WorldWideScience

Sample records for hydrophobic organic chemicals

  1. Using solid phase micro extraction to determine salting-out (Setschenow) constants for hydrophobic organic chemicals.

    NARCIS (Netherlands)

    Jonker, M.T.O.; Muijs, B.

    2010-01-01

    With increasing ionic strength, the aqueous solubility and activity of organic chemicals are altered. This so-called salting-out effect causes the hydrophobicity of the chemicals to be increased and sorption in the marine environment to be more pronounced than in freshwater systems. The process can

  2. COMPARISON OF SORPTION ENERGTICS FOR HYDROPHOBIC ORGANIC CHEMICALS BY SYNTHETIC AND NATURAL SORBENTS FROM METHANOL/WATER SOLVENT MIXTURES

    Science.gov (United States)

    Reversed-phase liquid chromatography (RPLC) was used to investigate the thermodynamics and mechanisms of hydrophobic organic chemical (HOC) retention from methanol/water solvent mixtures. The enthalpy-entropy compensation model was used to infer that the hydro- phobic sorptive me...

  3. Desorption modeling of hydrophobic organic chemicals from plastic sheets using experimentally determined diffusion coefficients in plastics.

    Science.gov (United States)

    Lee, Hwang; Byun, Da-Eun; Kim, Ju Min; Kwon, Jung-Hwan

    2018-01-01

    To evaluate rate of migration from plastic debris, desorption of model hydrophobic organic chemicals (HOCs) from polyethylene (PE)/polypropylene (PP) films to water was measured using PE/PP films homogeneously loaded with the HOCs. The HOCs fractions remaining in the PE/PP films were compared with those predicted using a model characterized by the mass transfer Biot number. The experimental data agreed with the model simulation, indicating that HOCs desorption from plastic particles can generally be described by the model. For hexachlorocyclohexanes with lower plastic-water partition coefficients, desorption was dominated by diffusion in the plastic film, whereas desorption of chlorinated benzenes with higher partition coefficients was determined by diffusion in the aqueous boundary layer. Evaluation of the fraction of HOCs remaining in plastic films with respect to film thickness and desorption time showed that the partition coefficient between plastic and water is the most important parameter influencing the desorption half-life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Passive Dosing to Determine the Speciation of Hydrophobic Organic Chemicals in Aqueous Samples

    DEFF Research Database (Denmark)

    Birch, Heidi; Gouliarmou, V.; Lützhøft, Hans-Christian Holten

    2010-01-01

    A new analytical approach to determine the speciation of hydrophobic organic analytes is presented. The freely dissolved concentration in a sample is controlled by passive dosing from silicone (poly(dimethylsiloxane)), and the total sample concentration at equilibrium is measured. The free fraction...... is determined as the ratio between measured concentrations in pure water and sample. C-14-labeled fluoranthene served as model analyte, and total sample concentrations were easily measured by liquid scintillation counting. The method was applied to surface water, stormwater runoff, and wastewater...... (SPME). This analytical approach combines simplicity with high precision, and it does not require any phase separation steps....

  5. Quantifying the effect of medium composition on the diffusive mass transfer of hydrophobic organic chemicals through unstirred boundary layers

    DEFF Research Database (Denmark)

    Mayer, Philipp; Karlson, U.; Christensen, P.S.

    2005-01-01

    Unstirred boundary layers (UBLs) often act as a bottleneck for the diffusive transport of hydrophobic organic compounds (HOCs) in the environment. Therefore, a microscale technique was developed for quantifying mass transfer through a 100-μm thin UBL, with the medium composition of the UBL...... as the controllable factor. The model compound fluoranthene had to (1) partition from a contaminated silicone disk (source) into the medium, (2) then diffuse through 100 μm of medium (UBL), and finally (3) partition into a clean silicone layer (sink). The diffusive mass transfer from source to sink was monitored over...... of magnitude. These results demonstrate that medium constituents, which normally are believed to bind hydrophobic organic chemicals, actually can enhance the diffusive mass transfer of HOCs in the vicinity of a diffusion source (e.g., contaminated soil particles). The technique can be used to evaluate...

  6. In vitro to in vivo extrapolation of biotransformation rates for assessing bioaccumulation of hydrophobic organic chemicals in mammals.

    Science.gov (United States)

    Lee, Yung-Shan; Lo, Justin C; Otton, S Victoria; Moore, Margo M; Kennedy, Chris J; Gobas, Frank A P C

    2017-07-01

    Incorporating biotransformation in bioaccumulation assessments of hydrophobic chemicals in both aquatic and terrestrial organisms in a simple, rapid, and cost-effective manner is urgently needed to improve bioaccumulation assessments of potentially bioaccumulative substances. One approach to estimate whole-animal biotransformation rate constants is to combine in vitro measurements of hepatic biotransformation kinetics with in vitro to in vivo extrapolation (IVIVE) and bioaccumulation modeling. An established IVIVE modeling approach exists for pharmaceuticals (referred to in the present study as IVIVE-Ph) and has recently been adapted for chemical bioaccumulation assessments in fish. The present study proposes and tests an alternative IVIVE-B technique to support bioaccumulation assessment of hydrophobic chemicals with a log octanol-water partition coefficient (K OW ) ≥ 4 in mammals. The IVIVE-B approach requires fewer physiological and physiochemical parameters than the IVIVE-Ph approach and does not involve interconversions between clearance and rate constants in the extrapolation. Using in vitro depletion rates, the results show that the IVIVE-B and IVIVE-Ph models yield similar estimates of rat whole-organism biotransformation rate constants for hypothetical chemicals with log K OW  ≥ 4. The IVIVE-B approach generated in vivo biotransformation rate constants and biomagnification factors (BMFs) for benzo[a]pyrene that are within the range of empirical observations. The proposed IVIVE-B technique may be a useful tool for assessing BMFs of hydrophobic organic chemicals in mammals. Environ Toxicol Chem 2017;36:1934-1946. © 2016 SETAC. © 2016 SETAC.

  7. Dynamic Passive Dosing for Studying the Biotransformation of Hydrophobic Organic Chemicals: Microbial Degradation as an Example

    DEFF Research Database (Denmark)

    Smith, Kilian E. C.; Rein, Arno; Trapp, Stefan

    2012-01-01

    Biotransformation plays a key role in hydrophobic organic compound (HOC) fate, and understanding kinetics as a function of (bio)availability is critical for elucidating persistence, accumulation, and toxicity. Biotransformation mainly occurs in an aqueous environment, posing technical challenges...... for producing kinetic data because of low HOC solubilities and sorptive losses. To overcome these, a new experimental approach based on passive dosing is presented. This avoids using cosolvent for introducing the HOC substrate, buffers substrate depletion so biotransformation is measured within a narrow...... also similar for both PAHs, but decreased by around 2 orders of magnitude with increasing dissolved concentrations. Dynamic passive dosing is a useful tool for measuring biotransformation kinetics at realistically low and defined dissolved HOC concentrations....

  8. Microplastics as vectors for bioaccumulation of hydrophobic organic chemicals in the marine environment: A state-of-the-science review.

    Science.gov (United States)

    Ziccardi, Linda M; Edgington, Aaron; Hentz, Karyn; Kulacki, Konrad J; Kane Driscoll, Susan

    2016-07-01

    A state-of-the-science review was conducted to examine the potential for microplastics to sorb hydrophobic organic chemicals (HOCs) from the marine environment, for aquatic organisms to take up these HOCs from the microplastics, and for this exposure to result in adverse effects to ecological and human health. Despite concentrations of HOCs associated with microplastics that can be orders of magnitude greater than surrounding seawater, the relative importance of microplastics as a route of exposure is difficult to quantify because aquatic organisms are typically exposed to HOCs from various compartments, including water, sediment, and food. Results of laboratory experiments and modeling studies indicate that HOCs can partition from microplastics to organisms or from organisms to microplastics, depending on experimental conditions. Very little information is available to evaluate ecological or human health effects from this exposure. Most of the available studies measured biomarkers that are more indicative of exposure than effects, and no studies showed effects to ecologically relevant endpoints. Therefore, evidence is weak to support the occurrence of ecologically significant adverse effects on aquatic life as a result of exposure to HOCs sorbed to microplastics or to wildlife populations and humans from secondary exposure via the food chain. More data are needed to fully understand the relative importance of exposure to HOCs from microplastics compared with other exposure pathways. Environ Toxicol Chem 2016;35:1667-1676. © 2016 SETAC. © 2016 SETAC.

  9. Relative importance of microplastics as a pathway for the transfer of hydrophobic organic chemicals to marine life

    NARCIS (Netherlands)

    Bakir, A.; O'Connor, I.A.; Rowland, S.J.; Hendriks, A.J.; Thompson, R.C.

    2016-01-01

    It has been hypothesised that, if ingested, plastic debris could act as vector for the transfer of chemical contaminants from seawater to organisms, yet modelling suggest that, in the natural environment, chemical transfer would be negligible compared to other routes of uptake. However, to date, the

  10. A physiologically based toxicokinetic (PBTK) model for moderately hydrophobic organic chemicals in the European eel (Anguilla anguilla)

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, Markus [Department of Ecosystem Analysis, Institute for Environmental Research, ABBt — Aachen Biology and Biotechnology, RWTH Aachen University, Aachen (Germany); Freese, Marko; Pohlmann, Jan-Dag; Kammann, Ulrike [Thünen Institute of Fisheries Ecology, Hamburg (Germany); Preuss, Thomas G. [Environmental Biology and Chemodynamics, Institute for Environmental Research, ABBt — Aachen Biology and Biotechnology, RWTH Aachen University, Aachen (Germany); Buchinger, Sebastian; Reifferscheid, Georg [Federal Institute of Hydrology (BFG), Department G3: Biochemistry, Ecotoxicology, Koblenz (Germany); Beiermeister, Anne; Hanel, Reinhold [Thünen Institute of Fisheries Ecology, Hamburg (Germany); Hollert, Henner, E-mail: Henner.hollert@bio5.rwth-aachen.de [Department of Ecosystem Analysis, Institute for Environmental Research, ABBt — Aachen Biology and Biotechnology, RWTH Aachen University, Aachen (Germany); State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing (China); College of Resources and Environmental Science, Chongqing University, Chongqing (China); Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Shanghai 200092 (China)

    2015-12-01

    The European eel (Anguilla anguilla) is a facultatively catadromous fish species with a complex life cycle. Its current population status is alarming: recruitment has decreased drastically since the 1980s and its stock is still considered to be outside safe biological limits. Although there is no consensus on the reasons for this situation, it is currently thought to have resulted from a combination of different stressors, including anthropogenic contaminants. To deepen our understanding of the processes leading to the accumulation of lipophilic organic contaminants in yellow eels (i.e. the feeding, continental growth stage), we developed a physiologically based toxicokinetic model using our own data and values from the literature. Such models can predict the uptake and distribution of water-borne organic chemicals in the whole fish and in different tissues at any time during exposure. The predictive power of the model was tested against experimental data for six chemicals with n-octanol-water partitioning coefficient (log K{sub ow}) values ranging from 2.13–4.29. Model performance was excellent, with a root mean squared error of 0.28 log units. This model has the potential to help identify suitable habitats for restocking under eel management plans. - Highlights: • A PBTK model was developed for European eel (Anguilla anguilla). • Own experimental data and data from the literature were used for parameterization. • The predictive power of the model was excellent, with RMSE of 0.28 log units. • The developed model can be amended with sub-models for dietary and dermal exposure.

  11. A physiologically based toxicokinetic (PBTK) model for moderately hydrophobic organic chemicals in the European eel (Anguilla anguilla)

    International Nuclear Information System (INIS)

    Brinkmann, Markus; Freese, Marko; Pohlmann, Jan-Dag; Kammann, Ulrike; Preuss, Thomas G.; Buchinger, Sebastian; Reifferscheid, Georg; Beiermeister, Anne; Hanel, Reinhold; Hollert, Henner

    2015-01-01

    The European eel (Anguilla anguilla) is a facultatively catadromous fish species with a complex life cycle. Its current population status is alarming: recruitment has decreased drastically since the 1980s and its stock is still considered to be outside safe biological limits. Although there is no consensus on the reasons for this situation, it is currently thought to have resulted from a combination of different stressors, including anthropogenic contaminants. To deepen our understanding of the processes leading to the accumulation of lipophilic organic contaminants in yellow eels (i.e. the feeding, continental growth stage), we developed a physiologically based toxicokinetic model using our own data and values from the literature. Such models can predict the uptake and distribution of water-borne organic chemicals in the whole fish and in different tissues at any time during exposure. The predictive power of the model was tested against experimental data for six chemicals with n-octanol-water partitioning coefficient (log K ow ) values ranging from 2.13–4.29. Model performance was excellent, with a root mean squared error of 0.28 log units. This model has the potential to help identify suitable habitats for restocking under eel management plans. - Highlights: • A PBTK model was developed for European eel (Anguilla anguilla). • Own experimental data and data from the literature were used for parameterization. • The predictive power of the model was excellent, with RMSE of 0.28 log units. • The developed model can be amended with sub-models for dietary and dermal exposure

  12. Preparation of Hydrophobic Metal-Organic Frameworks via Plasma Enhanced Chemical Vapor Deposition of Perfluoroalkanes for the Removal of Ammonia

    Science.gov (United States)

    DeCoste, Jared B.; Peterson, Gregory W.

    2013-01-01

    Plasma enhanced chemical vapor deposition (PECVD) of perfluoroalkanes has long been studied for tuning the wetting properties of surfaces. For high surface area microporous materials, such as metal-organic frameworks (MOFs), unique challenges present themselves for PECVD treatments. Herein the protocol for development of a MOF that was previously unstable to humid conditions is presented. The protocol describes the synthesis of Cu-BTC (also known as HKUST-1), the treatment of Cu-BTC with PECVD of perfluoroalkanes, the aging of materials under humid conditions, and the subsequent ammonia microbreakthrough experiments on milligram quantities of microporous materials. Cu-BTC has an extremely high surface area (~1,800 m2/g) when compared to most materials or surfaces that have been previously treated by PECVD methods. Parameters such as chamber pressure and treatment time are extremely important to ensure the perfluoroalkane plasma penetrates to and reacts with the inner MOF surfaces. Furthermore, the protocol for ammonia microbreakthrough experiments set forth here can be utilized for a variety of test gases and microporous materials. PMID:24145623

  13. Modelling oral up-take of hydrophobic and super-hydrophobic chemicals in fish.

    Science.gov (United States)

    Larisch, Wolfgang; Goss, Kai-Uwe

    2018-01-24

    We have extended a recently published toxicokinetic model for fish (TK-fish) towards the oral up-take of contaminants. Validation with hydrophobic chemicals revealed that diffusive transport through aqueous boundary layers in the gastro-intestinal tract and in the blood is the limiting process. This process can only be modelled correctly if facilitated transport by albumin or bile micelles through these boundary layers is accounted for. In a case study we have investigated the up-take of a super hydrophobic chemical, Dechlorane Plus. Our results suggest that there is no indication of a hydrophobicity or size cut-off in the bioconcentration of this chemical. Based on an extremely high, but mechanistically sound facilitation factor we received model results in good agreement with experimental values from the literature. The results also indicate that established experimental procedures for BCF determination cannot cover the very slow up-take and clearance kinetics that are to be expected for such a chemical.

  14. Influence of hydrophobicity on the chemical treatments of graphene

    Science.gov (United States)

    Rai, Krishna Bahadur; Khadka, Ishwor Bahadur; Kim, Eun Hye; Ahn, Sung Joon; Kim, Hyun Woo; Ahn, Joung Real

    2018-01-01

    The defect-free transfer of graphene grown by using chemical vapor deposition is essential for its applications to electronic devices. For the reduction of inevitable chemical residues, such as polar molecules and ionized impurities resulting from the transfer process, a hydrophobic polydimethyl-siloxane (PDMS) film was coated on a SiO2/Si wafer. The hydrophobic PDMS film resulted in fewer defects in graphene in comparison to a bare SiO2/Si wafer, as measured with Raman spectroscopy. We also studied the influence of the hydrophobic PDMS film on the chemical doping of graphene. Here, nitric acid (HNO3) was used to make p-type graphene. When graphene was transferred onto a SiO2/Si wafer coated with the hydrophobic PDMS film, fewer defects, compared to those in graphene transferred onto a bare SiO2/Si wafer, were created in grapheme by HNO3 as measured with Raman spectroscopy. The experiments suggest that when graphene is transferred onto a hydrophobic film, the number of defects created by chemical molecules can be reduced.

  15. On the enrichment of hydrophobic organic compounds in fog droplets

    Science.gov (United States)

    Valsaraj, K. T.; Thoma, G. J.; Reible, D. D.; Thibodeaux, L. J.

    The unusual degree of enrichment of hydrophobic organics in fogwater droplets reported by several investigators can be interpreted as a result of (a) the effects of temperature correction on the reported enrichment factors, (b) the effects of colloidal organic matter (both filterable and non-filterable) in fog water and (c) the effects of the large air-water interfacial adsorption of neutral hydrophobic organics on the tiny fog droplets. The enrichment factor was directly correlated to the hydrophobicity (or the activity coefficient in water) of the compounds, as indicated by their octanol-water partition constants. Compounds with large octanol-water partition coefficients (high activity coefficients in water) showed the largest enrichment. Available experimental data on the adsorption of hydrophobic compounds at the air-water interface and on colloidal organic carbon were used to show that the large specific air-water interfacial areas of fog droplets contribute significantly to the enrichment factor.

  16. Adsorption of hydrophobic organic compounds onto a hydrophobic carbonaceous geosorbent in the presence of surfactants.

    Science.gov (United States)

    Wang, Peng; Keller, Arturo A

    2008-06-01

    The adsorption of hydrophobic organic compounds (HOCs; atrazine and diuron) onto lampblack was studied in the presence of nonionic, cationic, and anionic surfactants (Triton(R) X-100), benzalkonium chloride [BC], and linear alkylbenzene sulfonate [LAS]) to determine the effect of the surfactant on HOC adsorption onto a hydrophobic carbonaceous geosorbent. Linear alkylbenzene sulfonate showed an adsorption capacity higher than that of BC but similar to that of Triton X-100, implying the charge property of a surfactant is not a useful indicator for predicting the surfactant's adsorption onto a hydrophobic medium. The results also indicated that the octanol-water partition coefficient (K(OW)) of a surfactant is not a good predictor of that surfactant's sorption onto a hydrophobic medium. Under subsaturation adsorption conditions (i.e., before sorption saturation is reached), surfactant adsorption reduced HOC adsorption to a significant extent, with the reduction in HOC adsorption increasing monotonically with the amount of surfactant adsorbed. Among the three surfactants, Triton X-100 was the most effective in reducing HOC adsorption, whereas BC and LAS showed similar effectiveness in this regard. Under the same amount of the surfactant sorbed, the reduction in atrazine adsorption was consistently greater than that for diuron because of atrazine's lower hydrophobicity. No significant difference was observed in the amount of the HOC adsorbed under different adsorption sequences. Our results showed that the presence of surfactant can significantly decrease HOC adsorption onto hydrophobic environmental media and, thus, is important in predicting HOC fate and transport in the environment.

  17. Advancing the Use of Passive Sampling in Risk Assessment and Management of Sediments Contaminated with Hydrophobic Organic Chemicals: Results of an International Ex Situ Passive Sampling Interlaboratory Comparison.

    Science.gov (United States)

    Jonker, Michiel T O; van der Heijden, Stephan A; Adelman, Dave; Apell, Jennifer N; Burgess, Robert M; Choi, Yongju; Fernandez, Loretta A; Flavetta, Geanna M; Ghosh, Upal; Gschwend, Philip M; Hale, Sarah E; Jalalizadeh, Mehregan; Khairy, Mohammed; Lampi, Mark A; Lao, Wenjian; Lohmann, Rainer; Lydy, Michael J; Maruya, Keith A; Nutile, Samuel A; Oen, Amy M P; Rakowska, Magdalena I; Reible, Danny; Rusina, Tatsiana P; Smedes, Foppe; Wu, Yanwen

    2018-03-20

    This work presents the results of an international interlaboratory comparison on ex situ passive sampling in sediments. The main objectives were to map the state of the science in passively sampling sediments, identify sources of variability, provide recommendations and practical guidance for standardized passive sampling, and advance the use of passive sampling in regulatory decision making by increasing confidence in the use of the technique. The study was performed by a consortium of 11 laboratories and included experiments with 14 passive sampling formats on 3 sediments for 25 target chemicals (PAHs and PCBs). The resulting overall interlaboratory variability was large (a factor of ∼10), but standardization of methods halved this variability. The remaining variability was primarily due to factors not related to passive sampling itself, i.e., sediment heterogeneity and analytical chemistry. Excluding the latter source of variability, by performing all analyses in one laboratory, showed that passive sampling results can have a high precision and a very low intermethod variability (sampling, irrespective of the specific method used, is fit for implementation in risk assessment and management of contaminated sediments, provided that method setup and performance, as well as chemical analyses are quality-controlled.

  18. Sorption kinetics and microbial biodegradation activity of hydrophobic chemicals in sewage sludge: Model and measurements based on free concentrations

    NARCIS (Netherlands)

    Artola-Garicano, E.; Borkent, I.; Damen, K.; Jager, T.; Vaes, W.H.J.

    2003-01-01

    In the current study, a new method is introduced with which the rate-limiting factor of biodegradation processes of hydrophobic chemicals in organic and aqueous systems can be determined. The novelty of this approach lies in the combination of a free concentration-based kinetic model with

  19. MS-2 and poliovirus transport in porous media: Hydrophobic effects and chemical perturbations

    Science.gov (United States)

    Bales, Roger C.; Li, Shimin; Maguire, Kimberly M.; Yahya, Moyasar T.; Gerba, Charles P.

    1993-04-01

    In a series of pH 7 continuous-flow column experiments, removal of the bacteriophage MS-2 by attachment to silica beads had a strong, systematic dependence on the amount of hydrophobic surface present on the beads. With no hydrophobic surface, removal of phage at pH 5 was much greater than at pH 7. Release of attached phage at both pH values did occur, but was slow; breakthrough curves exhibited tailing. Poliovirus attached to silica beads at pH 5.5 much more than at pH 7.0, and attachment was also slowly reversible. Time scales for phage and poliovinis attachment were of the order of hours. The sticking efficiency factor (α), reflecting microscaie physicochemical influences on virus attachment, was in the range of 0.0007-0.02. Phage release was small but measurable under steady state conditions. Release was enhanced by lowering ionic strength and by introducing beef extract, a high-ionic-strength protein solution. Results show that viruses experience reversible attachment/detachment (sometimes termed sorption), that large chemical perturbations are needed to induce rapid virus detachment, and that viruses should be quite mobile in sandy porous media. Even small amounts of hydrophobic organic material in the porous media (≥0.001%) can retard virus transport.

  20. Thermal destruction of organic waste hydrophobicity for agricultural soils application.

    Science.gov (United States)

    Comino, Francisco; Aranda, Víctor; Domínguez-Vidal, Ana; Ayora-Cañada, María José

    2017-11-01

    Use of organic amendments is a good strategy for combating the growing problem of soil degradation due to deterioration of organic matter content, particularly severe in semi-arid European Mediterranean regions, while at the same time providing an opportunity for recycling organic wastes. Olive mill pomace (OMP), the main by-product of the olive oil industry, is being used increasingly in olive grove soils for this purpose. Although the positive effects of OMP amendments have been widely studied, they also have some negative effects on soil. One of the most critical is that they increase water repellency (WR) due to the presence of poorly evolved, strongly aliphatic compounds. This detrimental effect has received very little attention, although it may impair plant water availability and infiltration rates, increase erosion and lower long-term soil quality. This study proposed, for the first time, thermal treatment as an effective way of reducing WR in organic amendments (i.e. mixtures of OMP, olive tree pruning, chicken manure and spent coffee grounds) prior to their application to soil. Thermal treatment at 275 °C proved effective in removing WR, while lower temperatures (175 or 225 °C) can even increase it. Changes by thermal treatment in the characteristics of the organic amendments studied with FTIR and UV-Vis spectroscopy and thermogravimetric analysis showed that it strongly reduced the aliphatic compounds mainly responsible for their hydrophobicity, concentrated aromatic compounds and increased thermostability. Heating also reduced phytotoxicity, making all of the organic amendments usable in the field (germination index over 100%). Therefore, heating at 275 °C could be an acceptable option for removing WR from organic amendments, enhancing their quality with more stable evolved characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Chemical treatment of the intra-canal dentin surface: a new approach to modify dentin hydrophobicity

    Directory of Open Access Journals (Sweden)

    Cesar GAITAN-FONSECA

    2013-01-01

    Full Text Available Objective This study evaluated the hydrophobicity of dentin surfaces that were modified through chemical silanization with octadecyltrichlorosilane (OTS. Material and Methods An in vitro experimental study was performed using 40 human permanent incisors that were divided into the following two groups: non-silanized and silanized. The specimens were pretreated and chemically modified with OTS. After the chemical modification, the dentin hydrophobicity was examined using a water contact angle measurement (WCA. The effectiveness of the modification of hydrophobicity was verified by the fluid permeability test (FPT. Results and Conclusions Statistically significant differences were found in the values of WCA and FPT between the two groups. After silanization, the hydrophobic intraradicular dentin surface exhibited in vitro properties that limit fluid penetration into the sealed root canal. This chemical treatment is a new approach for improving the sealing of the root canal system.

  2. Quenched polyelectrolytes with hydrophobicity independent from chemical charge fraction: A SANS and SAXS study

    Directory of Open Access Journals (Sweden)

    Souha Ben Mahmoud

    2017-11-01

    Full Text Available We investigate by SANS and SAXS the structure of semidilute aqueous hydrophobic quenched polyelectrolyte solutions, in which we can vary independently the hydrophobicity and the chemical/electrostatic charge fraction (above the Manning condensation threshold 36%. Such a de-correlation is the original point of the work, reached using statistical tri-copolymers poly(acrylamide-co-styrene-co-2-acrylamido-2-methylpropane-sodium sulfonate, poly(AMx-co-STy-co-AMPSz. The hydrophobicity is brought by ST, the chemical electrostatic charge by AMPS and solubility without charge by AM. We consider that although these copolymers have chemical structure different from partially sulfonated polystyrene sulfonate, PS-co-SSNa, made of two monomers, one charged, one hydrophobic, they have however vicinal behavior. The variation of chemical charge, has no strong consequence on the structure properties which is in agreement with the fact that it is always larger than the Manning threshold. The dependence of q∗ with AM content shows that AM reduces hydrophobicity. The similarity with PS-co-SSNa, for which pearl necklace-like conformations were directly measured by SANS (form factor using ZAC method, suggests that pearl necklace conformations are also adopted by these tri-copolymers and that this behavior could be so generalized to a much larger range of synthetic hydrophobic polyelectrolytes using simple copolymerization.

  3. Somatic and gastrointestinal in vivo biotransformation rates of hydrophobic chemicals in fish.

    Science.gov (United States)

    Lo, Justin C; Campbell, David A; Kennedy, Christopher J; Gobas, Frank A P C

    2015-10-01

    To improve current bioaccumulation assessment methods, a methodology is developed, applied, and investigated for measuring in vivo biotransformation rates of hydrophobic organic substances in the body (soma) and gastrointestinal tract of the fish. The method resembles the Organisation for Economic Co-operation and Development (OECD) 305 dietary bioaccumulation test but includes reference chemicals to determine both somatic and gastrointestinal biotransformation rates of test chemicals. Somatic biotransformation rate constants for the test chemicals ranged between 0 d(-1) and 0.38 (standard error [SE] 0.03)/d(-1) . Gastrointestinal biotransformation rate constants varied from 0 d(-1) to 46 (SE 7) d(-1) . Gastrointestinal biotransformation contributed more to the overall biotransformation in fish than somatic biotransformation for all test substances but 1. Results suggest that biomagnification tests can reveal the full extent of biotransformation in fish. The common presumption that the liver is the main site of biotransformation may not apply to many substances exposed through the diet. The results suggest that the application of quantitative structure-activity relationships (QSARs) for somatic biotransformation rates and hepatic in vitro models to assess the effect of biotransformation on bioaccumulation can underestimate biotransformation rates and overestimate the biomagnification potential of chemicals that are biotransformed in the gastrointestinal tract. With some modifications, the OECD 305 test can generate somatic and gastrointestinal biotransformation data to develop biotransformation QSARs and test in vitro-in vivo biotransformation extrapolation methods. © 2015 SETAC.

  4. Solution-Processed Organic and Halide Perovskite Transistors on Hydrophobic Surfaces.

    Science.gov (United States)

    Ward, Jeremy W; Smith, Hannah L; Zeidell, Andrew; Diemer, Peter J; Baker, Stephen R; Lee, Hyunsu; Payne, Marcia M; Anthony, John E; Guthold, Martin; Jurchescu, Oana D

    2017-05-31

    Solution-processable electronic devices are highly desirable due to their low cost and compatibility with flexible substrates. However, they are often challenging to fabricate due to the hydrophobic nature of the surfaces of the constituent layers. Here, we use a protein solution to modify the surface properties and to improve the wettability of the fluoropolymer dielectric Cytop. The engineered hydrophilic surface is successfully incorporated in bottom-gate solution-deposited organic field-effect transistors (OFETs) and hybrid organic-inorganic trihalide perovskite field-effect transistors (HTP-FETs) fabricated on flexible substrates. Our analysis of the density of trapping states at the semiconductor-dielectric interface suggests that the increase in the trap density as a result of the chemical treatment is minimal. As a result, the devices exhibit good charge carrier mobilities, near-zero threshold voltages, and low electrical hysteresis.

  5. Direct synthesis of hydrophobic graphene-based nanosheets via chemical modification of exfoliated graphene oxide.

    Science.gov (United States)

    Wang, Jigang; Wang, Yongsheng; He, Dawei; Liu, Zhiyong; Wu, Hongpeng; Wang, Haiteng; Zhao, Yu; Zhang, Hui; Yang, Bingyang; Xu, Haiteng; Fu, Ming

    2012-08-01

    Hydrophobic graphene-based material at the nanoscale was prepared by treatment of exfoliated graphene oxide with organic isocyanates. The lipophilic modified graphene oxide (LMGO) can then be exfoliated into the functionalized graphene nanoplatelets that can form a stable dispersion in polar aprotic solvents. AFM image shows the thickness of LMGO is approximately 1 nm. Characterization of LMGO by elemental analysis suggested that the chemical treatment results in the functionalization of the carboxyl and hydroxyl groups in GO via formation of amides and carbamate esters, respectively. The degree of GO functionalization can be controlled via either the reactivity of the isocyanate or the reaction time. Then we investigated the thermal properties of the SPFGraphene by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), the TGA curve shows a greater weight loss of approximately 20% occurred indicating removal of functional groups from the LMGO sheets and an obvious exothermic peak at 176 degrees can be observed from 150 to 250 degrees. We also compared the structure of graphene oxide with the structure of chemical treated graphene oxide by FT-IR spectroscopy. The morphology and microstructure of the LMGO nanosheets were also characterized by SEM and XRD. Graphene can be used to fabricate a wide range of simple electronic devices such as field-effect transistors, resonators, quantum dots and some other extensive industrial manufacture such as super capacitor, li ion battery, solar cells and even transparent electrodes in device applications.

  6. Fabrication of Hydrophobic Surface on Wood Veneer via Electroless Nickel Plating Combined with Chemical Corrosion

    Directory of Open Access Journals (Sweden)

    Zhaojun Tang

    2015-12-01

    Full Text Available Birch veneers were coated with Ni-P films by a combined process of KBH4 activation and electroless plating. The plated veneers were further chemically corroded to obtain hydrophobic surfaces on wood. The effect of chemical corrosion on the contact angle of the veneers was investigated. The hydrophobic veneers were characterized by X-ray photo electron spectroscopy (XPS, scanning electron microscopy (SEM, and X-ray diffraction (XRD. The surface contact angle of birch veneer before and after it was plated with Ni-P alloy coating was 41º and 121º, respectively. The contact angle reached 136.7º when the nickel-coated veneers were corroded in CuSO4 aqueous solution for 30 min. XPS analysis showed that Cu0 cluster doped with little CuO formed on the corroded surface of Ni-P alloy film after chemical corrosion. SEM and XRD showed that rough copper clusters formed on the surface of the wood veneer and revealed the reason of the surface hydrophobicity. This study provides a new pathway for fabricating hydrophobic wood.

  7. Synthesis of silver nanocubes in a hydrophobic binary organic solvent.

    Energy Technology Data Exchange (ETDEWEB)

    Peng, S.; Sun, Y. (Center for Nanoscale Materials)

    2010-01-01

    Synthesis of metal nanoparticles with controlled shapes in hydrophobic solvents is challenging because homogeneous nucleation with high rate in these solvents is favorable for the formation of multiply twinned (MT) nanoparticles with spherical morphology. In this work, we report an inhomogeneous nucleation strategy in a binary hydrophobic solvent mediated by dimethyldistearylammonium chloride (DDAC), resulting in the coexistence of single-crystalline Ag polyhedrons and MT Ag quasi-spheres at the beginning of the reaction. In the consequent step, the MT Ag nanoparticles are selectively etched and dissolved through oxidation by NO{sub 3}{sup -} ions (from the Ag precursor, AgNO{sub 3}) with the assistance of Cl{sup -} ions (from DDAC). The dissolved Ag species are then reduced and deposited on the more stable single-crystalline polyhedrons to form Ag nanocubes. Synergy of the oxidative etching of MT particles and growth of single-crystalline particles leads to Ag nanocubes with high purity when the ripening time is long enough. For example, refluxing a mixing solvent of octyl ether and oleylamine containing AgNO{sub 3} (0.02 M) and DDAC (0.03 M) at 260 C for 1 h results in Ag nanocubes with an average edge length of 34 nm and a purity higher than 95%.

  8. Including Bioconcentration Kinetics for the Prioritization and Interpretation of Regulatory Aquatic Toxicity Tests of Highly Hydrophobic Chemicals

    DEFF Research Database (Denmark)

    Kwon, Jung-Hwan; Lee, So-Young; Kang, Hyun-Joong

    2016-01-01

    experiments. In this work, internal concentrations of highly hydrophobic chemicals were predicted for standard acute ecotoxicity tests at three trophic levels, algae, invertebrate, and fish. As demonstrated by comparison with maximum aqueous concentrations at water solubility, chemicals with an octanol...

  9. The hydrophilic/hydrophobic ratio vs. dissolved organics removal by coagulation – A review

    Directory of Open Access Journals (Sweden)

    Djamel Ghernaout

    2014-07-01

    Full Text Available This review discusses the hydrophilic/hydrophobic ratio as a function of the hydrophilic and hydrophobic contents removal by coagulation process. It is well established that coagulation process could bring a reduction in dissolved organic carbon of around 30–60% by increasing the coagulant dose and optimising reaction pH, in which large organic molecules with hydrophobic property was removed preferentially. Furthermore, the literature affirmed that the greater removal of UV-absorbing substances indicates that alum coagulation preferentially removed the hydrophobic fraction of the total organic carbon. For the hydrophobic fraction, it needs to be removed entirely without its transformation into hydrophilic fractions by coagulation process avoiding pre-chlorination/pre-oxidation due to the risk of organic molecules fragmentation. Determining the exact numerical values of the hydrophilic/hydrophobic ratio for raw water and treated water at different stages of the treatment processes in a water treatment plant, as for the DCO/DBO5 ratio in the case of wastewater treatment, would help on more focusing on OM control and removal.

  10. Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan; Yin, Xiaoming; Zhang, Jijia [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Wang, Yaming [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China); Han, Zhiwu, E-mail: zwhan@jlu.edu.cn [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Ren, Luquan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China)

    2013-09-01

    As one of the lightest metal materials, magnesium alloy plays an important role in industry such as automobile, airplane and electronic product. However, magnesium alloy is hindered due to its high chemical activity and easily corroded. Here, inspired by typical plant surfaces such as lotus leaves and petals of red rose with super-hydrophobic character, the new hydrophobic surface is fabricated on magnesium alloy to improve anti-corrosion by two-step methodology. The procedure is that the samples are processed by laser first and then immersed and etched in the aqueous AgNO{sub 3} solution concentrations of 0.1 mol/L, 0.3 mol/L and 0.5 mol/L for different times of 15 s, 40 s and 60 s, respectively, finally modified by DTS (CH{sub 3}(CH{sub 2}){sub 11}Si(OCH{sub 3}){sub 3}). The microstructure, chemical composition, wettability and anti-corrosion are characterized by means of SEM, XPS, water contact angle measurement and electrochemical method. The hydrophobic surfaces with microscale crater-like and nanoscale flower-like binary structure are obtained. The low-energy material is contained in surface after DTS treatment. The contact angles could reach up to 138.4 ± 2°, which hydrophobic property is both related to the micro–nano binary structure and chemical composition. The results of electrochemical measurements show that anti-corrosion property of magnesium alloy is improved. Furthermore, our research is expected to create some ideas from natural enlightenment to improve anti-corrosion property of magnesium alloy while this method can be easily extended to other metal materials.

  11. Protein and Lipid Binding Parameters in Rainbow Trout (Oncorhynchus mykiss) Blood and Liver Fractions to Extrapolate from an in Vitro metabolic Degradation Assay to in Vivo Bioaccumulation Potential of Hydrophobic Organic Chemicals

    Science.gov (United States)

    Biotransformation reduces the extent to which environmental contaminants accumulate in fish and other aquatic biota. Unfortunately, the tendency for compounds to be metabolized is not easily predicted from physico-chemical properties (e.g., octanol:water partitioning) or an exam...

  12. Occurrence, distribution and bioaccumulation behaviour of hydrophobic organic contaminants in a large-scale constructed wetland in Singapore.

    Science.gov (United States)

    Wang, Qian; Kelly, Barry C

    2017-09-01

    This study involved a field-based investigation to assess the occurrence, distribution and bioaccumulation behaviour of hydrophobic organic contaminants in a large-scale constructed wetland. Samples of raw leachate, water and wetland plants, Typha angustifolia, were collected for chemical analysis. Target contaminants included polychlorinated biphenyls (PCBs), organochlorine pesticides (OCP), as well as several halogenated flame retardants (HFRs) and personal care products (triclosan and synthetic musks). In addition to PCBs and OCPs, synthetic musks, triclosan (TCS) and dechlorane plus stereoisomers (syn- and anti-DPs) were frequently detected. Root concentration factors (log RCF L/kg wet weight) of the various contaminants ranged between 3.0 and 7.9. Leaf concentration factors (log LCF L/kg wet weight) ranged between 2.4 and 8.2. syn- and anti-DPs exhibited the greatest RCF and LCF values. A strong linear relationship was observed between log RCF and octanol-water partition coefficient (log K OW ). Translocation factors (log TFs) were negatively correlated with log K OW . The results demonstrate that more hydrophobic compounds exhibit higher degrees of partitioning into plant roots and are less effectively transported from roots to plant leaves. Methyl triclosan (MTCS) and 2,8-dichlorodibenzo-p-dioxin (DCDD), TCS degradation products, exhibited relatively high concentrations in roots and leaves., highlighting the importance of degradation/biotransformation. The results further suggest that Typha angustifolia in this constructed wetland can aid the removal of hydrophobic organic contaminants present in this landfill leachate. The findings will aid future investigations regarding the fate and bioaccumulation of hydrophobic organic contaminants in constructed wetlands. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Dissolved organic carbon enhances the mass transfer of hydrophobic organic compounds from Nonaqueous Phase Liquids (NAPLs) into the aqueous phase

    NARCIS (Netherlands)

    Smith, K.E.C.; Thullner, M.; Wick, L.Y.; Harms, H.

    2011-01-01

    The hypothesis that dissolved organic carbon (DOC) enhances the mass transfer of hydrophobic organic compounds from nonaqueous phase liquids (NAPLs) into the aqueous phase above that attributable to dissolved molecular diffusion alone was tested. In controlled experiments, mass transfer rates of

  14. In situ sorption of hydrophobic organic compounds to sediment amended with activated carbon

    NARCIS (Netherlands)

    Kupryianchyk, D.; Rakowska, M.I.; Grotenhuis, J.T.C.; Koelmans, A.A.

    2012-01-01

    Contaminated sediments can be remediated by adding carbonaceous materials (CM), e.g. activated carbons (AC). Here, we analyze published datasets from AC amendment trials to identify variation in the effectiveness of AC in reducing porewater concentrations of hydrophobic organic contaminants (HOCs).

  15. Partitioning of hydrophobic organic contaminants between polymer and lipids for two silicones and low density polyethylene

    DEFF Research Database (Denmark)

    Smedes, Foppe; Rusina, Tatsiana P.; Beeltje, Henry

    2017-01-01

    Polymers are increasingly used for passive sampling of neutral hydrophobic organic substances (HOC) in environmental media including water, air, soil, sediment and even biological tissue. The equilibrium concentration of HOC in the polymer can be measured and then converted into equilibrium conce...... for a thermodynamically sound risk assessment of HOC contained in microplastics....

  16. Partitioning of hydrophobic organic contaminants between polymer and lipids for two silicones and low density polyethylene

    NARCIS (Netherlands)

    Smedes, F.; Rusina, T.P.; Beeltje, H.; Mayer, P.

    2017-01-01

    Polymers are increasingly used for passive sampling of neutral hydrophobic organic substances (HOC) in environmental media including water, air, soil, sediment and even biological tissue. The equilibrium concentration of HOC in the polymer can be measured and then converted into equilibrium

  17. Role of long- and short-range hydrophobic, hydrophilic and charged residues contact network in protein’s structural organization

    Directory of Open Access Journals (Sweden)

    Sengupta Dhriti

    2012-06-01

    Full Text Available Abstract Background The three-dimensional structure of a protein can be described as a graph where nodes represent residues and the strength of non-covalent interactions between them are edges. These protein contact networks can be separated into long and short-range interactions networks depending on the positions of amino acids in primary structure. Long-range interactions play a distinct role in determining the tertiary structure of a protein while short-range interactions could largely contribute to the secondary structure formations. In addition, physico chemical properties and the linear arrangement of amino acids of the primary structure of a protein determines its three dimensional structure. Here, we present an extensive analysis of protein contact subnetworks based on the London van der Waals interactions of amino acids at different length scales. We further subdivided those networks in hydrophobic, hydrophilic and charged residues networks and have tried to correlate their influence in the overall topology and organization of a protein. Results The largest connected component (LCC of long (LRN-, short (SRN- and all-range (ARN networks within proteins exhibit a transition behaviour when plotted against different interaction strengths of edges among amino acid nodes. While short-range networks having chain like structures exhibit highly cooperative transition; long- and all-range networks, which are more similar to each other, have non-chain like structures and show less cooperativity. Further, the hydrophobic residues subnetworks in long- and all-range networks have similar transition behaviours with all residues all-range networks, but the hydrophilic and charged residues networks don’t. While the nature of transitions of LCC’s sizes is same in SRNs for thermophiles and mesophiles, there exists a clear difference in LRNs. The presence of larger size of interconnected long-range interactions in thermophiles than mesophiles, even at

  18. Evolution and accumulation of organic foulants on hydrophobic and hydrophilic membrane surfaces in a submerged membrane bioreactor

    KAUST Repository

    Matar, Gerald

    2015-09-07

    Membrane surface modification is attracting more attention to mitigate biofouling in membrane bioreactors (MBRs). Five membranes differing in chemistry and hydrophobic/hydrophilic potential were run in parallel in a lab-scale MBR under the same conditions. Membranes were sampled after 1, 10, 20 and 30 days of MBR operation with synthetic wastewater. Subsequently, accumulated organic foulants were characterised using several chemical analytical tools. Results showed similar development of organic foulants with time, illustrating that membrane surface chemistry did not affect the selection of specific organic foulants. Multivariate analysis showed that biofilm samples clustered according to the day of sampling. The composition of organic foulants shifted from protein-like substances towards humics and polysaccharides-like substances. We propose that to control biofouling in MBRs, one should focus less on the membrane surface chemistry.

  19. Aquatic toxicity testing of liquid hydrophobic chemicals – Passive dosing exactly at the saturation limit

    DEFF Research Database (Denmark)

    Stibany, Felix; Nørgaard Schmidt, Stine; Schäffer, Andreas

    2017-01-01

    The aims of the present study were (1) to develop a passive dosing approach for aquatic toxicity testing of liquid substances with very high Kow values and (2) to apply this approach to the model substance dodecylbenzene (DDB, Log Kow = 8.65). The first step was to design a new passive dosing...... format for testing DDB exactly at its saturation limit. Silicone O-rings were saturated by direct immersion in pure liquid DDB, which resulted in swelling of >14%. These saturated O-rings were used to establish and maintain DDB exposure exactly at the saturation limit throughout 72-h algal growth...... at chemical activity of unity was higher than expected relative to a reported hydrophobicity cut-off in toxicity, but lower than expected relative to a reported chemical activity range for baseline toxicity. The present study introduces a new effective approach for toxicity testing of an important group...

  20. Tailoring the surface chemical bond states of the NbN films by doping Ag: Achieving hard hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ping; Zhang, Kan; Du, Suxuan [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Meng, Qingnan [College of Construction Engineering, Jilin University, Changchun, 130026 (China); He, Xin [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Wang, Shuo [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Wen, Mao, E-mail: wenmao225@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Zheng, Weitao, E-mail: WTZheng@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China)

    2017-06-15

    Highlights: • Intrinsically hydrophilic NbN films can transfer to hydrophobic Nb-Ag-N films by doping Ag atoms into NbN sublattice. • Solute Ag can promote that the hydrophobic Ag{sub 2}O groups formed on the Nb-Ag-N film surface through self-oxidation. • The present work may provide a straightforward approach for the production of robust hydrophobic ceramic surfaces. - Abstract: Robust hydrophobic surfaces based on ceramics capable of withstanding harsh conditions such as abrasion, erosion and high temperature, are required in a broad range of applications. The metal cations with coordinative saturation or low electronegativity are commonly chosen to achieve the intrinsically hydrophobic ceramic by reducing Lewis acidity, and thus the ceramic systems are limited. In this work, we present a different picture that robust hydrophobic surface with high hardness (≥20 GPa) can be fabricated through doping Ag atoms into intrinsically hydrophilic ceramic film NbN by reactive co-sputtering. The transition of wettability from hydrophilic to hydrophobic of Nb-Ag-N films induced by Ag doping results from the appearance of Ag{sub 2}O groups on the films surfaces through self-oxidation, because Ag cations (Ag{sup +}) in Ag{sub 2}O are the filled-shell (4d{sup 10}5S{sup 0}) electronic structure with coordinative saturation that have no tendency to interact with water. The results show that surface Ag{sub 2}O benefited for hydrophobicity comes from the solute Ag atoms rather than precipitate metal Ag, in which the more Ag atoms incorporated into Nb-sublattice are able to further improve the hydrophobicity, whereas the precipitation of Ag nanoclusters would worsen it. The present work opens a window for fabricating robust hydrophobic surface through tailoring surface chemical bond states by doping Ag into transition metal nitrides.

  1. Determining octanol-water partition coefficients for extremely hydrophobic chemicals by combining 'slow stirring' and solid phase micro extraction

    NARCIS (Netherlands)

    Jonker, Michiel T O

    Octanol-water partition coefficients (Kow ) are widely used in fate and effects modelling of chemicals. Still, high quality experimental Kow data are scarce, in particular for very hydrophobic chemicals. This hampers reliable assessments of several fate and effect parameters and the development and

  2. Hydration of krypton and consideration of clathrate models of hydrophobic effects from the perspective of quasi-chemical theory.

    Science.gov (United States)

    Ashbaugh, Henry S; Asthagiri, D; Pratt, Lawrence R; Rempe, Susan B

    2003-09-01

    Ab initio molecular dynamics (AIMD) results on a krypton-water liquid solution are presented and compared to recent XAFS results for the radial hydration structure for a Kr atom in liquid water solution. Though these AIMD calculations have important limitations of scale, the comparisons with the liquid solution results are satisfactory and significantly different from the radial distributions extracted from the data on the solid Kr/H(2)O clathrate hydrate phase. The calculations also produce the coordination number distribution that can be examined for metastable coordination structures suggesting possibilities for clathrate-like organization; none are seen in these results. Clathrate pictures of hydrophobic hydration are discussed, as is the quasi-chemical theory that should provide a basis for clathrate pictures. Outer shell contributions are discussed and estimated; they are positive and larger than the positive experimental hydration free energy of Kr(aq), implying that inner shell contributions must be negative and of comparable size. Clathrate-like inner shell hydration structures on a Kr atom solute are obtained for some, but not all, of the coordination number cases observed in the simulation. The structures found have a delicate stability. Inner shell coordination structures extracted from the simulation of the liquid, and then subjected to quantum chemical optimization, always decomposed. Interactions with the outer shell material are decisive in stabilizing coordination structures observed in liquid solution and in clathrate phases. The primitive quasi-chemical estimate that uses a dielectric model for the influence of the outer shell material on the inner shell equilibria gives a contribution to hydration free energy that is positive and larger than the experimental hydration free energy. The 'what are we to tell students' question about hydrophobic hydration, often answered with structural clathrate pictures, is then considered; we propose an

  3. The advanced CECE process for enriching tritium by the chemical exchange method with a hydrophobic catalyst

    International Nuclear Information System (INIS)

    Kitamoto, Asashi; Shimizu, Masami; Masui, Takashi.

    1992-01-01

    The monothermal chemical exchange process with electrolysis, i.e., CECE process, was an effective method for enriching and removing tritium from tritiated water with low to middle level activity. The purpose of this study is to propose the theoretical background of the two-parameter evaluation method, which is based on a two-step isotope exchange reaction between hydrogen gas and liquid water, for improvement of the performance of a hydrophobic catalyst by a trickle bed-type column. Finally, a two-parameter method could attain the highest performance of isotope separation and the lowest liquid holdup for a trickle bed-type column. Therefore, this method will present some effective and practical procedures in scaling up a tritium enrichment process. The main aspect of the CECE process in engineering design and system evaluation was to develop the isotope exchange column with a high performance catalyst. (author)

  4. Adsorption and Desorption of Chemical Warfare Agent Simulants on Silica Surfaces with Hydrophobic Coating

    International Nuclear Information System (INIS)

    Park, Eun Ji; Kim, Young Dok

    2013-01-01

    Aim of our study is finding adsorbents suitable for pre-concentration of chemical warfare agents (CWAs). We considered Tenax, bare silica and polydimethylsiloxane (PDMS)-coated silica as adsorbents for dimethyl methylphosphonate (DMMP) and dipropylene glycol methyl ether (DPGME). Tenax showed lower thermal stability, and therefore, desorption of CWA simulants and decomposition of Tenax took place simultaneously. Silica-based adsorbents showed higher thermal stabilities than Tenax. A drawback of silica was that adsorption of CWA simulant (DMMP) was significantly reduced by pre-treatment of the adsorbents with humid air. In the case of PDMS-coated silica, influence of humidity for CWA simulant adsorption was less pronounced due to the hydrophobic nature of PDMS-coating. We propose that PDMS-coated silica can be of potential importance as adsorbent of CWAs for their pre-concentration, which can facilitate detection of these CWAs

  5. Adsorption and Desorption of Chemical Warfare Agent Simulants on Silica Surfaces with Hydrophobic Coating

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eun Ji; Kim, Young Dok [Sungkyunkwan Univ., Suwon (Korea, Republic of)

    2013-07-15

    Aim of our study is finding adsorbents suitable for pre-concentration of chemical warfare agents (CWAs). We considered Tenax, bare silica and polydimethylsiloxane (PDMS)-coated silica as adsorbents for dimethyl methylphosphonate (DMMP) and dipropylene glycol methyl ether (DPGME). Tenax showed lower thermal stability, and therefore, desorption of CWA simulants and decomposition of Tenax took place simultaneously. Silica-based adsorbents showed higher thermal stabilities than Tenax. A drawback of silica was that adsorption of CWA simulant (DMMP) was significantly reduced by pre-treatment of the adsorbents with humid air. In the case of PDMS-coated silica, influence of humidity for CWA simulant adsorption was less pronounced due to the hydrophobic nature of PDMS-coating. We propose that PDMS-coated silica can be of potential importance as adsorbent of CWAs for their pre-concentration, which can facilitate detection of these CWAs.

  6. Organic-Inorganic Hydrophobic Nanocomposite Film with a Core-Shell Structure

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2016-12-01

    Full Text Available A method to prepare novel organic-inorganic hydrophobic nanocomposite films was proposed by a site-specific polymerization process. The inorganic part, the core of the nanocomposite, is a ternary SiO2–Al2O3–TiO2 nanoparticles, which is grafted with methacryloxy propyl trimethoxyl silane (KH570, and wrapped by fluoride and siloxane polymers. The synthesized samples are characterized by transmission electron microscopy (TEM, Fourier transform infrared (FTIR spectrscopy, X-ray diffractometry (XRD, contact angle meter (CA, and scanning electron microscope (SEM. The results indicate that the novel organic-inorganic hydrophobic nanocomposite with a core-shell structure was synthesized successfully. XRD analysis reveals the nanocomposite film has an amorphous structure, and FTIR analysis indicates the nanoparticles react with a silane coupling agent (methacryloxy propyl trimethoxyl silane KH570. Interestingly, the morphology of the nanoparticle film is influenced by the composition of the core. Further, comparing with the film synthesized by silica nanoparticles, the film formed from SiO2–Al2O3–TiO2 nanoparticles has higher hydrophobic performance, i.e., the contact angle is greater than 101.7°. In addition, the TEM analysis reveals that the crystal structure of the particles can be changed at high temperatures.

  7. Methods to assess bioavailability of hydrophobic organic contaminants: Principles, operations, and limitations.

    Science.gov (United States)

    Cui, Xinyi; Mayer, Philipp; Gan, Jay

    2013-01-01

    Many important environmental contaminants are hydrophobic organic contaminants (HOCs), which include PCBs, PAHs, PBDEs, DDT and other chlorinated insecticides, among others. Owing to their strong hydrophobicity, HOCs have their final destination in soil or sediment, where their ecotoxicological effects are closely regulated by sorption and thus bioavailability. The last two decades have seen a dramatic increase in research efforts in developing and applying partitioning based methods and biomimetic extractions for measuring HOC bioavailability. However, the many variations of both analytical methods and associated measurement endpoints are often a source of confusion for users. In this review, we distinguish the most commonly used analytical approaches based on their measurement objectives, and illustrate their practical operational steps, strengths and limitations using simple flowcharts. This review may serve as guidance for new users on the selection and use of established methods, and a reference for experienced investigators to identify potential topics for further research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Structure and Properties of Hydrophobic Aggregation Hydrogel with Chemical Sensitive Switch

    Directory of Open Access Journals (Sweden)

    Jiufang Duan

    2017-01-01

    Full Text Available Hydrogels with chemical sensitive switch have control release properties in special environments. A series of polyacrylamide-octadecyl methacrylate hydrogels crosslinked by N,N′-bis (acryloyl cystamine were synthesized as potential chemical sensitive system. When this hydrogel encounters dithiothreitol it can change its quality. The properties of the hydrogels were characterized by infrared spectroscopy, contact angle, and scanning electron microscopy. The water absorption of the hydrogel has the maximum value of 475%, when the content of octadecyl methacrylate is 5 wt%. The amount of weight loss was changed from 34.6% to 17.2%, as the content of octadecyl methacrylate increased from 3 wt% to 9.4 wt%. At the same time, the stress of the hydrogel decreased from 67.01% to 47.61%; the strength of the hydrogel reaches to the maximum 0.367 Mpa at 7 wt% octadecyl methacrylate. The increasing content of octadecyl methacrylate from 3 wt% to 9.4 wt% can enhance the hydrophobicity of the hydrogel; the contact angle of water to hydrogel changed from 14.10° to 19.62°. This hydrogel has the porous structure which permits loading of oils into the gel matrix. The functionalities of the hydrogel make it have more widely potential applications in chemical sensitive response materials.

  9. Concentration and fractionation of hydrophobic organic acid constituents from natural waters by liquid chromatography

    Science.gov (United States)

    Thurman, E.M.; Malcolm, R.L.

    1979-01-01

    A scheme is presented which used adsorption chromatography with pH gradient elution and size-exclusion chromatography to concentrate and separate hydrophobic organic acids from water. A review of chromatographic processes involved in the flow scheme is also presented. Organic analytes which appear in each aqueous fraction are quantified by dissolved organic carbon analysis. Hydrophobic organic acids in a water sample are concentrated on a porous acrylic resin. These acids usually constitute approximately 30-50 percent of the dissolved organic carbon in an unpolluted water sample and are eluted with an aqueous eluent (dilute base). The concentrate is then passed through a column of polyacryloylmorpholine gel, which separates the acids into high- and low-molecular-weight fractions. The high- and low-molecular-weight eluates are reconcentrated by adsorption chromatography, then are eluted with a pH gradient into strong acids (predominately carboxylic acids) and weak acids (predominately phenolic compounds). For standard compounds and samples of unpolluted waters, the scheme fractionates humic substances into strong and weak acid fractions that are separated from the low molecular weight acids. A new method utilizing conductivity is also presented to estimate the acidic components in the methanol fraction.

  10. The hydrophobic modification of gypsum binder by peat products: physico-chemical and technological basis

    Directory of Open Access Journals (Sweden)

    O. Misnikov

    2018-04-01

    Full Text Available Gypsum binder is a quick-setting and fast-hardening material that is used widely in the construction industry for plastering and as an ingredient of concrete, other binding materials, etc. The issue addressed here is its short shelf life (around three months which arises because it is hygroscopic, i.e. it readily absorbs moisture and begins to set during transport and storage. The main methods that are currently available for protecting gypsum binder against unwanted exposure to moisture and water vapour are considered, and hydrophobic modification with the bitumen released during peat thermolysis (a method previously considered for cement is proposed as a promising alternative. Because there is overlap in the temperature ranges used in the manufacture of gypsum binder and those required for the initial stages of thermal decomposition of the organic matter in peat, it is expected that hydrophobisation could be achieved during the established manufacturing process without any changes to plant or procedures. The optimum concentration of organic (peat additive for gypsum rock mined from the Shushokskoye deposit in Russia is derived experimentally. With 0.5–1 % of peat additive, the strength grading of the gypsum plaster is preserved and its storage time without caking and hydration increases, even under adverse conditions (100 % relative humidity. The proposed method is compatible with current gypsum production technology, it does not require any changes in equipment, and the prices of mineral raw materials and semi-finished peat products are approximately the same. Thus, the incorporation of hydrophobic modification using peat into the manufacturing process for gypsum binder is unlikely to increase the cost of the product.

  11. Micelle swelling agent derived cavities for increasing hydrophobic organic compound removal efficiency by mesoporous micelle@silica hybrid materials

    KAUST Repository

    Shi, Yifeng; Li, Bin; Wang, Peng; Dua, Rubal; Zhao, Dongyuan

    2012-01-01

    Mesoporous micelle@silica hybrid materials with 2D hexagonal mesostructures were synthesized as reusable sorbents for hydrophobic organic compounds (HOCs) removal by a facile one-step aqueous solution synthesis using 3-(trimethoxysily)propyl

  12. Protecting group and switchable pore-discriminating adsorption properties of a hydrophilic-hydrophobic metal-organic framework.

    Science.gov (United States)

    Mohideen, M Infas H; Xiao, Bo; Wheatley, Paul S; McKinlay, Alistair C; Li, Yang; Slawin, Alexandra M Z; Aldous, David W; Cessford, Naomi F; Düren, Tina; Zhao, Xuebo; Gill, Rachel; Thomas, K Mark; Griffin, John M; Ashbrook, Sharon E; Morris, Russell E

    2011-04-01

    Formed by linking metals or metal clusters through organic linkers, metal-organic frameworks are a class of solids with structural and chemical properties that mark them out as candidates for many emerging gas storage, separation, catalysis and biomedical applications. Important features of these materials include their high porosity and their flexibility in response to chemical or physical stimuli. Here, a copper-based metal-organic framework has been prepared in which the starting linker (benzene-1,3,5-tricarboxylic acid) undergoes selective monoesterification during synthesis to produce a solid with two different channel systems, lined by hydrophilic and hydrophobic surfaces, respectively. The material reacts differently to gases or vapours of dissimilar chemistry, some stimulating subtle framework flexibility or showing kinetic adsorption effects. Adsorption can be switched between the two channels by judicious choice of the conditions. The monoesterified linker is recoverable in quantitative yield, demonstrating possible uses of metal-organic frameworks in molecular synthetic chemistry as 'protecting groups' to accomplish selective transformations that are difficult using standard chemistry techniques.

  13. Sorption of organic chemicals at biogeochemical interfaces - calorimetric measurements

    Science.gov (United States)

    Krüger, J.; Lang, F.; Siemens, J.; Kaupenjohann, M.

    2009-04-01

    Biogeochemical interfaces in soil act as sorbents for organic chemicals, thereby controlling the degradation and mobility of these substances in terrestrial environments. Physicochemical properties of the organic chemicals and the sorbent determine sorptive interactions. We hypothesize that the sorption of hydrophobic organic chemicals ("R-determined" chemicals) is an entropy-driven partitioning process between the bulk aqueous phase and biogeochemical interface and that the attachment of more polar organic chemicals ("F-determined" chemicals) to mineral surfaces is due to electrostatic interactions and ligand exchange involving functional groups. In order to determine thermodynamic parameters of sorbate/sorbent interactions calorimetric titration experiments have been conducted at 20˚ C using a Nanocalorimeter (TAM III, Thermometric). Solutions of different organic substances ("R-determined" chemicals: phenanthrene, bisphenol A, "F-determined" chemicals: MCPA, bentazone) with concentrations of 100 mol l-1 were added to suspensions of pure minerals (goethite, muscovite, and kaolinite and to polygalacturonic acid (PGA) as model substance for biofilms in soil. Specific surface, porosity, N and C content, particle size and point of zero charge of the mineral were analyzed to characterize the sorbents. The obtained heat quantities for the initial injection of the organic chemicals to the goethite were 55 and 71 J for bisphenol A and phenanthrene ("R-determined representatives") and 92 and 105 J for MCPA and bentazone ("F-determined" representatives). Further experiments with muscovite, kaolinite and PGA are in progress to determine G and H of the adsorption process.

  14. Predicting degradability of organic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Finizio, A; Vighi, M [Milan Univ. (Italy). Ist. di Entomologia Agraria

    1992-05-01

    Degradability, particularly biodegradability, is one of the most important factors governing the persistence of pollutants in the environment and consequently influencing their behavior and toxicity in aquatic and terrestrial ecosystems. The need for reliable persistence data in order to assess the environmental fate and hazard of chemicals by means of predictive approaches, is evident. Biodegradability tests are requested by the EEC directive on new chemicals. Neverthless, degradation tests are not easy to carry out and data on existing chemicals are very scarce. Therefore, assessing the fate of chemicals in the environment from the simple study of their structure would be a useful tool. Rates of degradation are a function of the rates of a series of processes. Correlation between degradation rates and structural parameters are will be facilitated if one of the processes is rate determining. This review is a survey of studies dealing with relationships between structure and biodegradation of organic chemicals, to identify the value and limitations of this approach.

  15. Quantifying the effect of sorption and bioavailability of hydrophobic organic contaminants

    International Nuclear Information System (INIS)

    Zhang, W.; Bouwer, E.; Cunningham, A.

    1994-01-01

    In-situ bioremediation has been applied successfully at a few sites. Several restrictions presently exist which could greatly limit the effectiveness of this promising technology. Hydrophobic organic contaminants tend to sorb onto soil. However, microorganisms are most effective in utilizing substrates from the aqueous phase. Sorption tends to separate the direct contact between microorganisms and contaminants necessary for biodegradation to occur. A series of experiments, which represented scenarios with fast sorption/desorption, slow sorption/desorption, mass transfer across boundary layer and mass transfer within attached microorganisms (biofilm), was conducted to demonstrate the concentration effect and the mass transfer effect. A method has been developed to quantify bioavailability of organic contaminants in aquatic environments. Bioavailability Factor (B f ), a dimensionless parameter derived from mathematical models and verified by experimental results, has been formulated to describe the impact of equilibrium sorption, nonequilibrium sorption, and mass transfer processes on the rate and extent of biodegradation of petroleum hydrocarbons

  16. Using SPMDs for monitoring hydrophobic organic compounds in urban river water in Korea compared with using conventional water grab samples

    Science.gov (United States)

    Kim, Un-Jung; Kim, Hee Young; Alvarez, David A.; Lee, In-Seok; Oh, Jeong-Eun

    2014-01-01

    We aimed to verify the effectiveness of semi-permeablemembrane devices (SPMDs) formonitoring hydrophobic organic compounds, such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), that are not easy to detect using conventional grab samples (because of their low concentrations), in water.We used SPMDs and grab samples to monitor PCBs and PBDEs upstream and downstream of a sewage treatment plant (STP) in the Suyeong River in Busan, Korea. Concentrations in three different phases (freely dissolved, apparently dissolved, and particulate) were measured, to investigate the aquatic fate of PCBs and PBDEs. The freely dissolved (SPMD) concentrations were 2–3 times higher than the apparently dissolved and particulate phase (grab sample) concentrations. No meaningful relationships were found between the total PCB and PBDE concentrations of the grab sample and SPMD sample because of the different partitioning behaviors and detection frequencies of the individual chemicals. However, the summed concentrations of specific PCB and PBDE congeners (that were abundant in all samples) in the grab and SPMD samples correlated well (r2 = 0.7451 for PCBs 28 + 52 + 153, r2 = 0.9987 for PBDEs 28 + 47 + 99). The PBDE concentrations measured using SPMDs decreased with increasing distance from the STP, but no apparent dilution effect was found in the grab samples. Our results show that SPMDs could be used to support grab sampling for specific chemicals, or to trace chemical sources (such as STPs) to the aquatic environment.

  17. Ethylene vinyl acetate polymer as a tool for passive sampling monitoring of hydrophobic chemicals in the salmon farm industry

    International Nuclear Information System (INIS)

    Tucca, Felipe; Moya, Heriberto; Barra, Ricardo

    2014-01-01

    Highlights: • The samplers allow the detection of hydrophobic chemicals in the marine environment. • The samplers reach equilibrium quickly, with days of deployment in the field. • The samplers have low costs and easy manipulation for monitoring programs. • A way to collect chemicals in the aquatic environment without human effort. - Abstract: Current monitoring programs are focused on hydrophobic chemicals detection in aquatic systems, which require the collection of high volumes of water samples at a given time. The present study documents the preliminary use of the polymer ethylene vinyl acetate (EVA) as a passive sampler for the detection of a hydrophobic chemical used by salmon industries such as cypermethrin. Initially, an experimental calibration in laboratory was performed to determine the cypermethrin equilibrium between sampler and aquatic medium, which was reached after seven days of exposure. A logarithm of partitioning coefficient EVA–water (log K EVA–W ) of 5.6 was reported. Field deployment of EVA samplers demonstrated average concentrations of cypermethrin in water to be 2.07 ± 0.7 ng L −1 close to salmon cages, while near-shore was 4.39 ± 0.8 ng L −1 . This was a first approach for assessing EVA samplers design as a tool of monitoring in water for areas with salmon farming activity

  18. Methods to assess bioavailability of hydrophobic organic contaminants: Principles, operations, and limitations

    International Nuclear Information System (INIS)

    Cui Xinyi; Mayer, Philipp; Gan, Jay

    2013-01-01

    Many important environmental contaminants are hydrophobic organic contaminants (HOCs), which include PCBs, PAHs, PBDEs, DDT and other chlorinated insecticides, among others. Owing to their strong hydrophobicity, HOCs have their final destination in soil or sediment, where their ecotoxicological effects are closely regulated by sorption and thus bioavailability. The last two decades have seen a dramatic increase in research efforts in developing and applying partitioning based methods and biomimetic extractions for measuring HOC bioavailability. However, the many variations of both analytical methods and associated measurement endpoints are often a source of confusion for users. In this review, we distinguish the most commonly used analytical approaches based on their measurement objectives, and illustrate their practical operational steps, strengths and limitations using simple flowcharts. This review may serve as guidance for new users on the selection and use of established methods, and a reference for experienced investigators to identify potential topics for further research. - This review summarizes the principles and operations of bioavailability prediction methods, discusses their strengths and limitations, and highlights issues for future research.

  19. Comparing the Spectroscopic and Molecular Characteristics of Different Dissolved Organic Matter Fractions Isolated by Hydrophobic and Anionic Exchange Resins Using Fluorescence Spectroscopy and FT-ICR-MS

    Directory of Open Access Journals (Sweden)

    Morgane Derrien

    2017-07-01

    Full Text Available Despite the environmental significance of dissolved organic matter (DOM, characterizing DOM is still challenging due to its structural complexity and heterogeneity. In this study, three different chemical fractions, including hydrophobic acid (HPOA, transphilic acid (TPIA, and hydrophilic neutral and base (HPIN/B fractions, were separated from bulk aquatic DOM samples, and their spectral features and the chemical composition at the molecular level were compared using both fluorescence excitation emission matrix-parallel factor analysis (EEM-PARAFAC and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS. The HPIN/B fraction was distinguished from the two acidic fractions (i.e., HPOA and TPIA by the EEM-PARAFAC, while the TPIA fraction was discriminated by using the molecular parameters derived from the FT-ICR MS analyses. Statistical comparison suggests that the spectral dissimilarity among the three chemical fractions might result from the acido-basic properties of DOM samples, while the differences in molecular composition were more likely to be affected by the hydrophobicity of the DOM fractions. The non-metric multidimensional scaling map further revealed that the HPOA was the most heterogeneous among the three fractions. The number of overlapping formulas among the three chemical fractions constituted only <5% of all identified formulas, and those between two different fractions ranged from 2.0% to 24.1%, implying relatively homogeneous properties of the individual chemical fractions with respect to molecular composition. Although employing chemical fractionation achieved a lowering of the DOM heterogeneity, prevalent signatures of either acido-basic property or the hydrophobic nature of DOM on the characteristics of three chemical isolated fractions were not found for this study.

  20. Permeable sorptive walls for treatment of hydrophobic organic contaminant plumes in groundwater

    International Nuclear Information System (INIS)

    Grathwohl, P.; Peschik, G.

