Sample records for hydrophobic surfactant protein

  1. Solubilization of Hydrophobic Dyes in Surfactant Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Tehrani-Bagha


    Full Text Available In this paper, the use of surfactants for solubilization of hydrophobic organic dyes (mainly solvent and disperse dyes has been reviewed. The effect of parameters such as the chemical structures of the surfactant and the dye, addition of salt and of polyelectrolytes, pH, and temperature on dye solubilization has been discussed. Surfactant self-assemble into micelles in aqueous solution and below the concentration where this occurs—the critical micelle concentration (CMC—there is no solubilization. Above the CMC, the amount of solubilized dye increases linearly with the increase in surfactant concentration. It is demonstrated that different surfactants work best for different dyes. In general, nonionic surfactants have higher solubilization power than anionic and cationic surfactants. It is likely that the reason for the good performance of nonionic surfactants is that they allow dyes to be accommodated not only in the inner, hydrocarbon part of the micelle but also in the headgroup shell. It is demonstrated that the location of a dye in a surfactant micelle can be assessed from the absorption spectrum of the dye-containing micellar solution.

  2. Biomimicry of surfactant protein C. (United States)

    Brown, Nathan J; Johansson, Jan; Barron, Annelise E


    Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned toward the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C's seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C's molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable polyvaline helix is replaced with a structurally stable polyleucine helix and includes a well-placed positive charge to prevent aggregation. SP-C33 is structurally stable and eliminates the association propensity of the native protein. The second approach follows the same design

  3. Adsorption of hydrophobic organic compounds onto a hydrophobic carbonaceous geosorbent in the presence of surfactants. (United States)

    Wang, Peng; Keller, Arturo A


    The adsorption of hydrophobic organic compounds (HOCs; atrazine and diuron) onto lampblack was studied in the presence of nonionic, cationic, and anionic surfactants (Triton(R) X-100), benzalkonium chloride [BC], and linear alkylbenzene sulfonate [LAS]) to determine the effect of the surfactant on HOC adsorption onto a hydrophobic carbonaceous geosorbent. Linear alkylbenzene sulfonate showed an adsorption capacity higher than that of BC but similar to that of Triton X-100, implying the charge property of a surfactant is not a useful indicator for predicting the surfactant's adsorption onto a hydrophobic medium. The results also indicated that the octanol-water partition coefficient (K(OW)) of a surfactant is not a good predictor of that surfactant's sorption onto a hydrophobic medium. Under subsaturation adsorption conditions (i.e., before sorption saturation is reached), surfactant adsorption reduced HOC adsorption to a significant extent, with the reduction in HOC adsorption increasing monotonically with the amount of surfactant adsorbed. Among the three surfactants, Triton X-100 was the most effective in reducing HOC adsorption, whereas BC and LAS showed similar effectiveness in this regard. Under the same amount of the surfactant sorbed, the reduction in atrazine adsorption was consistently greater than that for diuron because of atrazine's lower hydrophobicity. No significant difference was observed in the amount of the HOC adsorbed under different adsorption sequences. Our results showed that the presence of surfactant can significantly decrease HOC adsorption onto hydrophobic environmental media and, thus, is important in predicting HOC fate and transport in the environment.

  4. Structural study of surfactant-dependent interaction with protein

    Energy Technology Data Exchange (ETDEWEB)

    Mehan, Sumit; Aswal, Vinod K., E-mail: [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, Joachim [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen (Switzerland)


    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  5. Modification of Deeply Buried Hydrophobic Interfaces by Ionic Surfactants

    Energy Technology Data Exchange (ETDEWEB)

    L Tamam; D Pontoni Z Sapir; S Yefet; S Sloutskin; B Ocko; H Reichert; M Deutsch


    Hydrophobicity, the spontaneous segregation of oil and water, can be modified by surfactants. The way this modification occurs is studied at the oil-water interface for a range of alkanes and two ionic surfactants. A liquid interfacial monolayer, consisting of a mixture of alkane molecules and surfactant tails, is found. Upon cooling, it freezes at T{sub s}, well above the alkane's bulk freezing temperature, T{sub b}. The monolayer's phase diagram, derived by surface tensiometry, is accounted for by a mixtures-based theory. The monolayer's structure is measured by high-energy X-ray reflectivity above and below T{sub s}. A solid-solid transition in the frozen monolayer, occurring approximately 3 C below T{sub s}, is discovered and tentatively suggested to be a rotator-to-crystal transition.

  6. Hydrophobic patches on protein surfaces

    NARCIS (Netherlands)

    Lijnzaad, P.


    Hydrophobicity is a prime determinant of the structure and function of proteins. It is the driving force behind the folding of soluble proteins, and when exposed on the surface, it is frequently involved in recognition and binding of ligands and other proteins. The energetic cost of

  7. Production and characterisation of recombinant forms of human pulmonary surfactant protein C (SP-C)

    DEFF Research Database (Denmark)

    Lukovic, Dunja; Plasencia, Inés; Taberner, Francisco J


    Surfactant protein C (SP-C) is an essential component for the surface tension-lowering activity of the pulmonary surfactant system. It contains a valine-rich alpha helix that spans the lipid bilayer, and is one of the most hydrophobic proteins known so far. SP-C is also an essential component of ...

  8. Polymer-surfactant interactions studied by titration microcalorimetry : Influence of polymer hydrophobicity, electrostatic forces, and surfactant aggregational state

    NARCIS (Netherlands)

    Kevelam, J; van Breemen, J.F.L.; Blokzijl, W.; Engberts, J.B.F.N.


    Isothermal titration microcalorimetry has been applied to investigate the interactions between hydrophobically-modified water-soluble polymers and surfactants. The following polymers were used in this study: poly(sodium acrylate-co-n-alkyl methacrylate) (A), where n-alkyl = C9H19, C12H25, and C18H37

  9. Hydrophobically modified polyelectrolytes : synthesis, properties and interactions with surfactants

    NARCIS (Netherlands)

    Nieuwkerk, A.C.


    Hydrophobically modified polyelectrolytes can form micelle-like aggregates, so-called microdomains, in aqueous solution. The hydrophobic side chains constitute the apolar inner part of these microdomains and the hydrophilic groups on the polyelectrolyte backbone are at the surface of the

  10. Size influences the effect of hydrophobic nanoparticles on lung surfactant model systems. (United States)

    Dwivedi, Mridula V; Harishchandra, Rakesh Kumar; Koshkina, Olga; Maskos, Michael; Galla, Hans-Joachim


    The alveolar lung surfactant (LS) is a complex lipid protein mixture that forms an interfacial monolayer reducing the surface tension to near zero values and thus preventing the lungs from collapse. Due to the expanding field of nanotechnology and the corresponding unavoidable exposure of human beings from the air, it is crucial to study the potential effects of nanoparticles (NPs) on the structural organization of the lung surfactant system. In the present study, we investigated both, the domain structure in pure DPPC monolayers as well as in lung surfactant model systems. In the pure lipid system we found that two different sized hydrophobic polymeric nanoparticles with diameter of ~12 nm and ~136 nm have contrasting effect on the functional and structural behavior. The small nanoparticles inserted into fluid domains at the LE-LC phase transition are not visibly disturbing the phase transition but disrupting the domain morphology of the LE phase. The large nanoparticles led to an expanded isotherm and to a significant decrease in the line tension and thus to a drastic disruption of the domain structures at a much lower number of nanoparticles with respect to the lipid. The surface activity of the model LS films again showed drastic variations due to presence of different sized NPs illustrated by the film balance isotherms and the atomic force microscopy. AFM revealed laterally profuse multilayer protrusion formation on compression but only in the presence of 136 nm sized nanoparticles. Moreover we investigated the vesicle insertion process into a preformed monolayer. A severe inhibition was observed only in the presence of ~136 nm NPs compared to minor effects in the presence of ~12 nm NPs. Our study clearly shows that the size of the nanoparticles made of the same material determines the interaction with biological membranes. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Surfactant protein D in newborn infants

    DEFF Research Database (Denmark)

    Dahl, Marianne; Juvonen, Pekka Olavi; Holmskov, Uffe


    Surfactant protein D (SP-D) is a collectin that plays an important role in the innate immune system. The role of SP-D in the metabolism of surfactant is as yet quite unclear. The aims of this study were to establish normal values of SP-D in the umbilical cord blood and capillary blood of mature...

  12. Stabilization of liquid crystal dispersion by nonionic surfactant/acrylamide copolymer containing hydrophobic moieties

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.J.; Kim, M.H.; Lee, J.R. [Korea Research Institute of Chemical Technology, Taejon (Korea)


    The effect of nonionic surfactant (H(OCH){sub 2}-OC{sub 6}H{sub 4}-C{sub 9}H{sub 19}, NP-8) and acrylamide copolymer containing nonylphenyl groups as hydrophobic moieties on the stabilization of liquid crystal (LC)-in-water dispersion has been studied. According to cloud point and adsorption measurements, the hydrophobically strong interaction between NP-8 and the nonylphenol moieties is formed. And the addition of surfactant increases the stability of LC dispersion and improve the electrooptical properties of the nematic curvilinear aligned phase (NCAP) composite film. It is due to the presence of surfactant which allows the formation of nonpolar microenvironment in the round of LC droplet and finally reduces the anchoring effect between LC and the polymeric wall. 21 refs., 8 figs.

  13. Partitioning of hydrophobic pesticides within a soil-water-anionic surfactant system. (United States)

    Wang, Peng; Keller, Arturo A


    Surfactants can be added to pesticide-contaminated soils to enhance the treatment efficiency of soil washing. Our results showed that pesticide (atrazine and diuron) partitioning and desorbability within a soil-water-anionic surfactant system is soil particle-size dependent and is significantly influenced by the presence of anionic surfactant. Anionic surfactant (linear alkylbenzene sulphonate, LAS) sorption was influenced by its complexation with both the soluble and exchangeable divalent cations in soils (e.g. Ca2+, Mg2+). In this study, we propose a new concept: soil system hardness which defines the total amount of soluble and exchangeable divalent cations associated with a soil. Our results showed that anionic surfactant works better with soils having lower soil system hardness. It was also found that the hydrophobic organic compounds (HOCs) sorbed onto the LAS-divalent cation precipitate, resulting in a significant decrease in the aqueous concentration of HOC. Our results showed that the effect of exchangeable cations and sorption of HOC onto the surfactant precipitates needs to be considered to accurately predict HOC behavior within soil-water-anionic surfactant systems.

  14. A method for detecting hydrophobic patches protein

    NARCIS (Netherlands)

    Lijnzaad, P.; Berendsen, H.J.C.; Argos, P.


    A method for the detection of hydrophobic patches on the surfaces of protein tertiary structures is presented, it delineates explicit contiguous pieces of surface of arbitrary size and shape that consist solely of carbon and sulphur atoms using a dot representation of the solvent-accessible surface,

  15. Multivalent-Counterion-Induced Surfactant Multilayer Formation at Hydrophobic and Hydrophilic Solid-Solution Interfaces. (United States)

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun; Xu, Hui; Tucker, Ian M; Petkov, Jordan T; Sivia, Devinderjit S


    Surface multilayer formation from the anionic-nonionic surfactant mixture of sodium dodecyl dioxyethylene sulfate, SLES, and monododecyl dodecaethylene glycol, C12E12, by the addition of multivalent Al(3+) counterions at the solid-solution interface is observed and characterized by neutron reflectivity, NR. The ability to form surface multilayer structures on hydrophobic and hydrophilic silica and cellulose surfaces is demonstrated. The surface multilayer formation is more pronounced and more well developed on the hydrophilic and hydrophobic silica surfaces than on the hydrophilic and hydrophobic cellulose surfaces. The less well developed multilayer formation on the cellulose surfaces is attributed to the greater surface inhomogeneities of the cellulose surface which partially inhibit lateral coherence and growth of the multilayer domains at the surface. The surface multilayer formation is associated with extreme wetting properties and offers the potential for the manipulation of the solid surfaces for enhanced adsorption and control of the wetting behavior.

  16. Surfactant protein D is proatherogenic in mice

    DEFF Research Database (Denmark)

    Sørensen, G. L.; Madsen, J.; Kejling, K.


    Surfactant protein D (SP-D) is an important innate immune defense molecule that mediates clearance of pathogens and modulates the inflammatory response. Moreover, SP-D is involved in lipid homeostasis, and pulmonary accumulation of phospholipids has previously been observed in SP-D-deficient (Spd...

  17. Structure of DNA-Cationic Surfactant Complexes at Hydrophobically Modified and Hydrophilic Silica Surfaces as Revealed by Neutron Reflectometry

    DEFF Research Database (Denmark)

    Cardenas Gomez, Marite; Wacklin, Hanna; Campbell, Richard A.


    with dodecyltrimethylammonium bromide (DTAB) and hexadecyltrimethylammonium bromide (CTAB) on hydrophobic surfaces, where we show that DNA molecules are located on top of a self-assembled surfactant monolayer, with the thickness of the DNA layer and the surfactant DNA ratio determined by the surface coverage of the underlying...... interfacial structures, a higher concentration in relation to its cmc is required for the more soluble DTAB surfactant with a shorter alkyl chain than for CTAB. Our results suggest that the DNA Molecules Will spontaneously form a relatively dense, thin layer on top of a surfactant monolayer (hydrophobic...... surface) or a layer of admicelles (hydrophilic surface) as long as the surface concentration of surfactant is great enough to ensure a high interfacial-charge density. These findings have implications for bioanalytical and nanotechnology applications, which require the deposition of DNA layers with well...

  18. Boundary layers of aqueous surfactant and block copolymer solutions against hydrophobic and hydrophilic solid surfaces

    International Nuclear Information System (INIS)

    Steitz, Roland; Schemmel, Sebastian; Shi Hongwei; Findenegg, Gerhard H


    The boundary layer of aqueous surfactants and amphiphilic triblock copolymers against flat solid surfaces of different degrees of hydrophobicity was investigated by neutron reflectometry (NR), grazing incidence small angle neutron scattering (GISANS) and atomic force microscopy (AFM). Solid substrates of different hydrophobicities were prepared by appropriate surface treatment or by coating silicon wafers with polymer films of different chemical natures. For substrates coated with thin films (20-30 nm) of deuterated poly(styrene) (water contact angle θ w ∼ 90), neutron reflectivity measurements on the polymer/water interface revealed a water depleted liquid boundary layer of 2-3 nm thickness and a density about 90% of the bulk water density. No pronounced depletion layer was found at the interface of water against a less hydrophobic polyelectrolyte coating (θ w ∼ 63). It is believed that the observed depletion layer at the hydrophobic polymer/water interface is a precursor of the nanobubbles which have been observed by AFM at this interface. Decoration of the polymer coatings by adsorbed layers of nonionic C m E n surfactants improves their wettability by the aqueous phase at surfactant concentrations well below the critical micellar concentration (CMC) of the surfactant. Here, GISANS experiments conducted on the system SiO 2 /C 8 E 4 /D 2 O reveal that there is no preferred lateral organization of the C 8 E 4 adsorption layers. For amphiphilic triblock copolymers (PEO-PPO-PEO) it is found that under equilibrium conditions they form solvent-swollen brushes both at the air/water and the solid/water interface. In the latter case, the brushes transform to uniform, dense layers after extensive rinsing with water and subsequent solvent evaporation. The primary adsorption layers maintain properties of the precursor brushes. In particular, their thickness scales with the number of ethylene oxide units (EO) of the block copolymer. In the case of dip-coating without

  19. Comblike poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers as anti-infection surface modifying agents. (United States)

    Mai-ngam, Katanchalee


    A series of structurally well-defined poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers that undergo surface induced self assembly on hydrophobic biomaterial surfaces were synthesized and characterized. The surfactant polymers consist of low molecular weight (Mw) chitosan backbone with hydrophilic poly(ethylene oxide) (PEO) and hydrophobic hexyl pendant groups. Chitosan was depolymerized by nitrous acid deaminative cleavage. Hexanal and aldehyde-terminated PEO chains were simultaneously attached to low Mw chitosan hydrochloride via reductive amination. The surfactant polymers were prepared with various ratios of the two side chains. The molecular composition of the surfactant polymers was determined by FT-IR and 1H NMR. Surface active properties at the air-water interface were determined by Langmuir film balance measurements. The surfactant polymers with PEO/hexyl ratios of 1:3.0 and 1:14.4 were used as surface modifying agents to investigate their anti-infection properties. E. coli adhesion on Silastic surface was decreased significantly by the surfactant polymer with PEO/hexyl 1:3.0. Surface growth of adherent E. coli was effectively suppressed by both tested surfactant polymers.

  20. Molecular dynamics of surfactant protein C

    DEFF Research Database (Denmark)

    Ramírez, Eunice; Santana, Alberto; Cruz, Anthony


    Surfactant protein C (SP-C) is a membrane-associated protein essential for normal respiration. It has been found that the alpha-helix form of SP-C can undergo, under certain conditions, a transformation from an alpha-helix to a beta-strand conformation that closely resembles amyloid fibrils, which...... are possible contributors to the pathogenesis of pulmonary alveolar proteinosis. Molecular dynamics simulations using the NAMD2 package were performed for systems containing from one to seven SP-C molecules to study their behavior in water. The results of our simulations show that unfolding of the protein...

  1. Biotoxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system. (United States)

    Pan, Tao; Liu, Chunyan; Zeng, Xinying; Xin, Qiao; Xu, Meiying; Deng, Yangwu; Dong, Wei


    A recent work has shown that hydrophobic organic compounds solubilized in the micelle phase of some nonionic surfactants present substrate toxicity to microorganisms with increasing bioavailability. However, in cloud point systems, biotoxicity is prevented, because the compounds are solubilized into a coacervate phase, thereby leaving a fraction of compounds with cells in a dilute phase. This study extends the understanding of the relationship between substrate toxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system. Biotoxicity experiments were conducted with naphthalene and phenanthrene in the presence of mixed nonionic surfactants Brij30 and TMN-3, which formed a micelle phase or cloud point system at different concentrations. Saccharomyces cerevisiae, unable to degrade these compounds, was used for the biotoxicity experiments. Glucose in the cloud point system was consumed faster than in the nonionic surfactant micelle phase, indicating that the solubilized compounds had increased toxicity to cells in the nonionic surfactant micelle phase. The results were verified by subsequent biodegradation experiments. The compounds were degraded faster by PAH-degrading bacterium in the cloud point system than in the micelle phase. All these results showed that biotoxicity of the hydrophobic organic compounds increases with bioavailability in the surfactant micelle phase but remains at a low level in the cloud point system. These results provide a guideline for the application of cloud point systems as novel media for microbial transformation or biodegradation.

  2. The interplay of lung surfactant proteins and lipids assimilates the macrophage clearance of nanoparticles.

    Directory of Open Access Journals (Sweden)

    Christian A Ruge

    Full Text Available The peripheral lungs are a potential entrance portal for nanoparticles into the human body due to their large surface area. The fact that nanoparticles can be deposited in the alveolar region of the lungs is of interest for pulmonary drug delivery strategies and is of equal importance for toxicological considerations. Therefore, a detailed understanding of nanoparticle interaction with the structures of this largest and most sensitive part of the lungs is important for both nanomedicine and nanotoxicology. Astonishingly, there is still little known about the bio-nano interactions that occur after nanoparticle deposition in the alveoli. In this study, we compared the effects of surfactant-associated protein A (SP-A and D (SP-D on the clearance of magnetite nanoparticles (mNP with either more hydrophilic (starch or hydrophobic (phosphatidylcholine surface modification by an alveolar macrophage (AM cell line (MH-S using flow cytometry and confocal microscopy. Both proteins enhanced the AM uptake of mNP compared with pristine nanoparticles; for the hydrophilic ST-mNP, this effect was strongest with SP-D, whereas for the hydrophobic PL-mNP it was most pronounced with SP-A. Using gel electrophoretic and dynamic light scattering methods, we were able to demonstrate that the observed cellular effects were related to protein adsorption and to protein-mediated interference with the colloidal stability. Next, we investigated the influence of various surfactant lipids on nanoparticle uptake by AM because lipids are the major surfactant component. Synthetic surfactant lipid and isolated native surfactant preparations significantly modulated the effects exerted by SP-A and SP-D, respectively, resulting in comparable levels of macrophage interaction for both hydrophilic and hydrophobic nanoparticles. Our findings suggest that because of the interplay of both surfactant lipids and proteins, the AM clearance of nanoparticles is essentially the same, regardless

  3. Surfactant protein A and surfactant protein D variation in pulmonary disease

    DEFF Research Database (Denmark)

    Sørensen, Grith Lykke; Husby, Steffen; Holmskov, Uffe


    Surfactant proteins A (SP-A) and D (SP-D) have been implicated in pulmonary innate immunity. The proteins are host defense lectins, belonging to the collectin family which also includes mannan-binding lectin (MBL). SP-A and SP-D are pattern-recognition molecules with the lectin domains binding...... lavage and blood have indicated associations with a multitude of pulmonary inflammatory diseases. In addition, accumulating evidence in mouse models of infection and inflammation indicates that recombinant forms of the surfactant proteins are biologically active in vivo and may have therapeutic potential...... in controlling pulmonary inflammatory disease. The presence of the surfactant collectins, especially SP-D, in non-pulmonary tissues, such as the gastrointestinal tract and genital organs, suggest additional actions located to other mucosal surfaces. The aim of this review is to summarize studies on genetic...

  4. Porcine lung surfactant protein B gene (SFTPB)

    DEFF Research Database (Denmark)

    Cirera Salicio, Susanna; Fredholm, Merete


    The porcine surfactant protein B (SFTPB) is a single copy gene on chromosome 3. Three different cDNAs for the SFTPB have been isolated and sequenced. Nucleotide sequence comparison revealed six nonsynonymous single nucleotide polymorphisms (SNPs), four synonymous SNPs and an in-frame deletion of 69...... bp in the region coding for the active protein. Northern analysis showed lung-specific expression of three different isoforms of the SFTPB transcript. The expression level for the SFTPB gene is low in 50 days-old fetus and it increases during lung development. Quantitative real-time polymerase chain...

  5. Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D.

    Directory of Open Access Journals (Sweden)

    Taku Fukuzawa

    Full Text Available Lung surfactant is a complex mixture of lipids and proteins, which is secreted from the alveolar type II epithelial cell and coats the surface of alveoli as a thin layer. It plays a crucial role in the prevention of alveolar collapse through its ability to reduce surface tension. Under normal conditions, surfactant homeostasis is maintained by balancing its release and the uptake by the type II cell for recycling and the internalization by alveolar macrophages for degradation. Little is known about how the surfactant pool is monitored and regulated. Here we show, by an analysis of gene-targeted mice exhibiting massive accumulation of surfactant, that Ig-Hepta/GPR116, an orphan receptor, is expressed on the type II cell and sensing the amount of surfactant by monitoring one of its protein components, surfactant protein D, and its deletion results in a pulmonary alveolar proteinosis and emphysema-like pathology. By a coexpression experiment with Sp-D and the extracellular region of Ig-Hepta/GPR116 followed by immunoprecipitation, we identified Sp-D as the ligand of Ig-Hepta/GPR116. Analyses of surfactant metabolism in Ig-Hepta(+/+ and Ig-Hepta(-/- mice by using radioactive tracers indicated that the Ig-Hepta/GPR116 signaling system exerts attenuating effects on (i balanced synthesis of surfactant lipids and proteins and (ii surfactant secretion, and (iii a stimulating effect on recycling (uptake in response to elevated levels of Sp-D in alveolar space.

  6. Rapid visual detection of quaternary ammonium surfactants using citrate-capped silver nanoparticles (Ag NPs) based on hydrophobic effect. (United States)

    Zheng, Li-Qing; Yu, Xiao-Dong; Xu, Jing-Juan; Chen, Hong-Yuan


    In this work, a rapid, sensitive and low-cost colorimetric method for detection of quaternary ammonium surfactants using citrate-capped silver nanoparticles (Ag NPs) was developed. The quaternary ammonium surfactants induce the aggregation of Ag NPs through the hydrophobic effect, which is a novel aggregation mechanism of Ag NPs. The addition of cationic surfactant results in color change of Ag NPs solution from yellow to red and finally to colorless, which is due to the broadening of the surface plasmon band. The color change was monitored using a UV-vis spectrophotometer. The LOD of different cationic surfactants was in the range of 0.5-5 µM. More importantly, this detection method was successfully utilized to the disinfectant residual sample. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

  7. Proteins and protein/surfactant mixtures at interfaces in motion

    NARCIS (Netherlands)

    Boerboom, F.J.G.


    The research described in this thesis covers a number of aspects of the relation between surface properties and foaming properties of proteins, low molecular surfactants and mixtures thereof. This work is the result of a question of the industrial partners if it is possible to understand

  8. Surfactant protein D is proatherogenic in mice

    DEFF Research Database (Denmark)

    Sorensen, Grith L; Madsen, Jens; Kejling, Karin


    Surfactant protein D (SP-D) is an important innate immune defense molecule that mediates clearance of pathogens and modulates the inflammatory response. Moreover, SP-D is involved in lipid homeostasis, and pulmonary accumulation of phospholipids has previously been observed in SP-D-deficient (Spd......-/-) mice. Atherogenesis involves both inflammation and lipid deposition, and we investigated the role of SP-D in the development of atherosclerosis. SP-D synthesis was localized to vascular endothelial cells. Atherosclerotic lesion areas were 5.6-fold smaller in the aortic roots in Spd-/- mice compared...... with wild-type C57BL/6N mice on an atherogenic diet. HDL cholesterol (HDL-C) was significantly elevated in Spd-/- mice. Treatment of Spd-/- mice with a recombinant fragment of human SP-D resulted in decreases of HDL-C (21%) as well as total cholesterol (26%), and LDL cholesterol (28%). Plasma TNF...

  9. Synthesis and characterization of high molecular weight hydrophobically modified polyacrylamide nanolatexes using novel nonionic polymerizable surfactants

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh


    Full Text Available In this article, nine hydrophobically modified polyacrylamides (HM-PAM nanolatexes, were synthesized by copolymerizing the acrylamide monomer and novel polymerizable surfactants (surfmers. The reaction was carried out by inverse microemulsion copolymerization technique. The copolymerization was initiated by redox initiators composed of potassium peroxodisulphate and sodium bisulfite. The emulsion was stabilized using mixed tween 85 and span 80 as nonionic emulsifiers. The prepared HM-PAMs were classified into three groups according to the surfmers used in the copolymerization. The chemical structures of the prepared HM-PAMs were confirmed by FT-IR, 1H NMR and 13C NMR. The thermal properties were estimated with the thermal gravimetric analysis (TGA. The size and morphology of the prepared latexes were investigated by the dynamic light scattering (DLS and the High Resolution Transmission Electron Microscope (HRTEM. Finally, the molecular weights of the prepared copolymers were determined by the GPC and the viscosity average molecular weight method. They were situated between 1.58 × 106 and 0.89 × 106.

  10. Prediction of Hydrophobic Cores of Proteins Using Wavelet Analysis. (United States)

    Hirakawa; Kuhara


    Information concerning the secondary structures, flexibility, epitope and hydrophobic regions of amino acid sequences can be extracted by assigning physicochemical indices to each amino acid residue, and information on structure can be derived using the sliding window averaging technique, which is in wide use for smoothing out raw functions. Wavelet analysis has shown great potential and applicability in many fields, such as astronomy, radar, earthquake prediction, and signal or image processing. This approach is efficient for removing noise from various functions. Here we employed wavelet analysis to smooth out a plot assigned to a hydrophobicity index for amino acid sequences. We then used the resulting function to predict hydrophobic cores in globular proteins. We calculated the prediction accuracy for the hydrophobic cores of 88 representative set of proteins. Use of wavelet analysis made feasible the prediction of hydrophobic cores at 6.13% greater accuracy than the sliding window averaging technique.

  11. Protein-induced bilayer Perturbations: Lipid ordering and hydrophobic coupling

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Laursen, Ib; Bohr, Henrik


    The host lipid bilayer is increasingly being recognized as an important non-specific regulator of membrane protein function. Despite considerable progress the interplay between hydrophobic coupling and lipid ordering is still elusive. We use electron spin resonance (ESR) to study the interaction...... between the model protein gramicidin and lipid bilayers of varying thickness. The free energy of the interaction is up to −6 kJ/mol; thus not strongly favored over lipid–lipid interactions. Incorporation of gramicidin results in increased order parameters with increased protein concentration...... and hydrophobic mismatch. Our findings also show that at high protein:lipid ratios the lipids are motionally restricted but not completely immobilized. Both exchange on and off rate values for the lipid ↔ gramicidin interaction are lowest at optimal hydrophobic matching. Hydrophobic mismatch of few Å results...

  12. Improved gel electrophoresis matrix for hydrophobic protein separation and identification. (United States)

    Tokarski, Caroline; Fillet, Marianne; Rolando, Christian


    We propose an improved acrylamide gel for the separation of hydrophobic proteins. The separation strategy is based on the incorporation of N-alkylated and N,N'-dialkylated acrylamide monomers in the gel composition in order to increase hydrophobic interactions between the gel matrix and the membrane proteins. Focusing on the most efficient monomer, N,N'-dimethylacrylamide, the potentiality of the new matrix was evaluated on membrane proteins of the human colon HCT-116 cell line. Protein analysis was performed using an adapted analytical strategy based on FT-ICR tandem mass spectrometry. As a result of this comparative study, including advanced reproducibility experiments, more hydrophobic proteins were identified in the new gel (average GRAVY: -0.085) than in the classical gel (average GRAVY: -0.411). Highly hydrophobic peptides were identified reaching a GRAVY value up to 1.450, therefore indicating their probable locations in the membrane. Focusing on predicted transmembrane domains, it can be pointed out that 27 proteins were identified in the hydrophobic gel containing up to 11 transmembrane domains; in the classical gel, only 5 proteins containing 1 transmembrane domain were successfully identified. For example, multiple ionic channels and receptors were characterized in the hydrophobic gel such as the sodium/potassium channel and the glutamate or the transferrin receptors whereas they are traditionally detected using specific enrichment techniques such as immunoprecipitation. In total, membrane proteins identified in the classical gel are well documented in the literature, while most of the membrane proteins only identified on the hydrophobic gel have rarely or never been described using a proteomic-based approach. 2010 Elsevier Inc. All rights reserved.

  13. Role of surfactant protein A (SP-A)/lipid interactions for SP-A functions in the lung. (United States)

    Casals, C


    Surfactant protein A (SP-A), an oligomeric glycoprotein, is a member of a group of proteins named collectins that contain collagen-like and Ca(2+)-dependent carbohydrate recognition domains. SP-A interacts with a broad range of amphipathic lipids (glycerophospholipids, sphingophospholipids, glycosphingolipids, lipid A, and lipoglycans) that are present in surfactant or microbial membranes. This review summarizes SP-A/lipid interaction studies regarding the lipid system used (i.e., phospholipid vesicles, phospholipid monolayers, and lipids immobilized on silica or adsorbed on a solid support). The effect of calcium, ionic strength, and pH on the binding of SP-A to lipids and the subsequent lipid aggregation process is discussed. Current evidence suggests that hydrophobic-binding forces are involved in the peripherical association of SP-A to membranes. It is also proposed that fluid and liquid-ordered phase coexistence in surfactant membranes might favor partition of SP-A into those membranes. The binding of SP-A to surfactant membranes containing hydrophobic surfactant peptides makes possible the formation of a membrane reservoir in the alveolar fluid that is protected by SP-A against inactivation and improves the rate of surfactant film formation. In addition, the interaction of SP-A with membranes might enhance the affinity of SP-A for terminal carbohydrates of glycolipids or glycoproteins on the surface of invading microorganisms.

  14. Fragment-based approach to calculate hydrophobicity of anionic and nonionic surfactants derived from chromatographic retention on a C18 stationary phase. (United States)

    Hammer, Jort; Haftka, Joris J-H; Scherpenisse, Peter; Hermens, Joop L M; de Voogt, Pim W P


    To predict the fate and potential effects of organic contaminants, information about their hydrophobicity is required. However, common parameters to describe the hydrophobicity of organic compounds (e.g., octanol-water partition constant [K OW ]) proved to be inadequate for ionic and nonionic surfactants because of their surface-active properties. As an alternative approach to determine their hydrophobicity, the aim of the present study was therefore to measure the retention of a wide range of surfactants on a C 18 stationary phase. Capacity factors in pure water (k' 0 ) increased linearly with increasing number of carbon atoms in the surfactant structure. Fragment contribution values were determined for each structural unit with multilinear regression, and the results were consistent with the expected influence of these fragments on the hydrophobicity of surfactants. Capacity factors of reference compounds and log K OW values from the literature were used to estimate log K OW values for surfactants (log KOWHPLC). These log KOWHPLC values were also compared to log K OW values calculated with 4 computational programs: KOWWIN, Marvin calculator, SPARC, and COSMOThermX. In conclusion, capacity factors from a C 18 stationary phase are found to better reflect hydrophobicity of surfactants than their K OW values. Environ Toxicol Chem 2017;36:329-336. © 2016 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC. © 2016 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.

  15. Alpha-1-antitrypsin studies: canine serum and canine surfactant protein

    International Nuclear Information System (INIS)

    Tuttle, W.C.; Slauson, D.O.; Dahlstrom, M.; Gorman, C.


    Canine serum alpha-1-antitrypsin was isolated by gel filtration and affinity chromatography and characterized by polyacrylamide gel electrophoresis and immunoelectrophoresis. Measurement of the trypsin inhibitory capacity of the separated protein indicated a ninefold concentration of functional trypsin inhibitor during the isolation procedure. Electrophoresis demonstrated the presence of a single protein with alpha-globulin mobility and a molecular weight near that of human alpha-1-antitrypsin. The trypsin inhibitory capacity of pulmonary surfactant protein from five Beagle dogs was measured, related to total surfactant protein concentration, and compared with similar measurements on whole serum from the same animals. Results indicated a variable concentration of trypsin inhibitor in the canine pulmonary surfactant protein. However, the concentration in the surfactant protein was always significantly higher than that in the corresponding serum sample. Preliminary experiments designed to separate the trypsin inhibitory fraction(s) from the other surfactant proteins by gel filtration chromatography indicated that the trypsin inhibitor was probably a single protein with a molecular weight near that of alpha-1-antitrypsin. (U.S.)

  16. Biosurfactants and surfactants interacting with membranes and proteins: Same but different? (United States)

    Otzen, Daniel E


    Biosurfactants (BS) are surface-active molecules produced by microorganisms. For several decades they have attracted interest as promising alternatives to current petroleum-based surfactants. Aside from their green profile, they have remarkably low critical micelle concentrations, reduce the air/water surface tension to very low levels and are excellent emulsifiers, all of which make them comparable or superior to their synthetic counterparts. These remarkable physical properties derive from their more complex chemical structures in which hydrophilic and hydrophobic regions are not as clearly separated as chemical surfactants but have a more mosaic distribution of polarity as well as branched or circular structures. This allows the lipopeptide surfactin to adopt spherical structures to facilitate dense packing at interfaces. They are also more complex. Glycolipid BS, e.g. rhamnolipids (RL) and sophorolipids, are produced biologically as mixtures which vary in the size and saturation of the hydrophobic region as well as modifications in the hydrophilic headgroup, such as the number of sugar groups and different levels of acetylation, leading to variable surface-active properties. Their amphiphilicity allows RL to insert easily into membranes at sub-cmc concentrations to modulate membrane structure and extract lipopolysaccharides, leading to extensive biofilm remodeling in vivo, sometimes in collaboration with hydrophobic RL precursors. Thanks to their mosaicity, even anionic BS like RL only bind weakly to proteins and show much lower denaturing potency, even supporting membrane protein refolding. Nevertheless, they can promote protein degradation by proteases e.g. by neutralizing positive charges, which together with their biofilm-combating properties makes them very promising detergent surfactants. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider. Copyright © 2016 Elsevier B

  17. Effect of presence of benzene ring in surfactant hydrophobic chain on the transformation towards one dimensional aggregate

    Directory of Open Access Journals (Sweden)

    Rabah A. Khalil


    Full Text Available The formation of wormlike micelle and the following significant changes in rheological properties suffer misunderstanding from both theoretical and fundamental aspects. Recently, we have introduced a theory for interpreting such important phenomenon which is referred to as critical intermolecular forces (CIF. The theory has stated that the hydrophobic effect is the main factor for the formation of worm-like aggregates. Therefore, it seems interesting to check out the validity of this new physical insight through investigating the presence of benzene ring as less hydrophobic group in contrast to that of alkyl in surfactant tail. The mixture of anionic sodium dodecylbenzenesulphonate (SDBS and cationic cetyltrimethylammonium bromide (CTAB shows a high dynamic viscosity peak at the ratio of 80/20 of 3 wt.% CTAB/SDBS indicating the formation of wormlike micelles. The thermodynamic properties have been evaluated for this mixture exhibiting good agreement with the rheological changes. Interestingly, the results show the presence of benzene ring (in SDBS causing a negative effect towards the formation of one dimensional aggregate in contrast to previous results which support the proposed CIF theory. The presence of nonionic surfactant TritonX-100 in binary and ternary systems of SDBS and CTAB prohibits the formation of wormlike micelles.

  18. Surfactant-enhanced liquid-liquid microextraction coupled to micro-solid phase extraction onto highly hydrophobic magnetic nanoparticles

    International Nuclear Information System (INIS)

    Giannoulis, Kiriakos M.; Giokas, Dimosthenis L.; Tsogas, George Z.; Vlessidis, Athanasios G.; Zhu, Qing; Pan, Qinmin


    We are presenting a simplified alternative method for dispersive liquid-liquid microextraction (DLLME) by resorting to the use of surfactants as emulsifiers and micro solid-phase extraction (μ-SPE). In this combined procedure, DLLME of hydrophobic components is initially accomplished in a mixed micellar/microemulsion extractant phase that is prepared by rapidly mixing a non-ionic surfactant and 1-octanol in aqueous medium. Then, and in contrast to classic DLLME, the extractant phase is collected by highly hydrophobic polysiloxane-coated core-shell Fe 2 O 3 (at)C magnetic nanoparticles. Hence, the sample components are the target analyte in the DLLME which, in turn, becomes the target analyte of the μ-SPE step. This 2-step approach represents a new and simple DLLME procedure that lacks tedious steps such as centrifugation, thawing, or delicate collection of the extractant phase. As a result, the analytical process is accelerated and the volume of the collected phase does not depend on the volume of the extraction solvent. The method was applied to extract cadmium in the form of its pyrrolidine dithiocarbamate chelate from spiked water samples prior to its determination by FAAS. Detection limits were brought down to the low μg L −1 levels by preconcentrating 10 mL samples with satisfactory recoveries (96.0–108.0 %). (author)

  19. Nanocarriers from GRAS Zein Proteins to Encapsulate Hydrophobic Actives. (United States)

    Weissmueller, Nikolas T; Lu, Hoang D; Hurley, Amanda; Prud'homme, Robert K


    One factor limiting the expansion of nanomedicines has been the high cost of the materials and processes required for their production. We present a continuous, scalable, low cost nanoencapsulation process, Flash Nanoprecipitation (FNP) that enables the production of nanocarriers (NCs) with a narrow size distribution using zein corn proteins. Zein is a low cost, GRAS protein (having the FDA status of "Generally Regarded as Safe") currently used in food applications, which acts as an effective encapsulant for hydrophobic compounds using FNP. The four-stream FNP configuration allows the encapsulation of very hydrophobic compounds in a way that is not possible with previous precipitation processes. We present the encapsulation of several model active compounds with as high as 45 wt % drug loading with respect to zein concentration into ∼100 nm nanocarriers. Three examples are presented: (1) the pro-drug antioxidant, vitamin E-acetate, (2) an anticholera quorum-sensing modulator CAI-1 ((S)-3-hydroxytridecan-4-one; CAI-1 that reduces Vibrio cholerae virulence by modulating cellular communication), and (3) hydrophobic fluorescent dyes with a range of hydrophobicities. The specific interaction between zein and the milk protein, sodium caseinate, provides stabilization of the NCs in PBS, LB medium, and in pH 2 solutions. The stability and size changes in the three media provide information on the mechanism of assembly of the zein/active/casein NC.

  20. Self-assembling surfactant-like peptide A6K as potential delivery system for hydrophobic drugs

    Directory of Open Access Journals (Sweden)

    Chen Y


    Full Text Available Yongzhu Chen,1 Chengkang Tang,2 Jie Zhang,2 Meng Gong,3 Bo Su,2 Feng Qiu4 1Periodical Press, 2Core Facility of West China Hospital, 3Laboratory of Endocrinology and Metabolism, West China Hospital, 4Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, People’s Republic of China Background: Finding a suitable delivery system to improve the water solubility of hydrophobic drugs is a critical challenge in the development of effective formulations. In this study, we used A6K, a self-assembling surfactant-like peptide, as a carrier to encapsulate and deliver hydrophobic pyrene.Methods: Pyrene was mixed with A6K by magnetic stirring to form a suspension. Confocal laser scanning microscopy, transmission electron microscopy, dynamic light scattering, atomic force microscopy, fluorescence, and cell uptake measurements were carried out to study the features and stability of the nanostructures, the state and content of pyrene, as well as the pyrene release profile.Results: The suspension formed contained pyrene monomers trapped in the hydrophobic cores of the micellar nanofibers formed by A6K, as well as nanosized pyrene crystals wrapped up and stabilized by the nanofibers. The two different encapsulation methods greatly increased the concentration of pyrene in the suspension, and formation of pyrene crystals wrapped up by A6K nanofibers might be the major contributor to this effect. Furthermore, the suspension system could readily release and transfer pyrene into living cells.Conclusion: A6K could be further exploited as a promising delivery system for hydrophobic drugs. Keywords: pyrene, self-assembling peptide, micelles, nanofibers, drug delivery  

  1. Circulating surfactant protein D is decreased in systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Hoegh, Silje Vermedal; Voss, Anne; Sorensen, Grith Lykke


    Objective. Deficiencies of innate immune molecules like mannan binding lectin (MBL) have been implicated in the pathogenesis of systemic lupus erythematosus (SLE). Surfactant protein D (SP-D) and MBL belong to the same family of innate immune molecules - the collectins, which share important...

  2. Review: Milk Proteins as Nanocarrier Systems for Hydrophobic Nutraceuticals. (United States)

    Kimpel, Florian; Schmitt, Joachim J


    Milk proteins and milk protein aggregates are among the most important nanovehicles in food technology. Milk proteins have various functional properties that facilitate their ability to carry hydrophobic nutraceutical substances. The main functional transport properties that were examined in the reviewed studies are binding of molecules or ions, surface activity, aggregation, gelation, and interaction with other polymers. Hydrophobic binding has been investigated using caseins and isolated β-casein as well as whey proteins. Surface activity of caseins has been used to create emulsion-based carrier systems. Furthermore, caseins are able to self-assemble into micelles, which can incorporate molecules. Gelation and interaction with other polymers can be used to encapsulate molecules into protein networks. The release of transported substances mainly depends on pH and swelling behavior of the proteins. The targeted use of nanocarrier systems requires specific knowledge about the binding mechanisms between the proteins and the carried substances in a certain food matrix. © 2015 Institute of Food Technologists®

  3. Competitive adsorption of monoclonal antibodies and nonionic surfactants at solid hydrophobic surfaces

    DEFF Research Database (Denmark)

    Kapp, Sebastian J; Larsson, Iben; van de Weert, Marco


    Two monoclonal antibodies from the IgG subclasses one and two were compared in their adsorption behavior with hydrophobic surfaces upon dilution to 10 mg/mL with 0.9% NaCl. These conditions simulate handling of the compounds at hospital pharmacies and surfaces encountered after preparation, such ....... and the American Pharmacists Association J Pharm Sci....

  4. Hydrophobic Collapse of Ubiquitin Generates Rapid Protein-Water Motions. (United States)

    Wirtz, Hanna; Schäfer, Sarah; Hoberg, Claudius; Reid, Korey M; Leitner, David M; Havenith, Martina


    We report time-resolved measurements of the coupled protein-water modes of solvated ubiquitin during protein folding. Kinetic terahertz absorption (KITA) spectroscopy serves as a label-free technique for monitoring large scale conformational changes and folding of proteins subsequent to a sudden T-jump. We report here KITA measurements at an unprecedented time resolution of 500 ns, a resolution 2 orders of magnitude better than those of any previous KITA measurements, which reveal the coupled ubiquitin-solvent dynamics even in the initial phase of hydrophobic collapse. Complementary equilibrium experiments and molecular simulations of ubiquitin solutions are performed to clarify non-equilibrium contributions and reveal the molecular picture upon a change in structure, respectively. On the basis of our results, we propose that in the case of ubiquitin a rapid (<500 ns) initial phase of the hydrophobic collapse from the elongated protein to a molten globule structure precedes secondary structure formation. We find that these very first steps, including large-amplitude changes within the unfolded manifold, are accompanied by a rapid (<500 ns) pronounced change of the coupled protein-solvent response. The KITA response upon secondary structure formation exhibits an opposite sign, which indicates a distinct effect on the solvent-exposed surface.

  5. Hydrophobic Interaction Chromatography for Bottom-Up Proteomics Analysis of Single Proteins and Protein Complexes. (United States)

    Rackiewicz, Michal; Große-Hovest, Ludger; Alpert, Andrew J; Zarei, Mostafa; Dengjel, Jörn


    Hydrophobic interaction chromatography (HIC) is a robust standard analytical method to purify proteins while preserving their biological activity. It is widely used to study post-translational modifications of proteins and drug-protein interactions. In the current manuscript we employed HIC to separate proteins, followed by bottom-up LC-MS/MS experiments. We used this approach to fractionate antibody species followed by comprehensive peptide mapping as well as to study protein complexes in human cells. HIC-reversed-phase chromatography (RPC)-mass spectrometry (MS) is a powerful alternative to fractionate proteins for bottom-up proteomics experiments making use of their distinct hydrophobic properties.

  6. Study of protein-probe complexation equilibria and protein-surfactant interaction using charge transfer fluorescence probe methyl ester of N,N-dimethylamino naphthyl acrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Mahanta, Subrata; Balia Singh, Rupashree; Bagchi, Arnab [Department of Chemistry University of Calcutta 92, A.P.C. Road, Kolkata 700009 (India); Nath, Debnarayan [Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Guchhait, Nikhil, E-mail: [Department of Chemistry University of Calcutta 92, A.P.C. Road, Kolkata 700009 (India)


    In this paper, we demonstrate the interaction between intramolecular charge transfer (ICT) probe-Methyl ester of N,N-dimethylamino naphthyl acrylic acid (MDMANA) with bovine serum albumin (BSA) using absorption and fluorescence emission spectroscopy. The nature of probe protein binding interaction, fluorescence resonance energy transfer from protein to probe and time resolved fluorescence decay measurement predict that the probe molecule binds strongly to the hydrophobic cavity of the protein. Furthermore, the interaction of the anionic surfactant sodium dodecyl sulphate (SDS) with water soluble protein BSA has been investigated using MDMANA as fluorescenece probe. The changes in the spectral characteristics of charge transfer fluorescence probe MDMANA in BSA-SDS environment reflects well the nature of the protein-surfactant binding interaction such as specific binding, non-cooperative binding, cooperative binding and saturation binding.

  7. Neutron structure of the hydrophobic plant protein crambin

    International Nuclear Information System (INIS)

    Teeter, M.M.; Kossiakoff, A.A.


    Crystals of the small hydrophobic protein crambin have been shown to diffract to a resolution of at least 0.88 A. This means that crambin presents a rare opportunity to study a protein structure at virtually atomic resolution. The high resolution of the diffraction pattern coupled with the assets of neutron diffraction present the distinct possibility that crambin's analysis may surpass that of any other protein system in degree and accuracy of detail. The neutron crambin structure is currently being refined at 1.50 A (44.9% of the data to 1.2 A has also been included). It is expected that a nominal resolution of 1.0 A can be achieved. 15 references, 6 figures, 2 tables

  8. Interaction of the N-terminal segment of pulmonary surfactant protein SP-C with interfacial phospholipid films

    DEFF Research Database (Denmark)

    Plasencia, Inés; Keough, Kevin M W; Perez-Gil, Jesus


    Pulmonary surfactant protein SP-C is a 35-residue polypeptide composed of a hydrophobic transmembrane alpha-helix and a polycationic, palmitoylated-cysteine containing N-terminal segment. This segment is likely the only structural motif the protein projects out of the bilayer in which SP-C is ins......Pulmonary surfactant protein SP-C is a 35-residue polypeptide composed of a hydrophobic transmembrane alpha-helix and a polycationic, palmitoylated-cysteine containing N-terminal segment. This segment is likely the only structural motif the protein projects out of the bilayer in which SP...... or anionic phospholipid monolayers. The peptide expands the pi-A compression isotherms of interfacial phospholipid/peptide films, and perturbs the lipid packing of phospholipid films during compression-driven liquid-expanded to liquid-condensed lateral transitions, as observed by epifluorescence microscopy....... These results demonstrate that the sequence of the SP-C N-terminal region has intrinsic ability to interact with, insert into, and perturb the structure of zwitterionic and anionic phospholipid films, even in the absence of the palmitic chains attached to this segment in the native protein. This effect has been...

  9. Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants. (United States)

    Roach, L Spencer; Song, Helen; Ismagilov, Rustem F


    Control of surface chemistry and protein adsorption is important for using microfluidic devices for biochemical analysis and high-throughput screening assays. This paper describes the control of protein adsorption at the liquid-liquid interface in a plug-based microfluidic system. The microfluidic system uses multiphase flows of immiscible fluorous and aqueous fluids to form plugs, which are aqueous droplets that are completely surrounded by fluorocarbon oil and do not come into direct contact with the hydrophobic surface of the microchannel. Protein adsorption at the aqueous-fluorous interface was controlled by using surfactants that were soluble in fluorocarbon oil but insoluble in aqueous solutions. Three perfluorinated alkane surfactants capped with different functional groups were used: a carboxylic acid, an alcohol, and a triethylene glycol group that was synthesized from commercially available materials. Using complementary methods of analysis, adsorption was characterized for several proteins (bovine serum albumin (BSA) and fibrinogen), including enzymes (ribonuclease A (RNase A) and alkaline phosphatase). These complementary methods involved characterizing adsorption in microliter-sized droplets by drop tensiometry and in nanoliter plugs by fluorescence microscopy and kinetic measurements of enzyme catalysis. The oligoethylene glycol-capped surfactant prevented protein adsorption in all cases. Adsorption of proteins to the carboxylic acid-capped surfactant in nanoliter plugs could be described by using the Langmuir model and tensiometry results for microliter drops. The microfluidic system was fabricated using rapid prototyping in poly(dimethylsiloxane) (PDMS). Black PDMS microfluidic devices, fabricated by curing a suspension of charcoal in PDMS, were used to measure the changes in fluorescence intensity more sensitively. This system will be useful for microfluidic bioassays, enzymatic kinetics, and protein crystallization, because it does not require

  10. Hydrophobic environment is a key factor for the stability of thermophilic proteins. (United States)

    Gromiha, M Michael; Pathak, Manish C; Saraboji, Kadhirvel; Ortlund, Eric A; Gaucher, Eric A


    The stability of thermophilic proteins has been viewed from different perspectives and there is yet no unified principle to understand this stability. It would be valuable to reveal the most important interactions for designing thermostable proteins for such applications as industrial protein engineering. In this work, we have systematically analyzed the importance of various interactions by computing different parameters such as surrounding hydrophobicity, inter-residue interactions, ion-pairs and hydrogen bonds. The importance of each interaction has been determined by its predicted relative contribution in thermophiles versus the same contribution in mesophilic homologues based on a dataset of 373 protein families. We predict that hydrophobic environment is the major factor for the stability of thermophilic proteins and found that 80% of thermophilic proteins analyzed showed higher hydrophobicity than their mesophilic counterparts. Ion pairs, hydrogen bonds, and interaction energy are also important and favored in 68%, 50%, and 62% of thermophilic proteins, respectively. Interestingly, thermophilic proteins with decreased hydrophobic environments display a greater number of hydrogen bonds and/or ion pairs. The systematic elimination of mesophilic proteins based on surrounding hydrophobicity, interaction energy, and ion pairs/hydrogen bonds, led to correctly identifying 95% of the thermophilic proteins in our analyses. Our analysis was also applied to another, more refined set of 102 thermophilic-mesophilic pairs, which again identified hydrophobicity as a dominant property in 71% of the thermophilic proteins. Further, the notion of surrounding hydrophobicity, which characterizes the hydrophobic behavior of residues in a protein environment, has been applied to the three-dimensional structures of elongation factor-Tu proteins and we found that the thermophilic proteins are enriched with a hydrophobic environment. The results obtained in this work highlight the

  11. Use of dynamic light scattering and small-angle X-ray scattering to characterize new surfactants in solution conditions for membrane-protein crystallization (United States)

    Dahani, Mohamed; Barret, Laurie-Anne; Raynal, Simon; Jungas, Colette; Pernot, Pétra; Polidori, Ange; Bonneté, Françoise


    The structural and interactive properties of two novel hemifluorinated surfactants, F2H9-β-M and F4H5-β-M, the syntheses of which were based on the structure and hydrophobicity of the well known dodecyl-β-maltoside (DD-β-M), are described. The shape of their micellar assemblies was characterized by small-angle X-ray scattering and their intermicellar inter­actions in crystallizing conditions were measured by dynamic light scattering. Such information is essential for surfactant phase-diagram determination and membrane-protein crystallization. PMID:26144228

  12. Essential Regulation of Lung Surfactant Homeostasis by the Orphan G Protein-Coupled Receptor GPR116

    Directory of Open Access Journals (Sweden)

    Mi Young Yang


    Full Text Available GPR116 is an orphan seven-pass transmembrane receptor whose function has been unclear. Global disruption of the Gpr116 gene in mice revealed an unexpected, critical role for this receptor in lung surfactant homeostasis, resulting in progressive accumulation of surfactant lipids and proteins in the alveolar space, labored breathing, and a reduced lifespan. GPR116 expression analysis, bone marrow transplantation studies, and characterization of conditional knockout mice revealed that GPR116 expression in ATII cells is required for maintaining normal surfactant levels. Aberrant packaging of surfactant proteins with lipids in the Gpr116 mutant mice resulted in compromised surfactant structure, function, uptake, and processing. Thus, GPR116 plays an indispensable role in lung surfactant homeostasis with important ramifications for the understanding and treatment of lung surfactant disorders.

  13. Interactions between Surfactants in Solution and Electrospun Protein Fibers: Effects on Release Behavior and Fiber Properties

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; García-Díaz, María; Jessen, Flemming


    , and drug delivery. In the present study, we present a systematic investigation of how surfactants and proteins, as physiologically relevant components, interact with insulin-loaded fish sarcoplasmic protein (FSP) electrospun fibers (FSP-Ins fibers) in solution and thereby affect fiber properties...... such as accessible surface hydrophilicity, physical stability, and release characteristics of an encapsulated drug. Interactions between insulin-loaded protein fibers and five anionic surfactants (sodium taurocholate, sodium taurodeoxycholate, sodium glycocholate, sodium glycodeoxycholate, and sodium dodecyl sulfate......), a cationic surfactant (benzalkonium chloride), and a neutral surfactant (Triton X-100) were studied. The anionic surfactants increased the insulin release in a concentration-dependent manner, whereas the neutral surfactant had no significant effect on the release. Interestingly, only minute amounts...

  14. Surface activity of pulmonary surfactant protein B : from biophysical properties to clinical application

    NARCIS (Netherlands)

    Diemel, Robert Victor


    The global aim of our studies was to obtain more information about the mechanisms involved in the action of the hydrophobic surfactant components, with a special attention for SP-B. To reach this goal, many different assays and devices were used, including a pressure driven captive bubble

  15. Interfacial rheological properties of adsorbed protein layers and surfactants : a review

    NARCIS (Netherlands)

    Bos, M.A.; Vliet, T. van


    Proteins and low molecular weight (LMW) surfactants are widely used for the physical stabilisation of many emulsions and foam based food products. The formation and stabilisation of these emulsions and foams depend strongly on the interfacial properties of the proteins and the LMW surfactants.

  16. Role of surfactant derived intermediates in the efficacy and mechanism for radiation chemical degradation of a hydrophobic azo dye, 1-phenylazo-2-naphthol

    Energy Technology Data Exchange (ETDEWEB)

    Das, Laboni [Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Chatterjee, Suchandra [Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Naik, Devidas B. [Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Adhikari, Soumyakanti, E-mail: [Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)


    Highlights: • Demonstration of the role of surfactant in the degradation of the hydrophobic dye. • First direct observation of the formation of “hydrazyl radical-parent” adduct. • Similar products obtained in the reaction of e{sup −}{sub aq} and ·OH radical in TX-100 medium. • Significant reduction in cytotoxicity of irradiated dye in aqueous–organic medium. • New mechanistic pathway could be delineated. - Abstract: A combined methodology involving gamma and pulse radiolysis, product analysis and toxicity studies has been adopted to comprehend the degradation process of a model hydrophobic azo dye, 1-phenylazo-2-naphthol, emphasizing the role of the surfactant, which is an integral part of textile waste. Two new and important findings are underlined in this article. The first is the direct attestation of the hydrazyl radical-parent adduct, formed in the reaction of the dye with e{sup −}{sub aq} followed by protonation and subsequent addition to the unreacted dye molecule. This has been confirmed from concentration dependent studies. Secondly, we have clearly shown that in the reaction of hydroxyl radical with the dye in Triton X-100 media, the initially produced TX radicals cause reductive degradation of the dye. Identification and detailed analysis of HPLC and GCMS data reveals that similar products are formed in both the reactions of e{sup −}{sub aq} and ·OH radicals. Moreover, the cytotoxicity of 10{sup −4} mol dm{sup −3} dye was found to be reduced significantly after irradiation. Thus, the present study not only depicts new pathways for the degradation of hydrophobic azo dye, but also demonstrates the role of a surfactant in the entire process.

  17. Circulating surfactant protein D is decreased in early rheumatoid arthritis

    DEFF Research Database (Denmark)

    Høgh, Silje Vermedal; Lindegaard, Hanne Merete; Sørensen, Grith Lykke


    Innate immune system abnormalities, e.g., mannan-binding lectin (MBL) genotype variants, have been demonstrated to modify the disease course of rheumatoid arthritis (RA). Surfactant protein D (SP-D) shares important structural and functional properties with MBL suggesting that SP-D may...... be an additional RA disease modifier. The Met11Thr polymorphism in the N-terminal part of SP-D is an important determinant for the SP-D serum level, but this polymorphism is also essential to the function and assembly into oligomers. We aimed to compare the serum levels of SP-D in a cohort of newly diagnosed...... untreated RA patients with healthy matched controls, and to investigate if there was an association to core measures of disease activity within the first year after disease onset. Secondly, we aimed to investigate whether the Met11Thr polymorphism was associated with RA. Serum SP-D was significantly lower...

  18. Linking surfactant protein SP-D and IL-13

    DEFF Research Database (Denmark)

    Qaseem, Asif S; Sonar, Sanchaita; Mahajan, Lakshna


    of allergen-IgE interaction, histamine release by sensitised mast cells, downregulation of specific IgE production, suppression of pulmonary and peripheral eosinophilia, inhibition of mechanisms that cause airway remodelling, and induction of apoptosis in sensitised eosinophils. SP-D can also shift helper T......Surfactant protein D (SP-D) is an innate immune molecule that plays a protective role against lung infection, allergy, asthma and inflammation. In vivo experiments with murine models have shown that SP-D can protect against allergic challenge via a range of mechanisms including inhibition...... cell polarisation following in vivo allergenic challenge, from pathogenic Th2 to a protective Th1 cytokine response. Interestingly, SP-D gene deficient (-/-) mice show an IL-13 over-expressing phenotype. IL-13 has been shown to be involved in the development of asthma. Transgenic mice over...

  19. Surfactant protein-B 121ins2 heterozygosity, reduced pulmonary function, and chronic obstructive pulmonary disease in smokers

    DEFF Research Database (Denmark)

    Bækvad-Hansen, Marie; Dahl, Morten; Tybjaerg-Hansen, Anne


    Hereditary surfactant protein-B deficiency is an autosomal recessive disorder that causes fatal respiratory distress syndrome in newborns. Seventy percent of the cases of hereditary surfactant protein-B deficiency are caused by homozygosity for the 121ins2 mutation in the surfactant protein-B gen...

  20. Bound water at protein-protein interfaces: partners, roles and hydrophobic bubbles as a conserved motif.

    Directory of Open Access Journals (Sweden)

    Mostafa H Ahmed

    Full Text Available There is a great interest in understanding and exploiting protein-protein associations as new routes for treating human disease. However, these associations are difficult to structurally characterize or model although the number of X-ray structures for protein-protein complexes is expanding. One feature of these complexes that has received little attention is the role of water molecules in the interfacial region.A data set of 4741 water molecules abstracted from 179 high-resolution (≤ 2.30 Å X-ray crystal structures of protein-protein complexes was analyzed with a suite of modeling tools based on the HINT forcefield and hydrogen-bonding geometry. A metric termed Relevance was used to classify the general roles of the water molecules.The water molecules were found to be involved in: a (bridging interactions with both proteins (21%, b favorable interactions with only one protein (53%, and c no interactions with either protein (26%. This trend is shown to be independent of the crystallographic resolution. Interactions with residue backbones are consistent for all classes and account for 21.5% of all interactions. Interactions with polar residues are significantly more common for the first group and interactions with non-polar residues dominate the last group. Waters interacting with both proteins stabilize on average the proteins' interaction (-0.46 kcal mol(-1, but the overall average contribution of a single water to the protein-protein interaction energy is unfavorable (+0.03 kcal mol(-1. Analysis of the waters without favorable interactions with either protein suggests that this is a conserved phenomenon: 42% of these waters have SASA ≤ 10 Å(2 and are thus largely buried, and 69% of these are within predominantly hydrophobic environments or "hydrophobic bubbles". Such water molecules may have an important biological purpose in mediating protein-protein interactions.

  1. Cis-acting sequences from a human surfactant protein gene confer pulmonary-specific gene expression in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Korfhagen, T.R.; Glasser, S.W.; Wert, S.E.; Bruno, M.D.; Daugherty, C.C.; McNeish, J.D.; Stock, J.L.; Potter, S.S.; Whitsett, J.A. (Cincinnati College of Medicine, OH (USA))


    Pulmonary surfactant is produced in late gestation by developing type II epithelial cells lining the alveolar epithelium of the lung. Lack of surfactant at birth is associated with respiratory distress syndrome in premature infants. Surfactant protein C (SP-C) is a highly hydrophobic peptide isolated from pulmonary tissue that enhances the biophysical activity of surfactant phospholipids. Like surfactant phospholipid, SP-C is produced by epithelial cells in the distal respiratory epithelium, and its expression increases during the latter part of gestation. A chimeric gene containing 3.6 kilobases of the promoter and 5{prime}-flanking sequences of the human SP-C gene was used to express diphtheria toxin A. The SP-C-diphtheria toxin A fusion gene was injected into fertilized mouse eggs to produce transgenic mice. Affected mice developed respiratory failure in the immediate postnatal period. Morphologic analysis of lungs from affected pups showed variable but severe cellular injury confined to pulmonary tissues. Ultrastructural changes consistent with cell death and injury were prominent in the distal respiratory epithelium. Proximal components of the tracheobronchial tree were not severely affected. Transgenic animals were of normal size at birth, and structural abnormalities were not detected in nonpulmonary tissues. Lung-specific diphtheria toxin A expression controlled by the human SP-C gene injured type II epithelial cells and caused extensive necrosis of the distal respiratory epithelium. The absence of type I epithelial cells in the most severely affected transgenic animals supports the concept that developing type II cells serve as precursors to type I epithelial cells.

  2. "SP-G", a putative new surfactant protein--tissue localization and 3D structure.

    Directory of Open Access Journals (Sweden)

    Felix Rausch

    Full Text Available Surfactant proteins (SP are well known from human lung. These proteins assist the formation of a monolayer of surface-active phospholipids at the liquid-air interface of the alveolar lining, play a major role in lowering the surface tension of interfaces, and have functions in innate and adaptive immune defense. During recent years it became obvious that SPs are also part of other tissues and fluids such as tear fluid, gingiva, saliva, the nasolacrimal system, and kidney. Recently, a putative new surfactant protein (SFTA2 or SP-G was identified, which has no sequence or structural identity to the already know surfactant proteins. In this work, computational chemistry and molecular-biological methods were combined to localize and characterize SP-G. With the help of a protein structure model, specific antibodies were obtained which allowed the detection of SP-G not only on mRNA but also on protein level. The localization of this protein in different human tissues, sequence based prediction tools for posttranslational modifications and molecular dynamic simulations reveal that SP-G has physicochemical properties similar to the already known surfactant proteins B and C. This includes also the possibility of interactions with lipid systems and with that, a potential surface-regulatory feature of SP-G. In conclusion, the results indicate SP-G as a new surfactant protein which represents an until now unknown surfactant protein class.

  3. Purification, characterization and immunolocalization of porcine surfactant protein D

    DEFF Research Database (Denmark)

    Sørensen, C.M.; Nielsen, Ove Lilholm; Willis, A.


    in a dose and Ca2+-dependent manner with a saccharide specificity similar to rat and human SP-D. The purified protein was used for the production of a monoclonal anti-pSP-D antibody. The antibody reacted specifically with pSP-D in the reduced and unreduced state when analysed by Western blotting......Surfactant protein D (SP-D) is a collectin believed to play an important role in innate immunity. SP-D is characterized by having a collagen-like domain and a carbohydrate recognition domain (CRD), which has a specific Ca2+-dependent specificity for saccharides and thus the ability to bind complex...... glycoconjugates on micro-organisms. This paper describes the tissue immunolocalization of porcine SP-D (pSP-D) in normal slaughter pigs using a monoclonal antibody raised against purified pSP-D. Porcine SP-D was purified from porcine bronchoalveolar lavage (BAL) by maltose-agarose and immunoglobulin M affinity...

  4. Detection of secondary structure elements in proteins by hydrophobic cluster analysis. (United States)

    Woodcock, S; Mornon, J P; Henrissat, B


    Hydrophobic cluster analysis (HCA) is a protein sequence comparison method based on alpha-helical representations of the sequences where the size, shape and orientation of the clusters of hydrophobic residues are primarily compared. The effectiveness of HCA has been suggested to originate from its potential ability to focus on the residues forming the hydrophobic core of globular proteins. We have addressed the robustness of the bidimensional representation used for HCA in its ability to detect the regular secondary structure elements of proteins. Various parameters have been studied such as those governing cluster size and limits, the hydrophobic residues constituting the clusters as well as the potential shift of the cluster positions with respect to the position of the regular secondary structure elements. The following results have been found to support the alpha-helical bidimensional representation used in HCA: (i) there is a positive correlation (clearly above background noise) between the hydrophobic clusters and the regular secondary structure elements in proteins; (ii) the hydrophobic clusters are centred on the regular secondary structure elements; (iii) the pitch of the helical representation which gives the best correspondence is that of an alpha-helix. The correspondence between hydrophobic clusters and regular secondary structure elements suggests a way to implement variable gap penalties during the automatic alignment of protein sequences.

  5. Heating and reduction affect the reaction with tannins of wine protein fractions differing in hydrophobicity. (United States)

    Marangon, Matteo; Vincenzi, Simone; Lucchetta, Marco; Curioni, Andrea


    During the storage, bottled white wines can manifest haziness due to the insolubilisation of the grape proteins that may 'survive' in the fermentation process. Although the exact mechanism of this occurrence is not fully understood, proteins and tannins are considered two of the key factors involved in wine hazing, since their aggregation leads to the formation of insoluble particles. To better understand this complex interaction, proteins and tannins from the same unfined Pinot grigio wine were separated. Wine proteins were then fractionated by hydrophobic interaction chromatography (HIC). A significant correlation between hydrophobicity of the wine protein fractions and the haze formed after reacting with wine tannins was found, with the most reactive fractions revealing (by SDS-PAGE and RP-HPLC analyses) the predominant presence of thaumatin-like proteins. Moreover, the effects of both protein heating and disulfide bonds reduction (with dithiotreithol) on haze formation in the presence of tannins were assessed. These treatments generally resulted in an improved reactivity with tannins, and this phenomenon was related to both the surface hydrophobicity and composition of the protein fractions. Therefore, haze formation in wines seems to be related to hydrophobic interactions occurring among proteins and tannins. These interactions should occur on hydrophobic tannin-binding sites, whose exposition on the proteins can depend on both protein heating and reduction. Copyright 2009 Elsevier B.V. All rights reserved.

  6. Mutation of exposed hydrophobic amino acids to arginine to increase protein stability


    Strub, Caroline; Alies, Carole; Lougarre, Andrée; Ladurantie, Caroline; Czaplicki, Jerzy; Fournier, Didier


    Abstract Background One strategy to increase the stability of proteins is to reduce the area of water-accessible hydrophobic surface. Results In order to test it, we replaced 14 solvent-exposed hydrophobic residues of acetylcholinesterase by arginine. The stabilities of the resulting proteins were tested using denaturation by high temperature, organic solvents, urea and by proteolytic digestion. Conclusion Altough the mutational effects were rather small, this strategy proved to be successful...

  7. Association of surfactant protein-d with obesity

    International Nuclear Information System (INIS)

    Jawed, S.


    Obesity is associated with inflammatory diseases and obese individual's poses high risk for infections. Surfactant protein D (SP-D) is an important regulator of immunity and inflammation. Latest studies have suggested that it is also involved in lipid homeostasis and obese subjects have decrease concentration of SPD as compared to normal weight peoples. The aim of the current study was to elucidate the relationship among serum SP-D and BMI. Method: This cross sectional study was performed at Dow University of health sciences (DUHS), Karachi. We analysed 90 obese and non-obese subjects for serum SP-D concentration. SP-D was estimated by ELISA. Data was analysed by SPSS 16. Mean SP-D level and demographical variables between the groups were compared by t test, Associations of SP-D with BMI investigated by regression analysis. Results: obese subjects have significant lower levels of Serum SP-D than non-obese and negatively associated with BMI in both genders (p=0.000). Conclusion: This study concluded that obese subjects have lower concentration of SP-D as compare to non-obese and there is an inverse association between the SP-D and BMI. (author)

  8. The SARS coronavirus spike glycoprotein is selectively recognized by lung surfactant protein D and activates macrophages

    DEFF Research Database (Denmark)

    Leth-Larsen, Rikke; Zhong, Fei; Chow, Vincent T K


    Da glycosylated protein. It was not secreted in the presence of tunicamycin and was detected as a 130 kDa protein in the cell lysate. The purified S-protein bound to Vero but not 293T cells and was itself recognized by lung surfactant protein D (SP-D), a collectin found in the lung alveoli. The binding required...

  9. Topology and cellular localization of the small hydrophobic protein of avian metapneumovirus (United States)

    The small hydrophobic protein (SH) is a type II integral membrane protein that is packaged into virions and is only present in certain paramyxoviruses including metapneumovirus. In addition to a highly divergent primary sequence, SH proteins vary significantly in size among the different viruses. Hu...

