database summarizes information from published technical papers by plant growth experts, and it includes bibliographical, environmental and harvest information based on plant growth under varying environmental conditions. I collected 84 lettuce entries, 14 soybean, 49 sweet potato, 16 wheat, 237 white potato, and 26 mix crop entries. The list will grow with the publication of new research. This database will be integrated with a search and systems analysis computer program that will cross-reference multiple parameters to determine optimum edible yield under varying parameters. Also, we have made preliminary effort to put together a crop handbook for BIO-Plex plant growth management. It will be a collection of information obtained from experts who provided recommendations on a particular crop's growing conditions. It includes bibliographic, environmental, nutrient solution, potential yield, harvest nutritional, and propagation procedure information. This handbook will stand as the baseline growth conditions for the first set of experiments in the BIO-Plex facility.

  13. Evaluation of the safety and efficacy of Glycyrrhiza uralensis root extracts produced using artificial hydroponic and artificial hydroponic-field hybrid cultivation systems.

    Science.gov (United States)

    Akiyama, H; Nose, M; Ohtsuki, N; Hisaka, S; Takiguchi, H; Tada, A; Sugimoto, N; Fuchino, H; Inui, T; Kawano, N; Hayashi, S; Hishida, A; Kudo, T; Sugiyama, K; Abe, Y; Mutsuga, M; Kawahara, N; Yoshimatsu, K

    2017-01-01

    Glycyrrhiza uralensis roots used in this study were produced using novel cultivation systems, including artificial hydroponics and artificial hydroponic-field hybrid cultivation. The equivalency between G. uralensis root extracts produced by hydroponics and/or hybrid cultivation and a commercial Glycyrrhiza crude drug were evaluated for both safety and efficacy, and there were no significant differences in terms of mutagenicity on the Ames tests. The levels of cadmium and mercury in both hydroponic roots and crude drugs were less than the limit of quantitation. Arsenic levels were lower in all hydroponic roots than in the crude drug, whereas mean lead levels in the crude drug were not significantly different from those in the hydroponically cultivated G. uralensis roots. Both hydroponic and hybrid-cultivated root extracts showed antiallergic activities against contact hypersensitivity that were similar to those of the crude drug extracts. These study results suggest that hydroponic and hybrid-cultivated roots are equivalent in safety and efficacy to those of commercial crude drugs. Further studies are necessary before the roots are applicable as replacements for the currently available commercial crude drugs produced from wild plant resources.

  14. The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations

    DEFF Research Database (Denmark)

    Martre, Pierre; Reynolds, Matthew; Asseng, Senthold

    2017-01-01

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown...... dates. Data include local daily weather data, soil characteristics and initial soil conditions, crop measurements (anthesis and maturity dates, anthesis and final total above ground biomass, final grain yields and yields components), and cultivar information. Simulations include both daily in-season...... and end-of-season results from 30 wheat models....

  15. Uptake of pharmaceuticals by plants grown under hydroponic conditions and natural occurring plant species: A review.

    Science.gov (United States)

    Madikizela, Lawrence Mzukisi; Ncube, Somandla; Chimuka, Luke

    2018-04-27

    Sizeable amount of research has been conducted on the possible uptake of pharmaceuticals by plants from contaminated soil and water used for irrigation of crops. In most cases, pharmaceuticals are taken by roots and translocated into various tissues by transpiration and diffusion. Due to the plant uptake, the occurrence of pharmaceuticals in food sources such as vegetables is a public concern. Few review papers focusing on the uptake of pharmaceuticals, in particular antibiotics, and their translocation in plant tissues have been published. In the current review paper, the work conducted on the uptake of pharmaceuticals belonging to different therapeutic groups such as antibiotics, non-steroidal anti-inflammatory drugs, β-blockers and antiepileptics is reviewed. Such work includes the occurrence of pharmaceuticals in plants, translocation once taken by plants, toxicity studies as well as implications and future studies. Furthermore, the advantages and drawbacks associated with the detection and uptake of these pharmaceuticals by plants are discussed. In addition, the physico-chemical properties that could influence the plant uptake of pharmaceuticals are deliberated. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. The Comparison of Ammonium or Nitrate-Grown Lettuce and Spinach in a Hydroponic System

    OpenAIRE

    H. R. Roosta

    2010-01-01

    Most plant species are sensitive to high ammonium concentrations. In this experiment the sensitivity of lettuce and spinach to ammonium was investigated. In a factorial experiment with framework of a completely randomized design with two factors, nitrogen form (ammonium and nitrate) and plant species (lettuce and spinach), and three replications seeds were germinated in a mixture of perlite, sand and clay in soil-maid pots. After two weeks, the seedlings at two true-leaf stage were then trans...

  17. Comparison of Selenium Toxicity in Sunflower and Maize Seedlings Grown in Hydroponic Cultures.

    Science.gov (United States)

    Garousi, Farzaneh; Veres, Szilvia; Kovács, Béla

    2016-11-01

    Several studies have demonstrated that selenium (Se) at low concentrations is beneficial, whereas high Se concentrations can induce toxicity. Controlling Se uptake, metabolism, translocation and accumulation in plants is important to decrease potential health risks and helping to select proper biofortification methods to improve the nutritional content of plant-based foods. The uptake and distribution of Se, changes in Se content, and effects of various concentrations of Se in two forms (sodium selenite and sodium selenate) on sunflower and maize plants were measured in nutrient solution experiments. Results revealed the Se content in shoots and roots of both sunflower and maize plants significantly increased as the Se level increased. In this study, the highest exposure concentrations (30 and 90 mg/L, respectively) caused toxicity in both sunflower and maize. While both Se forms damaged and inhibited plant growth, each behaved differently, as toxicity due to selenite was observed more than in the selenate treatments. Sunflower demonstrated a high Se accumulation capacity, with higher translocation of selenate from roots to shoots compared with selenite. Since in seleniferous soils, a high change in plants' capability exists to uptake Se from these soils and also most of the cultivated crop plants have a bit tolerance to high Se levels, distinction of plants with different Se tolerance is important. This study has tried to discuss about it.

  18. Neuroprotective activity of hydroponic Teucrium polium following bilateral ovariectomy.

    Science.gov (United States)

    Simonyan, K V; Chavushyan, V A

    2015-06-01

    Ovariectomy is known as "surgical menopause" with decreased levels of estrogen in female rodents. Its reported risks and adverse effects include cognitive impairment. The action of hydroponic Teucrium polium on nucleus basalis of Meynert (bnM) neurons following 6 weeks of ovariectomy was carried out. The analysis of spike activity was observed by on-line selection and the use of a software package. Early and late tetanic, - posttetanic potentiation and depression of neurons to high frequency stimulation of hippocampus were studied. The complex averaged peri-event time and frequency histograms were constructed. The histochemical study of the activity of Са(2+)-dependent acid phosphatase was observed. In conditions of hydroponic Teucrium polium administration, positive changes in neurons and gain of metabolism leading to cellular survival were revealed. The administration of Teucrium polium elicited neurodegenerative changes in bnM.

  19. A hydroponic design for microgravity and gravity installations

    Science.gov (United States)

    Fielder, Judith; Leggett, Nickolaus

    1990-01-01

    A hydroponic system is presented that is designed for use in microgravity or gravity experiments. The system uses a sponge-like growing medium installed in tubular modules. The modules contain the plant roots and manage the flow of the nutrient solution. The physical design and materials considerations are discussed, as are modifications of the basic design for use in microgravity or gravity experiments. The major external environmental requirements are also presented.

  20. Root-Contact/Pressure-Plate Assembly For Hydroponic System

    Science.gov (United States)

    Morris, Carlton E.; Loretan, Philip A.; Bonsi, Conrad K.; Hill, Walter A.

    1994-01-01

    Hydroponic system includes growth channels equipped with rootcontact/pressure-plate assemblies. Pump and associated plumbing circulate nutrient liquid from reservoir, along bottom of growth channels, and back to reservoir. Root-contact/pressure-plate assembly in each growth channel stimulates growth of roots by applying mild contact pressure. Flat plate and plate connectors, together constitute pressure plate, free to move upward to accommodate growth of roots. System used for growing sweetpotatoes and possibly other tuber and root crops.

  1. A Reliable Wireless Control System for Tomato Hydroponics.

    Science.gov (United States)

    Ibayashi, Hirofumi; Kaneda, Yukimasa; Imahara, Jungo; Oishi, Naoki; Kuroda, Masahiro; Mineno, Hiroshi

    2016-05-05

    Agricultural systems using advanced information and communication (ICT) technology can produce high-quality crops in a stable environment while decreasing the need for manual labor. The system collects a wide variety of environmental data and provides the precise cultivation control needed to produce high value-added crops; however, there are the problems of packet transmission errors in wireless sensor networks or system failure due to having the equipment in a hot and humid environment. In this paper, we propose a reliable wireless control system for hydroponic tomato cultivation using the 400 MHz wireless band and the IEEE 802.15.6 standard. The 400 MHz band, which is lower than the 2.4 GHz band, has good obstacle diffraction, and zero-data-loss communication is realized using the guaranteed time-slot method supported by the IEEE 802.15.6 standard. In addition, this system has fault tolerance and a self-healing function to recover from faults such as packet transmission failures due to deterioration of the wireless communication quality. In our basic experiments, the 400 MHz band wireless communication was not affected by the plants' growth, and the packet error rate was less than that of the 2.4 GHz band. In summary, we achieved a real-time hydroponic liquid supply control with no data loss by applying a 400 MHz band WSN to hydroponic tomato cultivation.

  2. Application of Open Garden Sensor on Hydroponic Maintenance Management

    Science.gov (United States)

    Nasution, S.; Siregar, B.; Kurniawan, M.; Pranoto, H.; Andayani, U.; Fahmi, F.

    2018-03-01

    Hydroponic farming system is an agricultural system that uses direct water as a nutrient without using soil as a planting medium. This system allows smallholder farmers to have the opportunity to develop their crop production with less capital. In addition, hydroponic planting has also been widely adapted by individuals as a personal hobby. Application of technology has penetrated various fields including agricultural fields. One of the technologies that can be applied in a hydroponic farming system is the sensor. Sensors are devices that used to convert a physical quantity into a quantity of electricity so that it can be analyse with a certain electrical circuit. In this study, the technology to be applied is wireless sensor technology applied in human life to help get information quickly and accurately. Sensors to be used in this study are pH sensors, conductivity sensors, temperature sensors and humidity. In addition to sensors, the study also involved Arduino technology. Arduino is a microcontroller board that is used to interact with the environment based on programs that have been made. The final results of the application testing show that the system success to display diagram in real-time in an environment from Arduino board to database and web server.

  3. Plant-uptake of uranium: Hydroponic and soil system studies

    Science.gov (United States)

    Ramaswami, A.; Carr, P.; Burkhardt, M.

    2001-01-01

    Limited information is available on screening and selection of terrestrial plants for uptake and translocation of uranium from soil. This article evaluates the removal of uranium from water and soil by selected plants, comparing plant performance in hydroponic systems with that in two soil systems (a sandy-loam soil and an organic-rich soil). Plants selected for this study were Sunflower (Helianthus giganteus), Spring Vetch (Vicia sativa), Hairy Vetch (Vicia villosa), Juniper (Juniperus monosperma), Indian Mustard (Brassica juncea), and Bush Bean (Phaseolus nanus). Plant performance was evaluated both in terms of the percent uranium extracted from the three systems, as well as the biological absorption coefficient (BAC) that normalized uranium uptake to plant biomass. Study results indicate that uranium extraction efficiency decreased sharply across hydroponic, sandy and organic soil systems, indicating that soil organic matter sequestered uranium, rendering it largely unavailable for plant uptake. These results indicate that site-specific soils must be used to screen plants for uranium extraction capability; plant behavior in hydroponic systems does not correlate well with that in soil systems. One plant species, Juniper, exhibited consistent uranium extraction efficiencies and BACs in both sandy and organic soils, suggesting unique uranium extraction capabilities.

  4. A Reliable Wireless Control System for Tomato Hydroponics

    Science.gov (United States)

    Ibayashi, Hirofumi; Kaneda, Yukimasa; Imahara, Jungo; Oishi, Naoki; Kuroda, Masahiro; Mineno, Hiroshi

    2016-01-01

    Agricultural systems using advanced information and communication (ICT) technology can produce high-quality crops in a stable environment while decreasing the need for manual labor. The system collects a wide variety of environmental data and provides the precise cultivation control needed to produce high value-added crops; however, there are the problems of packet transmission errors in wireless sensor networks or system failure due to having the equipment in a hot and humid environment. In this paper, we propose a reliable wireless control system for hydroponic tomato cultivation using the 400 MHz wireless band and the IEEE 802.15.6 standard. The 400 MHz band, which is lower than the 2.4 GHz band, has good obstacle diffraction, and zero-data-loss communication is realized using the guaranteed time-slot method supported by the IEEE 802.15.6 standard. In addition, this system has fault tolerance and a self-healing function to recover from faults such as packet transmission failures due to deterioration of the wireless communication quality. In our basic experiments, the 400 MHz band wireless communication was not affected by the plants’ growth, and the packet error rate was less than that of the 2.4 GHz band. In summary, we achieved a real-time hydroponic liquid supply control with no data loss by applying a 400 MHz band WSN to hydroponic tomato cultivation. PMID:27164105

  5. Plant Density Effect on Grain Number and Weight of Two Winter Wheat Cultivars at Different Spikelet and Grain Positions

    OpenAIRE

    Li, Yong; Cui, Zhengyong; Ni, Yingli; Zheng, Mengjing; Yang, Dongqing; Jin, Min; Chen, Jin; Wang, Zhenlin; Yin, Yanping

    2016-01-01

    In winter wheat, grain development is asynchronous. The grain number and grain weight vary significantly at different spikelet and grain positions among wheat cultivars grown at different plant densities. In this study, two winter wheat (Triticum aestivum L.) cultivars, 'Wennong6' and 'Jimai20', were grown under four different plant densities for two seasons, in order to study the effect of plant density on the grain number and grain weight at different spikelet and grain positions. The resul...

  6. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars

    International Nuclear Information System (INIS)

    Santos Utmazian, Maria Noel dos; Wieshammer, Gerlinde; Vega, Rosa; Wenzel, Walter W.

    2007-01-01

    We screened 20 different clones of willow and poplar species in hydroponic experiments for their metal resistance and accumulation properties. Plants were exposed for 4 weeks either to single additions of (μM) 4.45 Cd or 76.5 Zn, or a metal cocktail containing the same amounts of Cd and Zn along with 7.87 Cu and 24.1 Pb. Plant biomass, metal tolerance and metal accumulation pattern in roots and leaves varied greatly between clones. The leaf:root ratio of metal concentrations was clearly underestimated compared to soil experiments. The largest metal concentrations in leaves were detected in Salix dasyclados (315 mg Cd kg -1 d.m.) and a Salix smithiana clone (3180 mg Zn kg -1 d.m.) but these species showed low metal tolerance. In spite of smaller Cd and Zn concentrations, the metal-tolerant clones Salix matsudana, Salix fragilis-1, and Salix purpurea-1 hold promise for phytoextraction as they produced large biomass and metal contents in leaves. - Hydroponically grown willows and poplar clones accumulate up to (mg kg -1 d.w.) 315 Cd and 3180 Zn in leaves

  7. Growth and Tissue Elemental Composition Response of Spinach (Spinacia oleracea to Hydroponic and Aquaponic Water Quality Conditions

    Directory of Open Access Journals (Sweden)

    Daniel A. Vandam

    2017-05-01

    Full Text Available Spinach (Spinacia oleracea cv. Carmel was grown in a conventional glass greenhouse under three different nutrient solution treatments. Lighting and temperature conditions were identical. Six growing systems were used to provide a duplicate trough system for each of these three treatments. Six trials were harvested from each system over a two month time period. Two treatments received hydroponic nutrient inputs, with one treatment at pH 7.0 (referred to as H7 and the other at pH 5.8 (H5, and the third treatment was aquaponic (A7, receiving all of its nutrients from a single fish tank with koi (Cyprinus carpio except for chelated iron. System pH was regulated by adding K2CO3 to aquaponic systems and KOH to hydroponic systems. Comparisons made between treatments were total yield, leaf surface area, tissue elemental content, and dry weight to fresh weight ratio. Dry weight biomass yield values were not different in pairwise comparisons between treatments (A7 vs. H5: p = 0.59 fresh weight, p = 0.42 dry weight. Similarly, surface area results were not different between treatments. The important comparison was that A7 achieved the same growth as H5, the conventional pH with a complete inorganic nutrient solution, despite unbalanced and less than “ideal” nutrient concentrations in the A7 condition.

  8. Influence of irradiated chitosan on rice plants growing in hydroponic medium contaminated with salt and heavy metals

    International Nuclear Information System (INIS)

    Lam, N.D.; Diep, T.B.; Kume, Tamikazu

    2000-01-01

    Effect of chitosan and radiation-degraded chitosan on rice seedlings of a Vietnam's original variety was investigated. Potential of irradiated chitosan in plant tolerance for several stress factors (salt, zinc, and vanadium) also was studied as well. Chitosan represented in hydroponic medium clearly inhibited the growth of rice seedlings at concentrations arranging from 50 ppm. Radiation processing of chitosan with dose higher than 100 kGy reduced toxicity of chitosan and the efficacy was of dose proportion. Rice plant of 203 origin was almost normally grown in hydroponic solution containing chitosan that has been irradiated with dose of 150 and 200 kGy. Irradiated chitosan increased plant resistance to environmental stress caused by vanadium (V); thereby the seedlings could be recovered completely, even gained in biomass. This effect was not appeared when applied chitosan to rice in media contaminated by zinc (Zn) and salt (NaCl). The selectness of irradiated chitosan on various stress factors partly clarified the assistant action of chitosan in the vanadium intoxication because chelating with metal ions could not be evaluated as main mechanism. (author)

  9. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars

    Energy Technology Data Exchange (ETDEWEB)

    Santos Utmazian, Maria Noel dos [Department of Forest- and Soil Sciences, University of Natural Resources and Applied Life Sciences, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna (Austria); Wieshammer, Gerlinde [Department of Forest- and Soil Sciences, University of Natural Resources and Applied Life Sciences, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna (Austria); Vega, Rosa [Department of Forest- and Soil Sciences, University of Natural Resources and Applied Life Sciences, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna (Austria); Wenzel, Walter W. [Department of Forest- and Soil Sciences, University of Natural Resources and Applied Life Sciences, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna (Austria)]. E-mail: walter.wenzel@boku.ac.at

    2007-07-15

    We screened 20 different clones of willow and poplar species in hydroponic experiments for their metal resistance and accumulation properties. Plants were exposed for 4 weeks either to single additions of ({mu}M) 4.45 Cd or 76.5 Zn, or a metal cocktail containing the same amounts of Cd and Zn along with 7.87 Cu and 24.1 Pb. Plant biomass, metal tolerance and metal accumulation pattern in roots and leaves varied greatly between clones. The leaf:root ratio of metal concentrations was clearly underestimated compared to soil experiments. The largest metal concentrations in leaves were detected in Salix dasyclados (315 mg Cd kg{sup -1} d.m.) and a Salix smithiana clone (3180 mg Zn kg{sup -1} d.m.) but these species showed low metal tolerance. In spite of smaller Cd and Zn concentrations, the metal-tolerant clones Salix matsudana, Salix fragilis-1, and Salix purpurea-1 hold promise for phytoextraction as they produced large biomass and metal contents in leaves. - Hydroponically grown willows and poplar clones accumulate up to (mg kg{sup -1} d.w.) 315 Cd and 3180 Zn in leaves.

  10. Recycle of Inorganic Nutrients for Hydroponic Crop Production Following Incineration of Inedible Biomass

    Science.gov (United States)

    Bubenheim, David L.; Wignarajah, Kanapathipillai; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Recovery of resources from waste streams is essential for future implementation and reliance on a regenerative life support system. The major waste streams of concern are from human activities and plant wastes. Carbon, water and inorganics are the primary desired raw materials of interest. The goal of resource recovery is maintenance of product quality to insure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. Today, reagent grade nutrients are used to make nutrient solutions for hydroponic culture and these solutions are frequently changed during the life cycle or sometimes managed for only one crop life cycle. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration in all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match control, and ash only quality formulated with reagent grade chemicals. When nutrient solutions are formulated using only ash following-incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in suppression of crop growth. When the ash is supplemented with nutrients to establish the same balance as in the control, growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals

  11. Wpływ intensyiuności światła i długości dnia na produkcję biomasy siewek zbóż w uprawie hydroponicznej [Influence of light intensity and daylength on biomass production by cereal seedlings in hydroponic culture

    Directory of Open Access Journals (Sweden)

    J. Telżyńska

    2015-06-01

    Full Text Available The influence of light intensity, daylength and of the duration of the cultivation cycle on biomass production was investigated in the case of wheat, rye, oats and barley seedlings reared in hydroponic culture in the glasshouse. The investigations performed show together with the literature data that there is a possibility of obtaining very high yields from a very small surface area if the cultivation cycles are appropriately schemed, and the technical installations and suitable light combinations are applied.

  12. Fate of 15N-urea applied to wheat-soybean succession crop

    International Nuclear Information System (INIS)

    Boaretto, Antonio Enedi; Trivelin, Paulo Cesar Ocheuze; Muraoka, Takashi; Spolidorio, Eduardo Scarpari; Freitas, Jose Guilherme de; Cantarella, Heitor

    2004-01-01

    The wheat crop in Sao Paulo State, Brazil, is fertilized with N, P and K. The rate of applied N (0 to 120 kg.ha -1 ) depends on the previous grown crop and the irrigation possibility. The response of wheat to rates and time of N application and the fate of N applied to irrigated wheat were studied during two years. Residual N recovery by soybean grown after the wheat was also studied. The maximum grain productivity was obtained with 92 kg.ha -1 of N. The efficiency of 15 N-urea utilization ranged from 52% to 85%. The main loss of applied 15 N, 5% to 12% occurred as ammonia volatilized from urea applied on soil surface. The N loss by leaching even at the N rate of 135 kg.ha -1 , was less than 1% of applied 15 N, due to the low amount of rainfall during the wheat grown season and a controlled amount of irrigated water, that were sufficient to moisten only the wheat root zone. The residual 15 N after wheat harvest represents around 40% of N applied as urea: 20% in soil, 3% in wheat root system and 16% in the wheat straw. Soybean recovered less than 2% of the 15 N applied to wheat at sowing or at tillering stage. (author)

  13. Application of a statistical design to the optimization of parameters and culture medium for alpha-amylase production by Aspergillus oryzae CBS 819.72 grown on gruel (wheat grinding by-product).