    1997-01-01

    Highly hydrophobic contaminants are easily adsorbed from aqueous solutions. Since for many of these compounds sorption increases with increasing organic carbon content natural materials such as bituminous shales and coals may be used in permeable sorptive walls. This, however, only applies if sorption is at equilibrium, which may not always be the case in groundwater treatment using a funnel-and-gate system. In contrast to the natural solids, granular activated carbons (GACs) have very high sorption capacities and reasonably fast sorption kinetics. The laboratory results show that application of GACs (e.g. F100) is economically feasible for in situ removal of polycyclic aromatic hydrocarbons (PAH) from groundwater at a former manufactured gas plant site (MGP). For less sorbing compounds (such as benzene, toluene, xylenes) a combination of adsorption and biodegradation is necessary (i.e. sorptive + reactive treatment)

  1. Microwaves in organic chemistry and organic chemical

    Directory of Open Access Journals (Sweden)

    Mijin Dušan Ž.

    2005-01-01

    Full Text Available The usual way of applying heat to a chemical reaction is the use of a Bunsen burner, an oil or some other type of bath, or an electric heater. In inorganic chemistry, microwave technology has been used since the late 1970s while it has been implemented in organic chemistry since the mid-1980s. Microwave heating has been used in the food industry for almost fifty years. The shorter reaction times and expanded reaction range that is offered by microwave technology are suited to the increased demands in industry. For example, there is a requirement in the pharmaceutical industry for a higher number of a novel chemical entities to be produced, which requires chemists to employ a number of resources to reduce time for the production of compounds. Also, microwaves are used in the food industry, as well as in the pyrolysis of waste materials, sample preparation, the solvent extraction of natural products and the hydrolysis of proteins and peptides.

  2. Charge Segregation and Low Hydrophobicity Are Key Features of Ribosomal Proteins from Different Organisms*

    Science.gov (United States)

    Fedyukina, Daria V.; Jennaro, Theodore S.; Cavagnero, Silvia

    2014-01-01

    Ribosomes are large and highly charged macromolecular complexes consisting of RNA and proteins. Here, we address the electrostatic and nonpolar properties of ribosomal proteins that are important for ribosome assembly and interaction with other cellular components and may influence protein folding on the ribosome. We examined 50 S ribosomal subunits from 10 species and found a clear distinction between the net charge of ribosomal proteins from halophilic and non-halophilic organisms. We found that ∼67% ribosomal proteins from halophiles are negatively charged, whereas only up to ∼15% of ribosomal proteins from non-halophiles share this property. Conversely, hydrophobicity tends to be lower for ribosomal proteins from halophiles than for the corresponding proteins from non-halophiles. Importantly, the surface electrostatic potential of ribosomal proteins from all organisms, especially halophiles, has distinct positive and negative regions across all the examined species. Positively and negatively charged residues of ribosomal proteins tend to be clustered in buried and solvent-exposed regions, respectively. Hence, the majority of ribosomal proteins is characterized by a significant degree of intramolecular charge segregation, regardless of the organism of origin. This key property enables the ribosome to accommodate proteins within its complex scaffold regardless of their overall net charge. PMID:24398678

  3. Determining octanol-water partition coefficients for extremely hydrophobic chemicals by combining "slow stirring" and solid-phase microextraction.

    Science.gov (United States)

    Jonker, Michiel T O

    2016-06-01

    Octanol-water partition coefficients (KOW ) are widely used in fate and effects modeling of chemicals. Still, high-quality experimental KOW data are scarce, in particular for very hydrophobic chemicals. This hampers reliable assessments of several fate and effect parameters and the development and validation of new models. One reason for the limited availability of experimental values may relate to the challenging nature of KOW measurements. In the present study, KOW values for 13 polycyclic aromatic hydrocarbons were determined with the gold standard "slow-stirring" method (log KOW 4.6-7.2). These values were then used as reference data for the development of an alternative method for measuring KOW . This approach combined slow stirring and equilibrium sampling of the extremely low aqueous concentrations with polydimethylsiloxane-coated solid-phase microextraction fibers, applying experimentally determined fiber-water partition coefficients. It resulted in KOW values matching the slow-stirring data very well. Therefore, the method was subsequently applied to a series of 17 moderately to extremely hydrophobic petrochemical compounds. The obtained KOW values spanned almost 6 orders of magnitude, with the highest value measuring 10(10.6) . The present study demonstrates that the hydrophobicity domain within which experimental KOW measurements are possible can be extended with the help of solid-phase microextraction and that experimentally determined KOW values can exceed the proposed upper limit of 10(9) . Environ Toxicol Chem 2016;35:1371-1377. © 2015 SETAC. © 2015 SETAC.

  4. Modelling the fate of hydrophobic organic contaminants in a boreal forest catchment: A cross disciplinary approach to assessing diffuse pollution to surface waters

    International Nuclear Information System (INIS)

    Bergknut, Magnus; Meijer, Sandra; Halsall, Crispin; Agren, Anneli; Laudon, Hjalmar; Koehler, Stephan; Jones, Kevin C.; Tysklind, Mats; Wiberg, Karin

    2010-01-01

    The fate of hydrophobic organic compounds (HOCs) in soils and waters in a northern boreal catchment was explored through the development of a chemical fate model in a well-characterised catchment system dominated by two land types: forest and mire. Input was based solely on atmospheric deposition, dominated by accumulation in the winter snowpack. Release from soils was governed by the HOC concentration in soil, the soil organic carbon fraction and soil-water DOC content. The modelled export of selected HOCs in surface waters ranged between 11 and 250 ng day -1 during the snow covered period, compared to 200 and 9600 ng/d during snow-melt; highlighting the importance of the snow pack as a source of these chemicals. The predicted levels of HOCs in surface water were in reasonable agreement to a limited set of measured values, although the model tended to over predict concentrations of HOCs for the forested sub-catchment, by over an order of magnitude in the case of hexachlorobenzene and PCB 180. This possibly reflects both the heterogeneity of the forest soils and the complicated and changing hydrology experienced between the different seasons. - The fate of hydrophobic organic contaminants in a boreal forest catchment is connected to the flux of dissolved organic carbon and seasonal deposition.

  5. Application and validation of isotope dilution method (IDM) for predicting bioavailability of hydrophobic organic contaminants in soil.

    Science.gov (United States)

    Wang, Jie; Taylor, Allison; Schlenk, Daniel; Gan, Jay

    2018-05-01

    Risk assessment of hydrophobic organic contaminants (HOCs) using the total chemical concentration following exhaustive extraction may overestimate the actual availability of HOCs to non-target organisms. Existing methods for estimating HOC bioavailability in soil have various operational limitations. In this study, we explored the application of isotope dilution method (IDM) to quantify the accessible fraction (E) of DDTs and PCBs in both historically-contaminated and freshly-spiked soils. After addition of 13 C or deuterated analogues to a soil sample, the phase distribution of isotope-labeled and native chemicals reached an apparent equilibrium within 48 h of mixing. The derived E values in the three soils ranged from 0.19 to 0.82, depending on the soil properties and also the contact time of HOCs (i.e., aging). The isotope dilution method consistently predicted greater accumulation into earthworm (Eisenia fetida) than that by polyethylene (PE) or solid phase microextraction (SPME) sampler, likely because desorption in the gut enhanced bioavailability of soil-borne HOCs. A highly significant linear regression (R 2  = 0.91) was found between IDM and 24-h Tenax desorption, with a slope statistically identical to 1. The IDM-derived accessible concentration (C e ) was further shown to accurately predict tissue residues in earthworm exposed in the same soils. Given the relatively short duration and simple steps, IDM has the potential to be readily adopted for measuring HOC bioaccessibility in soil and for improving risk assessment and evaluation of remediation efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Hydrophobic organic contaminants in surficial sediments of Baltimore Harbor: Inventories and sources

    International Nuclear Information System (INIS)

    Ashley, J.T.F.; Baker, J.E.

    1999-01-01

    The heavily urbanized and industrialized Baltimore Harbor/Patapsco River/Back River system is one of the most highly contaminated regions of the Chesapeake Bay. In June 1996, surficial sediments were collected at 80 sites throughout the subestuarine system, including historically undersampled creek sand embayments. The samples were analyzed for a suite of hydrophobic organic contaminants (HOCs) consisting of 32 polycyclic aromatic hydrocarbons (PAHs) and 113 polychlorinated biphenyl (PCB) congeners. Total PAH and total PCB concentrations ranged from 90 to 46,200 and 8 to 2,150 ng/g dry weight, respectively. There was enormous spatial variability in the concentrations of HOCs, which was not well correlated to grain size or organic carbon content, suggesting nonequilibrium partitioning and/or proximity to sources as important factors explaining the observed spatial variability. High concentrations of both classes of HOCs were localized around major urban stormwater runoff discharges. Elevated PAH concentrations were also centered around the Sparrow's Point Industrial Complex, most likely a result of the pyrolysis of coal during the production of steel. All but 1 of the 80 sites exceeded the effects range-low (ERL) for total PCBs and, of those sites, 40% exceeded the effects range-medium (ERM), suggesting toxicity to marine benthic organisms would frequently occur. Using principal component analysis, differences in PAH signatures were discerned. Higher molecular weight PAHs were enriched in signatures from sediments close to suspected sources (i.e., urban stormwater runoff and steel production complexes) compared to those patterns observed at sites further from outfalls or runoff. Due to varying solubilities and affinities for organic matter of the individual PAHs, partitioning of the heavier weight PAHs may enrich settling particles with high molecular weight PAHs. Lower molecular weight PAHs, having lower affinity for particles, may travel from the source to a

  7. Understanding organic reactions in water : from hydrophobic encounters to surfactant aggregates

    NARCIS (Netherlands)

    Engberts, J.B.F.N.; Blandamer, M.J.

    2001-01-01

    A crucial factor in realising a green chemical process in solution involves the choice of a safe, non-toxic and cheap solvent. Water is the obvious choice. Despite solubility problems, considerable interest has developed recently in organic chemistry in water. This interest also results from the

  8. Organic chemicals in the environment

    International Nuclear Information System (INIS)

    Anderson, T.A.; Beauchamp, J.J.; Walton, B.T.

    1991-01-01

    Disappearance of 15 volatile and semivolatile organic compounds was determined in a mixture added to two different soil types using experimental procedures to distinguish abiotic losses from biological degradation over a 7-d period. Losses due to volatilization were quantified and mass balances were calculated for each compound. The compounds (methyl ethyl ketone; tetrahydrofuran; chlorobenzene; benzene; chloroform; carbon tetrachloride; p-xylene; 1,2-dichlorobenzene; cis-1,4-dich-loro-2-butene; 1,2,3-trichloropropane; 2-chloronaphthalene; ethylene dibromide; hexachlorobenzene; nitrobenzene; and toluene) were applied to the soil in a mixture such that the concentration of each chemical was 100 mg/kg soil (dry wt.). Apparent half-lives for the 15 organic compounds ranged from 14 C-toluene, were unsuccessful. Nonreversible sorption and preanalysis storage conditions were considered as contributors to this inability to achieve a mass balance. On the basis of these results, the authors strongly advise positive accounting for all test compounds and degradation products at the conclusion of studies involving volatile and semivolatile compounds

  9. The impact of framework organic functional groups on the hydrophobicity and overall stability of mesoporous silica materials

    International Nuclear Information System (INIS)

    Smeulders, Geert; Meynen, Vera; Silvestre-Albero, Ana; Houthoofd, Kristof; Mertens, Myrjam; Silvestre-Albero, Joaquin; Martens, Johan A.; Cool, Pegie

    2012-01-01

    Graphical abstract: The stability (hydrothermal, mechanical and chemical) of PMOs is studied in a systematic way and ranks them between classic and other hybrid mesoporous silica materials. Highlights: ► The stability (hydrothermal, mechanical and chemical) of PMOs is studied. ► Compared stability of PMOs with classic and other hybrid mesoporous silica materials. ► Immersion calorimetry to study the effect of hydrophobicity. ► PMOs show superior stability. - Abstract: The hydrothermal, mechanical and chemical stability of various mesoporous materials have been studied in detail, using X-ray diffraction and nitrogen sorption. Pure siliceous nanoporous powders (MCM-41 and SBA-15) are evaluated against their hybrid counterparts; namely 2 types of periodic mesoporous organosilicas (benzene and ethane bridged PMOs) and an organosilane grafted MCM-41 material. In primary tests, the stability of the hybrid materials is found to be superior compared to that of the pure siliceous ones. The stability of the materials was correlated to their hydrophobicity via immersion calorimetry, applied for the first time in this context. Based on these results, a clear correlation between the hydrophobicity of a material and its stability has been revealed. In addition, with 29 Si-MAS-NMR and vacuum experiments, the mechanism of the structural deterioration in the three different stability treatments could be unambiguously identified as the hydrolyzation of the siloxane bonds. The homogeneity of the hydrophobic groups throughout the entire network was found to be of great importance, irrespective of the hydrophobic nature at the surface as determined by calorimetric measurements. The results reveal that the most stable material can withstand (a) a pressure of 740 MPa during 5 min, (b) a 2 h stirring in a 2 M NaOH solution and (c) a 3 day steaming treatment at 393 K.

  10. The impact of framework organic functional groups on the hydrophobicity and overall stability of mesoporous silica materials

    Energy Technology Data Exchange (ETDEWEB)

    Smeulders, Geert, E-mail: geert.smeulders@ua.ac.be [University of Antwerpen (Ukraine), Laboratory of Adsorption and Catalysis, Universiteitsplein 1, 2610 Wilrijk (Belgium); Meynen, Vera [University of Antwerpen (Ukraine), Laboratory of Adsorption and Catalysis, Universiteitsplein 1, 2610 Wilrijk (Belgium); Silvestre-Albero, Ana [Universidad de Alicante, Laboratorio de Materiales Avanzados, Apartado 99, 03080 Alicante (Spain); Houthoofd, Kristof [KULeuven, Centre for Surface Chemistry and Catalysis, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium); Mertens, Myrjam [Flemish Institute for Technological Research (VITO N.V.), Boeretang 200, 2400 Mol (Belgium); Silvestre-Albero, Joaquin [Universidad de Alicante, Laboratorio de Materiales Avanzados, Apartado 99, 03080 Alicante (Spain); Martens, Johan A. [KULeuven, Centre for Surface Chemistry and Catalysis, Kasteelpark Arenberg 23, 3001 Heverlee (Belgium); Cool, Pegie [University of Antwerpen (Ukraine), Laboratory of Adsorption and Catalysis, Universiteitsplein 1, 2610 Wilrijk (Belgium)

    2012-02-15

    Graphical abstract: The stability (hydrothermal, mechanical and chemical) of PMOs is studied in a systematic way and ranks them between classic and other hybrid mesoporous silica materials. Highlights: Black-Right-Pointing-Pointer The stability (hydrothermal, mechanical and chemical) of PMOs is studied. Black-Right-Pointing-Pointer Compared stability of PMOs with classic and other hybrid mesoporous silica materials. Black-Right-Pointing-Pointer Immersion calorimetry to study the effect of hydrophobicity. Black-Right-Pointing-Pointer PMOs show superior stability. - Abstract: The hydrothermal, mechanical and chemical stability of various mesoporous materials have been studied in detail, using X-ray diffraction and nitrogen sorption. Pure siliceous nanoporous powders (MCM-41 and SBA-15) are evaluated against their hybrid counterparts; namely 2 types of periodic mesoporous organosilicas (benzene and ethane bridged PMOs) and an organosilane grafted MCM-41 material. In primary tests, the stability of the hybrid materials is found to be superior compared to that of the pure siliceous ones. The stability of the materials was correlated to their hydrophobicity via immersion calorimetry, applied for the first time in this context. Based on these results, a clear correlation between the hydrophobicity of a material and its stability has been revealed. In addition, with {sup 29}Si-MAS-NMR and vacuum experiments, the mechanism of the structural deterioration in the three different stability treatments could be unambiguously identified as the hydrolyzation of the siloxane bonds. The homogeneity of the hydrophobic groups throughout the entire network was found to be of great importance, irrespective of the hydrophobic nature at the surface as determined by calorimetric measurements. The results reveal that the most stable material can withstand (a) a pressure of 740 MPa during 5 min, (b) a 2 h stirring in a 2 M NaOH solution and (c) a 3 day steaming treatment at 393 K.

  11. A modified parallel artificial membrane permeability assay for evaluating the bioconcentration of highly hydrophobic chemicals in fish.

    Science.gov (United States)

    Kwon, Jung-Hwan; Escher, Beate I

    2008-03-01

    Low cost in vitro tools are needed at the screening stage of assessment of bioaccumulation potential of new and existing chemicals because the number of chemical substances that needs to be tested highly exceeds the capacity of in vivo bioconcentration tests. Thus, the parallel artificial membrane permeability assay (PAMPA) system was modified to predict passive uptake/ elimination rate in fish. To overcome the difficulties associated with low aqueous solubility and high membrane affinity of highly hydrophobic chemicals, we measured the rate of permeation from the donor poly(dimethylsiloxane)(PDMS) disk to the acceptor PDMS disk through aqueous and PDMS membrane boundary layers and term the modified PAMPA system "PDMS-PAMPA". Twenty chemicals were selected for validation of PDMS-PAMPA. The measured permeability is proportional to the passive elimination rate constant in fish and was used to predict the "minimum" in vivo elimination rate constant. The in vivo data were very close to predicted values except for a few polar chemicals and metabolically active chemicals, such as pyrene and benzo[a]pyrene. Thus, PDMS-PAMPA can be an appropriate in vitro system for nonmetabolizable chemicals. Combination with metabolic clearance rates using a battery of metabolic degradation assays would enhance the applicability for metabolizable chemicals.

  12. Secondary environmental impacts of remedial alternatives for sediment contaminated with hydrophobic organic contaminants.

    Science.gov (United States)

    Choi, Yongju; Thompson, Jay M; Lin, Diana; Cho, Yeo-Myoung; Ismail, Niveen S; Hsieh, Ching-Hong; Luthy, Richard G

    2016-03-05

    This study evaluates secondary environmental impacts of various remedial alternatives for sediment contaminated with hydrophobic organic contaminants using life cycle assessment (LCA). Three alternatives including two conventional methods, dredge-and-fill and capping, and an innovative sediment treatment technique, in-situ activated carbon (AC) amendment, are compared for secondary environmental impacts by a case study for a site at Hunters Point Shipyard, San Francisco, CA. The LCA results show that capping generates substantially smaller impacts than dredge-and-fill and in-situ amendment using coal-based virgin AC. The secondary impacts from in-situ AC amendment can be reduced effectively by using recycled or wood-based virgin AC as production of these materials causes much smaller impacts than coal-based virgin AC. The secondary environmental impacts are highly sensitive to the dredged amount and the distance to a disposal site for dredging, the capping thickness and the distance to the cap materials for capping, and the AC dose for in-situ AC amendment. Based on the analysis, this study identifies strategies to minimize secondary impacts caused by different remediation activities: optimize the dredged amount, the capping thickness, or the AC dose by extensive site assessments, obtain source materials from local sites, and use recycled or bio-based AC. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Stabilization by hydrophobic protection as a molecular mechanism for organic carbon sequestration in maize-amended rice paddy soils.

    Science.gov (United States)

    Song, X Y; Spaccini, R; Pan, G; Piccolo, A

    2013-08-01

    The hydrophobic components of soil organic matter (SOM) are reckoned to play an important role in the stabilization of soil organic carbon (SOC). The contribution of hydrophobic substances to SOC sequestration was evaluated in four different paddy soils in the South of China, following a 6-month incubation experiment with maize straw amendments. Soil samples included: a well developed paddy soil (TP) derived from clayey lacustrine deposits in the Tai Lake plain of Jiangsu; an acid clayey paddy soil (RP) derived from red earth in the rolling red soil area of Jiangxi; a weakly developed neutral paddy soil (PP) formed on Jurassic purple shale from Chongq; and a calcic Fluvisol (MS) derived from riverine sediments from a wetland along the Yangtze valley of Anhui, China. The SOC molecular composition after 30 and 180 days of incubation, was determined by off-line thermochemolysis followed by gas chromatography-mass spectrometry analysis. Lignin, lipids and carbohydrates were the predominant thermochemolysis products released from the treated soils. A selective preservation of hydrophobic OM, including lignin and lipids, was shown in maize amended soils with prolonged incubation. The decomposition of lignin and lipids was significantly slower in the TP and RP soils characterized by a larger content of extractable iron oxyhydrates (Fed) and lower pH. The overall increase in hydrophobic substances in maize incubated samples was correlated, positively, with total content of clay and Fed, and, negatively, with soil pH. Moreover, yields of both lignin and lipid components showed a significant relationship with SOC increase after incubation. These findings showed that the larger the lipid and lignin content of SOM, the greater was the stability of SOC, thereby suggesting that OM hydrophobic components may have an essential role in controlling the processes of OC sequestration in paddy soils of South China. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Biotoxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system.

    Science.gov (United States)

    Pan, Tao; Liu, Chunyan; Zeng, Xinying; Xin, Qiao; Xu, Meiying; Deng, Yangwu; Dong, Wei

    2017-06-01

    A recent work has shown that hydrophobic organic compounds solubilized in the micelle phase of some nonionic surfactants present substrate toxicity to microorganisms with increasing bioavailability. However, in cloud point systems, biotoxicity is prevented, because the compounds are solubilized into a coacervate phase, thereby leaving a fraction of compounds with cells in a dilute phase. This study extends the understanding of the relationship between substrate toxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system. Biotoxicity experiments were conducted with naphthalene and phenanthrene in the presence of mixed nonionic surfactants Brij30 and TMN-3, which formed a micelle phase or cloud point system at different concentrations. Saccharomyces cerevisiae, unable to degrade these compounds, was used for the biotoxicity experiments. Glucose in the cloud point system was consumed faster than in the nonionic surfactant micelle phase, indicating that the solubilized compounds had increased toxicity to cells in the nonionic surfactant micelle phase. The results were verified by subsequent biodegradation experiments. The compounds were degraded faster by PAH-degrading bacterium in the cloud point system than in the micelle phase. All these results showed that biotoxicity of the hydrophobic organic compounds increases with bioavailability in the surfactant micelle phase but remains at a low level in the cloud point system. These results provide a guideline for the application of cloud point systems as novel media for microbial transformation or biodegradation.

  15. BRACHIAL EFFLUX OF HYDROPHOBIC ORGANIC COMPOUNDS BY RAINBOW TROUT (ONCORHYNCHUS MYKISS)

    Science.gov (United States)

    Data on the branchial elimination of hydrophobic compounds has been suggested as key information in the development of PBTK models for fish. The hypothesis is that branchial efflux of high log Kow compounds proceeds to an equilibrium between the afferent blood and expired water. ...

  16. BRANCHIAL EFFLUX OF HYDROPHOBIC ORGANIC COMPOUNDS BY RAINBOW TROUT (ONCORHYNCHUS MYKISS)

    Science.gov (United States)

    Development of PBTK models for fish has been impededd by a lack of data on the branchial elimination of hydrophobic compounds. The hypothesis is that branchial efflux of high log Kow compounds proceeds to an equilibrium between the afferent blood and expired water. Branchial effl...

  17. Assessment of PDMS-water partition coefficients: implications for passive environmental sampling of hydrophobic organic compounds

    Science.gov (United States)

    DiFilippo, Erica L.; Eganhouse, Robert P.

    2010-01-01

    Solid-phase microextraction (SPME) has shown potential as an in situ passive-sampling technique in aquatic environments. The reliability of this method depends upon accurate determination of the partition coefficient between the fiber coating and water (Kf). For some hydrophobic organic compounds (HOCs), Kf values spanning 4 orders of magnitude have been reported for polydimethylsiloxane (PDMS) and water. However, 24% of the published data examined in this review did not pass the criterion for negligible depletion, resulting in questionable Kf values. The range in reported Kf is reduced to just over 2 orders of magnitude for some polychlorinated biphenyls (PCBs) when these questionable values are removed. Other factors that could account for the range in reported Kf, such as fiber-coating thickness and fiber manufacturer, were evaluated and found to be insignificant. In addition to accurate measurement of Kf, an understanding of the impact of environmental variables, such as temperature and ionic strength, on partitioning is essential for application of laboratory-measured Kf values to field samples. To date, few studies have measured Kf for HOCs at conditions other than at 20 degrees or 25 degrees C in distilled water. The available data indicate measurable variations in Kf at different temperatures and different ionic strengths. Therefore, if the appropriate environmental variables are not taken into account, significant error will be introduced into calculated aqueous concentrations using this passive sampling technique. A multiparameter linear solvation energy relationship (LSER) was developed to estimate log Kf in distilled water at 25 degrees C based on published physicochemical parameters. This method provided a good correlation (R2 = 0.94) between measured and predicted log Kf values for several compound classes. Thus, an LSER approach may offer a reliable means of predicting log Kf for HOCs whose experimental log Kf values are presently unavailable. Future

  18. Evaluating the Efficacy of a Low-Impact Delivery System for In situ Treatment of Sediments Contaminated with Methylmercury and Other Hydrophobic Chemicals

    Science.gov (United States)

    2016-02-01

    warfare research and development activities since 1917, including laboratory research, field testing, and pilot- and full-scale chemical materials...core liners. 5.6.3 Decontamination All re-useable sampling equipment used to collect samples for chemical analysis (i.e., spoons, trowels...and Other Hydrophobic Chemicals ESTCP Project ER-200835 FEBRUARY 2016 Charles Menzie Bennett Amos Susan Kane Driscoll Exponent Upal

  19. Determination of solute organic concentration in contaminated soils using a chemical-equilibrium soil column system

    DEFF Research Database (Denmark)

    Gamst, Jesper; Kjeldsen, Peter; Christensen, Thomas Højlund

    2007-01-01

    using two soils with different content of organic carbon (f(oc) of 1.5 and 6.5%, respectively). A quadruple blind test of the ER-V system using glass beads in stead of soil showed an acceptable recovery (65-85%) of all of the 11 VOCs tested. Only for the most volatile compound (heptane, K-H similar...... to 80) an unacceptable recovery was found (9%). The contact time needed for obtaining chemical equilibrium was tested in the ER-H system by performing five test with different duration (1, 2, 4, 7 and 19 days) using the low organic carbon soil. Seven days of contact time appeared sufficient...... for determination of solute concentration in a contaminated soil were developed; (1) a chemical Equilibrium and Recirculation column test for Volatile organic chemicals (ER-V) and (2) a chemical Equilibrium and Recirculation column test for Hydrophobic organic chemicals (ER-H). The two test systems were evaluated...

  20. Synthesis and toxicity evaluation of hydrophobic ionic liquids for volatile organic compounds biodegradation in a two-phase partitioning bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Castillo, Alfredo Santiago [Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7 (France); Université européenne de Bretagne (France); Guihéneuf, Solène, E-mail: solene.guiheneuf@wanadoo.fr [Université européenne de Bretagne, Université de Rennes 1, Sciences Chimiques de Rennes, UMR, CNRS 6226, Groupe Ingénierie Chimique & Molécules Pour le Vivant (ICMV), Bât. 10A, Campus de Beaulieu, Avenue du Général Leclerc, CS 74205, 35042 Rennes cedex (France); Le Guével, Rémy [Plate-forme ImPACcell Structure Fédérative de Recherche BIOSIT Université de Rennes 1, Bat. 8, Campus de Villejean, 2 Avenue du Pr. Leon Bernard, CS 34317, 35043 Rennes Cedex (France); Biard, Pierre-François [Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7 (France); Université européenne de Bretagne (France); and others

    2016-04-15

    Highlights: • Description of a VOC depollution system suitable with industrial processes, TPPB. • Novel association of TPPB and hydrophobic ionic liquids. • Synthesis of several hydrophobic ionic liquids designed to fit desired properties. • Toxicity evaluation of these ILs towards cells, animals and bacteria. - Abstract: Synthesis of several hydrophobic ionic liquids (ILs), which might be selected as good candidates for degradation of hydrophobic volatile organic compounds in a two-phase partitioning bioreactor (TPPB), were carried out. Several bioassays were also realized, such as toxicity evaluation on activated sludge and zebrafish, cytotoxicity, fluoride release in aqueous phase and biodegradability in order to verify their possible effects in case of discharge in the aquatic environment and/or human contact during industrial manipulation. The synthesized compounds consist of alkylimidazoliums, functionalized imidazoliums, isoqinoliniums, triazoliums, sulfoniums, pyrrolidiniums and morpholiniums and various counter-ions such as: PF{sub 6}{sup −}, NTf{sub 2}{sup −} and NfO{sup −}. Toxicity evaluation on activated sludge of each compound (5% v/v of IL) was assessed by using a glucose uptake inhibition test. Toxicity against zebrafish and cytotoxicity were evaluated by the ImPACCell platform of Rennes (France). Fluoride release in water was estimated by regular measurements using ion chromatography equipment. IL biodegradability was determined by measuring BOD{sub 28} of aqueous samples (compound concentration,1 mM). All ILs tested were not biodegradable; while some of them were toxic toward activated sludge. Isoquinolinium ILs were toxic to human cancerous cell lines. Nevertheless no toxicity was found against zebrafish Danio rerio. Only one IL released fluoride after long-time agitation.

  1. Synthesis and toxicity evaluation of hydrophobic ionic liquids for volatile organic compounds biodegradation in a two-phase partitioning bioreactor

    International Nuclear Information System (INIS)

    Rodriguez Castillo, Alfredo Santiago; Guihéneuf, Solène; Le Guével, Rémy; Biard, Pierre-François

    2016-01-01

    Highlights: • Description of a VOC depollution system suitable with industrial processes, TPPB. • Novel association of TPPB and hydrophobic ionic liquids. • Synthesis of several hydrophobic ionic liquids designed to fit desired properties. • Toxicity evaluation of these ILs towards cells, animals and bacteria. - Abstract: Synthesis of several hydrophobic ionic liquids (ILs), which might be selected as good candidates for degradation of hydrophobic volatile organic compounds in a two-phase partitioning bioreactor (TPPB), were carried out. Several bioassays were also realized, such as toxicity evaluation on activated sludge and zebrafish, cytotoxicity, fluoride release in aqueous phase and biodegradability in order to verify their possible effects in case of discharge in the aquatic environment and/or human contact during industrial manipulation. The synthesized compounds consist of alkylimidazoliums, functionalized imidazoliums, isoqinoliniums, triazoliums, sulfoniums, pyrrolidiniums and morpholiniums and various counter-ions such as: PF_6"−, NTf_2"− and NfO"−. Toxicity evaluation on activated sludge of each compound (5% v/v of IL) was assessed by using a glucose uptake inhibition test. Toxicity against zebrafish and cytotoxicity were evaluated by the ImPACCell platform of Rennes (France). Fluoride release in water was estimated by regular measurements using ion chromatography equipment. IL biodegradability was determined by measuring BOD_2_8 of aqueous samples (compound concentration,1 mM). All ILs tested were not biodegradable; while some of them were toxic toward activated sludge. Isoquinolinium ILs were toxic to human cancerous cell lines. Nevertheless no toxicity was found against zebrafish Danio rerio. Only one IL released fluoride after long-time agitation.

  2. Biodegradation testing of hydrophobic chemicals in mixtures at low concentrations – covering the chemical space of petroleum hydrocarbons

    DEFF Research Database (Denmark)

    Birch, Heidi; Hammershøj, Rikke Høst; Mayer, Philipp

    Petroleum products are complex mixtures of varying composition containing thousands of hydrocarbons each with their own physicochemical properties and degradation kinetics. One approach for risk assessment of these products is therefore to group the hydrocarbons by carbon number and chemical class...... i.e. hydrocarbon blocks. However, the biodegradation kinetic data varies in quantity and quality for the different hydrocarbon blocks, hampering the characterization of their fate properties. In this study, biodegradation kinetics of a large number of hydrocarbons aiming to cover the chemical space...... of petroleum hydrocarbons, were therefore determined at ng/L to µg/L concentrations in surface water, seawater and activated sludge filtrate. Two hydrocarbon mixtures were prepared, comprising a total of 53 chemicals including paraffins, naphthenics and aromatic hydrocarbons from C8 to C20. Passive dosing from...

  3. A flow-through passive dosing system for continuously supplying aqueous solutions of hydrophobic chemicals to bioconcentration and aquatic toxicity tests

    DEFF Research Database (Denmark)

    Adolfsson-Erici, Margaretha; Åkerman, Gun; Jahnke, Annika

    2012-01-01

    A continuous supply of water with defined stable concentrations of hydrophobic chemicals is a requirement in a range of laboratory tests such as the OECD 305 protocol for determining the bioconcentration factor in fish. Satisfying this requirement continues to be a challenge, particularly for hyd...

  4. Sorption of hydrophobic organic compounds to plastics in marine environments: Equilibrium

    NARCIS (Netherlands)

    Endo, S.; Koelmans, A.A.

    2016-01-01

    Marine plastics have shown to contain various environmental chemicals. For evaluating the potential of plastics to influence regional and global dynamics of these chemicals and to serve as a vector to marine biota, understanding of sorption and desorption of chemicals by plastics is important. In

  5. POLAR ORGANIC CHEMICAL INTEGRATIVE SAMPLING ...

    Science.gov (United States)

    The purpose of the research presented in this paper is two-fold: (1) to demonstrate the 4 coupling of two state-of-the-art techniques: a time-weighted polar organic integrative sampler (POCIS) and micro-liquid chromatography-electrospray/ion trap mass spectrometry (u-LC-6 ES/ITMS); and (2) the assessment of these methodologies in a real-world environment -wastewater effluent - for detecting six drugs (four prescription and two illicit). In the effluent from three wastewater treatment plants (WWTP), azithromycin was detected at concentrations ranging from 15ng/L to 66ng/L, equivalent to the total annual release of 0.4 -4 kg into the receiving waters. Detected and confirmed in the effluent from two WWTPs were two illicit drugs methamphetamine and methylenedioxymethamphetamine (MDMA), at 2ng/L and 0.5ng/L, respectively. While the ecotoxicological significance of drugs in environmental matrices, particularly water, has not been closely examined, it can only be surmised that these substances have the potential to adversely affect biota that are continuously exposed to them even at very low levels. The potential for chronic affects on human health is also unknown, but of increasing concern due to the multi use character of water, particularly in densely populated arid areas. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality

  6. Influence of lecithin-lipid composition on physico-chemical properties of nanoliposomes loaded with a hydrophobic molecule.

    Science.gov (United States)

    Bouarab, Lynda; Maherani, Behnoush; Kheirolomoom, Azadeh; Hasan, Mahmoud; Aliakbarian, Bahar; Linder, Michel; Arab-Tehrany, Elmira

    2014-03-01

    In this work, we studied the effect of nanoliposome composition based on phospholipids of docosahexaenoic acid (PL-DHA), salmon and soya lecithin, on physico-chemical characterization of vector. Cinnamic acid was encapsulated as a hydrophobic molecule in nanoliposomes made of three different lipid sources. The aim was to evaluate the influence of membrane lipid structure and composition on entrapment efficiency and membrane permeability of cinnamic acid. These properties are important for active molecule delivery. In addition, size, electrophoretic mobility, phase transition temperature, elasticity and membrane fluidity were measured before and after encapsulation. The results showed a correlation between the size of the nanoliposome and the entrapment. The entrapment efficiency of cinnamic acid was found to be the highest in liposomes prepared from salmon lecithin. The nanoliposomes composed of salmon lecithin presented higher capabilities as a carrier for cinnamic acid encapsulation. These vesicles also showed a high stability which in turn increases the membrane rigidity of nanoliposome as evaluated by their elastic properties, membrane fluidity and phase transition temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Evaluation of Simple Treat 3.0 for two hydrophobic and slowly biodegradable chemicals: Polycyclic musks HHCB and AHTN

    NARCIS (Netherlands)

    Artola-Garicano, E.; Hermens, J.L.M.; Vaes, W.H.J.

    2003-01-01

    In the current study, predictions by Simple Treat 3.0, a fate model for organic chemicals in sewage treatment plants (STPs), are compared with actual measurements in three STPs. Two polycyclic musks, Tonalide® (AHTN) and Galaxolide® (HHCB), were used for model evaluation. Results show that Simple

  8. Effect of Heterogeneous Chemical Reactions on the Köhler Activation of Aqueous Organic Aerosols.

    Science.gov (United States)

    Djikaev, Yuri S; Ruckenstein, Eli

    2018-05-03

    We study some thermodynamic aspects of the activation of aqueous organic aerosols into cloud droplets considering the aerosols to consist of liquid solution of water and hydrophilic and hydrophobic organic compounds, taking into account the presence of reactive species in the air. The hydrophobic (surfactant) organic molecules on the surface of such an aerosol can be processed by chemical reactions with some atmospheric species; this affects the hygroscopicity of the aerosol and hence its ability to become a cloud droplet either via nucleation or via Köhler activation. The most probable pathway of such processing involves atmospheric hydroxyl radicals that abstract hydrogen atoms from hydrophobic organic molecules located on the aerosol surface (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). These two reactions play a crucial role in the enhancement of the Köhler activation of the aerosol and its evolution into a cloud droplet. Taking them and a third reaction (next in the multistep chain of relevant heterogeneous reactions) into account, one can derive an explicit expression for the free energy of formation of a four-component aqueous droplet on a ternary aqueous organic aerosol as a function of four independent variables of state of a droplet. The results of numerical calculations suggest that the formation of cloud droplets on such (aqueous hydrophilic/hydrophobic organic) aerosols is most likely to occur as a Köhler activation-like process rather than via nucleation. The model allows one to determine the threshold parameters of the system necessary for the Köhler activation of such aerosols, which are predicted to be very sensitive to the equilibrium constant of the chain of three heterogeneous reactions involved in the chemical aging of aerosols.

  9. Critical Reflections on the Hydrophobic Effect, its Origins and Manifestation: Water Structure, Chemical Reactivity, Micelles and Gels.

    Directory of Open Access Journals (Sweden)

    Sosale Chandrasekhar

    2017-09-01

    Full Text Available The origins of the Hydrophobic Effect (HE, its biological significance and its experimental basis are critically addressed in this brief review. It is argued that the mechanistic work reported on the HE in recent decades needs to be reassessed, as its conclusions are apparently debatable. Essentially, it is highly inaccurate to view the HE as a repulsive interaction, which is rather an attractive one. It appears inevitable that the HE is indeed a manifestation of the perturbation of the structure of water upon the introduction of hydrocarbon molecules into its interior. There appears to be no other satisfactory explanation for the formation of micellar aggregates and the existence of the critical micelle concentration. Also, the practical significance of the HE on the reactivity of organic compounds (e.g. cycloadditions is severely limited by their minuscule solubility levels, itself a manifestation of the HE! Other related phenomena apparently include the formation of gels and the occurrence of certain esterification reactions in water, which are briefly reviewed from a conceptual viewpoint.

  10. New insights into the interactions between cork chemical components and pesticides. The contribution of π-π interactions, hydrogen bonding and hydrophobic effect.

    Science.gov (United States)

    Olivella, M À; Bazzicalupi, C; Bianchi, A; Fiol, N; Villaescusa, I

    2015-01-01

    The role of chemical components of cork in the sorption of several pesticides has been investigated. For this purpose raw cork and three cork extracted fractions (i.e. cork free of aliphatic extractives, cork free of all extractives and cork free of all extractives and suberin) were used as sorbent of three ionic pesticides (propazine, 2,4-dichlorophenoxy acetic acid (2,4-D) and alachlor) and five non-ionic pesticides (chlorpyrifos, isoproturon, metamitron, methomyl and oxamyl) with a logKow within the range -0.47 to 4.92. The effect of cations on the ionic pesticides, propazine and 2,4-D sorption was also analyzed. Results indicated that the highest yields were obtained for chlorpyrifos and alachlor sorption onto raw cork (>55%). After removal of aliphatic extractives sorption of all pesticides increased that ranged from 3% for propazine to 31% for alachlor. In contrast, removal of phenolic extractives caused a sorption decrease. Low sorption yields were obtained for hydrophobic pesticides such as metamitron, oxamyl and methomyl (cork fractions and extremely low when using raw cork (cork toward aromatic pesticides. Results presented in this paper gain insights into the cork affinities for pesticides and the interactions involved in the sorption process and also enables to envisage sorption affinity of cork for other organic pollutants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Micelle swelling agent derived cavities for increasing hydrophobic organic compound removal efficiency by mesoporous micelle@silica hybrid materials

    KAUST Repository

    Shi, Yifeng

    2012-06-01

    Mesoporous micelle@silica hybrid materials with 2D hexagonal mesostructures were synthesized as reusable sorbents for hydrophobic organic compounds (HOCs) removal by a facile one-step aqueous solution synthesis using 3-(trimethoxysily)propyl-octadecyldimethyl-ammonium chloride (TPODAC) as a structure directing agent. The mesopores were generated by adding micelle swelling agent, 1,3,5-trimethyl benzene, during the synthesis and removing it afterward, which was demonstrated to greatly increase the HOC removal efficiency. In this material, TPODAC surfactant is directly anchored on the pore surface of mesoporous silica via SiOSi covalent bond after the synthesis due to its reactive Si(OCH 3) 3 head group, and thus makes the synthesized materials can be easily regenerated for reuse. The obtained materials show great potential in water treatment as pollutants sorbents. © 2011 Elsevier Inc. All rights reserved.

  12. Obtention of selective membranes for water and hydrophobic liquids by plasma enhanced chemical vapor deposition on porous substrates

    International Nuclear Information System (INIS)

    Bankovic, P.; Demarquette, N.R.; Silva, M.L.P. da

    2004-01-01

    In this work, the possibility of obtaining selective membranes for water and hydrophobic liquids by plasma enhanced chemical vapor deposition (PECVD) of hexamethyldisilazane (HMDS) or double layers of HMDS and n-hexane on porous substrates using a capacitive plasma reactor was investigated. The porous substrates used were paper filter, diatomite and polyester textiles. The films were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and contact angle measurements. The membranes obtained were characterized by the Cobb test. Their efficiency to separate hydrocarbon compounds from water was evaluated through filtration experiments and Karl-Fischer titration tests. The reagents used in the filtration experiments were: chloroform, n-hexane, n-heptane, ethyl ether, benzene and diesel. XPS analysis showed that Si, N, C and O were present at the surface of the film. C peak was dominant in the double layer film spectra. C-H n , CH 2 , Si-H, Si-CH 3 , N-H, Si-CH 2 -Si, Si-N-Si and Si-C bonds were identified in both types of the films by ATR-FTIR. The relative intensities of the corresponding peaks in the two spectra were different. The XPS and FTIR results indicated that C was most likely present in a CH n form at the surface of double layer film. The average contact angles formed by drops of water on the film surface ranged from 135 deg. to 155 deg. . Water adsorption measured by Cobb test decreased from average values ranging from 300 to 9000 g m -2 (for nonmodified surfaces) to values ranging from 0 to 20 g m -2 (for treated surfaces). The Karl-Fischer titration indicated that between 90 and 1000 ppm (depending on the reagent used) of water remained in the hydrocarbon compound after filtration

  13. The mechanism study of efficient degradation of hydrophobic nonylphenol in solution by a chemical-free technology of sonophotolysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L.J.; Chu, W., E-mail: cewchu@polyu.edu.hk; Lee, Po-Heng; Wang, Jian

    2016-05-05

    Highlights: • pH influenced NP sonophotolysis by changing its existing form and light absorption. • NO{sub 3}{sup −} accelerated NP sonophotolysis while HCO{sub 3}{sup −} showed insignificant influence. • Both ortho- and meta-hydroxy-NP species can exist together thermodynamically. • Only the ortho-4-nonyl-benzoquinone is dominant thermodynamically. • The mechanism of ortho-hydroxy-NP formation was the addition of HO· and H· - Abstract: Nonylphenol is a hydrophobic endocrine disrupting compound, which can inhibit the growth of sewage bacteria in biological processes. This study investigated the degradation of 4-n-nonylphenol (NP) in water by a chemical-free technology of sonophotolysis with emphasis on the impacts of several important parameters, including light intensity, solution pH, two commonly seen inorganic ions (i.e. NO{sub 3}{sup −} and HCO{sub 3}{sup −}), and principally on the examination of degradation mechanisms. It was found that, solution pH could significantly influence both NP degradation efficiency and the synergistic effect of sonophotolytic process, where higher synergistic effect was obtained at more acidic condition. In addition, the presence of NO{sub 3}{sup −} accelerated NP degradation by both acting as a photosensitizer and providing NO{sub 2}· radicals, while HCO{sub 3}{sup −} had little effect on NP degradation. Identification of intermediates of NP degradation indicated that NP sonophotolysis was mainly initiated by the formation of hydroxy-NP, and a new intermediate di-hydroxy-NP was identified for the first time ever in this study. Through thermodynamic analysis, results indicated that both ortho- and meta-hydroxy-NP species can coexist in the solution but the ortho-4-NBZQ (4-nonyl-benzoquinone) is dominant. In addition, the mechanism of ortho-hydroxy-NP formation was suggested by the addition of HO· and H· radicals.

  14. Interphase Mobility and Migration of Hydrophobic Organic Metal Extractant Molecules in Solvent Impregnated Resins

    Czech Academy of Sciences Publication Activity Database

    Warshawsky, A.; Strikovsky, A. G.; Vilensky, M. Y.; Jeřábek, Karel

    2002-01-01

    Roč. 37, č. 11 (2002), s. 2607-2622 ISSN 0149-6395 R&D Projects: GA ČR GA104/96/0582 Grant - others:AID(US) 013-085 Keywords : polymers * reagents Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.779, year: 2002

  15. Co-exposure with fullerene may strengthen health effects of organic industrial chemicals.

    Directory of Open Access Journals (Sweden)

    Maili Lehto

    Full Text Available In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C60 and organic chemicals represent different co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C60 that is more cytotoxic than benzaldehyde alone, and for a filtered mixture of m-cresol and C60 that is slightly less cytotoxic than m-cresol. Hydrophobicity of chemicals correlates with co-effects when secretion of pro-inflammatory cytokines IL-1β and TNF-α is considered. Complementary atomistic molecular dynamics simulations reveal that C60 co-aggregates with all chemicals in aqueous environment. Stable aggregates have a fullerene-rich core and a chemical-rich surface layer, and while essentially all C60 molecules aggregate together, a portion of organic molecules remains in water.

  16. Computing chemical organizations in biological networks.

    Science.gov (United States)

    Centler, Florian; Kaleta, Christoph; di Fenizio, Pietro Speroni; Dittrich, Peter

    2008-07-15

    Novel techniques are required to analyze computational models of intracellular processes as they increase steadily in size and complexity. The theory of chemical organizations has recently been introduced as such a technique that links the topology of biochemical reaction network models to their dynamical repertoire. The network is decomposed into algebraically closed and self-maintaining subnetworks called organizations. They form a hierarchy representing all feasible system states including all steady states. We present three algorithms to compute the hierarchy of organizations for network models provided in SBML format. Two of them compute the complete organization hierarchy, while the third one uses heuristics to obtain a subset of all organizations for large models. While the constructive approach computes the hierarchy starting from the smallest organization in a bottom-up fashion, the flux-based approach employs self-maintaining flux distributions to determine organizations. A runtime comparison on 16 different network models of natural systems showed that none of the two exhaustive algorithms is superior in all cases. Studying a 'genome-scale' network model with 762 species and 1193 reactions, we demonstrate how the organization hierarchy helps to uncover the model structure and allows to evaluate the model's quality, for example by detecting components and subsystems of the model whose maintenance is not explained by the model. All data and a Java implementation that plugs into the Systems Biology Workbench is available from http://www.minet.uni-jena.de/csb/prj/ot/tools.

  17. Concentration and Distribution of Hydrophobic Organic Contaminants and Metals in the Estuaries of Ukraine

    Science.gov (United States)

    In this baseline study of Ukrainian estuaries, sediments and organisms from the Dnieper and Boh estuaries and Danube Delta on the mainland, Sevastopol and Balaklava Bays on the Crimean Peninsula, and coastal Black Sea along the Crimean Peninsula were collected in 2006. Contamina...

  18. Surface analysis of selected hydrophobic materials

    Science.gov (United States)

    Wisniewska, Sylwia Katarzyna

    This dissertation contains a series of studies on hydrophobic surfaces by various surface sensitive techniques such as contact angle measurements, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Hydrophobic surfaces have been classified as mineral surfaces, organic synthetic surfaces, or natural biological surfaces. As a model hydrophobic mineral surface, elemental sulfur has been selected. The sulfur surface has been characterized for selected allotropic forms of sulfur such as rhombic, monoclinic, plastic, and cyclohexasulfur. Additionally, dextrin adsorption at the sulfur surface was measured. The structure of a dextrin molecule showing hydrophobic sites has been presented to support the proposed hydrophobic bonding nature of dextrin adsorption at the sulfur surface. As a model organic hydrophobic surface, primary fatty amines such as dodecylamine, hexadecylamine, and octadecylamine were chosen. An increase of hydrophobicity, significant changes of infrared bands, and surface topographical changes with time were observed for each amine. Based on the results it was concluded that hydrocarbon chain rearrangement associated with recrystallization took place at the surface during contact with air. A barley straw surface was selected as a model of biological hydrophobic surfaces. The differences in the contact angles for various straw surfaces were explained by the presence of a wax layer. SEM images confirmed the heterogeneity and complexity of the wax crystal structure. AFM measurements provided additional structural details including a measure of surface roughness. Additionally, straw degradation as a result of conditioning in an aqueous environment was studied. Significant contact angle changes were observed as soon as one day after conditioning. FTIR studies showed a gradual wax layer removal due to straw surface decomposition. SEM and AFM images revealed topographical changes and biological

  19. Molecular-Level Thermodynamic Switch Controls Chemical Equilibrium in Sequence-Specific Hydrophobic Interaction of 35 Dipeptide Pairs

    OpenAIRE

    Chun, Paul W.

    2003-01-01

    Applying the Planck-Benzinger methodology, the sequence-specific hydrophobic interactions of 35 dipeptide pairs were examined over a temperature range of 273–333 K, based on data reported by Nemethy and Scheraga in 1962. The hydrophobic interaction in these sequence-specific dipeptide pairs is highly similar in its thermodynamic behavior to that of other biological systems. The results imply that the negative Gibbs free energy change minimum at a well-defined stable temperature, 〈Ts〉, where t...

  20. Micropore clogging by leachable pyrogenic organic carbon: A new perspective on sorption irreversibility and kinetics of hydrophobic organic contaminants to black carbon.

    Science.gov (United States)

    Wang, Bingyu; Zhang, Wei; Li, Hui; Fu, Heyun; Qu, Xiaolei; Zhu, Dongqiang

    2017-01-01

    Black carbon (BC) plays a crucial role in sequestering hydrophobic organic contaminants in the environment. This study investigated key factors and mechanisms controlling nonideal sorption (e.g., sorption irreversibility and slow kinetics) of model hydrophobic organic contaminants (nitrobenzene, naphthalene, and atrazine) by rice-straw-derived BC. After removing the fraction of leachable pyrogenic organic carbon (LPyOC) (referring to composites of dissoluble non-condensed organic carbon and associated mineral components) with deionized water or 0.5 M NaOH, sorption of these sorbates to BC was enhanced. The sorption enhancement was positively correlated with sorbate molecular size in the order of atrazine > naphthalene > nitrobenzene. The removal of LPyOC also accelerated sorption kinetics and reduced sorption irreversibility. These observations were attributed to increased accessibility of BC micropores initially clogged by the LPyOC. Comparison of BC pore size distributions before and after atrazine sorption further suggested that the sorbate molecules preferred to access the micropores that were more open, and the micropore accessibility was enhanced by the removal of LPyOC. Consistently, the sorption of nitrobenzene and atrazine to template-synthesized mesoporous carbon (CMK3), a model sorbent with homogeneous pore structures, showed decreased kinetics, but increased irreversibility by impregnating sorbent pores with surface-grafted alkylamino groups and by subsequent loading of humic acid. These findings indicated an important and previously unrecognized role of LPyOC (i.e., micropore clogging) in the nonideal sorption of organic contaminants to BC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Influences of binding to dissolved organic matter on hydrophobic organic compounds in a multi-contaminant system: Coefficients, mechanisms and ecological risks.

    Science.gov (United States)

    Li, Yi-Long; He, Wei; Liu, Wen-Xiu; Kong, Xiang-Zhen; Yang, Bin; Yang, Chen; Xu, Fu-Liu

    2015-11-01

    The complexation flocculation (CF) method was successfully employed to identify binding coefficients (Kdoc) of specific organic contaminants to dissolved organic matter (DOM, often indicated by dissolved organic carbon, DOC) in a multi-contaminant hydrophobic organic contaminant (HOC) system. Kdoc values were obtained for most of the evaluated 33 HOCs, indicating the feasibility and applicability of the CF method in a multi-contaminant system. Significant positive correlations were observed between binding coefficients and octanol-water partition coefficients (Kow) for organic halogen compounds, such as polybrominated diphenyl ethers (PBDEs) (R(2) = 0.95, p mechanisms between PAHs and organic halogen compounds exist. These differences further result in discriminative competition partitions of HOCs between DOM and organisms. Assuming that only freely dissolved HOCs are bioconcentrative, the results of DOM-influenced bioconcentration factor (BCFDOM) and DOM-influenced lowest observed effect level (LOELDOM) indicate that the ecological risk of HOCs is decreased by DOM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Engineering durable hydrophobic surfaces on porous alumina ceramics using in-situ formed inorganic-organic hybrid nanoparticles

    NARCIS (Netherlands)

    Gu, Jianqiang; Wang, Junwei; Li, Yanan; Xu, Xin; Chen, Chusheng; Winnubst, Louis

    2017-01-01

    Hydrophobic surfaces are required for a variety of applications owing to their water repellent and self-cleaning properties. In this work, we present a novel approach to prepare durable hydrophobic surfaces on porous ceramics. A polydimethylsiloxane (PDMS) film was applied to a porous alumina wafer,

  3. The role of organic matter in the removal of emerging trace organic chemicals during managed aquifer recharge.

    Science.gov (United States)

    Rauch-Williams, T; Hoppe-Jones, C; Drewes, J E

    2010-01-01

    This study explored the effect of different bulk organic carbon matrices on the fate of trace organic chemicals (TOrC) during managed aquifer recharge (MAR). Infiltration through porous media was simulated in biologically active column experiments under aerobic and anoxic recharge conditions. Wastewater effluent derived organic carbon types, differing in hydrophobicity and biodegradability (i. e., hydrophobic acids, hydrophilic carbon, organic colloids), were used as feed substrates in the column experiments. These carbon substrates while fed at the same concentration differed in their ability to support soil biomass growth during porous media infiltration. Removal of degradable TOrC (with the exception of diclofenac and propyphenazone) was equal or better under aerobic versus anoxic porous media infiltration conditions. During the initial phase of infiltration, the presence of biodegradable organic carbon (BDOC) enhanced the decay of degradable TOrC by promoting soil biomass growth, suggesting that BDOC served as a co-substrate in a co-metabolic transformation of these contaminants. However, unexpected high removal efficiencies were observed for all degradable TOrC in the presence of low BDOC concentrations under well adopted oligotrophic conditions. It is hypothesized that removal under these conditions is caused by a specialized microbial community growing on refractory carbon substrates such as hydrophobic acids. Findings of this study reveal that the concentration and character of bulk organic carbon present in effluents affect the degradation efficiency for TOrC during recharge operation. Specifically aerobic, oligotrophic microbiological soil environments present favorable conditions for the transformation of TOrC, including rather recalcitrant compounds such as chlorinated flame retardants. (c) 2009 Elsevier Ltd. All rights reserved.

  4. Experimental Investigation Of Microbially Induced Corrosion Of Test Samples And Effect Of Self-assembled Hydrophobic Monolayers. Exposure Of Test Samples To Continuous Microbial Cultures, Chemical Analysis, And Biochemical Studies

    CERN Document Server

    Laurinavichius, K S

    1998-01-01

    Experimental Investigation Of Microbially Induced Corrosion Of Test Samples And Effect Of Self-assembled Hydrophobic Monolayers. Exposure Of Test Samples To Continuous Microbial Cultures, Chemical Analysis, And Biochemical Studies

  5. TMVOC, simulator for multiple volatile organic chemicals

    International Nuclear Information System (INIS)

    Pruess, Karsten; Battistelli, Alfredo

    2003-01-01

    TMVOC is a numerical simulator for three-phase non-isothermal flow of water, soil gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. It is an extension of the TOUGH2 general-purpose simulation program developed at the Lawrence Berkeley National Laboratory. TMVOC is designed for applications to contamination problems that involve hydrocarbon fuel or organic solvent spills in saturated and unsaturated zones. It can model contaminant behavior under ''natural'' environmental conditions, as well as for engineered systems, such as soil vapor extraction, groundwater pumping, or steam-assisted source remediation. TMVOC is upwards compatible with T2VOC (Falta et al., 1995) and can be initialized from T2VOC-style initial conditions. The main enhancements in TMVOC relative to T2VOC are as follows: a multicomponent mixture of volatile organic chemicals can be modeled; any and all combinations of the three phases water-oil-gas are treated; several non-condensible gases may be present; diffusion is treated in all phases in a manner that is fully coupled with phase partitioning. This paper gives a brief summary of the methodology used in TMVOC as well as highlighting some implementation issues. Simulation of a NAPL spill and subsequent remediation is discussed for a 2-D vertical section of a saturated-unsaturated flow problem

  6. Tidal influence on the distribution of hydrophobic organic contaminants in the Seine Estuary and biomarker responses on the copepod Eurytemora affinis

    Energy Technology Data Exchange (ETDEWEB)

    Cailleaud, K. [Universite Bordeaux 1, CNRS, ISM-LPTC-UMR 5255, Laboratory of Physico- and Toxico-Chemistry, 351 Cours de la Liberation, 33405 Talence (France) and Universite des Sciences et Technologies de Lille - Lille 1, Laboratoire d' Oceanologie et de Geosciences, UMR CNRS 8187 LOG, Station Marine de Wimereux, 28 Avenue Foch, 62930 Wimereux (France) and Faculte des Sciences et Techniques du Havre, LEMA-UPRES EA3222, Laboratoire d' Ecotoxicologie-Milieux Aquatiques, GDR IMOPHYS, 25 rue Philippe Lebon, 76058 Le Havre (France); Forget-Leray, J. [Faculte des Sciences et Techniques du Havre, LEMA-UPRES EA3222, Laboratoire d' Ecotoxicologie-Milieux Aquatiques, GDR IMOPHYS, 25 rue Philippe Lebon, 76058 Le Havre (France); Peluhet, L.; LeMenach, K. [Universite Bordeaux 1, CNRS, ISM-LPTC-UMR 5255, Laboratory of Physico- and Toxico-Chemistry, 351 Cours de la Liberation, 33405 Talence (France); Souissi, S. [Universite des Sciences et Technologies de Lille - Lille 1, Laboratoire d' Oceanologie et de Geosciences, UMR CNRS 8187 LOG, Station Marine de Wimereux, 28 Avenue Foch, 62930 Wimereux (France); Budzinski, H. [Universite Bordeaux 1, CNRS, ISM-LPTC-UMR 5255, Laboratory of Physico- and Toxico-Chemistry, 351 Cours de la Liberation, 33405 Talence (France)], E-mail: h.budzinski@ism.u-bordeaux1.fr

    2009-01-15

    To elucidate tidally related variations of hydrophobic organic contaminant (HOC) bioavailability and the impact of these contaminants on estuarine ecosystems, both PCB and PAH concentrations were investigated in the dissolved phase and in the suspended particulate material (SPM) of the Seine Estuary. Both PAH and PCB highest levels were observed in surface and bottom water when SPM remobilizations were maximum, in relation to higher speed currents. In parallel, acetylcholinesterase (AChE) and glutathione-S-transferase (GST) activities were investigated in the copepod Eurytemora affinis. Significant decreasing AChE levels were measured during the tidal cycle and between surface and bottom copepods related to salinity and to HOC concentration variations. Significant increasing GST levels were also observed when HOC concentrations in the water column were the highest. This study underlined the need to standardize sampling procedures for biomonitoring studies in order to avoid interfering factors that could modify biomarker responses to chemical exposure. - Variations of contamination of E. affinis and enzymatic responses have been studied over a tide cycle in view to improve the use of this copepod for biomonitoring.

  7. Tidal influence on the distribution of hydrophobic organic contaminants in the Seine Estuary and biomarker responses on the copepod Eurytemora affinis

    International Nuclear Information System (INIS)

    Cailleaud, K.; Forget-Leray, J.; Peluhet, L.; LeMenach, K.; Souissi, S.; Budzinski, H.

    2009-01-01

    To elucidate tidally related variations of hydrophobic organic contaminant (HOC) bioavailability and the impact of these contaminants on estuarine ecosystems, both PCB and PAH concentrations were investigated in the dissolved phase and in the suspended particulate material (SPM) of the Seine Estuary. Both PAH and PCB highest levels were observed in surface and bottom water when SPM remobilizations were maximum, in relation to higher speed currents. In parallel, acetylcholinesterase (AChE) and glutathione-S-transferase (GST) activities were investigated in the copepod Eurytemora affinis. Significant decreasing AChE levels were measured during the tidal cycle and between surface and bottom copepods related to salinity and to HOC concentration variations. Significant increasing GST levels were also observed when HOC concentrations in the water column were the highest. This study underlined the need to standardize sampling procedures for biomonitoring studies in order to avoid interfering factors that could modify biomarker responses to chemical exposure. - Variations of contamination of E. affinis and enzymatic responses have been studied over a tide cycle in view to improve the use of this copepod for biomonitoring

  8. Influences of binding to dissolved organic matter on hydrophobic organic compounds in a multi-contaminant system: Coefficients, mechanisms and ecological risks

    International Nuclear Information System (INIS)

    Li, Yi-Long; He, Wei; Liu, Wen-Xiu; Kong, Xiang-Zhen; Yang, Bin; Yang, Chen; Xu, Fu-Liu

    2015-01-01

    The complexation flocculation (CF) method was successfully employed to identify binding coefficients (K_d_o_c) of specific organic contaminants to dissolved organic matter (DOM, often indicated by dissolved organic carbon, DOC) in a multi-contaminant hydrophobic organic contaminant (HOC) system. K_d_o_c values were obtained for most of the evaluated 33 HOCs, indicating the feasibility and applicability of the CF method in a multi-contaminant system. Significant positive correlations were observed between binding coefficients and octanol–water partition coefficients (K_o_w) for organic halogen compounds, such as polybrominated diphenyl ethers (PBDEs) (R"2 = 0.95, p < 0.05) and organic chlorine pesticides (OCPs) (methoxychlor excluded, R"2 = 0.82, p < 0.05). The positive correlations identified between the lgK_d_o_c and lgBCF (bioconcentration factor) for PBDEs and OCPs, as well as the negative correlation observed for polycyclic aromatic hydrocarbons (PAHs), indicated that different binding or partition mechanisms between PAHs and organic halogen compounds exist. These differences further result in discriminative competition partitions of HOCs between DOM and organisms. Assuming that only freely dissolved HOCs are bioconcentrative, the results of DOM-influenced bioconcentration factor (BCF_D_O_M) and DOM-influenced lowest observed effect level (LOEL_D_O_M) indicate that the ecological risk of HOCs is decreased by DOM. - Highlights: • Complexing-flocculation is viable in measuring K_d_o_c in a multi-polluted system. • The binding mechanisms between PAHs and organic halogens were different. • DOM should be considered when assessing ecological risk of HOCs in natural ecosystem. - Assuming only freely dissolved HOCs are effective, bioconcentration factors and ecological risks of HOCs are decreased by dissolved organic matter via binding.

  9. Elimination kinetic model for organic chemicals in earthworms.

    NARCIS (Netherlands)

    Dimitrova, N.; Dimitrov, S.; Georgieva, D.; van Gestel, C.A.M.; Hankard, P.; Spurgeon, D.J.; Li, H.; Mekenyan, O.

    2010-01-01

    Mechanistic understanding of bioaccumulation in different organisms and environments should take into account the influence of organism and chemical depending factors on the uptake and elimination kinetics of chemicals. Lipophilicity, metabolism, sorption (bioavailability) and biodegradation of

  10. Novel hydrophobic PDVB/R-SiO2 for adsorption of volatile organic compounds from highly humid gas stream.

    Science.gov (United States)

    Lu, Han-feng; Cao, Jie-jing; Zhou, Ying; Zhan, De-li; Chen, Yin-fei

    2013-11-15

    A novel organic-inorganic hydrophobic polydivinylbenzene-silica adsorbent (PDVB/R-SiO2) was successfully prepared by introducing a specific amount of divinylbenzene and solvent (i.e., tetrahydrofuran) to SiO2pores and initiating polymerization under solvothermal conditions. New smaller structures and surface areas were formed in the SiO2 pores. The PDVB/R-SiO2-0.5 samples exhibited a bimodal pore size distribution with both SiO2 micropores/mesopores (0.5-2.0 nm) and mesopores (2.0-5.0 nm). The surface areas increased from 116 m(2)/g (SiO2) to 246 m(2)/g. The breakthrough curves of toluene adsorption indicated that the amount adsorbed on PDVB/R-SiO2-0.5 was 12 times higher than that on SiO2. The highly humid environment exhibited no effect on adsorption because the surface of PDVB was functionalized. The adsorbed toluene was easily desorbed in hot N2 stream at 100 °C. After 10 adsorption-desorption cycles, PDVB/R-SiO2-0.5 continued exhibiting excellent adsorption, indicating superior structural and regeneration abilities. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. How microorganisms use hydrophobicity and what does this mean for human needs?

    Directory of Open Access Journals (Sweden)

    Anna eKrasowska

    2014-08-01

    Full Text Available Cell surface hydrophobicity (CSH plays a crucial role in the attachment to, or detachment from the surfaces. The influence of CSH on adhesion of microorganisms to biotic and abiotic surfaces in medicine as well as in bioremediation and fermentation industry has both negative and positive aspects. Hydrophobic microorganisms cause the damage of surfaces by biofilm formation; on the other hand, they can readily accumulate on organic pollutants and decompose them. Hydrophilic microorganisms also play a considerable role in removing organic wastes from the environment because of their high resistance to hydrophobic chemicals. Despite the many studies on the environmental and metabolic factors affecting cell surface hydrophobicity (CSH, the knowledge of this subject is still scanty and is in most cases limited to observing the impact of hydrophobicity on adhesion, aggregation or flocculation. The future of research seems to lie in finding a way to managing the microbial adhesion process, perhaps by steering cell hydrophobicity.

  12. Modeling the role of microplastics in Bioaccumulation of organic chemicals to marine aquatic organisms. Critical Review

    NARCIS (Netherlands)

    Koelmans, A.A.

    2015-01-01

    It has been shown that ingestion of microplastics may increase bioaccumulation of organic chemicals by aquatic organisms. This paper critically reviews the literature on the effects of plastic ingestion on the bioaccumulation of organic chemicals, emphasizing quantitative approaches and mechanistic

  13. Equilibrium sampling of hydrophobic organic chemicals in sediments: challenges and new approaches

    DEFF Research Database (Denmark)

    Schaefer, S.; Mayer, Philipp; Becker, B.

    2015-01-01

    ) are considered to be the effective concentrations for diffusive uptake and partitioning, and they can be measured by equilibrium sampling. We have thus applied glass jars with multiple coating thicknesses for equilibrium sampling of HOCs in sediment samples from various sites in different German rivers...

  14. Textile/metal-organic-framework composites as self-detoxifying filters for chemical-warfare agents.

    Science.gov (United States)

    López-Maya, Elena; Montoro, Carmen; Rodríguez-Albelo, L Marleny; Aznar Cervantes, Salvador D; Lozano-Pérez, A Abel; Cenís, José Luis; Barea, Elisa; Navarro, Jorge A R

    2015-06-01

    The current technology of air-filtration materials for protection against highly toxic chemicals, that is, chemical-warfare agents, is mainly based on the broad and effective adsorptive properties of hydrophobic activated carbons. However, adsorption does not prevent these materials from behaving as secondary emitters once they are contaminated. Thus, the development of efficient self-cleaning filters is of high interest. Herein, we report how we can take advantage of the improved phosphotriesterase catalytic activity of lithium alkoxide doped zirconium(IV) metal-organic framework (MOF) materials to develop advanced self-detoxifying adsorbents of chemical-warfare agents containing hydrolysable P-F, P-O, and C-Cl bonds. Moreover, we also show that it is possible to integrate these materials onto textiles, thereby combining air-permeation properties of the textiles with the self-detoxifying properties of the MOF material. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The search for reliable aqueous solubility (Sw) and octanol-water partition coefficient (Kow) data for hydrophobic organic compounds; DDT and DDE as a case study

    Science.gov (United States)

    Pontolillo, James; Eganhouse, R.P.

    2001-01-01

    quality, the reliability of the DDT/ DDE Sw and Kow database is questionable. The nature and extent of the errors documented in this study are probably indicative of a more general problem in the literature of hydrophobic organic compounds. Under these circumstances, estimation of critical environmental parameters on the basis of Sw and Kow (for example, bioconcentration factors, equilibrium partition coefficients) is inadvisable because it will likely lead to incorrect environmental risk assessments. The current state of the database indicates that much greater efforts are needed to: 1) halt the proliferation of erroneous data and references, 2) initiate a coordinated program to develop improved methods of property determination, 3) establish and maintain consistent reporting requirements for physico-chemical property data, and 4) create a mechanism for archiving reliable data for widespread use in the scientific/regulatory community.

  16. Size distributions of hydrophilic and hydrophobic fractions of water-soluble organic carbon in an urban atmosphere in Hong Kong

    Science.gov (United States)

    Wang, Nijing; Yu, Jian Zhen

    2017-10-01

    Water-soluble organic carbon (WSOC) is a significant part of ambient aerosol and plays an active role in contributing to aerosol's effect on visibility degradation and radiation budget through its interactions with atmospheric water. Size-segregated aerosol samples in the range of 0.056-18 μm were collected using a ten-stage impactor sampler at an urban site in Hong Kong over one-year period. The WSOC samples were separated into hydrophilic (termed WSOC_h) and hydrophobic fractions (i.e., the humic-like substances (HULIS) fraction) through solid-phase extraction procedure. Carbon in HULIS accounted for 40 ± 14% of WSOC. The size distribution of HULIS was consistently characterized in all seasons with a dominant droplet mode (46-71%) and minor condensation (9.0-18%) and coarse modes (20-35%). The droplet mode had a mass median aerodynamic diameter in the range of 0.7-0.8 μm. This size mode showed the largest seasonal variation in abundance, lowest in the summer (0.41 μg/m3) and highest in the winter (3.3 μg/m3). WSOC_h also had a dominant droplet mode, but was more evenly distributed among different size modes. Inter-species correlations within the same size mode suggest that the condensation-mode HULIS was partly associated with combustion sources and the droplet-mode was strongly associated with secondary sulfate formation and biomass burning particle aging processes. There is evidence to suggest that the coarse-mode HULIS largely originated from coagulation of condensation-mode HULIS with coarse soil/sea salt particles. The formation process and possible sources of WSOC_h was more complicated and multiple than HULIS and need further investigation. Our measurements indicate that WSOC components contributed a dominant fraction of water-soluble aerosol mass in particles smaller than 0.32 μm while roughly 20-30% in the larger particles.

