WorldWideScience

Sample records for hydrophobic polytetrafluoroethylene-platinum catalysts

  1. Characteristics improvement of hydrophobic polytetrafluoroethylene-platinum catalysts for tritium separation

    Popescu, I.; Ionita, Gh.; Dobrinescu, D.; Varlam, C.; Stefanescu, I.

    2006-01-01

    Full text: Based on the long experience of the authors in the preparation, testing and evaluation of the performances of hydrophobic catalysts and based on the reviewed references, this paper presents up-to-date R and D activities on the preparation methods and applications of the hydrophobic catalysts in tritium separation. The objectives of the paper are: how to improve the characteristics and performance of platinum hydrophobic catalysts; to assess and find a new procedure for the preparation of a new improved hydrophobic catalyst. From reviewed references one can conclude that platinum is the most active and efficient catalytic metal while the polytetrafluoroethylene is the best wet-proofing agent. A new improved hydrophobic Pt-catalyst has been proposed and its testing is now underway. The main steps and experimental conditions of preparation are thoroughly discussed. A new wet-proofing agent and new binders (titanium dioxide, cerium dioxide, zirconium dioxide) with a catalytic role are proposed and tested. The physico-structural parameters of the improved catalyst have been determined and are discussed in detail. The new proposal is a promising idea to improve the performance of conventional hydrophobic Pt-catalysts. (authors)

  2. Preparation of inorganic hydrophobic catalysts

    Yang, Yong; Wang, Heyi; Du, Yang

    2009-04-01

    In order to catalyse the oxidation of tritium gas, two inorganic hydrophobic catalysts are prepared. Under room temperature, the catalysed oxidation ratio of 0.3%-1% (V/V) hydrogen gas in air is higher than 95%. Pt-II inorganic hydrophobic catalysts has obviously better catalysing ability than Pt-PTFE and lower ability than Pt-SDB in H 2 -HTO isotopic exchange, because the pressure resistence of Pt-II is much higher than Pt-SDB, it can be used to the CECE cell of heavy water detritium system. (authors)

  3. Preparative characteristics of hydrophobic polymer catalyst for the tritium removal

    Kang, Hee Suk; Choi, H. J.; Lee, H. S.; Ahn, D. H.; Kim, K. R.; Paek, S. W.; Paek, S. W.; Kim, J. G.; Chung, H. S.

    2001-05-01

    The optimum method for the fabrication of hydrophobic catalyst was selected and the apparatuses for the preparation of catalyst support with high yield was developed for the large scale production. Also, we summarized the method of improving the physical property of the catalyst support, the loading characteristics of Pt metal as a catalyst, and the characteristics of the apparatus for the fabrication of the catalysts on a large scale

  4. Preparative characteristics of hydrophobic polymer catalyst for the tritium removal

    Kang, Hee Suk; Choi, H. J.; Lee, H. S.; Ahn, D. H.; Kim, K. R.; Paek, S. W.; Kim, J. G.; Chung, H. S

    2001-05-01

    The optimum method for the fabrication of hydrophobic catalyst was selected and the apparatuses for the preparation of catalyst support with high yield was developed for the large scale production. Also, we summarized the method of improving the physical property of the catalyst support, the loading characteristics of Pt metal as a catalyst, and the characteristics of the apparatus for the fabrication of the catalysts on a large scale.

  5. Preparation of alveolate hydrophobic catalyst for tritium waste gas treatment

    Yang, Yong; Peng, Shuming; Wang, Heyi; Du, Yang; Li, Jiamao

    2016-01-01

    Highlights: • The catalyst is hydrophobic, it will not be poisoned by steam in room air at room temperature which is better than Pt-Al 2 O 3 . • At room temperature, the conversion of low concentration of H2 and tritium gas in room air over the catalyst is high. • The air resistance of catalyst is much lower than graininess Pt-Al 2 O 3 . • It is inorganic and will not burn. - Abstract: To prepare a catalyst for the detritiation of waste gases at high flow rates, a heat-resistant hydrophobic zeolitic molecular sieve coating was synthesized on the surface of alveolate cordierite by hydrothermal processing. The alveolate hydrophobic catalyst prepared from the support was essentially waterproof and not easily poisoned by moisture. At room temperature, the conversion of low concentrations of H 2 in humid air over the catalyst was higher than 95% at different space velocities (0–16,000 h −1 ) and different relative humidities. The reaction rate constant of the oxidation of tritium over alveolate hydrophobic catalyst is 0.182 s −1 at 293.3 K–293.7 K and 59%–60% RH, it is much higher than the catalyst of reference honeycomb catalyst.

  6. Durable PROX catalyst based on gold nanoparticles and hydrophobic silica

    Laveille, Paco; Guillois, Kevin; Tuel, Alain; Petit, Corine; Basset, Jean-Marie; Caps, Valerie

    2016-01-01

    3 nm gold nanoparticles (Au NP) obtained by direct chemical reduction of AuPPh3Cl in the presence of methyl-terminated silica exhibit superior durability for low temperature CO oxidation in the presence of hydrogen (PROX). The activity of hydrophobic Au/SiO2-R972 indeed appears much more stable with time-on-stream than those of the OH-terminated, hydrophilic Au/TiO2 and Au/Al2O3 catalysts, with similar Au NP size. This enhanced stability is attributed to the peculiar catalyst surface of Au/SiO2-R972. Not only may the support hydrophobicity concentrate and facilitate reactant adsorption and product desorption over Au NP, but methyl-terminated SiO2-R972 likely also inhibits carbonatation of the Au/support interface. Hence, at a temperature at which H2/H2O “cleaning” of the carbonate-contaminated Au/Al2O3 and Au/TiO2 surface is inefficient (< 100°C), passivated Au/SiO2-R972 displays much more stable PROX activity. Besides, the virtual absence of surface hydroxyl groups, which provide sites for water formation in H2/O2 atmospheres, can also account for the improved PROX selectivity (>85%) observed over Au/SiO2-R972. This new example, of CO oxidation activity of gold nanoparticles dispersed over a hydrophobic, “inert” support, clearly emphasizes the role of hydrogen as a promoter for the gold-catalyzed oxidation of CO at low temperature. Unlike support-mediated oxygen activation, hydrogen-only mediated oxygen activation takes full advantage of the hydrophobic surface, which is much more resistant against CO2 and thus remains free of poisonous carbonate species, as compared with hydroxyl-terminated catalysts. Hence, although the absence of surface hydroxyl groups prevents the hydrophobic Au/SiO2-R972 catalyst to reach the state-of-the-art activities initially displayed by Au/TiO2 and Au/Al2O3, it brings long-term stability with time-on-stream and superior selectivity, which opens up promising perspectives in the development of viable PROX catalysts based on gold.

  7. Durable PROX catalyst based on gold nanoparticles and hydrophobic silica

    Laveille, Paco

    2016-01-20

    3 nm gold nanoparticles (Au NP) obtained by direct chemical reduction of AuPPh3Cl in the presence of methyl-terminated silica exhibit superior durability for low temperature CO oxidation in the presence of hydrogen (PROX). The activity of hydrophobic Au/SiO2-R972 indeed appears much more stable with time-on-stream than those of the OH-terminated, hydrophilic Au/TiO2 and Au/Al2O3 catalysts, with similar Au NP size. This enhanced stability is attributed to the peculiar catalyst surface of Au/SiO2-R972. Not only may the support hydrophobicity concentrate and facilitate reactant adsorption and product desorption over Au NP, but methyl-terminated SiO2-R972 likely also inhibits carbonatation of the Au/support interface. Hence, at a temperature at which H2/H2O “cleaning” of the carbonate-contaminated Au/Al2O3 and Au/TiO2 surface is inefficient (< 100°C), passivated Au/SiO2-R972 displays much more stable PROX activity. Besides, the virtual absence of surface hydroxyl groups, which provide sites for water formation in H2/O2 atmospheres, can also account for the improved PROX selectivity (>85%) observed over Au/SiO2-R972. This new example, of CO oxidation activity of gold nanoparticles dispersed over a hydrophobic, “inert” support, clearly emphasizes the role of hydrogen as a promoter for the gold-catalyzed oxidation of CO at low temperature. Unlike support-mediated oxygen activation, hydrogen-only mediated oxygen activation takes full advantage of the hydrophobic surface, which is much more resistant against CO2 and thus remains free of poisonous carbonate species, as compared with hydroxyl-terminated catalysts. Hence, although the absence of surface hydroxyl groups prevents the hydrophobic Au/SiO2-R972 catalyst to reach the state-of-the-art activities initially displayed by Au/TiO2 and Au/Al2O3, it brings long-term stability with time-on-stream and superior selectivity, which opens up promising perspectives in the development of viable PROX catalysts based on gold.

  8. Preparation of hydrophobic Pt-catalysts for decontamination of nuclear effluents

    Ionita, Gh.; Popescu, I.; Retegan, T.; Stefanescu, I.

    2005-01-01

    Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents up-to-date R and D activities on the preparation methods and applications of the hydrophobic catalysts, in deuterium and tritium separation. The objectives of the paper are: (1) to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes, (2) to evaluate the potentiality of hydrophobic Pt-catalysts in the deuterium and tritium separation (3) to asses and to find a new procedure for preparation a new improved hydrophobic catalyst. The merits of the hydrophobic catalysts are shown in comparison to hydrophilic catalysts. As results of the review some general conclusions about the applications of hydrophobic catalysts in environmental field are as follow: (1) the hydrophobic Pt-catalysts packed in the trickle bed reactors showed a high catalytic activity and long stability; (2) the utilization of the hydrophobic Pt-catalysts for tritium removal from liquid and gaseous effluent in nuclear field was entirely confirmed on industrial scale; (3) the extension of the utilization of the hydrophobic Pt-catalysts in other new processes, which take place in presence of liquid water or high humidity are subjected to testing. (author)

  9. Preparation of hydrophobic Pt-catalysts for decontamination of nuclear effluents

    Ionita, Gh.; Popescu, I.; Retegan, T.; Stefanescu, I.

    2004-01-01

    Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents up-to-date R and D activities on the preparation methods and applications of the hydrophobic catalysts, in deuterium and tritium separation. The objectives of the paper are: - to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes; - to evaluate the potentiality of hydrophobic Pt-catalysts in the deuterium and tritium separation; - to assess and to find a new procedure for preparation a new improved hydrophobic catalyst. The merits of the hydrophobic catalysts are shown in comparison to hydrophilic catalysts. As results of the review some general conclusions about the applications of hydrophobic catalysts in environmental field are as follows: - the hydrophobic Pt-catalysts packed in the trickle bed reactors showed a high catalytic activity and long stability; - the utilization of the hydrophobic Pt-catalysts for tritium removal from liquid and gaseous effluent in nuclear field was entirely confirmed on industrial scale; - the extension of the utilization of the hydrophobic Pt-catalysts in other new processes, which take place in presence of liquid water or high humidity are subject to testing. (authors)

  10. Current status for applications of hydrophobic platinum catalysts in tritium removal from nuclear effluents

    Vagner, Irina; Ionita, Gheorghe; Varlam, Carmen

    2008-01-01

    Full text: Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents up-to-date R and D results on the preparation methods and applications of the hydrophobic catalysts, in deuterium and tritium separation. The objectives of the paper are: 1. to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes; 2. to evaluate the potentiality of hydrophobic Pt-catalysts in the deuterium and tritium separation; 3. to assess and find a new procedure for preparation of a new improved hydrophobic catalyst. The merits of the hydrophobic catalysts are shown in comparison to hydrophilic catalysts. As results of the review some general conclusions about the applications of hydrophobic catalysts in environmental field are as follow: 1. the hydrophobic Pt-catalysts packed in the trickle bed reactors showed a high catalytic activity and long stability; 2. the utilization of the hydrophobic Pt-catalysts for tritium removal from liquid and gaseous effluent in nuclear field was entirely confirmed on industrial scale; 3. the extension of the utilization of the hydrophobic Pt-catalysts to other new processes, which take place in presence of liquid water or high humidity, like VOCs oxidation from wastewater or H 2 -O 2 catalytic recombination, are subject to testing

  11. Development of Water Detritiation Process Using the Hydrophobic Platinum Catalyst

    Ahn, D.H.; Paek, S.; Choi, H.J.; Kim, K.R.; Chung, H.; Yim, S.P.; Lee, M.S.

    2006-01-01

    Radioactive emissions and occupational doses by tritium are mainly caused by tritiated water escaping from equipment in the nuclear industry. Improving the leak-tightness of equipment is effective in reducing emissions and internal dose but is not a long-term solution. Water detritiation was consider to be the most effective tritium control option since tritium is removed right from the source. The WTRF (Wolsong Tritium Removal Facility) is under construction now with the completion date of June, 2006 in Korea. It is designed to remove tritium from tritiated heavy water in each of the existing four Candu units at Wolsong site. We developed a hydrophobic platinum catalyst (Pt/SDBC catalyst) that would be used at the LPCE (Liquid Phase Catalytic Exchange) column in the WTRF. The catalytic rate constants of the newly developed catalyst for the deuterium exchange reaction between water vapor and hydrogen gas were measured in a recycle reactor. The catalytic rate constants of the Pt/SDBC catalyst decreased with reaction time and were much greater than that required, 2.0 x 10 -4 mol (D 2 )/s/g(pellet) in the design of the WTRF. Tritium removal efficiency of the WTRF, which is important for a safe and reliable operation of the facility, depends on the design and operating variables. A theoretical model based on the design and operating variables of the LPCE process was set up, and the equations between the parameters were derived. Numerical calculation result from a computer program shows steep increase of the detritiation factor of the LPCE process with respect to temperature increase and mild increase with respect to pressure decrease. The other parametric study shows that the calculated detritiation factors increase as the catalyst efficiency, number of theoretical stages of hydrophilic packing, the detritiation factor of cryogenic distillation system and the total number of sections increase. We also proceeded with the experiments for the hydrogen isotopic exchange

  12. Study and application of hydrophobic catalyst in treating tritium waste

    Dan, Gui-ping; Zhang, Dong; Qiu, Yong-mei; Yuan, Guo-Qi

    2008-01-01

    Tritium decontamination from tritium waste is important for the management of tritium waste. Tritium removal from waste tritium oxide can not only get tritium, but also reduce the amount of waste tritium. At the meantime, by cleaning the tritium pollution gas can also reduce the tritium exhausting from tritium facility. At present, the process of hydrogen isotopic exchange in tritium removal from waste tritium oxide and coordination oxidisation-adsorption in tritium cleaning from waste tritium gas are the mainly methods. In these methods, hydrophobic catalysts which can be used in these process are the key technology. There are many references about their preparing and applying, but few on the estimation about their performance changing during their applying. However, their performance stability on isotopic catalytic exchange and catalytic oxidisation will affect their using in reaction. Hydrophobic catalyst Pt-SDB which can be used in tritium isotopic exchange between tritium oxide and hydrogen and the cleaning of tritium pollution gas have been prepared in our laboratory in early days. In order to estimating their performance stability during their using, this work will investigate their stability on their catalytic activity and their radiation-resistance tritium. (author)

  13. Separation of deuterium by H2/H2O reaction with hydrophobic platinum catalyst

    Kitamoto, A.; Takashima, Y.; Shimizu, M.

    The separation performance of a trickle bed exchange column packed with a hydrophobic or waterproof catalyst is related to operating conditions such as hydrogen surface velocity, water flow rate, and temperature. The optimum carrier type and catalyst platinum content were determined. The continuous injection of roughly 10 3 ppm O 2 regenerates the catalyst effectively. The ratio of hydrophobic catalyst to hydrophilic packing is an important factor in increasing the exchange rate in deuterium extraction

  14. Use of hydrophobic Pt-catalysts in tritium removal from effluents

    Gheorghe, Ionita; Popescu, Irina; Stefanescu, Ioan; Steflea, Dumitru; Varlam, Carmen

    2002-01-01

    Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents up-to-date R and D activities on the application of the hydrophobic catalysts in tritium removal from nuclear effluents. Tritium removal from the heavy water reactor and nuclear reprocessing plant, the cleanup of atmosphere and gaseous effluents by hydrogen-oxygen recombination, removal of oxygen dissolved in water are presented and discussed. Unlike the conventional hydrophilic catalysts, the hydrophobic catalysts keep a high catalytic activity and stability, even under the direct contact to liquid water or in presence of saturated humidity. A large diversity of catalyst types (over 100 catalysts) was prepared and tested in order to make them feasible for such processes. The objectives of the review are: - to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes; - the designing and operation of reactor packed with hydrophobic catalysts; - to evaluate the potentiality of hydrophobic Pt-catalysts in the present and future applications. The most important results are the following: - the hydrophobic Pt-catalysts packed in the trickle bed or separated bed reactors, showed a high catalytic activity and long stability; - the utilization of the hydrophobic Pt-catalysts for the hydrogen isotopes (tritium and deuterium) separation and for hydrogen-oxygen recombination in nuclear field was entirely confirmed on industrial scale; - the improvement of the inner geometry of the reactors and of the composition of mixed catalytic packing as well as the evaluation of performances of separation processes constitute a major contribution of the authors; - the extension of the utilization of the hydrophobic Pt-catalysts in the oxidation of volatile organic compounds from wastewater; - the removal of dissolved oxygen, and deuterium

  15. Hydrophobic catalyst mixture for the isotopic exchange reaction between hydrogen and water

    Paek, S.; Ahn, D. H.; Choi, H. J.; Kim, K. R.; Lee, M.; Yim, S. P.; Chung, H. [KAERI, Taejon (Korea, Republic of)

    2005-11-15

    Pt/SDBC catalyst, which is used for the hydrogen-water isotopic exchange reaction, was prepared. The various properties of the catalyst, such as the thermal stability, pore structure and the platinum dispersion, were investigated. A hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of the WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities.

  16. Hydrophobic catalyst mixture for the isotopic exchange reaction between hydrogen and water

    Paek, S.; Ahn, D. H.; Choi, H. J.; Kim, K. R.; Lee, M.; Yim, S. P.; Chung, H.

    2005-01-01

    Pt/SDBC catalyst, which is used for the hydrogen-water isotopic exchange reaction, was prepared. The various properties of the catalyst, such as the thermal stability, pore structure and the platinum dispersion, were investigated. A hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of the WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities

  17. An assessment on preparation methods and applications of hydrophobic Pt-catalyst in nuclear and environmental field

    Ionita, Gh.; Stefanescu, I.; Varlam, Carmen

    2001-01-01

    Based on the long experience of the authors in the preparation, testing and evaluation of the performances of hydrophobic catalysts and based on the reviewed references, this paper presents up-to-date R and D activities on the preparation and application of hydrophobic catalysts for use in nuclear and environmental fields. Unlike the conventional hydrophilic catalysts, the hydrophobic catalysts repel the liquid water and allow the transport of the gaseous reactants and reaction products to and from catalytic active centers. For deuterium and tritium separation, over one hundred hydrophobic catalyst types have been prepared in different experimental conditions and by a large diversity of wet proofing methods. The influence of about twenty parameters on catalytic activity have been also studied. The purpose of this paper is: (1) to provide a database for preparation and selection of he most appropriate method for preparing an active hydrophobic catalyst, (2) to show how to use the hydrophobic catalyst and how to operate efficiently the reactor packed with hydrophobic catalyst, (3) to evaluate the performances and potentiality of hydrophobic catalysts in nuclear and environmental field, (4) evaluation of applications of hydrophobic catalysts in nuclear and environmental fields. As result, the following categories are shown: (1) the hydrophobic catalysts based on platinum and Teflon as wet-proofing proved to have the highest activity and the longest stability, (2) the utilization of hydrophobic catalyst as ordered mixed catalytic packing in the trickle bed or separated bed reactors is more efficient and has been entirely proved on industrial scale for tritium separation process, (3) the extension of the applications of hydrophobic catalysts for other processes which take place in the presence of saturated humidity or liquid water in environmental protection field. The merits of hydrophobic Pt-catalysts for tritium separation are discussed in comparison to other

  18. The deuterium-exchange reaction between water and hydrogen with the thin-film hydrophobic catalyst

    Yamashita, Hisao; Mizumoto, Mamoru; Matsuda, Shimpei

    1985-01-01

    The deuterium-exchange reaction between water and hydrogen with a hydrophobic catalyst was studied. The hydrophobic catalyst was composed of platinum as an active component and porous poly(tetrafluoroethylene) (PTFE) as a support. The PTFE support was in two forms, i.e., (a) a pellet and (b) a thin-film with the thickness of 50 μm. The primary purpose of the thin film hydrophobic catalyst was to reduce the platinum usage in the reactor. The activity of the catalyst was measured in a trickle bed reactor at atmospheric pressure and temperature of 20 ∼ 70 deg C. It has been found that the employment of the thin-film catalyst reduced the platinum usage to 1/5 of the reactor in the case of using a conventional catalyst. Platinum particles on the thin-film catalyst work efficiently because the reactants were easily diffused to the active sites. It has also been found that the isotopic exchange rate with the thin-film catalyst increased with the increase in the ratio of liquid/gas and increased with the rise of the reaction temperature. It was found from an endurance test that the activity of the thin-film catalyst decreased gradually due to the condensation of water vapor in the catalyst, but was regenarated by heating the catalyst to remove the condensed water. (author)

  19. Hydrophobic catalyst applications in the nuclear field and in environmental studies

    Ionita, Gheorghe; Popescu, Irina; Stefanescu, Ioan; Varlam, Carmen

    2002-01-01

    The paper presents methods of preparation and applications of hydrophobic platinum catalysts in nuclear field and environmental protection. These catalysts allow the transport of gaseous reactants and reaction products to and from catalytic active centers since the pore blocking by water is avoided. Hence the activity and stability of the catalysts increase and isotopic exchange columns with simpler internal structure can be achieved. The aim of the paper is: 1. to give a data base regarding the preparation methods of the optimal catalyst type; 2. to indicate the utilization and operation procedures of hydrophobic catalysts with mixed and simple packings; 3. to evaluate the performances and applications of hydrophobic catalysts. Over one hundred of hydrophobic catalysts of the active metal/support type were prepared in our laboratory. Hydrophobic features were obtained by different methods like these: - coating a hydrophilic conventional catalyst with a hydrophobic agent such as silicone or teflon; - supporting the active metal directly into the pores of a hydrophobic support; - mixing the teflon powder with a hydrophilic conventional catalyst; coating the support with teflon followed by the impregnation with the precursor of the active metal. The most important application of these catalysts is detritiation of the heavy water used as moderator and coolant in CANDU type reactors. Build-up of tritium in heavy water following the neutron capture by deuterium leads to a reduction in the moderating properties and at the same time leads to a contamination hazard for both operation personnel and environment. Tritium recovery leads this way to both improving the moderating qualities of the heavy water and obtaining valuable pure tritium of high importance in fusion research and other laboratory studies. One gram of tritium costs about USD 10,000. The physical chemical process is water-hydrogen catalyzed isotopic exchange. Also discussed in the paper is the separation of

  20. Preparation of Pt-PTFE hydrophobic catalyst for hydrogen-water isotope exchange

    Li Junhua; Kang Yi; Han Yande; Ruan Hao; Dou Qincheng; Hu Shilin

    2001-01-01

    The hydrophobic catalyst used in the hydrogen-water isotope exchange is prepared with Pt as the active metal, PTFE as the hydrophobic material, active carbon or silicon dioxide as the support. The isotope catalytic exchange reaction between hydrogen and water is carried out in the trickle bed and the effects of different carriers, mass fraction of Pt and PTFE on the catalytic activity are discussed. The experimental results show that the activity of Pt-C-PTFE hydrophobic catalyst with the ratio between PTFE and Pt-C from 1 to 2 is higher than other kinds of catalysts and the overall volume transfer coefficient is increased with the increasing of the hydrogen flow rate and reaction temperature

  1. Hydrogen isotope separation in hydrophobic catalysts between hydrogen and liquid water

    Ye, Linsen, E-mail: yls2005@mail.ustc.edu.cn [China Academy of Engineering Physics, Mianyang 621900 (China); Luo, Deli [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621907 (China); Tang, Tao; Yang, Wan; Yang, Yong [China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-11-15

    Hydrogen isotope catalytic exchange between hydrogen and liquid water is a very effective process for deuterium-depleted potable water production and heavy water detritiation. To improve the characteristics of hydrophobic catalysts for this type of reaction, foamed and cellular structures of hydrophobic carbon-supported platinum catalysts were successfully prepared. Separation of deuterium or tritium from liquid water was carried out by liquid-phase catalytic exchange. At a gas–liquid ratio of 1.53 and exchange temperature of 70 °C, the theoretical plate height of the hydrophobic catalyst (HETP = 34.2 cm) was slightly lower than previously reported values. Changing the concentration of the exchange column outlet water yielded nonlinear changes in the height of the packing layer. Configurations of deuterium-depleted potable water and detritiation of heavy water provide references for practical applications.

  2. Tritium removal by hydrogen isotopic exchange between hydrogen gas and water on hydrophobic catalyst

    Morishita, T.; Isomura, S.; Izawa, H.; Nakane, R.

    1980-01-01

    Many kinds of the hydrophobic catalysts for hydrogen isotopic exchange between hydrogen gas and water have been prepared. The carriers are the hydrophobic organic materials such as polytetrafluoroethylene(PTFE), monofluorocarbon-PTFE mixture(PTFE-FC), and styrene-divinylbenzene copolymer(SDB). 0.1 to 2 wt % Pt is deposited on the carriers. The Pt/SDB catalyst has much higher activity than the Pt/PTFE catalyst and the Pt/PTFE-FC catalyst shows the intermediate value of catalytic activity. The observation of electron microscope shows that the degrees of dispersion of Pt particles on the hydrophobic carriers result in the difference of catalytic activities. A gas-liquid separated type column containing ten stages is constructed. Each stage is composed of both the hydrophobic catalyst bed for the hydrogen gas/water vapor isotopic exchange and the packed column type bed for the water vapor/liquid water isotopic exchange. In the column hydrogen gas and water flow countercurrently and hydrogen isotopes are separated

  3. Gaseous exchange reaction of deuterium between hydrogen and water on hydrophobic catalyst supporting platinum

    Izawa, Hirozumi; Isomura, Shohei; Nakane, Ryohei.

    1979-01-01

    The deuterium exchange reaction between hydrogen and water in the gas phase where the fed hydrogen gas is saturated with water vapor is studied experimentally by use of the proper hydrophobic catalysts supporting platinum. It is found that the activities of those catalysts for this reaction system are very high compared with the other known ones for the systems in which gas and liquid should coexist on catalyst surfaces, and that the apparent catalytic activity becomes larger as the amount of platinum supported on a catalyst particle increases. By analyses of the data the following informations are obtained. The exchange reaction can be expressed by a first order reversible reaction kinetics. The pore diffusion in the catalyst particles has significant effect on the overall reaction mechanisms. (author)

  4. Experimental determination of reaction rates of water. Hydrogen exchange of tritium with hydrophobic catalysts

    Bixel, J.C.; Hartzell, B.W.; Park, W.K.

    1976-01-01

    This study was undertaken to obtain data needed for further development of a process for the enrichment and removal of tritium from the water associated with light-water reactors, fuel-reprocessing plants, and tritium-handling laboratories. The approach is based on the use of antiwetting, hydrophobic catalysts which permit the chemical exchange reactions between liquid water and gaseous hydrogen in direct contact, thus eliminating problems of catalyst deactivation and the complexity of reactor design normally associated with current catalytic-detritiation techniques involving gas-phase catalysis. An apparatus and procedure were developed for measuring reaction rates of water-hydrogen chemical exchange with hydrophobic catalysts. Preliminary economic evaluations of the process were made as it might apply to the AGNS fuel reprocessing plant

  5. New proposition on performance evaluation of hydrophobic Pt catalyst packed in trickle bed

    Shimizu, Masami; Kitamoto, Asashi; Takashima, Yoichi.

    1983-01-01

    On the evaluation of the performance of the hydrophobic Pt catalyst packed in the trickle-bed test column, the conventionally defined (Ksub(y)a) and the newly defined (Ksub(f))sub (G) are compared with each other as a measure of the overall D-transfer coefficient. The value of (Ksub(y)a) varies in a wide range in accordance with the length of the test column. On the other hand (Ksub(f))sub (G sub (l = L)) has a finite value in the test column longer than about 0.5 m. By considering the values of ksub(g) and ksub(l) which are the constituents of (Ksub(f))sub (G), it is possible to improve the hydrophobic Pt catalyst trickle bed and to design the H 2 /H 2 O-isotopic exchange trickle-bed column packed with this catalyst. (author)

  6. Preparation of Pt-SDB hydrophobic catalyst used in H2-H2O isotope exchange reaction

    Li Junhua; Kang Yi; Ruan Hao; Dou Qincheng; Han Yande; Hu Shilin

    2001-01-01

    The preparation of Pt-SDB hydrophobic catalyst is studied, in which platinum as active metal and polystyrene divinylbenzene (SDB) as the carrier. Hydrogen isotope exchange reaction is carried out with Pt-SDB catalyst in counter-current in the trickle bed. The effect of preparing condition on the activity of catalyst is discussed. The results show that the excellent catalyst is obtained by reduced at the temperature of 200 degree C over 8 hours. Hydrophobic catalyst is high activity and stability as the amount of platinum content is 3%, the platinum can reach the economic use with the content of (1-2)%

  7. Improving the performances of hydrophobic catalysts used for tritium recovery and enrichment processes In liquid and gaseous effluents

    Popescu, Irina; Ionita, Gheorghe; Varlam, Carmen

    2007-01-01

    Full text: Based on the long experience of the authors in the preparation, testing and evaluation of the performances of hydrophobic catalysts and based also on the reviewed references, this paper presents up-to-date R and D activities on the preparation methods and applications of the hydrophobic catalysts in tritium separation. The objectives of the paper are: (1) how to improve the characteristics and performance of platinum hydrophobic catalysts; (2) to assess and find a new procedure for the preparation of a new improved hydrophobic catalyst. From reviewed references it results that platinum appears to be the most active and efficient catalytic metal while polytetrafluoroethylene is the best wetproofing agent. A new improved hydrophobic Pt-catalyst has been obtained and tests are now underway. The main steps and experimental conditions of preparation are largely discussed. A new wetproofing agent and new binding agents (titanium dioxide, cerium dioxide, zirconium dioxide) with a catalytic role are proposed and tested. The physico-structural parameters of the improved catalyst have been determined and are discussed in detail. The new proposal is a promising for improving the performance of conventional hydrophobic Pt-catalysts. (authors)

  8. Effect of hydrophobic additive on oxygen transport in catalyst layer of proton exchange membrane fuel cells

    Wang, Shunzhong; Li, Xiaohui; Wan, Zhaohui; Chen, Yanan; Tan, Jinting; Pan, Mu

    2018-03-01

    Oxygen transport resistance (OTR) is a critical factor influencing the performance of proton exchange membrane fuel cells (PEMFCs). In this paper, an effective method to reduce the OTR of catalyst layers (CLs) by introducing a hydrophobic additive into traditional CLs is proposed. A low-molecular-weight polytetrafluoroethylene (PTFE) is selected for its feasibility to prepare an emulsion, which is mixed with a traditional catalyst ink to successfully fabricate the CL with PTFE of 10 wt%. The PTFE film exists in the mesopores between the carbon particles. The limiting current of the hydrophobic CL was almost 4000 mA/cm2, which is 500 mA/cm2 higher than that of the traditional CL. PTFE reduces the OTR of the CL in the dry region by as much as 24 s/m compared to the traditional CL and expands the dry region from 2000 mA/cm2 in the traditional CL to 2500 mA/cm2. Furthermore, the CL with the hydrophobic agent can improve the oxygen transport in the wet region (>2000 mA/cm2) more effectively than that in the dry region. All these results indicate that the CL with the hydrophobic agent shows a superior performance in terms of optimizing water management and effectively reduces the OTR in PEMFCs.

  9. Deactivation of hydrophobic catalysts for a hydrogen isotope exchange: Application of the time-on-stream theory

    Choi, Heui-Joo; Lee, Han Soo; Ahn, Do-Hee; Kim, Jeong-Guk; Kim, Wi-soo; Sohn, SoonHwan

    2005-01-01

    A recycle reactor was built for the purpose of characterizing newly developed hydrophobic catalysts for a hydrogen isotope exchange. The catalytic rate constants of two types of hydrophobic catalysts were measured at a 100% relative humidity. The catalytic rate constants were measured at 60 deg C for 28 days and both the catalysts showed very high initial catalytic rate constants. The measured deactivation profile showed that the catalytic rate constants of both the catalysts were almost identical for 28 days. The deactivation of the catalysts was modelled based upon the time-on-stream theory. The deactivation profiles of the catalysts were estimated by using the model for a period of three years. The results showed that both the catalysts had a good exchange capacity for hydrogen isotopes and they could be applicable to a tritium removal facility that will be built at the Wolsong nuclear power plants in the near future

  10. Applications of hydrophobic Pt catalysts in separation of tritium from liquid effluents

    Ionita, Gheorghe; Popescu, Irina; Stefanescu, Ioan; Varlam, Carmen

    2003-01-01

    Hydrophobic Pt catalysts were first prepared and used in deuterium or tritium separation while after their application was extended to chemical reactions occurring in liquid water or saturated humidity environments. Capillary condensing produced at the contact with liquid water or vapors engenders in classical hydrophilic catalysts a decrease in activity what makes them inefficient. Consequently, liquid water 'repealing' catalysts are to be used allowing, at the same time gaseous reactants and reaction products to diffuse to and fro the catalytic active centers. These catalysts were successfully applied in deuterium enrichment and tritium separation based on hydrogen- liquid water isotopic exchange at both pilot and industrial scale. High activity and a prolonged stability were demonstrated and checked in: - detritiation of the heavy water used as both moderator and coolant in CANDU type reactors; removing of tritium from light water recirculated in nuclear fuel reprocessing facilities; removal and recovery of tritium from atmosphere and tritium processing installations. Due to their incontestable advantages the use of these catalysts was recently extended to other chemical processes occurring in the presence of liquid water or in high humidity environment or else when water occurs as a reaction product, such as catalytic hydrogen - oxygen recombination at room temperature or removal of stable organic pollutants from waste waters

  11. The advanced CECE process for enriching tritium by the chemical exchange method with a hydrophobic catalyst

    Kitamoto, Asashi; Shimizu, Masami; Masui, Takashi.

    1992-01-01

    The monothermal chemical exchange process with electrolysis, i.e., CECE process, was an effective method for enriching and removing tritium from tritiated water with low to middle level activity. The purpose of this study is to propose the theoretical background of the two-parameter evaluation method, which is based on a two-step isotope exchange reaction between hydrogen gas and liquid water, for improvement of the performance of a hydrophobic catalyst by a trickle bed-type column. Finally, a two-parameter method could attain the highest performance of isotope separation and the lowest liquid holdup for a trickle bed-type column. Therefore, this method will present some effective and practical procedures in scaling up a tritium enrichment process. The main aspect of the CECE process in engineering design and system evaluation was to develop the isotope exchange column with a high performance catalyst. (author)

  12. Preparation and performance of Pt/PTFE/Foam SiC as a hydrophobic catalyst for LPCE

    He, Jianchao; Wang, Heyi, E-mail: hywang@caep.cn; Xiao, Chengjian; Li, Jiamao; Chen, Ping; Hou, Jingwei

    2016-12-15

    Highlights: • A new type of foam material, Foam SiC with three-dimensional network structure, was chosen as the carrier of catalyst. • Foam SiC was hydrophobic treated by PTFE, and achieved a good hydrophobic property. • Pt/PTFE/Foam SiC was prepared by impregnation method with Pt-organic solution and gaseous phase reduction method. • The hydrophobic catalysts were packed with Dixon phosphor bronze gauze rings (about 3 mm × 3 mm) in LPCE system to test the catalytic performance. • The effect of different size of the catalyst on LPCE was been tested. - Abstract: Platinum catalysts supported on a composite of polytetrafluoroethylene (PTFE) and Foam SiC (Pt/PTFE/Foam SiC) have been proposed and prepared by an impregnation method. The as-prepared Pt/PTFE/Foam SiC was characterized by compression load testing, dynamic contact angle measurement, SEM, XRD, and TEM. The results show that the catalyst prepared by triple hydrophobic treatment had an initial contact angle of 134.2°, a good compression performance of 3.2 MPa, and platinum nanoparticles of 12.1 nm (average size). The catalytic activity of the catalyst was tested with different packing methods, reaction temperatures, and gas-liquid ratios. An excellent hydrogen isotope exchange performance was observed using a hydrophilic packing material-to-catalyst ratio of 25% and reaction temperature of 80 °C. Pt/PTFE/Foam SiC may be used as a hydrophobic catalyst for a water detritiation system (WDS) via a liquid-phase catalytic exchange process (LPCE).

  13. Preparation and performance of Pt/PTFE/Foam SiC as a hydrophobic catalyst for LPCE

    He, Jianchao; Wang, Heyi; Xiao, Chengjian; Li, Jiamao; Chen, Ping; Hou, Jingwei

    2016-01-01

    Highlights: • A new type of foam material, Foam SiC with three-dimensional network structure, was chosen as the carrier of catalyst. • Foam SiC was hydrophobic treated by PTFE, and achieved a good hydrophobic property. • Pt/PTFE/Foam SiC was prepared by impregnation method with Pt-organic solution and gaseous phase reduction method. • The hydrophobic catalysts were packed with Dixon phosphor bronze gauze rings (about 3 mm × 3 mm) in LPCE system to test the catalytic performance. • The effect of different size of the catalyst on LPCE was been tested. - Abstract: Platinum catalysts supported on a composite of polytetrafluoroethylene (PTFE) and Foam SiC (Pt/PTFE/Foam SiC) have been proposed and prepared by an impregnation method. The as-prepared Pt/PTFE/Foam SiC was characterized by compression load testing, dynamic contact angle measurement, SEM, XRD, and TEM. The results show that the catalyst prepared by triple hydrophobic treatment had an initial contact angle of 134.2°, a good compression performance of 3.2 MPa, and platinum nanoparticles of 12.1 nm (average size). The catalytic activity of the catalyst was tested with different packing methods, reaction temperatures, and gas-liquid ratios. An excellent hydrogen isotope exchange performance was observed using a hydrophilic packing material-to-catalyst ratio of 25% and reaction temperature of 80 °C. Pt/PTFE/Foam SiC may be used as a hydrophobic catalyst for a water detritiation system (WDS) via a liquid-phase catalytic exchange process (LPCE).

  14. A study on the deactivation and stability of hydrophobic catalyst for hydrogen isotope exchange

    Sohn, Soon Hwan

    2006-02-01

    The hydrophobic catalyst has been prepared by deposition of platinum on porous styrene divinylbenzene copolymers(Pt/SDBC) and at the same time a separated type catalytic reactor has been developed for the Wolsong tritium removal facility(WTRF). Several tests carried out to obtain the experimental performance data of the Pt/SDBC with a recycle reactor system. The long-term stability was also measured with the Pt/SDBC catalyst immersed in water for a long time. The long-term deactivations of the Pt/SDBC catalyst were evaluated quantitatively by mathematical models. The simple mathematical models were presented to evaluate the uniform poisoning and shell progressive poisoning to be occurred simultaneously during the hydrogen isotope exchange between hydrogen gas and liquid water in the Liquid Phase Catalytic Exchange(LPCE) column. The uniform poisoning was well characterized by a time on stream theory and then the deactivation parameters were determined from the experimental performance data. The impurity poisoning was derived by a shell progressive model with two-layer mass transfer. The water vapor condensation was a main cause of the reversible uniform poisoning for the Pt/SDBC catalyst. The values of the decay rate constant (K d ) and order of the decay reaction(m) were of 2 and 4, respectively, based on the experimental data. It indicated that the decay might be attributable to pore mouth poisoning. From the long-term stability of the catalyst immersed in water, there was no intrinsic decay of catalyst activity due to water logging to the catalyst. The activity decreased by only 7% over 18 months, which was equivalent to a catalyst half-life longer than 15 years. On the basis of the above deactivation parameters, the values for k c /k co with Thiele modulus=20 after 3 years and 10 years of operation were expected about 19% and 15% of the initial activity, respectively, while the values for k c /k co with Thiele modulus=100 were of about 22% and 18%, respectively

  15. Hydrophobic and hydrophilic nanosheet catalysts with high catalytic activity and recycling stability through control of the outermost ligand

    Ko, Younji; Kim, Donghee; Kwon, Cheong Hoon; Cho, Jinhan

    2018-04-01

    In this study, we introduce hydrophobic and hydrophilic graphene oxide nanosheet (GON) catalysts prepared by consecutive ligand replacement of hydrophobically stabilized magnetic and catalytic nanoparticles (NPs); it exhibits high catalytic activity, fast magnetic response, and good dispersion in both nonpolar and aqueous media, allowing high loading amount of magnetic and catalytic NPs onto GON sheets. More specifically, these GON catalysts showed a high product yield of 66-99% and notable recyclability (93% of the initial product yield after 10 reaction cycles) in a Suzuki-Miyaura reaction in nonpolar media, outperforming the performance of the conventional hydrophilic GON catalysts. Additional coating of a hydrophilic layer onto GON catalysts also showed the notable performance (product yield ∼99%) in catalytic reactions performed in aqueous media. Given that ligand-controlled catalytic NPs adsorbed onto 2D nanosheets can be used as hydrophobic and hydrophilic stabilizers as well as catalysts, our approach can provide a tool for developing and designing 2D-nanosheet catalysts with high performance in nonpolar and polar media.

  16. Deuterium exchange reaction in a trickle bed packed with a mixture of hydrophobic catalyst and hydrophilic packings

    Seungwoo Paek; Heui-Joo Choi; DO-Hee Ahn; Kwang-Rag Kim; Minsoo Lee; Sung-Paal Yim; Hongsuk Chung

    2006-01-01

    Full text of publication follows: The isotopic exchange reaction between hydrogen and water on the platinum supported catalysts provides a useful step for separating hydrogen isotopes such as deuterium and tritium. The CECE (Combined Electrolysis Catalytic Exchange) with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy waste water streams because of its high separation factor and mild operating conditions. The CECE column is composed of an electrolysis cell and a liquid phase catalytic exchange column. This paper deals with the experiments for the hydrogen isotopic exchange reaction in a trickle bed reactor packed with a hydrophobic catalyst in order to develop the catalytic column of the CECE. Hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. The catalyst column was packed with a mixture of hydrophobic catalyst and hydrophilic packing (Dixon gauze ring) to improve liquid distribution and vapor/liquid transfer area. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities. The catalyst was packed wet into the column and water was injected at the top through a liquid distributor and trickled through a catalyst mixture. Hydrogen gas passed up the column and deuterium was transferred to water stream flowing counter currently. The temperature of the column was controlled to maintain at 60 deg. C using water jackets around the reactor and equilibrator, a feed waster heater, and a circulation water heater. A metal bellows pump was used to circulate the hydrogen gas at the typical flow rate of 60 LPM.The reactor pressure was controlled to maintain at 135 kPa (abs) by a water column. Gas samples were drawn off from the top and bottom of the column. The difference in deuterium concentration between the inlet and outlet gas samples was analyzed using Gas

  17. Deuterium exchange reaction in a trickle bed packed with a mixture of hydrophobic catalyst and hydrophilic packings

    Seungwoo Paek [KAERI (Korea, Republic of); Heui-Joo Choi; DO-Hee Ahn; Kwang-Rag Kim; Minsoo Lee; Sung-Paal Yim; Hongsuk Chung

    2006-07-01

    Full text of publication follows: The isotopic exchange reaction between hydrogen and water on the platinum supported catalysts provides a useful step for separating hydrogen isotopes such as deuterium and tritium. The CECE (Combined Electrolysis Catalytic Exchange) with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy waste water streams because of its high separation factor and mild operating conditions. The CECE column is composed of an electrolysis cell and a liquid phase catalytic exchange column. This paper deals with the experiments for the hydrogen isotopic exchange reaction in a trickle bed reactor packed with a hydrophobic catalyst in order to develop the catalytic column of the CECE. Hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. The catalyst column was packed with a mixture of hydrophobic catalyst and hydrophilic packing (Dixon gauze ring) to improve liquid distribution and vapor/liquid transfer area. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities. The catalyst was packed wet into the column and water was injected at the top through a liquid distributor and trickled through a catalyst mixture. Hydrogen gas passed up the column and deuterium was transferred to water stream flowing counter currently. The temperature of the column was controlled to maintain at 60 deg. C using water jackets around the reactor and equilibrator, a feed waster heater, and a circulation water heater. A metal bellows pump was used to circulate the hydrogen gas at the typical flow rate of 60 LPM.The reactor pressure was controlled to maintain at 135 kPa (abs) by a water column. Gas samples were drawn off from the top and bottom of the column. The difference in deuterium concentration between the inlet and outlet gas samples was analyzed using Gas

  18. Investigation of hydrodynamic behavior of a pilot-scale trickle bed reactor packed with hydrophobic catalyst using radiotracer technique

    Kumar, Rajesh; Mohan, Sadhana; Pant, H.J.; Sharma, V.K.; Mahajani, S.M.

    2010-01-01

    Exchange of isotopes of hydrogen between aqueous phase and hydrogen gas is one of the most efficient methods for separation of hydrogen isotopes and is commonly used for production of heavy water or removal of tritium from tritiated water effluents. The isotope exchange reaction can be effectively executed in a counter-current trickle bed reactor (TBR) packed with a novel metal (Pt, Pd, Ni) based hydrophobic catalyst as the conventional novel metal based hydrophilic catalysts become ineffective after they come in contact with liquid effluents. The overall exchange reaction in the TBR mainly consists of a gas-liquid mass transfer process that transfers reactants from liquid to gaseous phase followed by an isotopic exchange reaction between the reactants in gaseous phase in presence of a solid hydrophobic catalyst. However, due to water repellent nature of the catalyst, poor liquid distribution in the reactor is normally observed that deteriorates the gas-liquid mass transfer. Therefore, it was thought that if a mixture of hydrophobic catalyst and a suitable hydrophilic mass transfer packing is used to fill the TBR column then, it can improve the distribution or mixing of the liquid and gas phase and thus improve the gas-liquid mass transfer and overall performance of the reactor and needs to be confirmed

  19. Catalytic activity of hydrophobic Pt/C/PTFE catalysts of different PTFE content for hydrogen-water liquid exchange reaction

    Hu Sheng; Xiao Chengjian; Zhu Zuliang; Luo Shunzhong; Wang Heyi; Luo Yangming; Wang Changbin

    2007-01-01

    10%Pt/C catalysts were prepared by liquid reduction method. PTFE and Pt/ C catalysts were adhered to porous metal and hydrophobic Pt/C/PTFE catalysts were prepared. The structure and size of Pt crystal particles of Pt/C catalysts were analyzed by XRD, and their mean size was 3.1 nm. The dispersion state of Pt/C and PTFE was analyzed by SEM, and they had good dispersion mostly, but PTFE membrane could be observed on local parts of Pt/C/PTFE surface. Because of low hydrophobicity, Pt/C/ PTFE catalysts have low activity when the mass ratio of PTFE and Pt/C is 0.5: 1, and their catalytic activity increases markedly when the ratio is 1:1. When the ratio increases again, more Pt active sites would be covered by PTFE and interior diffusion effect would increase, which result in the decrease of catalytic activity of Pt/C/PTFE. By PTFE pretreatment of porous metal carrier, the activity of Pt/C/PTFE catalysts decreases when the mass ratio of PTFE and Pt/C is 0.5:1, and their activity decreases when the mass ratio is 1:1. (authors)

  20. An Efficient and Stable Hydrophobic Molecular Cobalt Catalyst for Water Electro-oxidation at Neutral pH

    Chen, Ba-Tian

    2016-06-14

    The synthesis of a library of molecular water oxidation catalysts based on the Co complex of tris(2-benzimidazolylmethyl)amine is described. Hydrophobicity was identified as the key variable in mediating the catalytic competence of the complexes. The change in this parameter correlates with both the conformational mobility of the ligand core and the structural changes in the local solvent environment around the metal site. The optimal Co complex identified is hydrophobic, because of three semifluorinated side chains. It catalyzes water electro-oxidation efficiently at neutral pH, with an overpotential of 390 mV and a turnover frequency (TOF) of 1.83 s-1 in the absence of soluble Co salts. The catalyst can be immobilized through physisorption, and it remains stable in prolonged electrolysis experiments. © 2016 American Chemical Society.

  1. An Efficient and Stable Hydrophobic Molecular Cobalt Catalyst for Water Electro-oxidation at Neutral pH

    Chen, Batian; Morlanes, Natalia Sanchez; Adogla, Enoch; Takanabe, Kazuhiro; Rodionov, Valentin

    2016-01-01

    The synthesis of a library of molecular water oxidation catalysts based on the Co complex of tris(2-benzimidazolylmethyl)amine is described. Hydrophobicity was identified as the key variable in mediating the catalytic competence of the complexes. The change in this parameter correlates with both the conformational mobility of the ligand core and the structural changes in the local solvent environment around the metal site. The optimal Co complex identified is hydrophobic, because of three semifluorinated side chains. It catalyzes water electro-oxidation efficiently at neutral pH, with an overpotential of 390 mV and a turnover frequency (TOF) of 1.83 s-1 in the absence of soluble Co salts. The catalyst can be immobilized through physisorption, and it remains stable in prolonged electrolysis experiments. © 2016 American Chemical Society.

  2. The Manipulation of Hydrophobicity in Catalyst Design for Applications of Aerobic Alcohols Oxidation and Electrocatalytic Water Oxidation

    Chen, Batian

    2016-05-17

    Hydrophobicity is the generalized characteristic of non-polar substances that brings about their exclusion from aqueous phases. This property, entropic in its nature, drives key self-assembly and phase separation processes in water. Protein folding, the formation of DNA double helix, the existence of lipid bilayers and the wetting properties of leaf surfaces are all due to hydrophobic interactions. Inspired by Nature, we aimed to use hydrophobicity for creating novel and improved catalytic systems. (I) A number of fluorous amphiphilic star block-copolymers containing a tris(benzyltriazolylmethyl)amine motif have been prepared. These polymers assembled into well-defined nanostructures in water, and their mode of assembly could be controlled by changing the composition of the polymer. The polymers were used for enzyme-inspired catalysis of alcohol oxidation. (II) An enzyme-inspired catalytic system based on a rationally designed multifunctional surfactant was developed. The resulting micelles feature metal-binding sites and stable free radical moieties as well as fluorous pockets that attract and preconcentrate molecular oxygen. In the presence of copper ions, the micelles effect chemoselective aerobic alcohol oxidation under ambient conditions in water, a transformation that is challenging to achieve nonenzymatically. (III) Development of a facile means of photo/electrocatalytic water splitting is one of the main barriers to establishing of a solar hydrogen economy. Of the two half-reactions involved in splitting water into O2 and H2, water oxidation presents the most challenge due to its mechanistic complexity. A practical water oxidation catalyst must be highly active, yet inexpensive and indefinitely stable under harsh oxidative conditions. Here, I shall describe the synthesis of a library of molecular water oxidation catalysts based on the Co complex of tris(2-benzimidazolylmethyl)amine, (BimH)3. A wide range of catalysts differing in their electronic properties

  3. Application of hydrophobic Pt catalysts in hydrogen isotopes separation from nuclear effluents

    Ionita, G.; Popescu, I.; Stefanescu, I.; Retegan, T. [National Institute of Cryogenics and Isotopic Separation (Romania)

    2003-09-01

    According to reviewed references and to tests effected by authors the platinum/carbon/teflon is the most active and the most stable catalyst for removal of tritium from nuclear effluents by isotopic exchange between hydrogen and liquid water. To improve the performances of process it is recommended to use the catalyst as ordered or random mixed catalytic packing in a trickle bed reactor. (O.M.)

  4. UV-induced polymerization of size-controlled platinum/poly[styrene-divinylbenzene-tri(propylene glycol) diacrylate] hydrophobic catalyst beads in microfluidics

    Wi, Jun; Li, Xiang; Song, Tong; Song, Zi Fan; Chang, Zhen Qi; Meng, Da Qiao

    2015-01-01

    The catalytic exchange of hydrogen isotopes between hydrogen and water has been known to be a very useful process for the separation of tritium from tritiated water. For the process, a highly active hydrophobic catalyst is needed. This study provides an effective fabrication method of size-controlled platinum/poly[styrene-divinylbenzene-tri(propylene glycol) diacrylate] [Pt/poly(SDB-TPGDA)] hydrophobic catalyst beads with a narrow size distribution. Platinum nanoparticles were prepared by γ-ray-induced reduction in the aqueous phase first, and then uniformly dispersed in SDB-TPGDA comonomer after the hydrophobization of platinum nanoparticles with alkylamine stabilizers. The porous Pt/poly(SDB-TPGDA) hydrophobic catalyst beads were synthesized by the UV-initiated polymerization of the mixture droplets prepared in a capillary-based microfluidic system. The size of as-prepared catalyst beads can be controlled in the range of 200-1,000 μm by adjusting the flow rate of dispersed and continuous phases, as well as the viscosity of the continuous phase. Sorbitan monooleate and cyclohexanol were used as coporogens to control the porosities of the catalyst beads

  5. UV-induced polymerization of size-controlled platinum/poly[styrene-divinylbenzene-tri(propylene glycol) diacrylate] hydrophobic catalyst beads in microfluidics

    Wi, Jun; Li, Xiang; Song, Tong; Song, Zi Fan; Chang, Zhen Qi [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei (China); Meng, Da Qiao [Si Chuan Institute of Materials and Technology, Jiang You (China)

    2015-10-15

    The catalytic exchange of hydrogen isotopes between hydrogen and water has been known to be a very useful process for the separation of tritium from tritiated water. For the process, a highly active hydrophobic catalyst is needed. This study provides an effective fabrication method of size-controlled platinum/poly[styrene-divinylbenzene-tri(propylene glycol) diacrylate] [Pt/poly(SDB-TPGDA)] hydrophobic catalyst beads with a narrow size distribution. Platinum nanoparticles were prepared by γ-ray-induced reduction in the aqueous phase first, and then uniformly dispersed in SDB-TPGDA comonomer after the hydrophobization of platinum nanoparticles with alkylamine stabilizers. The porous Pt/poly(SDB-TPGDA) hydrophobic catalyst beads were synthesized by the UV-initiated polymerization of the mixture droplets prepared in a capillary-based microfluidic system. The size of as-prepared catalyst beads can be controlled in the range of 200-1,000 μm by adjusting the flow rate of dispersed and continuous phases, as well as the viscosity of the continuous phase. Sorbitan monooleate and cyclohexanol were used as coporogens to control the porosities of the catalyst beads.

  6. New method for the hydrogen isotope exchange reaction in a hydrophobic catalyst bed

    Asakura, Y.; Kikuchi, M.; Yusa, H.

    1982-01-01

    To improve the isotope exchange reaction efficiency between water and hydrogen, a new reactor in which water mists and hydrogen gas react cocurrently was studied. To apply this to the enrichment of tritium in heavy water, a dual temperature isotope exchange reactor which is composed of cocurrent low temperature reactors and the usual countercurrent high temperature reactor was proposed and analyzed using a McCabe-Thiele diagram. By utilizing cocurrent reactors, in combination, the necessary catalyst volume can be reduced to one-tenth as compared with the usual countercurrent low temperature reactor. 17 refs

  7. The Manipulation of Hydrophobicity in Catalyst Design for Applications of Aerobic Alcohols Oxidation and Electrocatalytic Water Oxidation

    Chen, Batian

    2016-01-01

    Hydrophobicity is the generalized characteristic of non-polar substances that brings about their exclusion from aqueous phases. This property, entropic in its nature, drives key self-assembly and phase separation processes in water. Protein folding

  8. Hydrophobic effect of silica functionalized with silylated Ti ...

    aCentre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research,. Universiti ... rate of water adsorption capacity for the hydrophobic catalysts prepared. .... analyzed by Gas Chromatography, Shimadzu model.

  9. Tethered catalysts for the hydration of carbon dioxide

    Valdez, Carlos A; Satcher, Jr., Joe H; Aines, Roger D; Wong, Sergio E; Baker, Sarah E; Lightstone, Felice C; Stolaroff, Joshuah K

    2014-11-04

    A system is provided that substantially increases the efficiency of CO.sub.2 capture and removal by positioning a catalyst within an optimal distance from the air-liquid interface. The catalyst is positioned within the layer determined to be the highest concentration of carbon dioxide. A hydrophobic tether is attached to the catalyst and the hydrophobic tether modulates the position of the catalyst within the liquid layer containing the highest concentration of carbon dioxide.

  10. Oxidation catalyst

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  11. Hydrophobic treatment of concrete

    Vries, J. de; Polder, R.B.

    1996-01-01

    As part of the maintenance policy of the Dutch Ministry of Transport, Civil Engineering Division, hydrophobic treatment of concrete was considered as an additional protective measure against penetration of aggressive substances, for instance deicing salts in bridge decks. A set of tests was designed

  12. Novel catalysts for isotopic exchange between hydrogen and liquid water

    Butler, J.P.; Rolston, J.H.; Stevens, W.H.

    1978-01-01

    Catalytic isotopic exchange between hydrogen and liquid water offers many inherent potential advantages for the separation of hydrogen isotopes which is of great importance in the Canadian nuclear program. Active catalysts for isotopic exchange between hydrogen and water vapor have long been available, but these catalysts are essentially inactive in the presence of liquid water. New, water-repellent platinum catalysts have been prepared by: (1) treating supported catalysts with silicone, (2) depositing platinum on inherently hydrophobic polymeric supports, and (3) treating platinized carbon with Teflon and bonding to a carrier. The activity of these catalysts for isotopic exchange between countercurrent streams of liquid water and hydrogen saturated with water vapor has been measured in a packed trickle bed integral reactor. The performance of these hydrophobic catalysts is compared with nonwetproofed catalysts. The mechanism of the overall exchange reaction is briefly discussed. 6 figures

  13. Catalysts for conversion of syngas to liquid motor fuels

    Rabo, Jule A.; Coughlin, Peter K.