  10. Modeling the effect of structural details of nonionic surfactant on micellization in solution and adsorption onto hydrophobic surfaces

    NARCIS (Netherlands)

    Jodar-Reyes, A.B.; Ortega-Vinuesa, J.L.; Martin-Rodriguez, A.; Leermakers, F.A.M.


    Applying the classical one-gradient self-consistent-field (SCF) theory for adsorption and/or association, we can show that the molecular architecture of nonionic surfactants influences strongly the micellization in solution and the adsorption on solid-liquid interfaces. This is illustrated by using

  11. Effect of surfactant hydrophobicity on the interfacial properties of polyallylamine hydrochloride/sodium alkylsulphate at water/hexane interface

    Czech Academy of Sciences Publication Activity Database

    Sharipova, A.; Aidarova, S.; Černoch, Peter; Miller, R.


    Roč. 438, 5 December (2013), s. 141-147 ISSN 0927-7757. [EUFOAM Conference /9./. Lisbon, 08.07.2012-11.07.2012] Institutional support: RVO:61389013 Keywords : mixed adsorption layers * polymer-surfactant mixtures * water/oil interface Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.354, year: 2013

  12. How Chain Length and Charge Affect Surfactant Denaturation of Acyl Coenzyme A Binding Protein (ACBP)

    DEFF Research Database (Denmark)

    Andersen, Kell Kleiner; Otzen, Daniel


    maltoside (DDM). The aim has been to determine how surfactant chain length and micellar charge affect the denaturation mechanism. ACBP denatures in two steps irrespective of surfactant chain length, but with increasing chain length, the potency of the denaturant rises more rapidly than the critical micelle......Using intrinsic tryptophan fluorescence, equilibria and kinetics of unfolding of acyl coenzyme A binding protein (ACBP) have been investigated in sodium alkyl sulfate surfactants of different chain length (8-16 carbon atoms) and with different proportions of the nonionic surfactant dodecyl...... constants increases linearly with denaturant concentration below the cmc but declines at higher concentrations. Both shortening chain length and decreasing micellar charge reduce the overall kinetics of unfolding and makes the dependence of unfolding rate constants on surfactant concentration more complex...

  13. Non-invasive high throughput approach for protein hydrophobicity determination based on surface tension. (United States)

    Amrhein, Sven; Bauer, Katharina Christin; Galm, Lara; Hubbuch, Jürgen


    The surface hydrophobicity of a protein is an important factor for its interactions in solution and thus the outcome of its production process. Yet most of the methods are not able to evaluate the influence of these hydrophobic interactions under natural conditions. In the present work we have established a high resolution stalagmometric method for surface tension determination on a liquid handling station, which can cope with accuracy as well as high throughput requirements. Surface tensions could be derived with a low sample consumption (800 μL) and a high reproducibility (content. The protein influence on the solutions' surface tension was correlated to the hydrophobicity of lysozyme, human lysozyme, BSA, and α-lactalbumin. Differences in proteins' hydrophobic character depending on pH and species could be resolved. Within this work we have developed a pH dependent hydrophobicity ranking, which was found to be in good agreement with literature. For the studied pH range of 3-9 lysozyme from chicken egg white was identified to be the most hydrophilic. α-lactalbumin at pH 3 exhibited the most pronounced hydrophobic character. The stalagmometric method occurred to outclass the widely used spectrophotometric method with bromophenol blue sodium salt as it gave reasonable results without restrictions on pH and protein species. © 2015 Wiley Periodicals, Inc.

  14. Mapping Hydrophobicity on the Protein Molecular Surface at Atom-Level Resolution (United States)

    Nicolau Jr., Dan V.; Paszek, Ewa; Fulga, Florin; Nicolau, Dan V.


    A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 Å, followed by the quantification of (i) the surface hydrophobicity; (ii) their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii) their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i) present an approximately two times more hydrophilic areas; with (ii) less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii) 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced “leopard skin”-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37). These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric resolutions

  15. Human salivary agglutinin binds to lung surfactant protein-D and is identical with scavenger receptor protein gp-340

    DEFF Research Database (Denmark)

    Ligtenberg, T J; Bikker, F J; Groenink, J


    bound in a similar way to Streptococcus mutans and surfactant protein-D. Histochemically, the distribution of gp-340 in the submandibular salivary glands was identical with the agglutinin distribution, as shown in a previous paper [Takano, Bogert, Malamud, Lally and Hand (1991) Anat. Rec. 230, 307......-318]. We conclude that agglutinin is identical with gp-340, and that this molecule interacts with S. mutans and surfactant protein-D....

  16. Surfactant proteins gene variants in premature newborn infants with severe respiratory distress syndrome. (United States)

    Somaschini, Marco; Presi, Silvia; Ferrari, Maurizio; Vergani, Barbara; Carrera, Paola


    Genetic surfactant dysfunction causes respiratory failure in term and near-term newborn infants, but little is known of such condition in prematures. We evaluated genetic surfactant dysfunction in premature newborn infants with severe RDS. A total of 68 preterm newborn infants with gestational age ≤32 weeks affected by unusually severe RDS were analysed for mutations in SFTPB, SFTPC and ABCA3. Therapies included oxygen supplementation, nasal CPAP, different modalities of ventilatory support, administration of exogenous surfactant, inhaled nitric oxide and steroids. Molecular analyses were performed on genomic DNA extracted from peripheral blood and Sanger sequencing of whole gene coding regions and intron junctions. In one case histology and electron microscopy on lung tissue was performed. Heterozygous previously described rare or novel variants in surfactant proteins genes ABCA3, SFTPB and SFTPC were identified in 24 newborn infants. In total, 11 infants died at age of 2 to 6 months. Ultrastructural analysis of lung tissue of one infant showed features suggesting ABCA3 dysfunction. Rare or novel genetic variants in genes encoding surfactant proteins were identified in a large proportion (35%) of premature newborn infants with particularly severe RDS. We speculate that interaction of developmental immaturity of surfactant production in association with abnormalities of surfactant metabolism of genetic origin may have a synergic worsening phenotypic effect.

  17. Study of complex thermosensitive amphiphilic polyoxazolines and their interaction with ionic surfactants. Are hydrophobic, thermosensitive, and hydrophilic moieties equally important?

    Czech Academy of Sciences Publication Activity Database

    Bogomolova, Anna; Filippov, Sergey K.; Starovoytova, Larisa; Angelov, Borislav; Konarev, P.; Sedláček, Ondřej; Hrubý, Martin; Štěpánek, Petr


    Roč. 118, č. 18 (2014), s. 4940-4950 ISSN 1520-6106 R&D Projects: GA ČR GAP205/11/1657; GA MPO FR-TI4/625 Grant - others:AV ČR(CZ) M200501201 Program:M Institutional support: RVO:61389013 Keywords : poly(2-alkyl-2-oxazoline) * thermosensitivity * ionic surfactant Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.302, year: 2014

  18. Developmental regulation of chicken surfactant protein A and its localization in lung

    DEFF Research Database (Denmark)

    Zhang, Weidong; Cuperus, Tryntsje; van Dijk, Albert


    Surfactant Protein A (SP-A) is a collagenous C-type lectin (collectin) that plays an important role in the early stage of the host immune response. In chicken, SP-A (cSP-A) is expressed as a 26 kDa glycosylated protein in the lung. Using immunohistochemistry, cSP-A protein was detected mainly in ...

  19. Biochemical characterization of the small hydrophobic protein of avian metapneumovirus. (United States)

    Deng, Qiji; Song, Minxun; Demers, Andrew; Weng, Yuejin; Lu, Wuxun; Wang, Dan; Kaushik, Radhey S; Yu, Qingzhong; Li, Feng


    Avian metapneumovirus (AMPV) is a paramyxovirus that has three membrane proteins (G, F, and SH). Among them, the SH protein is a small type II integral membrane protein that is incorporated into virions and is only present in certain paramyxoviruses. In the present study, we show that the AMPV SH protein is modified by N-linked glycans and can be released into the extracellular environment. Furthermore, we demonstrate that glycosylated AMPV SH proteins form homodimers through cysteine-mediated disulfide bonds, which has not been reported previously for SH proteins of paramyxoviruses. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Surfactant Protein D in Respiratory and Non-Respiratory Diseases (United States)

    Sorensen, Grith L.


    Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts antimicrobial effects and dampens inflammation through direct microbial interactions and modulation of host cell responses via a series of cellular receptors. However, low protein concentrations, genetic variation, biochemical modification, and proteolytic breakdown can induce decomposition of multimeric SP-D into low-molecular weight forms, which may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D is a promising biomarker for lung injury. Moreover, studies in preclinical animal models have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial in these diseases. In recent years, SP-D has been shown to exert antimicrobial and anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of atherosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and diabetes, and SP-D has been associated with metabolic disorders because of its effects in the endothelium and adipocytes and its obesity-dampening properties. This review summarizes and discusses the reported genetic associations of SP-D with disease and the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic research on the mechanistic links between SP-D and respiratory, cardiovascular, and metabolic diseases

  1. Equilibrium of adsorption of mixed milk protein/surfactant solutions at the water/air interface. (United States)

    Kotsmar, C; Grigoriev, D O; Xu, F; Aksenenko, E V; Fainerman, V B; Leser, M E; Miller, R


    Ellipsometry and surface profile analysis tensiometry were used to study and compare the adsorption behavior of beta-lactoglobulin (BLG)/C10DMPO, beta-casein (BCS)/C10DMPO and BCS/C12DMPO mixtures at the air/solution interface. The adsorption from protein/surfactant mixed solutions is of competitive nature. The obtained adsorption isotherms suggest a gradual replacement of the protein molecules at the interface with increasing surfactant concentration for all studied mixed systems. The thickness, refractive index, and the adsorbed amount of the respective adsorption layers, determined by ellipsometry, decrease monotonically and reach values close to those for a surface covered only by surfactant molecules, indicating the absence of proteins from a certain surfactant concentration on. These results correlate with the surface tension data. A continuous increase of adsorption layer thickness was observed up to this concentration, caused by the desorption of segments of the protein and transforming the thin surface layer into a rather diffuse and thick one. Replacement and structural changes of the protein molecules are discussed in terms of protein structure and surface activity of surfactant molecules. Theoretical models derived recently were used for the quantitative description of the equilibrium state of the mixed surface layers.

  2. Unravelling the hydrophobicity of urea in water using thermodiffusion: implications for protein denaturation. (United States)

    Niether, Doreen; Di Lecce, Silvia; Bresme, Fernando; Wiegand, Simone


    Urea is widely used as a protein denaturant in aqueous solutions. Experimental and computer simulation studies have shown that it dissolves in water almost ideally at high concentrations, introducing little disruption in the water hydrogen bonded structure. However, at concentrations of the order of 5 M or higher, urea induces denaturation in a wide range of proteins. The origin of this behaviour is not completely understood, but it is believed to stem from a balance between urea-protein and urea-water interactions, with urea becoming possibly hydrophobic at a specific concentration range. The small changes observed in the water structure make it difficult to connect the denaturation effects to the solvation properties. Here we show that the exquisite sensitivity of thermodiffusion to solute-water interactions allows the identification of the onset of hydrophobicity of urea-water mixtures. The hydrophobic behaviour is reflected in a sign reversal of the temperature dependent slope of the Soret coefficient, which is observed, both in experiments and non-equilibrium computer simulations at ∼5 M concentration of urea in water. This concentration regime corresponds to the one where abrupt changes in the denaturation of proteins are commonly observed. We show that the onset of hydrophobicity is intrinsically connected to the urea-water interactions. Our results allow us to identify correlations between the Soret coefficient and the partition coefficient, log P, hence establishing the thermodiffusion technique as a powerful approach to study hydrophobicity.

  3. Hydrophobicity-driven self-assembly of protein and silver nanoparticles for protein detection using surface-enhanced Raman scattering. (United States)

    Kahraman, Mehmet; Balz, Ben N; Wachsmann-Hogiu, Sebastian


    Surface-enhanced Raman scattering (SERS) is a promising analytical technique for the detection and characterization of biological molecules and structures. The role of hydrophobic and hydrophilic surfaces in the self-assembly of protein-metallic nanoparticle structures for label-free protein detection is demonstrated. Aggregation is driven by both the hydrophobicity of the surface as well as the charge of the proteins. The best conditions for obtaining a reproducible SERS signal that allows for sensitive, label-free protein detection are provided by the use of hydrophobic surfaces and 16 × 10(11) NPs per mL. A detection limit of approximately 0.5 μg mL(-1) is achieved regardless of the proteins' charge properties and size. The developed method is simple and can be used for reproducible and sensitive detection and characterization of a wide variety of biological molecules and various structures with different sizes and charge status.

  4. Serum surfactant protein D as a marker for bronchopulmonary dysplasia. (United States)

    Vinod, Suja; Gow, Andrew; Weinberger, Barry; Potak, Debra; Hiatt, Mark; Chandra, Shaku; Hegyi, Thomas


    Lung epithelial cells express surfactant protein D (SP-D), a calcium-dependent lectin that plays an important role in antibody-independent pulmonary host defense. Previous studies have shown that it is found in the peripheral circulation in patients with pulmonary disease, likely because of translocation into the blood when lung epithelial barriers are disrupted by inflammation or acute injury. In adults, serum SP-D levels are biomarkers for the progression and severity of chronic lung disease. In neonates, elevated SP-D levels in cord blood and on day 1 have been associated with prenatal risk factors and with an increased risk of respiratory distress syndrome and infections. It is not known whether serum SP-D during the first week of life is a marker for bronchopulmonary dysplasia (BPD), a form of chronic lung disease of prematurity that is associated with lung parenchymal maldevelopment and injury. The goal of this study is to determine whether serum SP-D on days 3 and 7 of life are associated with the development of BPD in preterm infants. Serum samples were obtained on postnatal days 3 and 7 from 106 preterm infants (500-2000 g birth weight, 23-32-week gestation). SP-D was quantified by Western blot. BPD was determined at 36 weeks PMA using NICHD criteria. The mean birth weight was 1145 ± 347 g and gestational age 29.2 ± 7.4 weeks. BPD was diagnosed in 7 and "BPD or death" in 16 infants. Days 3 and 7 values tracked significantly (r = 0.648), and did not correlate with birth weight or gestational age. Contrary to expectations, serum SP-D was not associated with BPD. Significant gender differences were noted, with SP-D dropping from day 3 to day 7 in males, while increasing in females (p D does not appear to be a useful marker for BPD. Decreasing serum SP-D levels in males, as compared to females, during the first week of life are likely related to gender differences in lung maturation, consistent with the higher incidence of BPD in males.

  5. Stable intermediates determine proteins' primary unfolding sites in the presence of surfactants

    DEFF Research Database (Denmark)

    Petersen, Steen Vang; Andersen, Kell kleiner; Enghild, Jan J.


    Despite detailed knowledge of the overall structural changes and stoichiometries of surfactant binding, little is known about which protein regions constitute the preferred sites of attack for initial unfolding. Here we have exposed three proteins to limited proteolysis at anionic (SDS) and catio......Despite detailed knowledge of the overall structural changes and stoichiometries of surfactant binding, little is known about which protein regions constitute the preferred sites of attack for initial unfolding. Here we have exposed three proteins to limited proteolysis at anionic (SDS......) and cationic (DTAC) surfactant concentrations corresponding to specific conformational transitions, using the surfactant-robust broad-specificity proteases Savinase and Alcalase. Cleavage sites are identified by SDS-PAGE and N-terminal sequencing. We observe well-defined cleavage fragments, which suggest......, cleavage sites can be rationalized from the structure of the protein's folding transition state and the position of loops in the native state. Nevertheless, they are more sensitive to choice of surfactant and protease, probably reflecting a heterogeneous and fluctuating ensemble of partially unfolded...

  6. Hydrophobicity diversity in globular and nonglobular proteins measured with the Gini index. (United States)

    Carugo, Oliviero


    Amino acids and their properties are variably distributed in proteins and different compositions determine all protein features, ranging from solubility to stability and functionality. Gini index, a tool to estimate distribution uniformity, is widely used in macroeconomics and has numerous statistical applications. Here, Gini index is used to analyze the distribution of hydrophobicity in proteins and to compare hydrophobicity distribution in globular and intrinsically disordered proteins. Based on the analysis of carefully selected high-quality data sets of proteins extracted from the Protein Data Bank ( and from the DisProt database (, it is observed that hydrophobicity is distributed in a more diverse way in intrinsically disordered proteins than in folded and soluble globular proteins. This correlates with the observation that the amino acid composition deviates from the uniformity (estimate with the Shannon and the Gini-Simpson indices) more in intrinsically disordered proteins than in globular and soluble proteins. Although statistical tools tike the Gini index have received little attention in molecular biology, these results show that they allow one to estimate sequence diversity and that they are useful to delineate trends that can hardly be described, otherwise, in simple and concise ways. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail:

  7. Two Mutations in Surfactant Protein C Gene Associated with Neonatal Respiratory Distress

    Directory of Open Access Journals (Sweden)

    Anna Tarocco


    Full Text Available Multiple mutations of surfactant genes causing surfactant dysfunction have been described. Surfactant protein C (SP-C deficiency is associated with variable clinical manifestations ranging from neonatal respiratory distress syndrome to lethal lung disease. We present an extremely low birth weight male infant with an unusual course of respiratory distress syndrome associated with two mutations in the SFTPC gene: C43-7G>A and 12T>A. He required mechanical ventilation for 26 days and was treated with 5 subsequent doses of surfactant with temporary and short-term efficacy. He was discharged at 37 weeks of postconceptional age without any respiratory support. During the first 16 months of life he developed five respiratory infections that did not require hospitalization. Conclusion. This mild course in our patient with two mutations is peculiar because the outcome in patients with a single SFTPC mutation is usually poor.

  8. Selective labeling of pulmonary surfactant protein SP-C in organic solution

    DEFF Research Database (Denmark)

    Plasencia, I; Cruz, A; López-Lacomba, J L


    Pulmonary surfactant protein SP-C has been isolated from porcine lungs and treated with dansyl isothiocyanate in chloroform:methanol 2:1 (v/v) solutions,under conditions optimized to introduce a single dansyl group covalently attached to the N-terminalamine group of the protein without loss of its...

  9. Surfactant Proteins A, B, C and D in the Human Nasal Airway

    DEFF Research Database (Denmark)

    Gaunsbaek, Maria Q; Kjeldsen, Anette D; Svane-Knudsen, Viggo


    Aims: To investigate the presence of surfactant protein (SP) A, B, C and D in nasal airways and to determine whether the proteins exert their main functions in nasal secretions or in the deeper layers of the nasal mucosa. Methods: Volunteers were recruited from the Department of ENT Head and Neck...

  10. Molecular characterization of the porcine surfactant, pulmonary-associated protein C gene

    DEFF Research Database (Denmark)

    Cirera, S.; Nygård, A.B.; Jensen, H.E.


    The surfactant, pulmonary-associated protein C (SFTPC) is a peptide secreted by the alveolar type II pneumocytes of the lung. We have characterized the porcine SFTPC gene at genomic, transcriptional, and protein levels. The porcine SFTPC is a single-copy gene on pig chromosome 14. Two transcripts...

  11. Species Differences in the Carbohydrate Binding Preferences of Surfactant Protein D

    DEFF Research Database (Denmark)

    Crouch, Erika C.; Smith, Kelly; McDonald, Barbara


    Interactions of surfactant protein D (SP-D) with micro-organisms and organic antigens involve binding to the trimeric neck plus carbohydrate recognition domain (neck+CRD). In these studies, we compared the ligand binding of homologous human, rat, and mouse trimeric neck+CRD fusion proteins, each ...

  12. Mass spectrometry compatible surfactant for optimized in-gel protein digestion. (United States)

    Saveliev, Sergei V; Woodroofe, Carolyn C; Sabat, Grzegorz; Adams, Christopher M; Klaubert, Dieter; Wood, Keith; Urh, Marjeta


    Identification of proteins resolved by SDS-PAGE depends on robust in-gel protein digestion and efficient peptide extraction, requirements that are often difficult to achieve. A lengthy and laborious procedure is an additional challenge of protein identification in gel. We show here that with the use of the mass spectrometry compatible surfactant sodium 3-((1-(furan-2-yl)undecyloxy)carbonylamino)propane-1-sulfonate, the challenges of in-gel protein digestion are effectively addressed. Peptide quantitation based on stable isotope labeling showed that the surfactant induced 1.5-2 fold increase in peptide recovery. Consequently, protein sequence coverage was increased by 20-30%, on average, and the number of identified proteins saw a substantial boost. The surfactant also accelerated the digestion process. Maximal in-gel digestion was achieved in as little as one hour, depending on incubation temperature, and peptides were readily recovered from gel eliminating the need for postdigestion extraction. This study shows that the surfactant provides an efficient means of improving protein identification in gel and streamlining the in-gel digestion procedure requiring no extra handling steps or special equipment.

  13. A sensitive fluorescent probe for the polar solvation dynamics at protein-surfactant interfaces. (United States)

    Singh, Priya; Choudhury, Susobhan; Singha, Subhankar; Jun, Yongwoong; Chakraborty, Sandipan; Sengupta, Jhimli; Das, Ranjan; Ahn, Kyo-Han; Pal, Samir Kumar


    Relaxation dynamics at the surface of biologically important macromolecules is important taking into account their functionality in molecular recognition. Over the years it has been shown that the solvation dynamics of a fluorescent probe at biomolecular surfaces and interfaces account for the relaxation dynamics of polar residues and associated water molecules. However, the sensitivity of the dynamics depends largely on the localization and exposure of the probe. For noncovalent fluorescent probes, localization at the region of interest in addition to surface exposure is an added challenge compared to the covalently attached probes at the biological interfaces. Here we have used a synthesized donor-acceptor type dipolar fluorophore, 6-acetyl-(2-((4-hydroxycyclohexyl)(methyl)amino)naphthalene) (ACYMAN), for the investigation of the solvation dynamics of a model protein-surfactant interface. A significant structural rearrangement of a model histone protein (H1) upon interaction with anionic surfactant sodium dodecyl sulphate (SDS) as revealed from the circular dichroism (CD) studies is nicely corroborated in the solvation dynamics of the probe at the interface. The polarization gated fluorescence anisotropy of the probe compared to that at the SDS micellar surface clearly reveals the localization of the probe at the protein-surfactant interface. We have also compared the sensitivity of ACYMAN with other solvation probes including coumarin 500 (C500) and 4-(dicyanomethylene)-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran (DCM). In comparison to ACYMAN, both C500 and DCM fail to probe the interfacial solvation dynamics of a model protein-surfactant interface. While C500 is found to be delocalized from the protein-surfactant interface, DCM becomes destabilized upon the formation of the interface (protein-surfactant complex). The timescales obtained from this novel probe have also been compared with other femtosecond resolved studies and molecular dynamics simulations.

  14. Mutation of exposed hydrophobic amino acids to arginine to increase protein stability

    Directory of Open Access Journals (Sweden)

    Czaplicki Jerzy


    Full Text Available Abstract Background One strategy to increase the stability of proteins is to reduce the area of water-accessible hydrophobic surface. Results In order to test it, we replaced 14 solvent-exposed hydrophobic residues of acetylcholinesterase by arginine. The stabilities of the resulting proteins were tested using denaturation by high temperature, organic solvents, urea and by proteolytic digestion. Conclusion Altough the mutational effects were rather small, this strategy proved to be successful since half of the mutants showed an increased stability. This stability may originate from the suppression of unfavorable interactions of nonpolar residues with water or from addition of new hydrogen bonds with the solvent. Other mechanisms may also contribute to the increased stability observed with some mutants. For example, introduction of a charge at the surface of the protein may provide a new coulombic interaction on the protein surface.

  15. Vitamin K-dependent carboxylation of pulmonary surfactant-associated proteins

    International Nuclear Information System (INIS)

    Rannels, S.R.; Gallaher, K.J.; Wallin, R.; Rannels, D.E.


    Rat type II pneumocytes expressed vitamin K-dependent carboxylase activity that incorporated 14 CO 2 into microsomal protein precursors of molecular weights similar to those of surfactant-associated proteins (SAP). Compared to carboxylated precursor proteins present in the liver, these molecules appeared to be unique to the lung. Antibodies raised against purified rat surfactant reacted with SAP resolved by NaDodSO 4 /PAGE and with surfactant-containing lamellar bodies in type II pneumocyte cytoplasm. NaDodSO 4 /PAGE of microsomal proteins, after carboxylase-catalyzed incorporation of 14 CO 2 , demonstrated radiolabeled, immunoreactive products identical to SAP. The presence of γ-carboxyglutamic acid in these proteins was confirmed by HPLC analysis of SAP hydrolysates. Furthermore, lung carboxylase activity and SAP matured over similar time courses during fetal lung development. These results show that SAP are carboxylated by type II cells via a vitamin K-dependent pathway analogous to that for hepatic carboxylation of clotting factors. Further analogy to the clotting system suggest that γ-carboxyglutamic acid residues in SAP polypeptides play a role in Ca 2+ binding and thus in the known requirements for both cation and SAP in the physiological function of pulmonary surfactant

  16. Effect of protein-surfactant interactions on aggregation of β-lactoglobulin. (United States)

    Hansted, Jon G; Wejse, Peter L; Bertelsen, Hans; Otzen, Daniel E


    The milk protein β-lactoglobulin (βLG) dominates the properties of whey aggregates in food products. Here we use spectroscopic and calorimetric techniques to elucidate how anionic, cationic and non-ionic surfactants interact with bovine βLG and modulate its heat-induced aggregation. Alkyl trimethyl ammonium chlorides (xTAC) strongly promote aggregation, while sodium alkyl sulfates (SxS) and alkyl maltopyranosides (xM) reduce aggregation. Sodium dodecyl sulfate (SDS) binds to non-aggregated βLG in several steps, but reduction of aggregation was associated with the first binding step, which occurs far below the critical micelle concentration. In contrast, micellar concentrations of xMs are required to reduce aggregation. The ranking order for reduction of aggregation (normalized to their tendency to self-associate) was C10-C12>C8>C14 for SxS and C8>C10>C12>C14>C16 for xM. xTAC promote aggregation in the same ranking order as xM reduce it. We conclude that SxS reduce aggregation by stabilizing the protein's ligand-bound state (the melting temperature t(m) increases by up to 10°C) and altering its charge potential. xM monomers also stabilize the protein's ligand-bound state (increasing t(m) up to 6°C) but in the absence of charged head groups this is not sufficient by itself to prevent aggregation. Although micelles of both anionic and non-ionic surfactants destabilize βLG, they also solubilize unfolded protein monomers, leaving them unavailable for protein-protein association and thus inhibiting aggregation. Cationic surfactants promote aggregation by a combination of destabilization and charge neutralization. The food compatible surfactant sodium dodecanoate also inhibited aggregation well below the cmc, suggesting that surfactants may be a practical way to modulate whey protein properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Denaturation of proteins by surfactants studied by the Taylor dispersion analysis.

    Directory of Open Access Journals (Sweden)

    Aldona Jelińska

    Full Text Available We showed that the Taylor Dispersion Analysis (TDA is a fast and easy to use method for the study of denaturation proteins. We applied TDA to study denaturation of β-lactoglobulin, transferrin, and human insulin by anionic surfactant sodium dodecyl sulfate (SDS. A series of measurements at constant protein concentration (for transferrin was 1.9 x 10-5 M, for β- lactoglobulin was 7.6 x 10-5 M, and for insulin was 1.2 x 10-4 M and varying SDS concentrations were carried out in the phosphate-buffered saline (PBS. The structural changes were analyzed based on the diffusion coefficients of the complexes formed at various surfactant concentrations. The concentration of surfactant was varied in the range from 1.2 x 10-4 M to 8.7 x 10-2 M. We determined the minimum concentration of the surfactant necessary to change the native conformation of the proteins. The minimal concentration of SDS for β-lactoglobulin and transferrin was 4.3 x 10-4 M and for insulin 2.3 x 10-4 M. To evaluate the TDA as a novel method for studying denaturation of proteins we also applied other methods i.e. electronic circular dichroism (ECD and dynamic light scattering (DLS to study the same phenomenon. The results obtained using these methods were in agreement with the results from TDA.

  18. Surfactant protein D, a clinical biomarker for chronic obstructive pulmonary disease with excellent discriminant values

    DEFF Research Database (Denmark)

    Akiki, Zeina; Fakih, Dalia; Jounblat, Rania


    Biological markers can help to better identify a disease or refine its diagnosis. In the present study, the association between surfactant protein D (SP-D) and chronic obstructive pulmonary disease (COPD) was studied among subjects consulting for respiratory diseases or symptoms and was compared ...

  19. Surfactant protein D multimerization and gene polymorphism in COPD and asthma

    DEFF Research Database (Denmark)

    Fakih, Dalia; Akiki, Zeina; Junker, Kirsten


    BACKGROUND AND OBJECTIVE: A structural single nucleotide polymorphism rs721917 in the surfactant protein D (SP-D) gene, known as Met11Thr, was reported to influence the circulating levels and degree of multimerization of SP-D and was associated with both COPD and atopy in asthma. Moreover, diseas...

  20. The role of surfactant protein D in chemotherapy-induced gastrointestinal toxicity in mice

    DEFF Research Database (Denmark)

    Leicht von Huth, Sebastian; Rathe, Mathias; Sørensen, Grith Lykke

    Surfactant protein D (SP-D) is a host defense molecule produced by epithelial cells. SP-D is known for its role in pulmonary innate immunology, but is present in mucosa throughout the body. SP-D has been shown to be regulated in the gastrointestinal (GI-) mucosa of chemotherapy-treated piglets...

  1. No Ameliorating Effect of Surfactant Protein D on DSS-Induced Colitis in Mice

    DEFF Research Database (Denmark)

    Nexøe, Anders Bathum; Pilecki, Bartosz; Husby, Steffen

    Inflammatory bowel diseases (IBD) are disorders associated to a pathological immune response. Surfactant protein D (SP-D) is part of the innate host defense and has known anti-inflammatory effects. We hypothesize that SP-D dampens dextran sodium sulfate (DSS)-induced colitis by reducing innate...

  2. Dynamic strength of the interaction between lung surfactant protein D (SP-D) and saccharide ligands

    DEFF Research Database (Denmark)

    Thormann, Esben; Dreyer, Jakob K; Simonsen, Adam C


    In order to investigate the dynamic strength of the interaction between lung surfactant protein D (SP-D) and different sugars, maltose, mannose, glucose, and galactose, we have used an atomic force microscope to monitor the interaction on a single molecule scale. The experiment is performed...

  3. PLUNC: a multifunctional surfactant of the airways


    Bartlett, Jennifer; Gakhar, Lokesh; Penterman, Jon; Singh, Pradeep; Mallampalli, Rama K.; Porter, Edith; McCray, Paul B.


    PLUNC (palate, lung and nasal epithelium clone) protein is an abundant secretory product of epithelia throughout the mammalian conducting airways. Despite its homology with the innate immune defence molecules BPI (bactericidal/permeability-increasing protein) and LBP (lipopolysaccharide-binding protein), it has been difficult to define the functions of PLUNC. Based on its marked hydrophobicity and expression pattern, we hypothesized that PLUNC is an airway surfactant. We found that purified r...

  4. Automated Hydrophobic Interaction Chromatography Column Selection for Use in Protein Purification (United States)

    Murphy, Patrick J. M.; Stone, Orrin J.; Anderson, Michelle E.


    In contrast to other chromatographic methods for purifying proteins (e.g. gel filtration, affinity, and ion exchange), hydrophobic interaction chromatography (HIC) commonly requires experimental determination (referred to as screening or "scouting") in order to select the most suitable chromatographic medium for purifying a given protein 1. The method presented here describes an automated approach to scouting for an optimal HIC media to be used in protein purification. HIC separates proteins and other biomolecules from a crude lysate based on differences in hydrophobicity. Similar to affinity chromatography (AC) and ion exchange chromatography (IEX), HIC is capable of concentrating the protein of interest as it progresses through the chromatographic process. Proteins best suited for purification by HIC include those with hydrophobic surface regions and able to withstand exposure to salt concentrations in excess of 2 M ammonium sulfate ((NH4)2SO4). HIC is often chosen as a purification method for proteins lacking an affinity tag, and thus unsuitable for AC, and when IEX fails to provide adequate purification. Hydrophobic moieties on the protein surface temporarily bind to a nonpolar ligand coupled to an inert, immobile matrix. The interaction between protein and ligand are highly dependent on the salt concentration of the buffer flowing through the chromatography column, with high ionic concentrations strengthening the protein-ligand interaction and making the protein immobile (i.e. bound inside the column) 2. As salt concentrations decrease, the protein-ligand interaction dissipates, the protein again becomes mobile and elutes from the column. Several HIC media are commercially available in pre-packed columns, each containing one of several hydrophobic ligands (e.g. S-butyl, butyl, octyl, and phenyl) cross-linked at varying densities to agarose beads of a specific diameter 3. Automated column scouting allows for an efficient approach for determining which HIC media

  5. The Effect of Membrane Environment on Surfactant Protein C Stability Studied by Constant-pH Molecular Dynamics. (United States)

    Carvalheda, Catarina A; Campos, Sara R R; Baptista, António M


    Pulmonary surfactant protein C (SP-C) is a small peptide with two covalently linked fatty acyl chains that plays a crucial role in the formation and stabilization of the pulmonary surfactant reservoirs during the compression and expansion steps of the respiratory cycle. Although its function is known to be tightly related to its highly hydrophobic character and key interactions maintained with specific lipid components, much is left to understand about its molecular mechanism of action. Also, although it adopts a mainly helical structure while associated with the membrane, factors as pH variation and deacylation have been shown to affect its stability and function. In this work, the conformational behavior of both the acylated and deacylated SP-C isoforms was studied in a DPPC bilayer under different pH conditions using constant-pH molecular dynamics simulations. Our findings show that both protein isoforms are remarkably stable over the studied pH range, even though the acylated isoform exhibits a labile helix-turn-helix motif rarely observed in the other isoform. We estimate similar tilt angles for the two isoforms over the studied pH range, with a generally higher degree of internalization of the basic N-terminal residues in the deacylated case, and observe and discuss some protonation-conformation coupling effects. Both isoforms establish contacts with the surrounding lipid molecules (preferentially with the sn-2 ester bonds) and have a local effect on the conformational behavior of the surrounding lipid molecules, the latter being more pronounced for acylated SP-C.

  6. Interactions between Surfactants in Solution and Electrospun Protein Fibers: Effects on Release Behavior and Fiber Properties

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; García-Díaz, María; Jessen, Flemming


    , and drug delivery. In the present study, we present a systematic investigation of how surfactants and proteins, as physiologically relevant components, interact with insulin-loaded fish sarcoplasmic protein (FSP) electrospun fibers (FSP-Ins fibers) in solution and thereby affect fiber properties...... such as accessible surface hydrophilicity, physical stability, and release characteristics of an encapsulated drug. Interactions between insulin-loaded protein fibers and five anionic surfactants (sodium taurocholate, sodium taurodeoxycholate, sodium glycocholate, sodium glycodeoxycholate, and sodium dodecyl sulfate......Intermolecular interaction phenomena occurring between endogenous compounds, such as proteins and bile salts, and electrospun compounds are so far unreported, despite the exposure of fibers to such biorelevant compounds when applied for biomedical purposes, e.g., tissue engineering, wound healing...

  7. Structure-function correlations of pulmonary surfactant protein SP-B and the saposin-like family of proteins. (United States)

    Olmeda, Bárbara; García-Álvarez, Begoña; Pérez-Gil, Jesús


    Pulmonary surfactant is a lipid-protein complex secreted by the respiratory epithelium of mammalian lungs, which plays an essential role in stabilising the alveolar surface and so reducing the work of breathing. The surfactant protein SP-B is part of this complex, and is strictly required for the assembly of pulmonary surfactant and its extracellular development to form stable surface-active films at the air-liquid alveolar interface, making the lack of SP-B incompatible with life. In spite of its physiological importance, a model for the structure and the mechanism of action of SP-B is still needed. The sequence of SP-B is homologous to that of the saposin-like family of proteins, which are membrane-interacting polypeptides with apparently diverging activities, from the co-lipase action of saposins to facilitate the degradation of sphingolipids in the lysosomes to the cytolytic actions of some antibiotic proteins, such as NK-lysin and granulysin or the amoebapore of Entamoeba histolytica. Numerous studies on the interactions of these proteins with membranes have still not explained how a similar sequence and a potentially related fold can sustain such apparently different activities. In the present review, we have summarised the most relevant features of the structure, lipid-protein and protein-protein interactions of SP-B and the saposin-like family of proteins, as a basis to propose an integrated model and a common mechanistic framework of the apparent functional versatility of the saposin fold.

  8. Gradient elution behavior of proteins in hydrophobic interaction chromatography with U-shaped retention factor curves. (United States)

    Creasy, Arch; Lomino, Joseph; Barker, Gregory; Khetan, Anurag; Carta, Giorgio


    Protein retention in hydrophobic interaction chromatography is described by the solvophobic theory as a function of the kosmostropic salt concentration. In general, an increase in salt concentration drives protein partitioning to the hydrophobic surface while a decrease reduces it. In some cases, however, protein retention also increases at low salt concentrations resulting in a U-shaped retention factor curve. During gradient elution the salt concentration is gradually decreased from a high value thereby reducing the retention factor and increasing the protein chromatographic velocity. For these conditions, a steep gradient can overtake the protein in the column, causing it to rebind. Two dynamic models, one based on the local equilibrium theory and the other based on the linear driving force approximation, are presented. We show that the normalized gradient slope determines whether the protein elutes in the gradient, partially elutes, or is trapped in the column. Experimental results are presented for two different monoclonal antibodies and for lysozyme on Capto Phenyl (High Sub) resin. One of the mAbs and lysozyme exhibit U-shaped retention factor curves and for each, we determine the critical gradient slope beyond which 100% recovery is no longer possible. Elution with a reverse gradient is also demonstrated at low salt concentrations for these proteins. Understanding this behavior has implications in the design of gradient elution since the gradient slope impacts protein recovery. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The role of hydrophobic interactions in positioning of peripheral proteins in membranes

    Directory of Open Access Journals (Sweden)

    Lomize Mikhail A


    Full Text Available Abstract Background Three-dimensional (3D structures of numerous peripheral membrane proteins have been determined. Biological activity, stability, and conformations of these proteins depend on their spatial positions with respect to the lipid bilayer. However, these positions are usually undetermined. Results We report the first large-scale computational study of monotopic/peripheral proteins with known 3D structures. The optimal translational and rotational positions of 476 proteins are determined by minimizing energy of protein transfer from water to the lipid bilayer, which is approximated by a hydrocarbon slab with a decadiene-like polarity and interfacial regions characterized by water-permeation profiles. Predicted membrane-binding sites, protein tilt angles and membrane penetration depths are consistent with spin-labeling, chemical modification, fluorescence, NMR, mutagenesis, and other experimental studies of 53 peripheral proteins and peptides. Experimental membrane binding affinities of peripheral proteins were reproduced in cases that did not involve a helix-coil transition, specific binding of lipids, or a predominantly electrostatic association. Coordinates of all examined peripheral proteins and peptides with the calculated hydrophobic membrane boundaries, subcellular localization, topology, structural classification, and experimental references are available through the Orientations of Proteins in Membranes (OPM database. Conclusion Positions of diverse peripheral proteins and peptides in the lipid bilayer can be accurately predicted using their 3D structures that represent a proper membrane-bound conformation and oligomeric state, and have membrane binding elements present. The success of the implicit solvation model suggests that hydrophobic interactions are usually sufficient to determine the spatial position of a protein in the membrane, even when electrostatic interactions or specific binding of lipids are substantial. Our

  10. Effects of Polymer Hydrophobicity on Protein Structure and Aggregation Kinetics in Crowded Milieu. (United States)

    Breydo, Leonid; Sales, Amanda E; Frege, Telma; Howell, Mark C; Zaslavsky, Boris Y; Uversky, Vladimir N


    We examined the effects of water-soluble polymers of various degrees of hydrophobicity on the folding and aggregation of proteins. The polymers we chose were polyethylene glycol (PEG) and UCON (1:1 copolymer of ethylene glycol and propylene glycol). The presence of additional methyl groups in UCON makes it more hydrophobic than PEG. Our earlier analysis revealed that similarly sized PEG and UCON produced different changes in the solvent properties of water in their solutions and induced morphologically different α-synuclein aggregates [Ferreira, L. A., et al. (2015) Role of solvent properties of aqueous media in macromolecular crowding effects. J. Biomol. Struct. Dyn., in press]. To improve our understanding of molecular mechanisms defining behavior of proteins in a crowded environment, we tested the effects of these polymers on secondary and tertiary structure and aromatic residue solvent accessibility of 10 proteins [five folded proteins, two hybrid proteins; i.e., protein containing ordered and disordered domains, and three intrinsically disordered proteins (IDPs)] and on the aggregation kinetics of insulin and α-synuclein. We found that effects of both polymers on secondary and tertiary structures of folded and hybrid proteins were rather limited with slight unfolding observed in some cases. Solvent accessibility of aromatic residues was significantly increased for the majority of the studied proteins in the presence of UCON but not PEG. PEG also accelerated the aggregation of protein into amyloid fibrils, whereas UCON promoted aggregation to amyloid oligomers instead. These results indicate that even a relatively small change in polymer structure leads to a significant change in the effect of this polymer on protein folding and aggregation. This is an indication that protein folding and especially aggregation are highly sensitive to the presence of other macromolecules, and an excluded volume effect is insufficient to describe their effect.

  11. Interaction between human BAP31 and respiratory syncytial virus small hydrophobic (SH) protein

    International Nuclear Information System (INIS)

    Li, Yan; Jain, Neeraj; Limpanawat, Suweeraya; To, Janet; Quistgaard, Esben M.; Nordlund, Par; Thanabalu, Thirumaran; Torres, Jaume


    The small hydrophobic (SH) protein is a short channel-forming polypeptide encoded by the human respiratory syncytial virus (hRSV). Deletion of SH protein leads to the viral attenuation in mice and primates, and delayed apoptosis in infected cells. We have used a membrane-based yeast two-hybrid system (MbY2H) and a library from human lung cDNA to detect proteins that bind SH protein. This led to the identification of a membrane protein, B-cell associated protein 31 (BAP31). Transfected SH protein co-localizes with transfected BAP31 in cells, and pulls down endogenous BAP31. Titration of purified C-terminal endodomain of BAP31 against isotopically labeled SH protein in detergent micelles suggests direct interaction between the two proteins. Given the key role of BAP31 in protein trafficking and its critical involvement in pro- and anti-apoptotic pathways, this novel interaction may constitute a potential drug target. - Highlights: • A yeast two-hybrid system (MbY2H) detected BAP31 as a binder of RSV SH protein. • Transfected SH and BAP31 co-localize in lung epithelial cells. • Endogenous BAP31 is pulled down by RSV SH protein. • BAP31 endodomain interacts with the N-terminal α-helix of SH protein in micelles. • This interaction is proposed to be a potential drug target

  12. Interaction between human BAP31 and respiratory syncytial virus small hydrophobic (SH) protein

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Jain, Neeraj; Limpanawat, Suweeraya; To, Janet [School of Biological Sciences, Nanyang Technological University, 637551 (Singapore); Quistgaard, Esben M. [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm (Sweden); Nordlund, Par [School of Biological Sciences, Nanyang Technological University, 637551 (Singapore); Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm (Sweden); Thanabalu, Thirumaran [School of Biological Sciences, Nanyang Technological University, 637551 (Singapore); Torres, Jaume, E-mail: [School of Biological Sciences, Nanyang Technological University, 637551 (Singapore)


    The small hydrophobic (SH) protein is a short channel-forming polypeptide encoded by the human respiratory syncytial virus (hRSV). Deletion of SH protein leads to the viral attenuation in mice and primates, and delayed apoptosis in infected cells. We have used a membrane-based yeast two-hybrid system (MbY2H) and a library from human lung cDNA to detect proteins that bind SH protein. This led to the identification of a membrane protein, B-cell associated protein 31 (BAP31). Transfected SH protein co-localizes with transfected BAP31 in cells, and pulls down endogenous BAP31. Titration of purified C-terminal endodomain of BAP31 against isotopically labeled SH protein in detergent micelles suggests direct interaction between the two proteins. Given the key role of BAP31 in protein trafficking and its critical involvement in pro- and anti-apoptotic pathways, this novel interaction may constitute a potential drug target. - Highlights: • A yeast two-hybrid system (MbY2H) detected BAP31 as a binder of RSV SH protein. • Transfected SH and BAP31 co-localize in lung epithelial cells. • Endogenous BAP31 is pulled down by RSV SH protein. • BAP31 endodomain interacts with the N-terminal α-helix of SH protein in micelles. • This interaction is proposed to be a potential drug target.

  13. Isolation of soy bean protein P34 from oil bodies using hydrophobic interaction chromatography


    Sewekow, E.; Keßler, L.; Seidel-Morgenstern, A.; Rothkoetter, H.


    Abstract Background Soybeans play a prominent role in allergologic research due to the high incidence of allergic reactions. For detailed studies on specific proteins it is necessary to have access to a large amount of pure substance. Results In this contribution, a method for purifying soybean (Glycine max) protein P34 (also called Gly m Bd 30 K or Gly m 1) using hydrophobic interaction chromatography is presented. After screening experiments using 1 mL HiTrap columns, Butyl Sepharose 4 FF w...

  14. Charge Segregation and Low Hydrophobicity Are Key Features of Ribosomal Proteins from Different Organisms* (United States)

    Fedyukina, Daria V.; Jennaro, Theodore S.; Cavagnero, Silvia


    Ribosomes are large and highly charged macromolecular complexes consisting of RNA and proteins. Here, we address the electrostatic and nonpolar properties of ribosomal proteins that are important for ribosome assembly and interaction with other cellular components and may influence protein folding on the ribosome. We examined 50 S ribosomal subunits from 10 species and found a clear distinction between the net charge of ribosomal proteins from halophilic and non-halophilic organisms. We found that ∼67% ribosomal proteins from halophiles are negatively charged, whereas only up to ∼15% of ribosomal proteins from non-halophiles share this property. Conversely, hydrophobicity tends to be lower for ribosomal proteins from halophiles than for the corresponding proteins from non-halophiles. Importantly, the surface electrostatic potential of ribosomal proteins from all organisms, especially halophiles, has distinct positive and negative regions across all the examined species. Positively and negatively charged residues of ribosomal proteins tend to be clustered in buried and solvent-exposed regions, respectively. Hence, the majority of ribosomal proteins is characterized by a significant degree of intramolecular charge segregation, regardless of the organism of origin. This key property enables the ribosome to accommodate proteins within its complex scaffold regardless of their overall net charge. PMID:24398678

  15. Hydrophobic interaction chromatography in dual salt system increases protein binding capacity. (United States)

    Senczuk, Anna M; Klinke, Ralph; Arakawa, Tsutomu; Vedantham, Ganesh; Yigzaw, Yinges


    Hydrophobic interaction chromatography (HIC) uses weakly hydrophobic resins and requires a salting-out salt to promote protein-resin interaction. The salting-out effects increase with protein and salt concentration. Dynamic binding capacity (DBC) is dependent on the binding constant, as well as on the flow characteristics during sample loading. DBC increases with the salt concentration but decreases with increasing flow rate. Dynamic and operational binding capacity have a major raw material cost/processing time impact on commercial scale production of monoclonal antibodies. In order to maximize DBC the highest salt concentration without causing precipitation is used. We report here a novel method to maintain protein solubility while increasing the DBC by using a combination of two salting-out salts (referred to as dual salt). In a series of experiments, we explored the dynamic capacity of a HIC resin (TosoBioscience Butyl 650M) with combinations of salts. Using a model antibody, we developed a system allowing us to increase the dynamic capacity up to twofold using the dual salt system over traditional, single salt system. We also investigated the application of this novel approach to several other proteins and salt combinations, and noted a similar protein solubility and DBC increase. The observed increase in DBC in the dual salt system was maintained at different linear flow rates and did not impact selectivity.

  16. The surfactant protein C mutation A116D alters cellular processing, stress tolerance, surfactant lipid composition, and immune cell activation

    Directory of Open Access Journals (Sweden)

    Zarbock Ralf


    Full Text Available Abstract Background Surfactant protein C (SP-C is important for the function of pulmonary surfactant. Heterozygous mutations in SFTPC, the gene encoding SP-C, cause sporadic and familial interstitial lung disease (ILD in children and adults. Mutations mapping to the BRICHOS domain located within the SP-C proprotein result in perinuclear aggregation of the proprotein. In this study, we investigated the effects of the mutation A116D in the BRICHOS domain of SP-C on cellular homeostasis. We also evaluated the ability of drugs currently used in ILD therapy to counteract these effects. Methods SP-CA116D was expressed in MLE-12 alveolar epithelial cells. We assessed in vitro the consequences for cellular homeostasis, immune response and effects of azathioprine, hydroxychloroquine, methylprednisolone and cyclophosphamide. Results Stable expression of SP-CA116D in MLE-12 alveolar epithelial cells resulted in increased intracellular accumulation of proSP-C processing intermediates. SP-CA116D expression further led to reduced cell viability and increased levels of the chaperones Hsp90, Hsp70, calreticulin and calnexin. Lipid analysis revealed decreased intracellular levels of phosphatidylcholine (PC and increased lyso-PC levels. Treatment with methylprednisolone or hydroxychloroquine partially restored these lipid alterations. Furthermore, SP-CA116D cells secreted soluble factors into the medium that modulated surface expression of CCR2 or CXCR1 receptors on CD4+ lymphocytes and neutrophils, suggesting a direct paracrine effect of SP-CA116D on neighboring cells in the alveolar space. Conclusions We show that the A116D mutation leads to impaired processing of proSP-C in alveolar epithelial cells, alters cell viability and lipid composition, and also activates cells of the immune system. In addition, we show that some of the effects of the mutation on cellular homeostasis can be antagonized by application of pharmaceuticals commonly applied in ILD therapy

  17. Surfactant Protein-D-Encoding Gene Variant Polymorphisms Are Linked to Respiratory Outcome in Premature Infants

    DEFF Research Database (Denmark)

    Sorensen, Grith Lykke; Dahl, Marianne; Tan, Qihua


    OBJECTIVE: Associations between the genetic variation within or downstream of the surfactant protein-D-encoding gene (SFTPD), which encodes the collectin surfactant protein-D (SP-D) and may lead to respiratory distress syndrome or bronchopulmonary dysplasia, recently were reported. Our aim...... were used to associate genetic variation to SP-D, respiratory distress (RD), oxygen requirement, and respiratory support. RESULTS: The 5'-upstream SFTPD SNP rs1923534 and the 3 structural SNPs rs721917, rs2243639, and rs3088308 were associated with the SP-D level. The same SNPs were associated with RD......, a requirement for supplemental oxygen, and a requirement for respiratory support. Haplotype analyses identified 3 haplotypes that included the minor alleles of rs1923534, rs721917, and rs3088308 that exhibited highly significant associations with decreased SP-D levels and decreased ORs for RD, oxygen...

  18. Factors Influencing the Measurement of Plasma/Serum Surfactant Protein D Levels by ELISA


    Bratcher, Preston E.; Gaggar, Amit


    BACKGROUND: Extensive variations in human surfactant protein D (SP-D) levels in circulation as measured by ELISA exist in the published literature. In order to determine the source of these variations, factors influencing the measurement by ELISA were explored. MATERIALS AND METHODS: Peripheral blood from healthy individuals was collected into various vacutainers during the same blood draw. Recombinant SP-D was diluted into different matrices and used for a standard curve. Samples were analyz...

  19. Topology and cellular localization of the small hydrophobic protein of avian metapneumovirus. (United States)

    Deng, Qiji; Weng, Yuejin; Lu, Wuxun; Demers, Andrew; Song, Minxun; Wang, Dan; Yu, Qingzhong; Li, Feng


    The small hydrophobic protein (SH) is a type II integral membrane protein that is packaged into virions and is only present in certain paramyxoviruses including metapneumovirus. In addition to a highly divergent primary sequence, SH proteins vary significantly in size amongst the different viruses. Human respiratory syncytial virus (HRSV) encodes the smallest SH protein consisting of only 64 amino acids, while metapneumoviruses have the longest SH protein ranging from 174 to 179 amino acids in length. Little is currently known about the cellular localization and topology of the metapneumovirus SH protein. Here we characterize for the first time metapneumovirus SH protein with respect to topology, subcellular localization, and transport using avian metapneumovirus subgroup C (AMPV-C) as a model system. We show that AMPV-C SH is an integral membrane protein with N(in)C(out) orientation located in both the plasma membrane as well as within intracellular compartments, which is similar to what has been described previously for SH proteins of other paramyxoviruses. Furthermore, we demonstrate that AMPV-C SH protein localizes in the endoplasmic reticulum (ER), Golgi, and cell surface, and is transported through ER-Golgi secretory pathway. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface (United States)


    Background Halophiles are extremophilic microorganisms growing optimally at high salt concentrations. There are two strategies used by halophiles to maintain proper osmotic pressure in their cytoplasm: accumulation of molar concentrations of potassium and chloride with extensive adaptation of the intracellular macromolecules ("salt-in" strategy) or biosynthesis and/or accumulation of organic osmotic solutes ("osmolyte" strategy). Our work was aimed at contributing to the understanding of the shared molecular mechanisms of protein haloadaptation through a detailed and systematic comparison of a sample of several three-dimensional structures of halophilic and non-halophilic proteins. Structural differences observed between the "salt-in" and the mesophilic homologous proteins were contrasted to those observed between the "osmolyte" and mesophilic pairs. Results The results suggest that haloadaptation strategy in the presence of molar salt concentration, but not of osmolytes, necessitates a weakening of the hydrophobic interactions, in particular at the level of conserved hydrophobic contacts. Weakening of these interactions counterbalances their strengthening by the presence of salts in solution and may help the structure preventing aggregation and/or loss of function in hypersaline environments. Conclusions Considering the significant increase of biotechnology applications of halophiles, the understanding of halophilicity can provide the theoretical basis for the engineering of proteins of great interest because stable at concentrations of salts that cause the denaturation or aggregation of the majority of macromolecules. PMID:22192175

  1. Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface

    Directory of Open Access Journals (Sweden)

    Siglioccolo Alessandro


    Full Text Available Abstract Background Halophiles are extremophilic microorganisms growing optimally at high salt concentrations. There are two strategies used by halophiles to maintain proper osmotic pressure in their cytoplasm: accumulation of molar concentrations of potassium and chloride with extensive adaptation of the intracellular macromolecules ("salt-in" strategy or biosynthesis and/or accumulation of organic osmotic solutes ("osmolyte" strategy. Our work was aimed at contributing to the understanding of the shared molecular mechanisms of protein haloadaptation through a detailed and systematic comparison of a sample of several three-dimensional structures of halophilic and non-halophilic proteins. Structural differences observed between the "salt-in" and the mesophilic homologous proteins were contrasted to those observed between the "osmolyte" and mesophilic pairs. Results The results suggest that haloadaptation strategy in the presence of molar salt concentration, but not of osmolytes, necessitates a weakening of the hydrophobic interactions, in particular at the level of conserved hydrophobic contacts. Weakening of these interactions counterbalances their strengthening by the presence of salts in solution and may help the structure preventing aggregation and/or loss of function in hypersaline environments. Conclusions Considering the significant increase of biotechnology applications of halophiles, the understanding of halophilicity can provide the theoretical basis for the engineering of proteins of great interest because stable at concentrations of salts that cause the denaturation or aggregation of the majority of macromolecules.

  2. Volumetric interpretation of protein adsorption: interfacial packing of protein adsorbed to hydrophobic surfaces from surface-saturating solution concentrations. (United States)

    Kao, Ping; Parhi, Purnendu; Krishnan, Anandi; Noh, Hyeran; Haider, Waseem; Tadigadapa, Srinivas; Allara, David L; Vogler, Erwin A


    The maximum capacity of a hydrophobic adsorbent is interpreted in terms of square or hexagonal (cubic and face-centered-cubic, FCC) interfacial packing models of adsorbed blood proteins in a way that accommodates experimental measurements by the solution-depletion method and quartz-crystal-microbalance (QCM) for the human proteins serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa). A simple analysis shows that adsorbent capacity is capped by a fixed mass/volume (e.g. mg/mL) surface-region (interphase) concentration and not molar concentration. Nearly analytical agreement between the packing models and experiment suggests that, at surface saturation, above-mentioned proteins assemble within the interphase in a manner that approximates a well-ordered array. HSA saturates a hydrophobic adsorbent with the equivalent of a single square or hexagonally-packed layer of hydrated molecules whereas the larger proteins occupy two-or-more layers, depending on the specific protein under consideration and analytical method used to measure adsorbate mass (solution depletion or QCM). Square or hexagonal (cubic and FCC) packing models cannot be clearly distinguished by comparison to experimental data. QCM measurement of adsorbent capacity is shown to be significantly different than that measured by solution depletion for similar hydrophobic adsorbents. The underlying reason is traced to the fact that QCM measures contribution of both core protein, water of hydration, and interphase water whereas solution depletion measures only the contribution of core protein. It is further shown that thickness of the interphase directly measured by QCM systematically exceeds that inferred from solution-depletion measurements, presumably because the static model used to interpret solution depletion does not accurately capture the complexities of the viscoelastic interfacial environment probed by QCM. Copyright © 2010

  3. Regulation of G-protein coupled receptor traffic by an evolutionary conserved hydrophobic signal. (United States)

    Angelotti, Tim; Daunt, David; Shcherbakova, Olga G; Kobilka, Brian; Hurt, Carl M


    Plasma membrane (PM) expression of G-protein coupled receptors (GPCRs) is required for activation by extracellular ligands; however, mechanisms that regulate PM expression of GPCRs are poorly understood. For some GPCRs, such as alpha2c-adrenergic receptors (alpha(2c)-ARs), heterologous expression in non-native cells results in limited PM expression and extensive endoplasmic reticulum (ER) retention. Recently, ER export/retentions signals have been proposed to regulate cellular trafficking of several GPCRs. By utilizing a chimeric alpha(2a)/alpha(2c)-AR strategy, we identified an evolutionary conserved hydrophobic sequence (ALAAALAAAAA) in the extracellular amino terminal region that is responsible in part for alpha(2c)-AR subtype-specific trafficking. To our knowledge, this is the first luminal ER retention signal reported for a GPCR. Removal or disruption of the ER retention signal dramatically increased PM expression and decreased ER retention. Conversely, transplantation of this hydrophobic sequence into alpha(2a)-ARs reduced their PM expression and increased ER retention. This evolutionary conserved hydrophobic trafficking signal within alpha(2c)-ARs serves as a regulator of GPCR trafficking.

  4. Genetic and environmental influences of surfactant protein D serum levels

    DEFF Research Database (Denmark)

    Sørensen, Grith Lykke; Hjelmborg, Jacob v. B.; Kyvik, Kirsten Ohm


    in the NH(2)-terminal region (Met11Thr) of the mature protein is significantly associated with the serum SP-D levels. A classic twin study was performed on a twin population including 1,476 self-reported healthy adults. The serum SP-D levels increased with male sex, age, and smoking status. The intraclass...... defining the constitutional serum level of SP-D and determine the magnitude of the genetic contribution to serum SP-D in the adult population. Recent studies have demonstrated that serum SP-D concentrations in children are genetically determined and that a single nucleotide polymorphism (SNP) located...

  5. Genetic and environmental influences of surfactant protein D serum levels

    DEFF Research Database (Denmark)

    Sorensen, G.L.; Hjelmborg, J.V.; Kyvik, K.O.


    defining the constitutional serum level of SP-D and determine the magnitude of the genetic contribution to serum SP-D in the adult population. Recent studies have demonstrated that serum SP-D concentrations in children are genetically determined and that a single nucleotide polymorphism (SNP) located...... in the NH(2)-terminal region (Met11Thr) of the mature protein is significantly associated with the serum SP-D levels. A classic twin study was performed on a twin population including 1,476 self-reported healthy adults. The serum SP-D levels increased with male sex, age, and smoking status. The intraclass...

  6. Surfactant protein D, Club cell protein 16, Pulmonary and activation-regulated chemokine, C-reactive protein, and Fibrinogen biomarker variation in chronic obstructive lung disease

    DEFF Research Database (Denmark)

    Johansson, Sofie Lock; Vestbo, J.; Sorensen, G. L.


    for the assessment of patients, prediction of risk, and guidance of treatment. The aim of this review is to provide a comprehensive summary of observations for a selection of recently investigated pulmonary inflammatory biomarkers (Surfactant protein D (SP-D), Club cell protein 16 (CC-16), and Pulmonary...

  7. Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water

    Energy Technology Data Exchange (ETDEWEB)

    Riback, Joshua A.; Bowman, Micayla A.; Zmyslowski, Adam M.; Knoverek, Catherine R.; Jumper, John M.; Hinshaw, James R.; Kaye, Emily B.; Freed, Karl F.; Clark, Patricia L.; Sosnick, Tobin R.


    A substantial fraction of the proteome is intrinsically disordered, and even well-folded proteins adopt non-native geometries during synthesis, folding, transport, and turnover. Characterization of intrinsically disordered proteins (IDPs) is challenging, in part because of a lack of accurate physical models and the difficulty of interpreting experimental results. We have developed a general method to extract the dimensions and solvent quality (self-interactions) of IDPs from a single small-angle x-ray scattering measurement. We applied this procedure to a variety of IDPs and found that even IDPs with low net charge and high hydrophobicity remain highly expanded in water, contrary to the general expectation that protein-like sequences collapse in water. Our results suggest that the unfolded state of most foldable sequences is expanded; we conjecture that this property was selected by evolution to minimize misfolding and aggregation.

  8. Ancestral mutations as a tool for solubilizing proteins: The case of a hydrophobic phosphate-binding protein

    Directory of Open Access Journals (Sweden)

    Daniel Gonzalez


    Full Text Available Stable and soluble proteins are ideal candidates for functional and structural studies. Unfortunately, some proteins or enzymes can be difficult to isolate, being sometimes poorly expressed in heterologous systems, insoluble and/or unstable. Numerous methods have been developed to address these issues, from the screening of various expression systems to the modification of the target protein itself. Here we use a hydrophobic, aggregation-prone, phosphate-binding protein (HPBP as a case study. We describe a simple and fast method that selectively uses ancestral mutations to generate a soluble, stable and functional variant of the target protein, here named sHPBP. This variant is highly expressed in Escherichia coli, is easily purified and its structure was solved at much higher resolution than its wild-type progenitor (1.3 versus 1.9 Å, respectively.

  9. Entropic formulation for the protein folding process: Hydrophobic stability correlates with folding rates (United States)

    Dal Molin, J. P.; Caliri, A.


    Here we focus on the conformational search for the native structure when it is ruled by the hydrophobic effect and steric specificities coming from amino acids. Our main tool of investigation is a 3D lattice model provided by a ten-letter alphabet, the stereochemical model. This minimalist model was conceived for Monte Carlo (MC) simulations when one keeps in mind the kinetic behavior of protein-like chains in solution. We have three central goals here. The first one is to characterize the folding time (τ) by two distinct sampling methods, so we present two sets of 103 MC simulations for a fast protein-like sequence. The resulting sets of characteristic folding times, τ and τq were obtained by the application of the standard Metropolis algorithm (MA), as well as by an enhanced algorithm (Mq A). The finding for τq shows two things: (i) the chain-solvent hydrophobic interactions {hk } plus a set of inter-residues steric constraints {ci,j } are able to emulate the conformational search for the native structure. For each one of the 103MC performed simulations, the target is always found within a finite time window; (ii) the ratio τq / τ ≅ 1 / 10 suggests that the effect of local thermal fluctuations, encompassed by the Tsallis weight, provides to the chain an innate efficiency to escape from energetic and steric traps. We performed additional MC simulations with variations of our design rule to attest this first result, both algorithms the MA and the Mq A were applied to a restricted set of targets, a physical insight is provided. Our second finding was obtained by a set of 600 independent MC simulations, only performed with the Mq A applied to an extended set of 200 representative targets, our native structures. The results show how structural patterns should modulate τq, which cover four orders of magnitude; this finding is our second goal. The third, and last result, was obtained with a special kind of simulation performed with the purpose to explore a

  10. Optimal Hydrophobicity in Ring-Opening Metathesis Polymerization-Based Protein Mimics Required for siRNA Internalization. (United States)

    deRonde, Brittany M; Posey, Nicholas D; Otter, Ronja; Caffrey, Leah M; Minter, Lisa M; Tew, Gregory N


    Exploring the role of polymer structure for the internalization of biologically relevant cargo, specifically siRNA, is of critical importance to the development of improved delivery reagents. Herein, we report guanidinium-rich protein transduction domain mimics (PTDMs) based on a ring-opening metathesis polymerization scaffold containing tunable hydrophobic moieties that promote siRNA internalization. Structure-activity relationships using Jurkat T cells and HeLa cells were explored to determine how the length of the hydrophobic block and the hydrophobic side chain compositions of these PTDMs impacted siRNA internalization. To explore the hydrophobic block length, two different series of diblock copolymers were synthesized: one series with symmetric block lengths and one with asymmetric block lengths. At similar cationic block lengths, asymmetric and symmetric PTDMs promoted siRNA internalization in the same percentages of the cell population regardless of the hydrophobic block length; however, with 20 repeat units of cationic charge, the asymmetric block length had greater siRNA internalization, highlighting the nontrivial relationships between hydrophobicity and overall cationic charge. To further probe how the hydrophobic side chains impacted siRNA internalization, an additional series of asymmetric PTDMs was synthesized that featured a fixed hydrophobic block length of five repeat units that contained either dimethyl (dMe), methyl phenyl (MePh), or diphenyl (dPh) side chains and varied cationic block lengths. This series was further expanded to incorporate hydrophobic blocks consisting of diethyl (dEt), diisobutyl (diBu), and dicyclohexyl (dCy) based repeat units to better define the hydrophobic window for which our PTDMs had optimal activity. High-performance liquid chromatography retention times quantified the relative hydrophobicities of the noncationic building blocks. PTDMs containing the MePh, diBu, and dPh hydrophobic blocks were shown to have superior

  11. Signal amplification in electrochemical detection of buckwheat allergenic protein using field effect transistor biosensor by introduction of anionic surfactant

    Directory of Open Access Journals (Sweden)

    Sho Hideshima


    Full Text Available Food allergens, especially buckwheat proteins, sometimes induce anaphylactic shock in patients after ingestion. Development of a simple and rapid screening method based on a field effect transistor (FET biosensor for food allergens in food facilities or products is in demand. In this study, we achieved the FET detection of a buckwheat allergenic protein (BWp16, which is not charged enough to be electrically detected by FET biosensors, by introducing additional negative charges from anionic surfactants to the target proteins. A change in the FET characteristics reflecting surface potential caused by the adsorption of target charged proteins was observed when the target sample was coupled with the anionic surfactant (sodium dodecyl sulfate; SDS, while no significant response was detected without any surfactant treatment. It was suggested that the surfactant conjugated with the protein could be useful for the charge amplification of the target proteins. The surface plasmon resonance analysis revealed that the SDS-coupled proteins were successfully captured by the receptors immobilized on the sensing surface. Additionally, we obtained the FET responses at various concentrations of BWp16 ranging from 1 ng/mL to 10 μg/mL. These results suggest that a signal amplification method for FET biosensing is useful for allergen detection in the food industry. Keywords: Field effect transistor biosensor, Food allergen, Signal amplification, Ionic surfactant, Intrinsic charge

  12. Potential hydrophobic protein markers of breast cancer in Malaysian Chinese, Malay and Indian patients. (United States)

    Liang, Seng; Singh, Manjit; Gam, Lay-Harn

    Breast cancer is a leading cause of worldwide mortality in females. In Malaysia, breast cancer is the most commonly diagnosed cancer in women. Of these, the Chinese had the most number of breast cancer cases, followed by the Indian and the Malay. The most common type of breast cancer is infiltrating ductal carcinoma (IDC). A proteomic approach was used to identify protein profile changes in cancerous tissues compared with the normal tissues, the tissues were collected from patients of three different ethnicities, i.e. Chinese, Malay and Indian. Ten differentially expressed hydrophobic proteins were identified. We had evaluated the potential of these proteins as biomarker for infiltrating ducal carcinoma (IDC) and the ethnic-specific expression of these proteins was also determined. The data showed that peroxiredoxin-2, heat shock protein 60, protein disulfide isomerase and calreticulin may serve as ethnic-related potential markers for either one or combination of Chinese, Malay and Indian cohorts as their expression levels were significantly high in the cancerous tissues compared to the normal tissues in the ethnic group tested.

  13. Reconciling the understanding of 'hydrophobicity' with physics-based models of proteins. (United States)

    Harris, Robert C; Pettitt, B Montgomery


    The idea that a 'hydrophobic energy' drives protein folding, aggregation, and binding by favoring the sequestration of bulky residues from water into the protein interior is widespread. The solvation free energies (ΔGsolv) of small nonpolar solutes increase with surface area (A), and the free energies of creating macroscopic cavities in water increase linearly with A. These observations seem to imply that there is a hydrophobic component (ΔGhyd) of ΔGsolv that increases linearly with A, and this assumption is widely used in implicit solvent models. However, some explicit-solvent molecular dynamics studies appear to contradict these ideas. For example, one definition (ΔG(LJ)) of ΔGhyd is that it is the free energy of turning on the Lennard-Jones (LJ) interactions between the solute and solvent. However, ΔG(LJ) decreases with A for alanine and glycine peptides. Here we argue that these apparent contradictions can be reconciled by defining ΔGhyd to be a near hard core insertion energy (ΔGrep), as in the partitioning proposed by Weeks, Chandler, and Andersen. However, recent results have shown that ΔGrep is not a simple function of geometric properties of the molecule, such as A and the molecular volume, and that the free energy of turning on the attractive part of the LJ potential cannot be computed from first-order perturbation theory for proteins. The theories that have been developed from these assumptions to predict ΔGhyd are therefore inadequate for proteins.

  14. Synthesis of carbohydrate-based surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Pemberton, Jeanne E.; Polt, Robin L.; Maier, Raina M.


    The present invention provides carbohydrate-based surfactants and methods for producing the same. Methods for producing carbohydrate-based surfactants include using a glycosylation promoter to link a carbohydrate or its derivative to a hydrophobic compound.

  15. Fragment-based approach to calculate hydrophobicity of anionic and nonionic surfactants from chromatographic retention on a C18 stationary phase

    NARCIS (Netherlands)

    Hammer, J.; Haftka, J.J.-H.; Scherpenisse, P.; Hermens, J.L.M.; de Voogt, P.W.P.

