WorldWideScience

Sample records for hydroperoxides increase macrophage

  1. Cholesteryl ester hydroperoxides increase macrophage CD36 gene expression via PPARα

    International Nuclear Information System (INIS)

    Jedidi, Iness; Couturier, Martine; Therond, Patrice; Gardes-Albert, Monique; Legrand, Alain; Barouki, Robert; Bonnefont-Rousselot, Dominique; Aggerbeck, Martine

    2006-01-01

    The uptake of oxidized LDL by macrophages is a key event in the development of atherosclerosis. The scavenger receptor CD36 is one major receptor that internalizes oxidized LDL. In differentiated human macrophages, we compared the regulation of CD36 expression by copper-oxidized LDL or their products. Only oxidized derivatives of cholesteryl ester (CEOOH) increased the amount of CD36 mRNA (2.5-fold). Both oxidized LDL and CEOOH treatment increased two to fourfold the transcription of promoters containing peroxisome-proliferator-activated-receptor responsive elements (PPRE) in the presence of PPARα or γ. Electrophoretic-mobility-shift-assays with nuclear extracts prepared from macrophages treated by either oxidized LDL or CEOOH showed increased binding of PPARα to the CD36 gene promoter PPRE. In conclusion, CEOOH present in oxidized LDL increase CD36 gene expression in a pathway involving PPARα

  2. Macrophage replication screen identifies a novel Francisella hydroperoxide resistance protein involved in virulence.

    Directory of Open Access Journals (Sweden)

    Anna C Llewellyn

    Full Text Available Francisella tularensis is a gram-negative facultative intracellular pathogen and the causative agent of tularemia. Recently, genome-wide screens have identified Francisella genes required for virulence in mice. However, the mechanisms by which most of the corresponding proteins contribute to pathogenesis are still largely unknown. To further elucidate the roles of these virulence determinants in Francisella pathogenesis, we tested whether each gene was required for replication of the model pathogen F. novicida within macrophages, an important virulence trait. Fifty-three of the 224 genes tested were involved in intracellular replication, including many of those within the Francisella pathogenicity island (FPI, validating our results. Interestingly, over one third of the genes identified are annotated as hypothetical, indicating that F. novicida likely utilizes novel virulence factors for intracellular replication. To further characterize these virulence determinants, we selected two hypothetical genes to study in more detail. As predicted by our screen, deletion mutants of FTN_0096 and FTN_1133 were attenuated for replication in macrophages. The mutants displayed differing levels of attenuation in vivo, with the FTN_1133 mutant being the most attenuated. FTN_1133 has sequence similarity to the organic hydroperoxide resistance protein Ohr, an enzyme involved in the bacterial response to oxidative stress. We show that FTN_1133 is required for F. novicida resistance to, and degradation of, organic hydroperoxides as well as resistance to the action of the NADPH oxidase both in macrophages and mice. Furthermore, we demonstrate that F. holarctica LVS, a strain derived from a highly virulent human pathogenic species of Francisella, also requires this protein for organic hydroperoxide resistance as well as replication in macrophages and mice. This study expands our knowledge of Francisella's largely uncharacterized intracellular lifecycle and

  3. Protein energy malnutrition increases arginase activity in monocytes and macrophages.

    Science.gov (United States)

    Corware, Karina; Yardley, Vanessa; Mack, Christopher; Schuster, Steffen; Al-Hassi, Hafid; Herath, Shanthi; Bergin, Philip; Modolell, Manuel; Munder, Markus; Müller, Ingrid; Kropf, Pascale

    2014-01-01

    Protein energy malnutrition is commonly associated with immune dysfunctions and is a major factor in susceptibility to infectious diseases. In this study, we evaluated the impact of protein energy malnutrition on the capacity of monocytes and macrophages to upregulate arginase, an enzyme associated with immunosuppression and increased pathogen replication. Our results show that monocytes and macrophages are significantly increased in the bone marrow and blood of mice fed on a protein low diet. No alteration in the capacity of bone marrow derived macrophages isolated from malnourished mice to phagocytose particles, to produce the microbicidal molecule nitric oxide and to kill intracellular Leishmania parasites was detected. However, macrophages and monocytes from malnourished mice express significantly more arginase both in vitro and in vivo. Using an experimental model of visceral leishmaniasis, we show that following protein energy malnutrition, the increased parasite burden measured in the spleen of these mice coincided with increased arginase activity and that macrophages provide a more permissive environment for parasite growth. Taken together, these results identify a novel mechanism in protein energy malnutrition that might contributes to increased susceptibility to infectious diseases by upregulating arginase activity in myeloid cells.

  4. Dopamine receptor activation increases HIV entry into primary human macrophages.

    Directory of Open Access Journals (Sweden)

    Peter J Gaskill

    Full Text Available Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers.

  5. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    Science.gov (United States)

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  6. Lactoferricin Peptides Increase Macrophages' Capacity To Kill Mycobacterium avium.

    Science.gov (United States)

    Silva, Tânia; Moreira, Ana C; Nazmi, Kamran; Moniz, Tânia; Vale, Nuno; Rangel, Maria; Gomes, Paula; Bolscher, Jan G M; Rodrigues, Pedro N; Bastos, Margarida; Gomes, Maria Salomé

    2017-01-01

    Mycobacterial infections cause a significant burden of disease and death worldwide. Their treatment is long, toxic, costly, and increasingly prone to failure due to bacterial resistance to currently available antibiotics. New therapeutic options are thus clearly needed. Antimicrobial peptides represent an important source of new antimicrobial molecules, both for their direct activity and for their immunomodulatory potential. We have previously reported that a short version of the bovine antimicrobial peptide lactoferricin with amino acids 17 to 30 (LFcin17-30), along with its variants obtained by specific amino acid substitutions, killed Mycobacterium avium in broth culture. In the present work, those peptides were tested against M. avium living inside its natural host cell, the macrophage. We found that the peptides increased the antimicrobial action of the conventional antibiotic ethambutol inside macrophages. Moreover, the d-enantiomer of the lactoferricin peptide (d-LFcin17-30) was more stable and induced significant killing of intracellular mycobacteria by itself. Interestingly, d-LFcin17-30 did not localize to M. avium -harboring phagosomes but induced the production of proinflammatory cytokines and increased the formation of lysosomes and autophagosome-like vesicles. These results lead us to conclude that d-LFcin17-30 primes macrophages for intracellular microbial digestion through phagosomal maturation and/or autophagy, culminating in mycobacterial killing. IMPORTANCE The genus Mycobacterium comprises several pathogenic species, including M. tuberculosis , M. leprae , M. avium , etc. Infections caused by these bacteria are particularly difficult to treat due to their intrinsic impermeability, low growth rate, and intracellular localization. Antimicrobial peptides are increasingly acknowledged as potential treatment tools, as they have a high spectrum of activity, low tendency to induce bacterial resistance, and immunomodulatory properties. In this study, we

  7. Viral infection of human lung macrophages increases PDL1 expression via IFNβ.

    Directory of Open Access Journals (Sweden)

    Karl J Staples

    Full Text Available Lung macrophages are an important defence against respiratory viral infection and recent work has demonstrated that influenza-induced macrophage PDL1 expression in the murine lung leads to rapid modulation of CD8+ T cell responses via the PD1 receptor. This PD1/PDL1 pathway may downregulate acute inflammatory responses to prevent tissue damage. The aim of this study was to investigate the mechanisms of PDL1 regulation by human macrophages in response to viral infection. Ex-vivo viral infection models using influenza and RSV were established in human lung explants, isolated lung macrophages and monocyte-derived macrophages (MDM and analysed by flow cytometry and RT-PCR. Incubation of lung explants, lung macrophages and MDM with X31 resulted in mean cellular infection rates of 18%, 18% and 29% respectively. Viral infection significantly increased cell surface expression of PDL1 on explant macrophages, lung macrophages and MDM but not explant epithelial cells. Infected MDM induced IFNγ release from autologous CD8+ T cells, an effect enhanced by PDL1 blockade. We observed increases in PDL1 mRNA and IFNβ mRNA and protein release by MDM in response to influenza infection. Knockdown of IFNβ by siRNA, resulted in a 37.5% reduction in IFNβ gene expression in response to infection, and a significant decrease in PDL1 mRNA. Furthermore, when MDM were incubated with IFNβ, this cytokine caused increased expression of PDL1 mRNA. These data indicate that human macrophage PDL1 expression modulates CD8+ cell IFNγ release in response to virus and that this expression is regulated by autologous IFNβ production.

  8. Irradiation of existing atherosclerotic lesions increased inflammation by favoring pro-inflammatory macrophages

    International Nuclear Information System (INIS)

    Gabriels, Karen; Hoving, Saske; Gijbels, Marion J.; Pol, Jeffrey F.; Poele, Johannes A. te; Biessen, Erik A.; Daemen, Mat J.; Stewart, Fiona A.; Heeneman, Sylvia

    2014-01-01

    Background and purpose: Recent studies have shown an increased incidence of localized atherosclerosis and subsequent cardiovascular events in cancer patients treated with thoracic radiotherapy. We previously demonstrated that irradiation accelerated the development of atherosclerosis and predisposed to an inflammatory plaque phenotype in young hypercholesterolemic ApoE −/− mice. However, as older cancer patients already have early or advanced stages of atherosclerosis at the time of radiotherapy, we investigated the effects of irradiation on the progression of existing atherosclerotic lesions in vivo. Material and methods: ApoE −/− mice (28 weeks old) received local irradiation with 14 or 0 Gy (sham-treated) at the aortic arch and were examined after 4 and 12 weeks for atherosclerotic lesions, plaque size and phenotype. Moreover, we investigated the impact of irradiation on macrophage phenotype (pro- or anti-inflammatory) and function (efferocytotic capacity, i.e. clearance of apoptotic cells) in vitro. Results: Irradiation of existing lesions in the aortic arch resulted in smaller, macrophage-rich plaques with intraplaque hemorrhage and increased apoptosis. In keeping with the latter, in vitro studies revealed augmented polarization toward pro-inflammatory macrophages after irradiation and reduced efferocytosis by anti-inflammatory macrophages. In addition, considerably more lesions in irradiated mice were enriched in pro-inflammatory macrophages. Conclusions: Irradiation of existing atherosclerotic lesions led to smaller but more inflamed plaques, with increased numbers of apoptotic cells, most likely due to a shift toward pro-inflammatory macrophages in the plaque

  9. Deficiency of ABCA1 and ABCG1 in Macrophages Increases Inflammation and Accelerates Atherosclerosis in Mice

    Science.gov (United States)

    Westerterp, Marit; Murphy, Andrew J.; Wang, Mi; Pagler, Tamara A.; Vengrenyuk, Yuliya; Kappus, Mojdeh S.; Gorman, Darren J.; Nagareddy, Prabhakara R.; Zhu, Xuewei; Abramowicz, Sandra; Parks, John S.; Welch, Carrie; Fisher, Edward A.; Wang, Nan; Yvan-Charvet, Laurent; Tall, Alan R.

    2013-01-01

    Rationale Plasma HDL levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is due to the ability of HDL to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking. Objective To assess the role of macrophage cholesterol efflux pathways in atherogenesis. Methods and Results We developed MAC-ABCDKO mice with efficient deletion of the ATP Binding Cassette Transporters A1 and G1 (ABCA1 and ABCG1) in macrophages but not in hematopoietic stem or progenitor populations. MAC-ABCDKO bone marrow (BM) was transplanted into Ldlr-/- recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared to controls. On the Western type diet (WTD), MAC-ABCDKO BM transplanted Ldlr-/- mice had disproportionate atherosclerosis, considering they also had lower VLDL/LDL cholesterol levels than controls. ABCA1/G1 deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, WTD-fed MAC-ABCDKO BM transplanted Ldlr-/- mice displayed monocytosis and neutrophilia in the absence of HSPC proliferation. Mechanistic studies revealed increased expression of M-CSF and G-CSF in splenic macrophage foam cells, driving BM monocyte and neutrophil production. Conclusion These studies 1) show that macrophage deficiency of ABCA1/G1 is pro-atherogenic likely by promoting plaque inflammation and 2) uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways. PMID:23572498

  10. Conditional Macrophage Depletion Increases Inflammation and Does Not Inhibit the Development of Osteoarthritis in Obese Macrophage Fas-Induced Apoptosis-Transgenic Mice.