    1987-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst composition capable of ensuring the production of only relatively minor amounts of heavy products boiling beyond the diesel oil range. The catalyst composition, having desirable stability during continuous production operation, employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component. The latter component is a steam-stabilized zeolite Y catalyst of hydrophobic character, desirably in acid-extracted form.

  14. Continuous wasteless ecologically safe technology of propylenecarbonate production in presence of phthalocyanine catalysts

    Afanasiev, Vladimir Vasilievich [Moscow, RU; Zefirov, Nikolai Serafimovich [Moscow, RU; Zalepugin, Dmitry Yurievich [Moscow, RU; Polyakov, Victor Stanislavovich [Moscow, RU; Tilkunova, Nataliya Alexandrovna [Moscow, RU; Tomilova, Larisa Godvigovna [Moscow, RU

    2009-09-08

    A continuous method of producing propylenecarbonate includes carboxylation of propylene oxide with carbon dioxide in presence of phthalocyanine catalyst on an inert carrier, using as the phthalocyanine catalyst at least one catalyst selected from the group consisting of not-substituted, methyl, ethyl, butyl, and tret butyl-substituted phthalocyanines of metals, including those containing counterions, and using as the carrier a hydrophobic carrier.

  15. Water on a Hydrophobic surface

    Scruggs, Ryan; Zhu, Mengjue; Poynor, Adele

    2012-02-01

    Hydrophobicity, meaning literally fear of water, is exhibited on the surfaces of non-stick cooking pans and water resistant clothing, on the leaves of the lotus plan, or even during the protein folding process in our bodies. Hydrophobicity is directly measured by determining a contact angle between water and an objects surface. Associated with a hydrophobic surface is the depletion layer, a low density region approximately 0.2 nm thick. We study this region by comparing data found in lab using surface plasmon resonance techniques to theoretical calculations. Experiments use gold slides coated in ODT and Mercapto solutions to model both hydrophobic and hydrophilic surfaces respectively.

  16. Communicating catalysts

    Weckhuysen, Bert M.

    2018-06-01

    The beauty and activity of enzymes inspire chemists to tailor new and better non-biological catalysts. Now, a study reveals that the active sites within heterogeneous catalysts actively cooperate in a fashion phenomenologically similar to, but mechanistically distinct, from enzymes.

  17. Lunar CATALYST

    National Aeronautics and Space Administration — Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) is a NASA initiative to encourage the development of U.S. private-sector robotic lunar...

  18. A new catalyst for heavy water production and its prospect

    Sato, Toshio; Ohkoshi, Sumio; Takahashi, Tomiki

    1978-01-01

    The heavy water production process utilizing isotope exchange reaction between liquid water and hydrogen is the most promising method. Study was made for developing highly active and long life catalyst practically applied for this process. As platinum is used as this catalyst, catalytic activities using varieties of Polapacs and Shodexes instead of active carbon as the carriers of platinum catalyst were investigated. It became clear that the catalytic activity using Pt/Shodex 104 (3 wt %) was 1000 times as high as the activity using Pt/active carbon (1 wt %). This method is considered to be reasonable enough economically. There are many problems which must be solved hereafter for its practical use, and the further studies are required regarding the following points; forming of catalyst, life of catalyst, mass production of catalyst, most appropriate counter flow reacting device of hydrophobic catalyst, pressure and temperature effects on reaction. (Kobatake, H.)

  19. Highly dispersed metal catalyst

    Xiao, Xin; West, William L.; Rhodes, William D.

    2016-11-08

    A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.

  20. Endurance testing of a WDS catalyst

    Vladu, Mihaela; Brad, Sebastian; Vijulie, Mihai; Vasut, Felicia; Constantin, Marin

    2007-01-01

    Full text: The Water Detritiation System (WDS) of ITER is a safety related component since it is the final barrier against tritium discharge into the environment. Therefore, its subcomponents have to be qualified and predictions on the time evolution of performances have to be made. During the activities devoted to JET WDS, test at lower concentrations of tritium and at small scale have been performed. The goal of this work is to extend the endurance testings and to check early results by tests under relevant conditions. The degradation of the WDS catalyst can strongly affect its separation performances and consequently it will entail a raise of the tritium releases into the environment. If a catalyst based on Teflon material is used for the LPCE column of WDS, the fluoride that may be formed and released due to the tritium presence causes the corrosion of the LPCE column with unpredictable effects. Therefore the quantification of catalyst degradation and the amount of fluoride released is needed for planning the maintenance activities and to predict the operation life time of the WDS components. The manufacturing of hydrophobic catalysts with activity that is not lowered by liquid water determined the rise of interest for the isotopes separation techniques in the hydrogen - water system. The active component of these catalysts is Pt (the only material to be further discussed) that enhances the exchange between the hydrogen and water vapors. The hydrophobic support does not allow the wetting and blocking by water of the active surface. Hydrophobic catalysts were manufactured by two methods: - direct deposition of Pt into the pores of a hydrophobic support (Teflon, carbon monofluoride, poly styrene, styrene di-vinyl benzene, etc.); - deposition on a hydrophilic support, most common charcoal, followed by hydrophobization by silicon oil or by homogenizing with hydrophobic polymer (Teflon, silicon resins). This type of catalysts is one of the most studied groups due to

  1. Fabrication of superhydrophobic cotton fabrics by silica hydrosol and hydrophobization

    Xu, Lihui; Zhuang, Wei; Xu, Bi; Cai, Zaisheng

    2011-04-01

    Superhydrophobic cotton fabrics were prepared by the incorporation of silica nanoparticles and subsequent hydrophobization with hexadecyltrimethoxysilane (HDTMS). The silica nanoparticles were synthesized via sol-gel reaction with methyl trimethoxy silane (MTMS) as the precursor in the presence of the base catalyst and surfactant in aqueous solution. As for the resulting products, characterization by particle size analyzer, scanning electron microscopy (SEM), scanning probe microscopy (SPM), X-ray photoelectron spectroscopy (XPS), and thermal gravimetric analysis (TGA) were performed respectively. The size of SiO2 nanoparticles can be controlled by adjusting the catalyst and surfactant concentrations. The wettability of cotton textiles was evaluated by the water contact angle (WCA) and water shedding angle (WSA) measurements. The results showed that the treated cotton sample displayed remarkable water repellency with a WCA of 151.9° for a 5 μL water droplet and a WSA of 13° for a 15 μL water droplet.

  2. Thin Film Catalyst Layers for Direct Methanol Fuel Cells

    Witham, C. K.; Chun, W.; Ruiz, R.; Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    One of the primary obstacles to the widespread use of the direct methanol fuel cell (DMFC) is the high cost of the catalyst. Therefore, reducing the catalyst loading well below the current level of 8-12 mg/cm 2 would be important to commercialization. The current methods for preparation of catalyst layers consisting of catalyst, ionomer and sometimes a hydrophobic additive are applied by either painting, spraying, decal transfer or screen printing processes. Sputter deposition is a coating technique widely used in manufacturing and therefore particularly attractive. In this study we have begun to explore sputtering as a method for catalyst deposition. Present experiments focus on Pt-Ru catalyst layers for the anode.

  3. Sputtered catalysts

    Tyerman, W.J.R.

    1978-01-01

    A method is described for preparing a supported catalyst by a sputtering process. A material that is catalytic, or which is a component of a catalytic system, is sputtered on to the surface of refractory oxide particles that are compatible with the sputtered material and the sputtered particles are consolidated into aggregate form. The oxide particles before sputtering should have a diameter in the range 1000A to 50μ and a porosity less than 0.4 ml/g, and may comprise MgO, Al 2 O 3 or SiO 2 or mixtures of these oxides, including hydraulic cement. The particles may possess catalytic activity by themselves or in combination with the catalytic material deposited on them. Sputtering may be effected epitaxially and consolidation may be effected by compaction pelleting, extrusion or spray drying of a slurry. Examples of the use of such catalysts are given. (U.K.)

  4. Hydrophobic patches on protein surfaces

    Lijnzaad, P.

    2007-01-01

    Hydrophobicity is a prime determinant of the structure and function of proteins. It is the driving force behind the folding of soluble proteins, and when exposed on the surface, it is frequently involved in recognition and binding of ligands and other proteins. The energetic cost of

  5. Preparation of wet-proofed catalyst for tritium removal

    Son, S-H.; Lee, G-B.; Song, M-J.

    1995-01-01

    Wetproofed catalysts have been developed for the hydrogen isotopic exchange reaction between hydrogen gas and liquid water. A styrene divinylbenzene copolymer (SDBC) was selected as effective support of the hydrophobic Pt catalyst. Preparation conditions and physical properties of the SDBC were investigated experimentally. The SDBC having the larger pore size, higher surface area and larger particle size were prepared by the particular solvent and stirring speed. The H 2 adsorption isotherm on a supported Pt catalyst was measured and the hydrogen isotopic exchange reaction was verified in the exchange column. (author). 7 refs., 4 tabs., 7 figs

  6. Preparation of wet-proofed catalyst for tritium removal

    Son, S-H; Lee, G-B; Song, M-J [Korea Electric Power Corp., Taejon (Korea, Republic of). Research Centre

    1996-12-31

    Wetproofed catalysts have been developed for the hydrogen isotopic exchange reaction between hydrogen gas and liquid water. A styrene divinylbenzene copolymer (SDBC) was selected as effective support of the hydrophobic Pt catalyst. Preparation conditions and physical properties of the SDBC were investigated experimentally. The SDBC having the larger pore size, higher surface area and larger particle size were prepared by the particular solvent and stirring speed. The H{sub 2} adsorption isotherm on a supported Pt catalyst was measured and the hydrogen isotopic exchange reaction was verified in the exchange column. (author). 7 refs., 4 tabs., 7 figs.

  7. Transparent Hydrophobic Coating by Sol Gel Method

    Mohd Hamzah Harun; Nik Ghazali Nik Salleh; Mahathir Mohamed; Mohd Sofian Alias

    2016-01-01

    Transparent hydrophobic coating of inorganic based tetra orthosilicate (TEOS) was prepared by sol gel method by varying fluoroalkylsilane (FAS) content which works as hydrophobic agent. Surface contact angle, transmittance degree and surface morphology were characterized for each sample. All samples show good transparency which was confirmed by UV visible spectroscopy. The hydrophobicity obtained increases with FAS content indicates that FAS is best candidate to induce hydrophobicity for inorganic coating. (author)

  8. 21 CFR 584.700 - Hydrophobic silicas.

    2010-04-01

    ...) Product. Amorphous fumed hydrophobic silica or precipitated hydrophobic silica (CAS Reg. No. 68611-0944... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrophobic silicas. 584.700 Section 584.700 Food... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE IN FEED AND...

  9. Permanganate oxidation of sulfur compounds to prevent poisoning of Pd catalysts in water treatment processes.

    Angeles-Wedler, Dalia; Mackenzie, Katrin; Kopinke, Frank-Dieter

    2008-08-01

    The practical application of Pd-catalyzed water treatment processes is impeded by catalyst poisoning by reduced sulfur compounds (RSCs). In this study, the potential of permanganate as a selective oxidant for the removal of microbially generated RSCs in water and as a regeneration agent for S-poisoned catalysts was evaluated. Hydrodechlorination using Pd/Al2O3 was carried out as a probe reaction in permanganate-pretreated water. The activity of the Pd catalysts in the successfully pretreated reaction medium was similar to that in deionized water. The catalyst showed no deactivation behavior in the presence of permanganate at a concentration level or = 0.08 mM, a significant but temporary inhibition of the catalytic dechlorination was observed. Unprotected Pd/Al2O3, which had been completely poisoned by sulfide, was reactivated by a combined treatment with permanganate and hydrazine. However, the anthropogenic water pollutants thiophene and carbon disulfide were resistant against permanganate. Together with the preoxidation of catalyst poisons, hydrophobic protection of the catalysts was studied. Pd/zeolite and various hydrophobically coated catalysts showed a higher stability against ionic poisons and permanganate than the uncoated catalyst. By means of a combination of oxidative water pretreatment and hydrophobic catalyst protection, we provide a new tool to harness the potential of Pd-catalyzed hydrodehalogenation for the treatment of real waters.

  10. An introduction to catalyst

    Jeon, Hak Je

    1988-11-01

    This book explains basic conception of catalyst such as definition, velocity of chemical reaction and velocity of catalyst reaction, absorption with absorption energy and chemical absorption, pore structure with the role of pore and measurement of pore structure, catalyst activity on solid structure, electrical property on catalyst activity, choice and design of catalyst, catalytic reaction with reaction velocity and chemical equilibrium and reaction velocity model, measurement of reaction velocity and material analysis, catalyst for mixed compound, catalyst for solid acid and catalyst for supported metal.

  11. Hydrophobic-Core Microcapsules and Their Formation

    Calle, Luz M. (Inventor); Li, Wenyan (Inventor); Buhrow, Jerry W. (Inventor); Jolley, Scott T. (Inventor)

    2016-01-01

    Hydrophobic-core microcapsules and methods of their formation are provided. A hydrophobic-core microcapsule may include a shell that encapsulates a hydrophobic substance with a core substance, such as dye, corrosion indicator, corrosion inhibitor, and/or healing agent, dissolved or dispersed therein. The hydrophobic-core microcapsules may be formed from an emulsion having hydrophobic-phase droplets, e.g., containing the core substance and shell-forming compound, dispersed in a hydrophilic phase. The shells of the microcapsules may be capable of being broken down in response to being contacted by an alkali, e.g., produced during corrosion, contacting the shell.

  12. The Performance of the Trickle Bed Reactor Packed with the Pt/SDBC Catalyst Mixture for the CECE Process

    Seungwoo Paek; Do-Hee Ahn; Heui-Joo Choi; Kwang-Rag Kim; Hongsuk Chung; Sung-Paal Yim; Minsoo Lee; Kyu-Min Song; Soon Hwan Sohn

    2006-01-01

    The CECE (Combined Electrolysis Catalytic Exchange) process with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy waste water streams because of its high separation factor and mild operating conditions. The CECE process is composed of an electrolysis cell and a LPCE (Liquid Phase Catalytic Exchange) column. This paper describes the experimental results of the hydrogen isotopic exchange reaction in a trickle bed reactor packed with a hydrophobic catalyst for the development of the LPCE column of the CECE process. The hydrophobic Pt/SDBC (Styrene Divinyl Benzene Copolymer) catalyst has been developed by Korean researchers for the LPCE column of WTRF (Wolsong Tritium Removal Facility). An experimental apparatus was constructed for the various experiments with the different parameters, such as hydrogen flow rate, temperature, and the structure of the mixed catalyst column. The catalyst column was packed with a mixture of hydrophobic catalyst and hydrophilic packing (Dixon gauze ring). The performance of the catalyst bed was expressed as an overall rate constant Kya. To improve the performance of the trickle bed, the modification of the catalyst bed design (changing the shape of the catalyst complex and diluting with inert) has been investigated. (author)

  13. Is Br2 hydration hydrophobic?

    Alcaraz-Torres, A; Gamboa-Suárez, A; Bernal-Uruchurtu, M I

    2017-02-28

    The spectroscopic properties of bromine in aqueous systems suggest it can behave as either hydrophilic or hydrophobic solute. In small water clusters, the halogen bond and the hydrogen-halogen interaction are responsible for its specific way of binding. In water hydrates, it is efficiently hosted by two different cages forming the crystal structure and it has been frequently assumed that there is little or no interaction between the guest and the host. Bromine in liquid solution poses a challenging question due to its non-negligible solubility and the large blue shift measured in its absorption spectra. Using a refined semi-empirical force field, PM3-PIF, we performed a Born-Oppenheimer molecular dynamics study of bromine in liquid water. Here we present a detailed study in which we retrieved the most representative hydration structures in terms of the most frequent positions around bromine and the most common water orientations. Albeit being an approximate description of the total hydration phenomenon, it captures the contribution of the leading molecular interactions in form of the recurrent structures. Our findings confirm that the spectroscopic signature is mainly caused by the closest neighbors. The dynamics of the whole first hydration shell strongly suggests that the external molecules in that structure effectively isolate the bulk from the presence of bromine. The solvation structure fluctuates from a hydrophilic to a hydrophobic-like environment along the studied trajectory.

  14. Development of styrene divinyl benzene catalyst in isotopic exchange reaction of water and hydrogen

    Morishita, Teizo; Noda, Shigeyuki; Tan, Tsutomu; Noguchi, Hiroshi

    1982-01-01

    Styrene divinyl benzene copolymer (SDBC) is hydrophobic, and porous with large specific surface area. Utilizing these properties, the SDBC was used for the carrier of catalyst in water-hydrogen exchange reaction process, and the hydrophobic platinum catalyst with very high performance was able to be developed. However, the SDBC is usually fine particles smaller than 1 mm, and is not suitable as the filling catalyst for exchange reaction towers. Therefore, in this study, using only platinum as a catalyst metal, the improvement of the property of carriers was emphatically examined, and platinum bearing was proved with an optical or electron microscope. As the result, it was found that the SDBC catalyst showed high activity practically usable as the hydrophobic catalyst for heavy water or tritium exchange reaction. The characteristics of SDBC are explained. The manufacturing processes of the catalyst by making SDBC carriers with fine particles and letting them bear platinum are described. The results of the trial manufacture of spherical, extrusion-formed and honeycomb carrier catalysts are reported. Platinum must be dispersed over the large specific surface area of SDBC carriers. (Kako, I.)

  15. The exchange reaction between deuterium and water vapour on platinum deposited over a hydrophobic support

    Itsuo, Iida; Junko, Kato; Kenzi, Tamuru

    1977-01-01

    Isotope exchange reaction between deuterium gas and water vapour at room temperature and below on platinum deposited on hydrophobic supports such as polytetrafluoroethylene (PTFE) or Porapak Q (copolymer of styrene and divinylbenzene) was studied and the results were compared with those of the exchange reaction on platinum over hydrophilic support such as alumina. It was demonstrated that the exchange reaction at temperatures below the boiling point of water is markedly retarded by the multilayer adsorption of water over the platinum catalyst deposited on hydrophilic support, whereas the platinum catalyst on hydrophobic support exhibited a high catalytic activity, being not retarded by the water, forming no multilayer of adsorbed water over platinum surface. Therefore in the case of the hydrogen isotope exchange reaction on platinum over hydrophobic support, the chemical exchange rate can be measured even under a saturated vapour pressure of water. The surface area of platinum was estimated by hydrogen chemisorption and hydrogen titration and specific activities of the catalyst were calculated at both room temperature and freezing point of water, which revealed that the specific rate of this reaction does not differ so much over various supports. (orig.) [de

  16. Characterisation of nanomaterial hydrophobicity using engineered surfaces

    Desmet, Cloé; Valsesia, Andrea; Oddo, Arianna; Ceccone, Giacomo; Spampinato, Valentina; Rossi, François; Colpo, Pascal, E-mail: pascal.colpo@ec.europa.eu [Directorate Health, Consumer and Reference Materials, Consumer Products Safety Unit (Italy)

    2017-03-15

    Characterisation of engineered nanomaterials (NMs) is of outmost importance for the assessment of the potential risks arising from their extensive use. NMs display indeed a large variety of physico-chemical properties that drastically affect their interaction with biological systems. Among them, hydrophobicity is an important property that is nevertheless only slightly covered by the current physico-chemical characterisation techniques. In this work, we developed a method for the direct characterisation of NM hydrophobicity. The determination of the nanomaterial hydrophobic character is carried out by the direct measurement of the affinity of the NMs for different collectors. Each collector is an engineered surface designed in order to present specific surface charge and hydrophobicity degrees. Being thus characterised by a combination of surface energy components, the collectors enable the NM immobilisation with surface coverage in relation to their hydrophobicity. The experimental results are explained by using the extended DLVO theory, which takes into account the hydrophobic forces acting between NMs and collectors.

  17. Design of heterogeneous catalysts

    Frey, Anne Mette

    was inspired by a computational screening, suggesting that alloys such as Ni-Fe, Co-Ni, and Co-Fe should show superior activity to the industrially used nickel catalyst. Especially the Ni-Fe system was considered to be interesting, since such alloy catalysts should be both more active and cheaper than the Ni...... catalyst. The results from the screening were experimentally verified for CO hydrogenation, CO2 hydrogenation, and simultaneous CO and CO2 hydrogenation by bimetallic Ni-Fe catalysts. These catalysts were found to be highly active and selective. The Co-Ni and Co-Fe systems were investigated for CO...... well, and the best catalyst prepared had a C5+ yield almost a factor of two higher than a standard air calcined Co catalyst. In the NH3-SCR reaction it is desirable to develop an active and stable catalyst for NOx removal in automotive applications, since the traditionally used vanadium-based catalyst...

  18. Durability of hydrophobic treatment of concrete

    Vries, J. de; Polder, R.B.; Borsje, H.

    1998-01-01

    The subject of this study was the performance of hydrophobic treatment to protect concrete against chloride penetration from de-icing salts. Hydrophobic treatment makes a concrete surface absorb less water and less chloride. Test methods and requirements for commercial products were established. In

  19. Durability of hydrophobic treatment of concrete

    Vries, J. de; Polder, R.B.; Borsje, H.

    1998-01-01

    The subject of this study was the performance of hydrophobic treatment to protect concrete against chloride penetration from de-icing salts. Hydrophobic treatment makes a concrete surface absorb less water and less chloride. Several types of tests were carried out to study the performance of

  20. Dynamics of Wetting of Ultra Hydrophobic Surfaces

    Mohammad Karim, Alireza; Kim, Jeong-Hyun; Rothstein, Jonathan; Kavehpour, Pirouz; Mechanical and Industrial Engineering, University of Massachusetts, Amherst Collaboration

    2013-11-01

    Controlling the surface wettability of hydrophobic and super hydrophobic surfaces has extensive industrial applications ranging from coating, painting and printing technology and waterproof clothing to efficiency increase in power and water plants. This requires enhancing the knowledge about the dynamics of wetting on these hydrophobic surfaces. We have done experimental investigation on the dynamics of wetting on hydrophobic surfaces by looking deeply in to the dependency of the dynamic contact angles both advancing and receding on the velocity of the three-phase boundary (Solid/Liquid/Gas interface) using the Wilhelmy plate method with different ultra-hydrophobic surfaces. Several fluids with different surface tension and viscosity are used to study the effect of physical properties of liquids on the governing laws.

  1. Development of polymer catalyst manufacturing technology

    Chung, Heung Seok; Kim, Yong Ik; Lee, Han Soo; Kang, Hui Seok; Seong, Ki Ung; Na, Jeong Won; An, Do Hui; Kim, Kwang Rak; Cho, Young Hyeon; Baek, Seung Uh; Jeong, Yong Won

    1993-01-01

    Heavy water is used as moderator and coolant in Pressurized Heavy Water Power Plants. According to the governmental long-term plan for power supply, Korea is scheduled to construct new six pressurized heavy water power plants till the year 2006. Total heavy water demand for these plants would be 3892 Mg during the period 1992-2006. Reformed hydrogen processes are considered best suited to Korea. Hydrophobic catalysts for this process were manufactured and the performance of hydrogen isotope exchance was investigated. The overall mass transfer coefficients varied between 0.004 and 2.295 m 3 HD/m 3 Bed.sec. and heavy water separation processes using the catalysts were optimized. (Author)

  2. Solution properties of hydrophobically modified

    A.M. Al-Sabagh

    2016-12-01

    Full Text Available We tested nine hydrophobically modified polyacrylamides with molecular weights situated between 1.58 and 0.89 × 106 g/mol for enhanced oil recovery applications. Their solution properties were investigated in the distilled water, brine solution, formation water and sea water. Their critical association concentrations were determined from the relationship between their concentrations and the corresponding apparent viscosities (ηapp at 30 °C at shear rate 6 s−1. They were between 0.4 and 0.5 g/dl. The brine solutions of 0.5 g/dl of HM-PAMs were investigated at different conditions regarding their apparent viscosities. Such conditions were mono and divalent cations, temperature ranging from 30 to 90 °C, the shear rate ranging from 6 to 30 s−1 and the aging time for 45 days. The surface and interfacial tensions for the HM-PAMs were measured for concentration range from 0.01 to 1 g/dl brine solutions at 30 °C and their emulsification efficiencies were investigated for 7 days. The discrepancy in the properties and efficiencies of the tested copolymers was discussed in the light of their chemical structure.

  3. Surface analysis of selected hydrophobic materials

    Wisniewska, Sylwia Katarzyna

    This dissertation contains a series of studies on hydrophobic surfaces by various surface sensitive techniques such as contact angle measurements, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Hydrophobic surfaces have been classified as mineral surfaces, organic synthetic surfaces, or natural biological surfaces. As a model hydrophobic mineral surface, elemental sulfur has been selected. The sulfur surface has been characterized for selected allotropic forms of sulfur such as rhombic, monoclinic, plastic, and cyclohexasulfur. Additionally, dextrin adsorption at the sulfur surface was measured. The structure of a dextrin molecule showing hydrophobic sites has been presented to support the proposed hydrophobic bonding nature of dextrin adsorption at the sulfur surface. As a model organic hydrophobic surface, primary fatty amines such as dodecylamine, hexadecylamine, and octadecylamine were chosen. An increase of hydrophobicity, significant changes of infrared bands, and surface topographical changes with time were observed for each amine. Based on the results it was concluded that hydrocarbon chain rearrangement associated with recrystallization took place at the surface during contact with air. A barley straw surface was selected as a model of biological hydrophobic surfaces. The differences in the contact angles for various straw surfaces were explained by the presence of a wax layer. SEM images confirmed the heterogeneity and complexity of the wax crystal structure. AFM measurements provided additional structural details including a measure of surface roughness. Additionally, straw degradation as a result of conditioning in an aqueous environment was studied. Significant contact angle changes were observed as soon as one day after conditioning. FTIR studies showed a gradual wax layer removal due to straw surface decomposition. SEM and AFM images revealed topographical changes and biological

  4. Heat-resistant hydrophobic-oleophobic coatings

    Uyanik, Mehmet; Arpac, Ertugrul; Schmidt, Helmut K.; Akarsu, Murat; Sayilkan, Funda; Sayilkan, Hikmet

    2006-01-01

    Thermally and chemically durable hydrophobic oleophobic coatings, containing different ceramic particles such as SiO2, SiC, Al 2O3, which can be alternative instead of Teflon, have been developed and applied on the aluminum substrates by spin-coating method. Polyimides, which are high-thermal resistant heteroaromatic polymers, were synthesized, and fluor oligomers were added to these polymers to obtain hydrophobic-oleophobic properties. After coating, Al surface was subjected to Taber-abrasio...

  5. Fish skin bacteria: Colonial and cellular hydrophobicity.

    Sar, N; Rosenberg, E

    1987-05-01

    Bacteria were desorbed from the skin of healthy, fast-swimming fish by several procedures, including brief exposure to sonic oscillation and treatment with nontoxic surface active agents. The surface properties of these bacteria were studied by measuring their adhesion to hexadecane, as well as by a newly developed, simple method for studying the hydrophobicity of bacterial lawns. This method, referred to as the "Direction of Spreading" (DOS) method, consists of recording the direction to which a water drop spreads when introduced at the border between bacterial lawns and other surfaces. Of the 13 fish skin isolates examined, two strains were as hydrophobic as polystyrene by the DOS method. Suspended cells of one of these strains adhered strongly to hexadecane (84%), whereas cells of the other strain adhered poorly (13%). Another strain which was almost as hydrophobic as polystyrene by the DOS method did not adhere to hexadecane at all. Similarly, lawns of three other strains were more hydrophobic than glass by the DOS method, but cell suspensions prepared from these colonies showed little or no adhesion to hexadecane. The high colonial but relatively low cellular hydrophobicity could be due to a hydrophobic slime that is removed during the suspension and washing procedures. The possibility that specific bacteria assist in fish locomotion by changing the surface properties of the fish skin and by producing drag-reducing polymers is discussed.

  6. Methods of making textured catalysts

    Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  7. Alloy catalyst material

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...... of the novel catalyst material for synthesising hydrogen peroxide from oxygen and hydrogen, or from oxygen and water....

  8. Metal catalysts fight back

    George Marsh

    1998-01-01

    In recent years organometallic catalysts, especially metallocenes, have been a major focus of attention in terms of polymerisation chemistry. But the news earlier this year of a family of iron-based catalysts able to rival the effectiveness of both conventional and metallocene catalysts in the polymerisation of ethylene has excited the plastics industry. Because of the impact of this discovery and its potential as a route to lower-priced commodity plastics in the future, it may be useful at t...

  9. Conversion of hydrophilic SiOC nanofibrous membrane to robust hydrophobic materials by introducing palladium

    Wu, Nan; Wan, Lynn Yuqin; Wang, Yingde; Ko, Frank

    2017-12-01

    Hydrophobic ceramic nanofibrous membranes have wide applications in the fields of high-temperature filters, oil/water separators, catalyst supports and membrane reactors, for their water repellency property, self-cleaning capability, good environmental stability and long life span. In this work, we fabricated an inherently hydrophobic ceramic nanofiber membrane without any surface modification through pyrolysis of electrospun polycarbosilane nanofibers. The hydrophobicity was introduced by the hierarchical microstructure formed on the surface of the nanofibers and the special surface composition by the addition of trace amounts of palladium. Furthermore, the flexible ceramic mats demonstrated robust chemical resistance properties with consistent hydrophobicity over the entire pH value range and effective water-in-oil emulsion separation performance. Interestingly, a highly cohesive force was found between water droplet and the ceramic membranes, suggesting their great potentials in micro-liquid transportation. This work provides a new route for adjusting the composition of ceramic surface and flexible, recyclable and multifunctional ceramic fibrous membranes for utilization in harsh environments.

  10. Catalyst layers for PEMFC manufactured by flexography printing process: performances and structure

    Bois, C.; Blayo, A.; Chaussy, D. [Laboratory of Pulp and Paper Science and Graphic Arts (LGP2) (UMR 5518 CNRS-CTP-INPG), Grenoble Institute of Technology (INP Grenoble - PAGORA), St Martin d' Heres (France); Vincent, R.; Mercier, A.G.; Nayoze, C. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA)/DRT/LITEN, Laboratoire des Composants Piles a Combustible, Electrolyse et Modelisation (LCPEM), Grenoble (France)

    2012-04-15

    This article focuses on the potential of a classic printing process, flexography, for manufacturing proton exchange membrane fuel cells (PEMFCs). Gas diffusion electrodes (GDEs) are produced by deposition of a water-based catalyst ink on a gas diffusion layer (GDL). The affinity between the ink and the GDL is quantified. Thus, the strong hydrophobic character of the GDL and the poor printability of the ink are demonstrated. However, the permeability of the GDL allows developing a multilayer protocol. The deposition by superimposition of ink layers allows control of the platinum amount and to obtain catalyst layers with a similar density of platinum nanoparticles to coated samples. At similar platinum loading, flexography and coating made catalyst layers offer similar performances, which confirm the relevance of flexography in catalyst layer manufacturing. Structural characterization shows that manufacturing protocol and process has an influence on catalyst layer microstructure. However, catalyst layer cracking and aggregation are increased with the catalyst layer thickness, diminishing the charge and gas diffusion into the catalyst layer resulting in performance degradation. Consequently, a catalyst layer with 0.46 mgPt cm{sup -2} reaches similar performances to catalyst layers with 1.77 and 2.01 times less platinum loading. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Hydroxide catalysts for lignin depolymerization

    Beckham, Gregg T.; Biddy, Mary J.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-04-25

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  12. Hydroxide catalysts for lignin depolymerization

    Beckham, Gregg T; Biddy, Mary J.; Kruger, Jacob S.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-10-17

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  13. Pathways to dewetting in hydrophobic confinement.

    Remsing, Richard C; Xi, Erte; Vembanur, Srivathsan; Sharma, Sumit; Debenedetti, Pablo G; Garde, Shekhar; Patel, Amish J

    2015-07-07

    Liquid water can become metastable with respect to its vapor in hydrophobic confinement. The resulting dewetting transitions are often impeded by large kinetic barriers. According to macroscopic theory, such barriers arise from the free energy required to nucleate a critical vapor tube that spans the region between two hydrophobic surfaces--tubes with smaller radii collapse, whereas larger ones grow to dry the entire confined region. Using extensive molecular simulations of water between two nanoscopic hydrophobic surfaces, in conjunction with advanced sampling techniques, here we show that for intersurface separations that thermodynamically favor dewetting, the barrier to dewetting does not correspond to the formation of a (classical) critical vapor tube. Instead, it corresponds to an abrupt transition from an isolated cavity adjacent to one of the confining surfaces to a gap-spanning vapor tube that is already larger than the critical vapor tube anticipated by macroscopic theory. Correspondingly, the barrier to dewetting is also smaller than the classical expectation. We show that the peculiar nature of water density fluctuations adjacent to extended hydrophobic surfaces--namely, the enhanced likelihood of observing low-density fluctuations relative to Gaussian statistics--facilitates this nonclassical behavior. By stabilizing isolated cavities relative to vapor tubes, enhanced water density fluctuations thus stabilize novel pathways, which circumvent the classical barriers and offer diminished resistance to dewetting. Our results thus suggest a key role for fluctuations in speeding up the kinetics of numerous phenomena ranging from Cassie-Wenzel transitions on superhydrophobic surfaces, to hydrophobically driven biomolecular folding and assembly.

  14. Evaporation rate of water in hydrophobic confinement.

    Sharma, Sumit; Debenedetti, Pablo G

    2012-03-20

    The drying of hydrophobic cavities is believed to play an important role in biophysical phenomena such as the folding of globular proteins, the opening and closing of ligand-gated ion channels, and ligand binding to hydrophobic pockets. We use forward flux sampling, a molecular simulation technique, to compute the rate of capillary evaporation of water confined between two hydrophobic surfaces separated by nanoscopic gaps, as a function of gap, surface size, and temperature. Over the range of conditions investigated (gaps between 9 and 14 Å and surface areas between 1 and 9 nm(2)), the free energy barrier to evaporation scales linearly with the gap between hydrophobic surfaces, suggesting that line tension makes the predominant contribution to the free energy barrier. The exponential dependence of the evaporation rate on the gap between confining surfaces causes a 10 order-of-magnitude decrease in the rate when the gap increases from 9 to 14 Å. The computed free energy barriers are of the order of 50 kT and are predominantly enthalpic. Evaporation rates per unit area are found to be two orders of magnitude faster in confinement by the larger (9 nm(2)) than by the smaller (1 nm(2)) surfaces considered here, at otherwise identical conditions. We show that this rate enhancement is a consequence of the dependence of hydrophobic hydration on the size of solvated objects. For sufficiently large surfaces, the critical nucleus for the evaporation process is a gap-spanning vapor tube.

  15. Effect of nano silica based modifying agent for hydrophobic coating application

    Nurul Huda Mudri; Nik Ghazali Nik Salleh; Mek Zah Salleh

    2016-01-01

    Hydrophobic coatings find wide application in industry due to their unique features such as water repellent and self-cleaning properties. In this study, modifying agent was synthesized by way of nano silica particles dispersion in polydimethyl siloxane with addition of surfactant, catalyst and stabilizer using high speed distemper. The modifying agent was added into coating formulation and cured under UV exposure. Scanning Electron Microscopy image of the film found that the nano silica particles were distributed well on substrate. Contact angle measurement gave the highest reading of 116 degree for 20 % wt of the modifying agent. The optical properties of the film were evaluated via transmission and haze test. (author)

  16. Alkaline Ionic Liquid Modified Pd/C Catalyst as an Efficient Catalyst for Oxidation of 5-Hydroxymethylfurfural

    Zou Bin

    2018-01-01

    Full Text Available Conversion of HMF into FDCA was carried out by a simple and green process based on alkaline ionic liquid (IL modified Pd/C catalyst (Pd/C-OH−. Alkaline ionic liquids were chosen to optimize Pd/C catalyst for special hydrophilicity and hydrophobicity, redox stability, and unique dissolving abilities for polar compounds. The Pd/C-OH− catalyst was successfully prepared and characterized by SEM, XRD, TG, FT-IR, and CO2-TPD technologies. Loading of alkaline ionic liquid on the surface of Pd/C was 2.54 mmol·g−1. The catalyst showed excellent catalytic activity in the HMF oxidation after optimization of reaction temperature, reaction time, catalyst amount, and solvent. Supported alkaline ionic liquid (IL could be a substitute and promotion for homogeneous base (NaOH. Under optimal reaction conditions, high HMF conversion of 100% and FDCA yield of 82.39% were achieved over Pd/C-OH− catalyst in water at 373 K for 24 h.

  17. The performance of a trickle-bed reactor packed with a Pt/SDBC catalyst mixture for the CECE process

    Paek, Seungwoo; Ahn, Do-Hee; Choi, Heui-Joo; Kim, Kwang-Rag; Lee, Minsoo; Yim, Sung-Paal; Chung, Hongsuk; Song, Kyu-Min; Sohn, Soon Hwan

    2007-01-01

    The combined electrolysis and catalytic exchange (CECE) process with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy wastewater streams because of its high separation factor and mild operating conditions. A hydrophobic platinum/styrene-divinyl benzene copolymer (Pt/SDBC) catalyst which was developed for the liquid-phase catalytic exchange (LPCE) column of the Wolsong tritium removal facility (WTRF) has been tested in a trickle bed reactor for the design of the CECE process. An experimental apparatus has been built for the testing of the catalyst at various temperatures and gas velocities. The catalyst column was packed with a mixture of a hydrophobic catalyst and a hydrophilic packing (Dixon gauze ring) to improve the liquid distribution and vapor/liquid transfer area. Many tests have been carried out at Korea Atomic Energy Research Institute (KAERI) to measure the activity of the catalyst, K y a (1 s -1 ), under various operating conditions. K y a increases with the hydrogen flow rates in the range of 0.4-1.6 m s -1 at STP. The height of the catalyst column was determined from these K y a values according to the reaction temperatures and hydrogen flow rates

  18. The performance of a trickle-bed reactor packed with a Pt/SDBC catalyst mixture for the CECE process

    Paek, Seungwoo [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)], E-mail: swpaek@kaeri.re.kr; Ahn, Do-Hee; Choi, Heui-Joo; Kim, Kwang-Rag; Lee, Minsoo; Yim, Sung-Paal; Chung, Hongsuk [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Song, Kyu-Min; Sohn, Soon Hwan [Korea Electric Power Research Institute, 103-16 Munji-dong, Yuseong-gu, Daejeon 305-380 (Korea, Republic of)

    2007-10-15

    The combined electrolysis and catalytic exchange (CECE) process with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy wastewater streams because of its high separation factor and mild operating conditions. A hydrophobic platinum/styrene-divinyl benzene copolymer (Pt/SDBC) catalyst which was developed for the liquid-phase catalytic exchange (LPCE) column of the Wolsong tritium removal facility (WTRF) has been tested in a trickle bed reactor for the design of the CECE process. An experimental apparatus has been built for the testing of the catalyst at various temperatures and gas velocities. The catalyst column was packed with a mixture of a hydrophobic catalyst and a hydrophilic packing (Dixon gauze ring) to improve the liquid distribution and vapor/liquid transfer area. Many tests have been carried out at Korea Atomic Energy Research Institute (KAERI) to measure the activity of the catalyst, K{sub y}a (1 s{sup -1}), under various operating conditions. K{sub y}a increases with the hydrogen flow rates in the range of 0.4-1.6 m s{sup -1} at STP. The height of the catalyst column was determined from these K{sub y}a values according to the reaction temperatures and hydrogen flow rates.

  19. Hydroprocessing catalyst development

    Boorman, P.M.; Kydd, R.A.; Sorensen, T.S.; Chong, K.; Lewis, J.

    1992-08-01

    Co-Mo and Ni-Mo hydroprocessing catalysts were examined for their activity in removal of sulfur from thiophene in model compounds, and in the cracking and hydrocracking of cumene. Three types of support materials were examined: carbon, modified carbon, and carbon covered alumina. The objective of the study was to examine the correlation between catalyst activity in the hydrodenitrogenation of model compounds, and the resistance of the catalyst to nitrogen poisoning during use in the hydroprocessing of gas oils. The use of model compound testing provided information on the individual catalytic reactions promoted by those materials. Infrared spectroscopy was used to study surface species on the catalysts and to explain many of the trends in activity observed, revealing the role of fluoride and phosphorus as a secondary promoter. Testing of the catalysts in hydrotreating of gas oils allowed comparison of model compound results with those from a real feedstock. The gas oil was also spiked with a model nitrogen compound and the results from catalytic hydrotreating of this material were compared with those from unspiked material. A key finding was that the carbon supported catalysts were the most effective in treating high-nitrogen feeds. The very favorable deactivation properties of carbon and carbon-covered alumina supported catalysts make these promising from an industrial point of view where catalyst deactivation is a limiting factor. 171 refs., 25 figs., 43 tabs.

  20. Catalyst for hydrocarbon conversion

    Duhaut, P.; Miquel, J.

    1975-01-01

    A description is given for a catalyst and process for hydrocarbon conversions, e.g., reforming. The catalyst contains an alumina carrier, platinum, iridium, at least one metal selected from uranium, vanadium, and gallium, and optionally halogen in the form of metal halide of one of the aforesaid components. (U.S.)

  1. Catalyst for Ammonia Oxidation

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  2. Magnetic catalyst bodies

    Teunissen, Wendy; Bol, A.A.; Geus, John W.

    1999-01-01

    After a discussion about the importance of the size of the catalyst bodies with reactions in the liquid-phase with a suspended catalyst, the possibilities of magnetic separation are dealt with. Deficiencies of the usual ferromagnetic particles are the reactivity and the clustering of the

  3. Reducible oxide based catalysts

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  4. Controllable picoliter pipetting using hydrophobic microfluidic valves

    Zhang, M.; Huang, J.; Qian, X.; Mi, S.; Wang, X.

    2017-06-01

    A picoliter pipetting technique using the microfluidic method is presented. Utilizing the hydrophobic self-assembled monolayer films patterned in microchannels as pressure-controlled valves, a small volume of liquid can be separated by a designed channel trap and then ejected from the channel end at a higher pressure. The liquid trap section is composed of a T-shaped channel junction and a hydrophobic patch. The liquid volume can be precisely controlled by varying the distance of the hydrophobic patch from the T-junction. By this means, liquid less than 100 pl can be separated and pipetted. The developed device is potentially useful for sample dispensing in biological, medical, and chemical applications.

  5. Biosurfactant-enhanced bioremediation of hydrophobic pollutants

    Cameotra, S.S.; Makkar, R.S. [Inst. of Microbial Technology, Chandigarh (India)

    2010-01-15

    Biosurfactants are surface-active compounds synthesized by a wide variety of microorganisms. They are molecules that have both hydrophobic and - philic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures-lipopeptides, glycolipids, neutral lipids, and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. Polycyclic aromatic hydrocarbons (PAHs), crude on sludge, and pesticides call be toxic, mutagenic, and carcinogenic compounds that pollute the environment. They are released into the environment as a result of oil spillage and by-products of coal treatment processes. The low water solubility of these compounds limits their availability to microorganisms, which is a potential problem for bioremediation of contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of pollutants has potential hioremediation applications.

  6. Fabrication of hydrophobic/super-hydrophobic nanofilms on magnesium alloys by polymer plating

    Kang Zhixin; Lai Xiaoming; Sang Jing; Li Yuanyuan

    2011-01-01

    Hydrophobic/super-hydrophobic nanofilms with improved corrosion resistance were fabricated on the surfaces of Mg–Mn–Ce magnesium alloy by a surface modification technique, named as polymer plating, which has been developed to modify superficial characteristics of magnesium alloys with polymeric nanofilms through synthesized organic compounds of triazine dithiol containing functional groups. The nanofilms were prepared by the electrochemical and polymerization reactions during polymer plating analyzed from characteristics of Fourier transform infrared spectrophotometer, X-ray photoelectron spectroscopy and scanning electron microscopy. The fabricated nanofilms changed the surface wettability of blank magnesium alloy from hydrophilic to hydrophobic with contact angle 119.0° of distilled water with lower surface free energy of 20.59 mJ/m 2 and even super-hydrophobic with contact angle 158.3° with lowest surface free energy of 4.68 mJ/m 2 by different functional nanofilms on their surfaces. Alteration of wettability from hydrophilic to hydrophobic and super-hydrophobic resulted from their low surface free energy and surface morphology with micro- and nano-rough structures. The corrosion behaviors from potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) show that the super-hydrophobic nanofilm has higher corrosion resistance and stability in 0.1 mol/L NaCl solution and lower corrosion current density (I corr ) with R ct increasing two orders of magnitude of 16,500 Ω·cm 2 compared to that obtained for blank of 485 Ω·cm 2 .

  7. Thermally stable silica-coated hydrophobic gold nanoparticles.

    Kanehara, Masayuki; Watanabe, Yuka; Teranishi, Toshiharu

    2009-01-01

    We have successfully developed a method for silica coating on hydrophobic dodecanethiol-protected Au nanoparticles with coating thickness ranging from 10 to 40 nm. The formation of silica-coated Au nanoparticles could be accomplished via the preparation of hydrophilic Au nanoparticle micelles by cationic surfactant encapsulation in aqueous phase, followed by hydrolysis of tetraethylorthosilicate on the hydrophilic surface of gold nanoparticle micelles. Silica-coated Au nanoparticles exhibited quite high thermal stability, that is, no agglomeration of the Au cores could be observed after annealing at 600 degrees C for 30 min. Silica-coated Au nanoparticles could serve as a template to derive hollow nanoparticles. An addition of NaCN solution to silica-coated Au nanoparticles led the formation of hollow silica nanoparticles, which were redispersible in deionized water. The formation of the hollow silica nanoparticles results from the mesoporous structures of the silica shell and such a mesoporous structure is applicable to both catalyst support and drug delivery.

  8. Catalysts, methods of making catalysts, and methods of use

    Renard, Laetitia; El Eter, Mohamad; Caps, Valerie; Basset, Jean-Marie

    2014-01-01

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  9. Catalysts, methods of making catalysts, and methods of use

    Renard, Laetitia

    2014-03-06

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  10. Nano-Engineered Catalysts for Direct Methanol Fuel Cells

    Myung, Nosang; Narayanan, Sekharipuram; Wiberg, Dean

    2008-01-01

    Nano-engineered catalysts, and a method of fabricating them, have been developed in a continuing effort to improve the performances of direct methanol fuel cells as candidate power sources to supplant primary and secondary batteries in a variety of portable electronic products. In order to realize the potential for high energy densities (as much as 1.5 W h/g) of direct methanol fuel cells, it will be necessary to optimize the chemical compositions and geometric configurations of catalyst layers and electrode structures. High performance can be achieved when catalyst particles and electrode structures have the necessary small feature sizes (typically of the order of nanometers), large surface areas, optimal metal compositions, high porosity, and hydrophobicity. The present method involves electrodeposition of one or more catalytic metal(s) or a catalytic-metal/polytetrafluoroethylene nanocomposite on an alumina nanotemplate. The alumina nanotemplate is then dissolved, leaving the desired metal or metal/polytetrafluoroethylene-composite catalyst layer. Unlike some prior methods of making fine metal catalysts, this method does not involve processing at elevated temperature; all processing can be done at room temperature. In addition, this method involves fewer steps and is more amenable to scaling up for mass production. Alumina nanotemplates are porous alumina membranes that have been fabricated, variously, by anodizing either pure aluminum or aluminum that has been deposited on silicon by electronbeam evaporation. The diameters of the pores (7 to 300 nm), areal densities of pores (as much as 7 x 10(exp 10)sq cm), and lengths of pores (up to about 100 nm) can be tailored by selection of fabrication conditions. In a given case, the catalytic metal, catalytic metal alloy, or catalytic metal/ polytetrafluoroethylene composite is electrodeposited in the pores of the alumina nanotemplate. The dimensions of the pores, together with the electrodeposition conditions

  11. Towards understanding hydrophobic recovery of plasma treated polymers: Storing in high polarity liquids suppresses hydrophobic recovery

    Bormashenko, Edward; Chaniel, Gilad; Grynyov, Roman

    2013-01-01

    The phenomenon of hydrophobic recovery was studied for cold air plasma treated polyethylene films. Plasma-treated polymer films were immersed into liquids with very different polarities such as ethanol, acetone, carbon tetrachloride, benzene and carbon disulphide. Hydrophobic recovery was studied by measurement of contact angles. Immersion into high polarity liquids slows markedly the hydrophobic recovery. We relate this slowing to dipole–dipole interaction of polar groups of the polymer with those of the liquids. This kind of interaction becomes decisive when polar groups of polymer chains are at least partially spatially fixed.

  12. Structuring unbreakable hydrophobic barriers in paper

    Nargang, Tobias M.; Kotz, Frederik; Rapp, Bastian E.

    2018-02-01

    Hydrophobic barriers are one of the key elements of microfluidic paper based analytical devices (μPADs).μPADs are simple and cost efficient and they can be carried out without the need of high standard laboratories. To carry out such a test a method is needed to create stable hydrophobic barriers. Commonly used methods like printing wax or polystyrene have the major drawback that these barriers are stiff and break if bended which means they will no longer be able to retain a liquid sample. Here we present silanes to structure hydrophobic barriers via polycondensation and show a silanization method which combines the advantages of flexible silane/siloxane layers with the short processing times of UV-light based structuring. The barriers are created by using methoxy silanes which are mixed with a photo acid generator (PAG) as photoinitiator. Also a photosensitizer was given to the mixture to increase the effectiveness of the PAG. After the PAG is activated by UV-light the silane is hydrolyzed and coupled to the cellulose via polycondensation. The created hydrophobic barriers are highly stable and do not break if being bended.

  13. A method for detecting hydrophobic patches protein

    Lijnzaad, P.; Berendsen, H.J.C.; Argos, P.

    1996-01-01

    A method for the detection of hydrophobic patches on the surfaces of protein tertiary structures is presented, it delineates explicit contiguous pieces of surface of arbitrary size and shape that consist solely of carbon and sulphur atoms using a dot representation of the solvent-accessible surface,

  14. Hydrophobicity measurements of microfiltration and ultrafiltration membranes.

    Keurentjes, J.T.F.; Harbrecht, J.G.; Brinkman, D.; Hanemaaijer, J.H.; Cohen Stuart, M.A.; Riet, van 't K.

    1989-01-01

    A method for the determination of the hydrophobicity of membrane materials is developed. The advantage of this method over existing methods is that it is not influenced by the presence of the pores. A piece of the membrane material is submerged horizontally in a liquid with surface tension L.

  15. The new view of hydrophobic free energy.

    Baldwin, Robert L

    2013-04-17

    In the new view, hydrophobic free energy is measured by the work of solute transfer of hydrocarbon gases from vapor to aqueous solution. Reasons are given for believing that older values, measured by solute transfer from a reference solvent to water, are not quantitatively correct. The hydrophobic free energy from gas-liquid transfer is the sum of two opposing quantities, the cavity work (unfavorable) and the solute-solvent interaction energy (favorable). Values of the interaction energy have been found by simulation for linear alkanes and are used here to find the cavity work, which scales linearly with molar volume, not accessible surface area. The hydrophobic free energy is the dominant factor driving folding as judged by the heat capacity change for transfer, which agrees with values for solvating hydrocarbon gases. There is an apparent conflict with earlier values of hydrophobic free energy from studies of large-to-small mutations and an explanation is given. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Responsive gelation of hydrophobized linear polymer

    Madsen, Claus Greve; Toeth, Joachim; Jørgensen, Lene

    In this study we present the rheological properties of a physically linked polymer network, composed of linear hydrophilic chains, modified with hydrophobic moieties in each end. Solutions of the polymer in ethanol-water mixtures showed Newtonian behaviour up to about 99 % ethanol, with the highest...

  17. Catalyst in Basic Oleochemicals

    Eva Suyenty

    2007-10-01

    Full Text Available Currently Indonesia is the world largest palm oil producer with production volume reaching 16 million tones per annum. The high crude oil and ethylene prices in the last 3 – 4 years contribute to the healthy demand growth for basic oleochemicals: fatty acids and fatty alcohols. Oleochemicals are starting to replace crude oil derived products in various applications. As widely practiced in petrochemical industry, catalyst plays a very important role in the production of basic oleochemicals. Catalytic reactions are abound in the production of oleochemicals: Nickel based catalysts are used in the hydrogenation of unsaturated fatty acids; sodium methylate catalyst in the transesterification of triglycerides; sulfonic based polystyrene resin catalyst in esterification of fatty acids; and copper chromite/copper zinc catalyst in the high pressure hydrogenation of methyl esters or fatty acids to produce fatty alcohols. To maintain long catalyst life, it is crucial to ensure the absence of catalyst poisons and inhibitors in the feed. The preparation methods of nickel and copper chromite catalysts are as follows: precipitation, filtration, drying, and calcinations. Sodium methylate is derived from direct reaction of sodium metal and methanol under inert gas. The sulfonic based polystyrene resin is derived from sulfonation of polystyrene crosslinked with di-vinyl-benzene. © 2007 BCREC UNDIP. All rights reserved.[Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia][How to Cite: E. Suyenty, H. Sentosa, M. Agustine, S. Anwar, A. Lie, E. Sutanto. (2007. Catalyst in Basic Oleochemicals. Bulletin of Chemical Reaction Engineering and Catalysis, 2 (2-3: 22-31.  doi:10.9767/bcrec.2.2-3.6.22-31][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.2.2-3.6.22-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/6

  18. ALKALI RESISTANT CATALYST

    2008-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount...... of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=-12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from...

  19. Catalyst for microelectromechanical systems microreactors

    Morse, Jeffrey D [Martinez, CA; Sopchak, David A [Livermore, CA; Upadhye, Ravindra S [Pleasanton, CA; Reynolds, John G [San Ramon, CA; Satcher, Joseph H [Patterson, CA; Gash, Alex E [Brentwood, CA

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  20. Epoxidation catalyst and process

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  1. Adsorption of hydrophobic organic compounds onto a hydrophobic carbonaceous geosorbent in the presence of surfactants.

    Wang, Peng; Keller, Arturo A

    2008-06-01

    The adsorption of hydrophobic organic compounds (HOCs; atrazine and diuron) onto lampblack was studied in the presence of nonionic, cationic, and anionic surfactants (Triton(R) X-100), benzalkonium chloride [BC], and linear alkylbenzene sulfonate [LAS]) to determine the effect of the surfactant on HOC adsorption onto a hydrophobic carbonaceous geosorbent. Linear alkylbenzene sulfonate showed an adsorption capacity higher than that of BC but similar to that of Triton X-100, implying the charge property of a surfactant is not a useful indicator for predicting the surfactant's adsorption onto a hydrophobic medium. The results also indicated that the octanol-water partition coefficient (K(OW)) of a surfactant is not a good predictor of that surfactant's sorption onto a hydrophobic medium. Under subsaturation adsorption conditions (i.e., before sorption saturation is reached), surfactant adsorption reduced HOC adsorption to a significant extent, with the reduction in HOC adsorption increasing monotonically with the amount of surfactant adsorbed. Among the three surfactants, Triton X-100 was the most effective in reducing HOC adsorption, whereas BC and LAS showed similar effectiveness in this regard. Under the same amount of the surfactant sorbed, the reduction in atrazine adsorption was consistently greater than that for diuron because of atrazine's lower hydrophobicity. No significant difference was observed in the amount of the HOC adsorbed under different adsorption sequences. Our results showed that the presence of surfactant can significantly decrease HOC adsorption onto hydrophobic environmental media and, thus, is important in predicting HOC fate and transport in the environment.

  2. An efficient hybrid, nanostructured, epoxidation catalyst: titanium silsesquioxane-polystyrene copolymer supported on SBA-15.

    Zhang, Lei; Abbenhuis, Hendrikus C L; Gerritsen, Gijsbert; Bhriain, Nollaig Ní; Magusin, Pieter C M M; Mezari, Brahim; Han, Wei; van Santen, Rutger A; Yang, Qihua; Li, Can

    2007-01-01

    A novel interfacial hybrid epoxidation catalyst was designed with a new immobilization method for homogeneous catalysts by coating an inorganic support with an organic polymer film containing active sites. The titanium silsesquioxane (TiPOSS) complex, which contains a single-site titanium active center, was immobilized successfully by in-situ copolymerization on a mesoporous SBA-15-supported polystyrene polymer. The resulting hybrid materials exhibit attractive textural properties (highly ordered mesostructure, large specific surface area (>380 m2 g-1) and pore volume (>or==0.46 cm3 g-1)), and high activity in the epoxidation of alkenes. In the epoxidation of cyclooctene with tert-butyl hydrogen peroxide (TBHP), the hybrid catalysts have rate constants comparable with that of their homogeneous counterpart, and can be recycled at least seven times. They can also catalyze the epoxidation of cyclooctene with aqueous H2O2 as the oxidant. In two-phase reaction media, the catalysts show much higher activity than their homogeneous counterpart due to the hydrophobic environment around the active centers. They behave as interfacial catalysts due to their multifunctionality, that is, the hydrophobicity of polystyrene and the polyhedral oligomeric silsesquioxanes (POSS), and the hydrophilicity of the silica and the mesoporous structure. Combination of the immobilization of homogeneous catalysts on two conventional supports, inorganic solid and organic polymer, is demonstrated to achieve novel heterogeneous catalytic ensembles with the merits of attractive textural properties, tunable surface properties, and optimized environments around the active sites.

  3. Hydrophobicity-induced drying transition in alkanethiol self ...

    Raman Research Institute, C.V. Raman Avenue, Bangalore 560 080, India ... Hydrophobicity; hydrophobic gap; self-assembled monolayer; length scale dependent .... From our work, we find that when the alkanethiol SAM is prepared from a.