  17. Role of NH2-terminal hydrophobic motif in the subcellular localization of ATP-binding cassette protein subfamily D: Common features in eukaryotic organisms

    International Nuclear Information System (INIS)

    Lee, Asaka; Asahina, Kota; Okamoto, Takumi; Kawaguchi, Kosuke; Kostsin, Dzmitry G.; Kashiwayama, Yoshinori; Takanashi, Kojiro; Yazaki, Kazufumi; Imanaka, Tsuneo; Morita, Masashi

    2014-01-01

    Highlights: • ABCD proteins classifies based on with or without NH 2 -terminal hydrophobic segment. • The ABCD proteins with the segment are targeted peroxisomes. • The ABCD proteins without the segment are targeted to the endoplasmic reticulum. • The role of the segment in organelle targeting is conserved in eukaryotic organisms. - Abstract: In mammals, four ATP-binding cassette (ABC) proteins belonging to subfamily D have been identified. ABCD1–3 possesses the NH 2 -terminal hydrophobic region and are targeted to peroxisomes, while ABCD4 lacking the region is targeted to the endoplasmic reticulum (ER). Based on hydropathy plot analysis, we found that several eukaryotes have ABCD protein homologs lacking the NH 2 -terminal hydrophobic segment (H0 motif). To investigate whether the role of the NH 2 -terminal H0 motif in subcellular localization is conserved across species, we expressed ABCD proteins from several species (metazoan, plant and fungi) in fusion with GFP in CHO cells and examined their subcellular localization. ABCD proteins possessing the NH 2 -terminal H0 motif were localized to peroxisomes, while ABCD proteins lacking this region lost this capacity. In addition, the deletion of the NH 2 -terminal H0 motif of ABCD protein resulted in their localization to the ER. These results suggest that the role of the NH 2 -terminal H0 motif in organelle targeting is widely conserved in living organisms

  18. Optical-Electrical-Chemical Engineering of PEDOT:PSS by Incorporation of Hydrophobic Nafion for Efficient and Stable Perovskite Solar Cells.

    Science.gov (United States)

    Ma, Shuang; Qiao, Wenyuan; Cheng, Tai; Zhang, Bing; Yao, Jianxi; Alsaedi, Ahmed; Hayat, Tasawar; Ding, Yong; Tan, Zhan'ao; Dai, Songyuan

    2018-01-31

    In PIN-type perovskite solar cells (PSCs), the hydroscopicity and acidity of the poly(3,4-ethylenedioxythiophene)-poly(styrene-sulfonate) (PEDOT:PSS) hole transport layer (HTL) have critical influences on the device stability. To eliminate these problems, Nafion, the hydrophobic perfluorosulfonic copolymer, is incorporated into PEDOT:PSS by a simple spin-coating process. For the modified film, Nafion/PSSH (poly(styrene sulfonate) acid) acts as an electron-blocking layer on the surface and the PEDOT-rich domain tends to gather into larger particles with better interchain charge transfer inside the film. Consequently, the modified PEDOT:PSS HTL shows enhanced conductivity and light transmittance as well as more favorable work function, ending up with the increased short-circuit current density (J sc ) and open-circuit voltage (V oc ) of the device. Finally, PSCs with Nafion-modified HTLs achieve the best power conversion efficiency of 16.72%, with 23.76% improvement compared with PEDOT:PSS-only devices (13.51%). Most importantly, the device stability is obviously enhanced because of the hydrophobicity and chemical and mechanical stability of the Nafion polymer that is enriched on the surface of the PEDOT:PSS film.

  19. Role of surfactant derived intermediates in the efficacy and mechanism for radiation chemical degradation of a hydrophobic azo dye, 1-phenylazo-2-naphthol

    Energy Technology Data Exchange (ETDEWEB)

    Das, Laboni [Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Chatterjee, Suchandra [Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Naik, Devidas B. [Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Adhikari, Soumyakanti, E-mail: asoumya@barc.gov.in [Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-11-15

    Highlights: • Demonstration of the role of surfactant in the degradation of the hydrophobic dye. • First direct observation of the formation of “hydrazyl radical-parent” adduct. • Similar products obtained in the reaction of e{sup −}{sub aq} and ·OH radical in TX-100 medium. • Significant reduction in cytotoxicity of irradiated dye in aqueous–organic medium. • New mechanistic pathway could be delineated. - Abstract: A combined methodology involving gamma and pulse radiolysis, product analysis and toxicity studies has been adopted to comprehend the degradation process of a model hydrophobic azo dye, 1-phenylazo-2-naphthol, emphasizing the role of the surfactant, which is an integral part of textile waste. Two new and important findings are underlined in this article. The first is the direct attestation of the hydrazyl radical-parent adduct, formed in the reaction of the dye with e{sup −}{sub aq} followed by protonation and subsequent addition to the unreacted dye molecule. This has been confirmed from concentration dependent studies. Secondly, we have clearly shown that in the reaction of hydroxyl radical with the dye in Triton X-100 media, the initially produced TX radicals cause reductive degradation of the dye. Identification and detailed analysis of HPLC and GCMS data reveals that similar products are formed in both the reactions of e{sup −}{sub aq} and ·OH radicals. Moreover, the cytotoxicity of 10{sup −4} mol dm{sup −3} dye was found to be reduced significantly after irradiation. Thus, the present study not only depicts new pathways for the degradation of hydrophobic azo dye, but also demonstrates the role of a surfactant in the entire process.

  20. Global contamination trends of persistent organic chemicals

    National Research Council Canada - National Science Library

    Loganathan, Bommanna G; Lam, Paul K. S

    2012-01-01

    "Composed by a diverse group of experts, this reference covers the history, present status, and projected future trends of environmental contamination from highly toxic synthetic chemical pollutants...

  1. Flame retardant and hydrophobic properties of novel sol-gel derived phytic acid/silica hybrid organic-inorganic coatings for silk fabric

    Science.gov (United States)

    Cheng, Xian-Wei; Liang, Cheng-Xi; Guan, Jin-Ping; Yang, Xu-Hong; Tang, Ren-Cheng

    2018-01-01

    In this work, a novel phosphorus-rich hybrid organic-inorganic silica coating for improving the flame retardancy of silk fabric was prepared using naturally occurring phytic acid as phosphorus precursor and catalyst for the hydrolysis of tetraethoxysilane. In addition, three silane coupling agents, namely 3-aminopropyldimethoxymethylsilane, 3-chloropropyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane, were added in the hybrid sol as cross-linkers with the aim of developing hydrophobic coatings and improving the washing durability of the treated silk fabric. The condensation degree of the hybrid sol was characterized by solid-state 29Si nuclear magnetic resonance spectroscopy. The flammability and thermal degradation properties of the treated silk fabrics were determined in terms of limiting oxygen index, vertical burning, pyrolysis combustion flow calorimetry and thermogravimetric analyses. The surface morphology and hydrophobicity of the treated silk fabrics were evaluated by scanning electron microscopy, atomic force microscopy and water contact angle tests. The flammability tests revealed that the silicon sol could endow silk fabric with excellent flame retardancy when doped with phytic acid, and the treated silk fabrics self-extinguished immediately when the ignition source was removed. The silk fabrics treated with the modified hybrid sols exhibited hydrophobic surface and also better durability to washing.

  2. LOSS OF ORGANIC CHEMICALS IN SOIL: PURE COMPOUND TREATABILITY STUDIES

    Science.gov (United States)

    Comprehensive screening data on the treatability of 32 organic chemicals in soil were developed. Of the evaluated chemicals, 22 were phenolic compounds. Aerobic batch laboratory microcosm experiments were conducted using two soils: an acidic clay soil with <1% organic matter and ...

  3. Strong binding of apolar hydrophobic organic contaminants by dissolved black carbon released from biochar: A mechanism of pseudomicelle partition and environmental implications.

    Science.gov (United States)

    Fu, Heyun; Wei, Chenhui; Qu, Xiaolei; Li, Hui; Zhu, Dongqiang

    2018-01-01

    Dissolved black carbon (DBC), the soluble fraction of black carbon (BC), is an important constituent of dissolved organic matter pool. However, little is known about the binding interactions between hydrophobic organic contaminants (HOCs) and DBC and their significance in the fate process. This study determined the binding ability of DBC released from rice-derived BC for a series of apolar HOCs, including four polycyclic aromatic hydrocarbons and four chlorinated benzenes, using batch sorption and solubility enhancement techniques. Bulk BC and a dissolved soil humic acid (DSHA) were included as benchmark sorbents. The organic carbon-normalized sorption coefficient of phenanthrene to DBC was slightly lower than bulk BC, but was over ten folds higher than DSHA. Consistently, DBC was more effective than DSHA in enhancing the apparent water solubility of the tested HOCs, and the enhancement positively correlated with solute n-octanol-water partition coefficient, indicating the predominance of hydrophobic partition. The much higher binding ability of DBC relative to DSHA was mainly attributed to its higher tendency to form pseudomicellar structures as supported by the fluorescence quenching and the pH-edge data. Our findings suggest that DBC might play a significant role in the environmental fate and transport of HOCs as both sorbent and carrier. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Physico-Chemical Properties of Kaolin-Organic Acid

    Directory of Open Access Journals (Sweden)

    Yeo S.W.

    2017-01-01

    Full Text Available Soil with more than 20% of organic content is classified as organic soil in Malaysia. Contents of organic soil consist of different types of organic and inorganic matter. Each type of organic matter has its own characteristic and its effect on the properties of the soil is different. Hence, a good understanding on the effect of specific organic and inorganic matter on the physico-chemical characteristic of organic soils can serve as a guide for predicting the properties of organic soils. The main objective is to unveil the effect of organic acid on the physico-chemical properties of soil. Artificial organic soil (kaolin mixed with organic acid was utilized in order to minimize the geochemical variability of studied soil. The organic acid which consists of humic acid and fulvic acid was extracted from highly humificated plant–based compost. The effect of organic acid on the physico-chemical properties of soil was determined by varying the concentration of organic acid. The specific gravity, Atterberg limits, pH, bulk chemical composition and the functional group of kaolin-organic acid were determined. It was found that the plasticity index, specific gravity and pH value were decreased with lowered concentration of organic acid. However, the liquid limits and plastic limits were found to be increased with the concentration decrement of organic acid. The analysis of XRF on the bulk chemical composition and analysis of FTIR spectra on the functional group of artificial organic soils with different concentration have confirmed little geochemical variability between samples.

  5. Synthesis of biocompatible hydrophobic silica-gelatin nano-hybrid by sol-gel process.

    Science.gov (United States)

    Smitha, S; Shajesh, P; Mukundan, P; Nair, T D R; Warrier, K G K

    2007-03-15

    Silica-biopolymer hybrid has been synthesised using colloidal silica as the precursor for silica and gelatin as the biopolymer counterpart. The surface modification of the hybrid material has been done with methyltrimethoxysilane leading to the formation of biocompatible hydrophobic silica-gelatin hybrid. Here we are reporting hydrophobic silica-gelatin hybrid and coating precursor for the first time. The hybrid gel has been evaluated for chemical modification, thermal degradation, hydrophobicity, particle size, transparency under the UV-visible region and morphology. FTIR spectroscopy has been used to verify the presence of CH(3) groups which introduce hydrophobicity to the SiO2-MTMS-gelatin hybrids. The hydrophobic property has also been tailored by varying the concentration of methyltrimethoxysilane. Contact angle by Wilhelmy plate method of transparent hydrophobic silica-gelatin coatings has been found to be as high as approximately 95 degrees . Oxidation of the organic group which induces the hydrophobic character occurs at 530 degrees C which indicates that the surface hydrophobicity is retained up to that temperature. Optical transmittance of SiO2-MTMS-gelatin hybrid coatings on glass substrates has been found to be close to 100% which will enable the hybrid for possible optical applications and also for preparation of transparent biocompatible hydrophobic coatings on biological substrates such as leather.

  6. Transuranium elements in organic chemical forms

    International Nuclear Information System (INIS)

    Sakanoue, Masanobu; Yamamoto, Masayoshi

    1987-01-01

    It is very important to achive an understanding what role organic matter plays in the behavior of transuranium elements in the environment. This paper reports the studies on characteristics of fallout Pu and Am in soil closely related to soil organic matter, and interaction of humic acid and Am (III) in aqueous solution. From the results obtained, it was suggested that the humic acids had strong interaction with transuranium elements, but such soluble complexes were removed soon from the solution by coagulation and sorption on soil. (author)

  7. Irreversible Conversion of a Water-Ethanol Solution into an Organized Two-Dimensional Network of Alternating Supramolecular Units in a Hydrophobic Zeolite under Pressure.

    Science.gov (United States)

    Arletti, Rossella; Fois, Ettore; Gigli, Lara; Vezzalini, Giovanna; Quartieri, Simona; Tabacchi, Gloria

    2017-02-13

    Turning disorder into organization is a key issue in science. By making use of X-ray powder diffraction and modeling studies, we show herein that high pressures in combination with the shape and space constraints of the hydrophobic all-silica zeolite ferrierite separate an ethanol-water liquid mixture into ethanol dimer wires and water tetramer squares. The confined supramolecular blocks alternate in a binary two-dimensional (2D) architecture that remains stable upon complete pressure release. These results support the combined use of high pressures and porous networks as a viable strategy for driving the organization of molecules or nano-objects towards complex, pre-defined patterns relevant for the realization of novel functional nanocomposites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. From bioavailability science to regulation of organic chemicals

    NARCIS (Netherlands)

    Ortega-Calvo, J.J.; Harmsen, J.; Parsons, J.R.; Semple, K.T.; Aitkin, M.D.; Ajao, C.; Eadsforth, C.; Galay-Burgos, M.; Naidu, R.; Oliver, R.; Peijnenburg, W.J.G.M.; Römbke, J.; Streck, G.; Versonnen, B.

    2015-01-01

    The bioavailability of organic chemicals in soil and sediment is an important area of scientific investigation for environmental scientists, although this area of study remains only partially recognized by regulators and industries working in the environmental sector. Regulators have recently

  9. The effect of the indoor environment on the fate of organic chemicals in the urban landscape

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, Anna Palm, E-mail: anna.cousins@ivl.se

    2012-11-01

    To assess the effect of the indoor environment on the urban fate of organic chemicals, an 8-compartment indoor-inclusive steady state multimedia chemical fate model was developed. The model includes typical urban compartments (air, soil, water, sediment, and urban film) and a novel module representing a generic indoor environment. The model was parameterized to the municipality of Stockholm, Sweden and applied to four organic chemicals with different physical-chemical characteristics and use patterns: formaldehyde, 2,4,6-tribromophenol, di-ethylhexylphthalate and decabromodiphenyl ether. The results show that emissions to indoor air may increase the steady state mass and residence time in the urban environment by a factor of 1.1 to 22 for the four chemicals, compared to if emissions are assigned to outdoor air. This is due to the nested nature of the indoor environment, which creates a physical barrier that prevents chemicals from leaving the urban system with outflowing air. For DEHP and BDE 209, the additional partitioning to indoor surfaces results in a greater importance of the indoor removal pathways from surfaces. The outdoor environmental concentrations of these chemicals are predicted to be lower if emitted to indoor air than if emitted to outdoor air because of the additional indoor removal pathways of dust and indoor film, leading to loss of chemical from the system. For formaldehyde and 2,4,6-TBP outdoor environmental concentrations are not affected by whether the release occurs indoors or outdoors because of the limited partitioning to indoor surfaces. A sensitivity analysis revealed that there appears to be a relationship between logK{sub OA} and the impact of the ventilation rate on the urban fate of organic chemicals. -- Highlights: Black-Right-Pointing-Pointer A novel indoor-inclusive multimedia urban fate model is developed and applied. Black-Right-Pointing-Pointer Emissions indoors may increase the urban chemical residence time. Black

  10. The effect of the indoor environment on the fate of organic chemicals in the urban landscape

    International Nuclear Information System (INIS)

    Cousins, Anna Palm

    2012-01-01

    To assess the effect of the indoor environment on the urban fate of organic chemicals, an 8-compartment indoor-inclusive steady state multimedia chemical fate model was developed. The model includes typical urban compartments (air, soil, water, sediment, and urban film) and a novel module representing a generic indoor environment. The model was parameterized to the municipality of Stockholm, Sweden and applied to four organic chemicals with different physical–chemical characteristics and use patterns: formaldehyde, 2,4,6-tribromophenol, di-ethylhexylphthalate and decabromodiphenyl ether. The results show that emissions to indoor air may increase the steady state mass and residence time in the urban environment by a factor of 1.1 to 22 for the four chemicals, compared to if emissions are assigned to outdoor air. This is due to the nested nature of the indoor environment, which creates a physical barrier that prevents chemicals from leaving the urban system with outflowing air. For DEHP and BDE 209, the additional partitioning to indoor surfaces results in a greater importance of the indoor removal pathways from surfaces. The outdoor environmental concentrations of these chemicals are predicted to be lower if emitted to indoor air than if emitted to outdoor air because of the additional indoor removal pathways of dust and indoor film, leading to loss of chemical from the system. For formaldehyde and 2,4,6-TBP outdoor environmental concentrations are not affected by whether the release occurs indoors or outdoors because of the limited partitioning to indoor surfaces. A sensitivity analysis revealed that there appears to be a relationship between logK OA and the impact of the ventilation rate on the urban fate of organic chemicals. -- Highlights: ► A novel indoor-inclusive multimedia urban fate model is developed and applied. ► Emissions indoors may increase the urban chemical residence time. ► Indoor removal from surfaces constitutes an additional loss process

  11. Characterisation of nanomaterial hydrophobicity using engineered surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Desmet, Cloé; Valsesia, Andrea; Oddo, Arianna; Ceccone, Giacomo; Spampinato, Valentina; Rossi, François; Colpo, Pascal, E-mail: pascal.colpo@ec.europa.eu [Directorate Health, Consumer and Reference Materials, Consumer Products Safety Unit (Italy)

    2017-03-15

    Characterisation of engineered nanomaterials (NMs) is of outmost importance for the assessment of the potential risks arising from their extensive use. NMs display indeed a large variety of physico-chemical properties that drastically affect their interaction with biological systems. Among them, hydrophobicity is an important property that is nevertheless only slightly covered by the current physico-chemical characterisation techniques. In this work, we developed a method for the direct characterisation of NM hydrophobicity. The determination of the nanomaterial hydrophobic character is carried out by the direct measurement of the affinity of the NMs for different collectors. Each collector is an engineered surface designed in order to present specific surface charge and hydrophobicity degrees. Being thus characterised by a combination of surface energy components, the collectors enable the NM immobilisation with surface coverage in relation to their hydrophobicity. The experimental results are explained by using the extended DLVO theory, which takes into account the hydrophobic forces acting between NMs and collectors.

  12. Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents.

    Science.gov (United States)

    Bobbitt, N Scott; Mendonca, Matthew L; Howarth, Ashlee J; Islamoglu, Timur; Hupp, Joseph T; Farha, Omar K; Snurr, Randall Q

    2017-06-06

    Owing to the vast diversity of linkers, nodes, and topologies, metal-organic frameworks can be tailored for specific tasks, such as chemical separations or catalysis. Accordingly, these materials have attracted significant interest for capture and/or detoxification of toxic industrial chemicals and chemical warfare agents. In this paper, we review recent experimental and computational work pertaining to the capture of several industrially-relevant toxic chemicals, including NH 3 , SO 2 , NO 2 , H 2 S, and some volatile organic compounds, with particular emphasis on the challenging issue of designing materials that selectively adsorb these chemicals in the presence of water. We also examine recent research on the capture and catalytic degradation of chemical warfare agents such as sarin and sulfur mustard using metal-organic frameworks.

  13. Self-organization of grafted polyelectrolyte layers via the coupling of chemical equilibrium and physical interactions.

    Science.gov (United States)

    Tagliazucchi, Mario; de la Cruz, Mónica Olvera; Szleifer, Igal

    2010-03-23

    The competition between chemical equilibrium, for example protonation, and physical interactions determines the molecular organization and functionality of biological and synthetic systems. Charge regulation by displacement of acid-base equilibrium induced by changes in the local environment provides a feedback mechanism that controls the balance between electrostatic, van der Waals, steric interactions and molecular organization. Which strategies do responsive systems follow to globally optimize chemical equilibrium and physical interactions? We address this question by theoretically studying model layers of end-grafted polyacids. These layers spontaneously form self-assembled aggregates, presenting domains of controlled local pH and whose morphologies can be manipulated by the composition of the solution in contact with the film. Charge regulation stabilizes micellar domains over a wide range of pH by reducing the local charge in the aggregate at the cost of chemical free energy and gaining in hydrophobic interactions. This balance determines the boundaries between different aggregate morphologies. We show that a qualitatively new form of organization arises from the coupling between physical interactions and protonation equilibrium. This optimization strategy presents itself with polyelectrolytes coexisting in two different and well-defined protonation states. Our results underline the need of considering the coupling between chemical equilibrium and physical interactions due to their highly nonadditive behavior. The predictions provide guidelines for the creation of responsive polymer layers presenting self-organized patterns with functional properties and they give insights for the understanding of competing interactions in highly inhomogeneous and constrained environments such as those relevant in nanotechnology and those responsible for biological cells function.

  14. Evolution and accumulation of organic foulants on hydrophobic and hydrophilic membrane surfaces in a submerged membrane bioreactor

    KAUST Repository

    Matar, Gerald; Gonzalez-Gil, G.; Maab, H.; Nunes, Suzana Pereira; Vrouwenvelder, J.S.; Saikaly, Pascal

    2015-01-01

    foulants with time, illustrating that membrane surface chemistry did not affect the selection of specific organic foulants. Multivariate analysis showed that biofilm samples clustered according to the day of sampling. The composition of organic foulants

  15. Adsorptive removal of hydrophobic organic compounds by carbonaceous adsorbents: a comparative study of waste-polymer-based, coal-based activated carbon, and carbon nanotubes.

    Science.gov (United States)

    Lian, Fei; Chang, Chun; Du, Yang; Zhu, Lingyan; Xing, Baoshan; Liu, Chang

    2012-01-01

    Adsorption of the hydrophobic organic compounds (HOCs) trichloroethylene (TCE), 1,3-dichlorobenzene (DCB), 1,3-dinitrobenzene (DNB) and gamma-hexachlorocyclohexane (HCH) on five different carbonaceous materials was compared. The adsorbents included three polymer-based activated carbons, one coal-based activated carbon (F400) and multiwalled carbon nanotubes (MWNT). The polymer-based activated carbons were prepared using KOH activation from waste polymers: polyvinyl chloride (PVC), polyethyleneterephthalate (PET) and tire rubber (TR). Compared with F400 and MWNT, activated carbons derived from PVC and PET exhibited fast adsorption kinetics and high adsorption capacity toward the HOCs, attributed to their extremely large hydrophobic surface area (2700 m2/g) and highly mesoporous structures. Adsorption of small-sized TCE was stronger on the tire-rubber-based carbon and F400 resulting from the pore-filling effect. In contrast, due to the molecular sieving effect, their adsorption on HCH was lower. MWNT exhibited the lowest adsorption capacity toward HOCs because of its low surface area and characteristic of aggregating in aqueous solution.

  16. Patterning Method for Silver Nanoparticle Electrodes in Fully Solution-Processed Organic Thin-Film Transistors Using Selectively Treated Hydrophilic and Hydrophobic Surfaces

    Science.gov (United States)

    Fukuda, Kenjiro; Takeda, Yasunori; Kobayashi, Yu; Shimizu, Masahiro; Sekine, Tomohito; Kumaki, Daisuke; Kurihara, Masato; Sakamoto, Masatomi; Tokito, Shizuo

    2013-05-01

    Fully solution-processed organic thin-film transistor (OTFT) devices have been fabricated with simple patterning process at a relatively low process temperature of 100 °C. In the patterning process, a hydrophobic amorphous fluoropolymer material, which was used as the gate dielectric layer and the underlying base layer, was treated with an oxygen plasma to selectively change its surface wetting properties from hydrophobic to hydrophilic. Silver source and drain electrodes were successfully formed in the treated areas with highly uniform line widths and without residues between the electrodes. Nonuniformities in the thickness of the silver electrodes originating from the “coffee-ring” effect were suppressed by optimizing the blend of solvents used with the silver nanoparticles, such that the printed electrodes are appropriate for bottom-gate OTFT devices. A fully solution-processed OTFT device using a polymer semiconductor material (PB16TTT) exhibited good electrical performance with no hysteresis in its transfer characteristics and with good linearity in its output characteristics. A relatively high carrier mobility of 0.14 cm2 V-1 s-1 and an on/off ratio of 1×105 were obtained with the fabricated TFT device.

  17. Adsorptive removal of hydrophobic organic compounds by carbonaceous adsorbents: A comparative study of waste-polymer-based,coal-based activated carbon, and carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Fei Lian; Chun Chang; Yang Du; Lingyan Zhu; Baoshan Xing; Chang Liu

    2012-01-01

    Adsorption of the hydrophobic organic compounds (HOCs) trichloroethylene (TCE),1,3-dichlorobenzene (DCB),1,3-dinitrobenzene (DNB) and γ-hexachlorocyclohexane (HCH) on five different carbonaceous materials was compared.The adsorbents included three polymer-based activated carbons,one coal-based activated carbon (F400) and multiwalled carbon nanotubes (MWNT).The polymerbased activated carbons were prepared using KOH activation from waste polymers:polyvinyl chloride (PVC),polyethyleneterephthalate (PET) and tire rubber (TR).Compared with F400 and MWNT,activated carbons derived from PVC and PET exhibited fast adsorption kinetics and high adsorption capacity toward the HOCs,attributed to their extremely large hydrophobic surface area (2700 m2/g) and highly mesoporous structures.Adsorption of small-sized TCE was stronger on the tire-rubber-based carbon and F400 resulting from the pore-filling effect.In contrast,due to the molecular sieving effect,their adsorption on HCH was lower.MWNT exhibited the lowest adsorption capacity toward HOCs because of its low surface area and characteristic of aggregating in aqueous solution.

  18. Membrane-Organized Chemical Photoredox Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, James K.

    2014-09-18

    This project has three interrelated goals relevant to solar water photolysis, which are to develop: (1) vesicle-organized assemblies for H2 photoproduction that utilize pyrylium and structurally related compounds as combined photosensitizers and cyclic electroneutral transmembrane electron carriers; (2) transmembrane redox systems whose reaction rates can be modulated by light; and (3) homogeneous catalysts for water oxidation. . In area (1), initial efforts to photogenerate H2 from vectorially-organized vesicles containing occluded colloidal Pt and commonly available pyrylium ions as transmembrane redox mediators were unsuccessful. New pyrylium compounds with significantly lower reduction potentials have been synthesized to address this problem, their apparent redox potentials in functioning systems have been now evaluated by using a series of occluded viologens, and H2 photoproduction has been demonstrated in continuous illumination experiments. In area (2), spirooxazine-quinone dyads have been synthesized and their capacity to function as redox mediators across bilayer membranes has been evaluated through continuous photolysis and transient spectrophotometric measurements. Photoisomerization of the spiro moiety to the ring-open mero form caused net quantum yields to decrease significantly, providing a basis for photoregulation of transmembrane redox. Research on water oxidation (area 3) has been directed at understanding mechanisms of catalysis by cis,cis-[(bpy)2Ru(OH2)]2O4+ and related polyimine complexes. Using a variety of physical techniques, we have: (i) identified the redox state of the complex ion that is catalytically active; (ii) shown using 18O isotopic labeling that there are two reaction pathways, both of which involve participation of solvent H2O; and (iii) detected and characterized by EPR and resonance Raman spectroscopies new species which may be key intermediates in the catalytic cycle.

  19. Occupational chemical exposures in artificial organic fiber industries

    Energy Technology Data Exchange (ETDEWEB)

    Guirguis, S S; Cohen, M B

    1984-05-01

    This review discusses artificial organic fibers that are produced from materials of natural origin such as rayons, cellulose triacetates and proteins; or made from polymerised chemicals such as polyamides, polyesters, polyvinyls, modacrylics, carbon fibers, polyolefins, polyurethane and polytetrafluoroethylene. Chemicals involved include monomers, solvents, flame retardants, pigments and other additives. Occupational exposure to chemicals in the production stages are discussed and also the potential health hazards involved are reviewed. Current exposure levels, engineering controls and work practices for some of the chemicals used in the Ontario artificial fiber industry are discussed. Recommendations are made for areas that need further study and/or investigation.

  20. Removal of trace organic chemical contaminants by a membrane bioreactor.

    Science.gov (United States)

    Trinh, T; van den Akker, B; Stuetz, R M; Coleman, H M; Le-Clech, P; Khan, S J

    2012-01-01

    Emerging wastewater treatment processes such as membrane bioreactors (MBRs) have attracted a significant amount of interest internationally due to their ability to produce high quality effluent suitable for water recycling. It is therefore important that their efficiency in removing hazardous trace organic contaminants be assessed. Accordingly, this study investigated the removal of trace organic chemical contaminants through a full-scale, package MBR in New South Wales, Australia. This study was unique in the context of MBR research because it characterised the removal of 48 trace organic chemical contaminants, which included steroidal hormones, xenoestrogens, pesticides, caffeine, pharmaceuticals and personal care products (PPCPs). Results showed that the removal of most trace organic chemical contaminants through the MBR was high (above 90%). However, amitriptyline, carbamazepine, diazepam, diclofenac, fluoxetine, gemfibrozil, omeprazole, sulphamethoxazole and trimethoprim were only partially removed through the MBR with the removal efficiencies of 24-68%. These are potential indicators for assessing MBR performance as these chemicals are usually sensitive to changes in the treatment systems. The trace organic chemical contaminants detected in the MBR permeate were 1 to 6 orders of magnitude lower than guideline values reported in the Australian Guidelines for Water Recycling. The outcomes of this study enhanced our understanding of the levels and removal of trace organic contaminants by MBRs.

  1. Comparative toxicity of ten organic chemicals to four earthworm species

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, E.F.; Durkin, P.R.; Malecki, M.R.; Anatra, M.

    1986-01-01

    Ten organic chemicals were tested for toxicity to four earthworm species: Allolobophora tuberculata, Eisenia fetida, Eudrilus eugeniae and Perionyx excavatus, using the European Economic Community's (EEC) earthworm artificial soil and contact testing procedure. The phenols were the most toxic chemicals tested, followed by the amine, substituted benzenes, halogenated aliphatic hydrocarbon, polycyclic aromatic hydrocarbon and phthalate as the least toxic chemical tested. Correlations among species within each type of test for a given chemical were extremely high, suggesting that the selection of earthworm test species does not markedly affect the assessment of a chemical's toxicity. The correlation between the two tests was low for all test species. The contact test LC50 for a given chemical cannot be directly correlated to an artificial soil test LC50 for the same earthworm species.

  2. Nature and prevalence of non-additive toxic effects in industrially relevant mixtures of organic chemicals.

    Science.gov (United States)

    Parvez, Shahid; Venkataraman, Chandra; Mukherji, Suparna

    2009-06-01

    The concentration addition (CA) and the independent action (IA) models are widely used for predicting mixture toxicity based on its composition and individual component dose-response profiles. However, the prediction based on these models may be inaccurate due to interaction among mixture components. In this work, the nature and prevalence of non-additive effects were explored for binary, ternary and quaternary mixtures composed of hydrophobic organic compounds (HOCs). The toxicity of each individual component and mixture was determined using the Vibrio fischeri bioluminescence inhibition assay. For each combination of chemicals specified by the 2(n) factorial design, the percent deviation of the predicted toxic effect from the measured value was used to characterize mixtures as synergistic (positive deviation) and antagonistic (negative deviation). An arbitrary classification scheme was proposed based on the magnitude of deviation (d) as: additive (50%, class-IV) antagonistic/synergistic. Naphthalene, n-butanol, o-xylene, catechol and p-cresol led to synergism in mixtures while 1, 2, 4-trimethylbenzene and 1, 3-dimethylnaphthalene contributed to antagonism. Most of the mixtures depicted additive or antagonistic effect. Synergism was prominent in some of the mixtures, such as, pulp and paper, textile dyes, and a mixture composed of polynuclear aromatic hydrocarbons. The organic chemical industry mixture depicted the highest abundance of antagonism and least synergism. Mixture toxicity was found to depend on partition coefficient, molecular connectivity index and relative concentration of the components.

  3. Transport and Fate of Volatile Organic Chemical in Soils

    DEFF Research Database (Denmark)

    Petersen, Lis Wollesen

    Recently much attention has been paid to the behavior of volatile organic chemicals (VOCs) in the environment. This is due to the fact that the environmental pollution with these hazardous chemicals has drastically increased during the last decades. The present study is limited to consider...... the transport and fate of VOCs in the gaseous phase, thus contributing to the overall understanding of VOCs behavior in soil, which eventually will facilitate future cleanup....

  4. Predictive ecotoxicity of MoA 1 of organic chemicals using in silico approaches.

    Science.gov (United States)

    de Morais E Silva, Luana; Alves, Mateus Feitosa; Scotti, Luciana; Lopes, Wilton Silva; Scotti, Marcus Tullius

    2018-05-30

    Persistent organic products are compounds used for various purposes, such as personal care products, surfactants, colorants, industrial additives, food, pesticides and pharmaceuticals. These substances are constantly introduced into the environment and many of these pollutants are difficult to degrade. Toxic compounds classified as MoA 1 (Mode of Action 1) are low toxicity compounds that comprise nonreactive chemicals. In silico methods such as Quantitative Structure-Activity Relationships (QSARs) have been used to develop important models for prediction in several areas of science, as well as aquatic toxicity studies. The aim of the present study was to build a QSAR model-based set of theoretical Volsurf molecular descriptors using the fish acute toxicity values of compounds defined as MoA 1 to identify the molecular properties related to this mechanism. The selected Partial Least Squares (PLS) results based on the values of cross-validation coefficients of determination (Q cv 2 ) show the following values: Q cv 2 = 0.793, coefficient of determination (R 2 ) = 0.823, explained variance in external prediction (Q ext 2 ) = 0.87. From the selected descriptors, not only the hydrophobicity is related to the toxicity as already mentioned in previously published studies but other physicochemical properties combined contribute to the activity of these compounds. The symmetric distribution of the hydrophobic moieties in the structure of the compounds as well as the shape, as branched chains, are important features that are related to the toxicity. This information from the model can be useful in predicting so as to minimize the toxicity of organic compounds. Copyright © 2018. Published by Elsevier Inc.

  5. Comparison of the chemical composition of dissolved organic matter in three lakes in Minnesota

    Science.gov (United States)

    Cao, Xiaoyan; Aiken, George R.; Butler, Kenna D.; Mao, Jingdong; Schmidt-Rohr, Klaus

    2018-01-01

    New information on the chemical composition of dissolved organic matter (DOM) in three lakes in Minnesota has been gained from spectral editing and two-dimensional nuclear magnetic resonance (NMR) methods, indicating the effects of lake hydrological settings on DOM composition. Williams Lake (WL), Shingobee Lake (SL), and Manganika Lake (ML) had different source inputs, and the lake water residence time (WRT) of WL was markedly longer than that of SL and ML. The hydrophobic organic acid (HPOA) and transphilic organic acid (TPIA) fractions combined comprised >50% of total DOM in these lakes, and contained carboxyl-rich alicyclic molecules (CRAM), aromatics, carbohydrates, and N-containing compounds. The previously understudied TPIA fractions contained fewer aromatics, more oxygen-rich CRAM, and more N-containing compounds compared to the corresponding HPOA. CRAM represented the predominant component in DOM from all lakes studied, and more so in WL than in SL and ML. Aromatics including lignin residues and phenols decreased in relative abundances from ML to SL and WL. Carbohydrates and N-containing compounds were minor components in both HPOA and TPIA and did not show large variations among the three lakes. The increased relative abundances of CRAM in DOM from ML, SL to WL suggested the selective preservation of CRAM with increased residence time.

  6. Transfer of hydrophobic contaminants in urban runoff particles to benthic organisms estimated by an in vitro bioaccessibility test

    DEFF Research Database (Denmark)

    Nakajima, F.; Saito, K.; Isozaki, Y.

    2006-01-01

    An in vitro bioaccessibility test was applied for assessing the transfer of polycyclic aromatic hydrocarbons (PAHs) present in road dust, into benthic organisms living in a receiving water body. The road dust is supposed to be urban runoff particles under wet weather conditions. Sodium dodecyl...... sulfate (SDS) solution was used as a hypothetical gut fluid. Pyrene, fluoranthene and phenanthrene were the main PAH species in the SIDS extractable fraction of road dust, as well as the whole extract. Benzo(ghi)perylene showed relatively low concentrations in the SIDS extract in spite of a high...... concentration in the original dust. The PAH composition in benthic organisms (polychaetes) did not correspond with that of the surrounding sediment and the PAHs detected were also detected in high concentrations in the SDS extract of road dust. When testing the toxicity of the extracted contaminants...

  7. Effects of different organic materials and chemical fertilizers on ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-20

    Sep 20, 2010 ... 2The Chamber of Agricultural Engineers, Gaziantep, Turkey. Accepted 5 July, 2010. This study was conducted under greenhouse conditions to investigate the effects of applied nutrients such as ... Key words: Organic material, chemical fertilizer, Pistacia vera L., soil ... systematic approach of soil and plant.

  8. Where do organic chemicals found in soil systems come from

    International Nuclear Information System (INIS)

    Dragun, J.; Mason, S.A.; Barkach, J.H.

    1991-01-01

    Today's regulatory climate encourages the private sector to assess the environmental condition of their facilities. An environmental assessment often includes the collection of soil samples. Despite the trend to obtain reams of numbers to show the presence of chemicals, many misconceptions exist among environmental scientists and engineers regarding the interpretation of those numbers. The presence of organic chemicals in soil may or may not be problematic. This depends primarily upon the source. If an industrial point source is responsible for the spill or bulk release, then remedial activity usually ensues. However, if the source is not an industrial release, then remedial activity may not be required. This paper will briefly discuss the sources, other than industrial point sources, responsible for the presence of organic chemicals in soil systems

  9. Wrinkles and Folds of Activated Graphene Nanosheets as Fast and Efficient Adsorptive Sites for Hydrophobic Organic Contaminants.

    Science.gov (United States)

    Wang, Jun; Chen, Baoliang; Xing, Baoshan

    2016-04-05

    To create more wrinkles and folds as available adsorption sites, graphene nanosheets (GNS) were thermally treated with KOH for morphological alteration. The surface structures and properties of the activated graphene nanosheets (AGN) were characterized by BET-N2, SEM, TEM, Raman, XRD, XPS, and FTIR. After KOH etching, the highly crystal structure was altered, self-aggregation of graphene layers were evidently relieved, and more single to few layer graphene nanosheets were created with wrinkles and folds. Also both specific surface area and micropore volume of AGN increased relative to GNS. The adsorption of AGN toward p-nitrotoluene, naphthalene and phenanthrene were greatly enhanced in comparison with GNS, and gradually promoted with increasing degree of KOH etching. Adsorption rate of organic contaminants on AGN was very fast and efficient, whereas small molecules showed higher adsorption rates due to the more porous surface of graphene. In addition to π-π interaction, the high affinities of p-nitrotoluene to AGN are suggested from strong electron charge transfer interactions between nitro groups on p-nitrotoluene and defect sites of AGN. A positively linear correlation between organic molecule uptake and the micropore volume of AGN indicated that pore-filling mechanism may play an important role in adsorption. Morphological wrinkles and folds of graphene nanosheets can be regulated to enhance the adsorption capability and kinetics for efficient pollutant removal and to selectively preconcentrate adsorbates with different sizes for detection.

  10. Carotenoids Database: structures, chemical fingerprints and distribution among organisms.

    Science.gov (United States)

    Yabuzaki, Junko

    2017-01-01

    To promote understanding of how organisms are related via carotenoids, either evolutionarily or symbiotically, or in food chains through natural histories, we built the Carotenoids Database. This provides chemical information on 1117 natural carotenoids with 683 source organisms. For extracting organisms closely related through the biosynthesis of carotenoids, we offer a new similarity search system 'Search similar carotenoids' using our original chemical fingerprint 'Carotenoid DB Chemical Fingerprints'. These Carotenoid DB Chemical Fingerprints describe the chemical substructure and the modification details based upon International Union of Pure and Applied Chemistry (IUPAC) semi-systematic names of the carotenoids. The fingerprints also allow (i) easier prediction of six biological functions of carotenoids: provitamin A, membrane stabilizers, odorous substances, allelochemicals, antiproliferative activity and reverse MDR activity against cancer cells, (ii) easier classification of carotenoid structures, (iii) partial and exact structure searching and (iv) easier extraction of structural isomers and stereoisomers. We believe this to be the first attempt to establish fingerprints using the IUPAC semi-systematic names. For extracting close profiled organisms, we provide a new tool 'Search similar profiled organisms'. Our current statistics show some insights into natural history: carotenoids seem to have been spread largely by bacteria, as they produce C30, C40, C45 and C50 carotenoids, with the widest range of end groups, and they share a small portion of C40 carotenoids with eukaryotes. Archaea share an even smaller portion with eukaryotes. Eukaryotes then have evolved a considerable variety of C40 carotenoids. Considering carotenoids, eukaryotes seem more closely related to bacteria than to archaea aside from 16S rRNA lineage analysis. : http://carotenoiddb.jp. © The Author(s) 2017. Published by Oxford University Press.

  11. Physical and chemical characteristics of melon in organic farming

    Directory of Open Access Journals (Sweden)

    Rosete A. G. Kohn

    2015-07-01

    Full Text Available Melon farming is characterized as an important family agriculture activity and the organic production of fruits and vegetables has shown a large growth in terms of areas in Brazil and around the world. This work aimed to study the postharvest quality of melon cultivated in an organic system. The organic treatments constituted of base fertilizer with cattle manure vermicompost (recommended dose, ½ dose and double dose plus the use of biofertilizer (sprayed or sprayed + irrigated, and an additional treatment with chemical fertilization. The postharvest quality was evaluated through physico-chemical and phytochemical attributes. The organic management with half the recommended dose of vermicompost plus the sprayed biofertilizer and the chemical fertilization management produced fruits with higher levels of sugar, total carotenoids, ascorbic acid and folates, obtaining more balanced fruits, with a better phytochemical quality. The antioxidant capacity was defined mainly by the presence of the phenolic compounds, which were influenced by the type and the dose of the evaluated fertilizers, with superiority in the organic treatments with double the dose of cattle manure vermicompost.

  12. Influence of non-hydrophobic factors on the sorption of ionizable xenobiotics to solids

    DEFF Research Database (Denmark)

    Lützhøft, Hans-Christian Holten; Franco, Antonio; Trapp, Stefan

    2011-01-01

    It is well known that xenobiotics sorp to solid phases like soil and sediment, depending on their inherent properties and environmental conditions. Traditionally it was accepted, that the hydrophobicity of the chemical, i.e. the log KOW, as well as the solid’s content of organic carbon (OC) were...

  13. Toxicity of selected organic chemicals to the earthworm Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, E.F.; Loehr, R.C.; Malecki, M.R.; Milligan, D.L.; Durkin, P.R.

    A number of methods recently have been developed to biologically evaluate the impact of man's activities on soil ecosystems. Two test methods, the 2-d contact test and the 14-d artificial soil test, were used to evaluate the impact of six major classes of organic chemicals on the earthworm Eisenia fetida (Savigny). Of the organic chemicals tested, phenols and amines were the most toxic to the worms, followed in descending order of toxicity by the substituted aromatics, halogenated aliphatics, polycyclic aromatic hydrocarbons, and phthalates. No relationship was found between earthworm toxicity as determined by the contact test and rat, Rattus norvegicus Berkenhout and mouse, Mus musculus L. LD/sub 50/ values. The physicochemical parameters of water solubility, vapor pressure, and octanol/water partition coefficient for the chemicals tested in the contact test did not show a significant relationship to the E. fetida LC/sub 50/ values. These studies indicate that: (i) earthworms can be a suitable biomonitoring tool to assist in measuring the impact of organic chemicals in wastes added to soils and (ii) contact and artificial soil tests can be useful in measuring biological impacts.

  14. Core hydrophobicity tuning of a self-assembled particle results in efficient lipid reduction and favorable organ distribution.

    Science.gov (United States)

    Banik, Bhabatosh; Wen, Ru; Marrache, Sean; Kumar, Anil; Kolishetti, Nagesh; Howerth, Elizabeth W; Dhar, Shanta

    2017-12-21

    Atherosclerosis, the deadliest disease in the United States, arises due to the build up of plaques in the arteries as a result of excessive cholesterol deposition and an impaired cholesterol removal process. High density lipoproteins (HDL), popularly known as "good cholesterol", are naturally occurring nano-sized particles that, along with apolipoproteins, are deployed to maintain cholesterol homeostasis in the body. Both cholesterol efflux, from the fat-laden macrophages in the arteries, and intracellular lipid transport, to deliver cholesterol to the mitochondria of liver cells for metabolism, hold key responsibilities to maintain healthy lipid levels inside the body. We designed a library of nine mitochondria targeted polymer-lipid hybrid nanoparticles (NPs), comprised of completely synthetic yet biodegradable components, that are capable of performing HDL-like functions. Using this library, we optimized a superior mitochondria targeted NP candidate, which can show favourable organ distribution, therapeutic potential, and non-toxic properties. Two targeted NP formulations with optimum NP size, zeta potential, and cholesterol binding and release properties were identified. Lipid reduction and anti-oxidative properties of these two NPs demonstrated cholesterol removal ability. In vivo therapeutic evaluation of the targeted-NP formulations in apolipoprotein E knockout (apoE - / - ) mice indicated lipid reduction and anti-inflammatory properties compared to non-targeted NPs. This synthetic targeted NP with potential abilities to participate in both extra- and intracellular cholesterol transport might potentiate therapeutic interventions for heart diseases.

  15. Quality and Chemical Composition of Organic and Non-Organic Vetiver Oil

    Directory of Open Access Journals (Sweden)

    Asep Kadarohman

    2014-03-01

    Full Text Available Vetiver oil (Vetiveria zizanoides has been used as perfume materials, cosmetics, fragrance soaps, anti-inflammation, repellent, and insecticidal agents. Organic vetiver oil has higher economical value than non-organic vetiver oil and it has been regarded to be able to compete in the global market. Therefore, studies have been carried out using 1 hectare of land and the first generation of organic vetiver oil has produced 0.57% of yield, greater than non-organic (0.50%. The quality of organic and non-organic vetiver oil was analyzed by Indonesian Standard (SNI parameter, pesticide residue test, chemical composition by GC/MS, and the appearance of vetiver root. In general, the result of organic and non-organic vetiver oil has fulfilled the national standard; the quality of organic vetiver oil was better than non-organic one. Physically, the appearance of organic vetiver root was better than non-organic vetiver root; organic vetiver root was denser, more appealing, and did not have any black spots. The pesticide residue of organic vetiver oil was lower than non-organic vetiver oil. Based on SNI test, vetiverol (oxygen compounds in organic vetiver oil was higher than non-organic vetiver oil.

  16. Effect of housing geometry on the performance of ChemcatcherTM passive sampler for the monitoring of hydrophobic organic pollutants in water

    International Nuclear Information System (INIS)

    Lobpreis, Tomas; Vrana, Branislav; Dominiak, Ewa; Dercova, Katarina; Mills, Graham A.; Greenwood, Richard

    2008-01-01

    Passive sampling of pollutants in water has been gaining acceptance for environmental monitoring. Previously, an integrative passive sampler (the Chemcatcher TM ) was developed and calibrated for the measurement of time weighted average concentrations of hydrophobic pollutants in water. Effects of physicochemical properties and environmental variables (water temperature and turbulence) on kinetic and thermodynamic parameters characterising the exchange of analytes between the sampler and water have been published. In this study, the effect of modification in sampler housing geometry on these calibration parameters was studied. The results obtained for polycyclic aromatic hydrocarbons show that reducing the depth of the cavity in the sampler body geometry increased the exchange kinetics by approximately twofold, whilst having no effect on the correlation between the uptake and offload kinetics of analytes. The use of performance reference compounds thus avoids the need for extensive re-calibration when the sampler body geometry is modified. - The effect of passive sampler geometry on accumulation kinetics of organic pollutants from water was evaluated

  17. Enhanced chemical sensing organic thin-film transistors

    Science.gov (United States)

    Tanese, M. C.; Torsi, L.; Farinola, G. M.; Valli, L.; Hassan Omar, O.; Giancane, G.; Ieva, E.; Babudri, F.; Palmisano, F.; Naso, F.; Zambonin, P. G.

    2007-09-01

    Organic thin film transistor (OTFT) sensors are capable of fast, sensitive and reliable detection of a variety of analytes. They have been successfully tested towards many chemical and biological "odor" molecules showing high selectivity, and displaying the additional advantage of being compatible with plastic technologies. Their versatility is based on the possibility to control the device properties, from molecular design up to device architecture. Here phenylene-thiophene based organic semiconductors functionalized with ad hoc chosen side groups are used as active layers in sensing OTFTs. These materials, indeed, combine the detection capability of organic molecules (particularly in the case of bio-substituted systems) with the electronic properties of the conjugated backbone. A new OTFT structure including Langmuir-Schäfer layer by layer organic thin films is here proposed to perform chemical detection of organic vapors, including vapor phase chiral molecules such as citronellol vapors, with a detection limit in the ppm range. Thermally evaporated α6T based OTFT sensors are used as well to be employed as standard system in order to compare sensors performances.

  18. Algal growth inhibition test results of 425 organic chemical substances

    DEFF Research Database (Denmark)

    Kusk, Kresten Ole; Christensen, Anne Munch; Nyholm, Niels

    2018-01-01

    The toxicity towards the algal species Pseudokirchneriella subcapitata of 425 organic chemical substances was tested in a growth inhibition test. Precautions were taken to prevent loss of the compounds from the water phase and the test system (closed test system, low biomass, shorter test duration......, silanized glass) and to keep pH constant by applying a higher alkalinity. Chemical phase distribution was modelled taking ionization, volatilisation, and adsorption to glass and biomass into consideration. If the modelled water concentration was below 90% of the nominal concentration the calculated EC...... values were corrected accordingly. The model helped to identify substances, where the calculated water concentration was too uncertain. Substances covering a wide range of physical-chemical properties and different modes of action were tested. Median effect concentrations (EC50) lower than 1000 mg/L were...

  19. Contribution of hydrophobic effect to the sorption of phenanthrene, 9-phenanthrol and 9, 10-phenanthrenequinone on carbon nanotubes.

    Science.gov (United States)

    Peng, Hongbo; Zhang, Di; Pan, Bo; Peng, Jinhui

    2017-02-01

    Polycyclic aromatic hydrocarbons (PAHs), with diverse sources and acute toxicity, are categorized as priority pollutants. Previous studies have stated that the hydrophobic effect controls PAH sorption, but no study has been conducted to quantify the exact contribution of the hydrophobic effect. Considering the well-defined structure of carbon nanotubes and their stable chemical composition in organic solvents, three multi-walled carbon nanotubes (MWCNTs) were selected as a model adsorbent. Phenanthrene (PHE) and its degradation intermediates 9-phenanthrol (PTR) and 9, 10-phenanthrenequinone (PQN) were used as model adsorbates. To quantify the contribution of the hydrophobic effect for these three chemicals, the effect of organic solvent (methanol and hexadecane) was investigated. Adsorption isotherms for PHE, PTR and PQN were well fitted by the Freundlich isotherm model. A positive relationship between adsorption affinities of these three chemicals and specific surface area (SSA) was observed in hexadecane but not in water or methanol. Other factors should be included other than SSA. Adsorption of PQN on MWCNTs with oxygen functional groups was higher than that on pristine MWCNTs due to π-π EDA interactions. The contribution of hydrophobic effect was 50%-85% for PHE, suggesting that hydrophobic effect was the predominant mechanism. This contribution was lower than 30% for PTR/PQN on functionalized MWCNTs. Hydrogen bonds control the adsorption of PTR, and π-π bonding interactions control PQN sorption after screening out the hydrophobic effect in hexadecane. Hydrophobic effect is the control mechanism for nonpolar chemicals, while functional groups of CNTs and solvent types control the adsorption of polar compounds. Extended work on quantifying the relationship between chemical structure and the contribution of the hydrophobic effect will provide a useful technique for PAH fate modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Tracking ultrasonically structural changes of natural aquatic organic carbon: Chemical fractionation and spectroscopic approaches.

    Science.gov (United States)

    Al-Juboori, Raed A; Yusaf, Talal; Aravinthan, Vasantha; Bowtell, Leslie

    2016-02-01

    In this study, the structural alteration to DOC for a range of ultrasound treatments was investigated with chemical fractionation and UV-vis spectroscopic measurement. Ultrasound treatments were applied in continuous and pulsed modes at power levels of 48 and 84 W for effective treatment times of 5 and 15 min. Overall results show that the ultrasound treatments tended to degrade the hydrophobic aromatic fraction, while increasing the hydrophilic fraction to a lesser extent. The highest recorded reduction of hydrophobic DOC (17.8%) was achieved with pulse treatment of 84 W for15 min, while the highest increase in the hydrophilic DOC (10.5%) was obtained with continuous treatment at 84 W and 5 min. The optimal ultrasound treatment conditions were found to be pulse mode at high power and short treatment time, causing a minimal increase in the hydrophilic fraction of 1.3% with moderate removal of the hydrophobic fraction of 15.52%. The same treatment conditions, with longer treatment time, resulted in the highest removal of SUVA254 and SUVA280 of 17.09% and 16.93, respectively. These results indicate the potential for ultrasound treatments in DOC structural alteration. The hydrophobic fraction showed strong and significant correlations with UV absorbance at 254 and 280 nm. A254/A204 also exhibited strong and significant correlations with the hydrophobic/hydrophilic ratio. The other UV ratios (A250/A365 (E2/E3) and A254/A436) had weak and insignificant correlations with the hydrophobic/hydrophilic ratio. This confirms the applicability of UV indices as a suitable surrogate method for estimating the hydrophobic/hydrophilic structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Molecularly Imprinted Polymer/Metal Organic Framework Based Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Zhenzhong Guo

    2016-10-01

    Full Text Available The present review describes recent advances in the concept of molecular imprinting using metal organic frameworks (MOF for development of chemical sensors. Two main strategies regarding the fabrication, performance and applications of recent sensors based on molecularly imprinted polymers associated with MOF are presented: molecularly imprinted MOF films and molecularly imprinted core-shell nanoparticles using MOF as core. The associated transduction modes are also discussed. A brief conclusion and future expectations are described herein.

  2. Temperature influence on chemical toxicity to aquatic organisms

    International Nuclear Information System (INIS)

    Cairns, J. Jr.; Heath, A.G.; Parker, B.C.

    1975-01-01

    The literature on the effects of temperature on chemical toxicity to aquatic animals and microorganisms is reviewed. Microbial photosynthesis and respiration is briefly discussed. It is concluded that there is a paucity of information on the inter-relations of temperature and toxicants to algae, bacteria, and protozoa and that standards based on the in situ response of indigenous organisms to specific discharge areas should be developed

  3. A linear solvation energy relationship model of organic chemical partitioning to dissolved organic carbon.

    Science.gov (United States)

    Kipka, Undine; Di Toro, Dominic M

    2011-09-01

    Predicting the association of contaminants with both particulate and dissolved organic matter is critical in determining the fate and bioavailability of chemicals in environmental risk assessment. To date, the association of a contaminant to particulate organic matter is considered in many multimedia transport models, but the effect of dissolved organic matter is typically ignored due to a lack of either reliable models or experimental data. The partition coefficient to dissolved organic carbon (K(DOC)) may be used to estimate the fraction of a contaminant that is associated with dissolved organic matter. Models relating K(DOC) to the octanol-water partition coefficient (K(OW)) have not been successful for many types of dissolved organic carbon in the environment. Instead, linear solvation energy relationships are proposed to model the association of chemicals with dissolved organic matter. However, more chemically diverse K(DOC) data are needed to produce a more robust model. For humic acid dissolved organic carbon, the linear solvation energy relationship predicts log K(DOC) with a root mean square error of 0.43. Copyright © 2011 SETAC.

  4. Adsorption of Organic Electron Acceptors on Graphene-like Molecules: Quantum Chemical and Molecular Mechanical Study

    Czech Academy of Sciences Publication Activity Database

    Haldar, Susanta; Kolář, Michal; Sedlák, Robert; Hobza, Pavel

    2012-01-01

    Roč. 116, č. 48 (2012), s. 25328-25336 ISSN 1932-7447 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : graphene * organic electron acceptors * interaction energies * base-pairs * hydrophobic association Subject RIV: CF - Physical ; The oretical Chemistry Impact factor: 4.814, year: 2012

  5. Removal of indicator organisms by chemical treatment of wastewater.

    Science.gov (United States)

    De Zutter, L; van Hoof, J

    1981-01-01

    Recently a new chemical wastewater treatment process based upon precipitation of proteins by sodium lignosulphonate under acid conditions is used to purify the wastewater from slaughterhouses and poultry processing plants. In order to determine the reduction of indicator organisms due to this treatment process, influent and effluent samples from two of such plants (plant A in a pig slaughterhouse and plant B in a poultry processing plant) were examined. The results demonstrated that the pH used in the process, has a considerable influence on the reduction of the indicator organisms. On the first sampling day in plant A the initial working-pH was 4 and the corresponding reduction of the different microorganisms varied from 0.7 to 1.5 log. According to the decrease of the pH to 2.3, the reduction increased to a minimum of at least 1.9 and a maximum of at least 4.5 log. In the other samples from this plant (working-pH 2.4) the elimination ranged from 1.8 to 4.0 log. In plant B, the removal of the indicator organisms brought about by a working-pH of 3.0 ranged from 2.1 to 3.1 log. The results showed that in comparison with the biological treatment processes this chemical wastewater treatment process realized a significant greater removal of indicator organisms.

  6. Encoding of Fundamental Chemical Entities of Organic Reactivity Interest using chemical ontology and XML.

    Science.gov (United States)

    Durairaj, Vijayasarathi; Punnaivanam, Sankar

    2015-09-01

    Fundamental chemical entities are identified in the context of organic reactivity and classified as appropriate concept classes namely ElectronEntity, AtomEntity, AtomGroupEntity, FunctionalGroupEntity and MolecularEntity. The entity classes and their subclasses are organized into a chemical ontology named "ChemEnt" for the purpose of assertion, restriction and modification of properties through entity relations. Individual instances of entity classes are defined and encoded as a library of chemical entities in XML. The instances of entity classes are distinguished with a unique notation and identification values in order to map them with the ontology definitions. A model GUI named Entity Table is created to view graphical representations of all the entity instances. The detection of chemical entities in chemical structures is achieved through suitable algorithms. The possibility of asserting properties to the entities at different levels and the mechanism of property flow within the hierarchical entity levels is outlined. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Chemical characterization of agricultural supplies applied to organic tomato cultivation

    International Nuclear Information System (INIS)

    Martins, T.C.G.; Nadai Fernandes de, E.A.; Ferrari, A.A.; Tagliaferro, F.S.; Bacchi, M.A.

    2008-01-01

    The agricultural supplies used in the organic system to control pests and diseases as well as to fertilize soil are claimed to be beneficial to plants and innocuous to human health and to the environment. The chemical composition of six agricultural supplies commonly used in the organic tomato culture, was evaluated by instrumental neutron activation analysis (INAA). Results were compared to the maximum limits established by the Environment Control Agency of the S?o Paulo State (CETESB) and the Guidelines for Organic Quality Standard of Instituto Biodinamico (IBD). Concentrations above reference values were found for Co, Cr and Zn in compost, Cr and Zn in cattle manure and Zn in rice bran. (author)

  8. Heat-resistant hydrophobic-oleophobic coatings

    OpenAIRE

    Uyanik, Mehmet; Arpac, Ertugrul; Schmidt, Helmut K.; Akarsu, Murat; Sayilkan, Funda; Sayilkan, Hikmet

    2006-01-01

    Thermally and chemically durable hydrophobic oleophobic coatings, containing different ceramic particles such as SiO2, SiC, Al 2O3, which can be alternative instead of Teflon, have been developed and applied on the aluminum substrates by spin-coating method. Polyimides, which are high-thermal resistant heteroaromatic polymers, were synthesized, and fluor oligomers were added to these polymers to obtain hydrophobic-oleophobic properties. After coating, Al surface was subjected to Taber-abrasio...

  9. CHEMICAL CLEANING OF NANOFILTRATION MEMBRANES FOULED BY ORGANIC MATTERS

    Directory of Open Access Journals (Sweden)

    CHARLENE C. H. KOO

    2016-07-01

    Full Text Available Membrane fouling is a term to describe non-integral substance on membrane surface which results in rapid decline of permeation flux and deteriorate the performance of membrane. Chemical cleaning agents especially like alkaline cleaners are most widely employed to restore the membrane performance. This research mainly investigated the potential use of sodium hydroxide (NaOH and sodium hypochlorite (NaOCl as the chemical cleaning agents to restore the permeate flux of organically fouled nanofiltration (NF membranes under varying applied pressure and flow condition. The performances of the cleaning protocols were quantified using flux recovery and resistance removal. The results demonstrated that NaOCl is more effective than NaOH. This observation is also in line with FTIR analysis in which the transmittance intensity showed by FTIR spectra of NaOCl is higher than that of NaOH. The results also reported that higher flux recovery and resistance removal were achieved when the fouled NF membranes were cleaned with higher concentration of chemical agents and applied pressure. However, the improvements of flux recovery and resistance removal by increasing the applied pressure were found insignificant at higher applied pressure range (16 to 18 bar than the lower applied pressure range (i.e. 12 to 14 bar. This research plays an important role by identifying the key parameters that could restore the flux of organically fouled NF membranes significantly.

  10. Liquid electrolyte positioning along the device channel influences the operation of Organic Electro-Chemical Transistors

    KAUST Repository

    D'angelo, Pasquale

    2014-11-01

    In this work, we show the influence of the liquid electrolyte adsorption by porous films made of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), PEDOT:PSS, on the operation of an Organic Electro-Chemical Transistor with an active channel based on these polymeric films. In particular, the effect of film hydration on device performance is evaluated by studying its electrical response as a function of the spatial position between the electrolyte and the channel electrodes. This is done by depositing a PEDOT:PSS film on a super-hydrophobic surface aimed at controlling the electrolyte confinement next to the electrodes. The device response shows that the confinement of ionic liquids near to the drain electrode results in a worsening of the current modulation. This result has been interpreted in the light of studies dealing with the transport of ions in semiconducting polymers, indicating that the electrolyte adsorption by the polymeric film implies the formation of liquid pathways inside its bulk. These pathways, in particular, affect the device response because they are able to assist the drift of ionic species in the electrolyte towards the drain electrode. The effect of electrolyte adsorption on the device operation is confirmed by means of moving-front measurements, and is related to the reproducibility of the device operation curves by measuring repeatedly its electrical response.

  11. Effects of radiation and chemical substances on cells and organism

    International Nuclear Information System (INIS)

    Fremuth, F.

    1981-01-01

    The book treats the radiation chemistry part of biophysics and applied biophysics in the sphere of ionizing radiation. Discussed are the concepts of radiation units and radioactivity units and the relative biological efficiency. The effects of ionizing and UV radiations are analyzed at the level of macromolecular changes. Chapters dealing with genetic radiation effects discuss the effects at the cellular level with respect to cell proliferation. All these problems are used to illustrate the effect on the organism as a whole. The chapters on applied biophysics deal with the indications of radiation and chemical damage, sensitivity of cells and the organism, and the study and influencing of growth at the cellular level. The concluding chapter is devoted to the environmental impact of radiation. (J.P.)

  12. PREDICTING SOIL SORPTION COEFFICIENTS OF ORGANIC CHEMICALS USING A NEURAL NETWORK MODEL

    Science.gov (United States)

    The soil/sediment adsorption partition coefficient normalized to organic carbon (Koc) is extensively used to assess the fate of organic chemicals in hazardous waste sites. Several attempts have been made to estimate the value of Koc from chemical structure ...

  13. Screening of perfluorinated chemicals (PFCs) in various aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Sanjuan, Maria; Meyer, Johan; Damasio, Joana; Faria, Melissa; Barata, Carlos; Lacorte, Silvia [IDAEA-CSIC, Department of Environmental Chemistry, Barcelona (Spain)

    2010-10-15

    The aim of this study was to evaluate the occurrence of five perfluorinated chemicals (perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS), and perfluorobutane sulfonic acid) in aquatic organisms dwelling in either freshwater or marine ecosystems. Organisms selected were insect larvae, oysters, zebra mussels, sardines, and crabs, which are widespread in the environment and may represent potential bioindicators of exposure to PFCs. The study comprises the optimization of a solid-liquid extraction method and determination by high-performance liquid chromatography coupled to tandem mass spectrometry. Using spiked zebra mussels at 10 and 100 ng/g level, the method developed provided recoveries of 96% and 122%, and 82% to 116%, respectively, and a limit of detection between 0.07 and 0.22 ng/g ww. The method was highly sensitivity and robust to determine PFC compounds in a wide array of biological matrices, and no matrix interferents nor blank contamination was observed. Among organisms studied, none of the bivalves accumulated PFCs, and contrarily, insect larvae, followed by fish and crabs contained levels ranging from 0.23 to 144 ng/g ww of PFOS, from 0.14 to 4.3 ng/g ww of PFOA, and traces of PFNA and PFHxS. Assessment of the potential use of aquatic organisms for biomonitoring studies is further discussed. (orig.)

  14. Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor.

    Science.gov (United States)

    Holloway, Ryan W; Regnery, Julia; Nghiem, Long D; Cath, Tzahi Y

    2014-09-16

    A hybrid ultrafiltration-osmotic membrane bioreactor (UFO-MBR) was investigated for over 35 days for nutrient and trace organic chemical (TOrC) removal from municipal wastewater. The UFO-MBR system uses both ultrafiltration (UF) and forward osmosis (FO) membranes in parallel to simultaneously extract clean water from an activated sludge reactor for nonpotable (or environmental discharge) and potable reuse, respectively. In the FO stream, water is drawn by osmosis from activated sludge through an FO membrane into a draw solution (DS), which becomes diluted during the process. A reverse osmosis (RO) system is then used to reconcentrate the diluted DS and produce clean water suitable for direct potable reuse. The UF membrane extracts water, dissolved salts, and some nutrients from the system to prevent their accumulation in the activated sludge of the osmotic MBR. The UF permeate can be used for nonpotable reuse purposes (e.g., irrigation and toilet flushing). Results from UFO-MBR investigation illustrated that the chemical oxygen demand, total nitrogen, and total phosphorus removals were greater than 99%, 82%, and 99%, respectively. Twenty TOrCs were detected in the municipal wastewater that was used as feed to the UFO-MBR system. Among these 20 TOrCs, 15 were removed by the hybrid UFO-MBR system to below the detection limit. High FO membrane rejection was observed for all ionic and nonionic hydrophilic TOrCs and lower rejection was observed for nonionic hydrophobic TOrCs. With the exceptions of bisphenol A and DEET, all TOrCs that were detected in the DS were well rejected by the RO membrane. Overall, the UFO-MBR can operate sustainably and has the potential to be utilized for direct potable reuse applications.

  15. Trace organic chemicals contamination in ground water recharge.

    Science.gov (United States)

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed.

  16. The new method of modifying the hydrophobic properties of expanded perlite

    Directory of Open Access Journals (Sweden)

    Vogt Elżbieta

    2017-01-01

    Full Text Available The progressive industrialization and development of the automotive industry is the cause of the increasing demand for chemical products, especially oil products. Unfortunately, during processing, transportation or storage of these products, they get very often into the environment causing pollution. The removal of the results of accidents is still a current problem. The techniques which employ various types of sorbents deserve special attention among the several methods of eliminating the effects of pollutions. Moreover, expanded hydrophobic perlite is an interesting material among sorbents which are used on a large scale. The new method of modifying the hydrophobic properties of expanded perlite, with the use of solutions of stearic acid in organic solvents, was presented. The perlite that was used in research was produced by the PerliPol registered partnership in Bełchatów. Hydrophobic properties of the obtained materials were determined on the basis of the results achieved due to the modified film flotation method, “floating on water” test and on the basis of the value of water retention for individual samples. All grain fractions of perlite obtained hydrophobic properties which were better than or comparable to the hydrophobic properties of the HydroPerl (PerlPol commercial material used to remove petroleum product pollution. The hydrophobization process significantly improved the adsorption capacity of modified perlite to petroleum product pollution.

  17. How soil organic matter composition controls hexachlorobenzene-soil-interactions: adsorption isotherms and quantum chemical modeling.