    To predict the fate and potential effects of organic contaminants, information about their hydrophobicity is required. However, common parameters to describe the hydrophobicity of organic compounds (e.g., octanol–water partition constant [KOW]) proved to be inadequate for ionic and nonionic

  16. Fragment-based approach to calculate hydrophobicity of anionic and nonionic surfactants derived from chromatographic retention on a C18 stationary phase

    NARCIS (Netherlands)

    Hammer, Jort; Haftka, Joris J-H; Scherpenisse, Peter; Hermens, Joop L M; de Voogt, Pim W P

    To predict the fate and potential effects of organic contaminants, information about their hydrophobicity is required. However, common parameters to describe the hydrophobicity of organic compounds (e.g., octanol-water partition constant [KOW ]) proved to be inadequate for ionic and nonionic

  17. Protein Exposed Hydrophobicity Reduces the Kinetic Barrier for Adsorption of Ovalbumin to the Air-Water Interface

    NARCIS (Netherlands)

    Wierenga, P.A.; Meinders, M.B.J.; Egmond, M.R.; Voragen, F.A.G.J.; Jongh, H.H.J. de


    Using native and caprylated ovalbumin, the role of exposed hydrophobicity on the kinetics of protein adsorption to the air - water interface is studied. First, changes in the chemical properties of the protein upon caprylation were characterized followed by measurement of the changes in adsorption

  18. Protein exposed hydrophobicity reduces the kinetic barrier for adsoption of ovalbumin to the air-water interface.

    NARCIS (Netherlands)

    Wierenga, P.A.; Meinders, M.B.J.; Egmond, M.R.; Voragen, A.G.J.


    Using native and caprylated ovalbumin, the role of exposed hydrophobicity on the kinetics of protein adsorption to the air-water interface is studied. First, changes in the chemical properties of the protein upon caprylation were characterized followed by measurement of the changes in adsorption

  19. Chemotherapeutic treatment reduces circulating levels of surfactant protein-D in children with acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Rathe, Mathias; Sorensen, Grith L; Skov Wehner, Peder


    with acute lymphoblastic leukemia (ALL). PROCEDURE: In a prospective study, 43 children receiving treatment for ALL were monitored for mucosal toxicity from diagnosis through the induction phase of treatment. Serial blood draws were taken to determine the levels of SP-D, interleukin-6 (IL-6), C......BACKGROUND: Surfactant protein D (SP-D) is a host defense molecule of the innate immune system that enhances pathogen clearance and modulates inflammatory responses. We hypothesized that circulating SP-D levels are associated with chemotherapy-induced mucositis and infectious morbidity in children...

  20. Segregated phases in pulmonary surfactant membranes do not show coexistence of lipid populations with differentiated dynamic properties

    DEFF Research Database (Denmark)

    Bernardino de la Serna, Jorge; Orädd, Greger; Bagatolli, Luis


    surfactant membranes and membranes reconstituted from two surfactant hydrophobic fractions (i.e., all the lipids plus the hydrophobic proteins SP-B and SP-C, or only the total lipid fraction). These preparations show micrometer-sized fluid ordered/disordered phase coexistence, associated with a broad...... endothermic transition ending close to 37°C. However, both types of membrane exhibit uniform lipid mobility when analyzed by electron paramagnetic resonance with different spin-labeled phospholipids. A similar feature is observed with pulse-field gradient NMR experiments on oriented membranes reconstituted...... from the two types of surfactant hydrophobic extract. These latter results suggest that lipid dynamics are similar in the coexisting fluid phases observed by fluorescence microscopy. Additionally, it is found that surfactant proteins significantly reduce the average intramolecular lipid mobility...

  1. Respiratory Tract Infections in Diabetic and Non-Diabetic Individuals are Linked with Serum Surfactant Protein-D

    International Nuclear Information System (INIS)

    Jawed, S.; Parveen, N.


    Objective: To find out the rate of respiratory tract infections in diabetic and non-diabetic individuals and their relation with surfactant protein D. Methods: The cross-sectional study was conducted at Dow University of Health Sciences, Karachi, from September 2011 to April 2012, and comprised subjects of both genders between ages of 30 and 60 years. The subjects were divided into four groups: diabetic obese, non-diabetic obese, diabetic non-obese, and non-diabetic-non-obese. A structured questionnaire was used to collect information about respiratory tract infections. Serum surfactant protein D levels were analysed using human surfactant protein D enzyme-linked immunosorbent assay kit. Statistical analysis was performed using SPSS 16. Results: Of the 90 subjects, there were 20(22.2 percent) diabetic obese, 30(33.3 percent) non-diabetic obese, 10(11.1 percent) diabetic non-obese, and 30(33.3 percent) non-diabetic-non-obese. The overall mean age was 36.6±103 years. Among the diabetic obese, 15(75 percent) had respiratory tract infections which was higher than the other study groups, and patients having respiratory tract infections had lower surfactant protein D levels than those who did not have infections (p=0.01). Conclusion: Diabetic obese subjects had greater rate of recurrent respiratory tract infections and had lower concentration of serum surfactant protein D compared to subjects without respiratory tract infections. (author)

  2. Intermolecular crosslinks mediate aggregation of phospholipid vesicles by pulmonary surfactant-associated protein SAP-35

    International Nuclear Information System (INIS)

    Ross, G.R.; Sawyer, J.; Whitsett, J.


    Pulmonary surfactant-associated protein, Mr=35,000 (SAP-35) is known to bind phospholipids and is hypothesized to function in the organization of surfactant lipid membranes. SAP-35 has been observed to accelerate the calcium-induced aggregation of phospholipid vesicles. In order to define the molecular domains of SAP-35 which function in phospholipid aggregation, they have measured the light scattering properties (400nm) of purified canine SAP-35-phospholipid vesicle suspensions. Accelerated aggregation of unilamellar vesicles, requires SAP-35 and at least 2mM free calcium. The initial rate of A 400 change is proportional to the amount of native SAP-35 added over lipid:protein molar ratios ranging from 100:1 to 5000:1. Removal of the SAP-35 collagen-like domain and a specific cysteine residue involved in intermolecular disulfide bonding by bacterial collagenase digestion destroys the protein's lipid aggregation activity. Pre-incubation of SAP-35 with dithiothreitol (DTT) under nondenaturing conditions also results in a time-dependent loss of aggregation activity. Sucrose density gradient floatation of SAP-35 with 14 C dipalmitoyl phosphatidycholine labelled vesicles in the absence or presence of DTT suggests retention of SAP-35 lipid binding capacity. These data demonstrate the importance of SAP-35 triple helix and disulfide crosslinking integrity for the aggregation of unilamellar phospholipid vesicles

  3. Interplay of Electrostatics and Hydrophobic Effects in the Metamorphic Protein Human Lymphotactin. (United States)

    Korkmaz, Elif Nihal; Volkman, Brian F; Cui, Qiang


    The human lymphotactin (hLtn) is a protein that features two native states both of which are physiologically relevant: it is a monomer (hLtn10) at 10 °C with 200 mM salt and a dimer (hLtn40) at 40 °C and without salt. Here we focus on the networks of electrostatic and hydrophobic interactions that display substantial changes upon the conversion from hLtn10 to hLtn40 since they are expected to modulate the relative stability of the two folds. In addition to the Arg 23-Arg 43 interaction discussed in previous work, we find several other like-charge pairs that are likely important to the stability of hLtn10. Free energy perturbation calculations are carried out to explicitly evaluate the contribution of the Arg 23-Arg 43 interaction to the hLtn10 stability. hLtn40 features a larger number of salt bridges, and a set of hydrophobic residues undergo major changes in the solvent accessible surface area between hLtn10 and hLtn40, pointing to their importance to the relative stability of the two folds. We also discuss the use of explicit and implicit solvent simulations for characterizing the conformational ensembles under different solution conditions.

  4. Development of Cy5.5-Labeled Hydrophobically Modified Glycol Chitosan Nanoparticles for Protein Delivery (United States)

    Chin, Amanda

    Therapeutic proteins are often highly susceptible to enzymatic degradation, thus restricting their in vivo stability. To overcome this limitation, delivery systems designed to promote uptake and reduce degradation kinetics have undergone a rapid shift from macro-scale systems to nanomaterial based carriers. Many of these nanomaterials, however, elicit immune responses and may have cytotoxic effects both in vitro and in vivo. The naturally derived polysaccharide chitosan has emerged as a promising biodegradable material and has been utilized for many biomedical applications; nevertheless, its function is often constrained by poor solubility. Glycol chitosan, a derivative of chitosan, can be hydrophobically modified to impart amphiphilic properties that enable the self-assembly into nanoparticles in aqueous media at neutral pH. This nanoparticle system has shown initial success as a therapeutic agent in several model cell culture systems, but little is known about its stability against enzymatic degradation. Therefore, the goal of this research was to investigate the resistance of hydrophobically modified glycol chitosan against enzyme-catalyzed degradation using an in vivo simulated system containing lysozyme. To synthesize the nanoparticles, hydrophobic cholanic acid was first covalently conjugated to glycol chitosan using of N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Conjugates were purified by dialysis, lyophilized, and ultra-sonicated to form nanoparticles. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of 5beta-cholanic acid to the glycol chitosan. Particle size and stability over time were determined with dynamic light scattering (DLS), and particle morphology was evaluated by transmission electron microscopy (TEM). The average diameter of the nanoparticles was approximately 200 nm, which remained stable at 4°C for up to 10 days. Additionally, a near infrared fluorescent (NIRF) dye

  5. Polymorphism in SFTPD gene affects assembly and constitutional serum levels of surfactant protein D in a Lebanese population

    DEFF Research Database (Denmark)

    Fakih, Dalia; Chamat, Soulaima; Medlej-Hashim, Myrna


    Surfactant protein D (SP-D), an oligomeric lung-derived lectin, has essential roles in innate immunity. It can be measured in serum. Previous studies have shown that constitutional SP-D serum levels and the protein degree of multimerization are genetically influenced. We aimed to establish the di...

  6. Monocyte CD64 or CD89 targeting by surfactant protein D/anti-Fc receptor mediates bacterial uptake.

    NARCIS (Netherlands)

    Tacken, P.J.; Batenburg, J.J.


    We recently showed that a chimeric protein, consisting of a recombinant fragment of human surfactant protein D (rfSP-D) coupled to a Fab' fragment directed against the human Fcalpha receptor (CD89), effectively targets pathogens recognized by SP-D to human neutrophils. The present study evaluates

  7. Protective Effect of Surfactant Protein D in Pulmonary Vaccinia Virus Infection: Implication of A27 Viral Protein

    Directory of Open Access Journals (Sweden)

    Julien Perino


    Full Text Available Vaccinia virus (VACV was used as a surrogate of variola virus (VARV (genus Orthopoxvirus, the causative agent of smallpox, to study Orthopoxvirus infection. VARV is principally transmitted between humans by aerosol droplets. Once inhaled, VARV first infects the respiratory tract where it could encounter surfactant components, such as soluble pattern recognition receptors. Surfactant protein D (SP-D, constitutively present in the lining fluids of the respiratory tract, plays important roles in innate host defense against virus infection. We investigated the role of SP-D in VACV infection and studied the A27 viral protein involvement in the interaction with SP-D. Interaction between SP-D and VACV caused viral inhibition in a lung cell model. Interaction of SP-D with VACV was mediated by the A27 viral protein. Binding required Ca2+ and interactions were blocked in the presence of excess of SP-D saccharide ligands. A27, which lacks glycosylation, directly interacted with SP-D. The interaction between SP-D and the viral particle was also observed using electron microscopy. Infection of mice lacking SP-D (SP-D-/- resulted in increased mortality compared to SP-D+/+ mice. Altogether, our data show that SP-D participates in host defense against the vaccinia virus infection and that the interaction occurs with the viral surface protein A27.

  8. Engineering of the E. coli outer membrane protein FhuA to overcome the hydrophobic mismatch in thick polymeric membranes. (United States)

    Muhammad, Noor; Dworeck, Tamara; Fioroni, Marco; Schwaneberg, Ulrich


    Channel proteins like the engineered FhuA Δ1-159 often cannot insert into thick polymeric membranes due to a mismatch between the hydrophobic surface of the protein and the hydrophobic surface of the polymer membrane. To address this problem usually specific block copolymers are synthesized to facilitate protein insertion. Within this study in a reverse approach we match the protein to the polymer instead of matching the polymer to the protein. To increase the FhuA Δ1-159 hydrophobic surface by 1 nm, the last 5 amino acids of each of the 22 β-sheets, prior to the more regular periplasmatic β-turns, were doubled leading to an extended FhuA Δ1-159 (FhuA Δ1-159 Ext). The secondary structure prediction and CD spectroscopy indicate the β-barrel folding of FhuA Δ1-159 Ext. The FhuA Δ1-159 Ext insertion and functionality within a nanocontainer polymeric membrane based on the triblock copolymer PIB(1000)-PEG(6000)-PIB(1000) (PIB = polyisobutylene, PEG = polyethyleneglycol) has been proven by kinetic analysis using the HRP-TMB assay (HRP = Horse Radish Peroxidase, TMB = 3,3',5,5'-tetramethylbenzidine). Identical experiments with the unmodified FhuA Δ1-159 report no kinetics and presumably no insertion into the PIB(1000)-PEG(6000)-PIB(1000) membrane. Furthermore labeling of the Lys-NH(2) groups present in the FhuA Δ1-159 Ext channel, leads to controllability of in/out flux of substrates and products from the nanocontainer. Using a simple "semi rational" approach the protein's hydrophobic transmembrane region was increased by 1 nm, leading to a predicted lower hydrophobic mismatch between the protein and polymer membrane, minimizing the insertion energy penalty. The strategy of adding amino acids to the FhuA Δ1-159 Ext hydrophobic part can be further expanded to increase the protein's hydrophobicity, promoting the efficient embedding into thicker/more hydrophobic block copolymer membranes.

  9. Engineering of the E. coli Outer Membrane Protein FhuA to overcome the Hydrophobic Mismatch in Thick Polymeric Membranes

    Directory of Open Access Journals (Sweden)

    Fioroni Marco


    Full Text Available Abstract Background Channel proteins like the engineered FhuA Δ1-159 often cannot insert into thick polymeric membranes due to a mismatch between the hydrophobic surface of the protein and the hydrophobic surface of the polymer membrane. To address this problem usually specific block copolymers are synthesized to facilitate protein insertion. Within this study in a reverse approach we match the protein to the polymer instead of matching the polymer to the protein. Results To increase the FhuA Δ1-159 hydrophobic surface by 1 nm, the last 5 amino acids of each of the 22 β-sheets, prior to the more regular periplasmatic β-turns, were doubled leading to an extended FhuA Δ1-159 (FhuA Δ1-159 Ext. The secondary structure prediction and CD spectroscopy indicate the β-barrel folding of FhuA Δ1-159 Ext. The FhuA Δ1-159 Ext insertion and functionality within a nanocontainer polymeric membrane based on the triblock copolymer PIB1000-PEG6000-PIB1000 (PIB = polyisobutylene, PEG = polyethyleneglycol has been proven by kinetic analysis using the HRP-TMB assay (HRP = Horse Radish Peroxidase, TMB = 3,3',5,5'-tetramethylbenzidine. Identical experiments with the unmodified FhuA Δ1-159 report no kinetics and presumably no insertion into the PIB1000-PEG6000-PIB1000 membrane. Furthermore labeling of the Lys-NH2 groups present in the FhuA Δ1-159 Ext channel, leads to controllability of in/out flux of substrates and products from the nanocontainer. Conclusion Using a simple "semi rational" approach the protein's hydrophobic transmembrane region was increased by 1 nm, leading to a predicted lower hydrophobic mismatch between the protein and polymer membrane, minimizing the insertion energy penalty. The strategy of adding amino acids to the FhuA Δ1-159 Ext hydrophobic part can be further expanded to increase the protein's hydrophobicity, promoting the efficient embedding into thicker/more hydrophobic block copolymer membranes.

  10. Surfactant Protein D is a candidate biomarker for subclinical tobacco smoke-induced lung damage

    DEFF Research Database (Denmark)

    Lock Johansson, Sofie; Tan, Qihua; Holst, Rene


    Variation in Surfactant Protein D (SP-D) is associated with lung function in tobacco smoke-induced chronic respiratory disease. We hypothesized that the same association exists in the general population and could be used to identify individuals sensitive to smoke-induced lung damage. The associat......Variation in Surfactant Protein D (SP-D) is associated with lung function in tobacco smoke-induced chronic respiratory disease. We hypothesized that the same association exists in the general population and could be used to identify individuals sensitive to smoke-induced lung damage...... or haplotypes, and expiratory lung function were assessed using twin study methodology and mixed-effects models. Significant inverse associations were evident between sSP-D and the forced expiratory volume in 1 second and forced vital capacity in the presence of current tobacco smoking but not in non...... with lung function measures in interaction with tobacco smoking. The obtained data suggest sSP-D as a candidate biomarker in risk assessments for subclinical tobacco smoke-induced lung damage. The data and derived conclusion warrant confirmation in a longitudinal population following chronic obstructive...

  11. Design-based stereological analysis of the lung parenchymal architecture and alveolar type II cells in surfactant protein A and D double deficient mice

    DEFF Research Database (Denmark)

    Jung, A; Allen, L; Nyengaard, Jens Randel


    Alveolar epithelial type II cells synthesize and secrete surfactant. The surfactant-associated proteins A and D (SP-A and SP-D), members of the collectin protein family, participate in pulmonary immune defense, modulation of inflammation, and surfactant metabolism. Both proteins are known to have......, but the mean volume of a single lamellar body remains constant. These results demonstrate that chronic deficiency of SP-A and SP-D in mice leads to parenchymal remodeling, type II cell hyperplasia and hypertrophy, and disturbed intracellular surfactant metabolism. The design-based stereological approach...

  12. The effects of GH and hormone replacement therapy on serum concentrations of mannan-binding lectin, surfactant protein D and vitamin D binding protein in Turner syndrome

    DEFF Research Database (Denmark)

    Gravholt, Claus Højbjerg; Leth-Larsen, Rikke; Lauridsen, Anna Lis


    function. In the present study we examined whether GH or hormone replacement therapy (HRT) in Turner syndrome (TS) influence the serum concentrations of MBL and two other proteins partaking in the innate immune defence, surfactant protein D (SP-D) and vitamin D binding protein (DBP). DESIGN: Study 1...

  13. Isolation of soybean protein P34 from oil bodies using hydrophobic interaction chromatography

    Directory of Open Access Journals (Sweden)

    Seidel-Morgenstern Andreas


    Full Text Available Abstract Background Soybeans play a prominent role in allergologic research due to the high incidence of allergic reactions. For detailed studies on specific proteins it is necessary to have access to a large amount of pure substance. Results In this contribution, a method for purifying soybean (Glycine max protein P34 (also called Gly m Bd 30 K or Gly m 1 using hydrophobic interaction chromatography is presented. After screening experiments using 1 mL HiTrap columns, Butyl Sepharose 4 FF was selected for further systematic investigations. With this stationary phase, suitable operation conditions for two-step gradient elution using ammonium sulphate were determined experimentally. The separation conditions obtained in a small column could be scaled up successfully to column volumes of 7.5 and 75 mL, allowing for high product purities of almost 100% with a yield of 27% for the chromatographic separation step. Conditions could be simplified further using a onestep gradient, which gave comparable purification in a shorter process time. The identity of the purified protein was verified using in-gel digestion and mass spectrometry as well as immunological techniques. Conclusion With the technique presented it is possible to produce, within a short timeframe, pure P34, suitable for further studies where an example antigen is needed.

  14. Human surfactant protein A2 gene mutations impair dimmer/trimer assembly leading to deficiency in protein sialylation and secretion.

    Directory of Open Access Journals (Sweden)

    Yi Song

    Full Text Available Surfactant protein A2 (SP-A2 plays an essential role in surfactant metabolism and lung host defense. SP-A2 mutations in the carbohydrate recognition domain have been related to familial pulmonary fibrosis and can lead to a recombinant protein secretion deficiency in vitro. In this study, we explored the molecular mechanism of protein secretion deficiency and the subsequent biological effects in CHO-K1 cells expressing both wild-type and several different mutant forms of SP-A2. We demonstrate that the SP-A2 G231V and F198S mutants impair the formation of dimmer/trimer SP-A2 which contributes to the protein secretion defect. A deficiency in sialylation, but not N-linked glycosylation, is critical to the observed dimmer/trimer impairment-induced secretion defect. Furthermore, both mutant forms accumulate in the ER and form NP-40-insoluble aggregates. In addition, the soluble mutant SP-A2 could be partially degraded through the proteasome pathway but not the lysosome or autophagy pathway. Intriguingly, 4-phenylbutyrate acid (4-PBA, a chemical chaperone, alleviates aggregate formation and partially rescued the protein secretion of SP-A2 mutants. In conclusion, SP-A2 G231V and F198S mutants impair the dimmer/trimer assembly, which contributes to the protein sialylation and secretion deficiency. The intracellular protein mutants could be partially degraded through the proteasome pathway and also formed aggregates. The treatment of the cells with 4-PBA resulted in reduced aggregation and rescued the secretion of mutant SP-A2.

  15. Small surfactant-like peptides can drive soluble proteins into active aggregates

    Directory of Open Access Journals (Sweden)

    Zhou Bihong


    Full Text Available Abstract Background Inactive protein inclusion bodies occur commonly in Escherichia coli (E. coli cells expressing heterologous proteins. Previously several independent groups have found that active protein aggregates or pseudo inclusion bodies can be induced by a fusion partner such as a cellulose binding domain from Clostridium cellulovorans (CBDclos when expressed in E. coli. More recently we further showed that a short amphipathic helical octadecapeptide 18A (EWLKAFYEKVLEKLKELF and a short beta structure peptide ELK16 (LELELKLKLELELKLK have a similar property. Results In this work, we explored a third type of peptides, surfactant-like peptides, for performing such a "pulling-down" function. One or more of three such peptides (L6KD, L6K2, DKL6 were fused to the carboxyl termini of model proteins including Aspergillus fumigatus amadoriase II (AMA, all three peptides were used, Bacillus subtilis lipase A (LipA, only L6KD was used, hereinafter the same, Bacillus pumilus xylosidase (XynB, and green fluorescent protein (GFP, and expressed in E. coli. All fusions were found to predominantly accumulate in the insoluble fractions, with specific activities ranging from 25% to 92% of the native counterparts. Transmission electron microscopic (TEM and confocal fluorescence microscopic analyses confirmed the formation of protein aggregates in the cell. Furthermore, binding assays with amyloid-specific dyes (thioflavin T and Cong red to the AMA-L6KD aggregate and the TEM analysis of the aggregate following digestion with protease K suggested that the AMA-L6KD aggregate may contain structures reminiscent of amyloids, including a fibril-like structure core. Conclusions This study shows that the surfactant-like peptides L6KD and it derivatives can act as a pull-down handler for converting soluble proteins into active aggregates, much like 18A and ELK16. These peptide-mediated protein aggregations might have important implications for protein aggregation in

  16. Distribution of endotracheally instilled surfactant protein SP-C in lung-lavaged rabbits.

    NARCIS (Netherlands)

    Bambang Oetomo, Sidarto; de Leij, Louis; Curstedt, T; ter Haar, J G; Schoots, Coenraad; Wildevuur, Charles; Okken, Albert

    In lung-lavaged surfactant-deficient rabbits (n = 6) requiring artificial ventilation, porcine surfactant was instilled endotracheally. This resulted in improvement of lung function so that the animals could be weaned off artificial ventilation. The animals were killed 4 1/2 h after surfactant

  17. Formation of protein/surfactant adsorption layer at the air/water interface as studied by dilational surface rheology. (United States)

    Mikhailovskaya, A A; Noskov, B A; Lin, S-Y; Loglio, G; Miller, R


    The dynamic dilatational surface elasticity of mixed solutions of globular proteins (β-lactoglobulin (BLG) and bovine serum albumin (BSA)) with cationic (dodecyltrimethylammonium bromide (DTAB)) and anionic (sodium dodecyl sulfate (SDS)) surfactants was measured as a function of the surfactant concentration and surface age. If the cationic surfactant concentration exceeds a certain critical value, the kinetic dependencies of the dynamic surface elasticity of BLG/DTAB and BSA/DTAB solutions become nonmonotonous and resemble those of mixed solutions of proteins with guanidine hydrochloride. This result indicates not only the destruction of the protein tertiary structure in the surface layer of mixed solution but also a strong perturbation of the secondary structure. The corresponding kinetic dependencies for protein solutions with added anionic surfactants are always monotonous, thereby revealing a different mechanism of the adsorption layer formation. One can assume that the secondary structure is destroyed to a lesser extent in the latter case and hinders the formation of loops and tails at the interface. The increase of the solution's ionic strength by the addition of sodium chloride results in stronger changes of the protein conformations in the surface layer and the appearance of a local maximum in the kinetic dependencies of the dynamic surface elasticity in a relatively narrow range of SDS concentration. © 2011 American Chemical Society

  18. Glucocorticoids regulate surfactant protein synthesis in a pulmonary adenocarcinoma cell line

    International Nuclear Information System (INIS)

    O'Reilly, M.A.; Gazdar, A.F.; Clark, J.C.; Pilot-Matias, T.J.; Wert, S.E.; Hull, W.M.; Whitsett, J.A.


    Synthesis of pulmonary surfactant proteins SP-A, SP-B, and SP-C was demonstrated in a cell line derived from a human adenocarcinoma of the lung. The cells contained numerous lamellar inclusion bodies and formed organized groups of cells containing well-developed junctional complexes and apical microvillous membranes. Synthesis of SP-A was detected in the cells by enzyme-linked immunoabsorbent assay and by immunoprecipitation of [35S]methionine-labeled protein. SP-A was identified as an Mr 31,000-36,000 polypeptide containing asparagine-linked carbohydrate. Northern blot analysis detected SP-A mRNA of 2.2 kb. Dexamethasone (1-10 nM) enhanced the relative abundance of SP-A mRNA. Despite stimulation of SP-A mRNA, intracellular SP-A content was unaltered or inhibited by dexamethasone. SP-B and SP-C mRNAs and synthesis of the SP-B and SP-C precursors were markedly induced by dexamethasone. ProSP-B was synthesized and secreted primarily as an Mr 42,000-46,000 polypeptide. Proteolysis of the proSP-B resulted in the generation of endoglycosidase F-sensitive Mr = 19,000-21,000 and 25,000-27,000 peptides, which were detected both intra- and extracellularly. SP-C proprotein of Mr = 22,000 and smaller SP-C fragments were detected intracellularly but were not detected in the media. Mature forms of SP-B (Mr = 8,000) and SP-C (Mr = 4,000) were not detected. Glucocorticoids directly enhance the relative synthesis and mRNA of the surfactant proteins SP-A, SP-B, and SP-C. Discrepancies among SP-A mRNA, its de novo synthesis, and cell content suggest that glucocorticoid may alter both pre- and posttranslational factors modulating SP-A expression

  19. Surfactant protein D binds to human immunodeficiency virus (HIV) envelope protein gp120 and inhibits HIV replication

    DEFF Research Database (Denmark)

    Meschi, Joseph; Crouch, Erika C; Skolnik, Paul


    The envelope protein (gp120) of human immunodeficiency virus (HIV) contains highly conserved mannosylated oligosaccharides. These glycoconjugates contribute to resistance to antibody neutralization, and binding to cell surface lectins on macrophages and dendritic cells. Mannose-binding lectin (MBL......) binds to gp120 and plays a role in defence against the virus. In this study it is demonstrated that surfactant protein D (SP-D) binds to gp120 and inhibits HIV infectivity at significantly lower concentrations than MBL. The binding of SP-D was mediated by its calcium-dependent carbohydrate......-binding activity and was dependent on glycosylation of gp120. Native dodecameric SP-D bound to HIV gp120 more strongly than native trimeric SP-D. Since one common polymorphic form of SP-D is predominantly expressed as trimers and associated with lower blood levels, these individuals may have less effective innate...

  20. Characterization of dextran-grafted hydrophobic charge-induction resins: Structural properties, protein adsorption and transport. (United States)

    Liu, Tao; Angelo, James M; Lin, Dong-Qiang; Lenhoff, Abraham M; Yao, Shan-Jing


    The structural and functional properties of a series of dextran-grafted and non-grafted hydrophobic charge-induction chromatographic (HCIC) agarose resins were characterized by macroscopic and microscopic techniques. The effects of dextran grafting and mobile phase conditions on the pore dimensions of the resins were investigated with inverse size exclusion chromatography (ISEC). A significantly lower pore radius (17.6nm) was found for dextran-grafted than non-grafted resins (29.5nm), but increased salt concentration would narrow the gap between the respective pore radii. Two proteins, human immunoglobulin G (hIgG) and bovine serum albumin (BSA), were used to examine the effect of protein characteristics. The results of adsorption isotherms showed that the dextran-grafted resin with high ligand density had substantially higher adsorption capacity and enhanced the salt-tolerance property for hIgG, but displayed a significantly smaller benefit for BSA adsorption. Confocal laser scanning microscopy (CLSM) showed that hIgG presented more diffuse and slower moving adsorption front compared to BSA during uptake into the resins because of the selective binding of multiple species from polyclonal IgG; polymer-grafting with high ligand density could enhance the rate of hIgG transport in the dextran-grafted resins without salt addition, but not for the case with high salt and BSA. The results indicate that microscopic analysis using ISEC and CLSM is useful to improve the mechanistic understanding of resin structure and of critical functional parameters involving protein adsorption and transport, which would guide the rational design of new resins and processes. Copyright © 2017. Published by Elsevier B.V.

  1. Intrinsic structural differences in the N-terminal segment of pulmonary surfactant protein SP-C from different species

    DEFF Research Database (Denmark)

    Plasencia, I; Rivas, L; Casals, C


    Predictive studies suggest that the known sequences of the N-terminal segment of surfactant protein SP-C from animal species have an intrinsic tendency to form beta-turns, but there are important differences on the probable location of these motifs in different SP-C species. Our hypothesis...

  2. Monoclonal antibody-assisted structure-function analysis of the carbohydrate recognition domain of surfactant protein D

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L; White, Mitchell R; Rynkiewicz, Michael


    Surfactant protein D (SP-D) plays important roles in host defense against a variety of pathogens including influenza A virus (IAV). Ligand binding by SP-D is mediated by the trimeric neck and carbohydrate recognition domain (NCRD). We used monoclonal antibodies (mAbs) against human SP-D and a panel...

  3. Innate Defense against Influenza A Virus: Activity of Human Neutrophil Defensins and Interactions of Defensins with Surfactant Protein D

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L.; White, Mitchell R.; Tecle, Tesfaldet


    Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study...

  4. Surfactant protein D augments bacterial association but attenuates major histocompatibility complex class II presentation of bacterial antigens

    DEFF Research Database (Denmark)

    Hansen, Søren; Lo, Bernice; Evans, Kathy


    Development of dementia, including Alzheimer's disease (AD), is associated with lipid dysregulation and inflammation. As the host defense lectin surfactant protein D (SP-D) has multiple effects in lipid homeostasis and inflammation, the correlation between SP-D concentrations and development of d...

  5. Epitope mapping of imidazolium cations in ionic liquid-protein interactions unveils the balance between hydrophobicity and electrostatics towards protein destabilisation. (United States)

    Silva, Micael; Figueiredo, Angelo Miguel; Cabrita, Eurico J


    We investigated imidazolium-based ionic liquid (IL) interactions with human serum albumin (HSA) to discern the level of cation interactions towards protein stability. STD-NMR spectroscopy was used to observe the imidazolium IL protons involved in direct binding and to identify the interactions responsible for changes in Tm as accessed by differential scanning calorimetry (DSC). Cations influence protein stability less than anions but still significantly. It was found that longer alkyl side chains of imidazolium-based ILs (more hydrophobic) are associated with a higher destabilisation effect on HSA than short-alkyl groups (less hydrophobic). The reason for such destabilisation lies on the increased surface contact area of the cation with the protein, particularly on the hydrophobic contacts promoted by the terminus of the alkyl chain. The relevance of the hydrophobic contacts is clearly demonstrated by the introduction of a polar moiety in the alkyl chain: a methoxy or alcohol group. Such structural modification reduces the degree of hydrophobic contacts with HSA explaining the lesser extent of protein destabilisation when compared to longer alkyl side chain groups: above [C2mim](+). Competition STD-NMR experiments using [C2mim](+), [C4mim](+) and [C2OHmim](+) also validate the importance of the hydrophobic interactions. The combined effect of cation and anion interactions was explored using (35)Cl NMR. Such experiments show that the nature of the cation has no influence on the anion-protein contacts, still the nature of the anion modulates the cation-protein interaction. Herein we propose that more destabilising anions are likely to be a result of a partial contribution from the cation as a direct consequence of the different levels of interaction (cation-anion pair and cation-protein).

  6. Rescuing Those Left Behind: Recovering and Characterizing Underdigested Membrane and Hydrophobic Proteins To Enhance Proteome Measurement Depth. (United States)

    Giannone, Richard J; Wurch, Louie L; Podar, Mircea; Hettich, Robert L


    The marine archaeon Nanoarchaeum equitans is dependent on direct physical contact with its host, the hyperthermophile Ignicoccus hospitalis. As this interaction is thought to be membrane-associated, involving a myriad of membrane-anchored proteins, proteomic efforts to better characterize this difficult to analyze interface are paramount to uncovering the mechanism of their association. By extending multienzyme digestion strategies that use sample filtration to recover underdigested proteins for reprocessing/consecutive proteolytic digestion, we applied chymotrypsin to redigest the proteinaceous material left over after initial proteolysis with trypsin of sodium dodecyl sulfate (SDS)-extracted I. hospitalis-N. equitans proteins. Using this method, we show that proteins with increased hydrophobic character, including membrane proteins with multiple transmembrane helices, are enriched and recovered in the underdigested fraction. Chymotryptic reprocessing provided significant sequence coverage gains in both soluble and hydrophobic proteins alike, with the latter benefiting more so in terms of membrane protein representation. These gains were despite a large proportion of high-quality peptide spectra remaining unassigned in the underdigested fraction suggesting high levels of protein modification on these often surface-exposed proteins. Importantly, these gains were achieved without applying extensive fractionation strategies usually required for thorough characterization of membrane-associated proteins and were facilitated by the generation of a distinct, complementary set of peptides that aid in both the identification and quantitation of this important, under-represented class of proteins.

  7. Circulating surfactant protein D is associated to mortality in elderly women

    DEFF Research Database (Denmark)

    Johansson, Helle Wulf; Thinggaard, M.; Tan, Q.


    BACKGROUND: Surfactant protein D (SP-D) is produced in the lungs and additional mucosal surfaces. Systemic SP-D levels are previously associated to aging-related- and lifestyle-related disorders and predicts mortality in cardiovascular and lung diseases. However, the association between higher...... in this population-based cohort study. SP-D may serve as a biomarker to track the cardio-pulmonary health status in elderly women......., the bigger intra-pair difference in SP-D level, the higher the probability that the twin with the highest measure died first (odds ratio [OR], 1.66; p=0.047). CONCLUSION: The study demonstrates that higher circulating SP-D levels are associated with increased mortality rate in elderly women...

  8. Association between the surfactant protein D (SFTPD) gene and subclinical carotid artery atherosclerosis

    DEFF Research Database (Denmark)

    Sorensen, Grith L; Bladbjerg, Else Marie; Steffensen, Rudi


    OBJECTIVE: Surfactant protein D (SP-D) is a defense collectin with inflammation-modulating properties. SP-D deficiency inhibits atherosclerosis in vivo, and the circulatory SP-D levels have been previously associated with cardiovascular disease mortality. We hypothesized that plasma SP-D (p......SP-D) and SP-D gene (SFTPD) single nucleotide polymorphisms (SNPs) are risk factors for atherosclerosis. METHODS: We evaluated individuals who were all 60 years old and participated in The Glostrup Population Study. Subclinical atherosclerosis was diagnosed based on the ultrasonographic measurement of intima......: The results do not support that pSP-D levels influence the development of subclinical atherosclerosis. However, the SFTPD SNP data support previous observations from animal studies that SP-D plays a role in the etiology of atherosclerotic disease development. The nominal significant effects are likely...

  9. Reduced influenza viral neutralizing activity of natural human trimers of surfactant protein D

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L; White, Mitchell R; Tecle, Tesfaldet


    BACKGROUND: Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection. Common human polymorphisms of SP-D have been found in many human populations and associated with increased risk of certain infections. We recently reported that the Thr...... on the CRD of SP-D were found to have differing effects on antiviral activity. Using an mAb that did not interfere with antiviral activity of SP-D, we confirm that natural SP-D trimers had reduced ability to bind to IAV. In addition, the trimers had reduced ability to neutralize IAV as compared to natural...... indicate that a common human polymorphic form of SP-D may modulate host defense against IAV and give impetus to clinical studies correlating this genotype with risk for IAV infection in susceptible groups. We also show that mAbs directed against different areas on the carbohydrate recognition domain of SP...

  10. Pulmonary surfactant and lung transplantation

    NARCIS (Netherlands)

    Erasmus, Michiel Elardus


    Pulmonary surfactant lowers the surface tension at the air-water interface inside the alveolus. This is achieved by adsorption of surfactant phospholipids at the air-water interface, a process controlled by surfactant-associated proteins, such as SP-A. In this way, surfactant prevents collapse of

  11. Surfactant Protein D modulates HIV infection of both T-cells and dendritic cells.

    Directory of Open Access Journals (Sweden)

    Jens Madsen

    Full Text Available Surfactant Protein D (SP-D is an oligomerized C-type lectin molecule with immunomodulatory properties and involvement in lung surfactant homeostasis in the respiratory tract. SP-D binds to the enveloped viruses, influenza A virus and respiratory syncytial virus and inhibits their replication in vitro and in vivo. SP-D has been shown to bind to HIV via the HIV envelope protein gp120 and inhibit infectivity in vitro. Here we show that SP-D binds to different strains of HIV (BaL and IIIB and the binding occurs at both pH 7.4 and 5.0 resembling physiological relevant pH values found in the body and the female urogenital tract, respectively. The binding of SP-D to HIV particles and gp120 was inhibited by the presence of several hexoses with mannose found to be the strongest inhibitor. Competition studies showed that soluble CD4 and CVN did not interfere with the interaction between SP-D and gp120. However, soluble recombinant DC-SIGN was shown to inhibit the binding between SP-D and gp120. SP-D agglutinated HIV and gp120 in a calcium dependent manner. SP-D inhibited the infectivity of HIV strains at both pH values of 7.4 and 5.0 in a concentration dependent manner. The inhibition of the infectivity was abolished by the presence of mannose. SP-D enhanced the binding of HIV to immature monocyte derived dendritic cells (iMDDCs and was also found to enhance HIV capture and transfer to the T-cell like line PM1. These results suggest that SP-D can bind to and inhibit direct infection of T-cells by HIV but also enhance the transfer of infectious HIV particles from DCs to T-cells in vivo.

  12. Surfactant protein B polymorphisms are associated with severe respiratory syncytial virus infection, but not with asthma

    Directory of Open Access Journals (Sweden)

    Heinzmann Andrea


    Full Text Available Abstract Background Surfactant proteins (SP are important for the innate host defence and essential for a physiological lung function. Several linkage and association studies have investigated the genes coding for different surfactant proteins in the context of pulmonary diseases such as chronic obstructive pulmonary disease or respiratory distress syndrome of preterm infants. In this study we tested whether SP-B was in association with two further pulmonary diseases in children, i. e. severe infections caused by respiratory syncytial virus and bronchial asthma. Methods We chose to study five polymorphisms in SP-B: rs2077079 in the promoter region; rs1130866 leading to the amino acid exchange T131I; rs2040349 in intron 8; rs3024801 leading to L176F and rs3024809 resulting in R272H. Statistical analyses made use of the Armitage's trend test for single polymorphisms and FAMHAP and FASTEHPLUS for haplotype analyses. Results The polymorphisms rs3024801 and rs3024809 were not present in our study populations. The three other polymorphisms were common and in tight linkage disequilibrium with each other. They did not show association with bronchial asthma or severe RSV infection in the analyses of single polymorphisms. However, haplotypes analyses revealed association of SP-B with severe RSV infection (p = 0.034. Conclusion Thus our results indicate a possible involvement of SP-B in the genetic predisposition to severe RSV infections in the German population. In order to determine which of the three polymorphisms constituting the haplotypes is responsible for the association, further case control studies on large populations are necessary. Furthermore, functional analysis need to be conducted.

  13. Preparation of a novel dual-function strong cation exchange/hydrophobic interaction chromatography stationary phase for protein separation. (United States)

    Zhao, Kailou; Yang, Li; Wang, Xuejiao; Bai, Quan; Yang, Fan; Wang, Fei


    We have explored a novel dual-function stationary phase which combines both strong cation exchange (SCX) and hydrophobic interaction chromatography (HIC) characteristics. The novel dual-function stationary phase is based on porous and spherical silica gel functionalized with ligand containing sulfonic and benzyl groups capable of electrostatic and hydrophobic interaction functionalities, which displays HIC character in a high salt concentration, and IEC character in a low salt concentration in mobile phase employed. As a result, it can be employed to separate proteins with SCX and HIC modes, respectively. The resolution and selectivity of the dual-function stationary phase were evaluated under both HIC and SCX modes with standard proteins and can be comparable to that of conventional IEC and HIC columns. More than 96% of mass and bioactivity recoveries of proteins can be achieved in both HIC and SCX modes, respectively. The results indicated that the novel dual-function column could replace two individual SCX and HIC columns for protein separation. Mixed retention mechanism of proteins on this dual-function column based on stoichiometric displacement theory (SDT) in LC was investigated to find the optimal balance of the magnitude of electrostatic and hydrophobic interactions between protein and the ligand on the silica surface in order to obtain high resolution and selectivity for protein separation. In addition, the effects of the hydrophobicity of the ligand of the dual-function packings and pH of the mobile phase used on protein separation were also investigated in detail. The results show that the ligand with suitable hydrophobicity to match the electrostatic interaction is very important to prepare the dual-function stationary phase, and a better resolution and selectivity can be obtained at pH 6.5 in SCX mode. Therefore, the dual-function column can replace two individual SCX and HIC columns for protein separation and be used to set up two-dimensional liquid

  14. Surfactant protein B deficiency and gene mutations for neonatal respiratory distress syndrome in China Han ethnic population (United States)

    Yin, Xiaojuan; Meng, Fanping; wang, Yan; Xie, Lu; Kong, Xiangyong; Feng, Zhichun


    Objective: To determine whether the SP-B deficiency and gene mutations in exon 4 is associated with neonatal RDS in China Han ethnic population. Methods: The study population consisted of 40 neonates with RDS and 40 neonates with other diseases as control in China Han ethnic population. We Compared SP-B expression in lung tissue and bronchoalveolar lavage fluid with immunoblotting, and analyzed mutations in the SP-B gene with polymerase chain reaction (PCR) and gene sequencing. Results: In RDS group, low mature Surfactant protein B was found in both lung tissue and bronchoalveolar lavage fluid in 8 neonates. In control group, only 4 neonates with low mature Surfactant protein B in both lung tissue and bronchoalveolar lavage fluid. In RDS group, 20 neonates were found to have mutations in exon 4, 12 homozygous mutations with C/C genotype and 8 heterozygous mutations with C/T genotype in surfactant protein B gene+1580 polymorphism. There were 8 cases mutations in control group, 1 in C/C and 7 in C/T genotype. The frequency of homozygotes with C/C genotype was 0.3 and frequency of heterozygotes with C/T genotype was 0.02 in RDS group. In control group, frequency of homozygotes with C/C genotype was 0.025 and frequency of heterozygote with C/T genotype was 0.175. Conclusion: Low mature Surfactant protein B is associated with the pathogenesis of neonatal respiratory distress syndrome (RDS) in China Han ethnic population. Mutations in exon 4 of the surfactant protein B gene demonstrate an association between homozygous mutations with C/C genotype in SP-B gene and neonatal RDS. PMID:23330012

  15. Expression and purification of short hydrophobic elastin-like polypeptides with maltose-binding protein as a solubility tag. (United States)

    Bataille, Laure; Dieryck, Wilfrid; Hocquellet, Agnès; Cabanne, Charlotte; Bathany, Katell; Lecommandoux, Sébastien; Garbay, Bertrand; Garanger, Elisabeth


    Elastin-like polypeptides (ELPs) are biodegradable polymers with interesting physico-chemical properties for biomedical and biotechnological applications. The recombinant expression of hydrophobic elastin-like polypeptides is often difficult because they possess low transition temperatures, and therefore form aggregates at sub-ambient temperatures. To circumvent this difficulty, we expressed in Escherichia coli three hydrophobic ELPs (VPGIG)n with variable lengths (n=20, 40, and 60) in fusion with the maltose-binding protein (MBP). Fusion proteins were soluble and yields of purified MBP-ELP ranged between 66 and 127mg/L culture. After digestion of the fusion proteins by enterokinase, the ELP moiety was purified by using inverse transition cycling. The purified fraction containing ELP40 was slightly contaminated by traces of undigested fusion protein. Purification of ELP60 was impaired because of co-purification of the MBP tag during inverse transition cycling. ELP20 was successfully purified to homogeneity, as assessed by gel electrophoresis and mass spectrometry analyses. The transition temperature of ELP20 was measured at 15.4°C in low salt buffer. In conclusion, this method can be used to produce hydrophobic ELP of low molecular mass. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The Outer Membrane Protein OmpW Forms an Eight-Stranded beta-Barrel with a Hydrophobic Channel

    International Nuclear Information System (INIS)

    Hong, H.; Patel, D.; Tamm, L.; van den Berg, B.


    Escherichia coli OmpW belongs to a family of small outer membrane (OM) proteins that are widespread in Gram-negative bacteria. Their functions are unknown, but recent data suggest that they may be involved in the protection of bacteria against various forms of environmental stress. In order to gain insight into the function of these proteins we have determined the crystal structure of Escherichia coli OmpW to 2.7 Angstroms resolution. The structure shows that OmpW forms an eight-stranded beta-barrel with a long and narrow hydrophobic channel that contains a bound LDAO detergent molecule. Single channel conductance experiments show that OmpW functions as an ion channel in planar lipid bilayers. The channel activity can be blocked by the addition of LDAO. Taken together, the data suggest that members of the OmpW family could be involved in the transport of small hydrophobic molecules across the bacterial OM

  17. Theoretical model to investigate the alkyl chain and anion dependent interactions of gemini surfactant with bovine serum albumin. (United States)

    Vishvakarma, Vijay K; Kumari, Kamlesh; Patel, Rajan; Dixit, V S; Singh, Prashant; Mehrotra, Gopal K; Chandra, Ramesh; Chakrawarty, Anand Kumar


    Surfactants are used to prevent the irreversible aggregation of partially refolded proteins and they also assist in protein refolding. We have reported the design and screening of gemini surfactant to stabilize bovine serum albumin (BSA) with the help of computational tool (iGEMDOCK). A series of gemini surfactant has been designed based on bis-N-alkyl nicotinate dianion via varying the alkyl group and anion. On changing the alkyl group and anion of the surfactant, the value of Log P changes means polarity of surfactant can be tuned. Further, the virtual screening of the gemini surfactant has been carried out based on generic evolutionary method. Herein, thermodynamic data was studied to determine the potential of gemini surfactant as BSA stabilizer. Computational tools help to find out the efficient gemini surfactant to stabilize the BSA rather than to use the surfactant randomly and directionless for the stabilization. It can be confirmed through the experimental techniques. Previously, researcher synthesized one of the designed and used gemini surfactant to stabilize the BSA and their interactions were confirmed through various techniques and computational docking. But herein, the authors find the most competent gemini surfactant to stabilize BSA using computational tools on the basis of energy score. Different from the single chain surfactant, the gemini surfactants exhibit much stronger electrostatic and hydrophobic interactions with the protein and are thus effective at much lower concentrations. Based on the present study, it is expected that gemini surfactants may prove useful in the protein stabilization operations and may thus be effectively employed to circumvent the problem of misfolding and aggregation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Surfactant protein D delays Fas- and TRAIL-mediated extrinsic pathway of apoptosis in T cells. (United States)

    Djiadeu, Pascal; Kotra, Lakshmi P; Sweezey, Neil; Palaniyar, Nades


    Only a few extracellular soluble proteins are known to modulate apoptosis. We considered that surfactant-associated protein D (SP-D), an innate immune collectin present on many mucosal surfaces, could regulate apoptosis. Although SP-D is known to be important for immune cell homeostasis, whether SP-D affects apoptosis is unknown. In this study we aimed to determine the effects of SP-D on Jurkat T cells and human T cells dying by apoptosis. Here we show that SP-D binds to Jurkat T cells and delays the progression of Fas (CD95)-Fas ligand and TRAIL-TRAIL receptor induced, but not TNF-TNF receptor-mediated apoptosis. SP-D exerts its effects by reducing the activation of initiator caspase-8 and executioner caspase-3. SP-D also delays the surface exposure of phosphatidylserine. The effect of SP-D was ablated by the presence of caspase-8 inhibitor, but not by intrinsic pathway inhibitors. The binding ability of SP-D to dying cells decreases during the early stages of apoptosis, suggesting the release of apoptotic cell surface targets during apoptosis. SP-D also delays FasL-induced death of primary human T cells. SP-D delaying the progression of the extrinsic pathway of apoptosis could have important implications in regulating immune cell homeostasis at mucosal surfaces.

  19. Improved techniques for CE-MALDI-MS off-line coupling and MALDI-MS analysis of primarily hydrophobic proteins and peptides


    Jacksén, Johan


    Due to the hydrophobic nature of integral membrane proteins (IMP) they give rise to several difficulties concerning handling and analysis, which is not the case for the most water soluble proteins. New analysis methods are needed, where the insolubility problems of the hydrophobic proteins due to aggregation and adhesion are tackled. Those problems also affect digestion performance and equipment compatibility for the analysis. Protocols for analysis and separation specified for IMP are presen...

  20. Surfactant protein A (SP-A) inhibits agglomeration and macrophage uptake of toxic amine modified nanoparticles. (United States)

    McKenzie, Zofi; Kendall, Michaela; Mackay, Rose-Marie; Whitwell, Harry; Elgy, Christine; Ding, Ping; Mahajan, Sumeet; Morgan, Cliff; Griffiths, Mark; Clark, Howard; Madsen, Jens


    The lung provides the main route for nanomaterial exposure. Surfactant protein A (SP-A) is an important respiratory innate immune molecule with the ability to bind or opsonise pathogens to enhance phagocytic removal from the airways. We hypothesised that SP-A, like surfactant protein D, may interact with inhaled nanoparticulates, and that this interaction will be affected by nanoparticle (NP) surface characteristics. In this study, we characterise the interaction of SP-A with unmodified (U-PS) and amine-modified (A-PS) polystyrene particles of varying size and zeta potential using dynamic light scatter analysis. SP-A associated with both 100 nm U-PS and A-PS in a calcium-independent manner. SP-A induced significant calcium-dependent agglomeration of 100 nm U-PS NPs but resulted in calcium-independent inhibition of A-PS self agglomeration. SP-A enhanced uptake of 100 nm U-PS into macrophage-like RAW264.7 cells in a dose-dependent manner but in contrast inhibited A-PS uptake. Reduced association of A-PS particles in RAW264.7 cells following pre-incubation of SP-A was also observed with coherent anti-Stokes Raman spectroscopy. Consistent with these findings, alveolar macrophages (AMs) from SP-A(-/-) mice were more efficient at uptake of 100 nm A-PS compared with wild type C57Bl/6 macrophages. No difference in uptake was observed with 500 nm U-PS or A-PS particles. Pre-incubation with SP-A resulted in a significant decrease in uptake of 100 nm A-PS in macrophages isolated from both groups of mice. In contrast, increased uptake by AMs of U-PS was observed after pre-incubation with SP-A. Thus we have demonstrated that SP-A promotes uptake of non-toxic U-PS particles but inhibits the clearance of potentially toxic A-PS particles by blocking uptake into macrophages.

  1. Front-face fluorescence spectroscopy study of globular proteins in emulsions: displacement of BSA by a nonionic surfactant. (United States)

    Rampon, V; Genot, C; Riaublanc, A; Anton, M; Axelos, M A V; McClements, D J


    The displacement of a globular protein (bovine serum albumin, BSA) from the surface of oil droplets in concentrated oil-in-water emulsions by a nonionic surfactant (polyoxyethylene sorbitan monolauarate, Tween 20) was studied using front-face fluorescence spectroscopy (FFFS). This method relies on measurement of the change in intensity (I(MAX)) and wavelength (lambda(MAX)) of the maximum in the tryptophan emission spectrum. A series of oil-in-water emulsions (21 wt % n-hexadecane, 0.22 wt % BSA, pH 7.0) containing different molar ratios of Tween 20 to BSA (R = 0-131) were prepared. As the surfactant concentration was increased, the protein was progressively displaced from the droplet surfaces. At R > or = 66, the protein was completely displaced from the droplet surfaces. There was an increase in both I(MAX) and lambda(MAX) with increasing Tween 20 concentration up to R = 66, which correlated with the increase in the ratio of nonadsorbed to adsorbed protein. In contrast, there was a decrease in I(MAX) and lambda(MAX) with Tween 20 concentration in protein solutions and for R > or = 66 in the emulsions, which was attributed to binding of the surfactant to the protein. This study shows that FFFS is a powerful technique for nondestructively providing information about the interfacial composition of droplets in concentrated protein-stabilized emulsions in situ. Nevertheless, in general the suitability of the technique may also depend on protein type and the nature of the physicochemical matrix surrounding the proteins.

  2. Small angle neutron scattering study of doxorubicin–surfactant ...

    Indian Academy of Sciences (India)

    The binding affinity of doxorubicin within the micelle carrier is enhanced through complex formation of drug and anionic surfactant, aerosol OT (AOT). Electrostatic binding of doxorubicin with negatively charged surfactants leads to the formation of hydrophobic drug–surfactant complexes. Surfactant-induced partitioning of ...

  3. Human surfactant protein D: SP-D contains a C-type lectin carbohydrate recognition domain. (United States)

    Rust, K; Grosso, L; Zhang, V; Chang, D; Persson, A; Longmore, W; Cai, G Z; Crouch, E


    Lung surfactant protein D (SP-D) shows calcium-dependent binding to specific saccharides, and is similar in domain structure to certain members of the calcium-dependent (C-type) lectin family. Using a degenerate oligomeric probe corresponding to a conserved peptide sequence derived from the amino-terminus of the putative carbohydrate binding domain of rat and bovine SP-D, we screened a human lung cDNA library and isolated a 1.4-kb cDNA for the human protein. The relationship of the cDNA to SP-D was established by several techniques including amino-terminal microsequencing of SP-D-derived peptides, and immunoprecipitation of translation products of transcribed mRNA with monospecific antibodies to SP-D. In addition, antibodies to a synthetic peptide derived from a predicted unique epitope within the carbohydrate recognition domain of SP-D specifically reacted with SP-D. DNA sequencing demonstrated a noncollagenous carboxy-terminal domain that is highly homologous with the carboxy-terminal globular domain of previously described C-type lectins. This domain contains all of the so-called "invariant residues," including four conserved cysteine residues, and shows high homology with the mannose-binding subfamily of C-type lectins. Sequencing also demonstrated an amino-terminal collagenous domain that contains an uninterrupted sequence of 59 Gly-X-Y triplets and that also contains the only identified consensus for asparagine-linked oligosaccharides. The studies demonstrate that SP-D is a member of the C-type lectin family, and confirm predicted structural similarities to conglutinin, SP-D, and the serum mannose binding proteins.

  4. Clustering structures of large proteins using multifractal analyses based on a 6-letter model and hydrophobicity scale of amino acids

    International Nuclear Information System (INIS)

    Yang Jianyi; Yu Zuguo; Anh, Vo


    The Schneider and Wrede hydrophobicity scale of amino acids and the 6-letter model of protein are proposed to study the relationship between the primary structure and the secondary structural classification of proteins. Two kinds of multifractal analyses are performed on the two measures obtained from these two kinds of data on large proteins. Nine parameters from the multifractal analyses are considered to construct the parameter spaces. Each protein is represented by one point in these spaces. A procedure is proposed to separate large proteins in the α, β, α + β and α/β structural classes in these parameter spaces. Fisher's linear discriminant algorithm is used to assess our clustering accuracy on the 49 selected large proteins. Numerical results indicate that the discriminant accuracies are satisfactory. In particular, they reach 100.00% and 84.21% in separating the α proteins from the {β, α + β, α/β} proteins in a parameter space; 92.86% and 86.96% in separating the β proteins from the {α + β, α/β} proteins in another parameter space; 91.67% and 83.33% in separating the α/β proteins from the α + β proteins in the last parameter space.

  5. Biomimetic oligosaccharide and peptide surfactant polymers designed for cardiovascular biomaterials (United States)

    Ruegsegger, Mark Andrew

    A common problem associated with cardiovascular devices is surface induced thrombosis initiated by the rapid, non-specific adsorption of plasma proteins onto the biomaterial surface. Control of the initial protein adsorption is crucial to achieve the desired longevity of the implanted biomaterial. The cell membrane glycocalyx acts as a non-thrombogenic interface through passive (dense oligosaccharide structures) and active (ligand/receptor interactions) mechanisms. This thesis is designed to investigate biomimicry of the cell glycocalyx to minimize non-specific protein adsorption and promote specific ligand/receptor interactions. Biomimetic macromolecules were designed through the molecular-scale engineering of polymer surfactants, utilizing a poly(vinyl amine) (PVAm) backbone to which hydrophilic (dextran, maltose, peptide) and hydrophobic alkyl (hexanoyl or hexanal) chains are simultaneously attached. The structure was controlled through the molar feed ratio of hydrophobic-to-hydrophilic groups, which also provided control of the solution and surface-active properties. To mimic passive properties, a series of oligomaltose surfactants were synthesized with increasing saccharide length (n = 2, 7, 15 where n is number of glucose units) to investigate the effect of coating height on protein adsorption. The surfactants were characterized by infra red (IR) and nuclear magnetic resonance (NMR) spectroscopies for structural properties and atomic force microscopy (AFM) and contact angle goniometry for surface activity. Protein adsorption under dynamic flow (5 dyn/cm2) was reduced by 85%--95% over the bare hydrophobic substrate; platelet adhesion dropped by ˜80% compared to glass. Peptide ligands were incorporated into the oligosaccharide surfactant to promote functional activity of the passive coating. The surfactants were synthesized to contain 0%, 25%, 50%, 75%, and 100% peptide ligand density and were stable on hydrophobic surfaces. The peptide surface density was

  6. Surfactant Protein-B 121ins2 Heterozygosity, Reduced Pulmonary Function and COPD in Smokers

    DEFF Research Database (Denmark)

    Bækvad-Hansen, Marie; Dahl, Morten; Tybjærg-Hansen, Anne


    .2-4.8) for spirometry defined COPD and of 2.2(1.0-5.1) for hospitalization due to COPD. Among never smokers, 121ins2 heterozygotes did not differ from wildtypes in lung function or risk of COPD. CONCLUSIONS: Surfactant protein-B 121ins2 heterozygosity is associated with reduced lung function and increased risk for COPD......2 mutation have reduced lung function and increased risk for chronic obstructive pulmonary disease (COPD) among smokers. METHODS: We genotyped 47,600 individuals from the adult Danish general population and recorded smoking habits, spirometry and hospital admissions due to COPD. The study...... that the effect of genotype differ by smoking status. Among smokers, 121ins2 heterozygotes had 9% reduced FEV1%predicted(p=0.0008), 6% reduced FVC%predicted(p=0.01) and 6% reduced FEV1/FVC(p=0.00007), compared with wildtypes. Also among smokers, 121ins2 heterozygotes had odds ratios of 2.4(95%CI 1...

  7. Comprehensive characterisation of pulmonary and serum surfactant protein D in COPD

    Directory of Open Access Journals (Sweden)

    Erpenbeck Veit J


    Full Text Available Abstract Background Pulmonary surfactant protein D (SP-D is considered as a candidate biomarker for the functional integrity of the lung and for disease progression, which can be detected in serum. The origin of SP-D in serum and how serum concentrations are related to pulmonary concentrations under inflammatory conditions is still unclear. Methods In a cross-sectional study comprising non-smokers (n = 10, young - (n = 10, elderly smokers (n = 20, and smokers with COPD (n = 20 we simultaneously analysed pulmonary and serum SP-D levels with regard to pulmonary function, exercise, repeatability and its quaternary structure by native gel electrophoresis. Statistical comparisons were conducted by ANOVA and post-hoc testing for multiple comparisons; repeatability was assessed by Bland-Altman analysis. Results In COPD, median (IQR pulmonary SP-D levels were lower (129(68 ng/ml compared to smokers (young: 299(190, elderly: 296(158 ng/ml; p Conclusions Pulmonary and serum SP-D levels are stable markers influenced by smoking and related to airflow obstruction and disease state. Smaller subunits of pulmonary SP-D and the rapid increase of serum SP-D levels in COPD due to exercise support the translocation hypothesis and its use as a COPD biomarker. Trial registration no interventional trial

  8. Association of surfactant protein A polymorphisms with otitis media in infants at risk for asthma

    Directory of Open Access Journals (Sweden)

    Bracken Michael B


    Full Text Available Abstract Background Otitis media is one of the most common infections of early childhood. Surfactant protein A functions as part of the innate immune response, which plays an important role in preventing infections early in life. This prospective study utilized a candidate gene approach to evaluate the association between polymorphisms in loci encoding SP-A and risk of otitis media during the first year of life among a cohort of infants at risk for developing asthma. Methods Between September 1996 and December 1998, women were invited to participate if they had at least one other child with physician-diagnosed asthma. Each mother was given a standardized questionnaire within 4 months of her infant's birth. Infant respiratory symptoms were collected during quarterly telephone interviews at 6, 9 and 12 months of age. Genotyping was done on 355 infants for whom whole blood and complete otitis media data were available. Results Polymorphisms at codons 19, 62, and 133 in SP-A1, and 223 in SP-A2 were associated with race/ethnicity. In logistic regression models incorporating estimates of uncertainty in haplotype assignment, the 6A4/1A5haplotype was protective for otitis media among white infants in our study population (OR 0.23; 95% CI 0.07,0.73. Conclusion These results indicate that polymorphisms within SP-A loci may be associated with otitis media in white infants. Larger confirmatory studies in all ethnic groups are warranted.

  9. Long-term stability and circadian variation in circulating levels of surfactant protein D

    DEFF Research Database (Denmark)

    Hoegh, Silje Vermedal; Sorensen, Grith Lykke; Tornoe, Ida


    Surfactant protein D (SP-D) is an oligomeric calcium-dependent lectin with important roles in innate host defence against infectious microorganisms. Several studies have shown that patients with inflammatory lung disease have elevated levels of circulating SP-D, and serum SP-D has been suggested...... to be used as a biomarker for disease e.g. in COPD. We aimed to investigate the variation of circulating SP-D in healthy individuals in and between days for 6 months. In addition, we studied the SP-D response to a standardized physical exercise programme. SP-D was measured in serum using a 5-layered ELISA...... pre-exercise level of SP-D was 746 ng/ml (95% CI: 384-2035), and immediately after cessation of physical activity the median SP-D level was 767 ng/ml (95% CI: 367-1885) (P=0.248). Our findings underscore the importance of standardized blood sampling conditions in future studies on the potential role...

  10. Origins of protein denatured state compactness and hydrophobic clustering in aqueous urea: inferences from nonpolar potentials of mean force. (United States)

    Shimizu, Seishi; Chan, Hue Sun


    Free energies of pairwise hydrophobic association are simulated in aqueous solutions of urea at concentrations ranging from 0-8 M. Consistent with the expectation that hydrophobic interactions are weakened by urea, the association of relatively large nonpolar solutes is destabilized by urea. However, the association of two small methane-sized nonpolar solutes in water has the opposite tendency of being slightly strengthened by the addition of urea. Such size effects and the dependence of urea-induced stability changes on the configuration of nonpolar solutes are not predicted by solvent accessible surface area approaches based on energetic parameters derived from bulk-phase solubilities of model compounds. Thus, to understand hydrophobic interactions in proteins, it is not sufficient to rely solely on transfer experiment data that effectively characterize a single nonpolar solute in an aqueous environment but not the solvent-mediated interactions among two or more nonpolar solutes. We find that the m-values for the rate of change of two-methane association free energy with respect to urea concentration is a dramatically nonmonotonic function of the spatial separation between the two methanes, with a distance-dependent profile similar to the corresponding two-methane heat capacity of association in pure water. Our results rationalize the persistence of residual hydrophobic contacts in some proteins at high urea concentrations and explain why the heat capacity signature (DeltaC(P)) of a compact denatured state can be similar to DeltaC(P) values calculated by assuming an open random-coil-like unfolded state. Copyright 2002 Wiley-Liss, Inc.

  11. Alcohol--Induced Polyelectrolyte-Surfactant Complex Coacervate Systems: Characterization and Applications in Enzyme and Protein Extraction (United States)

    Nejati Moshtaghin, Mahboubeh

    The focus of this thesis is to achieve a better understanding of the newly discovered surfactant-polyelectrolyte complex coacervate (SPCC) systems induced by fluoroalcohol/acid as well as short chain aliphatic alcohol; and to elucidate their applications in extraction and enrichment of proteins and enzyme. We have discovered that fluoroalcohols and --acids induce complex coacervation and phase separation in the aqueous mixtures of oppositely charged anionic polyelectrolytes; specifically, sodium salts of polyacrylic acid and polymethacrylic acid and cationic surfactant (cetyltrimethylammonium bromide, CTAB) over a broad range of concentrations of mole fractions of the oppositely charged amphiphiles. Accordingly, these new classes of coacervators will significantly broaden the scope and facilitate engineering of new coacervate phases. Toward these goals, we have inspected the formation of surfactant-polyelectrolyte complex coacervates in the presence of fluoroalcohols namely hexafluoroisopropanol (HFIP) and Trifluoroethanol (TFE). Furthermore, the extent of coacervation as a function of concentrations the system components, and charge ratios of the oppositely charged amphiphiles has been investigated. Polyelectrolytes are considered to be milder reagents, as compared to surfactants, regarding proteins denaturation. This highlights the importance of a detailed investigation of the efficiency of our coacervate systems for extraction and preconcentration of proteins and enzymes, especially, when the biological activity of the extracted proteins needs to be maintained based on the objectives mentioned above, the results of the investigations have been organized in four chapters. In Chapter II, the phase behavior of the FA-SPCC will be investigated. The objective is to examine the phase behavior and phase properties with respect to the extent of coacervation in different solution conditions. In particular, the effects of different solution variables such as concentration

  12. Critical structural and functional roles for the N-terminal insertion sequence in surfactant protein B analogs.

    Directory of Open Access Journals (Sweden)

    Frans J Walther


    Full Text Available Surfactant protein B (SP-B; 79 residues belongs to the saposin protein superfamily, and plays functional roles in lung surfactant. The disulfide cross-linked, N- and C-terminal domains of SP-B have been theoretically predicted to fold as charged, amphipathic helices, suggesting their participation in surfactant activities. Earlier structural studies with Mini-B, a disulfide-linked construct based on the N- and C-terminal regions of SP-B (i.e., approximately residues 8-25 and 63-78, confirmed that these neighboring domains are helical; moreover, Mini-B retains critical in vitro and in vivo surfactant functions of the native protein. Here, we perform similar analyses on a Super Mini-B construct that has native SP-B residues (1-7 attached to the N-terminus of Mini-B, to test whether the N-terminal sequence is also involved in surfactant activity.FTIR spectra of Mini-B and Super Mini-B in either lipids or lipid-mimics indicated that these peptides share similar conformations, with primary alpha-helix and secondary beta-sheet and loop-turns. Gel electrophoresis demonstrated that Super Mini-B was dimeric in SDS detergent-polyacrylamide, while Mini-B was monomeric. Surface plasmon resonance (SPR, predictive aggregation algorithms, and molecular dynamics (MD and docking simulations further suggested a preliminary model for dimeric Super Mini-B, in which monomers self-associate to form a dimer peptide with a "saposin-like" fold. Similar to native SP-B, both Mini-B and Super Mini-B exhibit in vitro activity with spread films showing near-zero minimum surface tension during cycling using captive bubble surfactometry. In vivo, Super Mini-B demonstrates oxygenation and dynamic compliance that are greater than Mini-B and compare favorably to full-length SP-B.Super Mini-B shows enhanced surfactant activity, probably due to the self-assembly of monomer peptide into dimer Super Mini-B that mimics the functions and putative structure of native SP-B.

  13. Ageing and smoking contribute to plasma surfactant proteins and protease imbalance with correlations to airway obstruction

    Directory of Open Access Journals (Sweden)

    Ishikawa Nobuhisa


    Full Text Available Abstract Background A significant number of young people start smoking at an age of 13-15, which means that serious smoking-evoked changes may have been occurred by their twenties. Surfactant proteins (SP and matrix metalloproteinases (MMPs and their tissue inhibitors (TIMPs have been linked to cigarette smoke induced lung remodelling and chronic obstructive pulmonary disease (COPD. However, the level of these proteins has not been examined during ageing or in young individuals with short smoking histories. Methods Plasma levels of SP-A, SP-D, MMP-9, and TIMP-1 were measured by EIA/ELISA from young (18-23 years non-smoking controls (YNS (n = 36, smokers (YS (n = 51, middle aged/elderly (37-77 years non-smoking controls (ONS (n = 40, smokers (OS (n = 64 (FEV1/FVC >0.7 in all subjects and patients with COPD (n = 44, 35-79 years. Results Plasma levels of SP-A increased with age and in the older group in relation to smoking and COPD. Plasma SP-D and MMP-9 levels did not change with age but were elevated in OS and COPD as compared to ONS. The TIMP-1 level declined with age but increased in chronic smokers when compared to ONS. The clearest correlations could be detected between plasma SP-A vs. age, pack years and FEV1/FVC. The receiver operating characteristic (ROC curve analysis revealed SP-A to be the best marker for discriminating between patients with COPD and the controls (area under ROC curve of 0.842; 95% confidence interval, 0.785-0.899; p Conclusions Age has a significant contribution to potential markers related to smoking and COPD; SP-A seems to be the best factor in differentiating COPD from the controls.

  14. Conformational Stability of the NH2-Terminal Propeptide of the Precursor of Pulmonary Surfactant Protein SP-B.

    Directory of Open Access Journals (Sweden)

    Ángeles Bañares-Hidalgo

    Full Text Available Assembly of pulmonary surfactant lipid-protein complexes depends on conformational changes coupled with proteolytic maturation of proSP-B, the precursor of pulmonary surfactant protein B (SP-B, along the surfactant biogenesis pathway in pneumocytes. Conformational destabilization of the N-terminal propeptide of proSP-B (SP-BN triggers exposure of the mature SP-B domain for insertion into surfactant lipids. We have studied the conformational stability during GdmCl- or urea-promoted unfolding of SP-BN with trp fluorescence and circular dichroism spectroscopies. Binding of the intermediate states to bis-ANS suggests their molten globule-like character. ΔG0H2O was ~ 12.7 kJ·mol-1 either with urea or GdmCl. None of the thermal transitions of SP-BN detected by CD correspond to protein unfolding. Differential scanning calorimetry of SP-BN evidenced two endothermic peaks involved in oligomer dissociation as confirmed with 2 M urea. Ionic strength was relevant since at 150 mM NaCl, the process originating the endotherm at the highest temperature was irreversible (Tm2 = 108.5°C with an activation energy of 703.8 kJ·mol-1. At 500 mM NaCl the process became reversible (Tm2 = 114.4°C and data were fitted to the Non-two States model with two subpeaks. No free thiols in the propeptide could be titrated by DTNB with or without 5.7 M GdmCl, indicating disulfide bonds establishment.