    Science.gov (United States)

    Kammoun, Radhouane; Naili, Belgacem; Bejar, Samir

    2008-09-01

    The production optimization of alpha-amylase (E.C.3.2.1.1) from Aspergillus oryzae CBS 819.72 fungus, using a by-product of wheat grinding (gruel) as sole carbon source, was performed with statistical methodology based on three experimental designs. The optimisation of temperature, agitation and inoculum size was attempted using a Box-Behnken design under the response surface methodology. The screening of nineteen nutrients for their influence on alpha-amylase production was achieved using a Plackett-Burman design. KH(2)PO(4), urea, glycerol, (NH(4))(2)SO(4), CoCl(2), casein hydrolysate, soybean meal hydrolysate, MgSO(4) were selected based on their positive influence on enzyme formation. The optimized nutrients concentration was obtained using a Taguchi experimental design and the analysis of the data predicts a theoretical increase in the alpha-amylase expression of 73.2% (from 40.1 to 151.1 U/ml). These conditions were validated experimentally and revealed an enhanced alpha-amylase yield of 72.7%.

  14. A Major Locus for Chloride Accumulation on Chromosome 5A in Bread Wheat

    Science.gov (United States)

    Genc, Yusuf; Taylor, Julian; Rongala, Jay; Oldach, Klaus

    2014-01-01

    Chloride (Cl−) is an essential micronutrient for plant growth, but can be toxic at high concentrations resulting in reduced growth and yield. Although saline soils are generally dominated by both sodium (Na+) and Cl− ions, compared to Na+ toxicity, very little is known about physiological and genetic control mechanisms of tolerance to Cl− toxicity. In hydroponics and field studies, a bread wheat mapping population was tested to examine the relationships between physiological traits [Na+, potassium (K+) and Cl− concentration] involved in salinity tolerance (ST) and seedling growth or grain yield, and to elucidate the genetic control mechanism of plant Cl− accumulation using a quantitative trait loci (QTL) analysis approach. Plant Na+ or Cl− concentration were moderately correlated (genetically) with seedling biomass in hydroponics, but showed no correlations with grain yield in the field, indicating little value in selecting for ion concentration to improve ST. In accordance with phenotypic responses, QTL controlling Cl− accumulation differed entirely between hydroponics and field locations, and few were detected in two or more environments, demonstrating substantial QTL-by-environment interactions. The presence of several QTL for Cl− concentration indicated that uptake and accumulation was a polygenic trait. A major Cl− concentration QTL (5A; barc56/gwm186) was identified in three field environments, and accounted for 27–32% of the total genetic variance. Alignment between the 5A QTL interval and its corresponding physical genome regions in wheat and other grasses has enabled the search for candidate genes involved in Cl− transport, which is discussed. PMID:24893005

  15. A major locus for chloride accumulation on chromosome 5A in bread wheat.

    Directory of Open Access Journals (Sweden)

    Yusuf Genc

    Full Text Available Chloride (Cl- is an essential micronutrient for plant growth, but can be toxic at high concentrations resulting in reduced growth and yield. Although saline soils are generally dominated by both sodium (Na+ and Cl- ions, compared to Na+ toxicity, very little is known about physiological and genetic control mechanisms of tolerance to Cl- toxicity. In hydroponics and field studies, a bread wheat mapping population was tested to examine the relationships between physiological traits [Na+, potassium (K+ and Cl- concentration] involved in salinity tolerance (ST and seedling growth or grain yield, and to elucidate the genetic control mechanism of plant Cl- accumulation using a quantitative trait loci (QTL analysis approach. Plant Na+ or Cl- concentration were moderately correlated (genetically with seedling biomass in hydroponics, but showed no correlations with grain yield in the field, indicating little value in selecting for ion concentration to improve ST. In accordance with phenotypic responses, QTL controlling Cl- accumulation differed entirely between hydroponics and field locations, and few were detected in two or more environments, demonstrating substantial QTL-by-environment interactions. The presence of several QTL for Cl- concentration indicated that uptake and accumulation was a polygenic trait. A major Cl- concentration QTL (5A; barc56/gwm186 was identified in three field environments, and accounted for 27-32% of the total genetic variance. Alignment between the 5A QTL interval and its corresponding physical genome regions in wheat and other grasses has enabled the search for candidate genes involved in Cl- transport, which is discussed.

  16. Biolistic- and Agrobacterium-mediated transformation protocols for wheat.

    Science.gov (United States)

    Tamás-Nyitrai, Cecília; Jones, Huw D; Tamás, László

    2012-01-01

    After rice, wheat is considered to be the most important world food crop, and the demand for high-quality wheat flour is increasing. Although there are no GM varieties currently grown, wheat is an important target for biotechnology, and we anticipate that GM wheat will be commercially available in 10-15 years. In this chapter, we summarize the main features and challenges of wheat transformation and then describe detailed protocols for the production of transgenic wheat plants both by biolistic and Agrobacterium-mediated DNA-delivery. Although these methods are used mainly for bread wheat (Triticum aestivum L.), they can also be successfully applied, with slight modifications, to tetraploid durum wheat (T. turgidum L. var. durum). The appropriate size and developmental stage of explants (immature embryo-derived scutella), the conditions to produce embryogenic callus tissues, and the methods to regenerate transgenic plants under increasing selection pressure are provided in the protocol. To illustrate the application of herbicide selection system, we have chosen to describe the use of the plasmid pAHC25 for biolistic transformation, while for Agrobacterium-mediated transformation the binary vector pAL156 (incorporating both the bar gene and the uidA gene) has been chosen. Beside the step-by-step methodology for obtaining stably transformed and normal fertile plants, procedures for screening and testing transgenic wheat plants are also discussed.

  17. The Effect of Anaerobic and Aerobic Fish Sludge Supernatant on Hydroponic Lettuce

    Directory of Open Access Journals (Sweden)

    Simon Goddek

    2016-06-01

    Full Text Available The mobilization of nutrients from fish sludge (i.e., feces and uneaten feed plays a key role in optimizing the resource utilization and thus in improving the sustainability of aquaponic systems. While several studies have documented the aerobic and anaerobic digestion performance of aquaculture sludge, the impact of the digestate on plant growth has yet to be understood. The present study examines the impact of either an aerobic or an anaerobic digestion effluent on lettuce plant growth, by enriching a mixture of aquaculture and tap water with supernatants from both aerobic and anaerobic batch reactors. The lettuce plants grown in the hydroponic system supplied with supernatant from an anaerobic reactor had significantly better performance with respect to weight gain than both, those in the system where supernatant from the aerobic reactor was added, as well as the control system. It can be hypothesized that this effect was caused by the presence of NH4+ as well as dissolved organic matter, plant growth promoting rhizobacteria and fungi, and humic acid, which are predominantly present in anaerobic effluents. This study should therefore be of value to researchers and practitioners wishing to further develop sludge remineralization in aquaponic systems.

  18. Composition of hydroponic lettuce: effect of time of day, plant size, and season.

    Science.gov (United States)

    Gent, Martin P N

    2012-02-01

    The diurnal variation of nitrate and sugars in leafy green vegetables may vary with plant size or the ability of plants to buffer the uptake, synthesis, and use of metabolites. Bibb lettuce was grown in hydroponics in a greenhouse and sampled at 3 h intervals throughout one day in August 2007 and another day in November 2008 to determine fresh weight, dry matter, and concentration of nitrate and sugars. Plantings differing in size and age were sampled on each date. The dry/fresh weight ratio increased during the daylight period. This increase was greater for small compared to large plants. On a fresh weight basis, tissue nitrate of small plants was only half that of larger plants. The variation in concentration with time was much less for nitrate than for soluble sugars. Soluble sugars were similar for all plant sizes early in the day, but they increased far more for small compared to large plants in the long days of summer. The greatest yield on a fresh weight basis was obtained by harvesting lettuce at dawn. Although dry matter or sugar content increased later in the day, there is no commercial benefit to delaying harvest as consumers do not buy lettuce for these attributes. Copyright © 2011 Society of Chemical Industry.

  19. Cadmium accumulation by jack-bean and sorghum in hydroponic culture.

    Science.gov (United States)

    Francato Zancheta, Ariana Carramaschi; De Abreu, Cleide Aparecida; Zambrosi, Fernando César Bachiega; de Magalhães Erismann, Norma; Andrade Lagôa, Ana Maria Magalhães

    2015-01-01

    Among the technologies used to recuperate cadmium (Cd) contaminated soils, phytoextraction are particularly important, where the selection of suitable plants is critical to the success of the soil remediation. Thus, the objectives of this study were to evaluate the responses of jack-bean and sorghum to Cd supply and to quantify Cd accumulation by these species grown in hydroponic culture. The plants were subjected to 0, 15, 30, or 60 μmol Cd L(-1) in the nutrient solution, and gas exchange, plant growth and Cd accumulation were measured at 25 days after starting Cd treatments. The Cd supply severely reduced growth of shoots and roots in both species. In jack-bean, Cd decreased photosynthesis by 56-86%, stomatal conductance by 59-85% and transpiration by 48-80%. The concentrations and amounts of Cd accumulated in the plant tissues were proportional to the metal supply in the nutrient solution. Sorghum was more tolerant than jack-bean to Cd toxicity, but the latter showed a greater metal concentration and accumulation in the shoot. Therefore, jack-bean would be more suitable than sorghum for use in Cd phytoremediation programs based on phytoextraction.

  20. Hydroponic screening of black locust families for heavy metal tolerance and accumulation.

    Science.gov (United States)

    Župunski, Milan; Borišev, Milan; Orlović, Saša; Arsenov, Danijela; Nikolić, Nataša; Pilipović, Andrej; Pajević, Slobodanka

    2016-01-01

    Present work examines phytoextraction potential of four black locust families (half-sibs 54, 56, 115, and 135) grown hydroponically. Plants were treated with 6 ppm of cadmium (Cd), 100 ppm of nickel (Ni), and 40 ppm of lead (Pb) added in Hoagland nutrient solution, accompanying with simultaneously applied all three metals. Responses to metals exposure among families were different, ranging from severe to slight reduction of root and shoot biomass production of treated plants. Calculated tolerance indices are indicating tested families as highly tolerant (Ti > 60). Family 135 had the lowest tolerance index, pointing that it was highly susceptible to applied metals. Comparing photosynthetic activities of tested families it has been noticed that they were highly sensitive to stress induced by heavy metals. Net photosynthetic rate of nickel treated plants was the most affected by applied concentration. Cadmium and nickel concentrations in stems and leaves of black locust families exceeded 100 mg Cd kg(-1) and 1000 mg Ni kg(-1), in both single and multipollution context. On the contrary, accumulation of lead in above ground biomass was highly affected by multipollution treatment. Tf and BCF significantly varied between investigated treatments and families of black locust. Concerning obtained results of heavy metals accumulation and tolerance of black locust families can be concluded that tested families might be a promising tool for phytoextraction purposes, but it takes to be further confirmed in field trials.

  1. Stabilization of pH in solid-matrix hydroponic systems

    Science.gov (United States)

    Frick, J.; Mitchell, C. A.

    1993-01-01

    2-[N-morpholino]ethanesulfonic acid (MES) buffer or Amberlite DP-1 (cation-exchange resin beads) were used to stabilize substrate pH of passive-wicking, solid-matrix hydroponic systems in which small canopies of Brassica napus L. (CrGC 5-2, genome : ACaacc) were grown to maturity. Two concentrations of MES (5 or 10 mM) were included in Hoagland 1 nutrient solution. Alternatively, resin beads were incorporated into the 2 vermiculite : 1 perlite (v/v) growth medium at 6% or 12% of total substrate volume. Both strategies stabilized pH without toxic side effects on plants. Average seed yield rates for all four pH stabilization treatments (13.3 to 16.9 g m-2 day-1) were about double that of the control (8.2 g m-2 day-1), for which there was no attempt to buffer substrate pH. Both the highest canopy seed yield rate (16.9 g m-2 day-1) and the highest shoot harvest index (19.5%) occurred with the 6% resin bead treatment, even though the 10 mM MES and 12% bead treatments maintained pH within the narrowest limits. The pH stabilization methods tested did not significantly affect seed oil and protein contents.

  2. A SNP-Based Molecular Barcode for Characterization of Common Wheat.

    Directory of Open Access Journals (Sweden)

    LiFeng Gao

    Full Text Available Wheat is grown as a staple crop worldwide. It is important to develop an effective genotyping tool for this cereal grain both to identify germplasm diversity and to protect the rights of breeders. Single-nucleotide polymorphism (SNP genotyping provides a means for developing a practical, rapid, inexpensive and high-throughput assay. Here, we investigated SNPs as robust markers of genetic variation for typing wheat cultivars. We identified SNPs from an array of 9000 across a collection of 429 well-known wheat cultivars grown in China, of which 43 SNP markers with high minor allele frequency and variations discriminated the selected wheat varieties and their wild ancestors. This SNP-based barcode will allow for the rapid and precise identification of wheat germplasm resources and newly released varieties and will further assist in the wheat breeding program.

  3. Laboratory Evaluation of Ion-Selective Electrodes for Simultaneous Analysis of Macronutrients in Hydroponic Solution

    Science.gov (United States)

    Automated sensing of macronutrients in hydroponic solution would allow more efficient management of nutrients for crop growth in closed hydroponic systems. Ion-selective microelectrode technology requires an ion-selective membrane or a solid metal material that responds selectively to one analyte in...

  4. Optical dating of the hydroponic farm at Korea

    International Nuclear Information System (INIS)

    Hong, D.G.; Galloway, R.B.; Kim, M.J.; Park, S.B.

    2003-01-01

    For age determination, the single aliquot regenerative-dose (SAR) method was applied to quartz from archaeological materials, using luminescence stimulated by blue light. The quartz samples were extracted from sediment from the hydroponic farm related to rice cultivation in an area of archaeological interest in Buyeo, south of Seoul. The optically stimulated luminescence (OSL) dates obtained offered good agreement with the ages derived by typological assessment and 14 C ages. These ages should contribute significantly to interpretation of the history of rice cultivation in Korea. (author)

  5. Hydroponic Crop Production using Recycled Nutrients from Inedible Crop Residues

    Science.gov (United States)

    Garland, Jay L.; Mackowiak, Cheryl L.; Sager, John C.

    1993-01-01

    The coupling of plant growth and waste recycling systems is an important step toward the development of bioregenerative life support systems. This research examined the effectiveness of two alternative methods for recycling nutrients from the inedible fraction (residue) of candidate crops in a bioregenerative system as follows: (1) extraction in water, or leaching, and (2) combustion at 550 C, with subsequent reconstitution of the ash in acid. The effectiveness of the different methods was evaluated by (1) comparing the percent recovery of nutrients, and (2) measuring short- and long-term plant growth in hydroponic solutions, based on recycled nutrients.

  6. NUTRITIONAL CHARACTERISTICS OF EMMER WHEAT VARIETIES

    Directory of Open Access Journals (Sweden)

    Magdaléna Lacko - Bartošová

    2015-02-01

    Full Text Available The objective of this study was to evaluate the nutritional compounds (fat, sugars, crude protein, soluble fiber, ash and starch of four emmer wheat varieties grown under the conditions of organic farming system. The experiment was established on Scientific Research base Dolná Malanta, near Nitra in Slovakia during 2010 – 2011 and 2011 – 2012 growing seasons. Nutritional parameters, except crude protein content, were not influenced by the variety and weather conditions. Agnone variety had the highest content of fat, crude protein and starch but the lowest content of soluble dietary fiber. The lowest values of fat, crude protein had Molise sel Colli variety; Farvento variety had the lowest sugars and starch content. Emmer wheat as ancient wheat has a unique composition in secondary components, such as starch, which may play a role as functional food ingredients.

  7. Design and construction of a vertical hydroponic system with semi-continuous and continuous nutrient cycling

    Science.gov (United States)

    Siswanto, Dian; Widoretno, Wahyu

    2017-11-01

    Problems due to the increase in agricultural land use change can be solved by hydroponic system applications. Many hydroponic studies have been conducted in several countries while their applications in Indonesia requires modification and adjustment. This research was conducted to design and construct a hydroponic system with semi-continuous and continuous nutrition systems. The hydroponic system which was used adapts the ebb and flow system, and the nutrient film technique (NFT). This hydroponic system was made from polyvinyl chloride (PVC) pipes with a length of 197 cm, a diameter of 16 cm, and a slope of 4°. It was constructed from four PVC pipes. In semi-continuous irrigation treatment, nutrients flow four to six times for each of ten minutes depending on plant development and the estimated evapotranspiration occurring, while in a continuous nutrient system the nutrients are streamed for twenty-four hours without stopping at a maximum flow rate of 13.7 L per second.

  8. Wheat (Triticum aestivum L.) transformation using immature embryos.

    Science.gov (United States)

    Ishida, Yuji; Tsunashima, Masako; Hiei, Yukoh; Komari, Toshihiko

    2015-01-01

    Wheat may now be transformed very efficiently by Agrobacterium tumefaciens. Under the protocol hereby described, immature embryos of healthy plants of wheat cultivar Fielder grown in a well-conditioned greenhouse were pretreated with centrifuging and cocultivated with A. tumefaciens. Transgenic wheat plants were obtained routinely from between 40 and 90 % of the immature embryos, thus infected in our tests. All regenerants were normal in morphology and fully fertile. About half of the transformed plants carried single copy of the transgene, which are inherited by the progeny in a Mendelian fashion.

  9. incidence and distribution of insect pests in rain-fed wheat in eastern

    African Journals Online (AJOL)

    ACSS

    Insect pests are some of the major constraints limiting yield of wheat (Triticum aestivum L.) in East Africa. The objective of this ... control measure applied, type of variety grown and agronomic .... development of an integrated pest management.

  10. Isolation and identification of phosphate solubilizer Azospirillum, Bacillus and Enterobacter strains by 16SrRNA sequence analysis and their effect on growth of wheat (Triticum aestivum L.)

    NARCIS (Netherlands)

    Tahir, M.; Mirza, M.S.; Zaheer, A.; Rocha Dimitrov, M.; Smidt, H.; Hameed, S.

    2013-01-01

    The aim of the present study was to isolate phosphate solubilizing bacteria from wheat rhizosphere and investigate their potential for plant growth promotion. Three phosphate solubilizing bacterial strains were isolated by serial dilution method from the rhizosphere of wheat grown under wheat-cotton

  11. Aquaponics: integrating fish feeding rates and ion waste production for strawberry hydroponics

    Energy Technology Data Exchange (ETDEWEB)

    Villarroel, M; Alvarino, J M. R.; Duran, J M

    2011-07-01

    Aquaponics is the science of integrating intensive fish aquaculture with plant production in recirculating water systems. Although ion waste production by fish cannot satisfy all plant requirements, less is known about the relationship between total feed provided for fish and the production of milliequivalents (mEq) of different macronutrients for plants, especially for nutrient flow hydroponics used for strawberry production in Spain. That knowledge is essential to consider the amount of macronutrients available in aquaculture systems so that farmers can estimate how much nutrient needs to be supplemented in the waste water from fish, to produce viable plant growth. In the present experiment, tilapia (Oreochromis niloticus L.) were grown in a small-scale recirculating system at two different densities while growth and feed consumption were noted every week for five weeks. At the same time points, water samples were taken to measure pH, EC25, HCO3{sup -}, Cl{sup -}, NH{sup +}{sub 4}, NO{sub 2}{sup -}, NO{sub 3}{sup -}, H{sub 2}PO{sub 4}{sup -}, SO{sub 4}{sup 2}-, Na{sup +}, K{sup +}, Ca{sup 2}+ and Mg{sup 2}+ build up. The total increase in mEq of each ion per kg of feed provided to the fish was highest for NO{sub 3}{sup -}, followed, in decreasing order, by Ca{sup 2}+, H{sub 2}PO{sub 4}{sup -}, K{sup +}, Mg{sup 2}+ and SO{sub 4}{sup 2}-. The total amount of feed required per mEq ranged from 1.61 - 13.1 kg for the four most abundant ions (NO{sub 3}{sup -}, Ca{sup 2}+, H{sub 2}PO{sub 4}{sup -} and K{sup +}) at a density of 2 kg fish m{sup -3}, suggesting that it would be rather easy to maintain small populations of fish to reduce the cost of hydroponic solution supplementation for strawberries. (Author) 16 refs.

  12. Selection and hydroponic growth of potato cultivars for bioregenerative life support systems

    Science.gov (United States)

    Molders, K.; Quinet, M.; Decat, J.; Secco, B.; Dulière, E.; Pieters, S.; van der Kooij, T.; Lutts, S.; Van Der Straeten, D.

    2012-07-01

    As part of the ESA-funded MELiSSA program, Ghent University and the Université catholique de Louvain investigated the suitability, growth and development of four potato cultivars in hydroponic culture under controlled conditions with the aim to incorporate such cultivation system in an Environmental Control and Life Support System (ECLSS). Potato plants can fulfill three major functions in an ECLSS in space missions: (a) fixation of CO2 and production of O2, (b) production of tubers for human nutrition and (c) production of clean water after condensation of the water vapor released from the plants by transpiration. Four cultivars (Annabelle, Bintje, Desiree and Innovator) were selected and grown hydroponically in nutrient film technique (NFT) gullies in a growth chamber under controlled conditions. The plant growth parameters, tuber harvest parameters and results of tuber nutritional analysis of the four cultivars were compared. The four potato cultivars grew well and all produced tubers. The growth period lasted 127 days for all cultivars except for Desiree which needed 145 days. Annabelle (1.45 kg/m2) and Bintje (1.355 kg/m2) were the best performing of the four cultivars. They also produced two times more tubers than Desiree and Innovator. Innovator produced the biggest tubers (20.95 g/tuber) and Desiree the smallest (7.67 g/tuber). The size of Annabelle and Bintje potatoes were intermediate. Bintje plants produced the highest total biomass in term of DW. The highest non-edible biomass was produced by Desiree, which showed both the highest shoot and root DW. The manual length and width measurements were also used to predict the total tuber mass. The energy values of the tubers remained in the range of the 2010 USDA and Souci-Fachmann-Kraut food composition databases. The amount of Ca determined was slightly reduced compared to the USDA value, but close to the Souci-Fachmann-Kraut value. The concentration of Cu, Zn and P were high compared to both databases

  13. Milling and Baking Test REsults for Eastern Soft Winter Wheats Harvested in 2010

    Science.gov (United States)

    The Soft Wheat Quality Council (SWQC) will provide an organization structure to evaluate the quality of soft wheat experimental lines and variety that may be grown in the traditional growing regions of the United States. The SWQC also will establish other activities as requested by the membership. ...