    Science.gov (United States)

    Ahmed, Ashour A; Kühn, Oliver; Aziz, Saadullah G; Hilal, Rifaat H; Leinweber, Peter

    2014-04-01

    Hazardous persistent organic pollutants (POPs) interact in soil with the soil organic matter (SOM) but this interaction is insufficiently understood at the molecular level. We investigated the adsorption of hexachlorobenzene (HCB) on soil samples with systematically modified SOM. These samples included the original soil, the soil modified by adding a hot water extract (HWE) fraction (soil+3 HWE and soil+6 HWE), and the pyrolyzed soil. The SOM contents increased in the order pyrolyzed soilsoilsoil+3 HWEsoil+6 HWE. For the latter three samples this order was also valid for the HCB adsorption. The pyrolyzed soil adsorbed more HCB than the other samples at low initial concentrations, but at higher concentrations the HCB adsorption became weaker than in the samples with HWE addition. This adsorption combined with the differences in the chemical composition between the soil samples suggested that alkylated aromatic, phenol, and lignin monomer compounds contributed most to the HCB adsorption. To obtain a molecular level understanding, a test set has been developed on the basis of elemental analysis which comprises 32 representative soil constituents. The calculated binding energy for HCB with each representative system shows that HCB binds to SOM stronger than to soil minerals. For SOM, HCB binds to alkylated aromatic, phenols, lignin monomers, and hydrophobic aliphatic compounds stronger than to polar aliphatic compounds confirming the above adsorption isotherms. Moreover, quantitative structure-activity relationship (QSAR) of the binding energy with independent physical properties of the test set systems for the first time indicated that the polarizability, the partial charge on the carbon atoms, and the molar volume are the most important properties controlling HCB-SOM interactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Evaluation of hydrophobicity in PAH-contaminated soils during phytoremediation

    International Nuclear Information System (INIS)

    Cofield, Naressa; Banks, M. Katherine; Schwab, A. Paul

    2007-01-01

    The impact of recalcitrant organic compounds on soil hydrophobicity was evaluated in contaminated soil from a manufactured gas plant site following 12 months of phytoremediation. Significant reduction in soil wetting and water retention was observed in contaminated soil compared to an uncontaminated control. Phytoremediation was effective at reducing total PAHs by 69% with corresponding changes in soil classification from extremely hydrophobic (initial sample) to moderately-strongly hydrophobic (planted) and hydrophilic-very hydrophilic (unplanted) after 12 months. The greatest reduction in soil hydrophobicity was observed in the unplanted, unfertilized treatments that had the lowest removal rate of PAHs. The presence of plants may contribute to hydrophobicity in contaminated soil. - The presence of recalcitrant hydrophobic organic pollutants may enhance soil hydrophobicity

  19. COSOLVENT EFFECTS ON SORPTION AND MOBILITY OF ORGANIC CONTAMINANTS IN SOILS

    Science.gov (United States)

    Batch equilibrium and column miscible displacement techniques were used to investigate the influence of an organic cosolvent (methanol) on the sorption and transport of three hydrophobic organic chemicals (HOCs) — naphthalene, phenanthrene, and diuron herbicide — in a sandy surfa...

  20. Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols.

    Science.gov (United States)

    McNeill, V Faye

    2015-02-03

    Over the past decade, it has become clear that aqueous chemical processes occurring in cloud droplets and wet atmospheric particles are an important source of organic atmospheric particulate matter. Reactions of water-soluble volatile (or semivolatile) organic gases (VOCs or SVOCs) in these aqueous media lead to the formation of highly oxidized organic particulate matter (secondary organic aerosol; SOA) and key tracer species, such as organosulfates. These processes are often driven by a combination of anthropogenic and biogenic emissions, and therefore their accurate representation in models is important for effective air quality management. Despite considerable progress, mechanistic understanding of some key aqueous processes is still lacking, and these pathways are incompletely represented in 3D atmospheric chemistry and air quality models. In this article, the concepts, historical context, and current state of the science of aqueous pathways of SOA formation are discussed.

  1. Radioactivity in chemical and organic fertilizer used in Egypt

    International Nuclear Information System (INIS)

    Abbady, A.G.E.; Yousef, A.M.M.; Abbady, A.; El-Taher, A.

    2005-01-01

    The Egypt Chemical factories (ECF); such as Talkha, Sues, Abo Qeyer, Kafer Elzayat, and Assuit factories, produces and markets a range of phosphate based fertilizers, including Simple Super Phosphate (SSP) fertilizer, Triple Super Phosphate (TSP) fertilizer and Urea. Phosphate fertilizers produced by ECF are derived from phosphate ore. In addition to phosphate minerals, these ores can contain significant amounts of a wide range of impurities, including heavy metals and naturally occurring radionuclides. This study was carried out to determine the content of radionuclides in fertilizer products produced by ECF and some organic fertilizer (animal manure) includes cow, sheep and chicken fertilizer. In both samples (Chemical and organic fertilizers), the activity concentrations of Ra 2 26 are higher than those Th 2 32. The radioactivity of 226 R a in chemical fertilizers ranged from 21.6 ± 3.6 to 111.2 ± 8.9 Bq kg-1, phosphate fertilizers TSP contained high contents of 226 R a. The average radioactivity of 226 R a in TSP was 79.3 ± 7.4 Bq kg-1, in SSP 51.2 ± 5 Bq kg-1, and in Urea 35.1± 3.5 Bq kg-1. The activity of 232 T h in the different fertilizers ranged from 1.3 ± 1.1 to 9.9 ± 3.2 Bq kg-1,the highest activity observed in SSP fertilizer. The activity of 40 K was found to be great in the TSP fertilizer, which contained a mean activity 478.1± 21.3 Bq kg-1. With respect to organic fertilizers the average radioactivity of 226 R a, 232 T h and 40 K are 40 ± 1.6 Bq kg-1, 3.1± 1.2 and 427.1± 20 Bq kg-1. The data are discussed and compared with those given in the literatures. This study could be useful as baseline data for radiation exposure to fertilizers, and their impact on human health

  2. Organic waste as a sustainable feedstock for platform chemicals.

    Science.gov (United States)

    Coma, M; Martinez-Hernandez, E; Abeln, F; Raikova, S; Donnelly, J; Arnot, T C; Allen, M J; Hong, D D; Chuck, C J

    2017-09-21

    Biorefineries have been established since the 1980s for biofuel production, and there has been a switch lately from first to second generation feedstocks in order to avoid the food versus fuel dilemma. To a lesser extent, many opportunities have been investigated for producing chemicals from biomass using by-products of the present biorefineries, simple waste streams. Current facilities apply intensive pre-treatments to deal with single substrate types such as carbohydrates. However, most organic streams such as municipal solid waste or algal blooms present a high complexity and variable mixture of molecules, which makes specific compound production and separation difficult. Here we focus on flexible anaerobic fermentation and hydrothermal processes that can treat complex biomass as a whole to obtain a range of products within an integrated biorefinery concept.

  3. Organic chemical degradation by remote study of the redox conditions

    Science.gov (United States)

    Fernandez, P. M.; Revil, A.; Binley, A. M.; Bloem, E.; French, H. K.

    2014-12-01

    Monitoring the natural (and enhanced) degradation of organic contaminants is essential for managing groundwater quality in many parts of the world. Contaminated sites often have limited access, hence non-intrusive methods for studying redox processes, which drive the degradation of organic compounds, are required. One example is the degradation of de-icing chemicals (glycols and organic salts) released to the soil near airport runways during winter. This issue has been broadly studied at Oslo airport, Gardermoen, Norway using intrusive and non-intrusive methods. Here, we report on laboratory experiments that aim to study the potential of using a self-potential, DCresistivity, and time-domain induced polarization for geochemical characterization of the degradation of Propylene Glycol (PG). PG is completely miscible in water, does not adsorb to soil particles and does not contribute to the electrical conductivity of the soil water. When the contaminant is in the unsaturated zone near the water table, the oxygen is quickly consumed and the gas exchange with the surface is insufficient to ensure aerobic degradation, which is faster than anaerobic degradation. Since biodegradation of PG is highly oxygen demanding, anaerobic pockets can exist causing iron and manganese reduction. It is hypothesised that nitrate would boost the degradation rate under such conditions. In our experiment, we study PG degradation in a sand tank. We provide the system with an electron highway to bridge zones with different redox potential. This geo-battery system is characterized by self-potential, resistivity and induced polarization anomalies. An example of preliminary results with self-potential at two different times of the experiment can be seen in the illustration. These will be supplemented with more direct information on the redox chemistry: in-situ water sampling, pH, redox potential and electrical conductivity measurements. In parallel, a series of batch experiments have been

  4. Physico-chemical properties of Pd nanoparticles produced by Pulsed Laser Ablation in different organic solvents

    International Nuclear Information System (INIS)

    Cristoforetti, Gabriele; Pitzalis, Emanuela; Spiniello, Roberto; Ishak, Randa; Giammanco, Francesco; Muniz-Miranda, Maurizio; Caporali, Stefano

    2012-01-01

    Palladium nanoparticles are arousing an increasing interest because of their strong activity in heterogeneous catalysis in a wide range of reactions. Driven by the interest of producing Pd nanoparticles to be deposited for catalysis over hydrophobic supports, we investigated their synthesis via Pulsed Laser Ablation in Liquid in several organic solvents, as acetone, ethanol, 2-propanol, toluene, n-hexane. The colloids were produced by using a Nd:YAG ns laser and without the addition of surfactant agents. The morphology, composition, stability and oxidation state of the obtained nanoparticles were investigated by TEM-EDS analysis, UV-vis spectroscopy, X-ray Photoelectron Spectroscopy and micro-Raman spectroscopy. The results evidence that the nature of the solvent influences both the yield and the physico-chemical properties of the produced nanoparticles. While in acetone and alcohols spheroidal, non aggregated and stable particles are obtained, in case of toluene and n-hexane few unstable particles surrounded by a gel-like material are produced. Raman/XPS measurements suggest the presence of amorphous or graphitic carbon onto crystalline Pd nanoparticles, which could have hindered their growth and determined the observed smaller sizes if compared to nanoparticles produced in water. The stability of Pd colloids obtained in acetone and alcohols was attributed to adsorbed anions like enolates or alcoholates; non polar solvents like toluene and n-hexane, unable to give rise to adsorbed anionic species, cannot provide any stabilization to the palladium nanoparticles. XPS analyses also evidenced a partial oxidation of particles surface, with a ratio Pd 2+ :Pd 0 of 1:2.5 and 1:4 in acetone and ethanol, respectively.

  5. Secondary organic aerosols. Chemical aging, hygroscopicity, and cloud droplet activation

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Angela

    2011-07-06

    Atmospheric aerosols have an important impact on the radiation balance, and thus, on the climate of the Earth. Aerosol particles scatter and absorb incoming solar and terrestrial radiation. Apart from this direct effect, aerosol particles act as cloud condensation nuclei (CCN), thereby greatly influencing the microphysics of clouds. Secondary organic aerosols (SOA) are an important fraction of the total aerosol mass. In many environments these organic compounds are mainly products of the oxidation of biogenic volatile organic compounds (VOC). In this study the hygroscopic growth and CCN activation of biogenic SOA were investigated which was formed by the oxidation of VOC with O{sub 3} and photochemically formed OH radicals under low NO{sub x} conditions. For this purpose, a complex mixture of VOC emitted by boreal tree species as gas-phase precursors was used in the Juelich Plant Atmosphere Chamber (JPAC). In long-term studies in the atmosphere simulation chamber SAPHIR {alpha}-pinene or a defined mixture of {alpha}-pinene, {beta}-pinene, limonene, ocimene, {delta}-3-carene served as precursors. Initial precursor concentrations between 40 and 1000 ppbC were investigated. The observed SOA particles were slightly hygroscopic with an average hygroscopicity parameter {kappa}(CCN) = 0.10 {+-} 0.02 and {kappa}(90%RH) = 0.05 {+-} 0.01. Closure between hygroscopic growth and CCN activation data could be achieved allowing either surface tension reduction, limited solubility, or non-ideality of the solution in the droplet. The SOA solutions in equilibrium with RH <95% are possible highly non-ideal. Therefore the organic-water interaction were investigated by applying the UNIFAC model. Calculations for surrogate compounds exhibited the same strong concentration (i.e. RH) dependence of {kappa} at sub-saturation. The growth curves could be fitted and CCN activation predicted by assuming a binary mixture of water and one hypothetical organic compound. The occurrence of

  6. Modification of chemical and conformational properties of natural organic matter by click chemistry as revealed by ESI-Orbitrap mass spectrometry.

    Science.gov (United States)

    Nebbioso, Antonio; Piccolo, Alessandro

    2015-11-01

    A click reaction is reported here for the first time as a useful technique to control the conformational stability of natural organic matter (NOM) suprastructures. Click conjugates were successfully formed between a previously butynylated NOM hydrophobic fraction and a hydrophilic polyethylene glycol (PEG)-amino chain. The click products were shown by size exclusion chromatography (HPSEC) hyphenated with Orbitrap mass spectrometry (MS) in electrospray ionization (ESI) (+), while precursors were visible in ESI (-). Despite their increase in molecular weight, HPSEC elution of click conjugates occurred after that of precursors, thus showing their departure from the NOM supramolecular association. This indicates that the click-conjugated NOM molecules were varied in their hydrophilic and cationic character and lost the capacity to accommodate in the original hydrophobic suprastructures. The most abundant product had the C16H30O5N4 formula, a click conjugate of butanoic acid, while other products were short-chained (C4-C8) linear unsaturated and hydroxylated carboxylic acids. Tandem MS revealed formation of triazole rings in clicked conjugates and their two fragmentations at the ester and the C-N alkyl-aryl bonds. The behavior of NOM molecules modified by click chemistry confirms that hydrophobicity and ionic charge of humic molecules play a pivotal role in stabilizing intermolecular forces in NOM. Moreover, the versatility of the click reaction may become useful to decorate NOM molecules with a variety of substrates, in order to alter NOM conformational and chemical properties and diversify its applications in the environment.

  7. Detection of chemical substances in water using an oxide nanowire transistor covered with a hydrophobic nanoparticle thin film as a liquid-vapour separation filter

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2016-08-01

    Full Text Available We have developed a method to detect the presence of small amounts of chemical substances in water, using a Al2O3 nanoparticle thin film covered with phosphonic acid (HDF-PA self-assembled monolayer. The HDF-PA self-assembled Al2O3 nanoparticle thin film acts as a liquid-vapour separation filter, allowing the passage of chemical vapour while blocking liquids. Prevention of the liquid from contacting the SnO2 nanowire and source-drain electrodes is required in order to avoid abnormal operation. Using this characteristic, the concentration of chemical substances in water could be evaluated by measuring the current changes in the SnO2 nanowire transistor covered with the HDF-PA self-assembled Al2O3 nanoparticle thin film.

  8. Decomposition of halogenated organic chemicals in ionic liquid by ionizing radiation

    International Nuclear Information System (INIS)

    Kimura, A.; Taguchi, M.; Kojima, T.; Nagaishi, R.; Hiratsuka, H.

    2006-01-01

    Introduction: Halogenated organic chemicals such as polychlorodibenzo-p-dioxin, polychlorobiphenyls and hexachlorobenzene are widely spread in water environment. These pollutants are persistent against advanced oxidation treatments such as ozone/UV, ozone/hydrogen peroxide, ionizing radiation and photocatalysts. The ionizing radiation, however, can also produce homogeneously and quantitatively reducing species in water. On the other hand, room temperature ionic liquids (RTILs) have unique properties such as nonflammable, high polarity, low melting point, hydrophobicity and wide electrochemical window. The combined method of reduction by ionizing radiation and RTILs is investigated as a new environmental conservation technology. Experimental: Chlorophenol (CP) is selected as model chemicals having the main frame of halogenated organic chemicals. Each o - , m - and p-CP were irradiated with 60 Co γ-ray in each diethylmethyl(2-methoxy-ethyl)ammonium bis(trifluoromethylsulfonyl)imide (DEMMA- TFSI), diethylmethyl(2-methoxyethyl)-ammonium tetrafluoroborate (DEMMA-BF4), methanol and ethanol as solvent. Decomposition of CP and formation of irradiation products were studied using HPLC, LC-MS and ion chromatography. Results and discussion: Concentration of CP in each solution decreased as a function of dose. G-value was estimated from the slope at the primary stage of the decomposition curve. The G(-CP) and G(Phenol) were shown in Table 1. G(-CP) in the aliphatic alcohols was 0.21 to 0.37, which is lower than G-value of reducing species in the alcohols, e.g. G=1.0 to 1.5 for solvated electron. Since the rate constant for reaction of CP with hydrated electron is 1.3 x 10 9 mol -1 ·dm 3 ·s -1 , the reverse reaction is considered to attribute. G(-CP) in DEMMA-TFSI or DEMMA-BF4 was about 2 to 3 times higher than that in each alcohol. Lifetime of the reducing species in RTILs would be longer than that in each alcohol. G(-CP) in DEMMA-TFSI decreased by adding acetone or oxygen

  9. Metal organic frameworks for the catalytic detoxification of chemical warfare nerve agents

    Science.gov (United States)

    Hupp, Joseph T.; Farha, Omar K.; Katz, Michael J.; Mondloch, Joseph E.

    2017-04-18

    A method of using a metal organic framework (MOF) comprising a metal ion and an at least bidendate organic ligand to catalytically detoxify chemical warfare nerve agents including exposing the metal-organic-framework (MOF) to the chemical warfare nerve agent and catalytically decomposing the nerve agent with the MOF.

  10. Hydrophobic treatment of concrete

    NARCIS (Netherlands)

    Vries, J. de; Polder, R.B.

    1996-01-01

    As part of the maintenance policy of the Dutch Ministry of Transport, Civil Engineering Division, hydrophobic treatment of concrete was considered as an additional protective measure against penetration of aggressive substances, for instance deicing salts in bridge decks. A set of tests was designed

  11. Physico-Chemical Evolution of Organic Aerosol from Wildfire Emissions

    Science.gov (United States)

    Croteau, P.; Jathar, S.; Akherati, A.; Galang, A.; Tarun, S.; Onasch, T. B.; Lewane, L.; Herndon, S. C.; Roscioli, J. R.; Yacovitch, T. I.; Fortner, E.; Xu, W.; Daube, C.; Knighton, W. B.; Werden, B.; Wood, E.

    2017-12-01

    Wildfires are the largest combustion-related source of carbonaceous emissions to the atmosphere; these include direct emissions of black carbon (BC), primary organic aerosol (POA) and semi-volatile, intermediate-volatility, and volatile organic compounds (SVOCs, IVOCs, and VOCs). However, there are large uncertainties surrounding the evolution of these carbonaceous emissions as they are physically and chemically transformed in the atmosphere. To understand these transformations, we performed sixteen experiments using an environmental chamber to simulate day- and night-time chemistry of gas- and aerosol-phase emissions from 6 different fuels at the Fire Laboratory in Missoula, MT. Across the test matrix, the experiments simulated 2 to 8 hours of equivalent day-time aging (with the hydroxyl radical and ozone) or several hours of night-time aging (with the nitrate radical). Aging resulted in an average organic aerosol (OA) mass enhancement of 28% although the full range of OA mass enhancements varied between -10% and 254%. These enhancement findings were consistent with chamber and flow reactor experiments performed at the Fire Laboratory in 2010 and 2012 but, similar to previous studies, offered no evidence to link the OA mass enhancement to fuel type or oxidant exposure. Experiments simulating night-time aging resulted in an average OA mass enhancement of 10% and subsequent day-time aging resulted in a decrease in OA mass of 8%. While small, for the first time, these experiments highlighted the continuous nature of the OA evolution as the wildfire smoke cycled through night- and day-time processes. Ongoing work is focussed on (i) quantifying bulk compositional changes in OA, (ii) comparing the near-field aging simulated in this work with far-field aging simulated during the same campaign (via a mini chamber and flow tube) and (iii) integrating wildfire smoke aging datasets over the past decade to examine the relationship between OA mass enhancement ratios, modified

  12. 78 FR 37222 - Columbia Organic Chemical Company Site, Columbia, Richland County, South Carolina; Notice of...

    Science.gov (United States)

    2013-06-20

    ... Protection Agency (EPA). ACTION: Notice of Settlement. SUMMARY: Under 122(h) of the Comprehensive... Agency has entered into a settlement with Stephen Reichlyn concerning the Columbia Organic Chemical...

  13. Controllable picoliter pipetting using hydrophobic microfluidic valves

    Science.gov (United States)

    Zhang, M.; Huang, J.; Qian, X.; Mi, S.; Wang, X.

    2017-06-01

    A picoliter pipetting technique using the microfluidic method is presented. Utilizing the hydrophobic self-assembled monolayer films patterned in microchannels as pressure-controlled valves, a small volume of liquid can be separated by a designed channel trap and then ejected from the channel end at a higher pressure. The liquid trap section is composed of a T-shaped channel junction and a hydrophobic patch. The liquid volume can be precisely controlled by varying the distance of the hydrophobic patch from the T-junction. By this means, liquid less than 100 pl can be separated and pipetted. The developed device is potentially useful for sample dispensing in biological, medical, and chemical applications.

  14. Biosurfactant-enhanced bioremediation of hydrophobic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cameotra, S.S.; Makkar, R.S. [Inst. of Microbial Technology, Chandigarh (India)

    2010-01-15

    Biosurfactants are surface-active compounds synthesized by a wide variety of microorganisms. They are molecules that have both hydrophobic and - philic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures-lipopeptides, glycolipids, neutral lipids, and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. Polycyclic aromatic hydrocarbons (PAHs), crude on sludge, and pesticides call be toxic, mutagenic, and carcinogenic compounds that pollute the environment. They are released into the environment as a result of oil spillage and by-products of coal treatment processes. The low water solubility of these compounds limits their availability to microorganisms, which is a potential problem for bioremediation of contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of pollutants has potential hioremediation applications.

  15. Fabrication of hydrophobic/super-hydrophobic nanofilms on magnesium alloys by polymer plating

    International Nuclear Information System (INIS)

    Kang Zhixin; Lai Xiaoming; Sang Jing; Li Yuanyuan

    2011-01-01

    Hydrophobic/super-hydrophobic nanofilms with improved corrosion resistance were fabricated on the surfaces of Mg–Mn–Ce magnesium alloy by a surface modification technique, named as polymer plating, which has been developed to modify superficial characteristics of magnesium alloys with polymeric nanofilms through synthesized organic compounds of triazine dithiol containing functional groups. The nanofilms were prepared by the electrochemical and polymerization reactions during polymer plating analyzed from characteristics of Fourier transform infrared spectrophotometer, X-ray photoelectron spectroscopy and scanning electron microscopy. The fabricated nanofilms changed the surface wettability of blank magnesium alloy from hydrophilic to hydrophobic with contact angle 119.0° of distilled water with lower surface free energy of 20.59 mJ/m 2 and even super-hydrophobic with contact angle 158.3° with lowest surface free energy of 4.68 mJ/m 2 by different functional nanofilms on their surfaces. Alteration of wettability from hydrophilic to hydrophobic and super-hydrophobic resulted from their low surface free energy and surface morphology with micro- and nano-rough structures. The corrosion behaviors from potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) show that the super-hydrophobic nanofilm has higher corrosion resistance and stability in 0.1 mol/L NaCl solution and lower corrosion current density (I corr ) with R ct increasing two orders of magnitude of 16,500 Ω·cm 2 compared to that obtained for blank of 485 Ω·cm 2 .

  16. Investigation of Organic Chemicals Potentially Responsible for Mortality and Intersex in Fish of the North Fork of the Shenandoah River, Virginia, during Spring of 2007

    Science.gov (United States)

    Alvarez, David A.; Cranor, Walter L.; Perkins, Stephanie D.; Schroeder, Vickie L.; Werner, Stephen; Furlong, Edward T.; Holmes, John

    2008-01-01

    Declining fish health, fish exhibiting external lesions, incidences of intersex, and death, have been observed recently within the Potomac River basin. The basin receives surface runoff and direct inputs from agricultural, industrial, and other human activities. Two locations on the North Fork of the Shenandoah River were selected for study in an attempt to identify chemicals that may have contributed to the declining fish health. Two passive sampling devices, semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS), were deployed during consecutive two-month periods during the spring and early summer of 2007 to measure select organic contaminants to which fish may have been exposed. This study determined that concentrations of persistent hydrophobic contaminants, such as polycyclic aromatic hydrocarbons (wastewater treatment plant effluent or septic tank discharges were identified. In contrast, para-cresol, N,N-diethyltoluamide, and caffeine commonly were detected. Prescription pharmaceuticals including carbamazepine, venlafaxine, and 17a-ethynylestradiol were at low concentrations. Extracts from the passive samplers also were screened for the presence of estrogenic chemicals using the yeast estrogen screen. An estrogenic response was observed in POCIS samples from both sites, whereas SPMD samples exhibited little to no estrogenicity. This indicates that the chemicals producing the estrogenic response have a greater water solubility and are, therefore, less likely to bioaccumulate in fatty tissues of organisms.

  17. Combined chemical and toxicological long-term monitoring for AhR agonists with SPMD-based virtual organisms in drinking water Danjiangkou Reservoir, China.

    Science.gov (United States)

    Wang, Jingxian; Song, Guoqiang; Li, Aimin; Henkelmann, Bernhard; Pfister, Gerd; Tong, Anthony Z; Schramm, Karl-Werner

    2014-08-01

    SPMD-based virtual organisms (VOs) were employed for time-integrating, long-term sampling combined biological and chemical analyses for exposure assessment of hydrophobic organic pollutants (HOPs) in a drinking water reservoir, China. The SPMDs were deployed at four and five sites in the Danjiangkou (DJK) reservoir over two periods of 26 and 31 d to sequester the hydrophobic contaminants in water. The chosen bioassay response for the extracts of the SPMDs, the induction of 7-ethoxyresorufin-o-deethylase (EROD) was assayed using a rat hepatoma cell line (H4IIE). The known aryl hydrocarbon receptor (AhR) agonists PAHs and PCBs were analyzed by HRGC/HRMS instrument. The cause-effect relationship between the observed AhR activities and chemical concentrations of detected AhR agonists was examined. The results show that the extracts from the SPMD samples could induce AhR activity significantly, whereas the chemically derived 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalent (TEQcal) was not correlated with the bioassay-derived TCDD equivalent (TEQbio). The known AhR agonists could only account for 2-10% of the observed AhR responses among which the contribution of PCBs could almost be neglected. Unidentified AhR-active compounds represented a greater proportion of the TCDD equivalent (TCDD-EQ) in SPMD samples from DJK. Based on the first assessment, the VO followed by the combination of chemical and biological analyses emerges as a resource efficient water monitoring device in ecotoxicological assessment for toxicologically relevant compounds which are readily available for uptake by resident aquatic biota in drinking water resources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Enchytraeids as indicator organisms for chemical stress in terrestrial ecosystems

    NARCIS (Netherlands)

    Didden, W.; Römbke, J.

    2001-01-01

    This review article surveys the available data on enchytraeid sensitivity toward chemical stress, and the effects of chemical stress on enchytraeid communities in terrestrial ecosystems. The factors affecting bioavailability of stressors to enchytraeids and the nature of direct and indirect effects

  19. An autonomous organic reaction search engine for chemical reactivity

    Science.gov (United States)

    Dragone, Vincenza; Sans, Victor; Henson, Alon B.; Granda, Jaroslaw M.; Cronin, Leroy

    2017-06-01

    The exploration of chemical space for new reactivity, reactions and molecules is limited by the need for separate work-up-separation steps searching for molecules rather than reactivity. Herein we present a system that can autonomously evaluate chemical reactivity within a network of 64 possible reaction combinations and aims for new reactivity, rather than a predefined set of targets. The robotic system combines chemical handling, in-line spectroscopy and real-time feedback and analysis with an algorithm that is able to distinguish and select the most reactive pathways, generating a reaction selection index (RSI) without need for separate work-up or purification steps. This allows the automatic navigation of a chemical network, leading to previously unreported molecules while needing only to do a fraction of the total possible reactions without any prior knowledge of the chemistry. We show the RSI correlates with reactivity and is able to search chemical space using the most reactive pathways.

  20. Identifying new persistent and bioaccumulative organics among chemicals in commerce.

    Science.gov (United States)

    Howard, Philip H; Muir, Derek C G

    2010-04-01

    The goal of this study was to identify commercial chemicals that might be persistent and bioaccumulative (P&B) and that were not being considered in current Great Lakes, North American, and Arctic contaminant measurement programs. We combined the Canadian Domestic Substance List (DSL), a list of 3059 substances of "unknown or variable composition complex reaction products and biological materials" (UVCBs), and the U.S. Environmental Protection Agency (U.S. EPA) Toxic Substances Control Act (TSCA) Inventory Update Rule (IUR) database for years 1986, 1990, 1994, 1998, 2002, and 2006 yielding a database of 22263 commercial chemicals. From that list, 610 chemicals were identified by estimates from U.S EPA EPISuite software and using expert judgment. This study has yielded some interesting and probable P&B chemicals that should be considered for further study. Recent studies, following up our initial reports and presentations on this work, have confirmed the presence of many of these chemicals in the environment.

  1. Chemical-Structural Changes of Organic Matter in a Semi-Arid Soil After Organic Amendment

    Institute of Scientific and Technical Information of China (English)

    C.NICOL(A)S; G.MASCIANDARO; T.HERN(A)NDEZ; C.GARCIA

    2012-01-01

    A 9-month incubation experiment using composted and non-composted amendments derived from vine pruning waste and sewage sludge was carried out to study the effects of the nature and stability of organic amendments on the structural composition of organic matter (OM) in a semi-arid soil. The changes of soil OM,both in the whole soil and in the extractable carbon with pyrophosphate,were evaluated by pyrolysis-gas chromatography and chemical analyses.By the end of the experiment,the soils amended with pruning waste exhibited less organic carbon loss than those receiving sewage sludge.The non-composted residues increased the aliphatic-pyrolytic products of the OM,both in the whole soil and also in the pyrophosphate extract,with the products derived from peptides and proteins being significantly higher.After 9 months,in the soils amended with pruning waste the relative abundance of phenolic-pyrolytic products derived from phenolic compounds,lignin and proteins in the whole soil tended to increase more than those in the soils amended with sewage sludge.However,the extractable OM with pyrophosphate in the soils amended with composted residues tended to have higher contents of these phenolic-pyrolytic products than that in non-composted ones.Thus,despite the stability of pruning waste,the composting of this material promoted the incorporation of phenolic compounds to the soil OM.The pyrolytic indices (furfural/pyrrole and aliphatic/aromatic ratios) showed the diminution of aliphatic compounds and the increase of aromatic compounds,indicating the stabilization of the OM in the amended soils after 9 months.In conclusion,the changes of soil OM depend on the nature and stability of the organic amendments,with composted vine pruning waste favouring humification.

  2. 15 CFR Supplement No. 1 to Part 715 - Definition of an Unscheduled Discrete Organic Chemical

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Definition of an Unscheduled Discrete... WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING UNSCHEDULED DISCRETE ORGANIC CHEMICALS (UDOCs) Pt. 715, Supp. 1 Supplement No. 1 to Part 715—Definition of an Unscheduled Discrete Organic Chemical Unscheduled...

  3. Application of the Activity Framework for Assessing Aquatic Ecotoxicology Data for Organic Chemicals

    DEFF Research Database (Denmark)

    Thomas, Paul; Dawick, James; Lampi, Mark

    2015-01-01

    Toxicological research in the 1930s gave the first indications of the link between narcotic toxicity and the chemical activity of organic chemicals. More recently, chemical activity has been proposed as a novel exposure parameter that describes the fraction of saturation and that quantifies the p...

  4. Solubilization of Hydrophobic Dyes in Surfactant Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Tehrani-Bagha

    2013-02-01

    Full Text Available In this paper, the use of surfactants for solubilization of hydrophobic organic dyes (mainly solvent and disperse dyes has been reviewed. The effect of parameters such as the chemical structures of the surfactant and the dye, addition of salt and of polyelectrolytes, pH, and temperature on dye solubilization has been discussed. Surfactant self-assemble into micelles in aqueous solution and below the concentration where this occurs—the critical micelle concentration (CMC—there is no solubilization. Above the CMC, the amount of solubilized dye increases linearly with the increase in surfactant concentration. It is demonstrated that different surfactants work best for different dyes. In general, nonionic surfactants have higher solubilization power than anionic and cationic surfactants. It is likely that the reason for the good performance of nonionic surfactants is that they allow dyes to be accommodated not only in the inner, hydrocarbon part of the micelle but also in the headgroup shell. It is demonstrated that the location of a dye in a surfactant micelle can be assessed from the absorption spectrum of the dye-containing micellar solution.

  5. The effect of microplastic on chemical uptake by the lugworm Arenicola marina (L.) under environmentally relevant conditions

    NARCIS (Netherlands)

    Besseling, E.; Foekema, E.M.; Heuvel-Greve, van den M.J.; Koelmans, A.A.

    2017-01-01

    It has been hypothesized that ingestion of microplastic increases exposure of aquatic organisms to hydrophobic contaminants. To date, most laboratory studies investigated chemical transfer from ingested microplastic without taking other exposure pathways into account. Therefore we studied the effect

  6. The recognition unit of FIBCD1 organizes into a noncovalently linked tetrameric structure and uses a hydrophobic funnel (S1) for acetyl group recognition

    DEFF Research Database (Denmark)

    Thomsen, Theresa; Moeller, Jesper B; Schlosser, Anders

    2010-01-01

    We have recently identified FIBCD1 (Fibrinogen C domain containing 1) as a type II transmembrane endocytic receptor located primarily in the intestinal brush border. The ectodomain of FIBCD1 comprises a coiled coil, a polycationic region, and a C-terminal FReD (fibrinogen-related domain) that ass......We have recently identified FIBCD1 (Fibrinogen C domain containing 1) as a type II transmembrane endocytic receptor located primarily in the intestinal brush border. The ectodomain of FIBCD1 comprises a coiled coil, a polycationic region, and a C-terminal FReD (fibrinogen-related domain......) that assembles into disulfide-linked homotetramers. The FIBCD1-FReD binds Ca(2+) dependently to acetylated structures like chitin, N-acetylated carbohydrates, and amino acids. FReDs are present in diverse innate immune pattern recognition proteins including the ficolins and horseshoe crab TL5A. Here, we use...... combined with site-directed mutagenesis to define the binding site involved in the interaction of FIBCD1 with acetylated structures. We show that mutations of central residues (A432V and H415G) in the hydrophobic funnel (S1) abolish the binding of FIBCD1 to acetylated bovine serum albumin and chitin...

  7. Hydrophobic fluorine mediated switching of the hydrogen bonding site as well as orientation of water molecules in the aqueous mixture of monofluoroethanol: IR, molecular dynamics and quantum chemical studies.

    Science.gov (United States)

    Mondal, Saptarsi; Biswas, Biswajit; Nandy, Tonima; Singh, Prashant Chandra

    2017-09-20

    The local structures between water-water, alcohol-water and alcohol-alcohol have been investigated for aqueous mixtures of ethanol (ETH) and monofluoroethanol (MFE) by the deconvolution of IR bands in the OH stretching region, molecular dynamics simulation and quantum chemical calculations. It has been found that the addition of a small amount of ETH into the aqueous medium increases the strength of the hydrogen bonds between water molecules. In an aqueous mixture of MFE, the substitution of a single fluorine induces a change in the orientation as well as the hydrogen bonding site of water molecules from the oxygen to the fluorine terminal of MFE. The switching of the hydrogen bonding site of water in the aqueous mixture of MFE results in comparatively strong hydrogen bonds between MFE and water molecules as well as less clustering of water molecules, unlike the case of the aqueous mixture of ETH. These findings about the modification of a hydrogen bond network by the hydrophobic fluorine group probably make fluorinated molecules useful for pharmaceutical as well as biological applications.

  8. Electrochemical analysis in a liposome suspension using lapachol as a hydrophobic electro active species.

    Science.gov (United States)

    Okumura, Noriko; Wakamatsu, Shiori; Uno, Bunji

    2014-01-01

    This study demonstrated that the electro-chemical analysis of hydrophobic quinones can be performed in liposome suspension systems. We prepared and analyzed liposome suspensions containing lapachol, which is a quinone-based anti-tumor activity compound. In this suspension system, a simple one redox couple of lapachol is observed. These results are quite different from those obtained in organic solvents. In addition, the pH dependence of redox behaviors of lapachol could be observed in multilamellar vesicle (MLV) suspension system. This MLV suspension system method may approximate the electrochemical behavior of hydrophobic compounds in aqueous conditions. A benefit of this liposome suspension system for electrochemical analysis is that it enables to observe water-insoluble compounds without using organic solvents.

  9. Sorption and Transport of Pharmaceutical chemicals in Organic- and Mineral-rich Soils

    Science.gov (United States)

    Vulava, V. M.; Schwindaman, J.; Murphey, V.; Kuzma, S.; Cory, W.

    2011-12-01

    Pharmaceutical, active ingredients in personal care products (PhACs), and their derivative compounds are increasingly ubiquitous in surface waters across the world. Sorption and transport of four relatively common PhACs (naproxen, ibuprofen, cetirizine, and triclosan) in different natural soils was measured. All of these compounds are relatively hydrophobic (log KOW>2) and have acid/base functional groups, including one compound that is zwitterionic (cetirizine.) The main goal of this study was to correlate organic matter (OM) and clay content in natural soils and sediment with sorption and degradation of PhACs and ultimately their potential for transport within the subsurface environment. A- and B-horizon soils were collected from four sub-regions within a pristine managed forested watershed near Charleston, SC, with no apparent sources of anthropogenic contamination. These four soil series had varying OM content (fOC) between 0.4-9%, clay mineral content between 6-20%, and soil pH between 4.5-6. The A-horizon soils had higher fOC and lower clay content than the B-horizon soils. Sorption isotherms measured from batch sorption experimental data indicated a non-linear sorption relationship in all A- and B-horizon soils - stronger sorption was observed at lower PhAC concentrations and lower sorption at higher concentrations. Three PhACs (naproxen, ibuprofen, and triclosan) sorbed more strongly with higher fOC A-horizon soils compared with the B-horizon soils. These results show that soil OM had a significant role in strongly binding these three PhACs, which had the highest KOW values. In contrast, cetirizine, which is predominantly positively charged at pH below 8, strongly sorbed to soils with higher clay mineral content and least strongly to higher fOC soils. All sorption isotherms fitted well to the Freundlich model. For naproxen, ibuprofen, and triclosan, there was a strong and positive linear correlation between the Freundlich adsorption constant, Kf, and f

  10. The effects of dissolved natural organic matter on the adsorption of synthetic organic chemicals by activated carbons and carbon nanotubes.

    Science.gov (United States)

    Zhang, Shujuan; Shao, Ting; Karanfil, Tanju

    2011-01-01

    Understanding the influence of natural organic matter (NOM) on synthetic organic contaminant (SOC) adsorption by carbon nanotubes (CNTs) is important for assessing the environmental implications of accidental CNT release and spill to natural waters, and their potential use as adsorbents in engineered systems. In this study, adsorption of two SOCs by three single-walled carbon nanotubes (SWNTs), one multi-walled carbon nanotube (MWNT), a microporous activated carbon fiber (ACF) [i.e., ACF10] and a bimodal porous granular activated carbon (GAC) [i.e., HD4000] was compared in the presence and absence of NOM. The NOM effect was found to depend strongly on the pore size distribution of carbons. Minimal NOM effect occurred on the macroporous MWNT, whereas severe NOM effects were observed on the microporous HD4000 and ACF10. Although the single-solute adsorption capacities of the SWNTs were much lower than those of HD4000, in the presence of NOM the SWNTs exhibited adsorption capacities similar to those of HD4000. Therefore, if released into natural waters, SWNTs can behave like an activated carbon, and will be able to adsorb, carry, and transfer SOCs to other systems. However, from an engineering application perspective, CNTs did not exhibit a major advantage, in terms of adsorption capacities, over the GAC and ACF. The NOM effect was also found to depend on molecular properties of SOCs. NOM competition was more severe on the adsorption of 2-phenylphenol, a nonplanar and hydrophilic SOC, than phenanthrene, a planar and hydrophobic SOC, tested in this study. In terms of surface chemistry, both adsorption affinity to SOCs and NOM effect on SOC adsorption were enhanced with increasing hydrophobicity of the SWNTs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Co-Exposure with Fullerene May Strengthen Health Effects of Organic Industrial Chemicals

    DEFF Research Database (Denmark)

    Lehto, M.; Karilainen, T.; Rog, T.

    2014-01-01

    In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C-60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene...... which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C-60 and organic chemicals represent different...... co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C-60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C-60 that is more...

  12. Single Molecule Sensors to Study Hydrophobic Phenomena

    OpenAIRE

    Geisler, Michael

    2010-01-01

    The nature and magnitude of the hydrophobic interaction is crucial for many technical and biological processes. In the current study a molecular probe was developed which consists of a single polymer that is bound onto the tip of an AFM cantilever in order to study these effects on the molecular scale. In the following, equilibrium forces are measured and factors of influence such as temperature, cosolvents and chemical composition are varied. Thereby, the system under investigation is so sma...

  13. Chemical examination of the organic matter in oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, J B

    1914-01-01

    The analyses of Broxburn (Scotland), Pumpherston (Scotland), Armadale (Scotland), Australian, and Knightsbridge oil shales were given. Also, the action of nitric acid and solvents on some of the oil shales was determined. Carbon-hydrogen ratios of the oil shales varied from 6 to more than 8, and the shales with the lowest ratio (most hydrogen per carbon) produced the largest amount of oil from a given amount of organic matter. There was little resinous material in the oil shales, and most of the organic matter was insoluble in organic solvents. Nitric acid oxidized Australian torbanite, Broxburn shale, New Battle cannel coal (Scotland), and Glenfullock peat to organic acids. The hydrogen content of the organic acids obtained by oxidizing the following materials increased from ordinary coal to cannel coal to peat to Broxburn shale to torbanite. The organic substance in oil shale is a decomposition product of vegetable matter similar to that found in peat and cannel coal, and it was produced by a definite combination of external conditions.

  14. On Study of Teaching Reform of Organic Chemistry Course in Applied Chemical Industry Technology

    Science.gov (United States)

    Zhang, Yunshen

    2017-11-01

    with the implementation of new curriculum reform, the education sees great changes in teaching methods. Teaching reform is profound in organic chemistry course in applied chemical industry technology. However, many problems which have never been noticed before occur when reform programs are implemented which harm students’ ability for learning and enthusiasm in side face. This paper proposes reform measures like combining theory and practice, improving professional quality, supplementing professional needs and integrating teaching into life after analyzing organic chemistry course teaching in applied chemical industry technology currently, hoping to play a role of reference for organic chemistry course teaching reform in applied chemical industry technology.

  15. Bioaccessible Porosity: A new approach to assess residual contamination after bioremediation of hydrophobic organic compounds in sub-surface microporous environments

    Science.gov (United States)

    Akbari, A.; Ghoshal, S.

    2016-12-01

    We define a new parameter, "bioaccessible porosity", the fraction of aggregate volume accessible to soil bacteria, towards a priori assessment of hydrocarbon bioremediation end points. Microbial uptake of poorly soluble hydrocarbons occurs through direct uptake or micellar solubilzation/emulsification associated with biosurfactant production, and requires close proximity of bacteria and hydrocarbon phase. In subsurface microporous environments, bioremediation rates are attenuated when residual hydrophobic contamination is entrapped in sterically restrictive environments which is not accessible to soil bacteria. This study presents new approaches for characterization of the microstructure of porous media and as well, the ability of indigenous hydrocarbon degraders to access to a range of pore sizes. Bacterial access to poorly soluble hydrocarbons in soil micro pores were simulated with bioreactors with membranes with different pore sizes containing the hydrocarbon degrading bacteria, Dietzia maris. D. maris is Gram-positive, and nonmotile that we isolated as the major hydrocarbon degrader from a fine-grained, weathered, hydrocarbon-contaminated site soil. Under nutritional stress, planktonic D. maris cells were aggregated and accessed 5 µm but not 3 µm and smaller pores. However, when hexadecane was available at the pore mouth, D. maris colonized the pore mouth, and accessed pores as small as 0.4 µm. This suggests bacterial accessibility to different pore sizes is regulated by nutritional conditions. A combination of X-ray micro-CT scanning, gas adsorption and mercury intrusion porosimetry was used to characterize the range of pore sizes of soil aggregates. In case of the studied contaminated soil, the bioaccessible porosity were determined as 25% , 27% and 29% (assuming 4, 1, 0.4 µm respectively as accessibility criteria), and about 2.7% of aggregate volume was attributed to 0.006-0.4 µm pores. The 2% aggregate volume at an assumed saturation of 10% could

  16. Chemical Structure of Insoluble Organic Matter of Meteorites

    Science.gov (United States)

    Derenne, S.; Robert, F.; Binet, L.; Gourier, D.; Rouzaud, J.-N.; Largeau, C.

    A detailed knowledge of the insoluble organic matter (IOM) of the meteorites is essential to estimate to what extent the interstellar organic matter was preserved during the formation of the solar system and to decipher the synthetic pathways of this matter in space. Although predominant, the insoluble organic fraction has been much less extensively studied than soluble one due to specific analytical difficulties. The present work reports the examination of the IOM of two carbonaceous meteorites, Orgueil and Murchison through a number of various spectroscopic and microscopic methods, i. e. XANES for sulphur, carbon and nitrogen, solid state 13C NMR, electron paramagnetic resonance, electron nuclear double resonance and high resolution transmission electron microscopy.

  17. Bioaccesibility Extraction of Hydrophobic Pollutants: Benefits of Separating Leaching Agent and Acceptor Medium

    DEFF Research Database (Denmark)

    Cocovi-Solberg, D. J.; Miro, M.; Loibner, A. P.

    2015-01-01

    Bioaccessibility extractions of organic pollutants from environmental solid samples are increasingly used in environmental risk assessment and management. Recent research has indicated that many bioaccessibility extraction methods have limited sink capacity for hydrophobic organic chemicals, which...... are a step forward, they also lead to challenges related to the separation of sink and matrix and/or the subsequent quantification of the bioaccessible fraction. The present study aimed at developing a new approach for (1) enhancing the sink capacity of bioaccessibility extractions, (2) improving phase......, the developed method was applied to PAH contaminated soils and the results compared to results obtained with other existing methods....

  18. Water on a Hydrophobic surface

    Science.gov (United States)

    Scruggs, Ryan; Zhu, Mengjue; Poynor, Adele

    2012-02-01

    Hydrophobicity, meaning literally fear of water, is exhibited on the surfaces of non-stick cooking pans and water resistant clothing, on the leaves of the lotus plan, or even during the protein folding process in our bodies. Hydrophobicity is directly measured by determining a contact angle between water and an objects surface. Associated with a hydrophobic surface is the depletion layer, a low density region approximately 0.2 nm thick. We study this region by comparing data found in lab using surface plasmon resonance techniques to theoretical calculations. Experiments use gold slides coated in ODT and Mercapto solutions to model both hydrophobic and hydrophilic surfaces respectively.

  19. Physico-chemical properties of indigenous micro organism ...

    African Journals Online (AJOL)

    Paddy husk (PH) and corn stalks (CS) residues are managed through burning. Besides contributing to environmental pollution, burning causes loss of vegetation cover, erosion, run off and loss of organic matter. In order to minimize this problem, a study was conducted to manage PH and CS residues through composting ...

  20. The energetic and chemical signatures of persistent soil organic matter

    DEFF Research Database (Denmark)

    Barré, Pierre; Plante, Alain F.; Cecillon, Lauric

    2016-01-01

    A large fraction of soil organic matter (OM) resists decomposition over decades to centuries as indicated by long radiocarbon residence times, but the mechanisms responsible for the long-term (multi-decadal) persistence are debated. The current lack of mechanistic understanding limits our ability...

  1. Prediction of Hydrolysis Products of Organic Chemicals under Environmental pH Conditions

    Science.gov (United States)

    Cheminformatics-based software tools can predict the molecular structure of transformation products using a library of transformation reaction schemes. This paper presents the development of such a library for abiotic hydrolysis of organic chemicals under environmentally relevant...

  2. Biotransformation of trace organic chemicals during groundwater recharge: How useful are first-order rate constants?

    KAUST Repository

    Regnery, J.; Wing, A.D.; Alidina, M.; Drewes, J.E.

    2015-01-01

    This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory

  3. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics

    KAUST Repository

    Gomez De Arco, Lewis; Zhang, Yi; Schlenker, Cody W.; Ryu, Koungmin; Thompson, Mark E.; Zhou, Chongwu

    2010-01-01

    We report the implementation of continuous, highly flexible, and transparent graphene films obtained by chemical vapor deposition (CVD) as transparent conductive electrodes (TCE) in organic photovoltaic cells. Graphene films were synthesized by CVD

  4. Tuning the performance of a natural treatment process using metagenomics for improved trace organic chemical attenuation

    KAUST Repository

    Drewes, Jorg; Li, Dong; Regnery, Julia; Alidina, Mazahirali; Wing, Alexandredavid; Hoppe-Jones, Christiane

    2014-01-01

    removal of trace organic chemicals of emerging concern (CECs). Increasing the humic content of the primary substrate resulted in higher microbial diversity. Lower concentrations and a higher humic content of the primary substrate promoted the attenuation

  5. Breaking Down Chemical Weapons by Metal-Organic Frameworks.

    Science.gov (United States)

    Mondal, Suvendu Sekhar; Holdt, Hans-Jürgen

    2016-01-04

    Seek and destroy: Filtration schemes and self-detoxifying protective fabrics based on the Zr(IV)-containing metal-organic frameworks (MOFs) MOF-808 and UiO-66 doped with LiOtBu have been developed that capture and hydrolytically detoxify simulants of nerve agents and mustard gas. Both MOFs function as highly catalytic elements in these applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Isotopic and chemical variation of organic nanoglobules in primitive meteorites

    Science.gov (United States)

    de Gregorio, Bradley T.; Stroud, Rhonda M.; Nittler, Larry R.; Alexander, Conel M. O'd.; Bassim, Nabil D.; Cody, George D.; Kilcoyne, A. L. David; Sandford, Scott A.; Milam, Stefanie N.; Nuevo, Michel; Zega, Thomas J.

    2013-05-01

    Organic nanoglobules are microscopic spherical carbon-rich objects present in chondritic meteorites and other astromaterials. We performed a survey of the morphology, organic functional chemistry, and isotopic composition of 184 nanoglobules in insoluble organic matter (IOM) residues from seven primitive carbonaceous chondrites. Hollow and solid nanoglobules occur in each IOM residue, as well as globules with unusual shapes and structures. Most nanoglobules have an organic functional chemistry similar to, but slightly more carboxyl-rich than, the surrounding IOM, while a subset of nanoglobules have a distinct, highly aromatic functionality. The range of nanoglobule N isotopic compositions was similar to that of nonglobular 15N-rich hotspots in each IOM residue, but nanoglobules account for only about one third of the total 15N-rich hotspots in each sample. Furthermore, many nanoglobules in each residue contained no 15N enrichment above that of bulk IOM. No morphological indicators were found to robustly distinguish the highly aromatic nanoglobules from those that have a more IOM-like functional chemistry, or to distinguish 15N-rich nanoglobules from those that are isotopically normal. The relative abundance of aromatic nanoglobules was lower, and nanoglobule diameters were greater, in more altered meteorites, suggesting the creation/modification of IOM-like nanoglobules during parent-body processing. However, 15N-rich nanoglobules, including many with highly aromatic functional chemistry, likely reflect preaccretionary isotopic fractionation in cold molecular cloud or protostellar environments. These data indicate that no single formation mechanism can explain all of the observed characteristics of nanoglobules, and their properties are likely a result of multiple processes occurring in a variety of environments.

  7. Piper gaudichaudianum Kunth: Seasonal Characterization of the Essential Oil Chemical Composition of Leaves and Reproductive Organs

    Directory of Open Access Journals (Sweden)

    Bianca Schindler

    2017-08-01

    Full Text Available ABSTRACT This study describes a comparative analysis of the essential oil (EO chemical composition of leaves and reproductive organs (inflorescences and fruits of Piper gaudichaudianum during the seasons of a year in order to determine the best collection time and the most suitable plant organ to obtain this extractive. The chemical composition of EO obtained from fresh leaves was compared to the dried ones, to verify if the drying process interferes in the extractive quality. The leaves were collected from a native population of Santa Maria, RS, Brazil, twice in each season, in triplicate, while inflorescences and fruits were sampled when they were present. The EO was obtained by hydrodistillation of the different plant organs for 3 h. The 20 EO samples were analyzed by gas chromatography (GC coupled to mass spectrometry and GC with flame ionization detector, in triplicate. Hierarchical cluster analysis (HCA and principal components analysis (PCA were performed to verify a possible formation of chemical groups (CG and the cohesion among them. The phenylpropanoid dillapiole was the major constituent of the EO in all seasons and in all plant organs, and myristicin was observed only in reproductive organs. The EO samples of this population were divided into two CG by HCA and PCA, showing the variability in chemical composition between different plant organs, however there was no chemical variability due to seasonality and phenophases. Since the drying of the leaves did not alter the EO chemical composition, this post-harvest procedure can be used without compromising the extrative quality.

  8. Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale.

    Science.gov (United States)

    Malaj, Egina; von der Ohe, Peter C; Grote, Matthias; Kühne, Ralph; Mondy, Cédric P; Usseglio-Polatera, Philippe; Brack, Werner; Schäfer, Ralf B

    2014-07-01

    Organic chemicals can contribute to local and regional losses of freshwater biodiversity and ecosystem services. However, their overall relevance regarding larger spatial scales remains unknown. Here, we present, to our knowledge, the first risk assessment of organic chemicals on the continental scale comprising 4,000 European monitoring sites. Organic chemicals were likely to exert acute lethal and chronic long-term effects on sensitive fish, invertebrate, or algae species in 14% and 42% of the sites, respectively. Of the 223 chemicals monitored, pesticides, tributyltin, polycyclic aromatic hydrocarbons, and brominated flame retardants were the major contributors to the chemical risk. Their presence was related to agricultural and urban areas in the upstream catchment. The risk of potential acute lethal and chronic long-term effects increased with the number of ecotoxicologically relevant chemicals analyzed at each site. As most monitoring programs considered in this study only included a subset of these chemicals, our assessment likely underestimates the actual risk. Increasing chemical risk was associated with deterioration in the quality status of fish and invertebrate communities. Our results clearly indicate that chemical pollution is a large-scale environmental problem and requires far-reaching, holistic mitigation measures to preserve and restore ecosystem health.

  9. Fabrication of hydrophobic/super-hydrophobic nanofilms on magnesium alloys by polymer plating

    Energy Technology Data Exchange (ETDEWEB)

    Kang Zhixin, E-mail: zxkang@scut.edu.cn; Lai Xiaoming; Sang Jing; Li Yuanyuan

    2011-11-01

    Hydrophobic/super-hydrophobic nanofilms with improved corrosion resistance were fabricated on the surfaces of Mg-Mn-Ce magnesium alloy by a surface modification technique, named as polymer plating, which has been developed to modify superficial characteristics of magnesium alloys with polymeric nanofilms through synthesized organic compounds of triazine dithiol containing functional groups. The nanofilms were prepared by the electrochemical and polymerization reactions during polymer plating analyzed from characteristics of Fourier transform infrared spectrophotometer, X-ray photoelectron spectroscopy and scanning electron microscopy. The fabricated nanofilms changed the surface wettability of blank magnesium alloy from hydrophilic to hydrophobic with contact angle 119.0 Degree-Sign of distilled water with lower surface free energy of 20.59 mJ/m{sup 2} and even super-hydrophobic with contact angle 158.3 Degree-Sign with lowest surface free energy of 4.68 mJ/m{sup 2} by different functional nanofilms on their surfaces. Alteration of wettability from hydrophilic to hydrophobic and super-hydrophobic resulted from their low surface free energy and surface morphology with micro- and nano-rough structures. The corrosion behaviors from potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) show that the super-hydrophobic nanofilm has higher corrosion resistance and stability in 0.1 mol/L NaCl solution and lower corrosion current density (I{sub corr}) with R{sub ct} increasing two orders of magnitude of 16,500 {Omega}{center_dot}cm{sup 2} compared to that obtained for blank of 485 {Omega}{center_dot}cm{sup 2}.

  10. Visualising the equilibrium distribution and mobility of organic contaminants in soil using the chemical partitioning space.

    Science.gov (United States)

    Wong, Fiona; Wania, Frank

    2011-06-01

    Assessing the behaviour of organic chemicals in soil is a complex task as it is governed by the physical chemical properties of the chemicals, the characteristics of the soil as well as the ambient conditions of the environment. The chemical partitioning space, defined by the air-water partition coefficient (K(AW)) and the soil organic carbon-water partition coefficient (K(OC)), was employed to visualize the equilibrium distribution of organic contaminants between the air-filled pores, the pore water and the solid phases of the bulk soil and the relative importance of the three transport processes removing contaminants from soil (evaporation, leaching and particle erosion). The partitioning properties of twenty neutral organic chemicals (i.e. herbicides, pharmaceuticals, polychlorinated biphenyls and volatile chemicals) were estimated using poly-parameter linear free energy relationships and superimposed onto these maps. This allows instantaneous estimation of the equilibrium phase distribution and mobility of neutral organic chemicals in soil. Although there is a link between the major phase and the dominant transport process, such that chemicals found in air-filled pore space are subject to evaporation, those in water-filled pore space undergo leaching and those in the sorbed phase are associated with particle erosion, the partitioning coefficient thresholds for distribution and mobility can often deviate by many orders of magnitude. In particular, even a small fraction of chemical in pore water or pore air allows for evaporation and leaching to dominate over solid phase transport. Multiple maps that represent soils that differ in the amount and type of soil organic matter, water saturation, temperature, depth of surface soil horizon, and mineral matters were evaluated.

  11. Solution properties of hydrophobically modified

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2016-12-01

    Full Text Available We tested nine hydrophobically modified polyacrylamides with molecular weights situated between 1.58 and 0.89 × 106 g/mol for enhanced oil recovery applications. Their solution properties were investigated in the distilled water, brine solution, formation water and sea water. Their critical association concentrations were determined from the relationship between their concentrations and the corresponding apparent viscosities (ηapp at 30 °C at shear rate 6 s−1. They were between 0.4 and 0.5 g/dl. The brine solutions of 0.5 g/dl of HM-PAMs were investigated at different conditions regarding their apparent viscosities. Such conditions were mono and divalent cations, temperature ranging from 30 to 90 °C, the shear rate ranging from 6 to 30 s−1 and the aging time for 45 days. The surface and interfacial tensions for the HM-PAMs were measured for concentration range from 0.01 to 1 g/dl brine solutions at 30 °C and their emulsification efficiencies were investigated for 7 days. The discrepancy in the properties and efficiencies of the tested copolymers was discussed in the light of their chemical structure.

  12. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils

    NARCIS (Netherlands)

    Diepeningen, van A.D.; Vos, de O.J.; Korthals, G.W.; Bruggen, van A.H.C.

    2006-01-01

    A comparative study of organic and conventional arable farming systems was conducted in The Netherlands to determine the effect of management practices on chemical and biological soil properties and soil health. Soils from thirteen accredited organic farms and conventionally managed neighboring

  13. PHYSICOCHEMICAL PROPERTIES AS PREDICTORS OF ORGANIC CHEMICAL EFFECTS ON SOIL MICROBIAL RESPIRATION

    Science.gov (United States)

    Structure-activity analysis was used to evaluate the effects of 19 hazardous organic chemicals on microbial respiration in two slightly acidic soils (a Captina silt loam from Roane County Tennessee, and a McLaurin sandy loam from Stone County, Mississippi), both low in organic ca...

  14. Organic chemical aging mechanisms: An annotated bibliography. Waste Tank Safety Program

    Energy Technology Data Exchange (ETDEWEB)

    Samuels, W.D.; Camaioni, D.M.; Nelson, D.A.

    1993-09-01

    An annotated bibliography has been compiled of the potential chemical and radiological aging mechanisms of the organic constituents (non-ferrocyanide) that would likely be found in the UST at Hanford. The majority of the work that has been conducted on the aging of organic chemicals used for extraction and processing of nuclear materials has been in conjunction with the acid or PUREX type processes. At Hanford the waste being stored in the UST has been stabilized with caustic. The aging factors that were used in this work were radiolysis, hydrolysis and nitrite/nitrate oxidation. The purpose of this work was two-fold: to determine whether or not research had been or is currently being conducted on the species associated with the Hanford UST waste, either as a mixture or as individual chemicals or chemical functionalities, and to determine what areas of chemical aging need to be addressed by further research.

  15. In-line gas chromatographic apparatus for measuring the hydrophobic micropore volume (HMV) and contaminant transformation in mineral micropores

    International Nuclear Information System (INIS)

    Cheng Hefa; Reinhard, Martin

    2010-01-01

    Desorption of hydrophobic organic compounds from micropores is characteristically slow compared to surface adsorption and partitioning. The slow-desorbing mass of a hydrophobic probe molecule can be used to calculate the hydrophobic micropore volume (HMV) of microporous solids. A gas chromatographic apparatus is described that allows characterization of the sorbed mass with respect to the desorption rate. The method is demonstrated using a dealuminated zeolite and an aquifer sand as the model and reference sorbents, respectively, and trichloroethylene (TCE) as the probe molecule. A glass column packed with the microporous sorbent is coupled directly to a gas chromatograph that is equipped with flame ionization and electron capture detectors. Sorption and desorption of TCE on the sorbent was measured by sampling the influent and effluent of the column using a combination of switching and injection valves. For geosorbents, the HMV is quantified based on Gurvitsch's rule from the mass of TCE desorbed at a rate that is characteristic for micropores. Instrumental requirements, design considerations, hardware details, detector calibration, performance, and data analysis are discussed along with applications. The method is novel and complements traditional vacuum gravimetric and piezometric techniques, which quantify the total pore volume under vacuum conditions. The HMV is more relevant than the total micropore volume for predicting the fate and transport of organic contaminants in the subsurface. Sorption in hydrophobic micropores strongly impacts the mobility of organic contaminants, and their chemical and biological transformations. The apparatus can serve as a tool for characterizing microprous solids and investigating contaminant-solid interactions.

  16. Contribution of chemical radiation research to the general theory of oxidation of organic substances

    International Nuclear Information System (INIS)

    Ladygin, B.Ya.; Saraev, V.V.; Revin, A.A.; Zimina, G.M.

    1996-01-01

    Paper studies mechanisms and main elementary stages of liquid-phase oxidation of organic compounds at thermal and radiation initiation of this reaction. The results of investigations into radiation and chemical conversion of organic compounds at presence of oxygen and without it are discussed on the ground of data obtained by means of pulse radiolysis and EPR-spectroscopy. The bach-Engler theory of slow oxidation of organic compounds with participation of peroxides used as intermediate compounds is shown to be proved essentially and to enjoy further development due to the conducted radiation and chemical investigations. 68 refs., 2 figs., 4 tabs

  17. Radiation damages in chemical components of organic scintillator detectors

    International Nuclear Information System (INIS)

    Fernandes Neto, Jose Maria

    2003-01-01

    Samples containing PPO (1%, g/ml), diluted in toluene, they were irradiated in a 60 Co irradiator (6.46 kGy/h) at different doses. The PPO concentration decay bi-exponentially with the dose, generating the degradation products: benzoic acid, benzamide and benzilic alcohol. The liquid scintillator system was not sensitive to the radiation damage until 20 kGy. Otherwise, the pulse height analysis showed that dose among 30 to 40 kGy generate significant loss of quality of the sensor (liquid scintillating) and the light yield was reduced in half with the dose of (34.04 ± 0.80) kGy. This value practically was confirmed by the photo peak position analysis that resulted D 1/2 = (31.7 ± 1,4) kGy, The transmittance, at 360 nm, of the irradiated solution decreased exponentially. The compartmental model using five compartments (fast decay PPO, slow decay PPO, benzamide, benzoic acid and benzilic alcohol) it was satisfactory to explain the decay of the PPO in its degradation products in function of the dose. The explanation coefficient r 2 = 0.985636 assures that the model was capable to explain 98.6% of the experimental variations. The Target Theory together with the Compartmental Analysis showed that PPO irradiated in toluene solution presents two sensitive molecular diameters both of them larger than the true PPO diameter. >From this analysis it showed that the radiolytic are generated, comparatively, at four toluene molecules diameter far from PPO molecules. For each one PPO-target it was calculated the G parameter (damage/100 eV). For the target expressed by the fast decay the G value was (418.4 ± 54.1) damages/100 eV, and for the slow decay target the G value was (54.5 ± 8.9) damages/100 eV. The energies involved in the chemical reactions were w (0.239 ± 0.031) eV/damage (fast decay) and w = (1 834 ± 0.301) eV/damage (slow decay). (author)

  18. [The effect of hydrophobic surface properties of protein on its resistance to denaturation by organic solvents (using modified alpha-chymotrypsin as an example].

    Science.gov (United States)

    Kudriashova, E V; Belova, A B; Vinogradov, A A; Mozhaev, V V

    1994-03-01

    Catalytic activity of covalently modified alpha-chymotrypsin in water/cosolvent solutions was investigated. The stability of chymotrypsin increases upon modification with hydrophilic reagents, such as glyceraldehyde, pyrometallic and succinic anhydrides, and glucosamine. Correlation was observed between the protein's stability in organic solvents and the degree of hydrophilization of the protein's surface. The protein is the more stable, the higher are the modification degree and the hydrophilicity of the modifying residue. At a certain critical hydrophilization degree of chymotrypsin a limit of stability is achieved. The stabilization effect can be accounted for by the fact that the interaction between water molecules on the surface and protein's functional groups become stronger in the hydrophilized protein.

  19. Surface Hydrophobicity Causes SO2 Tolerance in Lichens

    Science.gov (United States)

    Hauck, Markus; Jürgens, Sascha-René; Brinkmann, Martin; Herminghaus, Stephan

    2008-01-01

    Background and Aims The superhydrophobicity of the thallus surface in one of the most SO2-tolerant lichen species, Lecanora conizaeoides, suggests that surface hydrophobicity could be a general feature of lichen symbioses controlling their tolerance to SO2. The study described here tests this hypothesis. Methods Water droplets of the size of a raindrop were placed on the surface of air-dry thalli in 50 lichen species of known SO2 tolerance and contact angles were measured to quantify hydrophobicity. Key Results The wettability of lichen thalli ranges from strongly hydrophobic to strongly hydrophilic. SO2 tolerance of the studied lichen species increased with increasing hydrophobicity of the thallus surface. Extraction of extracellular lichen secondary metabolites with acetone reduced, but did not abolish the hydrophobicity of lichen thalli. Conclusions Surface hydrophobicity is the main factor controlling SO2 tolerance in lichens. It presumably originally evolved as an adaptation to wet habitats preventing the depression of net photosynthesis due to supersaturation of the thallus with water. Hydrophilicity of lichen thalli is an adaptation to dry or humid, but not directly rain-exposed habitats. The crucial role of surface hydrophobicity in SO2 also explains why many markedly SO2-tolerant species are additionally tolerant to other (chemically unrelated) toxic substances including heavy metals. PMID:18077467

  20. Impact of Hydrophobic Pollutants' Behavior on Occupational and Environmental Health

    Directory of Open Access Journals (Sweden)

    Ijeoma Kanu

    2005-01-01

    Full Text Available This paper reviews the influence of hydrophobic pollutant behavior on environmental hazards and risks. The definition and examples of hydrophobic pollutants are given as a guide to better understand the sources of release and the media of dispersion in the environment. The properties and behavior of hydrophobic pollutants are described and their influence on environmental hazard and risk is reviewed and evaluated. The overall outcome of the assessment and evaluation showed that all hydrophobic pollutants are hazardous and risky to all organisms, including man. Their risk effects are due to their inherent persistence, bioaccumulation potential, environmental mobility, and reactivity. Their hazardous effects on organisms occur at varying spatial and temporal degrees of emissions, toxicities, exposures, and concentrations.

  1. Tooth Matrix Analysis for Biomonitoring of Organic Chemical Exposure: Current Status, Challenges, and Opportunities

    Science.gov (United States)

    Andra, Syam S.; Austin, Christine; Arora, Manish

    2015-01-01

    Epidemiological evidence supports associations between prenatal exposure to environmental organic chemicals and childhood health impairments. Unlike the common choice of biological matrices such as urine and blood that can be limited by short half-lives for some chemicals, teeth provide a stable repository for chemicals with half-life in the order of decades. Given the potential of the tooth bio-matrix to study long-term exposures to environmental organic chemicals in human biomonitoring programs, it is important to be aware of possible pitfalls and potential opportunities to improve on the current analytical method for tooth organics analysis. We critically review previous results of studies of this topic. The major drawbacks and challenges in currently practiced concepts and analytical methods in utilizing tooth bio-matrix are (i) no consideration of external (from outer surface) or internal contamination (from micro odontoblast processes), (ii) the misleading assumption that whole ground teeth represent prenatal exposures (latest formed dentine is lipid rich and therefore would absorb and accumulate more organic chemicals), (iii) reverse causality in exposure assessment due to whole ground teeth, and (iv) teeth are a precious bio-matrix and grinding them raises ethical concerns about appropriate use of a very limited resource in exposure biology and epidemiology studies. These can be overcome by addressing the important limitations and possible improvements with the analytical approach associated at each of the following steps (i) tooth sample preparation to retain exposure timing, (ii) organics extraction and pre-concentration to detect ultra-trace levels of analytes, (iii) chromatography separation, (iv) mass spectrometric detection to detect multi-class organics simultaneously, and (v) method validation, especially to exclude chance findings. To highlight the proposed improvements we present findings from a pilot study that utilizes tooth matrix biomarkers to

  2. Measuring hydrophobic micropore volumes in geosorbents from trichloroethylene desorption data.

    Science.gov (United States)

    Cheng, Hefa; Reinhard, Martin

    2006-06-01

    Hydrophobic micropores can play a significant role in controlling the long-term release of organic contaminants from geosorbents. We describe a technique for quantifying the total and the hydrophobic mineral micropore volumes based on the mass of trichloroethylene (TCE) sorbed in the slow-releasing pores under dry and wet conditions, respectively. Micropore desorption models were used to differentiate the fast- and slow-desorbing fractions in desorption profiles. The micropore environment in which organic molecules were sorbed in the presence of water was probed by studying the transformation of a water-reactive compound (2,2-dichloropropane or 2,2-DCP). For sediment from an alluvial aquifer, the total and hydrophobic micropore volumes estimated using this technique were 4.65 microL/g and 0.027 microL/g (0.58% of total), respectively. In microporous silica gel A, a hydrophobic micropore volume of 0.038 microL/g (0.035% of reported total) was measured. The dehydrohalogenation rate of 2,2-DCP sorbed in hydrophobic micropores of the sediment was slower than that reported in bulk water, indicating an environment of low water activity. The results suggest that hydrolyzable organic contaminants sorbed in hydrophobic micropores react slower than in bulk water, consistent with the reported persistence of reactive contaminants in natural soils.

  3. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal.