    Science.gov (United States)

    Wu, Chia-Lung; McNeill, Jenna; Goon, Kelsey; Little, Dianne; Kimmerling, Kelly; Huebner, Janet; Kraus, Virginia; Guilak, Farshid

    2017-09-01

    To investigate whether short-term, systemic depletion of macrophages can mitigate osteoarthritis (OA) following injury in the setting of obesity. CSF-1R-GFP+ macrophage Fas-induced apoptosis (MaFIA)-transgenic mice that allow conditional depletion of macrophages were placed on a high-fat diet and underwent surgery to induce knee OA. A small molecule (AP20187) was administrated to deplete macrophages in MaFIA mice. The effects of macrophage depletion on acute joint inflammation, OA severity, and arthritic bone changes were evaluated using histology and micro-computed tomography. Immunohistochemical analysis was performed to identify various immune cells. The levels of serum and synovial fluid cytokines were also measured. Macrophage-depleted mice had significantly fewer M1 and M2 macrophages in the surgically operated joints relative to controls and exhibited decreased osteophyte formation immediately following depletion. Surprisingly, macrophage depletion did not attenuate the severity of OA in obese mice; instead, it induced systemic inflammation and led to a massive infiltration of CD3+ T cells and particularly neutrophils, but not B cells, into the injured joints. Macrophage-depleted mice also demonstrated a markedly increased number of proinflammatory cytokines including granulocyte colony-stimulating factor, interleukin-1β (IL-1β), IL-6, IL-8, and tumor necrosis factor in both serum and joint synovial fluid, although the mice showed a trend toward decreased levels of insulin and leptin in serum after macrophage depletion. Our findings indicate that macrophages are vital for modulating homeostasis of immune cells in the setting of obesity and suggest that more targeted approaches of depleting specific macrophage subtypes may be necessary to mitigate inflammation and OA in the setting of obesity. © 2017, American College of Rheumatology.

  11. Increased metabolite levels of glycolysis and pentose phosphate pathway in rabbit atherosclerotic arteries and hypoxic macrophage.

    Directory of Open Access Journals (Sweden)

    Atsushi Yamashita

    Full Text Available AIMS: Inflammation and possibly hypoxia largely affect glucose utilization in atherosclerotic arteries, which could alter many metabolic systems. However, metabolic changes in atherosclerotic plaques remain unknown. The present study aims to identify changes in metabolic systems relative to glucose uptake and hypoxia in rabbit atherosclerotic arteries and cultured macrophages. METHODS: Macrophage-rich or smooth muscle cell (SMC-rich neointima was created by balloon injury in the iliac-femoral arteries of rabbits fed with a 0.5% cholesterol diet or a conventional diet. THP-1 macrophages stimulated with lipopolysaccharides (LPS and interferon-γ (INFγ were cultured under normoxic and hypoxic conditions. We evaluated comprehensive arterial and macrophage metabolism by performing metabolomic analyses using capillary electrophoresis-time of flight mass spectrometry. We evaluated glucose uptake and its relationship to vascular hypoxia using (18F-fluorodeoxyglucose ((18F-FDG and pimonidazole, a marker of hypoxia. RESULTS: The levels of many metabolites increased in the iliac-femoral arteries with macrophage-rich neointima, compared with those that were not injured and those with SMC-rich neointima (glycolysis, 4 of 9; pentose phosphate pathway, 4 of 6; tricarboxylic acid cycle, 4 of 6; nucleotides, 10 of 20. The uptake of (18F-FDG in arterial walls measured by autoradiography positively correlated with macrophage- and pimonidazole-immunopositive areas (r = 0.76, and r = 0.59 respectively; n = 69 for both; p<0.0001. Pimonidazole immunoreactivity was closely localized with the nuclear translocation of hypoxia inducible factor-1α and hexokinase II expression in macrophage-rich neointima. The levels of glycolytic (8 of 8 and pentose phosphate pathway (4 of 6 metabolites increased in LPS and INFγ stimulated macrophages under hypoxic but not normoxic condition. Plasminogen activator inhibitor-1 protein levels in the supernatant were closely

  12. Moderate Increase of Indoxyl Sulfate Promotes Monocyte Transition into Profibrotic Macrophages.

    Directory of Open Access Journals (Sweden)

    Chiara Barisione

    Full Text Available The uremic toxin Indoxyl-3-sulphate (IS, a ligand of Aryl hydrocarbon Receptor (AhR, raises in blood during early renal dysfunction as a consequence of tubular damage, which may be present even when eGFR is normal or only moderately reduced, and promotes cardiovascular damage and monocyte-macrophage activation. We previously found that patients with abdominal aortic aneurysms (AAAs have higher CD14+CD16+ monocyte frequency and prevalence of moderate chronic kidney disease (CKD than age-matched control subjects. Here we aimed to evaluate the IS levels in plasma from AAA patients and to investigate in vitro the effects of IS concentrations corresponding to mild-to-moderate CKD on monocyte polarization and macrophage differentiation.Free IS plasma levels, monocyte subsets and laboratory parameters were evaluated on blood from AAA patients and eGFR-matched controls. THP-1 monocytes, treated with IS 1, 10, 20 μM were evaluated for CD163 expression, AhR signaling and then induced to differentiate into macrophages by PMA. Their phenotype was evaluated both at the stage of semi-differentiated and fully differentiated macrophages. AAA and control sera were similarly used to treat THP-1 monocytes and the resulting macrophage phenotype was analyzed.IS plasma concentration correlated positively with CD14+CD16+ monocytes and was increased in AAA patients. In THP-1 cells, IS promoted CD163 expression and transition to macrophages with hallmarks of classical (IL-6, CCL2, COX2 and alternative phenotype (IL-10, PPARγ, TGF-β, TIMP-1, via AhR/Nrf2 activation. Analogously, AAA sera induced differentiation of macrophages with enhanced IL-6, MCP1, TGF-β, PPARγ and TIMP-1 expression.IS skews monocyte differentiation toward low-inflammatory, profibrotic macrophages and may contribute to sustain chronic inflammation and maladaptive vascular remodeling.

  13. Novel phosphate-activated macrophages prevent ectopic calcification by increasing extracellular ATP and pyrophosphate

    Science.gov (United States)

    Villa-Bellosta, Ricardo; Hamczyk, Magda R.; Andrés, Vicente

    2017-01-01

    Purpose Phosphorus is an essential nutrient involved in many pathobiological processes. Less than 1% of phosphorus is found in extracellular fluids as inorganic phosphate ion (Pi) in solution. High serum Pi level promotes ectopic calcification in many tissues, including blood vessels. Here, we studied the effect of elevated Pi concentration on macrophage polarization and calcification. Macrophages, present in virtually all tissues, play key roles in health and disease and display remarkable plasticity, being able to change their physiology in response to environmental cues. Methods and results High-throughput transcriptomic analysis and functional studies demonstrated that Pi induces unpolarized macrophages to adopt a phenotype closely resembling that of alternatively-activated M2 macrophages, as revealed by arginine hydrolysis and energetic and antioxidant profiles. Pi-induced macrophages showed an anti-calcifying action mediated by increased availability of extracellular ATP and pyrophosphate. Conclusion We conclude that the ability of Pi-activated macrophages to prevent calcium-phosphate deposition is a compensatory mechanism protecting tissues from hyperphosphatemia-induced pathologic calcification. PMID:28362852

  14. Deficiency of C5L2 increases macrophage infiltration and alters adipose tissue function in mice.

    Directory of Open Access Journals (Sweden)

    Danny Gauvreau

    Full Text Available BACKGROUND: Obesity is considered as a systemic chronic low grade inflammation characterized by increased serum pro-inflammatory proteins and accumulation of macrophages within white adipose tissue (WAT of obese patients. C5L2, a 7-transmembrane receptor, serves a dual function, binding the lipogenic hormone acylation stimulating protein (ASP, and C5a, involved in innate immunity. AIM: We evaluated the impact of C5L2 on macrophage infiltration in WAT of wildtype (Ctl and C5L2 knock-out (C5L2(-/- mice over 6, 12 and 24 weeks on a chow diet and moderate diet-induced obesity (DIO conditions. RESULTS: In Ctl mice, WAT C5L2 and C5a receptor mRNA increased (up to 10-fold both over time and with DIO. By contrast, in C5L2(-/-, there was no change in C5aR in WAT. C5L2(-/- mice displayed higher macrophage content in WAT, varying by time, fat depot and diet, associated with altered systemic and WAT cytokine patterns compared to Ctl mice. However, in all cases, the M1 (pro- vs M2 (anti-inflammatory macrophage proportion was unchanged but C5L2(-/- adipose tissue secretome appeared to be more chemoattractant. Moreover, C5L2(-/- mice have increased food intake, increased WAT, and altered WAT lipid gene expression, which is reflected systemically. Furthermore, C5L2(-/- mice have altered glucose/insulin metabolism, adiponectin and insulin signalling gene expression in WAT, which could contribute to development of insulin resistance. CONCLUSION: Disruption of C5L2 increases macrophage presence in WAT, contributing to obesity-associated pathologies, and further supports a dual role of complement in WAT. Understanding this effect of the complement system pathway could contribute to targeting treatment of obesity and its comorbidities.

  15. Stimulation of Inducible Nitric Oxide Synthase Expression by Beta Interferon Increases Necrotic Death of Macrophages upon Listeria monocytogenes Infection▿

    OpenAIRE

    Zwaferink, Heather; Stockinger, Silvia; Reipert, Siegfried; Decker, Thomas

    2008-01-01

    Murine macrophage death upon infection with Listeria monocytogenes was previously shown to be increased by beta interferon, produced by the infected cells. We saw that interferon-upregulated caspase activation or other interferon-inducible, death-associated proteins, including TRAIL, protein kinase R, and p53, were not necessary for cell death. Macrophage death was reduced when inducible nitric oxide synthase (iNOS) was inhibited during infection, and iNOS-deficient macrophages were less susc...

  16. Macrophage migration inhibitory factor deficiency is associated with impaired killing of gram-negative bacteria by macrophages and increased susceptibility to Klebsiella pneumoniae sepsis.

    Science.gov (United States)

    Roger, Thierry; Delaloye, Julie; Chanson, Anne-Laure; Giddey, Marlyse; Le Roy, Didier; Calandra, Thierry

    2013-01-15

    The cytokine macrophage migration inhibitory factor (MIF) is an important component of the early proinflammatory response of the innate immune system. However, the antimicrobial defense mechanisms mediated by MIF remain fairly mysterious. In the present study, we examined whether MIF controls bacterial uptake and clearance by professional phagocytes, using wild-type and MIF-deficient macrophages. MIF deficiency did not affect bacterial phagocytosis, but it strongly impaired the killing of gram-negative bacteria by macrophages and host defenses against gram-negative bacterial infection, as shown by increased mortality in a Klebsiella pneumonia model. Consistent with MIF's regulatory role of Toll-like 4 expression in macrophages, MIF-deficient cells stimulated with lipopolysaccharide or Escherichia coli exhibited reduced nuclear factor κB activity and tumor necrosis factor (TNF) production. Addition of recombinant MIF or TNF corrected the killing defect of MIF-deficient macrophages. Together, these data show that MIF is a key mediator of host responses against gram-negative bacteria, acting in part via a modulation of bacterial killing by macrophages.

  17. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages.

    Science.gov (United States)

    O'Toole, Timothy E; Zheng, Yu-Ting; Hellmann, Jason; Conklin, Daniel J; Barski, Oleg; Bhatnagar, Aruni

    2009-04-15

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca2+](i)), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca2+](I) with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca2+](I), leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.

  18. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages

    International Nuclear Information System (INIS)

    O'Toole, Timothy E.; Zheng Yuting; Hellmann, Jason; Conklin, Daniel J.; Barski, Oleg; Bhatnagar, Aruni

    2009-01-01

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca 2+ ] i ), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca 2+ ] I with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca 2+ ] I , leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.

  19. Inhibition of P-glycoprotein by HIV protease inhibitors increases intracellular accumulation of berberine in murine and human macrophages.

    Directory of Open Access Journals (Sweden)

    Weibin Zha

    Full Text Available HIV protease inhibitor (PI-induced inflammatory response in macrophages is a major risk factor for cardiovascular diseases. We have previously reported that berberine (BBR, a traditional herbal medicine, prevents HIV PI-induced inflammatory response through inhibiting endoplasmic reticulum (ER stress in macrophages. We also found that HIV PIs significantly increased the intracellular concentrations of BBR in macrophages. However, the underlying mechanisms of HIV PI-induced BBR accumulation are unknown. This study examined the role of P-glycoprotein (P-gp in HIV PI-mediated accumulation of BBR in macrophages.Cultured mouse RAW264.7 macrophages, human THP-1-derived macrophages, Wild type MDCK (MDCK/WT and human P-gp transfected (MDCK/P-gp cells were used in this study. The intracellular concentration of BBR was determined by HPLC. The activity of P-gp was assessed by measuring digoxin and rhodamine 123 (Rh123 efflux. The interaction between P-gp and BBR or HIV PIs was predicated by Glide docking using Schrodinger program. The results indicate that P-gp contributed to the efflux of BBR in macrophages. HIV PIs significantly increased BBR concentrations in macrophages; however, BBR did not alter cellular HIV PI concentrations. Although HIV PIs did not affect P-gp expression, P-gp transport activities were significantly inhibited in HIV PI-treated macrophages. Furthermore, the molecular docking study suggests that both HIV PIs and BBR fit the binding pocket of P-gp, and HIV PIs may compete with BBR to bind P-gp.HIV PIs increase the concentration of BBR by modulating the transport activity of P-gp in macrophages. Understanding the cellular mechanisms of potential drug-drug interactions is critical prior to applying successful combinational therapy in the clinic.