  14. Crop yield and light/energy efficiency in a closed ecological system: Laboratory Biosphere experiments with wheat and sweet potato.

    Science.gov (United States)

    Nelson, M; Dempster, W F; Silverstone, S; Alling, A; Allen, J P; van Thillo, M

    2005-01-01

    Two crop growth experiments in the soil-based closed ecological facility, Laboratory Biosphere, were conducted from 2003 to 2004 with candidate space life support crops. Apogee wheat (Utah State University variety) was grown, planted at two densities, 400 and 800 seeds m-2. The lighting regime for the wheat crop was 16 h of light-8 h dark at a total light intensity of around 840 micromoles m-2 s-1 and 48.4 mol m-2 d-1 over 84 days. Average biomass was 1395 g m-2, 16.0 g m-2 d-1 and average seed production was 689 g m-2 and 7.9 g m-2 d-1. The less densely planted side was more productive than the denser planting, with 1634 g m-2 and 18.8 g m-2 d-1 of biomass vs. 1156 g m-2 and 13.3 g m-2 d-1; and a seed harvest of 812.3 g m-2 and 9.3 g m-2 d-1 vs. 566.5 g m-2 and 6.5 g m-2 d-1. Harvest index was 0.49 for the wheat crop. The experiment with sweet potato used TU-82-155 a compact variety developed at Tuskegee University. Light during the sweet potato experiment, on a 18 h on/6 h dark cycle, totaled 5568 total moles of light per square meter in 126 days for the sweet potatoes, or an average of 44.2 mol m-2 d-1. Temperature regime was 28 +/- 3 degrees C day/22 +/- 4 degrees C night. Sweet potato tuber yield was 39.7 kg wet weight, or an average of 7.4 kg m-2, and 7.7 kg dry weight of tubers since dry weight was about 18.6% wet weight. Average per day production was 58.7 g m-2 d-1 wet weight and 11.3 g m-2 d-1. For the wheat, average light efficiency was 0.34 g biomass per mole, and 0.17 g seed per mole. The best area of wheat had an efficiency of light utilization of 0.51 g biomass per mole and 0.22 g seed per mole. For the sweet potato crop, light efficiency per tuber wet weight was 1.33 g mol-1 and 0.34 g dry weight of tuber per mole of light. The best area of tuber production had 1.77 g mol-1 wet weight and 0.34 g mol-1 of light dry weight. The Laboratory Biosphere experiment's light efficiency was somewhat higher than the USU field results but somewhat below

  15. Potential use of the facultative halophyte Chenopodium quinoa Willd. as substrate for biogas production cultivated with different concentrations of sodium chloride under hydroponic conditions.

    Science.gov (United States)

    Turcios, Ariel E; Weichgrebe, Dirk; Papenbrock, Jutta

    2016-03-01

    This project analyses the biogas potential of the halophyte Chenopodium quinoa Willd. In a first approach C. quinoa was grown with different concentrations of NaCl (0, 10 and 20 ppt NaCl) and the crop residues were used as substrate for biogas production. In a second approach, C. quinoa was grown with 0, 10, 20 and 30 ppt NaCl under hydroponic conditions and the fresh biomass was used as substrate. The more NaCl is in the culture medium, the higher the sodium, potassium, crude ash and hemicellulose content in the plant tissue whereas the calcium, sulfur, nitrogen and carbon content in the biomass decrease. According to this study, it is possible to produce high yields of methane using biomass of C. quinoa. The highest specific methane yields were obtained using the substrate from the plants cultivated at 10 and 20 ppt NaCl in both experiments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Competitiveness of organically grown cereals

    Directory of Open Access Journals (Sweden)

    Jaroslav Jánský

    2007-01-01

    Full Text Available The contribution is aimed at the assessment of recommended crop management practices of chosen cereals for organic farming. To increase competitiveness, these practices are modified depending on soil and climatic conditions, and on a way of production use. Furthermore, impacts of the recommended crop management practices on economics of growing chosen cereals are evaluated and compared with economic results obtained under conventional farming. It is assumed that achieved results will contribute to the increase in proportion of arable crops in the Czech Republic where organic production offer does not meet current demands.When evaluating results of growing individual cereal species in a selective set of organic farms, triticale, spelt and spring barley (in this ranking can be considered as profitable crops. Moreover, triticale and spelt have even higher gross margin under organic farming than under conventional farming (by 62 % in triticale. Oat brings losses, however, it is important for livestock production. Winter wheat seems to be also unprofitable since less grain is produced at lower imputs per hectare and only part of it is produced in quality “bio”, i.e. marketed for higher prices. Rye also brings losses under organic farming, particularly due to lower yields, similarly to the other mentioned cereals. Special cereal species that are still neglected in organic farming systems are of potential use. Durum wheat has vitreous kernels with a high content of quality gluten which is used for pasta production. It can be grown in the maize production area on fertile soils only.

  17. Evaluation of nitrogen uptake patterns in spring and winter wheat in western Oregon

    International Nuclear Information System (INIS)

    Baloch, D.M.; Malghani, M.A.K.; Khan, M.A.; Kakar, E.

    2010-01-01

    An understanding of the ground nitrogen (N) uptake pattern for wheat (Triticum aestivum L.) is essential to facilitate nitrogen management. The purpose of this study was to determine the nitrogen uptake pattern of spring and winter wheat grown in western Oregon, USA. Data used in this study were obtained from three different trials. For spring wheat rotation trials five spring wheat cultivars were used. Fertilizer N (16-16-16-4) at the rate of 140 kg ha/sup -1/ was applied at the time of planting. In small plot rotation trials five fertilizer treatments - 0, 50, 100,150 and 200 kg N ha/sup -1/ were used. Rotations include winter wheat following clover and winter wheat following oat. The N uptake and dry matter yield of winter wheat were also determined from unfertilized plots of wheat trial. The maximum N uptake for spring wheat and winter wheat were at 1100 and 2000 accumulated growing degree days (GDD), before Feekes 10, respectively. The maximum N uptake rate for spring wheat, 0.038 kg N GDD/sup -1/, occurred at 750 GDD and the peak N uptake was observed approximately 35 days after Feekes 2. Nitrogen uptake in winter wheat was significantly affected by rotations. (author)

  18. Molecular and phenotypic characterization of transgenic wheat and sorghum events expressing the barley alanine aminotransferase.

    Science.gov (United States)

    Peña, Pamela A; Quach, Truyen; Sato, Shirley; Ge, Zhengxiang; Nersesian, Natalya; Dweikat, Ismail M; Soundararajan, Madhavan; Clemente, Tom

    2017-12-01

    The expression of a barley alanine aminotransferase gene impacts agronomic outcomes in a C3 crop, wheat. The use of nitrogen-based fertilizers has become one of the major agronomic inputs in crop production systems. Strategies to enhance nitrogen assimilation and flux in planta are being pursued through the introduction of novel genetic alleles. Here an Agrobacterium-mediated approach was employed to introduce the alanine aminotransferase from barley (Hordeum vulgare), HvAlaAT, into wheat (Triticum aestivum) and sorghum (Sorghum bicolor), regulated by either constitutive or root preferred promoter elements. Plants harboring the transgenic HvAlaAT alleles displayed increased alanine aminotransferase (alt) activity. The enhanced alt activity impacted height, tillering and significantly boosted vegetative biomass relative to controls in wheat evaluated under hydroponic conditions, where the phenotypic outcome across these parameters varied relative to time of year study was conducted. Constitutive expression of HvAlaAT translated to elevation in wheat grain yield under field conditions. In sorghum, expression of HvAlaAT enhanced enzymatic activity, but no changes in phenotypic outcomes were observed. Taken together these results suggest that positive agronomic outcomes can be achieved through enhanced alt activity in a C3 crop, wheat. However, the variability observed across experiments under greenhouse conditions implies the phenotypic outcomes imparted by the HvAlaAT allele in wheat may be impacted by environment.

  19. Environmental impacts of urban hydroponics in Europe: a case study in Lyon

    DEFF Research Database (Denmark)

    Romeo, Daina; Vea, Eldbjørg Blikra; Thomsen, Marianne

    2018-01-01

    to deliver positive environmental and social benefits. However, its efficacy depends on several variables, including the type of UA and the geographical location of the city. This paper analyses ReFarmers’ pilot farm, a vertical high-yield hydroponic croft located in the urban area of Lyon, France, from...... a life cycle perspective. The results show that the hydroponic farm performs better than cultivations in heated greenhouses, and similarly to conventional open field farms. Moreover, the source of the electricity input is a determinant factor that, if carbon neutral (e.g. wind energy) allows vertical...... hydroponic production to outperform the two conventional types of agriculture....

  20. Fusarium proliferatum and fumonisin B1 co-occur with Fusarium species causing Fusarium Head Blight in durum wheat in Italy

    OpenAIRE

    Amato, Barbara; Pfohl, Katharina; Tonti, Stefano; Nipoti, Paola; Dastjerdi, Raana; Pisi, Annamaria; Karlovsky, Petr; Prodi, Antonio

    2015-01-01

    Fusarium Head Blight caused by phytopathogenic Fusarium spp. with Fusarium graminearum as main causal agent is a major disease of durum wheat (Triticum durum Desf.). Mycotoxins in wheat are dominated by trichothecenes B. Fumonisins have only occasionally been reported from wheat; their occurrence was attributed to Fusarium proliferatum and Fusarium verticillioides. We investigated kernels of durum wheat grown in Italy in 2008 - 2010 for colonization with Fusarium spp. and for the content o...

  1. Uptake of 2,4,6-Trinitrotoluene (TNT) by Vetiver grass (Vetiviera ziznoides L.) -- Preliminary results from a hydroponic study

    Science.gov (United States)

    Shakya, K. M.; Sarkar, D.; Datta, R.; Makris, K.; Pachanoor, D.

    2006-05-01

    2,4,6-Trinitrotoluene(TNT) is a potent mutagen and a Group C human carcinogen that has been widely used to produce munitions and explosives. As a result, vast areas that have been previously used as military ranges, munition burning and open detonation sites have been heavily contaminated with TNT. Conventional remedial activities in such contaminated sites commonly rely on methods such as incineration, land filling and soil composting. Phytoremediation offers a cost-effective solution, utilizing plants to phytoextract TNT from the contaminated soil. We propose the use of vetiver grass (Vetiveria zizanoides) to remove TNT from such contaminated soils. Vetiver is a fast-growing and adaptive grass, enabling its use in TNT-contaminated sites in a wide variety of soil types and climate. We also hypothesized that TNT removal by vetiver grass will be enhanced by utilizing a chaotropic agent (urea) to alter rhizosphere/root hair chemical environment. The objectives of this preliminary hydroponic study were: i) to investigate the effectiveness of vetiver grass in removing TNT from solution, and ii) to evaluate the use of a common agrochemical (urea) in enhancing TNT removal by vetiver grass. Vetiver plants were grown in a hydroponic system with five different TNT concentrations (0, 5, 10, 25, and 50 mg TNT L-1) and three urea concentrations (0, 0.01 and 0.1%). A plant density of 10 g L-1 and three replicate vessels per treatment were used. Aliquots were collected at several time intervals up to 192 hour, and were analyzed for TNT with HPLC. Results showed that vetiver was able to remove TNT from hydroponic solutions. The overall magnitude and kinetics of TNT removal by vetiver grass was enhanced in the presence of urea. TNT removal kinetics depended on TNT and urea initial concentrations, suggestive of second-order kinetic reactions. Preliminary results are encouraging, but in need for verification using more detailed studies involving TNT-contaminated soils. Ongoing

  2. Hydroponics versus field lysimeter studies of urea, ammonium and nitrate uptake by oilseed rape (Brassica napus L.).

    Science.gov (United States)

    Arkoun, Mustapha; Sarda, Xavier; Jannin, Laëtitia; Laîné, Philippe; Etienne, Philippe; Garcia-Mina, José-Maria; Yvin, Jean-Claude; Ourry, Alain

    2012-09-01

    N-fertilizer use efficiencies are affected by their chemical composition and suffer from potential N-losses by volatilization. In a field lysimeter experiment, (15)N-labelled fertilizers were used to follow N uptake by Brassica napus L. and assess N-losses by volatilization. Use of urea with NBPT (urease inhibitor) showed the best efficiency with the lowest N losses (8% of N applied compared with 25% with urea alone). Plants receiving ammonium sulphate, had similar yield achieved through a better N mobilization from vegetative tissues to the seeds, despite a lower N uptake resulting from a higher volatilization (43% of applied N). Amounts of (15)N in the plant were also higher when plants were fertilized with ammonium nitrate but N-losses reached 23% of applied N. In parallel, hydroponic experiments showed a deleterious effect of ammonium and urea on the growth of oilseed rape. This was alleviated by the nitrate supply, which was preferentially taken up. B. napus was also characterized by a very low potential for urea uptake. BnDUR3 and BnAMT1, encoding urea and ammonium transporters, were up-regulated by urea, suggesting that urea-grown plants suffered from nitrogen deficiency. The results also suggested a role for nitrate as a signal for the expression of BnDUR3, in addition to its role as a major nutrient. Overall, the results of the hydroponic study showed that urea itself does not contribute significantly to the N nutrition of oilseed rape. Moreover, it may contribute indirectly since a better use efficiency for urea fertilizer, which was further increased by the application of a urease inhibitor, was observed in the lysimeter study.

  3. The improvement of the quality of polluted irrigation water through a phytoremediation process in a hydroponic batch culture system

    Science.gov (United States)

    Retnaningdyah, Catur

    2017-11-01

    The objective of this research was to determine the effectiveness of a phytoremediation process using some local hydro macrophytes to reduce fertilizer residue in irrigation water in order to support healthy agriculture and to prevent eutrophication and algae bloom in water. A phytoremediation process was carried out in a hydroponic floating system by using transparent plastic bags of 1 m in diameter and 1 m in height that were placed in collecting ponds before they were used for agricultural activities. Paddy soils were used as substrates in this system. The irrigation water was treated with nutrient enrichment (Urea and SP-36 fertilizers). Then, the system was planted with remediation actors (Azolla sp., Ipomoea aquatica, Limnocharis flava, Marsilea crenata, polyculture of those hydro macrophytes and control). The improvement of the water quality as a result of the phytoremediation process was characterized by a decline in the concentration of some physicochemical parameters, which were measured at 7 days after incubation, as well as an increase in the plankton diversity index value. The results showed that all of the hydro macrophytes used in this research, which was grown in the hydroponic batch culture system for a period of 7 days, were able to significantly improve the irrigation water quality, which was enriched by the synthetic fertilizers Urea and SP36. This was reflected by a significant decrease in the concentration of water TSS, nitrate, BOD, COD and total phosphate and an increase in the value of water DO at 7 days after incubation. Improvement of the water quality is also reflected in the increasing plankton diversity index value as a bioindicator of water pollution indicating a change in the pollution status from moderately polluted to slightly polluted at 7 days after incubation.

  4. Effect of farming system on colour components of wheat noodles

    Directory of Open Access Journals (Sweden)

    Magdalena Lacko-Bartosova

    2016-07-01

    Full Text Available Colour of noodles is definitely a key element of a consumer's buying decisions. It can be influenced by many factors. Conditions, under which is winter wheat grown, can be considered as one of these factors. The aim of this work was to evaluate colour of noodles that were prepared from winter wheat grown in ecological and integrated arable farming systems, after different forecrops with two levels of fertilization (fertilized and unfertilized during the years 2009, 2010 and 2011. Winter wheat noodles were prepared from white flour and wholegrain flour and its colour was evaluated using the spectro-colorimeter. Colour was measured by three coordinates: lightness L*, red/ green value a* and yellow/ blue value b*. Wholegrain noodles had lower L* value, so they were darker than white flour noodles, with higher redness and higher yellowness. Colour of white flour noodles and wholegrain noodles was significantly influenced by crop nutrition (fertilized and unfertilized variants, farming system and meteorological conditions during experimental years. Wholegrain noodles from ecological system were darker, with lower lightness and higher redness compared to noodles from integrated system. White flour noodles from ecological system were also darker compared to noodles from integrated system. Fertilization decreased lightness of white flour noodles, on the contrary, fertilization increased the lightness and decreased the redness of wholegrain noodles. In non-fertilized treatment, ecological wheat noodles were darker, with higher redness and yellowness than noodles prepared from winter wheat grown in integrated arable farming system.

  5. A hydroponic method for plant growth in microgravity

    Science.gov (United States)

    Wright, B. D.

    1985-01-01

    A hydroponic apparatus under development for long-term microgravity plant growth is described. The capillary effect root environment system (CERES) is designed to keep separate the nutrient and air flows, although both must be simultaneously available to the roots. Water at a pressure slightly under air pressure is allowed to seep into a plastic depression covered by a plastic screen and a porous membrane. A root in the air on the membrane outer surface draws the moisture through it. The laboratory model has a wire-based 1.241 mm mesh polyethylene screen and a filter membrane with 0.45 micron pores, small enough to prohibit root hair penetration. The design eliminates the need to seal-off the plant environment. Problems still needing attention include scaling up of the CERES size, controlling biofouling of the membrane, and extending the applications to plants without fibrous root systems.

  6. Hydroponic cultivation techniques: good results with Eg system

    Energy Technology Data Exchange (ETDEWEB)

    Mimiola, G; Sigliuzzo, C [Tecnagro, Valenzano (Italy)

    1988-12-01

    This report describes results obtained at the Tecnagro agronomic institute (Valenzano, Italy) in which research is being carried out on the use of the Eg hydroponic system developed in Israel. The research program examined the following: composition of nutritive solutions for ornamental plants and vegetables, methods of application of nutritive substances, breeding densities for ornamental plants and vegetables. Successful nutritive formulas were obtained which resulted, in the case of ornamental plants, in increases in plant height (from 30 to 50%), foliage area (50%), as well as, in shortened growth cycles. For vegetables, shortened growth cycles were developed along with a greater and more consistant production. From the economics point of view, tomatoes proved to be the best choice of vegetable for cultivation with the Eg technique.

  7. Starch facilitates enzymatic wheat gluten hydrolysis

    NARCIS (Netherlands)

    Hardt, N.A.; Boom, R.M.; Goot, van der A.J.

    2015-01-01

    Wheat gluten can be hydrolyzed by either using (vital) wheat gluten or directly from wheat flour. This study investigates the influence of the presence of starch, the main component of wheat, on enzymatic wheat gluten hydrolysis. Wheat gluten present in wheat flour (WFG) and vital wheat gluten (VWG)

  8. How-to-Do-It. Hydroponics and Aquaculture in the High School Classroom.

    Science.gov (United States)

    Nicol, Ernest

    1990-01-01

    The construction of a hydroponic system for use in the classroom is described. Provided are construction details, a list of materials with approximate cost, a diagram of the setup, and a sample test. Several activities are suggested. (CW)

  9. Study On The Application Of Nutrient Immobilized Hydrogel As A Substrate For Hydroponics Culture

    International Nuclear Information System (INIS)

    Vo Thi Thu Ha; Le Quang Luan; Nguyen Thi Nu; Nguyen Thi Vang; Phan Dinh Thai Son; Nguyen Quang Khanh

    2007-01-01

    The aim of this study is preparation of a nutrient hydrogel from CMC by irradiation for hydroponics culture. The hydrogel with different swelling prepared from CMC combined with PAM, nutrient and alginate by gamma-Co-60 irradiation. The hydrogel prepared by irradiation of the component with 20% CMC, 20% PAM, 1% alginate and nutrients at 15 kGy was suitable for the growth and development of plants. In particularly, the hydrogel showed a positive effect on germination ratio of seeds, the growth of 14 days seedling and the growth of lettuce and Chinese mustard in hydroponics cultivation. The hydrogel was completely collapsed after 5 weeks use in a hydroponics culture. The hydrogel showed a promising for application in hydroponics culture, a new technique for production of high yield and high quality vegetables. (NHA)

  10. ANALYSIS OF HYDROPONIC FERTILIZER MATRIXES FOR PERCHLORATE: COMPARISON OF ANALYTICAL TECHNIQUES

    Science.gov (United States)

    Seven retail hydroponic nitrate fertilizer products, two liquid and five solid, were comparatively analyzed for the perchlorate anion (ClO4-) by ion chromatography (IC) with suppressed conductivity detection, complexation electrospray ionization mass spectrometry (cESI-MS), norma...

  11. Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture.

    Science.gov (United States)

    Radzki, W; Gutierrez Mañero, F J; Algar, E; Lucas García, J A; García-Villaraco, A; Ramos Solano, B

    2013-09-01

    Iron is one of the essential elements for a proper plant development. Providing plants with an accessible form of iron is crucial when it is scant or unavailable in soils. Chemical chelates are the only current alternative and are highly stable in soils, therefore, posing a threat to drinking water. The aim of this investigation was to quantify siderophores produced by two bacterial strains and to determine if these bacterial siderophores would palliate chlorotic symptoms of iron-starved tomato plants. For this purpose, siderophore production in MM9 medium by two selected bacterial strains was quantified, and the best was used for biological assay. Bacterial culture media free of bacteria (S) and with bacterial cells (BS), both supplemented with Fe were delivered to 12-week-old plants grown under iron starvation in hydroponic conditions; controls with full Hoagland solution, iron-free Hoagland solution and water were also conducted. Treatments were applied twice along the experiment, with a week in between. At harvest, plant yield, chlorophyll content and nutritional status in leaves were measured. Both the bacterial siderophore treatments significantly increased plant yield, chlorophyll and iron content over the positive controls with full Hoagland solution, indicating that siderophores are effective in providing Fe to the plant, either with or without the presence of bacteria. In summary, siderophores from strain Chryseobacterium C138 are effective in supplying Fe to iron-starved tomato plants by the roots, either with or without the presence of bacteria. Based on the amount of siderophores produced, an effective and economically feasible organic Fe chelator could be developed.