  15. Tuning the Hydrophilic/Hydrophobic Balance to Control the Structure of Chitosan Films and Their Protein Release Behavior. (United States)

    Becerra, Jose; Sudre, Guillaume; Royaud, Isabelle; Montserret, Roland; Verrier, Bernard; Rochas, Cyrille; Delair, Thierry; David, Laurent


    The control over the crystallinity of chitosan and chitosan/ovalbumin films can be achieved via an appropriate balance of the hydrophilic/hydrophobic interactions during the film formation process, which then controls the release kinetics of ovalbumin. Chitosan films were prepared by solvent casting. The presence of the anhydrous allomorph can be viewed as a probe of the hydrophobic conditions at the neutralization step. The semicrystalline structure, the swelling behavior of the films, the protein/chitosan interactions, and the release behavior of the films were impacted by the DA and the film processing parameters. At low DAs, the chitosan films neutralized in the solid state corresponded to the most hydrophobic environment, inducing the crystallization of the anhydrous allomorph with and without protein. The most hydrophilic conditions, leading to the hydrated allomorph, corresponded to non-neutralized films for the highest DAs. For the non-neutralized chitosan acetate (amorphous) films, the swelling increased when the DA decreased, whereas for the neutralized chitosan films, the swelling decreased. The in vitro release of ovalbumin (model protein) from chitosan films was controlled by their swelling behavior. For fast swelling films (DA = 45%), a burst effect was observed. On the contrary, a lag time was evidenced for DA = 2.5% with a limited release of the protein. Furthermore, by blending chitosans (DA = 2.5% and 45%), the release behavior was improved by reducing the burst effect and the lag time. The secondary structure of ovalbumin was partially maintained in the solid state, and the ovalbumin was released under its native form.

  16. Depth profiles of pulmonary surfactant protein B in phosphatidylcholine bilayers, studied by fluorescence and electron spin resonance spectroscopy

    DEFF Research Database (Denmark)

    Cruz, A; Casals, C; Plasencia, I


    Pulmonary surfactant-associated protein B (SP-B) has been isolated from porcine lungs and reconstituted in bilayers of dipalmitoylphosphatidylcholine (DPPC) or egg yolk phosphatidylcholine (PC) to characterize the extent of insertion of the protein into phospholipid bilayers. The parameters...... for the interaction of SP-B with DPPC or PC using different reconstitution protocols have been estimated from the changes induced in the fluorescence emission spectrum of the single protein tryptophan. All the different reconstituted SP-B-phospholipid preparations studied had similar Kd values for the binding...... that there are significant differences in the extent of insertion of the protein, depending on the method of reconstitution. SP-B reconstituted from lipid/protein mixtures in organic solvents is inserted more deeply in PC or DPPC bilayers than the protein reconstituted by addition to preformed phospholipid vesicles...

  17. Weak and saturable protein-surfactant interactions in the denaturation of apo-alpha-lactalbumin by acidic and lactonic sophorolipid

    Directory of Open Access Journals (Sweden)

    Kell K Andersen


    Full Text Available Biosurfactants are of growing interest as sustainable alternatives to fossil-fuel-derived chemical surfactants, particularly for the detergent industry. To realize this potential, it is necessary to understand how they affect proteins which they may encounter in their applications. However knowledge of such interactions is limited. Here we present a study of the interactions between the model protein apo-alpha-lactalbumin and the biosurfactant sophorolipid (SL produced by the yeast Starmerella bombicola. SL occurs both as an acidic and a lactonic form; the lactonic form (lactSL is sparingly soluble and has a lower critical micelle concentration than the acidic form (acidSL. We show that acidSL affects apo-aLA in a similar way to the related glycolipid biosurfactant rhamnolipid (RL, with the important difference that RL is also active below the cmc in contrast to acidSL. Using isothermal titration calorimetry data, we show that acidSL has weak and saturable interactions with apo-aLA at low concentrations; due to the relatively low cmc of acidSL (which means that the monomer concentration is limited to ca. 0-1 mM SL, it is only possible to observe interactions with monomeric acidSL at high apo-aLA concentrations. However, the denaturation kinetics of apo-aLA in the presence of acidSL are consistent with a collaboration between monomeric and micellar surfactant species, similar to RL and nonionic or zwitterionic surfactants. Inclusion of lactSL as mixed micelles with acidSL lowers the cmc and this effectively reduces the rate of unfolding, emphasizing that SL like other biosurfactants is a gentle anionic surfactant. Our data highlight the potential of these biosurfactants for future use in the detergent industry.

  18. Serum Levels of Surfactant Proteins in Patients with Combined Pulmonary Fibrosis and Emphysema (CPFE.

    Directory of Open Access Journals (Sweden)

    Andriana I Papaioannou

    Full Text Available Emphysema and idiopathic pulmonary fibrosis (IPF present either per se or coexist in combined pulmonary fibrosis and emphysema (CPFE. Serum surfactant proteins (SPs A, B, C and D levels may reflect lung damage. We evaluated serum SP levels in healthy controls, emphysema, IPF, and CPFE patients and their associations to disease severity and survival.122 consecutive patients (31 emphysema, 62 IPF, and 29 CPFE and 25 healthy controls underwent PFTs, ABG-measurements, 6MWT and chest HRCT. Serum levels of SPs were measured. Patients were followed-up for 1-year.SP-A and SP-D levels differed between groups (p = 0.006 and p<0.001 respectively. In post-hoc analysis, SP-A levels differed only between controls and CPFE (p<0.05 and CPFE and emphysema (p<0.05. SP-D differed between controls and IPF or CPFE (p<0.001 for both comparisons. In IPF SP-B correlated to pulmonary function while SP-A, correlated to the Composite Physiological Index (CPI. Controls current smokers had higher SP-A and SP-D levels compared to non-smokers (p = 0.026 and p = 0.023 respectively. SP-D levels were higher in CPFE patients with extended emphysema (p = 0.042. In patients with IPF, SP-B levels at the upper quartile of its range (≥26 ng/mL presented a weak association with reduced survival (p = 0.05.In conclusion, serum SP-A and SP-D levels were higher where fibrosis exists or coexists and related to disease severity, suggesting that serum SPs relate to alveolar damage in fibrotic lungs and may reflect either local overproduction or overleakage. The weak association between high levels of SP-B and survival needs further validation in clinical trials.

  19. Genetic Variants of Surfactant Proteins A, B, C, and D in Bronchopulmonary Dysplasia

    Directory of Open Access Journals (Sweden)

    J. Pavlovic


    Full Text Available BPD_28D (O2 dependency at 28 days of life and BPD_36W (O2 dependency at 36 wks post-menstrual age are diseases of prematurely born infants exposed to mechanical ventilation and/or oxygen supplementation. In order to determine whether genetic variants of surfactant proteins (SPs-A, B, C, and D and SP-B-linked microsatellite markers are risk factors in BPD, we performed a family based association study using a Greek study group of 71 neonates (<30 wks gestational age from 60 families with, 52 BPD_28D and 19 BPD_36W, affected infants. Genotyping was performed using newly designed pyrosequencing assays and previously published methods. Associations between genetic variants of SPs and BPD subgroups were determined using Transmission Disequilibrium Test (TDT and Family Based Association Test (FBAT. Significant associations (p ≤ 0.01 were observed for alleles of SP-B and SP-B-linked microsatellite markers, and haplotypes of SP-A, SP-D, and SP-B. Specifically, allele B-18_C associated with susceptibility in BPD_36W. Microsatellite marker AAGG_6 associated with susceptibility in BPD_28D/36W group. Haplotype analysis revealed ten susceptibility and one protective haplotypes for SP-B and SP-B-linked microsatellite markers and two SP-A-SP-D protective haplotypes. The data indicate that SP loci are linked to BPD. Studies in different study groups and/or of larger sample size are warranted to confirm these observations and delineate genetic background of BPD subgroups.

  20. Plasma pro-surfactant protein B and lung function decline in smokers. (United States)

    Leung, Janice M; Mayo, John; Tan, Wan; Tammemagi, C Martin; Liu, Geoffrey; Peacock, Stuart; Shepherd, Frances A; Goffin, John; Goss, Glenwood; Nicholas, Garth; Tremblay, Alain; Johnston, Michael; Martel, Simon; Laberge, Francis; Bhatia, Rick; Roberts, Heidi; Burrowes, Paul; Manos, Daria; Stewart, Lori; Seely, Jean M; Gingras, Michel; Pasian, Sergio; Tsao, Ming-Sound; Lam, Stephen; Sin, Don D


    Plasma pro-surfactant protein B (pro-SFTPB) levels have recently been shown to predict the development of lung cancer in current and ex-smokers, but the ability of pro-SFTPB to predict measures of chronic obstructive pulmonary disease (COPD) severity is unknown. We evaluated the performance characteristics of pro-SFTPB as a biomarker of lung function decline in a population of current and ex-smokers. Plasma pro-SFTPB levels were measured in 2503 current and ex-smokers enrolled in the Pan-Canadian Early Detection of Lung Cancer Study. Linear regression was performed to determine the relationship of pro-SFTPB levels to changes in forced expiratory volume in 1 s (FEV1) over a 2-year period as well as to baseline FEV1 and the burden of emphysema observed in computed tomography (CT) scans. Plasma pro-SFTPB levels were inversely related to both FEV1 % predicted (p=0.024) and FEV1/forced vital capacity (FVC) (p<0.001), and were positively related to the burden of emphysema on CT scans (p<0.001). Higher plasma pro-SFTPB levels were also associated with a more rapid decline in FEV1 at 1 year (p=0.024) and over 2 years of follow-up (p=0.004). Higher plasma pro-SFTPB levels are associated with increased severity of airflow limitation and accelerated decline in lung function. Pro-SFTPB is a promising biomarker for COPD severity and progression. Copyright ©ERS 2015.

  1. Surfactant protein D attenuates sub-epithelial fibrosis in allergic airways disease through TGF-β. (United States)

    Ogawa, Hirohisa; Ledford, Julie G; Mukherjee, Sambuddho; Aono, Yoshinori; Nishioka, Yasuhiko; Lee, James J; Izumi, Keisuke; Hollingsworth, John W


    Surfactant protein D (SP-D) can regulate both innate and adaptive immunity. Recently, SP-D has been shown to contribute to the pathogenesis of airway allergic inflammation and bleomycin-induced pulmonary fibrosis. However, in allergic airways disease, the role of SP-D in airway remodeling remains unknown. The objective of this study was to determine the contribution of functional SP-D in regulating sub-epithelial fibrosis in a mouse chronic house dust mite model of allergic airways disease. C57BL/6 wild-type (WT) and SP-D-/- mice (C57BL/6 background) were chronically challenged with house dust mite antigen (Dermatophagoides pteronyssinus, Dp). Studies with SP-D rescue and neutralization of TGF-β were conducted. Lung histopathology and the concentrations of collagen, growth factors, and cytokines present in the airspace and lung tissue were determined. Cultured eosinophils were stimulated by Dp in presence or absence of SP-D. Dp-challenged SP-D-/- mice demonstrate increased sub-epithelial fibrosis, collagen production, eosinophil infiltration, TGF-β1, and IL-13 production, when compared to Dp-challenged WT mice. By immunohistology, we detected an increase in TGF-β1 and IL-13 positive eosinophils in SP-D-/- mice. Purified eosinophils stimulated with Dp produced TGF-β1 and IL-13, which was prevented by co-incubation with SP-D. Additionally, treatment of Dp challenged SP-D-/- mice with exogenous SP-D was able to rescue the phenotypes observed in SP-D-/- mice and neutralization of TGF-β1 reduced sub-epithelial fibrosis in Dp-challenged SP-D-/- mice. These data support a protective role for SP-D in the pathogenesis of sub-epithelial fibrosis in a mouse model of allergic inflammation through regulation of eosinophil-derived TGF-β.

  2. Surfactant protein-A suppresses eosinophil-mediated killing of Mycoplasma pneumoniae in allergic lungs.

    Directory of Open Access Journals (Sweden)

    Julie G Ledford

    Full Text Available Surfactant protein-A (SP-A has well-established functions in reducing bacterial and viral infections but its role in chronic lung diseases such as asthma is unclear. Mycoplasma pneumoniae (Mp frequently colonizes the airways of chronic asthmatics and is thought to contribute to exacerbations of asthma. Our lab has previously reported that during Mp infection of non-allergic airways, SP-A aides in maintaining airway homeostasis by inhibiting an overzealous TNF-alpha mediated response and, in allergic mice, SP-A regulates eosinophilic infiltration and inflammation of the airway. In the current study, we used an in vivo model with wild type (WT and SP-A(-/- allergic mice challenged with the model antigen ovalbumin (Ova that were concurrently infected with Mp (Ova+Mp to test the hypothesis that SP-A ameliorates Mp-induced stimulation of eosinophils. Thus, SP-A could protect allergic airways from injury due to release of eosinophil inflammatory products. SP-A deficient mice exhibit significant increases in inflammatory cells, mucus production and lung damage during concurrent allergic airway disease and infection (Ova+Mp as compared to the WT mice of the same treatment group. In contrast, SP-A deficient mice have significantly decreased Mp burden compared to WT mice. The eosinophil specific factor, eosinophil peroxidase (EPO, which has been implicated in pathogen killing and also in epithelial dysfunction due to oxidative damage of resident lung proteins, is enhanced in samples from allergic/infected SP-A(-/- mice as compared to WT mice. In vitro experiments using purified eosinophils and human SP-A suggest that SP-A limits the release of EPO from Mp-stimulated eosinophils thereby reducing their killing capacity. These findings are the first to demonstrate that although SP-A interferes with eosinophil-mediated biologic clearance of Mp by mediating the interaction of Mp with eosinophils, SP-A simultaneously benefits the airway by limiting inflammation

  3. Quantification of surfactant proteins in tears of patients suffering from dry eye disease compared to healthy subjects. (United States)

    Posa, Andreas; Paulsen, Friedrich; Dietz, Richard; Garreis, Fabian; Sander, Ralph; Schicht, Martin; Sel, Saadettin; Scholz, Michael; Hammer, Christian M; Bräuer, Lars


    To quantify and compare the amounts of surfactant proteins SP-A, SP-B, SP-C and SP-D in the tear fluid collected from patients with dry eye syndrome and from individuals with a healthy ocular surface. Schirmer strips were used to collect tear fluid from both eyes of 241 volunteers (99 men, 142 women; age range: 18-87 years). Dry eye syndrome was diagnosed by ophthalmologists in 125 patients, whereas the healthy control group comprised 116 individuals. The total protein concentration was determined via Bradford assay. The relative concentration of surfactant proteins SP-A through -D was measured by enzyme-linked immuno-sorbent assay (ELISA). The mean relative concentrations of SP-A, SP-C and SP-D were significantly higher in the dry eye group as compared to the healthy controls (pdry eye group, but the difference to the control group was not statistically significant. The upregulation of SP-A and SP-D in the dry eye group is probably related to these proteins' known antimicrobial and immunomodulatory effects at the ocular surface. It may represent a pathophysiological response to the inflammatory condition of the ocular surface in dry eye. The upregulation of SP-B and SP-C may represent an effort of the lacrimal system to reduce surface tension and thus to counteract the increased tendency of the tear film to tear in dry eye. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Expression, stabilization and purification of membrane proteins via diverse protein synthesis systems and detergents involving cell-free associated with self-assembly peptide surfactants. (United States)

    Zheng, Xuan; Dong, Shuangshuang; Zheng, Jie; Li, Duanhua; Li, Feng; Luo, Zhongli


    G-protein coupled receptors (GPCRs) are involved in regulating most of physiological actions and metabolism in the bodies, which have become most frequently addressed therapeutic targets for various disorders and diseases. Purified GPCR-based drug discoveries have become routine that approaches to structural study, novel biophysical and biochemical function analyses. However, several bottlenecks that GPCR-directed drugs need to conquer the problems including overexpression, solubilization, and purification as well as stabilization. The breakthroughs are to obtain efficient protein yield and stabilize their functional conformation which are both urgently requiring of effective protein synthesis system methods and optimal surfactants. Cell-free protein synthesis system is superior to the high yields and post-translation modifications, and early signs of self-assembly peptide detergents also emerged to superiority in purification of membrane proteins. We herein focus several predominant protein synthesis systems and surfactants involving the novel peptide detergents, and uncover the advantages of cell-free protein synthesis system with self-assembling peptide detergents in purification of functional GPCRs. This review is useful to further study in membrane proteins as well as the new drug exploration. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Design of Protein-Coated Carbon Nanotubes Loaded with Hydrophobic Drugs through Sacrificial Templating of Mesoporous Silica Shells. (United States)

    Fiegel, Vincent; Harlepp, Sebastien; Begin-Colin, Sylvie; Begin, Dominique; Mertz, Damien


    One key challenge in the fields of nanomedicine and tissue engineering is the design of theranostic nanoplatforms able to monitor their therapeutic effect by imaging. Among current developed nano-objects, carbon nanotubes (CNTs) were found suitable to combine imaging, photothermal therapy, and to be loaded with hydrophobic drugs. However, a main problem is their resulting low hydrophilicity. To face this problem, an innovative method is developed here, which consists in loading the surface of carbon nanotubes (CNTs) with drugs followed by a protein coating around them. The originality of this method relies on first covering CNTs with a sacrificial template mesoporous silica (MS) shell grafted with isobutyramide (IBAM) binders on which a protein nanofilm is strongly adhered through IBAM-mediated physical cross-linking. This concept is first demonstrated without drugs, and is further improved with the suitable loading of hydrophobic drugs, curcumin (CUR) and camptothecin (CPT), which are retained between the CNTs and human serum albumin (HSA) layer. Such novel nanocomposites with favorable photothermal properties are very promising for theranostic systems, drug delivery, and phototherapy applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Immunoassay of C-reactive protein by hot electron induced electrochemiluminescence using integrated electrodes with hydrophobic sample confinement

    Energy Technology Data Exchange (ETDEWEB)

    Ylinen-Hinkka, T., E-mail: [Laboratory of Analytical Chemistry, Aalto University School of Chemical Technology, P.O. Box 16100, FI-00076 Aalto (Finland); Niskanen, A.J.; Franssila, S. [Department of Materials Science and Engineering, Aalto University School of Chemical Technology, P.O. Box 16200, FI-00076 Aalto (Finland); Kulmala, S. [Laboratory of Analytical Chemistry, Aalto University School of Chemical Technology, P.O. Box 16100, FI-00076 Aalto (Finland)


    Highlights: {center_dot} C-reactive protein has been determined in the concentration range 0.01-10 mg L{sup -1} using an electrochemiluminescence microchip which employs integrated electrodes with hydrophobic sample confinement. {center_dot} This arrangement enables very simple and fast CRP analysis amenable to point-of-care applications. - Abstract: C-reactive protein (CRP) was determined in the concentration range 0.01-10 mg L{sup -1} using hot electron induced electrochemiluminescence (HECL) with devices combining both working and counter electrodes and sample confinement on a single chip. The sample area on the electrodes was defined by a hydrophobic ring, which enabled dispensing the reagents and the analyte directly on the electrode. Immunoassay of CRP by HECL using integrated electrodes is a good candidate for a high-sensitivity point-of-care CRP-test, because the concentration range is suitable, miniaturisation of the measurement system has been demonstrated and the assay method with integrated electrodes is easy to use. High-sensitivity CRP tests can be used to monitor the current state of cardiovascular disease and also to predict future cardiovascular problems in apparently healthy people.

  7. The Accelerated Late Adsorption of Pulmonary Surfactant (United States)


    Adsorption of pulmonary surfactant to an air−water interface lowers surface tension (γ) at rates that initially decrease progressively, but which then accelerate close to the equilibrium γ. The studies here tested a series of hypotheses concerning mechanisms that might cause the late accelerated drop in γ. Experiments used captive bubbles and a Wilhelmy plate to measure γ during adsorption of vesicles containing constituents from extracted calf surfactant. The faster fall in γ reflects faster adsorption rather than any feature of the equation of state that relates γ to surface concentration (Γ). Adsorption accelerates when γ reaches a critical value rather than after an interval required to reach that γ. The hydrophobic surfactant proteins (SPs) represent key constituents, both for reaching the γ at which the acceleration occurs and for producing the acceleration itself. The γ at which rates of adsorption increase, however, is unaffected by the Γ of protein in the films. In the absence of the proteins, a phosphatidylethanolamine, which, like the SPs, induces fusion of the vesicles with the interfacial film, also causes adsorption to accelerate. Our results suggest that the late acceleration is characteristic of adsorption by fusion of vesicles with the nascent film, which proceeds more favorably when the Γ of the lipids exceeds a critical value. PMID:21417351

  8. Similarities in Self-Assembly of Proteins and Surfactants: an Attempt to Bridge the Gap

    NARCIS (Netherlands)

    Linden, van der E.; Venema, P.


    The area of surfactant self assembly has already received attention for more than half a century. Considerable progress has been made in regards to connecting the molecular properties to the assembly morphology and the phase behaviour, where a multitude of different (rather exotic) types of

  9. The formation of a native-like structure containing eight conserved hydrophobic residues is rate limiting in two-state protein folding of ACBP

    DEFF Research Database (Denmark)

    Kragelund, Birthe Brandt; Osmark, Peter; Neergaard, Thomas B.


    The acyl-coenzyme A-binding proteins (ACBPs) contain 26 highly conserved sequence positions. The majority of these have been mutated in the bovine protein, and their influence on the rate of two-state folding and unfolding has been measured. The results identify eight sequence positions, out of 24...... probed, that are critical for fast productive folding. The residues are all hydrophobic and located in the interface between the N- and C-terminal helices. The results suggest that one specific site dominated by conserved hydrophobic residues forms the structure of the productive rate-determining folding...... step and that a sequential framework model can describe the protein folding reaction....

  10. Effect of perfluorohexane on the expression of cellular adhesion molecules and surfactant protein A in human mesothelial cells in vitro. (United States)

    Haufe, Dirk; Dahmen, Klaus G; Tiebel, Oliver; Hübler, Matthias; Koch, Thea


    The intraperitoneal instillation of perfluorocarbons augmented systemic oxygenation and was protective in mesenteric ischemia-reperfusion and experimental lung injury. To study biocompatibility and potential anti-inflammatory effects of intraperitoneal perfluorocarbons, we evaluated the influence of perfluorohexane and/or inflammatory stimuli on human mesothelial cells in vitro. Perfluorohexane exposure neither impaired cell viability nor induced cellular activation. TNFα enhanced ICAM-1 expression, which was not attenuated by simultaneous perfluorohexane treatment. Concentration of intracellular surfactant protein A tended to be higher in perfluorohexane treated cells compared to controls. Our in vitro data add further evidence that intraperitoneal perfluorocarbon application is feasible without adverse local effects.

  11. A novel nanobody specific for respiratory surfactant protein A has potential for lung targeting

    Directory of Open Access Journals (Sweden)

    Wang SM


    Full Text Available Shan-Mei Wang,1,* Xian He,2,* Nan Li,1,* Feng Yu,3 Yang Hu,1 Liu-Sheng Wang,1 Peng Zhang,4 Yu-Kui Du,1 Shan-Shan Du,1 Zhao-Fang Yin,1 Ya-Ru Wei,1 Xavier Mulet,5 Greg Coia,6 Dong Weng,1 Jian-Hua He,3 Min Wu,7 Hui-Ping Li1 1Department of Respiratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 2School of Medicine, Suzhou University, SuZhou, 3Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 4Department of Chest Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China; 5CSIRO (Commonwealth Scientific and Industrial Research Materials Science and Engineering, Clayton, 6CSIRO Materials Science and Engineering, Parkville, Melbourne, VIC, Australia; 7Department of Basic Sciences, University of North Dakota, Grand Forks, ND, USA *These authors contributed equally to this work Abstract: Lung-targeting drugs are thought to be potential therapies of refractory lung diseases by maximizing local drug concentrations in the lung to avoid systemic circulation. However, a major limitation in developing lung-targeted drugs is the acquirement of lung-specific ligands. Pulmonary surfactant protein A (SPA is predominantly synthesized by type II alveolar epithelial cells, and may serve as a potential lung-targeting ligand. Here, we generated recombinant rat pulmonary SPA (rSPA as an antigen and immunized an alpaca to produce two nanobodies (the smallest naturally occurring antibodies specific for rSPA, designated Nb6 and Nb17. To assess these nanobodies’ potential for lung targeting, we evaluated their specificity to lung tissue and toxicity in mice. Using immunohistochemistry, we demonstrated that these anti-rSPA nanobodies selectively bound to rat lungs with high affinity. Furthermore, we intravenously injected fluorescein isothiocyanate-Nb17 in nude mice and observed its preferential accumulation in the lung to other tissues, suggesting high

  12. Normalisation of surfactant protein -A and -B expression in the lungs of low birth weight lambs by 21 days old.

    Directory of Open Access Journals (Sweden)

    Jia Yin Soo

    Full Text Available Intrauterine growth restriction (IUGR induced by placental restriction (PR in the sheep negatively impacts lung and pulmonary surfactant development during fetal life. Using a sheep model of low birth weight (LBW, we found that there was an increase in mRNA expression of surfactant protein (SP-A, -B and -C in the lung of LBW lambs but no difference in the protein expression of SP-A or -B. LBW also resulted in increased lysosome-associated membrane glycoprotein (LAMP-3 mRNA expression, which may indicate an increase in either the density of type II Alveolar epithelial cells (AEC or maturity of type II AECs. Although there was an increase in glucocorticoid receptor (GR and 11β-hydroxysteroid dehydrogenase (11βHSD-1 mRNA expression in the lung of LBW lambs, we found no change in the protein expression of these factors, suggesting that the increase in SP mRNA expression is not mediated by increased GC signalling in the lung. The increase in SP mRNA expression may, in part, be mediated by persistent alterations in hypoxia signalling as there was an increase in lung HIF-2α mRNA expression in the LBW lamb. The changes in the hypoxia signalling pathway that persist within the lung after birth may be involved in maintaining SP production in the LBW lamb.

  13. Quantitation of pulmonary surfactant protein SP-B in the absence or presence of phospholipids by enzyme-linked immunosorbent assay

    DEFF Research Database (Denmark)

    Oviedo, J M; Valiño, F; Plasencia, I


    We have developed an enzyme-linked immunosorbent assay (ELISA) that uses polyclonal or monoclonal anti-surfactant protein SP-B antibodies to quantitate purified SP-B in chloroform/methanol and in chloroform/methanol extracts of whole pulmonary surfactant at nanogram levels. This method has been...... used to explore the effect of the presence of different phospholipids on the immunoreactivity of SP-B. Both polyclonal and monoclonal antibodies produced reproducible ELISA calibration curves for methanolic SP-B solutions with protein concentrations in the range of 20-1000 ng/mL. At these protein...

  14. CD spectroscopy of proteins adsorbed at flat hydrophilic quartz and hydrophobic Teflon surfaces

    NARCIS (Netherlands)

    Vermeer, AWP; Norde, W


    Spectroscopic methods provide a powerful tool for studying the properties of proteins at interfaces. The protein accumulated in one adsorbed layer is frequently less than the minimum mass of protein required by a detection method. In such a case las is the case in circular dichroism spectroscopy)

  15. Sum Frequency Generation Vibrational Spectroscopy of Adsorbed Amino Acids, Peptides and Proteins of Hydrophilic and Hydrophobic Solid-Water Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Holinga IV, George Joseph [Univ. of California, Berkeley, CA (United States)


    Sum frequency generation (SFG) vibrational spectroscopy was used to investigate the interfacial properties of several amino acids, peptides, and proteins adsorbed at the hydrophilic polystyrene solid-liquid and the hydrophobic silica solid-liquid interfaces. The influence of experimental geometry on the sensitivity and resolution of the SFG vibrational spectroscopy technique was investigated both theoretically and experimentally. SFG was implemented to investigate the adsorption and organization of eight individual amino acids at model hydrophilic and hydrophobic surfaces under physiological conditions. Biointerface studies were conducted using a combination of SFG and quartz crystal microbalance (QCM) comparing the interfacial structure and concentration of two amino acids and their corresponding homopeptides at two model liquid-solid interfaces as a function of their concentration in aqueous solutions. The influence of temperature, concentration, equilibration time, and electrical bias on the extent of adsorption and interfacial structure of biomolecules were explored at the liquid-solid interface via QCM and SFG. QCM was utilized to quantify the biological activity of heparin functionalized surfaces. A novel optical parametric amplifier was developed and utilized in SFG experiments to investigate the secondary structure of an adsorbed model peptide at the solid-liquid interface.

  16. Semi-Automated Hydrophobic Interaction Chromatography Column Scouting Used in the Two-Step Purification of Recombinant Green Fluorescent Protein (United States)

    Murphy, Patrick J. M.


    Background Hydrophobic interaction chromatography (HIC) most commonly requires experimental determination (i.e., scouting) in order to select an optimal chromatographic medium for purifying a given target protein. Neither a two-step purification of untagged green fluorescent protein (GFP) from crude bacterial lysate using sequential HIC and size exclusion chromatography (SEC), nor HIC column scouting elution profiles of GFP, have been previously reported. Methods and Results Bacterial lysate expressing recombinant GFP was sequentially adsorbed to commercially available HIC columns containing butyl, octyl, and phenyl-based HIC ligands coupled to matrices of varying bead size. The lysate was fractionated using a linear ammonium phosphate salt gradient at constant pH. Collected HIC eluate fractions containing retained GFP were then pooled and further purified using high-resolution preparative SEC. Significant differences in presumptive GFP elution profiles were observed using in-line absorption spectrophotometry (A395) and post-run fluorimetry. SDS-PAGE and western blot demonstrated that fluorometric detection was the more accurate indicator of GFP elution in both HIC and SEC purification steps. Comparison of composite HIC column scouting data indicated that a phenyl ligand coupled to a 34 µm matrix produced the highest degree of target protein capture and separation. Conclusions Conducting two-step protein purification using the preferred HIC medium followed by SEC resulted in a final, concentrated product with >98% protein purity. In-line absorbance spectrophotometry was not as precise of an indicator of GFP elution as post-run fluorimetry. These findings demonstrate the importance of utilizing a combination of detection methods when evaluating purification strategies. GFP is a well-characterized model protein, used heavily in educational settings and by researchers with limited protein purification experience, and the data and strategies presented here may aid in

  17. A New Class of Amphiphiles Bearing Rigid Hydrophobic Groups for Solubilization and Stabilization of Membrane Proteins

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Rasmussen, Søren G F; Rana, Rohini R


    Non-traditional amphiphiles: Conferring aqueous solubility on membrane proteins generally requires the use of a detergent or other amphiphilic agent. A new class of amphiphiles was synthesized, based on steroidal lipophilic groups, and evaluated with several membrane proteins. The results show th...... that the new amphiphile, "glyco-diosgenin" (GDN; see figure), confers enhanced stability to a variety of membrane proteins in solution relative to popular conventional detergents, such as dodecylmaltoside (DDM)....

  18. Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a

    International Nuclear Information System (INIS)

    Paulin, Sarah; Rosado, Helena; Taylor, Peter W; Jamshad, Mohammed; Dafforn, Timothy R; Garcia-Lara, Jorge; Foster, Simon J; Galley, Nicola F; Roper, David I


    Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function. (paper)

  19. Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a (United States)

    Paulin, Sarah; Jamshad, Mohammed; Dafforn, Timothy R.; Garcia-Lara, Jorge; Foster, Simon J.; Galley, Nicola F.; Roper, David I.; Rosado, Helena; Taylor, Peter W.


    Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function.

  20. Effects of Bufei Yishen Granules Combined with Acupoint Sticking Therapy on Pulmonary Surfactant Proteins in Chronic Obstructive Pulmonary Disease Rats

    Directory of Open Access Journals (Sweden)

    Yange Tian


    Full Text Available Our previous studies have demonstrated the beneficial effects of Bufei Yishen granules combined with acupoint sticking therapy (the integrated therapy in chronic obstructive pulmonary disease (COPD, but the underlying mechanism remains unclear. Dysfunction of pulmonary surfactant proteins (SPs, including SP-A, SP-B, SP-C, and SP-D may be included in pathophysiology of COPD. This study aimed to explore the mechanism of the integrated therapy on SPs. COPD rat models were established. The treatment groups received Bufei Yishen granules or acupoint sticking or their combination. Using aminophylline as a positive control drug. The levels of SPs in serum, BALF, and lung were measured. The results showed that the integrated therapy markedly reduced the levels of SPs in serum and increased these indicators in the lung. The integrated therapy was better than aminophylline in reducing the levels of SPs and was better than Bufei Yishen granules in reducing SP-A, SP-C, and SP-D in serum. The integrated therapy was better than aminophylline and Bufei Yishen granules in increasing SP-A, SP-B, and SP-D mRNA in the lung. SP-A and SP-D in BALF were positively correlated with PEF and EF50. The levels of SPs are associated with airway limitation. The beneficial effects of the integrated therapy may be involved in regulating pulmonary surfactant proteins.

  1. Innate Defense against Influenza A Virus: Activity of Human Neutrophil Defensins and Interactions of Defensins with Surfactant Protein D

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L.; White, Mitchell R.; Tecle, Tesfaldet


    Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study was to characte......Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study...... was to characterize antiviral interactions between SP-D and HNPs. Recombinant and/or natural forms of SP-D and related collectins and HNPs were tested for antiviral activity against two different strains of IAV. HNPs 1 and 2 did not inhibit viral hemagglutination activity, but they interfered...... with the hemagglutination-inhibiting activity of SP-D. HNPs had significant viral neutralizing activity against divergent IAV strains. However, the HNPs generally had competitive effects when combined with SP-D in assays using an SP-D-sensitive IAV strain. In contrast, cooperative antiviral effects were noted in some...

  2. Adsorption of a small protein to a methyl-terminated hydrophobic surfaces

    DEFF Research Database (Denmark)

    Otzen, Daniel; Oliveberg, M.; Höök, F.


    We have studied the adsorption kinetics of a small monomeric protein S6 using the quartz crystal microbalance with dissipation monitoring (QCM-D) technique. Competitive adsorption from various proportions of native (Nat) and denatured (Den) protein in the bulk phase was carried out using a range...... of chemical denaturant concentrations. The ratio between Nat and Den in bulk has a profound affect on the adsorption behavior, most obvious from a significant (one order of magnitude) increase in the rate of a lag– and consolidation–adsorption phase when Nat is the major species present in bulk, signaling...... that these adsorption phases originates from the Den fraction of proteins in the bulk. To determine whether the kinetics of protein unfolding in the bulk phase are rate-limiting for adsorption of Nat, the adsorption kinetics of wildtype S6 with the mutant VA85 (whose unfolding kinetics are around 30 times more rapid...

  3. Role of NH2-terminal hydrophobic motif in the subcellular localization of ATP-binding cassette protein subfamily D: Common features in eukaryotic organisms

    International Nuclear Information System (INIS)

    Lee, Asaka; Asahina, Kota; Okamoto, Takumi; Kawaguchi, Kosuke; Kostsin, Dzmitry G.; Kashiwayama, Yoshinori; Takanashi, Kojiro; Yazaki, Kazufumi; Imanaka, Tsuneo; Morita, Masashi


    Highlights: • ABCD proteins classifies based on with or without NH 2 -terminal hydrophobic segment. • The ABCD proteins with the segment are targeted peroxisomes. • The ABCD proteins without the segment are targeted to the endoplasmic reticulum. • The role of the segment in organelle targeting is conserved in eukaryotic organisms. - Abstract: In mammals, four ATP-binding cassette (ABC) proteins belonging to subfamily D have been identified. ABCD1–3 possesses the NH 2 -terminal hydrophobic region and are targeted to peroxisomes, while ABCD4 lacking the region is targeted to the endoplasmic reticulum (ER). Based on hydropathy plot analysis, we found that several eukaryotes have ABCD protein homologs lacking the NH 2 -terminal hydrophobic segment (H0 motif). To investigate whether the role of the NH 2 -terminal H0 motif in subcellular localization is conserved across species, we expressed ABCD proteins from several species (metazoan, plant and fungi) in fusion with GFP in CHO cells and examined their subcellular localization. ABCD proteins possessing the NH 2 -terminal H0 motif were localized to peroxisomes, while ABCD proteins lacking this region lost this capacity. In addition, the deletion of the NH 2 -terminal H0 motif of ABCD protein resulted in their localization to the ER. These results suggest that the role of the NH 2 -terminal H0 motif in organelle targeting is widely conserved in living organisms

  4. Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems. (United States)

    Malekzad, Hedieh; Mirshekari, Hamed; Sahandi Zangabad, Parham; Moosavi Basri, S M; Baniasadi, Fazel; Sharifi Aghdam, Maryam; Karimi, Mahdi; Hamblin, Michael R


    For thousands of years, plants and their products have been used as the mainstay of medicinal therapy. In recent years, besides attempts to isolate the active ingredients of medicinal plants, other new applications of plant products, such as their use to prepare drug delivery vehicles, have been discovered. Nanobiotechnology is a branch of pharmacology that can provide new approaches for drug delivery by the preparation of biocompatible carrier nanoparticles (NPs). In this article, we review recent studies with four important plant proteins that have been used as carriers for targeted delivery of drugs and genes. Zein is a water-insoluble protein from maize; Gliadin is a 70% alcohol-soluble protein from wheat and corn; legumin is a casein-like protein from leguminous seeds such as peas; lectins are glycoproteins naturally occurring in many plants that recognize specific carbohydrate residues. NPs formed from these proteins show good biocompatibility, possess the ability to enhance solubility, and provide sustained release of drugs and reduce their toxicity and side effects. The effects of preparation methods on the size and loading capacity of these NPs are also described in this review.

  5. Adamantane-based amphiphiles (ADAs) for membrane protein study: importance of a detergent hydrophobic group in membrane protein solubilisation. (United States)

    Chae, Pil Seok; Bae, Hyoung Eun; Das, Manabendra


    We prepared adamantane-containing amphiphiles and evaluated them using a large membrane protein complex in terms of protein solubilisation and stabilization efficacy. These agents were superior to conventional detergents, especially in terms of the membrane protein solubilisation efficiency, implying a new detergent structure-property relationship.

  6. Effects of the conjugation of whey proteins with gellan polysaccharides on surfactant-induced competitive displacement from the air-water interface. (United States)

    Cai, B; Ikeda, S


    Whey proteins can be used to stabilize foams and emulsions against coalescence because of their ability to form viscoelastic films at the interface that resist film rupture on collision between colloidal particles. However, whey proteins are competitively displaced from the interface if small-molecule surfactants are added, leading to destabilization of the entire system. This is because surfactants are more effective in molecular packing at the interface, and they lower interfacial tension to a greater degree than whey proteins do, but their interfacial films are poor in viscoelasticity. We hypothesized that whey proteins would become more resistant to surfactant-induced competitive displacement if they were conjugated with network-forming polysaccharides. The protein moiety of the conjugate would be expected to enable its adsorption to the interface, and the polysaccharide moiety would be expected to form self-assembled networks, strengthening the interfacial film as a whole. In this study, whey proteins were conjugated with gellan polysaccharides using the Maillard reaction. Atomic force microscopy images of interfacial films formed by the whey protein-gellan conjugate at the air-water interface and transferred onto mica sheets using the Langmuir-Blodgett method revealed that gellan did form self-assembled networks at the interface and that interfacial films also contained a large number of unconjugated whey protein molecules. Following the addition of a small-molecule surfactant (Tween 20) to the sub-phase, surface pressure increased, indicating spontaneous adsorption of surfactants to the interface. Atomic force microscopy images showed decreases in interfacial area coverage by whey proteins as surface pressure increased. At a given surface pressure, the interfacial area coverage by whey protein-gellan conjugates was greater than coverage by unconjugated whey proteins, confirming that whey proteins became more resistant to surfactant-induced displacement after

  7. Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network. (United States)

    Zhu, Chongqin; Gao, Yurui; Li, Hui; Meng, Sheng; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng


    Hydrophobicity of macroscopic planar surface is conventionally characterized by the contact angle of water droplets. However, this engineering measurement cannot be directly extended to surfaces of proteins, due to the nanometer scale of amino acids and inherent nonplanar structures. To measure the hydrophobicity of side chains of proteins quantitatively, numerous parameters were developed to characterize behavior of hydrophobic solvation. However, consistency among these parameters is not always apparent. Herein, we demonstrate an alternative way of characterizing hydrophobicity of amino acid side chains in a protein environment by constructing a monolayer of amino acids (i.e., artificial planar peptide network) according to the primary and the β-sheet secondary structures of protein so that the conventional engineering measurement of the contact angle of a water droplet can be brought to bear. Using molecular dynamics simulations, contact angles θ of a water nanodroplet on the planar peptide network, together with excess chemical potentials of purely repulsive methane-sized Weeks-Chandler-Andersen solute, are computed. All of the 20 types of amino acids and the corresponding planar peptide networks are studied. Expectedly, all of the planar peptide networks with nonpolar amino acids are hydrophobic due to θ [Formula: see text] 90°, whereas all of the planar peptide networks of the polar and charged amino acids are hydrophilic due to θ [Formula: see text] 90°. Planar peptide networks of the charged amino acids exhibit complete-wetting behavior due to θ [Formula: see text] 0°. This computational approach for characterization of hydrophobicity can be extended to artificial planar networks of other soft matter.

  8. cDNA, deduced polypeptide structure and chromosomal assignment of human pulmonary surfactant proteolipid, SPL(pVal)

    International Nuclear Information System (INIS)

    Glasser, S.W.; Korfhagen, T.R.; Weaver, T.E.; Clark, J.C.; Pilot-Matias, T.; Meuth, J.; Fox, J.L.; Whitsett, J.A.


    In hyaline membrane disease of premature infants, lack of surfactant leads to pulmonary atelectasis and respiratory distress. Hydrophobic surfactant proteins of M/sub r/ = 5000-14,000 have been isolated from mammalian surfactants which enhance the rate of spreading and the surface tension lowering properties of phospholipids during dynamic compression. The authors have characterized the amino-terminal amino acid sequence of pulmonary proteolipids from ether/ethanol extracts of bovine, canine, and human surfactant. Two distinct peptides were identified and termed SPL(pVal) and SPL(Phe). An oligonucleotide probe based on the valine-rich amino-terminal amino acid sequence of SPL(pVal) was utilized to isolate cDNA and genomic DNA encoding the human protein, termed surfactant proteolipid SPL(pVal) on the basis of its unique polyvaline domain. The primary structure of a precursor protein of 20,870 daltons, containing the SPL(pVal) peptide, was deduced from the nucleotide sequence of the cDNAs. Hybrid-arrested translation and immunoprecipitation of labeled translation products of human mRNA demonstrated a precursor protein, the active hydrophobic peptide being produced by proteolytic processing. Two classes of cDNAs encoding SPL(pVal) were identified. Human SPL(pVal) mRNA was more abundant in the adult than in fetal lung. The SPL(pVal) gene locus was assigned to chromosome 8

  9. Quercetin loaded biopolymeric colloidal particles prepared by simultaneous precipitation of quercetin with hydrophobic protein in aqueous medium. (United States)

    Patel, Ashok R; Heussen, Patricia C M; Hazekamp, Johan; Drost, Ellen; Velikov, Krassimir P


    Quercetin loaded biopolymeric colloidal particles were prepared by precipitating quercetin (water insoluble polyphenol) and zein (hydrophobic protein), simultaneously, by adding their hydro-alcoholic solution to aqueous solution in presence of sodium caseinate as an electrosteric stabiliser. The presence of protein resulted in altering the shape of quercetin precipitates from needle-like to spherical shape at higher zein proportions, as confirmed by transmission electron microscopy. The average particle size of zein:quercetin composite particles was below 200 nm (130-161 nm) with negative surface charge (-30 to -41 mV), as confirmed by dynamic light scattering and electrophoretic mobility data. Solid state characterisation (X-ray diffraction) and spectroscopic measurements (UV-Vis and IR spectroscopy) confirmed characteristic changes in quercetin due to the entrapment in the biopolymeric matrix of colloidal particles. Results from anti-oxidant study demonstrated the advantage of entrapping quercetin in the colloidal particles in terms of the chemical stability in the alkaline pH and against photodegradation under UV-light irradiation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Predicting hot spots in protein interfaces based on protrusion index, pseudo hydrophobicity and electron-ion interaction pseudopotential features (United States)

    Xia, Junfeng; Yue, Zhenyu; Di, Yunqiang; Zhu, Xiaolei; Zheng, Chun-Hou


    The identification of hot spots, a small subset of protein interfaces that accounts for the majority of binding free energy, is becoming more important for the research of drug design and cancer development. Based on our previous methods (APIS and KFC2), here we proposed a novel hot spot prediction method. For each hot spot residue, we firstly constructed a wide variety of 108 sequence, structural, and neighborhood features to characterize potential hot spot residues, including conventional ones and new one (pseudo hydrophobicity) exploited in this study. We then selected 3 top-ranking features that contribute the most in the classification by a two-step feature selection process consisting of minimal-redundancy-maximal-relevance algorithm and an exhaustive search method. We used support vector machines to build our final prediction model. When testing our model on an independent test set, our method showed the highest F1-score of 0.70 and MCC of 0.46 comparing with the existing state-of-the-art hot spot prediction methods. Our results indicate that these features are more effective than the conventional features considered previously, and that the combination of our and traditional features may support the creation of a discriminative feature set for efficient prediction of hot spots in protein interfaces. PMID:26934646

  11. Adsorption of proteins at the solution/air interface influenced by added nonionic surfactants at very low concentrations for both components. 2. Effect of different surfactants and theoretical model. (United States)

    Fainerman, V B; Lotfi, M; Javadi, A; Aksenenko, E V; Tarasevich, Yu I; Bastani, D; Miller, R


    The influence of the addition of the nonionic surfactants dodecyl dimethyl phosphine oxide (C12DMPO), tetradecyl dimethyl phosphine oxide (C14DMPO), decyl alcohol (C10OH), and C10EO5 at concentrations between 10(-5) and 10(-1) mmol/L to solutions of β-casein (BCS) and β-lactoglobulin (BLG) at a fixed concentration of 10(-5) mmol/L on the surface tension is studied. It is shown that a significant decrease of the water/air surface tension occurs for all the surfactants studied at very low concentrations (10(-5)-10(-3) mmol/L). All measurements were performed with the buoyant bubble profile method. The dynamics of the surface tension was simulated using the Fick and Ward-Tordai equations. The calculation results agree well with the experimental data, indicating that the equilibration times in the system studied do not exceed 30 000 s, while the time required to attain the equilibrium on a plane surface is by one order of magnitude higher. To achieve agreement between theory and experiment for the mixtures, a supposition was made about the influence of the concentration of nonionic surfactant on the adsorption activity of the protein. The adsorption isotherm equation of the protein was modified accordingly, and this corrected model agrees well with all experimental data.

  12. Surfactant protein D (SP-D) deficiency is attenuated in humanised mice expressing the Met(11)Thr short nucleotide polymorphism of SP-D

    DEFF Research Database (Denmark)

    Knudsen, Lars; Ochs, Katharina; Boxler, Laura


    Surfactant protein D (SP-D) is part of the innate immune system involved in lung homeostasis. SP-D knockout mice show accumulations of foamy alveolar macrophages, alveolar lipoproteinosis and pulmonary emphysema. Three single nucleotide polymorphisms (SNPs) have been described in the coding...

  13. Surfactant protein D of the innate immune defence is inversely associated with human obesity and SP-D deficiency infers increased body weight in mice

    DEFF Research Database (Denmark)

    Sorensen, G.L.; Hjelmborg, J.V.B.; Leth-Larsen, R.


    Surfactant protein D (SP-D) is a key regulator of pathogen-induced inflammation. SP-D is further involved in lipid homeostasis in mouse lung and circulation and recent data have demonstrated that the body mass index (BMI; in kg/m(2)) is influenced by genes in common with SP-D. The objective...

  14. Critical role for cross-linking of trimeric lectin domains of surfactant protein D in antiviral activity against influenza A virus

    DEFF Research Database (Denmark)

    Tecle, Tesfaldet; White, Mitchell R; Sørensen, Grith Lykke


    binding activity for some ligands and mediate some functional activities. The lung collectin SP-D (surfactant protein D) has strong neutralizing activity for IAVs (influenza A viruses) in vitro and in vivo, however, the NCRD derived from SP-D has weak viral-binding ability and lacks neutralizing activity...

  15. An enzyme-linked immunosorbent assay (ELISA) for quantification of mouse surfactant protein D (SP-D)

    DEFF Research Database (Denmark)

    Hansen, Soren; Schmidt, Vivi; Steffensen, Maria Abildgaard


    characterized and validated for use in sandwich enzyme-linked immunosorbent assay (ELISA). Based on two of these, we established an ELISA that allows for measurements of mouse SP-D in various body fluids. The final ELISA was optimized and calibrated with a standard of purified recombinant mouse SP-D, which......Surfactant protein D (SP-D) is a pattern recognition molecule of the collectin family of C-type lectins. It is found in the airways and at mucosal surfaces. SP-D is part of the innate immune system where it neutralizes and leads to elimination of microorganisms. It regulates the functions of other...... innate immune cells, such as macrophages and neutrophils. It also modulates the adaptive immune response by interacting with antigen-presenting cells and T cells. Monoclonal anti-mouse-SP-D antibodies were raised from SP-D deficient mice using recombinant SP-D as antigen. Ten monoclonal antibodies were...

  16. Surfactant protein d deficiency in mice is associated with hyperphagia, altered fat deposition, insulin resistance, and increased Basal endotoxemia

    DEFF Research Database (Denmark)

    Stidsen, Jacob V; Khorooshi, Reza; Rahbek, Martin K U


    Pulmonary surfactant protein D (SP-D) is a host defence lectin of the innate immune system that enhances clearance of pathogens and modulates inflammatory responses. Recently it has been found that systemic SP-D is associated with metabolic disturbances and that SP-D deficient mice are mildly obese....... However, the mechanism behind SP-D's role in energy metabolism is not known.Here we report that SP-D deficient mice had significantly higher ad libitum energy intake compared to wild-type mice and unchanged energy expenditure. This resulted in accumulation but also redistribution of fat tissue. Blood...... pressure was unchanged. The change in energy intake was unrelated to the basal levels of hypothalamic Pro-opiomelanocortin (POMC) and Agouti-related peptide (AgRP) gene expression. Neither short time systemic, nor intracereberoventricular SP-D treatment altered the hypothalamic signalling or body weight...

  17. Study on the surfactants present in atmospheric aerosols collected in the Okinawa Japan (United States)

    Kamegawa, A.; Kasaba, T.; Shimabukuro, W.; Arakaki, T.


    The main constituent of atmospheric aerosols is organic substances, which occupy 20 to 70% of the mass. Organic matters in the aerosols contain organic acids, protein and humic acid, which behave similar to surfactants. Since surfactants contain both hydrophobic and hydrophilic functional groups in the molecule, they can play important roles in cloud formation and can affect climate change, but detailed mechanisms and magnitude are not well understood. In addition, surfactants can cause asthma, allergy, dry eye and so on. In this study, our aim is to characterize surfactants in the aerosols collected in different seasons in Okinawa, Japan. Atmospheric aerosols were collected at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) during Sep. 2013 and July 2014. Surfactants in the environment are comprised of artificially synthesized compounds and naturally derived organics so we only differentiate them into anionic and cationic surfactants. Colorimetric methods were used to determine the concentrations of anionic surfactants as methylene blue active substance (MBAS). Cationic surfactants were also measured by colorimetric method as disulfine blue active substance (DBAS) and showed always below detection limit. Thus, we only discuss anionic surfactants measured as MBAS. Water soluble organic carbon (WSOC) and metal concentrations were also measured for the same aerosol samples. Concentrations of MBAS in the studied samples were 2-3 times higher in spring, fall and winter than those collected in summer. MBAS concentration in the aerosols showed strong correlation with sulfate ion and WSOC, and slightly weaker correlation with nss-sulfate ion. Among the metals, only sodium ion showed a relatively strong correlation with MBAS concentrations. It is suggested that the anionic surfactants in the studied aerosols are mainly derived from marine sources.

  18. Surfactant Protein D Levels in Umbilical Cord Blood and Capillary Blood of Premature Infants

    DEFF Research Database (Denmark)

    Dahl, Marianne; Holmskov, Uffe; Husby, Steffen


    of SP-D in capillary blood day 1 was 1,466 ng/mL (range 410-5,051 ng/mL), with lowest values in infants born with ROM and delivered vaginally. High SP-D levels in umbilical cord blood and capillary blood on day 1 were found to be more likely in infants in need for respiratory support or surfactant...... treatment and susceptibility to infections. We conclude that SP-D concentrations in umbilical cord blood and capillary blood in premature infants are twice as high as in mature infants and depend on several perinatal conditions. High SP-D levels in umbilical cord blood and capillary blood on day 1 were...... found to be related to increased risk of RDS and infections....

  19. Self-assembled nanogel of hydrophobized dendritic dextrin for protein delivery. (United States)

    Ozawa, Yayoi; Sawada, Shin-Ichi; Morimoto, Nobuyuki; Akiyoshi, Kazunari


    Highly branched cyclic dextrin derivatives (CH-CDex) that are partly substituted with cholesterol groups have been synthesized. The CH-CDex forms monodisperse and stable nanogels with a hydrodynamic radii of approximately 10 nm by the self-assembly of 4-6 CH-CDex macromolecules in water. The CH-CDex nanogels spontaneously trap 10-16 molecules of fluorescein isothiocyanate-labeled insulin (FITC-Ins). The complex shows high colloidal stability: no dissociation of trapped insulin is observed after at least 1 month in phosphate buffer (0.1 M, pH 8.0). In the presence of bovine serum albumin (BSA, 50 mg . mL(-1)), which is a model blood system, the FITC-Ins trapped in the nanogels is continuously released ( approximately 20% at 12 h) without burst release. The high-density nanogel structure derived from the highly branched CDex significantly affects the stability of the nanogel-protein complex.

  20. Adsorption of proteins at the solution/air interface influenced by added nonionic surfactants at very low concentrations for both components. 3. Dilational surface rheology. (United States)

    Fainerman, V B; Aksenenko, E V; Lylyk, S V; Lotfi, M; Miller, R


    The influence of the addition of the nonionic surfactants C12DMPO, C14DMPO, C10OH, and C10EO5 at concentrations between 10(-5) and 10(-1) mmol/L to solutions of β-casein (BCS) and β-lactoglobulin (BLG) at a fixed concentration of 10(-5) mmol/L on the dilational surface rheology is studied. A maximum in the viscoelasticity modulus |E| occurs at very low surfactant concentrations (10(-4) to 10(-3) mmol/L) for mixtures of BCS with C12DMPO and C14DMPO and for mixtures of BLG with C10EO5, while for mixture of BCS with C10EO5 the value of |E| only slightly increased. The |E| values calculated with a recently developed model, which assumes changes in the interfacial molar area of the protein molecules due to the interaction with the surfactants, are in satisfactory agreement with experimental data. A linear dependence exists between the ratio of the maximum modulus for the mixture to the modulus of the single protein solution and the coefficient reflecting the influence of the surfactants on the adsorption activity of the protein.

  1. Adsorption of β-casein-surfactant mixed layers at the air-water interface evaluated by interfacial rheology. (United States)

    Maestro, Armando; Kotsmar, Csaba; Javadi, Aliyar; Miller, Reinhard; Ortega, Francisco; Rubio, Ramón G


    This work presents a detailed study of the dilational viscoelastic moduli of the adsorption layers of the milk protein β-casein (BCS) and a surfactant at the liquid/air interface, over a broad frequency range. Two complementary techniques have been used: a drop profile tensiometry technique and an excited capillary wave method, ECW. Two different surfactants were studied: the nonionic dodecyldimethylphosphine oxide (C12DMPO) and the cationic dodecyltrimethylammonium bromide (DoTAB). The interfacial dilational elasticity and viscosity are very sensitive to the composition of protein-surfactant mixed adsorption layers at the air/water interface. Two different dynamic processes have been observed for the two systems studied, whose characteristic frequencies are close to 0.01 and 100 Hz. In both systems, the surface elasticity was found to show a maximum when plotted versus the surfactant concentration. However, at frequencies above 50 Hz the surface elasticity of BCS + C12DMPO is higher than the one of the aqueous BCS solution over most of the surfactant concentration range, whereas for the BCS + DoTAB it is smaller for high surfactant concentrations and higher at low concentrations. The BCS-surfactant interaction modifies the BCS random coil structure via electrostatic and/or hydrophobic interactions, leading to a competitive adsorption of the BCS-surfactant complexes with the free, unbound surfactant molecules. Increasing the surfactant concentration decreases the adsorbed proteins. However, the BCS molecules are rather strongly bound to the interface due to their large adsorption energy. The results have been fitted to the model proposed by C. Kotsmar et al. ( J. Phys. Chem. B 2009 , 113 , 103 ). Even though the model describes well the concentration dependence of the limiting elasticity, it does not properly describe its frequency dependence.

  2. Phosphorylation of hormone-sensitive lipase by protein kinase A in vitro promotes an increase in its hydrophobic surface area

    DEFF Research Database (Denmark)

    Krintel, Christian; Mörgelin, Matthias; Logan, Derek T


    Hormone-sensitive lipase (EC; HSL) is a key enzyme in the mobilization of fatty acids from stored triacylglycerols. HSL activity is controlled by phosphorylation of at least four serines. In rat HSL, Ser563, Ser659 and Ser660 are phosphorylated by protein kinase A (PKA) in vitro as well......, the hydrophobic fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) was found to inhibit the hydrolysis of triolein by purified recombinant rat adipocyte HSL, with a decrease in the effect of bis-ANS upon PKA phosphorylation of HSL. The interaction of HSL with bis-ANS was found to have...... a Kd of 1 microM in binding assays. Upon PKA phosphorylation, the interactions of HSL with both bis-ANS and the alternative probe SYPRO Orange were increased. By negative stain transmission electron microscopy, phosphorylated HSL was found to have a closer interaction with phospholipid vesicles than...

  3. Confined laminar flow on a super-hydrophobic surface drives the initial stages of tau protein aggregation

    KAUST Repository

    Moretti, Manola


    Super-hydrophobic micro-patterned surfaces are ideal substrates for the controlled self-assembly and substrate-free characterization of biological molecules. In this device, the tailored surface supports a micro-volume drop containing the molecules of interest. While the quasi-spherical drop is evaporating under controlled conditions, its de-wetting direction is guided by the pillared microstructure on top of the device, leading to the formation of threads between the neighboring pillars. This effect has been exploited here to elucidate the mechanism triggering the formation of amyloid fibers and oligomers in tau related neurodegenerative diseases. By using Raman spectroscopy, we demonstrate that the fiber bridging the pillars contains β-sheets, a characteristic feature of amyloid aggregation. We propose that the combination of laminar flow, shear stress and molecular crowding taking place while the drop is evaporating on the SHMS, induces the reorganization of the tau protein secondary structure and we suggest that this effect could in fact closely mimic the actual mechanism occurring in the human brain environment. Such a straightforward technique opens up new possibilities in the field of self-assembly of biomolecules and their characterization by different methods (SEM, AFM, Raman spectroscopy, TEM), in a single device.

  4. Confined laminar flow on a super-hydrophobic surface drives the initial stages of tau protein aggregation

    KAUST Repository

    Moretti, Manola; Allione, Marco; Marini, Monica; Giugni, Andrea; Torre, Bruno; Das, Gobind; Di Fabrizio, Enzo M.


    Super-hydrophobic micro-patterned surfaces are ideal substrates for the controlled self-assembly and substrate-free characterization of biological molecules. In this device, the tailored surface supports a micro-volume drop containing the molecules of interest. While the quasi-spherical drop is evaporating under controlled conditions, its de-wetting direction is guided by the pillared microstructure on top of the device, leading to the formation of threads between the neighboring pillars. This effect has been exploited here to elucidate the mechanism triggering the formation of amyloid fibers and oligomers in tau related neurodegenerative diseases. By using Raman spectroscopy, we demonstrate that the fiber bridging the pillars contains β-sheets, a characteristic feature of amyloid aggregation. We propose that the combination of laminar flow, shear stress and molecular crowding taking place while the drop is evaporating on the SHMS, induces the reorganization of the tau protein secondary structure and we suggest that this effect could in fact closely mimic the actual mechanism occurring in the human brain environment. Such a straightforward technique opens up new possibilities in the field of self-assembly of biomolecules and their characterization by different methods (SEM, AFM, Raman spectroscopy, TEM), in a single device.

  5. Preparation of protein based surfactants from leather waste fleshings and their reutilization in leather as a water resisting agent

    International Nuclear Information System (INIS)

    Nawaz, H.; Nadeem, U.; Solangi, B.; Hany, O.E.


    Summary: Tanneries generate a huge amount of highly polluting solid and liquid wastes during leather processing at different stages such as fleshings, shavings, tanning, finishing etc. approximately, 250 kg of finished leather product is obtained from 1 ton of raw salted hide while other protein goes into wastes. leather fleshings are about 50-60% of the total solid waste generated in leather processing. three different surfactants have been prepared from soft wax, long chain fatty acid chlorides and leather waste protein isolated from alkaline hydrolysis of fleshings. products are milky in color and have been applied in goat leathers as a replacement of fat liquor and water resisting agent .the resulted crust leathers have been characterized for various physical parameters such as tensile strength, thickness, softness, tear strength, bursting load, water absorption etc, as per their standard test methods. leathers have also been evaluated for grain smoothness, fullness and feeling. leathers have shown satisfactory results as per international requirement specially for water resisting. thus a leather waste protein is converted into a useful product and reutilized in leather making. (author)

  6. NPPD: A Protein-Protein Docking Scoring Function Based on Dyadic Differences in Networks of Hydrophobic and Hydrophilic Amino Acid Residues

    Directory of Open Access Journals (Sweden)

    Edward S. C. Shih


    Full Text Available Protein-protein docking (PPD predictions usually rely on the use of a scoring function to rank docking models generated by exhaustive sampling. To rank good models higher than bad ones, a large number of scoring functions have been developed and evaluated, but the methods used for the computation of PPD predictions remain largely unsatisfactory. Here, we report a network-based PPD scoring function, the NPPD, in which the network consists of two types of network nodes, one for hydrophobic and the other for hydrophilic amino acid residues, and the nodes are connected when the residues they represent are within a certain contact distance. We showed that network parameters that compute dyadic interactions and those that compute heterophilic interactions of the amino acid networks thus constructed allowed NPPD to perform well in a benchmark evaluation of 115 PPD scoring functions, most of which, unlike NPPD, are based on some sort of protein-protein interaction energy. We also showed that NPPD was highly complementary to these energy-based scoring functions, suggesting that the combined use of conventional scoring functions and NPPD might significantly improve the accuracy of current PPD predictions.

  7. Family-based transmission disequilibrium test (TDT) and case-control association studies reveal surfactant protein A (SP-A) susceptibility alleles for respiratory distress syndrome (RDS) and possible race differences

    NARCIS (Netherlands)

    Floros, J.; Fan, R.; Matthews, A.; DiAngelo, S.; Luo, J.; Nielsen, H.; Dunn, M.; Gewolb, I. H.; Koppe, J.; Van Sonderen, L.; Farri-Kostopoulos, L.; Tzaki, M.; Rämet, M.; Merrill, J.


    A key cause of respiratory distress syndrome (RDS) in the prematurely born infant is deficiency of pulmonary surfactant, a lipoprotein complex. Both low levels of surfactant protein A (SP-A) and SP-A alleles have been associated with RDS. Using the candidate gene approach, we performed family-based

  8. The impact of surfactant protein-A on ozone-induced changes in the mouse bronchoalveolar lavage proteome

    Directory of Open Access Journals (Sweden)

    Floros Joanna


    Full Text Available Abstract Background Ozone is a major component of air pollution. Exposure to this powerful oxidizing agent can cause or exacerbate many lung conditions, especially those involving innate immunity. Surfactant protein-A (SP-A plays many roles in innate immunity by participating directly in host defense as it exerts opsonin function, or indirectly via its ability to regulate alveolar macrophages and other innate immune cells. The mechanism(s responsible for ozone-induced pathophysiology, while likely related to oxidative stress, are not well understood. Methods We employed 2-dimensional difference gel electrophoresis (2D-DIGE, a discovery proteomics approach, coupled with MALDI-ToF/ToF to compare the bronchoalveolar lavage (BAL proteomes in wild type (WT and SP-A knockout (KO mice and to assess the impact of ozone or filtered air on the expression of BAL proteins. Using the PANTHER database and the published literature most identified proteins were placed into three functional groups. Results We identified 66 proteins and focused our analysis on these proteins. Many of them fell into three categories: defense and immunity; redox regulation; and protein metabolism, modification and chaperones. In response to the oxidative stress of acute ozone exposure (2 ppm; 3 hours there were many significant changes in levels of expression of proteins in these groups. Most of the proteins in the redox group were decreased, the proteins involved in protein metabolism increased, and roughly equal numbers of increases and decreases were seen in the defense and immunity group. Responses between WT and KO mice were similar in many respects. However, the percent change was consistently greater in the KO mice and there were more changes that achieved statistical significance in the KO mice, with levels of expression in filtered air-exposed KO mice being closer to ozone-exposed WT mice than to filtered air-exposed WT mice. Conclusion We postulate that SP-A plays a role

  9. Surfactant gene polymorphisms and interstitial lung diseases

    Directory of Open Access Journals (Sweden)

    Pantelidis Panagiotis


    Full Text Available Abstract Pulmonary surfactant is a complex mixture of phospholipids and proteins, which is present in the alveolar lining fluid and is essential for normal lung function. Alterations in surfactant composition have been reported in several interstitial lung diseases (ILDs. Furthermore, a mutation in the surfactant protein C gene that results in complete absence of the protein has been shown to be associated with familial ILD. The role of surfactant in lung disease is therefore drawing increasing attention following the elucidation of the genetic basis underlying its surface expression and the proof of surfactant abnormalities in ILD.

  10. Synthesis and properties evaluation of sulfobetaine surfactant with double hydroxyl (United States)

    Zhou, Ming; Luo, Gang; Zhang, Ze; Li, Sisi; Wang, Chengwen


    A series of sulfobetaine surfactants {N-[(3-alkoxy-2-hydroxyl)propoxy] ethyl-N,N-dimethyl-N-(2-hydroxyl)propyl sulfonate} ammonium chloride were synthesized with raw materials containing linear saturated alcohol, N,N-dimethylethanolamine, sodium 3-chloro-2-hydroxyl propane sulfonic acid and epichlorohydrin. The molecule structures of sulfobetaine surfactants were characterized by FTIR, 1HNMR and elemental analysis. Surface tension measurements can provide us information about the surface tension at the CMC (γCMC), pC20, Γmax and Amin. The pC20 values of sulfobetaine surfactants increase with the hydrophobic chain length increasing. Amin values of the surfactants decrease with increasing hydrophobic chain length from 10 to 14. The critical micelle concentration (CMC) and surface tension (γCMC) values of the sulfobetaine surfactants decrease with increasing hydrophobic chain length from 10 to 16. The lipophilicity of surfactant was enhanced with the increase of the carbon chain, however, the ability of anti-hard water was weakened. The minimum oil/water interfacial tension of four kinds of sulfobetaine surfactants is 10-2-10-3 mN/m magnitude, which indicates that the synthesized bis-hydroxy sulfobetaine surfactants have a great ability to reduce interfacial tension in the surfactant flooding system. The surface tension (γCMC) values of synthesized surfactants were lower compared with conventional anionic surfactant sodium dodecyl sulfonate.

  11. Water on a Hydrophobic surface (United States)

    Scruggs, Ryan; Zhu, Mengjue; Poynor, Adele


    Hydrophobicity, meaning literally fear of water, is exhibited on the surfaces of non-stick cooking pans and water resistant clothing, on the leaves of the lotus plan, or even during the protein folding process in our bodies. Hydrophobicity is directly measured by determining a contact angle between water and an objects surface. Associated with a hydrophobic surface is the depletion layer, a low density region approximately 0.2 nm thick. We study this region by comparing data found in lab using surface plasmon resonance techniques to theoretical calculations. Experiments use gold slides coated in ODT and Mercapto solutions to model both hydrophobic and hydrophilic surfaces respectively.

  12. Maillard Conjugation of Sodium Alginate to Whey Protein for Enhanced Resistance to Surfactant-Induced Competitive Displacement from Air-Water Interfaces. (United States)

    Cai, Bingqing; Saito, Anna; Ikeda, Shinya


    Whey protein adsorbed to an interface forms a viscoelastic interfacial film but is displaced competitively from the interface by a small-molecule surfactant added afterward. The present study evaluated the impact of the covalent conjugation of high- or low-molecular-weight sodium alginate (HA or LA) to whey protein isolate (WPI) via the Maillard reaction on the ability of whey protein to resist surfactant-induced competitive displacement from the air-water interface. Surfactant added after the pre-adsorption of conjugate to the interface increased surface pressure. At a given surface pressure, the WPI-LA conjugate showed a significantly higher interfacial area coverage and lower interfacial film thickness compared to those of the WPI-HA conjugate or unconjugated WPI. The addition of LA to the aqueous phase had little effect on the interfacial area and thickness of pre-adsorbed WPI. These results suggest the importance of the molecular weight of the polysaccharide moiety in determining interfacial properties of whey protein-alginate conjugates.

  13. Adsorption of dimeric surfactants in lamellar silicates

    Energy Technology Data Exchange (ETDEWEB)

    Balcerzak, Mateusz; Pietralik, Zuzanna [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Domka, Ludwik [Department of Metalorganic Chemistry, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań (Poland); Skrzypczak, Andrzej [Institute of Chemical Technology, Poznań University of Technology, Berdychowo 4, 60-965 Poznań (Poland); Kozak, Maciej, E-mail: [Department of Macromolecular Physics, Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)


    Highlights: • The intercalation of dimeric surfactants changed the morphology of MMT samples. • XRD indicated structures formed by surfactant molecules in interlayer space. • The four-step thermal decomposition of dimeric surfactant, confirms intercalation. - Abstract: The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay – hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1′-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d{sub 001}) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH{sub 2} and CH{sub 3} groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  14. Poly(ethylene oxide) surfactant polymers




    We report on a series of structurally well-defined surfactant polymers that undergo surface-induced self-assembly on hydrophobic biomaterial surfaces. The surfactant polymers consist of a poly(vinyl amine) backbone with poly(ethylene oxide) and hexanal pendant groups. The poly(vinyl amine) (PVAm) was synthesized by hydrolysis of poly(N-vinyl formamide) following free radical polymerization of N-vinyl formamide. Hexanal and aldehyde-terminated poly (ethyleneoxide) (PEO) were simultaneously att...