  4. Single Molecule Sensors to Study Hydrophobic Phenomena

    Geisler, Michael

    2010-01-01

    The nature and magnitude of the hydrophobic interaction is crucial for many technical and biological processes. In the current study a molecular probe was developed which consists of a single polymer that is bound onto the tip of an AFM cantilever in order to study these effects on the molecular scale. In the following, equilibrium forces are measured and factors of influence such as temperature, cosolvents and chemical composition are varied. Thereby, the system under investigation is so sma...

  5. Influence of Hydrophobicity on Polyelectrolyte Complexation

    Sadman, Kazi [Department; amp, Engineering, Northwestern University, Evanston, Illinois 60208, United States; Wang, Qifeng [Department; amp, Engineering, Northwestern University, Evanston, Illinois 60208, United States; Chen, Yaoyao [Department; amp, Engineering, Northwestern University, Evanston, Illinois 60208, United States; Keshavarz, Bavand [Department; Jiang, Zhang [X-ray; Shull, Kenneth R. [Department; amp, Engineering, Northwestern University, Evanston, Illinois 60208, United States

    2017-11-16

    Polyelectrolyte complexes are a fascinating class of soft materials that can span the full spectrum of mechanical properties from low viscosity fluids to glassy solids. This spectrum can be accessed by modulating the extent of electrostatic association in these complexes. However, to realize the full potential of polyelectrolyte complexes as functional materials their molecular level details need to be clearly correlated with their mechanical response. The present work demonstrates that by making simple amendments to the chain architecture it is possible to affect the salt responsiveness of polyelectrolyte complexes in a systematic manner. This is achieved by quaternizing poly(4-vinylpyridine) (QVP) with methyl, ethyl and propyl substituents– thereby increasing the hydrophobicity with increasing side chain length– and complexing them with a common anionic polyelectrolyte, poly(styrene sulfonate). The mechanical 1 ACS Paragon Plus Environment behavior of these complexes is compared to the more hydrophilic system of poly(styrene sulfonate) and poly(diallyldimethylammonium) by quantifying the swelling behavior in response to salt stimuli. More hydrophobic complexes are found to be more resistant to doping by salt, yet the mechanical properties of the complex remain contingent on the overall swelling ratio of the complex itself, following near universal swelling-modulus master curves that are quantified in this work. The rheological behavior of QVP complex coacervates are found to be approximately the same, only requiring higher salt concentrations to overcome strong hydrophobic interactions, demonstrating that hydrophobicity can be used as an important parameter for tuning the stability of polyelectrolyte complexes in general, while still preserving the ability to be processed “saloplastically”.

  6. Hydrophobic treatment of concrete as protection against chloride penetration

    Vries, J. de; Polder, R.B.; Borsje, H.

    1996-01-01

    Hydrophobic treatment makes a concrete surface absorb less water and less chloride. Hydrophobic treatment was studied as a protection agninst chloride penetration from deicing salts. Test methods were designed. Nine hydrophobic products were tested, of which three complied to the requirements on

  7. Adsorption of dextrin on hydrophobic minerals.

    Beaussart, Audrey; Mierczynska-Vasilev, Agnieszka; Beattie, David A

    2009-09-01

    The adsorption of dextrin on talc, molybdenite, and graphite (three naturally hydrophobic minerals) has been compared. Adsorption isotherms and in situ tapping mode atomic force microscope (TMAFM) imaging have enabled polymer adsorbed amount and morphology of the adsorbed layer (area coverage and polymer domain size) to be determined and also the amount of hydration water in the structure of the adsorbed layer. The effect of the polymer on the mineral contact angles, measured by the captive bubble method on cleaved mineral surfaces, indicates clear correlations between the hydrophobicity reduction of the minerals, the adsorbed amount, and the surface coverage of the adsorbed polymer. Predictions of the flotation recovery of the treated mineral phases have been confirmed by performing batch flotation experiments. The influence of the polymer surface coverage on flotation recovery has highlighted the importance of this key parameter in the predictions of depressant efficiency. The roles of the initial hydrophobicity and the surface structure of the mineral basal plane in determining adsorption parameters and flotation response of the polymer-treated minerals are also discussed.

  8. Fabrication of hydrophobic/super-hydrophobic nanofilms on magnesium alloys by polymer plating

    Kang Zhixin, E-mail: zxkang@scut.edu.cn; Lai Xiaoming; Sang Jing; Li Yuanyuan

    2011-11-01

    Hydrophobic/super-hydrophobic nanofilms with improved corrosion resistance were fabricated on the surfaces of Mg-Mn-Ce magnesium alloy by a surface modification technique, named as polymer plating, which has been developed to modify superficial characteristics of magnesium alloys with polymeric nanofilms through synthesized organic compounds of triazine dithiol containing functional groups. The nanofilms were prepared by the electrochemical and polymerization reactions during polymer plating analyzed from characteristics of Fourier transform infrared spectrophotometer, X-ray photoelectron spectroscopy and scanning electron microscopy. The fabricated nanofilms changed the surface wettability of blank magnesium alloy from hydrophilic to hydrophobic with contact angle 119.0 Degree-Sign of distilled water with lower surface free energy of 20.59 mJ/m{sup 2} and even super-hydrophobic with contact angle 158.3 Degree-Sign with lowest surface free energy of 4.68 mJ/m{sup 2} by different functional nanofilms on their surfaces. Alteration of wettability from hydrophilic to hydrophobic and super-hydrophobic resulted from their low surface free energy and surface morphology with micro- and nano-rough structures. The corrosion behaviors from potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) show that the super-hydrophobic nanofilm has higher corrosion resistance and stability in 0.1 mol/L NaCl solution and lower corrosion current density (I{sub corr}) with R{sub ct} increasing two orders of magnitude of 16,500 {Omega}{center_dot}cm{sup 2} compared to that obtained for blank of 485 {Omega}{center_dot}cm{sup 2}.

  9. Liposomes coated with hydrophobically modified hydroxyethyl cellulose: Influence of hydrophobic chain length and degree of modification.

    Smistad, Gro; Nyström, Bo; Zhu, Kaizheng; Grønvold, Marthe Karoline; Røv-Johnsen, Anne; Hiorth, Marianne

    2017-08-01

    Nanoparticulate systems with an uncharged hydrophilic surface may have a great potential in mucosal drug delivery. In the present study liposomes were coated with hydrophobically modified hydroxyethyl cellulose (HM-HEC) to create a sterically stabilized liposomal system with an uncharged surface. The aim was to clarify the influence of the amount of hydrophobic modification of HEC and the length of the hydrophobic moiety, on the stability of the system and on the release properties. HM-HEC with different degrees of hydrophobic modification (1 and 2mol%) and hydrophobic groups with different chain lengths (C8, C12, C16) were included in the study, as well as fluid phase and gel phase liposomes. Both types of liposomes were successfully coated with HM-HEC containing 1mol% of hydrophobic groups, while 2mol% did not work for the intended pharmaceutical applications. The polymer coated gel phase liposomes were stable (size, zeta potential, leakage) for 24 weeks at 4°C, with no differences between the C8 and C16 HM-HEC coating. For the fluid phase liposomes a size increase was observed after 24 weeks at 4°C for all formulations; the C8 HM-HEC coated liposomes increased the most. No differences in the leakage during storage at 4°C or in the release at 35°C were observed between the fluid phase formulations. To conclude; HM-HEC with a shorter hydrophobic chain length resulted in a less stable product for the fluid phase liposomes, while no influence of the chain length was observed for the gel phase liposomes (1mol% HM). Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Dewetting and Hydrophobic Interaction in Physical and Biological Systems

    Berne, Bruce J.; Weeks, John D.; Zhou, Ruhong

    2013-01-01

    Hydrophobicity manifests itself differently on large and small length scales. This review focuses on large length scale hydrophobicity, particularly on dewetting at single hydrophobic surfaces and drying in regions bounded on two or more sides by hydrophobic surfaces. We review applicable theories, simulations and experiments pertaining to large scale hydrophobicity in physical and biomoleclar systems and clarify some of the critical issues pertaining to this subject. Given space constraints, we could not review all of the significant and interesting work in this very active field. PMID:18928403

  11. Niobium, catalyst repair kit

    Tanabe, K.

    1991-01-01

    This paper reports that niobium oxides, when small amounts are added to known catalysts, enhance catalytic activity and selectivity and prolong catalyst life. Moreover, niobium oxides exhibit a pronounced effect as supports of metal or metal oxide catalysts. Recently we found that the surface acidity of hydrated niobium pentoxide, niobic acid (Nb 2 O 5 · nH 2 O), corresponds to the acidity of 70% sulfuric acid and exhibits high catalytic activity, selectivity, and stability for acid-catalyzed reactions in which water molecules participate. Although there are few differences in electronegativity and ionic radius between niobium and its neighbors in the periodic table, it is interesting that the promoter effect, support effect, and acidic nature of niobium compounds are quite different from those of compounds of the surrounding elements. Here we review what's known of niobium compounds from the viewpoint of their pronounced catalytic behavior

  12. Evaluation of hydrophobicity in PAH-contaminated soils during phytoremediation

    Cofield, Naressa; Banks, M. Katherine; Schwab, A. Paul

    2007-01-01

    The impact of recalcitrant organic compounds on soil hydrophobicity was evaluated in contaminated soil from a manufactured gas plant site following 12 months of phytoremediation. Significant reduction in soil wetting and water retention was observed in contaminated soil compared to an uncontaminated control. Phytoremediation was effective at reducing total PAHs by 69% with corresponding changes in soil classification from extremely hydrophobic (initial sample) to moderately-strongly hydrophobic (planted) and hydrophilic-very hydrophilic (unplanted) after 12 months. The greatest reduction in soil hydrophobicity was observed in the unplanted, unfertilized treatments that had the lowest removal rate of PAHs. The presence of plants may contribute to hydrophobicity in contaminated soil. - The presence of recalcitrant hydrophobic organic pollutants may enhance soil hydrophobicity

  13. The hydrophobic effect: Molecular dynamics simulations of water confined between extended hydrophobic and hydrophilic surfaces

    Jensen, Morten Østergaard; Mouritsen, Ole G.; Peters, Günther H.J.

    2004-01-01

    Structural and dynamic properties of water confined between two parallel, extended, either hydrophobic or hydrophilic crystalline surfaces of n-alkane C36H74 or n-alcohol C35H71OH, are studied by molecular dynamics simulations. Electron density profiles, directly compared with corresponding......-correlation functions reveal that water molecules have characteristic diffusive behavior and orientational ordering due to the lack of hydrogen bonding interactions with the surface. These observations suggest that the altered dynamical properties of water in contact with extended hydrophobic surfaces together...... at both surfaces. The ordering is characteristically different between the surfaces and of longer range at the hydrophilic surface. Furthermore, the dynamic properties of water are different at the two surfaces and different from the bulk behavior. In particular, at the hydrophobic surface, time...

  14. Modelling oral up-take of hydrophobic and super-hydrophobic chemicals in fish.

    Larisch, Wolfgang; Goss, Kai-Uwe

    2018-01-24

    We have extended a recently published toxicokinetic model for fish (TK-fish) towards the oral up-take of contaminants. Validation with hydrophobic chemicals revealed that diffusive transport through aqueous boundary layers in the gastro-intestinal tract and in the blood is the limiting process. This process can only be modelled correctly if facilitated transport by albumin or bile micelles through these boundary layers is accounted for. In a case study we have investigated the up-take of a super hydrophobic chemical, Dechlorane Plus. Our results suggest that there is no indication of a hydrophobicity or size cut-off in the bioconcentration of this chemical. Based on an extremely high, but mechanistically sound facilitation factor we received model results in good agreement with experimental values from the literature. The results also indicate that established experimental procedures for BCF determination cannot cover the very slow up-take and clearance kinetics that are to be expected for such a chemical.

  15. Dynamics of Catalyst Nanoparticles

    Hansen, Thomas Willum; Cavalca, Filippo; Wagner, Jakob Birkedal

    and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. In order to initiate a systematic study of the dynamics and sintering of nanoparticles, various catalytic systems have been...... under gas exposure, dynamic phenomena such as sintering and growth can be observed with sub-Ångstrøm resolution. Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals...

  16. Fuel cell catalyst degradation

    Arenz, Matthias; Zana, Alessandro

    2016-01-01

    Fuel cells are an important piece in our quest for a sustainable energy supply. Although there are several different types of fuel cells, the by far most popular is the proton exchange membrane fuel cell (PEMFC). Among its many favorable properties are a short start up time and a high power density...... increasing focus. Activity of the catalyst is important, but stability is essential. In the presented perspective paper, we review recent efforts to investigate fuel cell catalysts ex-situ in electrochemical half-cell measurements. Due to the amount of different studies, this review has no intention to give...

  17. A study on the polymer catalyst manufacturing technology

    Chung, Heung Seok; Lee, Han Soo; Kang, Hee Seok; Paek, Seung Uh; Kim, Kwang Rak; Koo, Jee Hyu; Chung, Yong Won; Sung, Ki Ung; Na, Jeong Won; Hwang, Seong Tae; Kim, Yong Ik; Choi, Yoon Dong

    1994-01-01

    Heavy water is used as moderator and coolant in Pressurized Heavy Water Power Plants. According to the governmental long-term plan for power supply, Korea is scheduled to construct new four pressurized heavy water power plants till the year 2006. Total heavy water demand for these plants would be 1988 Mg during the period 1992-2006. Reformed hydrogen processes is considered best suited to Korea. Hydrophobic catalysts for this process were manufactured and the performance of hydrogen isotope exchance was investigated. The overall mass transfer coefficients varied between 0.004 and 2.295 m 3 HD/m 3 Bed.sec. and heavy water separation processes using the catalysts were optimized. (Author)

  18. Diameter-dependent hydrophobicity in carbon nanotubes

    Kyakuno, Haruka, E-mail: h-kyakuno@kanagawa-u.ac.jp [Department of Physics, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji 192-0397 (Japan); Institute of Physics, Faculty of Engineering, Kanagawa University, Yokohama 221-8686 (Japan); Fukasawa, Mamoru; Ichimura, Ryota; Nakai, Yusuke; Maniwa, Yutaka, E-mail: maniwa@phys.se.tmu.ac.jp [Department of Physics, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji 192-0397 (Japan); Matsuda, Kazuyuki [Institute of Physics, Faculty of Engineering, Kanagawa University, Yokohama 221-8686 (Japan); Miyata, Yasumitsu [Department of Physics, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji 192-0397 (Japan); PRESTO, JST, Kawaguchi 332-0012 (Japan); Saito, Takeshi [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565 (Japan)

    2016-08-14

    Single-wall carbon nanotubes (SWCNTs) are a good model system that provides atomically smooth nanocavities. It has been reported that water-SWCNTs exhibit hydrophobicity depending on the temperature T and the SWCNT diameter D. SWCNTs adsorb water molecules spontaneously in their cylindrical pores around room temperature, whereas they exhibit a hydrophilic-hydrophobic transition or wet-dry transition (WDT) at a critical temperature T{sub wd} ≈ 220-230 K and above a critical diameter D{sub c} ≈ 1.4-1.6 nm. However, details of the WDT phenomenon and its mechanism remain unknown. Here, we report a systematic experimental study involving X-ray diffraction, optical microscopy, and differential scanning calorimetry. It is found that water molecules inside thick SWCNTs (D > D{sub c}) evaporate and condense into ice Ih outside the SWCNTs at T{sub wd} upon cooling, and the ice Ih evaporates and condenses inside the SWCNTs upon heating. On the other hand, residual water trapped inside the SWCNTs below T{sub wd} freezes. Molecular dynamics simulations indicate that upon lowering T, the hydrophobicity of thick SWCNTs increases without any structural transition, while the water inside thin SWCNTs (D < D{sub c}) exhibits a structural transition, forming an ordered ice. This ice has a well-developed hydrogen bonding network adapting to the cylindrical pores of the SWCNTs. Thus, the unusual diameter dependence of the WDT is attributed to the adaptability of the structure of water to the pore dimension and shape.

  19. Deactivation-resistant catalyst for selective catalyst reduction of NOx

    2011-01-01

    The present invention relates to a catalyst for selective catalytic reduction of NOx in alkali metal containing flue gas using ammonia as reductant, the catalyst comprising a surface with catalytically active sites, wherein the surface is at least partly coated with a coating comprising at least...... one metal oxide. In another aspect the present invention relates to the use of said catalyst and to a method of producing said catalyst. In addition, the present invention relates to a method of treating an catalyst for conferring thereon an improved resistance to alkali poisoning....

  20. Water detritiation: better catalysts for liquid phase catalytic exchange

    Braet, J.

    2005-01-01

    Fusion reactors are our hope for a clean nuclear energy. But as they shall handle huge amounts of tritium, 1.5 10 19 Bq GWth -1 a -1 or about 50 000 times more tritium than light water fission reactors, they need detritiation. Most tritium losses can be trapped as or can easily be transformed into tritiated water. Water detritiation is preferably based on the multiplication of the large equilibrium isotope effect during the exchange reaction of tritium between hydrogen gas and liquid water in a counter current trickle bed reactor. Such LPCE (Liquid Phase Catalytic Exchange) requires an efficient hydrophobic catalyst. SCK-CEN invented and developed such a catalyst in the past. In combination with an appropriate packing, different batches of this catalyst performed very well during years of extensive testing, allowing to develop the ELEX process for water detritiation at inland reprocessing plants. The main objectives of this study were to reproduce and possibly improve the SCK-CEN catalyst for tritium exchange between hydrogen and liquid water; and to demonstrate the high overall exchange rate and thus high detritiation factors that can be realized with it in a small and simple LPCE column under typical but conservative operating conditions

  1. Hydrogen evolution reaction catalyst

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  2. Heterogeneous chromium catalysts

    2005-01-01

    The present invention relates to a heterogeneous chromium catalyst system for the polymerisation of ethylene and/or alpha olefins prepared by the steps of: (a) providing a silica-containing support, (b) treating the silica-containing support with a chromium compound to form a chromium-based

  3. Sabatier Catalyst Poisoning Investigation

    Nallette, Tim; Perry, Jay; Abney, Morgan; Knox, Jim; Goldblatt, Loel

    2013-01-01

    The Carbon Dioxide Reduction Assembly (CRA) on the International Space Station (ISS) has been operational since 2010. The CRA uses a Sabatier reactor to produce water and methane by reaction of the metabolic CO2 scrubbed from the cabin air and the hydrogen byproduct from the water electrolysis system used for metabolic oxygen generation. Incorporating the CRA into the overall air revitalization system has facilitated life support system loop closure on the ISS reducing resupply logistics and thereby enhancing longer term missions. The CRA utilizes CO2 which has been adsorbed in a 5A molecular sieve within the Carbon Dioxide Removal Assembly, CDRA. There is a potential of compounds with molecular dimensions similar to, or less than CO2 to also be adsorbed. In this fashion trace contaminants may be concentrated within the CDRA and subsequently desorbed with the CO2 to the CRA. Currently, there is no provision to remove contaminants prior to entering the Sabatier catalyst bed. The risk associated with this is potential catalyst degradation due to trace organic contaminants in the CRA carbon dioxide feed acting as catalyst poisons. To better understand this risk, United Technologies Aerospace System (UTAS) has teamed with MSFC to investigate the impact of various trace contaminants on the CRA catalyst performance at relative ISS cabin air concentrations and at about 200/400 times of ISS concentrations, representative of the potential concentrating effect of the CDRA molecular sieve. This paper summarizes our initial assessment results.

  4. Catalysts for Environmental Remediation

    Abrams, B. L.; Vesborg, Peter Christian Kjærgaard

    2013-01-01

    The properties of catalysts used in environmental remediation are described here through specific examples in heterogeneous catalysis and photocatalysis. In the area of heterogeneous catalysis, selective catalytic reduction (SCR) of NOx was used as an example reaction with vanadia and tungsta...

  5. Hydrophobic Calcium Carbonate for Cement Surface

    Shashi B. Atla

    2017-12-01

    Full Text Available This report describes a novel way to generate a highly effective hydrophobic cement surface via a carbonation route using sodium stearate. Carbonation reaction was carried out at different temperatures to investigate the hydrophobicity and morphology of the calcium carbonate formed with this process. With increasing temperatures, the particles changed from irregular shapes to more uniform rod-like structures and then aggregated to form a plate-like formation. The contact angle against water was found to increase with increasing temperature; after 90 °C there was no further increase. The maximum contact angle of 129° was obtained at the temperature of 60 °C. It was also found that carbonation increased the micro hardness of the cement material. The micro hardness was found to be dependent on the morphology of the CaCO3 particles. The rod like structures which caused increased mineral filler produced a material with enhanced strength. The 13C cross polarization magic-angle spinning NMR spectra gave plausible explanation of the interaction of organic-inorganic moieties.

  6. Catalyst support structure, catalyst including the structure, reactor including a catalyst, and methods of forming same

    Van Norman, Staci A.; Aston, Victoria J.; Weimer, Alan W.

    2017-05-09

    Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous tungsten support structures using atomic layer deposition techniques.

  7. CATALYTIC PERFORMANCES OF Fe2O3/TS-1 CATALYST IN PHENOL HYDROXYLATION REACTION

    Didik Prasetyoko

    2010-07-01

    Full Text Available Hydroxylation reaction of phenol into diphenol, such as hydroquinone and catechol, has a great role in many industrial applications. Phenol hydroxylation reaction can be carried out using Titanium Silicalite-1 (TS-1 as catalyst and H2O2 as an oxidant. TS-1 catalyst shows high activity and selectivity for phenol hydroxylation reaction. However, its hydrophobic sites lead to slow H2O2 adsorption toward the active site of TS-1. Consequently, the reaction rate of phenol hydroxylation reaction is tends to be low. Addition of metal oxide Fe2O3 enhanced hydrophilicity of TS-1 catalyst. Liquid phase catalytic phenol hydroxylation using hydrogen peroxide as oxidant was carried out over iron (III oxide-modified TS-1 catalyst (Fe2O3/TS-1, that were prepared by impregnation method using iron (III nitrate as precursor and characterized by X-ray diffraction, infrared spectroscopy, nitrogen adsorption, pyridine adsorption, and hydrophilicity techniques. Catalysts 1Fe2O3/TS-1 showed maximum catalytic activity of hydroquinone product. In this research, the increase of hydroquinone formation rate is due to the higher hydrophilicity of Fe2O3/TS-1 catalysts compare to the parent catalyst, TS-1.   Keywords: Fe2O3/TS-1, hydrophilic site, phenol hydroxylation

  8. Catalysts for synthetic liquid fuels

    Bruce, L.A.; Turney, T.W.

    1987-12-01

    Fischer-Tropsch catalysts have been designed, characterized and tested for the selective production of hydrocarbons suitable as synthetic liquid transport fuels from synthesis gas (i.e., by the reduction of carbon monoxide with hydrogen). It was found that hydrocarbons in the middle distillate range, or suitable for conversion to that range, could be produced over several of the new catalyst systems. The various catalysts examined included: (1) synthetic cobalt clays, mainly cobalt chlorites; (2) cobalt hydrotalcites; (3) ruthenium metal supported on rare earth oxides of high surface area; and (4) a novel promoted cobalt catalyst. Active and selective catalysts have been obtained, in each category. With the exception of the clays, reproducibility of catalyst performance has been good. Catalysts in groups 2 and 4 have exhibited very high activity, with long lifetimes and easy regeneration.

  9. Vibration measurements of automobile catalyst

    Aatola, Seppo

    1994-09-01

    Vibration of catalyst cell, which is inside the casing of the catalyst, is difficult to measure with usual measuring instrumentation. When catalyst is in use, there is hot exhaust gas flow though the catalyst cell and temperature of the cell is approximately +900 degree(s)C. Therefore non-contact Laser- Doppler-Vibrometer was used to measure vibration velocity of the catalyst cell. The laser beam was directed towards the cell through pipe which was put through and welded to the casing of the catalyst. The outer end of the pipe was screw down with a tempered class to prevent exhaust gas flow from the pipe. The inner end of the pipe was open and few millimeters away from the measuring point. Catalyst was attached to the engine with two ways, rigidly close to the engine and flexible under the engine. The engine was running in test bench under controlled conditions. Vibration measurements were carried out during constant running speeds of the engine. Vibration signals were captured and analyzed with FFT-analyzer. Vibration of catalyst cell was strongest at running speed of 5000 rpm, from 10 to 20 g (1 g equals 9.81 ms-2), when catalyst was attached rigidly close to the engine. At running speed of 3000 rpm, vibration of catalyst cell was from 2 to 3 g in most cases, when catalyst was attached either rigidly or flexible to the engine. It is estimated that in real life, i.e. when catalyst is attached to car with same engine, vibration of catalyst cell at running speed of 5000 rpm is somewhere between 1 and 10 g. At running speed of 3000 rpm, which may be more often used when driving car (car speed approximately 100 kmh-1), vibration of catalyst cell is probably few g's.

  10. Hydrophobically associating polymers for oil field applications

    Taylor, K.C. [Taylor Industrial Research Inc., Victoria, BC (Canada); Nasr-El-Din, H.A. [Saudi Aramco, Dharhan (Saudi Arabia). R and D Center

    2007-07-01

    This paper discussed developments in water soluble hydrophobically associating polymers and their use in oilfield applications. The polymers are now being investigated for the potential application in enhanced oil recovery (EOR) as well as in completion fluids and profile modifications. The polymers are also purported to selectively reduce water permeability in sandstones. This study showed that the adsorption behaviour of the associating polymers is of greater significance than the rheology, particularly in non-damaging completion fluids and in profile modification. Issues related to acid diversion and conformance control applications were discussed, and drag reducing agents were reviewed. The study also discussed drilling and completion fluids; adsorption behaviour; rheology; and synthesis and characterization. It was concluded that gels are now being developed for conformance control and continued use for modification of water relative permeability. 35 refs., 5 figs.

  11. Hydrophobicity and charge shape cellular metabolite concentrations.

    Arren Bar-Even

    2011-10-01

    Full Text Available What governs the concentrations of metabolites within living cells? Beyond specific metabolic and enzymatic considerations, are there global trends that affect their values? We hypothesize that the physico-chemical properties of metabolites considerably affect their in-vivo concentrations. The recently achieved experimental capability to measure the concentrations of many metabolites simultaneously has made the testing of this hypothesis possible. Here, we analyze such recently available data sets of metabolite concentrations within E. coli, S. cerevisiae, B. subtilis and human. Overall, these data sets encompass more than twenty conditions, each containing dozens (28-108 of simultaneously measured metabolites. We test for correlations with various physico-chemical properties and find that the number of charged atoms, non-polar surface area, lipophilicity and solubility consistently correlate with concentration. In most data sets, a change in one of these properties elicits a ~100 fold increase in metabolite concentrations. We find that the non-polar surface area and number of charged atoms account for almost half of the variation in concentrations in the most reliable and comprehensive data set. Analyzing specific groups of metabolites, such as amino-acids or phosphorylated nucleotides, reveals even a higher dependence of concentration on hydrophobicity. We suggest that these findings can be explained by evolutionary constraints imposed on metabolite concentrations and discuss possible selective pressures that can account for them. These include the reduction of solute leakage through the lipid membrane, avoidance of deleterious aggregates and reduction of non-specific hydrophobic binding. By highlighting the global constraints imposed on metabolic pathways, future research could shed light onto aspects of biochemical evolution and the chemical constraints that bound metabolic engineering efforts.

  12. A Catalyst for Change

    Lønsmann, Dorte

    2017-01-01

    This case study of a team in an international workplace investigates processes of language socialization in a transient multilingual setting. Using interview and observational data, the analysis shows how social and linguistic norms are negotiated, with the newcomer positioned as a catalyst...... for changing language practices toward more English, with the ultimate aim of creating a 'global mindset' in the organization. Language socialization in a transient multilingual setting is shown to focus on and assign positive value to new linguistic norms that experienced members are socialized...... into in a process that hinges on new members functioning as tools for management to bring about the desired change. The article shows that while the newcomer is used as a catalyst for increased use of English and for the creation of a 'global mindset,' she is at the same time socialized into the existing Danish...

  13. Photo catalyst; Ko shokubai

    NONE

    1999-07-01

    While titanium oxide is excited by the light, electrons of titanium oxide are taken away by the light energy to form positive holes. Water will be decomposed into hydrogen ion and hydroxy radical (OH) by these positive holes. This hydroxy radical is a strong reactive substance called active oxygen, it decomposes organisms. Besides this photo- catalyst function, the titanium oxide can also make surface of a substance superhydrophilic. The super hydrophilicity results in not forming water drops on the glass surface but spreading all over the surface to prevent a covering of fog on the glass surface. The published patents concerning the photo catalysts were 593 from Jan. 1998 to Jan. 1999. The applicant order is the first TOTO 143, the second Daikin Industry 19, the third Toshiba Raitech, Nitto Denko, Hitachi 17 respectively. (NEDO)

  14. High-Activity Dealloyed Catalysts

    Kongkanand, Anusorn [General Motors LLC, Pontiac, MI (United States)

    2014-09-30

    Reduction of costly Pt usage in proton exchange membrane fuel cell electrodes is one of the major challenges towards development and commercialization of fuel cell vehicles. Although few have met the initial-kinetic activity requirements in a realistic fuel cell device, no catalyst material has ever met the demanding fuel cell durability targets set by DOE. In this project, a team of 4 universities and 2 companies came together to investigate a concept that appeared promising in preliminary non-fuel cell tests then to further develop the catalyst to a mature level ready for vehicle implementation. The team consists of academia with technical leadership in their respective areas, a catalyst supplier, and a fuel cell system integrator.The tightly collaborative project enabled development of a highly active and durable catalyst with performance that significantly exceeds that of previous catalysts and meets the DOE targets for the first time (Figure 1A). The catalyst was then further evaluated in full-active-area stack in a realistic vehicle operating condition (Figure 1B). This is the first public demonstration that one can realize the performance benefit and Pt cost reduction over a conventional pure Pt catalyst in a long-term realistic PEMFC system. Furthermore, systematic analyses of a range of catalysts with different performance after fuel cell testing allowed for correlation between catalyst microstructure and its electrocatalytic activity and durability. This will in turn aid future catalyst development.

  15. Silylated Co/SBA-15 catalysts for Fischer-Tropsch synthesis

    Jia Lihong; Jia Litao; Li Debao; Hou Bo; Wang Jungang; Sun Yuhan

    2011-01-01

    A series of silylated Co/SBA-15 catalysts were prepared via the reaction of surface Si-OH of SBA-15 with hexamethyldisilazane (HMDS) under anhydrous, vapor-phase conditions, and then characterized by FT-IR, N 2 physisorption, TG, XRD, and TPR-MS. The results showed that organic modification led to a silylated SBA-15 surface composed of stable hydrophobic Si-(CH 3 ) 3 species even after calcinations and H 2 reduction at 673 K. Furthermore, the hydrophobic surface strongly influenced both metal dispersion and reducibility. Compared with non-silylated Co/SBA, Co/S-SBA (impregnation after silylation) showed a high activity, due to the better cobalt reducibility on the hydrophobic support. However, S-Co/SBA (silylation after impregnation) had the lowest FT activity among all the catalysts, due to the lower cobalt reducibility along with the steric hindrance of grafted -Si(CH 3 ) 3 for the re-adsorption of α-olefins. -- Graphical abstract: The silylation of an SBA-15 before cobalt impregnation enhanced the reducibility of cobalt oxides on an SBA-15-supported cobalt catalyst and consequently increased the catalytic activity for Fischer-Tropsch synthesis. Display Omitted

  16. Synthesis of Hydrophobic Mesoporous Material MFS and Its Adsorption Properties of Water Vapor

    Guotao Zhao

    2014-01-01

    Full Text Available Fluorine-containing hydrophobic mesoporous material (MFS with high surface area is successfully synthesized with hydrothermal synthesis method by using a perfluorinated surfactant SURFLON S-386 template. The adsorption properties of water vapor on the synthesized MFS are also investigated by using gravimetric method. Results show that SEM image of the MFS depicted roundish morphology with the average crystal size of 1-2 μm. The BET surface area and total pore volume of the MFS are 865.4 m2 g−1 and 0.74 cm3 g−1 with a narrow pore size distribution at 4.9 nm. The amount of water vapor on the MFS is about 0.41 mmol g−1 at 303 K, which is only 52.6% and 55.4% of MCM-41 and SBA-15 under the similar conditions, separately. The isosteric adsorption heat of water on the MFS is gradually about 27.0–19.8 kJ mol−1, which decreases as the absorbed water vapor amount increases. The value is much smaller than that on MCM-41 and SBA-15. Therefore, the MFS shows more hydrophobic surface properties than the MCM-41 and SBA-15. It may be a kind of good candidate for adsorption of large molecule and catalyst carrier with high moisture resistance.

  17. Non-PGM cell catalysts

    Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Elvington, M. [Savannah River Consulting, Aiken, SC (United States); Ganesan, P. [Savannah River Consulting, Aiken, SC (United States)

    2017-09-27

    A unique approach has been developed to probe the non-PGM catalyst active site for the Oxygen Reduction Reaction (ORR) for PEMFCs. Iron based functionalities have been engineered into a variety of catalysts to evaluate their impact on activity for the ORR. A series of high surface area catalysts were synthesized and the impact of the chemical structure on the electrochemical and electrocatalytic properties was investigated. Elemental and surface analyses of the prepared catalysts reveal the incorporation of iron in a targeted and controlled manner. A high surface area framework catalyst was prepared that shows exceptional activity, comparable to state-of-the-art materials. The results of this research project provided critical seed data for the newly awarded ElectroCat project, which focuses on rationally designed framework catalysts for the oxygen reduction reaction.

  18. Hydrophobic deep eutectic solvents as water-immiscible extractants

    Osch, van D.J.G.P.; Zubeir, L.F.; Bruinhorst, van den A.; Alves da Rocha, M.A.; Kroon, M.C.

    2015-01-01

    Hydrophobic deep eutectic solvents (DESs) are presented for the first time. They consist of decanoic acid and various quaternary ammonium salts. The effect of the alkyl chains on the hydrophobicity and the equilibrium of the two-phase DES–water system were investigated. These new DESs were

  19. Hydrophobically modified polyelectrolytes : synthesis, properties and interactions with surfactants

    Nieuwkerk, A.C.

    1998-01-01

    Hydrophobically modified polyelectrolytes can form micelle-like aggregates, so-called microdomains, in aqueous solution. The hydrophobic side chains constitute the apolar inner part of these microdomains and the hydrophilic groups on the polyelectrolyte backbone are at the surface of the

  20. Design of textured surfaces for super-hydrophobicity

    Prithvi Raj Jelia

    2017-11-11

    Nov 11, 2017 ... as silicon wafer [1, 10, 11]. Yoon et al [12] used a modified ... The explanation for the increase in the contact angle or hydrophobicity on the ... water droplets on super-hydrophobic surfaces that exhibit large contact angles are ...

  1. Oxygen-reducing catalyst layer

    O'Brien, Dennis P [Maplewood, MN; Schmoeckel, Alison K [Stillwater, MN; Vernstrom, George D [Cottage Grove, MN; Atanasoski, Radoslav [Edina, MN; Wood, Thomas E [Stillwater, MN; Yang, Ruizhi [Halifax, CA; Easton, E Bradley [Halifax, CA; Dahn, Jeffrey R [Hubley, CA; O'Neill, David G [Lake Elmo, MN

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  2. Catalyst systems and uses thereof

    Ozkan, Umit S [Worthington, OH; Holmgreen, Erik M [Columbus, OH; Yung, Matthew M [Columbus, OH

    2012-07-24

    A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O.sub.2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO.sub.2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200.degree. C.

  3. Development of GREET Catalyst Module

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States); Benavides, Pahola T. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ γ-Al2O3, and Pt/ γ-Al2O3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module.

  4. Reuse of Hydrotreating Spent Catalyst

    Habib, A.M.; Menoufy, M.F.; Amhed, S.H.

    2004-01-01

    All hydro treating catalysts used in petroleum refining processes gradually lose activity through coking, poisoning by metal, sulfur or halides or lose surface area from sintering at high process temperatures. Waste hydrotreating catalyst, which have been used in re-refining of waste lube oil at Alexandria Petroleum Company (after 5 years lifetime) compared with the same fresh catalyst were used in the present work. Studies are conducted on partial extraction of the active metals of spent catalyst (Mo and Ni) using three leaching solvents,4% oxidized oxalic acid, 10% aqueous sodium hydroxide and 10% citric acid. The leaching experiments are conducting on the de coked extrude [un crushed] spent catalyst samples. These steps are carried out in order to rejuvenate the spent catalyst to be reused in other reactions. The results indicated that 4% oxidized oxalic acid leaching solution gave total metal removal 45.6 for de coked catalyst samples while NaOH gave 35% and citric acid gave 31.9 % The oxidized leaching agent was the most efficient leaching solvent to facilitate the metal removal, and the rejuvenated catalyst was characterized by the unchanged crystalline phase The rejuvenated catalyst was applied for hydrodesulfurization (HDS) of vacuum gas oil as a feedstock, under different hydrogen pressure 20-80 bar in order to compare its HDS activity

  5. Micro- and nanoscale characterization of hydrophobic and hydrophilic leaf surfaces

    Bhushan, Bharat; Jung, Yong Chae

    2006-01-01

    Superhydrophobic surfaces as well as low adhesion and friction are desirable for various industrial applications. Certain plant leaves are known to be hydrophobic in nature due to their roughness and the presence of a thin wax film on the surface of the leaf. The purpose of this study is to fully characterize the leaf surfaces on the micro- and nanoscale while separating out the effects of the micro- and the nanobumps of hydrophobic leaves on the hydrophobicity. Hydrophilic leaves were also studied to better understand the role of wax and roughness. Furthermore, the adhesion and friction properties of hydrophobic and hydrophilic leaves were studied. Using an optical profiler and an atomic/friction force microscope (AFM/FFM), measurements were made to fully characterize the leaf surfaces. It is shown that the nanobumps play a more important role than the microbumps in the hydrophobic nature as well as friction of the leaf. This study will be useful in developing superhydrophobic surfaces

  6. Prediction of Hydrophobic Cores of Proteins Using Wavelet Analysis.

    Hirakawa; Kuhara

    1997-01-01

    Information concerning the secondary structures, flexibility, epitope and hydrophobic regions of amino acid sequences can be extracted by assigning physicochemical indices to each amino acid residue, and information on structure can be derived using the sliding window averaging technique, which is in wide use for smoothing out raw functions. Wavelet analysis has shown great potential and applicability in many fields, such as astronomy, radar, earthquake prediction, and signal or image processing. This approach is efficient for removing noise from various functions. Here we employed wavelet analysis to smooth out a plot assigned to a hydrophobicity index for amino acid sequences. We then used the resulting function to predict hydrophobic cores in globular proteins. We calculated the prediction accuracy for the hydrophobic cores of 88 representative set of proteins. Use of wavelet analysis made feasible the prediction of hydrophobic cores at 6.13% greater accuracy than the sliding window averaging technique.

  7. Change in activity of catalysts for the oxidation of tritium during a fire event

    Iwai, Yasunori; Sato, Katsumi; Yamanishi, Toshihiko

    2012-01-01

    Highlights: ► We experimentally demonstrated the influence of produced gases from burned low-halogen cable on the activity of catalysts for tritium oxidation. ► At 423 K, no considerable decrease in catalytic activity was observed. ► At 293 K, considerable increase in catalytic activity was initially observed due to the effect of produced hydrogen. Then the temporary decrease was observed due mainly to the effect of produced moisture, however the activity was gradually recovered. - Abstract: The catalytic performance should be maintained in any off normal events. Fire accident is the typical off normal event. In the fusion plant, typical combustibles are evaluated to be polymeric low-halogen cables. Produced gases from burned low-halogen cable may affect the activity of catalysts for the oxidation of tritium. We experimentally demonstrated the influence of produced gases from burned low-halogen cable on the activity of catalyst using tritium gas. Our evaluation showed that ethylene, methane and benzene were major produced gases. The activity of catalysts for the oxidation of tritium during a fire event was evaluated using a commercial hydrophilic Pt/Al 2 O 3 catalyst and a commercial hydrophobic Pt-catalyst. The temperature of catalytic reactor was selected to be 423 and 293 K. At 423 K, no considerable decrease in catalytic activity was observed for both catalysts even in the presence of produced gases from burned low-halogen cable. At 293 K, considerable increase in catalytic activity was initially observed for both catalysts due to the effect of produced hydrogen. Then the temporary decrease was observed, however the catalytic activity was gradually recovered to be the original activity. Consequently, the irreversible decrease in activity of the catalysts during a fire event was not observed.

  8. Targeting of the hydrophobic metabolome by pathogens.

    Helms, J Bernd; Kaloyanova, Dora V; Strating, Jeroen R P; van Hellemond, Jaap J; van der Schaar, Hilde M; Tielens, Aloysius G M; van Kuppeveld, Frank J M; Brouwers, Jos F

    2015-05-01

    The hydrophobic molecules of the metabolome - also named the lipidome - constitute a major part of the entire metabolome. Novel technologies show the existence of a staggering number of individual lipid species, the biological functions of which are, with the exception of only a few lipid species, unknown. Much can be learned from pathogens that have evolved to take advantage of the complexity of the lipidome to escape the immune system of the host organism and to allow their survival and replication. Different types of pathogens target different lipids as shown in interaction maps, allowing visualization of differences between different types of pathogens. Bacterial and viral pathogens target predominantly structural and signaling lipids to alter the cellular phenotype of the host cell. Fungal and parasitic pathogens have complex lipidomes themselves and target predominantly the release of polyunsaturated fatty acids from the host cell lipidome, resulting in the generation of eicosanoids by either the host cell or the pathogen. Thus, whereas viruses and bacteria induce predominantly alterations in lipid metabolites at the host cell level, eukaryotic pathogens focus on interference with lipid metabolites affecting systemic inflammatory reactions that are part of the immune system. A better understanding of the interplay between host-pathogen interactions will not only help elucidate the fundamental role of lipid species in cellular physiology, but will also aid in the generation of novel therapeutic drugs. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Solubilization of Hydrophobic Dyes in Surfactant Solutions

    Ali Reza Tehrani-Bagha

    2013-02-01

    Full Text Available In this paper, the use of surfactants for solubilization of hydrophobic organic dyes (mainly solvent and disperse dyes has been reviewed. The effect of parameters such as the chemical structures of the surfactant and the dye, addition of salt and of polyelectrolytes, pH, and temperature on dye solubilization has been discussed. Surfactant self-assemble into micelles in aqueous solution and below the concentration where this occurs—the critical micelle concentration (CMC—there is no solubilization. Above the CMC, the amount of solubilized dye increases linearly with the increase in surfactant concentration. It is demonstrated that different surfactants work best for different dyes. In general, nonionic surfactants have higher solubilization power than anionic and cationic surfactants. It is likely that the reason for the good performance of nonionic surfactants is that they allow dyes to be accommodated not only in the inner, hydrocarbon part of the micelle but also in the headgroup shell. It is demonstrated that the location of a dye in a surfactant micelle can be assessed from the absorption spectrum of the dye-containing micellar solution.

  10. Dropwise condensation on hydrophobic bumps and dimples

    Yao, Yuehan; Aizenberg, Joanna; Park, Kyoo-Chul

    2018-04-01

    Surface topography plays an important role in promoting or suppressing localized condensation. In this work, we study the growth of water droplets on hydrophobic convex surface textures such as bumps and concave surface textures such as dimples with a millimeter scale radius of curvature. We analyze the spatio-temporal droplet size distribution under a supersaturation condition created by keeping the uniform surface temperature below the dew point and show its relationship with the sign and magnitude of the surface curvature. In particular, in contrast to the well-known capillary condensation effect, we report an unexpectedly less favorable condensation on smaller, millimeter-scale dimples where the capillary condensation effect is negligible. To explain these experimental results, we numerically calculated the diffusion flux of water vapor around the surface textures, showing that its magnitude is higher on bumps and lower on dimples compared to a flat surface. We envision that our understanding of millimetric surface topography can be applied to improve the energy efficiency of condensation in applications such as water harvesting, heating, ventilation, and air conditioning systems for buildings and transportation, heat exchangers, thermal desalination plants, and fuel processing systems.

  11. Colloidal polymer particles as catalyst carriers and phase transfer agents in multiphasic hydroformylation reactions.

    Peral, D; Stehl, D; Bibouche, B; Yu, H; Mardoukh, J; Schomäcker, R; Klitzing, R von; Vogt, D

    2018-03-01

    Colloidal particles have been used to covalently bind ligands for the heterogenization of homogeneous catalysts. The replacement of the covalent bonds by electrostatic interactions between particles and the catalyst could preserve the selectivity of a truly homogeneous catalytic process. Functionalized polymer particles with trimethylammonium moieties, dispersed in water, with a hydrophobic core and a hydrophilic shell have been synthesized by emulsion polymerization and have been thoroughly characterized. The ability of the particles with different monomer compositions to act as catalyst carriers has been studied. Finally, the colloidal dispersions have been applied as phase transfer agents in the multiphasic rhodium-catalyzed hydroformylation of 1-octene. The hydrodynamic radius of the particles has been shown to be around 100 nm, and a core-shell structure could be observed by atomic force microscopy. The polymer particles were proven to act as carriers for the water-soluble hydroformylation catalyst, due to electrostatic interaction between the functionalized particles bearing ammonium groups and the sulfonated ligands of the catalyst. The particles were stable under the hydroformylation conditions and the aqueous catalyst phase could be recycled three times. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Novel Reforming Catalysts

    Pfefferle, Lisa D; Haller, Gary L

    2012-10-16

    Aqueous phase reforming is useful for processing oxygenated hydrocarbons to hydrogen and other more useful products. Current processing is hampered by the fact that oxide based catalysts are not stable under high temperature hydrothermal conditions. Silica in the form of structured MCM-41 is thermally a more stable support for Co and Ni than conventional high surface area amorphous silica but hydrothermal stability is not demonstrated. Carbon nanotube supports, in contrast, are highly stable under hydrothermal reaction conditions. In this project we show that carbon nanotubes are stable high activity/selectivity supports for the conversion of ethylene glycol to hydrogen.

  13. Catalysts for petroleum desulfurization

    Mueller, A.; Diemann, E.; Baumann, F.W.

    1988-01-01

    In order to obtain marketable products from low-quality oils, efficient hydrogenation processes are required for removing sulfur (hydrodesulfurization, HDS), nitrogen (hydrodenitrification, HDN), and oxygen (hydrodeoxygenation, HDO), which would poison the noble metal catalysts of the downstream petrochemical processes. Hydrogenation will produce low-sulfur, low-nitrogen fuels and thus contribute to the reduction of SO/sub 2/ and NO/sub x/ emissions which is long overdue from the ecological point of view (forest decline, acidification of surface bodies of water, etc.).

  14. Fe/MCM-41 sylilated catalyst: structural changes determination during the Fischer-Tropsch reaction

    Bengoa, J. F.; Fellenz, N. A.; Cagnoli, M. V.; Cano, L. A.; Gallegos, N. G.; Alvarez, A. M.; Marchetti, S. G.

    2010-01-01

    Two Fe/MCM-41 systems, one of them sylilated, were obtained to be used as catalysts in Fischer-Tropsch reaction. They have more than 90% of the iron species located inside the support channels, leading to a narrow crystal size distribution accessible to reactive gases. The samples were characterized by X-ray diffraction, atomic absorption spectroscopy, N 2 adsorption, Moessbauer spectroscopy and Fourier transformer infrared spectroscopy. Moessbauer spectroscopy allowed us to demonstrate that the catalytic active species were the same in both catalysts. The only difference between them was the surface hydrophobicity, which decreases the 'water gas shift reaction' in the sylilated catalyst. Besides, this solid is more active for hydrocarbon production, with a lower methane yield.

  15. Turbostratic carbon supported palladium as an efficient catalyst for reductive purification of water from trichloroethylene

    Emil Kowalewski

    2017-12-01

    Full Text Available This work investigates the catalytic properties of turbostratic carbon supported Pd catalyst in hydrodechlorination of trichloroethylene (TCE HDC in aqueous phase. 1.57 wt% Pd/C was thoroughly characterized by BET, TPHD, CO chemisorption, PXRD, STEM, XPS and used as the catalyst in removal of trichloroethylene from drinking water in batch and continuous-flow reactors. The studies showed that catalytic performance of Pd/C depended on the hydrophobicity and textural properties of carbon support, which influenced noble metal dispersion and increased catalyst tolerance against deactivation by chlorination. Palladium in the form of uniformly dispersed small (~3.5 nm nanoparticles was found to be very active and stable in purification of water from TCE both in batch and continuous-flow operation.

  16. In-situ characterization of heterogeneous catalysts

    Rodriguez, Jose A; Chupas, Peter J

    2013-01-01

    Helps researchers develop new catalysts for sustainable fuel and chemical production Reviewing the latest developments in the field, this book explores the in-situ characterization of heterogeneous catalysts, enabling readers to take full advantage of the sophisticated techniques used to study heterogeneous catalysts and reaction mechanisms. In using these techniques, readers can learn to improve the selectivity and the performance of catalysts and how to prepare catalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts feat

  17. Surface Hydrophobicity Causes SO2 Tolerance in Lichens

    Hauck, Markus; Jürgens, Sascha-René; Brinkmann, Martin; Herminghaus, Stephan

    2008-01-01

    Background and Aims The superhydrophobicity of the thallus surface in one of the most SO2-tolerant lichen species, Lecanora conizaeoides, suggests that surface hydrophobicity could be a general feature of lichen symbioses controlling their tolerance to SO2. The study described here tests this hypothesis. Methods Water droplets of the size of a raindrop were placed on the surface of air-dry thalli in 50 lichen species of known SO2 tolerance and contact angles were measured to quantify hydrophobicity. Key Results The wettability of lichen thalli ranges from strongly hydrophobic to strongly hydrophilic. SO2 tolerance of the studied lichen species increased with increasing hydrophobicity of the thallus surface. Extraction of extracellular lichen secondary metabolites with acetone reduced, but did not abolish the hydrophobicity of lichen thalli. Conclusions Surface hydrophobicity is the main factor controlling SO2 tolerance in lichens. It presumably originally evolved as an adaptation to wet habitats preventing the depression of net photosynthesis due to supersaturation of the thallus with water. Hydrophilicity of lichen thalli is an adaptation to dry or humid, but not directly rain-exposed habitats. The crucial role of surface hydrophobicity in SO2 also explains why many markedly SO2-tolerant species are additionally tolerant to other (chemically unrelated) toxic substances including heavy metals. PMID:18077467

  18. Activating catalysts with mechanical force

    Piermattei, A.; Karthikeyan, S.; Sijbesma, R.P.

    2009-01-01

    Homogeneously catalysed reactions can be ‘switched on’ by activating latent catalysts. Usually, activation is brought about by heat or an external chemical agent. However, activation of homogeneous catalysts with a mechanical trigger has not been demonstrated. Here, we introduce a general method to

  19. Evolving a polymerase for hydrophobic base analogues.

    Loakes, David; Gallego, José; Pinheiro, Vitor B; Kool, Eric T; Holliger, Philipp

    2009-10-21

    Hydrophobic base analogues (HBAs) have shown great promise for the expansion of the chemical and coding potential of nucleic acids but are generally poor polymerase substrates. While extensive synthetic efforts have yielded examples of HBAs with favorable substrate properties, their discovery has remained challenging. Here we describe a complementary strategy for improving HBA substrate properties by directed evolution of a dedicated polymerase using compartmentalized self-replication (CSR) with the archetypal HBA 5-nitroindole (d5NI) and its derivative 5-nitroindole-3-carboxamide (d5NIC) as selection substrates. Starting from a repertoire of chimeric polymerases generated by molecular breeding of DNA polymerase genes from the genus Thermus, we isolated a polymerase (5D4) with a generically enhanced ability to utilize HBAs. The selected polymerase. 5D4 was able to form and extend d5NI and d5NIC (d5NI(C)) self-pairs as well as d5NI(C) heteropairs with all four bases with efficiencies approaching, or exceeding, those of the cognate Watson-Crick pairs, despite significant distortions caused by the intercalation of the d5NI(C) heterocycles into the opposing strand base stack, as shown by nuclear magnetic resonance spectroscopy (NMR). Unlike Taq polymerase, 5D4 was also able to extend HBA pairs such as Pyrene: varphi (abasic site), d5NI: varphi, and isocarbostyril (ICS): 7-azaindole (7AI), allowed bypass of a chemically diverse spectrum of HBAs, and enabled PCR amplification with primers comprising multiple d5NI(C)-substitutions, while maintaining high levels of catalytic activity and fidelity. The selected polymerase 5D4 promises to expand the range of nucleobase analogues amenable to replication and should find numerous applications, including the synthesis and replication of nucleic acid polymers with expanded chemical and functional diversity.

  20. Fluoroalkyl and Alkyl Chains Have Similar Hydrophobicities in Binding to the “Hydrophobic Wall” of Carbonic Anhydrase

    J Mecinovic; P Snyder; K Mirica; S Bai; E Mack; R Kwant; D Moustakas; A Heroux; G Whitesides

    2011-12-31

    The hydrophobic effect, the free-energetically favorable association of nonpolar solutes in water, makes a dominant contribution to binding of many systems of ligands and proteins. The objective of this study was to examine the hydrophobic effect in biomolecular recognition using two chemically different but structurally similar hydrophobic groups, aliphatic hydrocarbons and aliphatic fluorocarbons, and to determine whether the hydrophobicity of the two groups could be distinguished by thermodynamic and biostructural analysis. This paper uses isothermal titration calorimetry (ITC) to examine the thermodynamics of binding of benzenesulfonamides substituted in the para position with alkyl and fluoroalkyl chains (H{sub 2}NSO{sub 2}C{sub 6}H{sub 4}-CONHCH{sub 2}(CX{sub 2}){sub n}CX{sub 3}, n = 0-4, X = H, F) to human carbonic anhydrase II (HCA II). Both alkyl and fluoroalkyl substituents contribute favorably to the enthalpy and the entropy of binding; these contributions increase as the length of chain of the hydrophobic substituent increases. Crystallography of the protein-ligand complexes indicates that the benzenesulfonamide groups of all ligands examined bind with similar geometry, that the tail groups associate with the hydrophobic wall of HCA II (which is made up of the side chains of residues Phe131, Val135, Pro202, and Leu204), and that the structure of the protein is indistinguishable for all but one of the complexes (the longest member of the fluoroalkyl series). Analysis of the thermodynamics of binding as a function of structure is compatible with the hypothesis that hydrophobic binding of both alkyl and fluoroalkyl chains to hydrophobic surface of carbonic anhydrase is due primarily to the release of nonoptimally hydrogen-bonded water molecules that hydrate the binding cavity (including the hydrophobic wall) of HCA II and to the release of water molecules that surround the hydrophobic chain of the ligands. This study defines the balance of enthalpic and

  1. Hydrophobic mismatch in gramicidin A'/lecithin systems

    Watnick, P.I.; Chan, S.I.; Dea, P.

    1990-01-01

    Gramicidin A' (GA') has been added to three lipid systems of varying hydrophobic thickness: dimyristoyllecithin (DML), dipalmitoyllecithin (DPL), and distearoyllecithin (DSL). The similarity in length between the hydrophobic portion of GA' and the hydrocarbon chains of the lipid bilayers has been studied by using 31 P and 2 H NMR. Hydrophobic mismatch has been found to be most severe in the DML bilayer system and minimal in the case of DSL. In addition, the effects of hydrophobic mismatch on the cooperative properties of the bilayer have been obtained from 2 H NMR relaxation measurements. The results indicate that incorporation of the peptide into the bilayer disrupts the cooperative director fluctuations characteristic of pure multilamellar lipid dispersions. Finally, the GA'/lecithin ratio at which the well-known transformation from bilayer to reverse hexagonal (H II ) phase occurs is shown to depend on the acyl chain length of the phospholipid. A rationale is proposed for this chain length dependence

  2. Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography.

    Vu, Anh T; Wang, Xinying; Wickramasinghe, S Ranil; Yu, Bing; Yuan, Hua; Cong, Hailin; Luo, Yongli; Tang, Jianguo

    2015-08-01

    Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cholesterol and fat lowering with hydrophobic polysaccharide derivatives

    Čopíková, J.; Taubner, T.; Tůma, J.; Synytsya, A.; Dušková, Dagmar; Marounek, Milan

    2015-01-01

    Roč. 116, č. 1 (2015), s. 207-214 ISSN 0144-8617 Institutional support: RVO:67985904 Keywords : hydrophobically modified polysaccharides * structure * thermal analysis Subject RIV: CE - Biochemistry Impact factor: 4.219, year: 2015

  4. Impact of Hydrophobic Pollutants' Behavior on Occupational and Environmental Health

    Ijeoma Kanu

    2005-01-01

    Full Text Available This paper reviews the influence of hydrophobic pollutant behavior on environmental hazards and risks. The definition and examples of hydrophobic pollutants are given as a guide to better understand the sources of release and the media of dispersion in the environment. The properties and behavior of hydrophobic pollutants are described and their influence on environmental hazard and risk is reviewed and evaluated. The overall outcome of the assessment and evaluation showed that all hydrophobic pollutants are hazardous and risky to all organisms, including man. Their risk effects are due to their inherent persistence, bioaccumulation potential, environmental mobility, and reactivity. Their hazardous effects on organisms occur at varying spatial and temporal degrees of emissions, toxicities, exposures, and concentrations.