  20. Neuropeptide FF increases M2 activation and self-renewal of adipose tissue macrophages

    Science.gov (United States)

    Waqas, Syed F. Hassnain; Hoang, Anh Cuong; Ampem, Grace; Azegrouz, Hind; Balogh, Lajos; Thuróczy, Julianna; Gerling, Ivan C.; Nam, Sorim; Lim, Jong-Seok; Martinez-Ibañez, Juncal; Real, José T.; Paschke, Stephan; Quillet, Raphaëlle; Ayachi, Safia; Simonin, Frédéric; Schneider, E. Marion; Brinkman, Jacqueline A.; Seroogy, Christine M.

    2017-01-01

    The quantity and activation state of adipose tissue macrophages (ATMs) impact the development of obesity-induced metabolic diseases. Appetite-controlling hormones play key roles in obesity; however, our understanding of their effects on ATMs is limited. Here, we have shown that human and mouse ATMs express NPFFR2, a receptor for the appetite-reducing neuropeptide FF (NPFF), and that NPFFR2 expression is upregulated by IL-4, an M2-polarizing cytokine. Plasma levels of NPFF decreased in obese patients and high-fat diet–fed mice and increased following caloric restriction. NPFF promoted M2 activation and increased the proliferation of murine and human ATMs. Both M2 activation and increased ATM proliferation were abolished in NPFFR2-deficient ATMs. Mechanistically, the effects of NPFF involved the suppression of E3 ubiquitin ligase RNF128 expression, resulting in enhanced stability of phosphorylated STAT6 and increased transcription of the M2 macrophage–associated genes IL-4 receptor α (Il4ra), arginase 1 (Arg1), IL-10 (Il10), and alkylglycerol monooxygenase (Agmo). NPFF induced ATM proliferation concomitantly with the increase in N-Myc downstream-regulated gene 2 (Ndrg2) expression and suppressed the transcription of Ifi200 cell-cycle inhibitor family members and MAF bZIP transcription factor B (Mafb), a negative regulator of macrophage proliferation. NPFF thus plays an important role in supporting healthy adipose tissue via the maintenance of metabolically beneficial ATMs. PMID:28581443

  1. Increased iron sequestration in alveolar macrophages in chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Quentin Philippot

    Full Text Available Free iron in lung can cause the generation of reactive oxygen species, an important factor in chronic obstructive pulmonary disease (COPD pathogenesis. Iron accumulation has been implicated in oxidative stress in other diseases, such as Alzheimer's and Parkinson's diseases, but little is known about iron accumulation in COPD. We sought to determine if iron content and the expression of iron transport and/or storage genes in lung differ between controls and COPD subjects, and whether changes in these correlate with airway obstruction. Explanted lung tissue was obtained from transplant donors, GOLD 2-3 COPD subjects, and GOLD 4 lung transplant recipients, and bronchoalveolar lavage (BAL cells were obtained from non-smokers, healthy smokers, and GOLD 1-3 COPD subjects. Iron-positive cells were quantified histologically, and the expression of iron uptake (transferrin and transferrin receptor, storage (ferritin and export (ferroportin genes was examined by real-time RT-PCR assay. Percentage of iron-positive cells and expression levels of iron metabolism genes were examined for correlations with airflow limitation indices (forced expiratory volume in the first second (FEV1 and the ratio between FEV1 and forced vital capacity (FEV1/FVC. The alveolar macrophage was identified as the predominant iron-positive cell type in lung tissues. Furthermore, the quantity of iron deposit and the percentage of iron positive macrophages were increased with COPD and emphysema severity. The mRNA expression of iron uptake and storage genes transferrin and ferritin were significantly increased in GOLD 4 COPD lungs compared to donors (6.9 and 3.22 fold increase, respectively. In BAL cells, the mRNA expression of transferrin, transferrin receptor and ferritin correlated with airway obstruction. These results support activation of an iron sequestration mechanism by alveolar macrophages in COPD, which we postulate is a protective mechanism against iron induced oxidative

  2. Tumor cell-macrophage interactions increase angiogenesis through secretion of EMMPRIN

    Directory of Open Access Journals (Sweden)

    Bat-Chen eAmit-Cohen

    2013-07-01

    Full Text Available Tumor macrophages are generally considered to be alternatively/M2 activated to induce secretion of pro-angiogenic factors such as VEGF and MMPs. EMMPRIN (CD147, basigin is overexpressed in many tumor types, and has been shown to induce fibroblasts and endothelial cell expression of MMPs and VEGF. We first show that tumor cell interactions with macrophages resulted in increased expression of EMMPRIN and induction of MMP-9 and VEGF. Human A498 renal carcinoma or MCF-7 breast carcinoma cell lines were co-cultured with the U937 monocytic-like cell line in the presence of TNFalpha (1 ng/ml. Membranal EMMPRIN expression was increased in the co-cultures (by 3-4 folds, p<0.01, as was the secretion of MMP-9 and VEGF (by 2-5 folds for both MMP-9 and VEGF, p<0.01, relative to the single cultures with TNFalpha. Investigating the regulatory mechanisms, we show that EMMPRIN was post-translationally regulated by miR-146a, as no change was observed in the tumoral expression of EMMPRIN mRNA during co-culture, expression of miR-146a was increased and its neutralization by its antagomir inhibited EMMPRIN expression. The secretion of EMMPRIN was also enhanced (by 2-3 folds, p<0.05, only in the A498 co-culture via shedding off of the membranal protein by a serine protease that is yet to be identified, as demonstrated by the use of wide range protease inhibitors. Finally, soluble EMMPRIN enhanced monocytic secretion of MMP-9 and VEGF, as inhibition of its expression levels by neutralizing anti-EMMPRIN or siRNA in the tumor cells lead to subsequent decreased induction of these two pro-angiogenic proteins. These results reveal a mechanism whereby tumor cell-macrophage interactions promote angiogenesis via an EMMPRIN-mediated pathway.

  3. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND

    Science.gov (United States)

    Gaskill, Peter J.; Calderon, Tina M.; Coley, Jacqueline S.; Berman, Joan W.

    2013-01-01

    Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70% of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers. PMID:23456305

  4. Limonene hydroperoxide analogues show specific patch test reactions.

    Science.gov (United States)

    Christensson, Johanna Bråred; Hellsén, Staffan; Börje, Anna; Karlberg, Ann-Therese

    2014-05-01

    The fragrance terpene R-limonene is a very weak sensitizer, but forms allergenic oxidation products upon contact with air. The primary oxidation products of oxidized limonene, the hydroperoxides, have an important impact on the sensitizing potency of the oxidation mixture. One analogue, limonene-1-hydroperoxide, was experimentally shown to be a significantly more potent sensitizer than limonene-2-hydroperoxide in the local lymph node assay with non-pooled lymph nodes. To investigate the pattern of reactivity among consecutive dermatitis patients to two structurally closely related limonene hydroperoxides, limonene-1-hydroperoxide and limonene-2-hydroperoxide. Limonene-1-hydroperoxide, limonene-2-hydroperoxide, at 0.5% in petrolatum, and oxidized limonene 3.0% pet. were tested in 763 consecutive dermatitis patients. Of the tested materials, limonene-1-hydroperoxide gave most reactions, with 2.4% of the patients showing positive patch test reactions. Limonene-2-hydroperoxide and oxidized R-limonene gave 1.7% and 1.2% positive patch test reactions, respectively. Concomitant positive patch test reactions to other fragrance markers in the baseline series were frequently noted. The results are in accordance with the experimental studies, as limonene-1-hydroperoxide gave more positive patch test reactions in the tested patients than limonene-2-hydroperoxide. Furthermore, the results support the specificity of the allergenic activity of the limonene hydroperoxide analogues and the importance of oxidized limonene as a cause of contact allergy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. MFG-E8 Reprogramming of Macrophages Promotes Wound Healing by Increased bFGF Production and Fibroblast Functions.

    Science.gov (United States)

    Laplante, Patrick; Brillant-Marquis, Frédéric; Brissette, Marie-Joëlle; Joannette-Pilon, Benjamin; Cayrol, Romain; Kokta, Victor; Cailhier, Jean-François

    2017-09-01

    Macrophages are essential for tissue repair. They have a crucial role in cutaneous wound healing, participating actively in the inflammation phase of the process. Unregulated macrophage activation may, however, represent a source of excessive inflammation, leading to abnormal wound healing and hypertrophic scars. Our research group has shown that apoptotic endothelial and epithelial cells secrete MFG-E8, which has the ability to reprogram macrophages from an M1 (proinflammatory) to an M2 (anti-inflammatory, pro-repair) phenotype. Hence, we tested whether modulation of macrophage reprogramming would promote tissue repair. Using a mouse model of wound healing, we showed that the presence and/or addition of MFG-E8 favors wound closure associated with an increase in CD206-positive cells and basic fibroblast growth factor production in healing tissues. More importantly, adoptive transfer of ex vivo MFG-E8-treated macrophages promoted wound closure. We also observed that MFG-E8-treated macrophages produced basic fibroblast growth factor that is responsible for fibroblast migration and proliferation. Taken together, our results strongly suggest that MFG-E8 plays a key role in macrophage reprogramming in tissue healing through induction of an anti-inflammatory M2 phenotype and basic fibroblast growth factor production, leading to fibroblast migration and wound closure. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Increased macrophage colony-stimulating factor levels in patients with Graves' disease.

    Science.gov (United States)

    Morishita, Eriko; Sekiya, Akiko; Hayashi, Tomoe; Kadohira, Yasuko; Maekawa, Mio; Yamazaki, Masahide; Asakura, Hidesaku; Nakao, Shinji; Ohtake, Shigeki

    2008-10-01

    Previous studies have found markedly elevated serum concentrations of proinflammatory cytokines in patients with Graves' disease (GD). We investigated the role of macrophage colony-stimulating factor (M-CSF) in GD. We assayed concentrations of M-CSF in sera from 32 patients with GD (25 untreated; 7 receiving thiamazole therapy). We also studied 32 age-matched healthy subjects as controls. Relationships between serum M-CSF and both thyroid state and serum lipids were examined. Moreover, to examine the effect of thyroid hormone alone on serum M-CSF, T3 was administered orally to normal subjects. Serum concentrations of M-CSF in GD patients who were hyperthyroid were significantly increased compared with GD patients who were euthyroid (P oral T3 administered to 15 volunteers for 7 days produced significant increases in serum levels of M-CSF (P production of M-CSF in patients with GD.

  7. The organic air pollutant cumene hydroperoxide interferes with NO antioxidant role in rehydrating lichen

    International Nuclear Information System (INIS)

    Catalá, M.; Gasulla, F.; Pradas del Real, A.E.; García-Breijo, F.; Reig-Armiñana, J.; Barreno, E.

    2013-01-01

    Organic pollutants effects on lichens have not been addressed. Rehydration is critical for lichens, a burst of free radicals involving NO occurs. Repeated dehydrations with organic pollutants could increase oxidative damage. Our aim is to learn the effects of cumene hydroperoxide (CP) during lichen rehydration using Ramalina farinacea (L.) Ach., its photobiont Trebouxia spp. and Asterochloris erici. Confocal imaging shows intracellular ROS and NO production within myco and phycobionts, being the chloroplast the main source of free radicals. CP increases ROS, NO and lipid peroxidation and reduces chlorophyll autofluorescence, although photosynthesis remains unaffected. Concomitant NO inhibition provokes a generalized increase of ROS and a decrease in photosynthesis. Our results suggest that CP induces a compensatory hormetic response in Ramalina farinacea that could reduce the lichen's antioxidant resources after repeated desiccation-rehydration cycles. NO is important in the protection from CP. -- Highlights: •Organic pollutants could be involved in lichen decline but effects are unknown. •Cumene hydroperoxide induces a compensatory response in rehydration (hormesis). •Cumene hydroperoxide induces a delayed lipid peroxidation. •NO is involved in rehydration oxidative stress regulation under cumene hydroperoxide. •Symbionts display specific responses probably involving communication along time. -- The organic air pollutant cumene hydroperoxide induces oxidative membrane damage in the lichen Ramalina farinacea during rehydration. Nitric oxide (NO) is involved in lichen response

  8. Increased Tim-3 expression alleviates liver injury by regulating macrophage activation in MCD-induced NASH mice.

    Science.gov (United States)

    Du, Xianhong; Wu, Zhuanchang; Xu, Yong; Liu, Yuan; Liu, Wen; Wang, Tixiao; Li, Chunyang; Zhang, Cuijuan; Yi, Fan; Gao, Lifen; Liang, Xiaohong; Ma, Chunhong

    2018-05-07

    As an immune checkpoint, Tim-3 plays roles in the regulation of both adaptive and innate immune cells including macrophages and is greatly involved in chronic liver diseases. However, the precise roles of Tim-3 in nonalcoholic steatohepatitis (NASH) remain unstated. In the current study, we analyzed Tim-3 expression on different subpopulations of liver macrophages and further investigated the potential roles of Tim-3 on hepatic macrophages in methionine and choline-deficient diet (MCD)-induced NASH mice. The results of flow cytometry demonstrated the significantly increased expression of Tim-3 on all detected liver macrophage subsets in MCD mice, including F4/80 + CD11b + , F4/80 + CD68 + , and F4/80 + CD169 + macrophages. Remarkably, Tim-3 knockout (KO) significantly accelerated MCD-induced liver steatosis, displaying higher serum ALT, larger hepatic vacuolation, more liver lipid deposition, and more severe liver fibrosis. Moreover, compared with wild-type C57BL/6 mice, Tim-3 KO MCD mice demonstrated an enhanced expression of NOX2, NLRP3, and caspase-1 p20 together with increased generation of IL-1β and IL-18 in livers. In vitro studies demonstrated that Tim-3 negatively regulated the production of reactive oxygen species (ROS) and related downstream pro-inflammatory cytokine secretion of IL-1β and IL-18 in macrophages. Exogenous administration of N-Acetyl-L-cysteine (NAC), a small molecular inhibitor of ROS, remarkably suppressed caspase-1 p20 expression and IL-1β and IL-18 production in livers of Tim-3 KO mice, thus significantly reducing the severity of steatohepatitis induced by MCD. In conclusion, Tim-3 is a promising protector in MCD-induced steatohepatitis by controlling ROS and the associated pro-inflammatory cytokine production in macrophages.