  12. 137Cs and 9Sr uptake by sunflower cultivated under hydroponic conditions

    International Nuclear Information System (INIS)

    Soudek, Petr; Valenova, Sarka; Vavrikova, Zuzana; Vanek, Tomas

    2006-01-01

    The 9 Sr and 137 Cs uptake by the plant Helianthus annuus L. was studied during cultivation in a hydroponic medium. The accumulation of radioactivity in plants was measured after 2, 4, 8, 16 and 32 days of cultivation. About 12% of 137 Cs and 20% of 9 Sr accumulated during the experiments. We did not find any differences between the uptake of radioactive and stable caesium and strontium isotopes. Radioactivity distribution within the plant was determined by autoradiography. 137 Cs was present mainly in nodal segments, leaf veins and young leaves. High activity of 9 Sr was localized in leaf veins, stem, central root and stomata. The influence of stable elements or analogues on the transfer behaviour was investigated. The percentage of non-active caesium and strontium concentration in plants decreased with the increasing initial concentration of Cs or Sr in the medium. The percentage of 9 Sr activity in plants decreased with increasing initial activity of the nuclide in the medium, but the activity of 137 Cs in plants increased. The influence of K + and NH 4 + on the uptake of 137 Cs and the influence of Ca 2+ on the uptake of 9 Sr was tested. The highest accumulation of 137 Cs (24-27% of the initial activity of 137 Cs) was found in the presence of 10 mM potassium and 12 mM ammonium ions. Accumulation of about 22% of initial activity of 9 Sr was determined in plants grown on the medium with 8 mM calcium ions

  13. Responses of Szarvasi-1 energy grass to sewage sludge treatments in hydroponics.

    Science.gov (United States)

    Rév, Ambrus; Tóth, Brigitta; Solti, Ádám; Sipos, Gyula; Fodor, Ferenc

    2017-09-01

    Sewage sludge (SS) originating from communal wastewater is a hazardous material but have a potentially great nutritive value. Its disposal after treatment in agricultural lands can be a very economical and safe way of utilization once fast growing, high biomass, perennial plants of renewable energy production are cultivated. Szarvasi-1 energy grass (Elymus elongatus subsp. ponticus cv. Szarvasi-1), a good candidate for this application, was grown in hydroponics in order to assess its metal accumulation and tolerance under increasing SS amendments. The applied SS had a composition characteristic to SS from communal wastes and did not contain any toxic heavy metal contamination from industrial sludge in high concentration. Toxic effects was assessed in quarter strength Hoagland nutrient solution and only the two highest doses (12.5-18.75 g dm -3 ) caused decreases in root growth, shoot water content and length and stomatal conductance whereas shoot growth, root water content, chlorophyll concentration and the maximal quantum efficiency of photosystem II was unaffected. Shoot K, Ca, Mg, Mn, Zn and Cu content decreased but Na and Ni increased in the shoot compared to the unamended control. The nutritive effect was tested in 1/40 strength Hoagland solution and only the highest dose (12.5 g dm -3 ) decreased root growth and stomatal conductance significantly while lower doses (1.25-6.25 g dm -3 ) had a stimulative effect. Shoot K, Na, Fe and Ni increased and Ca, Mg, Mn, Zn and Cu decreased in this treatment. It was concluded that SS with low heavy metal content can be a potentially good fertilizer for high biomass non-food crops such as Szarvasi-1 energy grass. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Use of hydroponics culture to assess nutrient supply by treated wastewater.

    Science.gov (United States)

    Adrover, Maria; Moyà, Gabriel; Vadell, Jaume

    2013-09-30

    The use of treated wastewater for irrigation is increasing, especially in those areas where water resources are limited. Treated wastewaters contain nutrients that are useful for plant growth and help to reduce fertilizers needs. Nutrient content of these waters depends on the treatment system. Nutrient supply by a treated wastewater from a conventional treatment plant (CWW) and a lagooned wastewater from the campus of the University of Balearic Islands (LWW) was tested in an experiment in hydroponics conditions. Half-strength Hoagland nutrient solution (HNS) was used as a control. Barley (Hordeum vulgare L.) seedlings were grown in 4 L containers filled with the three types of water. Four weeks after planting, barley was harvested and root and shoot biomass was measured. N, P, K, Ca, Mg, Na and Fe contents were determined in both tissues and heavy metal concentrations were analysed in shoots. N, P and K concentrations were lower in LWW than in CWW, while HNS had the highest nutrient concentration. Dry weight barley production was reduced in CWW and LWW treatments to 49% and 17%, respectively, comparing to HNS. However, to a lesser extent, reduction was found in shoot and root N content. Treated wastewater increased Na content in shoots and roots of barley and Ca and Cr content in shoots. However, heavy metals content was lower than toxic levels in all the cases. Although treated wastewater is an interesting water resource, additional fertilization is needed to maintain a high productivity in barley seedlings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system

    Science.gov (United States)

    Ellouzi, Hasna; Hamed, Karim Ben; Cela, Jana; Müller, Maren; Abdelly, Chedly; Munné-Bosch, Sergi

    2013-01-01

    Recent studies suggest that tocopherols could play physiological roles in salt tolerance but the mechanisms are still unknown. In this study, we analyzed changes in growth, mineral and oxidative status in vte1 and vte4 Arabidopsis thaliana mutants exposed to salt stress. vte1 and vte4 mutants lack α-tocopherol, but only the vte1 mutant is additionally deficient in γ-tocopherol. Results showed that a deficiency in vitamin E leads to reduced growth and increased oxidative stress in hydroponically-grown plants. This effect was observed at early stages, not only in rosettes but also in roots. The vte1 mutant was more sensitive to salt-induced oxidative stress than the wild type and the vte4 mutant. Salt sensitivity was associated with (i) high contents of Na+, (ii) reduced efficiency of PSII photochemistry (Fv/Fm ratio) and (iii) more pronounced oxidative stress as indicated by increased hydrogen peroxide and malondialdeyde levels. The vte 4 mutant, which accumulates γ- instead of α-tocopherol showed an intermediate sensitivity to salt stress between the wild type and the vte1 mutant. Contents of abscisic acid, jasmonic acid and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid were higher in the vte1 mutant than the vte4 mutant and wild type. It is concluded that vitamin E-deficient plants show an increased sensitivity to salt stress both in rosettes and roots, therefore indicating the positive role of tocopherols in stress tolerance, not only by minimizing oxidative stress, but also controlling Na+/K+ homeostasis and hormonal balance. PMID:23299430

  16. Development of frost tolerance in winter wheat as modulated by differential root and shoot temperature

    NARCIS (Netherlands)

    Windt, C.W.; van Hasselt, P.R

    Winter wheat plants (Triticum aestivum L. cv. Urban), grown in nutrient solution, were exposed to differential shoot/root temperatures (i.e., 4/4, 4/20, 20/4 and 20/20 degrees C) for six weeks. Leaves grown at 4 degrees C showed an increase in frost tolerance from - 4 degrees C down to -11 degrees

  17. Wheat biotechnology: A minireview

    OpenAIRE

    Patnaik, Debasis; Khurana, Paramjit

    2001-01-01

    Due to the inherent difficulties associated with gene delivery into regenerable explants and recovery of plantlets with the introduced transgene, wheat was the last among cereals to be genetically transformed. This review attempts to summarize different efforts in the direction of achieving genetic transformation of wheat by various methods. Particle bombardment is the most widely employed procedure for the introduction of marker genes and also for the generation of transformed wheat with int...

  18. Hydroponics as a valid tool to assess arsenic availability in mine soils.

    Science.gov (United States)

    Moreno-Jiménez, E; Esteban, E; Fresno, T; de Egea, C López; Peñalosa, J M

    2010-04-01

    The low solubility of As in mine soils limits its phytoavailability. This makes the extrapolation of data obtained under hydroponic conditions unrealistic because the concentration in nutrient solution frequently overexposes plants to this metalloid. This work evaluates whether As supply in hydroponics resembles, to some extent, the As phytoavailable fraction in soils and the implications for phytoremediation. Phytotoxicity of As, in terms of biomass production, chlorophyll levels, and As concentrations in plants, was estimated and compared in both soils and hydroponics. In order for hydroponic conditions to be compared to soil conditions, plant exposure levels were measured in both cultures. Hydroponic As concentration ranging from 2-8microM equated to the same plant organ concentrations from soils with 700-3000mgkg(-1). Total and extractable As fractions exceeded those values, but As concentrations in pore water were bellow them. According to our results (i) hydroponics should include doses in the range 0-10microM As to allow the extrapolation of the results to As-polluted soils, and (ii) phytoextraction of As in mining sites will be limited by low As phytoavailability.

  19. CHARACTERIZATION OF CADMIUM UPTAKE BY ROOTS OF DURUM WHEAT PLANTS

    Directory of Open Access Journals (Sweden)

    Lyubka Koleva

    2009-03-01

    Full Text Available Root Cd uptake of durum wheat plants (cv. Beloslava was characterized in hydroponics conditions. The uptake experiments have been performed in Cd concentration range of 0 – 2 μM adjusted by both stable Cd and radiolabeled (109Cd tracer. Cd removal from the solution over duration of 1 hour reached 50%. The part of loosely adsorbed Cd ions on root surface accounted for about 20%. Over 30% of absorbed Cd at 0.5 μM Cd treatment was retained in root cell walls. The apparent root Cd accumulation showed concentration-dependant tendency with the highest accumulation value of 7.45 nmol Cd g FW-1.

  20. Etiology and epidemiology of Pythium root rot in hydroponic crops: current knowledge and perspectives

    Directory of Open Access Journals (Sweden)

    John Clifford Sutton

    2006-09-01

    Full Text Available The etiology and epidemiology of Pythium root rot in hydroponically-grown crops are reviewed with emphasis on knowledge and concepts considered important for managing the disease in commercial greenhouses. Pythium root rot continually threatens the productivity of numerous kinds of crops in hydroponic systems around the world including cucumber, tomato, sweet pepper, spinach, lettuce, nasturtium, arugula, rose, and chrysanthemum. Principal causal agents include Pythium aphanidermatum, Pythium dissotocum, members of Pythium group F, and Pythium ultimum var. ultimum. Perspectives are given of sources of initial inoculum of Pythium spp. in hydroponic systems, of infection and colonization of roots by the pathogens, symptom development and inoculum production in host roots, and inoculum dispersal in nutrient solutions. Recent findings that a specific elicitor produced by P. aphanidermatum may trigger necrosis (browning of the roots and the transition from biotrophic to necrotrophic infection are considered. Effects on root rot epidemics of host factors (disease susceptibility, phenological growth stage, root exudates and phenolic substances, the root environment (rooting media, concentrations of dissolved oxygen and phenolic substances in the nutrient solution, microbial communities and temperature and human interferences (cropping practices and control measures are reviewed. Recent findings on predisposition of roots to Pythium attack by environmental stress factors are highlighted. The commonly minor impact on epidemics of measures to disinfest nutrient solution as it recirculates outside the crop is contrasted with the impact of treatments that suppress Pythium in the roots and root zone of the crop. New discoveries that infection of roots by P. aphanidermatum markedly slows the increase in leaf area and whole-plant carbon gain without significant effect on the efficiency of photosynthesis per unit area of leaf are noted. The platform of

  1. TEXTURE OF COOKED SPELT WHEAT NOODLES

    Directory of Open Access Journals (Sweden)

    Magdaléna Lacko - Bartošová

    2013-02-01

    Full Text Available At present, there are limited and incomplete data on the ability of spelt to produce alimentary pasta of suitable quality. Noodles are traditional cereal-based food that is becoming increasingly popular worldwide because of its convenience, nutritional qualities, and palatability. It is generally accepted that texture is the main criterion for assessing overall quality of cooked noodles. We present selected indicators of noodle texture of three spelt cultivars – Oberkulmer Rotkorn, Rubiota and Franckenkorn grown in an ecological system at the locality of Dolna Malanta near Nitra. A texture analyzer TA.XT PLUS was used to determine cooked spelt wheat noodle firmness (N (AACC 66-50. The texture of cooked spelt wheat noodles was expressed also as elasticity (N and extensibility (mm. Statistical analysis showed significant influence of the variety and year of growing on the firmness, elasticity and extensibility of cooked noodles. The wholemeal spelt wheat noodles were characterized with lower cutting firmness than the flour noodles. Flour noodles were more tensile than wholemeal noodles. The best elasticity and extensibility of flour noodles was found in noodles prepared from Rubiota however from wholemeal noodles it was Oberkulmer Rotkorn. Spelt wheat is suitable for noodle production, however also here it is necessary to differentiate between varieties. According to achieved results, wholemeal noodles prepared from Oberkulmer Rotkorn can be recommended for noodle industry due to their consistent structure and better texture quality after cooking.

  2. Uptake, Translocation, and Biotransformation of Organophosphorus Esters in Wheat (Triticum aestivum L.).

    Science.gov (United States)

    Wan, Weining; Huang, Honglin; Lv, Jitao; Han, Ruixia; Zhang, Shuzhen

    2017-12-05

    The uptake, translocation and biotransformation of organophosphate esters (OPEs) by wheat (Triticum aestivum L.) were investigated by a hydroponic experiment. The results demonstrated that OPEs with higher hydrophobicity were more easily taken up by roots, and OPEs with lower hydrophobicity were more liable to be translocated acropetally. A total of 43 metabolites including dealkylated, oxidatively dechlorinated, hydroxylated, methoxylated, and glutathione-, and glucuronide- conjugated products were detected derived from eight OPEs, with diesters formed by direct dealkylation from the parent triesters as the major products, followed with hydroxylated triesters. Molecular interactions of OPEs with plant biomacromolecules were further characterized by homology modeling combined with molecular docking. OPEs with higher hydrophobicity were more liable to bind with TaLTP1.1, the most important wheat nonspecific lipid transfer protein, consistent with the experimental observation that OPEs with higher hydrophobicity were more easily taken up by wheat roots. Characterization of molecular interactions between OPEs and wheat enzymes suggested that OPEs were selectively bound to TaGST4-4 and CYP71C6v1 with different binding affinities, which determined their abilities to be metabolized and form metabolite products in wheat. This study provides both experimental and theoretical evidence for the uptake, accumulation and biotransformation of OPEs in plants.

  3. 21 CFR 137.195 - Crushed wheat.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Crushed wheat. 137.195 Section 137.195 Food and... Related Products § 137.195 Crushed wheat. Crushed wheat, coarse ground wheat, is the food prepared by so crushing cleaned wheat other than durum wheat and red durum wheat that, when tested by the method...

  4. Tissue specific responses alter the biomass accumulation in wheat under gradual and sudden salt stress

    Directory of Open Access Journals (Sweden)

    Yumurtaci A.

    2012-11-01

    Full Text Available Salinity is one the major limiting environmental factors which has negative side effects on crop production. The purpose of this study was to investigate the differences between the gradual and sudden salt stress effects on biomass accumulation associated with whole plant development in three different tissues of two wheat species ( Triticum aestivum and Triticum durum under hydroponic conditions in the long term. Considering the effects of sudden and gradual stress for biomass accumulation, while importance of salinity x genotype interaction for fresh weights was 5%, association for salinity x tissue type was found as 1% important. Interestingly, root branching and development of lateral roots were much more negatively affected by gradual stress rather than sudden salt application. Our results demonstrated that root and leaf were both critical tissues to test the salt tolerance by physiologically but sheath tissue might be used as an alternative source of variation for solving the interactions between root and leaves in wheat.

  5. Bacterial community analysis of Tatsoi cultivated by hydroponics.

    Science.gov (United States)

    Koo, Ok K; Kim, Hun; Kim, Hyun J; Baker, Christopher A; Ricke, Steven C

    2016-07-02

    Tatsoi (Brassica narinosa) is a popular Asian salad green that is mostly consumed as a source of fresh produce. The purpose of this study was to assess the microbial diversity of Tatsoi cultivated in a hydroponic system and of its ecosystem. Tatsoi leaves, nutrient solution, and perlite/earth samples from a trickle feed system (TFS) and an ebb-and-flow system (EFS) were collected and their microbial communities were analyzed by pyrosequencing analysis. The results showed that most bacteria in the leaves from the TFS contained genus Sporosarcina (99.6%), while Rhizobium (60.4%) was dominant in the leaves from the EFS. Genus Paucibacter (18.21%) and Pelomonas (12.37%) were the most abundant microbiota in the nutrient solution samples of the TFS. In the EFS, the nutrient solution samples contained mostly genus Rhodococcus and Acinetobacter. Potential microbial transfer between the leaves and the ecosystem was observed in the EFS, while samples in the TFS were found to share only one species between the leaves, nutrient solution, and earth. Together, these results show that the bacterial populations in Tatsoi and in its ecosystem are highly diverse based on the cultivation system.

  6. Towards Phosphate Detection in Hydroponics Using Molecularly Imprinted Polymer Sensors.

    Science.gov (United States)

    Storer, Christopher S; Coldrick, Zachary; Tate, Daniel J; Donoghue, Jack Marsden; Grieve, Bruce

    2018-02-10

    An interdigitated electrode sensor was designed and microfabricated for measuring the changes in the capacitance of three phosphate selective molecularly imprinted polymer (MIP) formulations, in order to provide hydroponics users with a portable nutrient sensing tool. The MIPs investigated were synthesised using different combinations of the functional monomers methacrylic acid (MAA) and N -allylthiourea, against the template molecules diphenyl phosphate, triethyl phosphate, and trimethyl phosphate. A cross-interference study between phosphate, nitrate, and sulfate was carried out for the MIP materials using an inductance, capacitance, and resistance (LCR) meter. Capacitance measurements were taken by applying an alternating current (AC) with a potential difference of 1 V root mean square (RMS) at a frequency of 1 kHz. The cross-interference study demonstrated a strong binding preference to phosphate over the other nutrient salts tested for each formulation. The size of template molecule and length of the functional monomer side groups also determined that a short chain functional monomer in combination with a template containing large R-groups produced the optimal binding site conditions when synthesising a phosphate selective MIP.

  7. Evaluation of different biomass production systems hydroponic corn

    Directory of Open Access Journals (Sweden)

    Néstor Vicente Acosta Lozano

    2017-02-01

    Full Text Available It was assessed the effect of three nutritive solutions (Hoagland, La Molina y FAO and three harvesting time (12, 15 and 18 days on forage yield and nutritive value of green fodder hydroponic from maize (Zea mays, L.. The experiment was developed in “La Sevilla” farm placed in San Marcos town, municipality and province of Santa Elena, Ecuador. The maize seeds 2,5 kg/m2 were washed, disinfected, soaked during 24 hours and placed in germination plates (1 x 1 x 0,04 m in dark condition during three days. It was applied to a fully randomized design with factorial arrangement without interaction 4 x 3 (3 nutritive solutions + 1 control (water x 3 harvesting time and 3 repetitions per treatments. The highest yields in terms of dry matter (137 and 114 kg DM/m2/year and crude protein (21,3 y 15,5 kg CP/m2/year were reached with the Hoagland and FAO solutions at 12 days of age, respectively. It was concluded that the best harvesting time independently of the nutritive solution was at 12 days and in all harvesting time the Hoagland and FAO solutions showed the best agronomic and chemical results.

  8. Hydroponic root mats for wastewater treatment-a review.

    Science.gov (United States)

    Chen, Zhongbing; Cuervo, Diego Paredes; Müller, Jochen A; Wiessner, Arndt; Köser, Heinz; Vymazal, Jan; Kästner, Matthias; Kuschk, Peter

    2016-08-01

    Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.

  9. combining ability of quality characteristics of wheat cultivars grown

    African Journals Online (AJOL)

    ACSS

    Genetic diversity among promising parents, F1 and F2 progeny can be combined for high quality characteristics through gene pyramiding. ... trouvée parmi les parents, les progégénies F1 et F2 pour toutes les caractéristiques. Dans la progénie F1, Wanda ..... Thus, both kinds of gene effects were important in controlling the.

  10. Heavy metal contamination in vegetables grown in Rawalpindi, Pakistan

    International Nuclear Information System (INIS)

    Ahmed, W.; Ahmed, A.; Ahmad, A.; Randhawa, M.A.; Ahmad, R.; Khalid, N.

    2012-01-01

    Copper (Cu), cadmium (Cd), chromium (Cr) nickel (Ni), lead (Pb), Iron (Fe), Manganese (Mn) and zinc (Zn) contents of various vegetables (bitter melon, tomato, eggplant, lettuce, cucumber and bell pepper) produced in Rawalpindi, Pakistan was determined using Atomic absorption spectrophotometer (AAS). These plants are the basis of human nutrition in the study area. All vegetables grown at sewage water by farmers showed the highest contamination of heavy metals, followed by local market, Progressive farmers and hydroponic plant. The concentration ranges in mg/kg were (1.45 -2.55) for Cd, (3.10 to 4.92) Cr, (12.15- 20.50) Cu, (25.00-51.00) for Fe, (7.80 to 15.60) for Mn, (10.16 to 15.42) for Ni, (2.12 to 5.41) Pb and (16.58 to 24.08) for zinc. The contamination was above the Maximum Residue Limits (MRLs), set out by WHO. Irregular trends in concentration were also observed in vegetables obtained from local market, progressive farmers and hydroponic plant. (author)

  11. Super Dwarf Wheat for Growth in Confined Spaces

    Science.gov (United States)

    Bugbee, Bruce

    2011-01-01

    USU-Perigee is a dwarf red spring wheat that is a hybrid of a high-yield early tall wheat (USU-Apogee) and a low-yield, extremely short wheat that has poor agronomic characteristics. USU-Perigee was selected for its extremely short height (.0.3 m) and high yield . characteristics that make it suitable for growth in confined spaces in controlled environments. Other desirable characteristics include rapid development and resistance to a leaf-tip necrosis, associated with calcium deficiency, that occurs in other wheat cultivars under rapid-growth conditions (particularly, continuous light). Heads emerge after only 21 days of growth in continuous light at a constant temperature of 25 C. In tests, USU-Perigee was found to outyield other full dwarf (defined as wheat cultivars: The yield advantage at a constant temperature of 23 C was found to be about 30 percent. Originally intended as a candidate food crop to be grown aboard spacecraft on long missions, this cultivar could also be grown in terrestrial growth chambers and could be useful for plant-physiology and -pathology studies.

  12. The International Heat Stress Genotype Experiment for Modeling Wheat Response to Heat: Field Experiments and AgMIP-Wheat Multi-Model Simulations

    Science.gov (United States)

    Martre, Pierre; Reynolds, Matthew P.; Asseng, Senthold; Ewert, Frank; Alderman, Phillip D.; Cammarano, Davide; Maiorano, Andrea; Ruane, Alexander C.; Aggarwal, Pramod K.; Anothai, Jakarat; hide

    2017-01-01

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during two consecutive winter cropping cycles at hot, irrigated, and low latitude sites in Mexico (Ciudad Obregon and Tlaltizapan), Egypt (Aswan), India (Dharwar), the Sudan (Wad Medani), and Bangladesh (Dinajpur). Experiments in Mexico included normal (November-December) and late (January-March) sowing dates. Data include local daily weather data, soil characteristics and initial soil conditions, crop measurements (anthesis and maturity dates, anthesis and final total above ground biomass, final grain yields and yields components), and cultivar information. Simulations include both daily in-season and end-of-season results from 30 wheat models.