  5. Protein-induced bilayer Perturbations: Lipid ordering and hydrophobic coupling

    Petersen, Frederic Nicolas Rønne; Laursen, Ib; Bohr, Henrik

    2009-01-01

    The host lipid bilayer is increasingly being recognized as an important non-specific regulator of membrane protein function. Despite considerable progress the interplay between hydrophobic coupling and lipid ordering is still elusive. We use electron spin resonance (ESR) to study the interaction...... between the model protein gramicidin and lipid bilayers of varying thickness. The free energy of the interaction is up to −6 kJ/mol; thus not strongly favored over lipid–lipid interactions. Incorporation of gramicidin results in increased order parameters with increased protein concentration...... and hydrophobic mismatch. Our findings also show that at high protein:lipid ratios the lipids are motionally restricted but not completely immobilized. Both exchange on and off rate values for the lipid ↔ gramicidin interaction are lowest at optimal hydrophobic matching. Hydrophobic mismatch of few Å results...

  6. On the enrichment of hydrophobic organic compounds in fog droplets

    Valsaraj, K. T.; Thoma, G. J.; Reible, D. D.; Thibodeaux, L. J.

    The unusual degree of enrichment of hydrophobic organics in fogwater droplets reported by several investigators can be interpreted as a result of (a) the effects of temperature correction on the reported enrichment factors, (b) the effects of colloidal organic matter (both filterable and non-filterable) in fog water and (c) the effects of the large air-water interfacial adsorption of neutral hydrophobic organics on the tiny fog droplets. The enrichment factor was directly correlated to the hydrophobicity (or the activity coefficient in water) of the compounds, as indicated by their octanol-water partition constants. Compounds with large octanol-water partition coefficients (high activity coefficients in water) showed the largest enrichment. Available experimental data on the adsorption of hydrophobic compounds at the air-water interface and on colloidal organic carbon were used to show that the large specific air-water interfacial areas of fog droplets contribute significantly to the enrichment factor.

  7. Temperature effects on the hydrophobic force between two ...

    TUHIN SAMANTA

    2018-03-02

    Mar 2, 2018 ... We perform the molecular dynamics simulations to investigate ... molecular assemblies and in the formation of protein complexes.1–7 One of the important manifestations of the hydrophobic interactions is observed in oil-water.

  8. Preparation and characterization of hydrophobic platinum-doped ...

    Administrator

    2013-05-31

    May 31, 2013 ... drawback of inaccessible micropores and mineral impuri- ties. More recently, there has ... hydrophobicity and mechnical strength. PTFE binder was ... were measured by BET surface area measurement system. (Micromeritics ...

  9. CARNAUBA WAX USED AS AN HYDROPHOBIC AGENT FOR EXPANDED VERMICULITE

    M.A.F. Melo

    1998-03-01

    Full Text Available This work deals with the use of carnauba wax as an expansion and hydrophobicity agent for vermiculite, to be utilized in the sorption process of oil in water. Evaluation of the system (oil-water-hydrophobic vermiculite submersion percentage was considered in assessing the performance of vermiculite in comparison to a Mexican turf. Carnauba wax seems to be more efficient in both fresh and salt waters.

  10. Development of GREET Catalyst Module

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2014-09-01

    Catalysts are critical inputs for many pathways that convert biomass into biofuels. Energy consumption and greenhouse gas (GHG) emissions during the production of catalysts and chemical inputs influence the life-cycle energy consumption, and GHG emissions of biofuels and need to be considered in biofuel life-cycle analysis (LCA). In this report, we develop energy and material flows for the production of three different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5]) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module. They were selected because they are consumed in existing U.S. Department of Energy (DOE) analyses of biofuel processes. For example, a thermochemical ethanol production pathway (indirect gasification and mixed alcohol synthesis) developed by the National Renewable Energy Laboratory (NREL) uses olivine, DEPG, and tar reforming and alcohol synthesis catalysts (Dutta et al., 2011). ZSM-5 can be used in biofuel production pathways such as catalytic upgrading of sugars into hydrocarbons (Biddy and Jones, 2013). Other uses for these compounds and catalysts are certainly possible. In this report, we document the data sources and methodology we used to develop material and energy flows for the catalysts and compounds in the GREET catalyst module. In Section 2 we focus on compounds used in the model Dutta et al. (2011) developed. In Section 3, we report material and energy flows associated with ZSM-5 production. Finally, in Section 4, we report results.

  11. Measuring hydrophobic micropore volumes in geosorbents from trichloroethylene desorption data.

    Cheng, Hefa; Reinhard, Martin

    2006-06-01

    Hydrophobic micropores can play a significant role in controlling the long-term release of organic contaminants from geosorbents. We describe a technique for quantifying the total and the hydrophobic mineral micropore volumes based on the mass of trichloroethylene (TCE) sorbed in the slow-releasing pores under dry and wet conditions, respectively. Micropore desorption models were used to differentiate the fast- and slow-desorbing fractions in desorption profiles. The micropore environment in which organic molecules were sorbed in the presence of water was probed by studying the transformation of a water-reactive compound (2,2-dichloropropane or 2,2-DCP). For sediment from an alluvial aquifer, the total and hydrophobic micropore volumes estimated using this technique were 4.65 microL/g and 0.027 microL/g (0.58% of total), respectively. In microporous silica gel A, a hydrophobic micropore volume of 0.038 microL/g (0.035% of reported total) was measured. The dehydrohalogenation rate of 2,2-DCP sorbed in hydrophobic micropores of the sediment was slower than that reported in bulk water, indicating an environment of low water activity. The results suggest that hydrolyzable organic contaminants sorbed in hydrophobic micropores react slower than in bulk water, consistent with the reported persistence of reactive contaminants in natural soils.

  12. Frosting characteristics on hydrophobic and superhydrophobic surfaces: A review

    Kim, Min-Hwan; Kim, Hisuk; Lee, Kwan-Soo; Kim, Dong Rip

    2017-01-01

    Highlights: • Fabrication methods of hydrophobic metal surfaces were investigated. • Mechanisms of ice crystal formation were reviewed in terms of static contact angle. • Future researches for frost retardation on heat exchanger surfaces were discussed. - Abstract: Fabrication methods of the hydrophobic property on metal surfaces and frosting characteristics on hydrophobic surfaces were investigated. A hydrophobic surface with a static contact angle of less than 150° was implemented by surface coating or etching, and a superhydrophobic surface with a static contact angle of greater than 150° was realized by a hybrid method using both coating and etching. The changes in surface properties affected the behaviors of the early stage frosting from the dry surface to the formation of ice crystals. On the hydrophobic surfaces, ice crystals were formed by freezing after condensation. Isolated-droplet freezing and inter-droplet freezing are mechanisms by which the condensate undergoes a phase change into ice crystals. Through isolated-droplet freezing, a supercooled condensate changes phase into ice crystals by forming ice nuclei based on the classical nucleation theory. In addition, through inter-droplet freezing, ice crystals are propagated due to the difference in saturation vapor pressure between supercooled condensates and ice crystals. The formation and propagation of ice crystals are delayed as the static contact angle increases. Additionally, based on a review, future researches that is needed to improve hydrophobic technologies are discussed.

  13. Soil hydrophobicity: comparative study of usual determination methods

    Eduardo Saldanha Vogelmann

    2015-02-01

    Full Text Available Hydrophobic or water repellent soils slowly absorb water because of the low wett ability of the soil particles which are coated with hydrophobic organic substances. These pose significant effects on plant growth, water infiltration and retention, surface runoff and erosion. The objective of this study was to compare the performance of tension micro-infiltrometer(TMI and the water drop penetration time (WDPT methods in the determination of the hydrophobicity index of eighteen soils from southern Brazil. Soil samples were collected from the 0-5cm soil layer to determine particle size distribution, organic matter content, hydrophobicity index of soil aggregates and droplet penetration time of disaggregated and sieved soil samples. For the TMI method the soil samples were subjected to minor changes due to the use of macroaggregates to preserve the distribution of solid constituents in the soil. Due to the homogeneity of the soil samples the WDPT method gave smaller coefficients of variation unlike the TMI method where the soil structure is preserved. However, both methods had low coefficients of variation, and are thus effective for determining the soil hydrophobicity, especially when the log hydrophobicity index or log WDPT is >1.

  14. Deactivation and regeneration of refinery catalysts

    Furimsky, E.

    1979-08-01

    A discussion covers the mechanisms of catalyst aging, poisoning, coke deposition, and metals deposition; feedstock pretreatment to extend catalyst life; the effects of operating conditions; the effects of catalyst composition and structure on its stability; nonchemical deactivation processes; and methods of catalyst regeneration, including coke burn-off and solvent extraction.

  15. Increasing the lifetime of fuel cell catalysts

    Latsuzbaia, R.

    2015-01-01

    In this thesis, I discuss a novel idea of fuel cell catalyst regeneration to increase lifetime of the PEM fuel cell electrode/catalyst operation and, therefore, reduce the catalyst costs. As many of the catalyst degradation mechanisms are difficult to avoid, the regeneration is alternative option to

  16. Impeded solid state reactions and transformations in ceramic catalysts supports and catalysts

    Ernő E. Kiss

    2012-12-01

    Full Text Available Impeded chemical reactions and impeded polymorphous transformation in materials are discussed, as desired effects, for stabilization of ceramic catalyst supports and ceramic based catalysts. This paper gives a short overview about the possibilities of slowing down the aging processes in ceramic catalyst supports and catalysts. Special attention is given to alumina and titania based catalysts.

  17. Rare earth metals for automotive exhaust catalysts

    Shinjoh, Hirohumi

    2006-01-01

    The usage of rare earth metals for automotive exhaust catalysts is demonstrated in this paper. Rare earth metals have been widely used in automotive catalysts. In particular, three-way catalysts require the use of ceria compounds as oxygen storage materials, and lanthana as both a stabilizer of alumina and a promoter. The application for diesel catalysts is also illustrated. Effects of inclusion of rare earth metals in automotive catalysts are discussed

  18. Biomass processing over gold catalysts

    Simakova, Olga A; Murzin, Dmitry Yu

    2014-01-01

    The book describes the valorization of biomass-derived compounds over gold catalysts. Since biomass is a rich renewable feedstock for diverse platform molecules, including those currently derived from petroleum, the interest in various transformation routes has become intense. Catalytic conversion of biomass is one of the main approaches to improving the economic viability of biorefineries.  In addition, Gold catalysts were found to have outstanding activity and selectivity in many key reactions. This book collects information about transformations of the most promising and important compounds derived from cellulose, hemicelluloses, and woody biomass extractives. Since gold catalysts possess high stability under oxidative conditions, selective oxidation reactions were discussed more thoroughly than other critical reactions such as partial hydrogenation, acetalization, and isomerization. The influence of reaction conditions, the role of the catalyst, and the advantages and disadvantages of using gold are pre...

  19. Preparation of catalyst coated membrane by modified decal transfer method for proton exchange membrane fuel cell

    Indriyati; Irmawati, Y.; Prihandoko, B.

    2017-07-01

    A new catalyst coated membrane (CCM) was prepared by modified decal transfer method. A structure of ionomer/catalyst/carbon/substrate was used to facilitate the transfer of catalyst layer from decal substrate to the membrane at quite low hot-pressing temperature (120 °C) for 8 min. Several decal substrates were tested to select a proper substrate, namely PTFE cloth, PTFE film, aluminium foil, and OHP transparent sheet. The transfer degree of catalyst layer was estimated. Elemental analysis and SEM-mapping were performed to evaluate the residue, whereas contact angle measurement was conducted to characterize the hydrophobicity of decal substrates. The results showed that PTFE cloth and PFTE film transferred approximately 90% of catalyst layer onto the membrane, while the other two substrates were around 70%. Furthermore, the elemental analysis of the residue on the substrate revealed that it was mainly composed of carbon and fluorine for PTFE cloth and PTFE film. This result supports other findings that PTFE cloth and PTFE film are suitable as decal substrate at low temperature hot pressing for fabricating CCM.

  20. Catalyst evaluation for oxygen reduction reaction in concentrated phosphoric acid at elevated temperatures

    Hu, Yang; Jiang, Yiliang; Jensen, Jens Oluf; Cleemann, Lars N.; Li, Qingfeng

    2018-01-01

    Phosphoric acid is the common electrolyte for high-temperature polymer electrolyte fuel cells (HT-PEMFCs) that have advantages such as enhanced CO tolerance and simplified heat and water management. The currently used rotating disk electrode technique is limited to tests in dilute solutions at low temperatures and hence is not suitable for catalyst evaluation for HT-PEMFCs. In this study, we have designed and constructed a half-cell setup to measure the intrinsic activities of catalysts towards the oxygen reduction reaction (ORR) in conditions close to HT-PEMFC cathodes. By optimization of the hydrophobic characteristics of electrodes and the catalyst layer thickness, ORR activities of typical Pt/C catalysts are successfully measured in concentrated phosphoric acid at temperatures above 100 °C. In terms of mass-specific activities, the catalyst exhibits about two times higher activity in the half-cell electrode than that observed in fuel cells, indicating the feasibility of the technique as well as the potential for further improvement of fuel cell electrode performance.

  1. Improved gel electrophoresis matrix for hydrophobic protein separation and identification.

    Tokarski, Caroline; Fillet, Marianne; Rolando, Christian

    2011-03-01

    We propose an improved acrylamide gel for the separation of hydrophobic proteins. The separation strategy is based on the incorporation of N-alkylated and N,N'-dialkylated acrylamide monomers in the gel composition in order to increase hydrophobic interactions between the gel matrix and the membrane proteins. Focusing on the most efficient monomer, N,N'-dimethylacrylamide, the potentiality of the new matrix was evaluated on membrane proteins of the human colon HCT-116 cell line. Protein analysis was performed using an adapted analytical strategy based on FT-ICR tandem mass spectrometry. As a result of this comparative study, including advanced reproducibility experiments, more hydrophobic proteins were identified in the new gel (average GRAVY: -0.085) than in the classical gel (average GRAVY: -0.411). Highly hydrophobic peptides were identified reaching a GRAVY value up to 1.450, therefore indicating their probable locations in the membrane. Focusing on predicted transmembrane domains, it can be pointed out that 27 proteins were identified in the hydrophobic gel containing up to 11 transmembrane domains; in the classical gel, only 5 proteins containing 1 transmembrane domain were successfully identified. For example, multiple ionic channels and receptors were characterized in the hydrophobic gel such as the sodium/potassium channel and the glutamate or the transferrin receptors whereas they are traditionally detected using specific enrichment techniques such as immunoprecipitation. In total, membrane proteins identified in the classical gel are well documented in the literature, while most of the membrane proteins only identified on the hydrophobic gel have rarely or never been described using a proteomic-based approach. 2010 Elsevier Inc. All rights reserved.

  2. The innovation catalysts.

    Martin, Roger L

    2011-06-01

    A few years ago the software development company Intuit realized that it needed a new approach to galvanizing customers. The company's Net Promoter Score was faltering, and customer recommendations of new products were especially disappointing. Intuit decided to hold a two-day, off-site meeting for the company's top 300 managers with a focus on the role of design in innovation. One of the days was dedicated to a program called Design for Delight. The centerpiece of the day was a PowerPoint presentation by Intuit founder Scott Cook, who realized midway through that he was no Steve Jobs: The managers listened dutifully, but there was little energy in the room. By contrast, a subsequent exercise in which the participants worked through a design challenge by creating prototypes, getting feedback, iterating, and refining, had them mesmerized. The eventual result was the creation of a team of nine design-thinking coaches--"innovation catalysts"--from across Intuit who were made available to help any work group create prototypes, run experiments, and learn from customers. The process includes a "painstorm" (to determine the customer's greatest pain point), a "soljam" (to generate and then winnow possible solutions), and a "code-jam" (to write code "good enough" to take to customers within two weeks). Design for Delight has enabled employees throughout Intuit to move from satisfying customers to delighting them.

  3. Influence of hydrophobicity on the chemical treatments of graphene

    Rai, Krishna Bahadur; Khadka, Ishwor Bahadur; Kim, Eun Hye; Ahn, Sung Joon; Kim, Hyun Woo; Ahn, Joung Real

    2018-01-01

    The defect-free transfer of graphene grown by using chemical vapor deposition is essential for its applications to electronic devices. For the reduction of inevitable chemical residues, such as polar molecules and ionized impurities resulting from the transfer process, a hydrophobic polydimethyl-siloxane (PDMS) film was coated on a SiO2/Si wafer. The hydrophobic PDMS film resulted in fewer defects in graphene in comparison to a bare SiO2/Si wafer, as measured with Raman spectroscopy. We also studied the influence of the hydrophobic PDMS film on the chemical doping of graphene. Here, nitric acid (HNO3) was used to make p-type graphene. When graphene was transferred onto a SiO2/Si wafer coated with the hydrophobic PDMS film, fewer defects, compared to those in graphene transferred onto a bare SiO2/Si wafer, were created in grapheme by HNO3 as measured with Raman spectroscopy. The experiments suggest that when graphene is transferred onto a hydrophobic film, the number of defects created by chemical molecules can be reduced.

  4. Hydrophobic polymers for orodispersible films: a quality by design approach.

    Borges, Ana Filipa; Silva, Branca M A; Silva, Cláudia; Coelho, Jorge F J; Simões, Sérgio

    2016-10-01

    To develop orodispersible films (ODF) based on hydrophobic polymers with higher stability to ordinary environmental humidity conditions without compromising their fast disintegration time. A quality by design approach was applied to screen three different formulations each one based on a different hydrophobic polymer: polyvinyl acetate, methacrylate-based copolymer and shellac. The screening formulations were characterized regarding their mechanical properties, residual water content, disintegration time and appearance, in order to find a suitable ODF formulation according to established critical quality attributes. The selected critical process parameters for the selection of appropriate ODF formulations were the percentage of the different excipients and the plasticizer type. Three hydrophobic-based matrices with fast disintegration were developed. These were generically composed by a hydrophobic polymer, a stabilizer, a disintegrant and a plasticizer. It verified that the common components within the three different formulations behave differently depending on the system/chemical environment that they were included. It was shown that it is possible to develop oral films based on hydrophobic polymers with fast disintegration time, good texture and appearance, breaking a paradigm of the ODF research field.

  5. Hydrophobic core substitutions in calbindin D9k

    Kragelund, B B; Jönsson, M; Bifulco, G

    1998-01-01

    Hydrophobic core residues have a marked influence on the Ca2+-binding properties of calbindin D9k, even though there are no direct contacts between these residues and the bound Ca2+ ions. Eleven different mutants with substitutions in the hydrophobic core were produced, and their equilibrium Ca2+...... that the hydrophobic core residues promote Ca2+ binding both by contributing to the preformation of the Ca2+ sites in the apo state and by preferentially stabilizing the Ca2+-bound state.......Hydrophobic core residues have a marked influence on the Ca2+-binding properties of calbindin D9k, even though there are no direct contacts between these residues and the bound Ca2+ ions. Eleven different mutants with substitutions in the hydrophobic core were produced, and their equilibrium Ca2...... that the mutation causes only very minimal perturbations in the immediate vicinity of residue 61. Substitutions of alanines or glycines for bulky residues in the center of the core were found to have significant effects on both Ca2+ affinity and dissociation rates. These substitutions caused a reduction in affinity...

  6. Hydroprocessing catalysts utilization and regeneration schemes

    Furimsky, E.

    The catalyst reactor inventory represents an important part of the cost of hydroprocessing operation. The selection of a suitable catalyst and reactor is influenced by feedstock properties. Processes ensuring an uninterrupted operation during catalyst addition and withdrawal are preferred for processing high asphaltene and metal content feedstocks. The spent catalyst can be regenerated and returned to the operation if the extent of its deactivation is not high. The regeneration may be performed either in-situ or off-site. The former is suitable for fixed bed reactors whereas the catalyst from ebullated bed reactors must be regenerated off-site. The regeneration of spent catalysts heavily loaded with metals such as V, Ni and Fe may not be economic. Such catalysts may be suitable for metal reclamation. An environmentally safe method for catalyst disposal must be found if neither regeneration nor metal reclamation from spent catalysts can be performed.

  7. Hydrophobicity of silica thin films: The deconvolution and interpretation by Fourier-transform infrared spectroscopy

    Saputra, Riza Eka; Astuti, Yayuk; Darmawan, Adi

    2018-06-01

    This work investigated the synthesis of dimethoxydimethylsilane:tetraethoxysilane (DMDMS:TEOS) silica thin films as well as the effect of DMDMS:TEOS molar ratios and calcination temperature on hydrophobic properties of silica thin films and its correlation with the FTIR spectra behaviour. The silica thin films were synthesized by sol-gel method using combination of DMDMS and TEOS as silica precursors, ethanol as solvent and ammonia as catalyst, with DMDMS and TEOS molar ratio of 10:90, 25:75, 50:50, 75:25 and 90:10. The results showed that DMDMS:TEOS molar ratio had significant impact on the hydrophobic properties of silica thin films coated on a glass surface. Furthermore, the correlation between water contact angle (WCA) and DMDMS:TEOS molar ratio was found to be in a parabolic shape. Concurrently, the maximum apex of the parabola obtained was observed on the DMDMS:TEOS molar ratio of 50:50 for all calcination temperature. It was clearly observed that the silica xerogel exhibiting notable change in relative peak intensities showed FTIR peak splitting of υasymmetric Si-O-Si. To uncover what happened at the FTIR peak, the deconvolution was conducted in Gaussian approach. It was established that the changes in the Gaussian peak component were related to DMDMS:TEOS molar ratios and the calcination temperature that allowed us to tailor the DMDMS:TEOS silica polymer structure model based on the peak intensity ratios. With the increase of DMDMS:TEOS molar ratio, the ratio of (cyclic Si-O-Si)/(linear Si-O-Si) decreased, whilst the ratio of (C-H)/(linear Si-O-Si) increased. Both ratios intersected at DMDMS:TEOS molar ratio of 50:50 with contribution factor ratio of 1:16 and 1:50 for silica xerogel calcined at 300 °C and 500 °C respectively. The importance of this research is the DMDMS:TEOS molar ratio plays an important role in determining the hydrophobic properties of thin films.

  8. Hydrophobicity of silica thin films: The deconvolution and interpretation by Fourier-transform infrared spectroscopy.

    Saputra, Riza Eka; Astuti, Yayuk; Darmawan, Adi

    2018-03-14

    This work investigated the synthesis of dimethoxydimethylsilane:tetraethoxysilane (DMDMS:TEOS) silica thin films as well as the effect of DMDMS:TEOS molar ratios and calcination temperature on hydrophobic properties of silica thin films and its correlation with the FTIR spectra behaviour. The silica thin films were synthesized by sol-gel method using combination of DMDMS and TEOS as silica precursors, ethanol as solvent and ammonia as catalyst, with DMDMS and TEOS molar ratio of 10:90, 25:75, 50:50, 75:25 and 90:10. The results showed that DMDMS:TEOS molar ratio had significant impact on the hydrophobic properties of silica thin films coated on a glass surface. Furthermore, the correlation between water contact angle (WCA) and DMDMS:TEOS molar ratio was found to be in a parabolic shape. Concurrently, the maximum apex of the parabola obtained was observed on the DMDMS:TEOS molar ratio of 50:50 for all calcination temperature. It was clearly observed that the silica xerogel exhibiting notable change in relative peak intensities showed FTIR peak splitting of υ asymmetric Si-O-Si. To uncover what happened at the FTIR peak, the deconvolution was conducted in Gaussian approach. It was established that the changes in the Gaussian peak component were related to DMDMS:TEOS molar ratios and the calcination temperature that allowed us to tailor the DMDMS:TEOS silica polymer structure model based on the peak intensity ratios. With the increase of DMDMS:TEOS molar ratio, the ratio of (cyclic Si-O-Si)/(linear Si-O-Si) decreased, whilst the ratio of (C-H)/(linear Si-O-Si) increased. Both ratios intersected at DMDMS:TEOS molar ratio of 50:50 with contribution factor ratio of 1:16 and 1:50 for silica xerogel calcined at 300°C and 500°C respectively. The importance of this research is the DMDMS:TEOS molar ratio plays an important role in determining the hydrophobic properties of thin films. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness

    Zeng, Guanghong; Vad, Brian S; Dueholm, Morten S

    2015-01-01

    The success of Pseudomonas species as opportunistic pathogens derives in great part from their ability to form stable biofilms that offer protection against chemical and mechanical attack. The extracellular matrix of biofilms contains numerous biomolecules, and it has recently been discovered...... that in Pseudomonas one of the components includes β-sheet rich amyloid fibrils (functional amyloid) produced by the fap operon. However, the role of the functional amyloid within the biofilm has not yet been investigated in detail. Here we investigate how the fap-based amyloid produced by Pseudomonas affects biofilm...... hydrophobicity and mechanical properties. Using atomic force microscopy imaging and force spectroscopy, we show that the amyloid renders individual cells more resistant to drying and alters their interactions with hydrophobic probes. Importantly, amyloid makes Pseudomonas more hydrophobic and increases biofilm...

  10. Studies on recycling and utilization of spent catalysts. Preparation of active hydrodemetallization catalyst compositions from spent residue hydroprocessing catalysts

    Marafi, Meena; Stanislaus, Antony [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat (Kuwait)

    2007-02-15

    Spent catalysts form a major source of solid wastes in the petroleum refining industries. Due to environmental concerns, increasing emphasis has been placed on the development of recycling processes for the waste catalyst materials as much as possible. In the present study the potential reuse of spent catalysts in the preparation of active new catalysts for residual oil hydrotreating was examined. A series of catalysts were prepared by mixing and extruding spent residue hydroprocessing catalysts that contained C, V, Mo, Ni and Al{sub 2}O{sub 3} with boehmite in different proportions. All prepared catalysts were characterized by chemical analysis and by surface area, pore volume, pore size and crushing strength measurements. The hydrodesulfurization (HDS) and hydrodemetallization (HDM) activities of the catalysts were evaluated by testing in a high pressure fixed-bed microreactor unit using Kuwait atmospheric residue as feed. A commercial HDM catalyst was also tested under similar operating conditions and their HDS and HDM activities were compared with that of the prepared catalysts. The results revealed that catalyst prepared with addition of up to 40 wt% spent catalyst to boehmite had fairly high surface area and pore volume together with large pores. The catalyst prepared by mixing and extruding about 40 wt% spent catalyst with boehmite was relatively more active for promoting HDM and HDS reactions than a reference commercial HDM catalyst. The formation of some kind of new active sites from the metals (V, Mo and Ni) present in the spent catalyst is suggested to be responsible for the high HDM activity of the prepared catalyst. (author)

  11. Driving force for hydrophobic interaction at different length scales.

    Zangi, Ronen

    2011-03-17

    We study by molecular dynamics simulations the driving force for the hydrophobic interaction between graphene sheets of different sizes down to the atomic scale. Similar to the prediction by Lum, Chandler, and Weeks for hard-sphere solvation [J. Phys. Chem. B 1999, 103, 4570-4577], we find the driving force to be length-scale dependent, despite the fact that our model systems do not exhibit dewetting. For small hydrophobic solutes, the association is purely entropic, while enthalpy favors dissociation. The latter is demonstrated to arise from the enhancement of hydrogen bonding between the water molecules around small hydrophobes. On the other hand, the attraction between large graphene sheets is dominated by enthalpy which mainly originates from direct solute-solute interactions. The crossover length is found to be inside the range of 0.3-1.5 nm(2) of the surface area of the hydrophobe that is eliminated in the association process. In the large-scale regime, different thermodynamic properties are scalable with this change of surface area. In particular, upon dimerization, a total and a water-induced stabilization of approximately 65 and 12 kJ/mol/nm(2) are obtained, respectively, and on average around one hydrogen bond is gained per 1 nm(2) of graphene sheet association. Furthermore, the potential of mean force between the sheets is also scalable except for interplate distances smaller than 0.64 nm which corresponds to the region around the barrier for removing the last layer of water. It turns out that, as the surface area increases, the relative height of the barrier for association decreases and the range of attraction increases. It is also shown that, around small hydrophobic solutes, the lifetime of the hydrogen bonds is longer than in the bulk, while around large hydrophobes it is the same. Nevertheless, the rearrangement of the hydrogen-bond network for both length-scale regimes is slower than in bulk water. © 2011 American Chemical Society

  12. Super-Hydrophobic Green Corrosion Inhibitor On Carbon Steel

    Hassan, H.; Ismail, A.; Ahmad, S.; Soon, C. F.

    2017-06-01

    There are many examples of organic coatings used for corrosion protection. In particular, hydrophobic and super-hydrophobic coatings are shown to give good protection because of their enhanced ability to slow down transport of water and ions through the coating. The purpose of this research is to develop water repellent coating to avoid direct contact between metal and environment corrosive and mitigate corrosion attack at pipeline system. This water repellent characteristic on super-hydrophobic coating was coated by electrodeposition method. Wettability of carbon steel with super-hydrophobic coating (cerium chloride and myristic acid) and oxidized surface was investigated through contact angle and inhibitor performance test. The inhibitor performance was studied in 25% tannin acid corrosion test at 30°C and 3.5% sodium chloride (NaCl). The water contact angle test was determined by placing a 4-μL water droplet of distilled water. It shows that the wettability of contact angle super-hydrophobic with an angle of 151.60° at zero minute can be classified as super-hydrophobic characteristic. By added tannin acid as inhibitor the corrosion protection on carbon steel becomes more consistent. This reveals that the ability of the coating to withstand with the corrosion attack in the seawater at different period of immersions. The results elucidate that the weight loss increased as the time of exposure increased. However, the corrosion rates for uncoated carbon steel is high compared to coated carbon steel. As a conclusion, from both samples it can be seen that the coated carbon steel has less corrosion rated compared to uncoated carbon steel and addition of inhibitor to the seawater provides more protection to resist corrosion attack on carbon steel.

  13. Intercalation of small hydrophobic molecules in lipid bilayers containing cholesterol

    Worcester, D.L.; Hamacher, K.; Kaiser, H.; Kulasekere, R.; Torbet, J. [Univ. of Missouri, Columbia, MO (United States)

    1994-12-31

    Partitioning of small hydrophobic molecules into lipid bilayers containing cholesterol has been studied using the 2XC diffractometer at the University of Missouri Research Reactor. Locations of the compounds were determined by Fourier difference methods with data from both deuterated and undeuterated compounds introduced into the bilayers from the vapor phase. Data fitting procedures were developed for determining how well the compounds were localized. The compounds were found to be localized in a narrow region at the center of the hydrophobic layer, between the two halves of the bilayer. The structures are therefore intercalated structures with the long axis of the molecules in the plane of the bilayer.

  14. Radiation-induced changes in membrane hydrophobicity in liposomes

    Nakazawa, Tohru; Nagatsuka, Shinichiro; Yukawa, Osami

    1985-01-01

    Effects of γ-radiation on the physical state of membranes were examined with liposomes of lecithin (phosphatidylcholine) from soybean and rat liver microsomes using spin labeling method. There was a slight increase in the membrane fluidity after irradiation. However, a marked decrease in the membrane hydrophobicity by irradiation was observed in the peripheral region in both types of membranes, in parallel with an increase in the lipid peroxidation. These results suggest that irradiation mainly causes a decrease in the membrane hydrophobicity through lipid peroxidation. (author)

  15. Intercalation of small hydrophobic molecules in lipid bilayers containing cholesterol

    Worcester, D.L.; Hamacher, K.; Kaiser, H.; Kulasekere, R.; Torbet, J.

    1994-01-01

    Partitioning of small hydrophobic molecules into lipid bilayers containing cholesterol has been studied using the 2XC diffractometer at the University of Missouri Research Reactor. Locations of the compounds were determined by Fourier difference methods with data from both deuterated and undeuterated compounds introduced into the bilayers from the vapor phase. Data fitting procedures were developed for determining how well the compounds were localized. The compounds were found to be localized in a narrow region at the center of the hydrophobic layer, between the two halves of the bilayer. The structures are therefore intercalated structures with the long axis of the molecules in the plane of the bilayer

  16. Hydrophobic ampersand hydrophilic: Theoretical models of solvation for molecular biophysics

    Pratt, L.R.; Tawa, G.J.; Hummer, G.; Garcia, A.E.; Corcelli, S.A.

    1996-01-01

    Molecular statistical thermodynamic models of hydration for chemistry and biophysics have advanced abruptly in recent years. With liquid water as solvent, salvation phenomena are classified as either hydrophobic or hydrophilic effects. Recent progress in treatment of hydrophilic effects have been motivated by continuum dielectric models interpreted as a modelistic implementation of second order perturbation theory. New results testing that perturbation theory of hydrophilic effects are presented and discussed. Recent progress in treatment of hydrophobic effects has been achieved by applying information theory to discover models of packing effects in dense liquids. The simplest models to which those ideas lead are presented and discussed

  17. Artificial hairy surfaces with a nearly perfect hydrophobic response.

    Hsu, Shu-Hau; Sigmund, Wolfgang M

    2010-02-02

    A nearly perfect hydrophobic interface by dint of mimicking hairs of arthropods was achieved for the first time. These Gamma-shape artificial hairs were made via a membrane casting technique on polypropylene substrates. This extreme hydrophobicity merely arises from microstructure modification, and no further chemical treatments are needed. The ultralow adhesion to water droplets was evaluated through video assessment, and it is believed to be attributed to the mechanical response of the artificial hairs. The principle of this fabrication technique is accessible and is expected to be compatible with large-area fabrication of superhydrophobic interfaces.

  18. Adsorption of Hydrophobically Modified Polyelectrolytes on Hydrophobic Substrates Adsorption de polyélectrolytes modifiés hydrophobiquement sur les substrats hydrophobes

    Mays J. W.

    2006-12-01

    Full Text Available A series of diblock copolymers, poly (tert-butyl styrene-sodium poly (styrene sulfonate with different molecular weight and percentage of sulfonation have been used to study the effect of polymer structure on its adsorption behavior onto hydrophobically modified silicon wafers. The percentage of the hydrophobic block varies from 3. 6-8. 9%. Previous studies show that salt concentration is very important for the adsorption of such polyelectrolytes onto silica surfaces. Octadecyltriethoxysilane (OTE has been used to modify the silicon wafer which changes the water contact angle from 50° on unmodified silica to 100° to 120°. On this hydrophobic surface, we found that the adsorption of these slightly hydrophobically modified polyelectrolytes is close to the 4/23rd power of salt concentration predicted by a recent model. The grafting density is also consistent with a dependence on the length of the hydrophobic block to the -12/23rd power, and the length of the polyelectrolyte block to the -6/23rd power, predicted by this model. Une série de copolymères à diblocs poly (tert-butyle styrène-sodium (sulfonate de polystyrène de masses moléculaires et pourcentages de sulfonation différents ont été utilisés pour étudier les effets de la structure du polymère sur son pouvoir d'adsorption sur des surfaces de silicium modifiées hydrophobiquement. Le pourcentage du bloc hydrophobe varie de 3,6 à 8,9%. Les études antérieures montrent que la concentration saline est très importante pour l'adsorption de ces polyélectrolytes sur les surfaces de silice. Nous avons utilisé l'octadecyltriéthoxysilane (OTE pour modifier la surface de silicium qui change l'angle de contact de l'eau de 50° sur la silice non modifiée à une valeur comprise entre 100° et 120° sur la silice modifiée. Sur cette surface hydrophobe, nous constatons que l'adsorption de ces polyélectrolytes légèrement modifiés hydrophobiquement est proche de la loi puissance 4

  19. Regeneration of Hydrotreating and FCC Catalysts

    CM Wai; JG Frye; JL Fulton; LE Bowman; LJ Silva; MA Gerber

    1999-09-30

    Hydrotreating, hydrocracking, and fluid catalytic cracking (FCC) catalysts are important components of petroleum refining processes. Hydrotreating and hydrocracking catalysts are used to improve the yield of high-quality light oil fractions from heavier crude oil and petroleum feedstocks containing high levels of impurities. FCC catalysts improve the yield of higher octane gasoline from crude oil. Residuum hydrotreating and cracking catalysts are susceptible to irreversible deactivation caused by adsorption of sulfur and by metals impurities, such as vanadium and nickel. The gradual buildup of these impurities in a hydrotreating catalyst eventually plugs the pores and deactivates it. Nickel and vanadium adversely affect the behavior of cracking catalysts, reducing product yield and quality. Replacing deactivated catalysts represents a significant cost in petroleum refining. Equally important are the costs and potential liabilities associated with treating and disposing spent catalysts. For example, recent US Environmental Protection Agency rulings have listed spent hydrotreating and hydrorefining catalysts as hazardous wastes. FCC catalysts, though more easily disposed of as road-base or as filler in asphalt and cement, are still an economic concern mainly because of the large volumes of spent catalysts generated. New processes are being considered to increase the useful life of catalysts or for meeting more stringent disposal requirements for spent catalysts containing metals. This report discusses a collaborative effort between Pacific Northwest National Laboratory (PNNL) and Phillips Petroleum, Inc., to identify promising chemical processes for removing metals adhered to spent hydrodesulfurization (HDS, a type of hydrotreating catalyst) and FCC catalysts. This study, conducted by PNNL, was funded by the US Department of Energy's Bartlesville Project Office. Fresh and spent catalysts were provided by Phillips Petroleum. The FCC catalyst was a rare

  20. Coking of residue hydroprocessing catalysts

    Gray, M.R.; Zhao, Y.X. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical Engineering; McKnight, C.A. [Syncrude Canada Ltd., Edmonton, AB (Canada); Komar, D.A.; Carruthers, J.D. [Cytec Industries Inc., Stamford, CT (United States)

    1997-11-01

    One of the major causes of deactivation of Ni/Mo and Co/Mo sulfide catalysts for hydroprocessing of heavy petroleum and bitumen fractions is coke deposition. The composition and amount of coke deposited on residue hydroprocessing catalysts depends on the composition of the liquid phase of the reactor. In the Athabasca bitumen, the high molecular weight components encourage coke deposition at temperatures of 430 to 440 degrees C and at pressures of 10 to 20 MPa hydrogen pressure. A study was conducted to determine which components in the heavy residual oil fraction were responsible for coking of catalysts. Seven samples of Athabasca vacuum residue were prepared by supercritical fluid extraction with pentane before being placed in the reactor. Carbon content and hydrodesulfurization activity was measured. It was concluded that the deposition of coke depended on the presence of asphaltenes and not on other compositional variables such as content of nitrogen, aromatic carbon or vanadium.

  1. Catalyst containing oxygen transport membrane

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  2. One-pot synthesis of Au@SiO2 catalysts: A click chemistry approach

    Solovyeva, Vera A.

    2014-10-13

    Using the copper-catalyzed azide-alkyne cycloaddition "click" reaction, a library of triazole amphiphiles with a variety of functional polar "heads" and hydrophobic or superhydrophobic "tails" was synthesized. The amphiphiles were evaluated for their ability to stabilize small Au nanoparticles, and, at the same time, serve as templates for nanocasting porous SiO2. One of the Au@SiO2 materials thus prepared was found to be a highly active catalyst for the Au nanoparticle-catalyzed regioselective hydroamination of alkynes.

  3. One-pot synthesis of Au@SiO2 catalysts: A click chemistry approach

    Solovyeva, Vera A.; Vu, Khanh B.; Merican, Zulkifli; Sougrat, Rachid; Rodionov, Valentin O.

    2014-01-01

    Using the copper-catalyzed azide-alkyne cycloaddition "click" reaction, a library of triazole amphiphiles with a variety of functional polar "heads" and hydrophobic or superhydrophobic "tails" was synthesized. The amphiphiles were evaluated for their ability to stabilize small Au nanoparticles, and, at the same time, serve as templates for nanocasting porous SiO2. One of the Au@SiO2 materials thus prepared was found to be a highly active catalyst for the Au nanoparticle-catalyzed regioselective hydroamination of alkynes.

  4. exchanged Mg-Al hydrotalcite catalyst

    ) catalysts, ... The catalyst can be easily separated by simple filtration ... surface area by the single-point N2 adsorption method ... concentration of carbonate anions (by treating the cat- .... hydrotalcite phase along with copper hydroxide and.

  5. Use of lanthanide catalysts in air electrodes

    Souza Parente, L.T. de

    1982-01-01

    A review on the lanthanide catalysts suitable for the reduction catalysis of oxygen in air electrodes is presented. The kinds of lanthanide indicated to be used as catalysts of oxygen reduction are shown. (A.R.H.) [pt

  6. Catalyst for Decomposition of Nitrogen Oxides

    Schryer, David R. (Inventor); Jordan, Jeffrey D. (Inventor); Akyurtlu, Ates (Inventor); Akyurtlu, Jale (Inventor)

    2015-01-01

    This invention relates generally to a platinized tin oxide-based catalyst. It relates particularly to an improved platinized tin oxide-based catalyst able to decompose nitric oxide to nitrogen and oxygen without the necessity of a reducing gas.

  7. Polymer-bound rhodium hydroformylation catalysts

    Jongsma, Tjeerd

    1992-01-01

    Homogeneous catalysts are superior in activity, selectivity as well as specificity, but heterogeneous catalyst are often preferred in industrial processes, because of their good recoverability and their applicability in continuous flow reactors. It would be of great environmental, commercial and

  8. Novel Fischer-Tropsch catalysts. [DOE patent

    Vollhardt, K.P.C.; Perkins, P.

    Novel compounds are described which are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO + H/sub 2/ to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  9. A novel magnetically recyclable heterogeneous catalyst

    propanesultone. 1. Introduction ... O. Scheme 2. The reaction of benzaldehyde with 1-phenyl-3- ... (2 mmol), catalyst (2 mol%, except for entries 7 and 9), room temperature. bCatalyst = 1 .... The electronic supporting information can be seen in.

  10. Rhenium Nanochemistry for Catalyst Preparation

    Vadim G. Kessler

    2012-08-01

    Full Text Available The review presents synthetic approaches to modern rhenium-based catalysts. Creation of an active center is considered as a process of obtaining a nanoparticle or a molecule, immobilized within a matrix of the substrate. Selective chemical routes to preparation of particles of rhenium alloys, rhenium oxides and the molecules of alkyltrioxorhenium, and their insertion into porous structure of zeolites, ordered mesoporous MCM matrices, anodic mesoporous alumina, and porous transition metal oxides are considered. Structure-property relationships are traced for these catalysts in relation to such processes as alkylation and isomerization, olefin metathesis, selective oxidation of olefins, methanol to formaldehyde conversion, etc.

  11. Hydrothermal performance of catalyst supports

    Elam, Jeffrey W.; Marshall, Christopher L.; Libera, Joseph A.; Dumesic, James A.; Pagan-Torres, Yomaira J.

    2018-04-10

    A high surface area catalyst with a mesoporous support structure and a thin conformal coating over the surface of the support structure. The high surface area catalyst support is adapted for carrying out a reaction in a reaction environment where the thin conformal coating protects the support structure within the reaction environment. In various embodiments, the support structure is a mesoporous silica catalytic support and the thin conformal coating comprises a layer of metal oxide resistant to the reaction environment which may be a hydrothermal environment.

  12. Quick Guide to Flash Catalyst

    Elmansy, Rafiq

    2011-01-01

    How do you transform user interface designs created in Photoshop or Illustrator into interactive web pages? It's easier than you think. This guide shows you how to use Adobe Flash Catalyst to create interactive UIs and website wireframes for Rich Internet Applications-without writing a single line of code. Ideal for web designers, this book introduces Flash Catalyst basics with detailed step-by-step instructions and screenshots that illustrate every part of the process. You'll learn hands-on how to turn your static design or artwork into working user interfaces that can be implemented in Fla

  13. Development of the advanced nuclear materials -A study on the polymer catalyst process technology-

    Kook, Il Hyun; Jung, Heung Suk; Lee, Han Soo; An, Doh Heui; Kang, Heui Suk; Baek, Seung Woo; Lee, Sung Hoh; Sung, Kee Woong; Kim, Kwang Lak; Kim, Jong Hoh; Koo, Je Hyoo; Park, Tae Keun; Kim, Sang Hwan; Yoo, Ryong; Song, Myung Jae; Son, Soon Hwan; Choi, Jung Kil; Lee, Jae Choon; Jung, Moon Kyoo

    1995-07-01

    Heavy water is used as moderator and coolant in pressurized heavy water power plants. According to the governmental long-term plan for power supply, Korea is scheduled to construct new four pressurized heavy water power plants till the year 2006. Total heavy water make-up for these plants would be 22 Mg/a from the year 2006. Reformed hydrogen processes is considered best suited to Korea. Hydrophobic catalysts for this process were manufactured and the performance of hydrogen isotope exchange was investigated. The overall mass transfer coefficients varied between 0.004 and 2.295 m3 HD/m3 Bed.sec. and heavy water separation processes using the catalysts were optimized. 66 figs, 62 tabs, 19 refs. (Author)

  14. Bio-dissolution of Ni, V and Mo from spent petroleum catalyst using iron oxidizing bacteria.

    Pradhan, Debabrata; Kim, Dong J; Roychaudhury, Gautam; Lee, Seoung W

    2010-01-01

    Bioleaching studies of spent petroleum catalyst containing Ni, V and Mo were carried out using iron oxidizing bacteria. Various leaching parameters such as Fe(II) concentration, pulp density, pH, temperature and particle size were studied to evaluate their effects on the leaching efficiency as well as the kinetics of dissolution. The percentage of leaching of Ni and V were higher than Mo. The leaching process followed a diffusion controlled model and the product layer was observed to be impervious due to formation of ammonium jarosite (NH(4))Fe(3)(SO(4))(2)(OH)(6). Apart from this, the lower leaching efficiency of Mo was due to a hydrophobic coating of elemental sulfur over Mo matrix in the spent catalyst. The diffusivities of the attacking species for Ni, V and Mo were also calculated.

  15. Functionalized Natural Carbon-Supported Nanoparticles as Excellent Catalysts for Hydrocarbon Production.

    Sun, Jian; Guo, Lisheng; Ma, Qingxiang; Gao, Xinhua; Yamane, Noriyuki; Xu, Hengyong; Tsubaki, Noritatsu

    2017-02-01

    We report a one-pot and eco-friendly synthesis of carbon-supported cobalt nanoparticles, achieved by carbonization of waste biomass (rice bran) with a cobalt source. The functionalized biomass provides carbon microspheres as excellent catalyst support, forming a unique interface between hydrophobic and hydrophilic groups. The latter, involving hydroxyl and amino groups, can catch much more active cobalt nanoparticles on surface for Fischer-Tropsch synthesis than chemical carbon. The loading amount of cobalt on the final catalyst is much higher than that prepared with a chemical carbon source, such as glucose. The proposed concept of using a functionalized natural carbon source shows great potential compared with conventional carbon sources, and will be meaningful for other fields concerning carbon support, such as heterogeneous catalysis or electrochemical fields. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Development of the advanced nuclear materials -A study on the polymer catalyst process technology-

    Kook, Il Hyun; Jung, Heung Suk; Lee, Han Soo; An, Doh Heui; Kang, Heui Suk; Baek, Seung Woo; Lee, Sung Hoh; Sung, Kee Woong; Kim, Kwang Lak; Kim, Jong Hoh; Koo, Je Hyoo; Park, Tae Keun; Kim, Sang Hwan; Yoo, Ryong; Song, Myung Jae; Son, Soon Hwan; Choi, Jung Kil; Lee, Jae Choon; Jung, Moon Kyoo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Heavy water is used as moderator and coolant in pressurized heavy water power plants. According to the governmental long-term plan for power supply, Korea is scheduled to construct new four pressurized heavy water power plants till the year 2006. Total heavy water make-up for these plants would be 22 Mg/a from the year 2006. Reformed hydrogen processes is considered best suited to Korea. Hydrophobic catalysts for this process were manufactured and the performance of hydrogen isotope exchange was investigated. The overall mass transfer coefficients varied between 0.004 and 2.295 m3 HD/m3 Bed.sec. and heavy water separation processes using the catalysts were optimized. 66 figs, 62 tabs, 19 refs. (Author).

  17. Paraffin Alkylation Using Zeolite Catalysts in a slurry reactor: Chemical Engineering Principles to Extend Catalyst Lifetime

    Jong, K.P. de; Mesters, C.M.A.M.; Peferoen, D.G.R.; Brugge, P.T.M. van; Groot, C. de

    1996-01-01

    The alkylation of isobutane with 2-butene is carried out using a zeolitic catalyst in a well stirred slurry reactor. Whereas application of fixed bed technology using a solid acid alkylation catalyst has in the led to catalysts lifetimes in the range of minutes, in this work we report catalyst

  18. Photoinduced hydrophobic surface of graphene oxide thin films

    Zhang Xiaoyan; Song Peng; Cui Xiaoli

    2012-01-01

    Graphene oxide (GO) thin films were deposited on transparent conducting oxide substrates and glass slides by spin coating method at room temperature. The wettability of GO thin films before and after ultraviolet (UV) irradiation was characterized with water contact angles, which increased from 27.3° to 57.6° after 3 h of irradiation, indicating a photo-induced hydrophobic surface. The UV–vis absorption spectra, Raman spectroscopy, X-ray photoelectron spectroscopy, and conductivity measurements of GO films before and after UV irradiation were taken to study the mechanism of photoinduced hydrophobic surface of GO thin films. It is demonstrated that the photoinduced hydrophobic surface is ascribed to the elimination of oxygen-containing functional groups on GO molecules. This work provides a simple strategy to control the wettability properties of GO thin films by UV irradiation. - Highlights: ► Photoinduced hydrophobic surface of graphene oxide thin films has been demonstrated. ► Elimination of oxygen-containing functional groups in graphene oxide achieved by UV irradiation. ► We provide novel strategy to control surface wettability of GO thin films by UV irradiation.

  19. Hydrophobic Ice Confined between Graphene and MoS2

    Bampoulis, Pantelis; Teernstra, V.J.; Lohse, Detlef; Zandvliet, Henricus J.W.; Poelsema, Bene

    2016-01-01

    The structure and nature of water confined between hydrophobic molybdenum disulfide (MoS2) and graphene (Gr) are investigated at room temperature by means of atomic force microscopy. We find the formation of two-dimensional (2D) crystalline ice layers. In contrast to the hexagonal ice “bilayers” of

  20. Toward a Simple Molecular Theory of Hydrophobic Hydration.

    Jirsák, Jan; Škvor, J.; Nezbeda, Ivo

    2014-01-01

    Roč. 189, SI (2014), s. 13-19 ISSN 0167-7322 R&D Projects: GA AV ČR IAA200760905 Institutional support: RVO:67985858 Keywords : perturbation theory * primitive models * hydrophobic hydration Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.515, year: 2014

  1. Water structure near single and multi-layer nanoscopic hydrophobic ...

    Wintec

    We have performed a series of molecular dynamics simulations of water containing two nano- scopic hydrophobic ..... the simulation for l00 ps for equilibration during which ... was further run for a production phase of 100–200 ps depending on ...

  2. Effect of photocatalytic and hydrophobic coatings on brewery surface microorganisms.

    Priha, O; Laakso, J; Tapani, K; Levänen, E; Kolari, M; Mäntylä, T; Storgårds, E

    2011-11-01

    The aim of this study was to determine whether process hygiene in the beverage industry could be improved by applying new coating techniques to process surfaces. Photocatalytic titanium dioxide (TiO(2)) and hydrophobic coatings applied to stainless steel with or without added antimicrobial compounds were studied in laboratory attachment tests and in a 15-month process study. No clear reductions in numbers of attached microbes were obtained with photocatalytic coatings, except for coatings to which silver had been added. These TiO(2)+Ag coatings reduced microbial coverage in laboratory studies and in some process samples. Hydrophobic coatings reduced the area coverage of microorganisms in 4-h laboratory studies but did not affect colony counts in laboratory or process studies. The surfaces had changed from hydrophobic into hydrophilic during the process study. The coatings did not mechanically fully withstand process conditions; part of the hydrophobic coatings had peeled off, most of the precipitated Ag had dissolved, and some of the TiO(2) coatings were damaged. In conclusion, functional coatings have potential for reducing microbial loads on beverage industry surfaces, but these coatings need further development.

  3. Are N-methyl groups of Tetramethylurea (TMU) Hydrophobic? A ...

    of three dimensional tetrahedral H-bond network to two dimensional zig-zag chain-like structure often found in alcohols. A comparison to ... All these results indicate hydrophobic interaction-induced aggregation of TMU in dilute aqueous solutions which .... off by gently blowing hot air around the outer surface of the cuvette.

  4. Production of hydrophobic amino acids from biobased resources

    Widyarani, W.; Sari, Yessie W.; Ratnaningsih, Enny; Sanders, Johan P.M.; Bruins, Marieke E.

    2016-01-01

    Protein hydrolysis enables production of peptides and free amino acids that are suitable for usage in food and feed or can be used as precursors for bulk chemicals. Several essential amino acids for food and feed have hydrophobic side chains; this property may also be exploited for subsequent

  5. Development of breathable hydrophobic/hydrophilic functional textiles

    Agrawal, P. (Pramod); Brink, G.J. (Ger)

    2013-01-01

    The proposed bi-functional protective structure intended to have hydrophilic interior towards the skin surface and hydrophobic exterior for protection, ensuring fast transfer of moisture between body and external environment. The sandwich structure is prepared using 100% wool jersey and varieties of

  6. Nanocarriers from GRAS Zein Proteins to Encapsulate Hydrophobic Actives.

    Weissmueller, Nikolas T; Lu, Hoang D; Hurley, Amanda; Prud'homme, Robert K

    2016-11-14

    One factor limiting the expansion of nanomedicines has been the high cost of the materials and processes required for their production. We present a continuous, scalable, low cost nanoencapsulation process, Flash Nanoprecipitation (FNP) that enables the production of nanocarriers (NCs) with a narrow size distribution using zein corn proteins. Zein is a low cost, GRAS protein (having the FDA status of "Generally Regarded as Safe") currently used in food applications, which acts as an effective encapsulant for hydrophobic compounds using FNP. The four-stream FNP configuration allows the encapsulation of very hydrophobic compounds in a way that is not possible with previous precipitation processes. We present the encapsulation of several model active compounds with as high as 45 wt % drug loading with respect to zein concentration into ∼100 nm nanocarriers. Three examples are presented: (1) the pro-drug antioxidant, vitamin E-acetate, (2) an anticholera quorum-sensing modulator CAI-1 ((S)-3-hydroxytridecan-4-one; CAI-1 that reduces Vibrio cholerae virulence by modulating cellular communication), and (3) hydrophobic fluorescent dyes with a range of hydrophobicities. The specific interaction between zein and the milk protein, sodium caseinate, provides stabilization of the NCs in PBS, LB medium, and in pH 2 solutions. The stability and size changes in the three media provide information on the mechanism of assembly of the zein/active/casein NC.

  7. Incorporation of Certain Hydrophobic Excipients in the Core of Melt ...

    Patrick Erah

    incorporation of hydrophobic materials (talc or magnesium stearate) in the core of such granules may further retard .... (500mg) was filled into a capsule shell and ... of the drug particles. The effect of melt granulation on the release profiles of paracetamol is shown in Fig 1. The melt granulations displayed a retarded release.

  8. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces

    Boks, N.P.; Norde, W.; Meil, H.C.; Busscher, H.J.

    2008-01-01

    Using a parallel-plate flow chamber, the hydrodynamic shear forces to prevent bacterial adhesion (F-prev) and to detach adhering bacteria (F-det) were evaluated for hydrophilic glass, hydrophobic, dimethyldichlorosilane (DDS)-coated glass and six different bacterial strains, in order to test the

  9. The Ligand Substitution Reactions of Hydrophobic Vitamin B12 ...

    South African Journal of Chemistry ... The equilibrium constants, K, for the reaction of five-membered heterocyclic nitrogenous bases (the azoles imidazole, pyrazole and 1,2,4-triazole) with displacement of ... Keywords: Hydrophobic vitamin B12, cobalt corrinoids, equilibrium constants, solvent polarity, trans influence.

  10. Rare behaviour of a catalyst pellet catalyst dynamics

    Westerterp, K.R.; Loonen, R.A.; Martens, A.

    1986-01-01

    Temperature overshoots and undershoots were found for a Pd on alumina catalyst pellet in its course towards a new steady state after a change in concentration of one of the reactants ethylene or hydrogen. When cooling the pellet, after heat-up by reaction, with pure hydrogen a sudden temperature

  11. Colloidal nanoparticles as catalysts and catalyst precursors for nitrite hydrogenation

    Zhao, Yingnan

    2015-01-01

    The most distinguished advantage to use colloidal methods for catalyst preparation is that the size and the shape of nanoparticles can be manipulated easily under good control, which is normally difficult to achieve by using traditional methods, such as impregnation and precipitation. This

  12. Rhizosphere hydrophobicity: A positive trait in the competition for water.

    Zeppenfeld, Thorsten; Balkenhol, Niko; Kóvacs, Kristóf; Carminati, Andrea

    2017-01-01

    The ability to acquire water from the soil is a major driver in interspecific plant competition and it depends on several root functional traits. One of these traits is the excretion of gel-like compounds (mucilage) that modify physical soil properties. Mucilage secreted by roots becomes hydrophobic upon drying, impedes the rewetting of the soil close to the root, the so called rhizosphere, and reduces water availability to plants. The function of rhizosphere hydrophobicity is not easily understandable when looking at a single plant, but it may constitute a competitive advantage at the ecosystem level. We hypothesize that by making the top soil hydrophobic, deep-rooted plants avoid competititon with shallow-rooted plants. To test this hypothesis we used an individual-based model to simulate water uptake and growth of two virtual plant species, one deep-rooted plant capable of making the soil hydrophobic and a shallow-rooted plant. We ran scenarios with different precipitation regimes ranging from dry to wet (350, 700, and 1400 mm total annual precipitation) and from high to low precipitation frequencies (1, 7, and 14 days). Plant species abundance and biomass were chosen as indicators for competitiveness of plant species. At constant precipitation frequency mucilage hydrophobicity lead to a benefit in biomass and abundance of the tap-rooted population. Under wet conditions this effect diminished and tap-rooted plants were less productive. Without this trait both species coexisted. The effect of root exudation trait remained constant under different precipitation frequencies. This study shows that mucilage secretion is a competitive trait for the acquisition of water. This advantage is achieved by the modification of the soil hydraulic properties and specifically by inducing water repellency in soil regions which are shared with other species.