  9. Lipid oxidation. Part. 1. Effect of free carboxyl group on the decomposition of lipid hydroperoxide.

    Science.gov (United States)

    Pokorný, J; Rzepa, J; Janícek, G

    1976-01-01

    Hydroperoxido butyl oleate was decomposed by heating in excess palmitic acid at 60-120 degrees C. The decomposition followed the kinetics of a first order reaction with formation of both monomeric and oligomeric secondary products. The proportions of oligomers slightly increased with increasing reaction temperature and decreased with increasing concentration of hydroperoxide. The activation energy was 70.4 kJ/mol +/- 4.7 kJ/mol. The decomposition of hydroperoxides proceeded partially by monomolecular cleavage, partially by formation of esters with palmitic acid.

  10. An incomplete TCA cycle increases survival of Salmonella Typhimurium during infection of resting and activated murine macrophages.

    Science.gov (United States)

    Bowden, Steven D; Ramachandran, Vinoy K; Knudsen, Gitte M; Hinton, Jay C D; Thompson, Arthur

    2010-11-08

    In comparison to the comprehensive analyses performed on virulence gene expression, regulation and action, the intracellular metabolism of Salmonella during infection is a relatively under-studied area. We investigated the role of the tricarboxylic acid (TCA) cycle in the intracellular replication of Salmonella Typhimurium in resting and activated macrophages, epithelial cells, and during infection of mice. We constructed deletion mutations of 5 TCA cycle genes in S. Typhimurium including gltA, mdh, sdhCDAB, sucAB, and sucCD. We found that the mutants exhibited increased net intracellular replication in resting and activated murine macrophages compared to the wild-type. In contrast, an epithelial cell infection model showed that the S. Typhimurium ΔsucCD and ΔgltA strains had reduced net intracellular replication compared to the wild-type. The glyoxylate shunt was not responsible for the net increased replication of the TCA cycle mutants within resting macrophages. We also confirmed that, in a murine infection model, the S. Typhimurium ΔsucAB and ΔsucCD strains are attenuated for virulence. Our results suggest that disruption of the TCA cycle increases the ability of S. Typhimurium to survive within resting and activated murine macrophages. In contrast, epithelial cells are non-phagocytic cells and unlike macrophages cannot mount an oxidative and nitrosative defence response against pathogens; our results show that in HeLa cells the S. Typhimurium TCA cycle mutant strains show reduced or no change in intracellular levels compared to the wild-type. The attenuation of the S. Typhimurium ΔsucAB and ΔsucCD mutants in mice, compared to their increased net intracellular replication in resting and activated macrophages suggest that Salmonella may encounter environments within the host where a complete TCA cycle is advantageous.

  11. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway.

    Science.gov (United States)

    Kim, Chae E; Lee, Seung J; Seo, Kyo W; Park, Hye M; Yun, Jung W; Bae, Jin U; Bae, Sun S; Kim, Chi D

    2010-05-15

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B(4) (LTB(4)) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB(4) production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB(4). Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB(4), subsequent MMP-9 production and plaque rupture.

  12. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway

    International Nuclear Information System (INIS)

    Kim, Chae E.; Lee, Seung J.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Bae, Jin U.; Bae, Sun S.; Kim, Chi D.

    2010-01-01

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B 4 (LTB 4 ) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB 4 production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB 4 . Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB 4 , subsequent MMP-9 production and plaque rupture.

  13. Inactivation of adipose angiotensinogen reduces adipose tissue macrophages and increases metabolic activity.

    Science.gov (United States)

    LeMieux, Monique J; Ramalingam, Latha; Mynatt, Randall L; Kalupahana, Nishan S; Kim, Jung Han; Moustaïd-Moussa, Naïma

    2016-02-01

    The adipose renin-angiotensin system (RAS) has been linked to obesity-induced inflammation, though mechanisms are not completely understood. In this study, adipose-specific angiotensinogen knockout mice (Agt-KO) were generated to determine whether Agt inactivation reduces inflammation and alters the metabolic profile of the Agt-KO mice compared to wild-type (WT) littermates. Adipose tissue-specific Agt-KO mice were created using the Cre-LoxP system with both Agt-KO and WT littermates fed either a low-fat or high-fat diet to assess metabolic changes. White adipose tissue was used for gene/protein expression analyses and WAT stromal vascular cells for metabolic extracellular flux assays. No significant differences were observed in body weight or fat mass between both genotypes on either diet. However, improved glucose clearance was observed in Agt-KO compared to WT littermates, consistent with higher expression of genes involved in insulin signaling, glucose transport, and fatty acid metabolism. Furthermore, Agt inactivation reduced total macrophage infiltration in Agt-KO mice fed both diets. Lastly, stroma vascular cells from Agt-KO mice revealed higher metabolic activity compared to WT mice. These findings indicate that adipose-specific Agt inactivation leads to reduced adipose inflammation and increased glucose tolerance mediated in part via increased metabolic activity of adipose cells. © 2015 The Obesity Society.

  14. Plasma level of the macrophage-derived soluble CD163 is increased and positively correlates with severity in Gaucher's disease

    DEFF Research Database (Denmark)

    Møller, Holger Jon; de Fost, Maaike; Aerts, Hans

    2004-01-01

    Recently, soluble CD163 (sCD163) has been identified as a macrophage/monocyte-specific plasma protein and increased concentrations have been measured in patients with infection and myeloid leukaemia. In the present study we investigated the levels of sCD163 in patients with Gaucher's disease...

  15. Increased platelet reactivity is associated with circulating platelet-monocyte complexes and macrophages in human atherosclerotic plaques.

    Directory of Open Access Journals (Sweden)

    Bert Rutten

    Full Text Available Platelet reactivity, platelet binding to monocytes and monocyte infiltration play a detrimental role in atherosclerotic plaque progression. We investigated whether platelet reactivity was associated with levels of circulating platelet-monocyte complexes (PMCs and macrophages in human atherosclerotic carotid plaques.Platelet reactivity was determined by measuring platelet P-selectin expression after platelet stimulation with increasing concentrations of adenosine diphosphate (ADP, in two independent cohorts: the Circulating Cells cohort (n = 244 and the Athero-Express cohort (n = 91. Levels of PMCs were assessed by flow cytometry in blood samples of patients who were scheduled for percutaneous coronary intervention (Circulating Cells cohort. Monocyte infiltration was semi-quantitatively determined by histological examination of atherosclerotic carotid plaques collected during carotid endarterectomy (Athero-Express cohort.We found increased platelet reactivity in patients with high PMCs as compared to patients with low PMCs (median (interquartile range: 4153 (1585-11267 area under the curve (AUC vs. 9633 (3580-21565 AUC, P<0.001. Also, we observed increased platelet reactivity in patients with high macrophage levels in atherosclerotic plaques as compared to patients with low macrophage levels in atherosclerotic plaques (mean ± SD; 8969 ± 3485 AUC vs. 7020 ± 3442 AUC, P = 0.02. All associations remained significant after adjustment for age, sex and use of drugs against platelet activation.Platelet reactivity towards ADP is associated with levels of PMCs and macrophages in human atherosclerotic carotid plaques.

  16. Epoxidation of cyclohexene by ethyl-benzene hydroperoxide in the presence of molybdenum catalyst

    International Nuclear Information System (INIS)

    Sapunov, V.N.; Litvintsev, I.Yu.; Margitfal'vi, J.; Lebedev, N.N.

    1977-01-01

    A study has been made of the kinetic experimental pattern and mechanism of epoxidation of cyclohexene by ethylbenzene hydroperoxide during catalysis by Mo(CO) 6 in various solvents. A first order of reaction with respect to the catalyst and complex order of reaction with respect to the hydroperoxide and olefine have been established. Simple (square and cross) inhibition by reaction products, cyclohexene oxide and methylphenylcarbinol, have been found. An increase in the dielectric constant of the solvent diminishes the epoxidation rate. The mechanism scheme of the process is proposed and main kinetic parameters calculated

  17. Can contact allergy to p-phenylenediamine explain the high rates of terpene hydroperoxide allergy?

    DEFF Research Database (Denmark)

    Bennike, Niels Højsager; Lepoittevin, Jean Pierre; Johansen, Jeanne D.

    2017-01-01

    Background: Contact allergy to linalool hydroperoxides (Lin-OOHs) and limonene hydroperoxides (Lim-OOHs) is common. Similarly to what occurs with the terpene hydroperoxides, reactive intermediates formed from p-phenylenediamine (PPD) can cause oxidative modifications of tryptophan residues...... on proteins in mechanistic studies. Objectives: To test the hypothesis that patients sensitized to PPD are at increased risk of concomitant reactivity to either of the terpene hydroperoxides, owing to a ‘common pathway’ of skin protein oxidation. Methods: A database study of consecutively patch tested eczema...... patients (n = 3843) from 2012 to 2015, tested concomitantly with PPD, Lim-OOHs and Lin-OOHs, was performed. Associations were examined by level of concordance and odds ratios (ORs) adjusted for age, sex, and contact allergy to fragrance mix I and fragrance mix II. Results: Concomitant reactions to PPD were...

  18. Further evidence for increased macrophage migration inhibitory factor expression in prostate cancer

    Directory of Open Access Journals (Sweden)

    Iczkowski Kenneth A

    2005-07-01

    Full Text Available Abstract Background Macrophage migration inhibitory factor (MIF is a cytokine associated with prostate cancer, based on histologic evidence and circulating (serum levels. Recent studies from another laboratory failed to document these results. This study's aims were to extend and confirm our previous data, as well as to define possible mechanisms for the discrepant results. Additional aims were to examine MIF expression, as well as the location of MIF's receptor, CD74, in human prostatic adenocarcinoma compared to matched benign prostate. Methods MIF amounts were determined in random serum samples remaining following routine PSA screening by ELISA. Native, denaturing and reducing polyacrylamide gels and Western blot analyses determined the MIF form in serum. Prostate tissue arrays were processed for MIF in situ hybridization and immunohistochemistry for MIF and CD74. MIF released into culture medium from normal epithelial, LNCaP and PC-3 cells was detected by Western blot analysis. Results Median serum MIF amounts were significantly elevated in prostate cancer patients (5.87 ± 3.91 ng/ml; ± interquartile range; n = 115 compared with patients with no documented diagnosis of prostate cancer (2.19 ± 2.65 ng/ml; n = 158. ELISA diluent reagents that included bovine serum albumin (BSA significantly reduced MIF serum detection (p Conclusion Increased serum MIF was associated with prostate cancer. Diluent reagents that included BSA resulted in MIF serum immunoassay interference. In addition, significant amounts of complexed MIF (180 kDa under denaturing conditions by Western blot found in the serum do not bind to the MIF capture antibody. Increased MIF mRNA expression was observed in prostatic adenocarcinoma compared to benign tissue from matched samples, supporting our earlier finding of increased MIF gene expression in prostate cancer.

  19. Macrophage migration inhibitory factor stimulated by Helicobacter pylori increases proliferation of gastric epithelial cells

    Science.gov (United States)

    Xia, Harry Hua-Xiang; Lam, Shiu Kum; Chan, Annie O.O.; Lin, Marie Chia Mi; Kung, Hsiang Fu; Ogura, Keiji; Berg, Douglas E.; Wong, Benjamin C. Y.