  13. Novel Field Data on Phytoextraction: Pre-Cultivation With Salix Reduces Cadmium in Wheat Grains.

    Science.gov (United States)

    Greger, Maria; Landberg, Tommy

    2015-01-01

    Cadmium (Cd) is a health hazard, and up to 43% of human Cd intake comes from wheat products, since Cd accumulates in wheat grains. Salix spp. are high-accumulators of Cd and is suggested for Cd phytoextraction from agricultural soils. We demonstrate, in field, that Salix viminalis can remove Cd from agricultural soils and thereby reduce Cd accumulation in grains of wheat subsequently grown in a Salix-treated field. Four years of Salix cultivation reduce Cd concentration in the soil by up to 27% and in grains of the post-cultivated wheat by up to 33%. The higher the plant density of the Salix, the greater the Cd removal from the soil and the lower the Cd concentration in the grains of post-cultivated wheat, the Cd reduction remaining stable several years after Salix cultivation. The effect occurred in both sandy and clayey soil and in winter and spring bread wheat cultivars. Already one year of Salix cultivation significantly decrease Cd in post grown wheat grains. With this field experiment we have demonstrated that phytoextraction can reduce accumulation of a pollutant in post-cultivated wheat and that phytoextraction has no other observed effect on post-cultivated crops than reduced uptake of the removed pollutant.

  14. Wheat root length and not branching is altered in the presence of neighbours, including blackgrass.

    Directory of Open Access Journals (Sweden)

    Jessica A Finch

    Full Text Available The effect of neighbouring plants on crop root system architecture may directly interfere with water and nutrient acquisition, yet this important and interesting aspect of competition remains poorly understood. Here, the effect of the weed blackgrass (Alopecurus myosuroides Huds. on wheat (Triticum aestivum L. roots was tested, since a low density of this species (25 plants m-2 can lead to a 10% decrease in wheat yield and herbicide resistance is problematic. We used a simplified growth system based on gelled medium, to grow wheat alongside a neighbour, either another wheat plant, a blackgrass or Brachypodium dystachion individual (a model grass. A detailed analysis of wheat seminal root system architecture showed that the presence of a neighbour principally affected the root length, rather than number or diameter under a high nutrient regime. In particular, the length of first order lateral roots decreased significantly in the presence of blackgrass and Brachypodium. However, this effect was not noted when wheat plants were grown in low nutrient conditions. This suggests that wheat may be less sensitive to the presence of blackgrass when grown in low nutrient conditions. In addition, nutrient availability to the neighbour did not modulate the neighbour effect on wheat root architecture.

  15. Wheat root length and not branching is altered in the presence of neighbours, including blackgrass

    Science.gov (United States)

    Finch, Jessica A.; Guillaume, Gaëtan; French, Stephanie A.; Colaço, Renato D. D. R.; Davies, Julia M.

    2017-01-01

    The effect of neighbouring plants on crop root system architecture may directly interfere with water and nutrient acquisition, yet this important and interesting aspect of competition remains poorly understood. Here, the effect of the weed blackgrass (Alopecurus myosuroides Huds.) on wheat (Triticum aestivum L.) roots was tested, since a low density of this species (25 plants m-2) can lead to a 10% decrease in wheat yield and herbicide resistance is problematic. We used a simplified growth system based on gelled medium, to grow wheat alongside a neighbour, either another wheat plant, a blackgrass or Brachypodium dystachion individual (a model grass). A detailed analysis of wheat seminal root system architecture showed that the presence of a neighbour principally affected the root length, rather than number or diameter under a high nutrient regime. In particular, the length of first order lateral roots decreased significantly in the presence of blackgrass and Brachypodium. However, this effect was not noted when wheat plants were grown in low nutrient conditions. This suggests that wheat may be less sensitive to the presence of blackgrass when grown in low nutrient conditions. In addition, nutrient availability to the neighbour did not modulate the neighbour effect on wheat root architecture. PMID:28542446

  16. Uptake of 2,4-bis(Isopropylamino)-6-methylthio-s-triazine by Vetiver Grass (Chrysopogon zizanioides L.) from Hydroponic Media.

    Science.gov (United States)

    Sun, S X; Li, Y M; Zheng, Y; Hua, Y; Datta, R; Dan, Y M; Lv, P; Sarkar, D

    2016-04-01

    2,4-bis(Isopropylamino)-6-methylthio-s-triazine (prometryn) poses a risk to aquatic environments in several countries, including China, where its use is widespread, particularly due to its chemical stability and biological toxicity. Vetiver grass (Chrysopogon zizanioides L.) was tested for its potential for phytoremediation of prometryn. Vetiver grass was grown in hydroponic media in a greenhouse, in the presence of prometryn, with appropriate controls. Plant uptake and removal of prometryn from the media were monitored for a period of 67 days. The results showed that the removal of the prometryn in the media was expedited by vetiver grass. The removal half-life (t1/2) was shortened by 11.5 days. Prometryn removal followed first-order kinetics (Ct = 1.8070e(-0.0601t)). This study demonstrated the potential of vetiver grass for the phytoremediation for prometryn.

  17. Hydroponic system design with real time OS based on ARM Cortex-M microcontroller

    Science.gov (United States)

    Atmadja, Wiedjaja; Liawatimena, Suryadiputra; Lukas, Jonathan; Nata, Eka Putra Leo; Alexander, Ivan

    2017-12-01

    Hydroponic is the process of growing plants without soil, plant root flooded or moist with nutrient-rich solutions in inert material. Hydroponics has become a reality for greenhouse growers in virtually all climates. Large hydroponic installations exist throughout the world for growing flowers, vegetables and some short period fruit like tomato and cucumber. In soilless culture, we must maintain stable pH and conductivity level of nutrient solution to make plant grow well, large variation of pH of certain time will poisoned plant. This paper describes development complete automation hydroponic system, from maintaining stable nutrient composition (conductivity and pH), grow light, and monitor plant environment such as CO2, temperature and humidity. The heart of our automation is ARM Cortex-M4 from ST Microelectronic running ARM mbed OS, the official Real Time Operating System (RTOS) for ARM Cortex-M microcontroller. Using RTOS gives us flexibility to have multithreaded process. Results show that system capable to control desired concentration level with variation of less than 3%, pH sensor show good accuracy 5.83% from pH value 3.23-10. Growing light intensity measurement show result 105 μmol/m2/s therefore we need turn on the light at least 17 hours/day to fulfil plant light requirement. RTOS give good performance with latency and jitter less than 15 us, system overall show good performance and accuracy for automating hydroponic plant in vegetative phase of growth.

  18. Lettuce (Lactuca sativa L. var. Sucrine Growth Performance in Complemented Aquaponic Solution Outperforms Hydroponics

    Directory of Open Access Journals (Sweden)

    Boris Delaide

    2016-10-01

    Full Text Available Plant growth performance is optimized under hydroponic conditions. The comparison between aquaponics and hydroponics has attracted considerable attention recently, particularly regarding plant yield. However, previous research has not focused on the potential of using aquaponic solution complemented with mineral elements to commercial hydroponic levels in order to increase yield. For this purpose, lettuce plants were put into AeroFlo installations and exposed to hydroponic (HP, aquaponic (AP, or complemented aquaponic (CAP solutions. The principal finding of this research was that AP and HP treatments exhibited similar (p > 0.05 plant growth, whereas the shoot weight of the CAP treatment showed a significant (p < 0.05 growth rate increase of 39% on average compared to the HP and AP treatments. Additionally, the root weight was similar (p > 0.05 in AP and CAP treatments, and both were significantly higher (p < 0.05 than that observed in the HP treatment. The results highlight the beneficial effect of recirculating aquaculture system (RAS water on plant growth. The findings represent a further step toward developing decoupled aquaponic systems (i.e., two- or multi-loops that have the potential to establish a more productive alternative to hydroponic systems. Microorganisms and dissolved organic matter are suspected to play an important role in RAS water for promoting plant roots and shoots growth.

  19. Cadmium tolerance and accumulation of Elsholtzia argyi origining from a zinc/lead mining site - a hydroponics experiment.

    Science.gov (United States)

    Li, Siliang; Wang, Fengping; Ru, Mei; Ni, Wuzhong

    2014-01-01

    In this study, a hydroponics experiment was conducted to investigate the characteristics of Cd tolerance and accumulation of Elsholtzia argyi natively growing on the soil with high levels of heavy metals in a Zn/Pb mining site. Seedlings of E. argyi grown for 4 weeks and then were treated with 0(CK), 5,10,15, 20, 25, 30, 40, 50,100 umM Cd for 21 days. Each treatment had three replications. No visual toxic symptoms on shoots of E. argyi were observed at Cd level < or = 50 muM. The results indicated that the dry biomass of each tissue and the whole plants of the treatments with < or =40 umM cadmium were similar to that of the control, implying that E. argyi was a cadmium tolerant plant. The results also showed that the shoot Cd concentration significantly (P < 0.05) increased with the increase in the Cd level in nutrient solution. The shoot Cd concentration of the treatment with 40 umM Cd was as high as 237.9 mg kg(-1), which was higher than 100 mg kg(-1), normally used as the threshold concentration for identifying the Cd hyperaccumulating plant. It could be concluded that E. argyi was a Cd tolerant and accumulating plant species.

  20. Effect of channel size on sweet potato storage root enlargement in the Tuskegee University hydroponic nutrient film system

    Science.gov (United States)

    Morris, Carlton E.; Martinez, Edwin; Bonsi, C. K.; Mortley, Desmond G.; Hill, Walter A.; Ogbuehi, Cyriacus R.; Loretan, Phil A.

    1989-01-01

    The potential of the sweet potato as a food source for future long term manned space missions is being evaluated for NASA's Controlled Ecological Life Support Systems (CELSS) program. Sweet potatoes have been successfully grown in a specially designed Tuskegee University nutrient film technique (TU NFT) system. This hydroponic system yielded storage roots as high as 1790 g/plant fresh weight. In order to determine the effect of channel size on the yield of sweet potatoes, the width and depth of the growing channels were varied in two separate experiments. Widths were studied using the rectangular TU NFT channels with widths of 15 cm (6 in), 30 cm (12 in) and 45 cm (18 in). Channel depths of 5 cm (2 in), 10 cm (4 in), and 15 cm (6 in) were studied using a standard NASA fan shaped Biomass Production Chamber (BPC) channel. A comparison of preliminary results indicated that, except for storage root number, the growth and yield of sweet potatoes were not affected by channel width. Storage root yield was affected by channel depth although storage root number and foliage growth were not. Both experiments are being repeated.

  1. Automated sensing of hydroponic macronutrients using a computer-controlled system with an array of ion-selective electrodes

    Science.gov (United States)

    Hydroponic production systems grow plants without soil, relying on a circulating solution to provide the necessary nutrients. Maintaining an optimum nutrient balance in this solution is important for maximizing crop growth and yield. Particularly in closed hydroponic systems it is important to monit...

  2. Understanding Water-Stress Responses in Soybean Using Hydroponics System-A Systems Biology Perspective.

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C; Shulaev, Vladimir; Shen, Qingxi J; Rushton, Paul J

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us toward the right candidates, if not completely help us to resolve the issue.

  3. Understanding Water-Stress Responses in Soybean Using Hydroponics System—A Systems Biology Perspective

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C.; Shulaev, Vladimir; Shen, Qingxi J.; Rushton, Paul J.

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us toward the right candidates, if not completely help us to resolve the issue. PMID:26734044

  4. Automated Liquid-Level Control of a Nutrient Reservoir for a Hydroponic System

    Science.gov (United States)

    Smith, Boris; Asumadu, Johnson A.; Dogan, Numan S.

    1997-01-01

    A microprocessor-based system for control of the liquid level of a nutrient reservoir for a plant hydroponic growing system has been developed. The system uses an ultrasonic transducer to sense the liquid level or height. A National Instruments' Multifunction Analog and Digital Input/Output PC Kit includes NI-DAQ DOS/Windows driver software for an IBM 486 personal computer. A Labview Full Development system for Windows is the graphical programming system being used. The system allows liquid level control to within 0.1 cm for all levels tried between 8 and 36 cm in the hydroponic system application. The detailed algorithms have been developed and a fully automated microprocessor based nutrient replenishment system has been described for this hydroponic system.

  5. A hydroponic system for growing gnotobiotic vs. sterile plants to study phytoremediation processes.

    Science.gov (United States)

    Kurzbaum, E; Kirzhner, F; Armon, R

    2014-01-01

    In some phytoremediation studies it is desirable to separate and define the specific contribution of plants and root-colonizing bacteria towards contaminant removal. Separating the influence of plants and associated bacteria is a difficult task for soil root environments. Growing plants hydroponically provides more control over the biological factors in contaminant removal. In this study, a hydroponic system was designed to evaluate the role of sterile plant roots, rhizodeposition, and root-associated bacteria in the removal of a model contaminant, phenol. A strain of Pseudomonas pseudoalcaligenes that grows on phenol was inoculated onto plant roots. The introduced biofilm persisted in the root zone and promoted phenol removal over non-augmented controls. These findings indicate that this hydroponic system can be a valuable tool for phytoremediation studies that investigate the effects of biotic and abiotic factors on pollution remediation.

  6. Water use efficiency of tomatoes - in greenhouses and hydroponics

    NARCIS (Netherlands)

    Nederhoff, E.M.; Stanghellini, C.

    2010-01-01

    Massive amounts of water are required for the production of our food, varying from several cubic metres per kilogram of beef to as low as 4 litres per kilogram for tomatoes grown in high-tech glasshouses. This article presents data on Product Water Use (PWU) of some foods and discusses how the water

  7. Induced spherococcoid hard wheat

    International Nuclear Information System (INIS)

    Yanev, Sh.

    1981-01-01

    A mutant has been obtained - a spheroccocoid line -through irradiation of hard wheat seed with fast neutrons. It is distinguished by semispherical glumes and smaller grain; the plants have low stem with erect leaves but with shorter spikes and with lesser number of spikelets than those of the initial cultivar. Good productive tillering and resistance to lodging contributed to 23.5% higher yield. The line was superior to the standard and the initial cultivars by 14.2% as regards protein content, and by up to 22.8% - as to flour gluten. It has been successfully used in hybridization producing high-yielding hard wheat lines resistant to lodging, with good technological and other indicators. The possibility stated is of obtaining a spherococcoid mutant in tetraploid (hard) wheat out of the D-genome as well as its being suited to hard wheat breeding to enhance protein content, resistance to lodging, etc. (author)

  8. Hydroponics gel as a new electrolyte gelling agent for alkaline zinc-air cells

    Science.gov (United States)

    Othman, R.; Basirun, W. J.; Yahaya, A. H.; Arof, A. K.

    The viability of hydroponics gel as a new alkaline electrolyte gelling agent is investigated. Zinc-air cells are fabricated employing 12 wt.% KOH electrolyte immobilised with hydroponics gel. The cells are discharged at constant currents of 5, 50 and 100 mA. XRD and SEM analysis of the anode plates after discharge show that the failure mode is due to the formation of zinc oxide insulating layers and not due to any side reactions between the gel and the plate or the electrolyte.

  9. Two pathogenic species of Pythium: P. aphanidermatum and P. diclinum from a wheat field

    OpenAIRE

    Al-Sheikh, Hashem

    2010-01-01

    During a survey of pathogenic and non-pathogenic Pythium spp. in different localities in Egypt, several isolates of Pythia were obtained and maintained on corn meal agar. Among these isolates, Pythium aphanidermatum and Pythium diclinum were obtained from rhizosphere of wheat plants grown in Dear Attia village, Minia, Egypt. Identification was made using morphological and molecular analyses. P. aphanidermatum and P. diclinum were able to cause reductions in emergence and adulating in wheat in...

  10. Present status of Zymoseptoria tritici (Mycospharella graminicola /Fuckel/ Schroter of the wheat cultures in the Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    I. Karov

    2017-09-01

    Full Text Available Abstract. In the Republic of Macedonia, wheat is a very important crop and it is grown on an area of around 250.000 ha. The most important regions for wheat growing are: Bitola, Kumanovo, Sveti Nikole, Skopje, Probistip, Kocani, Veles and Stip. The most important deseases on wheat are: Tapesia yallundae Wallwork and Spooner with its anamorphic stage Pseudocercosporella herpotrichoides (Fron Deighton causer of the desease „eyespot“ on barley and wheat; Puccinia graminis f. spp. tritici; Puccinia racondita f. spp. tritici; Gaeumannomyces graminis var. tritici; Bipolaris sorokiniana (Sacc. Shoemaker; Blumeria graminis var. tritici and Zymoseptoria tritici (Mycospharella graminicola (Fuckel Schroter. Many new diseases on wheat causing significant economic damage to producers are observed in Macedonia. The main aim of this article is to present the symptoms, morphology and protective measures of Zymoseptoria tritici (Mycospharella graminicola, the most widely spread fungal pathogens on wheat in the Republic of Macedonia. In the period between 2014 and 2016, the pathogen fungi on wheat with the highest intensity were: Zymoseptoria tritici, Tapesia yallundae, Puccinia graminis, Puccinia recondita, Gaeumannomyces graminis, Bipolaris sorokiniana, Blumeria graminis. The intensity of the diseases and the damages – yield losses of wheat, differed from year to year and between regions, depended on the sensitivity of the wheat varieties. The smallest yield loss was identified in wheat producers who treated the wheat with pesticides at least twice for vegetation season.

  11. Assessment of annual effective dose from natural radioactivity intake through wheat grain produced in Faisalabad, Pakistan

    International Nuclear Information System (INIS)

    Tufail, M.; Sabiha-Javied; Akhtar, N.; Akhter, J.

    2010-01-01

    Wheat is staple food of the people of Pakistan. Phosphate fertilizers, used to increase the yield of wheat, enhance the natural radioactivity in the agricultural fields from where radionuclides are transferred to wheat grain. A study was, therefore, carried out to investigate the uptake of radioactivity by wheat grain and to determine radiation doses received by human beings from the intake of foodstuffs made of wheat grain. Wheat was grown in a highly fertilized agricultural research farm at the Nuclear Institute of Agriculture and Biology (NIAB), Faisalabad, Pakistan. The activity concentration of 40 K, 226 Ra and 232 Th was measured in soil, single superphosphate (SSP) fertilizer, and wheat grain using an HPGe-based gamma-ray spectrometer. Soil to wheat grain transfer factors determined for 40 K, 226 Ra and 232 Th were 0.118 ± 0.021, 0.022 ± 0.004 and 0.036 ± 0.007, respectively, and the annual effective dose received by an adult person from the intake of wheat products was estimated to be 217 μSv. (author)

  12. Visual, instrumental, mycological and mycotoxicological characterization of wheat inoculated with and protected against Alternaria spp.

    Directory of Open Access Journals (Sweden)

    Janić-Hajnal Elizabet P.

    2016-01-01

    Full Text Available The aim of this work was to characterize visual properties, instrumentally measured colour properties, field fungi presence and Alternaria toxins levels in wheat samples grown under conditions aimed at inhibition and stimulation of wheat infection with fungi from the Alternaria genus. Experiment was carried out on the wheat treated by fungicide and wheat inoculated by Alternaria spp., while non treated wheat was used as a control. Statistically significant difference was observed between all three treatments using visual scale. Protected wheat samples were significantly different from other samples in terms of all measured colour parameters while inoculated and control wheat samples were significantly different in terms of lightness and dominant wavelength. Identification of field fungi in the all examined wheat samples showed that the dominant mycotoxigenic fungus was Alternaria spp., followed by Fusarium spp. The content of Alternaria toxins in samples of wheat hulls and dehulled kernels point out at higher concentrations of Alternaria toxins in hulls than in dehulled kernels. [Projekat Ministarstvo nauke Republike Srbije, br. III 46001 i br. III 46005

  13. 21 CFR 137.190 - Cracked wheat.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested by...

  14. Wheat for Kids! [and] Teacher's Guide.

    Science.gov (United States)

    Idaho Wheat Commission, Boise.

    "Wheat for Kids" contains information at the elementary school level about: the structure of the wheat kernel; varieties of wheat and their uses; growing wheat; making wheat dough; the U.S. Department of Agriculture Food Guide Pyramid and nutrition; Idaho's part of the international wheat market; recipes; and word games based on the…

  15. Nitrate movement in soil under irrigated wheat

    International Nuclear Information System (INIS)

    Rahman, S.M.

    2000-01-01

    In field experiments on wheat from 1994 to 1998, grain yields and yield-contributing components increased with the amount of fertilizer N; however, differences with 120 and 180 kg N ha -1 were not statistically significant. Grain yields ranged between 1.22 to 5.25 Mg ha -1 over the four growing seasons. Water-use efficiency values increased with amount of fertilizer N applied. Total-N uptake was always highest with the 180 kg N ha -1 treatment, i.e. with 50% more fertilizer applied than the locally recommended 120 kg N ha -1 . The use of 15 N revealed that percent N derived from fertilizer from the first split application at planting, 40 or 60 kg N ha -1 , was lower than that applied as a second split of 80 and 120 kg N ha -1 , respectively, at growth stage Z-30; this trend prevailed in all the cropping seasons. Fertilizer-N uptake was highest with 180 kg N ha -1 and varied from 16 to 50% of that applied. Nitrogen applied to the wheat had positive residual effects on subsequently grown rice in comparison with the zero-N checks. The downward flux of water measured in a nearby plot increased with depth, but showed a decreasing trend with wheat growth; the fertilizer-N fraction was relatively lower with depth. A minor fraction of applied N moved down to 120 cm, indicating little likelihood of pollution of groundwater by NO 3 - from fertilizer. (author)

  16. The impact of Septoria tritici Blotch disease on wheat: An EU perspective.

    Science.gov (United States)

    Fones, Helen; Gurr, Sarah

    2015-06-01

    Zymoseptoria tritici is the causal agent of one of the European Union's most devastating foliar diseases of wheat: Septoria tritici Blotch (STB). It is also a notable pathogen of wheat grown in temperate climates throughout the world. In this commentary, we highlight the importance of STB on wheat in the EU. To better understand STB, it is necessary to consider the host crop, the fungal pathogen and their shared environment. Here, we consider the fungus per se and its interaction with its host and then focus on a more agricultural overview of the impact STB on wheat. We consider the climatic and weather factors which influence its spread and severity, allude to the agricultural practices which may mitigate or enhance its impact on crop yields, and evaluate the economic importance of wheat as a food and animal feed crop in the UK and EU. Finally, we estimate the cost of STB disease to EU agriculture. Copyright © 2015. Published by Elsevier Inc.

  17. Factors affecting the income from major crops in rice-wheat ecological zone

    International Nuclear Information System (INIS)

    Ashfaq, M.; Naseer, M.Z.; Hassan, S.