  13. Rhizosphere hydrophobicity: A positive trait in the competition for water.

    Thorsten Zeppenfeld

    Full Text Available The ability to acquire water from the soil is a major driver in interspecific plant competition and it depends on several root functional traits. One of these traits is the excretion of gel-like compounds (mucilage that modify physical soil properties. Mucilage secreted by roots becomes hydrophobic upon drying, impedes the rewetting of the soil close to the root, the so called rhizosphere, and reduces water availability to plants. The function of rhizosphere hydrophobicity is not easily understandable when looking at a single plant, but it may constitute a competitive advantage at the ecosystem level. We hypothesize that by making the top soil hydrophobic, deep-rooted plants avoid competititon with shallow-rooted plants. To test this hypothesis we used an individual-based model to simulate water uptake and growth of two virtual plant species, one deep-rooted plant capable of making the soil hydrophobic and a shallow-rooted plant. We ran scenarios with different precipitation regimes ranging from dry to wet (350, 700, and 1400 mm total annual precipitation and from high to low precipitation frequencies (1, 7, and 14 days. Plant species abundance and biomass were chosen as indicators for competitiveness of plant species. At constant precipitation frequency mucilage hydrophobicity lead to a benefit in biomass and abundance of the tap-rooted population. Under wet conditions this effect diminished and tap-rooted plants were less productive. Without this trait both species coexisted. The effect of root exudation trait remained constant under different precipitation frequencies. This study shows that mucilage secretion is a competitive trait for the acquisition of water. This advantage is achieved by the modification of the soil hydraulic properties and specifically by inducing water repellency in soil regions which are shared with other species.

  14. Catalysts and methods of using the same

    Slowing, Igor Ivan; Kandel, Kapil

    2017-02-14

    The present invention provides a catalyst including a mesoporous silica nanoparticle and a catalytic material comprising iron. In various embodiments, the present invention provides methods of using and making the catalyst. In some examples, the catalyst can be used to hydrotreat fatty acids or to selectively remove fatty acids from feedstocks.

  15. Novel non-platinum metal catalyst material

    2014-01-01

    The present invention relates to a novel non-platinum metal catalyst material for use in low temperature fuel cells and electrolysers and to fuel cells and electrolysers comprising the novel non-platinum metal catalyst material. The present invention also relates to a novel method for synthesizing...... the novel non-platinum metal catalyst material....

  16. Efficient epoxidation of propene using molecular catalysts

    Markovits, Iulius I. E.; Anthofer, Michael H.; Kolding, Helene

    2014-01-01

    The epoxidation of propene is performed in homogeneous phase using various molecular catalysts and H2O2 or tert-butyl hydroperoxide as oxidants. A comparison between some molybdenum catalysts and methyltrioxorhenium (MTO) shows that the well known Re catalyst is the best among the examined...

  17. The Stability of Supported Gold Catalysts

    Masoud, Nazila

    2018-01-01

    Gold has supreme cultural and financial value and, in form of nanoparticles smaller than 10 nm, is a unique catalyst for different industrially relevant reactions. Intriguing properties of the gold catalysts have spurred demand in the chemical industry for Au catalysts, the application of which

  18. Low platinum catalyst and method of preparation

    Liu, Di-Jia; Chong, Lina

    2017-11-21

    A low platinum catalyst and method for making same. The catalyst comprises platinum-transition metal bimetallic alloy microcrystallites over a transition metal-nitrogen-carbon composite. A method of making a catalyst comprises preparation of transition metal organic frameworks, infusion of platinum, thermal treatment, and reduction to form the microcrystallites and composite.

  19. Perovskite catalysts for oxidative coupling

    Campbell, Kenneth D.

    1991-01-01

    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  20. Order and correlation contributions to the entropy of hydrophobic solvation

    Liu, Maoyuan; Besford, Quinn Alexander; Mulvaney, Thomas; Gray-Weale, Angus, E-mail: gusgw@gusgw.net [School of Chemistry, The University of Melbourne, Victoria 3010 (Australia)

    2015-03-21

    The entropy of hydrophobic solvation has been explained as the result of ordered solvation structures, of hydrogen bonds, of the small size of the water molecule, of dispersion forces, and of solvent density fluctuations. We report a new approach to the calculation of the entropy of hydrophobic solvation, along with tests of and comparisons to several other methods. The methods are assessed in the light of the available thermodynamic and spectroscopic information on the effects of temperature on hydrophobic solvation. Five model hydrophobes in SPC/E water give benchmark solvation entropies via Widom’s test-particle insertion method, and other methods and models are tested against these particle-insertion results. Entropies associated with distributions of tetrahedral order, of electric field, and of solvent dipole orientations are examined. We find these contributions are small compared to the benchmark particle-insertion entropy. Competitive with or better than other theories in accuracy, but with no free parameters, is the new estimate of the entropy contributed by correlations between dipole moments. Dipole correlations account for most of the hydrophobic solvation entropy for all models studied and capture the distinctive temperature dependence seen in thermodynamic and spectroscopic experiments. Entropies based on pair and many-body correlations in number density approach the correct magnitudes but fail to describe temperature and size dependences, respectively. Hydrogen-bond definitions and free energies that best reproduce entropies from simulations are reported, but it is difficult to choose one hydrogen bond model that fits a variety of experiments. The use of information theory, scaled-particle theory, and related methods is discussed briefly. Our results provide a test of the Frank-Evans hypothesis that the negative solvation entropy is due to structured water near the solute, complement the spectroscopic detection of that solvation structure by

  1. Automotive Catalyst State Diagnosis Using Microwaves

    Moos Ralf

    2015-01-01

    Full Text Available The state of catalysts plays a key role in automotive exhaust gas aftertreatment. The soot or ash loading of Diesel particulate filters, the oxygen loading degree in three-way catalysts, the amount of stored ammonia in SCR catalysts, or the NOx loading degree in NOx storage catalysts are important parameters that are today determined indirectly and in a model-based manner with gas sensors installed upstream and/or downstream of the catalysts. This contribution gives an overview on a novel approach to determine the catalyst state directly by a microwave-based technique. The method exploits the fact that the catalyst housing acts as a microwave cavity resonator. As “sensing” elements, one or two simple antennas are mounted inside the catalyst canning. The electrical properties of the catalyst device (ceramic honeycomb plus coating and storage material can be measured. Preferably, the resonance characteristics, e.g., the resonance frequencies, of selected cavity modes are observed. The information on the catalyst interior obtained in such a contactless manner is very well correlated with the catalyst state as will be demonstrated for different exhaust gas aftertreatment systems.

  2. Rejuvenation of the SCR catalyst at Mehrum

    Nagai, Y.; Inatsume, Y.; Morita, I.; Kato, Y.; Yokoyama, K.; Ito, K. [Babcock Hitachi K.K., Kure-shi, Hiroshima-ken (Japan)

    2004-07-01

    Babcock Hitachi K.K. (BHK) received the contract of the rejuvenation of the SCR catalyst at the 750 MW coal-fired Mehrum Power Station (in Hohenhameln, Germany) in March 2003. The contractual coverage was 160 m{sup 3} of the entire catalyst layer. The catalyst, which had been in operation for 16 years since 1987, was originally supplied by BHK. The rejuvenation process developed for the Mehrum project consisted of two major steps: the first is to dust off the catalyst and remove the catalyst poison, and the second step is to add active material to enhance the catalyst activity. The catalyst must be dried after each washing. In order to minimize transportation cost and time, the rejuvenation work was done at the Mehrum station site. The scope of the rejuvenation work was shared between the owner and BHK. It took about one and a half months to complete the (total) on-site rejuvenation worked. The performance of the rejuvenated catalyst was superior to show the same level of activity as the unused catalyst and maintain the same SO{sub 2} conversion rate as the spent catalyst. This paper gives the details of the spent coal-fired SCR catalyst rejuvenation work. 13 figs., 1 tab.

  3. Hydroprocessing using regenerated spent heavy hydrocarbon catalyst

    Clark, F.T.; Hensley, A.L. Jr.

    1992-01-01

    This patent describes a process for hydroprocessing a hydrocarbon feedstock. It comprises: contacting the feedstock with hydrogen under hydroprocessing conditions with a hydroprocessing catalyst wherein the hydroprocessing catalyst contains a total contaminant metals build-up of greater than about 4 wt. % nickel plus vanadium, a hydrogenation component selected from the group consisting of Group VIB metals and Group VIII metals and is regenerated spent hydroprocessing catalyst regenerated by a process comprising the steps: partially decoking the spent catalyst in an initial coke-burning step; impregnating the partially decoked catalyst with a Group IIA metal-containing impregnation solution; and decoking the impregnated catalyst in a final coke-burning step wherein the impregnated catalyst is contacted with an oxygen-containing gas at a temperature of about 600 degrees F to about 1400 degrees F

  4. Autothermal reforming catalyst having perovskite structure

    Krumpel, Michael [Naperville, IL; Liu, Di-Jia [Naperville, IL

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  5. Isotope exchange in oxide-containing catalyst

    Brown, Kenneth G. (Inventor); Upchurch, Billy T. (Inventor); Hess, Robert V. (Inventor); Miller, Irvin M. (Inventor); Schryer, David R. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor); Hoyt, Ronald F. (Inventor)

    1989-01-01

    A method of exchanging rare-isotope oxygen for common-isotope oxygen in the top several layers of an oxide-containing catalyst is disclosed. A sample of an oxide-containing catalyst is exposed to a flowing stream of reducing gas in an inert carrier gas at a temperature suitable for the removal of the reactive common-isotope oxygen atoms from the surface layer or layers of the catalyst without damaging the catalyst structure. The reduction temperature must be higher than any at which the catalyst will subsequently operate. Sufficient reducing gas is used to allow removal of all the reactive common-isotope oxygen atoms in the top several layers of the catalyst. The catalyst is then reoxidized with the desired rare-isotope oxygen in sufficient quantity to replace all of the common-isotope oxygen that was removed.

  6. Catalyst for Carbon Monoxide Oxidation

    Davis, Patricia; Brown, Kenneth; VanNorman, John; Brown, David; Upchurch, Billy; Schryer, David; Miller, Irvin

    2010-01-01

    In many applications, it is highly desirable to operate a CO2 laser in a sealed condition, for in an open system the laser requires a continuous flow of laser gas to remove the dissociation products that occur in the discharge zone of the laser, in order to maintain a stable power output. This adds to the operating cost of the laser, and in airborne or space applications, it also adds to the weight penalty of the laser. In a sealed CO2 laser, a small amount of CO2 gas is decomposed in the electrical discharge zone into corresponding quantities of CO and O2. As the laser continues to operate, the concentration of CO2 decreases, while the concentrations of CO and O2 correspondingly increase. The increasing concentration of O2 reduces laser power, because O2 scavenges electrons in the electrical discharge, thereby causing arcing in the electric discharge and a loss of the energetic electrons required to boost CO2 molecules to lasing energy levels. As a result, laser power decreases rapidly. The primary object of this invention is to provide a catalyst that, by composition of matter alone, contains chemisorbed water within and upon its structure. Such bound moisture renders the catalyst highly active and very long-lived, such that only a small quantity of it needs to be used with a CO2 laser under ambient operating conditions. This object is achieved by a catalyst that consists essentially of about 1 to 40 percent by weight of one or more platinum group metals (Pt, Pd, Rh, Ir, Ru, Os, Pt being preferred); about 1 to 90 percent by weight of one or more oxides of reducible metals having multiple valence states (such as Sn, Ti, Mn, Cu, and Ce, with SnO2 being preferred); and about 1 to 90 percent by weight of a compound that can bind water to its structure (such as silica gel, calcium chloride, magnesium sulfate, hydrated alumina, and magnesium perchlorate, with silica gel being preferred). Especially beneficial results are obtained when platinum is present in the

  7. Flame retardant and hydrophobic properties of novel sol-gel derived phytic acid/silica hybrid organic-inorganic coatings for silk fabric

    Cheng, Xian-Wei; Liang, Cheng-Xi; Guan, Jin-Ping; Yang, Xu-Hong; Tang, Ren-Cheng

    2018-01-01

    In this work, a novel phosphorus-rich hybrid organic-inorganic silica coating for improving the flame retardancy of silk fabric was prepared using naturally occurring phytic acid as phosphorus precursor and catalyst for the hydrolysis of tetraethoxysilane. In addition, three silane coupling agents, namely 3-aminopropyldimethoxymethylsilane, 3-chloropropyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane, were added in the hybrid sol as cross-linkers with the aim of developing hydrophobic coatings and improving the washing durability of the treated silk fabric. The condensation degree of the hybrid sol was characterized by solid-state 29Si nuclear magnetic resonance spectroscopy. The flammability and thermal degradation properties of the treated silk fabrics were determined in terms of limiting oxygen index, vertical burning, pyrolysis combustion flow calorimetry and thermogravimetric analyses. The surface morphology and hydrophobicity of the treated silk fabrics were evaluated by scanning electron microscopy, atomic force microscopy and water contact angle tests. The flammability tests revealed that the silicon sol could endow silk fabric with excellent flame retardancy when doped with phytic acid, and the treated silk fabrics self-extinguished immediately when the ignition source was removed. The silk fabrics treated with the modified hybrid sols exhibited hydrophobic surface and also better durability to washing.

  8. Recent progress in synthesis and surface functionalization of mesoporous acidic heterogeneous catalysts for esterification of free fatty acid feedstocks: A review

    Soltani, Soroush; Rashid, Umer; Al-Resayes, Saud Ibrahim; Nehdi, Imededdine Arbi

    2017-01-01

    Highlights: • Mesoporous catalysts have potential to esterify the wastes feedstocks. • Surface area of mesoporous catalysts depends on materials synthesis methods. • Hydrophobic surface of sulfonated catalyst causes adsorption on FFA particles. • Mesoporous catalysts have large active sites to trap free fatty acids particles. • Recyclability of mesoporous catalyst is a key feature for biodiesel production. - Abstract: Biodiesel is considered as a sulfur free, non-toxic and biodegradable source of energy and its burning provide less pollution than petroleum based fuels. In case of using fried waste oils, animal’s fats and waste cultivated oil which contain high free fatty acid (FFA), esterification is taking place. Through esterification reaction, catalyst is an integral part which accelerates the FFA conversion to the methyl ester (ME) in shorter reaction time. Although, most of the current catalysts have some defect such as poor recyclability, less surface area and poor porosity. Mesoporous materials have been recently attracted remarkable interests because of its desirable properties, such as large and harmonized surface area, tuneable mesoporous channels with flexible pore size, excellent thermal stability, and post-functionalization surface characteristics. The combination of remarkable physico-chemical and textural properties as well as high activity has proposed them as advanced materials. In this review, it has been attempted to present the details of fundamental properties of mesoporous catalysts, various synthetic methods and formation mechanisms, and surface functionalization methodologies. The effects of various factors (such as surface area, porosity, acidity, post-calcination temperature, and reaction parameters) on esterification of different feedstocks are discussed in detail. Furthermore, the kinetic study of esterification reaction in the presence of mesoporous catalysts is also elaborated. At the end, remarkable challenges and outlooks

  9. Development of Ultra-Low Platinum Alloy Cathode Catalysts for PEM Fuel Cells

    Popov, Branko N. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemical Engineering; Weidner, John [Univ. of South Carolina, Columbia, SC (United States)

    2016-01-07

    initial power density (rated) of 0.174 gPGM/kW. Excellent activity and stability of the catalyst are due to synergistic effect of the catalytic activity and stability of ACCS-2, its enhanced hydrophobicity as well as activity of compressive Pt* lattice catalysts. For the first time, we report a carbon based support which is stable under simulated start-up/shut down operating conditions. Five 25cm2 MEA’s were fabricated at USC using Pt*/ACCS-2 cathode catalyst for independent evaluation at National Renewable Energy. In the Final NREL report they summarize their results as follow: (1) Initial ORR activity and performance of the USC MEA’s Pt*/ACCS-2 under oxygen air, evaluated at NREL were comparable to that measured and reported by USC in their report: (2) Cyclic durability studies indicate that Pt*/ACCS-2 catalysts has minimal losses in activity and performant under 1-1.5 V potential cycling indicating a robust corrosion resistant support.

  10. Features of the corrosion protection of aluminium alloys by creation of hydrophobic coatings

    Sinebryukhov, S. L.; Gnedenkov, S. V.; Egorkin, V. S.; Vyaliy, I. E.

    2017-09-01

    Results of the study of hydrophobic layers on aluminum alloy, which underwent plasma electrolytic oxidation (PEO) and subsequent deposition of the hydrophobic agent have been described. Coatings formed by deposition of dispersion of the hydrophobic agent containing SiO2 nanoparticles on the surface of the PEO-layer are characterized by high contact angles and inhibitive properties. The formed composite layers were found to be characterized with hydrophobicity and high barrier properties.

  11. Impact of a Hydrophobic Sphere onto a Bath

    Harris, Daniel M.; Edmonds, John; Galeano-Rios, Carlos A.; Milewski, Paul A.

    2017-11-01

    Small hydrophobic particles impacting a water surface can rebound completely from the interface (Lee & Kim, Langmuir, 2008). In the present work, we focus on the bouncing dynamics of millimetric hydrophobic spheres impacting the surface of a quiescent water bath. Particular attention is given to the dependence of the normal coefficient of restitution and contact time on the impact velocity and the radius and density of the sphere. Our experimental observations are compared to the predictions of a fluid model derived from linearized Navier-Stokes under the assumption of a high Reynolds number regime (Galeano-Rios et al., JFM, in press). In the model, the motions of the sphere and the fluid interface are found by imposing the natural geometric and kinematic compatibility conditions. Future directions will be discussed. C.A.G.-R. and P.A.M. gratefully acknowledge support through the EPSRC project EP/N018176/1.

  12. Nanoscale encapsulation: the structure of cations in hydrophobic microporous aluminosilicates

    Wasserman, S.R.; Yuchs, S.E.; Giaquinta, D.; Soderholm, L.; Song, Kang.

    1996-01-01

    Hydrophobic microporous aluminosilicates, created by organic surface modification of inherently hydrophilic materials such as zeolites and clays, are currently being investigated as storage media for hazardous cations. Use of organic monolayers to modify the surface of an aluminosilicate after introducing an ion into the zeolite/clay reduces the interaction of water with the material. Resulting systems are about 20 times more resistant to leaching of stored ion. XAS spectra from the encapsulated ion demonstrate that byproducts from the organic modifier can complex with the stored cation. This complexation can result in a decreased affinity of the cation for the aluminosilicate matrix. Changing the organic modifier eliminates this problem. XAS spectra also indicate that the reactivity and speciation of the encapsulated ion may change upon application of the hydrophobic layer

  13. Influence of chemistry on wetting dynamics of nanotextured hydrophobic surfaces.

    Di Mundo, Rosa; Palumbo, Fabio; d'Agostino, Riccardo

    2010-04-06

    In this work, the role of a chemical parameter, such as the degree of fluorination, on the wetting behavior of nanotextured hydrophobic surfaces is investigated. Texture and chemistry tuning of the surfaces has been accomplished with single batch radiofrequency low-pressure plasma processes. Polystyrene substrates have been textured by CF(4) plasma etching and subsequently covered by thin films with a tunable F-to-C ratio, obtained in discharges fed with C(4)F(8)-C(2)H(4). Measurements of wetting dynamics reveal a regime transition from adhesive-hydrophobic to slippery-superhydrophobic, i.e., from wet to non wet states, as the F-to-C rises at constant topography. Such achievements are strengthened by calculation of the solid fraction of surface water contact area applying Cassie-Baxter advancing and receding equations to water contact angle data of textured and flat reference surfaces.

  14. Cell surface hydrophobicity of dental plaque microorganisms in situ.

    Rosenberg, M; Judes, H; Weiss, E

    1983-01-01

    The cell surface hydrophobicity of bacteria obtained directly from human tooth surfaces was assayed by measuring their adherence to liquid hydrocarbons. Fresh samples of supragingival dental plaque were washed and dispersed in buffer. Adherence of the plaque microorganisms to hexadecane, octane, and xylene was tested turbidimetrically and by direct microscopic observation. The results clearly show that the vast majority of bacteria comprising dental plaque exhibit pronounced cell surface hydr...

  15. Fabrication of super-hydrophobic duo-structures

    Zhang, X. Y.; Zhang, F.; Jiang, Y. J.; Wang, Y. Y.; Shi, Z. W.; Peng, C. S.

    2015-04-01

    Recently, super-hydrophobicity has attracted increasing attention due to its huge potential in the practical applications. In this paper, we have presented a duo-structure of the combination of micro-dot-matrix and nano-candle-soot. Polydimethylsiloxane (PDMS) was used as a combination layer between the dot-matrix and the soot particles. Firstly, a period of 9-μm dot-matrix was easily fabricated on the K9 glass using the most simple and mature photolithography process. Secondly, the dot-matrix surface was coated by a thin film of PDMS (elastomer: hardener=10:1) which was diluted by methylbenzene at the volume ratio of 1:8. Thirdly, we held the PDMS modified surface over a candle flame to deposit a soot layer and followed by a gentle water-risen to remove the non-adhered particles. At last, the samples were baked at 85°C for 2 hours and then the duo-structure surface with both micro-size dot-matrix and nano-size soot particles was obtained. The SEM indicated this novel surface morphology was quite like a lotus leaf of the well-know micro-nano-binary structures. As a result, the contact angle meter demonstrated such surface exhibited a perfect super-hydrophobicity with water contact angle of 153° and sliding angle of 3°. Besides, just listed as above, the fabrication process for our structure was quite more easy, smart and low-cost compared with the other production technique for super-hydrophobic surfaces such as the phase separation method, electrochemical deposition and chemical vapor deposition etc. Hence, this super-hydrophobic duo-structure reported in this letter was a great promising candidate for a wide and rapid commercialization in the future.

  16. SET-LRP of the Hydrophobic Biobased Menthyl Acrylate.

    Bensabeh, Nabil; Ronda, Joan C; Galià, Marina; Cádiz, Virginia; Lligadas, Gerard; Percec, Virgil

    2018-04-09

    Cu(0) wire-catalyzed single electron transfer-living radical polymerization (SET-LRP) of (-)-menthyl acrylate, a biobased hydrophobic monomer, was investigated at 25 °C in ethanol, isopropanol, ethyl lactate, 2,2,2-trifluoroethanol (TFE), and 2,2,3,3-tetrafluoropropanol (TFP). All solvents are known to promote, in the presence of N ligands, the mechanistically required self-regulated disproportionation of Cu(I)Br into Cu(0) and Cu(II)Br 2 . Both fluorinated alcohols brought out their characteristics of universal SET-LRP solvents and showed the proper polarity balance to mediate an efficient polymerization of this bulky and hydrophobic monomer. Together with the secondary alkyl halide initiator, methyl 2-bromopropionate (MBP), and the tris(2-dimethylaminoethyl)amine (Me 6 -TREN) ligand, TFE and TPF mediated an efficient SET-LRP of MnA at room temperature that proceeds through a self-generated biphasic system. The results presented here demonstrate that Cu(0) wire-catalyzed SET-LRP can be used to target polyMnA with different block lengths and narrow molecular weight distribution at room temperature. Indeed, the use of a combination of techniques that include GPC, 1 H NMR, MALDI-TOF MS performed before and after thioetherification of bromine terminus via "thio-bromo" click chemistry, and in situ reinitiation copolymerization experiments supports the near perfect chain end functionality of the synthesized biobased hydrophobic polymers. These results expand the possibilities of SET-LRP into the area of renewable resources where hydrophobic compounds are widespread.

  17. MICROBIAL CELL-SURFACE HYDROPHOBICITY - THE INVOLVEMENT OF ELECTROSTATIC INTERACTIONS IN MICROBIAL ADHESION TO HYDROCARBONS (MATH)

    GEERTSEMADOORNBUSCH, GI; VANDERMEI, HC; BUSSCHER, HJ

    Microbial adhesion to hydrocarbons (MATH) is the most commonly used method to determine microbial cell surface hydrophobicity. Since, however, the assay is based on adhesion, it is questionable whether the results reflect only the cell surface hydrophobicity or an interplay of hydrophobicity and

  18. Ag/C:F Antibacterial and hydrophobic nanocomposite coatings

    Kylián, Ondřej; Kratochvíl, Jiří; Petr, Martin; Kuzminova, Anna; Slavínská, Danka; Biederman, Hynek; Beranová, Jana

    Silver-based nanomaterials that exhibit antibacterial character are intensively studied as they represent promising weapon against multi-drug resistant bacteria. Equally important class of materials represent coatings that have highly water repellent nature. Such materials may be used for fabrication of anti-fogging or self-cleaning surfaces. The aim of this study is to combine both of these valuable material characteristics. Antibacterial and highly hydrophobic Ag/C:F nanocomposite films were fabricated by means of gas aggregation source of Ag nanoparticles and sputter deposition of C:F matrix. The nanocomposite coatings had three-layer structure C:F base layer/Ag nanoparticles/C:F top layer. It is shown that the increasing number of Ag nanoparticles in produced coatings leads not only in enhancement of their antibacterial activity, but also causes substantial increase of their hydrophobicity. Under optimized conditions, the coatings are super-hydrophobic with water contact angle equal to 165∘ and are capable to induce 6-log reduction of bacteria presented in solution within 4h.

  19. Repulsive effects of hydrophobic diamond thin films on biomolecule detection

    Ruslinda, A. Rahim, E-mail: ruslindarahim@gmail.com [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Jln Kgr-Alor Setar, Seriab, 01000 Kangar, Perlis (Malaysia); Department of Nano Science and Nano Engineering, School of Advance Science and Engineering, Ohkubo 3-4-1, Shinjuku, 169-8555 Tokyo (Japan); Ishiyama, Y. [Department of Nano Science and Nano Engineering, School of Advance Science and Engineering, Ohkubo 3-4-1, Shinjuku, 169-8555 Tokyo (Japan); Penmatsa, V. [Department of Mechanical and Materials Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174 (United States); Ibori, S.; Kawarada, H. [Department of Nano Science and Nano Engineering, School of Advance Science and Engineering, Ohkubo 3-4-1, Shinjuku, 169-8555 Tokyo (Japan)

    2015-02-15

    Highlights: • We report the effect of fluorine plasma treatment on diamond thin film to resist the nonspecific adsorption of biomolecules. • The diamond thin film were highly hydrophobic with a surface energy value of ∼25 mN/m. • The repulsive effect shows excellent binding efficiency for both DNA and HIV-1 Tat protein. - Abstract: The repulsive effect of hydrophobic diamond thin film on biomolecule detection, such as single-nucleotide polymorphisms and human immunodeficiency virus type 1 trans-activator of transcription peptide protein detection, was investigated using a mixture of a fluorine-, amine-, and hydrogen-terminated diamond surfaces. These chemical modifications lead to the formation of a surface that effectively resists the nonspecific adsorption of proteins and other biomolecules. The effect of fluorine plasma treatment on elemental composition was also investigated via X-ray photoelectron spectroscopy (XPS). XPS results revealed a fluorocarbon layer on the diamond thin films. The contact angle measurement results indicated that the fluorine-treated diamond thin films were highly hydrophobic with a surface energy value of ∼25 mN/m.

  20. Repulsive effects of hydrophobic diamond thin films on biomolecule detection

    Ruslinda, A. Rahim; Ishiyama, Y.; Penmatsa, V.; Ibori, S.; Kawarada, H.

    2015-01-01

    Highlights: • We report the effect of fluorine plasma treatment on diamond thin film to resist the nonspecific adsorption of biomolecules. • The diamond thin film were highly hydrophobic with a surface energy value of ∼25 mN/m. • The repulsive effect shows excellent binding efficiency for both DNA and HIV-1 Tat protein. - Abstract: The repulsive effect of hydrophobic diamond thin film on biomolecule detection, such as single-nucleotide polymorphisms and human immunodeficiency virus type 1 trans-activator of transcription peptide protein detection, was investigated using a mixture of a fluorine-, amine-, and hydrogen-terminated diamond surfaces. These chemical modifications lead to the formation of a surface that effectively resists the nonspecific adsorption of proteins and other biomolecules. The effect of fluorine plasma treatment on elemental composition was also investigated via X-ray photoelectron spectroscopy (XPS). XPS results revealed a fluorocarbon layer on the diamond thin films. The contact angle measurement results indicated that the fluorine-treated diamond thin films were highly hydrophobic with a surface energy value of ∼25 mN/m

  1. Synthesis and characterization of hydrophobically modified polymeric betaines

    Alexey Shakhvorostov

    2015-09-01

    Full Text Available Polymeric betaines containing long alkyl chains C12H25, C14H29, C16H33 and C18H37 were synthesized by Michael addition reaction of alkylaminocrotonates and methacrylic acid (MAA. They were characterized by FTIR, 13C NMR, DSC, DLS, GPC, cryo-TEM, viscometry and zeta-potential measurements. The polymers were fully soluble in DMF, THF and DMSO, partially dissolved in aromatic hydrocarbons (benzene, toluene, o-xylene and formed colloid solutions in aqueous KOH. In aqueous KOH and DMSO solutions, hydrophobically modified polymeric betaines behaved as polyelectrolytes. The average hydrodynamic size and zeta potential of diluted aqueous solutions of hydrophobic polybetainess containing dodecyl-, tetradecyl-, hexadecyl-, and octadecyl groups were studied as a function of pH. Anomalous low values of the isoelectric point (IEP of amphoteric macromolecules were found to be in the range of pH 2.7-3.4. According to DLS data, the average size of macromolecules tends to decrease with dilution. Zeta-potential of amphoteric macromolecules in aqueous solution is much higher than that in DMSO. The cryo-TEM results revealed that in both aqueous KOH and DMSO media, the micron- and nanosized vesicles existed. The structural organization of vesicles in water and DMSO is discussed. The wax inhibition effect of hydrophobic polybetaines at a decrease of the pour point temperatures of high paraffinic oils was better in comparison with commercial available ethylene-vinylacetate copolymers (EVA.

  2. Double-grooved nanofibre surfaces with enhanced anisotropic hydrophobicity.

    Liang, Meimei; Chen, Xin; Xu, Yang; Zhu, Lei; Jin, Xiangyu; Huang, Chen

    2017-11-02

    This study reports a facile method for fabricating double-grooved fibrous surfaces. The primary grooves of the surface are formed by aligned fibres, while the secondary grooves are achieved by oriented nanogrooves on the fibre surface. Investigation into the formation mechanism reveals that the nanogrooves can be readily tailored through adjusting the solvent ratio and relative humidity. With this understanding, a variety of polymers have been successfully electrospun into fibres having the same nanogrooved feature. These fibres show high resemblance to natural hierarchical structures, and thereby endowing the corresponding double-grooved surface with enhanced anisotropic hydrophobicity. A water droplet at a parallel direction to the grooves exhibits a much higher contact angle and a lower roll-off angle than the droplet at a perpendicular direction. The application potential of such anisotropic hydrophobicity has been demonstrated via a fog collection experiment, in which the double-grooved surface can harvest the largest amount of water. Moreover, the fabrication method requires neither post-treatment nor sophisticated equipment, making us anticipate that the double-grooved surface would be competitive in areas where a highly ordered surface, a large surface area and an anisotropic hydrophobicity are preferred.

  3. Recombination Catalysts for Hypersonic Fuels

    Chinitz, W.

    1998-01-01

    The goal of commercially-viable access to space will require technologies that reduce propulsion system weight and complexity, while extracting maximum energy from the products of combustion. This work is directed toward developing effective nozzle recombination catalysts for the supersonic and hypersonic aeropropulsion engines used to provide such access to space. Effective nozzle recombination will significantly reduce rk=le length (hence, propulsion system weight) and reduce fuel requirements, further decreasing the vehicle's gross lift-off weight. Two such catalysts have been identified in this work, barium and antimony compounds, by developing chemical kinetic reaction mechanisms for these materials and determining the engine performance enhancement for a typical flight trajectory. Significant performance improvements are indicated, using only 2% (mole or mass) of these compounds in the combustor product gas.

  4. Catalyst for Expanding Human Spaceflight

    Lueders, Kathryn L.

    2014-01-01

    History supplies us with many models of how and how not to commercialize an industry. This presentation draws parallels between industries with government roots, like the railroad, air transport, communications and the internet, and NASAs Commercial Crew Program. In these examples, government served as a catalyst for what became a booming industry. The building block approach the Commercial Crew Program is taking is very simple -- establish a need, laying the groundwork, enabling industry and legal framework.

  5. Photosystem Inspired Peptide Hybrid Catalysts

    2017-06-07

    materials defined at the molecular level. We propose a novel way to make hybrid catalyst composed of inorganic nanomaterials and peptides. The...Distribution approved for public release. AF Office Of Scientific Research (AFOSR)/ IOA Arlington, Virginia 22203 Air Force Research Laboratory Air...ORGANIZATION NAME(S) AND ADDRESS(ES) SEOUL NATIONAL UNIVERSITY SNUR&DB FOUNDATION RESEARCH PARK CENTER SEOUL, 151742 KR 8. PERFORMING ORGANIZATION REPORT

  6. Alternative alkali resistant deNOx catalysts

    Putluru, Siva Sankar Reddy; Kristensen, Steffen Buus; Due-Hansen, Johannes

    2012-01-01

    by onepot sol–gel method. All catalysts were characterized by BET, XRPD and NH3-TPD. Initial SCR activities of 8 out of 9 catalysts showed higher NO conversion at least at one temperature in the temperature range 300–500 ◦C compared to the conventional V2O5-WO3/TiO2 catalyst. After potassium poisoning (100......Alternative alkali resistant deNOx catalysts were prepared using three different supports ZrO2, TiO2 and Mordenite zeolite. The majority of the catalysts were prepared by incipient wetness impregnation of a commercial support, with vanadium, copper or iron precursor, one catalyst was prepared......–130 µmol of K/g of catalyst) the relative drop in SCR activity and acidity was lower for all the alternative catalysts compared to the industrial V2O5-WO3/TiO2 catalyst. Furthermore, Cu/MOR and Nano-V2O5/Sul-TiO2 catalysts showed 8–16 times higher SCR activities than the conventional even after high...

  7. Catalytic hydrodechlorination of triclosan using a new class of anion-exchange-resin supported palladium catalysts.

    Han, Bing; Liu, Wen; Li, Jingwen; Wang, Jin; Zhao, Dongye; Xu, Rui; Lin, Zhang

    2017-09-01

    We prepared a new class of anion-exchange-resin supported Pd catalysts for efficient hydrodechlorination of triclosan in water. The catalysts were prepared through an initial ion-exchange uptake of PdCl 4 2- and subsequent reduction of Pd(II) to Pd(0) nanoparticles at ambient temperature. Two standard strong-base anion exchange resins (IRA-900 and IRA-958) with different matrices (polystyrene and polyacrylic) were chosen as the supports. SEM and TEM images showed that Pd(0) nanoparticles were evenly attached on the resin surface with a mean size of 3-5 nm. The resin supported Pd catalysts (Pd@IRA-900 and Pd@IRA-958) were able to facilitate rapid and complete hydrodechlorination of triclosan. At a Pd loading of 2.0 wt.%, the observed pseudo first-order rate constant (k obs ) was 1.25 ± 0.06 and 1.6 ± 0.1 L/g/min for Pd@IRA-900 and Pd@IRA-958, respectively. The catalysts were more resistant to Cl - poisoning and natural organic matter fouling than other supported-Pd catalysts. The presence of 10 mM NaCl suppressed the k obs value by 31% and 23% for Pd@IRA-900 and Pd@IRA-958, whereas the presence of humic acid at 30 mg/L as TOC lowered the rates by 28% and 27%, respectively. The better performance of Pd@IRA-958 was attributed to the polymeric matrix properties (i.e., hydrophobicity, pore size, and surface area) as well as Pd particle size. GC/MS analyses indicated that very low concentrations of chlorinated intermediates were detected in the early stage of the hydrodechlorination process, with 2-phenoxyphenol being the main byproduct. The catalysts can be repeatedly used in multiple operations without significant bleeding. The catalysts eliminate the need for calcination in preparing conventional supported catalysts, and the resin supports conveniently facilitate control of Pd loading and material properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Carbonaceous deposits on naptha reforming catalysts

    Redwan, D.S.

    1999-01-01

    Carbonaceous deposits on naphtha reforming catalysts play a decisive role in limiting process performance. The deposits negatively after catalyst activity, selectivity and the production cycle of a semi regenerative reformer. The magnitude of negative effect of those deposits is directly proportional to their amounts and complexity. Investigations on used reforming catalysts samples reveal that the amount and type (complexity of the chemical nature) of carbonaceous deposits are directly proportional to the catalysts life on stream and the severity of operating conditions. In addition, the combustibility behavior of carbonaceous deposits on the catalyst samples taken from different reformers are found to be different. Optimal carbon removal, for in situ catalyst regeneration, requires the specific conditions be developed, based on the results of well designed and properly performed investigations of the amount and type of carbonaceous deposits. (author)

  9. Hydrous titanium oxide-supported catalysts

    Dosch, R.G.; Stohl, F.V.; Richardson, J.T.

    1990-01-01

    Catalysts were prepared on hydrous titanium oxide (HTO) supports by ion exchange of an active metal for Na + ions incorporated in the HTO support during preparation by reaction with the parent Ti alkoxide. Strong active metal-HTO interactions as a result of the ion exchange reaction can require significantly different conditions for activation as compared to catalysts prepared by more widely used incipient wetness methods. The latter catalysts typically involve conversion or while the HTO catalysts require the alteration of electrostatic bonds between the metal and support with subsequent alteration of the support itself. In this paper, the authors discuss the activation, via sulfidation or reduction, of catalysts consisting of Co, Mo, or Ni-Mo dispersed on HTO supports by ion exchange. Correlations between the activation process and the hydrogenation, hydrodeoxygenation, and hydrodesulfurization activities of the catalysts are presented

  10. Optimization of catalyst system reaps economic benefits

    Le Roy, C.F.; Hanshaw, M.J.; Fischer, S.M.; Malik, T.; Kooiman, R.R.

    1991-01-01

    Champlin Refining and Chemicals Inc. is learning to optimize its catalyst systems for hydrotreating Venezuelan gas oils through a program of research, pilot plant testing, and commercial unit operation. The economic results of this project have been evaluated, and the benefits are most evident in improvements in product yields and qualities. The project has involved six commercial test runs, to date (Runs 10-15), with a seventh run planned. A summary of the different types of catalyst systems used in the test runs, and the catalyst philosophy that developed is given. Runs 10 and 11 used standard CoMo and NiMo catalysts for heavy gas oils hydrotreating. These catalysts had small pore sizes and suffered high deactivation rates because of metals contamination. When it was discovered that metals contamination was a problem, catalyst options were reviewed

  11. Fabrication and characterization of size-controlled starch-based nanoparticles as hydrophobic drug carriers.

    Han, Fei; Gao, Chunmei; Liu, Mingzhu

    2013-10-01

    Acetylated corn starch was successfully synthesized and optimized by the reaction of native corn starch with acetic anhydride and acetic acid in the presence of sulfuric acid as a catalyst. The optimal degree of substitution of 2.85 was obtained. Starch-based nanoparticles were fabricated by a simple and novel nanoprecipitation procedure, by the dropwise addition of water to acetone solution of acetylated starch under stirring. Fourier transform infrared spectrometry showed that acetylated starch had some new bands at 1750, 1375 and 1240 cm(-1) while acetylated starch nanoparticles presented the identical peaks as the drug-loaded acetylated starch nanoparticles and the acetylated starch. Wide angle X-ray diffraction indicated that A-type pattern of native starch was completely transformed into the V-type pattern of Acetylated starch and starch-based nanoparticles show the similar type pattern with the acetylated starch. The scanning electron microscopy showed that the different sizes of pores formed on the acetylated starch granules were utterly converted into the uniform-sized spherical nanoparticles after the nanoprecipitation. The encapsulation efficiency and diameter of nanoparticle can be adjusted by the degree of substitution, the volume ratio of nonsolvent to solvent and the weight ratio of acetylated starch to drug. It was also depicted that the release behaviors of drug-loaded nanoparticles depend on the size of nanoparticles and the degree of substitution of the acetylated starch. Release studies prove that the starch-based nanoparticles with uniform size can be used for the encapsulation of hydrophobic drug and attained the sustained and controllable drug release carriers.

  12. Molecular catalysts structure and functional design

    Gade, Lutz H

    2014-01-01

    Highlighting the key aspects and latest advances in the rapidly developing field of molecular catalysis, this book covers new strategies to investigate reaction mechanisms, the enhancement of the catalysts' selectivity and efficiency, as well as the rational design of well-defined molecular catalysts. The interdisciplinary author team with an excellent reputation within the community discusses experimental and theoretical studies, along with examples of improved catalysts, and their application in organic synthesis, biocatalysis, and supported organometallic catalysis. As a result, readers wil

  13. Oxidation catalysts on alkaline earth supports

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  14. Polyfunctional catalyst for processiing benzene fractions

    G. Byakov; B.D. Zubitskii; B.G. Tryasunov; I.Ya. Petrov [Kuznetsk Basin State Technical University, Kemerovo (Russian Federation)

    2009-05-15

    A by-product of the coke industry is a raw benzene fraction benzene- 1 which may serve as for catalytic processes. The paper reports a study on the influence of the composition and temperatures on the activity and selectivity of NiO-V{sub 2}O{sub 6}-MoO{sub 3}/{gamma}-Al{sub 2}O{sub 3} catalysts and the corresponding binary and tertiary subsystems are studied by a pulse method in model reactions; the hydrodealkylating of toluene and the hydrodesulfurizing of thioprhene. The optimal catalyst composition is established. The new catalyst is compared with industrial catalysts.

  15. Nanoparticular metal oxide/anatase catalysts

    2010-01-01

    The present invention concerns a method of preparation of nanoparticular metal oxide catalysts having a narrow particle size distribution. In particular, the invention concerns preparation of nanoparticular metal oxide catalyst precursors comprising combustible crystallization seeds upon which...... the catalyst metai oxide is co-precipitated with the carrier metal oxide, which crystallization seeds are removed by combustion in a final calcining step. The present invention also concerns processes wherein the nanoparticular metal oxide catalysts of the invention are used, such as SCR (deNOx) reactions...

  16. Bifunctional cobalt F-T catalysts

    Miller, J.G.; Coughlin, P.K.; Yang, C.L.; Rabo, J.A.

    1986-03-01

    Results on the catalytic screening of Fischer-Tropsch catalysts containing shape selective components are reported. Catalysts consist of promoted cobalt intimately contacted with Union Carbide molecular sieves and were tested using a Berty type internally recycled reactor. Methods of preparation, promoters and shape selective components were varied and aimed at improving catalyst performance. Catalysts were developed demonstrating high C/sub 5/ + yields with high olefin content and low methane production while maintaining stability under both low and high H/sub 2/:CO ratio conditions.

  17. Nitrogen oxides storage catalysts containing cobalt

    Lauterbach, Jochen; Snively, Christopher M.; Vijay, Rohit; Hendershot, Reed; Feist, Ben

    2010-10-12

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  18. Studies on polyurethane adhesives and surface modification of hydrophobic substrates

    Krishnamoorthy, Jayaraman

    studies involved making functionalized, thickness-controlled, wettability-controlled multilayers on hydrophobic substrates and the adsorption of carboxylic acid-terminated poly(styrene-b-isoprene) on alumina/silica substrates. Poly(vinyl alcohol) has been shown to adsorb onto hydrophobic surfaces irreversibly due to hydrophobic interactions. This thin semicrystalline coating is chemically modified using acid chlorides, butyl isocyanate and butanal to form thicker and hydrophobic coatings. The products of the modification reactions allow adsorption of a subsequent layer of poly(vinyl alcohol) that could subsequently be hydrophobized. This 2-step (adsorption/chemical modification) allows layer-by-layer deposition to prepare coatings with thickness, chemical structure and wettability control on any hydrophobic surface. Research on adsorption characteristics of carboxylic acid-terminated poly(styrene-b-isoprene) involved syntheses of block copolymers with the functional group present at specific ends. Comparative adsorption studies for carboxylic acid-terminated and hydrogen-terminated block copolymers was carried out on alumina and silica substrates.

  19. Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites

    Jiang-Jen Lin

    2010-04-01

    Full Text Available Recent studies on the intercalation and exfoliation of layered clays with polymeric intercalating agents involving poly(oxypropylene-amines and the particular uses for epoxy nanocomposites are reviewed. For intercalation, counter-ionic exchange reactions of clays including cationic layered silicates and anionic Al-Mg layered double hydroxide (LDH with polymeric organic ions afforded organoclays led to spatial interlayer expansion from 12 to 92 Å (X-ray diffraction as well as hydrophobic property. The inorganic clays of layered structure could be modified by the poly(oxypropyleneamine-salts as the intercalating agents with molecular weights ranging from 230 to 5,000 g/mol. Furthermore, natural montmorillonite (MMT clay could be exfoliated into thin layer silicate platelets (ca. 1 nm thickness in one step by using polymeric types of exfoliating agents. Different lateral dimensions of MMT, synthetic fluorinated Mica and LDH clays had been cured into epoxy nanocomposites. The hydrophobic amine-salt modification resulting in high spacing of layered or exfoliation of individual clay platelets is the most important factor for gaining significant improvements of properties. In particular, these modified clays were reported to gain significant improvements such as reduced coefficient of thermal expansion (CTE, enhanced thermal stability, and hardness. The utilization of these layered clays for initiating the epoxy self-polymerization was also reported to have a unique compatibility between clay and organic resin matrix. However, the matrix domain lacks of covalently bonded crosslink and leads to the isolation of powder material. It is generally concluded that the hydrophobic expansion of the clay inter-gallery spacing is the crucial step for enhancing the compatibility and the ultimate preparation of the advanced epoxy materials.

  20. Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites

    Lin, Jiang-Jen; Chan, Ying-Nan; Lan, Yi-Fen

    2010-01-01

    Recent studies on the intercalation and exfoliation of layered clays with polymeric intercalating agents involving poly(oxypropylene)-amines and the particular uses for epoxy nanocomposites are reviewed. For intercalation, counter-ionic exchange reactions of clays including cationic layered silicates and anionic Al-Mg layered double hydroxide (LDH) with polymeric organic ions afforded organoclays led to spatial interlayer expansion from 12 to 92 Å (X-ray diffraction) as well as hydrophobic property. The inorganic clays of layered structure could be modified by the poly(oxypropylene)amine-salts as the intercalating agents with molecular weights ranging from 230 to 5,000 g/mol. Furthermore, natural montmorillonite (MMT) clay could be exfoliated into thin layer silicate platelets (ca. 1 nm thickness) in one step by using polymeric types of exfoliating agents. Different lateral dimensions of MMT, synthetic fluorinated Mica and LDH clays had been cured into epoxy nanocomposites. The hydrophobic amine-salt modification resulting in high spacing of layered or exfoliation of individual clay platelets is the most important factor for gaining significant improvements of properties. In particular, these modified clays were reported to gain significant improvements such as reduced coefficient of thermal expansion (CTE), enhanced thermal stability, and hardness. The utilization of these layered clays for initiating the epoxy self-polymerization was also reported to have a unique compatibility between clay and organic resin matrix. However, the matrix domain lacks of covalently bonded crosslink and leads to the isolation of powder material. It is generally concluded that the hydrophobic expansion of the clay inter-gallery spacing is the crucial step for enhancing the compatibility and the ultimate preparation of the advanced epoxy materials.

  1. Behavior of a Liquid Bridge between Nonparallel Hydrophobic Surfaces.

    Ataei, Mohammadmehdi; Chen, Huanchen; Amirfazli, Alidad

    2017-12-26

    When a liquid bridge is formed between two nonparallel identical surfaces, it can move along the surfaces. Literature indicates that the direction of bridge movement is governed by the wettability of surfaces. When the surfaces are hydrophilic, the motion of the bridge is always toward the cusp (intersection of the plane of the two bounding surfaces). On the other hand, the movement is hitherto thought to be always pointing away from the cusp when the surfaces are hydrophobic. In this study, through experiments, numerical simulations, and analytical reasoning, we demonstrate that for hydrophobic surfaces, wettability is not the only factor determining the direction of the motion. A new geometrical parameter, i.e., confinement (cf), was defined as the ratio of the distance of the farthest contact point of the bridge to the cusp, and that of the closest contact point to the cusp. The direction of the motion depends on the amount of confinement (cf). When the distance between the surfaces is large (resulting in a small cf), the bridge tends to move toward the cusp through a pinning/depinning mechanism of contact lines. When the distance between the surfaces is small (large cf), the bridge tends to move away from the cusp. For a specific system, a maximum cf value (cf max ) exists. A sliding behavior (i.e., simultaneous advancing on the wider side and receding on the narrower side) can also be seen when a liquid bridge is compressed such that the cf exceeds the cf max . Contact angle hysteresis (CAH) is identified as an underpinning phenomenon that together with cf fundamentally explains the movement of a trapped liquid between two hydrophobic surfaces. If there is no CAH, however, i.e., the case of ideal hydrophobic surfaces, the cf will be a constant; we show that the bridge slides toward the cusp when it is stretched, while it slides away from the cusp when it is compressed (note sliding motion is different from motion due to pinning/depinning mechanism of contact

  2. Hydrophobicity classification of polymeric materials based on fractal dimension

    Daniel Thomazini

    2008-12-01

    Full Text Available This study proposes a new method to obtain hydrophobicity classification (HC in high voltage polymer insulators. In the method mentioned, the HC was analyzed by fractal dimension (fd and its processing time was evaluated having as a goal the application in mobile devices. Texture images were created from spraying solutions produced of mixtures of isopropyl alcohol and distilled water in proportions, which ranged from 0 to 100% volume of alcohol (%AIA. Based on these solutions, the contact angles of the drops were measured and the textures were used as patterns for fractal dimension calculations.

  3. Fabrication of corona-free nanoparticles with tunable hydrophobicity.

    Moyano, Daniel F; Saha, Krishnendu; Prakash, Gyan; Yan, Bo; Kong, Hao; Yazdani, Mahdieh; Rotello, Vincent M

    2014-07-22

    A protein corona is formed at the surface of nanoparticles in the presence of biological fluids, masking the surface properties of the particle and complicating the relationship between chemical functionality and biological effects. We present here a series of zwitterionic NPs of variable hydrophobicity that do not adsorb proteins at moderate levels of serum protein and do not form hard coronas at physiological serum concentrations. These particles provide platforms to evaluate nanobiological behavior such as cell uptake and hemolysis dictated directly by chemical motifs at the nanoparticle surface.

  4. Synthesis and characterization of lamellar aragonite with hydrophobic property

    Wang Chengyu; Xu Yang; Liu Yalan; Li Jian

    2009-01-01

    A novel and simple synthetic method for the preparation of hydrophobic lamellar aragonite has been developed. The crystallization of aragonite was conducted by the reaction of sodium carbonate with calcium chloride in the presence of sodium stearate. The resulting products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and the contact angle. The results revealed that sodium stearate plays an important role in determining the structure and morphology of the sample. Besides, we have succeeded in surface modification of particles in situ at the same time. The contact angle of the modified aragonite reached 108.59 deg.

  5. New Trends in Gold Catalysts

    Leonarda F. Liotta

    2014-07-01

    Full Text Available Gold is an element that has fascinated mankind for millennia. The catalytic properties of gold have been a source of debate, due to its complete chemical inertness when in a bulk form, while it can oxidize CO at temperatures as low as ~200 K when in a nanocrystalline state, as discovered by Haruta in the late 1980s [1]. Since then, extensive activity in both applied and fundamental research on gold has been initiated. The importance of the catalysis by gold represents one of the fasted growing fields in science and is proven by the promising applications in several fields, such as green chemistry and environmental catalysis, in the synthesis of single-walled carbon nanotubes, as modifiers of Ni catalysts for methane steam and dry reforming reactions and in biological and electrochemistry applications. The range of reactions catalyzed by gold, as well as the suitability of different supports and the influence of the preparation conditions have been widely explored and optimized in applied research [2]. Gold catalysts appeared to be very different from the other noble metal-based catalysts, due to their marked dependence on the preparation method, which is crucial for the genesis of the catalytic activity. Several methods, including deposition-precipitation, chemical vapor deposition and cation adsorption, have been applied for the preparation of gold catalysts over reducible oxides, like TiO2. Among these methods, deposition-precipitation has been the most frequently employed method for Au loading, and it involves the use of tetrachloroauric (III acid as a precursor. On the other hand, the number of articles dealing with Au-loaded acidic supports is smaller than that on basic supports, possibly because the deposition of [AuCl4]− or [AuOHxCl4−x]− species on acidic supports is difficult, due to their very low point of zero charge. Despite this challenge, several groups have reported the use of acidic zeolites as supports for gold. Zeolites

  6. Active carbon catalyst for heavy oil upgrading

    Fukuyama, Hidetsugu; Terai, Satoshi [Technology Research Center, Toyo Engineering Corporation, 1818 Azafujimi, Togo, Mobara-shi, Chiba 297-00017 (Japan); Uchida, Masayuki [Business Planning and Exploring Department, Overseas Business Development and Marketing Division, Toyo Engineering Corporation, 2-8-1 Akanehama, Narashino-shi, Chiba 275-0024 (Japan); Cano, Jose L.; Ancheyta, Jorge [Maya Crude Treatment Project, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico D.F. 07730 (Mexico)

    2004-11-24

    The active carbon (AC) catalyst was studied by hydrocracking of Middle Eastern vacuum residue (VR) for heavy oil upgrading. It was observed that the active carbon has the affinity to heavy hydrocarbon compounds and adsorption selectivity to asphaltenes, and exhibits better ability to restrict the coke formation during the hydrocracking reaction of VR. The mesopore of active carbon was thought to play an important role for effective conversion of heavy hydrocarbon compounds into lighter fractions restricting carbon formation. The performance of the AC catalyst was examined by continuous hydrocracking by CSTR for the removal of such impurities as sulfur and heavy metals (nickel and vanadium), which are mostly concentrated in the asphaltenes. The AC catalyst was confirmed to be very effective for the removal of heavy metals from Middle Eastern VR, Maya/Istmo VR and Maya VR. The extruded AC catalysts were produced by industrial manufacturing method. The application test of the extruded AC catalyst for ebullating-bed reactor as one of the commercially applicable reactors was carried out at the ebullating-bed pilot plant for 500h. The ebullition of the extruded AC catalyst was successfully traced and confirmed by existing {gamma}-ray density meter. The extruded AC catalyst showed stable performance with less sediment formation at an equivalent conversion by conventional alumina catalyst at commercial ebullating-bed unit. The degradation of the AC catalyst at the aging test was observed to be less than that of the conventional alumina catalyst. Thus, the AC catalyst was confirmed to be effective and suitable for upgrading of heavy oil, especially such heavy oils as Maya, which contains much heavy metals.

  7. Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes

    Zhang, Fang

    2012-11-01

    Poly(dimethylsiloxane) (PDMS) was investigated as an alternative to Nafion as an air cathode catalyst binder in microbial fuel cells (MFCs). Cathodes were constructed around either stainless steel (SS) mesh or copper mesh using PDMS as both catalyst binder and diffusion layer, and compared to cathodes of the same structure having a Nafion binder. With PDMS binder, copper mesh cathodes produced a maximum power of 1710 ± 1 mW m -2, while SS mesh had a slightly lower power of 1680 ± 12 mW m -2, with both values comparable to those obtained with Nafion binder. Cathodes with PDMS binder had stable power production of 1510 ± 22 mW m -2 (copper) and 1480 ± 56 mW m -2 (SS) over 15 days at cycle 15, compared to a 40% decrease in power with the Nafion binder. Cathodes with the PDMS binder had lower total cathode impedance than those with Nafion. This is due to a large decrease in diffusion resistance, because hydrophobic PDMS effectively prevented catalyst sites from filling up with water, improving oxygen mass transfer. The cost of PDMS is only 0.23% of that of Nafion. These results showed that PDMS is a very effective and low-cost alternative to Nafion binder that will be useful for large scale construction of these cathodes for MFC applications. © 2012 Elsevier B.V.

  8. Highly Stable and Active Catalyst for Sabatier Reactions

    Hu, Jianli; Brooks, Kriston P.

    2012-01-01

    Highly active Ru/TiO2 catalysts for Sabatier reaction have been developed. The catalysts have shown to be stable under repeated shutting down/startup conditions. When the Ru/TiO2 catalyst is coated on the engineered substrate Fe-CrAlY felt, activity enhancement is more than doubled when compared with an identically prepared engineered catalyst made from commercial Degussa catalyst. Also, bimetallic Ru-Rh/TiO2 catalysts show high activity at high throughput.

  9. Enhanced water transport and salt rejection through hydrophobic zeolite pores

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N.

    2017-12-01

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  10. Review: Milk Proteins as Nanocarrier Systems for Hydrophobic Nutraceuticals.