    2005-01-01

    AIM: Helicobacter pylori (H pylori) is associated with increased gastric inflammatory and epithelial expression of macrophage migration inhibitory factor (MIF) and gastric epithelial cell proliferation. This study aimed at determining whether H pylori directly stimulates release of MIF in monocytes, whether the cag pathogenicity island (PAI) is involved for this function, and whether MIF stimulated by H pylori increases gastric epithelial cell proliferation in vitro. METHODS: A cytotoxic wild-type H pylori strain (TN2)and its three isogenic mutants (TN2△cag, TN2△cagA and TN2△cagE) were co-cultured with cells of a human monocyte cell line, THP-1, for 24 h at different organism/cell ratios. MIF in the supernatants was measured by an ELISA. Cells of a human gastric cancer cell line, MKN45, were then co-cultured with the supernatants, with and without monoclonal anti-MIF antibody for 24 h. The cells were further incubated for 12 h after addition of 3H-thymidine, and the levels of incorporation of 3H-thymidine were measured with a liquid scintillation counter. RESULTS: The wild-type strain and the isogenic mutants, TN2△cagA and TN2△cagE, increased MIF release at organism/cell ratios of 200/1 and 400/1, but not at the ratios of 50/1 and 100/1. However, the mutant TN2△cag did not increase the release of MIF at any of the four ratios. 3H-thymidine readings for MKN-45 cells were significantly increased with supernatants derived from the wild-type strain and the mutants TN2△cagA and TN2△cagE, but not from the mutant TN2△cag. Moreover, in the presence of monoclonal anti-MIF antibody, the stimulatory effects of the wild-type strain on cell proliferation disappeared. CONCLUSION: H pylori stimulates MIF release in monocytes, likely through its cag PAI, but not related to cagA or cagE. H pylori-stimulated monocyte culture supernatant increases gastric cell proliferation, which is blocked by anti-MIF antibody, suggesting that MIF plays an important role in H

  20. Hydroperoxide Measurements During Low-Temperature Gas-Phase Oxidation of n-Heptane and n-Decane

    KAUST Repository

    Rodriguez, Anne

    2017-02-13

    A wide range of hydroperoxides (C-C alkyl hydroperoxides, C-C alkenyl hydroperoxides, C ketohydroperoxides, and hydrogen peroxide (HO)), as well as ketene and diones, have been quantified during the gas-phase oxidation of n-heptane. Some of these species, as well as C alkenyl hydroperoxides and ketohydroperoxides, were also measured during the oxidation of n-decane. These experiments were performed using an atmospheric-pressure jet-stirred reactor at temperatures from 500 to 1100 K and one of three analytical methods, time-of-flight mass spectrometry combined with tunable synchrotron photoionization with a molecular beam sampling: time-of-flight mass spectrometry combined with laser photoionization with a capillary tube sampling, continuous wave cavity ring-down spectroscopy with sonic probe sampling. The experimental temperature at which the maximum mole fraction is observed increases significantly for alkyl hydroperoxides, alkenyl hydroperoxides, and then more so again for hydrogen peroxide, compared to ketohydroperoxides. The influence of the equivalence ratio from 0.25 to 4 on the formation of these peroxides has been studied during n-heptane oxidation. The up-to-date detailed kinetic oxidation models for n-heptane and for n-decane found in the literature have been used to discuss the possible pathways by which these peroxides, ketene, and diones are formed. In general, the model predicts well the reactivity of the two fuels, as well as the formation of major intermediates. (Figure Presented).

  1. Hydroperoxide Measurements During Low-Temperature Gas-Phase Oxidation of n-Heptane and n-Decane

    KAUST Repository

    Rodriguez, Anne; Herbinet, Olivier; Meng, Xiangzan; Fittschen, Christa; Wang, Zhandong; Xing, Lili; Zhang, Lidong; Battin-Leclerc, Fré dé rique

    2017-01-01

    A wide range of hydroperoxides (C-C alkyl hydroperoxides, C-C alkenyl hydroperoxides, C ketohydroperoxides, and hydrogen peroxide (HO)), as well as ketene and diones, have been quantified during the gas-phase oxidation of n-heptane. Some of these species, as well as C alkenyl hydroperoxides and ketohydroperoxides, were also measured during the oxidation of n-decane. These experiments were performed using an atmospheric-pressure jet-stirred reactor at temperatures from 500 to 1100 K and one of three analytical methods, time-of-flight mass spectrometry combined with tunable synchrotron photoionization with a molecular beam sampling: time-of-flight mass spectrometry combined with laser photoionization with a capillary tube sampling, continuous wave cavity ring-down spectroscopy with sonic probe sampling. The experimental temperature at which the maximum mole fraction is observed increases significantly for alkyl hydroperoxides, alkenyl hydroperoxides, and then more so again for hydrogen peroxide, compared to ketohydroperoxides. The influence of the equivalence ratio from 0.25 to 4 on the formation of these peroxides has been studied during n-heptane oxidation. The up-to-date detailed kinetic oxidation models for n-heptane and for n-decane found in the literature have been used to discuss the possible pathways by which these peroxides, ketene, and diones are formed. In general, the model predicts well the reactivity of the two fuels, as well as the formation of major intermediates. (Figure Presented).

  2. Increased Adipocyte Size, Macrophage Infiltration, and Adverse Local Adipokine Profile in Perirenal Fat in Cushing's Syndrome.

    Science.gov (United States)

    Roerink, Sean H P P; Wagenmakers, Margreet A E M; Langenhuijsen, Johan F; Ballak, Dov B; Rooijackers, Hanne M M; d'Ancona, Frank C; van Dielen, François M; Smit, Jan W A; Plantinga, Theo S; Netea-Maier, Romana T; Hermus, Ad R M M

    2017-08-01

    To analyze changes in fat cell size, macrophage infiltration, and local adipose tissue adipokine profiles in different fat depots in patients with active Cushing's syndrome. Subcutaneous (SC) and perirenal (PR) adipose tissue of 10 patients with Cushing's syndrome was compared to adipose tissue of 10 gender-, age-, and BMI-matched controls with regard to adipocyte size determined by digital image analysis on hematoxylin and eosin stainings, macrophage infiltration determined by digital image analysis on CD68 stainings, and adipose tissue leptin and adiponectin levels using fluorescent bead immunoassays and ELISA techniques. Compared to the controls, mean adipocyte size was larger in PR adipose tissue in patients. The percentage of macrophage infiltration of the PR adipose tissue and PR adipose tissue lysate leptin levels were higher and adiponectin levels were lower in SC and PR adipose tissue lysates in patients. The adiponectin levels were also lower in the SC adipose tissue supernatants of patients. Associations were found between the severity of hypercortisolism and PR adipocyte size. Cushing's syndrome is associated with hypertrophy of PR adipocytes and a higher percentage of macrophage infiltration in PR adipose tissue. These changes are associated with an adverse local adipokine profile. © 2017 The Obesity Society.

  3. Further evidence for increased macrophage migration inhibitory factor expression in prostate cancer

    International Nuclear Information System (INIS)

    Meyer-Siegler, Katherine L; Iczkowski, Kenneth A; Vera, Pedro L

    2005-01-01

    Macrophage migration inhibitory factor (MIF) is a cytokine associated with prostate cancer, based on histologic evidence and circulating (serum) levels. Recent studies from another laboratory failed to document these results. This study's aims were to extend and confirm our previous data, as well as to define possible mechanisms for the discrepant results. Additional aims were to examine MIF expression, as well as the location of MIF's receptor, CD74, in human prostatic adenocarcinoma compared to matched benign prostate. MIF amounts were determined in random serum samples remaining following routine PSA screening by ELISA. Native, denaturing and reducing polyacrylamide gels and Western blot analyses determined the MIF form in serum. Prostate tissue arrays were processed for MIF in situ hybridization and immunohistochemistry for MIF and CD74. MIF released into culture medium from normal epithelial, LNCaP and PC-3 cells was detected by Western blot analysis. Median serum MIF amounts were significantly elevated in prostate cancer patients (5.87 ± 3.91 ng/ml; ± interquartile range; n = 115) compared with patients with no documented diagnosis of prostate cancer (2.19 ± 2.65 ng/ml; n = 158). ELISA diluent reagents that included bovine serum albumin (BSA) significantly reduced MIF serum detection (p < 0.01). MIF mRNA was localized to prostatic epithelium in all samples, but cancer showed statistically greater MIF expression. MIF and its receptor (CD74) were localized to prostatic epithelium. Increased secreted MIF was detected in culture medium from prostate cancer cell lines (LNCaP and PC-3). Increased serum MIF was associated with prostate cancer. Diluent reagents that included BSA resulted in MIF serum immunoassay interference. In addition, significant amounts of complexed MIF (180 kDa under denaturing conditions by Western blot) found in the serum do not bind to the MIF capture antibody. Increased MIF mRNA expression was observed in prostatic

  4. Impact of organic hydroperoxides on rat testicular tissue and ...

    African Journals Online (AJOL)

    The effects of hydroperoxides on testicular tissue and epididymal sperm were investigated. Male Wistar rats aged 10 - 12 weeks were randomly placed in groups and received standard rat chow and water ad libitum. Animals were injected intraperitoneally with saline (0.5 ml), t-butyl hydroperoxide (5, 10, 20 and 40 ìM; 0.5 ...

  5. The exhibition to ozone diminishes the adherence and increases the membrane permeability of macrophages alveolar of rate

    International Nuclear Information System (INIS)

    Garcia, J.

    2000-01-01

    Ozone gas is generated photochemically in areas with high levels of automotive or industrial emissions, and causes irritation and inflammation of the airways if inhaled. Rat alveolar macrophages were obtained by lung lavage from male Sprague Dawley rats and used as a model to assess ozone induced cell damage (0,594 ppm for up to 60 minutes). Ozone exposure caused loss of cell adherence to a polystyrene substrate and increased membrane permeability, as noted by increases in specific 51 Cr release and citoplasmic calcium levels. The results indicate that the cell membrane is a target for ozone damage. Elevations of cytoplasmic calcium could mediate other macrophage responses to ozone , including eicosanoid and nitric oxide production, with concomitant decreases in phagocytic ability and superoxide production. (Author) [es

  6. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides

    DEFF Research Database (Denmark)

    Winterbourn, Christine C; Parsons-Mair, Helena N; Gebicki, Silvia

    2004-01-01

    Superoxide reacts rapidly with other radicals, but these reactions have received little attention in the context of oxidative stress. For tyrosyl radicals, reaction with superoxide is 3-fold faster than dimerization, and forms the addition product tyrosine hydroperoxide. We have explored structural...... requirements for hydroperoxide formation using tyrosine analogues and di- and tri-peptides. Superoxide and phenoxyl radicals were generated using xanthine oxidase, peroxidase and the respective tyrosine derivative, or by gamma-radiation. Peroxides were measured using FeSO4/Xylenol Orange. Tyrosine and tyramine...... formed stable hydroperoxides, but N-acetyltyrosine and p-hydroxyphenylacetic acid did not, demonstrating a requirement for a free amino group. Using [14C]tyrosine, the hydroperoxide and dityrosine were formed at a molar ratio of 1.8:1. Studies with pre-formed hydroperoxides, and measurements of substrate...

  7. Association of Increased F4/80high Macrophages With Suppression of Serum-Transfer Arthritis in Mice With Reduced FLIP in Myeloid Cells.

    Science.gov (United States)

    Huang, Qi-Quan; Birkett, Robert; Doyle, Renee E; Haines, G Kenneth; Perlman, Harris; Shi, Bo; Homan, Philip; Xing, Lianping; Pope, Richard M

    2017-09-01

    Macrophages are critical in the pathogenesis of rheumatoid arthritis (RA). We recently demonstrated that FLIP is necessary for the differentiation and/or survival of macrophages. We also showed that FLIP is highly expressed in RA synovial macrophages. This study was undertaken to determine if a reduction in FLIP in mouse macrophages reduces synovial tissue macrophages and ameliorates serum-transfer arthritis. Mice with Flip deleted in myeloid cells (Flip f/f LysM c/+ mice) and littermate controls were used. Arthritis was induced by intraperitoneal injection of K/BxN serum. Disease severity was evaluated by clinical score and change in ankle thickness, and joints were examined by histology and immunohistochemistry. Cells were isolated from the ankles and bone marrow of the mice and examined by flow cytometry, real-time quantitative reverse transcriptase-polymerase chain reaction, or Western blotting. In contrast to expectations, Flip f/f LysM c/+ mice developed more severe arthritis early in the clinical course, but peak arthritis was attenuated and the resolution phase more complete than in control mice. Prior to the induction of serum-transfer arthritis, the number of tissue-resident macrophages was reduced. On day 9 after arthritis induction, the number of F4/80 high macrophages in the joints of the Flip f/f LysM c/+ mice was not decreased, but increased. FLIP was reduced in the F4/80 high macrophages in the ankles of the Flip f/f LysM c/+ mice, while F4/80 high macrophages expressed an antiinflammatory phenotype in both the Flip f/f LysM c/+ and control mice. Our observations suggest that reducing FLIP in macrophages by increasing the number of antiinflammatory macrophages may be an effective therapeutic approach to suppress inflammation, depending on the disease stage. © 2017, American College of Rheumatology.