  15. Human autoantibodies against Clq: lack of cross reactivity with the collectins mannan-binding protein, lung surfactant protein A and bovine conglutinin. (United States)

    Mårtensson, U; Thiel, S; Jensenius, J C; Sjöholm, A G


    The collectins, a group of humoral C-type lectins, have globular and collagen-like regions and share structural features with the complement protein C1q. The question was asked if autoantibodies to the collagen-like region of C1q (anti-C1qCLR) might cross-react with collectins, such as mannan-binding protein (MBP), lung surfactant protein A (SP-A) and bovine conglutinin (BK). Anti-C1qCLR antibodies of the systemic lupus erythematosus (SLE) type and anti-C1qCLR antibodies of the hypocomplementemic urticarial vasculitis syndrome (HUVS) type were investigated. Cross-absorption and elution experiments combined with antibody detection by enzyme-linked immunosorbent assay (ELISA) and immunoblot analysis gave no evidence of cross-reactive anti-C1qCLR antibodies. However, one serum with HUVS type anti-C1qCLR antibodies contained anti-MBP antibodies that were cross-reactive with SP-A. Judging from results of ELISA inhibition experiments and immunoblot analysis, four SLE sera contained antibodies to native BK, while two sera with HUVS type anti-C1qCLR antibodies contained antibodies to epitopes of denatured BK. This might imply that autoimmunity to collagen-like structures is not restricted to C1qCLR in HUVS and HUVS/SLE overlap syndromes.

  16. Surfactant protein D deficiencyaggravates cigarette smoke-inducedinflammation

    DEFF Research Database (Denmark)

    Pilecki, Bartosz; Johansson, Helle Wulf; Støttrup, Christian


    (Schlosser et al, 2009; Thomsen et al, 2011). FIBCD1 functions as an endocytic receptor, binding chitin and other acetylated compounds with high affinity. We hypothesize that FIBCD1 serves as a pattern recognition molecule for acetylated compounds, found in various pathogens such as helminths and fungi. We...... in an immunohistochemistry-based analysis and demonstrate that FIBCD1 protein is highly expressed at the apical surfaces of the epithelium throughout the gastrointestinal tract, in the uterus, testis, bladder, gallbladder and the salivary glands. To a lesser extent, FIBCD1 is expressed in the pancreas, the spleen...

  17. Pulmonary infections in swine induce altered porcine surfactant protein D expression and localization to dendritic cells in bronchial-associated lymphoid tissue

    DEFF Research Database (Denmark)

    Sørensen, C.M.; Holmskov, U.; Aalbæk, B.


    , the absence of macrophage marker immunoreactivity and the presence of dendritic cell marker immunoreactivity. Increased expression of pSP-D in the surfactant coincided with presence of pSP-D-positive dendritic cells in bronchus-associated lymphoid tissue (BALT), indicating a possible transport of p...... and with dendritic cells in microbial-induced BALT. The function of the interaction between pSP-D and dendritic cells in BALT remain unclear, but pSP-D could represent a link between the innate and adaptive immune system, facilitating the bacterial antigen presentation by dendritic cells in BALT.......Surfactant protein D (SP-D) is a pattern-recognition molecule of the innate immune system that recognizes various microbial surface-specific carbohydrate and lipid patterns. In vitro data has suggested that this binding may lead to increased microbial association with macrophages and dendritic...

  18. Alterations of the murine gut microbiome in allergic airway disease are independent of surfactant protein D

    DEFF Research Database (Denmark)

    Barfod, Kenneth Klingenberg; Roggenbuck, Michael; Al-Shuweli, Suzan


    Background SP-D is an important host defense lectin in innate immunity and SP-D deficient mice show several abnormal immune effects and are susceptible to allergen-induced airway disease. At the same time, host microbiome interactions play an important role in the development of allergic airway...... disease, and alterations to gut microbiota have been linked to airway disease through the gut-lung axis. Currently, it is unknown if the genotype (Sftpd-/- or Sftpd+/+) of the standard SP-D mouse model can affect the host microbiota to such an degree that it would overcome the cohousing effect...... on microbiota and interfere with the interpretation of immunological data from the model. Generally, little is known about the effect of the SP-D protein in itself and in combination with airway disease on the microbiota. In this study, we tested the hypothesis that microbiome composition would change...

  19. Enhancement of the thermostability of Hydrogenobacter thermophilus cytochrome c(552) through introduction of an extra methylene group into its hydrophobic protein interior. (United States)

    Tai, Hulin; Irie, Kiyofumi; Mikami, Shin-ichi; Yamamoto, Yasuhiko


    Careful scrutiny of the protein interior of Hydrogenobacter thermophilus cytochrome c(552) (HT) on the basis of its X-ray structure [Travaglini-Allocatelli, C., Gianni, S., Dubey, V. K., Borgia, A., Di Matteo, A., Bonivento, D., Cutruzzola, F., Bren, K. L., and Brunori, M. (2005) J. Biol. Chem. 280, 25729-25734] indicated that a void space, which is large enough to accommodate a methyl group, exists in the hydrophobic protein interior near the heme. We tried to reduce the void space through the replacement of a Val by Ile or Leu (Val/Ile or Val/Leu mutation), and then the structural and functional consequences of these two mutations were characterized in order to elucidate the relationship between the nature of the packing of hydrophobic residues and the functional properties of the protein. The study demonstrated striking differences in the structural and functional consequences between the two mutations. The Val/Ile mutation was found to cause further enhancement of the thermostability of the oxidized HT, as reflected in the increase of the denaturation temperature (T(m)) value by ∼ 3 deg, whereas the thermostability of the reduced form was essentially unaffected. As a result, the redox potential (E(m)) of the Val/Ile mutant exhibited a negative shift of ∼ 50 mV relative to that of the wild-type protein in an enthalpic manner, this being consistent with our previous finding that a protein with higher stability in its oxidized form exhibits a lower E(m) value [Terui, N., Tachiiri, N., Matsuo, H., Hasegawa, J., Uchiyama, S., Kobayashi, Y., Igarashi, Y., Sambongi, Y., and Yamamoto, Y. (2003) J. Am. Chem. Soc. 125, 13650-13651]. In contrast, the Val/Leu mutation led to a decrease in thermostability of both the redox forms of the protein, as reflected in the decreases of the T(m) values of the oxidized and reduced proteins by ∼ 3 and ∼ 5 deg, respectively, and the E(m) value of the Val/Leu mutant happened to be similar to that of the Val/Ile one. The E

  20. Tunable, antibacterial activity of silicone polyether surfactants. (United States)

    Khan, Madiha F; Zepeda-Velazquez, Laura; Brook, Michael A


    Silicone surfactants are used in a variety of applications, however, limited data is available on the relationship between surfactant structure and biological activity. A series of seven nonionic, silicone polyether surfactants with known structures was tested for in vitro antibacterial activity against Escherichia coli BL21. The compounds varied in their hydrophobic head, comprised of branched silicone structures with 3-10 siloxane linkages and, in two cases, phenyl substitution, and hydrophilic tail of 8-44 poly(ethylene glycol) units. The surfactants were tested at three concentrations: below, at, and above their Critical Micelle Concentrations (CMC) against 5 concentrations of E. coli BL21 in a three-step assay comprised of a 14-24h turbidometric screen, a live-dead stain and viable colony counts. The bacterial concentration had little effect on antibacterial activity. For most of the surfactants, antibacterial activity was higher at concentrations above the CMC. Surfactants with smaller silicone head groups had as much as 4 times the bioactivity of surfactants with larger groups, with the smallest hydrophobe exhibiting potency equivalent to sodium dodecyl sulfate (SDS). Smaller PEG chains were similarly associated with higher potency. These data link lower micelle stability and enhanced permeability of smaller silicone head groups to antibacterial activity. The results demonstrate that simple manipulation of nonionic silicone polyether structure leads to significant changes in antibacterial activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. DNA compaction by azobenzene-containing surfactant

    International Nuclear Information System (INIS)

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Santer, Svetlana; Morozova, Elena; Lysyakova, Ludmila; Kasyanenko, Nina


    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  2. Non-ionic Surfactants and Non-Catalytic Protein Treatment on Enzymatic Hydrolysis of Pretreated Creeping Wild Ryegrass (United States)

    Zheng, Yi; Pan, Zhongli; Zhang, Ruihong; Wang, Donghai; Jenkins, Bryan

    Our previous research has shown that saline Creeping Wild Ryegrass (CWR), Leymus triticoides, has a great potential to be used for bioethanol production because of its high fermentable sugar yield, up to 85% cellulose conversion of pretreated CWR. However, the high cost of enzyme is still one of the obstacles making large-scale lignocellulosic bioethanol production economically difficult. It is desirable to use reduced enzyme loading to produce fermentable sugars with high yield and low cost. To reduce the enzyme loading, the effect of addition of non-ionic surfactants and non-catalytic protein on the enzymatic hydrolysis of pretreated CWR was investigated in this study. Tween 20, Tween 80, and bovine serum albumin (BSA) were used as additives to improve the enzymatic hydrolysis of dilute sulfuric-acid-pretreated CWR. Under the loading of 0.1 g additives/g dry solid, Tween 20 was the most effective additive, followed by Tween 80 and BSA. With the addition of Tween 20 mixed with cellulase loading of 15 FPU/g cellulose, the cellulose conversion increased 14% (from 75 to 89%), which was similar to that with cellulase loading of 30 FPU/g cellulose and without additive addition. The results of cellulase and BSA adsorption on the Avicel PH101, pretreated CWR, and lignaceous residue of pretreated CWR support the theory that the primary mechanism behind the additives is prevention of non-productive adsorption of enzymes on lignaceous material of pretreated CWR. The addition of additives could be a promising technology to improve the enzymatic hydrolysis by reducing the enzyme activity loss caused by non-productive adsorption.

  3. The role of inducible nitric oxide synthase for interstitial remodeling of alveolar septa in surfactant protein D-deficient mice (United States)

    Atochina-Vasserman, Elena N.; Massa, Christopher B.; Birkelbach, Bastian; Guo, Chang-Jiang; Scott, Pamela; Haenni, Beat; Beers, Michael F.; Ochs, Matthias; Gow, Andrew J.


    Surfactant protein D (SP-D) modulates the lung's immune system. Its absence leads to NOS2-independent alveolar lipoproteinosis and NOS2-dependent chronic inflammation, which is critical for early emphysematous remodeling. With aging, SP-D knockout mice develop an additional interstitial fibrotic component. We hypothesize that this age-related interstitial septal wall remodeling is mediated by NOS2. Using invasive pulmonary function testing such as the forced oscillation technique and quasistatic pressure-volume perturbation and design-based stereology, we compared 29-wk-old SP-D knockout (Sftpd−/−) mice, SP-D/NOS2 double-knockout (DiNOS) mice, and wild-type mice (WT). Structural changes, including alveolar epithelial surface area, distribution of septal wall thickness, and volumes of septal wall components (alveolar epithelium, interstitial tissue, and endothelium) were quantified. Twenty-nine-week-old Sftpd−/− mice had preserved lung mechanics at the organ level, whereas elastance was increased in DiNOS. Airspace enlargement and loss of surface area of alveolar epithelium coexist with increased septal wall thickness in Sftpd−/− mice. These changes were reduced in DiNOS, and compared with Sftpd−/− mice a decrease in volumes of interstitial tissue and alveolar epithelium was found. To understand the effects of lung pathology on measured lung mechanics, structural data were used to inform a computational model, simulating lung mechanics as a function of airspace derecruitment, septal wall destruction (loss of surface area), and septal wall thickening. In conclusion, NOS2 mediates remodeling of septal walls, resulting in deposition of interstitial tissue in Sftpd−/−. Forward modeling linking structure and lung mechanics describes the complex mechanical properties by parenchymatous destruction (emphysema), interstitial remodeling (septal wall thickening), and altered recruitability of acinar airspaces. PMID:26320150

  4. Common genetic variants of surfactant protein-D (SP-D are associated with type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Neus Pueyo

    Full Text Available CONTEXT: Surfactant protein-D (SP-D is a primordial component of the innate immune system intrinsically linked to metabolic pathways. We aimed to study the association of single nucleotide polymorphisms (SNPs affecting SP-D with insulin resistance and type 2 diabetes (T2D. RESEARCH DESIGN AND METHODS: We evaluated a common genetic variant located in the SP-D coding region (rs721917, Met(31Thr in a sample of T2D patients and non-diabetic controls (n = 2,711. In a subset of subjects (n = 1,062, this SNP was analyzed in association with circulating SP-D concentrations, insulin resistance, and T2D. This SNP and others were also screened in the publicly available Genome Wide Association (GWA database of the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC. RESULTS: We found the significant association of rs721917 with circulating SP-D, parameters of insulin resistance and T2D. Indeed, G carriers showed decreased circulating SP-D (p = 0.004, decreased fasting glucose (p = 0.0002, glycated hemoglobin (p = 0.0005, and 33% (p = 0.002 lower prevalence of T2D, estimated under a dominant model, especially among women. Interestingly, these differences remained significant after controlling for origin, age, gender, and circulating SP-D. Moreover, this SNP and others within the SP-D genomic region (i.e. rs10887344 were significantly associated with quantitative measures of glucose homeostasis, insulin sensitivity, and T2D, according to GWAS datasets from MAGIC. CONCLUSIONS: SP-D gene polymorphisms are associated with insulin resistance and T2D. These associations are independent of circulating SP-D concentrations.

  5. A Recombinant Fragment of Human Surfactant Protein D induces Apoptosis in Pancreatic Cancer Cell Lines via Fas-Mediated Pathway. (United States)

    Kaur, Anuvinder; Riaz, Muhammad Suleman; Murugaiah, Valarmathy; Varghese, Praveen Mathews; Singh, Shiv K; Kishore, Uday


    Human surfactant protein D (SP-D) is a potent innate immune molecule, which is emerging as a key molecule in the recognition and clearance of altered and non-self targets. Previous studies have shown that a recombinant fragment of human SP-D (rfhSP-D) induced apoptosis via p53-mediated apoptosis pathway in an eosinophilic leukemic cell line, AML14.3D10. Here, we report the ability of rfhSP-D to induce apoptosis via TNF-α/Fas-mediated pathway regardless of the p53 status in human pancreatic adenocarcinoma using Panc-1 (p53 mt ), MiaPaCa-2 (p53 mt ), and Capan-2 (p53 wt ) cell lines. Treatment of these cell lines with rfhSP-D for 24 h caused growth arrest in G1 cell cycle phase and triggered transcriptional upregulation of pro-apoptotic factors such as TNF-α and NF-κB. Translocation of NF-κB from the cytoplasm into the nucleus of pancreatic cancer cell lines was observed via immunofluorescence microscopy following treatment with rfhSP-D as compared to the untreated cells. The rfhSP-D treatment caused upregulation of pro-apoptotic marker Fas, as analyzed via qPCR and western blot, which then triggered caspase cascade, as evident from cleavage of caspase 8 and 3 analyzed via western blot at 48 h. The cell number following the rfhSP-D treatment was reduced in the order of Panc-1 (~67%) > MiaPaCa-2 (~60%) > Capan-2 (~35%). This study appears to suggest that rfhSP-D can potentially be used to therapeutically target pancreatic cancer cells irrespective of their p53 phenotype.

  6. No effect of ablation of surfactant protein-D on acute cerebral infarction in mice

    DEFF Research Database (Denmark)

    Lambertsen, Kate Lykke; Østergaard, Kamilla; Clausen, Bettina Hjelm


    known to be involved in extrapulmonary modulation of inflammation in mice. We investigated whether SP-D affected cerebral ischemic infarction and ischemia-induced inflammatory responses in mice. METHODS: The effect of SP-D was studied by comparing the size of ischemic infarction and the inflammatory...... and astroglial responses in SP-D knock out (KO) and wild type (WT) mice subjected to permanent middle cerebral artery occlusion. SP-D mRNA production was assessed in isolated cerebral arteries and in the whole brain by PCR, and SP-D protein in normal appearing and ischemic human brain by immunohistochemistry......-induced increase in TNF mRNA production one day after induction of ischemia; however the TNF response to the ischemic insult was affected at five days. SP-D mRNA was not detected in parenchymal brain cells in either naïve mice or in mice subjected to focal cerebral ischemia. However, SP-D mRNA was detected...

  7. Effect of controlled human exposure to diesel exhaust and allergen on airway surfactant protein D, myeloperoxidase and club (Clara) cell secretory protein 16. (United States)

    Biagioni, B J; Tam, S; Chen, Y-W R; Sin, D D; Carlsten, C


    Air pollution is a major cause of global morbidity and mortality. Air pollution and aeroallergens aggravate respiratory illness, but the variable effects of air pollutants and allergens in the lung are poorly understood. To determine the effects of diesel exhaust (DE) and bronchial allergen challenge as single and dual exposures on aspects of innate immunity in the airway as reflected by surfactant protein D (SPD), myeloperoxidase (MPO) and club (Clara) cell secretory protein 16 (CC16) in 18 atopic individuals. In this double-blind, randomized crossover study, atopic individuals were exposed to DE or filtered air, followed by endobronchial allergen or saline 1 hour after inhalational exposure. Bronchoalveolar lavage, bronchial washings, nasal lavage and blood samples were obtained 48 hours after exposures and assayed for CC16, MPO and SPD by ELISA. In bronchial samples, the concentration of SPD increased from 53.3 to 91.8 ng/mL after endobronchial allergen, with no additional contribution from DE. MPO also increased significantly in response to allergen (6.8 to 14.7 ng/mL), and there was a small additional contribution from exposure to DE. The concentration of CC16 decreased from 340.7 to 151.0 ng/mL in response to DE, with minor contribution from allergen. These changes were not reflected in nasal lavage fluid or plasma samples. These findings suggest that allergen and DE variably influence different aspects of the innate immune response of the lung. SPD and MPO, known markers of allergic inflammation in the lung, are strongly increased by allergen while DE has a minor effect therein. DE induces a loss of CC16, a protective protein, while allergen has a minor effect therein. Results support site- and exposure-specific responses in the human lung upon multiple exposures. © 2016 John Wiley & Sons Ltd.

  8. Poly(ethylene oxide) surfactant polymers. (United States)

    Vacheethasanee, Katanchalee; Wang, Shuwu; Qiu, Yongxing; Marchant, Roger E


    We report on a series of structurally well-defined surfactant polymers that undergo surface-induced self-assembly on hydrophobic biomaterial surfaces. The surfactant polymers consist of a poly(vinyl amine) backbone with poly(ethylene oxide) and hexanal pendant groups. The poly(vinyl amine) (PVAm) was synthesized by hydrolysis of poly(N-vinyl formamide) following free radical polymerization of N-vinyl formamide. Hexanal and aldehyde-terminated poly(ethylene oxide) (PEO) were simultaneously attached to PVAm via reductive amination. Surfactant polymers with different PEO:hexanal ratios and hydrophilic/hydrophobic balances were prepared, and characterized by FT-IR, 1H-NMR and XPS spectroscopies. Surface active properties at the air/water interface were determined by surface tension measurements. Surface activity at a solid surface/water interface was demonstrated by atomic force microscopy, showing epitaxially molecular alignment for surfactant polymers adsorbed on highly oriented pyrolytic graphite. The surfactant polymers described in this report can be adapted for simple non-covalent surface modification of biomaterials and hydrophobic surfaces to provide highly hydrated interfaces.

  9. Multi-technique approach on the interaction between sugar-based surfactant n-dodecyl β-D-maltoside and bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Mohd Sajid, E-mail:; Al-Lohedan, Hamad A.


    A multi-technique approach which comprises various basic and advanced techniques, such as surface tensiometry, synchronous, intrinsic and extrinsic fluorescence, far and near-UV circular dichroism (CD), dynamic light scattering (DLS), Fourier transform infra-red (FTIR) and UV–visible spectrophotometries was applied to understand the interaction between biocompatible sugar-based surfactant n-dodecyl β-D-maltoside (C{sub 12}G{sub 2}) and bovine serum albumin (BSA). Formation of complex between surfactant and protein was initially confirmed by surface tension and UV absorption spectroscopy. The presence of BSA shifted the critical micelle concentration of the surfactant at higher concentration and in a similar way the UV spectrum of the BSA was altered by addition of small amount of surfactant. The interfacial properties of the complex such as π{sub cmc} (the surface pressure at the cmc), Γ{sub max} (the maximum surface excess) and A{sub min} (the minimum surface area per molecule) were also calculated. Addition of surfactant causes the quenching of BSA fluorescence and a large blue-shift at both excitation wavelengths (280 and 295 nm) owing to the hydrophobic interaction between surfactant and protein. The quenching took place via static mechanism. Extrinsic fluorescence of 1-anilino-8-naphthalene sulfonate (ANS) increased as a result of the unfolding of the protein. The secondary and tertiary structure of BSA also influenced as revealed by the collective information obtained by far-UV CD, near-UV CD and FTIR spectroscopies. The increase in the size of the complex as a results of the partial unfolding was also confirmed by DLS measurements as well as resonance Rayleigh scattering (RRS). - Highlights: • In the presence of BSA cmc of sugar surfactant n-dodecyl β-D-maltoside increased due to the binding of BSA with surfactant. • The binding of the surfactant leads to the partial unfolding of BSA. • The conformation of BSA predominately remains the α-helical.

  10. Status of surfactants as penetration enhancers in transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Iti Som


    Full Text Available Surfactants are found in many existing therapeutic, cosmetic, and agro-chemical preparations. In recent years, surfactants have been employed to enhance the permeation rates of several drugs via transdermal route. The application of transdermal route to a wider range of drugs is limited due to significant barrier to penetration across the skin which is associated with the outermost stratum corneum layer. Surfactants have effects on the permeability characteristics of several biological membranes including skin. They have the potential to solubilize lipids within the stratum corneum. The penetration of the surfactant molecule into the lipid lamellae of the stratum corneum is strongly dependent on the partitioning behavior and solubility of surfactant. Surfactants ranging from hydrophobic agents such as oleic acid to hydrophilic sodium lauryl sulfate have been tested as permeation enhancer to improve drug delivery. This article reviews the status of surfactants as permeation enhancer in transdermal drug delivery of various drugs.

  11. Des surfactants « verts » préparés à partir de fractions protéiques industrielles de colza

    Directory of Open Access Journals (Sweden)

    Larré Colette


    Full Text Available Edible surfactants were prepared from rapeseed meal by functionalization of two types of products: proteins or peptide fractions obtained by enzymatical hydrolysis. Functionalization aimed to enhance the amphophilic characteristics of the products by grafting hydrophobic chains\\; it was based on acylation or sulfamidation of proteins and acylation of peptides. The interfacial properties of these “green” surfactants measured by lowering the surface tension, and increasing the stability of foams and emulsions, were improved, depending on the chemical reagent used. For example, peptides modified by C1 4 acyl chlorides exhibited the better emulsifying properties, whereas the better foaming properties were obtained with peptides modified by C 10 and C 12 acyl chlorides. These surfactants could diversify the uses of rapeseed derivatives, particularly in non food industries.

  12. Interaction of the Yersinia pestis type III regulatory proteins LcrG and LcrV occurs at a hydrophobic interface

    Directory of Open Access Journals (Sweden)

    Nilles Matthew L


    Full Text Available Abstract Background Secretion of anti-host proteins by Yersinia pestis via a type III mechanism is not constitutive. The process is tightly regulated and secretion occurs only after an appropriate signal is received. The interaction of LcrG and LcrV has been demonstrated to play a pivotal role in secretion control. Previous work has shown that when LcrG is incapable of interacting with LcrV, secretion of anti-host proteins is prevented. Therefore, an understanding of how LcrG interacts with LcrV is required to evaluate how this interaction regulates the type III secretion system of Y. pestis. Additionally, information about structure-function relationships within LcrG is necessary to fully understand the role of this key regulatory protein. Results In this study we demonstrate that the N-terminus of LcrG is required for interaction with LcrV. The interaction likely occurs within a predicted amphipathic coiled-coil domain within LcrG. Our results demonstrate that the hydrophobic face of the putative helix is required for LcrV interaction. Additionally, we demonstrate that the LcrG homolog, PcrG, is incapable of blocking type III secretion in Y. pestis. A genetic selection was utilized to obtain a PcrG variant capable of blocking secretion. This PcrG variant allowed us to locate a region of LcrG involved in secretion blocking. Conclusion Our results demonstrate that LcrG interacts with LcrV via hydrophobic interactions located in the N-terminus of LcrG within a predicted coiled-coil motif. We also obtained preliminary evidence that the secretion blocking activity of LcrG is located between amino acids 39 and 53.

  13. The Molecular Era of Surfactant Biology


    Whitsett, Jeffrey A.


    Advances in the physiology, biochemistry, molecular and cell biology of the pulmonary surfactant system transformed the clinical care and outcome of preterm infants with respiratory distress syndrome. The molecular era of surfactant biology provided genetic insights into the pathogenesis of pulmonary disorders, previously termed “idiopathic” that affect newborn infants, children and adults. Knowledge related to the structure and function of the surfactant proteins and their roles in alveolar ...

  14. Effect of alkyl length of cationic surfactants on desorption of Cs from contaminated clay

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Hyun; Park, Chan Woo; Yang, Hee Man; Seo, Bum Kyoung; Lee, Kune Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, So Jin [Chungnam National University, Daejeon (Korea, Republic of)


    In this study, desorption characteristics of Cs from clay according to the hydrophobic alkyl chain length of the cationic surfactant were investigated. Alkyltrimethylammonium bromide was used as a cationic surfactant, and the length of the hydrophobic alkyl chain of the cationic surfactant was varied from –octyl to –cetyl. The adsorbed amount of the cationic surfactant on montmorillonite increased with the length of the hydrophobic alkyl chain, and intercalation of the cationic surfactant into the clay interlayer increased the interlayer distances. The Cs removal efficiency was also enhanced with increasing alkyl chain length, and the cationic surfactant with the cetyl group showed a maximum Cs removal efficiency of 99±2.9%.

  15. Foaming behaviour of polymer-surfactant solutions

    International Nuclear Information System (INIS)

    Cervantes-MartInez, Alfredo; Maldonado, Amir


    We study the effect of a non-ionic amphiphilic polymer (PEG-100 stearate also called Myrj 59) on the foaming behaviour of aqueous solutions of an anionic surfactant (sodium dodecyl sulfate or SDS). The SDS concentration was kept fixed while the Myrj 59 concentration was varied. Measurements of foamability, surface tension and electrical conductivity were carried out. The results show two opposite effects depending on the polymer concentration: foamability is higher when the Myrj 59 concentration is low; however, it decreases considerably when the polymer concentration is increased. This behaviour is due to the polymer adsorption at the air/liquid interface at lower polymer concentrations, and to the formation of a polymer-surfactant complex in the bulk at higher concentrations. The results are confirmed by surface tension and electrical conductivity measurements, which are interpreted in terms of the microstructure of the polymer-surfactant solutions. The observed behaviour is due to the amphiphilic nature of the studied polymer. The increased hydrophobicity of Myrj 59, compared to that of water-soluble polymers like PEG or PEO, increases its 'reactivity' towards SDS, i.e. the strength of its interaction with this anionic surfactant. Our results show that hydrophobically modified polymers have potential applications as additives in order to control the foaming properties of surfactant solutions

  16. Biosurfactant-enhanced bioremediation of hydrophobic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cameotra, S.S.; Makkar, R.S. [Inst. of Microbial Technology, Chandigarh (India)


    Biosurfactants are surface-active compounds synthesized by a wide variety of microorganisms. They are molecules that have both hydrophobic and - philic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures-lipopeptides, glycolipids, neutral lipids, and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. Polycyclic aromatic hydrocarbons (PAHs), crude on sludge, and pesticides call be toxic, mutagenic, and carcinogenic compounds that pollute the environment. They are released into the environment as a result of oil spillage and by-products of coal treatment processes. The low water solubility of these compounds limits their availability to microorganisms, which is a potential problem for bioremediation of contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of pollutants has potential hioremediation applications.

  17. Thermodynamics of non-ionic surfactant Triton X-100-cationic surfactants mixtures at the cloud point

    International Nuclear Information System (INIS)

    Batigoec, Cigdem; Akbas, Halide; Boz, Mesut


    Highlights: → Non-ionic surfactants are used as emulsifier and solubilizate in such as textile, detergent and cosmetic. → Non-ionic surfactants occur phase separation at temperature as named the cloud point in solution. → Dimeric surfactants have attracted increasing attention due to their superior surface activity. → The positive values of ΔG cp 0 indicate that the process proceeds nonspontaneous. - Abstract: This study investigates the effects of gemini and conventional cationic surfactants on the cloud point (CP) of the non-ionic surfactant Triton X-100 (TX-100) in aqueous solutions. Instead of visual observation, a spectrophotometer was used for measurement of the cloud point temperatures. The thermodynamic parameters of these mixtures were calculated at different cationic surfactant concentrations. The gemini surfactants of the alkanediyl-α-ω-bis (alkyldimethylammonium) dibromide type, on the one hand, with different alkyl groups containing m carbon atoms and an ethanediyl spacer, referred to as 'm-2-m' (m = 10, 12, and 16) and, on the other hand, with -C 16 alkyl groups and different spacers containing s carbon atoms, referred to as '16-s-16' (s = 6 and 10) were synthesized, purified and characterized. Additions of the cationic surfactants to the TX-100 solution increased the cloud point temperature of the TX-100 solution. It was accepted that the solubility of non-ionic surfactant containing polyoxyethylene (POE) hydrophilic chain was a maximum at the cloud point so that the thermodynamic parameters were calculated at this temperature. The results showed that the standard Gibbs free energy (ΔG cp 0 ), the enthalpy (ΔH cp 0 ) and the entropy (ΔS cp 0 ) of the clouding phenomenon were found positive in all cases. The standard free energy (ΔG cp 0 ) increased with increasing hydrophobic alkyl chain for both gemini and conventional cationic surfactants; however, it decreased with increasing surfactant concentration.

  18. Influence of surfactants in forced dynamic dewetting. (United States)

    Henrich, Franziska; Fell, Daniela; Truszkowska, Dorota; Weirich, Marcel; Anyfantakis, Manos; Nguyen, Thi-Huong; Wagner, Manfred; Auernhammer, Günter K; Butt, Hans-Jürgen


    In this work we show that the forced dynamic dewetting of surfactant solutions depends sensitively on the surfactant concentration. To measure this effect, a hydrophobic rotating cylinder was horizontally half immersed in aqueous surfactant solutions. Dynamic contact angles were measured optically by extrapolating the contour of the meniscus to the contact line. Anionic (sodium 1-decanesulfonate, S-1DeS), cationic (cetyl trimethylammonium bromide, CTAB) and nonionic surfactants (C 4 E 1 , C 8 E 3 and C 12 E 5 ) with critical micelle concentrations (CMCs) spanning four orders of magnitude were used. The receding contact angle in water decreased with increasing velocity. This decrease was strongly enhanced when adding surfactant, even at surfactant concentrations of 10% of the critical micelle concentration. Plots of the receding contact angle-versus-velocity almost superimpose when being plotted at the same relative concentration (concentration/CMC). Thus the rescaled concentration is the dominating property for dynamic dewetting. The charge of the surfactants did not play a role, thus excluding electrostatic effects. The change in contact angle can be interpreted by local surface tension gradients, i.e. Marangoni stresses, close to the three-phase contact line. The decrease of dynamic contact angles with velocity follows two regimes. Despite the existence of Marangoni stresses close to the contact line, for a dewetting velocity above 1-10 mm s -1 the hydrodynamic theory is able to describe the experimental results for all surfactant concentrations. At slower velocities an additional steep decrease of the contact angle with velocity was observed. Particle tracking velocimetry showed that the flow profiles do not differ with and without surfactant on a scales >100 μm.

  19. Lung surfactant microbubbles increase lipophilic drug payload for ultrasound-targeted delivery. (United States)

    Sirsi, Shashank R; Fung, Chinpong; Garg, Sumit; Tianning, Mary Y; Mountford, Paul A; Borden, Mark A


    The cavitation response of circulating microbubbles to targeted ultrasound can be used for noninvasive, site-specific delivery of shell-loaded materials. One challenge for microbubble-mediated delivery of lipophilic compounds is the limitation of drug loading into the microbubble shell, which is commonly a single phospholipid monolayer. In this study, we investigated the use of natural lung surfactant extract (Survanta(®), Abbott Nutrition) as a microbubble shell material in order to improve drug payload and delivery. Pulmonary surfactant extracts such as Survanta contain hydrophobic surfactant proteins (SP-B and SP-C) that facilitate lipid folding and retention on lipid monolayers. Here, we show that Survanta-based microbubbles exhibit wrinkles in bright-field microscopy and increased lipid retention on the microbubble surface in the form of surface-associated aggregates observed with fluorescence microscopy. The payload of a model lipophilic drug (DiO), measured by flow cytometry, increased by over 2-fold compared to lipid-coated microbubbles lacking SP-B and SP-C. Lung surfactant microbubbles were highly echogenic to contrast enhanced ultrasound imaging at low acoustic intensities. At higher ultrasound intensity, excess lipid was observed to be acoustically cleaved for localized release. To demonstrate targeting, a biotinylated lipopolymer was incorporated into the shell, and the microbubbles were subjected to a sequence of radiation force and fragmentation pulses as they passed through an avidinated hollow fiber. Lung surfactant microbubbles showed a 3-fold increase in targeted deposition of the model fluorescent drug compared to lipid-only microbubbles. Our results demonstrate that lung surfactant microbubbles maintain the acoustic responsiveness of lipid-coated microbubbles with the added benefit of increased lipophilic drug payload.

  20. Circadian rhythm and the influence of physical activity on circulating surfactant protein D in early and long-standing rheumatoid arthritis

    DEFF Research Database (Denmark)

    Christensen, A F; Hoegh, S V; Lottenburger, T


    Surfactant protein D (SP-D) belongs to the collectin family and has pro-and anti-inflammatory capacities depending on its oligomerization. Previously, circulating SP-D was shown to be decreased in early rheumatoid arthritis (RA) and negatively correlated to disease activity. This study aimed...... at assessing the diurnal rhythmicity and the influence of physical activity on circulating SP-D in patients with RA at different stages compared with healthy individuals. Patients with early RA (ERA) with disease duration ... in two sub-studies. Healthy individuals served as controls. Diurnal variation: blood samples were collected every 3 h from 7 a.m to 10 p.m and the following morning. Physical activity: blood sampling was done before and after standardized physical challenge. SP-D was measured by ELISA. SP-D exhibited...


    Directory of Open Access Journals (Sweden)

    Ismael C. Bellettini


    Full Text Available Three polymer-surfactant systems comprised of branched polyethylene imine (PEI with an anionic surfactant (sodium dodecylsulfate; SDS, a cationic surfactant (tetradecyltrimethylammonium bromide; TTAB, and a zwitterionic surfactant (N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate; SB3-14 were studied based on the properties of surface tension, pyrene fluorescence emission, dynamic light scattering, pH, and zeta potential measurements. The critical aggregation concentration (cac and polymer saturation point (psp were determined for all three systems. The effect of these surfactants on the physico-chemical characteristics (diameter and surface charge of the complexes formed was determined. Polymer-surfactant interactions occurred in all of the systems studied, with the strongest interactions, electrostatic in nature, occurring in the SDS-PEI system. After the neutralization of the polymer charges with the addition of the surfactant, the hydrophobic effect started to control the interlacing of the polymer chains. For the PEI-TTAB system, a very dense film was formed at surfactant concentrations above 2.0 mmol L-1. In this case, the bromide counter-ion interacted with both the positively-charged PEI and the head of the surfactant, which is responsible for the formation of double layer coordination complexes. For the system composed of PEI and the zwitterionic surfactant, less cooperative associations occurred in comparison with the other systems.

  2. Performance improvement of ionic surfactant flooding in carbonate rock samples by use of nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Ahmadi


    Full Text Available Abstract Various surfactants have been used in upstream petroleum processes like chemical flooding. Ultimately, the performance of these surfactants depends on their ability to reduce the interfacial tension between oil and water. The surfactant concentration in the aqueous solution decreases owing to the loss of the surfactant on the rock surface in the injection process. The main objective of this paper is to inhibit the surfactant loss by means of adding nanoparticles. Sodium dodecyl sulfate and silica nanoparticles were used as ionic surfactant and nanoparticles in our experiments, respectively. AEROSIL® 816 and AEROSIL® 200 are hydrophobic and hydrophilic nanoparticles. To determine the adsorption loss of the surfactant onto rock samples, a conductivity approach was used. Real carbonate rock samples were used as the solid phase in adsorption experiments. It should be noted that the rock samples were water wet. This paper describes how equilibrium adsorption was investigated by examining adsorption behavior in a system of carbonate sample (solid phase and surfactant solution (aqueous phase. The initial surfactant and nanoparticle concentrations were 500–5000 and 500–2000 ppm, respectively. The rate of surfactant losses was extremely dependent on the concentration of the surfactant in the system, and the adsorption of the surfactant decreased with an increase in the nanoparticle concentration. Also, the hydrophilic nanoparticles are more effective than the hydrophobic nanoparticles.

  3. Effects of hydrophobic helix length and side chain chemistry on biomimicry in peptoid analogues of SP-C. (United States)

    Brown, Nathan J; Wu, Cindy W; Seurynck-Servoss, Shannon L; Barron, Annelise E


    The hydrophobic proteins of lung surfactant (LS), SP-B and SP-C, are critical constituents of an effective surfactant replacement therapy for the treatment of respiratory distress syndrome. Because of concerns and difficulties associated with animal-derived surfactants, recent investigations have focused on the creation of synthetic analogues of the LS proteins. However, creating an accurate mimic of SP-C that retains its biophysical surface activity is extraordinarily challenging given the lipopeptide's extreme hydrophobicity and propensity to misfold and aggregate. One successful approach that overcomes these difficulties is the use of poly-N-substituted glycines, or peptoids, to mimic SP-C. To develop a non-natural, bioactive mimic of SP-C and to investigate the effects of side chain chemistry and length of the helical hydrophobic region, we synthesized, purified, and performed in vitro testing of two classes of peptoid SP-C mimics: those having a rigid alpha-chiral aromatic helix and those having a biomimetic alpha-chiral aliphatic helix. The length of the two classes of mimics was also systematically altered. Circular dichroism spectroscopy gave evidence that all of the peptoid-based mimics studied here emulated SP-C's secondary structure, forming stable helical structures in solution. Langmuir-Wilhelmy surface balance, fluorescence microscopy, and pulsating bubble surfactometry experiments provide evidence that the aromatic-based SP-C peptoid mimics, in conjunction with a synthetic lipid mixture, have superior surface activity and biomimetic film morphology in comparison to the aliphatic-based mimics and that there is an increase in surface activity corresponding to increasing helical length.

  4. Study of interactions between hyaluronan and cationic surfactants by means of calorimetry, turbidimetry, potentiometry and conductometry. (United States)

    Krouská, J; Pekař, M; Klučáková, M; Šarac, B; Bešter-Rogač, M


    The thermodynamics of the micelle formation of the cationic surfactants tetradecyltrimethylammonium bromide (TTAB) and cetyltrimethylammonium bromide (CTAB) with and without the addition of hyaluronan of two molecular weights was studied in aqueous solution by titration calorimetry. Macroscopic phase separation, which was detected by calorimetry and also by conductometry, occurs when charges on the surfactant and hyaluronan are balanced. In contrast, turbidimetry and potentiometry showed hyaluronan-surfactant interactions at very low surfactant concentrations. The observed differences between systems prepared with CTAB and TTAB indicate that besides the electrostatic interactions, which probably predominate, hydrophobic effects also play a significant role in hyaluronan interactions with cationic surfactants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Role of surfactant protein-A (SP-A) in lung injury in response to acute ozone exposure of SP-A deficient mice

    International Nuclear Information System (INIS)

    Haque, Rizwanul; Umstead, Todd M.; Ponnuru, Padmavathi; Guo Xiaoxuan; Hawgood, Samuel; Phelps, David S.; Floros, Joanna


    Millions are exposed to ozone levels above recommended limits, impairing lung function, causing epithelial damage and inflammation, and predisposing some individuals to pneumonia, asthma, and other lung conditions. Surfactant protein-A (SP-A) plays a role in host defense, the regulation of inflammation, and repair of tissue damage. We tested the hypothesis that the lungs of SP-A(-/-) (KO) mice are more susceptible to ozone-induced damage. We compared the effects of ozone on KO and wild type (WT) mice on the C57BL/6 genetic background by exposing them to 2 parts/million of ozone for 3 or 6 h and sacrificing them 0, 4, and 24 h later. Lungs were subject to bronchoalveolar lavage (BAL) or used to measure endpoints of oxidative stress and inflammation. Despite more total protein in BAL of KO mice after a 3 h ozone exposure, WT mice had increased oxidation of protein and had oxidized SP-A dimers. In KO mice there was epithelial damage as assessed by increased LDH activity and there was increased phospholipid content. In WT mice there were more BAL PMNs and elevated macrophage inflammatory protein (MIP)-2 and monocyte chemoattractant protein (MCP)-1. Changes in MIP-2 and MCP-1 were observed in both KO and WT, however mRNA levels differed. In KO mice MIP-2 mRNA levels changed little with ozone, but in WT levels they were significantly increased. In summary, several aspects of the inflammatory response differ between WT and KO mice. These in vivo findings appear to implicate SP-A in regulating inflammation and limiting epithelial damage in response to ozone exposure

  6. Behavior of solvent-exposed hydrophobic groove in the anti-apoptotic Bcl-XL protein: clues for its ability to bind diverse BH3 ligands from MD simulations.

    Directory of Open Access Journals (Sweden)

    Dilraj Lama

    Full Text Available Bcl-XL is a member of Bcl-2 family of proteins involved in the regulation of intrinsic pathway of apoptosis. Its overexpression in many human cancers makes it an important target for anti-cancer drugs. Bcl-XL interacts with the BH3 domain of several pro-apoptotic Bcl-2 partners. This helical bundle protein has a pronounced hydrophobic groove which acts as a binding region for the BH3 domains. Eight independent molecular dynamics simulations of the apo/holo forms of Bcl-XL were carried out to investigate the behavior of solvent-exposed hydrophobic groove. The simulations used either a twin-range cut-off or particle mesh Ewald (PME scheme to treat long-range interactions. Destabilization of the BH3 domain-containing helix H2 was observed in all four twin-range cut-off simulations. Most of the other major helices remained stable. The unwinding of H2 can be related to the ability of Bcl-XL to bind diverse BH3 ligands. The loss of helical character can also be linked to the formation of homo- or hetero-dimers in Bcl-2 proteins. Several experimental studies have suggested that exposure of BH3 domain is a crucial event before they form dimers. Thus unwinding of H2 seems to be functionally very important. The four PME simulations, however, revealed a stable helix H2. It is possible that the H2 unfolding might occur in PME simulations at longer time scales. Hydrophobic residues in the hydrophobic groove are involved in stable interactions among themselves. The solvent accessible surface areas of bulky hydrophobic residues in the groove are significantly buried by the loop LB connecting the helix H2 and subsequent helix. These observations help to understand how the hydrophobic patch in Bcl-XL remains stable in the solvent-exposed state. We suggest that both the destabilization of helix H2 and the conformational heterogeneity of loop LB are important factors for binding of diverse ligands in the hydrophobic groove of Bcl-XL.

  7. High- and low-molecular-mass microbial surfactants. (United States)

    Rosenberg, E; Ron, E Z


    Microorganisms synthesize a wide variety of high- and low-molecular-mass bioemulsifiers. The low-molecular-mass bioemulsifiers are generally glycolipids, such as trehalose lipids, sophorolipids and rhamnolipids, or lipopeptides, such as surfactin, gramicidin S and polymyxin. The high-molecular-mass bioemulsifiers are amphipathic polysaccharides, proteins, lipopolysaccharides, lipoproteins or complex mixtures of these biopolymers. The low-molecular-mass bioemulsifiers lower surface and interfacial tensions, whereas the higher-molecular-mass bioemulsifiers are more effective at stabilizing oil-in-water emulsions. Three natural roles for bioemulsifiers have been proposed: (i) increasing the surface area of hydrophobic water-insoluble growth substrates; (ii) increasing the bioavailability of hydrophobic substrates by increasing their apparent solubility or desorbing them from surfaces; (iii) regulating the attachment and detachment of microorganisms to and from surfaces. Bioemulsifiers have several important advantages over chemical surfactants, which should allow them to become prominent in industrial and environmental applications. The potential commercial applications of bioemulsifiers include bioremediation of oil-polluted soil and water, enhanced oil recovery, replacement of chlorinated solvents used in cleaning-up oil-contaminated pipes, vessels and machinery, use in the detergent industry, formulations of herbicides and pesticides and formation of stable oil-in-water emulsions for the food and cosmetic industries.

  8. Aggregation and conformational stability evaluation of myoglobin in the presence of ionic surfactant

    Directory of Open Access Journals (Sweden)

    Mohammad A. Alsenaidy


    Full Text Available Sodium lauroyl sarcosinate (SLS is frequently used for the solubilization of inclusion bodies in vitro due to its structural similarity to lipid plasma membrane. There are many factors that could influence protein aggregation propensity, including overall protein surface charge and hydrophobicity. Here, the aggregation pathway of myoglobin protein was studied under different conditions (pH 3.5 and 7.4 in the presence of varying concentrations of SLS to evaluate the underlying forces dictating protein aggregation. Data obtained from Rayleigh light scattering, ThT binding assay, and far-UV CD indicated that SLS have different effects on the protein depending on its concentration and environmental conditions. In the presence of low concentrations of SLS (0.05–0.1 mM, no aggregation was detected at both pH conditions tested. Whereas, as we reach higher SLS concentrations (0.5–10.0 mM, myoglobin started forming larger-sized aggregates at pH 3.5 and not pH 7.4. These results suggest that electrostatics interactions as well as hydrophobic forces play an important role in SLS-induced myoglobin aggregation. Keywords: Sodium lauroyl sarcosinate, Surfactant, Myoglobin, Protein aggregation, Amorphous aggregates, pH

  9. Changes in blood monocyte Toll-like receptor and serum surfactant protein A reveal a pathophysiological mechanism for community-acquired pneumonia in patients with type 2 diabetes. (United States)

    Que, Y; Shen, X


    The lung is one of the target organs of microangiopathy in diabetes mellitus (DM); patients with type 2 diabetes mellitus (T2DM) are vulnerable to pneumonia, and a variety of pathophysiological mechanisms has been described. This study aimed to determine the pathophysiological mechanism of community-acquired pneumonia (CAP) in T2DM patients. A total of 90 individuals was included in this study comprised of three groups (n = 30): healthy control, T2DM and T2DM+ CAP groups. Toll-like receptor (TLR)2 and 4 protein and messenger RNA expression in peripheral blood monocytes(PBMC) was assessed by western blot and reverse transcription-polymerase chain reaction, respectively, and surfactant protein A (SP-A) levels were examined in serum samples by enzyme-linked immunosorbent assay. In T2DM and T2DM+CAP groups, levels of both TLR2/4 protein and mRNA in PBMC were decreased compared with controls (P <0.05), with lower levels observed in the T2DM+CAP group in comparison with T2DM patients (P <0.05). The serum SP-A levels in T2DM+CAP individuals were significantly higher than the values obtained for T2DM patients (P <0.05). It also showed apparent increases when compared with that in controls although no statistical significance was detected. In T2DM patients with pneumonia, TLR2/4 levels in PBMC and serum SP-A were altered, maybe playing an important role in the susceptibility to pneumonia in T2DM patients. © 2016 Royal Australasian College of Physicians.

  10. Hydrophobic cluster analysis of G protein-coupled receptors: a powerful tool to derive structural and functional information from 2D-representation of protein sequences

    NARCIS (Netherlands)

    Lentes, K.U.; Mathieu, E.; Bischoff, Rainer; Rasmussen, U.B.; Pavirani, A.


    Current methods for comparative analyses of protein sequences are 1D-alignments of amino acid sequences based on the maximization of amino acid identity (homology) and the prediction of secondary structure elements. This method has a major drawback once the amino acid identity drops below 20-25%,

  11. Effect of Gemini-type surfactant on methane hydrate formation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K.E.; Park, J.M.; Kim, C.U.; Chae, H.J.; Jeong, S.Y. [Korea Research Inst. of Chemical Technology, Jang-Dong, Yuseong-Gu, Daejeon (Korea, Republic of)


    Natural gas hydrates are formed from water and natural gas molecules at particular temperatures and pressures that become ice-like inclusion compounds. Gas hydrates offer several benefits such as energy resource potential and high storage capacity of natural gas in the form of hydrates. However, the application of natural gas hydrates has been deterred by its low formation rate and low conversion ratio of water into hydrate resulting in low actual storage capacity. This paper presented an experimental study to determine the effect of adding a novel Gemini-type surfactant on methane hydrate formation. The experimental study was described with reference to the properties of prepared diols and properties of prepared disulfonates. Gemini surfactant is the family of surfactant molecules possessing more than one hydrophobic tail and hydrophilic head group. They generally have better surface-active properties than conventional surfactants of equal chain length. The paper presented the results of the study in terms of the reactions of diols with propane sultone; storage capacity of hydrate formed with and without surfactant; and methane hydrate formation with and without disulfonate. It was concluded that the methane hydrate formation was accelerated by the addition of novel anionic Gemini-type surfactants and that hydrate formation was influenced by the surfactant concentration and alkyl chain length. For a given concentration, the surfactant with the highest chain length demonstrated the highest formation rate and storage capacity. 5 refs., 3 tabs., 4 figs.

  12. Comparative study of the effects of PM1-induced oxidative stress on autophagy and surfactant protein B and C expressions in lung alveolar type II epithelial MLE-12 cells. (United States)

    Bai, Ru; Guan, Longfei; Zhang, Wei; Xu, Jinxia; Rui, Wei; Zhang, Fang; Ding, Wenjun


    There is a strong link between smaller air pollution particles and a range of serious health conditions. Thus, there is a need for understanding the impacts of airborne fine particulate matter (PM) with an aerodynamic diameter of PM1) on lung alveolar epithelial cells. In the present study, mouse lung epithelial type II cell MLE-12 cells were used to examine the intracellular oxidative responses and the surfactant protein expressions after exposure to various concentrations of PM1 collected from an urban site and a steel-factory site (referred as uPM1 and sPM1 hereafter, respectively). Physicochemical characterization of PM1 was performed by using scanning electron microscopy and transmission electron microscopy. Cytotoxicity and autophagy induced by PM1 were assessed by using comprehensive approaches after MLE-12 cells were exposed to different concentrations of PM1 for various times. Expression of surfactant proteins B and C in MLE-12 cells was determined by Western blotting. All of the tested PM1 induced cytotoxicity evidenced by significant decrease of cell viability and increase of lactate dehydrogenase (LDH) release in a time- and concentration-dependent manner in the exposed cells compared with the unexposed cells. A similar pattern of increase of intercellular reactive oxygen species (ROS) generation and decrease of superoxide dismutase (SOD) and catalase (CAT) activities was also observed. PM1-induced autophagy was evidenced by an increase in microtubule-associated protein light chain-3 (LC3) puncta, accumulation of LC3II, and increased levels of beclin1. Data from Western blotting showed significant decrease of surfactant protein B and C expressions. Relatively high concentrations of transition metals, including Fe, Cu and Mn, may be responsible for the higher toxicity of sPM1 compared with uPM1. Moreover, pretreatment with N-acetylcysteine (NAC) or Chelex (a metal chelating agent, which removes a large suite of metals from PM1) prevented the increase of

  13. A new automated technique for the reconstitution of hydrophobic proteins into planar bilayer membranes. Studies of human recombinant uncoupling protein 1

    Czech Academy of Sciences Publication Activity Database

    Beck, V.; Jabůrek, Martin; Breen, E. P.; Porter, R. K.; Ježek, Petr; Pohl, E. E.


    Roč. 1757, č. 5-6 (2006), s. 474-479 ISSN 0005-2728 R&D Projects: GA AV ČR(CZ) IAA5011106; GA MŠk(CZ) 1P05ME794 Grant - others:Deutsche Forschungsgemeinschaft(DE) Po-524/2-2; Deutsche Forschungsgemeinschaft(DE) 436 TSE 113/44/0-1 Institutional research plan: CEZ:AV0Z50110509 Keywords : artificial membranes * uncoupling protein-1 Subject RIV: BO - Biophysics Impact factor: 4.237, year: 2006

  14. Using temperature-responsive zwitterionic surfactant to enhance the enzymatic hydrolysis of lignocelluloses and recover cellulase by cooling. (United States)

    Cai, Cheng; Pang, Yuxia; Zhan, Xuejuan; Zeng, Meijun; Lou, Hongming; Qian, Yong; Yang, Dongjie; Qiu, Xueqing


    Some zwitterionic surfactants exhibit upper critical solution temperature (UCST) in aqueous solutions. For the zwitterionic surfactant solution mixed with cellulase, when its temperature is below UCST, the cellulase can be recovered by coprecipitation with zwitterionic surfactant. In this work, 3-(Hexadecyldimethylammonio) propanesulfonate (SB3-16) was selected to enhance the enzymatic hydrolysis of lignocelluloses and recover the cellulase. After adding 2mmol/L of SB3-16, the enzymatic digestibility of eucalyptus pretreated by dilute acid (Eu-DA) and by sulfite (Eu-SPORL) increased from 27.9% and 35.1% to 72.6% and 89.7%, respectively. The results showed that SB3-16 could reduce the non-productive adsorption of cellulase on hydrophobic interface, while it did not significantly inhibit the activity of cellulase. For the solution contained 1wt% SB3-16 and 200mg protein/L CTec2 cellulase, 55.2% of protein could be recovered by cooling. The filter paper activity of the recovered cellulase was 1.93FPU/mg protein, which was 95.8% of its initial activity. Copyright © 2017. Published by Elsevier Ltd.

  15. Superficial disposition of the N-terminal region of the surfactant protein SP-C and the absence of specific SP-B-SP-C interactions in phospholipid bilayers

    DEFF Research Database (Denmark)

    Plasencia, I; Cruz, A; Casals, C


    . The fluorescence emission spectrum of Dns-SP-C in phospholipid bilayers is similar to the spectrum of dansyl-phosphatidylethanolamine, and indicates that the N-terminal end of the protein is located at the surface of the membranes and is exposed to the aqueous environment. In membranes containing...... phosphatidylglycerol (PG), the fluorescence of Dns-SP-C shows a 3-fold increase with respect to the fluorescence of phosphatidylcholine (PC), suggesting that electrostatic lipid-protein interactions induce important effects on the structure and disposition of the N-terminal segment of the protein in these membranes...... of the N-terminal segment of the protein into less polar environments that originate during protein lateral segregation. This suggests that conformation and interactions of the N-terminal segment of SP-C could be important in regulating the lateral distribution of the protein in surfactant bilayers...

  16. SP-A-enriched surfactant for treatment of rat lung transplants with SP-A deficiency after storage and reperfusion

    NARCIS (Netherlands)

    Erasmus, ME; Hofstede, GJH; Petersen, AH; Batenburg, JJ; Haagsman, HP; Oetomo, SB; Prop, J


    Background. The function of pulmonary surfactant is affected by lung transplantation, contributing to impaired lung transplant function. A decreased amount of surfactant protein-A (SP-A) after reperfusion is believed to contribute to the impaired surfactant function. Surfactant treatment has been

  17. Surfactants in tribology

    CERN Document Server

    Biresaw, Girma


    Surface science and tribology play very critical roles in many industries. Manufacture and use of almost all consumer and industrial products rely on the application of advanced surface and tribological knowledge. The fourth in a series, Surfactants in Tribology, Volume 4 provides an update on research and development activities connecting surfactants and tribological phenomena. Written by renowned subject matter experts, the book demonstrates how improved design of surfactants can be harnessed to control tribological phenomena. Profusely illustrated and copiously referenced, the chapters also

  18. Probing dynamics and mechanism of exchange process of quaternary ammonium dimeric surfactants, 14-s-14, in the presence of conventional surfactants. (United States)

    Liu, Jun; Jiang, Yan; Chen, Hong; Mao, Shi Zhen; Du, You Ru; Liu, Mai Li


    In this Article, we investigated effects of different types of conventional surfactants on exchange dynamics of quaternary ammonium dimeric surfactants, with chemical formula C(14)H(29)N(+)(CH(3))(2)- (CH(2))(s)-N(+)(CH(3))(2)C(14)H(29)·2Br(-), or 14-s-14 for short. Two nonionic surfactants, TritonX-100 (TX-100) and polyethylene glycol (23) laurylether (Brij-35), and one cationic surfactant, n-tetradecyltrimethyl ammonium bromide (TTAB), and one ionic surfactant, sodium dodecyl sulfate (SDS) were chosen as typical conventional surfactants. Exchange rates of 14-s-14 (s = 2, 3, and 4) between the micelle form and monomer in solution were detected by two NMR methods: one-dimensional (1D) line shape analysis and two-dimensional (2D) exchange spectroscopy (EXSY). Results show that the nonionic surfactants (TX-100 and Brij-35), the cationic surfactant (TTAB), and the ionic surfactant (SDS) respectively accelerated, barely influenced, and slowed the exchange rate of 14-s-14. The effect mechanism was investigated by the self-diffusion experiment, relaxation time measurements (T(2)/T(1)), the fluorescence experiment (I(1)/I(3)) and observed chemical shift variations. Results reveal that, nonionic conventional surfactants (TX-100 and Brij-35) loosened the molecule arrangement and decreased hydrophobic interactions in the micelle, and thus accelerated the exchange rate of 14-s-14. The cationic conventional surfactant (TTAB) barely changed the molecule arrangement and thus barely influenced the exchange rate of 14-s-14. The ionic conventional surfactant (SDS) introduced the electrostatic attraction effect, tightened the molecule arrangement, and increased hydrophobic interactions in the micelle, and thus slowed down the exchange rate of 14-s-14. Additionally, the two-step exchange mechanism of 14-s-14 in the mixed solution was revealed through interesting variation tendencies of exchange rates of 14-s-14.

  19. Human surfactant protein D alters oxidative stress and HMGA1 expression to induce p53 apoptotic pathway in eosinophil leukemic cell line.

    Directory of Open Access Journals (Sweden)

    Lakshna Mahajan

    Full Text Available Surfactant protein D (SP-D, an innate immune molecule, has an indispensable role in host defense and regulation of inflammation. Immune related functions regulated by SP-D include agglutination of pathogens, phagocytosis, oxidative burst, antigen presentation, T lymphocyte proliferation, cytokine secretion, induction of apoptosis and clearance of apoptotic cells. The present study unravels a novel ability of SP-D to reduce the viability of leukemic cells (eosinophilic leukemic cell line, AML14.3D10; acute myeloid leukemia cell line, THP-1; acute lymphoid leukemia cell lines, Jurkat, Raji; and human breast epithelial cell line, MCF-7, and explains the underlying mechanisms. SP-D and a recombinant fragment of human SP-D (rhSP-D induced G2/M phase cell cycle arrest, and dose and time-dependent apoptosis in the AML14.3D10 eosinophilic leukemia cell line. Levels of various apoptotic markers viz. activated p53, cleaved caspase-9 and PARP, along with G2/M checkpoints (p21 and Tyr15 phosphorylation of cdc2 showed significant increase in these cells. We further attempted to elucidate the underlying mechanisms of rhSP-D induced apoptosis using proteomic analysis. This approach identified large scale molecular changes initiated by SP-D in a human cell for the first time. Among others, the proteomics analysis highlighted a decreased expression of survival related proteins such as HMGA1, overexpression of proteins to protect the cells from oxidative burst, while a drastic decrease in mitochondrial antioxidant defense system. rhSP-D mediated enhanced oxidative burst in AML14.3D10 cells was confirmed, while antioxidant, N-acetyl-L-cysteine, abrogated the rhSP-D induced apoptosis. The rhSP-D mediated reduced viability was specific to the cancer cell lines and viability of human PBMCs from healthy controls was not affected. The study suggests involvement of SP-D in host's immunosurveillance and therapeutic potential of rhSP-D in the eosinophilic leukemia and

  20. Surfactant-aided size exclusion chromatography

    NARCIS (Netherlands)

    Horneman, D.A.; Wolbers, M.; Zomerdijk, M.; Ottens, M.; Keurentjes, J.T.F.; Wielen, van der L.A.M.


    The flexibility and selectivity of size exclusion chromatog. (SEC) for protein purifn. can be modified by adding non-ionic micelle-forming surfactants to the mobile phase. The micelles exclude proteins from a liq. phase similar to the exclusion effect of the polymer fibers of the size exclusion

  1. Can Serum Surfactant Protein D or CC-Chemokine Ligand 18 Predict Outcome of Interstitial Lung Disease in Patients with Early Systemic Sclerosis? (United States)

    Elhaj, Mona; Charles, Julio; Pedroza, Claudia; Liu, Xiaochun; Zhou, Xiaodong; Estrada-Y-Martin, Rosa M.; Gonzalez, Emilio B.; Lewis, Dorothy E.; Draeger, Hilda T.; Kim, Sarah; Arnett, Frank C.; Mayes, Maureen D.; Assassi, Shervin


    Objective To examine the predictive significance of 2 pneumoproteins, surfactant protein D (SP-D) and CC-chemokine ligand 18 (CCL18), for the course of systemic sclerosis (SSc)-related interstitial lung disease. Methods The pneumoproteins were determined in the baseline plasma samples of 266 patients with early SSc enrolled in the GENISOS observational cohort. They also were measured in 83 followup patient samples. Pulmonary function tests were obtained annually. The primary outcome was decline in forced vital capacity (FVC percentage predicted) over time. The predictive significance for longterm change in FVC was investigated by a joint analysis of longitudinal measurements (sequentially obtained FVC percentage predicted) and survival data. Results SP-D and CCL18 levels were both higher in patients with SSc than in matched controls (p < 0.001 and p = 0.015, respectively). Baseline SP-D levels correlated with lower concomitantly obtained FVC (r = −0.27, p < 0.001), but did not predict the short-term decline in FVC at 1 year followup visit or its longterm decline rate. CCL18 showed a significant correlation with steeper short-term decline in FVC (p = 0.049), but was not a predictor of its longterm decline rate. Similarly, a composite score of SP-D and CCL18 was a significant predictor of short-term decline in FVC but did not predict its longterm decline rate. Further, the longitudinal change in these 2 pneumoproteins did not correlate with the concomitant percentage change in FVC. Conclusion SP-D correlated with concomitantly obtained FVC, while CCL18 was a predictor of short-term decline in FVC. However, neither SP-D nor CCL18 was a longterm predictor of FVC course in patients with early SSc. PMID:23588945

  2. Phactr3/scapinin, a member of protein phosphatase 1 and actin regulator (phactr family, interacts with the plasma membrane via basic and hydrophobic residues in the N-terminus.

    Directory of Open Access Journals (Sweden)

    Akihiro Itoh

    Full Text Available Proteins that belong to the protein phosphatase 1 and actin regulator (phactr family are involved in cell motility and morphogenesis. However, the mechanisms that regulate the actin cytoskeleton are poorly understood. We have previously shown that phactr3, also known as scapinin, localizes to the plasma membrane, including lamellipodia and membrane ruffles. In the present study, experiments using deletion and point mutants showed that the basic and hydrophobic residues in the N-terminus play crucial roles in the localization to the plasma membrane. A BH analysis ( is a program developed to identify membrane-binding domains that comprise basic and hydrophobic residues in membrane proteins. We applied this program to phactr3. The results of the BH plot analysis agreed with the experimentally determined region that is responsible for the localization of phactr3 to the plasma membrane. In vitro experiments showed that the N-terminal itself binds to liposomes and acidic phospholipids. In addition, we showed that the interaction with the plasma membrane via the N-terminal membrane-binding sequence is required for phactr3-induced morphological changes in Cos7 cells. The membrane-binding sequence in the N-terminus is highly conserved in all members of the phactr family. Our findings may provide a molecular basis for understanding the mechanisms that allow phactr proteins to regulate cell morphogenesis.

  3. Dynamic covalent surfactants

    NARCIS (Netherlands)

    Minkenberg, C.B.


    In this thesis the development of surfactant aggregates with fast exchange dynamics between the aggregated and non-aggregated state is described. Dynamic surfactant exchange plays an important role in natural systems, for instance in cell signaling, cell division, and uptake and release of cargo.

  4. Structure and Conformational Dynamics of DMPC/Dicationic Surfactant and DMPC/Dicationic Surfactant/DNA Systems

    Directory of Open Access Journals (Sweden)

    Maciej Kozak


    Full Text Available Amphiphilic dicationic surfactants, known as gemini surfactants, are currently studied for gene delivery purposes. The gemini surfactant molecule is composed of two hydrophilic “head” groups attached to hydrophobic chains and connected via molecular linker between them. The influence of different concentrations of 1,5-bis (1-imidazolilo-3-decyloxymethyl pentane chloride (gemini surfactant on the thermotropic phase behaviour of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC bilayers with and without the presence of DNA was investigated using Fourier transformed infrared (FTIR and circular dichroism (CD spectroscopies, small angle scattering of synchrotron radiation and differential scanning calorimetry. With increasing concentration of surfactant in DMPC/DNA systems, a disappearance of pretransition and a decrease in the main phase transition enthalpy and temperature were observed. The increasing intensity of diffraction peaks as a function of surfactant concentration also clearly shows the ability of the surfactant to promote the organisation of lipid bilayers in the multilayer lamellar phase.

  5. Spectroscopic investigation on the interaction of some surfactant-cobalt(III) complexes with serum albumins

    Energy Technology Data Exchange (ETDEWEB)

    Vignesh, Gopalaswamy; Nehru, Selvan; Manojkumar, Yesaiyan; Arunachalam, Sankaralingam, E-mail:


    The interaction of HSA/BSA with single and double chain surfactant-cobalt(III) complexes, cis-[Co(phen){sub 2}(UA)Cl](ClO{sub 4}){sub 2}·2H{sub 2}O (1), cis-[Co(phen){sub 2}(UA){sub 2}](ClO{sub 4}){sub 3}·2H{sub 2}O (2), cis-[Co(en){sub 2}(UA)Cl](ClO{sub 4}){sub 2}·2H{sub 2}O (3), cis-[Co(en){sub 2}(UA){sub 2}](ClO{sub 4}){sub 3}·2H{sub 2}O (4), were investigated by steady state fluorescence, UV–vis absorption, synchronous, three dimensional fluorescence and circular dichroism spectroscopy. The results reveal that the quenching of HSA/BSA by all the four complexes takes place through static mechanism. The binding constant, binding sites and thermodymamic parameter were calculated. The results illustrate that the double chain surfactant-cobalt(III) complexes bind more strongly than the corresponding single chain complexes. The distance between donor (HSA/BSA) and acceptor (surfactant-cobalt(III) complexes) was obtained according to FRET. The results of synchronous, three dimensional and circular dichroism spectroscopy studies show that all the complexes caused considerable amount of conformational and some amount of environment changes in HSA/BSA. -- Highlights: • Binding of single and double chain surfactant-cobalt(III) complexes with serum albumins. • Hydrophobic attraction plays a major role in the binding process. • Binding induces considerable amount of conformational changes in the protein.

  6. Salt effects in surfactant-free microemulsions (United States)

    Schöttl, Sebastian; Horinek, Dominik


    The weakly associated micellar aggregates found in the so-called "pre-ouzo region" of the surfactant-free microemulsion water/ethanol/1-octanol are sensitive to changes in the system composition and also to the presence of additives like salt. In this work, we study the influence of two salts, sodium iodide and lithium chloride, on aggregates in water/ethanol/1-octanol by molecular dynamics simulations. In both cases, ethanol concentration in the nonpolar phase and at the interface is increased due to a salting out effect on ethanol in the aqueous pseudo-phase. In addition, minor charging of the interface as a consequence of differential adsorption of anions and cations occurs. However, this charge separation is overall weakened by the erratic surface of octanol aggregates, where polar hydroxyl groups and hydrophobic patches are both present. Furthermore, ethanol at the interface shields hydrophobic patches and reduces the preferential adsorption of iodide and lithium.

  7. Rheological Properties in Aqueous Solution for Hydrophobically Modified Polyacrylamides Prepared in Inverse Emulsion Polymerization

    Directory of Open Access Journals (Sweden)

    Shirley Carro


    Full Text Available Inverse emulsion polymerization technique was employed to synthesize hydrophobically modified polyacrylamide polymers with hydrophobe contents near to feed composition. Three different structures were obtained: multisticker, telechelic, and combined. N-Dimethyl-acrylamide (DMAM, n-dodecylacrylamide (DAM, and n-hexadecylacrylamide (HDAM were used as hydrophobic comonomers. The effect of the hydrophobe length of comonomer, the initial monomer, and surfactant concentrations on shear viscosity was studied. Results show that the molecular weight of copolymer increases with initial monomer concentration and by increasing emulsifier concentration it remained almost constant. Shear viscosity measurements results show that the length of the hydrophobic comonomer augments the hydrophobic interactions causing an increase in viscosity and that the polymer thickening ability is higher for combined polymers.

  8. Microfibril-associated Protein 4 Binds to Surfactant Protein A (SP-A) and Colocalizes with SP-A in the Extracellular Matrix of the Lung

    DEFF Research Database (Denmark)

    Schlosser, Anders; Thomsen, Theresa H.; Shipley, J. Michael


    for phagocytes. Here we describe the molecular interaction between the extracellular matrix protein microfibril-associated protein 4 (MFAP4) and SP-A. MFAP4 is a collagen-binding molecule containing a C-terminal fibrinogen-like domain and a N-terminal located integrin-binding motif. We produced recombinant MFAP4......-A composed of the neck region and carbohydrate recognition domain of SP-A indicating that the interaction between MFAP4 and SP-A is mediated via the collagen domain of SP-A. Monoclonal antibodies directed against MFAP4 and SP-A were used for immunohistochemical analysis, which demonstrates that the two...... molecules colocalize both on the elastic fibres in the interalveolar septum and in elastic lamina of pulmonary arteries of chronically inflamed lung tissue. We conclude, that MFAP4 interacts with SP-A via the collagen region in vitro, and that MFAP4 and SP-A colocates in different lung compartments...

  9. (Cationic + nonionic) mixed surfactant aggregates for solubilisation of curcumin

    International Nuclear Information System (INIS)

    Kumar, Arun; Kaur, Gurpreet; Kansal, S.K.; Chaudhary, G.R.; Mehta, S.K.