    Kimpel, Florian; Schmitt, Joachim J

    2015-11-01

    Milk proteins and milk protein aggregates are among the most important nanovehicles in food technology. Milk proteins have various functional properties that facilitate their ability to carry hydrophobic nutraceutical substances. The main functional transport properties that were examined in the reviewed studies are binding of molecules or ions, surface activity, aggregation, gelation, and interaction with other polymers. Hydrophobic binding has been investigated using caseins and isolated β-casein as well as whey proteins. Surface activity of caseins has been used to create emulsion-based carrier systems. Furthermore, caseins are able to self-assemble into micelles, which can incorporate molecules. Gelation and interaction with other polymers can be used to encapsulate molecules into protein networks. The release of transported substances mainly depends on pH and swelling behavior of the proteins. The targeted use of nanocarrier systems requires specific knowledge about the binding mechanisms between the proteins and the carried substances in a certain food matrix. © 2015 Institute of Food Technologists®

  11. Synthesis of silver nanocubes in a hydrophobic binary organic solvent.

    Peng, S.; Sun, Y. (Center for Nanoscale Materials)

    2010-01-01

    Synthesis of metal nanoparticles with controlled shapes in hydrophobic solvents is challenging because homogeneous nucleation with high rate in these solvents is favorable for the formation of multiply twinned (MT) nanoparticles with spherical morphology. In this work, we report an inhomogeneous nucleation strategy in a binary hydrophobic solvent mediated by dimethyldistearylammonium chloride (DDAC), resulting in the coexistence of single-crystalline Ag polyhedrons and MT Ag quasi-spheres at the beginning of the reaction. In the consequent step, the MT Ag nanoparticles are selectively etched and dissolved through oxidation by NO{sub 3}{sup -} ions (from the Ag precursor, AgNO{sub 3}) with the assistance of Cl{sup -} ions (from DDAC). The dissolved Ag species are then reduced and deposited on the more stable single-crystalline polyhedrons to form Ag nanocubes. Synergy of the oxidative etching of MT particles and growth of single-crystalline particles leads to Ag nanocubes with high purity when the ripening time is long enough. For example, refluxing a mixing solvent of octyl ether and oleylamine containing AgNO{sub 3} (0.02 M) and DDAC (0.03 M) at 260 C for 1 h results in Ag nanocubes with an average edge length of 34 nm and a purity higher than 95%.

  12. A capillary pumping device utilizing super-hydrophobic silicon grass

    Kung, Chun-Fei; Chang, Chien-Cheng; Chu, Chin-Chou

    2011-01-01

    In this study, we show that a compact silicon grass surface can be generated by utilizing the induced coupled plasma method with suitably chosen fabrication parameters. This super-hydrophobic structure suspends deionized water on top of the grass and keeps the contact angle at around 153°. The silicon grass is used to improve the driving efficiency of a capillary pumping micro-duct (without sidewalls), which is completely defined by a bottom hydrophilic stripe (adjacent to a Teflon substrate) and a fully top-covered hydrophobic Teflon surface which is coated on a glass substrate. The channel has a height of 3 µm and a width of 100 µm. In this work, the Teflon substrate is replaced with the silicon grass surface. When the fluid is flowing through the micro-duct on the stripe, the interface between the silicon grass and the hydrophilic stripe forms a stable air cushion barrier to the fluid, thus effectively reducing the frictional force. By changing only the interface with this replacement, we demonstrate that the average measured velocities of the new design show improvements of 21% and 17% in the driving efficiency over the original design for transporting deionized water and human blood, respectively. It is also shown that the measured data of the present design are closer to the values predicted by a theoretical analysis which relates the flow velocity to the contact angles, surface tension and fluid viscosity

  13. Hydrophobicity and thermodynamic response for aqueous solutions of amphiphiles

    Zemánková, Katerina; Troncoso, Jacobo; Cerdeiriña, Claudio A.; Romaní, Luis; Anisimov, Mikhail A.

    2016-06-01

    The anomalous behavior of aqueous solutions of amphiphiles in the water-rich region is analyzed via a phenomenological approach that utilizes the isobaric heat capacity Cp as an experimental probe. We report extensive data for solutions of 14 amphiphiles as a function of temperature at atmospheric pressure. Beyond that, Cp data but also isobaric thermal expansivities and isothermal compressibilities for three solutions of tert-butanol as a function of both temperature and pressure are presented. Results rule out the possibility that the observed phenomenology is associated with the anomalous thermodynamics of pure water. Indeed, our Cp data, quantitatively consistent with recent spectroscopic analyses, suggest that water-mediated interactions between the nonpolar parts of amphiphiles are at the origin of anomalies, with the effects of such "hydrophobic aggregation" being observed at mole fractions as small as 0.01. Physicochemical details like the size, the electronic charge distribution and the geometry of amphiphile molecules as well as third-order derivatives of the Gibbs energy and the associated Koga lines support the above claims while they further contribute to characterizing the role of hydrophobicity in these phenomena. Progress with a view to gain a deeper, more concrete understanding remains.

  14. Enhanced water transport and salt rejection through hydrophobic zeolite pores.

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N

    2017-12-15

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  15. Hydrophobicity studies of polymer thin films with varied CNT concentration

    M. Rodzi, N. H.; M. Shahimin, M.; Poopalan, P.; Man, B.; M. Nor, M. N.

    2013-12-01

    Surface functionalization studies for re-creating a `Lotus Leaf' effect (superhydrophobic) have been carried out for the past decade; looking for the material which can provide high transparency, low energy surface and high surface roughness. Fabrication of polydimethylsiloxane (PDMS) and multiwalled carbon nanotubes (MWCNT) hybrid thin film variations on glass to produce near-superhydrophobic surfaces is presented in this paper. There are three important parameters studied in producing hydrophobic surfaces based on the hybrid thin films; concentration of PDMS, concentration of MWCNT and droplet sizes. The study is carried out by using PDMS of varied cross linker ratio (10:1, 30:1 and 50:1) with MWCNT concentration of 1mg, 10mg and 15mg for 0.5 μl, 2.0 μl, 5.0 μl and 10 μl droplet sizes. The resulting hybrid thin films show that hydrophobicity increased with increasing cross linker ratio and MWCNT percentage in the PDMS solution. A near superhydrophobic surface can be created when using 15 mg of MWCNT with 50:1 cross linker ratio PDMS thin films, measured on 10 μl droplet size. The hybrid thin films produced can be potentially tailored to the application of biosensors, MEMS and even commercial devices.

  16. EWOD driven cleaning of bioparticles on hydrophobic and superhydrophobic surfaces.

    Jönsson-Niedziółka, M; Lapierre, F; Coffinier, Y; Parry, S J; Zoueshtiagh, F; Foat, T; Thomy, V; Boukherroub, R

    2011-02-07

    Environmental air monitoring is of great interest due to the large number of people concerned and exposed to different possible risks. From the most common particles in our environment (e.g. by-products of combustion or pollens) to more specific and dangerous agents (e.g. pathogenic micro-organisms), there are a large range of particles that need to be controlled. In this article we propose an original study on the collection of electrostatically deposited particles using electrowetting droplet displacement. A variety of particles were studied, from synthetic particles (e.g. Polystyrene Latex (PSL) microsphere) to different classes of biological particle (proteins, bacterial spores and a viral simulant). Furthermore, we have compared ElectroWetting-On-Dielectric (EWOD) collecting efficiency using either a hydrophobic or a superhydrophobic counter electrode. We observe different cleaning efficiencies, depending on the hydrophobicity of the substrate (varying from 45% to 99%). Superhydrophobic surfaces show the best cleaning efficiency with water droplets for all investigated particles (MS2 bacteriophage, BG (Bacillus atrophaeus) spores, OA (ovalbumin) proteins, and PSL).

  17. Hydrophobic Collapse of Ubiquitin Generates Rapid Protein-Water Motions.

    Wirtz, Hanna; Schäfer, Sarah; Hoberg, Claudius; Reid, Korey M; Leitner, David M; Havenith, Martina

    2018-06-04

    We report time-resolved measurements of the coupled protein-water modes of solvated ubiquitin during protein folding. Kinetic terahertz absorption (KITA) spectroscopy serves as a label-free technique for monitoring large scale conformational changes and folding of proteins subsequent to a sudden T-jump. We report here KITA measurements at an unprecedented time resolution of 500 ns, a resolution 2 orders of magnitude better than those of any previous KITA measurements, which reveal the coupled ubiquitin-solvent dynamics even in the initial phase of hydrophobic collapse. Complementary equilibrium experiments and molecular simulations of ubiquitin solutions are performed to clarify non-equilibrium contributions and reveal the molecular picture upon a change in structure, respectively. On the basis of our results, we propose that in the case of ubiquitin a rapid (<500 ns) initial phase of the hydrophobic collapse from the elongated protein to a molten globule structure precedes secondary structure formation. We find that these very first steps, including large-amplitude changes within the unfolded manifold, are accompanied by a rapid (<500 ns) pronounced change of the coupled protein-solvent response. The KITA response upon secondary structure formation exhibits an opposite sign, which indicates a distinct effect on the solvent-exposed surface.

  18. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    Branko N. Popov

    2009-02-20

    catalytic activity and selectivity for ORR as the Pt catalyst. A theoretical analysis is made of the four-electron reduction reaction of oxygen to water over the mixed anion and cation (202) surface of pentlandite structure Co9Se8, one of several selenide phases. Reversible potentials for forming adsorbed reaction intermediates in acid are predicted using adsorption energies calculated with the Vienna ab initio simulation program (VASP) and the known bulk solution values together in a linear Gibbs energy relationship. The effect of hydrophobic and structural properties of a single/dual-layer cathode gas diffusion layer on mass transport in PEM fuel cells was studied using an analytical expression. The simulations indicated that liquid water transport at the cathode is controlled by the fraction of hydrophilic surface and the average pore diameter in the cathode gas diffusion layer. The optimized hydrophobicity and pore geometry in a dual-layer cathode GDL leads to an effective water management, and enhances the oxygen diffusion kinetics.

  19. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    Branko N. Popov

    2009-03-03

    catalytic activity and selectivity for ORR as the Pt catalyst. A theoretical analysis is made of the four-electron reduction reaction of oxygen to water over the mixed anion and cation (202) surface of pentlandite structure Co9Se8, one of several selenide phases. Reversible potentials for forming adsorbed reaction intermediates in acid are predicted using adsorption energies calculated with the Vienna ab initio simulation program (VASP) and the known bulk solution values together in a linear Gibbs energy relationship. The effect of hydrophobic and structural properties of a single/dual-layer cathode gas diffusion layer on mass transport in PEM fuel cells was studied using an analytical expression. The simulations indicated that liquid water transport at the cathode is controlled by the fraction of hydrophilic surface and the average pore diameter in the cathode gas diffusion layer. The optimized hydrophobicity and pore geometry in a dual-layer cathode GDL leads to an effective water management, and enhances the oxygen diffusion kinetics.

  20. Electrochemical reduction of oxygen on small platinum particles supported on carbon in concentrated phosphoric acid. 2. Effects of teflon content in the catalyst layer and baking temperature of the electrode

    Maoka, T.

    1988-03-01

    A relation between hydrophobicity (or wettability) of a porous gas diffusion electrode for use in a phosphoric acid fuel cell and its cathode performance (activity toward electrochemical oxygen reduction) was examined. The hydrophobicity of the gas diffusion electrode was regulated by changing either the amount of Teflon (PTFE) content in the catalyst layer or baking temperature of the electrode. The Tafel slope or electrochemical oxygen reduction became twice as high as that of the ordinary electrode when the wettability of electrode toward phosphoric acid was high. This fact supports a flooded agglomerate model as the mode of this type of porous gas diffusion electrode.

  1. Novel metalloporphyrin catalysts for the oxidation of hydrocarbons

    Showalter, M.C.; Nenoff, T.M.; Shelnutt, J.A.

    1996-11-01

    Work was done for developing biomimetic oxidation catalysts. Two classes of metalloporphyrin catalysts were studied. The first class of catalysts studied were a novel series of highly substituted metalloporphyrins, the fluorinated iron dodecaphenylporphyrins. These homogeneous metalloporphyrin catalysts were screened for activity as catalysts in the oxidation of hydrocarbons by dioxygen. Results are discussed with respect to catalyst structural features. The second type of catalysts studied were heterogeneous catalysts consisting of metalloporphyrins applied to inorganic supports. Preliminary catalytic testing results with these materials are presented.

  2. European workshop on spent catalysts. Book of abstracts

    NONE

    2006-07-01

    In 1999 and 2002 two well attended workshops on recycling, regeneration, reuse and disposal of spent catalysts took place in Frankfurt. This series has been continued in Berlin. The workshop was organized in collaboration with DGMK, the German Society for Petroleum and Coal Science and Technology. Contributions were in the following areas of catalyst deactivation: recycling of spent catalysts in chemical and petrochemical industry, recycling of precious metal catalysts and heterogenous base metal catalysts, legal aspects of transboundary movements, catalyst regeneration, quality control, slurry catalysts, commercial reactivation of hydrotreating catalysts. (uke)

  3. Transmission electron microscopy on live catalysts

    Bremmer, G.M.

    2017-01-01

    The dissertation describes TEM experiments on heterogeneous catalysts. Starting with characterization of (Ni/Co)MoS2 on Alumina and the effect of oxidation, and sequential resulfidation. After that, Co-based catalysts are used for high-resolution (S)TEM/EDX caracterization studies, and in situ

  4. Chemical engineering design of CO oxidation catalysts

    Herz, Richard K.

    1987-01-01

    How a chemical reaction engineer would approach the challenge of designing a CO oxidation catalyst for pulsed CO2 lasers is described. CO oxidation catalysts have a long history of application, of course, so it is instructive to first consider the special requirements of the laser application and then to compare them to the characteristics of existing processes which utilize CO oxidation catalysts. All CO2 laser applications require a CO oxidation catalyst with the following characteristics: (1) active at stoichiometric ratios of O2 and CO, (2) no inhibition by CO2 or other components of the laser environment, (3) releases no particulates during vibration or thermal cycling, and (4) long lifetime with a stable activity. In all applications, low consumption of power is desirable, a characteristic especially critical in aerospace applications and, thus, catalyst activity at low temperatures is highly desirable. High power lasers with high pulse repetition rates inherently require circulation of the gas mixture and this forced circulation is available for moving gas past the catalyst. Low repetition rate lasers, however, do not inherently require gas circulation, so a catalyst that did not require such circulation would be favorable from the standpoint of minimum power consumption. Lasers designed for atmospheric penetration of their infrared radiation utilize CO2 formed from rare isotopes of oxygen and this application has the additional constraint that normal abundance oxygen isotopes in the catalyst must not exchange with rare isotopes in the gas mixture.

  5. Carbons and carbon supported catalysts in hydroprocessing

    Furimsky, Edward

    2009-07-01

    This book is a comprehensive summary of recent research in the field and covers all areas of carbons and carbon materials. The potential application of carbon supports, particularly those of carbon black (CB) and activated carbon (AC) in hydroprocessing catalysis are covered. Novel carbon materials such as carbon fibers and carbon nano tubes (CNT) are also covered, including the more recent developments in the use of fullerenes in hydroprocessing applications. Although the primary focus of this book is on carbons and carbon supported catalysts, it also identifies the difference in the effect of carbon supports compared with the oxidic supports, particularly that of the Al{sub 2}O{sub 3}. The difference in catalyst activity and stability was estimated using both model compounds and real feeds under variable conditions. The conditions applied during the preparation of carbon supported catalysts are also comprehensively covered and include various methods of pretreatment of carbon supports to enhance catalyst performance. The model compounds results consistently show higher hydrodesulfurization and hydrodeoxygenation activities of carbon supported catalysts than that of the Al{sub 2}O{sub 3} supported catalysts. Also, the deactivation of the former catalysts by coke deposition was much less evident. Chapter 6.3.1.3 is on carbon-supported catalysts: coal-derived liquids.

  6. Ligand iron catalysts for selective hydrogenation

    Casey, Charles P.; Guan, Hairong

    2010-11-16

    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  7. The strange case of the "oscillating" catalysts

    Busico, [No Value; Cipullo, R; Kretschmer, W; Talarico, G; Vacatello, M; Castelli, VV

    The field of stereoselective propene polymerization has been dramatically innovated by the discovery of homogeneous metallocene-based catalysts with well-defined and tunable molecular structure. Of all, "oscillating" metallocenes are probably the most ingenious and challenging example of catalyst

  8. New catalysts for clean environment

    Maijanen, A; Hase, A [eds.; VTT Chemical Technology, Espoo (Finland)

    1997-12-31

    VTT launched a Research Programme on Chemical Reaction Mechanisms (CREAM) in 1993. The three-year programme (1993-1995) has focused on reaction mechanisms relevant to process industries and aimed at developing novel catalysts and biocatalysts for forest, food, and specialty chemicals industries as well as for energy production. The preliminary results of this programme have already been presented in the first symposium organized in Espoo in September 1994. To conclude the programme the second symposium is organized in Otaniemi, Espoo on January 29 - 30, 1996. Papers by 19 speakers and 17 poster presentations of the 1996 Symposium are included in this book. The Symposium consists of four sessions: Biotechnology for Natural Fibers Processing, New Biocatalysts, Catalysts for Clean Energy, and New Opportunities for Chemical Industry. The CREAM programme has tried to foresee solutions for the problems challenged by the public concern on environmental aspects, especially dealing with industrial processes and novel use of raw materials and energy. The programme has followed the basic routes that can lead to natural and simple solutions to develop processes in the fields of forest, food fine chemicals, and energy industry. This symposium presents the results of the programme to learn and further discuss together with the international experts that have been invited as keynote speakers. (author)

  9. New catalysts for clean environment

    Maijanen, A.; Hase, A. [eds.] [VTT Chemical Technology, Espoo (Finland)

    1996-12-31

    VTT launched a Research Programme on Chemical Reaction Mechanisms (CREAM) in 1993. The three-year programme (1993-1995) has focused on reaction mechanisms relevant to process industries and aimed at developing novel catalysts and biocatalysts for forest, food, and specialty chemicals industries as well as for energy production. The preliminary results of this programme have already been presented in the first symposium organized in Espoo in September 1994. To conclude the programme the second symposium is organized in Otaniemi, Espoo on January 29 - 30, 1996. Papers by 19 speakers and 17 poster presentations of the 1996 Symposium are included in this book. The Symposium consists of four sessions: Biotechnology for Natural Fibers Processing, New Biocatalysts, Catalysts for Clean Energy, and New Opportunities for Chemical Industry. The CREAM programme has tried to foresee solutions for the problems challenged by the public concern on environmental aspects, especially dealing with industrial processes and novel use of raw materials and energy. The programme has followed the basic routes that can lead to natural and simple solutions to develop processes in the fields of forest, food fine chemicals, and energy industry. This symposium presents the results of the programme to learn and further discuss together with the international experts that have been invited as keynote speakers. (author)

  10. Isobutane alkylation over solid catalysts

    Kozorezov, Y.I.; Lisin, V.I.

    1979-05-01

    Commercial alumina modified with 6Vertical Bar3< by wt boron trifluoride was active in isobutane alkylation with ethylene in a flow reactor at 5:1 isobutane-ethylene and 5-20 min reaction time. The reaction rate was first-order in ethylene and increased with increasing temperature (20/sup 0/-80/sup 0/C) and ethylene pressure (0.2-3 atm). The calculated activation energy was 8.4 kj. Kinetic data and the activity of tert.-butyl chloride, but not ethyl chloride as alkylating agents in place of ethylene suggested a carbonium-ion chain mechanism involving both surface and gas-phase reactions. The ethylene-based yield of the alkylate decreased from 132 to 41Vertical Bar3< by wt after nine hours on stream, and its bromine number increased from 0.2 to 1 g Br/sub 2//100 ml. This inhibition was attributed to adsorption on the active acidic sites of the reaction products, particularly C/sub 10//sup +/ olefins. Catalyst stabilization could probably be achieved by selecting an appropriate solvent that would continuously desorb the inhibiting products from the catalyst surface.

  11. Characterization of humidity-controlling porous ceramics produced from coal fly ash and waste catalyst by co-sintering

    Lin, Kae-Long; Ma, Chih-Ming; Lo, Kang-Wei; Cheng, Ta-Wui

    2018-04-01

    In this study, the following operating conditions were applied to develop humidity-controlling porous ceramic (HCPC) products: sintering temperatures of 800-1000 °C and percentages of coal fly ash in waste catalyst of 0%-40%. The HCPC samples then underwent a flexural strength test, to determine their quality according to the Chinese National Standards (CNS 3298). Their microstructures, crystal structures, and pore volume were determined in terms of equilibrium moisture content, water vapor adsorption/desorption, and hygroscopic sorption properties over 48 h. Nitrogen adsorption/desorption isotherms showed a hydrophobic behavior (type H3 isotherm). The water vapor adsorption/desorption and hygroscopic sorption properties satisfied the JIS A1470 intensity specification for building materials (>29 g/m2). At sintering temperatures of 950-1000 °C, HCPC samples for coal fly ash containing 20%-30% waste catalyst met the JIS A1470 intensity specifications for building materials (<29 g/m2).

  12. Evaluation of the isotope separation rate of deuterium exchange reaction between H2 and H2O with platinum catalyst

    Kitamoto, Asashi; Takashima, Yoichi; Shimizu, Masami.

    1983-01-01

    The high performance catalysts of hydrophobic carrier with fully dispersed platinum were used to measure the isotope separation performance of hydrogen by the chemical exchange method. The continuous injection of oxygen on the order of 10 3 ppm was effective in regenerating catalyst activity and in maintaining high performance for a long time. The separation performance in a trickle bed column should be evaluated by using two parameters, ksub(g) and ksub(l). These two parameters were unified to the overall transfer coefficient ksub(fg), which may be sufficient in the estimation of overall performance or the design of a separation plant by the chemical exchange method. When one wants to increase the transfer rate in a chemical exchange column, the improvement of ksub(l) rather than ksub(g) may be more effective in increasing the overall transfer rate (its coefficient is expressed by ksub(fg) in this paper). (author)

  13. Rheological Properties in Aqueous Solution for Hydrophobically Modified Polyacrylamides Prepared in Inverse Emulsion Polymerization

    Shirley Carro

    2017-01-01

    Full Text Available Inverse emulsion polymerization technique was employed to synthesize hydrophobically modified polyacrylamide polymers with hydrophobe contents near to feed composition. Three different structures were obtained: multisticker, telechelic, and combined. N-Dimethyl-acrylamide (DMAM, n-dodecylacrylamide (DAM, and n-hexadecylacrylamide (HDAM were used as hydrophobic comonomers. The effect of the hydrophobe length of comonomer, the initial monomer, and surfactant concentrations on shear viscosity was studied. Results show that the molecular weight of copolymer increases with initial monomer concentration and by increasing emulsifier concentration it remained almost constant. Shear viscosity measurements results show that the length of the hydrophobic comonomer augments the hydrophobic interactions causing an increase in viscosity and that the polymer thickening ability is higher for combined polymers.

  14. How microorganisms use hydrophobicity and what does this mean for human needs?

    Anna eKrasowska

    2014-08-01

    Full Text Available Cell surface hydrophobicity (CSH plays a crucial role in the attachment to, or detachment from the surfaces. The influence of CSH on adhesion of microorganisms to biotic and abiotic surfaces in medicine as well as in bioremediation and fermentation industry has both negative and positive aspects. Hydrophobic microorganisms cause the damage of surfaces by biofilm formation; on the other hand, they can readily accumulate on organic pollutants and decompose them. Hydrophilic microorganisms also play a considerable role in removing organic wastes from the environment because of their high resistance to hydrophobic chemicals. Despite the many studies on the environmental and metabolic factors affecting cell surface hydrophobicity (CSH, the knowledge of this subject is still scanty and is in most cases limited to observing the impact of hydrophobicity on adhesion, aggregation or flocculation. The future of research seems to lie in finding a way to managing the microbial adhesion process, perhaps by steering cell hydrophobicity.

  15. Synthesis of biocompatible hydrophobic silica-gelatin nano-hybrid by sol-gel process.

    Smitha, S; Shajesh, P; Mukundan, P; Nair, T D R; Warrier, K G K

    2007-03-15

    Silica-biopolymer hybrid has been synthesised using colloidal silica as the precursor for silica and gelatin as the biopolymer counterpart. The surface modification of the hybrid material has been done with methyltrimethoxysilane leading to the formation of biocompatible hydrophobic silica-gelatin hybrid. Here we are reporting hydrophobic silica-gelatin hybrid and coating precursor for the first time. The hybrid gel has been evaluated for chemical modification, thermal degradation, hydrophobicity, particle size, transparency under the UV-visible region and morphology. FTIR spectroscopy has been used to verify the presence of CH(3) groups which introduce hydrophobicity to the SiO2-MTMS-gelatin hybrids. The hydrophobic property has also been tailored by varying the concentration of methyltrimethoxysilane. Contact angle by Wilhelmy plate method of transparent hydrophobic silica-gelatin coatings has been found to be as high as approximately 95 degrees . Oxidation of the organic group which induces the hydrophobic character occurs at 530 degrees C which indicates that the surface hydrophobicity is retained up to that temperature. Optical transmittance of SiO2-MTMS-gelatin hybrid coatings on glass substrates has been found to be close to 100% which will enable the hybrid for possible optical applications and also for preparation of transparent biocompatible hydrophobic coatings on biological substrates such as leather.

  16. Spent catalyst waste management. A review. Part 1. Developments in hydroprocessing catalyst waste reduction and use

    Marafi, M.; Stanislaus, A. [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109-Safat (Kuwait)

    2008-04-15

    Solid catalysts containing metals, metal oxides or sulfides, which play a key role in the refining of petroleum to clean fuels and many other valuable products, become solid wastes after use. In many refineries, the spent catalysts discarded from hydroprocessing units form a major part of these solid wastes. Disposal of spent hydroprocessing catalysts requires compliance with stringent environmental regulations because of their hazardous nature and toxic chemicals content. Various options such as minimizing spent catalyst waste generation by regeneration and reuse, metals recovery, utilization to produce useful materials and treatment for safe disposal, could be considered to deal with the spent catalyst environmental problem. In this paper, information available in the literature on spent hydroprocessing catalyst waste reduction at source by using improved more active and more stable catalysts, regeneration, rejuvenation and reuse of deactivated catalysts in many cycles, and reusing in other processes are reviewed in detail with focus on recent developments. Available methods for recycling of spent hydroprocessing catalysts by using them as raw materials for the preparation of active new catalysts and many other valuable products are also reviewed. (author)

  17. Frictional forces between hydrophilic and hydrophobic particle coated nanostructured surfaces

    Hansson, Petra M; Claesson, Per M.; Swerin, Agne

    2013-01-01

    Friction forces have long been associated with the famous Amontons' rule that states that the friction force is linearly dependent on the applied normal load, with the proportionality constant being known as the friction coefficient. Amontons' rule is however purely phenomenological and does...... not in itself provide any information on why the friction coefficient is different for different material combinations. In this study, friction forces between a colloidal probe and nanostructured particle coated surfaces in an aqueous environment exhibiting different roughness length scales were measured...... by utilizing the atomic force microscope (AFM). The chemistry of the surfaces and the probe was varied between hydrophilic silica and hydrophobized silica. For hydrophilic silica surfaces, the friction coefficient was significantly higher for the particle coated surfaces than on the flat reference surface. All...

  18. Modification of Deeply Buried Hydrophobic Interfaces by Ionic Surfactants

    L Tamam; D Pontoni Z Sapir; S Yefet; S Sloutskin; B Ocko; H Reichert; M Deutsch

    2011-12-31

    Hydrophobicity, the spontaneous segregation of oil and water, can be modified by surfactants. The way this modification occurs is studied at the oil-water interface for a range of alkanes and two ionic surfactants. A liquid interfacial monolayer, consisting of a mixture of alkane molecules and surfactant tails, is found. Upon cooling, it freezes at T{sub s}, well above the alkane's bulk freezing temperature, T{sub b}. The monolayer's phase diagram, derived by surface tensiometry, is accounted for by a mixtures-based theory. The monolayer's structure is measured by high-energy X-ray reflectivity above and below T{sub s}. A solid-solid transition in the frozen monolayer, occurring approximately 3 C below T{sub s}, is discovered and tentatively suggested to be a rotator-to-crystal transition.

  19. Transforming plastic surfaces with electrophilic backbones from hydrophobic to hydrophilic.

    Kim, Samuel; Bowen, Raffick A R; Zare, Richard N

    2015-01-28

    We demonstrate a simple nonaqueous reaction scheme for transforming the surface of plastics from hydrophobic to hydrophilic. The chemical modification is achieved by base-catalyzed trans-esterification with polyols. It is permanent, does not release contaminants, and causes no optical or mechanical distortion of the plastic. We present contact angle measurements to show successful modification of several types of plastics including poly(ethylene terephthalate) (PET) and polycarbonate (PC). Its applicability to blood analysis is explored using chemically modified PET blood collection tubes and found to be quite satisfactory. We expect this approach will reduce the cost of manufacturing plastic devices with optimized wettability and can be generalized to other types of plastic materials having an electrophilic linkage as its backbone.

  20. Effect of hydrophobic microstructured surfaces on conductive ink printing

    Kim, Seunghwan; Kang, Hyun Wook; Lee, Kyung Heon; Sung, Hyung Jin

    2011-01-01

    Conductive ink was printed on various microstructured substrates to measure the printing quality. Poly-dimethylsiloxane (PDMS) substrates were used to test the printability of the hydrophobic surface material. Microstructured arrays of 10 µm regular PDMS cubes were prepared using the MEMS fabrication technique. The gap distance between the cubes was varied from 10 to 40 µm. The printing wettability of the microstructured surfaces was determined by measuring the contact angle of a droplet of silver conductive ink. Screen-printing methods were used in the conductive line printing experiment. Test line patterns with finely varying widths (30–250 µm) were printed repeatedly, and the conductivity of the printed lines was measured. The printability, which was defined as the ratio of the successfully printed patterns to the total number of printed patterns, was analyzed as a function of the linewidth and the gap distance of the microstructured surfaces

  1. Harvesting electrostatic energy using super-hydrophobic surfaces

    Pociecha, Dominik; Zylka, Pawel

    2016-11-01

    Almost all environments are now being extensively populated by miniaturized, nano-powered electronic sensor devices communicated together through wireless sensor networks building Internet of Things (IoT). Various energy harvesting techniques are being more and more frequently proposed for battery-less powering of such remote, unattended, implantable or wearable sensors or other low-power electronic gadgets. Energy harvesting relays on extracting energy from the ambient sources readily accessible at the sensor location and converting it into electrical power. The paper exploits possibility of generating electric energy safely accessible for nano-power electronics using tribo-electric and electrostatic induction phenomena displayed at super-hydrophobic surfaces impinged by water droplets. Mechanism of such interaction is discussed and illustrated by experimental results.

  2. Thermodynamics of water intrusion in nanoporous hydrophobic solids.

    Cailliez, Fabien; Trzpit, Mickael; Soulard, Michel; Demachy, Isabelle; Boutin, Anne; Patarin, Joël; Fuchs, Alain H

    2008-08-28

    We report a joint experimental and molecular simulation study of water intrusion in silicalite-1 and ferrerite zeolites. The main conclusion of this study is that water condensation takes place through a genuine first-order phase transition, provided that the interconnected pores structure is 3-dimensional. In the extreme confinement situation (ferrierite zeolite), condensation takes place through a continuous transition, which is explained by a shift of both the first-order transition line and the critical point with increasing confinement. The present findings are at odds with the common belief that conventional phase transitions cannot take place in microporous solids such as zeolites. The most important features of the intrusion/extrusion process can be understood in terms of equilibrium thermodynamics considerations. We believe that these findings are very general for hydrophobic solids, i.e. for both nonwetting as well as wetting water-solid interface systems.

  3. Neutron structure of the hydrophobic plant protein crambin

    Teeter, M.M.; Kossiakoff, A.A.

    1982-01-01

    Crystals of the small hydrophobic protein crambin have been shown to diffract to a resolution of at least 0.88 A. This means that crambin presents a rare opportunity to study a protein structure at virtually atomic resolution. The high resolution of the diffraction pattern coupled with the assets of neutron diffraction present the distinct possibility that crambin's analysis may surpass that of any other protein system in degree and accuracy of detail. The neutron crambin structure is currently being refined at 1.50 A (44.9% of the data to 1.2 A has also been included). It is expected that a nominal resolution of 1.0 A can be achieved. 15 references, 6 figures, 2 tables

  4. Catalysts, Protection Layers, and Semiconductors

    Chorkendorff, Ib

    2015-01-01

    Hydrogen is the simplest solar fuel to produce and in this presentation we shall give a short overview of the pros and cons of various tandem devices [1]. The large band gap semiconductor needs to be in front, but apart from that we can chose to have either the anode in front or back using either...... acid or alkaline conditions. Since most relevant semiconductors are very prone to corrosion the advantage of using buried junctions and using protection layers offering shall be discussed [2-4]. Next we shall discuss the availability of various catalysts for being coupled to these protections layers...... and how their stability may be evaluated [5, 6]. Examples of half-cell reaction using protection layers for both cathode and anode will be discussed though some of recent examples under both alkaline and acidic conditions. Si is a very good low band gap semiconductor and by using TiO2 as a protection...

  5. Fundamental investigations of catalyst nanoparticles

    Elkjær, Christian Fink

    and economic development in the 20th century. There is however a downside to this development and we are seeing significant pollution and pressure on resources. Catalysis therefore has an increasingly important role in limiting pollution and optimizing the use of resources. This development will depend on our...... fundamental understanding of catalytic processes and our ability to make use of that understanding. This thesis presents fundamental studies of catalyst nanoparticles with particular focus on dynamic processes. Such studies often require atomic-scale characterization, because the catalytic conversion takes...... important that we only study intrinsic structures and phenomena and not those that may be induced by the high energy electrons used to image the specimen. This requires careful consideration of the influence of the electron beam in order to understand, control and minimize that influence. I present four...

  6. Evaporation of Nanosuspensions on Substrates with Different Hydrophobicity.

    Perrin, Lionel; Pajor-Swierzy, Anna; Magdassi, Shlomo; Kamyshny, Alexander; Ortega, Francisco; Rubio, Ramón G

    2018-01-24

    Liquid drop evaporation on surfaces is present in many industrial and medical applications, e.g., printed electronics, spraying of pesticides, DNA mapping, etc. Despite this strong interest, a theoretical description of the dynamic of the evaporation of complex liquid mixtures and nanosuspensions is still lacking. Indeed, one of the aspects that have not been included in the current theoretical descriptions is the competition between the kinetics of evaporation and the adsorption of surfactants and/or particles at the liquid/vapor and liquid/solid interfaces. Materials formed by an electrically isolating solid on which a patterned conducting layer was formed by the deposits left after drop evaporation have been considered as very promising for building electrical circuits on flexible plastic substrates. In this work, we have done an exhaustive study of the evaporation of nanosuspensions of latex and hydrophobized silver nanoparticles on four substrates of different hydrophobicity. The advancing and receding contact angles as well as the time dependence of the volume of the droplets have been measured over a broad range of particle concentrations. Also, mixtures of silver particles and a surfactant, commonly used in industrial printing, have been examined. Furthermore, the adsorption kinetics at both the air/liquid and solid/liquid interfaces have been measured. Whereas the latex particles do not adsorb at the solid/liquid and only slightly reduce the surface tension, the silver particles strongly adsorb at both interfaces. The experimental results of the evaporation process were compared with the predictions of the theory of Semenov et al. (Evaporation of Sessile Water Droplets: Universal Behavior in the Presence of Contact Angle Hysteresis. Colloids Surf. Physicochem. Eng. Asp. 2011, 391 (1-3), 135-144) and showed surprisingly good agreement despite that the theory was developed for pure liquids. The morphology of the deposits left by the droplets after total

  7. Influences of species of metals and supports on the hydrogenation activity of carbon-supported metal sulfides catalysts; Tanso biryushi tanji shokubai no suisoka kassei ni taisuru kassei kinzoku oyobi tantaishu no eikyo

    Sakanishi, K.; Hasuo, H.; Taniguchi, H.; Nagamatsu, T.; Mochida, I. [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study

    1996-10-28

    In order to design catalysts suitable for primary liquefaction stage and secondary upgrading stage respectively in the multi-stage liquefaction process, various carbon-supported catalysts were prepared. Catalytic activities of them were investigated for the hydrogenation of 1-methylnaphthalene, to discuss the influences of metals and carbon species on the catalytic activity. Various water soluble and oil soluble Mo and Ni salts were used for NiMo supported catalysts. Among various carbon supports, Ketjen Black (KB) was effective for preparing the catalyst showing the most excellent hydrogenation activity. The KB and Black Pearl 2000 (BP2000) showing high hydrogenation activity were fine particles having high specific surface area more than 1000 m{sup 2}/g and primary particle diameter around 30 nm. This was inferred to contribute to the high dispersion support of active metals. Since such fine particles of carbon exhibited hydrophobic surface, they were suitable for preparing catalysts from the methanol-soluble metals. Although Ni and Mo added iron-based catalysts provided lower aromatic hydrogenation activity, they exhibited liquefaction activity competing with the NiMo/KB catalyst. 3 refs., 1 fig., 3 tabs.

  8. Characterization of three-way automotive catalysts

    Kenik, E.A.; More, K.L. [Oak Ridge National Laboratory, TN (United States); LaBarge, W. [General Motors-AC Delco Systems, Flint, MI (United States)] [and others

    1995-05-01

    This has been the second year of a CRADA between General Motors - AC Delco Systems (GM-ACDS) and Martin Marietta Energy Systems (MMES) aimed at improved performance/lifetime of platinum-rhodium based three-way-catalysts (TWC) for automotive emission control systems. While current formulations meet existing emission standards, higher than optimum Pt-Rh loadings are often required. In additionk, more stringent emission standards have been imposed for the near future, demanding improved performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts.

  9. Catalyst for hydrogen-amine D exchange

    Holtslander, W.J.; Johnson, R.E.

    1976-01-01

    A process is claimed for deuterium isotopic enrichment (suitable for use in heavy water production) by amine-hydrogen exchange in which the exchange catalyst comprises a mixture of alkyl amides of two metals selected from the group consisting of the alkali metals. Catalyst mixtures comprising at least one of the alkali amides of lithium and potassium are preferred. At least one of the following benefits are obtained: decreased hydride formation, decreased thermal decomposition of alkyl amide, increased catalyst solubility in the amine phase, and increased exchange efficiency. 11 claims

  10. deNOx catalysts for biomass combustion

    Kristensen, Steffen Buus

    The present thesis revolves around the challenges involved in removal of nitrogen oxides in biomass fired power plants. Nitrogen oxides are unwanted byproducts formed to some extent during almost any combustion. In coal fired plants these byproducts are removed by selective catalytic reduction......, however the alkali in biomass complicate matters. Alkali in biomass severely deactivates the catalyst used for the selective catalytic reduction in matter of weeks, hence a more alkali resistant catalyst is needed. In the thesis a solution to the problem is presented, the nano particle deNOx catalyst...

  11. Towards the computational design of solid catalysts

    Nørskov, Jens Kehlet; Bligaard, Thomas; Rossmeisl, Jan

    2009-01-01

    Over the past decade the theoretical description of surface reactions has undergone a radical development. Advances in density functional theory mean it is now possible to describe catalytic reactions at surfaces with the detail and accuracy required for computational results to compare favourably...... with experiments. Theoretical methods can be used to describe surface chemical reactions in detail and to understand variations in catalytic activity from one catalyst to another. Here, we review the first steps towards using computational methods to design new catalysts. Examples include screening for catalysts...

  12. Grafting heterogeneous catalyst with gamma radiation

    Garnett, J.L.; Long, M.A.; Levot, R.G.

    1984-01-01

    A process for the production of a heterogeneous catalyst comprises the steps of: irradiating an organic macromolecular substrate or a metal substrate with ionising or ultra violet radiation in the presence of a monomer selected from the group consisting of o-, m-, or p- styryl diphenyl phosphine and o-, m- or p- phenyl acrylyl diphenyl phosphine, to graft the monomer to the substrate; and reacting the graft copolymer with a homogeneous catalyst selected from the group consisting of catalytic metal salts and catalytic organometallic complexes such that the graft copolymer conjugate becomes a ligand of the catalyst

  13. Hydrophobic, Hydrophilic, and Amphiphilic Polyglycocarbonates with Linear and Macrocyclic Architectures from Bicyclic Glycocarbonates Derived from CO2 and Glucoside

    Pati, Debasis

    2017-02-09

    Two bicyclic glycocarbonates were synthesized in five steps from α-methyl-d-glucoside without resorting to phosgene or to its derivatives for the first time. The 4- and 6-positions of glucose were modified to introduce a six-membered carbonate ring, using CO as the carbonylating reagent; the 2- and 3-positions of the same glucoside substrate were first transformed into either methyl or triethylene glycol monomethyl ether groups to protect these positions from undesirable reactions and also to impart hydrophobicity in the first case and hydrophilicity in the second. The polymerization behavior of these bicyclic glycocarbonates was then investigated under different conditions. On the one hand, through ring-opening polymerization of the above monomers, linear polyglycocarbonate homopolymers and diblock copolymers were obtained initiated by p-methylbenzyl alcohol using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as catalyst; on the other hand, macrocyclic polyglycocarbonate homopolymers and diblock copolymers were grown using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) which served as zwitterionic initiator. The various architectures derived were all thoroughly characterized by NMR, GPC, and MALDI-tof and shown to exhibit the expected structure. Finally, the self-assembly of linear and macrocyclic amphiphilic copolyglycocarbonates in water was investigated and characterized by cryo-TEM.

  14. Hydrophobic, Hydrophilic, and Amphiphilic Polyglycocarbonates with Linear and Macrocyclic Architectures from Bicyclic Glycocarbonates Derived from CO2 and Glucoside

    Pati, Debasis; Feng, Xiaoshuang; Hadjichristidis, Nikolaos; Gnanou, Yves

    2017-01-01

    Two bicyclic glycocarbonates were synthesized in five steps from α-methyl-d-glucoside without resorting to phosgene or to its derivatives for the first time. The 4- and 6-positions of glucose were modified to introduce a six-membered carbonate ring, using CO as the carbonylating reagent; the 2- and 3-positions of the same glucoside substrate were first transformed into either methyl or triethylene glycol monomethyl ether groups to protect these positions from undesirable reactions and also to impart hydrophobicity in the first case and hydrophilicity in the second. The polymerization behavior of these bicyclic glycocarbonates was then investigated under different conditions. On the one hand, through ring-opening polymerization of the above monomers, linear polyglycocarbonate homopolymers and diblock copolymers were obtained initiated by p-methylbenzyl alcohol using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as catalyst; on the other hand, macrocyclic polyglycocarbonate homopolymers and diblock copolymers were grown using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) which served as zwitterionic initiator. The various architectures derived were all thoroughly characterized by NMR, GPC, and MALDI-tof and shown to exhibit the expected structure. Finally, the self-assembly of linear and macrocyclic amphiphilic copolyglycocarbonates in water was investigated and characterized by cryo-TEM.

  15. Designing Pd-based supported bimetallic catalysts for environmental applications

    Nowicka, Ewa; Meenakshisundaram, Sankar

    2018-01-01

    Supported bimetallic nanoparticulate catalysts are an important class of heterogeneous catalysts for many reactions including selective oxidation, hydrogenation/hydrogenolysis, reforming, biomass conversion reactions, and many more. The activity, selectivity, and stability of these catalysts depend on their structural features including particle size, composition, and morphology. In this review, we present important structural features relevant to supported bimetallic catalysts focusing on Pd...

  16. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of... catalyst conversion efficiency for Phase 1 engines. The thermal stress is imposed on the test catalyst by...

  17. Bio-oil hydrodeoxygenation catalysts produced using strong electrostatic adsorption

    We synthesized hydrothermally stable metal catalysts with controlled particle size and distribution, with the goal of determining which catalyst(s) can selectively catalyze the production of aromatics from bio-oil (from pyrolysis of biomass). Both precious and base transition metal catalysts (Ru, Pt...

  18. In-situ hydrodeoxygenation of phenol by supported Ni catalyst-explanation for catalyst performance

    Wang, Ze; Zeng, Ying; Lin, Weigang

    2017-01-01

    In-situ hydrodeoxygenation of phenol with aqueous hydrogen donor over supported Ni catalyst was investigated. The supported Ni catalysts exerted very poor performance, if formic acid was used as the hydrogen donor. Catalyst modification by loading K, Na, Mg or La salt could not make the catalyst...... performance improved. If gaseous hydrogen was used as the hydrogen source the activity of Ni/Al2O3 was pretty high. CO2 was found poisonous to the catalysis, due to the competitive adoption of phenol with CO2. If formic acid was replaced by methanol, the catalyst performance improved remarkably, with major...... products of cyclohexanone and cyclohexanol. The better effect of methanol enlightened the application of the supported Ni catalyst in in-situ hydrodeoxygenation of phenol....

  19. Effect of coke and catalyst structure on oxidative regeneration of hydroprocessing catalysts

    Furimsky, E. (CANMET, Ottawa, ON (Canada). Energy Research Laboratories)

    1991-04-01

    Two industrial hydroprocessing catalysts used for upgrading an atmospheric residue and a gas oil, respectively were regenerated in a fixed bed using air and 2 vol.% O{sub 2}+N{sub 2} balance mixture. The regeneration in air resulted in a significant sintering of the catalyst's material. The surface area of catalysts regenerated in 2 vol.% O{sub 2} mixture was similar to that of fresh catalysts, whereas a significant loss of surface area was observed after regeneration in air. The X-ray diffraction pattern of catalysts regenerated in 2 vol.% O{sub 2}+N{sub 2} balance mixture was also similar to that of fresh catalysts. 22 refs., 9 figs., 7 tabs.

  20. Supported catalyst systems and method of making biodiesel products using such catalysts

    Kim, Manhoe; Yan, Shuli; Salley, Steven O.; Ng, K. Y. Simon

    2015-10-20

    A heterogeneous catalyst system, a method of preparing the catalyst system and a method of forming a biodiesel product via transesterification reactions using the catalyst system is disclosed. The catalyst system according to one aspect of the present disclosure represents a class of supported mixed metal oxides that include at least calcium oxide and another metal oxide deposited on a lanthanum oxide or cerium oxide support. Preferably, the catalysts include CaO--CeO.sub.2ZLa.sub.2O.sub.3 or CaO--La.sub.2O.sub.3/CeO.sub.2. Optionally, the catalyst may further include additional metal oxides, such as CaO--La.sub.2O.sub.3--GdOxZLa.sub.2O.sub.3.

  1. Synthesis and self-assembly of four-armed star copolymer based on poly(ethylene brassylate) hydrophobic block as potential drug carries

    Chen, Jiucun, E-mail: chenjc@swu.edu.cn; Li, Junzhi; Liu, Jianhua; Weng, Bo; Xu, Liqun [Southwest University, Institute for Clean Energy & Advanced Materials (China)

    2016-05-15

    A novel well-defined four-armed star poly(ethylene brassylate)-b-poly(poly(ethylene glycol)methyl ether methacrylate) (s-PEB-b-P(PEGMA)) was synthesized and self-assembled via the combination of ring-opening polymerization and reversible addition-fragmentation chain transfer polymerization (RAFT) in this work. It proceeded firstly with the synthesis of hydrophobic four-armed star homopolymer of ethylene brassylate (EB) via ROP with organic catalyst, followed by the esterification reaction of s-PEB with chain transfer agent. Afterward, RAFT polymerization of PEGMA monomer was initialed using PEB-based macro-RAFT agent, resulting in the target amphiphilic four-armed star copolymer. The obtained s-PEB-b-P(PEGMA) can assemble into micelles with PEB segments as core and P(PEGMA) segments as shell in aqueous solution. The self-assembly behavior was studied by dynamic light scattering and transmission electron microscope. The micelles of s-PEB-b-P(PEGMA) exhibited higher loading capacity of the anticancer drug doxorubicin (DOX). The investigation of DOX release from the micelles demonstrated that the release rate of the hydrophobic drug could be effectively controlled.Graphical Abstract.

  2. Reference interaction site model with hydrophobicity induced density inhomogeneity: An analytical theory to compute solvation properties of large hydrophobic solutes in the mixture of polyatomic solvent molecules

    Cao, Siqin; Sheong, Fu Kit; Huang, Xuhui

    2015-01-01

    Reference interaction site model (RISM) has recently become a popular approach in the study of thermodynamical and structural properties of the solvent around macromolecules. On the other hand, it was widely suggested that there exists water density depletion around large hydrophobic solutes (>1 nm), and this may pose a great challenge to the RISM theory. In this paper, we develop a new analytical theory, the Reference Interaction Site Model with Hydrophobicity induced density Inhomogeneity (RISM-HI), to compute solvent radial distribution function (RDF) around large hydrophobic solute in water as well as its mixture with other polyatomic organic solvents. To achieve this, we have explicitly considered the density inhomogeneity at the solute-solvent interface using the framework of the Yvon-Born-Green hierarchy, and the RISM theory is used to obtain the solute-solvent pair correlation. In order to efficiently solve the relevant equations while maintaining reasonable accuracy, we have also developed a new closure called the D2 closure. With this new theory, the solvent RDFs around a large hydrophobic particle in water and different water-acetonitrile mixtures could be computed, which agree well with the results of the molecular dynamics simulations. Furthermore, we show that our RISM-HI theory can also efficiently compute the solvation free energy of solute with a wide range of hydrophobicity in various water-acetonitrile solvent mixtures with a reasonable accuracy. We anticipate that our theory could be widely applied to compute the thermodynamic and structural properties for the solvation of hydrophobic solute

  3. Carbon dioxide solubilities in decanoic acid-based hydrophobic deep eutectic solvents

    Zubeir, Lawien F.; Van Osch, Dannie J.G.P.; Rocha, Marisa A.A.; Banat, Fawzi; Kroon, Maaike C.

    2018-01-01

    The solubility of CO2 in hydrophobic deep eutectic solvents (DESs) has been measured for the first time. Six different hydrophobic DESs are studied in the temperature range from 298 to 323 K and at CO2 pressures up to 2 MPa. The results are evaluated by comparing the solubility data with existing

  4. Characterizing time-dependent contact angles for sands hydrophobized with oleic and stearic acids

    Subedi, S; Kawamoto, K; Jayarathna, L

    2012-01-01

    -frequency precipitation. A potential solution is to alter soil grain surfaces to become water repellent by mixing or coating the soil cover material with hydrophobic agents (HAs). In this study, hydrophobic CBs comprised of sands mixed with environmentally friendly HAs (oleic acid [OA] and stearic acid [SA]) were studied...

  5. Tuning hydrophobicity of zein nanoparticles to control rheological behavior of Pickering emulsions

    Zou, Yuan; Baalen, van Carlijn; Yang, Xiaoquan; Scholten, E.

    2018-01-01

    In the present work, the influence of hydrophobicity of zein/tannic acid complex particles (ZTPs) on the rheological behavior of ZTP-stabilized emulsion gels is described. The hydrophobicity of the particles was controlled by the incorporation of different amounts of hydrophilic tannic acid, while

  6. Influence of cosolvents on the hydrophobic surface immobilization topography of Candida antarctica lipase B

    The presence of cosolvents and co-solutes during the immobilization of lipases on hydrophobic supports may influence the extent of lipase immobilization and the long-term catalytic stability of the biocatalyst. Candida antarctica B lipase immobilization was examined on a hydrophobic surface, i.e., ...

  7. Synthesis of hydrophobic peptides : An Fmoc “Solubilising Tail” method

    Choma, Christin T.; Robillard, George T.; Englebretsen, Darren R.

    1998-01-01

    The development of an Fmoc method for synthesis and purification of hydrophobic peptides using a “solubihsing tail” strategy is described. Peptide-constructs of the form hydrophobic peptide-[CHmb ester]-solubilising peptide were synthesised. Procedures for forming the 4-Hmb ester linkage, and

  8. Molecular dynamics simulations of the hydrophobin SC3 at a hydrophobic/hydrophilic interface

    Fan, Hao; Wang, Xiaoqin; Zhu, Jiang; Robillard, George T.; Mark, Alan E.

    2006-01-01

    Hydrophobins are small (similar to 100 aa) proteins that have an important role in the growth and development of mycelial fungi. They are surface active and, after secretion by the fungi, self-assemble into amphipathic membranes at hydrophobic/hydrophilic interfaces, reversing the hydrophobicity of

  9. Premicellar interaction of PEO-PPO-PEO triblock copolymers with partially hydrophobic alcohols: NMR study

    Kříž, Jaroslav; Dybal, Jiří

    2013-01-01

    Roč. 51, č. 5 (2013), s. 275-282 ISSN 0749-1581 R&D Projects: GA ČR GAP205/11/1657; GA ČR GA203/09/1478 Institutional support: RVO:61389013 Keywords : pluronics * hydrophobic interaction * hydrophobic alcohols Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.559, year: 2013

  10. Fabrication of TiO2/EP super-hydrophobic thin film on filter paper surface.

    Gao, Zhengxin; Zhai, Xianglin; Liu, Feng; Zhang, Ming; Zang, Deli; Wang, Chengyu

    2015-09-05

    A composite filter paper with super-hydrophobicity was obtained by adhering micro/nano structure of amorphous titanium dioxide on the filter paper surface with modifying low surface energy material. By virtue of the coupling agent, which plays an important part in bonding amorphous titanium dioxide and epoxy resin, the structure of super-hydrophobic thin film on the filter paper surface is extremely stable. The microstructure of super-hydrophobic filter paper was characterized by scanning electron microscopy (SEM), the images showed that the as-prepared filter paper was covered with uniform amorphous titanium dioxide particles, generating a roughness structure on the filter paper surface. The super-hydrophobic performance of the filter paper was characterized by water contact angle measurements. The observations showed that the wettability of filter paper samples transformed from super-hydrophilicity to super-hydrophobicity with the water contact angle of 153 ± 1°. Some experiments were also designed to test the effect of water-oil separation and UV-resistant by the super-hydrophobic filter paper. The prepared super-hydrophobic filter paper worked efficiently and simply in water-oil separation as well as enduringly in anti-UV property after the experiments. This method offers an opportunity to the practical applications of the super-hydrophobic filter paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Medicinal utility of boron clusters. Receptor modulators bearing carborane as a hydrophobic pharmacophore

    Endo, Y.; Iijima, T.; Yaguchi, K.; Yoshimi, T.; Yamakoshi, Y.; Kawachi, E.; Kagechika, H.

    2000-01-01

    The hydrophobic character and spherical geometry of carboranes may allow their use as a hydrophobic pharmacophore in biologically active molecules. We report potent cellular nuclear receptor ligands with carborane such as retinoids and estrogens. These receptor ligands raise the possibility for therapeutic agents, and their membrane transport characteristics and concentration in cellular nucleus may provide potential use for BNCT. (author)

  12. Human Gastric Mucosal Hydrophobicity Does dot Decrease with Helicobacter Pylori Infection or Chronological Age

    Mohammed S Al-Marhoon

    2005-01-01

    Full Text Available BACKGROUND AND AIMS: Infection with cytotoxin-associated gene A (cagA Helicobacter pylori is associated with severe gastric diseases. Previous studies in humans have reported a decreased gastric hydrophobicity with H pylori infection. The aim of the present study was to differentiate between the effect of cagA+ and cagA- strains on gastric mucus hydrophobicity.

  13. Mordenite - Type Zeolite SCR Catalysts with Iron or Copper

    2012-01-01

    Cu/mordenite catalysts were found to be highly active for the SCR of NO with NH3 and exhibited high resistance to alkali poisoning. Redox and acidic properties of Cu/mordenite were well preserved after poisoning with potassium unlike that of vanadium catalysts. Fe-mordenite catalysts also reveale...... to be essential requirements for the high alkali resistance. Mordenite-type zeolite based catalysts could therefore be attractive alternatives to conventional SCR catalysts for biomass fired power plant flue gas treatment....

  14. Platinum-Bismuth Bimetallic Catalysts: Synthesis, Characterization and Applications

    Saucedo, Jose A, Jr; Xiao, Yang; Varma, Arvind

    2015-01-01

    Bimetallic catalysts have been explored and shown to exhibit unique characteristics which are not present in monometallic catalysts. Platinum is well known as an effective catalyst for oxidation and reduction reactions, and it can be made more effective when bismuth is introduced as a promotor. Thus, the effectiveness of the Pt-Bi catalyst was demonstrated in prior work. What is not clear, however, is the mechanism behind the catalyst function; why addition of bismuth to platinum decreases de...

  15. Bi-metallic catalysts, methods of making, and uses thereof

    Basset, Jean-Marie

    2017-01-19

    Provided herein are bi-metallic catalysts, methods of making, and uses thereof. In some embodiments, the bi-metallic catalyst contains two different metal catalysts that can be used in hydrocarbon metathesis reactions, in some embodiments, the methods of making the bi-metallic catalysts can include two steps utilizing a surface organometallic chemistry approach in which the two different metal catalysts are sequentially grafted onto a support.

  16. Bi-metallic catalysts, methods of making, and uses thereof

    Basset, Jean-Marie; Samantaray, Manoja K.; Dey, Raju; Abou-Hamad, Edy; Kavitake, Santosh

    2017-01-01

    Provided herein are bi-metallic catalysts, methods of making, and uses thereof. In some embodiments, the bi-metallic catalyst contains two different metal catalysts that can be used in hydrocarbon metathesis reactions, in some embodiments, the methods of making the bi-metallic catalysts can include two steps utilizing a surface organometallic chemistry approach in which the two different metal catalysts are sequentially grafted onto a support.

  17. Heterogeneous Metal Catalysts for Oxidation Reactions

    Md. Eaqub Ali

    2014-01-01

    Full Text Available Oxidation reactions may be considered as the heart of chemical synthesis. However, the indiscriminate uses of harsh and corrosive chemicals in this endeavor are threating to the ecosystems, public health, and terrestrial, aquatic, and aerial flora and fauna. Heterogeneous catalysts with various supports are brought to the spotlight because of their excellent capabilities to accelerate the rate of chemical reactions with low cost. They also minimize the use of chemicals in industries and thus are friendly and green to the environment. However, heterogeneous oxidation catalysis are not comprehensively presented in literature. In this short review, we clearly depicted the current state of catalytic oxidation reactions in chemical industries with specific emphasis on heterogeneous catalysts. We outlined here both the synthesis and applications of important oxidation catalysts. We believe it would serve as a reference guide for the selection of oxidation catalysts for both industries and academics.