  8. Interactions of macrophages with probiotic bacteria lead to increased antiviral response against vesicular stomatitis virus

    DEFF Research Database (Denmark)

    Ivec, Martin; Botic, Tanja; Koren, Srecko

    2007-01-01

    and by producing chemokines and immunoregulatory cytokines that enable the adaptive immune response to recognize infected cells and perform antiviral effector functions. Probiotics, as a part of the normal gut intestinal flora, are important in supporting a functional yet balanced immune system. Improving our...... understanding of their role in the activation of macrophages and their stimulation of proinflammatory cytokine production in early viral infection was the main goal of this study. Our in vitro model study showed that probiotic bacteria, either from the species Lactobacillus or Bifidobacteria have the ability...... dehydrogenases activity could be implied as the first indicator of potential inhibitory effects of the probiotics on virus replication. The interactions between probiotic bacteria, macrophages and vesicular stomatitis virus (VSV), markedly depended on the bacterial strain studied....

  9. SHIP-1 Increases Early Oxidative Burst and Regulates Phagosome Maturation in Macrophages1

    Science.gov (United States)

    Kamen, Lynn A.; Levinsohn, Jonathan; Cadwallader, Amy; Tridandapani, Susheela; Swanson, Joel A.

    2010-01-01

    Although the inositol phosphatase SHIP-1 is generally thought to inhibit signaling for Fc receptor-mediated phagocytosis, the product of its activity, phosphatidylinositol 3,4 bisphosphate (PI(3,4)P2) has been implicated in activation of the NADPH oxidase. This suggests that SHIP-1 positively regulates generation of reactive oxygen species after phagocytosis. To examine how SHIP-1 activity contributes to Fc receptor-mediated phagocytosis, we measured and compared phospholipid dynamics, membrane trafficking and the oxidative burst in macrophages from SHIP-1-deficient and wild-type mice. SHIP-1-deficient macrophages showed significantly elevated ratios of PI(3,4,5) P3 to PI(3,4)P2 on phagosomal membranes. Imaging reactive oxygen intermediate activities in phagosomes revealed decreased early NADPH oxidase activity in SHIP-1-deficient macrophages. SHIP-1-deficiency also altered later stages of phagosome maturation, as indicated by the persistent elevation of PI(3)P and the early localization of Rab5a to phagosomes. These direct measurements of individual organelles indicate that phagosomal SHIP-1 enhances the early oxidative burst through localized alteration of the membrane 3′ phosphoinositide composition. PMID:18490750

  10. CD54-Mediated Interaction with Pro-inflammatory Macrophages Increases the Immunosuppressive Function of Human Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Nicolas Espagnolle

    2017-04-01

    Full Text Available Summary: Mesenchymal stromal cells (MSCs sense and modulate inflammation and represent potential clinical treatment for immune disorders. However, many details of the bidirectional interaction of MSCs and the innate immune compartment are still unsolved. Here we describe an unconventional but functional interaction between pro-inflammatory classically activated macrophages (M1MΦ and MSCs, with CD54 playing a central role. CD54 was upregulated and enriched specifically at the contact area between M1MФ and MSCs. Moreover, the specific interaction induced calcium signaling and increased the immunosuppressive capacities of MSCs dependent on CD54 mediation. Our data demonstrate that MSCs can detect an inflammatory microenvironment via a direct and physical interaction with innate immune cells. This finding opens different perspectives for MSC-based cell therapy. : Mesenchymal stromal cells (MSCs are promising for cell-based therapy in inflammatory disorders by switching off the immune response. Varin and colleagues demonstrate that MSCs and inflammatory macrophages communicate via an unconventional but functional interaction that strongly increases the immunosuppressive capacities of MSCs. This new communication between the innate immune system and MSCs opens new perspectives for MSC-based cell therapy. Keywords: macrophages, bone marrow mesenchymal stromal cells, functional interaction, CD54, immunosuppression, indoleamine 2,3-dioxygenase, cell therapy

  11. CCR2 deficiency leads to increased eosinophils, alternative macrophage activation, and type 2 cytokine expression in adipose tissue.

    Science.gov (United States)

    Bolus, W Reid; Gutierrez, Dario A; Kennedy, Arion J; Anderson-Baucum, Emily K; Hasty, Alyssa H

    2015-10-01

    Adipose tissue (AT) inflammation during obesity is mediated by immune cells and closely correlates with systemic insulin resistance. In lean AT, eosinophils are present in low but significant numbers and capable of promoting alternative macrophage activation in an IL-4/IL-13-dependent manner. In WT mice, obesity causes the proportion of AT eosinophils to decline, concomitant with inflammation and classical activation of AT macrophages. In this study, we show that CCR2 deficiency leads to increased eosinophil accumulation in AT. Furthermore, in contrast to WT mice, the increase in eosinophils in CCR2(-/-) AT is sustained and even amplified during obesity. Interestingly, a significant portion of eosinophils is found in CLSs in AT of obese CCR2(-/-) mice, which is the first time eosinophils have been shown to localize to these inflammatory hot spots. CCR2(-/-) bone marrow precursors displayed increased expression of various key eosinophil genes during in vitro differentiation to eosinophils, suggesting a potentially altered eosinophil phenotype in the absence of CCR2. In addition, the proportion of eosinophils in AT positively correlated with local expression of Il5, a potent eosinophil stimulator. The increase in eosinophils in CCR2(-/-) mice was detected in all white fat pads analyzed and in the peritoneal cavity but not in bone marrow, blood, spleen, or liver. In AT of CCR2(-/-) mice, an increased eosinophil number positively correlated with M2-like macrophages, expression of the Treg marker Foxp3, and type 2 cytokines, Il4, Il5, and Il13. This is the first study to link CCR2 function with regulation of AT eosinophil accumulation. © Society for Leukocyte Biology.

  12. Increased endothelial and macrophage markers are associated with disease severity and mortality in scrub typhus.

    Science.gov (United States)

    Otterdal, Kari; Janardhanan, Jeshina; Astrup, Elisabeth; Ueland, Thor; Prakash, John A J; Lekva, Tove; Abraham, O C; Thomas, Kurien; Damås, Jan Kristian; Mathews, Prasad; Mathai, Dilip; Aukrust, Pål; Varghese, George M

    2014-11-01

    Scrub typhus is endemic in the Asia-Pacific region. Mortality is high even with treatment, and further knowledge of the immune response during this infection is needed. This study was aimed at comparing plasma levels of monocyte/macrophage and endothelial related inflammatory markers in patients and controls in South India and to explore a possible correlation to disease severity and clinical outcome. Plasma levels of ALCAM, VCAM-1, sCD163, sCD14, YKL-40 and MIF were measured in scrub typhus patients (n = 129), healthy controls (n = 31) and in infectious disease controls (n = 31), both in the acute phase and after recovery, by enzyme immunoassays. Patients had markedly elevated levels of all mediators in the acute phase, differing from both healthy and infectious disease controls. During follow-up levels of ALCAM, VCAM-1, sCD14 and YKL-40 remained elevated compared to levels in healthy controls. High plasma ALCAM, VCAM-1, sCD163, sCD14, and MIF, and in particular YKL-40 were all associated with disease severity and ALCAM, sCD163, MIF and especially YKL-40, were associated with mortality. Our findings show that scrub typhus is characterized by elevated levels of monocyte/macrophage and endothelial related markers. These inflammatory markers, and in particular YKL-40, may contribute to disease severity and clinical outcome. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  13. Over-expression of the mycobacterial trehalose-phosphate phosphatase OtsB2 results in a defect in macrophage phagocytosis associated with increased mycobacterial-macrophage adhesion

    Directory of Open Access Journals (Sweden)

    Hao Li

    2016-11-01

    Full Text Available Trehalose-6-phosphate phosphatase (OtsB2 is involved in the OtsAB trehalose synthesis pathway to produce free trehalose and is strictly essential for mycobacterial growth. We wished to determine the effects of OtsB2 expression on mycobacterial phenotypes such as growth, phagocytosis and survival in macrophages. Mycobacterium bovis-BCG (BCG over-expressing OtsB2 were able to better survive in stationary phase. Over-expression of OtsB2 led to a decrease in phagocytosis but not survival in THP-1 macrophage-like cells, and this was not due to a decrease in general macrophage phagocytic activity. Surprisingly, when we investigated macrophage-mycobacterial interactions by flow cytometry and atomic force microscopy, we discovered that BCG over-expressing OtsB2 have stronger binding to THP-1 cells than wild-type BCG. These results suggest that altering OtsB2 expression has implications for mycobacterial host-pathogen interactions. Macrophage-mycobacteria phagocytic interactions are complex and merit further study.

  14. Increase in a distinct pulmonary macrophage subset possessing an antigen-presenting cell phenotype and in vitro APC activity following silica exposure

    International Nuclear Information System (INIS)

    Migliaccio, Christopher T.; Hamilton, Raymond F.; Holian, Andrij

    2005-01-01

    Silica inhalation results in chronic lung inflammation and fibrosis. While the role of the alveolar macrophage (AM) is considered key to the effects of silica on lung pathology, the etiology is not completely understood. Evidence suggests an increase in antigen presenting cell (APC) activity as a contributing factor to this process, as well as potential roles for both AM and interstitial macrophages (IM) in silicosis. In order to study the effects of crystalline silica on the APC activity of pulmonary macrophages, mice were exposed intranasally and changes in pulmonary macrophage populations were assessed using flow cytometry. Following intranasal instillation of silica, a significant increase in the APC activity of AM was observed, as well as a significant increase in a subset of IM expressing classic APC markers (MHC class II, CD11c). In addition, an in vitro system using bone marrow-derived macrophages (BMDM) was generated to assess the effects of silica on the APC activity of macrophages in vitro. Data using BMDM in the in vitro APC assay demonstrated a significant increase in APC activity following silica exposure, but not following exposure to saline or a control particle (TiO 2 ). Using a combination of in vivo and in vitro experiments, the current study describes a significant increase in an interstitial macrophage subset with an APC phenotype, as well as an increase in the APC activity of both AM and BMDM, as a direct result of exposure to crystalline silica. These studies suggest a specific mechanism, macrophage subset activation, by which crystalline silica exposure results in chronic pulmonary inflammation and, eventually, fibrosis

  15. Interleukin-10 increases reverse cholesterol transport in macrophages through its bidirectional interaction with liver X receptor α

    International Nuclear Information System (INIS)

    Halvorsen, Bente; Holm, Sverre; Yndestad, Arne; Scholz, Hanne; Sagen, Ellen Lund; Nebb, Hilde; Holven, Kirsten B.; Dahl, Tuva B.; Aukrust, Pål

    2014-01-01

    Highlights: • IL-10 promotes reverse cholesterol efflux from lipid loaded macrophages. • IL-10 increases the expression of ABCA-1 and ABCG-1. • IL-10 exhibits cross-talk with the nuclear receptor LXRα. - Abstract: Interleukin (IL)-10 is a prototypical anti-inflammatory cytokine that has been shown to attenuate atherosclerosis development. In addition to its anti-inflammatory properties, the anti-atherogenic effect of IL-10 has recently also been suggested to reflect a complex effect of IL-10 on lipid metabolism in macrophages. In the present study we examined the effects of IL-10 on cholesterol efflux mechanism in lipid-loaded THP-1 macrophages. Our main findings were: (i) IL-10 significantly enhanced cholesterol efflux induced by fetal-calf serum, high-density lipoprotein (HDL) 2 and apolipoprotein A-1. (ii) The IL-10-mediated effects on cholesterol efflux were accompanied by an increased IL-10-mediated expression of the ATP-binding cassette transporters ABCA1 and ABCG1, that was further enhanced when the cells were co-activated with the liver X receptor (LXR)α agonist (22R)-hydroxycholesterol. (iii) The effect of LXRα activation on the IL-10-mediated effects on the ATP-binding cassette transporters seems to include enhancing effects on the IL-10 receptor 1 (IL10R1) expression and interaction with STAT-3 signaling. (iv) These enhancing effects on ABCA1 and ABCG1 was not seen when the cells were stimulated with the IL-10 family members IL-22 and IL-24. This study suggests that the anti-atherogenic properties of IL-10 may include enhancing effects on cholesterol efflux mechanism that involves cross-talk with LXRα activation

  16. Interleukin-10 increases reverse cholesterol transport in macrophages through its bidirectional interaction with liver X receptor α