    2008-01-01

    Agriculture is an important sector of our economy. About twenty-two percent of national income and 44.8 percent of total employment is generated by this sector. About 66 percent of country's population is living in rural areas and is directly or indirectly linked with agriculture for their livelihood. It also supplies raw materials to industry. The rice-wheat zone of Punjab covers 1.1 million hectare, 72% of wheat is grown in rotation with rice. The main purpose of this paper was to determine the effect of different factors on the productivity and ultimately on income from of major crops (wheat, rice and sugar-cane) in rice-wheat ecological zone. The results show that for wheat crop, land preparation, use of fertilizer and chemicals, for Sugarcane crop, area under cultivation, fertilizer and chemical costs and for rice crop, applications of chemicals, irrigation and land holding were the main determinants of productivity and crop income. (author)

  18. Organic Bread Wheat Production and Market in Europe

    DEFF Research Database (Denmark)

    David, C.; Abecassis, J.; Carcea, M.

    2012-01-01

    yield under organic production. The choice of cultivar, green manure, fertilization and intercropping legumes – grain or forage – are efficient ways to obtain high grain quality and quantity. The economic viability of wheat production in Europe is also affected by subsidies from European Union agri......This chapter is a first attempt to analyse bottlenecks and challenges of European organic bread wheat sector involving technical, political and market issues. From 2000, the organic grain market has largely increased in Western Europe. To balance higher consumer demand there is a need to increase...... organic production by a new transition and technical improvement. Bread wheat is grown in a variety of crop rotations and farming systems where four basic organic crop production systems have been defined. Weeds and nitrogen deficiency are considered to be the most serious threat inducing lowest grain...

  19. Physiological and comparative proteomic analysis reveals different drought responses in roots and leaves of drought-tolerant wild wheat (Triticum boeoticum.

    Directory of Open Access Journals (Sweden)

    Hui Liu

    Full Text Available To determine the proteomic-level responses of drought tolerant wild wheat (Triticum boeoticum, physiological and comparative proteomic analyses were conducted using the roots and the leaves of control and short term drought-stressed plants. Drought stress was imposed by transferring hydroponically grown seedlings at the 3-leaf stage into 1/2 Hoagland solution containing 20% PEG-6000 for 48 h. Root and leaf samples were separately collected at 0 (control, 24, and 48 h of drought treatment for analysis. Physiological analysis indicated that abscisic acid (ABA level was greatly increased in the drought-treated plants, but the increase was greater and more rapid in the leaves than in the roots. The net photosynthetic rate of the wild wheat leaves was significantly decreased under short-term drought stress. The deleterious effects of drought on the studied traits mainly targeted photosynthesis. Comparative proteomic analysis identified 98 and 85 differently changed protein spots (DEPs (corresponding to 87 and 80 unique proteins, respectively in the leaves and the roots, respectively, with only 6 mutual unique proteins in the both organs. An impressive 86% of the DEPs were implicated in detoxification and defense, carbon metabolism, amino acid and nitrogen metabolism, proteins metabolism, chaperones, transcription and translation, photosynthesis, nucleotide metabolism, and signal transduction. Further analysis revealed some mutual and tissue-specific responses to short-term drought in the leaves and the roots. The differences of drought-response between the roots and the leaves mainly included that signal sensing and transduction-associated proteins were greatly up-regulated in the roots. Photosynthesis and carbon fixation ability were decreased in the leaves. Glycolysis was down-regulated but PPP pathway enhanced in the roots, resulting in occurrence of complex changes in energy metabolism and establishment of a new homeostasis. Protein metabolism

  20. Adverse weather conditions for European wheat production will become more frequent with climate change

    DEFF Research Database (Denmark)

    Trnka, Miroslav; Rötter, Reimund P.; Ruiz-Ramos, Margarita

    2014-01-01

    events that might significantly affect wheat yield in Europe. For this purpose we analysed changes in the frequency of the occurrence of 11 adverse weather events. Using climate scenarios based on the most recent ensemble of climate models and greenhouse gases emission estimates, we assessed...... crop failure across Europe. This study provides essential information for developing adaptation strategies.......Europe is the largest producer of wheat, the second most widely grown cereal crop after rice. The increased occurrence and magnitude of adverse and extreme agroclimatic events are considered a major threat for wheat production. We present an analysis that accounts for a range of adverse weather...

  1. Disease Impact on Wheat Yield Potential and Prospects of Genetic Control

    DEFF Research Database (Denmark)

    Singh, Ravi P.; Singh, Pawan K.; Rutkoski, Jessica

    2016-01-01

    Wheat is grown worldwide in diverse geographical regions, environments, and production systems. Although many diseases and pests are known to reduce grain yield potential and quality, the three rusts and powdery mildew fungi have historically caused major crop losses and continue to remain...... economically important despite the widespread use of host resistance and fungicides. The evolution and fast spread of virulent and more aggressive race lineages of rust fungi have only worsened the situation. Fusarium head blight, leaf spotting diseases, and, more recently, wheat blast (in South America...... for most diseases; their selection through phenotyping reinforced with molecular strategies offers great promise in achieving more durable resistance and enhancing global wheat productivity....

  2. Enhanced root and shoot growth of wheat (Triticum aestivum L.) by Trichoderma harzianum from Turkey.

    Science.gov (United States)

    Kucuk, Cigdem

    2014-01-01

    It is well known that Trichoderma species can be used as biocontrol and plant growth promote agent. In this study, Trichoderma harzianum isolates were evaluated for their growth promotion effects on wheat in greenhouse experiments. Two isolates of T. harzianum were used. The experimental design was a randomized complete block with three replications. Seeds were inoculated with conidial suspensions of each isolate. Wheat plants grown in steriled soil in pots. T. harzianum T8 and T15 isolates increased wheat length, root dry weight and shoot dry weight according to untreated control. Turkish isolates T8 and T15 did not produce damage in seeds nor in plants.

  3. Straw export in continuous winter wheat and the ability of oil radish catch crops and early sowing of wheat to offset soil C and N losses: A simulation study

    DEFF Research Database (Denmark)

    Peltre, Clément; Nielsen, M; Christensen, Bent Tolstrup

    2016-01-01

    The export of winter wheat straw for bioenergy may reduce soil C stocks and affect N losses. Establishing fast-growing catch crops between successive wheat crops could potentially offset some of the C and N losses. Another option is to sow wheat earlier, increasing biomass production during...... the autumn. The effects of straw export, oil radish catch crop and early sowing of wheat on soil C storage, N leaching losses and N2O emissions were simulated by applying the Daisy model to winter wheat grown continuously for a period of 100 years on a sandy loam soil in a Danish climate. The simulations....... Inclusion of the oil radish catch crop could offset this loss by 2–3 percentage points. Earlier sowing of wheat increased straw production by 18% and reduced loss of soil C by 3–5 percentage points compared to normal sowing time with full straw export. Catch crops and early sowing also reduced N...

  4. Seaweed-Derived Biostimulant (Kelpak (R)) Influences Endogenous Cytokinins and Bioactive Compounds in Hydroponically Grown Eucomis autumnalis

    Czech Academy of Sciences Publication Activity Database

    Aremu, A.O.; Plačková, Lenka; Grúz, Jiří; Bíba, Ondřej; Novák, Ondřej; Stirk, W. A.; Doležal, Karel; van Staden, J.

    2016-01-01

    Roč. 35, č. 1 (2016), s. 151-162 ISSN 0721-7595 R&D Projects: GA MŠk(CZ) LO1204; GA MŠk LK21306 Institutional support: RVO:61389030 Keywords : Asparagaceae * Conservation * Medicinal plants Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.073, year: 2016

  5. Biological efficiency of component crops in different geometrical patterns of wheat-linseed intercropping

    International Nuclear Information System (INIS)

    Nazir, M. S.; Saeed, M.; Khan, I.; Ghaffar, A.

    2005-01-01

    An experiment to determine the biological efficiency and agro-economic relationships of component crops in wheat-linseed intercropping under different geometrical patterns, was conducted on sandy-clay loam soil at Faisalabad (Pakistan). Wheat was sown in 100-cm spaced 4, 6, 8, and 10 row strips and was intercropped with three rows of linseed. The component crops were also grown alone in 30-cm spaced single row. Wheat grain yield was reduced by 25.6%, 19.2%, 14.7% and 11.9% by intercropping linseed in wheat grown in the pattern of 4, 6 and 10-row strips, respectively. However, at the cost of this much reduction in wheat yield, linseed gave an additional yields of 516, 412, 335 kg/ha in the respective patterns which resulted in yield advantages of 41%, 31%, 29% and 27%, respectively over sole cropping of wheat. Intercropping also generated higher net monetary gain/ha (Rs. 12378-12826) than monocropped wheat (Rs. 11034) and linseed (Rs. 4249). (author)

  6. Comparative response of wheat and oilseed rape to nitrogen supply: absorption and utilisation efficiency of radiation and nitrogen during the reproductive stages determining yield

    NARCIS (Netherlands)

    Dreccer, M.F.; Schapendonk, A.H.C.M.; Slafer, G.A.; Rabbinge, R.

    2000-01-01

    We investigated the response of spring wheat and oilseed rape to nitrogen (N) supply, focusing on the critical period for grain number definition and grain filling. Crops were grown in containers under a shelter and treated with five combinations of applied N. Wheat and oilseed rape produced

  7. Performance of hemicellulolytic enzymes in culture supernatants from a wide range of fungi on insoluble wheat straw and corn fiber fractions

    NARCIS (Netherlands)

    Gool, van M.P.; Toth, K.; Schols, H.A.; Szakacs, G.; Gruppen, H.

    2012-01-01

    Filamentous fungi are a good source of hemicellulolytic enzymes for biomass degradation. Enzyme preparations were obtained as culture supernatants from 78 fungal isolates grown on wheat straw as carbon source. These enzyme preparations were utilized in the hydrolysis of insoluble wheat straw and

  8. Removal of micro-organisms in a small-scale hydroponics wastewater treatment system.

    Science.gov (United States)

    Ottoson, J; Norström, A; Dalhammar, G

    2005-01-01

    To measure the microbial removal capacity of a small-scale hydroponics wastewater treatment plant. Paired samples were taken from untreated, partly-treated and treated wastewater and analysed for faecal microbial indicators, i.e. coliforms, Escherichia coli, enterococci, Clostridium perfringens spores and somatic coliphages, by culture based methods. Escherichia coli was never detected in effluent water after >5.8-log removal. Enterococci, coliforms, spores and coliphages were removed by 4.5, 4.1, 2.3 and 2.5 log respectively. Most of the removal (60-87%) took place in the latter part of the system because of settling, normal inactivation (retention time 12.7 d) and sand filtration. Time-dependent log-linear removal was shown for spores (k = -0.17 log d(-1), r(2) = 0.99). Hydroponics wastewater treatment removed micro-organisms satisfactorily. Investigations on the microbial removal capacity of hydroponics have only been performed for bacterial indicators. In this study it has been shown that virus and (oo)cyst process indicators were removed and that hydroponics can be an alternative to conventional wastewater treatment.

  9. Removal of 4-chlorobenzoic acid from spiked hydroponic solution by willow trees (Salix viminalis)

    DEFF Research Database (Denmark)

    Deavers, K.; Macek, T.; Karlson, U.

    2010-01-01

    . Methods The removal of 4-CBA by willow trees was investigated with intact, septic willow trees growing in hydroponic solution and with sterile cell suspensions at concentrations of 5 mg/L and 50 mg/L 4-CBA. Nutrient solutions with different levels of ammonium and nitrate were prepared to achieve different...

  10. Improvement of sheep welfare and milk production fed on diet containing hydroponically germinating seeds

    Directory of Open Access Journals (Sweden)

    Antonia Zarrilli

    2010-01-01

    Full Text Available Plasma cortisol and milk production responses of 45 lactating Comisana sheeps (4th- 5th parity, divided into three homogeneous groups of 15 subject each, were used to evaluate the effects of two different levels of partial substitution of a complete feed with hydroponically germinating seeds. Germinated oat was employed after 7 days of hydroponic growth. The three groups received the following diets: Control group (T received only complete feed. The other 2 groups were fed on diet containing different levels of hydroponically germinating oat (1,5 kg – group A; 3 kg – group B. All the subjects have shown to accept the diets because the per capita ration was always completely consumed. In the second month, the A and B groups showed lower average values of cortisol (P<0.01 and a statistically significant increase in milk production as compared to T (P<0.05 and P<0.001. The obtained data induced to conclude that integration with hydroponically germinating oat in partial substitution of the complete feed does not modify biochemical and hematological parameters and seems to produce an improvement in animal welfare and production of milk.

  11. Environmental impacts of urban hydroponics in Europe: a case study in Lyon

    DEFF Research Database (Denmark)

    Romeo, Daina; Vea, Eldbjørg Blikra; Thomsen, Marianne

    2018-01-01

    a life cycle perspective. The results show that the hydroponic farm performs better than cultivations in heated greenhouses, and similarly to conventional open field farms. Moreover, the source of the electricity input is a determinant factor that, if carbon neutral (e.g. wind energy) allows vertical...

  12. Proliferation of Escherichia coli O157:H7 in soil and hydroponic microgreen production systems

    Science.gov (United States)

    Radish (Raphanus sativus var. longipinnatus) microgreens were produced from seeds inoculated with Escherichia coli O157: H7 using soil substitute and hydroponic production systems. E. coli populations on the edible and inedible parts of harvested microgreen plants and in growth medium were examined....

  13. Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil

    Energy Technology Data Exchange (ETDEWEB)

    Cao Qing [Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Hu Qinhong [Lawrence Livermore National Laboratory, University of California, Livermore, CA 94550 (United States); Khan, Sardan [Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Department of Environmental Sciences, University of Peshawar, 25120 Peshawar (Pakistan); Wang Zijian [Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Lin Aijun [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Du Xin [Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Zhu Yongguan [Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)], E-mail: ygzhu@rcees.ac.cn

    2007-09-05

    The toxicity of two toxic elements, arsenic (As) and cadmium (Cd) (individually or in combination) on root elongation of wheat seedlings (Triticum aestivum, L.) were investigated both in hydroponics and in soils freshly spiked with the toxic elements. Median effective concentration (EC{sub 50}) and non-observed effect concentration (NOEC) were used to investigate the toxic thresholds and potencies of the two elements. The EC{sub 50} for As was 0.97 {mu}M in hydroponics and 196 mg kg{sup -1} in soil, and 4.32 {mu}M and 449 mg kg{sup -1} for Cd, respectively. Toxic unit (TU) and additive index (AI) concepts were introduced to determine the combined outcomes, and different behaviors were obtained: synergism in solution culture (EC{sub 50mix} = 0.36TU{sub mix} and AI: 1.76) and antagonism in soil experiments (EC{sub 50mix} = 1.49TU{sub mix} and AI: -0.33). Furthermore, the data of soil bioavailable As and Cd cannot explain the discrepancy between the results derived from soil and hydroponics experiments.

  14. Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil

    International Nuclear Information System (INIS)

    Cao Qing; Hu Qinhong; Khan, Sardan; Wang Zijian; Lin Aijun; Du Xin; Zhu Yongguan

    2007-01-01

    The toxicity of two toxic elements, arsenic (As) and cadmium (Cd) (individually or in combination) on root elongation of wheat seedlings (Triticum aestivum, L.) were investigated both in hydroponics and in soils freshly spiked with the toxic elements. Median effective concentration (EC 50 ) and non-observed effect concentration (NOEC) were used to investigate the toxic thresholds and potencies of the two elements. The EC 50 for As was 0.97 μM in hydroponics and 196 mg kg -1 in soil, and 4.32 μM and 449 mg kg -1 for Cd, respectively. Toxic unit (TU) and additive index (AI) concepts were introduced to determine the combined outcomes, and different behaviors were obtained: synergism in solution culture (EC 50mix = 0.36TU mix and AI: 1.76) and antagonism in soil experiments (EC 50mix = 1.49TU mix and AI: -0.33). Furthermore, the data of soil bioavailable As and Cd cannot explain the discrepancy between the results derived from soil and hydroponics experiments

  15. Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Q; Hu, Q; Khan, S; Wang, Z; Lin, A; Du, X; Zhu, Y

    2007-03-05

    The toxicity effect of two deleterious elements of arsenic (As) and cadmium (Cd) (individually or in combination) on root elongation of wheat seedlings (Triticum aestivum, L.) were investigated both in hydroponics and in soils freshly spiked with the toxic elements. Median effective concentration (EC{sub 50}) and non-observed effect concentration (NOEC) were used to investigate the toxic thresholds and potencies of the two elements. The EC{sub 50} for As was 0.97 {mu}M in hydroponics and 196 mg {center_dot} kg{sup -1} in soil, and 4.32 {mu}M and 449 mg {center_dot} kg{sup -1} for Cd, respectively. Toxic unit (TU) and additive index (AI) concepts were introduced to determine the combined outcomes, and different behaviors were obtained: synergism in solution culture (EC{sub 50mix} = 0.36 TU{sub mix} and AI: 1.76) and antagonism in soil experiments (EC{sub 50mix} = 1.49 TU{sub mix} and AI: -0.33). Furthermore, the data of soil bioavailable As and Cd can not explain the discrepancy between the results derived from soil and hydroponics experiments.

  16. Influence of forecrop and chemical seed treatment on the occurrence of take-all (Gaeumannomyces graminis var. tritici on winter wheat

    Directory of Open Access Journals (Sweden)

    Zbigniew Weber

    2013-12-01

    Full Text Available The work was done in years 1998/1999 - 2000/2001 on plantations and field plot experiments. Aim of the work was evaluation of take-all occurrence on winter wheat in milk-wax growth stage in dependence on forecrop (oilseed rape, wheat or barley as well as seed treatment with Latitude 125 FS when wheat was planted on fields after wheat or barley. Percentage of infected plants when seeds were not treated with Latitude 125 FS varied from 82-100 on fields after wheat or barley, and 54-69 on fields after oilseed rape. In treatments with wheat grown after wheat or barley the percentage of infected plants amounted 20-100 when seeds were not treated with Latitude 125 FS and 13-86 when seeds were treated with Latitude 125 FS. Mean degree of infection was low when percentage of infected plants was low and high when percentage of infected plants was high.

  17. Use of radiation to transfer alien chromosome segments to wheat

    International Nuclear Information System (INIS)

    Sears, E.R.

    1993-01-01

    Ionizing radiation can accomplish the transfer of genetic information from species so distantly related to wheat (Triticum aestivum L. em Thell.) that their chromosomes pair very little, if at all, with those of wheat, even in the absence of the homoeologous-pairing suppressor Ph1. In a successful transfer, the alien segment must almost always replace a homoeologous wheat segment, but radiation induces translocations largely at random; therefore automatic selection in favor of desirable translocations must be provided if the size of the project is to be kept within reasonable limits. Pollen selection will occur if seeds or plants monosomic for both an alien chromosome and one of its wheat homoeologues are irradiated. Making the plants also deficient for Ph1 may increase the number of suitable transfers. High-frequency occurrence of the desired alien character in M2 head-rows from plants grown from irradiated seed can identify favorable transfers with little cytological work. Irradiation of plants shortly before meiosis, using them to pollinate ditelosomics or double ditelosomics for the wheat arm or chromosome concerned, and cytologically examining offspring which have the alien character can not only identify the desirable transfers, but also reveal the lengths of the alien segments involved

  18. Heat tolerance in wheat

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari

    As a consequence of global climate change, heat stress together with other abiotic stresses will remain an important determinant of future food security. Wheat (Triticum aestivum L.) is the third most important crop of the world feeding one third of the world population. Being a crop of temperate...... climate, wheat is sensitive to heat stress. We need to understand how our crops will perform in these changing climatic conditions and how we can develop varieties, which are more tolerant. The PhD study focussed on understanding heat tolerance in wheat with a combined approach of plant physiology...... and quantitative genetics in particular, plant phenotyping based quantitative trait loci (QTL) discovery for a physiological trait under heat stress. Chlorophyll a fluorescence trait, Fv/Fm was used as a phenotyping tool, as it reflects the effect of heat stress on maximum photochemical efficiency of photosystem...

  19. Tamanho e forma de parcela em experimentos com morangueiro cultivado em solo ou em hidroponia Plot size and shape in trials using strawberry cultivated with soil or using hydroponics

    Directory of Open Access Journals (Sweden)

    Carine Cocco

    2009-07-01

    Full Text Available O objetivo deste trabalho foi estimar a forma e o tamanho de parcela ótimos para ensaios com a cultura do morangueiro (Fragaria x ananassa em cultivo hidropônico e em solo. Foram conduzidos dois, experimentos, um em cultivo convencional no solo, em túneis baixos, e outro em cultivo hidropônico. Em cada experimento, avaliaram-se os efeitos do tamanho e do formato das parcelas sobre a precisão experimental. Cada planta foi considerada uma unidade básica, e o número de unidades básicas por parcela variou de 1 (48 parcelas a 24 (duas parcelas. Foram ajustadas funções para a determinação do coeficiente de variação entre as parcelas e para a determinação da variância por unidade básica entre as parcelas. O cultivo no solo apresentou maior variabilidade experimental que o cultivo hidropônico. O aumento no número de plantas por parcela causou redução acentuada na variabilidade experimental, especialmente quando se usou o formato de parcela retangular. O tamanho ótimo estimado das parcelas é de dez plantas, no cultivo com solo, e de seis plantas, no cultivo hidropônico.The objective of this work was to estimate the optimal size and shape of plots to be used in experiments of strawberry (Fragaria x ananassa cultivation in soil or using hydroponics. Two experiments were conducted, one in soil in low tunnels, and another in a hydroponic system. In each experiment, the effects of plot sizes and shapes on experimental accuracy were evaluated. Each plant was considered an experimental basic unit, and the number of plants per plot varied from 1 (48 plots to 24 (two plots. Functions were adjusted to determine the coefficient of variation among plots and the variance per basic unit between plots. Plants grown in soil had higher experimental variability than the plants grown in hydroponics. Increasing the number of plants per plot caused strong reduction in the experimental variability, especially when a rectangular plot shape was used

  20. Biolistics Transformation of Wheat

    Science.gov (United States)

    Sparks, Caroline A.; Jones, Huw D.

    We present a complete, step-by-step guide to the production of transformed wheat plants using a particle bombardment device to deliver plasmid DNA into immature embryos and the regeneration of transgenic plants via somatic embryogenesis. Currently, this is the most commonly used method for transforming wheat and it offers some advantages. However, it will be interesting to see whether this position is challenged as facile methods are developed for delivering DNA by Agrobacterium tumefaciens or by the production of transformants via a germ-line process (see other chapters in this book).

  1. Use of cross-flow membrane filtration in a recirculating hydroponic system to suppress root disease in pepper caused by Pythium myriotylum.