    Highlights: • Critical micelle concentration of mixed surfactant has been measured. • Aqueous solubility and alkaline stability of curcumin has been significantly improved. • Location of curcumin within micelles has been evaluated. • Scavenging activity of curcumin has been improved. • Non-intercalative binding with ct-DNA has been observed. - Abstract: Curcumin is a potential drug for variety of diseases. Major limitations of curcumin are low water solubility, rapid hydrolytic degradation in alkaline medium and poor bioavailability. To overcome these limitations, highly potential mixed micellar system has been prepared. In order to reduce inter ionic repulsion and precipitation of surfactants, (cationic + non-ionic) mixed system have been chosen that directly influence its applicability. Hydrophobic chain of non-ionic surfactant significantly influences the cmc of mixed surfactant system as indicated by fluorescence and conductivity data. UV–visible spectroscopy analyses show that solubility, stability and antioxidant property of the curcumin is remarkably improved depending on cmc and aggregation number (N_a_g_g) of mixed surfactants, where N_a_g_g plays crucial role. Generally, curcumin undergoes complete degradation in slight basic medium, but stability has been maintained up to 8 h at pH-13 using formulated mixed micelles (only (20 to 25)% degraded). Location of curcumin which is monitored using emission spectroscopy, fluorescence quenching and "1H NMR spectroscopy techniques play the most important role. Observed results show that the major population of curcumin is located at the polar region and some are in hydrophobic region of the mixed micelles. To ensure the effect of mixed surfactants and curcumin loaded mixed surfactants on DNA, the interaction parameter indicates non-interclative interactions.

  10. Formation of active inclusion bodies induced by hydrophobic self-assembling peptide GFIL8. (United States)

    Wang, Xu; Zhou, Bihong; Hu, Weike; Zhao, Qing; Lin, Zhanglin


    In the last few decades, several groups have observed that proteins expressed as inclusion bodies (IBs) in bacteria could still be biologically active when terminally fused to an appropriate aggregation-prone partner such as pyruvate oxidase from Paenibacillus polymyxa (PoxB). More recently, we have demonstrated that three amphipathic self-assembling peptides, an alpha helical peptide 18A, a beta-strand peptide ELK16, and a surfactant-like peptide L6KD, have properties that induce target proteins into active IBs. We have developed an efficient protein expression and purification approach for these active IBs by introducing a self-cleavable intein molecule. In this study, the self-assembling peptide GFIL8 (GFILGFIL) with only hydrophobic residues was analyzed, and this peptide effectively induced the formation of cytoplasmic IBs in Escherichia coli when terminally attached to lipase A and amadoriase II. The protein aggregates in cells were confirmed by transmission electron microscopy analysis and retained ~50% of their specific activities relative to the native counterparts. We constructed an expression and separation coupled tag (ESCT) by incorporating an intein molecule, the Mxe GyrA intein. Soluble target proteins were successfully released from active IBs upon cleavage of the intein between the GFIL8 tag and the target protein, which was mediated by dithiothreitol. A variant of GFIL8, GFIL16 (GFILGFILGFILGFIL), improved the ESCT scheme by efficiently eliminating interference from the soluble intein-GFIL8 molecule. The yields of target proteins at the laboratory scale were 3.0-7.5 μg/mg wet cell pellet, which is comparable to the yields from similar ESCT constructs using 18A, ELK16, or the elastin-like peptide tag scheme. The all-hydrophobic self-assembling peptide GFIL8 induced the formation of active IBs in E. coli when terminally attached to target proteins. GFIL8 and its variant GFIL16 can act as a "pull-down" tag to produce purified soluble proteins with

  11. Evaporation kinetics of surfactant solution droplets on rice (Oryza sativa) leaves (United States)

    Cao, Li-Dong; Zheng, Li; Xu, Jun; Li, Feng-Min; Huang, Qi-Liang


    The dynamics of evaporating sessile droplets on hydrophilic or hydrophobic surfaces is widely studied, and many models for these processes have been developed based on experimental evidence. However, few research has been explored on the evaporation of sessile droplets of surfactant or pesticide solutions on target crop leaves. Thus, in this paper the impact of surfactant concentrations on contact angle, contact diameter, droplet height, and evolution of the droplets’ evaporative volume on rice leaf surfaces have been investigated. The results indicate that the evaporation kinetics of surfactant droplets on rice leaves were influenced by both the surfactant concentrations and the hydrophobicity of rice leaf surfaces. When the surfactant concentration is lower than the surfactant CMC (critical micelle concentration), the droplet evaporation time is much longer than that of the high surfactant concentration. This is due to the longer existence time of a narrow wedge region under the lower surfactant concentration, and such narrow wedge region further restricts the droplet evaporation. Besides, our experimental data are shown to roughly collapse onto theoretical curves based on the model presented by Popov. This study could supply theoretical data on the evaporation of the adjuvant or pesticide droplets for practical applications in agriculture. PMID:28472108

  12. Hydrophobic treatment of concrete

    NARCIS (Netherlands)

    Vries, J. de; Polder, R.B.


    As part of the maintenance policy of the Dutch Ministry of Transport, Civil Engineering Division, hydrophobic treatment of concrete was considered as an additional protective measure against penetration of aggressive substances, for instance deicing salts in bridge decks. A set of tests was designed

  13. Binding affinities of cationic dyes in the presence of activated charcoal and anionic surfactant in the premicellar region (United States)

    Ali, Farman; Ibrahim, Muhammad; Khan, Fawad; Bibi, Iram; Shah, Syed W. H.


    Binding preferences of cationic dyes malachite green and methylene blue in a mixed charcoal-sodium dodecyl sulfate system have been investigated using UV-visible absorption spectroscopy. The dye adsorption shows surfactant-dependent patterns, indicating diverse modes of interactions. At low surfactant concentration, a direct binding to charcoal is preferred. Comparatively greater quantities of surfactant lead to attachment of dye-surfactant complex to charcoal through hydrophobic interactions. A simple model was employed for determination of equilibrium constant K eq and concentration of dye-surfactant ion pair N DS for both dyes. The values of binding parameters revealed that malachite green was directly adsorbed onto charcoal, whereas methylene blue was bound through surfactant monomers. The model is valid for low surfactant concentrations in the premicellar region. These findings have significance for material and environmental sciences.

  14. The impact of alkyl sulfate surfactant geometry and electrolyte on the co-adsorption of anionic surfactants with model perfumes at the air-solution interface. (United States)

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig


    The impact of surfactant geometry and electrolyte on the co-adsorption of anionic surfactants and model perfumes at the air-solution interface has been studied by neutron reflectivity. The more hydrophobic perfume linalool, competes more favourably for the surface with sodium dodecylsulfate than was previously reported for the anionic surfactant, sodium dodecyl 6-benzenesulfonate. Due to an increase in surface activity of the sodium dodecylsulfate, the addition of electrolyte results in a reduction in the linalool adsorption. Changing the alkyl chain length affects the relative adsorption of linalool and surfactant at the interface. Similar measurements for the different alkyl sulfates and with electrolyte with the more hydrophilic perfume phenyl ethanol, reveal broadly similar trends. Although the relative adsorption of phenyl ethanol with sodium dodecylsulfate is substantially enhanced compared to sodium dodecyl-6-benzenesulfonate the effects are not as significant as was observed with linalool. The variations with alkyl chain geometry show the importance of the hydrophobic interaction between the perfume and surfactant and changes in the packing constraints on the relative adsorption. The results highlight the importance of the specific interaction between the surfactant and perfume, and the surfactant and perfume geometries on the relative adsorption at the interface. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Gemini Surfactant-Modified Activated Carbon for Remediation of Hexavalent Chromium from Water

    Directory of Open Access Journals (Sweden)

    Yingying Zhou


    Full Text Available Gemini surfactants, with double hydrophilic and hydrophobic groups, offer potentially orders of magnitude greater surface activity compared to similar single unit molecules. A cationic Gemini surfactant (Propyl didodecyldimethylammonium Bromide, PDDDAB and a conventional cationic surfactant (Dodecyltrimethylammonium Bromide, DTAB were used to pre-treat and generate activated carbon. The removal efficiency of the surfactant-modified activated carbon through adsorption of chromium(VI was investigated under controlled laboratory conditions. Fourier-transform infrared spectroscopy (FT-IR and scanning electron microscopy (SEM were used to investigate the surface changes of surfactant-modified activated carbon. The effect of important parameters such as adsorbent dosage, pH, ionic strength and contact time were also investigated. The chromium(VI was adsorbed more significantly on the Gemini surfactant-modified activated carbon than on the conventional surfactant-modified activated carbon. The correlation coefficients show the data best fit the Freundlich model, which confirms the monolayer adsorption of chromium(VI onto Gemini surfactant-modified activated carbon. From this assessment, the surfactant-modified (especially Gemini surfactant-modified activated carbon in this study showed promise for practical applications to treat water pollution.

  16. Theoretical and Simulations-Based Modeling of Micellization in Linear and Branched Surfactant Systems (United States)

    Mendenhall, Jonathan D.

    Surfactants are chemically-heterogeneous molecules possessing hydrophilic (head) and hydrophobic (tail) moieties. This dual nature of surfactants leads to interesting phase behavior in aqueous solution as a function of surfactant concentration, including: (i) formation of surfactant monolayers at surfaces and interfaces, and (ii) self-assembly into finite aggregates (micelles) in the bulk solution beyond the critical micelle concentration (cmc). This concentration-dependent phase behavior induces changes in solution properties. For example, the surface activity of surfactants can decrease the surface tension, and self-assembly in bulk solution can lead to changes in viscosity, equivalent conductivity, solubilization capacity, and other bulk properties. These effects make surfactants quite attractive and unique for use in product formulations, where they are utilized as detergents, dispersants, emulsifiers, solubilizers, surface and interfacial tension modifiers, and in other contexts. The specific chemical structure of the surfactant head and tail is essential in determining the overall performance properties of a surfactant in aqueous media. The surfactant tail drives the self-assembly process through the hydrophobic effect, while the surfactant head imparts a certain extent of solubility to the surfactant in aqueous solution through preferential interactions with the hydrogen-bonding network of water. The interplay between these two effects gives rise to the particular phase diagram of a surfactant, including the specific cmc at which micelles begin to form. In addition to serving as a quantitative indicator of micelle formation, the cmc represents a limit to surface monolayer formation, and hence to surface and interfacial tension reduction, because surfactant adsorption at interfaces remains approximately constant beyond the cmc. In addition, the cmc represents the onset of changes in bulk solution properties. This Thesis is concerned with the prediction of cmc

  17. Role of a non-ionic surfactant in direct electron transfer-type bioelectrocatalysis by fructose dehydrogenase

    International Nuclear Information System (INIS)

    Kawai, Shota; Yakushi, Toshiharu; Matsushita, Kazunobu; Kitazumi, Yuki; Shirai, Osamu; Kano, Kenji


    Highlights: • Addition of Triton ® X-100 (1%) completely quenches the FDH-catalyzed current at hydrophobic electrode, but causes only small competitive effect at hydrophilic electrode. • Quartz crystal microbalance measurements support the adsorption of FDH and Triton ® X-100 on both of the electrodes. • The surfactant forms a monolayer on the hydrophobic electrode and FDH adsorbs on the surfactant monolayer. • The surfactant forms a bilayer on the hydrophilic electrode and FDH is embedded in the bilayer to communicate with the electrode. - ABSTRACT: A heterotrimeric membrane-bound fructose dehydrogenase (FDH) from Gluconobacter japonicus NBRC3260 contains FAD in subunit I and three heme C moieties in subunit II as the redox centers, and is one of the direct electron transfer (DET)-type redox enzymes. FDH-catalyzed current density of fructose oxidation at hydrophilic mercaptoethanol (MEtOH)-modified Au electrode is much larger than that at hydrophobic mercaptoethane (MEtn)-modified Au electrode. Addition of a non-ionic surfactant Triton ® X-100 (1%) completely quenches the catalytic current at the MEtn-modified Au electrode, while only small competitive effect is observed at the MEtOH-modified Au electrode. Quartz crystal microbalance measurements support the adsorption of FDH and Triton ® X-100 on both of the modified electrodes. We propose a model to explain the phenomenon as follows. The surfactant forms a monolayer on the hydrophobic MEtn-modified electrode with strong hydrophobic interaction, and FDH adsorbs on the surface of the surfactant monolayer. The monolayer inhibits the electron transfer from FDH to the electrode. On the other hand, the surfactant forms a bilayer on the hydrophilic MEtOH-modified electrode. The interaction between the surfactant bilayer and the hydrophilic electrode is relatively weak so that FDH replaces the surfactant and is embedded in the bilayer to communicate electrochemically with the hydrophilic electrode

  18. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces. (United States)

    Dan, Abhijit; Gochev, Georgi; Miller, Reinhard


    Oscillating drop tensiometry was applied to study adsorbed interfacial layers at water/air and water/hexane interfaces formed from mixed solutions of β-lactoglobulin (BLG, 1 μM in 10 mM buffer, pH 7 - negative net charge) and the anionic surfactant SDS or the cationic DoTAB. The interfacial pressure Π and the dilational viscoelasticity modulus |E| of the mixed layers were measured for mixtures of varying surfactant concentrations. The double capillary technique was employed which enables exchange of the protein solution in the drop bulk by surfactant solution (sequential adsorption) or by pure buffer (washing out). The first protocol allows probing the influence of the surfactant on a pre-adsorbed protein layer thus studying the protein/surfactant interactions at the interface. The second protocol gives access to the residual values of Π and |E| measured after the washing out procedure thus bringing information about the process of protein desorption. The DoTAB/BLG complexes exhibit higher surface activity and higher resistance to desorption in comparison with those for the SDS/BLG complexes due to hydrophobization via electrostatic binding of surfactant molecules. The neutral DoTAB/BLG complexes achieve maximum elastic response of the mixed layer. Mixed BLG/surfactant layers at the water/oil interface are found to reach higher surface pressure and lower maximum dilational elasticity than those at the water/air surface. The sequential adsorption mode experiments and the desorption study reveal that binding of DoTAB to pre-adsorbed BLG globules is somehow restricted at the water/air surface in comparison with the case of complex formation in the solution bulk and subsequently adsorbed at the water/air surface. Maximum elasticity is achieved with washed out layers obtained after simultaneous adsorption, i.e. isolation of the most surface active DoTAB/BLG complex. These specific effects are much less pronounced at the W/H interface. Copyright © 2015 Elsevier Inc

  19. Adsorption of benzyldimethylhexadecylammonium chloride at the hydrophobic silica-water interface studied by total internal reflection Raman spectroscopy: effects of silica surface properties and metal salt addition. (United States)

    Grenoble, Zlata; Baldelli, Steven


    The adsorption of the cationic surfactant benzyldimethylhexadecylammonium (BDMHA(+)) chloride was studied at an octadecyltrichlorosilane (OTS)-monolayer-modified silica-water interface by Raman spectroscopy in total internal reflection (TIR) geometry. The present study demonstrates the capabilities of this spectroscopic technique to evaluate thermodynamic and kinetic BDMHA(+)Cl(-) adsorption properties at the hydrophobic silica surface. The surface coverage of BDMHA(+) decreased by 50% at the hydrophobic OTS-silica surface relative to the surface coverage on bare silica; the dominating driving mechanisms for surfactant adsorption were identified as hydrophobic effects and head group charge screening by the electrolyte counterions. Addition of magnesium metal salt (MgCl2) to the aqueous solution (∼ neutral pH) lowered the surface coverage and moderately increased the Langmuir adsorption constants relative to those of the pure surfactant. These trends were previously observed at the hydrophilic, negatively charged silica surface but with a smaller change in the Gibbs free energy of adsorption at the hydrophobic silica surface. The hydrophobic OTS-silica surface properties resulted in shorter times for the surfactant to reach steady-state adsorption conditions compared to the slow adsorption kinetics previously seen with the surfactant at the hydrophilic surface. Adsorption isotherms, based on Raman signal intensities from spectral analysis, were developed according to the Langmuir adsorption model for the pure surfactant at the OTS-silica-water interface; the modified Langmuir model was applied to the surfactant adsorption in the presence of 5, 10, 50, and 100 mM magnesium chloride. Spectral analysis of the Raman scattering intensities and geometric considerations suggests a hemimicelle-type surface aggregate as the most likely surfactant structure at the OTS-silica surface. The different kinetics observed at the hydrophilic versus the hydrophobic silica surface

  20. Role of the hydrophobic phase for the unique rheologica properties of saponin adsorption layers

    NARCIS (Netherlands)

    Golemanov, K.; Tcholakova, S.; Denkov, N.; Pelan, E.G.; Stoyanov, S.D.


    Saponins are a diverse class of natural, plant derived surfactants, with peculiar molecular structure consisting of a hydrophobic scaffold and one or several hydrophilic oligosaccharide chains. Saponins have strong surface activity and are used as natural emulsifiers and foaming agents in food and

  1. Evaporation rate of water in hydrophobic confinement. (United States)

    Sharma, Sumit; Debenedetti, Pablo G


    The drying of hydrophobic cavities is believed to play an important role in biophysical phenomena such as the folding of globular proteins, the opening and closing of ligand-gated ion channels, and ligand binding to hydrophobic pockets. We use forward flux sampling, a molecular simulation technique, to compute the rate of capillary evaporation of water confined between two hydrophobic surfaces separated by nanoscopic gaps, as a function of gap, surface size, and temperature. Over the range of conditions investigated (gaps between 9 and 14 Å and surface areas between 1 and 9 nm(2)), the free energy barrier to evaporation scales linearly with the gap between hydrophobic surfaces, suggesting that line tension makes the predominant contribution to the free energy barrier. The exponential dependence of the evaporation rate on the gap between confining surfaces causes a 10 order-of-magnitude decrease in the rate when the gap increases from 9 to 14 Å. The computed free energy barriers are of the order of 50 kT and are predominantly enthalpic. Evaporation rates per unit area are found to be two orders of magnitude faster in confinement by the larger (9 nm(2)) than by the smaller (1 nm(2)) surfaces considered here, at otherwise identical conditions. We show that this rate enhancement is a consequence of the dependence of hydrophobic hydration on the size of solvated objects. For sufficiently large surfaces, the critical nucleus for the evaporation process is a gap-spanning vapor tube.

  2. CRP-ductin, the mouse homologue of gp-340/deleted in malignant brain tumors 1 (DMBT1), binds gram-positive and gram-negative bacteria and interacts with lung surfactant protein D

    DEFF Research Database (Denmark)

    Madsen, Jens; Tornøe, Ida; Nielsen, Ole


    CRP-ductin is a protein expressed mainly by mucosal epithelial cells in the mouse. Sequence homologies indicate that CRP-ductin is the mouse homologue of human gp-340, a glycoprotein that agglutinates microorganisms and binds the lung mucosal collectin surfactant protein-D (SP-D). Here we report...... that purified CRP-ductin binds human SP-D in a calcium-dependent manner and that the binding is not inhibited by maltose. The same properties have previously been observed for gp-340 binding of SP-D. CRP-ductin also showed calcium-dependent binding to both gram-positive and -negative bacteria. A polyclonal...... antibody raised against gp-340 reacted specifically with CRP-ductin in Western blots. Immunoreactivity to CRP-ductin was found in the exocrine pancreas, in epithelial cells throughout the gastrointestinal tract and in the parotid ducts. A panel of RNA preparations from mouse tissues was screened for CRP...

  3. Inactivation of pulmonary surfactant due to serum-inhibited adsorption and reversal by hydrophilic polymers: experimental

    DEFF Research Database (Denmark)

    Taeusch, H William; de la Serna, Jorge Bernardino; Perez-Gil, Jesus


    adsorption of surface active serum proteins. Aqueous suspensions of native porcine surfactant, organic extracts of native surfactant, and the clinical surfactants Curosurf, Infasurf, and Survanta spread on buffered subphases increase the surface pressure, pi, to approximately 40 mN/m within 2 min....... The variation with concentration, temperature, and mode of spreading confirmed Brewster angle microscopy observations that subphase to surface adsorption of surfactant is the dominant form of surfactant transport to the interface. However (with the exception of native porcine surfactant), similar rapid...... increases in pi did not occur when surfactants were applied to subphases containing serum. Components of serum are surface active and adsorb reversibly to the interface increasing pi up to a concentration-dependent saturation value, pi(max). When surfactants were applied to subphases containing serum...

  4. Micellization Behavior of Long-Chain Substituted Alkylguanidinium Surfactants

    Directory of Open Access Journals (Sweden)

    Roza Bouchal


    Full Text Available Surface activity and micelle formation of alkylguanidinium chlorides containing 10, 12, 14 and 16 carbon atoms in the hydrophobic tail were studied by combining conductivity and surface tension measurements with isothermal titration calorimetry. The purity of the resulting surfactants, their temperatures of Cr→LC and LC→I transitions, as well as their propensity of forming birefringent phases, were assessed based on the results of 1H and 13C NMR, differential scanning calorimetry (DSC, and polarizing microscopy studies. Whenever possible, the resulting values of Krafft temperature (TK, critical micelle concentration (CMC, minimum surface tension above the CMC, chloride counter-ion binding to the micelle, and the standard enthalpy of micelle formation per mole of surfactant (ΔmicH° were compared to those characterizing alkyltrimethylammonium chlorides or bromides with the same tail lengths. The value of TK ranged between 292 and 314 K and increased strongly with the increase in the chain length of the hydrophobic tail. Micellization was described as both entropy and enthalpy-driven. Based on the direct calorimetry measurements, the general trends in the CMC with the temperature, hydrophobic tail length, and NaCl addition were found to be similar to those of other types of cationic surfactants. The particularly exothermic character of micellization was ascribed to the hydrogen-binding capacity of the guanidinium head-group.

  5. Influence of the solubilization of ribonuclease and of its hydrophobic derivatives on water-in-oil microemulsions

    International Nuclear Information System (INIS)

    Michel, Fabienne


    This research thesis addresses the study of the structural disruption of a water-in-oil microemulsion during the solubilization of an enzyme. More precisely, the microemulsion is the water/isooctane system, stabilised by the commonly named AOT anionic surfactant, and the disrupting agent is an enzymatic protein, ribonuclease A. The author addresses the following topics: interactions in microemulsion, percolation in microemulsion, use of microemulsions as micro-reactor, chemical modification of enzymes, and reactivity of enzymes. After a recall of the main results concerning AOT inverse micelles, the author addresses the influence of ribonuclease solubilisation on the micellar system. The micellar environment is then used as a micro-reactor in order to fix hydrophobic molecules in a covalent way onto the ribonuclease A, and then to promote the percolation process. The author then studies the structure of the microemulsion in presence of modified enzymes [fr

  6. Adsorption of sugar surfactants at the air/water interface. (United States)

    Varga, Imre; Mészáros, Róbert; Stubenrauch, Cosima; Gilányi, Tibor


    The adsorption isotherms of n-decyl-β-D-glucoside (β-C(10)G(1)) as well as various n-alkyl-β-D-maltosides (β-C(n)G(2)) with n=8, 10, 12 and 14 were determined from surface tension measurements. Based on the analysis of the adsorption isotherms, the total free energy change of adsorption was determined and a novel method was proposed to determine the maximum adsorbed amount of surfactant. It can be concluded that the driving force for adsorption first increases with increasing adsorbed amount of the sugar surfactants and then levels off in a plateau. This peculiar behaviour is interpreted as formation of a thin liquid-like alkane film of overlapping alkyl chains at the air/water interface once a certain adsorbed amount is exceeded. The driving force of adsorption depends on the alkyl chain length only and is not affected by the type of the head group. The hydrophobic contribution to the standard free energy change of adsorption was compared with the values of sodium alkylsulfate and alkyltrimethylammonium bromide surfactants. This comparison reveals that the hydrophobic driving force of adsorption is the largest for the sodium alkylsulfates, whereas it is the same for the sugar surfactants and the alkyltrimethylammonium bromides. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Adsorption of proteins from plasma to a series of hydrophilic-hydrophobic copolymers. I. Analysis with the in situ radioiodination technique

    International Nuclear Information System (INIS)

    Horbett, T.A.; Weathersby, P.K.


    The adsorption of proteins affects cellular interactions with foreign surfaces and thus plays an important role in determining the biocompatibility of implants. Previous studies have indicated differences in the affinity of various proteins for a given polymer, and differences in the affinity of fibrinogen for a series of polymers varying in hydrophilicity. These studies suggest that differences in the composition of the protein layer adsorbed to polymers from plasma might exist. To examine this hypothesis, the proteins adsorbed from plasma to a series of polymers varying in hydrophilicity were analyzed with the iodogram technique. Copolymers of hydroxyethyl methacrylate and ethyl methacrylate made by the radiation grafting technique were exposed to plasma for 0.5 or 150 min. The adsorbed proteins were iodinated, eluted with SDS, and separated with polyacrylamide gel electrophoresis. Fibrinogen, immunoglobulin G, hemoglobin, and a peak tentatively ascribed to prothrombin were the major proteins detected. Very little iodine was incorporated into adsorbed albumin, even though it was shown to be present by a separate experiment using dye binding. The fraction of total radioactivity associated with each of nine proteins was found to vary markedly and systematically among the surfaces. The distribution of radioactivity into the proteins was very different on 0.5 and 150-min plasma exposed polymers. The results reflect both compositional differences in the adsorbed protein layer on the polymers and differences in the accessibility of proteins to the labeling reagent in the adsorbed state. Differences in the organization of the adsorbed protein layer may play a key role in determining whether cell surface receptors can come in contact with the specific plasma protein able to further stimulate the cell

  8. Desorption of organophosphorous pesticides from soil with wastewater and surfactant solutions

    International Nuclear Information System (INIS)

    Hernandez-Soriano, M. C.; Mingorance, M. D.; Pena, A.


    Surfactants can be introduced in the environment by wastewater discharge, point-charge pollution or deliberate action, e. g. to remediate contaminated soil or groundwater. The irrigation of soil with wastewater containing surfactants may modify pesticide desorption from soil, thus affecting their affecting their environmental fate. Desorption from soil of the plain of Granada (South-eastern Spain) of two organophosphorous pesticides, diazinon and dimethoate, differing in solubility and hydrophobicity, has been evaluated in the presence of different surfactant aqueous solutions and municipal wastewater. (Author)

  9. Temperature effects on the hydrophobic force between two ...

    Indian Academy of Sciences (India)



    Mar 2, 2018 ... We perform the molecular dynamics simulations to investigate ... molecular assemblies and in the formation of protein complexes.1–7 One of the important manifestations of the hydrophobic interactions is observed in oil-water.

  10. Interactions of short chain phenylalkanoic acids within ionic surfactant micelles in aqueous media

    Directory of Open Access Journals (Sweden)

    Naeem Kashif


    Full Text Available % SDS KR nema Solubilization and interactions of phenylalkanoic acids induced by cationic surfactant, cetyltrimethylammonium bromide (CTAB and an anionic surfactant, sodium dodecyl sulfate (SDS was investigated spectrophotometrically at 25.0°C. The UV spectra of the additives (acids were measured with and without surfactant above and below critical micelle concentration (cmc of the surfactant. The presence of alkyl chain in phenylalkanoic acids is responsible for hydrophobic interaction resulting in shift of the spectra towards longer wavelength (red shift. The value of partition coefficient (Kx between the bulk water and surfactant micelles and in turn standard free energy change of solubilization (ΔGpº were also estimated by measuring the differential absorbance (ΔA of the additives in micellar solutions.

  11. Alkali/Surfactant/Polymer Flooding in the Daqing Oilfield Class II Reservoirs Using Associating Polymer

    Directory of Open Access Journals (Sweden)

    Ru-Sen Feng


    Full Text Available Hydrophobically modified associating polyacrylamide (HAPAM has good compatibility with the Daqing heavy alkylbenzene sulfonate surfactant. The HAPAM alkali/surfactant/polymer (ASP system can generate ultralow interfacial tension in a wide range of alkali/surfactant concentrations and maintain stable viscosity and interfacial tension for 120 days. The HAPAM ASP system has good injectivity for the Daqing class II reservoirs (100–300 × 10−3 μm2 and can improve oil recovery by more than 25% on top of water flooding. In the presence of both the alkali and the surfactant, the surfactant interacts with the associating groups of the polymer to form more micelles, which can significantly enhance the viscosity of the ASP system. Compared with using HPAM (Mw = 2.5 MDa, using HAPAM can reduce the polymer use by more than 40%.

  12. Effect of selected non-ionic surfactants on the flow behavior of aqueous veegum suspensions. (United States)

    Kennedy, Ross A; Kennedy, Michelle L


    The aim of this work was to investigate the influence of some non-ionic surfactants, Tween 80 and Brij 98, on the viscosity and flow behavior of a commercial montmorillonite clay, Veegum Granules. The effect of different concentrations of the surfactants on the shear stress-shear rate rheograms of hydrated concentrated clay suspensions was determined by shear viscometry. The addition of either surfactant increased the plastic viscosity and the yield stress of the suspensions. Furthermore, both surfactants altered the thixotropy of the suspensions to an extent that depended on both the surfactant concentration and the time of equilibration of the surfactant and Veegum. Brij 98 had a greater and more rapid effect. It is proposed that the surfactant polar head-groups anchor at the tetrahedral sheet surface, leaving the alkyl chains extending away from the edges and faces. Consequently, the alkyl chains undergo hydrophobic interactions that facilitate the association between the platelets and increase the physical structure within the suspension. Stereochemical differences between the polar groups may lead to differences in the way the surfactants associate with the tetrahedral sheet and hence their ultimate effect on the rheological behavior. There is a significant interaction between these surfactants and montmorillonite clays, and the rheological changes that occur could have a major impact on any pharmaceutical formulation that uses these ingredients.

  13. [The effect of hydrophobic surface properties of protein on its resistance to denaturation by organic solvents (using modified alpha-chymotrypsin as an example]. (United States)

    Kudriashova, E V; Belova, A B; Vinogradov, A A; Mozhaev, V V


    Catalytic activity of covalently modified alpha-chymotrypsin in water/cosolvent solutions was investigated. The stability of chymotrypsin increases upon modification with hydrophilic reagents, such as glyceraldehyde, pyrometallic and succinic anhydrides, and glucosamine. Correlation was observed between the protein's stability in organic solvents and the degree of hydrophilization of the protein's surface. The protein is the more stable, the higher are the modification degree and the hydrophilicity of the modifying residue. At a certain critical hydrophilization degree of chymotrypsin a limit of stability is achieved. The stabilization effect can be accounted for by the fact that the interaction between water molecules on the surface and protein's functional groups become stronger in the hydrophilized protein.

  14. A rheological study of hydrophobic-surface-active polymer systems structuration; Etude rheologique de la structuration de systemes polymere hydrophobe-tensioactif

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, E.


    This work deals with the study of the rheology and the structuration of hydrophobic polymer and surfactant systems. The used associative polymers are acrylamide/nonyl methacrylate copolymers and the surfactant is nonionic. They are particularly used for hydrocarbons extraction techniques as drilling (drilling fluids) or wells cementation. The studied materials are first characterized by different analytic techniques. This preliminary stage of the work gives a good insight of the physico-chemical parameters of the systems. The effect of surfactant was shown by studying the variation of Newtonian viscosity as a function of surfactant concentration. This yields bell curves, whose maximum determines the critical aggregation concentration (cac). The hydrophobic effect is analysed in different polymer concentration regimes, in quasi-static conditions, and under shear. The study of the dynamic visco-elasticity of semi-dilute solutions allows to observe the effect of the hydrophobic associations on the relaxation time of the chains. The system can be described as a superposition of two networks of junctions: the network of physical entanglements and a second one formed by the hydrophobic links. Phenomena of structuration have been observed at room temperature for surfactant concentrations close to the cac. The increase of viscosity or elastic modulus can be 3 to 4 orders of magnitude. The effect of the temperature on the structure of the systems is studied as well. The rheological characterization of the Sol-Gel transition is developed and the rheological behavior of the solutions in a structured state shows a critical stress for rupture of the structure. Microscopic observations of the birefringence of the solutions display the existence of lamellar vesicles, which leads to the following assumption: the formation of big spherulites create a rigidification of the macromolecular network. (author) 190 refs.

  15. Comparison of rSP-C surfactant with natural and synthetic surfactants after late treatment in a rat model of the acute respiratory distress syndrome (United States)

    Häfner, Dietrich; Germann, Paul-Georg; Hauschke, Dieter


    In a previous paper we showed that an SP-C containing surfactant preparation has similar activity as bovine-derived surfactants in a rat lung lavage model of the adult respiratory distress syndrome. In this study surfactant was given ten minutes after the last lavage (early treatment). In the present investigation we were interested how different surfactant preparations behave when they are administered 1 h after the last lavage (late treatment). Four protein containing surfactants (rSP-C surfactant, bLES, Infasurf and Survanta) were compared with three protein-free surfactants (ALEC, Exosurf and the phospholipid (PL) mixture of the rSP-C surfactant termed PL surfactant) with respect to their ability to improve gas exchange in this more stringent model when surfactant is given one hour after the last lavage. For better comparison of the surfactants the doses were related to phospholipids. The surfactants were given at doses of 25, 50 and 100 mg kg−1 body weight. The surfactants were compared to an untreated control group that was only ventilated for the whole experimental period. Tracheotomized rats (8–12 per dose and surfactant) were pressure-controlled ventilated (Siemens Servo Ventilator 900C) with 100% oxygen at a respiratory rate of 30 breaths min−1, inspiration expiration ratio of 1 : 2, peak inspiratory pressure of 28 cmH2O at positive endexpiratory pressure (PEEP) of 8 cmH2O. Animals were ventilated for one hour after the last lavage and thereafter the surfactants were intratracheally instilled. During the whole experimental period the ventilation was not changed. Partial arterial oxygen pressures (PaO2, mmHg) at 30 min and 120 min after treatment were used for statistical comparison. All protein containing surfactants caused a dose-dependent increase of the reduced PaO2 values at 30 min after treatment. The protein-free surfactants showed only weak dose-dependent increase in PaO2 values at this time. This difference between the

  16. Wettability modification of Wender lignite by adsorption of dodecyl poly ethoxylated surfactants with different degree of ethoxylation: A molecular dynamics simulation study. (United States)

    Zhang, Lei; Li, Bao; Xia, Yangchao; Liu, Shengyu


    Lignite is an important and useful fossil fuel in the world and the strong hydrophilicity of it limits its applications. Surfactant adsorption on lignite is an effective way to make it hydrophobic. In this work, aiming to examine the effect of the degree of ethoxylation on the adsorption behavior of dodecyl poly ethoxylated surfactants on lignite and the wettability modification of modified lignite by surfactant adsorption, different combined systems formed by surfactants, water and a model surface of Wender lignite have been studied using molecular dynamics simulation. The adsorption configurations vary with the degree of ethoxylation. At the same adsorption amounts, increasing the degree of ethoxylation can make the adsorption layer more compactness and bring stronger adsorption strength. The results of binding energy and its components show that the adsorption of alkyl polyoxyethylene ethers surfactant on lignite is physically adsorbed rather than electrostatically or chemisorbed. Meanwhile, van der Waals interaction plays a dominant role in the adsorption. The addition of surfactant could reduce the possibility of the interaction between water and lignite. Compared to the original lignite, the interaction between them is weakened after surfactant adsorption in water/surfactant/lignite system, thus strengthening the hydrophobicity of lignite. Similar to the adsorption strength, hydrophobicity of modified lignite increases with the increase of the degree of ethoxylation. The lignite surface properties are changed due to surfactant adsorption by analyzing the compositions of interaction energy and the change of hydrogen bonds. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Fabrication of superhydrophobic cotton fabrics by silica hydrosol and hydrophobization (United States)

    Xu, Lihui; Zhuang, Wei; Xu, Bi; Cai, Zaisheng


    Superhydrophobic cotton fabrics were prepared by the incorporation of silica nanoparticles and subsequent hydrophobization with hexadecyltrimethoxysilane (HDTMS). The silica nanoparticles were synthesized via sol-gel reaction with methyl trimethoxy silane (MTMS) as the precursor in the presence of the base catalyst and surfactant in aqueous solution. As for the resulting products, characterization by particle size analyzer, scanning electron microscopy (SEM), scanning probe microscopy (SPM), X-ray photoelectron spectroscopy (XPS), and thermal gravimetric analysis (TGA) were performed respectively. The size of SiO2 nanoparticles can be controlled by adjusting the catalyst and surfactant concentrations. The wettability of cotton textiles was evaluated by the water contact angle (WCA) and water shedding angle (WSA) measurements. The results showed that the treated cotton sample displayed remarkable water repellency with a WCA of 151.9° for a 5 μL water droplet and a WSA of 13° for a 15 μL water droplet.

  18. Latex imaging by environmental STEM: application to the study of the surfactant outcome in hybrid alkyd/acrylate systems. (United States)

    Faucheu, Jenny; Chazeau, Laurent; Gauthier, Catherine; Cavaillé, Jean-Yves; Goikoetxea, Monika; Minari, Roque; Asua, José M


    Among other uses, latexes are a successful alternative to solvent-borne binders for coatings. Efforts are made to produce hybrid nanostructured latexes containing an acrylic phase and an alkyd phase. However, after the film-forming process, the surfactant used to stabilize these latexes remains in the film, and its location can have a drastic effect on the application properties. Among the processing parameters, the alkyd hydrophobicity can strongly influence this location. This article aims at the imaging of these surfactant molecules in two hybrid latexes with different hydrophobicity level of the alkyd resin. A first part of this paper is dedicated to the understanding of the contrast provided by the surfactant in environmental STEM imaging of latexes. Then, the influence of surfactant-polymer affinity on the surfactant location after film-forming of those hybrid alkyd/acrylate latexes is studied by this technique. It is shown that in the hybrid latex with an alkyd shell (obtained with the most hydrophilic resin), the surfactant molecules tend to remain buried in the alkyd phase. Conversely, in the hybrid latex with an acrylate shell (in the case of the most hydrophobic resin), the surfactant molecules tend to gather into islands like in pure acrylate latex films.

  19. Gemini (dimeric) Surfactants

    Indian Academy of Sciences (India)

    is in turn bonded to an identical hydrocarbon tail; alternatively,. ~. Tail spacer ... formed is dependent on surfactant structure, temperature, ionic strength and pH. The models of GS are .... micelle to the air/water interface. Moreover, GS can be ...

  20. Formation and characterization of zein-propylene glycol alginate-surfactant ternary complexes: Effect of surfactant type. (United States)

    Dai, Lei; Sun, Cuixia; Wei, Yang; Zhan, Xinyu; Mao, Like; Gao, Yanxiang


    In this study, zein, propylene glycol alginate (PGA) and surfactant ternary complexes were fabricated by antisolvent co-precipitation method. Two types of surfactants (rhamnolipid and lecithin) were applied to generate zein-PGA-rhamnolipid (Z-P-R) and zein-PGA-lecithin (Z-P-L) ternary complexes, respectively. Results showed that the surfactant types significantly affected the properties of ternary complexes. The formation of ternary complexes was mainly due to the non-covalent interactions such as hydrogen bonding, electrostatic interaction and hydrophobic interactions among zein, PGA and surfactants. Moreover, the thermal stability of ternary complexes was enhanced with increasing the levels of both surfactants. Notably, ternary complex dispersions exhibited better stability against pH from 2 to 8. Furthermore, a compact network structure was observed in Z-P-R ternary complex, while Z-P-L ternary complex remained the spherical structure. These findings would provide new insights into the development of novel delivery system and expand the options, when zein-based complexes were utilized under different environment conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Surfactants from petroleum paraffin wax

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, T.M.; Hussein, M.H.; El Sayed, A.S.

    Paraffin wax from Egyptian petroleum was purified and then oxidized to fatty acids which were esterified to form their methyl esters, fractionated and then hydrolysed. The obtained fatty acids were converted into the corresponding primary amines which were converted with ethylene oxide to form nonionic surfactants. The prepared primary amines were also converted into tertiary amines and then converted into cationic surfactants through condensation with benzyl chloride or 1-chloromethylnaphthalene. Also, amine oxide surfactants were prepared by oxidation of the tertiary amines with hydrogen peroxide. The surface active properties of all the prepared surfactants were determined, and the effect of their chemical structure on the surfactant properties are discussed in this paper.

  2. Surfactant therapy in late preterm infants

    Directory of Open Access Journals (Sweden)

    Murat Yurdakök


    Full Text Available Late preterm (LPT neonates are at a high risk for respiratory distress soon after birth due to respiratory distress syndrome (RDS, transient tachypnea of the newborn, persistent pulmonary hypertension, and pneumonia along with an increased need for surfactant replacement therapy, continuous positive airway pressure, and ventilator support when compared with the term neonates. In the past, studies on outcomes of infants with respiratory distress have primarily focused on extremely premature infants, leading to a gap in knowledge and understanding of the developmental biology and mechanism of pulmonary diseases in LPT neonates. Surfactant deficiency is the most frequent etiology of RDS in very preterm and moderately preterm infants, while cesarean section and lung infection play major roles in RDS development in LPT infants. The clinical presentation and the response to surfactant therapy in LPT infants may be different than that seen in very preterm infants. Incidence of pneumonia and occurrence of pneumothorax are significantly higher in LPT and term infants. High rates of pneumonia in these infants may result in direct injury to the type II alveolar cells of the lung with decreasing synthesis, release, and processing of surfactant. Increased permeability of the alveolar capillary membrane to both fluid and solutes is known to result in entry of plasma proteins into the alveolar hypophase, further inhibiting the surface properties of surfactant. However, the oxygenation index value do not change dramatically after ventilation or surfactant administration in LPT infants with RDS compared to very preterm infants. These finding may indicate a different pathogenesis of RDS in late preterm and term infants. In conclusion, surfactant therapy may be of significant benefit in LPT infants with serious respiratory failure secondary to a number of insults. However, optimal timing and dose of administration are not so clear in this group. Additional

  3. Students' Understanding of External Representations of the Potassium Ion Channel Protein, Part I: Affordances and Limitations of Ribbon Diagrams, Vines, and Hydrophobic/Polar Representations (United States)

    Harle, Marissa; Towns, Marcy H.


    Research on external representations in biochemistry has uncovered student difficulties in comprehending and interpreting external representations. This project focuses on students' understanding of three external representations of the potassium ion channel protein. This is part I of a two-part study, which focuses on the affordances and…

  4. Determination of hydrophobic coenzyme a esters and other lipids using a biosensor comprising a modified coenzyme a- and acyl-coa binding protein (acbp)

    DEFF Research Database (Denmark)


    , food and feed preparations, tissue extracts, acyl-CoA synthetase reaction media and various laboratory conditions using a modified Coenzyme A- and acyl-CoA binding protein (ACBP) is provided. Furthermore the invention relates to a construct comprising a peptide and a signal moiety for performing...

  5. Polycation–sodium lauryl ether sulfate-type surfactant complexes : influence of ethylene oxide length

    NARCIS (Netherlands)

    Vleugels, L.F.W.; Pollet, J.; Tuinier, R.


    Polyelectrolyte-surfactant complexes (PESC) are a class of materials which form spontaneously by self-assembly driven by electrostatic and hydrophobic interactions. PESC containing sodium lauryl ether sulfates (SLES) have found wide application in hair care products like shampoo. Typically, SLES

  6. Polycation-Sodium Lauryl Ether Sulfate-Type Surfactant Complexes : Influence of Ethylene Oxide Length

    NARCIS (Netherlands)

    Vleugels, Leo F. W.; Pollet, Jennifer; Tuinier, Remco


    Poiyelectrolyte-surfactant complexes (PESC) are a class of materials which form spontaneously by self-assembly driven by electrostatic and hydrophobic interactions. PESC containing sodium lauryl ether Sulfates (SLES) have found wide application in hair care products like shampoo. Typically, SLES

  7. Synthesis, surface properties and oil solubilisation capacity of cationic gemini surfactants

    NARCIS (Netherlands)

    Dam, Th.; Engberts, J.B.F.N.; Karthäuser, J.; Karaborni, S.; Os, N.M. van


    The critical micelle concentration (CMC) and the surface tension at the CMC have been determined for the gemini surfactants alkanediyl-u,w-bis(dimethyla1kylammoniubmr omide) by means of dynamic surface tension measurements. For the same number of carbon atoms in the hydrophobic chain per hydrophilic

  8. Modulation of the wettability of excipients by surfactant and its impacts on the disintegration and release of tablets. (United States)

    Yang, Baixue; Xu, Lu; Wang, Qiuxiao; Li, Sanming


    To investigate the modulation of the wettability of excipients by different types of surfactants and its impacts on the disintegration of tablets and drug release. The critical micelle concentration (CMC) of surfactants, including sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), dodecyl trimethyl ammonium bromide (DTAB), cetyltrimethyl ammonium bromide (CTAB) and polysorbate (Tween-20 and Tween-80), was obtained using the platinum ring method. Contact angles of surfactant solutions on the excipient compacts and double-distilled water on the mixture of surfactant and the other excipient (magnesium stearate (MgSt) or sodium alginate (SA)) were measured by the sessile drop technique. Besides, surface free energy of excipients was calculated by the Owens method. Finally, the disintegration of tablets and in vitro dissolution testing were performed according to the method described in USP. The wettability of excipients could be enhanced to different extent with low concentration of surfactant solutions and maintained stable basically after CMC. For MgSt (hydrophobic excipient), the shorter the hydrophobic chain (C 12 , including SDS and DTAB), the better the wettability with the addition of surfactant in the formulation, leading to the shorter disintegration time of tablets and higher drug release rate. In contrast, the wettability of SA (hydrophilic excipient) was reduced by adding surfactant, resulting in the longer disintegration time of tablets and lower release rate. The modulation of the wetting of pharmaceutical excipients by surfactant had changed the disintegration time of tablets and drug release rate to a greater extent.

  9. Deduced amino acid sequence of the small hydrophobic protein of US avian pneumovirus has greater identity with that of human metapneumovirus than those of non-US avian pneumoviruses. (United States)

    Yunus, Abdul S; Govindarajan, Dhanasekaran; Huang, Zhuhui; Samal, Siba K


    We report here the nucleotide and deduced amino acid (aa) sequences of the small hydrophobic (SH) gene of the avian pneumovirus strain Colorado (APV/CO). The SH gene of APV/CO is 628 nucleotides in length from gene-start to gene-end. The longest ORF of the SH gene encoded a protein of 177 aas in length. Comparison of the deduced aa sequence of the SH protein of APV/CO with the corresponding published sequences of other members of genera metapneumovirus showed 28% identity with the newly discovered human metapneumovirus (hMPV), but no discernable identity with the APV subgroup A or B. Collectively, this data supports the hypothesis that: (i) APV/CO is distinct from European APV subgroups and belongs to the novel subgroup APV/C (APV/US); (ii) APV/CO is more closely related to hMPV, a mammalian metapneumovirus, than to either APV subgroup A or B. The SH gene of APV/CO was cloned using a genomic walk strategy which initiated cDNA synthesis from genomic RNA that traversed the genes in the order 3'-M-F-M2-SH-G-5', thus confirming that gene-order of APV/CO conforms in the genus Metapneumovirus. We also provide the sequences of transcription-signals and the M-F, F-M2, M2-SH and SH-G intergenic regions of APV/CO.

  10. Interaction of biocompatible natural rosin-based surfactants with human serum albumin: A biophysical study

    International Nuclear Information System (INIS)

    Ishtikhar, Mohd; Ali, Mohd Sajid; Atta, Ayman M.; Al-Lohedan, H.A.; Nigam, Lokesh; Subbarao, Naidu; Hasan Khan, Rizwan


    Biophysical insight into interaction of biocompatible rosin-based surfactants with human serum albumin (HSA) was studied at physiological conditions using various spectroscopic, calorimetric and molecular docking approaches. The binding constant (K b ), enthalpy (ΔH 0 ), entropy (ΔS 0 ) and Gibbs free energy change (ΔG 0 ) were calculated by spectroscopic and calorimetric method. We have also calculated the probability of energy transfer by FRET analysis. The circular dichroism study showed that the cationic surfactant QRMAE significantly altered the secondary structure of HSA as compared to the nonionic rosin surfactants. The thermodynamic study was performed by ITC to determine binding constant as well as change in enthalpy of HSA in presence of rosin surfactants. It clearly showed that hydrogen binding and hydrophobic interaction play an important role in the binding of HSA to rosin surfactants. We have also performed molecular docking studies to locate the binding site on HSA and to visualize the mode of interaction. The present study provides a significant insight into HSA–rosin surfactants interaction, which also improves our understanding of the possible effect of rosin surfactants on human health. - Highlights: • RMPEG 750 has the highest Kb, Kq and Ksv value as compared to other rosin surfactants. • The probability of energy transfer from HSA to rosin surfactants was maximum in the case of RMPEG 750. • Cationic surfactant QRMAE significantly altered the secondary structure of the HSA as compared to other rosin surfactants. • Molecular docking and ITC experiment studies, to locate the binding site on HSA and to investigate the mode of interaction

  11. Interaction of biocompatible natural rosin-based surfactants with human serum albumin: A biophysical study

    Energy Technology Data Exchange (ETDEWEB)

    Ishtikhar, Mohd [Protein Biophysics Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002 (India); Ali, Mohd Sajid [Surfactant Research Chair, Department of Chemistry, King Saud University, P.O. Box-2455, Riyadh 11451 (Saudi Arabia); Atta, Ayman M. [Surfactant Research Chair, Department of Chemistry, King Saud University, P.O. Box-2455, Riyadh 11451 (Saudi Arabia); Petroleum Application department, Egyptian Petroleum Research Institute, Ahmad Elzomor St., Nasr city, Cairo-11727 (Egypt); Al-Lohedan, H.A. [Surfactant Research Chair, Department of Chemistry, King Saud University, P.O. Box-2455, Riyadh 11451 (Saudi Arabia); Nigam, Lokesh; Subbarao, Naidu [Centre for Computational Biology and Bioinformatics, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); Hasan Khan, Rizwan, E-mail: [Protein Biophysics Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002 (India)


    Biophysical insight into interaction of biocompatible rosin-based surfactants with human serum albumin (HSA) was studied at physiological conditions using various spectroscopic, calorimetric and molecular docking approaches. The binding constant (K{sub b}), enthalpy (ΔH{sup 0}), entropy (ΔS{sup 0}) and Gibbs free energy change (ΔG{sup 0}) were calculated by spectroscopic and calorimetric method. We have also calculated the probability of energy transfer by FRET analysis. The circular dichroism study showed that the cationic surfactant QRMAE significantly altered the secondary structure of HSA as compared to the nonionic rosin surfactants. The thermodynamic study was performed by ITC to determine binding constant as well as change in enthalpy of HSA in presence of rosin surfactants. It clearly showed that hydrogen binding and hydrophobic interaction play an important role in the binding of HSA to rosin surfactants. We have also performed molecular docking studies to locate the binding site on HSA and to visualize the mode of interaction. The present study provides a significant insight into HSA–rosin surfactants interaction, which also improves our understanding of the possible effect of rosin surfactants on human health. - Highlights: • RMPEG 750 has the highest Kb, Kq and Ksv value as compared to other rosin surfactants. • The probability of energy transfer from HSA to rosin surfactants was maximum in the case of RMPEG 750. • Cationic surfactant QRMAE significantly altered the secondary structure of the HSA as compared to other rosin surfactants. • Molecular docking and ITC experiment studies, to locate the binding site on HSA and to investigate the mode of interaction.

  12. Reversal of multidrug resistance by surfactants. (United States)

    Woodcock, D. M.; Linsenmeyer, M. E.; Chojnowski, G.; Kriegler, A. B.; Nink, V.; Webster, L. K.; Sawyer, W. H.


    Cremophor EL, a pharmacologically inactive solubilising agent, has been shown to reverse multidrug resistance (MDR). Using flow cytometric evaluation of equilibrium intracellular levels of daunorubicin (DNR), we found that eight other surface active agents will also reverse MDR. All the active detergents contain polyethoxylated moieties but have no similarities in their hydrophobic components. The properties of three polyethoxylated surfactants that showed the lowest toxicities, Cremophor, Tween 80 and Solutol HS15, were examined in more detail. The concentrations of Tween 80 and Solutol required to reverse DNR exclusion were 10-fold lower than for Cremophor. However while concentrations greater than or equal to 1:10(2) of the former two surfactants resulted in breakdown of cells, even 1:10 of Cremophor did not lyse cells. Studies of the effects of Cremophor on the uptake and efflux of DNR in normal and MDR cell types showed that Cremophor increases intracellular DNR primarily by locking the rapid efflux from the cells. This blockage of drug efflux may be mediated by a substantial alteration in the fluidity of cell membranes induced by Cremophor, as shown by decreased fluorescence anisotropy of a membrane probe. Consistent with these data, coinjection of adriamycin plus Cremophor into mice carrying a multidrug resistant P388 transplantable tumour significantly increased the survival time of the mice compared with adriamycin treatment alone. PMID:1637678

  13. Remote control of soft nano-objects by light using azobenzene containing surfactants (United States)

    Santer, Svetlana


    We review recent progress in the field of light responsive soft nano-objects. These are systems the shape, size, surface area and surface energy of which can be easily changed by low-intensity external irradiation. Here we shall specifically focus on microgels, DNA molecules, polymer brushes and colloidal particles. One convenient way to render these objects photosensitive is to couple them via ionic and/or hydrophobic interactions with azobenzene containing surfactants in a non-covalent way. The advantage of this strategy is that these surfactants can make any type of charged object light responsive without the need for possibly complicated (and irreversible) chemical conjugation. In the following, we will exclusively discuss only photosensitive surfactant systems. These contain a charged head and a hydrophobic tail into which an azobenzene group is incorporated, which can undergo reversible photo-isomerization from a trans- to a cis-configuration under UV illumination. These kinds of photo-isomerizations occur on a picosecond timescale and are fully reversible. The two isomers in general possess different polarity, i.e. the trans-state is less polar with a dipole moment of usually close to 0 Debye, while the cis-isomer has a dipole moment up to 3 Debye or more, depending on additional phenyl ring substituents. As part of the hydrophobic tail of a surfactant molecule, the photo-isomerization also changes the hydrophobicity of the molecule as a whole and hence its solubility, surface energy, and strength of interaction with other substances. Being a molecular actuator, which converts optical energy in to mechanical work, the azobenzene group in the shape of surfactant molecule can be utilized in order to actuate matter on larger time and length scale. In this paper we show several interesting examples, where azobenzene containing surfactants play the role of a transducer mediating between different states of size, shape, surface energy and spatial arrangement of

  14. Biocompatible Amphiphilic Hydrogel-Solid Dimer Particles as Colloidal Surfactants. (United States)

    Chen, Dong; Amstad, Esther; Zhao, Chun-Xia; Cai, Liheng; Fan, Jing; Chen, Qiushui; Hai, Mingtan; Koehler, Stephan; Zhang, Huidan; Liang, Fuxin; Yang, Zhenzhong; Weitz, David A


    Emulsions of two immiscible liquids can slowly coalesce over time when stabilized by surfactant molecules. Pickering emulsions stabilized by colloidal particles can be much more stable. Here, we fabricate biocompatible amphiphilic dimer particles using a hydrogel, a strongly hydrophilic material, and achieve large contrast in the wetting properties of the two bulbs, resulting in enhanced stabilization of emulsions. We generate monodisperse single emulsions of alginate and shellac solution in oil using a flow-focusing microfluidics device. Shellac precipitates from water and forms a solid bulb at the periphery of the droplet when the emulsion is exposed to acid. Molecular interactions result in amphiphilic dimer particles that consist of two joined bulbs: one hydrogel bulb of alginate in water and the other hydrophobic bulb of shellac. Alginate in the hydrogel compartment can be cross-linked using calcium cations to obtain stable particles. Analogous to surfactant molecules at the interface, the resultant amphiphilic particles stand at the water/oil interface with the hydrogel bulb submerged in water and the hydrophobic bulb in oil and are thus able to stabilize both water-in-oil and oil-in-water emulsions, making these amphiphilic hydrogel-solid particles ideal colloidal surfactants for various applications.

  15. Dust as a surfactant

    International Nuclear Information System (INIS)

    Ignatov, A M; Schram, P P J M; Trigger, S A


    We argue that dust immersed in a plasma sheath acts as a surfactant. By considering the momentum balance in a plasma sheath, we evaluate the dependence of the plasma surface pressure on the dust density. It is shown that the dust may reduce the surface pressure, giving rise to a sufficiently strong tangential force. The latter is capable of confining the dust layer inside the sheath in the direction perpendicular to the ion flow

  16. Strong cooperative effect of oppositely charged surfactant mixtures on their adsorption and packing at the air-water interface and interfacial water structure. (United States)

    Nguyen, Khoi T; Nguyen, Tuan D; Nguyen, Anh V


    Remarkable adsorption enhancement and packing of dilute mixtures of water-soluble oppositely-charged surfactants, sodium dodecyl sulfate (SDS) and dodecyl amine hydrochloride (DAH), at the air-water interface were observed by using sum frequency generation spectroscopy and tensiometry. The interfacial water structure was also observed to be significantly influenced by the SDS-DAH mixtures, differently from the synergy of the single surfactants. Most strikingly, the obtained spectroscopic evidence suggests that the interfacial hydrophobic alkyl chains of the binary mixtures assemble differently from those of single surfactants. This study highlights the significance of the cooperative interaction between the headgroups of oppositely charged binary surfactant systems and subsequently provides some insightful observations about the molecular structure of the air-aqueous interfacial water molecules and, more importantly, about the packing nature of the surfactant hydrophobic chains of dilute SDS-DAH mixtures of concentration below 1% of the CMC.


    Directory of Open Access Journals (Sweden)

    Pirog T. Р.


    Full Text Available The review is devoted to surface-active glycolipids. The general characteristics, the physiological role of the rhamnolipids, trehalose lipids, sophorolipids, mannosylerythritol lipids and their traditional producers — the representatives of the genera Pseudozyma, Pseudomonas, Rhodococcus and Candida are given. The detailed analysis of the chemical structure, the stages of the biosynthesis and the regulation of some low molecular glycolipids are done. The own experimental data concerning the synthesis intensification, the physiological role and the practical use of Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii IMV B-7405 surfactants, which are a complex of the glyco-, phospho-, amino- and neutral lipids (glycolipids of all strains are presented by trehalose mycolates are summarized. It was found that R. erythropolis IMV Ac-5017, A. calcoaceticus IMV B-7241 and N. vaccinii IMV B-7405 surfactants have protective, antimicrobial and antiadhesive properties. It was shown that R. erythropolis IMV Ac-5017, A. calcoaceticus IMV B-7241 and N. vaccinii IMV B-7405 surfactants preparation of cultural liquid intensified the degradation of oil in water due to the activation of the natural petroleum-oxidizing microflora.

  18. Biodegradability of bacterial surfactants. (United States)

    Lima, Tânia M S; Procópio, Lorena C; Brandão, Felipe D; Carvalho, André M X; Tótola, Marcos R; Borges, Arnaldo C


    This work aimed at evaluating the biodegradability of different bacterial surfactants in liquid medium and in soil microcosms. The biodegradability of biosurfactants by pure and mixed bacterial cultures was evaluated through CO(2) evolution. Three bacterial strains, Acinetobacter baumanni LBBMA ES11, Acinetobacter haemolyticus LBBMA 53 and Pseudomonas sp. LBBMA 101B, used the biosurfactants produced by Bacillus sp. LBBMA 111A (mixed lipopeptide), Bacillus subtilis LBBMA 155 (lipopeptide), Flavobacterium sp. LBBMA 168 (mixture of flavolipids), Dietzia Maris LBBMA 191(glycolipid) and Arthrobacter oxydans LBBMA 201(lipopeptide) as carbon sources in minimal medium. The synthetic surfactant sodium dodecyl sulfate (SDS) was also mineralized by these microorganisms, but at a lower rate. CO(2) emitted by a mixed bacterial culture in soil microcosms with biosurfactants was higher than in the microcosm containing SDS. Biosurfactant mineralization in soil was confirmed by the increase in surface tension of the soil aqueous extracts after incubation with the mixed bacterial culture. It can be concluded that, in terms of biodegradability and environmental security, these compounds are more suitable for applications in remediation technologies in comparison to synthetic surfactants. However, more information is needed on structure of biosurfactants, their interaction with soil and contaminants and scale up and cost for biosurfactant production.

  19. Micelle formation of nonionic surfactants in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate: surfactant chain length dependence of the critical micelle concentration. (United States)

    Inoue, Tohru; Yamakawa, Haruka


    Micellization behavior was investigated for polyoxyethylene-type nonionic surfactants with varying chain length (C(n)E(m)) in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)). Critical micelle concentration (cmc) was determined from the variation of (1)H NMR chemical shift with the surfactant concentration. The logarithmic value of cmc decreased linearly with the number of carbon atoms in the surfactant hydrocarbon chain, similarly to the case observed in aqueous surfactant solutions. However, the slope of the straight line is much smaller in bmimBF(4) than in aqueous solution. Thermodynamic parameters for micelle formation estimated from the temperature dependence of cmc showed that the micellization in bmimBF(4) is an entropy-driven process around room temperature. This behavior is also similar to the case in aqueous solution. However, the magnitude of the entropic contribution to the overall micellization free energy in bmimBF(4) is much smaller compared with that in aqueous solution. These results suggest that the micellization in bmimBF(4) proceeds through a mechanism similar to the hydrophobic interaction in aqueous surfactant solutions, although the solvophobic effect in bmimBF(4) is much weaker than the hydrophobic effect. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Fluoroalkyl and Alkyl Chains Have Similar Hydrophobicities in Binding to the “Hydrophobic Wall” of Carbonic Anhydrase

    Energy Technology Data Exchange (ETDEWEB)

    J Mecinovic; P Snyder; K Mirica; S Bai; E Mack; R Kwant; D Moustakas; A Heroux; G Whitesides


    The hydrophobic effect, the free-energetically favorable association of nonpolar solutes in water, makes a dominant contribution to binding of many systems of ligands and proteins. The objective of this study was to examine the hydrophobic effect in biomolecular recognition using two chemically different but structurally similar hydrophobic groups, aliphatic hydrocarbons and aliphatic fluorocarbons, and to determine whether the hydrophobicity of the two groups could be distinguished by thermodynamic and biostructural analysis. This paper uses isothermal titration calorimetry (ITC) to examine the thermodynamics of binding of benzenesulfonamides substituted in the para position with alkyl and fluoroalkyl chains (H{sub 2}NSO{sub 2}C{sub 6}H{sub 4}-CONHCH{sub 2}(CX{sub 2}){sub n}CX{sub 3}, n = 0-4, X = H, F) to human carbonic anhydrase II (HCA II). Both alkyl and fluoroalkyl substituents contribute favorably to the enthalpy and the entropy of binding; these contributions increase as the length of chain of the hydrophobic substituent increases. Crystallography of the protein-ligand complexes indicates that the benzenesulfonamide groups of all ligands examined bind with similar geometry, that the tail groups associate with the hydrophobic wall of HCA II (which is made up of the side chains of residues Phe131, Val135, Pro202, and Leu204), and that the structure of the protein is indistinguishable for all but one of the complexes (the longest member of the fluoroalkyl series). Analysis of the thermodynamics of binding as a function of structure is compatible with the hypothesis that hydrophobic binding of both alkyl and fluoroalkyl chains to hydrophobic surface of carbonic anhydrase is due primarily to the release of nonoptimally hydrogen-bonded water molecules that hydrate the binding cavity (including the hydrophobic wall) of HCA II and to the release of water molecules that surround the hydrophobic chain of the ligands. This study defines the balance of enthalpic and

  1. Synthesis of polymer nanostructures via the use of surfactant surface aggregates as templates (United States)

    Marquez, Maricel

    method for the formation of nanometer-scale polymer structures on solid surfaces via template assisted admicellar polymerization (TAAP) is described. Admicellar polymerization uses a surfactant layer adsorbed on a surface to localize monomer to the surface prior to polymerization of the monomer. TAAP refers to nanostructures that form by restricting adsorption to the uncovered sites of an already-templated surface. In this case, the interstitial sites between adsorbed latex spheres were used as the template. Unlike most other process that form polymer nanostructures, polymer dimensions can be significantly smaller than the interstitial size because of sphere-surfactant-monomer interactions. As a proof of concept, nanostructures formed via TAAP were compared to structures prepared by others via adsorption of three different proteins (Bovine serum albumin, fibrinogen, and anti-mouse IgG) in the interstitial sites of colloidal monolayers. The size and shape of the nanostructures formed (honeycomb vs. pillars) was dependent upon the size of the spheres utilized and the method of polymer deposition (i.e. admicellar polymerization vs. polymer adsorption). Thinner honeycomb walls, and larger separation distances between the template and the nanostructures were consistently found for TAAP. In chapter 4, an in-depth study of the factors affecting TAAP is presented for three different monomers: aniline, pyrrole and methyl methacrylate; and three different surfaces: highly ordered pyrolytic graphite (HOPG), gold, and SiO2. Among the parameters discussed are the effect of monomer and surfactant concentration, surfactant chain length, polymerization time and temperature, solution ionic strength, substrate choice and surface treatment. Control over these parameters allowed the synthesis of polymer nanopillars, nanorings, honeycombs, and "honeytubes." Experimental results showed that the nanostructures' morphology can be effectively modified by changing the length of the hydrophobic

  2. Influence of clay and surfactant content in non-aqueous fluid rheology

    International Nuclear Information System (INIS)

    Guedes, I.C.; Gomes, N.L.; Menezes, R.R.; Campos, L.F.A.; Ferreira, H.S.


    The bentonite clay used as viscosity agent in the production of non-aqueous fluids cannot be used without organic treatment for their surfaces to become hydrophobic. These clays are called organophilic clays, and are generally obtained by adding, in an aqueous way, ionic or a nonionic surfactant. Recent studies of the variables involved in the dispersion of bentonite clays and in the process of organophilization, showed their lack of influence. This work aims to study the influence of clay content and surfactants on the rheology of nonaqueous fluids. To this end, the clays were treats and characterized, evidencing the incorporation of the surfactant, and then formulated non-aqueous fluids, following PETROBRAS standards, being possible to verify the influence of clay content and surfactant both from the point of view as the characterizing and rheological behavior. (author)

  3. Surfactant-Mediated Growth Revisited

    International Nuclear Information System (INIS)

    Meyerheim, H. L.; Sander, D.; Popescu, R.; Pan, W.; Kirschner, J.; Popa, I.


    The x-ray structure analysis of the oxygen-surfactant-mediated growth of Ni on Cu(001) identifies up to 0.15 monolayers of oxygen in subsurface octahedral sites. This questions the validity of the general view that surfactant oxygen floats on top of the growing Ni film. Rather, the surfactant action is ascribed to an oxygen-enriched zone extending over the two topmost layers. Surface stress measurements support this finding. Our results have important implications for the microscopic understanding of surfactant-mediated growth and the change of the magnetic anisotropy of the Ni films

  4. Adsorption of naphthalene and ozone on atmospheric air/ice interfaces coated with surfactants: a molecular simulation study. (United States)

    Liyana-Arachchi, Thilanga P; Valsaraj, Kalliat T; Hung, Francisco R


    The adsorption of gas-phase naphthalene and ozone molecules onto air/ice interfaces coated with different surfactant species (1-octanol, 1-hexadecanol, or 1-octanal) was investigated using classical molecular dynamics (MD) simulations. Naphthalene and ozone exhibit a strong preference to be adsorbed at the surfactant-coated air/ice interfaces, as opposed to either being dissolved into the bulk of the quasi-liquid layer (QLL) or being incorporated into the ice crystals. The QLL becomes thinner when the air/ice interface is coated with surfactant molecules. The adsorption of both naphthalene and ozone onto surfactant-coated air/ice interfaces is enhanced when compared to bare air/ice interface. Both naphthalene and ozone tend to stay dissolved in the surfactant layer and close to the QLL, rather than adsorbing on top of the surfactant molecules and close to the air region of our systems. Surfactants prefer to orient at a tilted angle with respect to the air/ice interface; the angular distribution and the most preferred angle vary depending on the hydrophilic end group, the length of the hydrophobic tail, and the surfactant concentration at the air/ice interface. Naphthalene prefers to have a flat orientation on the surfactant coated air/ice interface, except at high concentrations of 1-hexadecanol at the air/ice interface; the angular distribution of naphthalene depends on the specific surfactant and its concentration at the air/ice interface. The dynamics of naphthalene molecules at the surfactant-coated air/ice interface slow down as compared to those observed at bare air/ice interfaces. The presence of surfactants does not seem to affect the self-association of naphthalene molecules at the air/ice interface, at least for the specific surfactants and the range of concentrations considered in this study.

  5. Aerobic biodegradation of amphoteric amine-oxide-based surfactants: Effect of molecular structure, initial surfactant concentration and pH. (United States)

    Ríos, Francisco; Lechuga, Manuela; Fernández-Serrano, Mercedes; Fernández-Arteaga, Alejandro


    The present study was designed to provide information regarding the effect of the molecular structure of amphoteric amine-oxide-based surfactants and the initial surfactant concentration on their ultimate biodegradation. Moreover, given this parameter's pH-dependence, the effect of pH was also investigated. Three amine-oxide-based surfactants with structural differences in their hydrophobic alkyl chain were tested: Lauramine oxide (AO-R 12 ), Myristamine oxide (AO-R 14 ) and Cocamidopropylamine oxide (AO-Cocoamido). We studied the ultimate biodegradation using the Modified OECD Screening Test at initial surfactant concentrations ranged from 5 to 75 mg L -1 and at pH levels from 5 to 7.4. The results demonstrate that at pH 7.4, amine-oxide-based surfactants are readily biodegradable. In this study, we concluded that ω-oxidation can be assumed to be the main biodegradation pathway of amine-oxides and that differences in the biodegradability between them can be explained by the presence of an amide group in the alkyl chain of AO-Cocoamido; the CN fission of the amide group slows down their mineralization process. In addition, the increase in the concentration of the surfactant from 5 to 75 mg L -1 resulted in an increase in the final biodegradation of AO-R 12 and AO-R 14 . However, in the case of AO-Cocoamido, a clear relationship between the concentration and biodegradation cannot be stated. Conversely, the biodegradability of AO-R 12 and AO-R 14 was considerably lower in an acid condition than at a pH of 7.4, whereas AO-Cocoamido reached similar percentages in acid conditions and at a neutral pH. However, microorganisms required more time to acclimate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Optimization of surfactant-aided remediation of industrially contaminated soils

    International Nuclear Information System (INIS)

    Joshi, M.M.; Lee, S.