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Bente, E-mail: Bente.Halvorsen@rr-research.no [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway); K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo (Norway); Holm, Sverre [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Yndestad, Arne [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway); K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo (Norway); Scholz, Hanne [Section for Transplantation, Institute for Surgical Research, Oslo University Hospital Rikshospitalet, Oslo (Norway); Sagen, Ellen Lund [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Nebb, Hilde [Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway); Holven, Kirsten B. [Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo (Norway); Dahl, Tuva B. [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway); Aukrust, Pål [Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo (Norway); Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo (Norway); Institute of Clinical Medicine, University of Oslo, Oslo (Norway); K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo (Norway)

    2014-08-08

    Highlights: • IL-10 promotes reverse cholesterol efflux from lipid loaded macrophages. • IL-10 increases the expression of ABCA-1 and ABCG-1. • IL-10 exhibits cross-talk with the nuclear receptor LXRα. - Abstract: Interleukin (IL)-10 is a prototypical anti-inflammatory cytokine that has been shown to attenuate atherosclerosis development. In addition to its anti-inflammatory properties, the anti-atherogenic effect of IL-10 has recently also been suggested to reflect a complex effect of IL-10 on lipid metabolism in macrophages. In the present study we examined the effects of IL-10 on cholesterol efflux mechanism in lipid-loaded THP-1 macrophages. Our main findings were: (i) IL-10 significantly enhanced cholesterol efflux induced by fetal-calf serum, high-density lipoprotein (HDL){sub 2} and apolipoprotein A-1. (ii) The IL-10-mediated effects on cholesterol efflux were accompanied by an increased IL-10-mediated expression of the ATP-binding cassette transporters ABCA1 and ABCG1, that was further enhanced when the cells were co-activated with the liver X receptor (LXR)α agonist (22R)-hydroxycholesterol. (iii) The effect of LXRα activation on the IL-10-mediated effects on the ATP-binding cassette transporters seems to include enhancing effects on the IL-10 receptor 1 (IL10R1) expression and interaction with STAT-3 signaling. (iv) These enhancing effects on ABCA1 and ABCG1 was not seen when the cells were stimulated with the IL-10 family members IL-22 and IL-24. This study suggests that the anti-atherogenic properties of IL-10 may include enhancing effects on cholesterol efflux mechanism that involves cross-talk with LXRα activation.

  17. Overexpression of Cholesteryl Ester Transfer Protein Increases Macrophage-Derived Foam Cell Accumulation in Atherosclerotic Lesions of Transgenic Rabbits

    Directory of Open Access Journals (Sweden)

    Shoucui Gao

    2017-01-01

    Full Text Available High levels of plasma high-density lipoprotein-cholesterol (HDL-C are inversely associated with the risk of atherosclerosis and other cardiovascular diseases; thus, pharmacological inhibition of cholesteryl ester transfer protein (CETP is considered to be a therapeutic method of raising HDL-C levels. However, many CETP inhibitors have failed to achieve a clinical benefit despite raising HDL-C. In the study, we generated transgenic (Tg rabbits that overexpressed the human CETP gene to examine the influence of CETP on the development of atherosclerosis. Both Tg rabbits and their non-Tg littermates were fed a high cholesterol diet for 16 weeks. Plasma lipids and body weight were measured every 4 weeks. Gross lesion areas of the aortic atherosclerosis along with lesional cellular components were quantitatively analyzed. Overexpression of human CETP did not significantly alter the gross atherosclerotic lesion area, but the number of macrophages in lesions was significantly increased. Overexpression of human CETP did not change the plasma levels of total cholesterol or low-density lipoprotein cholesterol but lowered plasma HDL-C and increased triglycerides. These data revealed that human CETP may play an important role in the development of atherosclerosis mainly by decreasing HDL-C levels and increasing the accumulation of macrophage-derived foam cells.

  18. Deficiency of ATP-binding cassette transporters A1 and G1 in macrophages increases inflammation and accelerates atherosclerosis in mice.

    Science.gov (United States)

    Westerterp, Marit; Murphy, Andrew J; Wang, Mi; Pagler, Tamara A; Vengrenyuk, Yuliya; Kappus, Mojdeh S; Gorman, Darren J; Nagareddy, Prabhakara R; Zhu, Xuewei; Abramowicz, Sandra; Parks, John S; Welch, Carrie; Fisher, Edward A; Wang, Nan; Yvan-Charvet, Laurent; Tall, Alan R

    2013-05-24

    Plasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the ability of high-density lipoprotein to promote cholesterol efflux from macrophage foam cells, direct experimental support for this hypothesis is lacking. To assess the role of macrophage cholesterol efflux pathways in atherogenesis. We developed mice with efficient deletion of the ATP-binding cassette transporters A1 and G1 (ABCA1 and ABCG1) in macrophages (MAC-ABC(DKO) mice) but not in hematopoietic stem or progenitor populations. MAC-ABC(DKO) bone marrow (BM) was transplanted into Ldlr(-/-) recipients. On the chow diet, these mice had similar plasma cholesterol and blood monocyte levels but increased atherosclerosis compared with controls. On the Western-type diet, MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice had disproportionate atherosclerosis, considering they also had lower very low-density lipoprotein/low-density lipoprotein cholesterol levels than controls. ABCA1/G1-deficient macrophages in lesions showed increased inflammatory gene expression. Unexpectedly, Western-type diet-fed MAC-ABC(DKO) BM-transplanted Ldlr(-/-) mice displayed monocytosis and neutrophilia in the absence of hematopoietic stem and multipotential progenitor cells proliferation. Mechanistic studies revealed increased expressions of machrophage colony stimulating factor and granulocyte colony stimulating factor in splenic macrophage foam cells, driving BM monocyte and neutrophil production. These studies show that macrophage deficiency of ABCA1/G1 is proatherogenic likely by promoting plaque inflammation and uncover a novel positive feedback loop in which cholesterol-laden splenic macrophages signal BM progenitors to produce monocytes, with suppression by macrophage cholesterol efflux pathways.

  19. Administration of the non-steroidal anti-inflammatory drug ibuprofen increases macrophage concentrations but reduces necrosis during modified muscle use

    Science.gov (United States)

    Cheung, E. V.; Tidball, J. G.

    2003-01-01

    OBJECTIVE: To test the hypothesis that ibuprofen administration during modified muscle use reduces muscle necrosis and invasion by select myeloid cell populations. METHODS: Rats were subjected to hindlimb unloading for 10 days, after which they experienced muscle reloading by normal weight-bearing to induce muscle inflammation and necrosis. Some animals received ibuprofen by intraperitoneal injection 8 h prior to the onset of muscle reloading, and then again at 8 and 16 h following the onset of reloading. Other animals received buffer injection at 8 h prior to reloading and then ibuprofen at 8 and 16 h following the onset of reloading. Control animals received buffer only at each time point. Quantitative immunohistochemical analysis was used to assess the presence of necrotic muscle fibers, total inflammatory infiltrate, neutrophils, ED1+ macrophages and ED2+ macrophages at 24 h following the onset of reloading. RESULT: Administration of ibuprofen beginning 8 h prior to reloading caused significant reduction in the concentration of necrotic fibers, but increased the concentration of inflammatory cells in muscle. The increase in inflammatory cells was attributable to a 2.6-fold increase in the concentration of ED2+ macrophages. Animals treated with ibuprofen 8 h following the onset of reloading showed no decrease in muscle necrosis or increase in ED2+ macrophage concentrations. CONCLUSION: Administration of ibuprofen prior to increased muscle loading reduces muscle damage, but increases the concentration of macrophages that express the ED2 antigen. The increase in ED2+ macrophage concentration and decrease in necrosis may be mechanistically related because ED2+ macrophages have been associated with muscle regeneration and repair.

  20. Acrolein increases macrophage atherogenicity in association with gut microbiota remodeling in atherosclerotic mice: protective role for the polyphenol-rich pomegranate juice.

    Science.gov (United States)

    Rom, Oren; Korach-Rechtman, Hila; Hayek, Tony; Danin-Poleg, Yael; Bar, Haim; Kashi, Yechezkel; Aviram, Michael

    2017-04-01

    The unsaturated aldehyde acrolein is pro-atherogenic, and the polyphenol-rich pomegranate juice (PJ), known for its anti-oxidative/anti-atherogenic properties, inhibits macrophage foam cell formation, the hallmark feature of early atherosclerosis. This study aimed to investigate two unexplored areas of acrolein atherogenicity: macrophage lipid metabolism and the gut microbiota composition. The protective effects of PJ against acrolein atherogenicity were also evaluated. Atherosclerotic apolipoprotein E-deficient (apoE -/- ) mice that were fed acrolein (3 mg/kg/day) for 1 month showed significant increases in serum and aortic cholesterol, triglycerides, and lipid peroxides. In peritoneal macrophages isolated from the mice and in J774A.1 cultured macrophages, acrolein exposure increased intracellular oxidative stress and stimulated cholesterol and triglyceride accumulation via enhanced rates of their biosynthesis and over-expression of key regulators of cellular lipid biosynthesis: sterol regulatory element-binding proteins (SREBPs), 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR), and diacylglycerol acyltransferase1 (DGAT1). Acrolein-fed mice demonstrated a major shift in the gut microbiota composition, including a significant phylum-level change in increased Firmicutes and decreased Bacteroidetes. At the family level, acrolein significantly increased the prevalence of Ruminococcaceae and Lachnospiraceae of which the Coprococcus genus was significantly and positively correlated with serum, aortic and macrophage lipid levels and peroxidation. The pro-atherogenic effects of acrolein on serum, aortas, macrophages, and the gut microbiota were substantially abolished by PJ. In conclusion, these findings provide novel mechanisms by which acrolein increases macrophage lipid accumulation and alters the gut microbiota composition in association with enhanced atherogenesis. Moreover, PJ was found as an effective strategy against acrolein atherogenicity.

  1. Fatty acid hydroperoxides pathways in plants. A review.

    Directory of Open Access Journals (Sweden)

    Fauconnier, M. L.

    1997-02-01

    Full Text Available The present paper focusses on the fatty acid hydroperoxides pathways, mainly hydroperoxide lyase and hydroperoxide dehydrase. For each enzyme, the definition, occurrence and subcellular localization is presented. Particular attention is given to reaction mecanisms and to substrate specificity. Physiological roles of reaction products are also discussed.

    El presente artículo se centra en las rutas de los hidroperóxidos de ácidos grasos, principalmente la hidroperóxido liasa y la hidroperóxido dehidrasa. Se presenta para cada enzima, la definición, distribución y localización subcelular. Se da atención particular a los mecanismos de reacción y a la especificidad de sustrato. También se discuten los papeles fisiológicos de los productos de reacción.

  2. “Marker of Self” CD47 on lentiviral vectors decreases macrophage-mediated clearance and increases delivery to SIRPA-expressing lung carcinoma tumors

    Directory of Open Access Journals (Sweden)

    Nisha G Sosale

    2016-01-01

    Full Text Available Lentiviruses infect many cell types and are now widely used for gene delivery in vitro, but in vivo uptake of these foreign vectors by macrophages is a limitation. Lentivectors are produced here from packaging cells that overexpress “Marker of Self” CD47, which inhibits macrophage uptake of cells when prophagocytic factors are also displayed. Single particle analyses show “hCD47-Lenti” display properly oriented human-CD47 for interactions with the macrophage's inhibitory receptor SIRPA. Macrophages derived from human and NOD/SCID/Il2rg−/− (NSG mice show a SIRPA-dependent decrease in transduction, i.e., transgene expression, by hCD47-Lenti compared to control Lenti. Consistent with known “Self” signaling pathways, macrophage transduction by control Lenti is decreased by drug inhibition of Myosin-II to the same levels as hCD47-Lenti. In contrast, human lung carcinoma cells express SIRPA and use it to enhance transduction by hCD47-Lenti- as illustrated by more efficient gene deletion using CRISPR/Cas9. Intravenous injection of hCD47-Lenti into NSG mice shows hCD47 prolongs circulation, unless a blocking anti-SIRPA is preinjected. In vivo transduction of spleen and liver macrophages also decreases for hCD47-Lenti while transduction of lung carcinoma xenografts increases. hCD47 could be useful when macrophage uptake is limiting on other viral vectors that are emerging in cancer treatments (e.g., Measles glycoprotein-pseudotyped lentivectors and also in targeting various SIRPA-expressing tumors such as glioblastomas.

  3. Biomarkers derived from heterolytic and homolytic cleavage of allylic hydroperoxides resulting from alkenone autoxidation

    Digital Repository Service at National Institute of Oceanography (India)

    Rontania, J.F.; Harji, R.; Volkmanc, J.K.

    Laboratory incubation of alkenone mixtures with tert-butyl hydroperoxide and di-tert-butyl nitroxide (radical initiator) in hexane, as a means to simulate alkenone autoxidation processes, rapidly led to the formation of allylic hydroperoxides, whose...