    Science.gov (United States)

    Schuerger, Andrew C; Hammer, William

    2009-05-01

    Zoosporic pathogens in the genera Pythium and Phytophthora cause extensive root disease epiphytotics in recirculating hydroponic vegetable-production greenhouses. Zoospore cysts of Pythium myriotylum Drechsler were used to evaluate the effectiveness of cross-flow membrane filters to control pythiaceous pathogens in recirculating hydroponic systems. Four membrane filter brands (Honeycomb, Polypure, Polymate, and Absolife) were tested alone or in combination to determine which filters would effectively remove infective propagules of P. myriotylum from solutions and reduce disease incidence and severity. Zoospore cysts of P. myriotylum generally measured 8 to 10 microm, and it was hypothesized that filters with pore-sizespepper plants from root infection. Single-filter assays with Honeycomb and Polypure brands removed 85 to 95% of zoospore cysts when pore sizes were rated at 1, 5, 10, 20, or 30 microm. Single-filter assays of Polymate and Absolife brands were more effective, exhibiting apparently 100% removal of zoospore cysts from nutrient solutions on filters rated at 1 to 10 microm. However, plant bioassays with Honeycomb and Polymate single filters failed to give long-term protection of pepper plants. Double-filter assays with 1- and 0.5-microm Polymate filters significantly increased the protection of pepper plants grown in nutrient film technique systems but, eventually, root disease and plant wilt could be observed. Insect transmissions by shore flies were not factors in disease development. Scanning electron microscopy images of zoospore cysts entrapped on Polymate filters revealed zoospore cysts that were either fully encysted, partially encysted, or of unusually small size (3 microm in diameter). It was concluded that either the atypically small or pliable pleomorphic zoospore cysts were able to penetrate filter membranes that theoretically should have captured them.

  2. Prolamin proteins alteration in durum wheat by species of the genus Eurygaster and Aelia (Insecta, Hemiptera)

    Energy Technology Data Exchange (ETDEWEB)

    Salis, L.; Goula, M.; Valero, J.; Gordun, E.

    2010-07-01

    Wheat bugs are widely distributed in various areas of Europe, Asia and North Africa. Species belonging to the genus Eurygaster and Aelia pierce wheat kernels affecting protein quality. The effects of these insects feeding activity have been studied mainly in bread wheat (Triticum aestivum L.). This study provides information on the degradation of prolamin proteins (glutenins and gliadins) of bug-damaged durum wheat (Triticum turgidum L. var durum) in six cultivars grown in Sardinia (Italy). Samples of whole flour mixture of 70% sound wheat and 30% damaged wheat were hydrated and incubated at two temperatures (45 and 4 degree centigrade), for different periods of time (0, 1 and 3 h). Glutenin and gliadin content was analysed using free zone capillary electrophoresis. The presence of bug-damaged kernels had influence on the quality of durum wheat proteins. Glutenins were rapidly degraded independently to incubation temperature. Gliadin degradation, however, took place with dependence on temperature and incubation time. Therefore glutenin degradation was possibly not due solely to the activity of proteolytic enzymes but also to some other as yet unknown factor linked to wheat bugs feeding activity. (Author) 35 refs.

  3. Prolamin proteins alteration in durum wheat by species of the genus Eurygaster and Aelia (Insecta, Hemiptera)

    International Nuclear Information System (INIS)

    Salis, L.; Goula, M.; Valero, J.; Gordun, E.

    2010-01-01

    Wheat bugs are widely distributed in various areas of Europe, Asia and North Africa. Species belonging to the genus Eurygaster and Aelia pierce wheat kernels affecting protein quality. The effects of these insects feeding activity have been studied mainly in bread wheat (Triticum aestivum L.). This study provides information on the degradation of prolamin proteins (glutenins and gliadins) of bug-damaged durum wheat (Triticum turgidum L. var durum) in six cultivars grown in Sardinia (Italy). Samples of whole flour mixture of 70% sound wheat and 30% damaged wheat were hydrated and incubated at two temperatures (45 and 4 degree centigrade), for different periods of time (0, 1 and 3 h). Glutenin and gliadin content was analysed using free zone capillary electrophoresis. The presence of bug-damaged kernels had influence on the quality of durum wheat proteins. Glutenins were rapidly degraded independently to incubation temperature. Gliadin degradation, however, took place with dependence on temperature and incubation time. Therefore glutenin degradation was possibly not due solely to the activity of proteolytic enzymes but also to some other as yet unknown factor linked to wheat bugs feeding activity. (Author) 35 refs.

  4. Radium and uranium levels in vegetables grown using different farming management systems

    International Nuclear Information System (INIS)

    Lauria, D.C.; Ribeiro, F.C.A.; Conti, C.C.; Loureiro, F.A.

    2009-01-01

    Vegetables grown with phosphate fertilizer (conventional management), with bovine manure fertilization (organic management) and in a mineral nutrient solution (hydroponic) were analyzed and the concentrations of 238 U, 226 Ra and 228 Ra in lettuce, carrots, and beans were compared. Lettuce from hydroponic farming system showed the lowest concentration of radionuclides 0.51 for 226 Ra, 0.55 for 228 Ra and 0.24 for 238 U (Bq kg -1 dry). Vegetables from organically and conventionally grown farming systems showed no differences in the concentration of radium and uranium. Relationships between uranium content in plants and exchangeable Ca and Mg in soil were found, whereas Ra in vegetables was inversely correlated to the cation exchange capacity of soil, leading to the assumption that by supplying carbonate and cations to soil, liming may cause an increase of U and a decrease of radium uptake by plants. The soil to plant transfer varied from 10 -4 to 10 -2 for 238 U and from 10 -2 to 10 -1 for 228 Ra

  5. Radium and uranium levels in vegetables grown using different farming management systems

    Energy Technology Data Exchange (ETDEWEB)

    Lauria, D.C. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN), Av. Salvador Allende s/n, Recreio dos Bandeirantes, Rio de Janeiro, RJ, CEP 22780-160 (Brazil)], E-mail: dejanira@ird.gov.br; Ribeiro, F.C.A. [Centro Regional de Ciencias Nucleares (CRCN/CNEN), Av. Prof. Luiz Freire 200, Cidade Universitaria Recife, PE, CEP 50740-540 (Brazil); Conti, C.C. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN), Av. Salvador Allende s/n, Recreio dos Bandeirantes, Rio de Janeiro, RJ, CEP 22780-160 (Brazil); Loureiro, F.A. [Estacao Experimental de Nova Friburgo, Empresa de Pesquisa Agropecuaria do Estado do Rio de Janeiro, Pesagro (Brazil)

    2009-02-15

    Vegetables grown with phosphate fertilizer (conventional management), with bovine manure fertilization (organic management) and in a mineral nutrient solution (hydroponic) were analyzed and the concentrations of {sup 238}U, {sup 226}Ra and {sup 228}Ra in lettuce, carrots, and beans were compared. Lettuce from hydroponic farming system showed the lowest concentration of radionuclides 0.51 for {sup 226}Ra, 0.55 for {sup 228}Ra and 0.24 for {sup 238}U (Bq kg{sup -1} dry). Vegetables from organically and conventionally grown farming systems showed no differences in the concentration of radium and uranium. Relationships between uranium content in plants and exchangeable Ca and Mg in soil were found, whereas Ra in vegetables was inversely correlated to the cation exchange capacity of soil, leading to the assumption that by supplying carbonate and cations to soil, liming may cause an increase of U and a decrease of radium uptake by plants. The soil to plant transfer varied from 10{sup -4} to 10{sup -2} for {sup 238}U and from 10{sup -2} to 10{sup -1} for {sup 228}Ra.

  6. Radium and uranium levels in vegetables grown using different farming management systems.

    Science.gov (United States)

    Lauria, D C; Ribeiro, F C A; Conti, C C; Loureiro, F A

    2009-02-01

    Vegetables grown with phosphate fertilizer (conventional management), with bovine manure fertilization (organic management) and in a mineral nutrient solution (hydroponic) were analyzed and the concentrations of (238)U, (226)Ra and (228)Ra in lettuce, carrots, and beans were compared. Lettuce from hydroponic farming system showed the lowest concentration of radionuclides 0.51 for (226)Ra, 0.55 for (228)Ra and 0.24 for (238)U (Bq kg(-1) dry). Vegetables from organically and conventionally grown farming systems showed no differences in the concentration of radium and uranium. Relationships between uranium content in plants and exchangeable Ca and Mg in soil were found, whereas Ra in vegetables was inversely correlated to the cation exchange capacity of soil, leading to the assumption that by supplying carbonate and cations to soil, liming may cause an increase of U and a decrease of radium uptake by plants. The soil to plant transfer varied from 10(-4) to 10(-2) for (238)U and from 10(-2) to 10(-1) for (228)Ra.

  7. Fertilizer drawn forward osmosis process for sustainable water reuse to grow hydroponic lettuce using commercial nutrient solution

    KAUST Repository

    Chekli, Laura; Eun Kim, Jung; El Saliby, Ibrahim; Kim, Youngjin; Phuntsho, Sherub; Li, Sheng; Ghaffour, NorEddine; Leiknes, TorOve; Kyong Shon, Ho

    2017-01-01

    This study investigated the sustainable reuse of wastewater using fertilizer drawn forward osmosis (FDFO) process through osmotic dilution of commercial nutrient solution for hydroponics, a widely used technique for growing plants without soil

  8. Registration of 'Tiger' wheat

    Science.gov (United States)

    ‘Tiger’ hard white winter wheat (Triticum aestivum L.) was developed at Research Center-Hays, Kansas State University and released by Kansas Agricultural Experiment Station in 2010. Tiger was selected from a three-way cross KS98H245/’Trego’//KS98HW518 made in 1999 at Hays, KS. The objective of this ...

  9. EFFECTS OF DIFFERENT HYDROPONIC SUBSTRATE COMBINATIONS AND WATERING REGIMES ON PHYSIOLOGICAL AND ANTI-FUNGAL PROPERTIES OF SIPHONOCHILUS AETHIOPICUS.

    Science.gov (United States)

    S, Xego; L, Kambizi; F, Nchu

    2017-01-01

    Production of medicinal plants in controlled environments, particularly hydroponic technology, provides opportunities for high quality biomass accumulation and optimizes production of secondary metabolites. Applying special watering regimes in combination with efficient soil draining is an encouraging new tool for the production of pharmaceutical relevant plants. The purpose of this paper was to evaluate the effect of substrate combinations and watering regimes on nutrient uptake, anti- F. oxysporum activity and secondary metabolite profile of S. aethiopicus . Coir was used as the main component for the preparation of media in different combinations; TI (Coir + vermiculite + perlite + bark), T2 (Coir + bark), T3 (Coir + perlite) and T4 (Coir + vermiculite). Plants in different treatments were grown under two watering regimes: 3 and 5-days watering intervals. At 9 weeks post treatment, plants were harvested, oven dried and tissue nutrient content, anti- F. oxysporum activity and secondary metabolites were analyzed. The results showed that there were significant differences ( P < 0.05) on the uptake of P, K, N, Mg, Fe, Cu, B and NH4 - .The highest mean values for most nutrients were obtained in treatments under 3-days interval. Acetone extracts of S. aethiopicus under 5-days interval were the most bioactive against F. oxysporum . The MIC values obtained are relatively lower for the rhizomes, ranging from 0.078 - 0.3125 mg/ml compared to the higher MIC values (0.375 - 0.75 mg/ml) obtained in the leaves. LC-MS analysis of acetone extracts revealed the presence of phytochemicals such as caffeic acid, quercetin, p-hydroxybenzoic acid, rutin, kaempferol, epicatechin, naringenin, hesperetin and protocatechuic acid. The antimicrobial activity and/or the phytochemical profile of the crude extracts were affected by watering regimes.

  10. Microbiological profile and incidence of Salmonella and Listeria monocytogenes on hydroponic bell peppers and greenhouse cultivation environment.

    Science.gov (United States)

    Avila-Vega, Dulce E; Alvarez-Mayorga, Beatriz; Arvizu-Medrano, Sofía M; Pacheco-Aguilar, Ramiro; Martínez-Peniche, Ramón; Hernández-Iturriaga, Montserrat

    2014-11-01

    The aim of this study was to generate information regarding the microbiological profile, including Salmonella and Listeria monocytogenes incidence, of hydroponically grown bell peppers and materials associated with their production in greenhouses located in Mexico. Samples of coconut fiber (24), knives (30), drippers (20), conveyor belts (161), pepper transportation wagons (30), air (178), water (16), nutrient solution for plant irrigation (78), and bell pepper fruits (528) were collected during one cycle of production (2009 to 2010) for the quantification of microbial indicators (aerobic plate counts [APC], molds, coliforms, and Escherichia coli) and the detection of Salmonella and L. monocytogenes. With regard to surfaces (conveyor belts and wagons) and utensils (knives and drippers), the APC, coliform, and mold counts ranged from 3.0 to 6.0, from 1.4 to 6.3, and from 3.6 to 5.2 log CFU/100 cm(2) or per utensil, respectively. The air in the greenhouse contained low median levels of APC (1.2 to 1.4 log CFU/100 liters) and molds (2.2 to 2.5 log CFU/100 liters). The median content of APC and coliforms in water were 0.5 log CFU/ml and 0.3 log MPN/100 ml, respectively. The median content of coliforms in nutrient solution ranged from 1.8 to 2.4 log MPN/100 ml, and E. coli was detected in 18 samples (range, fruit, respectively; E. coli was detected in 5.1% of the samples (range, 0.23 to 1.4 log MPN per fruit). Salmonella was isolated from only one sample (1.6%) of conveyor belt located at the packing area and in four bell pepper samples (3%). L. monocytogenes was not detected. This information could help producers to establish effective control measures to prevent the presence of foodborne pathogens in bell peppers based on a scientific approach.

  11. Influence of Se concentrations and species in hydroponic cultures on Se uptake, translocation and assimilation in non-accumulator ryegrass.

    Science.gov (United States)

    Versini, Antoine; Di Tullo, Pamela; Aubry, Emmanuel; Bueno, Maïté; Thiry, Yves; Pannier, Florence; Castrec-Rouelle, Maryse

    2016-11-01

    The success of biofortification and phytoremediation practices, addressing Se deficiency and Se pollution issues, hinges crucially on the fate of selenium in the plant media in response to uptake, translocation and assimilation processes. We investigate the fate of selenium in root and shoot compartments after 3 and 6 weeks of experiment using a total of 128 plants grown in hydroponic solution supplied with 0.2, 2, 5, 20 and 100 mg L -1 of selenium in the form of selenite, selenate and a mixture of both species. Selenate-treated plants exhibited higher root-to-shoot Se translocation and total Se uptake than selenite-treated plants. Plants took advantage of the selenate mobility and presumably of the storage capacity of leaf vacuoles to circumvent selenium toxicity within the plant. Surprisingly, 28% of selenate was found in shoots of selenite-treated plants, questioning the ability of plants to oxidize selenite into selenate. Selenomethionine and methylated organo-selenium amounted to 30% and 8% respectively in shoots and 35% and 9% in roots of the identified Se, suggesting that selenium metabolization occurred concomitantly in root and shoot plant compartments and demonstrating that non-accumulator plants can synthesize notable quantities of precursor compound for volatilization. The present study demonstrated that non-accumulator plants can develop the same strategies as hyper-accumulator plants to limit selenium toxicity. When both selenate and selenite were supplied together, plants used selenate in a storage pathway and selenite in an assimilation pathway. Plants might thereby benefit from mixed supplies of selenite and selenate by saving enzymes and energy required for selenate reduction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. 21 CFR 184.1322 - Wheat gluten.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Wheat gluten. 184.1322 Section 184.1322 Food and... Substances Affirmed as GRAS § 184.1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the principal protein component of wheat and consists mainly of gliadin and glutenin. Wheat gluten is obtained...

  13. Vegetable Cultivation Hydroponics System In Community Economic Zone KEM Kanagarian Tikalak Subdistrict X Koto Singkarak Districts Solok

    OpenAIRE

    I Ketut Budaraga; Ramaiyulis; Ellyza nurdin

    2017-01-01

    Current conditions especially in urban agricultural land is getting narrower due to the rapid development. If left untreated it can lead to food security and environmental problems. One solution to allow the fulfillment of foodstuffs such as vegetables can be fulfilled for the people to exploit the potential of the narrow yard with continuous production of hydroponic systems. Interest dedication to the community to find ways to introduce a hydroponic vegetable crops that can supplement the fa...

  14. Biological control of fusarium seedling blight disease of wheat and barley.

    Science.gov (United States)

    Khan, Mojibur R; Fischer, Sven; Egan, Damian; Doohan, Fiona M

    2006-04-01

    ABSTRACT Fusarium fungi, including F. culmorum, cause seedling blight, foot rot, and head blight diseases of cereals, resulting in yield loss. In a screen for potential disease control organisms and agents, Pseudomonas fluorescens strains MKB 100 and MKB 249, P. frederiksbergensis strain 202, Pseudomonas sp. strain MKB 158, and chitosan all significantly reduced the extent of both wheat coleoptile growth retardation and wheat and barley seedling blight caused by F. culmorum (by 53 to 91%). Trichodiene synthase is a Fusarium enzyme necessary for trichothecene mycotoxin biosynthesis; expression of the gene encoding this enzyme in wheat was 33% lower in stem base tissue coinoculated with Pseudomonas sp. strain MKB 158 and F. culmorum than in wheat treated with bacterial culture medium and F. culmorum. When wheat and barley were grown in soil amended with either chitosan, P. fluorescens strain MKB 249, Pseudomonas sp. strain MKB 158, or culture filtrates of these bacteria, the level of disease symptoms on F. culmorum-inoculated stem base tissue (at 12 days post- F. culmorum inoculation) was >/=31% less than the level on F. culmorum-inoculated plants grown in culture medium-amended soil. It seems likely that at least part of the biocontrol activity of these bacteria and chitosan may be due to the induction of systemic disease resistance in host plants. Also, in coinoculation studies, Pseudomonas sp. strain MKB 158 induced the expression of a wheat class III plant peroxidase gene (a pathogenesis-related gene).

  15. Hydroponics: A Versatile System to Study Nutrient Allocation and Plant Responses to Nutrient Availability and Exposure to Toxic Elements.

    Science.gov (United States)

    Nguyen, Nga T; McInturf, Samuel A; Mendoza-Cózatl, David G

    2016-07-13

    Hydroponic systems have been utilized as one of the standard methods for plant biology research and are also used in commercial production for several crops, including lettuce and tomato. Within the plant research community, numerous hydroponic systems have been designed to study plant responses to biotic and abiotic stresses. Here we present a hydroponic protocol that can be easily implemented in laboratories interested in pursuing studies on plant mineral nutrition. This protocol describes the hydroponic system set up in detail and the preparation of plant material for successful experiments. Most of the materials described in this protocol can be found outside scientific supply companies, making the set up for hydroponic experiments less expensive and convenient. The use of a hydroponic growth system is most advantageous in situations where the nutrient media need to be well controlled and when intact roots need to be harvested for downstream applications. We also demonstrate how nutrient concentrations can be modified to induce plant responses to both essential nutrients and toxic non-essential elements.

  16. Optimizing nitrogen uptake efficiency by irrigated wheat to reduce environmental pollution

    International Nuclear Information System (INIS)

    Arslan, A.; Kurdali, F.; Al-Shayeb, R.

    2000-01-01

    Two wheat cultivars (Sham 3 and Sham 6) were grown after fallow for two seasons and after wheat for another two seasons, with sprinkler irrigation. Four N-fertilizer rates (0, 50, 100, and 150% of the recommended dose) were used. A neutron moisture probe was used to determine the time and amount of irrigation. Nitrogen-15 was used to determine the fate of fertilizer N. Porous ceramic samplers were installed at different depths in micro-plots fertilized with 15 N to monitor its movement in the soil. Dry biomass and grain yield of wheat after fallow were much higher than those of wheat after wheat. The effects of increasing amounts of N fertilizer were significant during the four seasons, but were more pronounced in wheat after wheat. The appropriate timing and amount of irrigation water contributed to high fertilizer-N recovery (between 44 and 75%). Plants recovered N fertilizer applied at tillering more efficiently than when it was applied at germination. Labelled N analysis showed no deep percolation of N fertilizer with water during the same growing season. Water use efficiency of wheat after fallow was almost twice that of wheat after wheat, and N fertilization of wheat after wheat increased the water use efficiency two to three fold. Chlorophyll readings with all treatments were high during the first and second seasons, especially those fertilized with the recommended N rate or more. These results were in agreement with Ceres-Wheat model output, where it did not predict any N stress. Nitrogen deficit was observed by eye, and was indicated by the Ceres-Wheat model and chlorophyll-meter readings on plants fertilized with low rates of N during the last two seasons. Acceptable agreement was observed between model prediction of soil-water content and that determined using isotopic techniques, and between observed and predicted grain yields and biomass, N yields of grain and total N yields. However, predictions of the model for some variables were weak-, indicating a

  17. Estimating winter survival of winter wheat by simulations of plant frost tolerance

    NARCIS (Netherlands)

    Bergjord Olsen, A.K.; Persson, T.; Wit, de A.; Nkurunziza, L.; Sindhøj, E.; Eckersten, H.

    2018-01-01

    Based on soil temperature, snow depth and the grown cultivar's maximum attainable level of frost tolerance (LT50c), the FROSTOL model simulates development of frost tolerance (LT50) and winter damage, thereby enabling risk calculations for winter wheat survival. To explore the accuracy of this

  18. PLASMA-MEMBRANE LIPID ALTERATIONS INDUCED BY NACL IN WINTER-WHEAT ROOTS

    NARCIS (Netherlands)

    MANSOUR, MMF; VANHASSELT, PR; KUIPER, PJC

    A highly enriched plasma membrane fraction was isolated by two phase partitioning from wheat roots (Triticum aestivum L. cv. Vivant) grown with and without 100 mM NaCl. The lipids of the plasma membrane fraction were extracted and characterized. Phosphatidylcholine and phosphatidylethanolamine were

  19. Multi-environment QTL mixed models for drought stress adaptation in wheat

    NARCIS (Netherlands)

    Mathews, K.L.; Malosetti, M.; Chapman, S.; McIntyre, L.; Reynolds, M.; Shorter, R.; Eeuwijk, van F.A.