    Soil matrices contaminated with polycyclic aromatic hydrocarbons (PAHs) abound at the sites of coke-oven gas plants, refineries, and many other major chemical industries. The removal of PAHs from soil using pure water, via soil washing (ex situ) or soil flushing (in situ), is quite ineffective due to their low solubility and hydrophobicity. However, addition of suitable surfactant(s) has been shown to increase the removal efficiency several fold. For the present work, the removal of PAHs occurring in industrially contaminated soil was studied. The objective was to use a nonionic surfactant solution for in situ soil flushing and to evaluate the optimal range of process parameters that can significantly increase the removal efficiency. The process parameters chosen were surfactant concentration, ratio of washing solution volume to soil weight, and temperature of washing solution. These parameters were found to have a significant effect on PAH removal from the contaminated soil and an optimal range was determined for each parameter under given washing conditions

  7. Lactose oleate as new biocompatible surfactant for pharmaceutical applications. (United States)

    Perinelli, D R; Lucarini, S; Fagioli, L; Campana, R; Vllasaliu, D; Duranti, A; Casettari, L


    Sugar fatty acid esters are an interesting class of non-ionic, biocompatible and biodegradable sugar-based surfactants, recently emerged as a valid alternative to the traditional commonly employed (e.g. polysorbates and polyethylene glycol derivatives). By varying the polar head (carbohydrate moiety) and the hydrophobic tail (fatty acid), surfactants with different physico-chemical characteristics can be easily prepared. While many research papers have focused on sucrose derivatives, relatively few studies have been carried out on lactose-based surfactants. In this work, we present the synthesis and the physico-chemical characterization of lactose oleate. The new derivative was obtained by enzymatic mono-esterification of lactose with oleic acid. Thermal, surface, and aggregation properties of the surfactant were studied in detail and the cytotoxicity profile was investigated by MTS and LDH assays on intestinal Caco-2 monolayers. Transepithelial electrical resistance (TEER) measurements on Caco-2 cells showed a transient and reversible effect on the tight junctions opening, which correlates with the increased permeability of 4 kDa fluorescein-labelled dextran (as model for macromolecular drugs) in a concentration dependent manner. Moreover, lactose oleate displayed a satisfactory antimicrobial activity over a range of Gram-positive and Gram-negative bacteria. Overall, the obtained results are promising for a further development of lactose oleate as an intestinal absorption enhancer and/or an alternative biodegradable preservative for pharmaceutical and food applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Hydrophobic interactions between polymethacrylic acid and sodium laureth sulfate in aqueous solutions (United States)

    Yaremko, Z. M.; Fedushinskaya, L. B.; Burka, O. A.; Soltys, M. N.


    The role of hydrophobic interaction in the development of associative processes is demonstrated, based on the concentration dependences of the viscosity and pH of binary solutions of polymethacrylic acid as an anionic polyelectrolyte and sodium laureth sulfate as an anionic surfactant. It is found that the inflection point on the dependence of the difference between the pH values of binary solutions of polymethacrylic acid and sodium laureth sulfate on the polyelectrolyte concentration is a criterion for determining the predominant contribution from hydrophobic interaction, as is the inflection point on the dependence of pH of individual solutions of polymethacrylic acid on the polyelectrolyte concentration.

  9. Surfactant-enhanced electrokinetic remediation of soil contaminated with hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.W.; Park, J.Y.; Lee, H.H.; Cho, H.J. [Dept. of Chemical Engineering, Korea Advanced Inst. of Science and Technology, Taejon (Korea)


    Removal of hydrophobic organic contaminants (HOCs) using electrokinetic method was studied in a model system. Kaolinite and phenanthrene were selected as the model clay soil and representative HOC. Three different types of surfactants, APG (alkyl polyglucoside), Brij30 (polyoxyethylene 4 lauryl ether), and SDS (sodium dodecyl sulfate), were used to enhance the solubility of HOCs. Electrokinetic (EK) column experiments were performed using water, surfactant solution, and acetate buffer solution under a constant current condition. Voltage and flow through the soil system were interpreted with time. Electrolyte pH at the anode and cathode compartments was observed for operation time. Removal efficiency of phenanthrene was examined after the end of EK operation during 2, 4, and 6 weeks. (orig.)

  10. Surfactant phosphatidylcholine metabolism and surfactant function in preterm, ventilated lambs

    International Nuclear Information System (INIS)

    Jobe, A.H.; Ikegami, M.; Seidner, S.R.; Pettenazzo, A.; Ruffini, L.


    Preterm lambs were delivered at 138 days gestational age and ventilated for periods up to 24 h in order to study surfactant metabolism and surfactant function. The surfactant-saturated phosphatidylcholine pool in the alveolar wash was 13 +/- 4 mumol/kg and did not change from 10 min to 24 h after birth. Trace amounts of labeled natural sheep surfactant were mixed with fetal lung fluid at birth. By 24 h, 80% of the label had become lung-tissue-associated, yet there was no loss of label from phosphatidylcholine in the lungs when calculated as the sum of the lung tissue plus alveolar wash. De novo synthesized phosphatidylcholine was labeled with choline given by intravascular injection at 1 h of age. Labeled phosphatidylcholine accumulated in the lung tissue linearly to 24 h, and the labeled phosphatidylcholine moved through lamellar body to alveolar pools. The turnover time for alveolar phosphatidylcholine was estimated to be about 13 h, indicating an active metabolic pool. A less surface-active surfactant fraction recovered as a supernatant after centrifugation of the alveolar washes at 40,000 x g increased from birth to 10 min of ventilation, but no subsequent changes in the distribution of surfactant phosphatidylcholine in surfactant fractions occurred. The results were consistent with recycling pathway(s) that maintained surface-active surfactant pools in preterm ventilated lambs

  11. Adsorption of dissymmetric cationic gemini surfactants at silica/water interface (United States)

    Sun, Yuhai; Feng, Yujun; Dong, Hongwei; Chen, Zhi


    Adsorption of a series of cationic gemini surfactants 12-2- m ( m = 8, 12, 16) on the surface of silica was investigated. The critical micelle concentrations, cmcs, of cationic gemini surfactants in the initial solutions and in the supernatants were measured by conductometry and tensiometer. The changes in cmc values indicate that the ion exchanges take place between polar groups of gemini surfactants adsorbed and ions bound on the surface of silica. The adsorption isotherms of cationic gemini surfactants were obtained by a solution depletion method. Based on the driving force, the adsorption includes two steps, one of which is ion exchange, and the other is hydrophobic interaction. In each step, the tendency of surfactant molecules in the solution to form aggregates or to be adsorbed on the silica varies with their structures. The maximum adsorption amount of gemini surfactants on the silica, τmax, decreases as increasing in the length of one alkyl chain, m, from 8, 12 to 16. So the results show that the adsorption behaviors of gemini surfactants are closely related to the dissymmetry of gemini molecules.

  12. Some aspects of surfactant action mechanism in the organic reagents - metal ions systems

    Energy Technology Data Exchange (ETDEWEB)

    Chernova, R K; Shtykov, S N; Beloliptseva, G M; Sukhova, L K; Amelin, V G; Kulapina, E G [Saratovskij Gosudarstvennyj Univ. (USSR)


    Results are reviewed of investigations into the interaction of ions of Mo(6), W, Zr, Be, Sc, Nb, Ta, J, rare earths, a. o. with organic reagents of triphenylmethane class in the 8M H/sub 2/SO/sub 4/-pH14 acidity range and the 1x10/sup -3/-5x10/sup -6/ M concentration range both in the presence and absence of different surfactant type (cetylpyridine, methyltrimethylammonium, synthanols, etc). Three types of effects, determining enhancement of the sensitivity and selectivity of reactions jn the Me-R-surfactant systems, were determined: an increase in the number of coordinated ligands, the activating effect of cation surfactants resulting in a potential complexing in acid media, multicenter interaction of polydentate ligands both via chelating groups and auxochrome groups in the presence of cation surfactants. Protolytic and flotation properties of ionic associates are considered. The observed effects are explained from the viewpoint of electrostatic and hydrophobic interactions in the R-surfactant systems, observed by the methods of NMR, polarography amperometry, conductometry. A possible use of the investigated M-R-surfactant systems as complexonometric indicators was evaluated. A possibility was shown of using them for direct titrimetric determination of hundredth milligram portions of Cu, Ga, In and Sc at a titrant concentratjon of less than 0.01 M. It follows from the estimation of basic optical parameters of the Me-R-surfactant systems that detection.

  13. Some aspects of surfactant action mechanism in the organic reagents - metal ions systems

    International Nuclear Information System (INIS)

    Chernova, R.K.; Shtykov, S.N.; Beloliptseva, G.M.; Sukhova, L.K.; Amelin, V.G.; Kulapina, E.G.


    Results are reviewed of investigations into the interaction of ions of Mo(6), W, Zr, Be, Sc, Nb, Ta, J, rare earths, a. o. with organic reagents of triphenylmethane class in the 8M H 2 SO 4 -pH14 acidity range and the 1x10 -3 -5x10 -6 M concentration range both in the presence and absence of different surfactant type (cetylpyridine, methyltrimethylammonium, synthanols, etc). Three types of effects, determining enhancement of the sensitivity and selectivity of reactions jn the Me-R-surfactant systems, were determined: an increase in the number of coordinated ligands, the activating effect of cation surfactants resulting in a potential complexing in acid media, multicenter interaction of polydentate ligands both via chelating groups and auxochrome groups in the presence of cation surfactants. Protolytic and flotation properties of ionic associates are considered. The observed effects are explained from the viewpoint of electrostatic and hydrophobic interactions in the R-surfactant systems, observed by the methods of NMR, polarography amperometry, conductometry. A possible use of the investigated M-R-surfactant systems as complexonometric indicators was evaluated. A possibility was shown of using them for direct titrimetric determination of hundredth milligram portions of Cu, Ga, In and Sc at a titrant concentratjon of less than 0.01 M. It follows from the estimation of basic optical parameters of the Me-R-surfactant systems that detection

  14. Impact of cationic surfactant on the self-assembly of sodium caseinate. (United States)

    Vinceković, Marko; Curlin, Marija; Jurašin, Darija


    The impact of a cationic surfactant, dodecylammonium chloride (DDACl), on the self-assembly of sodium caseinate (SC) has been investigated by light scattering, zeta potential, and rheological measurements as well as by microscopy (transmission electron and confocal laser scanning microscopy). In SC dilute solutions concentration-dependent self-assembly proceeds through the formation of spherical associates and their aggregation into elongated structures composed of connected spheres. DDACl interacts with SC via its hydrophilic and hydrophobic groups, inducing changes in SC self-assembled structures. These changes strongly depend on the surfactant aggregation states (monomeric or micellar) as well as concentration ratio of both components, leading to the formation of soluble and insoluble complexes of nano- to microdimensions. DDACl monomers interact with SC self-assembled entities in a different way compared to their micelles. Surfactant monomers form soluble complexes (similar to surfactant mixed micelles) at lower SC concentration but insoluble gelatinous complexes at higher SC concentration. At surfactant micellar concentration soluble complexes with casein chains wrapped around surfactant micelles are formed. This study suggests that the use of proper cationic surfactant concentration will allow modification and control of structural changes of SC self-assembled entities.

  15. Surfactant-adsorption-induced initial depinning behavior in evaporating water and nanofluid sessile droplets. (United States)

    Zhong, Xin; Duan, Fei


    A surfactant-induced autophobic effect has been observed to initiate an intense depinning behavior at the initial stage of evaporation in both pure water and nanofluid sessile droplets. The cationic surfactant adsorbing to the negatively charged silicon wafer makes the solid surface more hydrophobic. The autophobing-induced depinning behavior, leading to an enlarged contact angle and a shortened base diameter, takes place only when the surfactant concentration is below its critical micelle concentration (cmc). The initial spreading degree right before the droplet retraction, the retracting velocity of the contact line, and the duration of the initial droplet retraction are shown to depend negatively on the surfactant concentration below the cmc. An unexpected enhancement in the initial depinning has been found in the nanofluid droplets, possibly resulting from the hydrophilic interplay between the graphite nanoparticle deposition and the surfactant molecules. Such promotion of the initial depinning due to the nanoparticle deposition makes the droplet retract even at a surfactant concentration higher than the cmc (1.5 cmc). The resulting deposition formed in the presence of the depinning behavior has great enhancement for coffee-ring formation as compared to the one free of surfactant, implying that the formation of a coffee ring does not require the pinning of the contact line during the entire drying process.

  16. Molecular self assembly of mixed comb-like dextran surfactant polymers for SPR virus detection. (United States)

    Mai-Ngam, Katanchalee; Kiatpathomchai, Wansika; Arunrut, Narong; Sansatsadeekul, Jitlada


    The synthesis of two comb-like dextran surfactant polymers, that are different in their dextran molecular weight (MW) distribution and the presence of carboxylic groups, and their characterization are reported. A bimodal carboxylic dextran surfactant polymer consists of poly(vinyl amine) (PVAm) backbone with carboxyl higher MW dextran, non-functionalized lower MW dextran and hydrophobic hexyl branches; while a monomodal dextran surfactant polymer is PVAm grafted with non-functionalized lower MW dextran and hexyl branches. Layer formation of non-covalently attached dextran chains with bimodal MW distributions on a surface plasmon resonance (SPR) chip was investigated from the perspective of mixed physisorption of the bimodal and monomodal surfactant polymers. Separation distances between the carboxylic longer dextran side chains within the bimodal surfactant polymer and between the whole bimodal surfactant molecules on the chip surface could be well-controlled. SPR analysis of shrimp yellow head virus using our mixed surfactant chips showed dependence on synergetic adjustment of these separation distances. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Vacuolar ATPase regulates surfactant secretion in rat alveolar type II cells by modulating lamellar body calcium.

    Directory of Open Access Journals (Sweden)

    Narendranath Reddy Chintagari


    Full Text Available Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase is the enzyme responsible for pumping H(+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1, an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca(2+ chelator, BAPTA-AM, the protein kinase C (PKC inhibitor, staurosporine, and the Ca(2+/calmodulin-dependent protein kinase II (CaMKII, KN-62. Baf A1 induced Ca(2+ release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca(2+ pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca(2+ mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion.

  18. Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography. (United States)

    Vu, Anh T; Wang, Xinying; Wickramasinghe, S Ranil; Yu, Bing; Yuan, Hua; Cong, Hailin; Luo, Yongli; Tang, Jianguo


    Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Self-Assembling Peptide Surfactants A6K and A6D Adopt a-Helical Structures Useful for Membrane Protein Stabilization

    Directory of Open Access Journals (Sweden)

    Furen Zhuang


    Full Text Available Elucidation of membrane protein structures have been greatly hampered by difficulties in producing adequately large quantities of the functional protein and stabilizing them. A6D and A6K are promising solutions to the problem and have recently been used for the rapid production of membrane-bound G protein-coupled receptors (GPCRs. We propose that despite their short lengths, these peptides can adopt α-helical structures through interactions with micelles formed by the peptides themselves. These α-helices are then able to stabilize α-helical motifs which many membrane proteins contain. We also show that A6D and A6K can form β-sheets and appear as weak hydrogels at sufficiently high concentrations. Furthermore, A6D and A6K together in sodium dodecyl sulfate (SDS can form expected β-sheet structures via a surprising α-helical intermediate.


    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  1. The Manipulation of Hydrophobicity in Catalyst Design for Applications of Aerobic Alcohols Oxidation and Electrocatalytic Water Oxidation

    KAUST Repository

    Chen, Batian


    Hydrophobicity is the generalized characteristic of non-polar substances that brings about their exclusion from aqueous phases. This property, entropic in its nature, drives key self-assembly and phase separation processes in water. Protein folding, the formation of DNA double helix, the existence of lipid bilayers and the wetting properties of leaf surfaces are all due to hydrophobic interactions. Inspired by Nature, we aimed to use hydrophobicity for creating novel and improved catalytic systems. (I) A number of fluorous amphiphilic star block-copolymers containing a tris(benzyltriazolylmethyl)amine motif have been prepared. These polymers assembled into well-defined nanostructures in water, and their mode of assembly could be controlled by changing the composition of the polymer. The polymers were used for enzyme-inspired catalysis of alcohol oxidation. (II) An enzyme-inspired catalytic system based on a rationally designed multifunctional surfactant was developed. The resulting micelles feature metal-binding sites and stable free radical moieties as well as fluorous pockets that attract and preconcentrate molecular oxygen. In the presence of copper ions, the micelles effect chemoselective aerobic alcohol oxidation under ambient conditions in water, a transformation that is challenging to achieve nonenzymatically. (III) Development of a facile means of photo/electrocatalytic water splitting is one of the main barriers to establishing of a solar hydrogen economy. Of the two half-reactions involved in splitting water into O2 and H2, water oxidation presents the most challenge due to its mechanistic complexity. A practical water oxidation catalyst must be highly active, yet inexpensive and indefinitely stable under harsh oxidative conditions. Here, I shall describe the synthesis of a library of molecular water oxidation catalysts based on the Co complex of tris(2-benzimidazolylmethyl)amine, (BimH)3. A wide range of catalysts differing in their electronic properties

  2. Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films

    DEFF Research Database (Denmark)

    Ortiz, Elisa Parra; Perez-Gil, Jesús


    of breathing and avoiding alveolar collapse, especially at the end of expiration. The goal of the present review is to summarize current knowledge regarding the structure, lipid-protein interactions and mechanical features of surfactant membranes and films and how these properties correlate with surfactant...... biological function inside the lungs. Surfactant mechanical properties can be severely compromised by different agents, which lead to surfactant inhibition and ultimately contributes to the development of pulmonary disorders and pathologies in newborns, children and adults. A detailed comprehension...

  3. Structure-function relationships in pulmonary surfactant membranes: from biophysics to therapy. (United States)

    Lopez-Rodriguez, Elena; Pérez-Gil, Jesús


    Pulmonary surfactant is an essential lipid-protein complex to maintain an operative respiratory surface at the mammalian lungs. It reduces surface tension at the alveolar air-liquid interface to stabilise the lungs against physical forces operating along the compression-expansion breathing cycles. At the same time, surfactant integrates elements establishing a primary barrier against the entry of pathogens. Lack or deficiencies of the surfactant system are associated with respiratory pathologies, which treatment often includes supplementation with exogenous materials. The present review summarises current models on the molecular mechanisms of surfactant function, with particular emphasis in its biophysical properties to stabilise the lungs and the molecular alterations connecting impaired surfactant with diseased organs. It also provides a perspective on the current surfactant-based strategies to treat respiratory pathologies. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Respiratory Mechanics and Gas Exchange: The Effect of Surfactants (United States)

    Jbaily, Abdulrahman; Szeri, Andrew J.


    The purpose of the lung is to exchange gases, primarily oxygen and carbon dioxide, between the atmosphere and the circulatory system. To enable this exchange, the airways in the lungs terminate in some 300 million alveoli that provide adequate surface area for transport. During breathing, work must be done to stretch various tissues to accommodate a greater volume of gas. Considerable work must also be done to expand the liquid lining (hypophase) that coats the interior surfaces of the alveoli. This is enabled by a surface active lipo-protein complex, known as pulmonary surfactant, that modifies the surface tension at the hypophase-air interface. Surfactants also serve as physical barriers that modify the rate of gas transfer across interfaces. We develop a mathematical model to study the action of pulmonary surfactant and its determinative contributions to breathing. The model is used to explore the influence of surfactants on alveolar mechanics and on gas exchange: it relates the work of respiration at the level of the alveolus to the gas exchange rate through the changing influence of pulmonary surfactant over the breathing cycle. This work is motivated by a need to develop improved surfactant replacement therapies to treat serious medical conditions.

  5. Effect of surfactant species and electrophoretic medium composition on the electrophoretic behavior of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis. (United States)

    Fukai, Nao; Kitagawa, Shinya; Ohtani, Hajime


    We have recently demonstrated the separation of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis (NACZE) using a cationic surfactant of cetyltrimethylammonium chloride (CTAC). In this study, eight ionic surfactants were investigated for the separation of four synthetic polymers (polystyrene, polymethylmethacrylates, polybutadiene, and polycarbonate); only three surfactants (CTAC, dimethyldioctadecylammonium bromide, and sodium dodecylsulfate) caused their separation. The order of the interaction between the polymers and the surfactants depended on both the surfactant species and the composition of the electrophoretic medium. Their investigation revealed that the separation is majorly affected by the hydrophobic interactions between the polymers and the ionic surfactants. In addition, the electrophoretic behavior of polycarbonate suggested that electrostatic interaction also affects the selectivity of the polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Nanobubbles Form at Active Hydrophobic Spots on the Luminal Aspect of Blood Vessels: Consequences for Decompression Illness in Diving and Possible Implications for Autoimmune Disease—An Overview

    Directory of Open Access Journals (Sweden)

    Ran Arieli


    Full Text Available Decompression illness (DCI occurs following a reduction in ambient pressure. Decompression bubbles can expand and develop only from pre-existing gas micronuclei. The different hypotheses hitherto proposed regarding the nucleation and stabilization of gas micronuclei have never been validated. It is known that nanobubbles form spontaneously when a smooth hydrophobic surface is submerged in water containing dissolved gas. These nanobubbles may be the long sought-after gas micronuclei underlying decompression bubbles and DCI. We exposed hydrophobic and hydrophilic silicon wafers under water to hyperbaric pressure. After decompression, bubbles appeared on the hydrophobic but not the hydrophilic wafers. In a further series of experiments, we placed large ovine blood vessels in a cooled high pressure chamber at 1,000 kPa for about 20 h. Bubbles evolved at definite spots in all the types of blood vessels. These bubble-producing spots stained positive for lipids, and were henceforth termed “active hydrophobic spots” (AHS. The lung surfactant dipalmitoylphosphatidylcholine (DPPC, was found both in the plasma of the sheep and at the AHS. Bubbles detached from the blood vessel in pulsatile flow after reaching a mean diameter of ~1.0 mm. Bubble expansion was bi-phasic—a slow initiation phase which peaked 45 min after decompression, followed by fast diffusion-controlled growth. Many features of decompression from diving correlate with this finding of AHS on the blood vessels. (1 Variability between bubblers and non-bubblers. (2 An age-related effect and adaptation. (3 The increased risk of DCI on a second dive. (4 Symptoms of neurologic decompression sickness. (5 Preconditioning before a dive. (6 A bi-phasic mechanism of bubble expansion. (7 Increased bubble formation with depth. (8 Endothelial injury. (9 The presence of endothelial microparticles. Finally, constant contact between nanobubbles and plasma may result in distortion of proteins and their

  7. Nonlinear vibrational spectroscopy of surfactants at liquid interfaces (United States)

    Miranda, Paulo Barbeitas

    solid/liquid interface. It is shown that the conformation of a monolayer adsorbed onto a solid substrate and immersed in a liquid is highly dependent on the monolayer surface density and on the nature of intermolecular interactions in the liquid. Fully packed monolayers are well ordered in any environment due to strong surfactant-surfactant interactions and limited liquid penetration into the monolayer. In contrast, loosely packed monolayers are very sensitive to the liquid environment. Non-polar liquids cause a mild increase in the surfactant conformational disorder. Polar liquids induce more disorder and hydrogen-bonding liquids produce highly disordered conformations due to the hydrophobic effect. When immersed in alkanes, under certain conditions the surfactant chains may become highly ordered due to their interaction with the liquid molecules (chain-chain interaction). In the case of long-chain alcohols, competition between the hydrophobic effect and chain-chain interaction is observed.

  8. Gemini surfactant for fluorescent and stable quantum dots in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Li Haibing [Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China); Wang Xiaoqiong [Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 (China); Gao Zhinong [Department of Chemistry, Wuhan University, Wuhan 430072 (China); He Zhike [Department of Chemistry, Wuhan University, Wuhan 430072 (China)


    Highly fluorescent and stable CdSe/ZnS core/shell quantum dots (QDs) coated with gemini surfactant are successfully synthesized in aqueous media. Analyses of luminescence spectrometry, ultraviolet-visible (UV-vis) spectrophotometry, and transmission electron micrographs (TEMs) indicate that the water-soluble QDs are monodisperse and have a luminescence enhancement compared with the original hydrophobic QDs. The water-soluble QDs coated with gemini surfactant are shown to be biocompatible, photostable, and have been proven to be suitable for live cell imaging.

  9. Gemini surfactant for fluorescent and stable quantum dots in aqueous solution

    International Nuclear Information System (INIS)

    Li Haibing; Wang Xiaoqiong; Gao Zhinong; He Zhike


    Highly fluorescent and stable CdSe/ZnS core/shell quantum dots (QDs) coated with gemini surfactant are successfully synthesized in aqueous media. Analyses of luminescence spectrometry, ultraviolet-visible (UV-vis) spectrophotometry, and transmission electron micrographs (TEMs) indicate that the water-soluble QDs are monodisperse and have a luminescence enhancement compared with the original hydrophobic QDs. The water-soluble QDs coated with gemini surfactant are shown to be biocompatible, photostable, and have been proven to be suitable for live cell imaging

  10. Photochemical key steps in the synthesis of surfactants from furfural-derived intermediates. (United States)

    Gassama, Abdoulaye; Ernenwein, Cédric; Hoffmann, Norbert


    Furfural is oxidized to 2[5H]-furanone by using hydrogen peroxide or to 5-hydroxy-2[5H]-furanone by using photo-oxygenation. An amine function is introduced by photochemically induced radical addition of tertiairy amines, some of which carry an n-alkyl side chain as hydrophobic moiety. These amines are produced from fatty aldehydes and cyclic secondary amines. The resulting adducts are transformed into amphoteric surfactants possessing an ammonium and a carboxylate function. Amphoteric (pK(N) and isoelectric point) and surfactant properties such as the critical micelle concentration and the adsorption efficiency are determined.

  11. EBNA-2 of herpesvirus papio diverges significantly from the type A and type B EBNA-2 proteins of Epstein-Barr virus but retains an efficient transactivation domain with a conserved hydrophobic motif. (United States)

    Ling, P D; Ryon, J J; Hayward, S D


    EBNA-2 contributes to the establishment of Epstein-Barr virus (EBV) latency in B cells and to the resultant alterations in B-cell growth pattern by up-regulating expression from specific viral and cellular promoters. We have taken a comparative approach toward characterizing functional domains within EBNA-2. To this end, we have cloned and sequenced the EBNA-2 gene from the closely related baboon virus herpesvirus papio (HVP). All human EBV isolates have either a type A or type B EBNA-2 gene. However, the HVP EBNA-2 gene falls into neither the type A category nor the type B category, suggesting that the separation into these two subtypes may have been a recent evolutionary event. Comparison of the predicted amino acid sequences indicates 37% amino acid identity with EBV type A EBNA-2 and 35% amino acid identity with type B EBNA-2. To define the domains of EBNA-2 required for transcriptional activation, the DNA binding domain of the GAL4 protein was fused to overlapping segments of EBV EBNA-2. This approach identified a 40-amino-acid (40-aa) EBNA-2 activation domain located between aa 437 and 477. Transactivation ability was completely lost when the amino-terminal boundary of this domain was moved to aa 441, indicating that the motif at aa 437 to 440, Pro-Ile-Leu-Phe, contains residues critical for function. The aa 437 boundary identified in these experiments coincides precisely with a block of conserved sequences in HVP EBNA-2, and the comparable carboxy-terminal region of HVP EBNA-2 also functioned as a strong transcriptional activation domain when fused to the Gal4(1-147) protein. The EBV and HVP EBNA-2 activation domains share a mixed proline-rich, negatively charged character with a striking conservation of positionally equivalent hydrophobic residues. The importance of the individual amino acids making up the Pro-Ile-Leu-Phe motif was examined by mutagenesis. Any alteration of these residues was found to reduce transactivation efficiency, with changes at the


    Directory of Open Access Journals (Sweden)

    T. P. Pirog


    Full Text Available It was shown literature and own experimental data concerning the use of microbial surface active glycolipids (rhamno-, sophoro- and trehalose lipids and lipopeptides for water and soil purification from oil and other hydrocarbons, removing toxic heavy metals (Cu2+, Cd2+, Ni2+, Pb2+, degradation of complex pollution (oil and other hydrocarbons with heavy metals, and the role of microbial surfactants in phytoremediation processes. The factors that limit the use of microbial surfactants in environmental technologies are discussed. Thus, at certain concentrations biosurfactant can exhibit antimicrobial properties and inhibit microorganisms destructing xenobiotics. Microbial biodegradability of surfactants may also reduce the effectiveness of bioremediation. Development of effective technologies using microbial surfactants should include the following steps: monitoring of contaminated sites to determine the nature of pollution and analysis of the autochthonous microbiota; determining the mode of surfactant introduction (exogenous addition of stimulation of surfactant synthesis by autochthonous microbiota; establishing an optimal concentration of surfactant to prevent exhibition of antimicrobial properties and rapid biodegradation; research both in laboratory and field conditions.

  13. The Mycobacterium tuberculosis cell-surface glycoprotein apa as a potential adhesin to colonize target cells via the innate immune system pulmonary C-type lectin surfactant protein A. (United States)

    Ragas, Aude; Roussel, Lucie; Puzo, Germain; Rivière, Michel


    Tuberculosis is still a major health problem, and understanding the mechanism by which Mycobacterium tuberculosis (Mtb) invades and colonizes its host target cells remains an important issue for the control of infection. The innate immune system C-type lectins (C-TLs), including the human pulmonary surfactant protein A (PSP-A), have been recently identified as determinant players in the early recognition of the invading pathogen and in mounting the host defense response. Although the antigenic lipoglycan mannosylated lipoarabinomannan is currently considered to be the major C-TL target on the mycobacterial surface, the recognition by some C-TLs of the only mycobacterial species composing the "Mtb complex" indicates that mannosylated lipoarabinomannan cannot account alone for this specificity. Thus, we searched for the mycobacterial molecules targeted by human PSP-A, focusing our attention on the Mtb surface glycoproteins. We developed an original functional proteomic approach based on a lectin blot assay using crude human bronchoalveolar lavage fluid as a source of physiological PSP-A. Combined with selective cell-surface protein extraction and mass spectrometry peptide mapping, this strategy allowed us to identify the Apa (alanine- and proline-rich antigenic) glycoprotein as new potential target for PSP-A. This result was supported by direct binding of PSP-A to purified Apa. Moreover, EDTA addition or deglycosylation of purified Apa samples completely abolished the interaction, demonstrating that the interaction is calcium- and mannose-dependent, as expected. Finally, we provide convincing evidence that Apa, formerly considered as mainly secreted, is associated with the cell wall for a sufficiently long time to aid in the attachment of PSP-A. Because, to date, Apa seems to be restricted to the Mtb complex strains, we propose that it may account for the selective recognition of those strains by PSP-A and other immune system C-TLs containing homologous functional


    Institute of Scientific and Technical Information of China (English)

    Zhen Tong; Chao-yang Wang; Bi-ye Ren; Xin-xing Liu; Fang Zeng


    Our recent studies concerning the binding of ionic surfactants on oppositely charged polyelectrolytes observed with fluorescence techniques are reviewed. The cationic surfactants cetyltrimethylammonium bromide (CTAB),dodecyltrimethylammonium chloride (DTAC), and nonionic surfactant octaethylene glycol monododecyl ether (C12E8) were allowed to bind on anionic poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) and its pyrene and/or naphthalene labeled copolymers. The relative excimer emission intensity IE/IM of a cationic probe 1-pyrenemethylamine hydrochloride were chosen to monitor the binding process and the conformation change of surfactant-bound polyelectrolytes. The 1:1aggregation of polyelectrolyte-CTAB with respect to the charge was found as long as the CTAB concentration was slightly higher than its critical aggregation concentration (CAC). The intermolecular NRET indicated that the CTAB-bound polyelectrolytes aggregated together through the hydrophobic interaction between the CTAB tails. However, neither 1:1polyelectrolyte-DTAC aggregation nor intermolecular aggregation of DTAC-bound polyelectrolyte was observed owing to its weaker hydrophobicity of 12 carbon atoms in the tail, which is shorter than that of CTAB. As known from the fluorescence results, nonionic surfactant C12E8 did not bind on the anionic polyelectrolytes, but the presence of PAMPS promoted the micelle formation for C12E8 at the CAC slightly below its critical micelle concentration (CMC). The solid complex of dansyl labeled AMPS copolymer-surfactant exhibited a decrease in local polarity with increasing charge density of the polyelectrolyte or with alkane tail length of the surfactant. SAXS suggested a lamella structure for the AMPS copolymersurfactant solid complexes with a long period of 3.87 nm for CTAB and 3.04 nm for DTAC, respectively.

  15. Surfactant Membrane Phases Containing Mixtures of Hydrocarbon and Fluorocarbon Surfactants

    International Nuclear Information System (INIS)

    de Campo, Liliana; Warr, G.G.


    Full text: We describe the structure and stability of sponge and lamellar phases comprising mixtures of hydrocarbon and fluorocarbon surfactants. Such mixtures can show limited miscibility with each other, forming for example coexisting populations of hydrocarbon rich and fluorocarbon rich micelles under some circumstances. Our system is based on the well-characterised lamellar and sponge phases of cetylpyridinium chloride, hexanol and 0.2M brine, into which the partially fluorinated surfactant N-1H,1H,2H,2H-tridecafluorooctylpyridinium chloride is incorporated. By probing the structures with SAXS (small angle x-ray scattering) and SANS (small angle neutron scattering) using contrast variation, and by characterizing the dynamic properties with dynamic light scattering, we will describe the effect of incorporating the fluorinated surfactant on the phase equilibria and properties of the surfactant membrane structures. (authors)

  16. Gemini Surfactants Based on Bis-Imidazolium Alkoxy Derivatives as Effective Agents for Delivery of Nucleic Acids: A Structural and Spectroscopic Study.

    Directory of Open Access Journals (Sweden)

    Zuzanna Pietralik

    Full Text Available The success rate of gene therapy depends on the efficient transfection of genetic material into cells. The golden mean between harmlessness and high effectiveness can be provided by synthetic lipid-like molecules that are similar to the components of biological membranes. Cationic gemini surfactants are one such moiety and because of their favourable physicochemical properties (double positive electric charge, reduced toxicity, low values of critical micelle concentration, they show great potential as delivery system components for genetic material in gene therapy. The aim of this study was to investigate the process of the complexation of cationic gemini surfactants with nucleic acids: double-stranded DNA of different sizes (21 bp, ~185 bp, ~20 kbp and siRNA (21 bp. The tested series of dicationic surfactants consists of bis-imidazolium quaternary salts with varying lengths of hydrophobic side chains (m = 5, 6, 7, 8, 9, 11, 12, 14, 16. On the basis of the data obtained by circular dichroism spectroscopy and electrophoresis, we concluded that the studied gemini surfactants with long side chains effectively bind nucleic acids at low concentrations, which leads to the formation of stable lipoplexes. Images obtained by atomic force microscopy also confirmed the formation of vesicular structures, i.e., complexes between DNA and surfactants. The cytotoxicity of selected surfactants was also tested on HeLa cells. The surfactant toxicity significantly depends on surfactant geometry (the length of hydrophobic chain.

  17. Preparation of inorganic hydrophobic catalysts

    International Nuclear Information System (INIS)

    Yang, Yong; Wang, Heyi; Du, Yang


    In order to catalyse the oxidation of tritium gas, two inorganic hydrophobic catalysts are prepared. Under room temperature, the catalysed oxidation ratio of 0.3%-1% (V/V) hydrogen gas in air is higher than 95%. Pt-II inorganic hydrophobic catalysts has obviously better catalysing ability than Pt-PTFE and lower ability than Pt-SDB in H 2 -HTO isotopic exchange, because the pressure resistence of Pt-II is much higher than Pt-SDB, it can be used to the CECE cell of heavy water detritium system. (authors)

  18. Conductometric study of sodium dodecyl sulfate - nonionic surfactant (Triton X-100, Tween 20, Tween 60, Tween 80 or Tween 85 mixed micelles in aqueous solution

    Directory of Open Access Journals (Sweden)

    Ćirin Dejan M.


    Full Text Available The present study is concerned with the determination of the critical micelle concentration (cmc of mixed micelles of sodium dodecyl sulfate with one of five nonionic surfactants (Triton X-100, Tween 20, Tween 60, Tween 80 or Tween 85 from conductance measurements. Based on the calculated values of the β parameters we have noticed that SDS-nonionic surfactants mostly showed strong synergistic effect. It was found that nonionic surfactants with mainly longer and more hydrophobic tail show stronger interactions with hydrophobic part of SDS, thus expressing stronger synergism. In SDS-Tween 80 binary system the strongest synergistic effect was noticed. SDS-Tween 85 micellar system showed antagonistic effect, most probably because the presence of the double bond in its three hydrophobic tails (three C18 tails makes it sterically rigid.

  19. Performance of a Novel Hydrophobic Mesoporous Material for High Temperature Catalytic Oxidation of Naphthalene

    Directory of Open Access Journals (Sweden)

    Guotao Zhao


    Full Text Available A high surface area, hydrophobic mesoporous material, MFS, has been successfully synthesized by a hydrothermal synthesis method using a perfluorinated surfactant, SURFLON S-386, as the single template. N2 adsorption and TEM were employed to characterize the pore structure and morphology of MFS. Static water adsorption test indicates that the hydrophobicity of MFS is significantly higher than that of MCM-41. XPS and Py-GC/MS analysis confirmed the existence of perfluoroalkyl groups in MFS which led to its high hydrophobicity. MFS was used as a support for CuO in experiments of catalytic combustion of naphthalene, where it showed a significant advantage over MCM-41 and ZSM-5. SEM was helpful in understanding why CuO-MFS performed so well in the catalytic combustion of naphthalene. Experimental results indicated that MFS was a suitable support for catalytic combustion of large molecular organic compounds, especially for some high temperature catalytic reactions when water vapor was present.

  20. Impact of model perfume molecules on the self-assembly of anionic surfactant sodium dodecyl 6-benzene sulfonate. (United States)

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig; Grillo, Isabelle


    The impact of two model perfumes with differing degrees of hydrophobicity/hydrophilicity, linalool (LL) and phenylethanol (PE), on the solution structure of anionic surfactant sodium dodecyl 6-benzene sulfonate, LAS-6, has been studied by small angle neutron scattering, SANS. For both types of perfume molecules, complex phase behavior is observed. The phase behavior depends upon the concentration, surfactant/perfume composition, and type of perfume. The more hydrophilic perfume PE promotes the formation of more highly curved structures. At relatively low surfactant concentrations, small globular micelles, L1, are formed. These become perfume droplets, L(sm), stabilized by the surfactant at much higher perfume solution compositions. At higher surfactant concentrations, the tendency of LAS-6 to form more planar structures is evident. The more hydrophobic linalool promotes the formation of more planar structures. Combined with the greater tendency of LAS-6 to form planar structures, this results in the planar structures dominating the phase behavior for the LAS-6/linalool mixtures. For the LAS-6/linalool mixture, the self-assembly is in the form of micelles only at the lowest surfactant and perfume concentrations. Over most of the concentration-composition space explored, the structures are predominantly lamellar, L(α), or vesicle, L(v), or in the form of a lamellar/micellar coexistence. At low and intermediate amounts of LL, a significantly different structure is observed, and the aggregates are in the form of small, relatively monodisperse vesicles (i.e., nanovesicles), L(sv).

  1. Biodegradation of surfactant bearing wastes

    International Nuclear Information System (INIS)

    Chitra, S.; Chandran, S.; Sasidhar, P.; Lal, K.B.; Amalraj, R.V.


    In nuclear industry, during decontamination of protective wears and contaminated materials, detergents are employed to bring down the level of radioactive contamination within safe limits. However, the surfactant present in these wastes interferes in the chemical treatment process, reducing the decontamination factor. Biodegradation is an efficient and ecologically safe method for surfactant removal. A surfactant degrading culture was isolated and inoculated separately into simulated effluents containing 1% yeast extract and 5-100 ppm sodium lauryl sulphate (SLS) and 1% yeast extract and 5-100 ppm of commercial detergent respectively. The growth of the bacterial culture and the degradation characteristics of the surfactant in the above effluents were monitored under both dynamic and static conditions. (author). 6 refs., 6 figs., 1 tab

  2. The role of hydrophobic interactions for the formation of gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Wang, J.; Eriksson, J.C. [Virginia Polytech Inst. and State Univ., Blacksburg, VA (United States). Center for Advanced Separation Technologies; Sum, A.K. [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical Engineering


    The process of hydrate formation remains largely unexplained due to a lack of evidence for the water molecules around the hydrophobic solute such as methane, and the nucleation process leading to the clustering that induces hydrate growth. However, the water structure is known to play a major role in the mechanism for hydrate nucleation. This paper presented evidence that hydrophobic solutes promote the structuring of water. Water molecules at room temperature tend to form ice structures around the hydrocarbon chains of surfactant molecules dissolved in water. An atomic force microscope (AFM) was used in this study to measure the surface forces between thiolated gold surfaces. The purpose was to better understand the structure of the thin films of water between hydrophobic surfaces. The water molecules tended to reorganize themselves to form ordered structures, which may be related to the nucleation of hydrates. The entropy reduction associated with the ice structure can be considered as the net driving force for self-assembly. Recent studies have revealed that long-range attractive forces exist between hydrophobic surfaces, which are likely to result from structuring of the water molecules in the vicinity of the hydrophobic surfaces. Similarly, the hydrophobic nature of most gas hydrate formers may induce ordering of water molecules in the vicinity of dissolved solutes. It was concluded that the results of this study may be used to develop a new mechanism for the formation of gas hydrates, including methane. 20 refs., 2 figs.

  3. Dysfunction of pulmonary surfactant mediated by phospholipid oxidation is cholesterol-dependent. (United States)

    Al-Saiedy, Mustafa; Pratt, Ryan; Lai, Patrick; Kerek, Evan; Joyce, Heidi; Prenner, Elmar; Green, Francis; Ling, Chang-Chun; Veldhuizen, Ruud; Ghandorah, Salim; Amrein, Matthias


    Pulmonary surfactant forms a cohesive film at the alveolar air-lung interface, lowering surface tension, and thus reducing the work of breathing and preventing atelectasis. Surfactant function becomes impaired during inflammation due to degradation of the surfactant lipids and proteins by free radicals. In this study, we examine the role of reactive nitrogen (RNS) and oxygen (ROS) species on surfactant function with and without physiological cholesterol levels (5-10%). Surface activity was assessed in vitro in a captive bubble surfactometer (CBS). Surfactant chemistry, monolayer fluidity and thermodynamic behavior were also recorded before and after oxidation. We report that physiologic amounts of cholesterol combined with oxidation results in severe impairment of surfactant function. We also show that surfactant polyunsaturated phospholipids are the most susceptible to oxidative alteration. Membrane thermodynamic experiments showed significant surfactant film stiffening after free radical exposure in the presence of cholesterol. These results point to a previously unappreciated role for cholesterol in amplifying defects in surface activity caused by oxidation of pulmonary surfactant, a finding that may have implications for treating several lung diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The role of charge in the surfactant-assisted stabilization of the natural product curcumin. (United States)

    Wang, Zifan; Leung, Mandy H M; Kee, Tak W; English, Douglas S


    Colloidal solutions of surfactants that form micelles or vesicles are useful for solubilizing and stabilizing hydrophobic molecules that are otherwise sparingly soluble in aqueous solutions. In this paper we investigate the use of micelles and vesicles prepared from ionic surfactants for solubilizing and stabilizing curcumin, a medicinal natural product that undergoes alkaline hydrolysis in water. We identify spectroscopic signatures to evaluate curcumin partitioning and deprotonation in surfactant mixtures containing micelles or vesicles. These spectroscopic signatures allow us to monitor the interaction of curcumin with charged surfactants over a wide range of pH values. Titration data are presented to show the pH dependence of curcumin interactions with negatively and positively charged micelles and vesicles. In solutions of cationic micelles or positively charged vesicles, strong interaction between the Cur(-1) phenoxide ion and the positively charged surfactants results in a change in the acidity of the phenolic hydrogen and a lowering of the apparent lowest pK(a) value for curcumin. In the microenvironments formed by anionic micelles or negatively charged bilayers, our data indicates that curcumin partitions as the Cur(0) species, which is stabilized by interactions with the respective surfactant aggregates, and this leads to an increase in the apparent pK(a) values. Our results may explain some of the discrepancies within the literature with respect to reported pK(a) values and the acidity of the enolic versus phenolic protons. Hydrolysis rates, quantum yields, and molar absorption coefficients are reported for curcumin in a variety of solutions.

  5. Surfactant-induced mobilisation of trace metals from estuarine sediment: Implications for contaminant bioaccessibility and remediation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anu [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Turner, Andrew [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)], E-mail:


    The mobilisation of metals (Al, Fe, Cd, Cu, Mn, Ni, Pb, Sn, Zn) from contaminated estuarine sediment has been examined using commercially available surfactants. Metal release by the anionic surfactant, sodium dodecyl sulphate (SDS), increased with increasing amphiphile concentration up to and above its critical micelle concentration (CMC). Metal mobilisation by the bile acid salt, sodium taurocholate, and the nonionic surfactant, Triton X-100, however, did not vary with amphiphile concentration. SDS was the most efficient surfactant in mobilising metals from the sample, and Cd, Cu and Ni were released to the greatest extents (12-18% of total metal at [SDS] > CMC). Metal mobilisation appeared to proceed via complexation with anionic amphiphiles and denudation of hydrophobic host phases. Surfactants may play an important role in the solubilisation of metals in the digestive environment of deposit-feeding animals and, potentially, in the remediation of metal-contaminated soil and sediment. - Significant quantities of metals are mobilised from estuarine sediment by commercially available surfactants.

  6. Treatment with exogenous surfactant stimulates endogenous surfactant synthesis in premature infants with respiratory distress syndrome

    NARCIS (Netherlands)

    Bunt, JEH; Carnielli, VP; Janssen, DJ; Wattimena, JLD; Hop, WC; Sauer, PJ; Zimmermann, LJI


    Objective: Treatment of preterm infants with respiratory distress syndrome (RDS) with exogenous surfactant has greatly improved clinical outcome. Some infants require multiple doses, and it has not been studied whether these large amounts of exogenous surfactant disturb endogenous surfactant

  7. The protective effect of different airway humidification liquids to lung after tracheotomy in traumatic brain injury: The role of pulmonary surfactant protein-A (SP-A). (United States)

    Su, Xinyang; Li, Zefu; Wang, Meilin; Li, Zhenzhu; Wang, Qingbo; Lu, Wenxian; Li, Xiaoli; Zhou, Youfei; Xu, Hongmei


    The purpose of this study was to establish a rat model of a brain injury with tracheotomy and compared the wetting effects of different airway humidification liquids, afterward, the best airway humidification liquid was selected for the clinical trial, thus providing a theoretical basis for selecting a proper airway humidification liquid in a clinical setting. Rats were divided into a sham group, group A (0.9% NaCl), group B (0.45% NaCl), group C (0.9% NaCl+ambroxol) and group D (0.9% NaCl+Pulmicort). An established rat model of traumatic brain injury with tracheotomy was used. Brain tissue samples were taken to determine water content, while lung tissue samples were taken to determine wet/dry weight ratio (W/D), histological changes and expression levels of SP-A mRNA and SP-A protein. 30 patients with brain injury and tracheotomy were selected and divided into two groups based on the airway humidification liquid instilled in the trachea tube, 0.45% NaCl and 0.9% NaCl+ambroxol. Blood was then extracted from the patients to measure the levels of SP-A, interleukin-6 (IL-6), interleukin-8 (IL-8) and tumour necrosis factor-α (TNF-α). The difference between group C and other groups in lung W/D and expression levels of SP-A mRNA and SP-A protein was significant (Phumidification liquid. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Production of hydrophobic amino acids from biobased resources

    NARCIS (Netherlands)

    Widyarani, W.; Sari, Yessie W.; Ratnaningsih, Enny; Sanders, Johan P.M.; Bruins, Marieke E.


    Protein hydrolysis enables production of peptides and free amino acids that are suitable for usage in food and feed or can be used as precursors for bulk chemicals. Several essential amino acids for food and feed have hydrophobic side chains; this property may also be exploited for subsequent

  9. Genetic polymorphisms of surfactant protein D rs2243639, Interleukin (IL)-1β rs16944 and IL-1RN rs2234663 in chronic obstructive pulmonary disease, healthy smokers, and non-smokers. (United States)

    Issac, Marianne Samir M; Ashur, Wafaa; Mousa, Heba


    Chronic obstructive pulmonary disease (COPD) is a complex chronic inflammatory disease that involves the activity of various inflammatory cells and mediators. It has been suggested that susceptibility to COPD is, at least in part, genetically determined. The primary aim of this study was to investigate the association between surfactant protein D (SFTPD) rs2243639, interleukin (IL)-1β rs16944 and IL-1 receptor antagonist (IL-1RN) rs2234663 gene polymorphisms and COPD susceptibility, as well as examining the association between the various IL-1RN/IL-1β haplotypes and pulmonary function tests (PFT). Secondly, we aimed to examine the influence of SFTPD rs2243639 polymorphism on serum surfactant protein D (SP-D) level. A total of 114 subjects were recruited in this study and divided into three groups: 63 COPD patients, 25 asymptomatic smokers, and 26 healthy controls. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed for the detection of SFTPD rs2243639 and IL-1β rs16944 polymorphisms. Detection of variable numbers of an 86-bp tandem repeat (VNTR) of IL-1RN was done using PCR. Serum SP-D level was measured using enzyme linked-immunosorbent assay. PFTs were measured by spirometry. Carriers of the SFTPD AG and AA polymorphic genotypes constituted 71.4 % of COPD patients versus 48 % in asymptomatic smokers, with a statistically significant difference between the two groups (p = 0.049). Smokers who were carriers of the polymorphic SFTPD rs2243639 A allele (AG and AA genotypes) have a 2.708 times risk of developing COPD when compared with wild-type GG genotype carriers [odds ratio (OR) 2.708 (95 % CI 1.041-7.047)]. Forced expiratory flow (FEF) 25-75 % predicted was higher in IL-1RN*1/*1 when compared with *1/*2 (p = 0.013). FEF25-75 % predicted in carriers of haplotype IL-1RN *1/IL-1β T (49.21 ± 10.26) was statistically significantly higher than in carriers of IL-1RN *2/IL-1β T (39.67 ± 12.64) [p = 0

  10. Molecular dynamics simulations of the hydrophobin SC3 at a hydrophobic/hydrophilic interface

    NARCIS (Netherlands)

    Fan, Hao; Wang, Xiaoqin; Zhu, Jiang; Robillard, George T.; Mark, Alan E.


    Hydrophobins are small (similar to 100 aa) proteins that have an important role in the growth and development of mycelial fungi. They are surface active and, after secretion by the fungi, self-assemble into amphipathic membranes at hydrophobic/hydrophilic interfaces, reversing the hydrophobicity of

  11. Evaporation of Nanosuspensions on Substrates with Different Hydrophobicity. (United States)

    Perrin, Lionel; Pajor-Swierzy, Anna; Magdassi, Shlomo; Kamyshny, Alexander; Ortega, Francisco; Rubio, Ramón G


    Liquid drop evaporation on surfaces is present in many industrial and medical applications, e.g., printed electronics, spraying of pesticides, DNA mapping, etc. Despite this strong interest, a theoretical description of the dynamic of the evaporation of complex liquid mixtures and nanosuspensions is still lacking. Indeed, one of the aspects that have not been included in the current theoretical descriptions is the competition between the kinetics of evaporation and the adsorption of surfactants and/or particles at the liquid/vapor and liquid/solid interfaces. Materials formed by an electrically isolating solid on which a patterned conducting layer was formed by the deposits left after drop evaporation have been considered as very promising for building electrical circuits on flexible plastic substrates. In this work, we have done an exhaustive study of the evaporation of nanosuspensions of latex and hydrophobized silver nanoparticles on four substrates of different hydrophobicity. The advancing and receding contact angles as well as the time dependence of the volume of the droplets have been measured over a broad range of particle concentrations. Also, mixtures of silver particles and a surfactant, commonly used in industrial printing, have been examined. Furthermore, the adsorption kinetics at both the air/liquid and solid/liquid interfaces have been measured. Whereas the latex particles do not adsorb at the solid/liquid and only slightly reduce the surface tension, the silver particles strongly adsorb at both interfaces. The experimental results of the evaporation process were compared with the predictions of the theory of Semenov et al. (Evaporation of Sessile Water Droplets: Universal Behavior in the Presence of Contact Angle Hysteresis. Colloids Surf. Physicochem. Eng. Asp. 2011, 391 (1-3), 135-144) and showed surprisingly good agreement despite that the theory was developed for pure liquids. The morphology of the deposits left by the droplets after total

  12. Superamphiphilic nanocontainers based on the resorcinarene - Cationic surfactant system: Synergetic self-assembling behavior (United States)

    Gaynanova, Gulnara A.; Bekmukhametova, Alina M.; Kashapov, Ruslan R.; Ziganshina, Albina Yu.; Zakharova, Lucia Ya.


    Self-organization in the mixed system based on water-soluble aminomethylated calix[4]arene with sulfonatoethyl groups at the lower rim and classical cationic surfactant cetyltrimethylammonium bromide has been studied by the methods of tensiometry, conductometry, spectrophotometry, dynamic and electrophoretic light scattering. The values of the critical association concentration, the size and zeta potential values, and the solubilization capacity of mixed aggregates toward the hydrophobic probe (Sudan I) were determined.

  13. Poloxamer-Decorated Polymer Nanoparticles for Lung Surfactant Compatibility

    DEFF Research Database (Denmark)

    Beck-Broichsitter, Moritz; Bohr, Adam; Ruge, Christian A


    Lung-delivered polymer nanoparticles provoked dysfunction of the essential lung surfactant system. A steric shielding of the nanoparticle surface with poloxamers could minimize the unwanted interference of polymer nanoparticles with the biophysical function of lung surfactant. The extent of poly......(styrene) and poly(lactide) nanoparticle-induced lung surfactant inhibition could be related to the type and content of the applied poloxamer. Escalations of the adsorbed coating layer thickness (>3 nm) as well as concentration (brush- rather than mushroom-like conformation of poly(ethylene glycol), chain......-associated proteins. Poloxamer-modified polymer nanoparticles represent a promising nanomedicine platform intended for respiratory delivery revealing negligible effects on the biophysical functionality of the lining layer present in the deep lungs....

  14. Discrepancies over the onset of surfactant monomer aggregation interpreted by fluorescence, conductivity and surface tension methods

    Directory of Open Access Journals (Sweden)

    Maria de Fátima Carvalho Costa


    Full Text Available Molecular probe techniques have made important contributions to the determination of microstructure of surfactant assemblies such as size, stability, micropolarity and conformation. Conductivity and surface tension were used to determine the critical aggregation concentration (cac of polymer-surfactant complexes and the critical micellar concentration (cmc of aqueous micellar aggregates. The results are compared with those of fluorescent techniques. Several surfactant systems were examined, 1-butanol-sodium dodecylsulfate (SDS mixtures, solutions containing poly(ethylene oxide-SDS, poly(vinylpyrrolidone-SDS and poly(acrylic acid-alkyltrimethylammonium bromide complexes. We found differences between the cac and cmc values obtained by conductivity or surface tension and those obtained by techniques which use hydrophobic probe.

  15. Solubilization and Interaction Studies of Bile Salts with Surfactants and Drugs: a Review. (United States)

    Malik, Nisar Ahmad


    In this review, bile salt, bile salt-surfactant, and bile salt-drug interactions and their solubilization studies are mainly focused. Usefulness of bile salts in digestion, absorption, and excretion of various compounds and their rare properties in ordering the shape and size of the micelles owing to the presence of hydrophobic and hydrophilic faces are taken into consideration while compiling this review. Bile salts as potential bio-surfactants to solubilize drugs of interest are also highlighted. This review will give an insight into the selection of drugs in different applications as their properties get modified by interaction with bile salts, thus influencing their solution behavior which, in turn, modifies the phase-forming behavior, microemulsion, and clouding phenomenon, besides solubilization. Finally, their future perspectives are taken into consideration to assess their possible uses as bio-surfactants without side effects to human beings.

  16. Influence of clay, surfactant and presence of dispersant in the non-aqueous fluids rheology

    International Nuclear Information System (INIS)

    Gomes, N.L.; Guedes, I.C.; Menezes, R.R.; Campos, L.F.A.; Ferreira, H.S.


    The bentonite clay used as a thickening agent in production of non-aqueous fluids and can not be used without a prior treatment to their organic surfaces become hydrophobic. These treated clays are called organoclays, and are usually obtained by adding, in aqueous solution, a quaternary ammonium salt. This work makes a detailed study of the variables involved in the dispersion of the bentonite clays in organophilization process, as well, the type of clay, type of surfactant and the presence of dispersant. It was observed this study that the process variables involved in the dispersion of the clays and organophilization, observed through characterization, have low influence on the peaks related to interplanar basal distance caused by the incorporation of the surfactant and bentonite clays been influential the type of clay and surfactant and the presence of sodium as dispersant agent, on the rheological properties. (author)

  17. Dispersion stability of a ceramic glaze achieved through ionic surfactant adsorption. (United States)

    Panya, Preecha; Arquero, Orn-anong; Franks, George V; Wanless, Erica J


    The adsorption of cetylpyridinium chloride (CPC) and sodium dodecylbenzenesulfonate (SDBS) onto a ceramic glaze mixture composed of limestone, feldspar, quartz, and kaolin has been investigated. Both adsorption isotherms and the average particle zeta potential have been studied in order to understand the suspension stability as a function of pH, ionic strength, and surfactant concentration. The adsorption of small amounts of cationic CPC onto the primarily negatively charged surfaces of the particles at pH 7 and 9 results in strong attraction and flocculation due to hydrophobic interactions. At higher surfactant concentrations a zeta potential of more than +60 mV results from the bilayered adsorbed surfactant, providing stability at salt concentrations dispersion or hydrophobic interactions, the magnitude of the negative zeta potential increases slightly. At pH 9 this increase is enough to promote stability with an average zeta potential of more than -55 mV, whereas at pH 7 the zeta potential is lower at about -45 mV. The stability of suspensions at pH 7 is additionally due to steric repulsion caused by the adsorption of thick layers of neutrally charged Ca(DBS)2 complexes created when the surfactant interacts with dissolved calcium ions from the calcium carbonate component.

  18. Surfactant flooding of diesel-contaminated soils

    International Nuclear Information System (INIS)

    Peters, R.W.; Montemagno, C.D.; Shem, L.; Lewis, B.A.


    At one installation, approximately 60,000 gallons of No. 2 diesel fuel leaked into the subsurface environment, with contamination at depths of 6 to 34 m below the surface. Argonne National Laboratory was contracted to perform treatability studies for site remediation. The treatability studies focused on four separate phases: (1) leachability studies on the various contaminated soil borings, (2) air stripping studies, (3) bioremediation studies, and (4) surfactant screening/surfactant flooding studies. This paper summarizes the fourth phase of this research program after initial surfactant screening of 21 surfactants. Three of the surfactants were used for the surfactant flooding studies; the results from that phase of the research program are described

  19. Transparent Hydrophobic Coating by Sol Gel Method

    International Nuclear Information System (INIS)

    Mohd Hamzah Harun; Nik Ghazali Nik Salleh; Mahathir Mohamed; Mohd Sofian Alias


    Transparent hydrophobic coating of inorganic based tetra orthosilicate (TEOS) was prepared by sol gel method by varying fluoroalkylsilane (FAS) content which works as hydrophobic agent. Surface contact angle, transmittance degree and surface morphology were characterized for each sample. All samples show good transparency which was confirmed by UV visible spectroscopy. The hydrophobicity obtained increases with FAS content indicates that FAS is best candidate to induce hydrophobicity for inorganic coating. (author)

  20. Spontaneous vesicle phase formation by pseudogemini surfactants in aqueous solutions. (United States)

    Sun, Nan; Shi, Lijuan; Lu, Fei; Xie, Shuting; Zheng, Liqiang


    The phase behavior of a kind of pseudogemini surfactant in aqueous solutions, formed by the mixture of sodium dodecyl benzene sulfonate (SDBS) and butane-1,4-bis (methylimidazolium bromide) ([mim-C4-mim]Br2) or butane-1,4-bis(methylpyrrolidinium bromide) ([mpy-C4-mpy]Br2) in a molar ratio of 2 : 1, is reported in the present work. When [mim-C4-mim]Br2 or [mpy-C4-mpy]Br2 is mixed with SDBS in aqueous solutions, one cationic [mim-C4-mim]Br2 or [mpy-C4-mpy]Br2 molecule "bridges" two SDBS molecules by noncovalent interactions (e.g. electrostatic, π-π stacking, and σ-π interactions), behaving like a pseudogemini surfactant. Vesicles can be formed by this kind of pseudogemini surfactant, determined by freeze-fracture transmission electron microscopy (FF-TEM) or cryogenic-transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS). The mixed system of sodium dodecyl sulfate (SDS) with [mim-C4-mim]Br2 or [mpy-C4-mpy]Br2 was also constructed, and only micelles were observed. We infer that a pseudogemini surfactant is formed under the synergic effect of electrostatic, π-π stacking, and σ-π interactions in the SDBS/[mim-C4-mim]Br2/H2O system, while electrostatic attraction and hydrophobic interactions may provide the directional force for vesicle formation in the SDBS/[mpy-C4-mpy]Br2/H2O system.

  1. 21 CFR 584.700 - Hydrophobic silicas. (United States)


    ...) Product. Amorphous fumed hydrophobic silica or precipitated hydrophobic silica (CAS Reg. No. 68611-0944... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrophobic silicas. 584.700 Section 584.700 Food... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE IN FEED AND...

  2. Binding of a novel 12-E2-12 gemini surfactant to xanthine oxidase: Analysis involving tensiometric, spectroscopic, microscopic and molecular docking approach

    International Nuclear Information System (INIS)

    Akram, Mohd; Bhat, Imtiyaz Ahmad; Kabir-ud-Din


    Binding interaction of a synthesized biodegradable gemini surfactant, ethane-1, 2-diyl bis(N, N-dimethyl-N-dodecylammoniumacetoxy) dichloride (12-E2-12), with bovine milk xanthine oxidase (XO) was studied using tensiometry, fluorescence spectroscopy, UV, CD, FT-IR, TEM and molecular docking. Tensiometry revealed lowering in surface tension (γ) and critical micelle concentration (CMC) of 12-E2-12 upon XO combination, suggesting a significant interaction between XO and 12-E2-12 (both in the bulk as well as at interface). Intrinsic fluorescence studies depict that 12-E2-12 quenches XO fluorescence intensity through static mechanism. The magnitude of binding parameters infers substantial and effective binding of 12-E2-12 to (XO). ANS and pyrene fluorescence demonstrate the exposure of aromatic residues (tyrosine/tryptophan) to a non-polar environment. UV, circular dichroism (CD) and FT-IR results delineate change in the secondary structure of the enzyme XO. Microscopic TEM micrographs confirm the disrupture of enzyme structure at higher concentrations of 12-E2-12. Molecular docking results show that 12-E2-12 binds to XO in the vicinity of both hydrophobic and hydrophilic residues, inferring that binding is governed by both hydrophilic and hydrophobic forces. This study may be of significance in biomedical world to further interpret mechanistic treatment modes of diseases like gout and hyperuricemia. Moreover, this study provides deeper biophysical insight into surfactant–protein interactions. - Highlights: • Binding of biodegradable gemini surfactant 12-E2-12 with xanthine oxidase. • Binding induces conformational changes in the latter. • Conformational change can be useful for biomedical and industrial purposes.

  3. Binding of a novel 12-E2-12 gemini surfactant to xanthine oxidase: Analysis involving tensiometric, spectroscopic, microscopic and molecular docking approach

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Mohd, E-mail:; Bhat, Imtiyaz Ahmad; Kabir-ud-Din


    Binding interaction of a synthesized biodegradable gemini surfactant, ethane-1, 2-diyl bis(N, N-dimethyl-N-dodecylammoniumacetoxy) dichloride (12-E2-12), with bovine milk xanthine oxidase (XO) was studied using tensiometry, fluorescence spectroscopy, UV, CD, FT-IR, TEM and molecular docking. Tensiometry revealed lowering in surface tension (γ) and critical micelle concentration (CMC) of 12-E2-12 upon XO combination, suggesting a significant interaction between XO and 12-E2-12 (both in the bulk as well as at interface). Intrinsic fluorescence studies depict that 12-E2-12 quenches XO fluorescence intensity through static mechanism. The magnitude of binding parameters infers substantial and effective binding of 12-E2-12 to (XO). ANS and pyrene fluorescence demonstrate the exposure of aromatic residues (tyrosine/tryptophan) to a non-polar environment. UV, circular dichroism (CD) and FT-IR results delineate change in the secondary structure of the enzyme XO. Microscopic TEM micrographs confirm the disrupture of enzyme structure at higher concentrations of 12-E2-12. Molecular docking results show that 12-E2-12 binds to XO in the vicinity of both hydrophobic and hydrophilic residues, inferring that binding is governed by both hydrophilic and hydrophobic forces. This study may be of significance in biomedical world to further interpret mechanistic treatment modes of diseases like gout and hyperuricemia. Moreover, this study provides deeper biophysical insight into surfactant–protein interactions. - Highlights: • Binding of biodegradable gemini surfactant 12-E2-12 with xanthine oxidase. • Binding induces conformational changes in the latter. • Conformational change can be useful for biomedical and industrial purposes.

  4. Adsorption of IgG onto hydrophobic teflon. Differences between the F(ab) and F(c) domains

    NARCIS (Netherlands)

    Vermeer, AWP; Giacomelli, CE; Norde, W


    The effect of differences in the degree of hydrophobicity of protein patches/fragments on the adsorption behaviour of the protein is investigated. The adsorption isotherm of a monoclonal mouse anti-human immunoglobulin G (isotype 2b) onto hydrophobic Teflon particles is measured using a depletion

  5. Hydrophobic-Core Microcapsules and Their Formation (United States)

    Calle, Luz M. (Inventor); Li, Wenyan (Inventor); Buhrow, Jerry W. (Inventor); Jolley, Scott T. (Inventor)


    Hydrophobic-core microcapsules and methods of their formation are provided. A hydrophobic-core microcapsule may include a shell that encapsulates a hydrophobic substance with a core substance, such as dye, corrosion indicator, corrosion inhibitor, and/or healing agent, dissolved or dispersed therein. The hydrophobic-core microcapsules may be formed from an emulsion having hydrophobic-phase droplets, e.g., containing the core substance and shell-forming compound, dispersed in a hydrophilic phase. The shells of the microcapsules may be capable of being broken down in response to being contacted by an alkali, e.g., produced during corrosion, contacting the shell.

  6. Respiratory and Systemic Effects of LASSBio596 Plus Surfactant in Experimental Acute Respiratory Distress Syndrome

    Directory of Open Access Journals (Sweden)

    Johnatas Dutra Silva


    Full Text Available Background/Aims: Exogenous surfactant has been proposed as adjunctive therapy for acute respiratory distress syndrome (ARDS, but it is inactivated by different factors present in the alveolar space. We hypothesized that co-administration of LASSBio596, a molecule with significant anti-inflammatory properties, and exogenous surfactant could reduce lung inflammation, thus enabling the surfactant to reduce edema and improve lung function, in experimental ARDS. Methods: ARDS was induced by cecal ligation and puncture surgery in BALB/c mice. A sham-operated group was used as control (CTRL. After surgery (6 hours, CTRL and ARDS animals were assigned to receive: (1 sterile saline solution; (2 LASSBio596; (3 exogenous surfactant or (4 LASSBio596 plus exogenous surfactant (n = 22/group. Results: Regardless of exogenous surfactant administration, LASSBio596 improved survival rate and reduced collagen fiber content, total number of cells and neutrophils in PLF and blood, cell apoptosis, protein content in BALF, and urea and creatinine levels. LASSBio596 plus surfactant yielded all of the aforementioned beneficial effects, as well as increased BALF lipid content and reduced surface tension. Conclusion: LASSBio596 exhibited major anti-inflammatory and anti-fibrogenic effects in experimental sepsis-induced ARDS. Its association with surfactant may provide further advantages, potentially by reducing surface tension.

  7. Molecular-thermodynamic theory of micellization of pH-sensitive surfactants. (United States)

    Goldsipe, Arthur; Blankschtein, Daniel


    A predictive, molecular-thermodynamic theory is developed to model the micellization of pH-sensitive surfactants. The theory combines a molecular-thermodynamic description of micellization in binary surfactant mixtures with the protonation equilibrium of the surfactant monomers. The thermodynamic component of the theory models the pH-mediated equilibrium between micelles, surfactant monomers, and counterions. These counterions may originate from the surfactant or from added salt, acid, or base. The molecular component of the theory models the various contributions to the free energy of micellization, which corresponds to the free-energy change associated with forming a mixed micelle from the protonated and deprotonated forms of the surfactant and from the bound counterions. The free energy of micellization includes hydrophobic, interfacial, packing, steric, electrostatic, and entropic contributions, which are all calculated molecularly. The theory also requires knowledge of the surfactant molecular structure and the solution conditions, including the temperature and the amount of any added salt, acid, or base. To account for the pH sensitivity of the surfactant, the theory requires knowledge of the surfactant monomer equilibrium deprotonation constant (pK1), which may be obtained from experimental titration data obtained below the critical micelle concentration (cmc). The theory can be utilized to predict the equilibrium micelle and solution properties, including the cmc, the micelle composition, the micelle shape and aggregation number, the solution pH, and the micelle deprotonation equilibrium constant (pKm). Theoretical predictions of the cmc, the micelle aggregation number, and the pKm compare favorably with the available experimental data for alkyldimethylamine oxide surfactants. This class of pH-sensitive surfactants exhibits a form of self-synergy, which has previously been attributed to hydrogen-bond formation at the micelle interface. Instead, we show that

  8. Binding of cationic surfactants to humic substances

    NARCIS (Netherlands)

    Ishiguro, M.; Tan, W.; Koopal, L.K.


    Commercial surfactants are introduced into the environment either through waste products or site-specific contamination. The amphiphilic nature of both surfactants and humic substances (HS) leads to their mutual attraction especially when surfactant and HS are oppositely charged. Binding of the

  9. Surfactant protein A (SP-A)-mediated clearance of Staphylococcus aureus involves binding of SP-A to the staphylococcal adhesin eap and the macrophage receptors SP-A receptor 210 and scavenger receptor class A. (United States)

    Sever-Chroneos, Zvjezdana; Krupa, Agnieszka; Davis, Jeremy; Hasan, Misbah; Yang, Ching-Hui; Szeliga, Jacek; Herrmann, Mathias; Hussain, Muzafar; Geisbrecht, Brian V; Kobzik, Lester; Chroneos, Zissis C


    Staphylococcus aureus causes life-threatening pneumonia in hospitals and deadly superinfection during viral influenza. The current study investigated the role of surfactant protein A (SP-A) in opsonization and clearance of S. aureus. Previous studies showed that SP-A mediates phagocytosis via the SP-A receptor 210 (SP-R210). Here, we show that SP-R210 mediates binding and control of SP-A-opsonized S. aureus by macrophages. We determined that SP-A binds S. aureus through the extracellular adhesin Eap. Consequently, SP-A enhanced macrophage uptake of Eap-expressing (Eap(+)) but not Eap-deficient (Eap(-)) S. aureus. In a reciprocal fashion, SP-A failed to enhance uptake of Eap(+) S. aureus in peritoneal Raw264.7 macrophages with a dominant negative mutation (SP-R210(DN)) blocking surface expression of SP-R210. Accordingly, WT mice cleared infection with Eap(+) but succumbed to sublethal infection with Eap- S. aureus. However, SP-R210(DN) cells compensated by increasing non-opsonic phagocytosis of Eap(+) S. aureus via the scavenger receptor scavenger receptor class A (SR-A), while non-opsonic uptake of Eap(-) S. aureus was impaired. Macrophages express two isoforms: SP-R210(L) and SP-R210(S). The results show that WT alveolar macrophages are distinguished by expression of SP-R210(L), whereas SR-A(-/-) alveolar macrophages are deficient in SP-R210(L) expressing only SP-R210(S). Accordingly, SR-A(-/-) mice were highly susceptible to both Eap(+) and Eap(-) S. aureus. The lungs of susceptible mice generated abnormal inflammatory responses that were associated with impaired killing and persistence of S. aureus infection in the lung. In conclusion, alveolar macrophage SP-R210(L) mediates recognition and killing of SP-A-opsonized S. aureus in vivo, coordinating inflammatory responses and resolution of S. aureus pneumonia through interaction with SR-A.