    Science.gov (United States)

    Li, Lin; Liu, Suqin; Liu, Junxin

    2011-08-30

    In this study, coconut shell based carbons were chemically treated by ammonia, sodium hydroxide, nitric acid, sulphuric acid, and phosphoric acid to determine suitable modification for improving adsorption ability of hydrophobic volatile organic compounds (VOCs) on granular activated carbons (GAC). The saturated adsorption capacities of o-xylene, a hydrophobic volatile organic compound, were measured and adsorption effects of the original and modified activated carbons were compared. Results showed that GAC modified by alkalis had better o-xylene adsorption capacity. Uptake amount was enhanced by 26.5% and reduced by 21.6% after modification by NH(3)H(2)O and H(2)SO(4), respectively. Compared with the original, GAC modified by acid had less adsorption capacity. Both SEM/EDAX and BET were used to identify the structural characteristics of the tested GAC, while IR spectroscopy and Boehm's titration were applied to analysis the surface functional groups. Relationships between physicochemical characteristics of GAC and their adsorption performances demonstrated that o-xylene adsorption capacity was related to surface area, pore volume, and functional groups of the GAC surface. Removing surface oxygen groups, which constitute the source of surface acidity, and reducing hydrophilic carbon surface favors adsorption capacity of hydrophobic VOCs on carbons. The performances of modified GACs were also investigated in the purification of gases containing complex components (o-xylene and steam) in the stream. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Chemical ageing and transformation of diffusivity in semi-solid multi-component organic aerosol particles

    Science.gov (United States)

    Pfrang, C.; Shiraiwa, M.; Pöschl, U.

    2011-07-01

    Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles approximating atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant timescales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.

  5. Partitioning of polar and non-polar neutral organic chemicals into human and cow milk.

    Science.gov (United States)

    Geisler, Anett; Endo, Satoshi; Goss, Kai-Uwe

    2011-10-01

    The aim of this work was to develop a predictive model for milk/water partition coefficients of neutral organic compounds. Batch experiments were performed for 119 diverse organic chemicals in human milk and raw and processed cow milk at 37°C. No differences (milk were observed. The polyparameter linear free energy relationship model fit the calibration data well (SD=0.22 log units). An experimental validation data set including hormones and hormone active compounds was predicted satisfactorily by the model. An alternative modelling approach based on log K(ow) revealed a poorer performance. The model presented here provides a significant improvement in predicting enrichment of potentially hazardous chemicals in milk. In combination with physiologically based pharmacokinetic modelling this improvement in the estimation of milk/water partitioning coefficients may allow a better risk assessment for a wide range of neutral organic chemicals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. A Chemical Comparison of STARDUST Organics with Insoluble Organic Matter in Chondritic Meteorites

    Science.gov (United States)

    Cody, G. D.; Yabuta, H.; Alexander, C. M.; Araki, T.; Kilcoyne, D.

    2006-12-01

    We have analyzed 15 organic rich particles extracted from the aerogel capture device flown on the STARDUST mission spacecraft to comet Wild 2 using C-, N-, and O-X-ray Absorption Near Edge Structure (XANES) spectroscopy. Data were acquired with the Scanning Transmission X-ray Microscopy (STXM) beam line 5.3.2 at the Advanced Light Source, Lawrence Berkeley Laboratory. XANES can provide both quantitative molecular functional group information and atomic N/C and O/C data. We use these data to place the organic matter extracted from the Aerogel Capture device in context with a large database of C-, N-, and O-XANES spectra obtained on meteoritic Insoluble Organic Matter (IOM) obtained from type 1, 2, and 3 chondrites. We find that the organic chemistry of the particles extracted from aerogel varies in functional group abundances, but is universally very rich in heteroatoms (N and O). In several cases the organic carbon is closely associated with silica (possibly derived from the aerogel), but at a concentration far in excess of the intrinsic carbon abundance of synthesized (and flown) aerogel. Independently, 29-Si, 13-C, and 1-H solid state NMR was applied to analyze the nature of organic carbon present in the aerogel as byproduct of the synthesis. The intrinsic aerogel carbon is very simple in its functional group chemistry, very low in abundance, and differs completely from that detected in the extracted organic particles.

  7. Linking algal growth inhibition to chemical activity

    DEFF Research Database (Denmark)

    Schmidt, Stine N.; Mayer, Philipp

    Unitless chemical activity, expressing the energetic level of a compound relative to its energetic level in pure liquid [0-1], has proven useful to quantify the effective exposure to hydrophobic organic compounds through both aerial and aqueous media. Several studies have linked toxicity to chemi......Unitless chemical activity, expressing the energetic level of a compound relative to its energetic level in pure liquid [0-1], has proven useful to quantify the effective exposure to hydrophobic organic compounds through both aerial and aqueous media. Several studies have linked toxicity...... to chemical activity, as opposed to e.g. the total concentration. Baseline toxicity (narcosis) for neutral hydrophobic organic compounds has been shown to initiate in the narrow chemical activity range of 0.01 to 0.1. This presentation focuses on linking algal growth inhibition to chemical activity......-polar liquids were applied to challenge the chemical activity range for baseline toxicity. For each compound, the effective activity (Ea50) was estimated as the ratio of the effective concentration (EC50) and water solubility. Of these ratios, 90% were within the expected chemical activity range of 0.01 to 0...

  8. The effect of the indoor environment on the fate of organic chemicals in the urban landscape.

    Science.gov (United States)

    Cousins, Anna Palm

    2012-11-01

    To assess the effect of the indoor environment on the urban fate of organic chemicals, an 8-compartment indoor-inclusive steady state multimedia chemical fate model was developed. The model includes typical urban compartments (air, soil, water, sediment, and urban film) and a novel module representing a generic indoor environment. The model was parameterized to the municipality of Stockholm, Sweden and applied to four organic chemicals with different physical-chemical characteristics and use patterns: formaldehyde, 2,4,6-tribromophenol, di-ethylhexylphthalate and decabromodiphenyl ether. The results show that emissions to indoor air may increase the steady state mass and residence time in the urban environment by a factor of 1.1 to 22 for the four chemicals, compared to if emissions are assigned to outdoor air. This is due to the nested nature of the indoor environment, which creates a physical barrier that prevents chemicals from leaving the urban system with outflowing air. For DEHP and BDE 209, the additional partitioning to indoor surfaces results in a greater importance of the indoor removal pathways from surfaces. The outdoor environmental concentrations of these chemicals are predicted to be lower if emitted to indoor air than if emitted to outdoor air because of the additional indoor removal pathways of dust and indoor film, leading to loss of chemical from the system. For formaldehyde and 2,4,6-TBP outdoor environmental concentrations are not affected by whether the release occurs indoors or outdoors because of the limited partitioning to indoor surfaces. A sensitivity analysis revealed that there appears to be a relationship between logK(OA) and the impact of the ventilation rate on the urban fate of organic chemicals. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Controlling organic chemical hazards in food manufacturing: a hazard analysis critical control points (HACCP) approach.

    Science.gov (United States)

    Ropkins, K; Beck, A J

    2002-08-01

    Hazard analysis by critical control points (HACCP) is a systematic approach to the identification, assessment and control of hazards. Effective HACCP requires the consideration of all hazards, i.e., chemical, microbiological and physical. However, to-date most 'in-place' HACCP procedures have tended to focus on the control of microbiological and physical food hazards. In general, the chemical component of HACCP procedures is either ignored or limited to applied chemicals, e.g., food additives and pesticides. In this paper we discuss the application of HACCP to a broader range of chemical hazards, using organic chemical contaminants as examples, and the problems that are likely to arise in the food manufacturing sector. Chemical HACCP procedures are likely to result in many of the advantages previously identified for microbiological HACCP procedures: more effective, efficient and economical than conventional end-point-testing methods. However, the high costs of analytical monitoring of chemical contaminants and a limited understanding of formulation and process optimisation as means of controlling chemical contamination of foods are likely to prevent chemical HACCP becoming as effective as microbiological HACCP.

  10. Controlled assembly of organic whispering-gallery-mode microlasers as highly sensitive chemical vapor sensors.

    Science.gov (United States)

    Gao, Miaomiao; Wei, Cong; Lin, Xianqing; Liu, Yuan; Hu, Fengqin; Zhao, Yong Sheng

    2017-03-09

    We demonstrate the fabrication of organic high Q active whispering-gallery-mode (WGM) resonators from π-conjugated polymer by a controlled emulsion-solvent-evaporation method, which can simultaneously provide optical gain and act as an effective resonant cavity. By measuring the shift of their lasing modes on exposure to organic vapor, we successfully monitored the slight concentration variation in the chemical gas. These microlaser sensors demonstrated high detection sensitivity and good signal repeatability under continuous chemical gas treatments. The results offer an effective strategy to design miniaturized optical sensors.

  11. Chemical reactions in organic monomolecular layers. Condensation of hydrazine on carbonyl functions

    International Nuclear Information System (INIS)

    Rosilio, Charles; Ruaudel-Teixier, Annie.

    1976-01-01

    Evidence is given for chemical reactions of hydrazine (NH 2 -NH 2 ) with different carbonyl functional groups of organic molecules in the solid state, in monomolecular layer structures. The condensation of hydrazine with these molecules leads to conjugated systems by bridging the N-N links, to cyclizations, and also to polycondensations. The reactions investigated were followed up by infrared spectrophotometry, by transmission and metallic reflection. These chemical reactions revealed in the solid phase constitute a polycondensation procedure which is valuable in obtaining organized polymers in monomolecular layers [fr

  12. Acid-resistant organic coatings for the chemical industry: a review

    DEFF Research Database (Denmark)

    Møller, Victor Buhl; Dam-Johansen, Kim; Frankær, Sarah Maria Grundahl

    2017-01-01

    Industries that work with acidic chemicals in their processes need to make choices on how to properly contain the substances and avoid rapid corrosion of equipment. Certain organic coatings and linings can be used in such environments, either to protect vulnerable construction materials, or......, in combination with fiber reinforcement, to replace them. However, degradation mechanisms of organic coatings in acid service are not thoroughly understood and relevant quantitative investigations are scarce. This review describes the uses and limitations of acid-resistant coatings in the chemical industry...

  13. Defence biochemical mechanisms of the organisms against chemical pollution and ionizing radiations

    International Nuclear Information System (INIS)

    Olinescu, Radu

    2001-01-01

    Acute exposure to high concentrations / doses of chemical pollutants and ionizing radiation usually kills giving no chance for survival, if not immediately, than later followed by specific diseases. Fortunately, this acute exposure is accidental, but chronic, low level exposure is also damaging. The involvement of pollution, especially of chemically produced, one in the etiology of several diseases is still under intensive research. Compared to other kinds of pollution (radioactive, microbiological), the chemical one seldom kills suddenly; it acts slowly, silently, by accumulation into the tissues, eventually inducing a failure of certain organ. The body is continuously adapting to low level concentrations of chemicals from environment until a certain threshold. All organisms, including humans, have a limited capacity of resisting the effects of various types of pollutants. Extensive laboratory research, demonstrated that most of damaging organic pollutants cause the formation of free radicals when they penetrate into the body and are metabolized. Free radicals are very reactive and are known to damage tissues with potentially fatal results. Substantial experimental evidence in recent years has demonstrated that all organisms are endowed with versatile, efficient antioxidant systems, that provide protection against the formation or effects of free radicals. However, the antioxidant systems are limited and when their capacity of protection is exceeded, injury resulting in illness or death occurs. In most cases, the harmful effects of chemicals on organisms depend on the biotransformation step, where free radicals are produced as byproducts of the metabolic reactions. The damaging effects of chemical pollutants are mostly restricted to an important organ depending on the way of penetration, nature of the compound and concentration. The organisms possess specific and nonspecific defense systems, which act from the exposure step, with attempt to block the entry of

  14. Control of neuronal network organization by chemical surface functionalization of multi-walled carbon nanotube arrays

    International Nuclear Information System (INIS)

    Liu Jie; Bibari, Olivier; Marchand, Gilles; Benabid, Alim-Louis; Sauter-Starace, Fabien; Appaix, Florence; De Waard, Michel

    2011-01-01

    Carbon nanotube substrates are promising candidates for biological applications and devices. Interfacing of these carbon nanotubes with neurons can be controlled by chemical modifications. In this study, we investigated how chemical surface functionalization of multi-walled carbon nanotube arrays (MWNT-A) influences neuronal adhesion and network organization. Functionalization of MWNT-A dramatically modifies the length of neurite fascicles, cluster inter-connection success rate, and the percentage of neurites that escape from the clusters. We propose that chemical functionalization represents a method of choice for developing applications in which neuronal patterning on MWNT-A substrates is required.

  15. Self-Organized Traveling Chemo-Hydrodynamic Fingers Triggered by a Chemical Oscillator.

    Science.gov (United States)

    Escala, D M; Budroni, M A; Carballido-Landeira, J; De Wit, A; Muñuzuri, A P

    2014-02-06

    Pulsatile chemo-hydrodynamic patterns due to a coupling between an oscillating chemical reaction and buoyancy-driven hydrodynamic flows can develop when two solutions of separate reactants of the Belousov-Zhabotinsky reaction are put in contact in the gravity field and conditions for chemical oscillations are met in the contact zone. In regular oscillatory conditions, localized periodic changes in the concentration of intermediate species induce pulsatile density gradients, which, in turn, generate traveling convective fingers breaking the transverse symmetry. These patterns are the self-organized result of a genuine coupling between chemical and hydrodynamic modes.

  16. Control of neuronal network organization by chemical surface functionalization of multi-walled carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jie; Bibari, Olivier; Marchand, Gilles; Benabid, Alim-Louis; Sauter-Starace, Fabien [CEA, LETI-Minatec, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Appaix, Florence; De Waard, Michel, E-mail: fabien.sauter@cea.fr, E-mail: michel.dewaard@ujf-grenoble.fr [Inserm U836, Grenoble Institute of Neuroscience, Site Sante la Tronche, Batiment Edmond J Safra, Chemin Fortune Ferrini, BP170, 38042 Grenoble Cedex 09 (France)

    2011-05-13

    Carbon nanotube substrates are promising candidates for biological applications and devices. Interfacing of these carbon nanotubes with neurons can be controlled by chemical modifications. In this study, we investigated how chemical surface functionalization of multi-walled carbon nanotube arrays (MWNT-A) influences neuronal adhesion and network organization. Functionalization of MWNT-A dramatically modifies the length of neurite fascicles, cluster inter-connection success rate, and the percentage of neurites that escape from the clusters. We propose that chemical functionalization represents a method of choice for developing applications in which neuronal patterning on MWNT-A substrates is required.

  17. Chemical Annealing of Zinc Tetraphenylporphyrin Films: Effects on Film Morphology and Organic Photovoltaic Performance

    KAUST Repository

    Trinh, Cong

    2012-07-10

    We present a chemical annealing process for organic thin films. In this process, a thin film of a molecular material, such as zinc tetraphenylporphyrin (ZnTPP), is exposed to a vapor of nitrogen-based ligand (e.g., pyrazine, pz, and triazine, tz), forming a film composed of the metal-ligand complex. Fast and quantitative formation of the complex leads to marked changes in the morphology and optical properties of the film. X-ray diffraction studies show that the chemical annealing process converts amorphous ZnTPP films to crystalline ZnTPP•ligand films, whose porphryin planes lie nearly parallel to the substrate (average deviation is 8° for the ZnTPP•pz film). Organic solar cells were prepared with ZnTPP donor and C 60 acceptor layers. Devices were prepared with and without chemical annealing of the ZnTPP layer with a pyrazine ligand. The devices with chemically annealed ZnTPP donor layer show an increase in short-circuit current (J SC) and fill factor (FF) relative to analogous unannealed devices, presumably because of enhanced exciton diffusion length and improved charge conductivity. The open circuit voltages (V OC) of the chemically annealed devices are lower than their unannealed counterpart because of enhanced polaron pair recombination at the donor/acceptor heterojunction. A net improvement of 5-20% in efficiency has been achieved, after chemical annealing of ZnTPP films with pyrazine. © 2012 American Chemical Society.

  18. Chemical attributes, total organic carbon stock and humified fractions of organic matter soil submitted to different systems of sugarcane management

    Directory of Open Access Journals (Sweden)

    Jean Sérgio Rosset

    2014-10-01

    Full Text Available Mechanized harvesting maintenance of trash from cane sugar and soil application of waste as vinasse and filter cake can improve the system of crop yield. Thus, this study aimed to evaluate the changes in the chemical, the stock of total organic carbon and humified organic matter fractions in an Oxisol cultivated with cane sugar with the following management systems: with sugarcane vinasse application (CCV, without application of burnt cane waste (CQS, with burnt cane vinasse application (CQV, with application of burnt cane filter cake (CQTF and burnt cane with joint application of vinasse and filter cake (CQVTF. For reference we used an area of natural vegetation (NV, Cerrado sensu stricto. Treatment CQVTF showed improvement in soil chemical properties, increased inventory levels of total organic carbon – TOC (values ranging from 21.28 to 40.02 Mg ha-1 and humified fractions of soil organic matter in relation to other treatments. The CQS area at a depth of 0-0.05 m, showed the greatest losses of soil TOC stocks (56.3% compared to NV. The adoption of management presented CCV and chemical attributes of the soil TOC stocks equivalent to those observed in areas with CQV CQTF and despite the short period of adoption (3 years. The TOC correlated with the sum of bases (r = 0.76 **, cation exchange capacity (r = 0.59 ** and base saturation (r = 0.63 **, while the humic acids (r = 0.40 ** fulvic acids (r = 0.49 ** and humin (r = 0.59 ** correlated with the cation exchange capacity of the soil. These results indicate that the preservation of trash in the management of cane sugar added to the application of vinasse and filter cake increases the TOC stocks promoting improvement in soil chemical properties.

  19. Organic-Chemical Clues to the Theory of Impacts as a Cause of Mass Extinctions

    Science.gov (United States)

    Sack, N. J.

    1988-11-01

    The reasons for the mass extinctions, which occur from time to time in Earth's history-as, e.g., the dinosaur extinction at the Cretaceous/Tertiary boundary 65 myr ago - are still not satisfactorily cleared up. A possible reason might be the impact of one or several comets of several kilometers in diameter. In this paper the astrophysical background of this hypothesis and organic-chemical processes during an impact will be discussed. Quantitative estimations are given, which show that the amount of organic substances brought to the Earth may be of the same order of magnitude as the normal biological production of organic material. Investigations are proposed to examine the organic-chemical composition of profiles of the Cretaceous/Tertiary boundary and other boundaries, at which mass extinction had occurred, in order to find anomalies as consequences of impacts.

  20. Analysis of very thin organic fibres by means of small spots electron spectroscopy for chemical analysis

    International Nuclear Information System (INIS)

    Daiser, S.M.; Cormia, R.D.; Scharpen, L.

    1985-01-01

    ESCA analysis of very thin organic fibres as small as a few micrometer diameter is now possible using the small spot X-ray capability of the SSX100 ESCA system. The sampling method involves suspending the material in the SSX100 chamber, and illuminating it with a monochromatized X-ray beam of 150-300 μm diameter. From the small spot ESCA spectra one can determine the chemical character of the organic layer and the thickness. (Author)

  1. Chemical, Sensorial and Rheological Properties of a New Organic Rice Bran Beverage

    OpenAIRE

    Gerson Luis FACCIN; Letícia Adélia MIOTTO; Leila do Nascimento VIEIRA; Pedro Luiz Manique BARRETO; Edna Regina AMANTE

    2009-01-01

    Rice bran is a solid residue from rice polishing that is used in animal nutrition and rice oil production. Cultivation conditions with agro-toxics, lipids instability, and tendency for mycotoxin contamination restrict its application in human nutrition. Therefore, organic agriculture is an alternative to use the properties of rice bran. Rice bran beverage is a new cereal product from organic rice. This work presents the preliminary results of the chemical and rheological studies of a bath pas...

  2. Screening organic chemicals in commerce for emissions in the context of environmental and human exposure.

    Science.gov (United States)

    Breivik, Knut; Arnot, Jon A; Brown, Trevor N; McLachlan, Michael S; Wania, Frank

    2012-08-01

    Quantitative knowledge of organic chemical release into the environment is essential to understand and predict human exposure as well as to develop rational control strategies for any substances of concern. While significant efforts have been invested to characterize and screen organic chemicals for hazardous properties, relatively less effort has been directed toward estimating emissions and hence also risks. Here, a rapid throughput method to estimate emissions of discrete organic chemicals in commerce has been developed, applied and evaluated to support screening studies aimed at ranking and identifying chemicals of potential concern. The method builds upon information in the European Union Technical Guidance Document and utilizes information on quantities in commerce (production and/or import rates), chemical function (use patterns) and physical-chemical properties to estimate emissions to air, soil and water within the OECD for five stages of the chemical life-cycle. The method is applied to 16,029 discrete substances (identified by CAS numbers) from five national and international high production volume lists. As access to consistent input data remains fragmented or even impossible, particular attention is given to estimating, evaluating and discussing uncertainties in the resulting emission scenarios. The uncertainty for individual substances typically spans 3 to 4 orders of magnitude for this initial tier screening method. Information on uncertainties in emissions is useful as any screening or categorization methods which solely rely on threshold values are at risk of leading to a significant number of either false positives or false negatives. A limited evaluation of the screening method's estimates for a sub-set of about 100 substances, compared against independent and more detailed emission scenarios presented in various European Risk Assessment Reports, highlights that up-to-date and accurate information on quantities in commerce as well as a detailed

  3. Soil hydrophobicity: comparative study of usual determination methods

    Directory of Open Access Journals (Sweden)

    Eduardo Saldanha Vogelmann

    2015-02-01

    Full Text Available Hydrophobic or water repellent soils slowly absorb water because of the low wett ability of the soil particles which are coated with hydrophobic organic substances. These pose significant effects on plant growth, water infiltration and retention, surface runoff and erosion. The objective of this study was to compare the performance of tension micro-infiltrometer(TMI and the water drop penetration time (WDPT methods in the determination of the hydrophobicity index of eighteen soils from southern Brazil. Soil samples were collected from the 0-5cm soil layer to determine particle size distribution, organic matter content, hydrophobicity index of soil aggregates and droplet penetration time of disaggregated and sieved soil samples. For the TMI method the soil samples were subjected to minor changes due to the use of macroaggregates to preserve the distribution of solid constituents in the soil. Due to the homogeneity of the soil samples the WDPT method gave smaller coefficients of variation unlike the TMI method where the soil structure is preserved. However, both methods had low coefficients of variation, and are thus effective for determining the soil hydrophobicity, especially when the log hydrophobicity index or log WDPT is >1.

  4. Landfill leachate effects on sorption of organic micropollutants onto aquifer materials

    DEFF Research Database (Denmark)

    Larsen, Thomas; Christensen, Thomas Højlund; Pfeffer, Fred M.

    1992-01-01

    The effect of dissolved organic carbon as present in landfill leachate, on the sorption of organic micropollutants in aquifer materials was studied by laboratory batch and column experiments involving 15 non-polar organic chemicals, 5 landfill leachates and 4 aquifer materials of low organic carbon......, the effect of landfill leachate on retardation of organic micropollutants in aquifer material seems limited....... content. The experiments showed that hydrophobic organic micropollutants do partition into dissolved organic carbon found in landfill leachate potentially increasing their mobility. However, landfill leachate interacted with aquifer materials apparently increases the sorbent affinity for the hydrophobic...

  5. Chemical and toxicologic assessment of organic contaminants in surface water using passive samplers

    Science.gov (United States)

    Alvarez, D.A.; Cranor, W.L.; Perkins, S.D.; Clark, R.C.; Smith, S.B.

    2008-01-01

    Passive sampling methodologies were used to conduct a chemical and toxicologic assessment of organic contaminants in the surface waters of three geographically distinct agricultural watersheds. A selection of current-use agrochemicals and persistent organic pollutants, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides, were targeted using the polar organic chemical integrative sampler (POCIS) and the semipermeable membrane device passive samplers. In addition to the chemical analysis, the Microtox assay for acute toxicity and the yeast estrogen screen (YES) were conducted as potential assessment tools in combination with the passive samplers. During the spring of 2004, the passive samplers were deployed for 29 to 65 d at Leary Weber Ditch, IN; Morgan Creek, MD; and DR2 Drain, WA. Chemical analysis of the sampler extracts identified the agrochemicals predominantly used in those areas, including atrazine, simazine, acetochlor, and metolachlor. Other chemicals identified included deethylatrazine and deisopropylatrazine, trifluralin, fluoranthene, pyrene, cis- and trans-nonachlor, and pentachloroanisole. Screening using Microtox resulted in no acutely toxic samples. POCIS samples screened by the YES assay failed to elicit a positive estrogenic response. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  6. Fluoroalkyl and Alkyl Chains Have Similar Hydrophobicities in Binding to the “Hydrophobic Wall” of Carbonic Anhydrase

    Energy Technology Data Exchange (ETDEWEB)

    J Mecinovic; P Snyder; K Mirica; S Bai; E Mack; R Kwant; D Moustakas; A Heroux; G Whitesides

    2011-12-31

    The hydrophobic effect, the free-energetically favorable association of nonpolar solutes in water, makes a dominant contribution to binding of many systems of ligands and proteins. The objective of this study was to examine the hydrophobic effect in biomolecular recognition using two chemically different but structurally similar hydrophobic groups, aliphatic hydrocarbons and aliphatic fluorocarbons, and to determine whether the hydrophobicity of the two groups could be distinguished by thermodynamic and biostructural analysis. This paper uses isothermal titration calorimetry (ITC) to examine the thermodynamics of binding of benzenesulfonamides substituted in the para position with alkyl and fluoroalkyl chains (H{sub 2}NSO{sub 2}C{sub 6}H{sub 4}-CONHCH{sub 2}(CX{sub 2}){sub n}CX{sub 3}, n = 0-4, X = H, F) to human carbonic anhydrase II (HCA II). Both alkyl and fluoroalkyl substituents contribute favorably to the enthalpy and the entropy of binding; these contributions increase as the length of chain of the hydrophobic substituent increases. Crystallography of the protein-ligand complexes indicates that the benzenesulfonamide groups of all ligands examined bind with similar geometry, that the tail groups associate with the hydrophobic wall of HCA II (which is made up of the side chains of residues Phe131, Val135, Pro202, and Leu204), and that the structure of the protein is indistinguishable for all but one of the complexes (the longest member of the fluoroalkyl series). Analysis of the thermodynamics of binding as a function of structure is compatible with the hypothesis that hydrophobic binding of both alkyl and fluoroalkyl chains to hydrophobic surface of carbonic anhydrase is due primarily to the release of nonoptimally hydrogen-bonded water molecules that hydrate the binding cavity (including the hydrophobic wall) of HCA II and to the release of water molecules that surround the hydrophobic chain of the ligands. This study defines the balance of enthalpic and

  7. Calibration and use of the polar organic chemical integrative sampler--a critical review.

    Science.gov (United States)

    Harman, Christopher; Allan, Ian John; Vermeirssen, Etiënne L M

    2012-12-01

    The implementation of strict environmental quality standards for polar organic priority pollutants poses a challenge for monitoring programs. The polar organic chemical integrative sampler (POCIS) may help to address the challenge of measuring low and fluctuating trace concentrations of such organic contaminants, offering significant advantages over traditional sampling. In the present review, the authors evaluate POCIS calibration methods and factors affecting sampling rates together with reported environmental applications. Over 300 compounds have been shown to accumulate in POCIS, including pesticides, pharmaceuticals, hormones, and industrial chemicals. Polar organic chemical integrative sampler extracts have been used for both chemical and biological analyses. Several different calibration methods have been described, which makes it difficult to directly compare sampling rates. In addition, despite the fact that some attempts to correlate sampling rates with the properties of target compounds such as log K(OW) have been met with varying success, an overall model that can predict uptake is lacking. Furthermore, temperature, water flow rates, salinity, pH, and fouling have all been shown to affect uptake; however, there is currently no robust method available for adjusting for these differences. Overall, POCIS has been applied to a wide range of sampling environments and scenarios and has been proven to be a useful screening tool. However, based on the existing literature, a more mechanistic approach is required to increase understanding and thus improve the quantitative nature of the measurements. Copyright © 2012 SETAC.

  8. Occurrence and ecological risk assessment of emerging organic chemicals in urban rivers

    NARCIS (Netherlands)

    Peng, Feng Jiao; Pan, Chang Gui; Zhang, Min; Zhang, Nai Sheng; Windfeld, Ronja; Salvito, Daniel; Selck, Henriette; Brink, Van den Paul J.; Ying, Guang Guo

    2017-01-01

    Urban rivers may receive contamination from various sources including point sources like domestic sewage and nonpoint sources (e.g., runoff), resulting in contamination with various chemicals. This study investigated the occurrence of emerging organic contaminants (3 endocrine disrupting

  9. Liquid electrolyte positioning along the device channel influences the operation of Organic Electro-Chemical Transistors

    KAUST Repository

    D'angelo, Pasquale; Coppedè , Nicola; Tarabella, Giuseppe; Romeo, Agostino; Gentile, Francesco T.; Iannotta, Salvatore; Di Fabrizio, Enzo M.; Mosca, Roberto

    2014-01-01

    In this work, we show the influence of the liquid electrolyte adsorption by porous films made of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), PEDOT:PSS, on the operation of an Organic Electro-Chemical Transistor with an active channel

  10. Metal–organic covalent network chemical vapor deposition for gas separation

    NARCIS (Netherlands)

    Boscher, N.D.; Wang, M.; Perrotta, A.; Heinze, K.; Creatore, A.; Gleason, K.K.

    2016-01-01

    The chemical vapor deposition (CVD) polymerization of metalloporphyrin building units is demonstrated to provide an easily up-scalable one-step method toward the deposition of a new class of dense and defect-free metal–organic covalent network (MOCN) layers. The resulting hyper-thin and flexible

  11. Chemical Annealing of Zinc Tetraphenylporphyrin Films: Effects on Film Morphology and Organic Photovoltaic Performance

    KAUST Repository

    Trinh, Cong; Whited, Matthew T.; Steiner, Andrew; Tassone, Christopher J.; Toney, Michael F.; Thompson, Mark E.

    2012-01-01

    We present a chemical annealing process for organic thin films. In this process, a thin film of a molecular material, such as zinc tetraphenylporphyrin (ZnTPP), is exposed to a vapor of nitrogen-based ligand (e.g., pyrazine, pz, and triazine, tz

  12. Direct conversion of radioactive and chemical waste containing metals, ceramics, amorphous solids, and organics to glass

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1994-01-01

    The Glass Material Oxidation and Dissolution System (CMODS) is a new process for direct conversion of radioactive, mixed, and chemical wastes to glass. The wastes can be in the chemical forms of metals, ceramics, amorphous solids, and organics. GMODS destroys organics and it incorporates heavy metals and radionuclides into a glass. Processable wastes may include miscellaneous spent fuels (SF), SF hulls and hardware, plutonium wastes in different forms, high-efficiency particulate air (HEPA) filters, ion-exchange resins, failed equipment, and laboratory wastes. Thermodynamic calculations indicate theoretical feasibility. Small-scale laboratory experiments (< 100 g per test) have demonstrated chemical laboratory feasibility for several metals. Additional work is needed to demonstrate engineering feasibility

  13. Top value platform chemicals: bio-based production of organic acids.

    Science.gov (United States)

    Becker, Judith; Lange, Anna; Fabarius, Jonathan; Wittmann, Christoph

    2015-12-01

    Driven by the quest for sustainability, recent years have seen a tremendous progress in bio-based production routes from renewable raw materials to commercial goods. Particularly, the production of organic acids has crystallized as a competitive and fast-evolving field, related to the broad applicability of organic acids for direct use, as polymer building blocks, and as commodity chemicals. Here, we review recent advances in metabolic engineering and industrial market scenarios with focus on organic acids as top value products from biomass, accessible through fermentation and biotransformation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Estimation of the soil-water partition coefficient normalized to organic carbon for ionizable organic chemicals

    DEFF Research Database (Denmark)

    Franco, Antonio; Trapp, Stefan

    2008-01-01

    The sorption of organic electrolytes to soil was investigated. A dataset consisting of 164 electrolytes, composed of 93 acids, 65 bases, and six amphoters, was collected from literature and databases. The partition coefficient log KOW of the neutral molecule and the dissociation constant pKa were...... calculated by the software ACD/Labs®. The Henderson-Hasselbalch equation was applied to calculate dissociation. Regressions were developed to predict separately for the neutral and the ionic molecule species the distribution coefficient (Kd) normalized to organic carbon (KOC) from log KOW and pKa. The log...... KOC of strong acids (pKa correlated to these parameters. The regressions derived for weak acids and bases (undissociated at environmental pH) were similar. The highest sorption was found for strong bases (pKa > 7.5), probably due to electrical interactions. Nonetheless, their log KOC...

  15. Constructing Fluorine-Free and Cost-Effective Superhydrophobic Surface with Normal-Alcohol-Modified Hydrophobic SiO2 Nanoparticles.

    Science.gov (United States)

    Ye, Hui; Zhu, Liqun; Li, Weiping; Liu, Huicong; Chen, Haining

    2017-01-11

    Superhydrophobic coatings have drawn much attention in recent years for their wide potential applications. However, a simple, cost-effective, and environmentally friendly approach is still lacked. Herein, a promising approach using nonhazardous chemicals was proposed, in which multiple hydrophobic functionalized silica nanoparticles (SiO 2 NPs) were first prepared as core component, through the efficient reaction between amino group containing SiO 2 NPs and the isocyanate containing hydrophobic surface modifiers synthesized by normal alcohols, followed by simply spraying onto various substrates for superhydrophobic functionalization. Furthermore, to further improve the mechanical durability, an organic-inorganic composite superhydrophobic coating was fabricated by incorporating cross-linking agent (polyisocyanate) into the mixture of hydrophobic-functionalized SiO 2 NPs and hydroxyl acrylic resin. The hybrid coating with cross-linked network structures is very stable with excellent mechanical durability, self-cleaning property and corrosion resistance.

  16. Advancing the Use of Passive Sampling in Risk Assessment and Management of Sediments Contaminated with Hydrophobic Organic Chemicals: Results of an International Ex Situ Passive Sampling Interlaboratory Comparison

    Science.gov (United States)

    This work presents the results of an international interlaboratory comparison on ex situ passive sampling in sediments. The main objectives were to map the state of the science in passively sampling sediments, identify sources of variability, provide recommendations and practica...

  17. Atmospheric emissions and long-range transport of persistent organic chemicals

    Directory of Open Access Journals (Sweden)

    Scheringer M.

    2010-12-01

    Full Text Available Persistent organic chemicals include several groups of halogenated compounds, such as polychlorinated biphenyls (PCBs, polybrominated diphenylethers (PBDEs, and polyfluorinated carboxylic acids (PFCAs. These chemicals remain for long times (years to decades in the environment and cycle between different media (air, water, sediment, soil, vegetation, etc.. The environmental distribution of this type of chemicals can conveniently be analyzed by multimedia models. Multimedia models consist of a set of coupled mass balance equations for the environmental media considered; they can be set up at various scales from local to global. Two applications of multimedia models to airborne chemicals are discussed in detail: the day-night cycle of PCBs measured in air near the surface, and the atmospheric long-range transport of volatile precursors of PFCAs, formation of PFCAs by oxidation of these precursors, and subsequent deposition of PFCAs to the surface in remote regions such as the Arctic.

  18. Chemical structure of the Chromophoric Dissolved Organic Matter (CDOM) fluorescent matter.

    Science.gov (United States)

    Blough, N. V.; Del Vecchio, R.; Cartisano, C. M.; Bianca, M.

    2017-12-01

    The structure(s), distribution and dynamics of CDOM have been investigated over the last several decades largely through optical spectroscopy (including both absorption and fluorescence) due to the fairly inexpensive instrumentation and the easy-to-gather data (over thousands published papers from 1990-2016). Yet, the chemical structure(s) of the light absorbing and emitting species or constituents within CDOM has only recently being proposed and tested through chemical manipulation of selected functional groups (such as carbonyl and carboxylic/phenolic containing molecules) naturally occurring within the organic matter pool. Similarly, fitting models (among which the PArallel FACtor analysis, PARAFAC) have been developed to better understand the nature of a subset of DOM, the CDOM fluorescent matter (FDOM). Fluorescence spectroscopy coupled with chemical tests and PARAFAC analyses could potentially provide valuable insights on CDOM sources and chemical nature of the FDOM pool. However, despite that applications (and publications) of PARAFAC model to FDOM have grown exponentially since its first application/publication (2003), a large fraction of such publications has misinterpreted the chemical meaning of the delivered PARAFAC `components' leading to more confusion than clarification on the nature, distribution and dynamics of the FDOM pool. In this context, we employed chemical manipulation of selected functional groups to gain further insights on the chemical structure of the FDOM and we tested to what extent the PARAFAC `components' represent true fluorophores through a controlled chemical approach with the ultimate goal to provide insights on the chemical nature of such `components' (as well as on the chemical nature of the FDOM) along with the advantages and limitations of the PARAFAC application.

  19. The influence of vertical sorbed phase transport on the fate of organic chemicals in surface soils.

    Science.gov (United States)

    McLachlan, Michael S; Czub, Gertje; Wania, Frank

    2002-11-15

    Gaseous exchange between surface soil and the atmosphere is an important process in the environmental fate of many chemicals. It was hypothesized that this process is influenced by vertical transport of chemicals sorbed to soil particles. Vertical sorbed phase transport in surface soils occurs by many processes such as bioturbation, cryoturbation, and erosion into cracks formed by soil drying. The solution of the advection/diffusion equation proposed by Jury et al. to describe organic chemical fate in a uniformly contaminated surface soil was modified to include vertical sorbed phase transport This process was modeled using a sorbed phase diffusion coefficient, the value of which was derived from soil carbon mass balances in the literature. The effective diffusivity of the chemical in a typical soil was greater in the modified model than in the model without sorbed phase transport for compounds with log K(OW) > 2 and log K(OA) > 6. Within this chemical partitioning space, the rate of volatilization from the surface soil was larger in the modified model than in the original model by up to a factor of 65. The volatilization rate was insensitive to the value of the sorbed phase diffusion coefficient throughout much of this chemical partitioning space, indicating that the surface soil layer was essentially well-mixed and that the mass transfer coefficient was determined by diffusion through the atmospheric boundary layer only. When this process was included in a non-steady-state regional multimedia chemical fate model running with a generic emissions scenario to air, the predicted soil concentrations increased by upto a factor of 25,whilethe air concentrations decreased by as much as a factor of approximately 3. Vertical sorbed phase transport in the soil thus has a major impact on predicted air and soil concentrations, the state of equilibrium, and the direction and magnitude of the chemical flux between air and soil. It is a key process influencing the environmental

  20. On the Chemical Characterization of Organic Matter in Rain at Mexico City.

    Science.gov (United States)

    Montero-Martinez, G.; Andraca-Ayala, G. L.; Hernández-Nagay, D. P.; Mendoza-Trejo, A.; Rivera-Arellano, J.; Rosado-Abon, A.; Roy, P. D.

    2016-12-01

    The chemical composition of the aerosol plays a central role in atmospheric processes and has influence on the hydrological cycle. Clouds form through the nucleation of water vapor on certain atmospheric aerosol particles, called cloud condensation nuclei (CCN). Also, precipitating particles scavenge some other aerosol particles on their way to the surface. Atmospheric particles are a mixture of organic and inorganic materials, both soluble and insoluble in water. Aerosol chemical characterization indicates a larger variety of compounds in urban areas respect to other regions. Thus, chemical composition of rainwater may represent an important aspect for estimating atmospheric air pollution. It has been recognized that organic species present in aerosol particles are important in the formation of cloud droplets. Therefore, the information about the organic compounds in precipitation samples may be helpful to understand their effects on the formation of clouds and rain, as well as their sources. Organic acids are ubiquitous components of aerosols and have been identified in precipitation water. In this work, preliminary results of the content of soluble organic (neutral and acidic) matter in rainwater samples collected in Mexico City during 2015 will be presented. The organic compounds content was performed by using an ionic chromatographic methodology with gradient elution; so the total amount was evaluated as the sum of four fractions: neutral/basic, mono-, bi-, and poly-acid compounds. The outcomes suggest that most of the amount of organic substances soluble in water is contained by the neutral/basic and mono-acid fractions. Regarding the total amount of water soluble organic compounds, the rain samples collected in Mexico City are in agreement with some others reported for large urban areas.

  1. CHANGES IN SOIL CHEMICAL PROPERTIES OF ORGANIC PADDY FIELD WITH AZOLLA APPLICATION

    Directory of Open Access Journals (Sweden)

    Jauhari Syamsiyah

    2016-12-01

    Full Text Available The use of organic fertilizer is a way to improve soil fertility. Azolla can be used as organic fertilizer. This study aims to determine the effect of Azolla (Azolla mycrophylla. L on some soil chemical properties on organic paddy field. The field experiments used factorial complete randomized block design of three factors, namely Azolla (0 and 2 tons/ha, Manure (0 and 10 tons/ha and Rice Varieties (Mira1, Mentik Wangi and Merah Putih, with three times replication. Using Azolla on an organic paddy field does not significantly increase the levels of soil N, organic C, Cation Exchange Capacity and soil pH. However Azolla’s influence on soil available P is significant.

  2. Preparation of inorganic hydrophobic catalysts

    International Nuclear Information System (INIS)

    Yang, Yong; Wang, Heyi; Du, Yang

    2009-04-01

    In order to catalyse the oxidation of tritium gas, two inorganic hydrophobic catalysts are prepared. Under room temperature, the catalysed oxidation ratio of 0.3%-1% (V/V) hydrogen gas in air is higher than 95%. Pt-II inorganic hydrophobic catalysts has obviously better catalysing ability than Pt-PTFE and lower ability than Pt-SDB in H 2 -HTO isotopic exchange, because the pressure resistence of Pt-II is much higher than Pt-SDB, it can be used to the CECE cell of heavy water detritium system. (authors)

  3. Production of hydrophobic amino acids from biobased resources

    NARCIS (Netherlands)

    Widyarani, W.; Sari, Yessie W.; Ratnaningsih, Enny; Sanders, Johan P.M.; Bruins, Marieke E.

    2016-01-01

    Protein hydrolysis enables production of peptides and free amino acids that are suitable for usage in food and feed or can be used as precursors for bulk chemicals. Several essential amino acids for food and feed have hydrophobic side chains; this property may also be exploited for subsequent

  4. The organization for the prohibition of chemical weapons and the IAEA: A comparative overview

    International Nuclear Information System (INIS)

    Dorn, A.W.; Rolya, A.

    1993-01-01

    The long-awaited Chemical Weapons Convention (CWC) - which was endorsed in New York by the United Nations General Assembly on 30 November 1992 - was opened for signature on 13 January 1993. To oversee its implementation, a new international organization, the Organization for the Prohibition of Chemical Weapons (OPCW), will be established when the treaty enters into force, which could be as early as January 1995. The IAEA - as the only existing organization with a mandate for implementing an international verification system - is an important model for the structure and functioning of the OPCW. Many provisions in the CWC benefit from the lessons learned through the implementation of the IAEA's safeguards system in such matters as rights of access for inspectors, the designation of inspectors, and procedural arrangements. Overall, the structure of the IAEA and that foreseen for the OPCE are quite similar. There are, nonetheless, several structural differences. Most notably, the IAEA is charged with a dual mission, that of promoting the contribution of nuclear energy to social and economic development and of seeking to ensure that nuclear materials and facilities which have been placed under safeguards are not diverted from peaceful uses. The OPCW is responsible for achieving a complete ban on chemical weapons and is not responsible, at least as currently envisaged, for the promotion of peaceful uses of chemistry and chemical sciences

  5. Characterization of Organic Nitrate Formation in Limonene Secondary Organic Aerosol using High-Resolution Chemical Ionization Mass Spectrometry

    Science.gov (United States)

    Faxon, Cameron; Hammes, Julia; Peng, Jianfei; Hallquist, Mattias; Pathak, Ravi

    2016-04-01

    Previous work has shown that organic nitrates (RONO2) are prevalent in the boundary layer, and can contribute significantly to secondary organic aerosol formation. Monoterpenes, including limonene, have been shown to be precursors for the formation of these organic nitrates. Limonene has two double bonds, either of which may be oxidized by NO3 or O3. This leads to the generation of products that can subsequently condense or partition into the particle phase, producing secondary organic aerosol. In order to further elucidate the particle and gas phase product distribution of organic nitrates forming from the reactions of limonene and the nitrate radical (NO3), a series of experiments were performed in the Gothenburg Flow Reactor for Oxidation Studies at Low Temperatures (G-FROST), described by previous work. N2O5 was used as the source for NO3 and NO2, and a characterized diffusion source was used to introduce limonene into the flow reactor. All experiments were conducted in the absence of light, and the concentration of limonene was increased step-wise throughout each experiment to modify the ratio of N2O5to limonene. The experiments were conducted such that both limonene- and N2O5-limited regimes were present. Gas and particle phase products were measured using an iodide High-Resolution Time-of-Flight Mass Spectrometer (HR-ToF-CIMS) coupled to a Filter Inlet for Gases and AEROsols (FIGAERO, and particle size and SOA mass concentrations were derived using a Scanning Mobility Particle Sizer (SMPS). CIMS measurement techniques have previously been employed for the measurement of organic nitrate products of such compounds using multiple reagent ions. The use of this instrumentation allowed for the identification of chemical formulas for gas and particle phase species. The findings from the experiments will be presented in terms of the relative gas-particle partitioning of major products and the effects of N2O5/limonene ratios on product distributions. Additionally, a

  6. Facilitated transport of polychlorinated biphenyls and polybrominated diphenyl ethers by dissolved organic matter.

    NARCIS (Netherlands)

    ter Laak, T.L.; van Eijkeren, J.C.; Busser, F.; van Leeuwen, H.P.; Hermens, J.L.M.

    2009-01-01

    The exchange rate of hydrophobic organic chemicals between the aqueous phase and a sorbent (e.g., soil, organism, passive sampler) is relevant for distribution processes between environmental compartments, including organisms. Dissolved phases such as humic acids, proteins, and surfactants can

  7. Facilitated transport of polychlorinated biphenyls and polybrominated diphenyl ethers by dissolved organic matter

    NARCIS (Netherlands)

    Laak, ter T.L.; Eijkeren, van J.C.H.; Busser, F.J.M.; Leeuwen, van H.P.; Hermens, J.L.

    2009-01-01

    The exchange rate of hydrophobic organic chemicals between the aqueous phase and a sorbent (e.g., soil, organism, passive sampler) is relevant for distribution processes between environmental compartments, including organisms. Dissolved phases such as humic acids, proteins, and surfactants can

  8. Micro- and Nanostructured Metal Oxide Chemical Sensors for Volatile Organic Compounds

    Science.gov (United States)

    Alim, M. A.; Penn, B. G.; Currie, J. R., Jr.; Batra, A. K.; Aggarwal, M. D.

    2008-01-01

    Aeronautic and space applications warrant the development of chemical sensors which operate in a variety of environments. This technical memorandum incorporates various kinds of chemical sensors and ways to improve their performance. The results of exploratory investigation of the binary composite polycrystalline thick-films such as SnO2-WO3, SnO2-In2O3, SnO2-ZnO for the detection of volatile organic compound (isopropanol) are reported. A short review of the present status of the new types of nanostructured sensors such as nanobelts, nanorods, nanotube, etc. based on metal oxides is presented.

  9. Toxicity of organic chemical pollution in groundwater downgradient of a landfill (Grindsted, Denmark)

    DEFF Research Database (Denmark)

    Baun, Anders; Jensen, S. D.; Bjerg, Poul Løgstrup

    2000-01-01

    The aim of the present study was to describe the occurrence and distribution of toxicity related to organic chemical contaminants in the leachate plume downgradient of the Grindsted Landfill (Denmark). A total of 27 groundwater samples were preconcentrated by solidphase extraction (SPE) using XAD-2...... bioassays, it was concluded that SPE extracts of groundwater collected close to the landfill were toxic. The toxicity decreased with the distance from the landfill. At distances greater than 80 m from the border of the landfill, the groundwater toxicity was not significantly different from the background...... characterization and hazard ranking of groundwater polluted with complex chemical mixtures, such as landfill leachates....

  10. Direct chemical oxidation: a non-thermal technology for the destruction of organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, G.B.; Cooper, J. F.; Lewis, P. R.; Adamson, M. G.

    1998-02-01

    Direct Chemical Oxidation (DCO) is a non-thermal, ambient pressure, aqueous-based technology for the oxidative destruction of the organic components of hazardous or mixed waste streams. The process has been developed for applications in waste treatment and chemical demilitarization and decontamination at LLNL since 1992, and is applicable to the destruction of virtually all solid or liquid organics, including: chlorosolvents, oils and greases, detergents, organic-contaminated soils or sludges, explosives, chemical and biological warfare agents, and PCB's. [1-15] The process normally operates at 80-100 C, a heating requirement which increases the difficulty of surface decontamination of large objects or, for example, treatment of a wide area contaminated soil site. The driver for DCO work in FY98 was thus to investigate the use of catalysts to demonstrate the effectiveness of the technology for organics destruction at temperatures closer to ambient. In addition, DCO is at a sufficiently mature stage of development that technology transfer to a commercial entity was a logical next step, and was thus included in FY98 tasks.

  11. Hydrophobic patches on protein surfaces

    NARCIS (Netherlands)

    Lijnzaad, P.

    2007-01-01

    Hydrophobicity is a prime determinant of the structure and function of proteins. It is the driving force behind the folding of soluble proteins, and when exposed on the surface, it is frequently involved in recognition and binding of ligands and other proteins. The energetic cost of

  12. Improved exposure estimation in soil screening and cleanup criteria for volatile organic chemicals.

    Science.gov (United States)

    DeVaull, George E

    2017-09-01

    Soil cleanup criteria define acceptable concentrations of organic chemical constituents for exposed humans. These criteria sum the estimated soil exposure over multiple pathways. Assumptions for ingestion, dermal contact, and dust exposure generally presume a chemical persists in surface soils at a constant concentration level for the entire exposure duration. For volatile chemicals, this is an unrealistic assumption. A calculation method is presented for surficial soil criteria that include volatile depletion of chemical for these uptake pathways. The depletion estimates compare favorably with measured concentration profiles and with field measurements of soil concentration. Corresponding volatilization estimates compare favorably with measured data for a wide range of volatile and semivolatile chemicals, including instances with and without the presence of a mixed-chemical residual phase. Selected examples show application of the revised factors in estimating screening levels for benzene in surficial soils. Integr Environ Assess Manag 2017;13:861-869. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  13. Short-term effects of different organic amendments on soil chemical, biochemical and biological indicators

    Science.gov (United States)

    Mondelli, Donato; Aly, Adel; Yirga Dagnachew, Ababu; Piscitelli, Lea; Dumontet, Stefano; Miano, Teodoro

    2014-05-01

    The limited availability of animal manure and the high cost of good quality compost lead to difficult soil quality management under organic agriculture. Therefore, it is important to find out alternative organic soil amendments and more flexible strategies that are able to sustain crop productivity and maintain and enhance soil quality. A three years study was carried out in the experimental fields of the Mediterranean Agronomic Institute of Bari located in Valenzano, Italy. The main objective of this research is to investigate the effects of different fertility management strategies on soil quality in order to estimate the role of innovative matrices for their use in organic farming. The experiment consists of seven treatments applied to a common crop rotation. The treatments include alternative organic amendments (1- olive mill wastewater OMW, 2- residues of mushroom cultivation MUS, 3- coffee chaff COF), common soil amendments (4- compost COM, 5- faba bean intercropping LEG, 6- cow manure - MAN) and as a reference treatment (7- mineral fertilizer COV). The soil quality was assessed before and after the application of the treatments, through biological (microbial biomass carbon and nitrogen, soil respiration and metabolic quotient), biochemical (soil enzymatic activities: β-glucosidase, alkaline phospatase, urease, fluorescein diacetate (FDA) hydrolysis), and chemical (pH, soil organic carbon, soil organic matter, total nitrogen, available phosphorous, exchangeable potassium, dissolved organic carbon and total dissolved nitrogen) indicators. Based on the results obtained after the second year, all treatments were able to improve various soil chemical parameters as compared to mineral fertilizer. The incorporation of COF and OMW seemed to be more effective in improving soil total N and exchangeable K, while MAN significantly increased available P. All the amendments enhance dissolved organic C, soil respiration, microbial biomass and metabolic quotient as

  14. Assessing ecorelevance of emerging chemicals in sediments

    DEFF Research Database (Denmark)

    Forbes, Valery E.; Selck, Henriette; Salvito, D.

    2007-01-01

    Environmental monitoring of the Great Lakes and elsewhere has detected the presence of a wide variety of chemicals which has raised concern that these chemicals pose risks to resident species. Sediments are of particular interest due to their tendency to accumulate hydrophobic and persistent...... chemicals and because less is known about toxic effects of chemicals to sediment-feeding organisms than to pelagic species. Data collected on the polycyclic musks provides available evidence relevant to assessing exposure and effects in Great Lakes' sediments. Studies at Roskilde University demonstrate how...

  15. Artificial hairy surfaces with a nearly perfect hydrophobic response.

    Science.gov (United States)

    Hsu, Shu-Hau; Sigmund, Wolfgang M

    2010-02-02

    A nearly perfect hydrophobic interface by dint of mimicking hairs of arthropods was achieved for the first time. These Gamma-shape artificial hairs were made via a membrane casting technique on polypropylene substrates. This extreme hydrophobicity merely arises from microstructure modification, and no further chemical treatments are needed. The ultralow adhesion to water droplets was evaluated through video assessment, and it is believed to be attributed to the mechanical response of the artificial hairs. The principle of this fabrication technique is accessible and is expected to be compatible with large-area fabrication of superhydrophobic interfaces.

  16. Hydrophobicity and charge shape cellular metabolite concentrations.

    Directory of Open Access Journals (Sweden)

    Arren Bar-Even

    2011-10-01

    Full Text Available What governs the concentrations of metabolites within living cells? Beyond specific metabolic and enzymatic considerations, are there global trends that affect their values? We hypothesize that the physico-chemical properties of metabolites considerably affect their in-vivo concentrations. The recently achieved experimental capability to measure the concentrations of many metabolites simultaneously has made the testing of this hypothesis possible. Here, we analyze such recently available data sets of metabolite concentrations within E. coli, S. cerevisiae, B. subtilis and human. Overall, these data sets encompass more than twenty conditions, each containing dozens (28-108 of simultaneously measured metabolites. We test for correlations with various physico-chemical properties and find that the number of charged atoms, non-polar surface area, lipophilicity and solubility consistently correlate with concentration. In most data sets, a change in one of these properties elicits a ~100 fold increase in metabolite concentrations. We find that the non-polar surface area and number of charged atoms account for almost half of the variation in concentrations in the most reliable and comprehensive data set. Analyzing specific groups of metabolites, such as amino-acids or phosphorylated nucleotides, reveals even a higher dependence of concentration on hydrophobicity. We suggest that these findings can be explained by evolutionary constraints imposed on metabolite concentrations and discuss possible selective pressures that can account for them. These include the reduction of solute leakage through the lipid membrane, avoidance of deleterious aggregates and reduction of non-specific hydrophobic binding. By highlighting the global constraints imposed on metabolic pathways, future research could shed light onto aspects of biochemical evolution and the chemical constraints that bound metabolic engineering efforts.

  17. Volatile chemical products emerging as largest petrochemical source of urban organic emissions

    Science.gov (United States)

    McDonald, Brian C.; de Gouw, Joost A.; Gilman, Jessica B.; Jathar, Shantanu H.; Akherati, Ali; Cappa, Christopher D.; Jimenez, Jose L.; Lee-Taylor, Julia; Hayes, Patrick L.; McKeen, Stuart A.; Cui, Yu Yan; Kim, Si-Wan; Gentner, Drew R.; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.; Harley, Robert A.; Frost, Gregory J.; Roberts, James M.; Ryerson, Thomas B.; Trainer, Michael

    2018-02-01

    A gap in emission inventories of urban volatile organic compound (VOC) sources, which contribute to regional ozone and aerosol burdens, has increased as transportation emissions in the United States and Europe have declined rapidly. A detailed mass balance demonstrates that the use of volatile chemical products (VCPs)—including pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products—now constitutes half of fossil fuel VOC emissions in industrialized cities. The high fraction of VCP emissions is consistent with observed urban outdoor and indoor air measurements. We show that human exposure to carbonaceous aerosols of fossil origin is transitioning away from transportation-related sources and toward VCPs. Existing U.S. regulations on VCPs emphasize mitigating ozone and air toxics, but they currently exempt many chemicals that lead to secondary organic aerosols.

  18. Effects of various organic and chemical fertilizers on growth indices of basil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    S.M.K. Tahami

    2016-05-01

    Full Text Available In order to develop the high intensive agriculture, more chemical fertilizers are applied to the soil that resulting in soil degradation and environment deterioration. Application of organic manure is an important approach for maintaining and improving the soil fertility and increasing fertilizer use efficiency. Therefore, in order to evaluate the effect of organic manures and chemical fertilizer on growth indices and biological yield of basil (Ocimum basilicum L., an experiment was conducted at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, during growing season of 2008-2009. A complete randomized block design with six treatments and three replications was used. The treatments were: cow manure, sheep manure, chicken manure, vermicompost, chemical NPK fertilizers and control (no fertilizer. The results showed that the use of organic fertilizers significantly increased seed and biological yield of basil compared with chemical fertilizer and control. The maximum and the minimum dry weights were observed at 105 days after planting, in sheep and cow manures, respectively. Gradually during the period of plant growth and development to reproduction phase percent of stem decreased and dry weight of inflorescence increased. The highest and the lowest leaf area index were observed at 90 days after planting, in cow manure and control, respectively, and then decreased in all treatments. The maximum crop growth rate in most of treatments at 90 days after planting was obtained, except the control which plant growth rate was lowest. Net assimilation rate (NAR in most treatments increased until 75 days after planting and then declined. While the highest and the lowest NAR were observed at 75 days after planting in chicken manure and chemical treatment, respectively.

  19. Changes in soil chemical and microbiological properties during 4 years of application of various organic residues.

    Science.gov (United States)

    Odlare, M; Pell, M; Svensson, K

    2008-01-01

    A 4-year field trial was established in eastern Sweden to evaluate the effects of organic waste on soil chemical and microbiological variables. A simple crop rotation with barley and oats was treated with either compost from household waste, biogas residue from household waste, anaerobically treated sewage sludge, pig manure, cow manure or mineral fertilizer. All fertilizers were amended in rates corresponding to 100kgNha(-1)year(-1). The effects of the different types of organic waste were evaluated by subjecting soil samples, taken each autumn 4 weeks after harvest, to an extensive set of soil chemical (pH, Org-C, Tot-N, Tot-P, Tot-S, P-AL, P-Olsen, K-AL, and some metals) and microbiological (B-resp, SIR, microSIR active and dormant microorganisms, PDA, microPDA, PAO, Alk-P and N-min) analyses. Results show that compost increased pH, and that compost as well as sewage sludge increased plant available phosphorus; however, the chemical analysis showed few clear trends over the 4 years and few clear relations to plant yield or soil quality. Biogas residues increased substrate induced respiration (SIR) and, compared to the untreated control amendment of biogas residues as well as compost, led to a higher proportion of active microorganisms. In addition, biogas residues increased potential ammonia oxidation rate (PAO), nitrogen mineralization capacity (N-min) as well as the specific growth rate constant of denitrifiers (microPDA). Despite rather large concentrations of heavy metals in some of the waste products, no negative effects could be seen on either chemical or microbiological soil properties. Changes in soil microbial properties appeared to occur more rapidly than most chemical properties. This suggests that soil microbial processes can function as more sensitive indicators of short-term changes in soil properties due to amendment of organic wastes.

  20. Photochemistry of limonene secondary organic aerosol studied with chemical ionization mass spectrometry

    Science.gov (United States)

    Pan, Xiang

    Limonene is one of the most abundant monoterpenes in the atmosphere. Limonene easily reacts with gas-phase oxidants in air such as NO3, ozone and OH. Secondary organic aerosol (SOA) is formed when low vapor pressure products condense into particles. Chemicals in SOA particles can undergo further reactions with oxidants and with solar radiation that significantly change SOA composition over the course of several days. The goal of this work was to characterize radiation induced reaction in SOA. To perform experiments, we have designed and constructed an Atmospheric Pressure Chemical Ionization Mass Spectrometer (APCIMS) coupled to a photochemical cell containing SOA samples. In APCIMS, (H2O)nH 3O+ clusters are generated in a 63Ni source and react with gaseous organic analytes. Most organic chemicals are not fragmented by the ionization process. We have focused our attention on limonene SOA prepared in two different ways. The first type of SOA is produced by oxidation of limonene by ozone; and the second type of SOA is formed by the NO3-induced oxidation of limonene. They model the SOA formed under daytime and nighttime conditions, respectively. Ozone initiated oxidation is the most important chemical sink for limonene both indoors, where it is used for cleaning purposes, and outdoors. Terpenes are primarily oxidized by reactions with NO3 at night time. We generated limonene SOA under different ozone and limonene concentrations. The resulting SOA samples were exposed to wavelength-tunable radiation in the UV-Visible range between 270 nm and 630 nm. The results show that the photodegradation rates strongly depend on radiation wavelengths. Gas phase photodegradation products such as acetone, formaldehyde, acetaldehyde, and acetic acid were shown to have different production rates for SOA formed in different concentration conditions. Even for SOA prepared under the lowest concentrations, the SOA photodegradation was efficient. The conclusion is that exposure of SOA to

  1. Metal–organic framework-based catalysts: Chemical fixation of CO2 with epoxides leading to cyclic organic carbonates

    Directory of Open Access Journals (Sweden)

    M. Hassan eBeyzavi

    2015-01-01

    Full Text Available As a C1 feedstock, CO2 has the potential to be uniquely highly economical in both a chemical and a financial sense. In particular, the highly atom-economical acid-catalyzed cycloaddition of CO2 to epoxides to yield cyclic organic carbonates (OCs, a functionality having many important industrial applications, is an attractive reaction for the utilization of CO2 as a chemical feedstock. Metal–organic frameworks (MOFs are promising candidates in catalysis as they are a class of crystalline, porous and functional materials with remarkable properties including great surface area, high stability, open channels and permanent porosity. MOFs structure tunability and their affinity for CO2, makes them great catalysts for the formation of OCs using CO2 and epoxides. In this review, we examine MOF-based catalytic materials for the cycloaddition of carbon dioxide to epoxides. Catalysts are grouped based on the location of catalytic sites, i.e., at the struts, nodes, defect sites, or some combination thereof. Additionally, important features of each catalyst system are critically discussed.

  2. Quality system of the Chemical Analysis Laboratory to fulfill the requirements with Certification Organizations

    International Nuclear Information System (INIS)

    Merlo S, L.; Rodriguez L, R.; Cota S, G.

    1996-01-01

    In the present work was described the Quality System established in the Chemical Analysis Department to fulfill with the Organization requirements, personnel, measurement equipment, calibration, working procedures, etc. to get official acknowledgment by the National Assurance System for Testing laboratories, dependent of the General Standards Direction. There are described the available resources, the performance and control of each of one principal points of the system. (Author)

  3. All-organic microelectromechanical systems integrating specific molecular recognition--a new generation of chemical sensors.

    Science.gov (United States)

    Ayela, Cédric; Dubourg, Georges; Pellet, Claude; Haupt, Karsten

    2014-09-03

    Cantilever-type all-organic microelectromechanical systems based on molecularly imprinted polymers for specific analyte recognition are used as chemical sensors. They are produced by a simple spray-coating-shadow-masking process. Analyte binding to the cantilever generates a measurable change in its resonance frequency. This allows label-free detection by direct mass sensing of low-molecular-weight analytes at nanomolar concentrations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. High index of refraction films for dielectric mirrors prepared by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Brusasco, R.M.

    1989-01-01

    A wide variety of metal oxides with high index of refraction can be prepared by Metal-Organic Chemical Vapor Deposition. We present some recent optical and laser damage results on oxide films prepared by MOCVD which could be used in a multilayer structure for highly reflecting (HR) dielectric mirror applications. The method of preparation affects both optical properties and laser damage threshold. 10 refs., 8 figs., 4 tabs

  5. Chemical Composition, Antimicrobial and Antioxidant Activities of Essential Oils from Organically Cultivated Fennel Cultivars

    OpenAIRE

    Shahat, Abdelaaty A.; Ibrahim, Abeer Y.; Hendawy, Saber F.; Omer, Elsayed A.; Hammouda, Faiza M.; Abdel-Rahman, Fawzia H.; Saleh, Mahmoud A.

    2011-01-01

    Essential oils of the fruits of three organically grown cultivars of Egyptian fennel (Foeniculum vulgare var. azoricum, Foeniculum vulgare var. dulce and Foeniculum vulgare var. vulgare) were examined for their chemical constituents, antimicrobial and antioxidant activities. Gas chromatography/mass spectrometry analysis of the essential oils revealed the presence of 18 major monoterpenoids in all three cultivars but their percentage in each oil were greatly different. trans-Anethole, estragol...

  6. From consumption to harvest: Environmental fate prediction of excreted ionizable trace organic chemicals

    DEFF Research Database (Denmark)

    Polesel, Fabio; Plósz, Benedek G.; Trapp, Stefan

    2015-01-01

    Excreted trace organic chemicals, e.g., pharmaceuticals and biocides, typically undergo incomplete elimination in municipal wastewater treatment plants (WWTPs) and are released to surface water via treated effluents and to agricultural soils through sludge amendment and/or irrigation with freshwa......Excreted trace organic chemicals, e.g., pharmaceuticals and biocides, typically undergo incomplete elimination in municipal wastewater treatment plants (WWTPs) and are released to surface water via treated effluents and to agricultural soils through sludge amendment and/or irrigation...... with freshwater or reclaimed wastewater. Recent research has shown the tendency for these substances to accumulate in food crops. In this study, we developed and applied a simulation tool to predict the fate of three ionizable trace chemicals (triclosan-TCS, furosemide-FUR, ciprofloxacin-CIP) from human...... and a recently developed dynamic soil-plant uptake model. The simulation tool was tested using country-specific (e.g., consumption/emission rates, precipitation and temperature) input data. A Monte Carlo-based approach was adopted to account for the uncertainty associated to physico-chemical and biokinetic model...

  7. Organic and chemical manure of the bean (Phaseolus vulgaris) in alluvial soils of intermediate climate

    International Nuclear Information System (INIS)

    Tamayo V, Alvaro; Munoz A, Rodrigo

    1997-01-01

    With the purpose to evaluate the effect on bean production ICA CITARA variety, four sources of organic matter (hen manure, pig manure, cow manure, and earthworm manure) in four doses 280,500 y 1.000 kg/ha with the same doses of chemical fertilization, were evaluated the experiment was carried out at Tulio Ospina Research Center, located at Bello (Antioquia) of medium climate with 1.320 m.s.n.m. This was established using an alluvial soil (Tropofluvent), frenk, with low contents of organic, matter (2,2%), phosphorus (10 ppm), and potassium (0,10 meq/l00 g). the results, after six consecutive harvests on the same plots, showed highly significative differences among treatments. The highest yield (1.836 kg/ha) was obtained when to the chemical fertilization (300 kg of 10-30-10) was added with 250 kg/ha of hen manure, followed by the application of 100 kg/ha, of cow manure (1.812 kg/ha). Chemical fertilization without organic matter produced 1.640 kg/ha of bean, which was very similar to the addition of 1.000 kg/ha of cow manure and earthworm manure with yields of 1.688 kg/ha and 1.635 kg/ha respectively

  8. Chemical ageing and transformation of diffusivity in semi-solid multi-component organic aerosol particles

    Directory of Open Access Journals (Sweden)

    C. Pfrang

    2011-07-01

    Full Text Available Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles approximating atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant timescales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.

  9. Effect of Various Organic Fertilizers Substitute Chemical Fertilizer on Cucumber Productions

    International Nuclear Information System (INIS)

    Piadang, Nattayana; Ratanapanit, Sittisuk; Chaowanklang, Pratuang; Ratanapanit; Nadtinee; Jaipakdee, Putinee; Ongsakitboriboon

    2006-09-01

    The effect of using the various organic fertilizer to substitute on the chemical fertilizer on cucumber, was carried out at Tambol Pattananikom, Amphur Pattananikom, Lopburi, Thailand, from December 1, 2005 to February 1, 2006 By using Randomized Comp let Block Design (RCBD), Contain with 4 treatments, chemical fertilizer: 16-16-16: 40 Kg/rai (Control), Pillet organic fertilizer: 50 Kg/rai, Bio extract from cow milk: 300 cc./ water 20 Ltr,.+ compost mixed in soil and bio fertilizer from the office of Atomic Energy Peace : 300 cc./water 20 Ltr. + campost mixed in soil (15 m. 2 /plot) were compared. Experiment result indicate that there were no significant differences on the yield. The highest yield of 25.91 kg/plot (27663.73 kg/rai) was obtained from chemical fertilizer, Fertilizer, followed by pillet organic fertilizer 22.88 kg/plot (2440.53 kg/rai), bio fertilizer 22.34 kg/pot (2382.93 kg/rai) and bio extract 19.03 kg/plot) (2029.87 kg/rai.

  10. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Vad, Brian S; Dueholm, Morten S

    2015-01-01

    The success of Pseudomonas species as opportunistic pathogens derives in great part from their ability to form stable biofilms that offer protection against chemical and mechanical attack. The extracellular matrix of biofilms contains numerous biomolecules, and it has recently been discovered...... that in Pseudomonas one of the components includes β-sheet rich amyloid fibrils (functional amyloid) produced by the fap operon. However, the role of the functional amyloid within the biofilm has not yet been investigated in detail. Here we investigate how the fap-based amyloid produced by Pseudomonas affects biofilm...... hydrophobicity and mechanical properties. Using atomic force microscopy imaging and force spectroscopy, we show that the amyloid renders individual cells more resistant to drying and alters their interactions with hydrophobic probes. Importantly, amyloid makes Pseudomonas more hydrophobic and increases biofilm...

  11. Determination of organic products resulting of chemical and radiochemical decompositions of bitumen. Applications to embedded bitumens

    International Nuclear Information System (INIS)

    Walczak, I.