    2008-01-01

    Many quantitative trait loci (QTL) detection methods ignore QTL-by-environment interaction (QEI) and are limited in accommodation of error and environment-specific variance. This paper outlines a mixed model approach using a recombinant inbred spring wheat population grown in six drought stress

  20. Report of the 2016 Uniform Regional Scab Nursery for spring wheat parents

    Science.gov (United States)

    The Uniform Regional Scab Nursery for Spring Wheat Parents (URSN) was grown for the 21st year in 2016. Five locations (Brookings, SD, St. Paul and Crookston, MN, Prosper, ND, and Morden, Canada) reported results. A total of 33 entries was included in the 2016 URSN, in addition to the resistant chec...

  1. Adverse weather conditions for European wheat production will become more frequent with climate change

    Czech Academy of Sciences Publication Activity Database

    Trnka, Miroslav; Rötter, R. P.; Ruiz-Ramos, M.; Kersebaum, K. C.; Olesen, J. E.; Žalud, Zdeněk; Semenov, M. A.

    2014-01-01

    Roč. 4, č. 7 (2014), s. 637-643 ISSN 1758-678X R&D Projects: GA MŠk(CZ) EE2.3.20.0248; GA MZe QJ1310123 Institutional support: RVO:67179843 Keywords : grown cereal crop * wheat * Europe Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 14.547, year: 2014

  2. Automated hydroponics nutrition plants systems using arduino uno microcontroller based on android

    Science.gov (United States)

    Sihombing, P.; Karina, N. A.; Tarigan, J. T.; Syarif, M. I.

    2018-03-01

    Technological developments today make the combination of science is very common, including in Computer Science and Agriculture to make both of science need each other. This paper aims to develop a control tool for the flow of nutrients of hydroponic plants automatically using Arduino microcontroller and controlled by smartphone. We use an Arduino Uno microcontroller to automatically control the flow of nutrient solution with logic if else. The microcontroller can also send data of fluid level (solution) and temperature around the plant to smartphone android of the owner of the hydroponics plant. The height of the nutrient solution (water) is detected by the Ultrasonic sensor HC-SR04 and the temperature is detected by the temperature sensor LM35. Data from the sensor will forward into Arduino Uno and displayed in liquid crystal display (LCD) then via wireless fidelity (WIFI) ESP8266 module will transmit the height of the nutrient solution and the temperature around of the plants to Android smartphone.

  3. Quality and Quantity of Sorghum Hydroponic Fodder from Different Varieties and Harvest Time

    Science.gov (United States)

    Chrisdiana, R.

    2018-02-01

    This experiment was designed to compare different varieties and harvest time of sorghum hydroponic fodder based on nutrient content and biomass production. Experimental design for fodder productivity was completely randomized design with 2 x 3 factorial, i.e., sorghum varieties (KD 4 and Super-1) and time of harvesting the sorghum hydroponic fodder (8,12 and 16 d). Total biomass and DM production, were affected significantly (p<0.05) on harvest time. Total biomass and nutrient content were increased in longer harvest time. The nutrient content were increased with decreasing total value of DM. Super-1 varieties produce larger biomass and nutrient content higher than KD4 (p<0.05). Based on sorghum hidroponic fodder quality and quantity, sorghum hidroponic fodder with Super-1 varieties harvested at 12 d had a good quality of fodder and it can be alternative of technology providing quality forage and land saving with a short time planting period and continous production.

  4. In situ assessment of morpho-physiological response of wheat (triticum aestivum L.) genotypes to drought

    International Nuclear Information System (INIS)

    Raziuddin; Faratullah; Ullah, N.; Hassan, G.; Swati, Z.A.; Bakht, J.; Shafi, M.; Akmal, M.

    2010-01-01

    In situ studies were conducted to assess the morpho-physiological responses of wheat genotypes to PEG-induced water stress. Wheat genotypes were raised in hydroponic cultures where plants were nourished with half strength Hoagland solution. Plants were exposed to 00, 10, 20, 30 and 40% PEG-6000 at 4-leaf stage. PEG was applied in split doses at the rate of 10% with an interval of 15 days. Significant differences (p=0.05) were recorded for all the parameters studied due to genotypes and PEG concentrations. Wheat genotypes showed negative but variable response to PEG concentrations for shoot length, root length, root/ shoot ratio and root mass whereas PEG imposed stress had positive impact on proline content and abscisic acid (ABA). Genotype Khattakwal attained maximum shoot length in PEG induced stress. Maximum root/shoot ratio and root mass was recorded in Ghaznavi-98 while Tatara and Khattakwal attained maximum relative water content. Endogenous proline and ABA content increased up to 10 fold in response to 40% PEG. Maximum proline was accumulated by Khattakwal whereas maximum ABA by ICP-3. (author)

  5. The sensitivity of an hydroponic lettuce root elongation bioassay to metals, phenol and wastewaters.

    Science.gov (United States)

    Park, Jihae; Yoon, Jeong-Hyun; Depuydt, Stephen; Oh, Jung-Woo; Jo, Youn-Min; Kim, Kyungtae; Brown, Murray T; Han, Taejun

    2016-04-01

    The root elongation bioassay is one of the most straightforward test methods used for environmental monitoring in terms of simplicity, rapidity and economy since it merely requires filter paper, distilled water and Petri dishes. However, filter paper as a support material is known to be problematic as it can reduce the sensitivity of the test. The newly developed hydroponic method reported here differs from the conventional root elongation method (US EPA filter paper method) in that no support material is used and the exposure time is shorter (48 h in this test versus 120 h in the US EPA test). For metals, the hydroponic test method was 3.3 (for Hg) to 57 (for Cu) times more sensitive than the US EPA method with the rank orders of sensitivity, estimated from EC50 values, being Cu≥Cd>Ni≥Zn≥Hg for the former and Hg≥Cu≥Ni≥Cd≥Zn for the latter methods. For phenol, the results did not differ significantly; EC50 values were 124 mg L(-1) and 108-180 mg L(-1) for the hydroponic and filter paper methods, respectively. Lettuce was less sensitive than daphnids to wastewaters, but the root elongation response appears to be wastewater-specific and is especially sensitive for detecting the presence of fluorine. The new hydroponic test thus provides many practical advantages, especially in terms of cost and time-effectiveness requiring only a well plate, a small volume of distilled water and short exposure period; furthermore, no specialist expertise is required. The method is simpler than the conventional EPA technique in not using filter paper which can influence the sensitivity of the test. Additionally, plant seeds have a long shelf-life and require little or no maintenance. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Computer-operated analytical platform for the determination of nutrients in hydroponic systems.

    Science.gov (United States)

    Rius-Ruiz, F Xavier; Andrade, Francisco J; Riu, Jordi; Rius, F Xavier

    2014-03-15

    Hydroponics is a water, energy, space, and cost efficient system for growing plants in constrained spaces or land exhausted areas. Precise control of hydroponic nutrients is essential for growing healthy plants and producing high yields. In this article we report for the first time on a new computer-operated analytical platform which can be readily used for the determination of essential nutrients in hydroponic growing systems. The liquid-handling system uses inexpensive components (i.e., peristaltic pump and solenoid valves), which are discretely computer-operated to automatically condition, calibrate and clean a multi-probe of solid-contact ion-selective electrodes (ISEs). These ISEs, which are based on carbon nanotubes, offer high portability, robustness and easy maintenance and storage. With this new computer-operated analytical platform we performed automatic measurements of K(+), Ca(2+), NO3(-) and Cl(-) during tomato plants growth in order to assure optimal nutritional uptake and tomato production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Prediction system of hydroponic plant growth and development using algorithm Fuzzy Mamdani method

    Science.gov (United States)

    Sudana, I. Made; Purnawirawan, Okta; Arief, Ulfa Mediaty

    2017-03-01

    Hydroponics is a method of farming without soil. One of the Hydroponic plants is Watercress (Nasturtium Officinale). The development and growth process of hydroponic Watercress was influenced by levels of nutrients, acidity and temperature. The independent variables can be used as input variable system to predict the value level of plants growth and development. The prediction system is using Fuzzy Algorithm Mamdani method. This system was built to implement the function of Fuzzy Inference System (Fuzzy Inference System/FIS) as a part of the Fuzzy Logic Toolbox (FLT) by using MATLAB R2007b. FIS is a computing system that works on the principle of fuzzy reasoning which is similar to humans' reasoning. Basically FIS consists of four units which are fuzzification unit, fuzzy logic reasoning unit, base knowledge unit and defuzzification unit. In addition to know the effect of independent variables on the plants growth and development that can be visualized with the function diagram of FIS output surface that is shaped three-dimensional, and statistical tests based on the data from the prediction system using multiple linear regression method, which includes multiple linear regression analysis, T test, F test, the coefficient of determination and donations predictor that are calculated using SPSS (Statistical Product and Service Solutions) software applications.

  8. Identification of Ppd-B1 alleles in common wheat cultivars by CAPS marker.

    Science.gov (United States)

    Okoń, S; Kowalczyk, K; Miazga, D

    2012-05-01

    Photoperiod response is a major determinant of the duration of growth stages in common wheat. In common wheat, many genes play a role in determining flowering time, but the Ppd genes located on the homoeologous group 2 play a major role. Of these Ppd-B1 is located on the short arm of 2B. In 107 common wheat cultivars grown in Poland and neighboring countries, the identification of Ppd-B1 alleles using in-del analysis by using a CAPS markers was investigated. 87 cultivars were shown to carry dominant Ppd-B1 alleles. This shows that Ppd-B1 alleles is have been widely used in common wheat breeding programme in these countries. Recessive ppd-B1 alleles were found only in 20 cultivars (12 Polish, 5 former Soviet Union, 2 German, 1 Swedish).

  9. Nutritional and Nutraceutical Properties of Triticum dicoccum Wheat and Its Health Benefits: An Overview.

    Science.gov (United States)

    Dhanavath, Srinu; Prasada Rao, U J S

    2017-10-01

    Triticum dicoccum wheat is one of the ancient wheat species and is gaining popularity due to its suggested health benefits as well as its suitability for organic farming. In some parts of the world, certain traditional foods prepared with dicoccum wheat are preferred due to their better taste, texture, and flavor. It is rich in bioactive compounds and its starch has been reported to have slow digestibility. However, content and composition of bioactive compounds is reported to vary depending on the geographical location, seasonal variations, varieties used, and the analytical methods followed. Therefore, in the present study, we report the food uses, digestibility of starch, nutritional and nutraceutical compositions of dicoccum wheat grown in different parts of the world, and also its health benefits in ameliorating diabetes and celiac disease. © 2017 Institute of Food Technologists®.

  10. Isotopic and non-isotopic estimations of fertilizer nitrogen uptake by wheat

    International Nuclear Information System (INIS)

    Hamid, A.; Ahmad, M.

    1990-01-01

    Recoveries of fertilizer N in wheat (MexiPak-65) grown in a field experiment were calculated by difference methods including linear regression of total nitrogen in wheat plant, nitrogen 15 method and linear regression of fertilizer. The difference method overestimated recoveries of applied fertilizer at the rates of application when compared to the nitrogen 15 method. Similarly linear regression of total N in wheat on rates of N over estimated recoveries by 25% at the three rates. The difference method of calculating the recoveries of fertilizer N in wheat could give values similar to those calculated by nitrogen 15 method when the minimal N treatment was used as a base instead of zero-N. (orig./A.B.)

  11. Studies on phosphate use efficiency of wheat in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M [Suez Canal Univ., Ismailia (Egypt). Soil and Water Dept.

    1996-07-01

    Genotypic differences in the efficiency of use of phosphorus and other nutrients in wheat was evaluated in a field study. The experiment was conducted during the 1991/92 and 1992/93 seasons on a virgin loamy sandy soil (pH 7.9) with low available phosphorus, in Ismailia, Suez Canal, Egypt. Because of arid climate, water was applied through sprinkler irrigation throughout the growing period (November to May). Shoot samples were taken at four developmental stages. Results show that there are substantial differences in phosphorus use efficiency of wheat. Biomass production, grain yield, straw yield, number of ears per m{sup 2}, and the number of grain per ear differed substantially at different phosphorus levels but there was no major difference in the 1000 grain weight. Wheat cultivars also showed significant differences in their P, K, Ca, and Mg contents. Eighteen local wheat cultivars (Triticum aestivum L.) were grown in the field to obtain information about root characteristics and vesicular-arbiscular mycorrhiza fungi infection that known to play a role in phosphate use efficiency of crops. Some root parameters such as root volume, root dry matter, root length and vesicular-arbiscular mycorrhiza infection rate were measured at three development stages. In addition, root diameter and root density were also measured. Wheat cultivars efficient in phosphorus use have a high root density in the sub soil region and this is accompanied with a high vesicular-arbiscular mycorrhiza infection rate. Cultivars showed differences in root morphology and vesicular-arbiscular mycorrhiza infection rate. Some cultivars had a low root density and vesicular-arbiscular mycorrhiza infection rate and these cultivars exhibited a high phosphorus use efficiency. This was particularly true with cultivars 14, 16, and 18. This information may be useful to plant breeders in their attempts to breed wheat cultivars efficient in phosphate uptake and use. 41 refs, 2 figs, 4 tabs.

  12. Studies on phosphate use efficiency of wheat in Egypt

    International Nuclear Information System (INIS)

    Abdou, M.

    1996-01-01

    Genotypic differences in the efficiency of use of phosphorus and other nutrients in wheat was evaluated in a field study. The experiment was conducted during the 1991/92 and 1992/93 seasons on a virgin loamy sandy soil (pH 7.9) with low available phosphorus, in Ismailia, Suez Canal, Egypt. Because of arid climate, water was applied through sprinkler irrigation throughout the growing period (November to May). Shoot samples were taken at four developmental stages. Results show that there are substantial differences in phosphorus use efficiency of wheat. Biomass production, grain yield, straw yield, number of ears per m 2 , and the number of grain per ear differed substantially at different phosphorus levels but there was no major difference in the 1000 grain weight. Wheat cultivars also showed significant differences in their P, K, Ca, and Mg contents. Eighteen local wheat cultivars (Triticum aestivum L.) were grown in the field to obtain information about root characteristics and vesicular-arbiscular mycorrhiza fungi infection that known to play a role in phosphate use efficiency of crops. Some root parameters such as root volume, root dry matter, root length and vesicular-arbiscular mycorrhiza infection rate were measured at three development stages. In addition, root diameter and root density were also measured. Wheat cultivars efficient in phosphorus use have a high root density in the sub soil region and this is accompanied with a high vesicular-arbiscular mycorrhiza infection rate. Cultivars showed differences in root morphology and vesicular-arbiscular mycorrhiza infection rate. Some cultivars had a low root density and vesicular-arbiscular mycorrhiza infection rate and these cultivars exhibited a high phosphorus use efficiency. This was particularly true with cultivars 14, 16, and 18. This information may be useful to plant breeders in their attempts to breed wheat cultivars efficient in phosphate uptake and use. 41 refs, 2 figs, 4 tabs

  13. Induced mutations for disease resistance in wheat and field beans

    International Nuclear Information System (INIS)

    Abdel-Hak, T.M.; Kamel, A.H.

    1976-01-01

    Wheat disease in Egypt is reviewed and results of mutation breeding by γ irradiation for disease resistance in wheat and field beans are described. Wheat mutants of the variety Giza 155 resistant to leaf rust, Giza 156 resistant to both leaf and yellow rusts, and Tosson with a reasonable level of combined resistance to the three rusts in addition to mutants of the tetraploid variety Dakar 52 with a good level of stem and yellow rust resistance are required. Their seeds were subjected to 10, 15 and 20 krad. Of 3000-3700 M 2 plants from each variety and dosage, 22 plants from both Giza 155 and Giza 156, although susceptible, showed a lower level of disease development. In 1975, M 3 families of these selected plants and 6000 plants from bulked material were grown from each variety and dosage at two locations. Simultaneously, an additional population consisting of 3000 mutagen-treated seeds was grown to have a reasonable chance of detecting mutants; 2 heads from each plant were harvested. These will be grown next season (1976) to make a population of 25,000-30,000 M 2 plants and screened to composite cultures of specific rusts. Vicia faba seeds of field bean varieties Giza 1, Giza 2 and Rebaya 40, equally susceptible to rust and chocolate spot, were subjected to 3, 5 and 7 krad of 60 Co gamma radiation and 800 M 1 plants were grown in 1972 per variety and dose. Up to this later growing season (M 3 ) no resistance was detected in M 3 plank

  14. Boron tolerance in NS wheat lines

    Directory of Open Access Journals (Sweden)

    Brdar Milka

    2006-01-01

    Full Text Available Boron is an essential micronutrient for higher plants. Present in excessive amounts boron becomes toxic and can limit plant growth and yield. Suppression of root growth is one of the symptoms of boron toxicity in wheat. This study was undertaken to investigate the response of 10 perspective NS lines of wheat to high concentrations of boron. Analysis of root growth was done on young plants, germinated and grown in the presence of different concentrations of boric acid (0, 50,100 and 150 mg/1. Significant differences occurred between analyzed genotypes and treatments regarding root length. Average suppression of root growth was between 11,6 and 34,2%, for line NS 252/02 are even noted 61,4% longer roots at treatments in relation to the control. Lines with mean suppression of root growth less than 20% (NS 101/02, NS 138/01, NS 53/03 and NS 73/02 may be considered as boron tolerant. Spearmans coefficients showed high level of agreement regarding rang of root length for genotypes treated with 100 and 150 mg H3BO3/l.

  15. Utilization of fertilizer phosphorus in rice wheat cropping sequence on different soils

    International Nuclear Information System (INIS)

    Singhania, R.A.; Goswami, N.N.

    1975-01-01

    Uptake and utilization of fertilizer phosphorus was studied in a rice-wheat cropping pattern on alluvial, black, red and laterite soils from representative model agronomic centres. Phosphorus was applied as 32 P-tagged superphosphate to rice at varying doses, depending upon the phosphorus fixing capacity of the soil, and to wheat at 30 kg P 2 O 5 /ha. Results showed that rice responded to phosphorus in all soils, but to higher doses only in black and laterite soils which had higher P-fixation capacity. Phosphorus applied to rice had little residual effect on the suceeding crop of wheat but the latter showed higher uptake and utilization of fertilizer phosphorus directly applied to it as compared to that by rice. Wheat responded to P only in red and laterite soils. Results on the transformation of applied P was converted to Fe-P which was of lower availability. These findings suggest that phosphorus in a rice-wheat sequence should preferably be applied to wheat primarily because of (1) greater uptake of fertilizer P by wheat (2) under flooded conditions in which rice is grown most of the applied P is transformed into Fe-P and (3) rice can utilize Fe-P better. (author)

  16. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence.

    Science.gov (United States)

    Rinaldo, Amy; Gilbert, Brian; Boni, Rainer; Krattinger, Simon G; Singh, Davinder; Park, Robert F; Lagudah, Evans; Ayliffe, Michael

    2017-07-01

    The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad-spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field-grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome-encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up-regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress-response genes were up-regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad-spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Arbuscular mycorrhizal fungi modify nutrient allocation and composition in wheat (Triticum aestivum L.) subjected to heat-stress

    DEFF Research Database (Denmark)

    Cabral, Carmina; Ravnskov, Sabine; Tringovska, Ivanka

    2016-01-01

    - and micronutrient concentrations in aboveground biomass; evaluation of AM fungal structures in roots and assessment of light-use efficiency of plants. Results AM increased grain number in wheat under heat-stress, and altered nutrient allocation and tiller nutrient composition. Heat increased number of arbuscules...... in wheat root, whereas number of vesicles and total colonization were unaffected. Heat increased photosystem II yield and the electron transfer rate, whereas non-photochemical quenching decreased during the first 2 days of heat-stress. Conclusions Nutrient allocation and –composition in wheat grown under...

  18. Graphic Grown Up

    Science.gov (United States)

    Kim, Ann

    2009-01-01

    It's no secret that children and YAs are clued in to graphic novels (GNs) and that comics-loving adults are positively giddy that this format is getting the recognition it deserves. Still, there is a whole swath of library card-carrying grown-up readers out there with no idea where to start. Splashy movies such as "300" and "Spider-Man" and their…

  19. Combined cadmium and elevated ozone affect concentrations of cadmium and antioxidant systems in wheat under fully open-air conditions

    International Nuclear Information System (INIS)

    Guo, Hongyan; Tian, Ran; Zhu, Jianguo; Zhou, Hui; Pei, Daping; Wang, Xiaorong

    2012-01-01

    Highlights: ► Combined effect of elevated O 3 and Cd levels on wheat was studied using the free-air concentration enrichment system. ► Elevated O 3 levels result in an increased concentration of Cd in wheat plants grown on Cd-contaminated soils. ► Combined cadmium and elevated O 3 have a significantly synergic effect on oxidative stress in wheat shoots. - Abstract: Pollution of the environment with both ozone (O 3 ) and heavy metals has been steadily increasing. An understanding of their combined effects on plants, especially crops, is limited. Here we studied the effects of elevated O 3 on oxidative stress and bioaccumulation of cadmium (Cd) in wheat under Cd stress using a free-air concentration enrichment (FACE) system. In this field experiment in Jiangdu (Jiangsu Province, China), wheat plants were grown in pots containing soil with various concentrations of cadmium (0, 2, and 10 mg kg −1 Cd was added to the soil) under ambient conditions and under elevated O 3 levels (50% higher than the ambient O 3 ). Present results showed that elevated O 3 led to higher concentrations of Cd in wheat tissues (shoots, husk and grains) with respect to contaminated soil. Combined exposure to Cd and elevated O 3 levels strongly affected the antioxidant isoenzymes POD, APX and CAT and accelerated oxidative stress in wheat leaves. Our results suggest that elevated O 3 levels cause a reduction in food quality and safety.

  20. Esoteric Egyptology, Seed Science and the Myth of Mummy Wheat

    Directory of Open Access Journals (Sweden)

    Gabriel Moshenska

    2017-02-01

    Full Text Available ‘Mummy wheat’ allegedly grown from seeds found in the tombs or wrappings of Egyptian mummies became a scientific sensation in 1840s Britain. At a time of considerable popular interest in Ancient Egypt, mummy wheat was exhibited at the Royal Institution and the British Archaeological Association, cultivated by aristocracy and royalty, and discussed by Darwin, Faraday and others. However, the first controlled experiments on mummy wheat in the 1840s were unsuccessful, as were studies by the British Museum, the Royal Botanic Gardens and other scientific bodies in the 1890s and 1930s. Despite this growing scepticism amongst plant biologists and professional Egyptologists, belief in mummy wheat endured well into the twentieth century. This article traces the myth of mummy wheat in Britain in its intellectual and cultural contexts from its early Victorian emergence through to its mid-twentieth century decline. It focuses in particular efforts by British Museum Egyptologist E.A. Wallis Budge to debunk the myth by a variety of means, including crowd-sourcing experimental data.