  10. Solid-phase extraction sorbent consisting of alkyltrimethylammonium surfactants immobilized onto strong cation-exchange polystyrene resin. (United States)

    Reid, Kendra R; Kennedy, Lonnie J; Crick, Eric W; Conte, Eric D


    Presented is a solid-phase extraction sorbent material composed of cationic alkyltrimethylammonium surfactants attached to a strong cation-exchange resin via ion-exchange. The original hydrophilic cation-exchange resin is made hydrophobic by covering the surface with alkyl chains from the hydrophobic portion of the surfactant. The sorbent material now has a better ability to extract hydrophobic molecules from aqueous samples. The entire stationary phase (alkyltrimethylammonium surfactant) is removed along with the analyte during the elution step. The elution step requires a mild elution solvent consisting of 0.25 M Mg2+ in a 50% 2-propanol solution. The main advantage of using a removable stationary phase is that traditionally utilized toxic elution solvents such as methylene chloride, which are necessary to efficiently release strongly hydrophobic species from SPE stationary phases, may now be avoided. Also, the final extract is directly compatible with reversed-phase liquid chromatography. The performance of this procedure is presented using pyrene as a test molecule.

  11. Cholesterol rules: direct observation of the coexistence of two fluid phases in native pulmonary surfactant membranes at physiological temperatures

    DEFF Research Database (Denmark)

    Bernardino de la Serna, Jorge; Perez-Gil, Jesus; Simonsen, Adam C


    part in the surfactant structures could be organized heterogeneously in the form of inplane domains, originating from particular distributions of specific proteins and lipids. Here we report novel results concerning the lateral organization of bilayer membranes made of native pulmonary surfactant where...

  12. Synthesis of Environmentally Responsive Polymers by Atom Transfer Radical Polymerization: Generation of Reversible Hydrophilic and Hydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Vikas Mittal


    Full Text Available Environmentally responsive poly(N-isopropylacrylamide brushes were grafted from the surface of polymer particles or flat surfaces in order to generate reversible hydrophilic and hydrophobic surfaces. The use of atom transfer radical polymerization was demonstrated for the grafting of polymer brushes as it allows efficient control on the amount of grafted polymer. The polymer particles were generated with or without surfactant in the emulsion polymerization and their surface could be modified with the atom transfer radical polymerization (ATRP initiator. The uniform functionalization of the surface with ATRP initiator was responsible for the uniform grafting of polymer brushes. The grafted brushes responded reversibly with changes in temperature indicating that the reversible responsive behavior could be translated to the particle surfaces. The particles were observed to adsorb and desorb protein and virus molecules by changing the temperatures below or higher than 32 °C. The initiator functionalized particles could also be adsorbed on the flat surfaces. The adsorption process also required optimization of the heat treatment conditions to form a uniform layer of the particles on the substrate. The grafted polymer brushes also responded to the changes in temperatures similar to the spherical particles studied through water droplets placed on the flat substrates.

  13. Respiratory failure following anti-lung serum: study on mechanisms associated with surfactant system damage

    International Nuclear Information System (INIS)

    Lachmann, B.; Hallman, M.; Bergmann, K.C.


    Within 2 minutes intravenous anti-lung serum (ALS) into guinea pig induces a respiratory failure that is fatal within 30 min. The relationship between surfactant, alveolar-capillary permeability and respiratory failure was studied. Within two minutes ALS induced a leak in the alveolar-capillary barrier. Within 30 minutes 28.3% (controls, given normal rabbit serum: 0.7%) of iv 131 I-albumin, and 0.5% (controls 0.02%) of iv surfactant phospholipid tracer were recovered in bronchoalveolar lavage. Furthermore, 57% (controls 32%) of the endotracheally administered surfactant phospholipid became associated with lung tissue and only less than 0.5% left the lung. The distribution of proteins and phospholipids between the in vivo small volume bronchoalveolar lavages and the ex vivo bronchoalveolar lavages were dissimilar: 84% (controls 20%) of intravenously injected, lavageable 131 I-albumin and 23% (controls 18%) of total lavageable phospholipid were recovered in the in vivo small volume bronchoalveolar lavages. ALS also decreased lavageable surfactant phospholipid by 41%. After ALS the minimum surface tension increased. The supernatant of the lavage increased the minimum surface tension of normal surfactant. In addition, the sediment fraction of the lavage had slow surface adsorption, and a marked reduction in 35,000 and 10,000 MW peptides. Exogenous surfactant ameliorated the ALS-induced respiratory failure. We propose that inhibition, altered intrapulmonary distribution, and dissociation of protein and phospholipid components of surfactant are important in early pathogenesis of acute respiratory failure

  14. Persurf, a new method to improve surfactant delivery: a study in surfactant depleted rats.

    Directory of Open Access Journals (Sweden)

    Wolfram Burkhardt

    Full Text Available PURPOSE: Exogenous surfactant is not very effective in adults with ARDS, since surfactant does not reach atelectatic alveoli. Perfluorocarbons (PFC can recruit atelectatic areas but do not replace impaired endogenous surfactant. A surfactant-PFC-mixture could combine benefits of both therapies. The aim of the proof-of-principal-study was to produce a PFC-in-surfactant emulsion (Persurf and to test in surfactant depleted Wistar rats whether Persurf achieves I. a more homogenous pulmonary distribution and II. a more homogenous recruitment of alveoli when compared with surfactant or PFC alone. METHODS: Three different PFC were mixed with surfactant and phospholipid concentration in the emulsion was measured. After surfactant depletion, animals either received 30 ml/kg of PF5080, 100 mg/kg of stained (green dye Curosurf™ or 30 ml/kg of Persurf. Lungs were fixated after 1 hour of ventilation and alveolar aeration and surfactant distribution was estimated by a stereological approach. RESULTS: Persurf contained 3 mg/ml phospholipids and was stable for more than 48 hours. Persurf-administration improved oxygenation. Histological evaluation revealed a more homogenous surfactant distribution and alveolar inflation when compared with surfactant treated animals. CONCLUSIONS: In surfactant depleted rats administration of PFC-in-surfactant emulsion leads to a more homogenous distribution and aeration of the lung than surfactant alone.

  15. Membrane-surfactant interactions. The role of surfactant in mitochondrial complex III-phospholipid-Triton X-100 mixed micelles

    International Nuclear Information System (INIS)

    Valpuesta, J.M.; Arrondo, J.L.; Barbero, M.C.; Pons, M.; Goni, F.M.


    Complex III (ubiquinol-cytochrome c reductase) was purified from beef heart mitochondria in the form of protein-phospholipid-Triton X-100 mixed micelles (about 1:80:100 molar ratio). Detergent may be totally removed by sucrose density gradient centrifugation, and the resulting lipoprotein complexes retain full enzyme activity. In order to understand the role of surfactant in the mixed micelles, and the interaction of Triton X-100 with integral membrane proteins and phospholipid bilayers, both the protein-lipid-surfactant mixed micelles and the detergent-free lipoprotein system were examined from the point of view of particle size and ultrastructure, enzyme activity, tryptophan fluorescence quenching, 31P NMR, and Fourier transform infrared spectroscopy. The NMR and IR spectroscopic studies show that surfactant withdrawal induces a profound change in phospholipid architecture, from a micellar to a lamellar-like phase. However, electron microscopic observations fail to reveal the existence of lipid bilayers in the absence of detergent. We suggest that, under these conditions, the lipid:protein molar ratio (80:1) is too low to permit the formation of lipid bilayer planes, but the relative orientation and mobility of phospholipids with respect to proteins is similar to that of the lamellar phase. Protein conformational changes are also detected as a consequence of surfactant removal. Fourier transform infrared spectroscopy indicates an increase of peptide beta-structure in the absence of Triton X-100; changes in the amide II/amide I intensity ratio are also detected, although the precise meaning of these observations is unclear

  16. Reactive surfactants in heterophase polymerization

    NARCIS (Netherlands)

    Guyot, A.; Tauer, K.; Asua, J.M.; Es, van J.J.G.S.; Gauthier, C.; Hellgren, A.C.; Sherrington, D.C.; Montoya-Goni, A.; Sjöberg, M.; Sindt, O.; Vidal, F.F.M.; Unzue, M.; Schoonbrood, H.A.S.; Schipper, E.T.W.M.; Lacroix-Desmazes, P.


    This paper summarizes the work carried out during 3 years in a Network of the program "Human Capital and Mobility" of the European Union CHRX 93-0159 entitled "Reactive surfactants in heterophase polymerization for high performance polymers". A series of about 25 original papers will be published in

  17. Surfactant screening of diesel-contaminated soil

    International Nuclear Information System (INIS)

    Peters, R.W.; Montemagno, C.D.; Shem, L.; Lewis, B.-A.


    At one installation in California, approximately 60,000 gal of No. 2 diesel fuel leaked into the subsurface environment, resulting in contamination at depths from 6 to 34 m below the surface. Argonne National Laboratory was contracted to perform treatability studies for site remediation. This paper summarizes a surfactant screening/surfactant flooding research program in which 22 surfactants were screened for their effectiveness in mobilizing the organics from the contaminated soil prior to bioremediation. Anionic surfactants resulted in the greatest degree of diesel mobilization. The most promising surfactants will be employed on contaminated soil samples obtained from the site

  18. Solubility enhancement of dioxins and PCBs by surfactant monomers and micelles quantified with polymer depletion techniques. (United States)

    Schacht, Veronika J; Grant, Sharon C; Escher, Beate I; Hawker, Darryl W; Gaus, Caroline


    Partitioning of super-hydrophobic organic contaminants (SHOCs) to dissolved or colloidal materials such as surfactants can alter their behaviour by enhancing apparent aqueous solubility. Relevant partition constants are, however, challenging to quantify with reasonable accuracy. Partition constants to colloidal surfactants can be measured by introducing a polymer (PDMS) as third phase with known PDMS-water partition constant in combination with the mass balance approach. We quantified partition constants of PCBs and PCDDs (log KOW 5.8-8.3) between water and sodium dodecyl sulphate monomers (KMO) and micelles (KMI). A refined, recently introduced swelling-based polymer loading technique allowed highly precise (4.5-10% RSD) and fast (KMO. SHOC losses to experimental surfaces were substantial (8-26%) in monomer solutions, but had a low impact on KMO (0.10-0.16 log units). Log KMO for PCDDs (4.0-5.2) were approximately 2.6 log units lower than respective log KMI, which ranged from 5.2 to 7.0 for PCDDs and 6.6-7.5 for PCBs. The linear relationship between log KMI and log KOW was consistent with more polar and moderately hydrophobic compounds. Apparent solubility increased with increasing hydrophobicity and was highest in micelle solutions. However, this solubility enhancement was also considerable in monomer solutions, up to 200 times for OCDD. Given the pervasive presence of surfactant monomers in typical field scenarios, these data suggest that low surfactant concentrations may be effective long-term facilitators for subsurface transport of SHOCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Fabrication of corona-free nanoparticles with tunable hydrophobicity. (United States)

    Moyano, Daniel F; Saha, Krishnendu; Prakash, Gyan; Yan, Bo; Kong, Hao; Yazdani, Mahdieh; Rotello, Vincent M


    A protein corona is formed at the surface of nanoparticles in the presence of biological fluids, masking the surface properties of the particle and complicating the relationship between chemical functionality and biological effects. We present here a series of zwitterionic NPs of variable hydrophobicity that do not adsorb proteins at moderate levels of serum protein and do not form hard coronas at physiological serum concentrations. These particles provide platforms to evaluate nanobiological behavior such as cell uptake and hemolysis dictated directly by chemical motifs at the nanoparticle surface.

  20. Is Br2 hydration hydrophobic? (United States)

    Alcaraz-Torres, A; Gamboa-Suárez, A; Bernal-Uruchurtu, M I


    The spectroscopic properties of bromine in aqueous systems suggest it can behave as either hydrophilic or hydrophobic solute. In small water clusters, the halogen bond and the hydrogen-halogen interaction are responsible for its specific way of binding. In water hydrates, it is efficiently hosted by two different cages forming the crystal structure and it has been frequently assumed that there is little or no interaction between the guest and the host. Bromine in liquid solution poses a challenging question due to its non-negligible solubility and the large blue shift measured in its absorption spectra. Using a refined semi-empirical force field, PM3-PIF, we performed a Born-Oppenheimer molecular dynamics study of bromine in liquid water. Here we present a detailed study in which we retrieved the most representative hydration structures in terms of the most frequent positions around bromine and the most common water orientations. Albeit being an approximate description of the total hydration phenomenon, it captures the contribution of the leading molecular interactions in form of the recurrent structures. Our findings confirm that the spectroscopic signature is mainly caused by the closest neighbors. The dynamics of the whole first hydration shell strongly suggests that the external molecules in that structure effectively isolate the bulk from the presence of bromine. The solvation structure fluctuates from a hydrophilic to a hydrophobic-like environment along the studied trajectory.

  1. Secondary structure and lipid interactions of the N-terminal segment of pulmonary surfactant SP-C in Langmuir films: IR reflection-absorption spectroscopy and surface pressure studies

    DEFF Research Database (Denmark)

    Bi, Xiaohong; Flach, Carol R; Pérez-Gil, Jesus


    reversibly with surface pressure (pi), suggestive of the peptide being squeezed out from hydrophobic regions of the monolayer. No such effect was observed for DPPG/peptide monolayers, indicative of stronger, probably electrostatic, interactions. Depalmitoylation produced a weakened interaction with either...... phospholipid as deduced from IRRAS spectra and from pi-area isotherms. S-Palmitoylation may modulate peptide hydration and conformation in the N-terminal region of SP-C and may thus permit the peptide to remain in the film at the high surface pressures present during lung compression. The unique capability...... of IRRAS to detect the surface pressure dependence of protein or peptide structure/interactions in a physiologically relevant model for surfactant is clearly demonstrated. Udgivelsesdato: 2002-Jul-2...

  2. Surfactant -- Where Are We in 2003?

    Directory of Open Access Journals (Sweden)

    JF Lewis


    Full Text Available Surfactant research has progressed over the past several years to the extent that exogenous surfactant administration in patients with the acute respiratory distress syndrome (ARDS is now being evaluated. Unfortunately, clinical responses have been variable, and we now need to take a look at how surfactant is altered in this disease so that more effective treatment strategies can be developed. This review briefly discusses the biophysical and host defense properties of surfactant, the impact of mechanical ventilation (MV on the endogenous surfactant system and the most recent clinical data involving exogenous surfactant administration in patients with ARDS. Discussions regarding future directions of surfactant research both in ARDS and diseases other than acute lung injury are included.

  3. Micellar dipolar rearrangement is sensitive to hydrophobic chain length: Implication for structural switchover of piroxicam. (United States)

    Sethy, Dasaratha; Chakraborty, Hirak


    The interfacial properties of the membrane are exceptionally vital in drug-membrane interaction. They not only select out a particular prototropic form of the drug molecule for incorporation, but are also potent enough to induce structural switchover of these drugs in several cases. In this work, we quantitatively monitored the change in dipolar rearrangement of the micellar interface (as a simplified membrane mimic) by measuring the dielectric constant and dipole potential with the micellization of SDS at pH 3.6. The dielectric constant and dipole potential were measured utilizing the fluorescence of polarity sensitive probe, pyrene and potential-sensitive probe, di-8-ANEPPS, respectively. Our study demonstrates that the change in dipolar rearrangement directly influences the switchover equilibrium between the anionic and neutral from of piroxicam. We have further extended our work to evaluate the effect of hydrophobic chain length of the surfactants on the dipolar rearrangement and its effect on the structural switchover of piroxicam. It is interesting that the extent of switchover of piroxicam is directly correlated with the dipolar rearrangement induced bythe varying hydrophobic chain length of the surfactants. To the best of our knowledge, our results constitute the first report to show the dependence of dipole potential on the hydrophobic chain length of the surfactant and demonstrate that the dipolar rearrangement directly tunes the extent of structural switchover of piroxicam, which was so far only intuitive. We consider that this new finding would have promising implication in drug distribution and drug efficacy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Release of a Poorly Soluble Drug from Hydrophobically Modified Poly (Acrylic Acid in Simulated Intestinal Fluids.

    Directory of Open Access Journals (Sweden)

    Patrik Knöös

    Full Text Available A large part of new pharmaceutical substances are characterized by a poor solubility and high hydrophobicity, which might lead to a difference in drug adsorption between fasted and fed patients. We have previously evaluated the release of hydrophobic drugs from tablets based on Pemulen TR2 and showed that the release can be manipulated by adding surfactants. Here we further evaluate the possibility to use Pemulen TR2 in controlled release tablet formulations containing a poorly soluble substance, griseofulvin. The release is evaluated in simulated intestinal media that model the fasted state (FaSSIF medium or fed state (FeSSIF. The rheology of polymer gels is studied in separate experiments, in order to gain more information on possible interactions. The release of griseofulvin in tablets without surfactant varied greatly and the slowest release were observed in FeSSIF. Addition of SDS to the tablets eliminated the differences and all tablets showed a slow linear release, which is of obvious relevance for robust drug delivery. Comparing the data from the release studies and the rheology experiment showed that the effects on the release from the different media could to a large extent be rationalised as a consequence of the interactions between the polymer and the surfactants in the media. The study shows that Pemulen TR2 is a candidate for controlled release formulations in which addition of surfactant provides a way to eliminate food effects on the release profile. However, the formulation used needs to be designed to give a faster release rate than the tablets currently investigated.

  5. Biological, pathobiological and bioclinical bases of pulmonary surfactant metabolism in the human species

    International Nuclear Information System (INIS)

    Garcia, Alfonso; Ojeda, Paulina


    The surfactant metabolism dysfunction pulmonary (SMDP), classically termed as Pulmonary Alveolar Proteinosis (PAP) are a unusual respiratory disorder characterized by abundant and excessive accumulation of surfactant-derived phospholipids and protein components in the pulmonary alveoli and distal airways, with disturbances associated secondary of pulmonary gas exchange and engendering respiratory insufficiency. At least three general pathophysiologic mechanisms may lead to the characteristic feature of PAP: Primary (idiopathic, essential, acquired or adult), secondary and congenital.

  6. Solvation thermodynamics of phenylalcohols in lamellar phase surfactant dispersions

    International Nuclear Information System (INIS)

    Martyniak, A.; Scheuermann, R.; Dilger, H.; Tucker, I.M.; Burkert, T.; Hashmi, A.S.K.; Vujosevic', D.; Roduner, E.


    The distribution and the stability of five phenylalcohols in a lamellar phase composed of simple bilayers separated by water at 298 and 348K is explored using avoided-level-crossing muon-spin resonance (ALC-μSR). The dependence of the alignment of the bilayer chains on temperature appears to be a crucial factor determining the phenylalcohol partitioning: increasing order of the surfactant tails leads to expulsion of the solute. Moreover, we observed a systematic trend, the longer the chain the deeper the phenyl group dips into the lipid bilayer. Recent studies have shown that the hydrophobic effect is adequate to describe membrane partitioning of small amphiphilic molecules. The solvation thermodynamic properties ΔG sol , ΔH sol , and ΔS sol which determine the solute transfer from the double layer into water prove that the distribution also strongly depends on shape, chemical nature and different structure of phenylalcohols

  7. Solvation thermodynamics of phenylalcohols in lamellar phase surfactant dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Martyniak, A. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Scheuermann, R. [Laboratory for muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Dilger, H. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Tucker, I.M. [Unilever Research and Development, Port Sunlight, Wirral CH63 3JW (United Kingdom); Burkert, T. [Institut fuer Organische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Hashmi, A.S.K. [Institut fuer Organische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Vujosevic' , D. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Roduner, E. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany)]. E-mail:


    The distribution and the stability of five phenylalcohols in a lamellar phase composed of simple bilayers separated by water at 298 and 348K is explored using avoided-level-crossing muon-spin resonance (ALC-{mu}SR). The dependence of the alignment of the bilayer chains on temperature appears to be a crucial factor determining the phenylalcohol partitioning: increasing order of the surfactant tails leads to expulsion of the solute. Moreover, we observed a systematic trend, the longer the chain the deeper the phenyl group dips into the lipid bilayer. Recent studies have shown that the hydrophobic effect is adequate to describe membrane partitioning of small amphiphilic molecules. The solvation thermodynamic properties {delta}G{sub sol}, {delta}H{sub sol}, and {delta}S{sub sol} which determine the solute transfer from the double layer into water prove that the distribution also strongly depends on shape, chemical nature and different structure of phenylalcohols.

  8. Characterisation of nanomaterial hydrophobicity using engineered surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Desmet, Cloé; Valsesia, Andrea; Oddo, Arianna; Ceccone, Giacomo; Spampinato, Valentina; Rossi, François; Colpo, Pascal, E-mail: [Directorate Health, Consumer and Reference Materials, Consumer Products Safety Unit (Italy)


    Characterisation of engineered nanomaterials (NMs) is of outmost importance for the assessment of the potential risks arising from their extensive use. NMs display indeed a large variety of physico-chemical properties that drastically affect their interaction with biological systems. Among them, hydrophobicity is an important property that is nevertheless only slightly covered by the current physico-chemical characterisation techniques. In this work, we developed a method for the direct characterisation of NM hydrophobicity. The determination of the nanomaterial hydrophobic character is carried out by the direct measurement of the affinity of the NMs for different collectors. Each collector is an engineered surface designed in order to present specific surface charge and hydrophobicity degrees. Being thus characterised by a combination of surface energy components, the collectors enable the NM immobilisation with surface coverage in relation to their hydrophobicity. The experimental results are explained by using the extended DLVO theory, which takes into account the hydrophobic forces acting between NMs and collectors.

  9. Effect of nano silica based modifying agent for hydrophobic coating application

    International Nuclear Information System (INIS)

    Nurul Huda Mudri; Nik Ghazali Nik Salleh; Mek Zah Salleh


    Hydrophobic coatings find wide application in industry due to their unique features such as water repellent and self-cleaning properties. In this study, modifying agent was synthesized by way of nano silica particles dispersion in polydimethyl siloxane with addition of surfactant, catalyst and stabilizer using high speed distemper. The modifying agent was added into coating formulation and cured under UV exposure. Scanning Electron Microscopy image of the film found that the nano silica particles were distributed well on substrate. Contact angle measurement gave the highest reading of 116 degree for 20 % wt of the modifying agent. The optical properties of the film were evaluated via transmission and haze test. (author)

  10. Rheological Properties of Hydrophobically Associative Copolymers Prepared in a Mixed Micellar Method Based on Methacryloxyethyl-dimethyl Cetyl Ammonium Chloride as Surfmer

    Directory of Open Access Journals (Sweden)

    Rui Liu


    Full Text Available A novel cationic surfmer, methacryloxyethyl-dimethyl cetyl ammonium chloride (DMDCC, is synthesized. The micellar properties, including critical micelle concentration and aggregation number, of DMDCC-SDS mixed micelle system are studied using conductivity measurement and a steady-state fluorescence technique. A series of water-soluble associative copolymers with acrylamide and DMDCC are prepared using the mixed micellar polymerization. Compared to conventional micellar polymerization, this new method could not only reasonably adjust the length of the hydrophobic microblock, that is, NH, but also sharply reduce the amount of surfactant. Their rheological properties related to hydrophobic microblock and stickers are studied by the combination of steady flow and linear viscoelasticity experiments. The results indicate that both the hydrophobic content and, especially the length of the hydrophobic microblock are the dominating factors effecting the intermolecular hydrophobic association. The presence of salt influences the dynamics of copolymers, resulting in the variation of solution characters. Viscosity measurement indicates that mixed micelles between the copolymer chain and SDS molecules serving as junction bridges for transitional network remarkably enhance the viscosity. Moreover, the microscopic structures of copolymers at different experimental conditions are conducted by ESEM. This method gives us an insight into the preparation of hydrophobically associative water-soluble copolymers by cationic surfmer-anionic surfactant mixed micellar polymerization with good performance.

  11. Repulsive effects of hydrophobic diamond thin films on biomolecule detection

    Energy Technology Data Exchange (ETDEWEB)

    Ruslinda, A. Rahim, E-mail: [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Jln Kgr-Alor Setar, Seriab, 01000 Kangar, Perlis (Malaysia); Department of Nano Science and Nano Engineering, School of Advance Science and Engineering, Ohkubo 3-4-1, Shinjuku, 169-8555 Tokyo (Japan); Ishiyama, Y. [Department of Nano Science and Nano Engineering, School of Advance Science and Engineering, Ohkubo 3-4-1, Shinjuku, 169-8555 Tokyo (Japan); Penmatsa, V. [Department of Mechanical and Materials Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174 (United States); Ibori, S.; Kawarada, H. [Department of Nano Science and Nano Engineering, School of Advance Science and Engineering, Ohkubo 3-4-1, Shinjuku, 169-8555 Tokyo (Japan)


    Highlights: • We report the effect of fluorine plasma treatment on diamond thin film to resist the nonspecific adsorption of biomolecules. • The diamond thin film were highly hydrophobic with a surface energy value of ∼25 mN/m. • The repulsive effect shows excellent binding efficiency for both DNA and HIV-1 Tat protein. - Abstract: The repulsive effect of hydrophobic diamond thin film on biomolecule detection, such as single-nucleotide polymorphisms and human immunodeficiency virus type 1 trans-activator of transcription peptide protein detection, was investigated using a mixture of a fluorine-, amine-, and hydrogen-terminated diamond surfaces. These chemical modifications lead to the formation of a surface that effectively resists the nonspecific adsorption of proteins and other biomolecules. The effect of fluorine plasma treatment on elemental composition was also investigated via X-ray photoelectron spectroscopy (XPS). XPS results revealed a fluorocarbon layer on the diamond thin films. The contact angle measurement results indicated that the fluorine-treated diamond thin films were highly hydrophobic with a surface energy value of ∼25 mN/m.

  12. Repulsive effects of hydrophobic diamond thin films on biomolecule detection

    International Nuclear Information System (INIS)

    Ruslinda, A. Rahim; Ishiyama, Y.; Penmatsa, V.; Ibori, S.; Kawarada, H.


    Highlights: • We report the effect of fluorine plasma treatment on diamond thin film to resist the nonspecific adsorption of biomolecules. • The diamond thin film were highly hydrophobic with a surface energy value of ∼25 mN/m. • The repulsive effect shows excellent binding efficiency for both DNA and HIV-1 Tat protein. - Abstract: The repulsive effect of hydrophobic diamond thin film on biomolecule detection, such as single-nucleotide polymorphisms and human immunodeficiency virus type 1 trans-activator of transcription peptide protein detection, was investigated using a mixture of a fluorine-, amine-, and hydrogen-terminated diamond surfaces. These chemical modifications lead to the formation of a surface that effectively resists the nonspecific adsorption of proteins and other biomolecules. The effect of fluorine plasma treatment on elemental composition was also investigated via X-ray photoelectron spectroscopy (XPS). XPS results revealed a fluorocarbon layer on the diamond thin films. The contact angle measurement results indicated that the fluorine-treated diamond thin films were highly hydrophobic with a surface energy value of ∼25 mN/m

  13. Comparison of biosurfactant detection methods reveals hydrophobic surfactants and contact-regulated production (United States)

    Biosurfactants are diverse molecules with numerous biological functions and industrial applications. A variety of environments were examined for biosurfactant-producing bacteria using a versatile new screening method. The utility of an atomized oil assay was assessed for a large number of bacteria...

  14. Understanding organic reactions in water : from hydrophobic encounters to surfactant aggregates

    NARCIS (Netherlands)

    Engberts, J.B.F.N.; Blandamer, M.J.


    A crucial factor in realising a green chemical process in solution involves the choice of a safe, non-toxic and cheap solvent. Water is the obvious choice. Despite solubility problems, considerable interest has developed recently in organic chemistry in water. This interest also results from the

  15. Particle-size dependent sorption and desorption of pesticides within a water-soil-nonionic surfactant system. (United States)

    Wang, Peng; Keller, Arturo A


    Although nonionic surfactants have been considered in surfactant-aided soil washing systems, there is little information on the particle-size dependence of these processes, and this may have significant implications for the design of these systems. In this study, Triton-100 (TX) was selected to study its effect on the sorption and desorption of two pesticides (Atrazine and Diuron) from different primary soil size fractions (clay, silt, and sand fractions) under equilibrium sorption and sequential desorption. Soil properties, TX sorption, and pesticide sorption and desorption all exhibited significant particle-size dependence. The cation exchange capacity (CEC) of the bulk soils and the soil fractions determined TX sorption capacity, which in turn determined the desorption efficiency. Desorption of pesticide out of the clay raction is the limiting factor in a surfactant-aided washing system. The solubilization efficiency of the individual surfactant micelles decreased as the amount of surfactant added to the systems increased. Thus, instead of attempting to wash the bulk soil, a better strategy might be to either (1) use only the amount of surfactant that is sufficient to clean the coarse fraction, then separate the fine fraction, and dispose or treat it separately, or (2) to separate the coarse fractions mechanically and then treatthe coarse and fine fractions separately. These results may be applicable to many other hydrophobic organic compounds such as polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) strongly sorbed onto soils and sediments.

  16. High hydrostatic pressure inactivation of Lactobacillus plantarum cells in (O/W)-emulsions is independent from cell surface hydrophobicity and lipid phase parameters (United States)

    Kafka, T. A.; Reitermayer, D.; Lenz, C. A.; Vogel, R. F.


    Inactivation efficiency of high hydrostatic pressure (HHP) processing of food is strongly affected by food matrix composition. We investigated effects of fat on HHP inactivation of spoilage-associated Lactobacillus (L.) plantarum strains using defined oil-in-water (O/W)-emulsion model systems. Since fat-mediated effects on HHP inactivation could be dependent on interactions between lipid phase and microbial cells, three major factors possibly influencing such interactions were considered, that is, cell surface hydrophobicity, presence and type of surfactants, and oil droplet size. Pressure tolerance varied noticeably among L. plantarum strains and was independent of cell surface hydrophobicity. We showed that HHP inactivation of all strains tended to be more effective in presence of fat. The observation in both, surfactant-stabilized and surfactant-free (O/W)-emulsion, indicates that cell surface hydrophobicity is no intrinsic pressure resistance factor. In contrast to the presence of fat per se, surfactant type and oil droplet size did not affect inactivation efficiency.

  17. Two sides of the coin. Part 1. Lipid and surfactant self-assembly revisited. (United States)

    Ninham, Barry W; Larsson, Kåre; Lo Nostro, Pierandrea


    Hofmeister, specific ion effects, hydration and van der Waals forces at and between interfaces are factors that determine curvature and microstructure in self assembled aggregates of surfactants and lipids; and in microemulsions. Lipid and surfactant head group interactions and between aggregates vary enormously and are highly specific. They act on the hydrophilic side of a bilayer, micelle or other self assembled aggregate. It is only over the last three decades that the origin of Hofmeister effects has become generally understood. Knowledge of their systematics now provides much flexibility in designing nanostructured fluids. The other side of the coin involves equally specific forces. These (opposing) forces work on the hydrophobic side of amphiphilic interfaces. They are due to the interaction of hydrocarbons and other "oils" with hydrophobic tails of surfactants and lipids. The specificity of oleophilic solutes in microemulsions and lipid membranes provides a counterpoint to Hofmeister effects and hydration. Together with global packing constraints these effects determine microstructure. Another factor that has hardly been recognised is the role of dissolved gas. This introduces further, qualitative changes in forces that prescribe microstructure. The systematics of these effects and their interplay are elucidated. Awareness of these competing factors facilitates formulation of self assembled nanostructured fluids. New and predictable geometries that emerge naturally provide insights into a variety of biological phenomena like anaesthetic and pheromone action and transmission of the nervous impulse (see Part 2). Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Changes in surfactant in bronchoalveolar lavage fluid after hemithorax irradiation in patients with mesothelioma

    International Nuclear Information System (INIS)

    Hallman, M.; Maasilta, P.; Kivisaari, L.; Mattson, K.


    Experimental studies have shown that the surfactant system of the lung is affected shortly after irradiation. It is unclear, however, whether surfactant plays a role in the pathogenesis of radiation pneumonitis. In the present study surfactant components (saturated phosphatidylcholine, surfactant protein A, phosphatidylglycerol, and phosphatidylinositol) and other phospholipids of bronchoalveolar lavage fluid (BAL) were studied in four patients with pleural mesothelioma before and during hemithorax irradiation (70 Gy) as well as zero, 1, 2, 3, and 4 months following irradiation. The concentrations of these same components and of soluble proteins were also estimated in the epithelial lining fluid (ELF) using urea as a marker of dilution. After radiotherapy, the concentrations of the surfactant components in ELF decreased to 12 to 55% of the control values before radiation, whereas the concentration of sphingomyelin in ELF increased ninefold. There were small changes in the other phospholipids. The concentration of soluble protein in ELF increased sevenfold. The minimum surface activity of crude BAL increased from 12 +/- 4 to 32 +/- 6 mN/m, and that of the sediment fraction of BAL increased from 7 +/- 4 to 22 +/- 6 mN/m, p less than 0.001. The protein-rich supernatant fraction of BAL from irradiated lung had a inhibitory effect on normal surfactant. There were significant correlations between the increasing severity of the radiologic changes on the one hand and, on the other, the saturated phosphatidylcholine/sphingomyelin ratio (p less than 0.001), the concentrations of soluble protein (p less than 0.001), and the concentrations of the surfactant components (p less than 0.02-0.001) in ELF

  19. Durability of hydrophobic treatment of concrete

    NARCIS (Netherlands)

    Vries, J. de; Polder, R.B.; Borsje, H.


    The subject of this study was the performance of hydrophobic treatment to protect concrete against chloride penetration from de-icing salts. Hydrophobic treatment makes a concrete surface absorb less water and less chloride. Test methods and requirements for commercial products were established. In

  20. Durability of hydrophobic treatment of concrete

    NARCIS (Netherlands)

    Vries, J. de; Polder, R.B.; Borsje, H.


    The subject of this study was the performance of hydrophobic treatment to protect concrete against chloride penetration from de-icing salts. Hydrophobic treatment makes a concrete surface absorb less water and less chloride. Several types of tests were carried out to study the performance of

  1. Effect of counterions on properties of micelles formed by alkylpyridinium surfactants .1. Conductometry and H-1-NMR chemical shifts


    Bijma, K; Engberts, J.B.F.N.


    This paper delineates the influence of counterions on the aggregation behavior of 1-methyl-4-n-dodecylpyridinium surfactants, using conductometry and H-1-NMR spectroscopy. Three types of counterions have been studied: (i) halides, (ii) alkanesulfonates, and (iii) aromatic counterions. The critical. micelle concentration is found to decrease with increasing counterion size and increasing counterion hydrophobicity, whereas the degree of counterion binding increases. The aggregation behavior of ...

  2. Mixed micelles of polyethylene glycol (23) lauryl ether with ionic surfactants studied by proton 1D and 2D NMR. (United States)

    Gao, Hong-Chang; Zhao, Sui; Mao, Shi-Zhen; Yuan, Han-Zhen; Yu, Jia-Yong; Shen, Lian-Fang; Du, You-Ru


    (1)H NMR chemical shift, spin-lattice relaxation time, spin-spin relaxation time, self-diffusion coefficient, and two-dimensional nuclear Overhauser enhancement (2D NOESY) measurements have been used to study the nonionic-ionic surfactant mixed micelles. Cetyl trimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) were used as the ionic surfactants and polyethylene glycol (23) lauryl ether (Brij-35) as the nonionic surfactant. The two systems are both with varying molar ratios of CTAB/Brij-35 (C/B) and SDS/Brij-35 (S/B) ranging from 0.5 to 2, respectively, at a constant concentration of 6 mM for Brij-35 in aqueous solutions. Results give information about the relative arrangement of the surfactant molecules in the mixed micelles. In the former system, the trimethyl groups attached to the polar heads of the CTAB molecules are located between the first oxy-ethylene groups next to the hydrophobic chains of Brij-35 molecules. These oxy-ethylene groups gradually move outward from the hydrophobic core of the mixed micelle with an increase in C/B in the mixed solution. In contrast to the case of the CTAB/Triton X-100 system, the long flexible hydrophilic poly oxy-ethylene chains, which are in the exterior part of the mixed micelles, remain coiled, but looser, surrounding the hydrophobic core. There is almost no variation in conformation of the hydrophilic chains of Brij-35 molecules in the mixed micelles of the SDS/Brij-35 system as the S/B increases. The hydrophobic chains of both CTAB and SDS are co-aggregated with Brij-35, respectively, in their mixed micellar cores.

  3. Latex Imaging by Environmental STEM: Application to the Study of the Surfactant Outcome in Hybrid Alkyd/Acrylate Systems


    Faucheu , Jenny; Chazeau , Laurent; Gauthier , Catherine; Cavaille , Jean-Yves; Goikoetxea , Monika; Minari , Roque; Asua , Jose M.


    International audience; Among other uses. latexes are a successful alternative to solvent-borne binders for coatings. Efforts are made to produce hybrid nanostructured latexes containing an acrylic phase and an alkyd phase, However, after the film-forming process, the surfactant used to stabilize these latexes remains in the film, and its location can have a drastic effect on the application properties. Among the processing parameters, the alkyd hydrophobicity can strongly influence this loca...

  4. Phase transitions in surfactant monolayers

    International Nuclear Information System (INIS)

    Casson, B.D.


    Two-dimensional phase transitions have been studied in surfactant monolayers at the air/water interface by sum-frequency spectroscopy and ellipsometry. In equilibrium monolayers of medium-chain alcohols C n H 2n+1 OH (n = 9-14) a transition from a two-dimensional crystalline phase to a liquid was observed at temperatures above the bulk melting point. The small population of gauche defects in the solid phase increased only slightly at the phase transition. A model of the hydrocarbon chains as freely rotating rigid rods allowed the area per molecule and chain tilt in the liquid phase to be determined. The area per molecule, chain tilt and density of the liquid phase all increased with increasing chain length, but for each chain length the density was higher than in a bulk liquid hydrocarbon. In a monolayer of decanol adsorbed at the air/water interface a transition from a two-dimensional liquid to a gas was observed. A clear discontinuity in the coefficient of ellipticity as a function of temperature showed that the transition is first-order. This result suggests that liquid-gas phase transitions in surfactant monolayers may be more widespread than once thought. A solid-liquid phase transition has also been studied in mixed monolayers of dodecanol with an anionic surfactant (sodium dodecyl sulphate) and with a homologous series of cationic surfactants (alkyltrimethylammonium bromides: C n TABs, n = 12, 14, 16). The composition and structure of the mixed monolayers was studied above and below the phase transition. At low temperatures the mixed monolayers were as densely packed as a monolayer of pure dodecanol in its solid phase. At a fixed temperature the monolayers under-went a first-order phase transition to form a phase that was less dense and more conformationally disordered. The proportion of ionic surfactant in the mixed monolayer was greatest in the high temperature phase. As the chain length of the C n TAB increased the number of conformational defects

  5. Dynamics of Wetting of Ultra Hydrophobic Surfaces (United States)

    Mohammad Karim, Alireza; Kim, Jeong-Hyun; Rothstein, Jonathan; Kavehpour, Pirouz; Mechanical and Industrial Engineering, University of Massachusetts, Amherst Collaboration


    Controlling the surface wettability of hydrophobic and super hydrophobic surfaces has extensive industrial applications ranging from coating, painting and printing technology and waterproof clothing to efficiency increase in power and water plants. This requires enhancing the knowledge about the dynamics of wetting on these hydrophobic surfaces. We have done experimental investigation on the dynamics of wetting on hydrophobic surfaces by looking deeply in to the dependency of the dynamic contact angles both advancing and receding on the velocity of the three-phase boundary (Solid/Liquid/Gas interface) using the Wilhelmy plate method with different ultra-hydrophobic surfaces. Several fluids with different surface tension and viscosity are used to study the effect of physical properties of liquids on the governing laws.

  6. Influence of surfactants on the sorption of two chloroacetanilide in an Romanian chernozem soil. (United States)

    Coroi, I G; De Wilde, T; Cara, M S; Jitareanu, G; Steurbaut, W


    Pesticides have been extensively used in modern agriculture. Due to the prevalent use, there have been serious problems generated by pesticides wastes which could eventually endanger water resources and human health. The development of technologies for the decontamination of soils and waters polluted by hydrophobic organic compounds has encouraged research into the use of non-ionic surfactants as potential agents for the enhanced solubilization and removal of contaminants from soils and sediments. Sorption of two chloroacetanilide herbicides, acetochlor and metolachlor was studied on a representative chernozem soil of the Main Agricultural Research Station Ezareni belonging to the "Ion Ionescu de la Brad" University of Agriculture and Veterinary Medicine lasi, Romania, in the presence and absence of surfactants. Three different non-ionic surfactants were selected: Tween-20, Synperonic 91/5 and Silwet L-77, to verify the influence of their presence on herbicide sorption at different concentrations. Our results showed that the sorption of the studied herbicides within the soil-water-non-ionic surfactant system was influenced by the presence of non-ionic surfactants. The n values obtained were lower than 1 for all pesticide-surfactant combinations, which indicates that the amount of acetochor and metolachlor sorbed decreased with an increase in pesticide concentration. The sorption of acetochlor increased in the following order: Acetochlor+Synperonic 91/5 < Acetochlor < Acetochlor+Tween-20 < Acetochlor+Silwet L-77. In the case of metolachlor+Synperonic and metolachlor+Silwet L-77, the Kf values were significantly higher than the Kf value of metolachlor+Tween-20 on soil, where a lower Kf value could be observed with however a higher n value which indicate a higher sorption capacity at higher concentrations.

  7. Solubilisation of a host molecule in a surfactant film: thermodynamic and structural approach in the case of lindane

    International Nuclear Information System (INIS)

    Testard, Fabienne


    In this research thesis, the author aimed at understanding the main aspects of solubilisation in the specific case of a pesticide, the lindane, which is a hydrophobic molecule, poorly soluble in water. She first proposes a review of some existing models of solubilisation, and presents the only existing predictive model for the prediction of solubilisation in water-ionic surfactant binary systems. She addresses these systems and tries to characterise disruptions induced by the presence of the solute for lindane-saturated solutions (study of phase diagrams, of structure for different surfactant concentrations and different temperatures). Then she focuses on a part of the ternary diagram which allows micro emulsions to be reached at the point of spontaneous null curvature. She reports the study (by neutron and X ray scattering at small angles) of structural information on the surfactant film in different aggregates of ternary solutions in presence of solute. She finally proposes a more chemical approach to solubilisation [fr

  8. The Biophysical Function of Pulmonary Surfactant


    Rugonyi, Sandra; Biswas, Samares C.; Hall, Stephen B.


    Pulmonary surfactant lowers surface tension in the lungs. Physiological studies indicate two key aspects of this function: that the surfactant film forms rapidly; and that when compressed by the shrinking alveolar area during exhalation, the film reduces surface tension to very low values. These observations suggest that surfactant vesicles adsorb quickly, and that during compression, the adsorbed film resists the tendency to collapse from the interface to form a three-dimensional bulk phase....

  9. Acute Pathophysiological Effects of Intratracheal Instillation of Budesonide and Exogenous Surfactant in a Neonatal Surfactant-depleted Piglet Model

    Directory of Open Access Journals (Sweden)

    Chia-Feng Yang


    Conclusions: Intratracheal instillation of surfactant or surfactant plus budesonide can improve oxygenation and pulmonary histologic outcome in neonatal surfactant-depleted lungs. The additional use of budesonide does not disturb the function of the exogenous surfactant. Intratracheal administration of a corticosteroid combined with surfactant may be an effective method for alleviating local pulmonary inflammation in severe RDS.

  10. Pulmonary surfactant and its components inhibit secretion of phosphatidylcholine from cultured rat alveolar type II cells

    International Nuclear Information System (INIS)

    Dobbs, L.G.; Wright, J.R.; Hawgood, S.; Gonzalez, R.; Venstrom, K.; Nellenbogen, J.


    Pulmonary surfactant is synthesized and secreted by alveolar type II cells. Radioactive phosphatidylcholine has been used as a marker for surfactant secretion. The authors report findings that suggest that surfactant inhibits secretion of 3 H-labeled phosphatidylcholine by cultured rat type II cells. The lipid components and the surfactant protein group of M/sub r/ 26,000-36,000 (SP 26-36) inhibit secretion to different extents. Surfactant lipids do not completely inhibit release; in concentrations of 100 μg/ml, lipids inhibit stimulated secretion by 40%. SP 26-36 inhibits release with an EC 50 of 0.1 μg/ml. At concentrations of 1.0 μg/ml, SP 26-36 inhibits basal secretion and reduces to basal levels secretion stimulated by terbutaline, phorbol 12-myristate 13-acetate, and the ionophore A23187. The inhibitory effect of SP 26-36 can be blocked by washing type II cells after adding SP 26-36, by heating the proteins to 100 0 C for 10 min, by adding antiserum specific to SP 26-36, or by incubating cells in the presence of 0.2 mM EGTA. SP 26-36 isolated from canine and human sources also inhibits phosphatidylcholine release from rat type II cells. Neither type I collagen nor serum apolipoprotein A-1 inhibits secretion. These findings are compatible with the hypothesis that surfactant secretion is under feedback regulatory control

  11. Thermal stability and hot-stage Raman spectroscopic study of Ca-montmorillonite modified with different surfactants: A comparative study

    International Nuclear Information System (INIS)

    Sun, Zhiming; Park, Yuri; Zheng, Shuilin; Ayoko, Godwin A.; Frost, Ray L.


    Highlights: • A typical Ca-montmorillonite was modified with three surfactants through ion exchange. • The organoclays were characterized by XRD, TG and hot stage Raman. • The structural geometry and thermal properties of organoclays were analyzed. • The prepared organoclays show potential prospects in the environmental remediation. - Abstract: Three long chain cationic surfactants were intercalated into Ca-montmorillonite through ion exchange and the obtained organoclays were characterized by X-ray diffraction (XRD), high resolution thermogravimetric analysis (TG) and Raman spectroscopy. The intercalation of surfactants not only changes the surface properties of clay from hydrophilic to hydrophobic but also greatly increases the basal spacing of the interlayers based on XRD analysis. The thermal stability of organoclays intercalated with three surfactants (TTAB, DTAB and CTAB) and the different arrangements of the surfactant molecules intercalated into Ca-montmorillonite were determined by TG-DTG analysis. A Raman spectroscopic study on the Ca-montmorillonite modified by three surfactants prepared at different concentrations provided the detailed conformational ordering of different intercalated long-chain surfactants under different conditions. The wavenumber of the antisymmetric stretching mode is more sensitive than that of the symmetric stretching mode to the mobility of the tail of the amine chain. At room temperature, the conformational ordering is more easily affected by the packing density in the lateral model. With the increase of the temperature, the positions of both the antisymmetric and symmetric stretching bands shift to higher wavenumbers, which indicates a decrease of conformational ordering. This study offers new insights into the structure and properties of Ca-montmorillonite modified with different long chain surfactants. Moreover, the experimental results confirm the potential applications of organic Ca-montmorillonites for the removal

  12. Remediation using trace element humate surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, Catherine Lynn; Taylor, Steven Cheney; Bruhn, Debra Fox


    A method of remediation at a remediation site having one or more undesirable conditions in which one or more soil characteristics, preferably soil pH and/or elemental concentrations, are measured at a remediation site. A trace element humate surfactant composition is prepared comprising a humate solution, element solution and at least one surfactant. The prepared trace element humate surfactant composition is then dispensed onto the remediation site whereby the trace element humate surfactant composition will reduce the amount of undesirable compounds by promoting growth of native species activity. By promoting native species activity, remediation occurs quickly and environmental impact is minimal.

  13. Fluorescent visualization of a spreading surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Fallest, David W; Lichtenberger, Adele M; Fox, Christopher J; Daniels, Karen E, E-mail: kdaniel@ncsu.ed [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States)


    The spreading of surfactants on thin films is an industrially and medically important phenomenon, but the dynamics are highly nonlinear and visualization of the surfactant dynamics has been a long-standing experimental challenge. We perform the first quantitative, spatiotemporally resolved measurements of the spreading of an insoluble surfactant on a thin fluid layer. During the spreading process, we directly observe both the radial height profile of the spreading droplet and the spatial distribution of the fluorescently tagged surfactant. We find that the leading edge of a spreading circular layer of surfactant forms a Marangoni ridge in the underlying fluid, with a trough trailing the ridge as expected. However, several novel features are observed using the fluorescence technique, including a peak in the surfactant concentration that trails the leading edge, and a flat, monolayer-scale spreading film that differs from concentration profiles predicted by current models. Both the Marangoni ridge and the surfactant leading edge can be described to spread as R{approx}t{sup {delta}}. We find spreading exponents {delta}{sub H}{approx}0.30 and {delta}{sub {Gamma}}{approx}0.22 for the ridge peak and surfactant leading edge, respectively, which are in good agreement with theoretical predictions of {delta}=1/4. In addition, we observe that the surfactant leading edge initially leads the peak of the Marangoni ridge, with the peak later catching up to the leading edge.

  14. Surfactant nebulisation : lung function, surfactant distribution and pulmonary blood flow distribution in lung lavaged rabbits

    NARCIS (Netherlands)

    Dijk, Peter H.; Heikamp, A; Bambang Oetomo, Sidarto


    Objective: Surfactant nebulisation is a promising alternative to surfactant instillation in newborns with the respiratory distress syndrome. Although less surfactant is deposited in the lung, it improves gas exchange, probably due to a superior distribution. We hypothesize that a more uniform

  15. Solution properties of hydrophobically modified

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh


    Full Text Available We tested nine hydrophobically modified polyacrylamides with molecular weights situated between 1.58 and 0.89 × 106 g/mol for enhanced oil recovery applications. Their solution properties were investigated in the distilled water, brine solution, formation water and sea water. Their critical association concentrations were determined from the relationship between their concentrations and the corresponding apparent viscosities (ηapp at 30 °C at shear rate 6 s−1. They were between 0.4 and 0.5 g/dl. The brine solutions of 0.5 g/dl of HM-PAMs were investigated at different conditions regarding their apparent viscosities. Such conditions were mono and divalent cations, temperature ranging from 30 to 90 °C, the shear rate ranging from 6 to 30 s−1 and the aging time for 45 days. The surface and interfacial tensions for the HM-PAMs were measured for concentration range from 0.01 to 1 g/dl brine solutions at 30 °C and their emulsification efficiencies were investigated for 7 days. The discrepancy in the properties and efficiencies of the tested copolymers was discussed in the light of their chemical structure.

  16. Interactions between ionic liquid surfactant [C12mim]Br and DNA in dilute brine. (United States)

    He, Yunfei; Shang, Yazhuo; Liu, Zhenhai; Shao, Shuang; Liu, Honglai; Hu, Ying


    Interactions between ionic liquid surfactant [C(12)mim]Br and DNA in dilute brine were investigated in terms of various experimental methods and molecular dynamics (MD) simulation. It was shown that the aggregation of [C(12)mim]Br on DNA chains is motivated not only by electrostatic attractions between DNA phosphate groups and [C(12)mim]Br headgroups but also by hydrophobic interactions among [C(12)mim]Br alkyl chains. Isothermal titration calorimetry analysis indicated that the [C(12)mim]Br aggregation in the presence and absence of DNA are both thermodynamically favored driven by enthalpy and entropy. DNA undergoes size transition and conformational change induced by [C(12)mim]Br, and the charges of DNA are neutralized by the added [C(12)mim]Br. Various microstructures were observed such as DNA with loose coil conformation in nature state, necklace-like structures, and compact spherical aggregates. MD simulation showed that the polyelectrolyte collapses upon the addition of oppositely charged surfactants and the aggregation of surfactants around the polyelectrolyte was reaffirmed. The simulation predicted the gradual neutralization of the negatively charged polyelectrolyte by the surfactant, consistent with the experimental results. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. A Spectroscopic and Electrochemical Investigation of Interactions of Anticancer Uracil Derivatives with Cationic and Anionic Surfactants

    International Nuclear Information System (INIS)

    Zafar, F.; Shah, A.; Ahmad, Z.; Siddiq, M.; Ali, S.; Asad Muhammad Khan, A. M.; Rana, U. A.


    Interactions of 5-fluorouracil (5-FU), a commercially available anti-cancer drug and two other possibly anti-cancer actives, 2-thiouracil (2-TU) and 2,4-dithiouracil (DTU), with anionic sodium dodecyl sulphate (SDS) and cationic cetlytrimethyl ammonium bromide (CTAB) surfactants were studied using cyclic voltammetry and UV-Visible spectroscopic techniques. The results from both techniques asserted the formation of complex between the drugs and surfactants. In the pre-micellar concentrations, the binding was mainly due to the interactions between the surfactants monomers (electrostatic) and the drug molecules, while in the post-micellar region, drug was encapsulated within the micelle due to electrostatic as well as hydrophobic interactions. The UV-Visible spectroscopic data of the interaction between 5-fluorouracil and the surfactants exhibited an isobestic point which indicated the presence of equilibrium species in bulk and the micellar phase. Binding constant, partition coefficient between bulk and miceller phase, and the number of drug molecules incorporated per micelle were calculated. (author)

  18. Design of Agglomerated Crystals of Ibuprofen During Crystallization: Influence of Surfactant

    Directory of Open Access Journals (Sweden)

    Maryam Maghsoodi


    Full Text Available Objective(sIbuprofen is a problematic drug in tableting, and dissolution due to its poor solubility, hydrophobicity, and tendency to stick to surface. Because of the bad compaction behavior ibuprofen has to be granulated usually before tableting. However, it would be more satisfactory to obtain directly during the crystallization step crystalline particles that can be directly compressed and quickly dissolved. Materials and Methods Crystallization of ibuprofen was carried out using the quasi emulsion solvent diffusion method in presence of surfactant (sodium lauryl sulfate (SLS, Tween 80. The particles were characterized by differential scanning calorimetry (DSC, powder X-ray diffraction (XRPD and were evaluated for particle size, flowability, drug release and tableting behavior. ResultsIbuprofen particles obtained in the presence of surfactants consisted of numerous plate- shaped crystals which had agglomerated together as near spherical shape. The obtained agglomerates exhibited significantly improved micromeritic properties as well as tableting behavior than untreated drug crystals. The agglomerates size and size distribution was largely controlled by surfactant concentration, but there was no significant influence found on the tableting properties. The dissolution tests showed that the agglomerates obtained in presence of SLS exhibited enhanced dissolution rate while the agglomerates made in the presence of Tween 80 had no significant impact on dissolution rate of ibuprofen in comparison to untreated sample. The XRPD and DSC results showed that during the agglomeration process, ibuprofen did not undergo any polymorphic changes.Conclusion The study highlights the influence of surfactants on crystallization process leading to modified performance.

  19. Effect of surfactant concentration on the evaporation of droplets on cotton (Gossypium hirsutum L.) leaves. (United States)

    Zhou, Zhaolu; Cao, Chong; Cao, Lidong; Zheng, Li; Xu, Jun; Li, Fengmin; Huang, Qiliang


    The evaporation kinetics of pesticide droplets deposited on a leaf surface can affect their application efficiency. Evaporation of droplets on the hydrophobic leaves has received considerable attention, but little is known about hydrophilic leaf surfaces. In this study, the effect of surfactant concentration on the evaporation of droplets deposited on cotton leaves was investigated. The evaporation time is roughly decreased for concentrations ranging from 0% to 0.01% and increased from 0.01% to 0.10%. Contrary to the widely held belief that pesticide retention on target crops can rapidly be formed only with surfactant concentrations exceeding the CMC (critical micelle concentration), this study demonstrates that, on hydrophilic cotton leaves, fast evaporation of the droplet at surfactant concentrations of 0.01% (CMC) can reduce the volume quickly, lower the loss point and enhance pesticide retention. In addition, the evolution of droplet volume, height and contact angle on the cotton leaf surface were measured to confirm this conclusion. The result presented herein can be used to guide the use of surfactants and pesticides in agriculture. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Development of alkaline/surfactant/polymer (ASP flooding technology for recovery of Karazhanbas oil

    Directory of Open Access Journals (Sweden)

    Birzhan Zhappasbaev


    Full Text Available The tertiary oil recovery methods like alkaline, surfactant and polymer (ASP flooding are very perspective in order to achieve the synergetic effect out of the different impacts which are caused by these chemicals, which affect oil and water filtration in the reservoir and increase oil recovery. In this communication, we consider the applicability of hydrophobically modified polyampholyte – poly(hexadecylaminocrotonatebetaine (PHDACB as ASP flooding agent for recovery of oil from Karazhanbas oilfield. As “polysoap”, the aqueous solution of PHDACB dissolved in aqueous KOH was used. This system combines the advantages of alkaline, surfactant and polymer and exhibits the synergistic effect. The laboratory results showed that the ASP flooding considerably increases the oil recovery in addition to water flooding. In perspective, the ASP flooding may substitute the steam injection and other thermal enhanced oil recovery (EOR technologies.

  1. Exploiting hydrophobicity for efficient production of transmembrane helices for structure determination by NMR spectroscopy

    DEFF Research Database (Denmark)

    Bugge, Katrine Østergaard; Steinocher, Helena; Brooks, Andrew J.


    -labeled protein. In this work, we have exploited the hydrophobic nature of membrane proteins to develop a simple and efficient production scheme for isotope-labeled single-pass transmembrane domains (TMDs) with or without intrinsically disordered regions. We have evaluated the applicability and limitations...... of the strategy using seven membrane protein variants that differ in their overall hydrophobicity and length and show a recovery for suitable variants of >70%. The developed production scheme is cost-efficient and easy to implement and has the potential to facilitate an increase in the number of structures...

  2. A study on the interaction of horse heart cytochrome c with some conventional and ionic liquid surfactants probed by ultraviolet-visible and fluorescence spectroscopic techniques. (United States)

    Mondal, Satyajit; Das, Bijan


    The interactions of a protein cytochrome c with some selected conventional and ionic liquid surfactants have been investigated at pH7.4 using ultraviolet-visible and fluorescence spectroscopic techniques. We used four conventional surfactants - cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), sodium N-dodecanoylsarcosinate (SDDS), and N-decanoyl-N-methylglucamine (Mega 10), and a surface active ionic liquid 1-hexadecyl-3-methylimidazolium chloride (C 16 MeImCl). All the investigated surfactants were found to induce an unfolding of the protein cytochrome c. In presence of CTAB, SDDS and C 16 MeImCl, the heme iron atom was found to loose methionine from its axial position. Differential binding of the surfactant monomers and their micelles to the protein molecules was inferred. The ionic surfactants were found to be more effective than the nonionic one in unfolding the investigated protein. However, the extent of binding of CTAB/C 16 MeImCl to cytochrome c reaches a plateau past the critical micellization concentration (cmc) of the surfactant. For each of the cytochrome c-DTAB, cytochrome c-SDDS and cytochrome c-Mega 10 system, although there exists an inflection in the surfactant-binding, saturation point could not be detected. It has been demonstrated from the ultraviolet-visible spectral studies that the oxidation state of iron in cytochrome c does not change when the protein binds with the investigated surfactants. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. A study on the interaction of horse heart cytochrome c with some conventional and ionic liquid surfactants probed by ultraviolet-visible and fluorescence spectroscopic techniques (United States)

    Mondal, Satyajit; Das, Bijan


    The interactions of a protein cytochrome c with some selected conventional and ionic liquid surfactants have been investigated at pH 7.4 using ultraviolet-visible and fluorescence spectroscopic techniques. We used four conventional surfactants - cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), sodium N-dodecanoylsarcosinate (SDDS), and N-decanoyl-N-methylglucamine (Mega 10), and a surface active ionic liquid 1-hexadecyl-3-methylimidazolium chloride (C16MeImCl). All the investigated surfactants were found to induce an unfolding of the protein cytochrome c. In presence of CTAB, SDDS and C16MeImCl, the heme iron atom was found to loose methionine from its axial position. Differential binding of the surfactant monomers and their micelles to the protein molecules was inferred. The ionic surfactants were found to be more effective than the nonionic one in unfolding the investigated protein. However, the extent of binding of CTAB/C16MeImCl to cytochrome c reaches a plateau past the critical micellization concentration (cmc) of the surfactant. For each of the cytochrome c-DTAB, cytochrome c-SDDS and cytochrome c-Mega 10 system, although there exists an inflection in the surfactant-binding, saturation point could not be detected. It has been demonstrated from the ultraviolet-visible spectral studies that the oxidation state of iron in cytochrome c does not change when the protein binds with the investigated surfactants.

  4. The effects of exogenous surfactant administration on ventilation-induced inflammation in mouse models of lung injury. (United States)

    Puntorieri, Valeria; Hiansen, Josh Qua; McCaig, Lynda A; Yao, Li-Juan; Veldhuizen, Ruud A W; Lewis, James F


    Mechanical ventilation (MV) is an essential supportive therapy for acute lung injury (ALI); however it can also contribute to systemic inflammation. Since pulmonary surfactant has anti-inflammatory properties, the aim of the study was to investigate the effect of exogenous surfactant administration on ventilation-induced systemic inflammation. Mice were randomized to receive an intra-tracheal instillation of a natural exogenous surfactant preparation (bLES, 50 mg/kg) or no treatment as a control. MV was then performed using the isolated and perfused mouse lung (IPML) set up. This model allowed for lung perfusion during MV. In experiment 1, mice were exposed to mechanical ventilation only (tidal volume =20 mL/kg, 2 hours). In experiment 2, hydrochloric acid or air was instilled intra-tracheally four hours before applying exogenous surfactant and ventilation (tidal volume =5 mL/kg, 2 hours). For both experiments, exogenous surfactant administration led to increased total and functional surfactant in the treated groups compared to the controls. Exogenous surfactant administration in mice exposed to MV only did not affect peak inspiratory pressure (PIP), lung IL-6 levels and the development of perfusate inflammation compared to non-treated controls. Acid injured mice exposed to conventional MV showed elevated PIP, lung IL-6 and protein levels and greater perfusate inflammation compared to air instilled controls. Instillation of exogenous surfactant did not influence the development of lung injury. Moreover, exogenous surfactant was not effective in reducing the concentration of inflammatory cytokines in the perfusate. The data indicates that exogenous surfactant did not mitigate ventilation-induced systemic inflammation in our models. Future studies will focus on altering surfactant composition to improve its immuno-modulating activity.

  5. Influence of Surfactants and Fluoride against Enamel Erosion. (United States)

    Zanatta, Rayssa Ferreira; Ávila, Daniele Mara da Silva; Miyamoto, Karen Mayumi; Torres, Carlos Rocha Gomes; Borges, Alessandra Bühler


    This study investigated the effect of surfactants associated with sodium fluoride (NaF) on enamel erosion prevention, using an erosion-remineralization in vitro model. Sodium lauryl sulfate (SLS), polysorbate 20 (P20), and cocoamidopropyl betaine (CAPB) were tested, at concentrations of 1.0 and 1.5%, and associated or not with NaF (275 ppm). The control groups were distilled water and the NaF solution. Bovine enamel samples (n = 12) were prepared and submitted to a 5-day cycling model: acid challenge (0.3% citric acid, pH 2.6, 4×/day), human saliva (2 h, 4×/day), and the treatment solutions (2 min, 2×/day). The protective potential of the agents against initial erosion was assessed by microhardness and the surface loss by profilometry. Enamel surface wettability was determined by goniometry, protein adsorption was measured by spectroscopy (FTIR), and the KOH-soluble fluoride was quantified. Goniometry showed that SLS and CAPB increased enamel wettability. No differences were found among the surfactants regarding protein adsorption. Microhardness showed that SLS reduced NaF protection. P20 (1 and 1.5%) and CAPB 1.5% presented a protective effect, but lower than the NaF solution. Profilometry showed that CAPB protected enamel, but no agent associated with NaF promoted a higher protection than the NaF solution alone. KOH-soluble fluoride analysis showed that all surfactants reduced the fluoride adsorption on the enamel surface. Therefore, the surfactants tested (except for P20) changed the enamel surface energy. The SLS decreased the protective potential of NaF on initial erosion, but no tested agent interfered with the protective effect of NaF on enamel erosive wear. © 2018 S. Karger AG, Basel.

  6. Production of a biological surfactant

    Directory of Open Access Journals (Sweden)

    N. Gladys Rosero


    Full Text Available This paper summarizes the scale up work performed at the Colombian Petroleum Institute on a process to produce at pilot plant level a biosurfactant of the rhamnolipid type. By examination of both the activation conditions of the microorganism and design aspects of the broth, a stable condition was achieved which consistently triggers the production mechanisms and thus it was obtained a significant increment in biosurfactant productivity. The biological surfactant exhibited high efficiency in applications such as hydrocarbon biodegradation in saline environments, corrosion inhibition, and crude oil recovery from storage tank bottom sludges.

  7. Thermally stable silica-coated hydrophobic gold nanoparticles. (United States)

    Kanehara, Masayuki; Watanabe, Yuka; Teranishi, Toshiharu


    We have successfully developed a method for silica coating on hydrophobic dodecanethiol-protected Au nanoparticles with coating thickness ranging from 10 to 40 nm. The formation of silica-coated Au nanoparticles could be accomplished via the preparation of hydrophilic Au nanoparticle micelles by cationic surfactant encapsulation in aqueous phase, followed by hydrolysis of tetraethylorthosilicate on the hydrophilic surface of gold nanoparticle micelles. Silica-coated Au nanoparticles exhibited quite high thermal stability, that is, no agglomeration of the Au cores could be observed after annealing at 600 degrees C for 30 min. Silica-coated Au nanoparticles could serve as a template to derive hollow nanoparticles. An addition of NaCN solution to silica-coated Au nanoparticles led the formation of hollow silica nanoparticles, which were redispersible in deionized water. The formation of the hollow silica nanoparticles results from the mesoporous structures of the silica shell and such a mesoporous structure is applicable to both catalyst support and drug delivery.

  8. Time-dependent changes in pulmonary surfactant function and composition in acute respiratory distress syndrome due to pneumonia or aspiration

    Directory of Open Access Journals (Sweden)

    Kuchenbuch Tim


    Full Text Available Abstract Background Alterations to pulmonary surfactant composition have been encountered in the Acute Respiratory Distress Syndrome (ARDS. However, only few data are available regarding the time-course and duration of surfactant changes in ARDS patients, although this information may largely influence the optimum design of clinical trials addressing surfactant replacement therapy. We therefore examined the time-course of surfactant changes in 15 patients with direct ARDS (pneumonia, aspiration over the first 8 days after onset of mechanical ventilation. Methods Three consecutive bronchoalveolar lavages (BAL were performed shortly after intubation (T0, and four days (T1 and eight days (T2 after intubation. Fifteen healthy volunteers served as controls. Phospholipid-to-protein ratio in BAL fluids, phospholipid class profiles, phosphatidylcholine (PC molecular species, surfactant proteins (SP-A, -B, -C, -D, and relative content and surface tension properties of large surfactant aggregates (LA were assessed. Results At T0, a severe and highly significant reduction in SP-A, SP-B and SP-C, the LA fraction, PC and phosphatidylglycerol (PG percentages, and dipalmitoylation of PC (DPPC was encountered. Surface activity of the LA fraction was greatly impaired. Over time, significant improvements were encountered especially in view of LA content, DPPC, PG and SP-A, but minimum surface tension of LA was not fully restored (15 mN/m at T2. A highly significant correlation was observed between PaO2/FiO2 and minimum surface tension (r = -0.83; p Conclusion We concluded that a profound impairment of pulmonary surfactant composition and function occurs in the very early stage of the disease and only gradually resolves over time. These observations may explain why former surfactant replacement studies with a short treatment duration failed to improve outcome and may help to establish optimal composition and duration of surfactant administration in future

  9. Surfactant screening of diesel-contaminated soil

    International Nuclear Information System (INIS)

    Peters, R.W.; Shem, L.; Montemagno, C.D.; Lewis, B.


    At one installation, approximately 60,000 gal of No. 2 diesel fuel leaked into the subsurface environment, with contamination at depths of 6 to 34 m below the surface. Argonne National Laboratory was contracted to perform treatability studies for site remediation. The treatability studies focused on four separate phases: (1) leachability studies on the various contaminated soil borings, (2) air stripping studies, (3) bioremediation studies, and (4) surfactant screening/surfactant flooding studies. This paper summarizes the fourth phase of the research program in which 21 surfactants were screened for possible use to mobilize the organics from the contaminated soil prior to bioremediation. Anionic surfactants resulted in the greatest degree of diesel mobilization. The most promising surfactants will be employed on actual contaminated soil samples obtained from the site

  10. Surface analysis of selected hydrophobic materials (United States)

    Wisniewska, Sylwia Katarzyna

    This dissertation contains a series of studies on hydrophobic surfaces by various surface sensitive techniques such as contact angle measurements, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Hydrophobic surfaces have been classified as mineral surfaces, organic synthetic surfaces, or natural biological surfaces. As a model hydrophobic mineral surface, elemental sulfur has been selected. The sulfur surface has been characterized for selected allotropic forms of sulfur such as rhombic, monoclinic, plastic, and cyclohexasulfur. Additionally, dextrin adsorption at the sulfur surface was measured. The structure of a dextrin molecule showing hydrophobic sites has been presented to support the proposed hydrophobic bonding nature of dextrin adsorption at the sulfur surface. As a model organic hydrophobic surface, primary fatty amines such as dodecylamine, hexadecylamine, and octadecylamine were chosen. An increase of hydrophobicity, significant changes of infrared bands, and surface topographical changes with time were observed for each amine. Based on the results it was concluded that hydrocarbon chain rearrangement associated with recrystallization took place at the surface during contact with air. A barley straw surface was selected as a model of biological hydrophobic surfaces. The differences in the contact angles for various straw surfaces were explained by the presence of a wax layer. SEM images confirmed the heterogeneity and complexity of the wax crystal structure. AFM measurements provided additional structural details including a measure of surface roughness. Additionally, straw degradation as a result of conditioning in an aqueous environment was studied. Significant contact angle changes were observed as soon as one day after conditioning. FTIR studies showed a gradual wax layer removal due to straw