  18. Environmentally benign catalysts for clean organic reactions

    Patel, Anjali

    2013-01-01

    Heterogeneous catalysis attracts researchers and industry because it satisfies most of green chemistry's requirements. Emphasizing the development of third generation catalysts, this book surveys trends and opportunities in academic and industrial research.

  19. Oxidation catalysts and process for preparing same

    1980-01-01

    Compounds particularly suitable as oxidation catalysis are described, comprising specified amounts of uranium, antimony and tin as oxides. Processes for making and using the catalysts are described. (U.K.)

  20. Selection of catalysts and reactors for hydroprocessing

    Furimsky, E. [Imaf Group, Ottawa, ON (Canada)

    1998-07-13

    The performance of hydroprocessing units can be influenced by the selection of the catalysts and the type of reactor to suit a particular feed. The catalysts and reactors selected for light feeds differ markedly from those selected for heavy feeds. Fixed-bed reactors have been traditionally used for light feeds. High asphaltene and high metal content feeds are successfully processed using moving-bed and/or ebullated bed reactors. Multi-reactor systems consisting of moving-bed and/or ebullated bed reactors in series with fixed-bed reactors can be used to process difficult feeds. For heavy feeds, the physical properties (e.g. porosity), shape and size of the catalyst particles become crucial parameters. Pretreatment of catalysts by presulfiding improves the performance of the units.

  1. Highly sensitive silicon microreactor for catalyst testing

    Henriksen, Toke Riishøj; Olsen, Jakob Lind; Vesborg, Peter Christian Kjærgaard

    2009-01-01

    by directing the entire gas flow through the catalyst bed to a mass spectrometer, thus ensuring that nearly all reaction products are present in the analyzed gas flow. Although the device can be employed for testing a wide range of catalysts, the primary aim of the design is to allow characterization of model...... catalysts which can only be obtained in small quantities. Such measurements are of significant fundamental interest but are challenging because of the low surface areas involved. The relationship between the reaction zone gas flow and the pressure in the reaction zone is investigated experimentally......, it is found that platinum catalysts with areas as small as 15 mu m(2) are conveniently characterized with the device. (C) 2009 American Institute of Physics. [doi:10.1063/1.3270191]...

  2. Finding furfural hydrogenation catalysts via predictive modelling

    Strassberger, Z.; Mooijman, M.; Ruijter, E.; Alberts, A.H.; Maldonado, A.G.; Orru, R.V.A.; Rothenberg, G.

    2010-01-01

    We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes

  3. Photoexcited iron porphyrin as biomimetic catalysts

    Bartocci, C.; Maldotti, A.; Varani, G.; Consiglio Nazionale delle Ricerche, Ferrara

    1996-01-01

    Photoexcited iron porphyrins can be of some interest in both fine and industrial chemistry in view of the preparation of new efficient biomimetic catalysts, working with high selectivity under mild temperature and pressure

  4. Surface tailored single walled carbon nanotubes as catalyst support for direct methanol fuel cell

    Kireeti, Kota V. M. K.; Jha, Neetu

    2017-10-01

    A strategy for tuning the surface property of Single Walled Carbon Nanotubes (SWNTs) for enhanced methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) along with methanol tolerance is presented. The surface functionality is tailored using controlled acid and base treatment. Acid treatment leads to the attachment of carboxylic carbon (CC) fragments to SWNT making it hydrophilic (P3-SWNT). Base treatment of P3-SWNT with 0.05 M NaOH reduces the CCs and makes it hydrophobic (P33-SWNT). Pt catalyst supported on the P3-SWNT possesses enhanced MOR whereas that supported on P33-SWNT not only enhances ORR kinetics but also possess good tolerance towards methanol oxidation as verified by the electrochemical technique.

  5. Deoxyribonucleic acid directed metallization of platinum nanoparticles on graphite nanofibers as a durable oxygen reduction catalyst for polymer electrolyte fuel cells

    Peera, S. Gouse; Sahu, A. K.; Arunchander, A.; Nath, Krishna; Bhat, S. D.

    2015-11-01

    Effective surface functionalization to the hydrophobic graphite nanofibers (GNF) is performed with the biomolecule, namely deoxy-ribo-nucleic-acid (DNA) via π-π interactions. Pt nanoparticles are impregnated on GNF-DNA composite by ethylene glycol reduction method (Pt/GNF-DNA) and its effect on electro catalytic activity for oxygen reduction reaction (ORR) is systemically studied. Excellent dispersion of Pt nanoparticles over GNF-DNA surfaces with no evidence on particle aggregation is a remarkable achievement in this study. This result in higher electro chemical surface area of the catalyst, enhanced ORR behavior with significant enhancement in mass activity. The catalyst is validated in H2-O2 polymer electrolyte fuel cell (PEFC) and a peak power density of 675 mW cm-2 is achieved at a load current density of 1320 mA cm-2 with a minimal catalyst loading of 0.1 mg cm-2 at a cell temperature of 70 °C and 2 bar absolute pressure. Repeated potential cycling up to 10000 cycles in acidic media is also performed for this catalyst and found excellent stability with only 60 mV drop in the ORR half wave potential. The superior behavior of Pt/GNF-DNA catalyst is credited to the robust fibrous structure of GNF and its effective surface functionalization process via π-π interaction.

  6. Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst

    Shu, Qing; Gao, Jixian; Nawaz, Zeeshan; Liao, Yuhui; Wang, Dezheng; Wang, Jinfu [Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    A carbon-based solid acid catalyst was prepared by the sulfonation of carbonized vegetable oil asphalt. This catalyst was employed to simultaneously catalyze esterification and transesterification to synthesis biodiesel when a waste vegetable oil with large amounts of free fatty acids (FFAs) was used as feedstock. The physical and chemical properties of this catalyst were characterized by a variety of techniques. The maximum conversion of triglyceride and FFA reached 80.5 wt.% and 94.8 wt.% after 4.5 h at 220 C, when using a 16.8 M ratio of methanol to oil and 0.2 wt.% of catalyst to oil. The high catalytic activity and stability of this catalyst was related to its high acid site density (-OH, Broensted acid sites), hydrophobicity that prevented the hydration of -OH species, hydrophilic functional groups (-SO{sub 3}H) that gave improved accessibility of methanol to the triglyceride and FFAs, and large pores that provided more acid sites for the reactants. (author)

  7. Preparation for Pt-Loaded Zeolite Catalysts Using w/o Microemulsion and Their Hydrocracking Behaviors on Fischer-Tropsch Product

    Toshiaki Hanaoka

    2015-02-01

    Full Text Available Pt-loaded β-type zeolite catalysts with constant Pt content (0.11 wt.% and similar pore structure were prepared using a water-in-oil (w/o microemulsion. The effect of Pt particle synthesis conditions using microemulsion (a type of Pt complex-forming agents and the molar ratio of complex-forming agent to Pt4+ on loaded Pt particle size was investigated. The Pt particle size of the Pt catalyst using tetraethylammonium chloride (TEAC as a complex-forming agent with the molar TEAC/Pt ratio 10 was the minimum value (3.8 nm, and was much smaller than that (6.7 nm prepared by the impregnation method. The utilization of the complex-forming agent of which hydrophobic groups occupied a small volume and the appropriate complex-forming agent/Pt ratio were favorable for synthesis of small Pt particles. The effect of loaded Pt particle size on the hydrocracking of the Fischer-Tropsch (FT product was investigated using the Pt-loaded zeolite catalysts at 250 °C with an initial H2 pressure of 0.5 MPa, and reaction time of 1 h. The Pt catalyst with a Pt particle size of 4.2 nm prepared using the microemulsion exhibited the maximum corresponding jet fuel yield (30.0%, which was higher than that of the impregnated catalyst.

  8. Thermal effects in highly dispersed iron catalysts

    Alvarez, A.M.; Cagnoli, M.V.; Gallegos, N.G.; Marchetti, S.G.; Yeramian, A.A.; Mercader, R.C.

    1994-01-01

    The Moessbauer spectra of three Fe/SiO 2 catalysts with 5 wt% iron content show the presence of several Fe species and display different magnetic behaviours when the precursors are subjected to various thermal treatments. Based on the Moessbauer parameters and CO chemisorption measurements, the average crystal sizes of the catalysts are estimated and discussed in connection with the thermal pretreatment severity and magnetic properties of the samples. (orig.)

  9. Dehydration of alcohols using solid acid catalysts

    Cholerton, Mary

    2014-01-01

    Solid acid catalysts were prepared through silicon substitution into aluminophosphate frameworks. Silicon incorporation was confirmed using solid state nuclear magnetic resonance spectroscopy. The nature of the acid sites generated was determined using Fourier Transform infrared spectroscopy. These materials were tested as catalysts for the dehydration of ethanol to ethylene at low operating temperatures. The materials were active for dehydration of ethanol to ethylene with significant differ...

  10. Advances in propane ammoxidation catalyst technology

    Prada Silvy, R.; Grange, P. [Unite de Catalyse et Chimie des Materiaux Divises, Univ. Cathologique de Louvain, Louvain-la-Neuve (Belgium)

    2003-09-01

    Comparison of the catalytic performance of different propane ammoxidation catalyst systems from the patent literature is established in order to identify the most promising formulation towards process commercialization scale. Vanadium aluminum oxynitride material shows the highest acrylonitrile production level per hour and per amount of catalyst with respect to conventional vanadium-molybdate and vanadium- antimonate mixed oxide propane ammoxidation systems. Acrylonitrile, hydrogen cyanide and acetonitrile production from propane ammoxidation is the key factor for obtaining competitive advantages over current propylene technology. (orig.)

  11. Performance of supported catalysts for water electrolysis

    Gurrik, Stian

    2012-01-01

    The most active catalyst for oxygen evolution in PEM water electrolysis is ruthenium oxide. Its major drawback as a commercial catalyst is its poor stability. In a mixed oxide with iridium, ruthenium becomes more stable. However, it would be favorable to find a less expensive substitute to iridium. In this work, the dissolution potential and lifetime of mixed oxides containing ruthenium and tantalum are investigated. In order to effectively determine what effects tantalum and particle size ha...

  12. Fabricating Super-hydrophobic Polydimethylsiloxane Surfaces by a Simple Filler-Dissolved Process

    Lin, Yung-Tsan; Chou, Jung-Hua

    2010-12-01

    The self-cleaning effect of super-hydrophobic surfaces has attracted the attention of researchers. Typical ways of manufacturing super-hydrophobic surfaces include the use of either dedicated equipment or a complex chemical process. In this study, a simple innovative filler-dissolved method is developed using mainly powder salt and rinsing to form hydrophobic surfaces. This method can produce large super-hydrophobic surfaces with porous and micro rib surface structures. It can also be applied to curved surfaces, including flexible membranes. The contact angle of the manufactured artificial hydrophobic surface is about 160°. Furthermore, water droplets roll off the surface readily at a sliding angle of less than 5°, resembling the nonwetting lotus like effect.

  13. Sulfur deactivation of fatty ester hydrogenolysis catalysts

    Brands, D.S.; U-A-Sai, G.; Poels, E.K.; Bliek, A. [Univ. of Amsterdam (Netherlands). Dept. of Chemical Engineering

    1999-08-15

    Trace organosulfur compounds present as natural impurities in oleochemical feedstocks may lead to activation of copper-containing catalysts applied for hydrogenolysis of esters toward fatty alcohols. In this paper, the sulfur deactivation of Cu/SiO{sub 2} and Cu/ZnO/SiO{sub 2} catalysts was studied in the liquid-phase hydrogenolysis of methyl palmitate. The rate of deactivation is fast and increases as a function of the sulfur-containing compound present: octadecanethiol {approx} dihexadecyl disulfide < benzyl isothiocyanate < methyl p-toluene sulfonate < dihexadecyl sulfide < dibenzothiophene. The rapid deactivation is caused by the fact that sulfur is quantitatively removed from the reaction mixture and because mainly surface sulfides are formed under hydrogenolysis conditions. The life time of a zinc-promoted catalyst is up to two times higher than that of the Cu/SiO{sub 2} catalyst, most likely due to zinc surface sulfide formation. The maximum sulfur coverage obtained after full catalyst deactivation with dibenzothiophene and dihexadecyl sulfide--the sulfur compounds that cause the fastest deactivation--may be as low as 0.07. This is due to the fact that decomposition of these compounds as well as the hydrogenolysis reaction itself proceeds on ensembles of copper atoms. Catalyst regeneration studies reveal that activity cannot be regained by reduction or combined oxidation/reduction treatments. XRD, TPR, and TPO results confirm that no distinct bulk copper or zinc sulfide or sulfate phases are present.

  14. Patterned hydrophobic and hydrophilic surfaces of ultra-smooth nanocrystalline diamond layers

    Mertens, M., E-mail: michael.mertens@uni-ulm.de [Institute of Micro and Nanomaterials, Ulm University, 89081 Ulm (Germany); Mohr, M.; Brühne, K.; Fecht, H.J. [Institute of Micro and Nanomaterials, Ulm University, 89081 Ulm (Germany); Łojkowski, M.; Święszkowski, W. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Łojkowski, W. [Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw (Poland)

    2016-12-30

    Highlights: • Hydrophobic and hydrophilic properties on fluorine-, hydrogen- and oxygen- terminated ultra-nanocrystalline diamond films. • Micropatterned - multi-terminated layers with both hydrophobic and hydrophilic areas on one sample. • Visualization of multi-terminated surfaces by e.g. SEM and LFM. • Roughness and friction investigations on different terminated surfaces. • Smooth and biocompatible surfaces with same roughness regardless of hydrophobicity for microbiological investigations. - Abstract: In this work, we show that ultra nanocrystalline diamond (UNCD) surfaces have been modified to add them hydrophobic and hydrophilic properties. The nanocrystalline diamond films were deposited using the hot filament chemical vapor deposition (HFCVD) technique. This allows growing diamond on different substrates which can be even 3D or structured. Silicon and, for optical applications, transparent quartz glass are the preferred substrates for UNCD layers growth. Fluorine termination leads to strong hydrophobic properties as indicated by a high contact angle for water of more than 100°. Hydrogen termination shows lesser hydrophobic behavior. Hydrophilic characteristics has been realised with oxygen termination. X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) measurements confirm the oxygen and fluorine- termination on the nanocrystalline diamond surface. Further, by micropatterning using photolithography, multi-terminated layers have been created with both hydrophobic and hydrophilic areas. In addition, we have shown that retermination is achieved, and the properties of the surface have been changed from hydrophobic to hydrophilic and vice versa. Micro- roughness and stress in the grown film influences slightly the wetting angle as well. The opportunity to realize local differences in hydrophobicity on nanocrystalline diamond layers, in any size or geometry, offers interesting applications for example in

  15. Hydrophobic environment is a key factor for the stability of thermophilic proteins.

    Gromiha, M Michael; Pathak, Manish C; Saraboji, Kadhirvel; Ortlund, Eric A; Gaucher, Eric A

    2013-04-01

    The stability of thermophilic proteins has been viewed from different perspectives and there is yet no unified principle to understand this stability. It would be valuable to reveal the most important interactions for designing thermostable proteins for such applications as industrial protein engineering. In this work, we have systematically analyzed the importance of various interactions by computing different parameters such as surrounding hydrophobicity, inter-residue interactions, ion-pairs and hydrogen bonds. The importance of each interaction has been determined by its predicted relative contribution in thermophiles versus the same contribution in mesophilic homologues based on a dataset of 373 protein families. We predict that hydrophobic environment is the major factor for the stability of thermophilic proteins and found that 80% of thermophilic proteins analyzed showed higher hydrophobicity than their mesophilic counterparts. Ion pairs, hydrogen bonds, and interaction energy are also important and favored in 68%, 50%, and 62% of thermophilic proteins, respectively. Interestingly, thermophilic proteins with decreased hydrophobic environments display a greater number of hydrogen bonds and/or ion pairs. The systematic elimination of mesophilic proteins based on surrounding hydrophobicity, interaction energy, and ion pairs/hydrogen bonds, led to correctly identifying 95% of the thermophilic proteins in our analyses. Our analysis was also applied to another, more refined set of 102 thermophilic-mesophilic pairs, which again identified hydrophobicity as a dominant property in 71% of the thermophilic proteins. Further, the notion of surrounding hydrophobicity, which characterizes the hydrophobic behavior of residues in a protein environment, has been applied to the three-dimensional structures of elongation factor-Tu proteins and we found that the thermophilic proteins are enriched with a hydrophobic environment. The results obtained in this work highlight the

  16. Mechanisms of water infiltration into conical hydrophobic nanopores.

    Liu, Ling; Zhao, Jianbing; Yin, Chun-Yang; Culligan, Patricia J; Chen, Xi

    2009-08-14

    Fluid channels with inclined solid walls (e.g. cone- and slit-shaped pores) have wide and promising applications in micro- and nano-engineering and science. In this paper, we use molecular dynamics (MD) simulations to investigate the mechanisms of water infiltration (adsorption) into cone-shaped nanopores made of a hydrophobic graphene sheet. When the apex angle is relatively small, an external pressure is required to initiate infiltration and the pressure should keep increasing in order to further advance the water front inside the nanopore. By enlarging the apex angle, the pressure required for sustaining infiltration can be effectively lowered. When the apex angle is sufficiently large, under ambient condition water can spontaneously infiltrate to a certain depth of the nanopore, after which an external pressure is still required to infiltrate more water molecules. The unusual involvement of both spontaneous and pressure-assisted infiltration mechanisms in the case of blunt nanocones, as well as other unique nanofluid characteristics, is explained by the Young's relation enriched with the size effects of surface tension and contact angle in the nanoscale confinement.

  17. Dynamically slow processes in supercooled water confined between hydrophobic plates

    Franzese, Giancarlo [Departamento de Fisica Fundamental, Universidad de Barcelona, Diagonal 647, Barcelona 08028 (Spain); Santos, Francisco de los, E-mail: gfranzese@ub.ed, E-mail: fdlsant@ugr.e [Departamento de Electromagnetismo y Fisica de la Materia, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain)

    2009-12-16

    We study the dynamics of water confined between hydrophobic flat surfaces at low temperature. At different pressures, we observe different behaviors that we understand in terms of the hydrogen bond dynamics. At high pressure, the formation of the open structure of the hydrogen bond network is inhibited and the surfaces can be rapidly dried (dewetted) by formation of a large cavity with decreasing temperature. At lower pressure we observe strong non-exponential behavior of the correlation function, but with no strong increase of the correlation time. This behavior can be associated, on the one hand, to the rapid ordering of the hydrogen bonds that generates heterogeneities and, on the other hand, to the lack of a single timescale as a consequence of the cooperativity in the vicinity of the liquid-liquid critical point that characterizes the phase diagram at low temperature of the water model considered here. At very low pressures, the gradual formation of the hydrogen bond network is responsible for the large increase of the correlation time and, eventually, the dynamical arrest of the system, with a strikingly different dewetting process, characterized by the formation of many small cavities.

  18. Dynamically slow processes in supercooled water confined between hydrophobic plates

    Franzese, Giancarlo; Santos, Francisco de los

    2009-01-01

    We study the dynamics of water confined between hydrophobic flat surfaces at low temperature. At different pressures, we observe different behaviors that we understand in terms of the hydrogen bond dynamics. At high pressure, the formation of the open structure of the hydrogen bond network is inhibited and the surfaces can be rapidly dried (dewetted) by formation of a large cavity with decreasing temperature. At lower pressure we observe strong non-exponential behavior of the correlation function, but with no strong increase of the correlation time. This behavior can be associated, on the one hand, to the rapid ordering of the hydrogen bonds that generates heterogeneities and, on the other hand, to the lack of a single timescale as a consequence of the cooperativity in the vicinity of the liquid-liquid critical point that characterizes the phase diagram at low temperature of the water model considered here. At very low pressures, the gradual formation of the hydrogen bond network is responsible for the large increase of the correlation time and, eventually, the dynamical arrest of the system, with a strikingly different dewetting process, characterized by the formation of many small cavities.

  19. Free energy barriers to evaporation of water in hydrophobic confinement.

    Sharma, Sumit; Debenedetti, Pablo G

    2012-11-08

    We use umbrella sampling Monte Carlo and forward and reverse forward flux sampling (FFS) simulation techniques to compute the free energy barriers to evaporation of water confined between two hydrophobic surfaces separated by nanoscopic gaps, as a function of the gap width, at 1 bar and 298 K. The evaporation mechanism for small (1 × 1 nm(2)) surfaces is found to be fundamentally different from that for large (3 × 3 nm(2)) surfaces. In the latter case, the evaporation proceeds via the formation of a gap-spanning tubular cavity. The 1 × 1 nm(2) surfaces, in contrast, are too small to accommodate a stable vapor cavity. Accordingly, the associated free energy barriers correspond to the formation of a critical-sized cavity for sufficiently large confining surfaces, and to complete emptying of the gap region for small confining surfaces. The free energy barriers to evaporation were found to be of O(20kT) for 14 Å gaps, and to increase by approximately ~5kT with every 1 Å increase in the gap width. The entropy contribution to the free energy of evaporation was found to be independent of the gap width.

  20. Hydrophobicity of electron beam modified surface of hydroxyapatite films

    Gregor, M., E-mail: gregor@fmph.uniba.sk [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Plecenik, T. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Tofail, S.A.M. [Materials & Surface Science Institute, University of Limerick, Limerick (Ireland); Zahoran, M.; Truchly, M. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia); Vargova, M. [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, 84215 Bratislava (Slovakia); Laffir, F. [Materials & Surface Science Institute, University of Limerick, Limerick (Ireland); Plesch, G. [Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, 84215 Bratislava (Slovakia); Kus, P.; Plecenik, A. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 84248 Bratislava (Slovakia)

    2015-05-15

    Highlights: • Surface potential of hydroxyapatite films were modified by focused electron beam. • Micron-sized domains of modified surface potential were created. • Wettability and surface free energy of the irradiated areas was studied. • Possible mechanisms of increased surface hydrophobicity are discussed. - Abstract: Arrays of micron-sized domains of modified surface potential were created on hydroxyapatite films by mid-energy (20 keV) electron beam irradiation available in a laboratory scanning electron microscope. The dosage of electron beam was varied between 10{sup −3} and 10{sup 3} μC/cm{sup 2} to inject charge into the film surface. Contrary to the conventional electrowetting theory, the dosage of injected charge used in creating such microdomains caused a gradual increase of the water contact angle from 57° to 93° due to the elimination of the polar component of the surface free energy. Surface contamination by carbonaceous species can be held only partially responsible for such behavior at lower dosage of electron beam. A transfer of free surface charge to water and an electron beam induced disruption of polar orientation of OH ions have been attributed to be influencial factors in the overall dewetting behavior.

  1. Effects of solute--solvent attractive forces on hydrophobic correlations

    Pratt, L.R.; Chandler, D.

    1980-01-01

    A theory is presented for the effect of slowly varying attractive forces on correlations between nonpolar solutes in dilute aqueous solution. We find that hydrophobic correlations are sensitive to relatively long range slowly varying interactions. Thus, it is possible to make qualitative changes in these correlations by introducing small changes in the attractive forces. Several model calculations are presented to illustrate these facts. The contributions of the Lennard-Jones attractive forces to the computer simulation results of Pangali, Rao, and Berne are calculated. For this case it is found that the potential of mean force between spherical nonpolar solutes is hardly affected by inclusion of attractive forces. However, the osmotic second virial coefficient is dominated by the contributions of the attractive forces. For spherical solutes which provide a reasonable model for the methane molecule, inclusion of attractive forces produces a qualitative change in the methane--methane potential of mean force. The connection between these effects of slowly varying attractive forces and the enthalpic part of Ben-Naim's deltaA/sup H/I is discussed

  2. Hydrophobic pinning with copper nanowhiskers leads to bactericidal properties.

    Ajay Vikram Singh

    Full Text Available The considerable morbidity associated with hospitalized patients and clinics in developed countries due to biofilm formation on biomedical implants and surgical instruments is a heavy economic burden. An alternative to chemically treated surfaces for bactericidal activity started emerging from micro/nanoscale topographical cues in the last decade. Here, we demonstrate a putative antibacterial surface using copper nanowhiskers deposited by molecular beam epitaxy. Furthermore, the control of biological response is based on hydrophobic pinning of water droplets in the Wenzel regime, causing mechanical injury and cell death. Scanning electron microscopy images revealed the details of the surface morphology and non-contact mode laser scanning of the surface revealed the microtopography-associated quantitative parameters. Introducing the bacterial culture over nanowhiskers produces mechanical injury to cells, leading to a reduction in cell density over time due to local pinning of culture medium to whisker surfaces. Extended culture to 72 hours to observe biofilm formation revealed biofilm inhibition with scattered microcolonies and significantly reduced biovolume on nanowhiskers. Therefore, surfaces patterned with copper nanowhiskers can serve as potential antibiofilm surfaces. The topography-based antibacterial surfaces introduce a novel prospect in developing mechanoresponsive nanobiomaterials to reduce the risk of medical device biofilm-associated infections, contrary to chemical leaching of copper as a traditional bactericidal agent.

  3. New antipollution processing of a used refining catalyst and complete recovery of the catalyst metallic components

    Trinh Dinh Chan; Llido, E.

    1992-05-15

    The used refining catalyst, containing metals such as vanadium, nickel and iron, is first processed by stripping; it is then calcined in critical conditions and heat processed in the presence of a melted alkaline base; the resulting solid matter is then water processed. The antipollution process can be applied to oil fraction hydroconversion or hydroprocessing catalysts.

  4. FCC catalyst technologies expand limits of process capability

    Leiby, S.

    1992-01-01

    This paper reports that over the past 30 or so years, many improvements in fluid catalytic cracking (FCC) operation have been achieved as the result of innovations in catalyst formulation. During the 1990s, new environmental regulations on issues such as reformulated gasoline will place new demands on both the refining industry and catalyst suppliers. An overview of cracking catalyst technology therefore seems in order. Today, high-technology innovations by catalyst manufacturers are rapid, but profit margins are slim. Catalyst formulations are shrouded in secrecy and probably depend almost as much on art as on science. Special formulations for specific cracking applications get the greatest emphasis today. To illustrate this point, OGJ's Worldwide Catalyst Report lists over 200 FCC catalyst designations. Catalysts containing components to enhance gasoline octane now account for about 70% of total U.S. FCC catalyst usage

  5. Catalytic Transformation of Ethylbenzene over Y-Zeolite-based Catalysts

    Al-Khattaf, Sulaiman

    2008-11-19

    Catalytic transformation of ethylbenzene (EB) has been investigated over ultrastable Y (USY)-zeolite-based catalysts in a novel riser simulator at different operating conditions. The effect of reaction conditions on EB conversion is reported. The USY catalyst (FCC-Y) was modified by steaming to form a significantly lower acidity catalyst (FCC-SY). The current study shows that the FCC-SY catalyst favors EB disproportionation more than cracking. A comparison has been made between the results of EB conversion over the lowly acidic catalyst (FCC-SY) and the highly acidic catalyst (FCC-Y) under identical conditions. It was observed that increase in catalyst acidity favored cracking of EB at the expense of disproportionation. Kinetic parameters for EB disappearance during disproportionation reaction over the FCC-SY catalyst were calculated using the catalyst activity decay function based on time on stream (TOS). © 2008 American Chemical Society.

  6. Zircon Supported Copper Catalysts for the Steam Reforming of Methanol

    Widiastri, M.; Fendy, Marsih, I. N.

    2008-03-01

    Steam reforming of methanol (SRM) is known as one of the most favorable catalytic processes for producing hydrogen. Current research on zirconia, ZrO2 supported copper catalyst revealed that CuO/ZrO2 as an active catalyst for the SRM. Zircon, ZrSiO4 is available from the by-product of tin mining. In the work presented here, the catalytic properties of CuO/ZrSiO4 with various copper oxide compositions ranging from 2.70% (catalyst I), 4.12% (catalyst II), and 7.12%-mass (catalyst III), synthesized by an incipient wetness impregnation technique, were investigated to methanol conversion, selectivity towards CO formation, and effect of ZnO addition (7.83%CuO/8.01%ZnO/ZrSiO4 = catalyst V). The catalytic activity was obtained using a fixed bed reactor and the zircon supported catalyst activity was compared to those of CuO/ZnO/Al2O3 catalyst (catalyst IV) and commercial Kujang LTSC catalyst. An X-ray powder diffraction (XRD) analysis was done to identify the abundant phases of the catalysts. The catalysts topography and particle diameter were measured with scanning electron microscopy (SEM) and composition of the catalysts was measured by SEM-EDX, scanning electron microscope-energy dispersive using X-ray analysis. The results of this research provide information on the possibility of using zircon (ZrSiO4) as solid support for SRM catalysts.

  7. Neutral hydrophilic cathode catalyst binders for microbial fuel cells

    Saito, Tomonori

    2011-01-01

    Improving oxygen reduction in microbial fuel cell (MFC) cathodes requires a better understanding of the effects of the catalyst binder chemistry and properties on performance. A series of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) polymers with systematically varying hydrophilicity were designed to determine the effect of the hydrophilic character of the binder on cathode performance. Increasing the hydrophilicity of the PS-b-PEO binders enhanced the electrochemical response of the cathode and MFC power density by ∼15%, compared to the hydrophobic PS-OH binder. Increased cathode performance was likely a result of greater water uptake by the hydrophilic binder, which would increase the accessible surface area for oxygen reduction. Based on these results and due to the high cost of PS-b-PEO, the performance of an inexpensive hydrophilic neutral polymer, poly(bisphenol A-co-epichlorohydrin) (BAEH), was examined in MFCs and compared to a hydrophilic sulfonated binder (Nafion). MFCs with BAEH-based cathodes with two different Pt loadings initially (after 2 cycles) had lower MFC performance (1360 and 630 mW m-2 for 0.5 and 0.05 mg Pt cm-2) than Nafion cathodes (1980 and 1080 mW m -2 for 0.5 and 0.05 mg Pt cm-2). However, after long-term operation (22 cycles, 40 days), power production of each cell was similar (∼1200 and 700-800 mW m-2 for 0.5 and 0.05 mg Pt cm-2) likely due to cathode biofouling that could not be completely reversed through physical cleaning. While binder chemistry could improve initial electrochemical cathode performance, binder materials had less impact on overall long-term MFC performance. This observation suggests that long-term operation of MFCs will require better methods to avoid cathode biofouling. © 2011 The Royal Society of Chemistry.

  8. Methanol conversion to hydrocarbons using modified clinoptilolite catalysts. Investigation of catalyst lifetime and reactivation

    Hutchings, G J; Themistocleous, T; Copperthwaite, R G

    1988-10-17

    A study of the deactivation and reactivation of modified clinoptilolite catalysts for methanol conversion to hydrocarbons is reported. Clinoptilolite catalysts, modified by either ammonium ion exchange or hydrochloric acid treatment, exhibit a short useful catalyst lifetime for this reaction (ca. 2-3 h) due to a high rate of coke deposition (3-5.10/sup -3/ g carbon/g catalyst/h). A comparative study of reactivation using oxygen, nitrous oxide and ozone/oxygen as oxidants indicated that nitrous oxide reactivation gives improved catalytic performance when compared to the activity and lifetime of the fresh catalyst. Both oxygen and ozone/oxygen were found to be ineffective for the reactivation of clinoptilolite. Initial studies of in situ on-line reactivation are also described. 3 figs., 15 refs., 4 tabs.

  9. Optimal catalyst curves: Connecting density functional theory calculations with industrial reactor design and catalyst selection

    Jacobsen, C.J.H.; Dahl, Søren; Boisen, A.

    2002-01-01

    For ammonia synthesis catalysts a volcano-type relationship has been found experimentally. We demonstrate that by combining density functional theory calculations with a microkinetic model the position of the maximum of the volcano curve is sensitive to the reaction conditions. The catalytic...... ammonia synthesis activity, to a first approximation, is a function only of the binding energy of nitrogen to the catalyst. Therefore, it is possible to evaluate which nitrogen binding energy is optimal under given reaction conditions. This leads to the concept of optimal catalyst curves, which illustrate...... the nitrogen binding energies of the optimal catalysts at different temperatures, pressures, and synthesis gas compositions. Using this concept together with the ability to prepare catalysts with desired binding energies it is possible to optimize the ammonia process. In this way a link between first...

  10. Super-hydrophobic surfaces of SiO₂-coated SiC nanowires: fabrication, mechanism and ultraviolet-durable super-hydrophobicity.

    Zhao, Jian; Li, Zhenjiang; Zhang, Meng; Meng, Alan

    2015-04-15

    The interest in highly water-repellent surfaces of SiO2-coated SiC nanowires has grown in recent years due to the desire for self-cleaning and anticorrosive surfaces. It is imperative that a simple chemical treatment with fluoroalkylsilane (FAS, CF3(CF2)7CH2CH2Si(OC2H5)3) in ethanol solution at room temperature resulted in super-hydrophobic surfaces of SiO2-coated SiC nanowires. The static water contact angle of SiO2-coated SiC nanowires surfaces was changed from 0° to 153° and the morphology, microstructure and crystal phase of the products were almost no transformation before and after super-hydrophobic treatment. Moreover, a mechanism was expounded reasonably, which could elucidate the reasons for their super-hydrophobic behavior. It is important that the super-hydrophobic surfaces of SiO2-coated SiC nanowires possessed ultraviolet-durable (UV-durable) super-hydrophobicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Temperature dependence of the evaporation lengthscale for water confined between two hydrophobic plates.

    Djikaev, Yuri S; Ruckenstein, Eli

    2015-07-01

    Liquid water in a hydrophobic confinement is the object of high interest in physicochemical sciences. Confined between two macroscopic hydrophobic surfaces, liquid water transforms into vapor if the distance between surfaces is smaller than a critical separation, referred to as the evaporation lengthscale. To investigate the temperature dependence of the evaporation lengthscale of water confined between two hydrophobic parallel plates, we use the combination of the density functional theory (DFT) with the probabilistic hydrogen bond (PHB) model for water-water hydrogen bonding. The PHB model provides an analytic expression for the average number of hydrogen bonds per water molecule as a function of its distance to a hydrophobic surface and its curvature. Knowing this expression, one can implement the effect of hydrogen bonding between water molecules on their interaction with the hydrophobe into DFT, which is then employed to determine the distribution of water molecules between two macroscopic hydrophobic plates at various interplate distances and various temperatures. For water confined between hydrophobic plates, our results suggest the evaporation lengthscale to be of the order of several nanometers and a linearly increasing function of temperature from T=293 K to T=333 K, qualitatively consistent with previous results. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Soft matter interactions at the molecular scale: interaction forces and energies between single hydrophobic model peptides.

    Stock, Philipp; Utzig, Thomas; Valtiner, Markus

    2017-02-08

    In all realms of soft matter research a fundamental understanding of the structure/property relationships based on molecular interactions is crucial for developing a framework for the targeted design of soft materials. However, a molecular picture is often difficult to ascertain and yet essential for understanding the many different competing interactions at play, including entropies and cooperativities, hydration effects, and the enormous design space of soft matter. Here, we characterized for the first time the interaction between single hydrophobic molecules quantitatively using atomic force microscopy, and demonstrated that single molecular hydrophobic interaction free energies are dominated by the area of the smallest interacting hydrophobe. The interaction free energy amounts to 3-4 kT per hydrophobic unit. Also, we find that the transition state of the hydrophobic interactions is located at 3 Å with respect to the ground state, based on Bell-Evans theory. Our results provide a new path for understanding the nature of hydrophobic interactions at the single molecular scale. Our approach enables us to systematically vary hydrophobic and any other interaction type by utilizing peptide chemistry providing a strategic advancement to unravel molecular surface and soft matter interactions at the single molecular scale.

  13. Continuous droplet removal upon dropwise condensation of humid air on a hydrophobic micropatterned surface.

    Zamuruyev, Konstantin O; Bardaweel, Hamzeh K; Carron, Christopher J; Kenyon, Nicholas J; Brand, Oliver; Delplanque, Jean-Pierre; Davis, Cristina E

    2014-08-26

    Combination of two physical phenomena, capillary pressure gradient and wettability gradient, allows a simple two-step fabrication process that yields a reliable hydrophobic self-cleaning condenser surface. The surface is fabricated with specific microscopic topography and further treatment with a chemically inert low-surface-energy material. This process does not require growth of nanofeatures (nanotubes) or hydrophilic-hydrophobic patterning of the surface. Trapezoidal geometry of the microfeatures facilitates droplet transfer from the Wenzel to the Cassie state and reduces droplet critical diameter. The geometry of the micropatterns enhances local coalescence and directional movement for droplets with diameter much smaller than the radial length of the micropatterns. The hydrophobic self-cleaning micropatterned condenser surface prevents liquid film formation and promotes continuous dropwise condensation cycle. Upon dropwise condensation, droplets follow a designed wettability gradient created with micropatterns from the most hydrophobic to the least hydrophobic end of the surface. The surface has higher condensation efficiency, due to its directional self-cleaning property, than a plain hydrophobic surface. We explain the self-actuated droplet collection mechanism on the condenser surface and demonstrate experimentally the creation of an effective wettability gradient over a 6 mm radial distance. In spite of its fabrication simplicity, the fabricated surface demonstrates self-cleaning property, enhanced condensation performance, and reliability over time. Our work enables creation of a hydrophobic condenser surface with the directional self-cleaning property that can be used for collection of biological (chemical, environmental) aerosol samples or for condensation enhancement.

  14. Detection of secondary structure elements in proteins by hydrophobic cluster analysis.

    Woodcock, S; Mornon, J P; Henrissat, B

    1992-10-01

    Hydrophobic cluster analysis (HCA) is a protein sequence comparison method based on alpha-helical representations of the sequences where the size, shape and orientation of the clusters of hydrophobic residues are primarily compared. The effectiveness of HCA has been suggested to originate from its potential ability to focus on the residues forming the hydrophobic core of globular proteins. We have addressed the robustness of the bidimensional representation used for HCA in its ability to detect the regular secondary structure elements of proteins. Various parameters have been studied such as those governing cluster size and limits, the hydrophobic residues constituting the clusters as well as the potential shift of the cluster positions with respect to the position of the regular secondary structure elements. The following results have been found to support the alpha-helical bidimensional representation used in HCA: (i) there is a positive correlation (clearly above background noise) between the hydrophobic clusters and the regular secondary structure elements in proteins; (ii) the hydrophobic clusters are centred on the regular secondary structure elements; (iii) the pitch of the helical representation which gives the best correspondence is that of an alpha-helix. The correspondence between hydrophobic clusters and regular secondary structure elements suggests a way to implement variable gap penalties during the automatic alignment of protein sequences.

  15. Synthesis H-Zeolite catalyst by impregnation KI/KIO3 and performance test catalyst for biodiesel production

    Widayat, W.; Rizky Wicaksono, Adit; Hakim Firdaus, Lukman; Okvitarini, Ndaru

    2016-02-01

    The objective of this research is to produce H-catalyst catalyst that was impregnated with KI/KIO3. The catalyst was analyzed about surface area, X-Ray Diffraction (XRD) and performance test of catalyst for biodiesel production. An H-Zeolite catalyst was synthesized from natural zeolite with chemical treatment processing, impregnation KI/KIO3 and physical treatment. The results shows that the surface area of the catalyst by 27.236 m2/g at a concentration of 5% KI. XRD analysis shows peak 2-θ at 23.627o indicating that KI was impregnated on H-zeolite catalyst. The catalyst was tested in production of biodiesel using palm oil with conventional methods for 3 hour at temperature of 70-80 oC. The result for conversion Fatty Acid Methyl Ester (FAME) reached maximum value on 87.91% under production process using catalyst 5% KIO3-H zeolite.

  16. Steam dealkylation catalyst and a method for its activation

    Dorawala, T.; Reinhard, R.

    1980-01-01

    The method of activating a supported catalyst containing oxides of a group viii metal and of a group 1 a metal which comprises heating said catalyst at a rate of 10 0 to 500 0 F/hr to a temperature of 650 0 to 1400 0 F in a hydrogen atmosphere; maintaining said heated catalyst in a hydrogen atmosphere at 650 0 to 1400 0 F for 2 to 30 hours thereby forming a hydrogen-treated catalyst; and maintaining the hydrogen-treated catalyst in a steam-hydrogen atmosphere at 650 0 to 1400 0 F for 2 to 20 hours thereby forming a steamed hydrogen-treated catalyst

  17. Comparison of cathode catalyst binders for the hydrogen evolution reaction in microbial electrolysis cells

    Ivanov, Ivan

    2017-06-02

    Nafion is commonly used as a catalyst binder in many types of electrochemical cells, but less expensive binders are needed for the cathodes in microbial electrolysis cells (MECs) which are operated in neutral pH buffers, and reverse electrodialysis stacks (RED),which use thermolytic solutions such as ammonium bicarbonate. Six different binders were examined based on differences in ion exchange properties (anionic: Nafion, BPSH20, BPSH40, S-Radel; cationic: Q-Radel; and neutral: Radel, BAEH) and hydrophobicity based on water uptake (0%, Radel; 17–56% for the other binders). BPSH40 had similar performance to Nafion based on steady-state polarization single electrode experiments in a neutral pH phosphate buffer, and slightly better performance in ammonium bicarbonate. Three different Mo-based catalysts were examined as alternatives to Pt, with MoB showing the best performance under steady-state polarization. In MECs, MoB/BPSH40 performed similarly to Pt with Nafion or Radel binders. The main distinguishing feature of the BPSH40 was that it is very hydrophilic, and thus it had a greater water content (56%) than the other binders (0–44%). These results suggest the binders for hydrogen evolution in MECs should be designed to have a high water content without sacrificing ionic or electronic conductivity in the electrode.

  18. Comparison of cathode catalyst binders for the hydrogen evolution reaction in microbial electrolysis cells

    Ivanov, Ivan; Ahn, YongTae; Poirson, Thibault; Hickner, Michael A.; Logan, Bruce

    2017-01-01

    Nafion is commonly used as a catalyst binder in many types of electrochemical cells, but less expensive binders are needed for the cathodes in microbial electrolysis cells (MECs) which are operated in neutral pH buffers, and reverse electrodialysis stacks (RED),which use thermolytic solutions such as ammonium bicarbonate. Six different binders were examined based on differences in ion exchange properties (anionic: Nafion, BPSH20, BPSH40, S-Radel; cationic: Q-Radel; and neutral: Radel, BAEH) and hydrophobicity based on water uptake (0%, Radel; 17–56% for the other binders). BPSH40 had similar performance to Nafion based on steady-state polarization single electrode experiments in a neutral pH phosphate buffer, and slightly better performance in ammonium bicarbonate. Three different Mo-based catalysts were examined as alternatives to Pt, with MoB showing the best performance under steady-state polarization. In MECs, MoB/BPSH40 performed similarly to Pt with Nafion or Radel binders. The main distinguishing feature of the BPSH40 was that it is very hydrophilic, and thus it had a greater water content (56%) than the other binders (0–44%). These results suggest the binders for hydrogen evolution in MECs should be designed to have a high water content without sacrificing ionic or electronic conductivity in the electrode.

  19. Engineering Extreme Hydrophobic and Super Slippery Water Shedding Surfaces

    McHale, Glen

    2017-04-01

    The intrinsic water repellency of a material is fundamentally determined by its surface chemistry, but alone this does not determine the ability of a surface to shed water. Physical factors such as the surface texture/topography, rigidity/flexibility, granularity/porosity combined with the intrinsic wetting properties of the liquid with the surface and whether it is infused by a lubricating liquid are equally important. In this talk I will outline fundamental, but simple, ideas on the topographic enhancement of surface chemistry to create superhydrophobicity, the adhesion of particles to liquid-air interfaces to create liquid marbles, elastocapillarity to create droplet wrapping, and lubricant impregnated surfaces to create completely mobile droplets [1-3]. I will discuss how these ideas have their origins in natural systems and surfaces, such as Lotus leaves, galling aphids and the Nepenthes pitcher plant. I will show how we have applied these concepts to study the wetting of granular systems, such as sand, to understand extreme soil water repellency. I will argue that relaxing the assumption that a solid substrate is fixed in shape and arrangement, can lead to the formation of liquid marbles, whereby a droplet self-coats in a hydrophobic powder/grains. I will show that the concepts of wetting and porosity blur as liquids penetrate into a porous or granular substrate. I will also discuss how lubricant impregnated super slippery surfaces can be used to study a pure constant contact angle mode of droplet evaporation [4]. Finally, I will show dewetting of a surface is not simply a video reversal of wetting [5], and I will give an example of the use of perfect hydrophobicity using the Leidenfrost effect to create a new type of low friction mechanical and hear engine [6]. References: [1] Shirtcliffe, N. J., et al., An introduction to superhydrophobicity. Advances in Colloid and Interface Science, vol. 161, pp.124-138 (2010). [2] McHale, G. & Newton, M. I. Liquid

  20. Function of C-terminal hydrophobic region in fructose dehydrogenase

    Sugimoto, Yu; Kawai, Shota; Kitazumi, Yuki; Shirai, Osamu; Kano, Kenji

    2015-01-01

    Fructose dehydrogenase (FDH) catalyzes oxidation of D-fructose into 2-keto-D-fructose and is one of the enzymes allowing a direct electron transfer (DET)-type bioelectrocatalysis. FDH is a heterotrimeric membrane-bound enzyme (subunit I, II, and III) and subunit II has a C terminal hydrophobic region (CHR), which was expected to play a role in anchoring to membranes from the amino acid sequence. We have constructed a mutated FDH lacking of CHR (ΔchrFDH). Contrary to the expected function of CHR, ΔchrFDH is expressed in the membrane fraction, and subunit I/III subcomplex (ΔcFDH) is also expressed in a similar activity level but in the soluble fraction. In addition, the enzyme activity of the purified ΔchrFDH is about one twentieth of the native FDH. These results indicate that CHR is concerned with the binding between subunit I(/III) and subunit II and then with the enzyme activity. ΔchrFDH has clear DET activity that is larger than that expected from the solution activity, and the characteristics of the catalytic wave of ΔchrFDH are very similar to those of FDH. The deletion of CHR seems to increase the amounts of the enzyme with the proper orientation for the DET reaction at electrode surfaces. Gel filtration chromatography coupled with urea treatment shows that the binding in ΔchrFDH is stronger than that in FDH. It can be considered that the rigid binding between subunit I(/III) and II without CHR results in a conformation different from the native one, which leads to the decrease in the enzyme activity in solution

  1. Impact of Dendrimers on Solubility of Hydrophobic Drug Molecules

    Sonam Choudhary

    2017-05-01

    Full Text Available Adequate aqueous solubility has been one of the desired properties while selecting drug molecules and other bio-actives for product development. Often solubility of a drug determines its pharmaceutical and therapeutic performance. Majority of newly synthesized drug molecules fail or are rejected during the early phases of drug discovery and development due to their limited solubility. Sufficient permeability, aqueous solubility and physicochemical stability of the drug are important for achieving adequate bioavailability and therapeutic outcome. A number of different approaches including co-solvency, micellar solubilization, micronization, pH adjustment, chemical modification, and solid dispersion have been explored toward improving the solubility of various poorly aqueous-soluble drugs. Dendrimers, a new class of polymers, possess great potential for drug solubility improvement, by virtue of their unique properties. These hyper-branched, mono-dispersed molecules have the distinct ability to bind the drug molecules on periphery as well as to encapsulate these molecules within the dendritic structure. There are numerous reported studies which have successfully used dendrimers to enhance the solubilization of poorly soluble drugs. These promising outcomes have encouraged the researchers to design, synthesize, and evaluate various dendritic polymers for their use in drug delivery and product development. This review will discuss the aspects and role of dendrimers in the solubility enhancement of poorly soluble drugs. The review will also highlight the important and relevant properties of dendrimers which contribute toward drug solubilization. Finally, hydrophobic drugs which have been explored for dendrimer assisted solubilization, and the current marketing status of dendrimers will be discussed.

  2. Thermal destruction of organic waste hydrophobicity for agricultural soils application.

    Comino, Francisco; Aranda, Víctor; Domínguez-Vidal, Ana; Ayora-Cañada, María José

    2017-11-01

    Use of organic amendments is a good strategy for combating the growing problem of soil degradation due to deterioration of organic matter content, particularly severe in semi-arid European Mediterranean regions, while at the same time providing an opportunity for recycling organic wastes. Olive mill pomace (OMP), the main by-product of the olive oil industry, is being used increasingly in olive grove soils for this purpose. Although the positive effects of OMP amendments have been widely studied, they also have some negative effects on soil. One of the most critical is that they increase water repellency (WR) due to the presence of poorly evolved, strongly aliphatic compounds. This detrimental effect has received very little attention, although it may impair plant water availability and infiltration rates, increase erosion and lower long-term soil quality. This study proposed, for the first time, thermal treatment as an effective way of reducing WR in organic amendments (i.e. mixtures of OMP, olive tree pruning, chicken manure and spent coffee grounds) prior to their application to soil. Thermal treatment at 275 °C proved effective in removing WR, while lower temperatures (175 or 225 °C) can even increase it. Changes by thermal treatment in the characteristics of the organic amendments studied with FTIR and UV-Vis spectroscopy and thermogravimetric analysis showed that it strongly reduced the aliphatic compounds mainly responsible for their hydrophobicity, concentrated aromatic compounds and increased thermostability. Heating also reduced phytotoxicity, making all of the organic amendments usable in the field (germination index over 100%). Therefore, heating at 275 °C could be an acceptable option for removing WR from organic amendments, enhancing their quality with more stable evolved characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Changes in antibiotic sensitivity and cell surface hydrophobicity in Escherichia coli injured by heating, freezing, drying or gamma radiation

    Mackey, B.M.

    1983-01-01

    Escherichia coli cells exposed to mild heating, freezing and thawing, drying or γ-radiation were sensitised to hydrophobic antibiotics and sodium deoxycholate but not to small hydrophilic antibiotics. These stress treatments also caused increases in cell surface hydrophobicity broadly reflecting the degree of sensitivity to hydrophobic antibiotics. (Auth.)

  4. Thermal decomposition of supported lithium nitrate catalysts

    Ruiz, Maria Lucia [INTEQUI (CONICET-UNSL), 25 de Mayo 384, V. Mercedes, 5730, San Luis (Argentina); Lick, Ileana Daniela [CINDECA (CONICET-UNLP), Calle 47 No 257, La Plata, 1900, Buenos Aires (Argentina); Ponzi, Marta Isabel [INTEQUI (CONICET-UNSL), 25 de Mayo 384, V. Mercedes, 5730, San Luis (Argentina); Castellon, Enrique Rodriguez; Jimenez-Lopez, Antonio [Departamento de Quimica Inorganica, Cristalografia y Mineralogia. Facultad de Ciencias, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain); Ponzi, Esther Natalia, E-mail: eponzi@quimica.unlp.edu.ar [CINDECA (CONICET-UNLP), Calle 47 No 257, La Plata, 1900, Buenos Aires (Argentina)

    2010-02-20

    New catalysts for soot combustion were prepared by impregnation of different supports (SiO{sub 2}, ZrO{sub 2} and ZrO{sub 2}.nH{sub 2}O) with a LiNO{sub 3} solution and then characterized by means of FTIR, XPS, TGA and UV-vis spectroscopy, whereby the presence of lithium nitrate in the prepared catalysts was identified and quantified. The soot combustion rate using this series of catalysts (LiNO{sub 3}/support) was compared with the activity of a series of impregnated catalysts prepared using LiOH (Li{sub 2}O/supports). Catalysts prepared using LiNO{sub 3} are found to be more active than those prepared using LiOH. The catalytic performance was also studied with a NO/O{sub 2} mixture in the feed, demonstrating that NO increases the combustion rate of soot, probably as a consequence of lithium oxide forming an 'in situ' nitrate ion.

  5. Finding Furfural Hydrogenation Catalysts via Predictive Modelling.

    Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi

    2010-09-10

    We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre throughout the reaction. Deuterium-labelling studies showed a secondary isotope effect (k(H):k(D)=1.5). Further mechanistic studies showed that this transfer hydrogenation follows the so-called monohydride pathway. Using these data, we built a predictive model for 13 of the catalysts, based on 2D and 3D molecular descriptors. We tested and validated the model using the remaining five catalysts (cross-validation, R(2)=0.913). Then, with this model, the conversion and selectivity were predicted for four completely new ruthenium-carbene complexes. These four catalysts were then synthesized and tested. The results were within 3% of the model's predictions, demonstrating the validity and value of predictive modelling in catalyst optimization.

  6. New catalysts for exhaust gas cleaning

    Haerkoenen, M [Kemira Metalkat Oy, Oulu (Finland)

    1997-12-31

    Major challenge for future catalyst systems was to develop thermally more stable washcoats for close coupled operating conditions and for engines operating under high speed and load conditions. To design these future emission systems extensive research and development was undertaken to develop methods to disperse and stabilize the key catalytic materials for operation at much higher temperatures. Second priority was to design catalysts that are more effective under low temperature exhaust conditions and have improved oxygen storage properties in the washcoats. Incorporating new materials and modified preparation technology a new generation of metallic catalyst formulations emerged, those being trimetallic K6 (Pt:Pd:Rh and bimetallic K7) (Pd+Pd:Rh). The target was to combine the best property of Pt:Rh (good NO{sub x} reduction) with that of the good HC oxidation activity of Pd and to ensure that precious metal/support interactions were positively maintained. Both K6 and K7 concepts contain special catalyst structures with optimized washcoat performance which can be brick converter configuration. Improvement in light-off, thermal stability and transient performance with these new catalyst formulations have clearly been shown in both laboratory and vehicle testing. (author) (20 refs.)

  7. Characterization of three-way automotive catalysts

    Kenik, E.A.; More, K.L. [Oak Ridge National Lab., TN (United States); LaBarge, W. [Delphi Automotive Systems, Flint, MI (United States)] [and others

    1997-04-01

    The CRADA between Delphi Automotive Systems (Delphi; formerly General Motors - AC Delco, Systems) and Lockheed Martin Energy Research (LMER) on automotive catalysts was completed at the end of FY96, after a ten month, no-cost extension. The CRADA was aimed at improved performance and lifetime of noble metal based three-way-catalysts (TWC), which are the primary catalytic system for automotive emission control systems. While these TWC can meet the currently required emission standards, higher than optimum noble metal loadings are often required to meet lifetime requirements. In addition, more stringent emission standards will be imposed in the near future, demanding improved performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts. Initially in a fresh catalyst, the active material is often distributed on a very fine scale, approaching single atoms or small atomic clusters. As such, a wide range of analytical techniques have been employed to provide high spatial resolution characterization of the evolving state of the catalytic material.

  8. Finding Furfural Hydrogenation Catalysts via Predictive Modelling

    Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi

    2010-01-01

    Abstract We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre throughout the reaction. Deuterium-labelling studies showed a secondary isotope effect (kH:kD=1.5). Further mechanistic studies showed that this transfer hydrogenation follows the so-called monohydride pathway. Using these data, we built a predictive model for 13 of the catalysts, based on 2D and 3D molecular descriptors. We tested and validated the model using the remaining five catalysts (cross-validation, R2=0.913). Then, with this model, the conversion and selectivity were predicted for four completely new ruthenium-carbene complexes. These four catalysts were then synthesized and tested. The results were within 3% of the model’s predictions, demonstrating the validity and value of predictive modelling in catalyst optimization. PMID:23193388

  9. New catalysts for exhaust gas cleaning

    Haerkoenen, M. [Kemira Metalkat Oy, Oulu (Finland)

    1996-12-31

    Major challenge for future catalyst systems was to develop thermally more stable washcoats for close coupled operating conditions and for engines operating under high speed and load conditions. To design these future emission systems extensive research and development was undertaken to develop methods to disperse and stabilize the key catalytic materials for operation at much higher temperatures. Second priority was to design catalysts that are more effective under low temperature exhaust conditions and have improved oxygen storage properties in the washcoats. Incorporating new materials and modified preparation technology a new generation of metallic catalyst formulations emerged, those being trimetallic K6 (Pt:Pd:Rh and bimetallic K7) (Pd+Pd:Rh). The target was to combine the best property of Pt:Rh (good NO{sub x} reduction) with that of the good HC oxidation activity of Pd and to ensure that precious metal/support interactions were positively maintained. Both K6 and K7 concepts contain special catalyst structures with optimized washcoat performance which can be brick converter configuration. Improvement in light-off, thermal stability and transient performance with these new catalyst formulations have clearly been shown in both laboratory and vehicle testing. (author) (20 refs.)

  10. Study of ammonia synthesis using technetium catalysts

    Spitsyn, V.I.; Mikhajlenko, I.E.; Pokrovskaya, O.V.

    1982-01-01

    A study was made on catalytic properties of technetium in ammonia synthesis reaction. The preparation of technetium catalysts on ν-Al 2 O 3 , BaTiO 3 , BaO-ν-Al 2 O 3 substrates is described. The investigation of catalytic activity of catalysts was carried out at a pressure of 1 atm. in vertical reactor with volume rate of 15000 h - 1 in the temperature range of 350-425 deg. The amount of catalyst was 0.5-1 g, the volume- 0.5 ml, the size of granules- 2-3 mm. Rate constants of ammonia synthesis reaction were calculated. Seeming activation energies of the process have meanings wihtin the limits of 40-50 kcal/mol. It was shown that with increase in concentration of Tc on BaTiO 3 the catalytic activity rises in comparison with pure Tc. The reduction of catalytic activity with increase of metal content on Al 2 O 3 begins in the limits of 3.5-6.7% Tc/ν-Al 2 O 3 . The catalyst of 5.3% Tc/4.1% Ba/ν -Al 2 O 3 compound has the maximum activity. Technetium catalysts possess the stable catalytic activity and don't requre its reduction during several months

  11. Bubbling bed catalytic hydropyrolysis process utilizing larger catalyst particles and smaller biomass particles featuring an anti-slugging reactor

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-09-23

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  12. Bubbling bed catalytic hydropyrolysis process utilizinig larger catalyst particles and small biomass particles featuring an anti-slugging reactor

    Marker, Terry L.; Felix, Larry G.; Linck, Martin B.; Roberts, Michael J.