    2000-01-01

    Bitumen can be used for embedding most of wastes because of its high impermeability and its relatively low reactivity with of chemicals. Bituminization is one of selected solutions in agreement with nuclear safety, waste compatibility and economic criteria. Bitumen, during storage, undergoes an auto-irradiation due to embedded radio-elements. During this stage,drums are not airtight then oxygen is present. In disposal configuration, water, which is a potential vector of radioactivity and organic matter, is an other hazard factor liable to deteriorate the containment characteristics of bitumen wastes. The generation of water-soluble organic complexing agents can affect the integrity of the wasteform due to an increase of the radionuclides solubility. The first aim of this work is the quantitative and qualitative characterisation of soluble organic matter in bitumen leachates. Different leaching solutions were tested (various pH, ionic strength, ratio S/V). When the pH of the leaching solutions increases, the total organic carbon released increases as well. Identified molecules are aromatics like naphthalene, oxidised compounds like alcohols, linear carbonyls, aromatics, glycols and nitrogen compounds. For the cement equilibrated solution (pH 13.5), the effect of ionic strength becomes significative and influences the release of soluble organic matter. This soluble organic matter can be bio-degraded if microorganisms can growth. The second aim of this work is to study the effect of radio-oxidative ageing on the bitumen confinement properties. During radio-oxidation, the chemical properties of bitumen are modified. The μ-IRTF analysis shows the formation of hydroxyl compounds and aromatic acids. The formation of these polar groups does not influence in our study the water uptake. However the organic matter release increases significantly with the irradiation dose. (author)

  12. Organic Nitrogen in Atmospheric Drops and Particles: Concentrations, (Limited) Speciation, and Chemical Transformations

    Science.gov (United States)

    Anastasio, C.; Zhang, Q.

    2003-12-01

    While quite a bit is known of the concentrations, speciation, and chemistry of inorganic forms of nitrogen in the atmosphere, the same cannot be said for organic forms. Despite this, there is growing evidence that organic N (ON) is ubiquitous in the atmosphere, especially in atmospheric condensed phases such as fog/cloud drops and aerosol particles. Although the major compounds that make up organic N are generally unknown, as are the sources of these compounds, it is clear that there are significant fluxes of ON between the atmosphere and ecosystems. It also appears that organic N can have significant effects in both spheres. The goal of our recent work in this area has been to better describe the atmospheric component of the biogeochemistry of organic nitrogen. Based on particle, gas, and fogwater samples from Northern California we have made three major findings: 1) Organic N represents a significant component, approximately 20%, of the total atmospheric N loading in these samples. This is broadly consistent with studies from other locations. 2) Amino compounds, primarily as combined amino acids, account for approximately 20% of the measured ON in our condensed phase samples. Given the properties of amino acids, these compounds could significantly affect the chemical and physical properties of atmospheric particles. 3) Organic nitrogen in atmospheric particles and drops is transformed to inorganic forms - primarily ammonium, nitrate, and nitrogen oxides (NOx) - during exposure to sunlight and/or ozone. These chemical reactions likely increase the bioavailability of the condensed phase nitrogen pool and enhance its biological effects after deposition to ecosystems.

  13. Chemical characterisation of natural organic substrates for biological mitigation of acid mine drainage.

    Science.gov (United States)

    Gibert, Oriol; de Pablo, Joan; Luis Cortina, José; Ayora, Carlos

    2004-11-01

    The current approach of the biological treatment of acid mine drainage by means of a passive remediation system involves the choice of an appropriate organic substrate as electron donor for sulphate reducers. Nowadays this selection is one of the critical steps in the performance of such treatment, as this depends to a great extent on the degradability of the organic substrate. Thus, a prior characterisation of the organic substrate predicting its biodegradability would be desirable before embarking on an extensive large-scale application. The aim of this study was to correlate the chemical composition (lignin content) of four different natural organic substrates (compost, sheep and poultry manures, oak leaf) and their capacity to sustain bacterial activity in an attempt to predict biodegradation from chemical characterisation. The results showed that the lower the content of lignin in the organic substrate, the higher its biodegradability and capacity for developing bacterial activity. Of the four organic materials, sheep and poultry manures and oak leaf evolved reducing conditions and sustained active sulphidogenesis, which coupled with the decrease in sulphate concentration indicated bacterial activity. Sheep manure was clearly the most successful organic material as electron donor (sulphate removal >99%), followed by poultry manure and oak leaf (sulphate removal of 80%). Compost appeared to be too poor in carbon to promote sulphate-reducing bacteria activity by itself. Column experiments emphasised the importance of considering the residence time as a key factor in the performance of continuous systems. With a residence time of 0.73 days, sheep manure did not promote sulphidogenesis. However, extending residence time to 2.4 and 9.0 days resulted in an increase in the sulphate removal to 18% and 27%, respectively.

  14. The chemical structure of the insoluble organic matter from carbonaceous meteorites

    Science.gov (United States)

    Derenne, S.; Robert, F.

    2008-09-01

    Carbonaceous chondrites are the most primitive objects of the solar system. They contain substantial amounts of carbon (up to 3%), mostly occurring in macromolecular insoluble organic matter (IOM). This IOM is generally considered as a record of interstellar synthesis and may contain precursors of prebiotic molecules possibly deposited on earth by meteoritic bombardments. For these reasons, chondritic IOM has been raising interest for long and it is therefore of special interest to decipher its chemical structure. It is now well established that the chemical structure of this macromolecular material is based on aromatic moieties linked by short aliphatic chains and comprising substantial amounts of heteroatoms. However, its precise chemical structure could only be recently specified. The aim of this presentation is to propose a molecular model for the chemical structure of IOM isolated from non-metamorphosed carbonaceous chondrites. This model is derived from a large set of data obtained through a combination of techniques including various spectrocopies, high resolution transmission electron microscopy (HRTEM) and chemical and thermal degradations. Cosmochemical implications of such a structure will also be discussed.

  15. Application of hazard analysis critical control points (HACCP) to organic chemical contaminants in food.

    Science.gov (United States)

    Ropkins, K; Beck, A J

    2002-03-01

    Hazard Analysis Critical Control Points (HACCP) is a systematic approach to the identification, assessment, and control of hazards that was developed as an effective alternative to conventional end-point analysis to control food safety. It has been described as the most effective means of controlling foodborne diseases, and its application to the control of microbiological hazards has been accepted internationally. By contrast, relatively little has been reported relating to the potential use of HACCP, or HACCP-like procedures, to control chemical contaminants of food. This article presents an overview of the implementation of HACCP and discusses its application to the control of organic chemical contaminants in the food chain. Although this is likely to result in many of the advantages previously identified for microbiological HACCP, that is, more effective, efficient, and economical hazard management, a number of areas are identified that require further research and development. These include: (1) a need to refine the methods of chemical contaminant identification and risk assessment employed, (2) develop more cost-effective monitoring and control methods for routine chemical contaminant surveillance of food, and (3) improve the effectiveness of process optimization for the control of chemical contaminants in food.

  16. Scientific basis of a new method for hydrophobic modification of mineral binders using peat products

    Directory of Open Access Journals (Sweden)

    O. Misnikov

    2016-10-01

    Full Text Available This study deals with the issue of caking of mineral binding materials during storage and transportation. The author conducted a critical analysis of known methods for the protection of cement from exposure to moisture and water vapour. Common disadvantages of these methods are their low effectiveness and complexity of use in industrial and domestic environments. This article introduces a new method for hydrophobising construction materials using peat, which achieves high water repellency in the modified materials with relatively low expenditure on organic materials. The author proposes film coating of the mineral particles of dispersed hydrophilic materials as a protection mechanism against their undesirable exposure to moisture during storage. The insulating film consists of hydrophobic products (bitumens released during thermal decomposition of the organic matter in peat. The estimated thickness of the bitumen film is about 12 nm and it does not adversely affect the flow properties of the powder. A model of the formation of film coatings on mineral particles is provided and their elemental chemical composition is determined. It is shown experimentally that the modified hydrophobic cement is protected from exposure to liquid vapours, and optimal values of organic component concentrations in the dispersed mineral matter that do not reduce the strength of cement mortar are identified.

  17. Evaluation of Predicted and Observed Data on Biotransformation of Twenty-Nine Trace Organic Chemicals

    KAUST Repository

    Bertolini, Maria

    2011-07-01

    Trace organic chemicals present in household products, pesticides, pharmaceuticals and personal care products may have adverse ecotoxicological effects once they are released to the environment. These chemicals are usually transported with the sewage to wastewater treatment facilities, where they might be attenuated depending on the degree of treatment applied prior to discharge to receiving streams. This study evaluates the removal performance of 29 trace organic compounds during two different activated sludge treatment systems. Predominant attenuation processes such as biotransformation and sorption for the target compounds were identified. Biotransformation rate constants determined in this study were used to assess removal of compounds from other treatment plants with similar operational conditions, using data gathered from the literature. The commercial software Catalogic was applied to predict environmental fate of chemicals. The software program consisted of four models able to simulate molecular transformations and to generate degradation trees. In order to assess the accuracy of this program in predicting biotransformation, one biodegradation model is used to contrast predicted degradation pathway with metabolic pathways reported in the literature. The predicted outcome was correct for more than 40 percent of the 29 targeted substances, while 38 percent of the chemicals exhibited some degree of lower agreement between predicted and observed pathways. Percent removal data determined for the two treatment facilities was compared with transformation probability output from Catalogic. About 80 percent of the 29 compounds exhibited a good correlation between probability of transformation of the parent compound and percent removal data from the two treatment plants (R2 = 0.82 and 0.9). Based upon findings for 29 trace organic chemicals regarding removal during activated sludge treatment, attacked fragments present in their structures, predicted data from

  18. Hydrophobic polymers for orodispersible films: a quality by design approach.

    Science.gov (United States)

    Borges, Ana Filipa; Silva, Branca M A; Silva, Cláudia; Coelho, Jorge F J; Simões, Sérgio

    2016-10-01

    To develop orodispersible films (ODF) based on hydrophobic polymers with higher stability to ordinary environmental humidity conditions without compromising their fast disintegration time. A quality by design approach was applied to screen three different formulations each one based on a different hydrophobic polymer: polyvinyl acetate, methacrylate-based copolymer and shellac. The screening formulations were characterized regarding their mechanical properties, residual water content, disintegration time and appearance, in order to find a suitable ODF formulation according to established critical quality attributes. The selected critical process parameters for the selection of appropriate ODF formulations were the percentage of the different excipients and the plasticizer type. Three hydrophobic-based matrices with fast disintegration were developed. These were generically composed by a hydrophobic polymer, a stabilizer, a disintegrant and a plasticizer. It verified that the common components within the three different formulations behave differently depending on the system/chemical environment that they were included. It was shown that it is possible to develop oral films based on hydrophobic polymers with fast disintegration time, good texture and appearance, breaking a paradigm of the ODF research field.

  19. Effects of organic solvents on hyaluronic acid nanoparticles obtained by precipitation and chemical crosslinking.

    Science.gov (United States)

    Bicudo, Rafaela Costa Souza; Santana, Maria Helena Andrade

    2012-03-01

    Hyaluronic acid is a hydrophilic mucopolysaccharide composed of alternating units of D-glucuronic acid and N-acetylglucosamine. It is used in many medical, pharmaceutical, and cosmetic applications, as sponges, films, or particle formulations. Hyaluronic acid nanoparticles can be synthesized free of oil and surfactants by nanoprecipitation in organic solvents, followed by chemical crosslinking. The organic solvent plays an important role in particles size and structure. Therefore, this study aimed to investigate the influence of acetone, ethanol, and isopropyl alcohol on the synthesis and physico-chemical properties of hyaluronic acid nanoparticles. Particles were crosslinked with adipic hydrazide and chloride carbodiimide under controlled conditions. The nanoparticles obtained with all three studied solvents were moderately electrostatically stable. Experiments with acetone produced the smallest particle size (120.44 nm) and polydispersity (0.27). The size and polydispersity of hyaluronic acid nanoparticles correlated with the surface tension between water and the organic solvents, not with the thermodynamic affinity of water for the organic solvents.

  20. Transparent Hydrophobic Coating by Sol Gel Method

    International Nuclear Information System (INIS)

    Mohd Hamzah Harun; Nik Ghazali Nik Salleh; Mahathir Mohamed; Mohd Sofian Alias

    2016-01-01

    Transparent hydrophobic coating of inorganic based tetra orthosilicate (TEOS) was prepared by sol gel method by varying fluoroalkylsilane (FAS) content which works as hydrophobic agent. Surface contact angle, transmittance degree and surface morphology were characterized for each sample. All samples show good transparency which was confirmed by UV visible spectroscopy. The hydrophobicity obtained increases with FAS content indicates that FAS is best candidate to induce hydrophobicity for inorganic coating. (author)

  1. Identification of specific organic contaminants in different units of a chemical production site.

    Science.gov (United States)

    Dsikowitzky, L; Botalova, O; al Sandouk-Lincke, N A; Schwarzbauer, J

    2014-07-01

    Due to the very limited number of studies dealing with the chemical composition of industrial wastewaters, many industrial organic contaminants still escape our view and consequently also our control. We present here the chemical characterization of wastewaters from different units of a chemical complex, thereby contributing to the characterization of industrial pollution sources. The chemicals produced in the investigated complex are widely and intensively used and the synthesis processes are common and applied worldwide. The chemical composition of untreated and treated wastewaters from the chemical complex was investigated by applying a non-target screening which allowed for the identification of 39 organic contaminants. According to their application most of them belonged to four groups: (i) unspecific educts or intermediates of industrial syntheses, (ii) chemicals for the manufacturing of pharmaceuticals, (iii) educts for the synthesis of polymers and resins, and (iv) compounds known as typical constituents of municipal sewage. A number of halogenated compounds with unknown toxicity and with very high molecular diversity belonged to the second group. Although these compounds were completely removed or degraded during wastewater treatment, they could be useful as "alarm indicators" for industrial accidents in pharmaceutical manufacturing units or for malfunctions of wastewater treatment plants. Three potential branch-specific indicators for polymer manufacturing were found in the outflow of the complex. Among all compounds, bisphenol A, which was present in the leachate water of the on-site waste deposit, occurred in the highest concentrations of up to 20 000 μg L(-1). The comparison of contaminant loads in the inflow and outflow of the on-site wastewater treatment facility showed that most contaminants were completely or at least significantly removed or degraded during the treatment, except two alkylthiols, which were enriched during the treatment process

  2. Chemical principles underpinning the performance of the metal–organic framework HKUST-1

    Science.gov (United States)

    Hendon, Christopher H.

    2015-01-01

    A common feature of multi-functional metal–organic frameworks is a metal dimer in the form of a paddlewheel, as found in the structure of Cu3(btc)2 (HKUST-1). The HKUST-1 framework demonstrates exceptional gas storage, sensing and separation, catalytic activity and, in recent studies, unprecedented ionic and electrical conductivity. These results are a promising step towards the real-world application of metal–organic materials. In this perspective, we discuss progress in the understanding of the electronic, magnetic and physical properties of HKUST-1, representative of the larger family of Cu···Cu containing metal–organic frameworks. We highlight the chemical interactions that give rise to its favourable properties, and which make this material well suited to a range of technological applications. From this analysis, we postulate key design principles for tailoring novel high-performance hybrid frameworks. PMID:28706713

  3. Chemical principles underpinning the performance of the metal-organic framework HKUST-1.

    Science.gov (United States)

    Hendon, Christopher H; Walsh, Aron

    2015-07-15

    A common feature of multi-functional metal-organic frameworks is a metal dimer in the form of a paddlewheel, as found in the structure of Cu 3 ( btc ) 2 (HKUST-1). The HKUST-1 framework demonstrates exceptional gas storage, sensing and separation, catalytic activity and, in recent studies, unprecedented ionic and electrical conductivity. These results are a promising step towards the real-world application of metal-organic materials. In this perspective, we discuss progress in the understanding of the electronic, magnetic and physical properties of HKUST-1, representative of the larger family of Cu···Cu containing metal-organic frameworks. We highlight the chemical interactions that give rise to its favourable properties, and which make this material well suited to a range of technological applications. From this analysis, we postulate key design principles for tailoring novel high-performance hybrid frameworks.

  4. Chemical Modifications of Hollow Silica Microspheres for the Removal of Organic Pollutants in Simulated Wastewater

    KAUST Repository

    Torano, Aniela Zarzar

    2017-05-01

    Aqueous industrial effluents containing organic pollutants, such as textile dyes and crude oil, represent environmental and human health concerns due to their toxicity and possible carcinogenic effects. Adsorption is the most promising wastewater treatment method due to its efficiency, ease of operation, and low cost. However, currently used adsorbents have either high regeneration costs or low adsorption capacities. In this work, new organic/inorganic hybrids based on hollow silica microspheres were successfully synthesized, and their ability to remove Methylene Blue from wastewater and crude oil from simulated produced water was evaluated. By employing four different silanes, namely triethoxy (octyl) silane, triethoxy (dodecyl) silane, trichloro (octadecyl) silane, and triethoxy (pentafluorophenyl) silane, hydro and fluorocarbons were grafted onto the surface of commercially available silica microspheres. These silica derivatives were tested as adsorbents by exposing them to Methylene Blue aqueous solutions and synthetic produced water. Absorbance and oil concentration were measured via a UV/Vis Spectrophotometer and an HD-1000 Oil-in-Water Analyzer respectively. Methylene Blue uptake experiments showed that increasing the adsorbent dosage and decreasing initial dye concentration might increase adsorption percentage. On the other hand, adsorption capacities were improved with lower adsorbent dosages and higher initial dye concentrations. Varying the initial solution pH, from pH 5 to pH 9, and increasing ionic strength did not seem to have a significant impact on the extent of adsorption of Methylene Blue. Overall, the silica derivative containing aromatic functional groups, Caro, was proven to be the most effective adsorbent due to the presence of π-π and cation-π interactions in addition to the van der Waals and hydrophobic interactions occurring with all four adsorbents. Although the Langmuir Model did not accurately represent the equilibrium data, it

  5. Thermoluminescence as a complementary technique for the toxicological evaluation of chemicals in photosynthetic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Repetto, Guillermo, E-mail: grepkuh@upo.es [Departamento de Biología Molecular e Ingeniería Bioquímica, Área de Toxicología, Universidad Pablo de Olavide, Carretera de Utrera km. 1, 41013 Seville (Spain); Zurita, Jorge L. [Departamento de Biología Molecular e Ingeniería Bioquímica, Área de Toxicología, Universidad Pablo de Olavide, Carretera de Utrera km. 1, 41013 Seville (Spain); Roncel, Mercedes; Ortega, José M. [Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092 Seville (Spain)

    2015-01-15

    Highlights: • There are very few toxicological applications of thermoluminescence. • It is a luminescence emission induced by heating the sample in the dark. • It is useful for study the photosystem II function and the level of lipid peroxidation. - Abstract: Thermoluminescence is a simple technique very useful for studying electron transfer reactions on photosystem II (standard thermoluminescence) or the level of lipid peroxidation in membranes (high temperature thermoluminescence) in photosynthetic organisms. Both techniques were used to investigate the effects produced on Chlorella vulgaris cells by six compounds: the chemical intermediates bromobenzene and diethanolamine, the antioxidant propyl gallate, the semiconductor indium nitrate, the pesticide sodium monofluoroacetate and the antimalarial drug chloroquine. Electron transfer activity of the photosystem II significantly decreased after the exposure of Chlorella cells to all the six chemicals used. Lipid peroxidation was slightly decreased by the antioxidant propyl gallate, not changed by indium nitrate and very potently stimulated by diethanolamine, chloroquine, sodium monofluoroacetate and bromobenzene. For five of the chemicals studied (not bromobenzene) there is a very good correlation between the cytotoxic effects in Chlorella cells measured by the algal growth inhibition test, and the inhibition of photosystem II activity. The results suggest that one very important effect of these chemicals in Chlorella cells is the inhibition of photosynthetic metabolism by the blocking of photosystem II functionality. In the case of sodium monofluoroacetate, diethanolamine and chloroquine this inhibition seems to be related with the induction of high level of lipid peroxidation in cells that may alter the stability of photosystem II. The results obtained by both techniques supply information that can be used as a supplement to the growth inhibition test and allows a more complete assessment of the effects of

  6. Thermoluminescence as a complementary technique for the toxicological evaluation of chemicals in photosynthetic organisms

    International Nuclear Information System (INIS)

    Repetto, Guillermo; Zurita, Jorge L.; Roncel, Mercedes; Ortega, José M.

    2015-01-01

    Highlights: • There are very few toxicological applications of thermoluminescence. • It is a luminescence emission induced by heating the sample in the dark. • It is useful for study the photosystem II function and the level of lipid peroxidation. - Abstract: Thermoluminescence is a simple technique very useful for studying electron transfer reactions on photosystem II (standard thermoluminescence) or the level of lipid peroxidation in membranes (high temperature thermoluminescence) in photosynthetic organisms. Both techniques were used to investigate the effects produced on Chlorella vulgaris cells by six compounds: the chemical intermediates bromobenzene and diethanolamine, the antioxidant propyl gallate, the semiconductor indium nitrate, the pesticide sodium monofluoroacetate and the antimalarial drug chloroquine. Electron transfer activity of the photosystem II significantly decreased after the exposure of Chlorella cells to all the six chemicals used. Lipid peroxidation was slightly decreased by the antioxidant propyl gallate, not changed by indium nitrate and very potently stimulated by diethanolamine, chloroquine, sodium monofluoroacetate and bromobenzene. For five of the chemicals studied (not bromobenzene) there is a very good correlation between the cytotoxic effects in Chlorella cells measured by the algal growth inhibition test, and the inhibition of photosystem II activity. The results suggest that one very important effect of these chemicals in Chlorella cells is the inhibition of photosynthetic metabolism by the blocking of photosystem II functionality. In the case of sodium monofluoroacetate, diethanolamine and chloroquine this inhibition seems to be related with the induction of high level of lipid peroxidation in cells that may alter the stability of photosystem II. The results obtained by both techniques supply information that can be used as a supplement to the growth inhibition test and allows a more complete assessment of the effects of

  7. 21 CFR 584.700 - Hydrophobic silicas.

    Science.gov (United States)

    2010-04-01

    ...) Product. Amorphous fumed hydrophobic silica or precipitated hydrophobic silica (CAS Reg. No. 68611-0944... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrophobic silicas. 584.700 Section 584.700 Food... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE IN FEED AND...

  8. Hydrophobic Calcium Carbonate for Cement Surface

    Directory of Open Access Journals (Sweden)

    Shashi B. Atla

    2017-12-01

    Full Text Available This report describes a novel way to generate a highly effective hydrophobic cement surface via a carbonation route using sodium stearate. Carbonation reaction was carried out at different temperatures to investigate the hydrophobicity and morphology of the calcium carbonate formed with this process. With increasing temperatures, the particles changed from irregular shapes to more uniform rod-like structures and then aggregated to form a plate-like formation. The contact angle against water was found to increase with increasing temperature; after 90 °C there was no further increase. The maximum contact angle of 129° was obtained at the temperature of 60 °C. It was also found that carbonation increased the micro hardness of the cement material. The micro hardness was found to be dependent on the morphology of the CaCO3 particles. The rod like structures which caused increased mineral filler produced a material with enhanced strength. The 13C cross polarization magic-angle spinning NMR spectra gave plausible explanation of the interaction of organic-inorganic moieties.

  9. Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces

    Science.gov (United States)

    Otero, R.; Vázquez de Parga, A. L.; Gallego, J. M.

    2017-07-01

    During the last decade, interest on the growth and self-assembly of organic molecular species on solid surfaces spread over the scientific community, largely motivated by the promise of cheap, flexible and tunable organic electronic and optoelectronic devices. These efforts lead to important advances in our understanding of the nature and strength of the non-bonding intermolecular interactions that control the assembly of the organic building blocks on solid surfaces, which have been recently reviewed in a number of excellent papers. To a large extent, such studies were possible because of a smart choice of model substrate-adsorbate systems where the molecule-substrate interactions were purposefully kept low, so that most of the observed supramolecular structures could be understood simply by considering intermolecular interactions, keeping the role of the surface always relatively small (although not completely negligible). On the other hand, the systems which are more relevant for the development of organic electronic devices include molecular species which are electron donors, acceptors or blends of donors and acceptors. Adsorption of such organic species on solid surfaces is bound to be accompanied by charge-transfer processes between the substrate and the adsorbates, and the physical and chemical properties of the molecules cannot be expected any longer to be the same as in solution phase. In recent years, a number of groups around the world have started tackling the problem of the adsorption, self- assembly and electronic and chemical properties of organic species which interact rather strongly with the surface, and for which charge-transfer must be considered. The picture that is emerging shows that charge transfer can lead to a plethora of new phenomena, from the development of delocalized band-like electron states at molecular overlayers, to the existence of new substrate-mediated intermolecular interactions or the strong modification of the chemical

  10. Device for applying organic chemicals to lysimeter surfaces; Applikationsvorrichtung fuer organische Chemikalien auf Lysimeteroberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Schroll, R. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany). Inst. fuer Bodenoekologie

    1999-02-01

    One of the aims of environmental research at the GSF Research Centre for the Environment and Health is to determine the behaviour of environmentally consequential chemicals in terrestrial ecosystems under as natural conditions as possible. The GSF lysimeter plant in Neuherberg permits studying the environmental behaviour of organic chemicals in different soils. Collaborators at GSF have developed a means of applying -14-marked substances in field lysimeters so as to be able to refind released chemicals, identify their conversion products and set up mass balances for the chemicals. [Deutsch] Ein Ziel der Umweltforschung im GSF-Forschungszentrum fuer Umwelt und Gesundheit ist es, das Verhalten von Umweltchemikalien in terrestrischen Oekosystemen unter moeglichst natuerlichen Bedingungen zu bestimmen. In der GSF-Lysimeteranlage Neuherberg kann das Umweltverhalten von Organika in verschiedenen Boeden untersucht werden. Zur Wiedererkennung der ausgebrachten Chemikalie bzw. zur Identifizierung aus ihr entstandener Umwandlungsprodukte und letztendlich auch zur Erstellung einer Massenbilanz fuer das ausgebrachte Praeparat wurde in der GSF die Moeglichkeit geschaffen, {sup 14}C-markierte Substanzen in Freilandlysimetern applizieren zu koennen. (orig.)

  11. Hydrophobic-Core Microcapsules and Their Formation

    Science.gov (United States)

    Calle, Luz M. (Inventor); Li, Wenyan (Inventor); Buhrow, Jerry W. (Inventor); Jolley, Scott T. (Inventor)

    2016-01-01

    Hydrophobic-core microcapsules and methods of their formation are provided. A hydrophobic-core microcapsule may include a shell that encapsulates a hydrophobic substance with a core substance, such as dye, corrosion indicator, corrosion inhibitor, and/or healing agent, dissolved or dispersed therein. The hydrophobic-core microcapsules may be formed from an emulsion having hydrophobic-phase droplets, e.g., containing the core substance and shell-forming compound, dispersed in a hydrophilic phase. The shells of the microcapsules may be capable of being broken down in response to being contacted by an alkali, e.g., produced during corrosion, contacting the shell.

  12. Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds

    KAUST Repository

    Wang, Zhandong

    2017-11-28

    Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability of liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500–600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound’s molecular structure (n-alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. Finally, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels.

  13. Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds

    KAUST Repository

    Wang, Zhandong; Popolan-Vaida, Denisia M.; Chen, Bingjie; Moshammer, Kai; Mohamed, Samah; Wang, Heng; Sioud, Salim; Raji, Misjudeen; Kohse-Hö inghaus, Katharina; Hansen, Nils; Dagaut, Philippe; Leone, Stephen R.; Sarathy, Mani

    2017-01-01

    Decades of research on the autooxidation of organic compounds have provided fundamental and practical insights into these processes; however, the structure of many key autooxidation intermediates and the reactions leading to their formation still remain unclear. This work provides additional experimental evidence that highly oxygenated intermediates with one or more hydroperoxy groups are prevalent in the autooxidation of various oxygenated (e.g., alcohol, aldehyde, keto compounds, ether, and ester) and nonoxygenated (e.g., normal alkane, branched alkane, and cycloalkane) organic compounds. These findings improve our understanding of autooxidation reaction mechanisms that are routinely used to predict fuel ignition and oxidative stability of liquid hydrocarbons, while also providing insights relevant to the formation mechanisms of tropospheric aerosol building blocks. The direct observation of highly oxygenated intermediates for the autooxidation of alkanes at 500–600 K builds upon prior observations made in atmospheric conditions for the autooxidation of terpenes and other unsaturated hydrocarbons; it shows that highly oxygenated intermediates are stable at conditions above room temperature. These results further reveal that highly oxygenated intermediates are not only accessible by chemical activation but also by thermal activation. Theoretical calculations on H-atom migration reactions are presented to rationalize the relationship between the organic compound’s molecular structure (n-alkane, branched alkane, and cycloalkane) and its propensity to produce highly oxygenated intermediates via extensive autooxidation of hydroperoxyalkylperoxy radicals. Finally, detailed chemical kinetic simulations demonstrate the influence of these additional reaction pathways on the ignition of practical fuels.

  14. In-line gas chromatographic apparatus for measuring the hydrophobic micropore volume (HMV) and contaminant transformation in mineral micropores.

    Science.gov (United States)

    Cheng, Hefa; Reinhard, Martin

    2010-07-15

    Desorption of hydrophobic organic compounds from micropores is characteristically slow compared to surface adsorption and partitioning. The slow-desorbing mass of a hydrophobic probe molecule can be used to calculate the hydrophobic micropore volume (HMV) of microporous solids. A gas chromatographic apparatus is described that allows characterization of the sorbed mass with respect to the desorption rate. The method is demonstrated using a dealuminated zeolite and an aquifer sand as the model and reference sorbents, respectively, and trichloroethylene (TCE) as the probe molecule. A glass column packed with the microporous sorbent is coupled directly to a gas chromatograph that is equipped with flame ionization and electron capture detectors. Sorption and desorption of TCE on the sorbent was measured by sampling the influent and effluent of the column using a combination of switching and injection valves. For geosorbents, the HMV is quantified based on Gurvitsch's rule from the mass of TCE desorbed at a rate that is characteristic for micropores. Instrumental requirements, design considerations, hardware details, detector calibration, performance, and data analysis are discussed along with applications. The method is novel and complements traditional vacuum gravimetric and piezometric techniques, which quantify the total pore volume under vacuum conditions. The HMV is more relevant than the total micropore volume for predicting the fate and transport of organic contaminants in the subsurface. Sorption in hydrophobic micropores strongly impacts the mobility of organic contaminants, and their chemical and biological transformations. The apparatus can serve as a tool for characterizing microporous solids and investigating contaminant-solid interactions. 2010 Elsevier B.V. All rights reserved.

  15. In-line gas chromatographic apparatus for measuring the hydrophobic micropore volume (HMV) and contaminant transformation in mineral micropores

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Hefa [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Reinhard, Martin, E-mail: reinhard@stanford.edu [Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-4020 (United States)

    2010-07-15

    Desorption of hydrophobic organic compounds from micropores is characteristically slow compared to surface adsorption and partitioning. The slow-desorbing mass of a hydrophobic probe molecule can be used to calculate the hydrophobic micropore volume (HMV) of microporous solids. A gas chromatographic apparatus is described that allows characterization of the sorbed mass with respect to the desorption rate. The method is demonstrated using a dealuminated zeolite and an aquifer sand as the model and reference sorbents, respectively, and trichloroethylene (TCE) as the probe molecule. A glass column packed with the microporous sorbent is coupled directly to a gas chromatograph that is equipped with flame ionization and electron capture detectors. Sorption and desorption of TCE on the sorbent was measured by sampling the influent and effluent of the column using a combination of switching and injection valves. For geosorbents, the HMV is quantified based on Gurvitsch's rule from the mass of TCE desorbed at a rate that is characteristic for micropores. Instrumental requirements, design considerations, hardware details, detector calibration, performance, and data analysis are discussed along with applications. The method is novel and complements traditional vacuum gravimetric and piezometric techniques, which quantify the total pore volume under vacuum conditions. The HMV is more relevant than the total micropore volume for predicting the fate and transport of organic contaminants in the subsurface. Sorption in hydrophobic micropores strongly impacts the mobility of organic contaminants, and their chemical and biological transformations. The apparatus can serve as a tool for characterizing microprous solids and investigating contaminant-solid interactions.

  16. MOFwich: Sandwiched Metal-Organic Framework-Containing Mixed Matrix Composites for Chemical Warfare Agent Removal.

    Science.gov (United States)

    Peterson, Gregory W; Lu, Annie X; Hall, Morgan G; Browe, Matthew A; Tovar, Trenton; Epps, Thomas H

    2018-02-28

    This work describes a new strategy for fabricating mixed matrix composites containing layered metal-organic framework (MOF)/polymer films as functional barriers for chemical warfare agent protection. Through the use of mechanically robust polymers as the top and bottom encasing layers, a high-MOF-loading, high-performance-core layer can be sandwiched within. We term this multifunctional composite "MOFwich". We found that the use of elastomeric encasing layers enabled core layer reformation after breakage, an important feature for composites and membranes alike. The incorporation of MOFs into the core layer led to enhanced removal of chemical warfare agents while simultaneously promoting moisture vapor transport through the composite, showcasing the promise of these composites for protection applications.

  17. The influence of peeling and type of drying on chemical and sensorial analysis of organic coffee

    Directory of Open Access Journals (Sweden)

    Maria de Fátima Caixeta Fernandes

    2014-06-01

    Full Text Available Organic coffee is characterized by being produced without the use of chemical products and by having a similar or superior quality in comparison to that of coffee produced by traditional methods. The production of organic coffee does not include the use of highly soluble nutrients, which makes consumers concerned with environmental issues and healthy eating habits realize its true value. This paper aims to analyze the influence of harvesting, peeling and drying on the quality of organic coffee, in order to present the best way of producing high quality coffee. Samples of organic coffee were harvested by both conventional and selective ways, and some were peeled. They were then dried on concrete patio and on suspended terraces. The beans were analyzed for potassium leaching, electrical conductivity, titratable acidity, and submitted to coffee cupping-test. The results obtained indicated that the selective harvesting of the peeled or unpeeled cherry coffee dried on concrete terrace is feasible for production of fine coffees. This type of processing effectively influenced the final quality of the organic coffee, thus being an alternative to improve the quality and market value of the product, especially for small producers, cooperatives, and associations of coffee producers.

  18. Chemical characteristics of dissolved organic matter (DOM) in relation to heavy metal concentrations in soil water from boreal peatlands after clear-cut harvesting

    Science.gov (United States)

    Kiikkilä, O.; Nieminen, T.; Starr, M.; Ukonmaanaho, L.

    2012-04-01

    Boreal peatlands form an important terrestrial carbon reserve and are a major source of dissolved organic matter (DOM) to surface waters, particularly when disturbed through forestry practices such as draining or timber harvesting. Heavy metals show a strong affinity to organic matter and so, along with DOM, heavy metals can be mobilized and transported from the soil to surface waters and sediments where they may become toxic to aquatic organisms and pass up the food chain. The complexation of heavy metals with DOM can be expected to be related and determined by the chemical characteristics of DOM and oxidation/reducing conditions in the peat. We extracted interstitial water from peat samples and determined the concentrations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and Al, Cu, Zn and Fe in various fractions of DOM isolated by adsorption properties (XAD-8 fractionation) and molecular-weight (ultrafiltration). The peat samples were taken from 0-30 and 30-50 cm depth in drained peatland catchments two years after whole-tree or stem-only clear-cut harvesting (Scots pine or Norway spruce) had been carried out. The samples from the upper layer had been subject to alternating saturation/aeration conditions while the deeper layer had been continuously under the water table. The fractionation of DOC and DON according to both adsorption properties and molecular-weight fractions clearly differed between the upper and lower peat layers. While the hydrophobic acid fraction contained proportionally more DOC and DON than the hydrophilic acid fraction in the upper peat layer the results were vice versa in the lower peat layer. High-molecular-weight compounds (> 100 kDa) were proportionally more abundant in the upper and low-molecular-weight compounds (< 1 kDa) in the lower peat layer. These differences are assumed to reflect differences in the aerobic/ anaerobic conditions and degree of decomposition between the two layers. The concentrations of Zn, Al

  19. Nanoscale encapsulation: the structure of cations in hydrophobic microporous aluminosilicates

    International Nuclear Information System (INIS)

    Wasserman, S.R.; Yuchs, S.E.; Giaquinta, D.; Soderholm, L.; Song, Kang.

    1996-01-01

    Hydrophobic microporous aluminosilicates, created by organic surface modification of inherently hydrophilic materials such as zeolites and clays, are currently being investigated as storage media for hazardous cations. Use of organic monolayers to modify the surface of an aluminosilicate after introducing an ion into the zeolite/clay reduces the interaction of water with the material. Resulting systems are about 20 times more resistant to leaching of stored ion. XAS spectra from the encapsulated ion demonstrate that byproducts from the organic modifier can complex with the stored cation. This complexation can result in a decreased affinity of the cation for the aluminosilicate matrix. Changing the organic modifier eliminates this problem. XAS spectra also indicate that the reactivity and speciation of the encapsulated ion may change upon application of the hydrophobic layer

  20. The Role of Dissolved Organic Carbon and Preadaptation in the Biotransformation of Trace Organic Chemicals during Aquifer Recharge and Recovery

    KAUST Repository

    Ouf, Mohamed

    2012-05-01

    Aquifer recharge and recovery (ARR) is a low-cost and environmentally-friendly treatment technology which uses conventionally treated wastewater effluent for groundwater recharge and subsequent recovery for agricultural, industrial or drinking water uses. This study investigated the effect of different dissolved organic carbon (DOC) composition in wastewater effluent on the fate of trace organic chemicals (TOrCs) during ARR. Four biologically active columns were setup receiving synthetic wastewater effluent with varying DOC compositions. The difference in DOC composition triggered variations in the microbial community’s diversity and hence its ability to degrade TOrCs. It was found that the presence of protein-like DOC enhances the removal of DOC in comparison with the presence of humic-like DOC. On the other hand, the presence of humic-like DOC, which is more difficult to degrade, improved the removal of several degradable TOrCs. Other column experiments were also carried out to investigate the role of previous and continuous exposure to TOrCs in their removal. The use of soil pre-exposed to low concentrations of TOrCs and DOC provided better removal of both DOC and TOrCs. The findings of this study suggest that the presence of more humic-like DOC in the effluent enhances the biotransformation of TOrCs during ARR. In addition, long exposure to both DOC and TOrCs increases the degree of their removal over time

  1. Environmental risk assessment of selected organic chemicals based on TOC test and QSAR estimation models.

    Science.gov (United States)

    Chi, Yulang; Zhang, Huanteng; Huang, Qiansheng; Lin, Yi; Ye, Guozhu; Zhu, Huimin; Dong, Sijun

    2018-02-01

    Environmental risks of organic chemicals have been greatly determined by their persistence, bioaccumulation, and toxicity (PBT) and physicochemical properties. Major regulations in different countries and regions identify chemicals according to their bioconcentration factor (BCF) and octanol-water partition coefficient (Kow), which frequently displays a substantial correlation with the sediment sorption coefficient (Koc). Half-life or degradability is crucial for the persistence evaluation of chemicals. Quantitative structure activity relationship (QSAR) estimation models are indispensable for predicting environmental fate and health effects in the absence of field- or laboratory-based data. In this study, 39 chemicals of high concern were chosen for half-life testing based on total organic carbon (TOC) degradation, and two widely accepted and highly used QSAR estimation models (i.e., EPI Suite and PBT Profiler) were adopted for environmental risk evaluation. The experimental results and estimated data, as well as the two model-based results were compared, based on the water solubility, Kow, Koc, BCF and half-life. Environmental risk assessment of the selected compounds was achieved by combining experimental data and estimation models. It was concluded that both EPI Suite and PBT Profiler were fairly accurate in measuring the physicochemical properties and degradation half-lives for water, soil, and sediment. However, the half-lives between the experimental and the estimated results were still not absolutely consistent. This suggests deficiencies of the prediction models in some ways, and the necessity to combine the experimental data and predicted results for the evaluation of environmental fate and risks of pollutants. Copyright © 2016. Published by Elsevier B.V.

  2. Changes in physico-chemical properties of soil by adding organic amendments in a tomato crop

    International Nuclear Information System (INIS)

    Sanchez Navarro, A.; Marin Salneandro, P.; Delgado Iniesta, M. J.

    2009-01-01

    This study possible changes in the physico-chemical properties of soil under intensive cultivation of tomatoes after the addition of two different types of organic amendments: a natural as sheep manure and synthetic made. Trial plots that were designed are located in the NE of the province of Granada, in Puebla de Trial plots that were designed are located in the NE of the province of Granada, in Puebla de Don Fadrique, in the are that in recent years, change are very important in agriculture, from traditional farms extensive cultivation of rain-fed cereal crops such as intensive vegetale broccoli or tomatoes. (Author) 16 refs.

  3. Performance of the In Situ Microcosm Technique for Measuring the Degradation of Organic Chemicals in Aquifers

    DEFF Research Database (Denmark)

    Nielsen, Per H.; Christensen, Thomas Højlund; Albrechtsen, Hans-Jørgen

    1996-01-01

    chemicals in polluted and pristine aquifers representing different redox environments. The ISM technique has great potential for providing field-relevant degradation potentials and rate constants, but care must be taken in using the equipment and interpreting the results. This paper provides details......An in situ microcosm (ISM) consists of a stainless steel cylinder isolating about 2 L of the aquifer and is equipped with valves allowing for loading and sampling from the ground surface. During the last five years, this technique has been used frequently to study the degradation of organic...

  4. Chemically Stable Covalent Organic Framework (COF)-Polybenzimidazole Hybrid Membranes: Enhanced Gas Separation through Pore Modulation.

    Science.gov (United States)

    Biswal, Bishnu P; Chaudhari, Harshal D; Banerjee, Rahul; Kharul, Ulhas K

    2016-03-24

    Highly flexible, TpPa-1@PBI-BuI and TpBD@PBI-BuI hybrid membranes based on chemically stable covalent organic frameworks (COFs) could be obtained with the polymer. The loading obtained was substantially higher (50 %) than generally observed with MOFs. These hybrid membranes show an exciting enhancement in permeability (about sevenfold) with appreciable separation factors for CO2/N2 and CO2/CH4. Further, we found that with COF pore modulation, the gas permeability can be systematically enhanced. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Tuning the performance of a natural treatment process using metagenomics for improved trace organic chemical attenuation

    KAUST Repository

    Drewes, Jorg

    2014-02-01

    By utilizing high-throughput sequencing and metagenomics, this study revealed how the microbial community characteristics including composition, diversity, as well as functional genes in managed aquifer recharge (MAR) systems can be tuned to enhance removal of trace organic chemicals of emerging concern (CECs). Increasing the humic content of the primary substrate resulted in higher microbial diversity. Lower concentrations and a higher humic content of the primary substrate promoted the attenuation of biodegradable CECs in laboratory and field MAR systems. Metagenomic results indicated that the metabolic capabilities of xenobiotic biodegradation were significantly promoted for the microbiome under carbon-starving conditions. © IWA Publishing 2014.

  6. Pulsed injection metal organic chemical vapour deposition and characterisation of thin CaO films

    International Nuclear Information System (INIS)

    Borges, R.P.; Ferreira, P.; Saraiva, A.; Goncalves, R.; Rosa, M.A.; Goncalves, A.P.; Silva, R.C. da; Magalhaes, S.; Lourenco, M.J.V.; Santos, F.J.V.; Godinho, M.

    2009-01-01

    Thin films of CaO were grown on silicon (Si) and lanthanum aluminate (LaAlO 3 ) substrates by pulsed injection metal-organic chemical vapour deposition in a vertical injection MOCVD system. Growth parameters were systematically varied to study their effect on film growth and quality and to determine the optimal growth conditions for this material. Film quality and growth rate were evaluated by atomic force microscopy, X-ray diffraction and Rutherford Backscattering Spectroscopy measurements. Optimised conditions allowed growing transparent, single phase films textured along the (0 0 l) direction.

  7. Molecular design chemical structure generation from the properties of pure organic compounds

    CERN Document Server

    Horvath, AL

    1992-01-01

    This book is a systematic presentation of the methods that have been developed for the interpretation of molecular modeling to the design of new chemicals. The main feature of the compilation is the co-ordination of the various scientific disciplines required for the generation of new compounds. The five chapters deal with such areas as structure and properties of organic compounds, relationships between structure and properties, and models for structure generation. The subject is covered in sufficient depth to provide readers with the necessary background to understand the modeling

  8. Driving force for hydrophobic interaction at different length scales.

    Science.gov (United States)

    Zangi, Ronen

    2011-03-17

    We study by molecular dynamics simulations the driving force for the hydrophobic interaction between graphene sheets of different sizes down to the atomic scale. Similar to the prediction by Lum, Chandler, and Weeks for hard-sphere solvation [J. Phys. Chem. B 1999, 103, 4570-4577], we find the driving force to be length-scale dependent, despite the fact that our model systems do not exhibit dewetting. For small hydrophobic solutes, the association is purely entropic, while enthalpy favors dissociation. The latter is demonstrated to arise from the enhancement of hydrogen bonding between the water molecules around small hydrophobes. On the other hand, the attraction between large graphene sheets is dominated by enthalpy which mainly originates from direct solute-solute interactions. The crossover length is found to be inside the range of 0.3-1.5 nm(2) of the surface area of the hydrophobe that is eliminated in the association process. In the large-scale regime, different thermodynamic properties are scalable with this change of surface area. In particular, upon dimerization, a total and a water-induced stabilization of approximately 65 and 12 kJ/mol/nm(2) are obtained, respectively, and on average around one hydrogen bond is gained per 1 nm(2) of graphene sheet association. Furthermore, the potential of mean force between the sheets is also scalable except for interplate distances smaller than 0.64 nm which corresponds to the region around the barrier for removing the last layer of water. It turns out that, as the surface area increases, the relative height of the barrier for association decreases and the range of attraction increases. It is also shown that, around small hydrophobic solutes, the lifetime of the hydrogen bonds is longer than in the bulk, while around large hydrophobes it is the same. Nevertheless, the rearrangement of the hydrogen-bond network for both length-scale regimes is slower than in bulk water. © 2011 American Chemical Society

  9. Reducing health risk assigned to organic emissions from a chemical weapons incinerator.

    Science.gov (United States)

    Laman, David M; Weiler, B Douglas; Skeen, Rodney S

    2013-03-01

    Organic emissions from a chemical weapons incinerator have been characterized with an improved set of analytical methods to reduce the human health risk assigned to operations of the facility. A gas chromatography/mass selective detection method with substantially reduced detection limits has been used in conjunction with scanning electron microscopy/energy dispersive X-ray spectrometry and Fourier transform infrared microscopy to improve the speciation of semi-volatile and non-volatile organics emitted from the incinerator. The reduced detection limits have allowed a significant reduction in the assumed polycyclic aromatic hydrocarbon (PAH) and aminobiphenyl (ABP) emission rates used as inputs to the human health risk assessment for the incinerator. A mean factor of 17 decrease in assigned human health risk is realized for six common local exposure scenarios as a result of the reduced PAH and ABP detection limits.

  10. Passive sampling of selected endocrine disrupting compounds using polar organic chemical integrative samplers

    International Nuclear Information System (INIS)

    Arditsoglou, Anastasia; Voutsa, Dimitra

    2008-01-01

    Two types of polar organic chemical integrative samplers (pharmaceutical POCIS and pesticide POCIS) were examined for their sampling efficiency of selected endocrine disrupting compounds (EDCs). Laboratory-based calibration of POCISs was conducted by exposing them at high and low concentrations of 14 EDCs (4-alkyl-phenols, their ethoxylate oligomers, bisphenol A, selected estrogens and synthetic steroids) for different time periods. The kinetic studies showed an integrative uptake up to 28 days. The sampling rates for the individual compounds were obtained. The use of POCISs could result in an integrative approach to the quality status of the aquatic systems especially in the case of high variation of water concentrations of EDCs. The sampling efficiency of POCISs under various field conditions was assessed after their deployment in different aquatic environments. - Calibration and field performance of polar organic integrative samplers for monitoring EDCs in aquatic environments

  11. Wintertime aerosol chemical composition and source apportionment of the organic fraction across Ireland

    Science.gov (United States)

    Ovadnevaite, J.; Lin, C.; Ceburnis, D.; Huang, R. J. J.; O'Dowd, C. D. D.

    2017-12-01

    A national wide characterization of PM1 was studied for the first time using a high-time resolution Aerosol Chemical Speciation Monitor (ACSM) and Aethalometer in Ireland during the heating season. Dublin, the capital of Ireland, is the most polluted area with an average PM1 of 7.6 μg/m3, with frequent occurrence of peak concentration over 200 μg/m3 primarily due to solid fuels burning, while Mace Head, in the west coast, is least polluted with an average PM1 of 0.8 μg/m3 due to the distance from the emission sources. The organic aerosol is the most dominant species across Ireland, contributing 65%, 58%, 32%, 33% to total PM1 mass in Dublin, Birr, Carnsore Point, and Mace Head, respectively. Birr, a small town in the midland of Ireland, has comparable PM1 levels (4.8 μg/m3) and similar chemical compositions with that in Dublin. Carnsore Point, on the southeast coast, has similar composition with that at Mace Head, but nearly 3 times the levels of PM1 mass due to its relative closeness to other European countries. Positive matrix factorization (PMF) with the multi-linear engine (ME-2) was performed on the organic matrix to quantify the contribution of factor candidates. Peat burning was found to be the dominant factor across Ireland, contributing more than 40% of the total organic mass in Dublin and Birr while OOA is dominant at rural Carnsore Point and Mace Head. Possible geographic origins of PM1 species and organic factors using polar plots were explored. The findings of solid fuels burning (primarily peat burning) driving the pollution episodes suggest an elimination or controlled emission of solid fuels burning would reduce PM1 by at least 50%.

  12. Investigating the role for adaptation of the microbial community to transform trace organic chemicals during managed aquifer recharge

    KAUST Repository

    Alidina, Mazahirali; Li, Dong; Drewes, Jorg

    2014-01-01

    This study was undertaken to investigate whether adaptation by pre-exposure to trace organic chemicals (TOrCs) was necessary for microbial transformation during managed aquifer recharge (MAR). Two pairs of laboratory-scale soil columns, each

  13. Role of primary substrate composition and concentration on attenuation of trace organic chemicals in managed aquifer recharge systems

    KAUST Repository

    Alidina, Mazahirali; Li, Dong; Ouf, Mohamed; Drewes, Jorg

    2014-01-01

    This study was undertaken to investigate the role of primary substrate composition and concentration on the attenuation of biodegradable emerging trace organic chemicals (TOrCs) in simulated managed aquifer recharge (MAR) systems. Four sets of soil

  14. Correlations between the 1H NMR chemical shieldings and the pKa values of organic acids and amines.

    Science.gov (United States)

    Lu, Juanfeng; Lu, Tingting; Zhao, Xinyun; Chen, Xi; Zhan, Chang-Guo

    2018-06-01

    The acid dissociation constants and 1 H NMR chemical shieldings of organic compounds are important properties that have attracted much research interest. However, few studies have explored the relationship between these two properties. In this work, we theoretically studied the NMR chemical shifts of a series of carboxylic acids and amines in the gas phase and in aqueous solution. It was found that the negative logarithms of the experimental acid dissociation constants (i.e., the pK a values) of the organic acids and amines in aqueous solution correlate almost linearly with the corresponding calculated NMR chemical shieldings. Key factors that affect the theoretically predicted pK a values are discussed in this paper. The present work provides a new way to predict the pK a values of organic/biochemical compounds. Graphical abstract The chemical shielding values of organic acids and amines correlate near linearly with their corresponding pK a values.

  15. Life Cycle Risks for Human Health: A Comparison of Petroleum Versus Bio-Based Production of Five Bulk Organic Chemicals

    NARCIS (Netherlands)

    Roes, A.L.; Patel, M.K.

    2007-01-01

    This article describes the development and application of a generic approach to the comparative assessment of risks related to the production of organic chemicals by petrochemical processes versus white biotechnology. White biotechnology, also referred to as industrial biotechnology, typically uses

  16. A System Analysis of the Recruitment and Retention Problems Associated with the Program Manager for Chemical Demilitarization Organization

    National Research Council Canada - National Science Library

    Gottschalk, Laurence

    2001-01-01

    The primary purpose of this thesis is to investigate the problems of retaining qualified personnel in the Program Manager for Chemical Demilitarization organization through the end date of the program...

  17. Effect of Organic Amendments and Chemical Fertilization in Production of Corn (Zea Mays L.

    Directory of Open Access Journals (Sweden)

    Fabio Emilio Forero Ulloa

    2014-11-01

    Full Text Available Corn is grown in 135 countries, and because of its uses and nutritional benefits is the world's most important cereal. In Colombia it is grown in various agro-ecological conditions of production. The bagasse is an organic residue resulting from the grinding of sugar cane (Saccharum officinarum L., used for the production of jaggery (solid resulting of boiling and evaporation of the juice from sugar cane, which can be used as an amendment and is a soil conditioner, as a rich source of phosphorus, calcium and nitrogen. The aim of the research was to evaluate the effect of bagasse against the application of other organic sources and chemical fertilization in maize, variety ICA-V-305. For this, a completely random statistical design with four treatments and absolute control was established. Results were subjected to analysis of variance and Tukey comparison test. Applying Bagasse + Abimgra® produced the greatest number of ears of corn, while the use of only bagasse, presented the second best results in terms of number of grains / ear and weight of 100 grains of corn, therefore bagasse becomes , through time, an important option as organic amendment, which would favor the production of corn, and an option as organic fertilizer.

  18. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    Science.gov (United States)

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-01-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V. PMID:27966605

  19. Organic Acids Regulation of Chemical-Microbial Phosphorus Transformations in Soils.

    Science.gov (United States)

    Menezes-Blackburn, Daniel; Paredes, Cecilia; Zhang, Hao; Giles, Courtney D; Darch, Tegan; Stutter, Marc; George, Timothy S; Shand, Charles; Lumsdon, David; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Blackwell, Martin; Wearing, Catherine; Haygarth, Philip M

    2016-11-01

    We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg -1 . However, low organic acid doses (<2 mmol kg -1 ) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (K d ) and desorption rate constants (k -1 ) decreased whereas an increase in the response time of solution P equilibration (T c ) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical-microbial soil phosphorus transformations.

  20. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    Science.gov (United States)

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-12-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V.

  1. Chemical Reactions Catalyzed by Metalloporphyrin-Based Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Kelly Aparecida Dias de Freitas Castro

    2013-06-01

    Full Text Available The synthetic versatility and the potential application of metalloporphyrins (MP in different fields have aroused researchers’ interest in studying these complexes, in an attempt to mimic biological systems such as cytochrome P-450. Over the last 40 years, synthetic MPs have been mainly used as catalysts for homogeneous or heterogeneous chemical reactions. To employ them in heterogeneous catalysis, chemists have prepared new MP-based solids by immobilizing MP onto rigid inorganic supports, a strategy that affords hybrid inorganic-organic materials. More recently, materials obtained by supramolecular assembly processes and containing MPs as building blocks have been applied in a variety of areas, like gas storage, photonic devices, separation, molecular sensing, magnets, and heterogeneous catalysis, among others. These coordination polymers, known as metal-organic frameworks (MOFs, contain organic ligands or complexes connected by metal ions or clusters, which give rise to a 1-, 2- or 3-D network. These kinds of materials presents large surface areas, Brønsted or redox sites, and high porosity, all of which are desirable features in catalysts with potential use in heterogeneous phases. Building MOFs based on MP is a good way to obtain solid catalysts that offer the advantages of bioinspired systems and zeolitic materials. In this mini review, we will adopt a historical approach to present the most relevant MP-based MOFs applicable to catalytic reactions such as oxidation, reduction, insertion of functional groups, and exchange of organic functions.

  2. Chemical equilibrium modeling of organic acids, pH, aluminum, and iron in Swedish surface waters.

    Science.gov (United States)

    Sjöstedt, Carin S; Gustafsson, Jon Petter; Köhler, Stephan J

    2010-11-15

    A consistent chemical equilibrium model that calculates pH from charge balance constraints and aluminum and iron speciation in the presence of natural organic matter is presented. The model requires input data for total aluminum, iron, organic carbon, fluoride, sulfate, and charge balance ANC. The model is calibrated to pH measurements (n = 322) by adjusting the fraction of active organic matter only, which results in an error of pH prediction on average below 0.2 pH units. The small systematic discrepancy between the analytical results for the monomeric aluminum fractionation and the model results is corrected for separately for two different fractionation techniques (n = 499) and validated on a large number (n = 3419) of geographically widely spread samples all over Sweden. The resulting average error for inorganic monomeric aluminum is around 1 µM. In its present form the model is the first internally consistent modeling approach for Sweden and may now be used as a tool for environmental quality management. Soil gibbsite with a log *Ks of 8.29 at 25°C together with a pH dependent loading function that uses molar Al/C ratios describes the amount of aluminum in solution in the presence of organic matter if the pH is roughly above 6.0.

  3. Controlled growth of epitaxial CeO2 thin films with self-organized nanostructure by chemical solution method

    DEFF Research Database (Denmark)

    Yue, Zhao; Grivel, Jean-Claude

    2013-01-01

    Chemical solution deposition is a versatile technique to grow oxide thin films with self-organized nanostructures. Morphology and crystallographic orientation control of CeO2 thin films grown on technical NiW substrates by a chemical solution deposition method are achieved in this work. Based...

  4. 15 CFR Supplement No. 2 to Part 715 - Examples of Unscheduled Discrete Organic Chemicals (UDOCs) and UDOC Production

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Examples of Unscheduled Discrete... CHEMICALS (UDOCs) Pt. 715, Supp. 2 Supplement No. 2 to Part 715—Examples of Unscheduled Discrete Organic Chemicals (UDOCs) and UDOC Production (1) Examples of UDOCs not subject to declaration include: (i) UDOCs...

  5. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics

    KAUST Repository

    Gomez De Arco, Lewis

    2010-05-25

    We report the implementation of continuous, highly flexible, and transparent graphene films obtained by chemical vapor deposition (CVD) as transparent conductive electrodes (TCE) in organic photovoltaic cells. Graphene films were synthesized by CVD, transferred to transparent substrates, and evaluated in organic solar cell heterojunctions (TCE/poly-3,4- ethylenedioxythiophene:poly styrenesulfonate (PEDOT:PSS)/copper phthalocyanine/fullerene/bathocuproine/aluminum). Key to our success is the continuous nature of the CVD graphene films, which led to minimal surface roughness (∼ 0.9 nm) and offered sheet resistance down to 230 Ω/sq (at 72% transparency), much lower than stacked graphene flakes at similar transparency. In addition, solar cells with CVD graphene and indium tin oxide (ITO) electrodes were fabricated side-by-side on flexible polyethylene terephthalate (PET) substrates and were confirmed to offer comparable performance, with power conversion efficiencies (η) of 1.18 and 1.27%, respectively. Furthermore, CVD graphene solar cells demonstrated outstanding capability to operate under bending conditions up to 138°, whereas the ITO-based devices displayed cracks and irreversible failure under bending of 60°. Our work indicates the great potential of CVD graphene films for flexible photovoltaic applications. © 2010 American Chemical Society.

  6. Passive sampling of bioavailable organic chemicals in Perry County, Missouri cave streams.

    Science.gov (United States)

    Fox, J Tyler; Adams, Ginny; Sharum, Martin; Steelman, Karen L

    2010-12-01

    Two types of passive samplers--semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS)--were deployed in spring 2008 to assess bioavailable concentrations of aquatic contaminants in five cave streams and resurgences in Perry County, Missouri. Study sites represent areas of high cave biodiversity and the only known habitat for grotto sculpin (Cottus carolinae). Time-weighted average (TWA) water concentrations were calculated for 20 compounds (n = 9 SPMDs; n = 11 POCIS) originating primarily from agricultural sources, including two organochlorine insecticides, dieldrin and heptachlor epoxide, which were found at levels exceeding U.S. EPA criteria for the protection of aquatic life. GIS data were used to quantify and map sinkhole distribution and density within the study area. Infiltration of storm runoff and its influence on contaminant transport were also evaluated using land cover and hydrological data. This work provides evidence of cave stream contamination by a mix of organic chemicals and demonstrates the applicability of passive samplers for monitoring water quality in dynamic karst environments where rapid transmission of storm runoff makes instantaneous water sampling difficult.

  7. In vitro mouse spermatogenesis with an organ culture method in chemically defined medium.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Sanjo

    Full Text Available We previously reported the successful induction and completion of mouse spermatogenesis by culturing neonatal testis tissues. The culture medium consisted of α-minimum essential medium (α-MEM, supplemented with Knockout serum replacement (KSR or AlbuMAX, neither of which were defined chemically. In this study, we formulated a chemically defined medium (CDM that can induce mouse spermatogenesis under organ culture conditions. It was found that bovine serum albumin (BSA purified through three different procedures had different effects on spermatogenesis. We also confirmed that retinoic acid (RA played crucial roles in the onset of spermatogonial differentiation and meiotic initiation. The added lipids exhibited weak promoting effects on spermatogenesis. Lastly, luteinizing hormone (LH, follicle stimulating hormone (FSH, triiodothyronine (T3, and testosterone (T combined together promoted spermatogenesis until round spermatid production. The CDM, however, was not able to produce elongated spermatids. It was also unable to induce spermatogenesis from the very early neonatal period, before 2 days postpartum, leaving certain factors necessary for spermatogenic induction in mice unidentified. Nonetheless, the present study provided important basic information on testis organ culture and spermatogenesis in vitro.

  8. Exploring sources of biogenic secondary organic aerosol compounds using chemical analysis and the FLEXPART model

    Directory of Open Access Journals (Sweden)

    J. Martinsson

    2017-09-01

    Full Text Available Molecular tracers in secondary organic aerosols (SOAs can provide information on origin of SOA, as well as regional scale processes involved in their formation. In this study 9 carboxylic acids, 11 organosulfates (OSs and 2 nitrooxy organosulfates (NOSs were determined in daily aerosol particle filter samples from Vavihill measurement station in southern Sweden during June and July 2012. Several of the observed compounds are photo-oxidation products from biogenic volatile organic compounds (BVOCs. Highest average mass concentrations were observed for carboxylic acids derived from fatty acids and monoterpenes (12. 3 ± 15. 6 and 13. 8 ± 11. 6 ng m−3, respectively. The FLEXPART model was used to link nine specific surface types to single measured compounds. It was found that the surface category sea and ocean was dominating the air mass exposure (56 % but contributed to low mass concentration of observed chemical compounds. A principal component (PC analysis identified four components, where the one with highest explanatory power (49 % displayed clear impact of coniferous forest on measured mass concentration of a majority of the compounds. The three remaining PCs were more difficult to interpret, although azelaic, suberic, and pimelic acid were closely related to each other but not to any clear surface category. Hence, future studies should aim to deduce the biogenic sources and surface category of these compounds. This study bridges micro-level chemical speciation to air mass surface exposure at the macro level.

  9. Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene

    Directory of Open Access Journals (Sweden)

    E. M. Knipping

    2011-02-01

    Full Text Available The secondary organic aerosol (SOA yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS. A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS.

  10. Neurological effects on startle response and escape from predation by medaka exposed to organic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, R.; Drummond, R.; Hammermeister, D.; Bradbury, S. [Environmental Protection Agency, Duluth, MN (United States). Environmental Research Lab.

    1995-12-31

    Simultaneous electrophysiological and behavioral studies were performed on juvenile Japanese medaka (Oryzias latipes) exposed to representative neurotoxic organic chemicals at sublethal concentrations. Non-invasive recordings were made of the electrical impulses generated within giant neuronal Mauthner cells, associated interneurons or motoneurons, and musculature, all of which initiate the startle or escape response in fish. Timing in milliseconds between these electrical sequelae was measured for each fish before and at 24 and 48 hours exposure to a chemical. Also noted was the number of startle responses to number of stimuli ratio (R/S). Other groups of medaka were fed to bluegills and consumption times recorded to assess their ability to escape predation. These results were compared to neurophysiological effect levels. Phenol, 2,4-dinitrophenol, chlorpyrifos, fenvalerate, and 1-octanol impaired the ability of medaka to escape predation at all concentrations. Medaka were more susceptible to predation in high concentrations of carbaryl and strychnine, but less susceptible at low concentrations, whereas the reverse was true for endosulfan. The variety of neurological effects detected at these concentrations suggest that different mechanisms may be responsible. Phenol and strychnine affected Mauthner cell to motoneuron transmission, chlorpyrifos and carbaryl showed neuromuscular effects, and R/S was affected by most chemicals. Although a variety of neurotoxic mechanisms were examined, the exposure threshold for significant effects for each specific compound was found to be consistent for both the neurophysiological and behavioral endpoints.

  11. Modeling the partitioning of organic chemical species in cloud phases with CLEPS (1.1)

    Science.gov (United States)

    Rose, Clémence; Chaumerliac, Nadine; Deguillaume, Laurent; Perroux, Hélène; Mouchel-Vallon, Camille; Leriche, Maud; Patryl, Luc; Armand, Patrick

    2018-02-01

    The new detailed aqueous-phase mechanism Cloud Explicit Physico-chemical Scheme (CLEPS 1.0), which describes the oxidation of isoprene-derived water-soluble organic compounds, is coupled with a warm microphysical module simulating the activation of aerosol particles into cloud droplets. CLEPS 1.0 was then extended to CLEPS 1.1 to include the chemistry of the newly added dicarboxylic acids dissolved from the particulate phase. The resulting coupled model allows the prediction of the aqueous-phase concentrations of chemical compounds originating from particle scavenging, mass transfer from the gas-phase and in-cloud aqueous chemical reactivity. The aim of the present study was more particularly to investigate the effect of particle scavenging on cloud chemistry. Several simulations were performed to assess the influence of various parameters on model predictions and to interpret long-term measurements conducted at the top of Puy de Dôme (PUY, France) in marine air masses. Specific attention was paid to carboxylic acids, whose predicted concentrations are on average in the lower range of the observations, with the exception of formic acid, which is rather overestimated in the model. The different sensitivity runs highlight the fact that formic and acetic acids mainly originate from the gas phase and have highly variable aqueous-phase reactivity depending on the cloud acidity, whereas C3-C4 carboxylic acids mainly originate from the particulate phase and are supersaturated in the cloud.

  12. Organic and mineral fertilization and chemical composition of lemon balm (Melissa officinalis essential oil

    Directory of Open Access Journals (Sweden)

    Ana Carolina B. Sodré

    2011-10-01

    Full Text Available Melissa officinalis L., Lamiaceae, is an herb with great growth prospects in the cosmetic industry due to its essential oil. In order to improve its production, it is necessary to study related agricultural practices. This study evaluated the effect of organic and mineral fertilization on the chemical composition of lemon balm (Melissa officinalis L. essential oil. The assay was conducted at the "Fazenda Experimental do Glória" of the Federal University of Uberlândia, and essential oil extraction and GC/MS analyses were completed by the Centre for Research and Development on Plant Genetic Resources of the Campinas Agronomic Institute. The assay was conducted in a randomized complete block design with three replications. The tested treatments were six types of fertilization (0, 1, 2, 4, 8 kg.m-2 of cattle manure and mineral fertilizing with 60 g.m-2 of NPK 4-14-8 + 4 g.m-2 of boric acid with four replications. The essential oil was extracted by hydrodistillation in a modified Clevenger apparatus. The chemical composition was analyzed by GC/MS. The essential oil presented the same compounds for all treatments; however, the relative proportion of some chemical constituents was altered according to the treatment. Neral, geranial, and citronellal were the major constituents.

  13. Organic and mineral fertilization and chemical composition of lemon balm (Melissa officinalis essential oil

    Directory of Open Access Journals (Sweden)

    Ana Carolina B. Sodré

    2012-02-01

    Full Text Available Melissa officinalis L., Lamiaceae, is an herb with great growth prospects in the cosmetic industry due to its essential oil. In order to improve its production, it is necessary to study related agricultural practices. This study evaluated the effect of organic and mineral fertilization on the chemical composition of lemon balm (Melissa officinalis L. essential oil. The assay was conducted at the "Fazenda Experimental do Glória" of the Federal University of Uberlândia, and essential oil extraction and GC/MS analyses were completed by the Centre for Research and Development on Plant Genetic Resources of the Campinas Agronomic Institute. The assay was conducted in a randomized complete block design with three replications. The tested treatments were six types of fertilization (0, 1, 2, 4, 8 kg.m-2 of cattle manure and mineral fertilizing with 60 g.m-2 of NPK 4-14-8 + 4 g.m-2 of boric acid with four replications. The essential oil was extracted by hydrodistillation in a modified Clevenger apparatus. The chemical composition was analyzed by GC/MS. The essential oil presented the same compounds for all treatments; however, the relative proportion of some chemical constituents was altered according to the treatment. Neral, geranial, and citronellal were the major constituents.

  14. Chemical, green and organic manure effects on chemical properties on a savannah oxisol and on corn under conventional tillage and no-tillage

    Science.gov (United States)

    Mannigel, Anny R.; Alves, Marlene C.; Valério Filho, Walter V.

    2015-04-01

    Modern agriculture, in general, has always been based on the concept that natural resources are endless; however, this concept is changing. Concern for the environment is increasingly becoming part of farming practices, either by the awareness of society, or because the high cost of fertilizers or even the exhaustion of soils. The objective of this research was to evaluate the effects of the green manure and mineral fertilizer and/or organic manure and, on the chemical properties of an Oxisol, on "Savannah" (cerrado) area in Mato Grosso do Sul-Brazil, cultivated with corn (Zea mays L.) on the following management conditions: no-tillage and conventional tillage, on area previously under pasture (Brachiaria decumbens). The experimental design was a randomized blocks and the tested treatments were: control (without organic manure or chemical fertilizer); chemical fertilizer, as recommended for the culture and based on the chemical soil analysis; organic manure (cow manure); organic manure + half of the mineral fertilizer recommended rate; and the green manure Crotalaria juncea and Pennisetum americanum. The chemical analyses were the soil chemical analysis to the intent of soil fertility. Corn yield was evaluated. The collect of soil samples were realized in depths of 0.00-0.05 m and 0.05-0.10 m and 0.10-0.20 m. The organic manure and the organic manure + half of the mineral recommended rate increased P, Ca, Mg, K and Organic Matter in the first depth (0.00 - 0.05 m). These treatments also increased K and Mg at the second depth analyzed (0.05 - 0.10 m) and K in the depth from 0.10 - 0.20 m. Under conventional tillage management presents better crop results with an average grain yield of 3649 kg ha-1 versus 2374 kg ha-1 obtained under no-tillage. The use of chemical fertilizer, organic manure + half of the mineral recommended rate, Crotalaria juncea, organic manure and Pennisetum americanum increased corn yield by 84, 79, 58, 44 and 41 %, respectively.

  15. Chemical evolution of organic aerosol in Los Angeles during the CalNex 2010 study

    Directory of Open Access Journals (Sweden)

    R. Holzinger

    2013-10-01

    Full Text Available During the CalNex study (15 May to 16 June 2010 a large suite of instruments was operated at the Los Angeles area ground supersite to characterize the sources and atmospheric processing of atmospheric pollution. The thermal-desorption proton-transfer-reaction mass-spectrometer (TD-PTR-MS was deployed to an urban area for the first time and detected 691 organic ions in aerosol samples, the mean total concentration of which was estimated as 3.3 μg m−3. Based on comparison to total organic aerosol (OA measurements, we estimate that approximately 50% of the OA mass at this site was directly measured by the TD-PTR-MS. Based on correlations with aerosol mass spectrometer (AMS OA components, the ions were grouped to represent hydrocarbon-like OA (HOA, local OA (LOA, semi-volatile oxygenated OA (SV-OOA, and low volatility oxygenated OA (LV-OOA. Mass spectra and thermograms of the ion groups are mostly consistent with the assumed sources and/or photochemical origin of the OA components. The mass spectra of ions representing the primary components HOA and LOA included the highest m/z, consistent with their higher resistance to thermal decomposition, and they were volatilized at lower temperatures (~ 150 °C. Photochemical ageing weakens C-C bond strengths (also resulting in chemical fragmentation, and produces species of lower volatility (through the addition of functional groups. Accordingly the mass spectra of ions representing the oxidized OA components (SV-OOA, and LV-OOA lack the highest masses and they are volatilized at higher temperatures (250–300 °C. Chemical parameters like mean carbon number (nC, mean carbon oxidation state (OSC, and the atomic ratios O / C and H / C of the ion groups are consistent with the expected sources and photochemical processing of the aerosol components. Our data suggest that chemical fragmentation gains importance over functionalization as photochemical age of OA increases. Surprisingly, the photochemical age of

  16. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    Science.gov (United States)

    Brooks, A. J.; Lim, Hyung-nam; Kilduff, James E.

    2012-07-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7-8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π-π electron donor-acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion effects

  17. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons

    International Nuclear Information System (INIS)

    Brooks, A J; Kilduff, James E; Lim, Hyung-nam

    2012-01-01

    Carbon nanotubes (CNTs) have shown great promise as high performance materials for adsorbing priority pollutants from water and wastewater. This study compared uptake of two contaminants of interest in drinking water treatment (atrazine and trichloroethylene) by nine different types of carbonaceous adsorbents: three different types of single walled carbon nanotubes (SWNTs), three different sized multi-walled nanotubes (MWNTs), two granular activated carbons (GACs) and a powdered activated carbon (PAC). On a mass basis, the activated carbons exhibited the highest uptake, followed by SWNTs and MWNTs. However, metallic impurities in SWNTs and multiple walls in MWNTs contribute to adsorbent mass but do not contribute commensurate adsorption sites. Therefore, when uptake was normalized by purity (carbon content) and surface area (instead of mass), the isotherms collapsed and much of the CNT data was comparable to the activated carbons, indicating that these two characteristics drive much of the observed differences between activated carbons and CNT materials. For the limited data set here, the Raman D:G ratio as a measure of disordered non-nanotube graphitic components was not a good predictor of adsorption from solution. Uptake of atrazine by MWNTs having a range of lengths and diameters was comparable and their Freundlich isotherms were statistically similar, and we found no impact of solution pH on the adsorption of either atrazine or trichloroethylene in the range of naturally occurring surface water (pH = 5.7–8.3). Experiments were performed using a suite of model aromatic compounds having a range of π-electron energy to investigate the role of π–π electron donor–acceptor interactions on organic compound uptake by SWNTs. For the compounds studied, hydrophobic interactions were the dominant mechanism in the uptake by both SWNTs and activated carbon. However, comparing the uptake of naphthalene and phenanthrene by activated carbon and SWNTs, size exclusion

  18. Is Br2 hydration hydrophobic?

    Science.gov (United States)

    Alcaraz-Torres, A; Gamboa-Suárez, A; Bernal-Uruchurtu, M I

    2017-02-28

    The spectroscopic properties of bromine in aqueous systems suggest it can behave as either hydrophilic or hydrophobic solute. In small water clusters, the halogen bond and the hydrogen-halogen interaction are responsible for its specific way of binding. In water hydrates, it is efficiently hosted by two different cages forming the crystal structure and it has been frequently assumed that there is little or no interaction between the guest and the host. Bromine in liquid solution poses a challenging question due to its non-negligible solubility and the large blue shift measured in its absorption spectra. Using a refined semi-empirical force field, PM3-PIF, we performed a Born-Oppenheimer molecular dynamics study of bromine in liquid water. Here we present a detailed study in which we retrieved the most representative hydration structures in terms of the most frequent positions around bromine and the most common water orientations. Albeit being an approximate description of the total hydration phenomenon, it captures the contribution of the leading molecular interactions in form of the recurrent structures. Our findings confirm that the spectroscopic signature is mainly caused by the closest neighbors. The dynamics of the whole first hydration shell strongly suggests that the external molecules in that structure effectively isolate the bulk from the presence of bromine. The solvation structure fluctuates from a hydrophilic to a hydrophobic-like environment along the studied trajectory.

  19. Zebrafish whole-adult-organism chemogenomics for large-scale predictive and discovery chemical biology.

    Directory of Open Access Journals (Sweden)

    Siew Hong Lam

    2008-07-01

    Full Text Available The ability to perform large-scale, expression-based chemogenomics on whole adult organisms, as in invertebrate models (worm and fly, is highly desirable for a vertebrate model but its feasibility and potential has not been demonstrated. We performed expression-based chemogenomics on the whole adult organism of a vertebrate model, the zebrafish, and demonstrated its potential for large-scale predictive and discovery chemical biology. Focusing on two classes of compounds with wide implications to human health, polycyclic (halogenated aromatic hydrocarbons [P(HAHs] and estrogenic compounds (ECs, we generated robust prediction models that can discriminate compounds of the same class from those of different classes in two large independent experiments. The robust expression signatures led to the identification of biomarkers for potent aryl hydrocarbon receptor (AHR and estrogen receptor (ER agonists, respectively, and were validated in multiple targeted tissues. Knowledge-based data mining of human homologs of zebrafish genes revealed highly conserved chemical-induced biological responses/effects, health risks, and novel biological insights associated with AHR and ER that could be inferred to humans. Thus, our study presents an effective, high-throughput strategy of capturing molecular snapshots of chemical-induced biological states of a whole adult vertebrate that provides information on biomarkers of effects, deregulated signaling pathways, and possible affected biological functions, perturbed physiological systems, and increased health risks. These findings place zebrafish in a strategic position to bridge the wide gap between cell-based and rodent models in chemogenomics research and applications, especially in preclinical drug discovery and toxicology.

  20. Assessing and controlling risks from the emission of organic chemicals from construction products into indoor environments.

    Science.gov (United States)

    Brown, Veronica M; Crump, Derrick R; Harrison, Paul T C

    2013-12-01

    Construction products can be a significant source of indoor pollutants, including volatile organic compounds that may be a risk to the health and well-being of building occupants. There are currently a number of schemes for the labelling of products according to their potential to emit organic compounds. Assessment of the complex mixtures of compounds that may be released has mandated the development of test methods that allow the determination of the concentrations of the chemicals released from products in controlled test chamber environments. In response to concerns about the financial burden faced by manufacturers required to test products according to the various different labelling schemes currently in existence, the European Commission has investigated the scope for greater harmonisation. This initiative has sought to harmonise the process for the assessment of emissions data, complementing work led by the European standards organisation focussed on harmonising the test chamber procedures. The current labelling schemes have a range of requirements with respect to the number of chemicals to be quantified. A comparison of 13 schemes worldwide has identified 15 lists of target compounds, with a total of 611 chemicals occurring on at least one of the target lists. While harmonisation may clarify and perhaps simplify these requirements, at least in Europe, it can be expected that future changes to product formulations, the introduction of new products and our increasing knowledge about the potential risks to health, will require continued development of new and improved measurement techniques. There is, therefore, a particular challenge for analytical chemists to ensure the efficient provision of high quality emissions data and thereby ultimately enable effective control of risks to human health through the prevention or reduction of indoor air pollution.

  1. Recycling and Resistance of Petrogenic Particulate Organic Carbon: Implications from A Chemical Oxidation Method

    Science.gov (United States)

    Zhang, T.; Li, G.; Ji, J.

    2013-12-01

    Petrogenic particulate organic carbon (OCpetro) represents a small fraction of photosynthetic carbon which escapes pedogenic-petrogenic degradation and gets trapped in the lithosphere. Exhumation and recycling of OCpetro are of significant importance in the global carbon cycle because OCpetro oxidation represents a substantial carbon source to the atmosphere while the re-burial of OCpetro in sediment deposits has no net effect. Though studies have investigated various behaviors of OCpetro in the surface environments (e.g., riverine mobilization, marine deposition, and microbial remineralization), less attention has been paid to the reaction kinetics and structural transformations during OCpetro oxidation. Here we assess the OCpetro-oxidation process based on a chemical oxidation method adopted from soil studies. The employed chemical oxidation method is considered an effective simulation of natural oxidation in highly oxidative environments, and has been widely used in soil studies to isolate the inert soil carbon pool. We applied this chemical method to the OCpetro-enriched black shale samples from the middle-lower Yangtze (Changjiang) basin, China, and performed comprehensive instrumental analyses (element analysis, Fourier transform infrared (FTIR) spectrum, and Raman spectrum). We also conducted step-oxidizing experiments following fixed time series and monitored the reaction process in rigorously controlled lab conditions. In this work, we present our experiment results and discuss the implications for the recycling and properties of OCpetro. Particulate organic carbon concentration of black shale samples before and after oxidation helps to quantify the oxidability of OCpetro and constrain the preservation efficiency of OCpetro during fluvial erosion over large river basin scales. FTIR and Raman analyses reveal clear structural variations on atomic and molecular levels. Results from the step-oxidizing experiments provide detailed information about the reaction

  2. NMR studies on the chemical alteration of soil organic matter precursors during controlled charring

    Science.gov (United States)

    Knicker, Heike

    2010-05-01

    Beside the production of volatiles, vegetation fire transforms various amounts of labile organic components into recalcitrant dark colored and highly aromatic structures. They are incorporated into soils and are assumed to represent an important sink within the global carbon cycle. In order to elucidate the real importance of PyOM as a C-sink, a good understanding of its chemistry is crucial. Although several 'Black Carbon' (BC) models are reported, a commonly accepted view of the chemistry involved in its formation is still missing. Its biogeochemical recalcitrance is commonly associated with a highly condensed aromatic structure. However, recent studies indicated that this view may be oversimplified for PyOM derived from vegetation fire. In order to bring some more light on the structural properties of PyOM produced during vegetation fire, charred plant residues and model chars derived from typical plant macromolecules (casein, cellulose, lignin and condensed tannins) were subjected to controlled charring under oxic conditions (350°C and 450°C) and then characterized by nuclear magnetic resonance (NMR) spectroscopy and elemental analysis. Subsequently, the chemical features of the PyOM were related to its chemical recalcitrance as determined by chemical oxidation with acid potassium dichromate. Charring cellulose (350°C, 8 min) yielded in a low C-recovery (11%). Treating casein in the same way resulted in a survival of 62% of its C and 46% of its N. Comparable high C-recoveries are reported for lignin. After charring Lolium perenne, 34% of its N and C were recovered. NMR-spectroscopic studies revealed that for this sample most of the charred N and C occurred in pyrrole-type structures. Our studies further indicate that the aromatic skeleton of char accumulating after a vegetation fire must contain remains of the lignin backbone and considerable contributions of furans and anhydrosugars from thermally altered cellulose. Enhancing the temperature during the

  3. Fabricating Super-hydrophobic Polydimethylsiloxane Surfaces by a Simple Filler-Dissolved Process

    Science.gov (United States)

    Lin, Yung-Tsan; Chou, Jung-Hua

    2010-12-01

    The self-cleaning effect of super-hydrophobic surfaces has attracted the attention of researchers. Typical ways of manufacturing super-hydrophobic surfaces include the use of either dedicated equipment or a complex chemical process. In this study, a simple innovative filler-dissolved method is developed using mainly powder salt and rinsing to form hydrophobic surfaces. This method can produce large super-hydrophobic surfaces with porous and micro rib surface structures. It can also be applied to curved surfaces, including flexible membranes. The contact angle of the manufactured artificial hydrophobic surface is about 160°. Furthermore, water droplets roll off the surface readily at a sliding angle of less than 5°, resembling the nonwetting lotus like effect.

  4. Comparing rankings of selected TRI organic chemicals for two environments using a level III fugacity model and toxicity

    International Nuclear Information System (INIS)

    Edwards, F.G.; Egemen, E.; Nirmalakhandan, N.

    1998-01-01

    The Toxics Release Inventory, TRI (USEPA, 1995) is a comprehensive listing of chemicals, mass released, source of releases, and other related information for chemicals which are released into the environment in the US. These chemicals are then ranked according to the mass released as a indication of their environmental impact. Industries have been encouraged to adopt production methods to decrease the release of chemicals which are ranked highly in the TRI. Clearly, this ranking of the chemicals based upon the mass released fails to take into account very important environmental aspects. The first and most obvious aspect is the wide range of toxicity's of the chemicals released. Numerous researchers have proposed systems to rank chemicals according to their toxicity. The second aspect, which a mass released based ranking does not take into account, is the fate and transport of each chemical within the environment. Cohen and Ryan (1985) and Mackay and Paterson (1991) have proposed models to evaluate the fate and transport of chemicals released into the environment. Some authors have incorporated the mass released and toxicity with some fate and transport aspects to rank the impact of released chemicals. But, due to the complexities of modeling the environment, the lack of published data on properties of chemicals, and the lack of information on the speciation of chemicals in complex systems, modeling the fate and transport of toxic chemicals in the environment remains difficult. To provide an indication of the need to rank chemicals according to their environmental impact instead of the mass released, the authors have utilized a subset of 45 organic chemicals from the TRI, modeled the fate and transport of the chemicals using a Level III fugacity model, and compared those equilibrium concentrations with toxicity data to yield a hazard value for each chemical

  5. Super-Hydrophobic Green Corrosion Inhibitor On Carbon Steel

    Science.gov (United States)

    Hassan, H.; Ismail, A.; Ahmad, S.; Soon, C. F.

    2017-06-01

    There are many examples of organic coatings used for corrosion protection. In particular, hydrophobic and super-hydrophobic coatings are shown to give good protection because of their enhanced ability to slow down transport of water and ions through the coating. The purpose of this research is to develop water repellent coating to avoid direct contact between metal and environment corrosive and mitigate corrosion attack at pipeline system. This water repellent characteristic on super-hydrophobic coating was coated by electrodeposition method. Wettability of carbon steel with super-hydrophobic coating (cerium chloride and myristic acid) and oxidized surface was investigated through contact angle and inhibitor performance test. The inhibitor performance was studied in 25% tannin acid corrosion test at 30°C and 3.5% sodium chloride (NaCl). The water contact angle test was determined by placing a 4-μL water droplet of distilled water. It shows that the wettability of contact angle super-hydrophobic with an angle of 151.60° at zero minute can be classified as super-hydrophobic characteristic. By added tannin acid as inhibitor the corrosion protection on carbon steel becomes more consistent. This reveals that the ability of the coating to withstand with the corrosion attack in the seawater at different period of immersions. The results elucidate that the weight loss increased as the time of exposure increased. However, the corrosion rates for uncoated carbon steel is high compared to coated carbon steel. As a conclusion, from both samples it can be seen that the coated carbon steel has less corrosion rated compared to uncoated carbon steel and addition of inhibitor to the seawater provides more protection to resist corrosion attack on carbon steel.

  6. Nitrous oxide emission and denitrifier communities in drip-irrigated calcareous soil as affected by chemical and organic fertilizers.

    Science.gov (United States)

    Tao, Rui; Wakelin, Steven A; Liang, Yongchao; Hu, Baowei; Chu, Guixin

    2018-01-15

    The effects of consecutive application of chemical fertilizer with or without organic fertilizer on soil N 2 O emissions and denitrifying community structure in a drip-irrigated field were determined. The four fertilizer treatments were (i) unfertilized, (ii) chemical fertilizer, (iii) 60% chemical fertilizer plus cattle manure, and (iv) 60% chemical fertilizer plus biofertilizer. The treatments with organic amendments (i.e. cattle manure and biofertilizer) reduced cumulative N 2 O emissions by 4.9-9.9%, reduced the N 2 O emission factor by 1.3-42%, and increased denitrifying enzyme activities by 14.3-56.2%. The nirK gene copy numbers were greatest in soil which received only chemical fertilizer. In contrast, nirS- and nosZ-copy numbers were greatest in soil amended with chemical fertilizer plus biofertilizer. Chemical fertilizer application with or without organic fertilizer significantly changed the community structure of nirK-type denitrifiers relative to the unfertilized soil. In comparison, the nirS- and nosZ-type denitrifier genotypes varied in treatments receiving organic fertilizer but not chemical fertilizer alone. The changes in the denitrifier communities were closely associated with soil organic carbon (SOC), NO 3 - , NH 4 + , water holding capacity, and soil pH. Modeling indicated that N 2 O emissions in this soil were primarily associated with the abundance of nirS type denitrifying bacteria, SOC, and NO 3 - . Overall, our findings indicate that (i) the organic fertilizers increased denitrifying enzyme activity, increased denitrifying-bacteria gene copy numbers, but reduced N 2 O emissions, and (ii) nirS- and nosZ-type denitrifiers were more sensitive than nirK-type denitrifiers to the organic fertilizers. Copyright © 2017. Published by Elsevier B.V.

  7. Modification of epoxy resin, silicon and glass surfaces with alkyl- or fluoroalkylsilanes for hydrophobic properties

    International Nuclear Information System (INIS)

    Marczak, Jacek; Kargol, Marta; Psarski, Maciej; Celichowski, Grzegorz

    2016-01-01

    Graphical abstract: - Highlights: • Chemical structure of alkylsilanes and fluoroalkylsilanes can affect the hydrophobic and surface performance of the modified samples. • Wet chemical hydrophobization is relatively simple and inexpensive method to obtain hydrophobic/superhydrophobic coatings. • The samples degradation is not observed and hydrophobic coatings seem to be stable in UV light. - Abstract: Preparation of superhydrophobic materials inspired by nature has attracted a great scientific interest in recent decades. Some of these materials have hierarchical lotus-like structures, i.e. micro- and nano-objects coated by hydrophobic compounds. A major challenge of applying the superhydrophobic surfaces for the self-cleaning coatings preparation is their improved efficiency in varying atmospheric conditions, e.g. UV light. The objective of this research work was to investigate the effect of the different chemical structure and the surface free energy on the hydrophobic and tribological properties of the alkylsilanes and fluoroalkylsilanes deposited on silicon wafers, glass slides and epoxy resin. Tribological and hydrophobic properties of the modified surfaces were correlated with their chemical structures. Chemical structures of the deposited materials were examined by using Fourier transform infrared (FT-IR) spectroscopy and hydrophobic properties were investigated by water contact angle (WCA) and surface free energy (SFE) measurements. The modified surfaces exhibited water contact angles of above 100° for the selected modifiers. It was noticed that the replacement of hydrogen atoms by fluorine atoms in alkyl chain caused an increase in the water contact angle values and a decrease in friction coefficients. The obtained results showed that the carbon chain length of a modifier and its chemical structure can strongly affect the hydrophobic and tribological properties of the modified surfaces. The highest values of WCA, lowest values of SFE and coefficient

  8. Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols

    Directory of Open Access Journals (Sweden)

    Y. Li

    2016-03-01

    Full Text Available The formation and aging of organic aerosols (OA proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of OA evolution in atmospheric aerosol models. Based on data from over 30 000 compounds, we show that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. We developed parameterizations to predict the saturation mass concentration of organic compounds containing oxygen, nitrogen, and sulfur from the elemental composition that can be measured by soft-ionization high-resolution mass spectrometry. Field measurement data from new particle formation events, biomass burning, cloud/fog processing, and indoor environments were mapped into molecular corridors to characterize the chemical nature of the observed OA components. We found that less-oxidized indoor OA are constrained to a corridor of low molar mass and high volatility, whereas highly oxygenated compounds in atmospheric water extend to high molar mass and low volatility. Among the nitrogen- and sulfur-containing compounds identified in atmospheric aerosols, amines tend to exhibit low molar mass and high volatility, whereas organonitrates and organosulfates follow high O : C corridors extending to high molar mass and low volatility. We suggest that the consideration of molar mass and molecular corridors can help to constrain volatility and particle-phase state in the modeling of OA particularly for nitrogen- and sulfur-containing compounds.

  9. Prospective Environmental Risk Assessment for Sediment-Bound Organic Chemicals: A Proposal for Tiered Effect Assessment.

    Science.gov (United States)

    Diepens, Noël J; Koelmans, Albert A; Baveco, Hans; van den Brink, Paul J; van den Heuvel-Greve, Martine J; Brock, Theo C M

    A broadly accepted framework for prospective environmental risk assessment (ERA) of sediment-bound organic chemicals is currently lacking. Such a framework requires clear protection goals, evidence-based concepts that link exposure to effects and a transparent tiered-effect assessment. In this paper, we provide a tiered prospective sediment ERA procedure for organic chemicals in sediment, with a focus on the applicable European regulations and the underlying data requirements. Using the ecosystem services concept, we derived specific protection goals for ecosystem service providing units: microorganisms, benthic algae, sediment-rooted macrophytes, benthic invertebrates and benthic vertebrates. Triggers for sediment toxicity testing are discussed.We recommend a tiered approach (Tier 0 through Tier 3). Tier-0 is a cost-effective screening based on chronic water-exposure toxicity data for pelagic species and equilibrium partitioning. Tier-1 is based on spiked sediment laboratory toxicity tests with standard benthic test species and standardised test methods. If comparable chronic toxicity data for both standard and additional benthic test species are available, the Species Sensitivity Distribution (SSD) approach is a more viable Tier-2 option than the geometric mean approach. This paper includes criteria for accepting results of sediment-spiked single species toxicity tests in prospective ERA, and for the application of the SSD approach. We propose micro/mesocosm experiments with spiked sediment, to study colonisation success by benthic organisms, as a Tier-3 option. Ecological effect models can be used to supplement the experimental tiers. A strategy for unifying information from various tiers by experimental work and exposure-and effect modelling is provided.

  10. Chemical composition and cycling of dissolved organic matter in the Mid-Atlantic Bight

    Science.gov (United States)

    Aluwihare, Lihini I.; Repeta, Daniel J.; Chen, Robert F.

    This study focuses on the chemical characterization of high molecular-weight dissolved organic matter (HMW DOM) isolated from the Middle Atlantic Bight in April 1994 and March 1996. Using proton nuclear magnetic resonance spectroscopy ( 1HNMR) and monosaccharide analysis we compared both spatial and temporal variations in the chemical structure of HMW DOM across this region. Our analyses support the presence of at least two compositionally distinct components to HMW DOM. The major component is acyl polysaccharide (APS), a biopolymer rich in carbohydrates, acetate and lipid, accounting for between 50% and 80% of the total high molecular-weight dissolved organic carbon (HMW DOC) in surface samples. APS is most abundant in fully marine, surface-water samples, and is a product of autochthonous production. Organic matter with spectral properties characteristic of humic substances is the second major component of HMW DOM. Humic substances are most abundant (up to 49% of the total carbon) in samples collected from estuaries, near the coast, and in deep water, suggesting both marine and perhaps terrestrial sources. Radiocarbon analyses of neutral monosaccharides released by the hydrolysis of APS have similar and modern (average 71‰) Δ 14C values. Radiocarbon data support our suggestion that these sugars occur as part of a common macromolecule, with an origin via recent biosynthesis. Preliminary radiocarbon data for total neutral monosaccharides isolated from APS at 300 and 750 m show this fraction to be substantially enriched relative to total HMW DOC and DOC. The relatively enriched radiocarbon values of APS at depth suggest APS is rapidly transported into the deep ocean.

  11. Relationship between chemical composition and oxidative potential of secondary organic aerosol from polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Wang, Shunyao; Ye, Jianhuai; Soong, Ronald; Wu, Bing; Yu, Legeng; Simpson, André J.; Chan, Arthur W. H.

    2018-03-01

    Owing to the complex nature and dynamic behaviors of secondary organic aerosol (SOA), its ability to cause oxidative stress (known as oxidative potential, or OP) and adverse health outcomes remains poorly understood. In this work, we probed the linkages between the chemical composition of SOA and its OP, and investigated impacts from various SOA evolution pathways, including atmospheric oligomerization, heterogeneous oxidation, and mixing with metal. SOA formed from photooxidation of the two most common polycyclic aromatic hydrocarbons (naphthalene and phenanthrene) were studied as model systems. OP was evaluated using the dithiothreitol (DTT) assay. The oligomer-rich fraction separated by liquid chromatography dominates DTT activity in both SOA systems (52 ± 10 % for naphthalene SOA (NSOA), and 56 ± 5 % for phenanthrene SOA (PSOA)). Heterogeneous ozonolysis of NSOA was found to enhance its OP, which is consistent with the trend observed in selected individual oxidation products. DTT activities from redox-active organic compounds and metals were found to be not additive. When mixing with highly redox-active metal (Cu), OP of the mixture decreased significantly for 1,2-naphthoquinone (42 ± 7 %), 2,3-dihydroxynaphthalene (35 ± 1 %), NSOA (50 ± 6 %), and PSOA (43 ± 4 %). Evidence from proton nuclear magnetic resonance (1H NMR) spectroscopy illustrates that such OP reduction upon mixing can be ascribed to metal-organic binding interactions. Our results highlight the role of aerosol chemical composition under atmospheric aging processes in determining the OP of SOA, which is needed for more accurate and explicit prediction of the toxicological impacts from particulate matter.

  12. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  13. Modification of mesoporous silica SBA-15 with different organic molecules to gain chemical sensors: a review

    Directory of Open Access Journals (Sweden)

    Negar Lashgari

    2016-01-01

    Full Text Available The recognition of the biologically and environmentally important ions is of great interest in the field of chemical sensors in recent years. The fluorescent sensors as a powerful optical analytical technique for the detection of low level of various analytes such as anions and metal cations have been progressively developed due to the simplicity, cost effective, and selectivity for monitoring specific analytes in various systems. Organic-inorganic hybrid nanomaterials have important advantages as solid chemosensors and various innovative hybrid materials modified by fluorescence molecules were recently prepared. On the other hand, the homogeneous porosity and large surface area of mesoporous silica make it a promising inorganic support. SBA-15 as a two-dimensional hexagonal mesoporous silica material with stable structure, thick walls, tunable pore size, and high specific surface area is a valuable substrate for modification with different organic chelating groups. This review highlights the fluorescent chemosensors for ionic species based on modification of the mesoporous silica SBA-15 with different organic molecules, which have been recently developed from our laboratory.

  14. Continuous droplet removal upon dropwise condensation of humid air on a hydrophobic micropatterned surface.

    Science.gov (United States)

    Zamuruyev, Konstantin O; Bardaweel, Hamzeh K; Carron, Christopher J; Kenyon, Nicholas J; Brand, Oliver; Delplanque, Jean-Pierre; Davis, Cristina E

    2014-08-26

    Combination of two physical phenomena, capillary pressure gradient and wettability gradient, allows a simple two-step fabrication process that yields a reliable hydrophobic self-cleaning condenser surface. The surface is fabricated with specific microscopic topography and further treatment with a chemically inert low-surface-energy material. This process does not require growth of nanofeatures (nanotubes) or hydrophilic-hydrophobic patterning of the surface. Trapezoidal geometry of the microfeatures facilitates droplet transfer from the Wenzel to the Cassie state and reduces droplet critical diameter. The geometry of the micropatterns enhances local coalescence and directional movement for droplets with diameter much smaller than the radial length of the micropatterns. The hydrophobic self-cleaning micropatterned condenser surface prevents liquid film formation and promotes continuous dropwise condensation cycle. Upon dropwise condensation, droplets follow a designed wettability gradient created with micropatterns from the most hydrophobic to the least hydrophobic end of the surface. The surface has higher condensation efficiency, due to its directional self-cleaning property, than a plain hydrophobic surface. We explain the self-actuated droplet collection mechanism on the condenser surface and demonstrate experimentally the creation of an effective wettability gradient over a 6 mm radial distance. In spite of its fabrication simplicity, the fabricated surface demonstrates self-cleaning property, enhanced condensation performance, and reliability over time. Our work enables creation of a hydrophobic condenser surface with the directional self-cleaning property that can be used for collection of biological (chemical, environmental) aerosol samples or for condensation enhancement.

  15. Evolving a polymerase for hydrophobic base analogues.

    Science.gov (United States)

    Loakes, David; Gallego, José; Pinheiro, Vitor B; Kool, Eric T; Holliger, Philipp

    2009-10-21

    Hydrophobic base analogues (HBAs) have shown great promise for the expansion of the chemical and coding potential of nucleic acids but are generally poor polymerase substrates. While extensive synthetic efforts have yielded examples of HBAs with favorable substrate properties, their discovery has remained challenging. Here we describe a complementary strategy for improving HBA substrate properties by directed evolution of a dedicated polymerase using compartmentalized self-replication (CSR) with the archetypal HBA 5-nitroindole (d5NI) and its derivative 5-nitroindole-3-carboxamide (d5NIC) as selection substrates. Starting from a repertoire of chimeric polymerases generated by molecular breeding of DNA polymerase genes from the genus Thermus, we isolated a polymerase (5D4) with a generically enhanced ability to utilize HBAs. The selected polymerase. 5D4 was able to form and extend d5NI and d5NIC (d5NI(C)) self-pairs as well as d5NI(C) heteropairs with all four bases with efficiencies approaching, or exceeding, those of the cognate Watson-Crick pairs, despite significant distortions caused by the intercalation of the d5NI(C) heterocycles into the opposing strand base stack, as shown by nuclear magnetic resonance spectroscopy (NMR). Unlike Taq polymerase, 5D4 was also able to extend HBA pairs such as Pyrene: varphi (abasic site), d5NI: varphi, and isocarbostyril (ICS): 7-azaindole (7AI), allowed bypass of a chemically diverse spectrum of HBAs, and enabled PCR amplification with primers comprising multiple d5NI(C)-substitutions, while maintaining high levels of catalytic activity and fidelity. The selected polymerase 5D4 promises to expand the range of nucleobase analogues amenable to replication and should find numerous applications, including the synthesis and replication of nucleic acid polymers with expanded chemical and functional diversity.

  16. Fabrication of corona-free nanoparticles with tunable hydrophobicity.

    Science.gov (United States)

    Moyano, Daniel F; Saha, Krishnendu; Prakash, Gyan; Yan, Bo; Kong, Hao; Yazdani, Mahdieh; Rotello, Vincent M

    2014-07-22

    A protein corona is formed at the surface of nanoparticles in the presence of biological fluids, masking the surface properties of the particle and complicating the relationship between chemical functionality and biological effects. We present here a series of zwitterionic NPs of variable hydrophobicity that do not adsorb proteins at moderate levels of serum protein and do not form hard coronas at physiological serum concentrations. These particles provide platforms to evaluate nanobiological behavior such as cell uptake and hemolysis dictated directly by chemical motifs at the nanoparticle surface.

  17. Co3O4 protective coatings prepared by Pulsed Injection Metal Organic Chemical Vapour Deposition

    DEFF Research Database (Denmark)

    Burriel, M.; Garcia, G.; Santiso, J.

    2005-01-01

    of deposition temperature. Pure Co3O4 spinel structure was found for deposition temperatures ranging from 360 to 540 degreesC. The optimum experimental parameters to prepare dense layers with a high growth rate were determined and used to prepare corrosion protective coatings for Fe-22Cr metallic interconnects......Cobalt oxide films were grown by Pulsed Injection Metal Organic Chemical Vapour Deposition (PI-MOCVD) using Co(acac)(3) (acac=acetylacetonate) precursor dissolved in toluene. The structure, morphology and growth rate of the layers deposited on silicon substrates were studied as a function......, to be used in Intermediate Temperature Solid Oxide Fuel Cells. (C) 2004 Elsevier B.V. All rights reserved....

  18. Chemical Composition and Antioxidant Activity of Essential Oil and Organic Extracts of Premna integrifolia Linn

    Directory of Open Access Journals (Sweden)

    Sharif M. Al-Reza

    Full Text Available ABSTRACT This study was designed to examine the chemical composition and in vitro antioxidant activity of the hydrodistillated essential oil and various extracts obtained from Premna integrifolia Linn. GC-MS analysis of the essential oil was resulted in determination 29 different compounds, representing 95.73% of total oil. Antioxidant activities of the essential oil and organic extracts of chloroform, ethyl acetate and methanol were determined by three different test systems namely DPPH (2,2-diphenyl-1-picrylhydrazyl, superoxide and nitric oxide radical scavenging assays. The essential oil and methanol extract showed potent antioxidant activity among all the tested samples. Furthermore, the amount of total phenolic compounds was determined and its content in methanol extract was the highest as compared to other samples. The results indicate that the essential oil and extracts of Premna integrifolia could serve as an important bio-resource of antioxidants for using in the pharmaceutical industries.

  19. Chemical Engineering of Photoactivity in Heterometallic Titanium-Organic Frameworks by Metal Doping.

    Science.gov (United States)

    Castells-Gil, Javier; Padial, Natalia M; Almora-Barrios, Neyvis; Albero, Josep; Ruiz-Salvador, A Rabdel; González-Platas, Javier; García, Hermenegildo; Martí-Gastaldo, Carlos

    2018-06-06

    We report a new family of titanium-organic frameworks that enlarges the limited number of crystalline, porous materials available for this metal. They are chemically robust and can be prepared as single crystals at multi-gram scale from multiple precursors. Their heterometallic structure enables engineering of their photoactivity by metal doping rather than by linker functionalization. Compared to other methodologies based on the post-synthetic metallation of MOFs, our approach is well-fitted for controlling the positioning of dopants at an atomic level to gain more precise control over the band-gap and electronic properties of the porous solid. Changes in the band-gap are also rationalized with computational modelling and experimentally confirmed by photocatalytic H 2 production. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Selected elements and organic chemicals in streambed sediment in the Salem area, Oregon, 1999

    Science.gov (United States)

    Tanner, Dwight Q.

    2002-09-13

    Analysis of streambed sediments in the Salem, Oregon, area showed anomalously large concentrations of some elements and organic chemicals, indicating contamination from anthropogenic and/or geologic sources. The streambed sediment sample from Clark Creek, an urban basin, had large concentrations of polycyclic aromatic hyrdocarbons (PAHs), organochlorines, cadmium, lead, and zinc. The sample from the East Fork of Pringle Creek, which is a mostly urban basin, had the highest concentrations of DDD, DDE, and DDT compounds. Aldrin was detected in streambed sediment at only one site, the East Fork of Pringle Creek. Ten of the 14 sites sampled had exceedances of the sediment quality guidelines of the Canadian Council of Ministers of the Environment (CCME), and 8 sites had exceedances of guidelines from the Puget Sound Dredged Disposal Analysis (PSDDA) Program.

  1. Computational organic chemistry: bridging theory and experiment in establishing the mechanisms of chemical reactions.

    Science.gov (United States)

    Cheng, Gui-Juan; Zhang, Xinhao; Chung, Lung Wa; Xu, Liping; Wu, Yun-Dong

    2015-02-11

    Understanding the mechanisms of chemical reactions, especially catalysis, has been an important and active area of computational organic chemistry, and close collaborations between experimentalists and theorists represent a growing trend. This Perspective provides examples of such productive collaborations. The understanding of various reaction mechanisms and the insight gained from these studies are emphasized. The applications of various experimental techniques in elucidation of reaction details as well as the development of various computational techniques to meet the demand of emerging synthetic methods, e.g., C-H activation, organocatalysis, and single electron transfer, are presented along with some conventional developments of mechanistic aspects. Examples of applications are selected to demonstrate the advantages and limitations of these techniques. Some challenges in the mechanistic studies and predictions of reactions are also analyzed.

  2. Passive Sampling in Regulatory Chemical Monitoring of Nonpolar Organic Compounds in the Aquatic Environment

    DEFF Research Database (Denmark)

    Booij, Kees; Robinson, Craig D; Burgess, Robert M

    2016-01-01

    We reviewed compliance monitoring requirements in the European Union, the United States, and the Oslo-Paris Convention for the protection of the marine environment of the North-East Atlantic, and evaluated if these are met by passive sampling methods for nonpolar compounds. The strengths...... is the best available technology for chemical monitoring of nonpolar organic compounds. Key issues to be addressed by scientists and environmental managers are outlined....... and shortcomings of passive sampling are assessed for water, sediments, and biota. Passive water sampling is a suitable technique for measuring concentrations of freely dissolved compounds. This method yields results that are incompatible with the EU's quality standard definition in terms of total concentrations...

  3. Chemical intermediate detection following corona discharge on volatile organic compounds: general method using molecular beam techniques

    International Nuclear Information System (INIS)

    He Luning; Sulkes, Mark

    2011-01-01

    Nonthermal plasma (NTP)-based treatments of volatile organic compounds (VOCs) have potential for effective environmental remediation. Theory and experiment that consider the basic science pertaining to discharge events have helped improve NTP remediation outcomes. If direct information on early post-discharge chemical intermediates were also available, it would likely lead to additional improvement in NTP remediation outcomes. To this point, however, experiments yielding direct information on post-NTP VOC intermediates have been limited. An approach using supersonic expansion molecular beam methods offers general promise for detection of post-discharge VOC intermediates. To illustrate the potential utility of these methods, we present mass spectra showing the growth of early products formed when pulsed corona discharges were carried out on toluene in He and then in He with added O 2 . Good general detection of neutral post-discharge species was obtained using 800 nm 150 fs photoionization pulses.

  4. Catalyst-free growth of InN nanorods by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Kim, Min Hwa; Moon, Dae Young; Park, Jinsub; Nanishi, Yasushi; Yi, Gyu-Chul; Yoon, Euijoon

    2012-01-01

    We demonstrated the growth of catalyst-free InN nanostructures including nanorods on (0001) Al 2 O 3 substrates using metal-organic chemical vapor deposition. As the growth time increased, growth rate along c-direction increased superlinearly with decreasing c-plane area fractions and increasing side wall areas. It was also found that desorption from the sidewalls of InN nanostructures during the InN nanorods formation was one of essential key parameters of the growth mechanism. We propose a growth model to explain the InN nanostructure evolution by considering the side wall desorption and re-deposition of indium at top c-plane surfaces. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Chemical Composition, Antimicrobial and Antioxidant Activities of Essential Oils from Organically Cultivated Fennel Cultivars

    Directory of Open Access Journals (Sweden)

    Mahmoud A. Saleh

    2011-02-01

    Full Text Available Essential oils of the fruits of three organically grown cultivars of Egyptian fennel (Foeniculum vulgare var. azoricum, Foeniculum vulgare var. dulce and Foeniculum vulgare var. vulgare were examined for their chemical constituents, antimicrobial and antioxidant activities. Gas chromatography/mass spectrometry analysis of the essential oils revealed the presence of 18 major monoterpenoids in all three cultivars but their percentage in each oil were greatly different. trans-Anethole, estragole, fenchone and limonene were highly abundant in all of the examined oils. Antioxidant activities of the essential oils were evaluated using the DPPH radical scavenging, lipid peroxidation and metal chelating assays. Essential oils from the azoricum and dulce cultivars were more effective antioxidants than that from the vulgare cultivar. Antimicrobial activities of each oil were measured against two species of fungi, two species of Gram negative and two species of Gram positive bacteria. All three cultivars showed similar antimicrobial activity.

  6. Chemical composition, antimicrobial and antioxidant activities of essential oils from organically cultivated fennel cultivars.

    Science.gov (United States)

    Shahat, Abdelaaty A; Ibrahim, Abeer Y; Hendawy, Saber F; Omer, Elsayed A; Hammouda, Faiza M; Abdel-Rahman, Fawzia H; Saleh, Mahmoud A

    2011-02-01

    Essential oils of the fruits of three organically grown cultivars of Egyptian fennel (Foeniculum vulgare var. azoricum, Foeniculum vulgare var. dulce and Foeniculum vulgare var. vulgare) were examined for their chemical constituents, antimicrobial and antioxidant activities. Gas chromatography/mass spectrometry analysis of the essential oils revealed the presence of 18 major monoterpenoids in all three cultivars but their percentage in each oil were greatly different. trans-Anethole, estragole, fenchone and limonene were highly abundant in all of the examined oils. Antioxidant activities of the essential oils were evaluated using the DPPH radical scavenging, lipid peroxidation and metal chelating assays. Essential oils from the azoricum and dulce cultivars were more effective antioxidants than that from the vulgare cultivar. Antimicrobial activities of each oil were measured against two species of fungi, two species of Gram negative and two species of Gram positive bacteria. All three cultivars showed similar antimicrobial activity.

  7. Chemical compositions and characteristics of organic compounds in propolis from Yemen

    Directory of Open Access Journals (Sweden)

    Ahmad A. Al-Ghamdi

    2017-07-01

    Full Text Available Propolis is a gummy material made by honeybees for protecting their hives from bacteria and fungi. The main objective of this study is to determine the chemical compositions and concentrations of organic compounds in the extractable organic matter (EOM of propolis samples collected from four different regions in Yemen. The propolis samples were extracted with a mixture of dichloromethane and methanol and analyzed by gas chromatography–mass spectrometry (GC–MS. The results showed that the total extract yields ranged from 34% to 67% (mean = 55.5 ± 12.4%. The major compounds were triterpenoids (254 ± 188 mg g−1, mainly α-, β-amyryl and dammaradienyl acetates, n-alkenes (145 ± 89 mg g−1, n-alkanes (65 ± 29 mg g−1, n-alkanoic acids (40 ± 26 mg g−1, long chain wax esters (38 ± 25 mg g−1, n-alkanols (8 ± 3 mg g−1 and methyl n-alkanoates (6 ± 4 mg g−1. The variation in the propolis chemical compositions is apparently related to the different plant sources. The compounds of these propolis samples indicate that they are potential sources of natural bio-active compounds for biological and pharmacological applications.

  8. Effect of temperature on removal of trace organic chemicals in managed aquifer recharge systems

    KAUST Repository

    Alidina, Mazahirali

    2015-03-01

    This study was undertaken to investigate whether changes in temperature experienced in MAR systems affect attenuation of trace organic chemicals (TOrCs). A set of laboratory-scale soil columns were placed in a temperature-controlled environmental chamber and operated at five different temperature set-points (30, 20, 10, 8 and 4. °C) covering the range of typical groundwater temperatures in cold, moderate and arid climate regions. Removal of bulk organic carbon both in the infiltration zone as well as during deeper infiltration was independent of temperature. Of the 22 TOrCs investigated, only six chemicals exhibited changes in attenuation as a function of temperature. Attenuation of four of the compounds (diclofenac, gemfibrozil, ketoprofen and naproxen) decreased as the temperature was reduced from 30. °C to 4. °C, likely due to decreased microbial activity at lower temperatures. As the temperature was decreased, however, attenuation of oxybenzone and trimethoprim were noted to increase. This increased attenuation was likely due to more efficient sorption at lower temperatures, though possible changes in the microbial composition as the temperature decreased may also have contributed to this change. Changes in rate constants of attenuation (. ka) for the biotransformed TOrCs with temperature suggested the existence of a critical temperature at 10. °C for three of the four TOrCs, where significant changes to rates of attenuation occurred. Results from this study indicated that for most TOrCs, changes in temperature do not impact their attenuation. Thus, seasonal changes in temperature are not considered to be a major concern for attenuation of most TOrCs in MAR systems.

  9. Adolescent Exposure to Toxic Volatile Organic Chemicals From E-Cigarettes.

    Science.gov (United States)

    Rubinstein, Mark L; Delucchi, Kevin; Benowitz, Neal L; Ramo, Danielle E

    2018-04-01

    There is an urgent need to understand the safety of e-cigarettes with adolescents. We sought to identify the presence of chemical toxicants associated with e-cigarette use among adolescents. Adolescent e-cigarette users (≥1 use within the past 30 days, ≥10 lifetime e-cigarette use episodes) were divided into e-cigarette-only users (no cigarettes in the past 30 days, urine 4-[methylnitrosamino]-1-[3-pyridyl]-1-butanol [NNAL] level 30 pg/mL; n = 16), and never-using controls ( N = 20). Saliva was collected within 24 hours of the last e-cigarette use for analysis of cotinine and urine for analysis of NNAL and levels of 8 volatile organic chemical compounds. Bivariate analyses compared e-cigarette-only users with dual users, and regression analyses compared e-cigarette-only users with dual users and controls on levels of toxicants. The participants were 16.4 years old on average. Urine excretion of metabolites of benzene, ethylene oxide, acrylonitrile, acrolein, and acrylamide was significantly higher in dual users versus e-cigarette-only users (all P < .05). Excretion of metabolites of acrylonitrile, acrolein, propylene oxide, acrylamide, and crotonaldehyde were significantly higher in e-cigarette-only users compared with controls (all P < .05). Although e-cigarette vapor may be less hazardous than tobacco smoke, our findings can be used to challenge the idea that e-cigarette vapor is safe, because many of the volatile organic compounds we identified are carcinogenic. Messaging to teenagers should include warnings about the potential risk from toxic exposure to carcinogenic compounds generated by these products. Copyright © 2018 by the American Academy of Pediatrics.

  10. Effect of temperature on removal of trace organic chemicals in managed aquifer recharge systems.

    Science.gov (United States)

    Alidina, Mazahirali; Shewchuk, Justin; Drewes, Jörg E

    2015-03-01

    This study was undertaken to investigate whether changes in temperature experienced in MAR systems affect attenuation of trace organic chemicals (TOrCs). A set of laboratory-scale soil columns were placed in a temperature-controlled environmental chamber and operated at five different temperature set-points (30, 20, 10, 8 and 4°C) covering the range of typical groundwater temperatures in cold, moderate and arid climate regions. Removal of bulk organic carbon both in the infiltration zone as well as during deeper infiltration was independent of temperature. Of the 22 TOrCs investigated, only six chemicals exhibited changes in attenuation as a function of temperature. Attenuation of four of the compounds (diclofenac, gemfibrozil, ketoprofen and naproxen) decreased as the temperature was reduced from 30°C to 4°C, likely due to decreased microbial activity at lower temperatures. As the temperature was decreased, however, attenuation of oxybenzone and trimethoprim were noted to increase. This increased attenuation was likely due to more efficient sorption at lower temperatures, though possible changes in the microbial composition as the temperature decreased may also have contributed to this change. Changes in rate constants of attenuation (ka) for the biotransformed TOrCs with temperature suggested the existence of a critical temperature at 10°C for three of the four TOrCs, where significant changes to rates of attenuation occurred. Results from this study indicated that for most TOrCs, changes in temperature do not impact their attenuation. Thus, seasonal changes in temperature are not considered to be a major concern for attenuation of most TOrCs in MAR systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Permafrost conditions in peatlands regulate magnitude, timing, and chemical composition of catchment dissolved organic carbon export.

    Science.gov (United States)

    Olefeldt, David; Roulet, Nigel T

    2014-10-01

    Permafrost thaw in peatlands has the potential to alter catchment export of dissolved organic carbon (DOC) and thus influence downstream aquatic C cycling. Subarctic peatlands are often mosaics of different peatland types, where permafrost conditions regulate the hydrological setting of each type. We show that hydrological setting is key to observed differences in magnitude, timing, and chemical composition of DOC export between permafrost and nonpermafrost peatland types, and that these differences influence the export of DOC of larger catchments even when peatlands are minor catchment components. In many aspects, DOC export from a studied peatland permafrost plateau was similar to that of a forested upland catchment. Similarities included low annual export (2-3 g C m(-2) ) dominated by the snow melt period (~70%), and how substantial DOC export following storms required wet antecedent conditions. Conversely, nonpermafrost fens had higher DOC export (7 g C m(-2) ), resulting from sustained hydrological connectivity during summer. Chemical composition of catchment DOC export arose from the mixing of highly aromatic DOC from organic soils from permafrost plateau soil water and upland forest surface horizons with nonaromatic DOC from mineral soil groundwater, but was further modulated by fens. Increasing aromaticity from fen inflow to outlet was substantial and depended on both water residence time and water temperature. The role of fens as catchment biogeochemical hotspots was further emphasized by their capacity for sulfate retention. As a result of fen characteristics, a 4% fen cover in a mixed catchment was responsible for 34% higher DOC export, 50% higher DOC concentrations and ~10% higher DOC aromaticity at the catchment outlet during summer compared to a nonpeatland upland catchment. Expansion of fens due to thaw thus has potential to influence landscape C cycling by increasing fen capacity to act as biogeochemical hotspots, amplifying aquatic C cycling, and

  12. α-Pinene secondary organic aerosol at low temperature: chemical composition and implications for particle viscosity

    Science.gov (United States)

    Huang, Wei; Saathoff, Harald; Pajunoja, Aki; Shen, Xiaoli; Naumann, Karl-Heinz; Wagner, Robert; Virtanen, Annele; Leisner, Thomas; Mohr, Claudia

    2018-02-01

    Chemical composition, size distributions, and degree of oligomerization of secondary organic aerosol (SOA) from α-pinene (C10H16) ozonolysis were investigated for low-temperature conditions (223 K). Two types of experiments were performed using two simulation chambers at the Karlsruhe Institute of Technology: the Aerosol Preparation and Characterization (APC) chamber, and the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) chamber. Experiment type 1 simulated SOA formation at upper tropospheric conditions: SOA was generated in the AIDA chamber directly at 223 K at 61 % relative humidity (RH; experiment termed cold humid, CH) and for comparison at 6 % RH (experiment termed cold dry, CD) conditions. Experiment type 2 simulated SOA uplifting: SOA was formed in the APC chamber at room temperature (296 K) and warm dry, WD) or 21 % RH (experiment termed warm humid, WH) conditions, and then partially transferred to the AIDA chamber kept at 223 K, and 61 % RH (WDtoCH) or 30 % RH (WHtoCH), respectively. Precursor concentrations varied between 0.7 and 2.2 ppm α-pinene, and between 2.3 and 1.8 ppm ozone for type 1 and type 2 experiments, respectively. Among other instrumentation, a chemical ionization mass spectrometer (CIMS) coupled to a filter inlet for gases and aerosols (FIGAERO), deploying I- as reagent ion, was used for SOA chemical composition analysis. For type 1 experiments with lower α-pinene concentrations and cold SOA formation temperature (223 K), smaller particles of 100-300 nm vacuum aerodynamic diameter (dva) and higher mass fractions (> 40 %) of adducts (molecules with more than 10 carbon atoms) of α-pinene oxidation products were observed. For type 2 experiments with higher α-pinene concentrations and warm SOA formation temperature (296 K), larger particles ( ˜ 500 nm dva) with smaller mass fractions of adducts (models.

  13. Occupational Health Impacts Due to Exposure to Organic Chemicals over an Entire Product Life Cycle.

    Science.gov (United States)

    Kijko, Gaël; Jolliet, Olivier; Margni, Manuele

    2016-12-06

    This article presents an innovative approach to include occupational exposures to organic chemicals in life cycle impact assessment (LCIA) by building on the characterization factors set out in Kijko et al. (2015) to calculate the potential impact of occupational exposure over the entire supply chain of product or service. Based on an economic input-output model and labor and economic data, the total impacts per dollar of production are provided for 430 commodity categories and range from 0.025 to 6.6 disability-adjusted life years (DALY) per million dollar of final economic demand. The approach is applied on a case study assessing human health impacts over the life cycle of a piece of office furniture. It illustrates how to combine monitoring data collected at the manufacturing facility and averaged sector specific data to model the entire supply chain. This paper makes the inclusion of occupational exposure to chemicals fully compatible with the LCA framework by including the supply chain of a given production process and will help industries focus on the leading causes of human health impacts and prevent impact shifting.

  14. Half-sandwich cobalt complexes in the metal-organic chemical vapor deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Georgi, Colin [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Hapke, Marko; Thiel, Indre [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Albert-Einstein-Straße 29a, Rostock 18059 (Germany); Hildebrandt, Alexander [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Waechtler, Thomas; Schulz, Stefan E. [Fraunhofer Institute of Electronic Nano Systems (ENAS), Technologie-Campus 3, Chemnitz 09126 (Germany); Technische Universität Chemnitz, Center for Microtechnologies (ZfM), Chemnitz 09107 (Germany); Lang, Heinrich, E-mail: heinrich.lang@chemie.tu-chemnitz.de [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany)

    2015-03-02

    A series of cobalt half-sandwich complexes of type [Co(η{sup 5}-C{sub 5}H{sub 5})(L)(L′)] (1: L, L′ = 1,5-hexadiene; 2: L = P(OEt){sub 3}, L′ = H{sub 2}C=CHSiMe{sub 3}; 3: L = L′ = P(OEt){sub 3}) has been studied regarding their physical properties such as the vapor pressure, decomposition temperature and applicability within the metal-organic chemical vapor deposition (MOCVD) process, with a focus of the influence of the phosphite ligands. It could be shown that an increasing number of P(OEt){sub 3} ligands increases the vapor pressure and thermal stability of the respective organometallic compound. Complex 3 appeared to be a promising MOCVD precursor with a high vapor pressure and hence was deposited onto Si/SiO{sub 2} (100 nm) substrates. The resulting reflective layer is closed, dense and homogeneous, with a slightly granulated surface morphology. X-ray photoelectron spectroscopy (XPS) studies demonstrated the formation of metallic cobalt, cobalt phosphate, cobalt oxide and cobalt carbide. - Highlights: • Thermal studies and vapor pressure measurements of cobalt half-sandwich complexes was carried out. • Chemical vapor deposition with cobalt half-sandwich complexes is reported. • The use of Co-phosphites results in significant phosphorous-doped metallic layers.

  15. Organic Contaminant Content and Physico-Chemical Characteristics of Waste Materials Recycled in Agriculture

    Directory of Open Access Journals (Sweden)

    Hannah Rigby

    2015-12-01

    Full Text Available A range of wastes representative of materials currently applied, or with future potential to be applied, to agricultural land in the UK as fertilisers and soil improvers or used as animal bedding in livestock production, were investigated. In addition to full physico-chemical characterization, the materials were analysed for a suite of priority organic contaminants. In general, contaminants were present at relatively low concentrations. For example, for biosolids and compost-like-output (CLO, concentrations of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs and polychlorinated biphenyls (PCBs were approximately 1−10 and 5–50 times lower, respectively, than various proposed or implemented European limit values for these contaminants in biosolids or composts applied to agricultural land. However, the technical basis for these limits may require re-evaluation in some cases. Polybrominated, and mixed halogenated, dibenzo-p-dioxins/dibenzofurans are not currently considered in risk assessments of dioxins and dioxin-like chemicals, but were detected at relatively high concentrations compared with PCDD/Fs in the biosolids and CLOs and their potential contribution to the overall toxic equivalency is assessed. Other ‘emerging’ contaminants, such as organophosphate flame retardants, were detected in several of the waste materials, and their potential significance is discussed. The study is part of a wider research programme that will provide evidence that is expected to improve confidence in the use of waste-derived materials in agriculture and to establish guidelines to protect the food chain where necessary.

  16. Temperature effect on physical and chemical properties of secondary organic aerosol from m-xylene photooxidation

    Directory of Open Access Journals (Sweden)

    D. R. Cocker III

    2010-04-01

    Full Text Available The chemical and physical differences of secondary organic aerosol (SOA formed at select isothermal temperatures (278 K, 300 K, and 313 K are explored with respect to density, particle volatility, particle hygroscopicity, and elemental chemical composition. A transition point in SOA density, volatility, hygroscopicity and elemental composition is observed near 290–292 K as SOA within an environmental chamber is heated from 278 K to 313 K, indicating the presence of a thermally labile compound. No such transition points are observed for SOA produced at 313 K or 300 K and subsequently cooled to 278 K. The SOA formed at the lowest temperatures (278 K is more than double the SOA formed at 313 K. SOA formed at 278 K is less hydrophilic and oxygenated while more volatile and dense than SOA formed at 300 K or 313 K. The properties of SOA formed at 300 K and 313 K when reduced to 278 K did not match the properties of SOA initially formed at 278 K. This study demonstrates that it is insufficient to utilize the enthalpy of vaporization when predicting SOA temperature dependence.

  17. Solid waste disposal in the soil: effects on the physical, chemical, and organic properties of soil

    Directory of Open Access Journals (Sweden)

    Vanessa Regina Lasaro Mangieri

    2015-04-01

    Full Text Available Currently, there is growing concern over the final destination of the solid waste generated by society. Landfills should not be considered the endpoint for substances contained or generated in solid waste. The sustainable use of natural resources, especially soil and water, has become relevant, given the increase in anthropogenic activities. Agricultural use is an alternative to solid waste (leachate, biosolid disposal, considering the hypothesis that the agricultural use of waste is promising for reducing waste treatment costs, promoting nutrient reuse and improving the physical and chemical conditions of soil. Thus, this literature review, based on previously published data, seeks to confirm or disprove the hypothesis regarding the promising use of solid waste in agriculture to decrease the environmental liability that challenges public administrators in the development of efficient management. The text below addresses the following subtopics after the introduction: current solid waste disposal and environmental issues, the use of solid waste in agriculture, and the effect on the physical and chemical properties of soil and on organic matter, ending with final considerations.

  18. Online Chemical Characterization of Food-Cooking Organic Aerosols: Implications for Source Apportionment.

    Science.gov (United States)

    Reyes-Villegas, Ernesto; Bannan, Thomas; Le Breton, Michael; Mehra, Archit; Priestley, Michael; Percival, Carl; Coe, Hugh; Allan, James D

    2018-04-11

    Food-cooking organic aerosols (COA) are one of the primary sources of submicron particulate matter in urban environments. However, there are still many questions surrounding source apportionment related to instrumentation as well as semivolatile partitioning because COA evolve rapidly in the ambient air, making source apportionment more complex. Online measurements of emissions from cooking different types of food were performed in a laboratory to characterize particles and gases. Aerosol mass spectrometer (AMS) measurements showed that the relative ionization efficiency for OA was higher (1.56-3.06) relative to a typical value of 1.4, concluding that AMS is over-estimating COA and suggesting that previous studies likely over-estimated COA concentrations. Food-cooking mass spectra were generated using AMS, and gas and particle food markers were identified with filter inlets for gases and aerosols-chemical ionization mass spectrometer (CIMS) measurements to be used in future food cooking-source apportionment studies. However, there is a considerable variability in both gas and particle markers, and dilution plays an important role in the particle mass budget, showing the importance of using these markers with caution during receptor modeling. These findings can be used to better understand the chemical composition of COA, and they provides useful information to be used in future source-apportionment studies.

  19. Phytotoxicity and Chemical Characterization of Compost Derived from Pig Slurry Solid Fraction for Organic Pellet Production

    Directory of Open Access Journals (Sweden)

    Niccolò Pampuro

    2017-11-01

    Full Text Available The phytotoxicity of four different composts obtained from pig slurry solid fraction composted by itself (SSFC and mixed with sawdust (SC, woodchips (WCC and wheat straw (WSC was tested with bioassay methods. For each compost type, the effect of water extracts of compost on seed germination and primary root growth of cress (Lepidium Sativum L. was investigated. Composts were also chemically analysed for total nitrogen, ammonium, electrical conductivity and heavy metal (Cu and Zn. The chemicals were correlated to phytotoxicity indices. The mean values of the germination index (GI obtained were 160.7, 187.9, 200.9 and 264.4 for WSC, WCC, SC and SSFC, respectively. Growth index (GrI ranged from the 229.4%, the highest value, for SSFC, followed by 201.9% for SC, and 193.1% for WCC, to the lowest value, 121.4%, for WSC. Electrical conductivity showed a significant and negative correlation with relative seed germination at the 50% and 75% concentrations. A strong positive correlation was found for water-extractable Cu with relative root growth and germination index at the 10% concentration. Water-extractable Zn showed a significant positive correlation with relative root growth and GI at the 10% concentration. These results highlighted that the four composts could be used for organic pellet production and subsequently distributed as a soil amendment with positive effects on seed germination and plant growth (GI > 80%.

  20. Chemical Characterization and Antioxidant, Antimicrobial, and Anti-Inflammatory Activities of South Brazilian Organic Propolis

    Science.gov (United States)

    Tiveron, Ana Paula; Rosalen, Pedro Luiz; Franchin, Marcelo; Lacerda, Risia Cristina Coelho; Bueno-Silva, Bruno; Benso, Bruna; Denny, Carina; Ikegaki, Masaharu; de Alencar, Severino Matias

    2016-01-01

    South Brazilian organic propolis (OP), which has never been studied before, was assessed and its chemical composition, scavenging potential of reactive oxygen species, antimicrobial and anti-inflammatory activities are herein presented. Based on the chemical profile obtained using HPLC, OP was grouped into seven variants (OP1–OP7) and all of them exhibited high scavenging activity, mainly against superoxide and hypochlorous acid species. OP1, OP2, and OP3 had the smallest minimal inhibitory concentration (MIC) against Gram-positive bacteria Streptococcus mutans, Streptococcus oralis, and Streptococcus aureus (12.5–100 μg/mL). OP1, OP2, OP3, and OP4 were more effective against Pseudomonas aeruginosa (Gram-negative), with MIC values ranging from 100 to 200 μg/mL. OP6 showed anti-inflammatory activity by decreasing NF-kB activation and TNF-α release in RAW 264.7 macrophages, and expressing the NF-κB-luciferase reporter stable gene. Therefore, south Brazilian OP can be considered an excellent source of bioactive compounds with great potential of application in the pharmaceutical and food industry. PMID:27802316

  1. Research Update: Mechanical properties of metal-organic frameworks – Influence of structure and chemical bonding

    Directory of Open Access Journals (Sweden)

    Wei Li

    2014-12-01

    Full Text Available Metal-organic frameworks (MOFs, a young family of functional materials, have been attracting considerable attention from the chemistry, materials science, and physics communities. In the light of their potential applications in industry and technology, the fundamental mechanical properties of MOFs, which are of critical importance for manufacturing, processing, and performance, need to be addressed and understood. It has been widely accepted that the framework topology, which describes the overall connectivity pattern of the MOF building units, is of vital importance for the mechanical properties. However, recent advances in the area of MOF mechanics reveal that chemistry plays a major role as well. From the viewpoint of materials science, a deep understanding of the influence of chemical effects on MOF mechanics is not only highly desirable for the development of novel functional materials with targeted mechanical response, but also for a better understanding of important properties such as structural flexibility and framework breathing. The present work discusses the intrinsic connection between chemical effects and the mechanical behavior of MOFs through a number of prototypical examples.

  2. Management strategies for trace organic chemicals in water - A review of international approaches.

    Science.gov (United States)

    Bieber, Stefan; Snyder, Shane A; Dagnino, Sonia; Rauch-Williams, Tanja; Drewes, Jörg E

    2018-03-01

    To ensure an appropriate management of potential health risks and uncertainties from the release of trace organic chemicals (TOrCs) into the aqueous environment, many countries have evaluated and implemented strategies to manage TOrCs. The aim of this study was to evaluate existing management strategies for TOrCs in different countries to derive and compare underlying core principles and paradigms and to develop suggestions for more holistic management strategies to protect the environment and drinking water supplies from the discharge of undesired TOrCs. The strategies in different industrial countries were summarized and subsequently compared with regards to three particular questions: 1) Do the approaches different countries have implemented manage all or only specific portions of the universe of chemicals; 2) What implementation and compliance strategies are used to manage aquatic and human health risk and what are their pros and cons; and 3) How are site-specific watershed differences being addressed? While management strategies of the different countries target similar TOrCs, the programs differ in several important aspects, including underlying principles, the balance between aquatic or human health protection, implementation methods, and financing mechanisms used to fund regulatory programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Research Update: Mechanical properties of metal-organic frameworks - Influence of structure and chemical bonding

    Science.gov (United States)

    Li, Wei; Henke, Sebastian; Cheetham, Anthony K.

    2014-12-01

    Metal-organic frameworks (MOFs), a young family of functional materials, have been attracting considerable attention from the chemistry, materials science, and physics communities. In the light of their potential applications in industry and technology, the fundamental mechanical properties of MOFs, which are of critical importance for manufacturing, processing, and performance, need to be addressed and understood. It has been widely accepted that the framework topology, which describes the overall connectivity pattern of the MOF building units, is of vital importance for the mechanical properties. However, recent advances in the area of MOF mechanics reveal that chemistry plays a major role as well. From the viewpoint of materials science, a deep understanding of the influence of chemical effects on MOF mechanics is not only highly desirable for the development of novel functional materials with targeted mechanical response, but also for a better understanding of important properties such as structural flexibility and framework breathing. The present work discusses the intrinsic connection between chemical effects and the mechanical behavior of MOFs through a number of prototypical examples.

  4. Chemical Form Matters: Differential Accumulation of Mercury Following Inorganic and Organic Mercury Exposures in Zebrafish Larvae

    Energy Technology Data Exchange (ETDEWEB)

    Korbas, Malgorzata; MacDonald, Tracy C.; Pickering, Ingrid J.; George, Graham N.; Krone, Patrick H. (Saskatchewan)

    2013-04-08

    Mercury, one of the most toxic elements, exists in various chemical forms each with different toxicities and health implications. Some methylated mercury forms, one of which exists in fish and other seafood products, pose a potential threat, especially during embryonic and early postnatal development. Despite global concerns, little is known about the mechanisms underlying transport and toxicity of different mercury species. To investigate the impact of different mercury chemical forms on vertebrate development, we have successfully combined the zebrafish, a well-established developmental biology model system, with synchrotron-based X-ray fluorescence imaging. Our work revealed substantial differences in tissue-specific accumulation patterns of mercury in zebrafish larvae exposed to four different mercury formulations in water. Methylmercury species not only resulted in overall higher mercury burdens but also targeted different cells and tissues than their inorganic counterparts, thus revealing a significant role of speciation in cellular and molecular targeting and mercury sequestration. For methylmercury species, the highest mercury concentrations were in the eye lens epithelial cells, independent of the formulation ligand (chloride versus L-cysteine). For inorganic mercury species, in absence of L-cysteine, the olfactory epithelium and kidney accumulated the greatest amounts of mercury. However, with L-cysteine present in the treatment solution, mercuric bis-L-cysteineate species dominated the treatment, significantly decreasing uptake. Our results clearly demonstrate that the common differentiation between organic and inorganic mercury is not sufficient to determine the toxicity of various mercury species.

  5. Chemical characteristics and acidity of soluble organic substances from a northern hardwood forest floor, central Maine, USA

    International Nuclear Information System (INIS)

    Vance, G.F.; David, M.B.

    1991-01-01

    The authors understanding of the chemistry, structure, and reactions of organic substances in forest floor leachates is limited and incomplete. Therefore, the authors examined the organic and inorganic chemistry of forest floor leachates collected from a hardwood forest in central Maine over a two-year period (1987-1989), including detailed study of dissolved organic carbon (DOC). Seasonal variations in NH 4 + , NO 3 - , K + , and total Al were believed due to organic matter decomposition and release. Leaching of other base cations closely followed that of NO 3 - . Total DOC ranged from 2,228 to 7,193 μmol L -1 with an average of 4,835 μmol L -1 . Monosaccharides and polyphenols constituted 3.9% (range of 3.4 to 4.4%) and 3.0% (2.2 to 3.7%) of the DOC, respectively, which suggests DOC may contain partially oxidized products that are possibly of a lignocellulose nature. Fractionation of the forest floor DOC indicated high organic acid contents (hydrophobic and hydrophilic acids) that averaged 92% of the total DOC. Organic acids were isolated and analyzed for elemental content (C, H, N, and S), and determination of UV absorptivity (E 4 /E 6 ) ratios, CuO oxidation products, FT-IR and 13 C-NMR spectra, and acidity by potentiometric titration. Their FT-IR and 13 C-NMR spectra suggest they are primarily carboxylic acids, with aliphatic and aromatic structure. An organic charge contribution model was developed using titration data, DOC fractionation percentages, and the total DOC in the forest floor leachates. Application of the model to all solutions accounted for 97% of the charge balance deficits

  6. Review of laboratory-based terrestrial bioaccumulation assessment approaches for organic chemicals: Current status and future possibilities.

    Science.gov (United States)

    Hoke, Robert; Huggett, Duane; Brasfield, Sandra; Brown, Becky; Embry, Michelle; Fairbrother, Anne; Kivi, Michelle; Paumen, Miriam Leon; Prosser, Ryan; Salvito, Dan; Scroggins, Rick

    2016-01-01

    In the last decade, interest has been renewed in approaches for the assessment of the bioaccumulation potential of chemicals, principally driven by the need to evaluate large numbers of chemicals as part of new chemical legislation, while reducing vertebrate test organism use called for in animal welfare legislation. This renewed interest has inspired research activities and advances in bioaccumulation science for neutral organic chemicals in aquatic environments. In January 2013, ILSI Health and Environmental Sciences Institute convened experts to identify the state of the science and existing shortcomings in terrestrial bioaccumulation assessment of neutral organic chemicals. Potential modifications to existing laboratory methods were identified, including areas in which new laboratory approaches or test methods could be developed to address terrestrial bioaccumulation. The utility of "non-ecotoxicity" data (e.g., mammalian laboratory data) was also discussed. The highlights of the workshop discussions are presented along with potential modifications in laboratory approaches and new test guidelines that could be used for assessing the bioaccumulation of chemicals in terrestrial organisms. © 2015 SETAC.

  7. In-silico identification and characterization of organic and inorganic chemical stress responding genes in yeast (Saccharomyces cerevisiae).