    2016-12-06

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  13. Polypropylene obtained through zeolite supported catalysts

    Bastos, Queli C.; Marques, Maria de Fatima V.

    2004-01-01

    Propylene polymerizations were carried out with φ 2 C(Flu)(Cp)ZrCl 2 and SiMe 2 (Ind)2ZrCl 2 catalysts supported on silica, zeolite sodic mordenite (NaM) and acid mordenite (HM). The polymerizations were performed at different temperatures and varying aluminium/zirconium molar ratios ([Al]/[Zr]). The effect of these reaction parameters on the catalyst activity was investigated using a proposed statistical experimental planning. In the case of f 2 C(Flu)(Cp)ZrCl 2 , SiO 2 and NaM were used as support and the catalyst performance evaluated using toluene and pentane as polymerization solvent. The molecular weight, molecular weight distribution, melting point and crystallinity of the polymers were examined. The results indicate very high activities for the syndiospecific heterogeneous system. Also, the polymers obtained had superior Mw and stereo regularity. (author)

  14. Selective Oxidations using Nanostructured Heterogeneous Catalysts

    Mielby, Jerrik Jørgen

    and because they produce H2O as the only by-product. Chapter 1 gives a short introduction to basic concepts in heterogeneous catalysis and green chemistry. Furthermore, the chapter gives an overview of the most important strategies to synthesise functional nanostructured materials and highlights how detailed......The aim of this thesis is to investigate and develop new efficient methods to oxidise alcohols and amines using heterogeneous catalysts and either O2 or H2O2 as oxidants. From an economic and environmental point of view, these oxidants are ideal, because they are cheap and readily available...... understanding of size, shape and structure can help in the development of new and more efficient heterogeneous catalysts. The chapter is not intended to give a complete survey, but rather to introduce some of the recent developments in the synthesis of nanostructured heterogeneous catalysts. Finally...

  15. Polypropylene obtained through zeolite supported catalysts

    Queli C. Bastos

    2004-01-01

    Full Text Available Propylene polymerizations were carried out with f2C(Flu(CpZrCl2 and SiMe2(Ind2ZrCl2 catalysts supported on silica, zeolite sodic mordenite (NaM and acid mordenite (HM. The polymerizations were performed at different temperatures and varying aluminium/zirconium molar ratios ([Al]/[Zr]. The effect of these reaction parameters on the catalyst activity was investigated using a proposed statistical experimental planning. In the case of f2C(Flu(CpZrCl2, SiO2 and NaM were used as support and the catalyst performance evaluated using toluene and pentane as polymerization solvent. The molecular weight, molecular weight distribution, melting point and crystallinity of the polymers were examined. The results indicate very high activities for the syndiospecific heterogeneous system. Also, the polymers obtained had superior Mw and stereoregularity.

  16. Deactivation of molybdate catalysts by nitrogen bases

    Furimsky, E.

    1982-10-01

    Nitrogen bases present in petroleum deactivate the surface of molybdate catalysts. The detrimental effect is attributed either to interactions of the bases with Lewis sites via unpaired electrons on nitrogen or to their ability to remove proton from the surface. The later effect results in a decrease of concentration of Bronsted sites known to be active in catalytic reactions. This enhances rate of coke forming reactions. Resistence of molybdate catalysts to coke formation depends on the form and redistribution of active ingredients on the surface. This can be effected by conditions applied during preparation and pretreatment of the catalysts. Processing parameters used during catalytic hydrotreatment are also important; i.e., the coke formation is slow under conditions ensuring high rate of removal of basic nitrogen containing compounds.

  17. Automotive catalyst strategies for future emission systems

    Williamson, W.B.; Summers, J.C.; Scaparo, J.A.

    1992-01-01

    This paper reports that while significant advances in Pt/Rh three-way catalyst (TWC) formulations have been accomplished, the use of Pd-containing catalysts for three-way emission control are of interest for overall noble metal cost reduction, lower Rh usage, and potential durability improvements. Applications of Pd are demonstrated for replacement of Pt in conventional Pt/Rh TWC systems, for use in Pd-only three-way catalysts and for lowering methanol and formaldehyde emissions at close-coupled locations on a methanol-fueled vehicle. The individual contributions of Pt, Pd and Rh for aged three-way performance indicate significant advantages of using Pd over Pt. A comparison of vehicle system control strategies illustrates that higher system temperatures significantly lower HC emissions, while air/fuel control strategies are most critical in lowering NO x emissions

  18. Protein Scaffolding for Small Molecule Catalysts

    Baker, David [Univ. of Washington, Seattle, WA (United States)

    2014-09-14

    We aim to design hybrid catalysts for energy production and storage that combine the high specificity, affinity, and tunability of proteins with the potent chemical reactivities of small organometallic molecules. The widely used Rosetta and RosettaDesign methodologies will be extended to model novel protein / small molecule catalysts in which one or many small molecule active centers are supported and coordinated by protein scaffolding. The promise of such hybrid molecular systems will be demonstrated with the nickel-phosphine hydrogenase of DuBois et. al.We will enhance the hydrogenase activity of the catalyst by designing protein scaffolds that incorporate proton relays and systematically modulate the local environment of the catalyticcenter. In collaboration with DuBois and Shaw, the designs will be experimentally synthesized and characterized.

  19. Process for the regeneration of metallic catalysts

    Katzer, James R.; Windawi, Hassan

    1981-01-01

    A method for the regeneration of metallic hydrogenation catalysts from the class consisting of Ni, Rh, Pd, Ir, Pt and Ru poisoned with sulfur, with or without accompanying carbon deposition, comprising subjecting the catalyst to exposure to oxygen gas in a concentration of about 1-10 ppm. intermixed with an inert gas of the group consisting of He, A, Xe, Kr, N.sub.2 and air substantially free of oxygen to an extent such that the total oxygen molecule throughout is in the range of about 10 to 20 times that of the hydrogen sulfide molecular exposure producing the catalyst poisoning while maintaining the temperature in the range of about 300.degree. to 500.degree. C.

  20. Alternative deNOx catalysts and technologies

    Due-Hansen, Johannes

    The present thesis entitled Alternative deNOx Catalysts and technologies revolves around the topic of removal of nitrogen oxides. Nitrogen oxides, NOx, are unwanted byproducts formed during combustion (e.g. in engines or power plants). If emitted to the atmosphere, they are involved...... in the formation of acid rain and photochemical smog. Some basic concepts and reactions regarding the formation and removal of NOx are presented in chapter 1 and 2. Two approaches are undertaken in the present work to reduce the emission of NOx: by means of catalytic removal, and by NO absorption in ionic liquids....... The commercial catalyst used for the selective catalytic reduction (SCR) of nitrogen oxides exhibits high activity and selectivity towards N2. However, the vanadia-titania-based catalyst used is very sensitive to deactivation by alkali-species (primarily potassium), which are typically present in high amounts...

  1. Cerium promoted Fischer-Tropsch catalysts

    Fiato, R.A.; Bar-Gadda, R.; Miseo, S.

    1987-01-01

    This patent describes a hydrocarbon synthesis catalyst composition comprising sintered combination metal oxides having the following components in the stated weight percentage of the catalyst composition: (a) about 5 to about 80 weight percent Fe oxide; (b) about 4 to about 20 weight percent Zn oxide; (c) about 10 to about 40 weight percent Ti and/or Mn oxide; (d) about 1 to about 5 weight percent K, Rb, and/or Cs oxide; and (e) about 1 to about 10 weight percent Ce oxide, such that where the catalyst contains Fe, the sintered combination comprises a series of Fe, Zn, and/or Ti and/or Mn spinels and oxides of K, Rb and/or Cs, dispersed in a Ce oxide matrix

  2. Ship-in-a-bottle catalysts

    Haw, James F.; Song, Weiguo

    2006-07-18

    In accordance with the present invention there is provided a novel catalyst system in which the catalytic structure is tailormade at the nanometer scale using the invention's novel ship-in-a-bottle synthesis techniques. The invention describes modified forms of solid catalysts for use in heterogeneous catalysis that have a microporous structure defined by nanocages. Examples include zeolites, SAPOs, and analogous materials that have the controlled pore dimensions and hydrothermal stability required for many industrial processes. The invention provides for modification of these catalysts using reagents that are small enough to pass through the windows used to access the cages. The small reagents are then reacted to form larger molecules in the cages.

  3. Study of ammonia synthesis over uranium catalysts

    Spitsyn, V.I.; Erofeev, B.V.; Mikhajlenko, I.E.; Gorelkin, I.I.; Ivanov, L.S.

    1980-01-01

    The effect of induced radiactivity and chemical composition of uranium catalysts on their catalytic activity in the ammonia synthesis reaction has been studied. The catalyst samples comprise pieces of metal uranium and chip irradiated in nuclear reactor by the 4.3x10 16 n/cm 2 integral flux of slow neutrons. Studies of catalytic activity was carried out at 1 atm and 340-510 deg C when stoichiometric nitrogen-hydrogen mixture passed through the following installation. At different temperatures uranium nitrides of different composition are shown to be formed. Uranium nitrides with the composition close to UN 2 are the samples with the highest catalYtic activity. The reduction of catalytic activity of uranium catalysts with the increased temperature of their formation above 400 deg C is explained by low catalytic activity of forming UNsub(1.7) in comparison with UN 2 . Catalytic properties of irradiated and nonirradiated samples do not differ from one another

  4. Productions of palm oil bio diesel whit heterogeneous basic catalysts compared to conventional homogeneous catalysts

    Rios, Luis A; Franco C, Alexander; Zuleta S, Ernesto

    2009-01-01

    The conventional process to produce biodiesel involves the presence of homogeneous basic catalysts. However, these catalysts have disadvantages associated to the need of purification steps, which increase the cost of the final product and generate pollution problems caused by the effluents. This paper compares different homogeneous and heterogeneous catalysts for the biodiesel production from palm oil. For this, heterogeneous catalysts supported on alumina were prepared and characterized by nitrogen adsorption, scanning electron microscopy, energy dispersive X ray spectroscopy and X ray diffraction. Transesterification of palm oil with methanol was accomplished at 60 celsius degrade and one hour, varying methanol/oil ratio, the type of catalyst and its concentration. Yields of the reaction and purity of the so obtained biodiesel were evaluated. Comparing the catalysts performance, based on the amount, was found that sodium methoxide (CH 3 ONa) and potassium carbonate supported on alumina (K 2 CO 3 /Al 2 O 3 ) were the catalysts that give the higher purity of biodiesel (96.8 and 95.85% respectively). When was determined the active site quality, by dividing the performance by each mole of active sites, it was found that calcined Na 2 SO 4 /Al 2 O 3 has the most active sites.

  5. Molecular origin of urea driven hydrophobic polymer collapse and unfolding depending on side chain chemistry.

    Nayar, Divya; Folberth, Angelina; van der Vegt, Nico F A

    2017-07-19

    Osmolytes affect hydrophobic collapse and protein folding equilibria. The underlying mechanisms are, however, not well understood. We report large-scale conformational sampling of two hydrophobic polymers with secondary and tertiary amide side chains using extensive molecular dynamics simulations. The calculated free energy of unfolding increases with urea for the secondary amide, yet decreases for the tertiary amide, in agreement with experiment. The underlying mechanism is rooted in opposing entropic driving forces: while urea screens the hydrophobic macromolecular interface and drives unfolding of the tertiary amide, urea's concomitant loss in configurational entropy drives collapse of the secondary amide. Only at sufficiently high urea concentrations bivalent urea hydrogen bonding interactions with the secondary amide lead to further stabilisation of its collapsed state. The observations provide a new angle on the interplay between side chain chemistry, urea hydrogen bonding, and the role of urea in attenuating or strengthening the hydrophobic effect.

  6. Enhancement of Water Evaporation on Solid Surfaces with Nanoscale Hydrophobic-Hydrophilic Patterns.

    Wan, Rongzheng; Wang, Chunlei; Lei, Xiaoling; Zhou, Guoquan; Fang, Haiping

    2015-11-06

    Using molecular dynamics simulations, we show that the evaporation of nanoscale water on hydrophobic-hydrophilic patterned surfaces is unexpectedly faster than that on any surfaces with uniform wettability. The key to this phenomenon is that, on the patterned surface, the evaporation rate from the hydrophilic region only slightly decreases due to the correspondingly increased water thickness; meanwhile, a considerable number of water molecules evaporate from the hydrophobic region despite the lack of water film. Most of the evaporated water from the hydrophobic region originates from the hydrophilic region by diffusing across the contact lines. Further analysis shows that the evaporation rate from the hydrophobic region is approximately proportional to the total length of the contact lines.

  7. An experimental investigation of evaporating sessile droplet on super-hydrophobic surface

    Shin, Dong Hwan; Lee, Seong Hyuk; Yoo, Jung Yul

    2008-01-01

    The objective of this study is to investigate the evaporation process of a water droplet on hydrophobic and hydrophilic surfaces. Time-dependent contact angle, height, radius, surface area, and volume were measured for three different surfaces, such as glass, OctadecylTrichloroSilane(OTS), and AlkylKetene Dimmer(AKD) using a digital image analysis technique. For hydrophilic surfaces, the measured contact angle, liquid volume, and height are also compared with numerical estimation. It is found that for super-hydrophobic surfaces, the contact line becomes no longer pinned during evaporation, and three distinct stages for hydrophobic surface cannot be found. For the super-hydrophobic surface, it takes the longest time for evaporation because the droplet maintains spherical shape even near the end of evaporation process

  8. Water-based adhesives with tailored hydrophobic association: dilution resistance and improved setting behavior.

    Dundua, Alexander; Landfester, Katharina; Taden, Andreas

    2014-11-01

    Hydrophobic association and stimuli-responsiveness is a powerful tool towards water-based adhesives with strongly improved properties, which is demonstrated based on the example of hydrophobically modified alkali-soluble latexes (HASE) with modulated association. Their rheological properties are highly tunable due to the hydrophobic domains that act as physical crosslinking sites of adjustable interaction strength. Ethanol, propanol, and butanol are used as water-soluble model additives with different hydrophobicity in order to specifically target the association sites and impact the viscoelastic properties and stimuli-responsiveness. The rheological and mechanical property response upon dilution with water can be tailored, and dilution-resistant or even dilution-thickening systems are obtained. The investigations are of high importance for water-based adhesives, as our findings provide insight into general structure-property relationships to improve their setting behavior, especially upon contact with wet substrates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Evaluation of Relative Yeast Cell Surface Hydrophobicity Measured by Flow Cytometry

    Lisa Colling

    2005-01-01

    Full Text Available Objective: To develop an efficient method for evaluating cell surface hydrophobicity and to apply the method to demonstrate the effects of fungal growth conditions on cell surface properties.

  10. Production and characterization of hydrophobic zinc borate by using palm oil

    Nil Baran Acarali; Nurcan Tugrul; Emek Moroydor Derun; Sabriye Piskin

    2013-01-01

    Zinc borate (ZB) was synthesized using zinc oxide, boric acid synthesized from colemanite, and reference ZB as seed. The eff ects of reaction parameters such as reaction time, reactant ratio, and seed ratio on its yield were examined. Then, the eff ects of palm oil with solvents (isopropyl alcohol (IPA), ethanol, and methanol) added to the reaction on its hydrophobicity were explored. Reactions were carried out under determined reaction conditions with magnetically and mechanically stirred systems. The produced ZB was characterized by X-ray diff raction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and measurements of contact angle identified hydrophobicity. The results showed that hydrophobic ZB was successfully produced under determined reaction conditions. The change of process parameters influenced its yield and the usage of palm oil provided hydrophobicity.

  11. Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition

    Hang Tao; Hu Anmin; Ling Huiqin; Li Ming; Mao Dali

    2010-01-01

    Super-hydrophobic nickel films were prepared by a simple and low cost electrodepositing method. The surface morphologies of the films characterized by scanning electronic microscope exhibit hierarchical structure with micro-nanocones array, which can be responsible for their super-hydrophobic characteristic (water contact angle over 150 o ) without chemical modification. The wettability of the film can be varied from super-hydrophobic (water contact angle 154 o ) to relatively hydrophilic (water contact angle 87 o ) by controlling the size of the micro-nanocones. The mechanism of the hydrophobic characteristic of nickel films with this unique structure was illustrated by several models. Such micro-nanostructure and its special wettability are expected to be applied in the practical industry.

  12. Relation between the characteristic molecular volume and hydrophobicity of nonpolar molecules

    Sedov, Igor A., E-mail: igor_sedov@inbox.ru; Solomonov, Boris N., E-mail: boris.solomonov@ksu.r

    2010-09-15

    Experimental values of the Gibbs free energies of hydration for a set of nonpolar or very slightly polar compounds are analyzed in order to investigate how does the hydrophobic effect depend on molecular structure and shape. The contribution due to the hydrophobic effect is evaluated using a method we suggested previously. A number of values of the Gibbs free energies of solvation in dimethyl sulfoxide and in hexadecane, which are required for calculation, were determined by gas chromatographic headspace analysis. It is found that the Gibbs hydrophobic effect energy is linearly dependent on characteristic molecular volume for a large variety of solutes with branched and unbranched carbon chains, different functional groups and atomic composition. Molecular structure and shape do not significantly affect the hydrophobicity of chemical species, and molecular volume is a main factor determining it.

  13. Effects of nanometric hydrophobic layer on performances of solar photovoltaic collectors

    Andrei BUTUZA

    2014-11-01

    Full Text Available The study refers to the experimental investigation of solar photovoltaic collectors' behaviour when the glazed surface is treated with a nanometric layer of hydrophobic solution. The experiment was carried out on two photovoltaic collectors, of which one was considered as reference and the other one was coated with a commercial hydrophobic solution. It was studied the evolution of the following electrical parameters: current, voltage, power, efficiency and daily energy production. The voltage was almost unaffected, but for all the others parameters, important drop were recorded. The preliminary conclusion of the study is that the use of hydrophobic solutions, for the treatment of glazed surfaces of solar collectors is not recommended. This hypothesis needs supplementary investigations and measurements in the context of reduced available information concerning the optical properties of hydrophobic solutions.

  14. Chemical treatment of the intra-canal dentin surface: a new approach to modify dentin hydrophobicity

    Cesar GAITAN-FONSECA

    2013-01-01

    Full Text Available Objective This study evaluated the hydrophobicity of dentin surfaces that were modified through chemical silanization with octadecyltrichlorosilane (OTS. Material and Methods An in vitro experimental study was performed using 40 human permanent incisors that were divided into the following two groups: non-silanized and silanized. The specimens were pretreated and chemically modified with OTS. After the chemical modification, the dentin hydrophobicity was examined using a water contact angle measurement (WCA. The effectiveness of the modification of hydrophobicity was verified by the fluid permeability test (FPT. Results and Conclusions Statistically significant differences were found in the values of WCA and FPT between the two groups. After silanization, the hydrophobic intraradicular dentin surface exhibited in vitro properties that limit fluid penetration into the sealed root canal. This chemical treatment is a new approach for improving the sealing of the root canal system.

  15. The performance analysis of direct methanol fuel cells with different hydrophobic anode channels

    Yeh, Hung-Chun; Yang, Ruey-Jen; Luo, Win-Jet; Jiang, Jia-You; Kuan, Yean-Der; Lin, Xin-Quan

    In order to enhance the performance of the direct methanol fuel cell (DMFC), the product of CO 2 bubble has to be efficiently removed from the anode channel during the electrochemical reaction. In this study, the materials of Polymethyl Methacrylate (PMMA) with hydrophilic property and polydimethylsiloxane (PDMS) with hydrophobic property are used to form the anode cannel. The channel is fabricated through a microelectromechanical system (MEMS) manufacture process of the DMFCs. In addition, some particles with high hydrophobic properties are added into the PDMS materials in order to further reduce the hydro-resistance in the anode channel. The performance of the DMFCs is investigated under the influence of operation conditions, including operation temperature, flow rate, and methanol concentration. It is found that the performance of the DMFC, which is made of PDMS with high hydrophobic particles, can be greatly enhanced and the hydrophobic property of the particles can be unaffected by different operation conditions.

  16. Fabricated super-hydrophobic film with potentiostatic electrolysis method on copper for corrosion protection

    Wang Peng; Qiu Ri; Zhang Dun; Lin Zhifeng; Hou Baorong

    2010-01-01

    A novel one-step potentiostatic electrolysis method was proposed to fabricate super-hydrophobic film on copper surface. The resulted film was characterized by contact angle tests, Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), Field emission scanning electron microscopy (FE-SEM) and electrochemical measurements. It could be inferred that the super-hydrophobic property resulted from the flower-like structure of copper tetradecanoate film. In the presence of super-hydrophobic film, the anodic and cathodic polarization current densities are reduced for more than five and four orders of magnitude, respectively. The air trapped in the film is the essential contributor of the anticorrosion property of film for its insulation, the copper tetradecanoate film itself acts as a 'frame' to trap air as well as a coating with inhibition effect. The super-hydrophobic film presents excellent inhibition effect to the copper corrosion and stability in water containing Cl - .

  17. New sulfide catalysts for the hydroliquefaction of coal

    Vissers, J.P.R.; Oers, van E.M.; Beer, de V.H.J.; Prins, R.

    1987-01-01

    Possibilities for the preparation of new metal sulfide catalyst systems based on carbon carriers having favourable textural and surface properties have been explored, and attention has been given to the characterization (structure) and evaluation (hydrosulfurization activity) of these catalysts. Two

  18. Immobilization of molecular catalysts in supported ionic liquid phases.

    Van Doorslaer, Charlie; Wahlen, Joos; Mertens, Pascal; Binnemans, Koen; De Vos, Dirk

    2010-09-28

    In a supported ionic liquid phase (SILP) catalyst system, an ionic liquid (IL) film is immobilized on a high-surface area porous solid and a homogeneous catalyst is dissolved in this supported IL layer, thereby combining the attractive features of homogeneous catalysts with the benefits of heterogeneous catalysts. In this review reliable strategies for the immobilization of molecular catalysts in SILPs are surveyed. In the first part, general aspects concerning the application of SILP catalysts are presented, focusing on the type of catalyst, support, ionic liquid and reaction conditions. Secondly, organic reactions in which SILP technology is applied to improve the performance of homogeneous transition-metal catalysts are presented: hydroformylation, metathesis reactions, carbonylation, hydrogenation, hydroamination, coupling reactions and asymmetric reactions.

  19. Sulfur Tolerance of Carbide Catalysts Under Hydrocarbon Reforming Conditions

    Thomson, William

    2004-01-01

    .... These conditions are all related to lowering gas-solid mass transfer rate has also been determined that tedious TPR catalyst synthesis techniques are not necessary to achieve either catalyst activity or stability...

  20. Dearomatization of jet fuel on irradiated platinum-supported catalyst

    Mucka, V.; Ostrihonova, A.; Kopernicky, I.; Mikula, O.

    1983-01-01

    The effect of ionizing radiation ( 60 Co #betta#-rays) on Pt-supported catalyst used for the dearomatization of jet fuel with distillation in the range 395 to 534 K has been studied. Pre-irradiation of the catalyst with doses in the range 10 2 to 5 x 10 4 Gy leads to the partial catalyst activation. Irradiation of the catalyst enhances its resistance to catalyst poisons, particularly to sulphur-compounds, and this is probably the reason for its catalytic activity being approx. 60 to 100% greater than that of un-irradiated catalyst. Optimum conditions for dearomatization on the irradiated catalyst were found and, by means of a rotary three-factorial experiment, it was shown that these lie at lower temperatures and lower pressures than those for un-irradiated catalyst. (author)

  1. In situ Transmission Electron Microscopy of catalyst sintering

    DeLaRiva, Andrew T.; Hansen, Thomas Willum; Challa, Sivakumar R.

    2013-01-01

    Recent advancements in the field of electron microscopy, such as aberration correctors, have now been integrated into Environmental Transmission Electron Microscopes (TEMs), making it possible to study the behavior of supported metal catalysts under operating conditions at atomic resolution. Here......, we focus on in situ electron microscopy studies of catalysts that shed light on the mechanistic aspects of catalyst sintering. Catalyst sintering is an important mechanism for activity loss, especially for catalysts that operate at elevated temperatures. Literature from the past decade is reviewed...... along with our recent in situ TEM studies on the sintering of Ni/MgAl2O4 catalysts. These results suggest that the rapid loss of catalyst activity in the earliest stages of catalyst sintering could result from Ostwald ripening rather than through particle migration and coalescence. The smallest...

  2. Method of performing sugar dehydration and catalyst treatment

    Hu, Jianli [Kennewick, WA; Holladay, Johnathan E [Kennewick, WA; Zhang, Xinjie [Burlington, MA; Wang, Yong [Richland, WA

    2010-06-01

    The invention includes a method of treating a solid acid catalyst. After exposing the catalyst to a mixture containing a sugar alcohol, the catalyst is washed with an organic solvent and is then exposed to a second reaction mixture. The invention includes a process for production of anhydrosugar alcohol. A solid acid catalyst is provided to convert sugar alcohol in a first sample to an anhydrosugar alcohol. The catalyst is then washed with an organic solvent and is subsequently utilized to expose a second sample. The invention includes a method for selective production of an anhydrosugar. A solid acid catalyst is provided within a reactor and anhydrosugar alcohol is formed by flowing a starting sugar alcohol into the reactor. The acid catalyst is then exposed to an organic solvent which allows a greater amount of additional anhydrosugar to be produced than would occur without exposing the acid catalyst to the organic solvent.

  3. Calcium and lanthanum solid base catalysts for transesterification

    Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.

    2015-07-28

    In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.

  4. Catalysts for oxidation of mercury in flue gas

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2010-08-17

    Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

  5. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    Ginosar, Daniel M.; Petkovic, Lucia M.

    2010-12-28

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  6. SSZ-13-supported manganese oxide catalysts for low temperature ...

    YONGZHOU YE

    Their performances for the selective catalytic reduction (SCR) of NOx with NH3 were evaluated. ... catalysts have received considerable attention.2,3 More- over, catalysts ..... zeolite channels or causing agglomeration on the cat- alyst surface ...

  7. Design of sintering-stable heterogeneous catalysts

    Gallas-Hulin, Agata

    One of the major issues in the use of metal nanoparticles in heterogeneous catalysis is sintering. Sintering occurs at elevated temperatures because of increased mobility of nanoparticles, leading to their agglomeration and, as a consequence, to the deactivation of the catalyst. It is an emerging...... problem especially for the noble metals-based catalysis. These metals being expensive and scarce, it is worth developing catalyst systems which preserve their activity over time. Encapsulation of nanoparticles inside zeolites is one of the ways to prevent sintering. Entrapment of nanoparticles inside...

  8. Catalyst for reforming hydrocarbons with water vapors

    Nicklin, T.; Farrington, F.; Whittaker, J.R.

    1979-01-01

    The catalyst should reform hydrocarbons with water vapour. It consists of a carrier substance (preferably clay) on whose surface the catalytically active substances are formed. By impregnation one obtains this with a mixture of thermally destructable nickel and uranium compounds and calcination of the impregnated carrier. The catalyst is marked by a definite weight ratio of uranium to nickel (about 0.6 to 1), the addition of barium compounds and a maximum limit of these additives. All details of manufacture and the range of variations are described in detail. (UWI) [de

  9. Asymptotic stability of a catalyst particle

    Wedel, Stig; Michelsen, Michael L.; Villadsen, John

    1977-01-01

    The catalyst asymptotic stability problem is studied by means of several new methods that allow accurate solutions to be calculated where other methods have given qualitatively erroneous results. The underlying eigenvalue problem is considered in three limiting situations Le = ∞, 1 and 0. These a......The catalyst asymptotic stability problem is studied by means of several new methods that allow accurate solutions to be calculated where other methods have given qualitatively erroneous results. The underlying eigenvalue problem is considered in three limiting situations Le = ∞, 1 and 0...

  10. Production of olefins from bioethanol. Catalysts, mechanism

    Kusman Dossumov

    2012-12-01

    Full Text Available This review describes methods of catalytic obtaining from bioethanol of valuable industrial products – olefins, particularly ethylene. Аmong olefins, ethylene is the most popular key raw material of petrochemical synthesis. The scope of appllication of ethylene is almost unlimited in petrochemical products: polyethylene, ethylbenzene, styrene, ethylene dichloride, vinyl chloride etc. It also examines catalysts for the production of olefins and their properties. The most promising and commercially advantageous process of ethylene production by catalytic dehydration of ethanol on catalysts based on modified alumina. And this review discusses the mechanisms of catalytic conversion of ethanol to ethylene.

  11. Characterization of steam-reforming catalysts

    Santos D. C. R.M.

    2004-01-01

    Full Text Available The effect of the addition of Mg and Ca to Ni/ a-Al2O3 catalysts was investigatedstudied, aiming to detail the promotion mechanismaddress their role as promoters in the steam reforming reaction. Temperature- programmed reduction and H2 and CO temperature-programmed desorption experiments indicated that Mg interacts with the metallic phase. Mg-promoted catalysts showed a greater difficulty for Ni precursors reduction besides different probe molecules (H2 and CO adsorbed states. In the conversion of cyclohexane, Mg inhibited the formation of hydrogenolysis products. Nonetheless, the presence of Ca did not influence the metallic phase.

  12. Characterization of alumina supported molybdenum catalysts

    Pastura, N M; Carmo, L M.P.M.; Sachett, C M.M.; Lam, Y L [Instituto Militar de Engenharia, Rio de Janeiro (Brazil). Secao de Quimica

    1983-10-01

    In order to optimize a bifunctional catalyst (acid and hydrogenating) of Mo/Al/sub 2/O/sub 3/, oxygen adsorption at 195 K and ethanol dehydration at 480-520 K were carried out using a series of these catalysts. The increase of Mo content increased the quantity of adsorbed oxygen, thus indicating that the number of hydrogenating sites also increased. The specific activity of ethanol dehydration varied slightly, indicating that the number of acid sites remains almost constant. On the other hand, the selectivity in ethylene (versus ether) increased markedly. This may be attributed to the increase in acid force of the acid sites.

  13. Characterization of alumina supported molybdenum catalysts

    Pastura, N.M.; Carmo, L.M.P.M.; Sachett, C.M.M.; Lam, Y.L.

    1983-01-01

    In order to optimize a bifunctional catalyst (acid and hydrogenating) of Mo/Al 2 O 3 , oxygen adsorption at 195 K and ethanol dehydration at 480-520 K were carried out using a series of these catalysts. The increase of Mo content increased the quantity of adsorbed oxygen, thus indicating that the number of hydrogenating sites also increased. The specific activity of ethanol dehydration varied slightly, indicating that the number of acid sites remains almost constant. On the other hand, the selectivity in ethylene (versus ether) increased markedly. This may be attributed to the increase in acid force of the acid sites. (C.L.B.) [pt

  14. Catalysis by nonmetals rules for catalyst selection

    Krylov, Oleg V

    1970-01-01

    Catalysis by Non-metals: Rules of Catalyst Selection presents the development of scientific principles for the collection of catalysts. It discusses the investigation of the mechanism of chemosorption and catalysis. It addresses a series of properties of solid with catalytic activity. Some of the topics covered in the book are the properties of a solid and catalytic activity in oxidation-reduction reactions; the difference of electronegativities and the effective charges of atoms; the role of d-electrons in the catalytic properties of a solid; the color of solids; and proton-acid and proton-ba

  15. Resin catalysts and method of preparation

    Smith, L.A. Jr.

    1986-12-16

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  16. Yolk–shell Fe3O4@SiO2@PMO: amphiphilic magnetic nanocomposites as an adsorbent and a catalyst with high efficiency and recyclability

    Dai, Jinyu

    2017-01-20

    This study describes the preparation of a multifunctional adsorptive catalyst by the incorporation of ligand groups within the channels of magnetic amphiphilic nanocomposites and attached with Pd nanoparticles. It was clearly demonstrated that Pd2+ was adsorbed by ligand-functionalized materials in water, and then Pd2+ was coordinated with ligand groups. Finally, the Pd nanoparticles were produced via an in situ reduction of Pd2+ by ligand groups through a simple hydrothermal process. Moreover, amphiphilic nanomaterials are viewed as excellent collectors of hydrophobic contaminants in water. The immobilized catalytic active sites with ligand-functionalized nanocomposites were allowed for maximal exposure to the reactants with minimal leaching of the Pd nanoparticles. The unique amphiphilic nanocomposites enabled selective oxidation of alcohols to proceed efficiently in water under aerobic conditions. Moreover, this nanocomposite catalyst could be completely recovered using an external magnet due to the superparamagnetic behavior of Fe3O4 and can be recycled with sustained selectivity and activity.

  17. Modification of epoxy resin, silicon and glass surfaces with alkyl- or fluoroalkylsilanes for hydrophobic properties

    Marczak, Jacek; Kargol, Marta; Psarski, Maciej; Celichowski, Grzegorz

    2016-01-01

    Graphical abstract: - Highlights: • Chemical structure of alkylsilanes and fluoroalkylsilanes can affect the hydrophobic and surface performance of the modified samples. • Wet chemical hydrophobization is relatively simple and inexpensive method to obtain hydrophobic/superhydrophobic coatings. • The samples degradation is not observed and hydrophobic coatings seem to be stable in UV light. - Abstract: Preparation of superhydrophobic materials inspired by nature has attracted a great scientific interest in recent decades. Some of these materials have hierarchical lotus-like structures, i.e. micro- and nano-objects coated by hydrophobic compounds. A major challenge of applying the superhydrophobic surfaces for the self-cleaning coatings preparation is their improved efficiency in varying atmospheric conditions, e.g. UV light. The objective of this research work was to investigate the effect of the different chemical structure and the surface free energy on the hydrophobic and tribological properties of the alkylsilanes and fluoroalkylsilanes deposited on silicon wafers, glass slides and epoxy resin. Tribological and hydrophobic properties of the modified surfaces were correlated with their chemical structures. Chemical structures of the deposited materials were examined by using Fourier transform infrared (FT-IR) spectroscopy and hydrophobic properties were investigated by water contact angle (WCA) and surface free energy (SFE) measurements. The modified surfaces exhibited water contact angles of above 100° for the selected modifiers. It was noticed that the replacement of hydrogen atoms by fluorine atoms in alkyl chain caused an increase in the water contact angle values and a decrease in friction coefficients. The obtained results showed that the carbon chain length of a modifier and its chemical structure can strongly affect the hydrophobic and tribological properties of the modified surfaces. The highest values of WCA, lowest values of SFE and coefficient

  18. Mapping Hydrophobicity on the Protein Molecular Surface at Atom-Level Resolution

    Nicolau Jr., Dan V.; Paszek, Ewa; Fulga, Florin; Nicolau, Dan V.

    2014-01-01

    A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 Å, followed by the quantification of (i) the surface hydrophobicity; (ii) their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii) their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i) present an approximately two times more hydrophilic areas; with (ii) less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii) 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced “leopard skin”-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37). These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric resolutions

  19. Control and characterization of textured, hydrophobic ionomer surfaces

    Wang, Xueyuan

    Polymer thin films are of increasing interest in many industrial and technological applications. Superhydrophobic, self-cleaning surfaces have attracted a lot of attention for their application in self-cleaning, anti-sticking coatings, stain resistance, or anti-contamination surfaces in diverse technologies, including medical, transportation, textiles, electronics and paints. This thesis focuses on the preparation of nanometer to micrometer-size particle textured surfaces which are desirable for super water repellency. Textured surfaces consisting of nanometer to micrometer-sized lightly sulfonated polystyrene ionomer (SPS) particles were prepared by rapid evaporation of the solvent from a dilute polymer solution cast onto silica. The effect of the solvent used to spin coat the film, the molecular weight of the ionomer, and the rate of solvent evaporation were investigated. The nano-particle or micron-particle textured ionomer surfaces were prepared by either spin coating or solution casting ionomer solutions at controlled evaporation rates. The surface morphologies were consistent with a spinodal decomposition mechanism where the surface first existed as a percolated-like structure and then ripened into droplets if molecular mobility was retained for sufficient time. The SPS particles or particle aggregates were robust and resisted deformation even after annealing at 120°C for one week. The water contact angles on as-prepared surfaces were relatively low, ~ 90° since the polar groups in ionomer reduce the surface hydrophobicity. After chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltrichlorosilane, the surface contact angles increased to ~ 109° on smooth surfaces and ~140° on the textured surfaces. Water droplets stuck to these surfaces even when tilted 90 degrees. Superhydrophobic surfaces were prepared by spraying coating ionomer solutions and Chemical Vapor Deposition (CVD) of 1H,1H,2H,2H-perfluorooctyltrichlorosilane onto textured surfaces. The

  20. Water in contact with extended hydrophobic surfaces: Direct evidence of weak dewetting

    Jensen, Torben R.; Kjaer, Kristian; Oestergaard Jensen, Morten; Peters, Guenther H.; Reitzel, Niels; Balashev, Konstantin; Bjoernholm, Thomas

    2003-01-01

    X-ray reflectivity measurements reveal a significant dewetting of a large hydrophobic paraffin surface floating on water. The dewetting phenomenon extends less than 15 A into the bulk water phase and results in an integrated density deficit of about one water molecule per 25-30 A 2 of water in contact with the paraffin surface. The results are supported by molecular dynamics simulations and related to the hydrophobic effect

  1. Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review.

    Dimitrakellis, Panagiotis; Gogolides, Evangelos

    2018-04-01

    Hydrophobic surfaces are often used to reduce wetting of surfaces by water. In particular, superhydrophobic surfaces are highly desired for several applications due to their exceptional properties such as self-cleaning, anti-icing, anti-friction and others. Such surfaces can be prepared via numerous methods including plasma technology, a dry technique with low environmental impact. Atmospheric pressure plasma (APP) has recently attracted significant attention as lower-cost alternative to low-pressure plasmas, and as a candidate for continuous rather than batch processing. Although there are many reviews on water-repellent surfaces, and a few reviews on APP technology, there are hardly any review works on APP processing for hydrophobic and superhydrohobic surface fabrication, a topic of high importance in nanotechnology and interface science. Herein, we critically review the advances on hydrophobic and superhydrophobic surface fabrication using APP technology, trying also to give some perspectives in the field. After a short introduction to superhydrophobicity of nanostructured surfaces and to APPs we focus this review on three different aspects: (1) The atmospheric plasma reactor technology used for fabrication of (super)hydrophobic surfaces. (2) The APP process for hydrophobic surface preparation. The hydrophobic surface preparation processes are categorized methodologically as: a) activation, b) grafting, c) polymerization, d) roughening and hydrophobization. Each category includes subcategories related to different precursors used. (3) One of the most important sections of this review concerns superhydrophobic surfaces fabricated using APP. These are methodologically characterized as follows: a) single step processes where micro-nano textured topography and low surface energy coating are created at the same time, or b) multiple step processes, where these steps occur sequentially in or out of the plasma. We end the review with some perspectives in the field. We

  2. Molecular-scale hydrophobic interactions between hard-sphere reference solutes are attractive and endothermic.

    Chaudhari, Mangesh I; Holleran, Sinead A; Ashbaugh, Henry S; Pratt, Lawrence R

    2013-12-17

    The osmotic second virial coefficients, B2, for atomic-sized hard spheres in water are attractive (B2 attractive with increasing temperature (ΔB2/ΔT attractive and endothermic at moderate temperatures. Hydrophobic interactions between atomic-sized hard spheres in water are more attractive than predicted by the available statistical mechanical theory. These results constitute an initial step toward detailed molecular theory of additional intermolecular interaction features, specifically, attractive interactions associated with hydrophobic solutes.

  3. Hydrophobic coating of microfluidic chips structured by SU-8 polymer for segmented flow operation

    Schumacher, J T; Grodrian, A; Metze, J; Kremin, C; Hoffmann, M

    2008-01-01

    We present a hydrophobization procedure for SU-8-based microfluidic chips on borofloat substrates. Different layouts of gold electrodes passivated by the polymer have been investigated. The chips are used for segmented flow in a two-fluid mode that requires a distinct hydrophobicity of the channel walls which is generated by the use of specific silane. In this paper we describe the production and silanization of the chips and demonstrate segmented flow operation

  4. Hydrophobic Light-to-Heat Conversion Membranes with Self-Healing Ability for Interfacial Solar Heating

    Zhang, Lianbin

    2015-07-01

    Self-healing hydrophobic light-to-heat conversion membranes for interfacial solar heating are fabricated by deposition of light-to-heat conversion material of polypyrrole onto porous stainless steel mesh, followed by hydrophobic fluoroalkylsilane modification. The mesh-based membranes spontaneously stay at the water–air interface, collect and convert solar light into heat, and locally heat only the water surface for an enhanced evaporation.

  5. Mutation of exposed hydrophobic amino acids to arginine to increase protein stability

    Strub, Caroline; Alies, Carole; Lougarre, Andrée; Ladurantie, Caroline; Czaplicki, Jerzy; Fournier, Didier

    2004-01-01

    Abstract Background One strategy to increase the stability of proteins is to reduce the area of water-accessible hydrophobic surface. Results In order to test it, we replaced 14 solvent-exposed hydrophobic residues of acetylcholinesterase by arginine. The stabilities of the resulting proteins were tested using denaturation by high temperature, organic solvents, urea and by proteolytic digestion. Conclusion Altough the mutational effects were rather small, this strategy proved to be successful...

  6. Hydrophobic Light-to-Heat Conversion Membranes with Self-Healing Ability for Interfacial Solar Heating

    Zhang, Lianbin; Tang, Bo; Wu, Jinbo; Li, Renyuan; Wang, Peng

    2015-01-01

    Self-healing hydrophobic light-to-heat conversion membranes for interfacial solar heating are fabricated by deposition of light-to-heat conversion material of polypyrrole onto porous stainless steel mesh, followed by hydrophobic fluoroalkylsilane modification. The mesh-based membranes spontaneously stay at the water–air interface, collect and convert solar light into heat, and locally heat only the water surface for an enhanced evaporation.

  7. Surface science of single-site heterogeneous olefin polymerization catalysts

    Kim, Seong H.; Somorjai, Gabor A.

    2006-01-01

    This article reviews the surface science of the heterogeneous olefin polymerization catalysts. The specific focus is on how to prepare and characterize stereochemically specific heterogeneous model catalysts for the Ziegler–Natta polymerization. Under clean, ultra-high vacuum conditions, low-energy electron irradiation during the chemical vapor deposition of model Ziegler–Natta catalysts can be used to create a “single-site” catalyst film with a surface structure that produces only isotactic ...

  8. Thief carbon catalyst for oxidation of mercury in effluent stream

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2011-12-06

    A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

  9. Fabrication and hydrophobic characteristics of micro / nanostructures on polydimethylsiloxane surface prepared by picosecond laser

    Bin, Wang; Dong, Shiyun; Yan, Shixing; Gang, Xiao; Xie, Zhiwei

    2018-03-01

    Picosecond laser has ultrashort pulse width and ultrastrong peak power, which makes it widely used in the field of micro-nanoscale fabrication. polydimethylsiloxane (PDMS) is a typical silicone elastomer with good hydrophobicity. In order to further improve the hydrophobicity of PDMS, the picosecond laser was used to fabricate a grid-like microstructure on the surface of PDMS, and the relationship between hydrophobicity of PDMS with surface microstructure and laser processing parameters, such as processing times and cell spacing was studied. The results show that: compared with the unprocessed PDMS, the presence of surface microstructure significantly improved the hydrophobicity of PDMS. When the number of processing is constant, the hydrophobicity of PDMS decreases with the increase of cell spacing. However, when the cell spacing is fixed, the hydrophobicity of PDMS first increases and then decreases with the increase of processing times. In particular, when the times of laser processing is 6 and the cell spacing is 50μm, the contact angle of PDMS increased from 113° to 154°, which reached the level of superhydrophobic.

  10. The hydrophilic/hydrophobic ratio vs. dissolved organics removal by coagulation – A review

    Djamel Ghernaout

    2014-07-01

    Full Text Available This review discusses the hydrophilic/hydrophobic ratio as a function of the hydrophilic and hydrophobic contents removal by coagulation process. It is well established that coagulation process could bring a reduction in dissolved organic carbon of around 30–60% by increasing the coagulant dose and optimising reaction pH, in which large organic molecules with hydrophobic property was removed preferentially. Furthermore, the literature affirmed that the greater removal of UV-absorbing substances indicates that alum coagulation preferentially removed the hydrophobic fraction of the total organic carbon. For the hydrophobic fraction, it needs to be removed entirely without its transformation into hydrophilic fractions by coagulation process avoiding pre-chlorination/pre-oxidation due to the risk of organic molecules fragmentation. Determining the exact numerical values of the hydrophilic/hydrophobic ratio for raw water and treated water at different stages of the treatment processes in a water treatment plant, as for the DCO/DBO5 ratio in the case of wastewater treatment, would help on more focusing on OM control and removal.

  11. A study of degradation resistance and cytocompatibility of super-hydrophobic coating on magnesium.

    Zhang, Yufen; Feyerabend, Frank; Tang, Shawei; Hu, Jin; Lu, Xiaopeng; Blawert, Carsten; Lin, Tiegui

    2017-09-01

    Calcium stearate based super-hydrophobic coating was deposited on plasma electrolytic oxidation (PEO) pre-treated magnesium substrate. The pre-treated magnesium and super-hydrophobic coating covered sample were characterized by scanning electron microscopy, X-ray diffraction and electrochemical corrosion measurements. The cytocompatibility and degradation resistance of magnesium, pre-treated magnesium and super-hydrophobic coating were analysed in terms of cell adhesion and osteoblast differentiation. The results indicate that the calcium stearate top coating shows super-hydrophobicity and that the surface is composed of micro/nanostructure. The super-hydrophobic coating covered sample shows higher barrier properties compared with the PEO pre-treated magnesium and bare magnesium. Human osteoblast proliferation, but not differentiation is enhanced by the PEO coating. Contrary, the super-hydrophobic coating reduces proliferation, but enhances differentiation of osteoblast, observable by the formation of hydroxyapatite. The combination of corrosion protection and cell reaction indicates that this system could be interesting for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. In vitro evaluation of tissue adhesives composed of hydrophobically modified gelatins and disuccinimidyl tartrate

    Miyuki Matsuda

    2012-01-01

    Full Text Available The effect of the hydrophobic group content in gelatin on the bonding strength of novel tissue–penetrating tissue adhesives was evaluated. The hydrophobic groups introduced into gelatin were the saturated hexanoyl, palmitoyl, and stearoyl groups, and the unsaturated oleoyl group. A collagen casing was employed as an adherend to model soft tissue for the in vitro determination of bonding strength of tissue adhesives composed of various hydrophobically modified gelatins and disuccinimidyl tartrate. The adhesive composed of stearoyl-modified gelatin (7.4% stearoyl; 10Ste and disuccinimidyl tartrate showed the highest bonding strength. The bonding strength of the adhesives decreased as the degree of substitution of the hydrophobic groups increased. Cell culture experiments demonstrated that fluorescein isothiocyanate-labeled 10Ste was integrated onto the surface of smooth muscle cells and showed no cytotoxicity. These results suggest that 10Ste interacted with the hydrophobic domains of collagen casings, such as hydrophobic amino acid residues and cell membranes. Therefore, 10Ste–disuccinimidyl tartrate is a promising adhesive for use in aortic dissection.

  13. The role of hydrophobic interactions for the formation of gas hydrates

    Yoon, R.H.; Wang, J.; Eriksson, J.C. [Virginia Polytech Inst. and State Univ., Blacksburg, VA (United States). Center for Advanced Separation Technologies; Sum, A.K. [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical Engineering

    2008-07-01

    The process of hydrate formation remains largely unexplained due to a lack of evidence for the water molecules around the hydrophobic solute such as methane, and the nucleation process leading to the clustering that induces hydrate growth. However, the water structure is known to play a major role in the mechanism for hydrate nucleation. This paper presented evidence that hydrophobic solutes promote the structuring of water. Water molecules at room temperature tend to form ice structures around the hydrocarbon chains of surfactant molecules dissolved in water. An atomic force microscope (AFM) was used in this study to measure the surface forces between thiolated gold surfaces. The purpose was to better understand the structure of the thin films of water between hydrophobic surfaces. The water molecules tended to reorganize themselves to form ordered structures, which may be related to the nucleation of hydrates. The entropy reduction associated with the ice structure can be considered as the net driving force for self-assembly. Recent studies have revealed that long-range attractive forces exist between hydrophobic surfaces, which are likely to result from structuring of the water molecules in the vicinity of the hydrophobic surfaces. Similarly, the hydrophobic nature of most gas hydrate formers may induce ordering of water molecules in the vicinity of dissolved solutes. It was concluded that the results of this study may be used to develop a new mechanism for the formation of gas hydrates, including methane. 20 refs., 2 figs.

  14. The new method of modifying the hydrophobic properties of expanded perlite

    Vogt Elżbieta

    2017-01-01

    Full Text Available The progressive industrialization and development of the automotive industry is the cause of the increasing demand for chemical products, especially oil products. Unfortunately, during processing, transportation or storage of these products, they get very often into the environment causing pollution. The removal of the results of accidents is still a current problem. The techniques which employ various types of sorbents deserve special attention among the several methods of eliminating the effects of pollutions. Moreover, expanded hydrophobic perlite is an interesting material among sorbents which are used on a large scale. The new method of modifying the hydrophobic properties of expanded perlite, with the use of solutions of stearic acid in organic solvents, was presented. The perlite that was used in research was produced by the PerliPol registered partnership in Bełchatów. Hydrophobic properties of the obtained materials were determined on the basis of the results achieved due to the modified film flotation method, “floating on water” test and on the basis of the value of water retention for individual samples. All grain fractions of perlite obtained hydrophobic properties which were better than or comparable to the hydrophobic properties of the HydroPerl (PerlPol commercial material used to remove petroleum product pollution. The hydrophobization process significantly improved the adsorption capacity of modified perlite to petroleum product pollution.

  15. Non-invasive high throughput approach for protein hydrophobicity determination based on surface tension.

    Amrhein, Sven; Bauer, Katharina Christin; Galm, Lara; Hubbuch, Jürgen

    2015-12-01

    The surface hydrophobicity of a protein is an important factor for its interactions in solution and thus the outcome of its production process. Yet most of the methods are not able to evaluate the influence of these hydrophobic interactions under natural conditions. In the present work we have established a high resolution stalagmometric method for surface tension determination on a liquid handling station, which can cope with accuracy as well as high throughput requirements. Surface tensions could be derived with a low sample consumption (800 μL) and a high reproducibility (content. The protein influence on the solutions' surface tension was correlated to the hydrophobicity of lysozyme, human lysozyme, BSA, and α-lactalbumin. Differences in proteins' hydrophobic character depending on pH and species could be resolved. Within this work we have developed a pH dependent hydrophobicity ranking, which was found to be in good agreement with literature. For the studied pH range of 3-9 lysozyme from chicken egg white was identified to be the most hydrophilic. α-lactalbumin at pH 3 exhibited the most pronounced hydrophobic character. The stalagmometric method occurred to outclass the widely used spectrophotometric method with bromophenol blue sodium salt as it gave reasonable results without restrictions on pH and protein species. © 2015 Wiley Periodicals, Inc.

  16. Quenched polyelectrolytes with hydrophobicity independent from chemical charge fraction: A SANS and SAXS study

    Souha Ben Mahmoud

    2017-11-01

    Full Text Available We investigate by SANS and SAXS the structure of semidilute aqueous hydrophobic quenched polyelectrolyte solutions, in which we can vary independently the hydrophobicity and the chemical/electrostatic charge fraction (above the Manning condensation threshold 36%. Such a de-correlation is the original point of the work, reached using statistical tri-copolymers poly(acrylamide-co-styrene-co-2-acrylamido-2-methylpropane-sodium sulfonate, poly(AMx-co-STy-co-AMPSz. The hydrophobicity is brought by ST, the chemical electrostatic charge by AMPS and solubility without charge by AM. We consider that although these copolymers have chemical structure different from partially sulfonated polystyrene sulfonate, PS-co-SSNa, made of two monomers, one charged, one hydrophobic, they have however vicinal behavior. The variation of chemical charge, has no strong consequence on the structure properties which is in agreement with the fact that it is always larger than the Manning threshold. The dependence of q∗ with AM content shows that AM reduces hydrophobicity. The similarity with PS-co-SSNa, for which pearl necklace-like conformations were directly measured by SANS (form factor using ZAC method, suggests that pearl necklace conformations are also adopted by these tri-copolymers and that this behavior could be so generalized to a much larger range of synthetic hydrophobic polyelectrolytes using simple copolymerization.

  17. Cationic flocculants carrying hydrophobic functionalities: applications for solid/liquid separation.

    Schwarz, S; Jaeger, W; Paulke, B-R; Bratskaya, S; Smolka, N; Bohrisch, J

    2007-07-26

    The flocculation behaviors of three series of polycations with narrow molecular weight distributions carrying hydrophobic substituents on their backbones [poly(N-vinylbenzyl-N,N,N-trimethylammonium chloride), poly(N-vinylbenzyl-N,N-dimethyl-N-butylammonium chloride), and poly(N-vinylbenzylpyridinium chloride)] were investigated in dispersions of monodisperse polystyrene latexes and kaolin. Apparently, the charge density of the polycations decreases with increasing substituent hydrophobicity and increasing molecular weight of the polyelectrolytes. The necessary amount of flocculant for phase separation in dispersions with high substrate surface charge densities increases with increasing hydrophobicity of the polyelectrolyte. Nevertheless, the introduction of hydrophobic functionalities is beneficial, resulting in a substantial broadening of the range between the minimum and maximum amounts of flocculant necessary for efficient flocculation (flocculation window). An increase in ionic strength supports this effect. When the substrate has a low charge density, the hydrophobic interactions play a much more significant role in the flocculation process. Here, the minimum efficient doses remained the same for all three polyelectrolytes investigated, but the width of the flocculation window increased as the polycation hydrophobicity and the molecular weight increased. The necessary amount of flocculant increased with an increase in particle size at constant solid content of the dispersion, as well as with a decreasing number of particles at a constant particle size.

  18. Optically transparent super-hydrophobic thin film fabricated by reusable polyurethane-acrylate (PUA) mold

    Park, J.-S.; Park, J.-H.; Lee, D.-W.

    2018-02-01

    In this paper, we describe a simple manufacturing method for producing an optically transparent super-hydrophobic polymer thin film using a reusable photo-curable polymer mold. Soluble photoresist (PR) molds were prepared with under-exposed and under-baked processes, which created unique hierarchical micro/nano structures. The reverse phase of the PR mold was replicated on the surface of polydimethylsiloxane (PDMS) substrates. The unique patterns on the replicated PDMS molds were successfully transferred back to the UV curable polyurethane-acrylate (PUA) using a laboratory-made UV exposure system. Continuous production of the super-hydrophobic PDMS thin film was demonstrated using the reusable PUA mold. In addition, hydrophobic nano-silica powder was sprayed onto the micro/nano structured PDMS surfaces to further improve hydrophobicity. The fabricated PDMS thin films with hierarchical surface texturing showed a water contact angle  ⩾150°. Excellent optical transmittance within the range of visible light of wavelengths between 400-800 nm was experimentally confirmed using a spectrophotometer. High efficiency of the super-hydrophobic PDMS film in optical transparency was also confirmed using solar panels. The fabricated PUA molds are very suitable for use in roll-to-roll or roll-to-plate systems which allow continuous production of super-hydrophobic thin films with an excellent optical transparency.

  19. Biomass Conversion over Heteropoly Acid Catalysts

    Zhang, Jizhe

    2015-04-01

    Biomass is a natural resource that is both abundant and sustainable. Its efficient utilization has long been the focus of research and development efforts with the aim to substitute it for fossil-based feedstock. In addition to the production of biofuels (e.g., ethanol) from biomass, which has been to some degree successful, its conversion to high value-added chemicals is equally important. Among various biomass conversion pathways, catalytic conversion is usually preferred, as it provides a cost-effective and eco-benign route to the desired products with high selectivities. The research of this thesis is focused on the conversion of biomass to various chemicals of commercial interest by selective catalytic oxidation. Molecular oxygen is chosen as the oxidant considering its low cost and environment friendly features in comparison with commonly used hydrogen peroxide. However, the activation of molecular oxygen usually requires high reaction temperatures, leading to over oxidation and thus lower selectivities. Therefore, it is highly desirable to develop effective catalysts for such conversion systems. We use kegging-type heteropoly acids (HPAs) as a platform for catalysts design because of their high catalytic activities and ease of medication. Using HPA catalysts allows the conversion taking place at relatively low temperature, which is beneficial to saving production cost as well as to improving the reaction selectivity. The strong acidity of HPA promotes the hydrolysis of biomass of giant molecules (e.g. cellulose), which is the first as well as the most difficult step in the conversion process. Under certain circumstances, a HPA combines the merits of homogeneous and heterogeneous catalysts, acting as an efficient homogeneous catalyst during the reaction while being easily separated as a heterogeneous catalyst after the reaction. We have successfully applied HPAs in several biomass conversion systems. Specially, we prepared a HPA-based bi-functional catalyst

  20. Electron microscopic studies of natural gas oxidation catalyst – Effects of thermally accelerated aging on catalyst microstructure

    Honkanen, Mari; Hansen, Thomas Willum; Jiang, Hua

    2017-01-01

    Structural changes of PtPd nanoparticles in a natural gas oxidation catalyst were studied at elevated temperatures in air and low-oxygen conditions and in situ using environmental transmission electron microscopy (ETEM). The fresh catalyst shows