    Science.gov (United States)

    Barozai, Muhammad Younas Khan; Bashir, Farrukh; Muzaffar, Shafia; Afzal, Saba; Behlil, Farida; Khan, Muzaffar

    2014-10-15

    To study the life processes of all eukaryotes, yeast (Saccharomyces cerevisiae) is a significant model organism. It is also one of the best models to study the responses of genes at transcriptional level. In a living organism, gene expression is changed by chemical stresses. The genes that give response to chemical stresses will provide good source for the strategies in engineering and formulating mechanisms which are chemical stress resistant in the eukaryotic organisms. The data available through microarray under the chemical stresses like lithium chloride, lactic acid, weak organic acids and tomatidine were studied by using computational tools. Out of 9335 yeast genes, 388 chemical stress responding genes were identified and characterized under different chemical stresses. Some of these are: Enolases 1 and 2, heat shock protein-82, Yeast Elongation Factor 3, Beta Glucanase Protein, Histone H2A1 and Histone H2A2 Proteins, Benign Prostatic Hyperplasia, ras GTPase activating protein, Establishes Silent Chromatin protein, Mei5 Protein, Nondisjunction Protein and Specific Mitogen Activated Protein Kinase. Characterization of these genes was also made on the basis of their molecular functions, biological processes and cellular components. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Chemical composition and sources of organic aerosols over London from the ClearfLo 2012 campaigns

    Science.gov (United States)

    Finessi, Emanuela; Holmes, Rachel; Hopkins, James; Lee, James; Harrison, Roy; Hamilton, Jacqueline

    2014-05-01

    Air quality in urban areas represents a major public health issue with around one third of the European population concentrated in cities and numbers expected to increase at global scale, particularly in developing countries. Particulate matter (PM) represents a primary threat for human health as numerous studies have confirmed the association between increased levels of cardiovascular and respiratory diseases with the exposure to PM. Despite considerable efforts made in improving air quality and progressively stricter emissions regulations, the PM concentrations have not changed much over the past decades for reasons that remain unclear, and highlight that studies on PM source apportionment are required for the formulation of effective policy. We investigated the chemical composition of organic aerosol (OA) collected during two intensive field campaigns held in winter and summer 2012 in the frame of the project Clean air for London (http://www.clearflo.ac.uk/). PM samples were collected both at a city background site (North Kensington) and at a rural site 50 km southeast of London (Detling) with 8 to 24 hours sampling schedule and analysed using off-line methods. Thermal-optical analysis was used to quantify OC-EC components while a suite of soft ionization mass spectrometric techniques was deployed for detailed chemical characterization. Liquid chromatography mass Spectrometry (LC-MSn) was mostly used for the simultaneous detection and quantification of various tracers for both primary and secondary OA sources. Well-established markers for wood burning primary OA like levoglucosan and azelaic acid were quantified together with various classes of nitroaromatics including methyl-nitrocatechols that are potential tracers for wood burning secondary OA. In addition, oxidation products of biogenic VOCs such as isoprene and monoterpenes were also quantified for both seasons and sites. A non-negligible contribution from biogenic SOA to urban OA was found in summertime

  9. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Apel, Eric; Emmons, L.; Karl, Thomas G.; Flocke, Frank M.; Hills, A. J.; Madronich, Sasha; Lee-Taylor, J.; Fried, Alan; Weibring, P.; Walega, J.; Richter, Dirk; Tie, X.; Mauldin, L.; Campos, Teresa; Weinheimer, Andrew J.; Knapp, David; Sive, B.; Kleinman, Lawrence I.; Springston, S.; Zaveri, Rahul A.; Ortega, John V.; Voss, Paul B.; Blake, D. R.; Baker, Angela K.; Warneke, Carsten; Welsh-Bon, Daniel; de Gouw, Joost A.; Zheng, J.; Zhang, Renyi; Rudolph, Jochen; Junkermann, W.; Riemer, D.

    2010-01-01

    The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on March 18 and the NCAR C130 one day later on March 19. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the March 19 plume and to help interpret the OH

  10. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Apel, E.; Springston, S.; Karl, T.; Emmons, L.; Flocke, F.; Hills, A. J.; Madronich, S.; Lee-Taylor, J.; Fried, A.; Weibring, P.; Walega, J.; Richter, D., Tie, X.; Mauldin, L.; Campos, T.; Sive, B.; Kleinman, L.; Springston, S., Zaveri, R.; deGouw, J.; Zheng, J.; Zhang, R.; Rudolph, J.; Junkermann, W.; Riemer, D. D.

    2009-11-01

    The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on 18 March and the NCAR C130 one day later on 19 March. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the 19 March plume and to help interpret the OH

  11. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    Directory of Open Access Journals (Sweden)

    E. C. Apel

    2010-03-01

    Full Text Available The volatile organic compound (VOC distribution in the Mexico City Metropolitan Area (MCMA and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs but with a substantial contribution from oxygenated volatile organic compounds (OVOCs, predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry model and MOZART (Model for Ozone and Related chemical Tracers were able to approximate the observed MCMA daytime patterns and absolute values of the VOC OH reactivity. The MOZART model is also in agreement with observations showing that NMHCs dominate the reactivity distribution except in the afternoon hours. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height.

    A northeast transport event was studied in which air originating in the MCMA was intercepted aloft with the Department of Energy (DOE G1 on 18 March and downwind with the National Center for Atmospheric Research (NCAR C130 one day later on 19 March. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind; ozone was shown to be photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial extent and temporal evolution of the plume

  12. Insights into the Hendra virus NTAIL-XD complex: Evidence for a parallel organization of the helical MoRE at the XD surface stabilized by a combination of hydrophobic and polar interactions.

    Science.gov (United States)

    Erales, Jenny; Beltrandi, Matilde; Roche, Jennifer; Maté, Maria; Longhi, Sonia

    2015-08-01

    The Hendra virus is a member of the Henipavirus genus within the Paramyxoviridae family. The nucleoprotein, which consists of a structured core and of a C-terminal intrinsically disordered domain (N(TAIL)), encapsidates the viral genome within a helical nucleocapsid. N(TAIL) partly protrudes from the surface of the nucleocapsid being thus capable of interacting with the C-terminal X domain (XD) of the viral phosphoprotein. Interaction with XD implies a molecular recognition element (MoRE) that is located within N(TAIL) residues 470-490, and that undergoes α-helical folding. The MoRE has been proposed to be embedded in the hydrophobic groove delimited by helices α2 and α3 of XD, although experimental data could not discriminate between a parallel and an antiparallel orientation of the MoRE. Previous studies also showed that if the binding interface is enriched in hydrophobic residues, charged residues located close to the interface might play a role in complex formation. Here, we targeted for site directed mutagenesis two acidic and two basic residues within XD and N(TAIL). ITC studies showed that electrostatics plays a crucial role in complex formation and pointed a parallel orientation of the MoRE as more likely. Further support for a parallel orientation was afforded by SAXS studies that made use of two chimeric constructs in which XD and the MoRE were covalently linked to each other. Altogether, these studies unveiled the multiparametric nature of the interactions established within this complex and contribute to shed light onto the molecular features of protein interfaces involving intrinsically disordered regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics.

    Science.gov (United States)

    Gomez De Arco, Lewis; Zhang, Yi; Schlenker, Cody W; Ryu, Koungmin; Thompson, Mark E; Zhou, Chongwu

    2010-05-25

    We report the implementation of continuous, highly flexible, and transparent graphene films obtained by chemical vapor deposition (CVD) as transparent conductive electrodes (TCE) in organic photovoltaic cells. Graphene films were synthesized by CVD, transferred to transparent substrates, and evaluated in organic solar cell heterojunctions (TCE/poly-3,4-ethylenedioxythiophene:poly styrenesulfonate (PEDOT:PSS)/copper phthalocyanine/fullerene/bathocuproine/aluminum). Key to our success is the continuous nature of the CVD graphene films, which led to minimal surface roughness ( approximately 0.9 nm) and offered sheet resistance down to 230 Omega/sq (at 72% transparency), much lower than stacked graphene flakes at similar transparency. In addition, solar cells with CVD graphene and indium tin oxide (ITO) electrodes were fabricated side-by-side on flexible polyethylene terephthalate (PET) substrates and were confirmed to offer comparable performance, with power conversion efficiencies (eta) of 1.18 and 1.27%, respectively. Furthermore, CVD graphene solar cells demonstrated outstanding capability to operate under bending conditions up to 138 degrees , whereas the ITO-based devices displayed cracks and irreversible failure under bending of 60 degrees . Our work indicates the great potential of CVD graphene films for flexible photovoltaic applications.

  14. NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups

    Science.gov (United States)

    Cody, George D.; Alexander, Conel M. O.'D.

    2005-02-01

    Solid-state 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopic experiments have been performed on isolated meteoritic Insoluble Organic Matter (IOM) spanning four different carbonaceous chondrite meteorite groups; a CR2 (EET92042), a CI1 (Orgueil), a CM2 (Murchison), and the unique C2 meteorite, Tagish Lake. These solid state NMR experiments reveal considerable variation in bulk organic composition across the different meteorite group's IOM. The fraction of aromatic carbon increases as CR2 meteorite groups. Single pulse (SP) 13C magic angle spinning (MAS) NMR experiments reveal the presence of nanodiamonds with an apparent concentration ranking in the IOM of CR2 IOM of all four meteoritic IOM fractions are highly substituted. Fast spinning SP 1H MAS NMR spectral data combined with other NMR experimental data reveal that the average hydrogen content of sp 3 bonded carbon functional groups is low, requiring a high degree of aliphatic chain branching in each IOM fraction. The variation in chemistry across the meteorite groups is consistent with alteration by low temperature chemical oxidation. It is concluded that such chemistry principally affected the aliphatic moieties whereas the aromatic moieties and nanodiamonds may have been largely unaffected.

  15. Total organic carbon removal from a chemical lab’s wastewater using Fenton’s reagent

    Directory of Open Access Journals (Sweden)

    Oscar Mauricio Martínez Ávila

    2013-05-01

    Full Text Available Treating industrial wastewater represents a serious problem nowadays; it requires a strong understanding of the particular systems and (in most of cases ad hoc solutions. This work describes the use of Fenton’s reagent (reaction between H2O2 and Fe(II for removing total organic carbon (TOC from a particular chemical laboratory’s lab-scale batch reactor wastewater. Some operating variables (hydrogen peroxide and ferrous ion concentration, temperature and pH were evaluated regarding final TOC removal. An economic optimisation was made by means of a second order polynomial model representing these variables’ behaviour regarding TOC removal (0.94 R2. The highest experimentally reached TOC removal was 88.8% at 50 mg/L [Fe(II]0, 50 mM [H2O2]0 , pH=2.8 at 80oC, while 53.9% was obtained in optimised conditions, i.e. 36 mg/L [Fe(II]0 , 45.5 mM [H2O2]0 , pH=2.6 at 20°C. It was found that the Fenton process could achieve 41% removal, even in adverse conditions (pH close to 6. It was noted from the analysis that both H2O2 concentration and temperature had a powerful effect on organic matter degradation efficiency, as well as on total treatment cost.

  16. The status of soil contamination by semivolatile organic chemicals (SVOCs) in China: A review

    Energy Technology Data Exchange (ETDEWEB)

    Cai Quanying [College of Resources and Environment, South China Agricultural University, Guangzhou 510642 (China)], E-mail: cai_quanying@yahoo.com; Mo Cehui [Department of Environmental Engineering, Jinan University, Guangzhou 510632 (China)], E-mail: tchmo@jnu.edu.cn; Wu Qitang [College of Resources and Environment, South China Agricultural University, Guangzhou 510642 (China); Katsoyiannis, Athanasios [European Commission, Joint Research Centre, Institute for Health and Consumer Protection (IHCP), Physical and Chemical Exposure Unit, Ispra (Vatican City State, Holy See,), TP-281, Via E. Fermi 1, I-21020 (Italy)], E-mail: athanasios.katsogiannis@jrc.it; Zeng Qiaoyun [College of Resources and Environment, South China Agricultural University, Guangzhou 510642 (China)

    2008-01-25

    This paper summarizes the published scientific data on the soil contamination by semivolatile organic chemicals (SVOCs) in China. Data has been found for more than 150 organic compounds which were grouped into six classes, namely, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs) and phthalic acid esters (PAEs). An overview of data collected from the literature is presented in this paper. The Chinese regulation and/or other maximum acceptable values for SVOCs were used for the characterization of soils. In general, the compounds that are mostly studied in Chinese soils are OCPs, PAHs and PCBs. According to the studies reviewed here, the most abundant compounds were PAEs and PAHs (up to 46 and 28 mg kg{sup -1} dry weight, respectively); PCBs and OCPs occurred generally at concentrations lower than 100 {mu}g kg{sup -1} dry weight. Nevertheless, quite high concentrations of PCDD/Fs, PCBs and PBDEs were observed in contaminated sites (e.g., the sites affected by electronic waste activities). The average concentrations of PAHs and OCPs in soils of North China were higher than those in South China. The principal component analysis demonstrated different distribution patterns for PAH, PCB and PCDD/F congeners and for the various sites/regions examined. The isomer ratios of DDTs and hexachlorocyclohexanes (HCHs) indicated different sources and residue levels in soils. Finally, this review has highlighted several areas where further research is considered necessary.

  17. Chemical, Sensorial and Rheological Properties of a New Organic Rice Bran Beverage

    Directory of Open Access Journals (Sweden)

    Gerson Luis FACCIN

    2009-09-01

    Full Text Available Rice bran is a solid residue from rice polishing that is used in animal nutrition and rice oil production. Cultivation conditions with agro-toxics, lipids instability, and tendency for mycotoxin contamination restrict its application in human nutrition. Therefore, organic agriculture is an alternative to use the properties of rice bran. Rice bran beverage is a new cereal product from organic rice. This work presents the preliminary results of the chemical and rheological studies of a bath pasteurized rice bran beverage. Compared with integral defatted milk, soy extracts, and brown rice low-fat milk, the rice bran beverage studied in this work presents itself as an important source of minerals and unsaturated lipids. All essential amino acids were found in this product. Glutamic and aspartic acids were predominant. Bath pasteurization at boiling water temperature for 15 and 30 min was adequate for microbiological safety. Refrigeration storage for 20 days, evaluated by pH and acidity variations, was ideal for assessment of the beverage conservation time. The beverage viscosity was of the Newtonian standard behavior, and its viscosity during storage was not a good parameter to evaluate shelf life. Sensory preference tests showed positive perspectives for this new beverage.

  18. Durability of hydrophobic treatment of concrete

    NARCIS (Netherlands)

    Vries, J. de; Polder, R.B.; Borsje, H.

    1998-01-01

    The subject of this study was the performance of hydrophobic treatment to protect concrete against chloride penetration from de-icing salts. Hydrophobic treatment makes a concrete surface absorb less water and less chloride. Test methods and requirements for commercial products were established. In

  19. Durability of hydrophobic treatment of concrete

    NARCIS (Netherlands)

    Vries, J. de; Polder, R.B.; Borsje, H.

    1998-01-01

    The subject of this study was the performance of hydrophobic treatment to protect concrete against chloride penetration from de-icing salts. Hydrophobic treatment makes a concrete surface absorb less water and less chloride. Several types of tests were carried out to study the performance of

  20. Effect of Organic Solvents in Preparation of Silica-Based Chemical Gel Decontaminates for Decontamination of Nuclear Facilities

    International Nuclear Information System (INIS)

    Yoon, Suk Bon; Jung, Chong Hun; Kim, Chang Ki; Choi, Byung Seon; Lee, Kune Woo; Moon, Jei Kwon

    2011-01-01

    Decontamination of nuclear facilities is necessary to reduce the radiation field during normal operations and decommissioning of complex equipment such as stainless steel components, other iron-based steel and alloys, metal surfaces, structural materials and so on. Chemical decontamination technology in particular is a highly effective method to remove the radioactive contamination through a chemical dissolution or a redox reaction. However, this method has the serious drawback due to the generation of large amounts of the radioactive liquid wastes. Recently, a few literatures have been reported for the preparation of the chemical gel decontaminants to reduce the amount of the radioactive liquid wastes and to enhance the decontamination efficiency through increasing the contact time between the gels and the radioactive contaminants. In the preparation of the chemical gels, the control of the viscosity highly depends on the amount of a coviscosifier used among the components of the chemical gels consisted of a viscosifier, a coviscosifier, and a chemical decontaminant. In this works, a new effective method for the preparation of the chemical gel was investigated by introducing the organic solvents. The mixture solution of the coviscosifier and organic solvent was more effective in the control of the viscosity compared with that of the coviscosifier only in gels. Furthermore, the decontamination efficiency of the chemical gels measured by using the multi-channel analyzer (MCA) showed the high decontamination factor for Co-60 and Cs-137 contaminated on the surface of the stainless steel 304

  1. Organic phosphorus fractionation in wetland soil profiles by chemical extraction and phosphorus-31 nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Li, Min; Zhang, Jing; Wang, Guangqian; Yang, Haijun; Whelan, Michael J.; White, Sue M.

    2013-01-01

    Highlights: ► Chemical sequential extraction and 31 P NMR spectroscopy were used for organic P analysis. ► Organic P includes orthophosphate, monoester and diester phosphate and pyrophosphate. ► Highly resistant organic P and monoester phosphate were the dominant organic P. ► HCl pretreatment can remove most inorganic P and increase organic P recovery rate. ► A comprehensive organic P chemical sequential fractionation approach was proposed. - Abstract: Organic P (OP) plays an important role in soil P cycling and is a potential P source for wetland plants. In this study, a modified chemical sequential fractionation method and 31 P nuclear magnetic resonance spectroscopy ( 31 P NMR) of NaOH–EDTA extracts were used to examine the distribution of organic P fractions and compounds in soil profiles of the Beijing Yeyahu Wetland, China. The influence of acid treatment prior to NaOH–EDTA extraction on 31 P NMR spectra was also investigated. Results show that highly resistant OP was the major class of organic P. The rank order of organic P fractions was highly resistant OP (on average accounting for 68.5% of total OP) > moderately resistant OP (15.8%m of total OP) > moderately labile OP (11.4% of total OP) > labile OP (4.3% of total OP). Most of the organic P fractions decreased with soil depth due to the accumulation of plant residues in surface soils and the deposition and diagenesis of soils. Moderately (r = 0.586, p < 0.01) and highly (r = 0.741, p < 0.01) resistant OP fractions were positively correlated with soil organic matter. Phosphorus compounds including orthophosphate (23–74.6% of total P in spectra), monoester phosphate (18.6–76%), diester phosphate (nil-7.8%) and pyrophosphate (nil-6.7%) were characterized using 31 P NMR. Monoester-P was the dominant soil organic P compound identified. The proportion of monoester-P increased significantly in NaOH–EDTA extracts with HCl pretreatment and it was confirmed by chemical analysis. Therefore, it

  2. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications.

    Science.gov (United States)

    Sokolov, Anatoliy N; Tee, Benjamin C-K; Bettinger, Christopher J; Tok, Jeffrey B-H; Bao, Zhenan

    2012-03-20

    Skin is the body's largest organ and is responsible for the transduction of a vast amount of information. This conformable material simultaneously collects signals from external stimuli that translate into information such as pressure, pain, and temperature. The development of an electronic material, inspired by the complexity of this organ is a tremendous, unrealized engineering challenge. However, the advent of carbon-based electronics may offer a potential solution to this long-standing problem. In this Account, we describe the use of an organic field-effect transistor (OFET) architecture to transduce mechanical and chemical stimuli into electrical signals. In developing this mimic of human skin, we thought of the sensory elements of the OFET as analogous to the various layers and constituents of skin. In this fashion, each layer of the OFET can be optimized to carry out a specific recognition function. The separation of multimodal sensing among the components of the OFET may be considered a "divide and conquer" approach, where the electronic skin (e-skin) can take advantage of the optimized chemistry and materials properties of each layer. This design of a novel microstructured gate dielectric has led to unprecedented sensitivity for tactile pressure events. Typically, pressure-sensitive components within electronic configurations have suffered from a lack of sensitivity or long mechanical relaxation times often associated with elastomeric materials. Within our method, these components are directly compatible with OFETs and have achieved the highest reported sensitivity to date. Moreover, the tactile sensors operate on a time scale comparable with human skin, making them ideal candidates for integration as synthetic skin devices. The methodology is compatible with large-scale fabrication and employs simple, commercially available elastomers. The design of materials within the semiconductor layer has led to the incorporation of selectivity and sensitivity within

  3. Book of abstracts Chemical Engineering: IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists. Organic substances and pharmaceuticals engineering. Petrochemistry and chemical processing of alternative feedstock

    International Nuclear Information System (INIS)

    Zakhodyaeva, Yu.A.; Belova, V.V.

    2012-01-01

    In the given volume of abstracts of the IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists (Moscow, March 18-23, 2012) there are the abstracts of the reports concerning organic substances and pharmaceuticals engineering, petrochemistry and chemical processing of alternative feedstock. The abstracts deal with state-of-the-art and future development of theoretical and experimental investigations as well as with experience in practical realization of development works in the field of chemical engineering and relative areas [ru

  4. Dynamics of Wetting of Ultra Hydrophobic Surfaces

    Science.gov (United States)

    Mohammad Karim, Alireza; Kim, Jeong-Hyun; Rothstein, Jonathan; Kavehpour, Pirouz; Mechanical and Industrial Engineering, University of Massachusetts, Amherst Collaboration

    2013-11-01

    Controlling the surface wettability of hydrophobic and super hydrophobic surfaces has extensive industrial applications ranging from coating, painting and printing technology and waterproof clothing to efficiency increase in power and water plants. This requires enhancing the knowledge about the dynamics of wetting on these hydrophobic surfaces. We have done experimental investigation on the dynamics of wetting on hydrophobic surfaces by looking deeply in to the dependency of the dynamic contact angles both advancing and receding on the velocity of the three-phase boundary (Solid/Liquid/Gas interface) using the Wilhelmy plate method with different ultra-hydrophobic surfaces. Several fluids with different surface tension and viscosity are used to study the effect of physical properties of liquids on the governing laws.

  5. Oxygenated Organic Chemicals in the Pacific Troposphere: Distribution, Sources and Chemistry

    Science.gov (United States)

    Singh, Hanwant B.; Salas, L.; Chatfield, R.; Czech, E.; Fried, A.; Evans, M.; Jacob, D. J.; Blake, D.; Heikes, B.; Talbot, R.

    2003-01-01

    Airborne measurements of a large number of oxygenated organic chemicals (Oxorgs) were carried out in the Pacific troposphere (0.1-12 km) in the Spring of 2001 (Feb. 24-April 10). Specifically these measuremen ts included acetone, methylethyl ketone (MEK), methanol, ethanol, ace taldehyde, propionaldehyde, PANS, and organic nitrates. Complementary measurements of formaldehyde, organic peroxides, and tracers were al so available. Ox-orgs were abundant in the clean troposphere and were greatly enhanced in the outflow regions from Asia. Their mixing ratios were typically highest in the lower troposphere and declined toward s the upper troposphere and the lowermost stratosphere. Their total a bundance (Ox-orgs) significantly exceeded that of NMHC (C2-C8 NMHC). A comparison of these data with observations collected some seven yea rs earlier (Feb.-March, 1994), did not reveal any significant changes . Throughout the troposphere mixing ratios of Ox-orgs were strongly c orrelated with each other as well as with tracers of fossil and bioma sshiof'uel combustion. Analysis of the relative enhancement of selected Oxorgs with respect to CH3Cl and CO in twelve sampled plumes, origi nating from fires, is used to assess their primary and secondary sour ces from biomass combustion. The composition of these plumes also ind icates a large shift of reactive nitrogen into the PAN reservoir ther eby limiting ozone formation. The Harvard 3-D photochemical model, th at uses state of the art chemistry and source information, is used to compare simulated and observed mixing ratios of selected species. A 1 -D model is used to explore the chemistry of aldehydes. These results will be presented.

  6. Secondary organic aerosol in the global aerosol – chemical transport model Oslo CTM2

    Directory of Open Access Journals (Sweden)

    I. S. A. Isaksen

    2007-11-01

    Full Text Available The global chemical transport model Oslo CTM2 has been extended to include the formation, transport and deposition of secondary organic aerosol (SOA. Precursor hydrocarbons which are oxidised to form condensible species include both biogenic species such as terpenes and isoprene, as well as species emitted predominantly by anthropogenic activities (toluene, m-xylene, methylbenzene and other aromatics. A model simulation for 2004 gives an annual global SOA production of approximately 55 Tg. Of this total, 2.5 Tg is found to consist of the oxidation products of anthropogenically emitted hydrocarbons, and about 15 Tg is formed by the oxidation products of isoprene. The global production of SOA is increased to about 69 Tg yr−1 by allowing semi-volatile species to partition to ammonium sulphate aerosol. This brings modelled organic aerosol values closer to those observed, however observations in Europe remain significantly underestimated. Allowing SOA to partition into ammonium sulphate aerosol increases the contribution of anthropogenic SOA from about 4.5% to 9.4% of the total production. Total modelled organic aerosol (OA values are found to represent a lower fraction of the measured values in winter (when primary organic aerosol (POA is the dominant OA component than in summer, which may be an indication that estimates of POA emissions are too low. Additionally, for measurement stations where the summer OA values are higher than in winter, the model generally underestimates the increase in summertime OA. In order to correctly model the observed increase in OA in summer, additional SOA sources or formation mechanisms may be necessary. The importance of NO3 as an oxidant of SOA precursors is found to vary regionally, causing up to 50%–60% of the total amount of SOA near the surface in polluted regions and less than 25% in more remote areas, if the yield of condensible oxidation products for β-pinene is used for NO3 oxidation of all terpenes

  7. Influence of chemistry on wetting dynamics of nanotextured hydrophobic surfaces.

    Science.gov (United States)

    Di Mundo, Rosa; Palumbo, Fabio; d'Agostino, Riccardo

    2010-04-06

    In this work, the role of a chemical parameter, such as the degree of fluorination, on the wetting behavior of nanotextured hydrophobic surfaces is investigated. Texture and chemistry tuning of the surfaces has been accomplished with single batch radiofrequency low-pressure plasma processes. Polystyrene substrates have been textured by CF(4) plasma etching and subsequently covered by thin films with a tunable F-to-C ratio, obtained in discharges fed with C(4)F(8)-C(2)H(4). Measurements of wetting dynamics reveal a regime transition from adhesive-hydrophobic to slippery-superhydrophobic, i.e., from wet to non wet states, as the F-to-C rises at constant topography. Such achievements are strengthened by calculation of the solid fraction of surface water contact area applying Cassie-Baxter advancing and receding equations to water contact angle data of textured and flat reference surfaces.

  8. Patterned hydrophobic and hydrophilic surfaces of ultra-smooth nanocrystalline diamond layers

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, M., E-mail: michael.mertens@uni-ulm.de [Institute of Micro and Nanomaterials, Ulm University, 89081 Ulm (Germany); Mohr, M.; Brühne, K.; Fecht, H.J. [Institute of Micro and Nanomaterials, Ulm University, 89081 Ulm (Germany); Łojkowski, M.; Święszkowski, W. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Łojkowski, W. [Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw (Poland)

    2016-12-30

    Highlights: • Hydrophobic and hydrophilic properties on fluorine-, hydrogen- and oxygen- terminated ultra-nanocrystalline diamond films. • Micropatterned - multi-terminated layers with both hydrophobic and hydrophilic areas on one sample. • Visualization of multi-terminated surfaces by e.g. SEM and LFM. • Roughness and friction investigations on different terminated surfaces. • Smooth and biocompatible surfaces with same roughness regardless of hydrophobicity for microbiological investigations. - Abstract: In this work, we show that ultra nanocrystalline diamond (UNCD) surfaces have been modified to add them hydrophobic and hydrophilic properties. The nanocrystalline diamond films were deposited using the hot filament chemical vapor deposition (HFCVD) technique. This allows growing diamond on different substrates which can be even 3D or structured. Silicon and, for optical applications, transparent quartz glass are the preferred substrates for UNCD layers growth. Fluorine termination leads to strong hydrophobic properties as indicated by a high contact angle for water of more than 100°. Hydrogen termination shows lesser hydrophobic behavior. Hydrophilic characteristics has been realised with oxygen termination. X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) measurements confirm the oxygen and fluorine- termination on the nanocrystalline diamond surface. Further, by micropatterning using photolithography, multi-terminated layers have been created with both hydrophobic and hydrophilic areas. In addition, we have shown that retermination is achieved, and the properties of the surface have been changed from hydrophobic to hydrophilic and vice versa. Micro- roughness and stress in the grown film influences slightly the wetting angle as well. The opportunity to realize local differences in hydrophobicity on nanocrystalline diamond layers, in any size or geometry, offers interesting applications for example in

  9. Analysis of chemical reaction kinetics of depredating organic pollutants from secondary effluent of wastewater treatment plant in constructed wetlands.

    Science.gov (United States)

    Wang, Hao; Jiang, Dengling; Yang, Yong; Cao, Guoping

    2013-01-01

    Four subsurface constructed wetlands were built to treat the secondary effluent of a wastewater treatment plant in Tangshan, China. The chemical pollutant indexes of chemical oxygen demand (COD) were analyzed to evaluate the removal efficiency of organic pollutants from the secondary effluent of the wastewater treatment plant. In all cases, the subsurface constructed wetlands were efficient in treating organic pollutants. Under the same hydraulic loading condition, the horizontal flow wetlands exhibited better efficiency of COD removal than vertical flow wetlands: the removal rates in horizontal flow wetlands could be maintained at 68.4 ± 2.42% to 92.2 ± 1.61%, compared with 63.8 ± 1.19% to 85.0 ± 1.25% in the vertical flow wetlands. Meanwhile, the chemical reaction kinetics of organic pollutants was analyzed, and the results showed that the degradation courses of the four subsurface wetlands all corresponded with the first order reaction kinetics to a large extent.

  10. Performance of metal-organic framework MIL-101 after surfactant modification in the extraction of endocrine disrupting chemicals from environmental water samples.

    Science.gov (United States)

    Huang, Zhenzhen; Lee, Hian Kee

    2015-10-01

    The research presented in this paper explored the modification and application of a metal-organic framework, MIL-101, with nonionic surfactant-Triton X-114 in dispersive solid-phase extraction for the preconcentration of four endocrine disrupting chemicals (estrone, 17α-ethynylestradiol, estriol and diethylstilbestrol) from environmental water samples. Triton X-114 molecules could be adsorbed by the hydrophobic surface of the MIL-101 crystals, and thus improved the dispersibility of MIL-101 in aqueous solution by serving as a hydrophilic coating. Cloud point phase separation from Triton X-114 accelerated the separation of extracts from the aqueous matrix. The proposed method combines the favorable attributes of strong adsorption capacity resulting from the porous structure of MIL-101 and self-assembly of Triton X-114 molecules. Post-extraction derivatization using N-methyl-N-(trimethylsilyl)trifluoroacetamide was employed to facilitate the quantitative determination of the extracts by gas chromatography-mass spectrometry. The main factors affecting the preparation of modified MIL-101, and extraction of the analytes, such as the amount of surfactant, the ultrasonic and vortex durations, solution pH and desorption conditions, were investigated in detail. Under the optimized conditions, the present method yielded low limits of detection (0.006-0.023 ng/mL), good linearity from 0.09 to 45 ng/mL (coefficients of determination higher than 0.9980) and acceptable precision (relative standard deviations of 2.2-13%). The surface modified MIL-101 was demonstrated to be effective for the extraction of the selected estrogens from aqueous samples, giving rise to markedly improved extraction performance compared to the unmodified MIL-101. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Selected elements and organic chemicals in bed sediment and fish tissue of the Tualatin River basin, Oregon, 1992-96

    Science.gov (United States)

    Bonn, Bernadine A.

    1999-01-01

    A variety of elements and organic compounds have entered the environment as a result of human activities. Such substances find their way to aquatic sediments from direct discharges to waterways, atmospheric emissions, and runoff. Some of these chemicals are known to harm fish or wildlife, either by direct toxicity, by reducing viability, or by limiting reproductive success. In aquatic systems, sediments become the eventual sink for most of these chemicals. Analyzing the sediments provides a first step in a chemical inventory that can lead to an assessment of potential biological impacts (Kennicutt and others, 1994).

  12. Variations in amounts and potential sources of volatile organic chemicals in new cars

    International Nuclear Information System (INIS)

    Chien, Y.-C.

    2007-01-01

    This study examines inter-brand, intra-brand and intra-model variations in volatile organic chemical (VOC) levels inside new cars. The effect of temperature on interior VOC levels was examined using model automobiles with and without the air-conditioning running. Potential sources of VOC were assessed by comparing VOC levels with two interior trims (leather and fabric) and by analyzing VOC emissions from various interior components. Five brands of new car, both domestic and imported, were tested. Twelve targeted VOCs were collected on solid sorbents and analyzed using thermal desorption and GC/FID. VOCs from interior parts and adhesives were identified using solid phase micro-extraction (SPME) coupled with GC/MS. The VOC concentrations varied markedly among brands and within models, and individual VOC levels ranged from below the detection limit (a few μg per cubic meter) to thousands of μg per cubic meter. The intra-model variability (mean, 47%) in the VOC levels was approximately 50% that within each brand (mean, 95%). Although interior trim levels affected VOC levels, the effects differed among brands. Reduction of the cabin temperature reduced most VOC levels, but the impact was not statistically significant. Screening tests for VOCs from interior parts revealed that butylated hydroxytoluene (BHT), a common anti-oxidant, was the most common chemical. Long-chain aliphatic hydrocarbons, particularly C14-C17, were identified in most grease (lubricant) samples, and toluene and xylenes were ubiquitously present in adhesive samples. Process-related compounds, such as plasticizer, were also identified in interior parts. In-cabin VOC levels varied significantly among makes/models and interior trims. Concerned consumers should purchase older new cars from manufacturers since VOC levels inside car cabins normally declines over time. Improved processes or materials with lower VOC emission potential should be used to minimize in-cabin VOC sources for new cars

  13. Application of Polar Organic Chemical Integrative Sampler (POCIS) to monitor emerging contaminants in tropical waters.

    Science.gov (United States)

    Bayen, Stéphane; Segovia, Elvagris; Loh, Lay Leng; Burger, David F; Eikaas, Hans S; Kelly, Barry C

    2014-06-01

    Tools specifically validated for tropical environments are needed to accurately describe the behavior of chemical contaminants in tropical ecosystems. In the present study, sampling rates (Rs) were determined for the commercial pharmaceutical-type Polar Organic Chemical Integrative Sampler (POCIS) with a 45.8cm(2) exposure surface for 35 Pharmaceutically Active Compounds (PhACs) and Endocrine Disrupting Compounds (EDCs), of which eight compounds (albuterol, atorvastatin, diltiazem, dilantin, enalapril, norfluoxetine, risperidone and warfarin) were reported for the first time. These sampling rates were measured in an outdoor laboratory calibration setup to best capture diurnal tropical temperature variations (29±3°C). The effect of stirring and salinity was investigated. For all compounds, the sampling rates were higher under stirred conditions as compared to quiescent conditions. Calibration results in the presence of 30g sodium chloride support that the effects of salinity on POCIS sampling rates are compound-specific. Comparisons between Time-Weight Average (TWA) water concentrations using POCIS and spot sample levels in the field (2 lake and 1 mangrove estuary sites) are presented. Results showed that POCIS TWA concentrations were in agreement with spot sample concentrations for these aquatic systems. Results indicate that POCIS can be used to effectively measure the TWA concentration for a range of PhACs and EDCs in tropical waters. However, based on the results from mass balance and field deployments, POCIS did not appear suitable for compounds with a low mass balance recovery during calibration (e.g. triclosan and linuron in this study). Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Chemical and optical changes in freshwater dissolved organic matter exposed to solar radiation

    Science.gov (United States)

    Osburn, C.L.; Morris, D.P.; Thorn, K.A.; Moeller, R.E.

    2001-01-01

    We studied the chemical and optical changes in the dissolved organic matter (DOM) from two freshwater lakes and a Sphagnum bog after exposure to solar radiation. Stable carbon isotopes and solid-state 13C-NMR spectra of DOM were used together with optical and chemical data to interpret results from experimental exposures of DOM to sunlight and from seasonal observations of two lakes in northeastern Pennsylvania. Solar photochemical oxidation of humic-rich bog DOM to smaller LMW compounds and to DIC was inferred from losses of UV absorbance, optical indices of molecular weight and changes in DOM chemistry. Experimentally, we observed a 1.2??? enrichment in ??13C and a 47% loss in aromatic C functionality in bog DOM samples exposed to solar UVR. Similar results were observed in the surface waters of both lakes. In late summer hypolimnetic water in humic Lake Lacawac, we observed 3 to 4.5??? enrichments in ??13C and a 30% increase in aromatic C relative to early spring values during spring mixing. These changes coincided with increases in molecular weight and UV absorbance. Anaerobic conditions of the hypolimnion in Lake Lacawac suggest that microbial metabolism may be turning over allochthonous C introduced during spring mixing, as well as autochthonous C. This metabolic activity produces HMW DOM during the summer, which is photochemically labile and isotopically distinct from allochthonous DOM or autochthonous DOM. These results suggest both photooxidation of allochthonous DOM in the epilimnion and autotrophic production of DOM by bacteria in the hypolimnion cause seasonal trends in the UV absorbance of lakes.

  15. Decomposition of soil organic matter from boreal black spruce forest: Environmental and chemical controls

    Science.gov (United States)

    Wickland, K.P.; Neff, J.C.

    2008-01-01

    Black spruce forests are a dominant covertype in the boreal forest region, and they inhabit landscapes that span a wide range of hydrologic and thermal conditions. These forests often have large stores of soil organic carbon. Recent increases in temperature at northern latitudes may be stimulating decomposition rates of this soil carbon. It is unclear, however, how changes in environmental conditions influence decomposition in these systems, and if substrate controls of decomposition vary with hydrologic and thermal regime. We addressed these issues by investigating the effects of temperature, moisture, and organic matter chemical characteristics on decomposition of fibric soil horizons from three black spruce forest sites. The sites varied in drainage and permafrost, and included a "Well Drained" site where permafrost was absent, and "Moderately well Drained" and "Poorly Drained" sites where permafrost was present at about 0.5 m depth. Samples collected from each site were incubated at five different moisture contents (2, 25, 50, 75, and 100% saturation) and two different temperatures (10??C and 20??C) in a full factorial design for two months. Organic matter chemistry was analyzed using pyrolysis gas chromatography-mass spectrometry prior to incubation, and after incubation on soils held at 20??C, 50% saturation. Mean cumulative mineralization, normalized to initial carbon content, ranged from 0.2% to 4.7%, and was dependent on temperature, moisture, and site. The effect of temperature on mineralization was significantly influenced by moisture content, as mineralization was greatest at 20??C and 50-75% saturation. While the relative effects of temperature and moisture were similar for all soils, mineralization rates were significantly greater for samples from the "Well Drained" site compared to the other sites. Variations in the relative abundances of polysaccharide-derivatives and compounds of undetermined source (such as toluene, phenol, 4-methyl phenol, and

  16. Equilibrium Sampling to Determine the Thermodynamic Potential for Bioaccumulation of Persistent Organic Pollutants from Sediment

    DEFF Research Database (Denmark)

    Jahnke, Annika; MacLeod, Matthew; Wickström, Håkan

    2014-01-01

    Equilibrium partitioning (EqP) theory is currently the most widely used approach for linking sediment pollution by persistent hydrophobic organic chemicals to bioaccumulation. Most applications of the EqP approach assume (I) a generic relationship between organic carbon-normalized chemical...... chemical concentrations in the silicone, and applying lipid/silicone partition ratios to yield concentrations in lipid at thermodynamic equilibrium with the sediment (CLip⇌Sed). Furthermore, we evaluated the validity of assumption II by comparing CLip⇌Sed of selected persistent, bioaccumulative and toxic...... organic chemicals from sediment useful to prioritize management actions to remediate contaminated sites....

  17. Radioisotopic methods - determination of action of toxic chemicals to food - digestion organs

    International Nuclear Information System (INIS)

    Saitmuratova, O.H.; Tursunov, E.A.

    2004-01-01

    Full text: It is known that poison chemicals used for agriculture enter in an organism of human and animal by various ways and affect key processes in cells and tissues. These processes are investigated insufficiently, nevertheless, investigating actions of chemicals on bodies and tissues it, is possible to define a degree of its toxicity. In the present work influence of defoliant drop and insecticide buldok on protein synthetic ability (PSA) of cells of digestive bodies (a liver, a stomach and duodenal gut) is investigated. Experiments carried out on white not purebred rats - males in weight 160-180 g, which entered drop in doze of 1/5 IC 50 5350 mg/kg, buldok 1/5 IC 50 400 mg/kg and 14 C-glutamine acid with the general activity 1 mk Curie (2.2*106 imp/min) in one hour up to slaughter. A control animal in parallel entered a physiological solution. In animals hammered in one hour and investigated inclusion 14 C- glutamine acids in structure of synthesized proteins of a liver, a stomach and duodenal gut. Action of preparations checked in 1, 24 and 72 hours after introduction. As have shown the received data drop suppresses PSA in cells of a liver on 14 % and 45 % in 24 and 72 hours accordingly; in a stomach - on 32 % and 34 %; in duodenal gut - on 39 % and 48 %. PSA it is more suppressed in a stomach. Further process is gradually restored in all bodies. Buldok in the same terms suppresses PSA in a liver on 4 % and 25 %; in a stomach of 4 % and 16 % and in duodenal gut on the contrary are raised with formation of protein on 27 %. The next day there is restoration PSA in all investigated bodies. From the received data it is visible, that defoliant drop as well as insecticide buldok influence on PSA cells, but action of drop is stronger, than buldok. It will be coordinated to earlier received data on change of morphological structures under influence of these pesticides. Though drop and buldok differ on dynamics of action on PSA digestive bodies, they are not strongly

  18. Organic chemical composition of mud from the LUSI mud volcano, Sidoarjo, East Java, Indonesia

    Science.gov (United States)

    Rosenbauer, R. J.; Campbell, P.; Lam, A.

    2009-12-01

    Sidoarjo, East Java, Indonesia is the site of LUSI, a terrestrial mud volcano that has been erupting since May 29, 2006. In response to a U.S. Department of State request, the U.S. Geological Survey has been assisting the Indonesian Government to describe the geological and geochemical aspects and potential health risk of the mud eruption. We report here on the organic chemical composition of the mud. Organic chemical analyses were carried out by gas chromatography/mass spectroscopy following organic extraction by microwave-assisted solvent extraction and compound fractionation by adsorption chromatography. There is a petroliferous component in the mud that is fresh, immature, and nonbiodegraded. There is a complete suite of n-alkanes with a bell-shaped pattern typical of fresh petroleum with a Cmax around C20. The alkane content ranges from 0.12 to 1.01 mg/kg dry mud. The presence of certain hopanes (i.e. 17 α,21β(H)-30-norhopane and 17α,21β(H)-hopane) is also indicative of the presence of oil. The proportions of other biomarker compounds (pristane/phytane = 2.4) and the dominance of the C27 sterane (5α(H),14α(H),17α(H)-chlolestane) suggest that oil formed under oxic conditions and has a likely coastal marine or terrigenous source. The presence of oleanane indicates a Cretaceous or younger age for the petrogenic material. These geochemical parameters are consistent with Indonesian oil derived from Tertiary marlstone source rocks that contained kerogen deposited under oxic conditions, probably the upper Miocene Klasafet Formation. Polycyclic aromatic hydrocarbons (PAHs) are present and range in content from 0.1 to 2.2 mg/kg dry mud. The low molecular weight (LMW) PAHs, in particular, naphthalene and methyl-naphthalene are dominant except for perylene which is ubiquitous in the environment. The presence of both parent and higher homologue PAHs indicate a petrogenic rather than combustion source. PAHs are known carcinogens but toxicity data in sediments are

  19. Study of the occurrence of organic matter, metals and chemicals in the SFR

    International Nuclear Information System (INIS)

    Sundqvist, J.O.

    2001-03-01

    Low- and intermediate level operational waste from the Swedish nuclear power plants, and the Studsvik facility, is currently placed in a repository, termed SFR-l (final repository for radioactive operational waste) near the Forsmark power plant. Two important components in the waste, which can affect the function of the repository, are organic materials, e.g. cloth and paper, and metals (scrap). The release of radionuclides from the repository may be affected by chemical reactions that involve both organic materials and metals. After sealing the repository, the conditions can be such that complexing agents (e.g. isosaccarinic acid) may form when organic materials degrade. These agents typically increase the mobility of radionuclides. Formation of gas, mainly due to metal corrosion, may affect the barrier system, surrounding the waste, such that the release of radionuclides is enhanced. SKB makes an annual report with a compilation of the waste that has been placed in SFR-l . The compilation contains both the amount of waste placed in the repository during the last year and a compilation of the waste that have been placed since the stall of SFR. Moreover, SKB provides a prognosis of the future situation in SFR-1 every third year. SKI (the Swedish Nuclear Power Inspectorate), is responsible for reviewing this reporting. This study was initiated with the purpose of evaluating the uncertainties in SKB's estimates of the amounts of organic matter, metals and chemicals in the waste in SFR- I. The estimates of the quantities of e.g. cellulose and metals in the waste are based on a method which is utilising what is called normal-containers. The waste is classified into certain waste categories. For each waste category there is a specified, presumed composition, named normal-container. The results of this study suggest that the documentation provided by SKB is lacking in some respects. There are for instance examples of incomplete notification of waste and container types

  20. Stress-induced chemical detection using flexible metal-organic frameworks.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Hesketh, Peter J. (Georgia Institute of Technology, Atlanta, GA); Gall, Kenneth A. (Georgia Institute of Technology, Atlanta, GA); Choudhury, A. (Georgia Institute of Technology, Atlanta, GA); Pikarsky, J. (Georgia Institute of Technology, Atlanta, GA); Andruszkiewicz, Leanne (Georgia Institute of Technology, Atlanta, GA); Houk, Ronald J. T.; Talin, Albert Alec (National Institute of Standards & Technology, Gaithersburg, MD)

    2009-09-01

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be efficiently converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N{sub 2} or O{sub 2}. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO{sub 2}. We also report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes. A force field model is described that successfully predicts changes in MOF properties and the uptake of gases. This model is used to predict adsorption isotherms for a number of representative compounds, including explosives, nerve agents, volatile organic compounds, and polyaromatic hydrocarbons. The results show that, as a result of relatively large heats of adsorption (> 20 kcal mol{sup -1}) in most cases, we expect an onset of adsorption by MOF as low as 10{sup -6} kPa, suggesting the potential to detect compounds such as RDX at levels as low as 10 ppb at atmospheric pressure.

  1. Mortality of workers potentially exposed to organic and inorganic brominated chemicals, DBCP, TRIS, PBB, and DDT

    Energy Technology Data Exchange (ETDEWEB)

    Wong, O; Brocker, W; Davis, H V; Nagle, G S

    1984-02-01

    A historical prospective mortality study was conducted on 3579 white male workers employed between 1935 and 1976 with potential exposures to brominated compounds including 1,2-dibromo-3-chloropropane (DBCP), Tris (2,3-dibromopropyl) phosphate, polybrominated biphenyls (PBB), various organic and inorganic bromides, and DDT. Death certificates were obtained for 541 deaths (94% of all deaths). The mortality experience of the entire cohort and several subcohorts was compared with that of United States white men adjusted for age and calendar time. The comparison statistic was the commonly used standardised mortality ratio (SMR). Historical industrial hygiene data were not available, and the workers were classified by their work areas or departments in order to estimate their potential exposures. Overall mortality for the entire cohort and several subgroups was significantly lower than expected. For the entire cohort, significant mortality deficits were observed in diseases of the circulatory system, non-malignant respiratory disease, and diseases of the digestive system. On the other hand, mortality from diabetes mellitus was significantly raised for the cohort. No significant overall or cause-specific mortality excess was detected among employees potentially exposed to either TRIS or DDT. A significant mortality excess due to diseases of the circulatory system was observed among workers potentially exposed to DBCP. Mortality from testicular cancer was significantly higher than expected among those potentially exposed to other organic bromides. The common potential exposure of those who had died of testicular cancer was methyl bromide. Owing to the lack of accurate historical exposure information and the fact that many workers were potentially exposed to a multitude of chemicals, it is difficult to draw definitive statements on the causations of the observed mortality excesses.

  2. Boundary layers of aqueous surfactant and block copolymer solutions against hydrophobic and hydrophilic solid surfaces

    International Nuclear Information System (INIS)

    Steitz, Roland; Schemmel, Sebastian; Shi Hongwei; Findenegg, Gerhard H

    2005-01-01

    The boundary layer of aqueous surfactants and amphiphilic triblock copolymers against flat solid surfaces of different degrees of hydrophobicity was investigated by neutron reflectometry (NR), grazing incidence small angle neutron scattering (GISANS) and atomic force microscopy (AFM). Solid substrates of different hydrophobicities were prepared by appropriate surface treatment or by coating silicon wafers with polymer films of different chemical natures. For substrates coated with thin films (20-30 nm) of deuterated poly(styrene) (water contact angle θ w ∼ 90), neutron reflectivity measurements on the polymer/water interface revealed a water depleted liquid boundary layer of 2-3 nm thickness and a density about 90% of the bulk water density. No pronounced depletion layer was found at the interface of water against a less hydrophobic polyelectrolyte coating (θ w ∼ 63). It is believed that the observed depletion layer at the hydrophobic polymer/water interface is a precursor of the nanobubbles which have been observed by AFM at this interface. Decoration of the polymer coatings by adsorbed layers of nonionic C m E n surfactants improves their wettability by the aqueous phase at surfactant concentrations well below the critical micellar concentration (CMC) of the surfactant. Here, GISANS experiments conducted on the system SiO 2 /C 8 E 4 /D 2 O reveal that there is no preferred lateral organization of the C 8 E 4 adsorption layers. For amphiphilic triblock copolymers (PEO-PPO-PEO) it is found that under equilibrium conditions they form solvent-swollen brushes both at the air/water and the solid/water interface. In the latter case, the brushes transform to uniform, dense layers after extensive rinsing with water and subsequent solvent evaporation. The primary adsorption layers maintain properties of the precursor brushes. In particular, their thickness scales with the number of ethylene oxide units (EO) of the block copolymer. In the case of dip-coating without

  3. Targeting of the hydrophobic metabolome by pathogens.

    Science.gov (United States)

    Helms, J Bernd; Kaloyanova, Dora V; Strating, Jeroen R P; van Hellemond, Jaap J; van der Schaar, Hilde M; Tielens, Aloysius G M; van Kuppeveld, Frank J M; Brouwers, Jos F

    2015-05-01

    The hydrophobic molecules of the metabolome - also named the lipidome - constitute a major part of the entire metabolome. Novel technologies show the existence of a staggering number of individual lipid species, the biological functions of which are, with the exception of only a few lipid species, unknown. Much can be learned from pathogens that have evolved to take advantage of the complexity of the lipidome to escape the immune system of the host organism and to allow their survival and replication. Different types of pathogens target different lipids as shown in interaction maps, allowing visualization of differences between different types of pathogens. Bacterial and viral pathogens target predominantly structural and signaling lipids to alter the cellular phenotype of the host cell. Fungal and parasitic pathogens have complex lipidomes themselves and target predominantly the release of polyunsaturated fatty acids from the host cell lipidome, resulting in the generation of eicosanoids by either the host cell or the pathogen. Thus, whereas viruses and bacteria induce predominantly alterations in lipid metabolites at the host cell level, eukaryotic pathogens focus on interference with lipid metabolites affecting systemic inflammatory reactions that are part of the immune system. A better understanding of the interplay between host-pathogen interactions will not only help elucidate the fundamental role of lipid species in cellular physiology, but will also aid in the generation of novel therapeutic drugs. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Stress-induced chemical detection using flexible metal-organic frameworks.

    Science.gov (United States)

    Allendorf, Mark D; Houk, Ronald J T; Andruszkiewicz, Leanne; Talin, A Alec; Pikarsky, Joel; Choudhury, Arnab; Gall, Kenneth A; Hesketh, Peter J

    2008-11-05

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N2 or O2. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO2. Finally, we report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes.

  5. Deposition of highly (111)-oriented PZT thin films by using metal organic chemical deposition

    CERN Document Server

    Bu, K H; Choi, D K; Seong, W K; Kim, J D

    1999-01-01

    Lead zirconate titanate (PZT) thin films have been grown on Pt/Ta/SiNx/Si substrates by using metal organic chemical vapor deposition with Pb(C sub 2 H sub 5) sub 4 , Zr(O-t-C sub 4 H sub 9) sub 4 , and Ti(O-i-C sub 3 H sub 7) sub 4 as source materials and O sub 2 as an oxidizing gas. The Zr fraction in the thin films was controlled by varying the flow rate of the Zr source material. The crystal structure and the electrical properties were investigated as functions of the composition. X-ray diffraction analysis showed that at a certain range of Zr fraction, highly (111)-oriented PZT thin films with no pyrochlore phases were deposited. On the other hand, at low Zr fractions, there were peaks from Pb-oxide phases. At high Zr fractions, peaks from pyrochlore phase were seen. The films also showed good electrical properties, such as a high dielectric constant of more than 1200 and a low coercive voltage of 1.35 V.

  6. How to compute isomerization energies of organic molecules with quantum chemical methods.

    Science.gov (United States)

    Grimme, Stefan; Steinmetz, Marc; Korth, Martin

    2007-03-16

    The reaction energies for 34 typical organic isomerizations including oxygen and nitrogen heteroatoms are investigated with modern quantum chemical methods that have the perspective of also being applicable to large systems. The experimental reaction enthalpies are corrected for vibrational and thermal effects, and the thus derived "experimental" reaction energies are compared to corresponding theoretical data. A series of standard AO basis sets in combination with second-order perturbation theory (MP2, SCS-MP2), conventional density functionals (e.g., PBE, TPSS, B3-LYP, MPW1K, BMK), and new perturbative functionals (B2-PLYP, mPW2-PLYP) are tested. In three cases, obvious errors of the experimental values could be detected, and accurate coupled-cluster [CCSD(T)] reference values have been used instead. It is found that only triple-zeta quality AO basis sets provide results close enough to the basis set limit and that sets like the popular 6-31G(d) should be avoided in accurate work. Augmentation of small basis sets with diffuse functions has a notable effect in B3-LYP calculations that is attributed to intramolecular basis set superposition error and covers basic deficiencies of the functional. The new methods based on perturbation theory (SCS-MP2, X2-PLYP) are found to be clearly superior to many other approaches; that is, they provide mean absolute deviations of less than 1.2 kcal mol-1 and only a few (computational thermochemistry methods.

  7. Nano sized bismuth oxy chloride by metal organic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jagdale, Pravin, E-mail: pravin.jagdale@polito.it [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy); Castellino, Micaela [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Marrec, Françoise [Laboratory of Condensed Matter Physics, University of Picardie Jules Verne (UPJV), Amiens 80039 (France); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexicom (UNAM), Mexico D.F. 04510 (Mexico); Tagliaferro, Alberto [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy)

    2014-06-01

    Metal organic chemical vapour deposition (MOCVD) method was used to prepare thin films of bismuth based nano particles starting from bismuth salts. Nano sized bismuth oxy chloride (BiOCl) crystals were synthesized from solution containing bismuth chloride (BiCl{sub 3}) in acetone (CH{sub 3}-CO-CH{sub 3}). Self-assembly of nano sized BiOCl crystals were observed on the surface of silicon, fused silica, copper, carbon nanotubes and aluminium substrates. Various synthesis parameters and their significant impact onto the formation of self-assembled nano-crystalline BiOCl were investigated. BiOCl nano particles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Micro-Raman spectroscopy. These analyses confirm that bismuth nanometer-sized crystal structures showing a single tetragonal phase were indeed bismuth oxy chloride (BiOCl) square platelets 18–250 nm thick and a few micrometres wide.

  8. Influence of chemical and structural evolution of dissolved organic matter on electron transfer capacity during composting

    International Nuclear Information System (INIS)

    He, Xiao-Song; Xi, Bei-Dou; Cui, Dong-Yu; Liu, Yong; Tan, Wen-Bin; Pan, Hong-Wei; Li, Dan

    2014-01-01

    Highlights: • Electron transfer capability (ETC) of compost-derived DOM was investigated. • Composting treatment increased the ETC of DOM from municipal solid wastes. • The ETC increase related to humic matter, and molecule weight, and N and S content. - Abstract: Dissolved organic matter (DOM) can mediate electron transfer and change chemical speciation of heavy metals. In this study, the electron transfer capability (ETC) of compost-derived DOM was investigated through electrochemical approaches, and the factors influencing the ETC were studied using spectral and elemental analysis. The results showed that the electron accepting capacity (EAC) and electron donating capacity (EDC) of compost-derived DOM were 3.29–40.14 μmol e− (g C) −1 and 57.1– 346.07 μmol e− (g C) −1 , respectively. Composting treatment increased the fulvic- and humic-like substance content, oxygenated aliphatic carbon content, lignin-derived aromatic carbon content, molecule weight, and N and S content of DOM, but decreased the aliphatic carbon content and the C and H content. This conversion increased the EDC and EAC of the DOM during composting

  9. Influence of chemical and structural evolution of dissolved organic matter on electron transfer capacity during composting

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiao-Song [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Innovation base of Ground Water and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012 (China); Xi, Bei-Dou, E-mail: hexs82@126.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Innovation base of Ground Water and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012 (China); Cui, Dong-Yu [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Innovation base of Ground Water and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012 (China); Liu, Yong [Guangdong Key Laboratory of Agro-Environmental Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Tan, Wen-Bin; Pan, Hong-Wei; Li, Dan [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Innovation base of Ground Water and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing 100012 (China)

    2014-03-01

    Highlights: • Electron transfer capability (ETC) of compost-derived DOM was investigated. • Composting treatment increased the ETC of DOM from municipal solid wastes. • The ETC increase related to humic matter, and molecule weight, and N and S content. - Abstract: Dissolved organic matter (DOM) can mediate electron transfer and change chemical speciation of heavy metals. In this study, the electron transfer capability (ETC) of compost-derived DOM was investigated through electrochemical approaches, and the factors influencing the ETC were studied using spectral and elemental analysis. The results showed that the electron accepting capacity (EAC) and electron donating capacity (EDC) of compost-derived DOM were 3.29–40.14 μmol{sub e−} (g C){sup −1} and 57.1– 346.07 μmol{sub e−} (g C){sup −1}, respectively. Composting treatment increased the fulvic- and humic-like substance content, oxygenated aliphatic carbon content, lignin-derived aromatic carbon content, molecule weight, and N and S content of DOM, but decreased the aliphatic carbon content and the C and H content. This conversion increased the EDC and EAC of the DOM during composting.

  10. Vibronic coupling in ionized organic molecules: structural distortions and chemical reactions

    International Nuclear Information System (INIS)

    Williams, Ffrancon

    2003-01-01

    Ionized organic molecules (radical cations) in radiation chemistry are liable to undergo vibronic coupling whenever there is a relatively small energy gap (∼0.5-1.5 eV) between their ground and excited states. As a result of this mixing, the force constant for the symmetry-allowed vibrational mode that couples these states is lowered in the ground state of the radical cation so that deformation can take place more easily along this specific mode. This pseudo-Jahn-Teller effect can then result in a permanent structural distortion of the radical cation relative to the symmetry of the parent neutral molecule. It can also bring about an energetically favored pathway for a facile chemical rearrangement along a reaction coordinate defined by the coupling mode. Examples taken from matrix-isolation studies are used to illustrate these dramatic consequences of vibronic coupling in radical cations. Thus, the bicyclo[2.2.2]oct-2-ene and tetramethylurea radical cations are found to have twisted structures departing from the C 2v symmetry of their parent molecules, while the oxirane and bicyclo[1.1.1]pentane radical cations undergo ring-opening rearrangements along reaction coordinates that correspond to the deformational modes predicted by the pseudo-Jahn-Teller effect

  11. Removal of a synthetic organic chemical by PAC-UF systems. II: Model application.

    Science.gov (United States)

    Matsui, Y; Colas, F; Yuasa, A

    2001-02-01

    This paper describes several application potentials with a recently developed model for predicting the synthetic organic chemical (SOC) removal by powdered activated carbon (PAC) adsorption during ultrafiltration (UF) and discusses the removal mechanism. The model was successfully applied, without any modification, to dead-end mode operation as well as to cross-flow mode operation, validating the assumption of the internal diffusion control mechanism and the continuously-stirred-tank-reactor (CSTR) concept. Even when UF was operated in a cross-flow mode, PAC added was re-circulating in suspension for only a short time. Then, solute uptake took place mostly by PAC immobilized in membrane tubes not only for dead-end operation but also for cross-flow operation. Therefore, cross-flow operation did not have any advantage regarding the SOC mass transfer on PAC in UF loop over dead-end operation. The model simulation implied that pulse PAC addition at the beginning of filtration cycle resulted better SOC removal than continuous PAC addition. However, for the pulse PAC addition mode, the model predicted somewhat lower effluent SOC concentration than the observed values, and the benefit of pulse PAC application in terms of reducing SOC over its continuous dosage was not confirmed. Longer detention time of PAC dosed in a pulse than continuously dosed PAC could possibly further decrease internal diffusivity.

  12. In situ synchrotron X-ray studies during metal-organic chemical vapor deposition of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Carol [Northern Illinois Univ., DeKalb, IL (United States); Argonne National Lab., Argonne, IL (United States); Highland, Matthew J.; Perret, Edith; Fuoss, Paul H.; Streiffer, Stephen K.; Stephenson, G. Brian [Argonne National Lab., Argonne, IL (United States); Richard, Marie-Ingrid [Universite Paul Cezanne Aix-Marseille, Marseille (France)

    2012-07-01

    In-situ, time-resolved techniques provide valuable insight into the complex interplay of surface structural and chemical evolution occurring during materials synthesis and processing of semiconductors. Our approach is to observe the evolution of surface structure and morphology at the atomic scale in real-time during metal organic vapor phase deposition (MOCVD) by using grazing incidence x-ray scattering and X-ray fluorescence, coupled with visible light scattering. Our vertical-flow MOCVD chamber is mounted on a 'z-axis' surface diffractometer designed specifically for these studies of the film growth, surface evolution and the interactions within a controlled growth environment. These techniques combine the ability of X-rays to penetrate a complex environment for measurements during growth and processing, with the sensitivity of surface scattering techniques to atomic and nanoscale structure. In this talk, we outline our program and discuss examples from our in-situ and real-time X-ray diffraction and fluorescence studies of InN, GaN, and InGaN growth on GaN(0001).

  13. Emissions of Selected Semivolatile Organic Chemicals from Forest and Savannah Fires.

    Science.gov (United States)

    Wang, Xianyu; Thai, Phong K; Mallet, Marc; Desservettaz, Maximilien; Hawker, Darryl W; Keywood, Melita; Miljevic, Branka; Paton-Walsh, Clare; Gallen, Michael; Mueller, Jochen F

    2017-02-07

    The emission factors (EFs) for a broad range of semivolatile organic chemicals (SVOCs) from subtropical eucalypt forest and tropical savannah fires were determined for the first time from in situ investigations. Significantly higher (t test, P fire (7,000 ± 170) compared to the tropical savannah fires (1,600 ± 110), due to the approximately 60-fold higher EFs for 3-ring PAHs from the former. EF data for many PAHs from the eucalypt forest fire were comparable with those previously reported from pine and fir forest combustion events. EFs for other SVOCs including polychlorinated biphenyl (PCB), polychlorinated naphthalene (PCN), and polybrominated diphenyl ether (PBDE) congeners as well as some pesticides (e.g., permethrin) were determined from the subtropical eucalypt forest fire. The highest concentrations of total suspended particles, PAHs, PCBs, PCNs, and PBDEs, were typically observed in the flaming phase of combustion. However, concentrations of levoglucosan and some pesticides such as permethrin peaked during the smoldering phase. Along a transect (10-150-350 m) from the forest fire, concentration decrease for PCBs during flaming was faster compared to PAHs, while levoglucosan concentrations increased.

  14. Chemical characterization of organic aerosol above a mid-latitude forest reveals a complex mixture of highly-functionalized chemical species and diverse structural features with temporal variability

    Science.gov (United States)

    Gentner, D. R.; Ditto, J.; Barnes, E.; Khare, P.

    2017-12-01

    Highly-functionalized organic compounds are known to be a major component of the complex mixture of the particle-phase compounds that comprise organic aerosol, yet little is known about the identity of many of these compounds, and their formation pathways and roles in atmospheric processes are poorly understood. We present results from the comprehensive chemical speciation of PM10 organic aerosols collected in July 2016 at the remote mid-latitude forest field site during PROPHET. Samples were analyzed via liquid and gas chromatography coupled with a quadrupole time-of-flight tandem mass spectrometry (MS×MS) following electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). 8 hr samples were collected during day- and night-time sampling periods rather than more typical 24-hour samples. This analysis of the organic aerosol yielded over 12,000 unique compounds for which we have high accuracy molecular masses, formulas, and additional information on structural features using MS×MS. O:C ratios were 0.3 on average, yet the top 10% of compounds ranged 0.7-2.3. 70% and 69% of day- and night-time samples were nitrogen-containing, whereas 26% and 24% contained sulfur, respectively. Within these broader molecular categories, we observed a wide variety of molecular features that reveal a diversity of functional groups and moieties. In this presentation, we present the results of our speciation, temporal variability, connections to air parcel back trajectories and other bulk properties, and potential formation pathways.

  15. Mutation of exposed hydrophobic amino acids to arginine to increase protein stability

    OpenAIRE

    Strub, Caroline; Alies, Carole; Lougarre, Andrée; Ladurantie, Caroline; Czaplicki, Jerzy; Fournier, Didier

    2004-01-01

    Abstract Background One strategy to increase the stability of proteins is to reduce the area of water-accessible hydrophobic surface. Results In order to test it, we replaced 14 solvent-exposed hydrophobic residues of acetylcholinesterase by arginine. The stabilities of the resulting proteins were tested using denaturation by high temperature, organic solvents, urea and by proteolytic digestion. Conclusion Altough the mutational effects were rather small, this strategy proved to be successful...

  16. Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition

    International Nuclear Information System (INIS)

    Hang Tao; Hu Anmin; Ling Huiqin; Li Ming; Mao Dali

    2010-01-01

    Super-hydrophobic nickel films were prepared by a simple and low cost electrodepositing method. The surface morphologies of the films characterized by scanning electronic microscope exhibit hierarchical structure with micro-nanocones array, which can be responsible for their super-hydrophobic characteristic (water contact angle over 150 o ) without chemical modification. The wettability of the film can be varied from super-hydrophobic (water contact angle 154 o ) to relatively hydrophilic (water contact angle 87 o ) by controlling the size of the micro-nanocones. The mechanism of the hydrophobic characteristic of nickel films with this unique structure was illustrated by several models. Such micro-nanostructure and its special wettability are expected to be applied in the practical industry.

  17. Relation between the characteristic molecular volume and hydrophobicity of nonpolar molecules

    Energy Technology Data Exchange (ETDEWEB)

    Sedov, Igor A., E-mail: igor_sedov@inbox.ru; Solomonov, Boris N., E-mail: boris.solomonov@ksu.r

    2010-09-15

    Experimental values of the Gibbs free energies of hydration for a set of nonpolar or very slightly polar compounds are analyzed in order to investigate how does the hydrophobic effect depend on molecular structure and shape. The contribution due to the hydrophobic effect is evaluated using a method we suggested previously. A number of values of the Gibbs free energies of solvation in dimethyl sulfoxide and in hexadecane, which are required for calculation, were determined by gas chromatographic headspace analysis. It is found that the Gibbs hydrophobic effect energy is linearly dependent on characteristic molecular volume for a large variety of solutes with branched and unbranched carbon chains, different functional groups and atomic composition. Molecular structure and shape do not significantly affect the hydrophobicity of chemical species, and molecular volume is a main factor determining it.

  18. Changes in soil chemical properties as affected by pyrogenic organic matter amendment with different intensity and frequency

    NARCIS (Netherlands)

    Wang, Ruzhen; Zhang, Yulan; Cerda Bolinches, Artemio; Cao, Mingming; Zhang, Yongyong; Yin, Jinfei; Jiang, Yong; Chen, Lijun

    2017-01-01

    Pyrogenic organic matter (PyOM) has long been used as a soil amendment to improve soil physicochemical properties. However, few studies simultaneously investigated both intensities and frequencies of PyOM addition on soil chemical properties of soil base cations, soil pH buffering capacity (pHBC),

  19. Chemical characteristics and methane potentials of source-separated and pre-treated organic municipal solid waste

    DEFF Research Database (Denmark)

    Hansen, Trine Lund; Svärd, Å; Angelidaki, Irini

    2003-01-01

    A research project has investigated the biogas potential of pre-screened source-separated organic waste. Wastes from five Danish cities have been pre-treated by three methods: screw press; disc screen; and shredder and magnet. This paper outlines the sampling procedure used, the chemical...... composition of the wastes and the estimated methane potentials....

  20. Characterization of Conventional, Biodynamic, and Organic Purple Grape Juices by Chemical Markers, Antioxidant Capacity, and Instrumental Taste Profile

    NARCIS (Netherlands)

    Granato, D.; Margraf, T.; Brotzakis, I.; Capuano, E.; Ruth, van S.M.

    2015-01-01

    The objectives of this study were to characterize organic, biodynamic, and conventional purple grape juices (n = 31) produced in Europe based on instrumental taste profile, antioxidant activity, and some chemical markers and to propose a multivariate statistical model to analyze their quality and

  1. Elucidating mechanisms of toxic action of dissolved organic chemicals in oil sands process-affected water (OSPW).

    Science.gov (United States)

    Morandi, Garrett D; Wiseman, Steve B; Guan, Miao; Zhang, Xiaowei W; Martin, Jonathan W; Giesy, John P

    2017-11-01

    Oil sands process-affected water (OSPW) is generated during extraction of bitumen in the surface-mining oil sands industry in Alberta, Canada, and is acutely and chronically toxic to aquatic organisms. It is known that dissolved organic compounds in OSPW are responsible for most toxic effects, but knowledge of the specific mechanism(s) of toxicity, is limited. Using bioassay-based effects-directed analysis, the dissolved organic fraction of OSPW has previously been fractionated, ultimately producing refined samples of dissolved organic chemicals in OSPW, each with distinct chemical profiles. Using the Escherichia coli K-12 strain MG1655 gene reporter live cell array, the present study investigated relationships between toxic potencies of each fraction, expression of genes and characterization of chemicals in each of five acutely toxic and one non-toxic extract of OSPW derived by use of effects-directed analysis. Effects on expressions of genes related to res