  4. Supplementation with linoleic acid-rich soybean oil stimulates macrophage foam cell formation via increased oxidative stress and diacylglycerol acyltransferase1-mediated triglyceride biosynthesis.

    Science.gov (United States)

    Rom, Oren; Jeries, Helana; Hayek, Tony; Aviram, Michael

    2017-01-02

    During the last decades there has been a staggering rise in human consumption of soybean oil (SO) and its major polyunsaturated fatty acid linoleic acid (LA). The role of SO or LA in cardiovascular diseases is highly controversial, and their impact on macrophage foam cell formation, the hallmark of early atherogenesis, is unclear. To investigate the effects of high SO or LA intake on macrophage lipid metabolism and the related mechanisms of action, C57BL/6 mice were orally supplemented with increasing levels of SO-based emulsion or equivalent levels of purified LA for 1 month, followed by analyses of lipid accumulation and peroxidation in aortas, serum and in peritoneal macrophages (MPM) of the mice. Lipid peroxidation and triglyceride mass in aortas from SO or LA supplemented mice were dose-dependently and significantly increased. In MPM from SO or LA supplemented mice, lipid peroxides were significantly increased and a marked accumulation of cellular triglycerides was found in accordance with enhanced triglyceride biosynthesis rate and overexpression of diacylglycerol acyltransferase1 (DGAT1), the key enzyme in triglyceride biosynthesis. In cultured J774A.1 macrophages treated with SO or LA, triglyceride accumulated via increased oxidative stress and a p38 mitogen-activated protein kinase (MAPK)-mediated overexpression of DGAT1. Accordingly, anti-oxidants (pomegranate polyphenols), inhibition of p38 MAPK (by SB202190) or DGAT1 (by oleanolic acid), all significantly attenuated SO or LA-induced macrophage triglyceride accumulation. These findings reveal novel mechanisms by which supplementation with SO or LA stimulate macrophage foam cell formation, suggesting a pro-atherogenic role for overconsumption of SO or LA. © 2016 BioFactors, 43(1):100-116, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  5. Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide

    International Nuclear Information System (INIS)

    Alia, Mario; Ramos, Sonia; Mateos, Raquel; Granado-Serrano, Ana Belen; Bravo, Laura; Goya, Luis

    2006-01-01

    Flavonols such as quercetin, have been reported to exhibit a wide range of biological activities related to their antioxidant capacity. The objective of the present study was to investigate the protective effect of quercetin on cell viability and redox status of cultured HepG2 cells submitted to oxidative stress induced by tert-butyl hydroperoxide. Concentrations of reduced glutathione and malondialdehyde, generation of reactive oxygen species and activity and gene expression of antioxidant enzymes were used as markers of cellular oxidative status. Pretreatment of HepG2 with 10 μM quercetin completely prevented lactate dehydrogenase leakage from the cells. Pretreatment for 2 or 20 h with all doses of quercetin (0.1-10 μM) prevented the decrease of reduced glutathione and the increase of malondialdehyde evoked by tert-butyl hydroperoxide in HepG2 cells. Reactive oxygen species generation induced by tert-butyl hydroperoxide was significantly reduced when cells were pretreated for 2 or 20 h with 10 μM and for 20 h with 5 μM quercetin. Finally, some of the quercetin treatments prevented the significant increase of glutathione peroxidase, superoxide dismutase, glutathione reductase and catalase activities induced by tert-butyl hydroperoxide. Gene expression of antioxidant enzymes was also affected by the treatment with the polyphenol. The results of the biomarkers analyzed clearly show that treatment of HepG2 cells in culture with the natural dietary antioxidant quercetin strongly protects the cells against an oxidative insult

  6. Irradiation of existing atherosclerotic lesions increased inflammation by favoring pro-inflammatory macrophages

    NARCIS (Netherlands)

    Gabriels, Karen; Hoving, Saske; Gijbels, Marion J.; Pol, Jeffrey F.; te Poele, Johannes A.; Biessen, Erik A.; Daemen, Mat J.; Stewart, Fiona A.; Heeneman, Sylvia

    2014-01-01

    Recent studies have shown an increased incidence of localized atherosclerosis and subsequent cardiovascular events in cancer patients treated with thoracic radiotherapy. We previously demonstrated that irradiation accelerated the development of atherosclerosis and predisposed to an inflammatory

  7. Serum paraoxonase activity and lipid hydroperoxide levels in adult ...

    African Journals Online (AJOL)

    EB

    2013-09-03

    Sep 3, 2013 ... Objectives: In this study, we aimed to investigate serum PON1 activity and lipid hydroperoxide (LOOH) levels in adult football players after three days ... oxidative stress after three days football tournament. In addition, physical activity for a ... polymorphism, gender, and exercise. Furthermore, it has been ...

  8. Bioinformatic analysis of neurotropic HIV envelope sequences identifies polymorphisms in the gp120 bridging sheet that increase macrophage-tropism through enhanced interactions with CCR5

    International Nuclear Information System (INIS)

    Mefford, Megan E.; Kunstman, Kevin; Wolinsky, Steven M.; Gabuzda, Dana

    2015-01-01

    Macrophages express low levels of the CD4 receptor compared to T-cells. Macrophage-tropic HIV strains replicating in brain of untreated patients with HIV-associated dementia (HAD) express Envs that are adapted to overcome this restriction through mechanisms that are poorly understood. Here, bioinformatic analysis of env sequence datasets together with functional studies identified polymorphisms in the β3 strand of the HIV gp120 bridging sheet that increase M-tropism. D197, which results in loss of an N-glycan located near the HIV Env trimer apex, was detected in brain in some HAD patients, while position 200 was estimated to be under positive selection. D197 and T/V200 increased fusion and infection of cells expressing low CD4 by enhancing gp120 binding to CCR5. These results identify polymorphisms in the HIV gp120 bridging sheet that overcome the restriction to macrophage infection imposed by low CD4 through enhanced gp120–CCR5 interactions, thereby promoting infection of brain and other macrophage-rich tissues. - Highlights: • We analyze HIV Env sequences and identify amino acids in beta 3 of the gp120 bridging sheet that enhance macrophage tropism. • These amino acids at positions 197 and 200 are present in brain of some patients with HIV-associated dementia. • D197 results in loss of a glycan near the HIV Env trimer apex, which may increase exposure of V3. • These variants may promote infection of macrophages in the brain by enhancing gp120–CCR5 interactions

  9. Bioinformatic analysis of neurotropic HIV envelope sequences identifies polymorphisms in the gp120 bridging sheet that increase macrophage-tropism through enhanced interactions with CCR5

    Energy Technology Data Exchange (ETDEWEB)

    Mefford, Megan E., E-mail: megan_mefford@hms.harvard.edu [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA (United States); Kunstman, Kevin, E-mail: kunstman@northwestern.edu [Northwestern University Medical School, Chicago, IL (United States); Wolinsky, Steven M., E-mail: s-wolinsky@northwestern.edu [Northwestern University Medical School, Chicago, IL (United States); Gabuzda, Dana, E-mail: dana_gabuzda@dfci.harvard.edu [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA (United States); Department of Neurology (Microbiology and Immunobiology), Harvard Medical School, Boston, MA (United States)

    2015-07-15

    Macrophages express low levels of the CD4 receptor compared to T-cells. Macrophage-tropic HIV strains replicating in brain of untreated patients with HIV-associated dementia (HAD) express Envs that are adapted to overcome this restriction through mechanisms that are poorly understood. Here, bioinformatic analysis of env sequence datasets together with functional studies identified polymorphisms in the β3 strand of the HIV gp120 bridging sheet that increase M-tropism. D197, which results in loss of an N-glycan located near the HIV Env trimer apex, was detected in brain in some HAD patients, while position 200 was estimated to be under positive selection. D197 and T/V200 increased fusion and infection of cells expressing low CD4 by enhancing gp120 binding to CCR5. These results identify polymorphisms in the HIV gp120 bridging sheet that overcome the restriction to macrophage infection imposed by low CD4 through enhanced gp120–CCR5 interactions, thereby promoting infection of brain and other macrophage-rich tissues. - Highlights: • We analyze HIV Env sequences and identify amino acids in beta 3 of the gp120 bridging sheet that enhance macrophage tropism. • These amino acids at positions 197 and 200 are present in brain of some patients with HIV-associated dementia. • D197 results in loss of a glycan near the HIV Env trimer apex, which may increase exposure of V3. • These variants may promote infection of macrophages in the brain by enhancing gp120–CCR5 interactions.

  10. Protein kinase D is increased and activated in lung epithelial cells and macrophages in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Gan, Huachen; McKenzie, Raymond; Hao, Qin; Idell, Steven; Tang, Hua

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. Hence, there is a profound need for the identification of novel drugable targets to develop more specific and efficacious therapeutic intervention in IPF. In this study, we performed immunohistochemical analyses to assess the cell type-specific expression and activation of protein kinase D (PKD) family kinases in normal and IPF lung tissue sections. We also analyzed PKD activation and function in human lung epithelial cells. We found that PKD family kinases (PKD1, PKD2 and PKD3) were increased and activated in the hyperplastic and regenerative alveolar epithelial cells lining remodeled fibrotic alveolar septa and/or fibroblast foci in IPF lungs compared with normal controls. We also found that PKD family kinases were increased and activated in alveolar macrophages, bronchiolar epithelium, and honeycomb cysts in IPF lungs. Interestingly, PKD1 was highly expressed and activated in the cilia of IPF bronchiolar epithelial cells, while PKD2 and PKD3 were expressed in the cell cytoplasm and nuclei. In contrast, PKD family kinases were not apparently increased and activated in IPF fibroblasts or myofibroblasts. We lastly found that PKD was predominantly activated by poly-L-arginine, lysophosphatidic acid and thrombin in human lung epithelial cells and that PKD promoted epithelial barrier dysfunction. These findings suggest that PKD may participate in the pathogenesis of IPF and may be a novel target for therapeutic intervention in this disease.

  11. Alfalfa contains substantial 9-hydroperoxide lyase activity and a 3Z:2E-enal isomerase

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Noordermeer, M.A.; Veldink, G.A.

    1999-01-01

    Fatty acid hydroperoxides formed by lipoxygenase can be cleaved by hydroperoxide lyase resulting in the formation of short-chain aldehydes and omega-oxo acids. Plant hydroperoxide lyases use 13- or 9-hydroperoxy linoleic and linolenic acid as substrates. Alfalfa (Medicago sativa L.) has been

  12. Increased biological activity of deglycosylated recombinant human granulocyte/macrophage colony-stimulating factor produced by yeast or animal cells

    International Nuclear Information System (INIS)

    Moonen, P.; Mermod, J.J.; Ernst, J.F.; Hirschi, M.; DeLamarter, J.F.

    1987-01-01

    Human granulocyte/macrophage colony-stimulating factor (hGM-CSF) produced by several recombinant sources including Escherichia coli, yeast, and animal cells was studied. Recombinant animal cells produced hGM-CSF in low quantities and in multiple forms of varying size. Mammalian hGM-CSF was purified 200,000-fold using immunoaffinity and lectin chromatography. Partially purified proteins produced in yeast and mammalian cells were assayed for the effects of deglycosylation. Following enzymatic deglycosylation, immunoreactivity was measured by radioimmunoassay and biological activity was measured in vitro on responsive human primary cells. Removal of N-linked oligosaccharides from both proteins increased their immunoreactivities by 4- to 8-fold. Removal of these oligosaccharides also increased their specific biological activities about 20-fold, to reach approximately the specific activity of recombinant hGM-CSF from E. coli. The E. coli produced-protein-lacking any carbohydrate- had by far the highest specific activity observed for the recombinant hGM-CSFs

  13. Growth Modeling of the Maternal Cytokine Milieu throughout Normal Pregnancy: Macrophage-Derived Chemokine Decreases as Inflammation/Counterregulation Increases

    Directory of Open Access Journals (Sweden)

    Shernan G. Holtan

    2015-01-01

    Full Text Available Several recent studies have shown differences in the maternal immune milieu at different phases of pregnancy, but most studies have been cross-sectional or of relatively few time points. Levels of 42 cytokines were determined using a multiplex bead-based assay on archived serum from a cohort of pregnant women N=16 at median of 18 time points tested, from the first trimester through to parturition, per woman. Unconditional growth modeling was then used to determine time-dependent changes in levels of these cytokines. Macrophage-derived chemokine (MDC, aka CCL22 decreases as pregnancy progresses. IL-1β, IL-6, IL-8, IL-12p70, IL-13, IL-15, IP-10, and FLT3-ligand increase as a function of gestational weeks, and IFNα2, IL-1ra, IL-3, IL-9, IL-12p40, and soluble CD40 ligand increase as a function of trimester. As pregnancy normally progresses, a maternal shift away from a type 2-biased immune response and toward an inflammatory/counterregulatory response is observed.

  14. Obesity Contributes to Ovarian Cancer Metastatic Success Through Increased Lipogenesis, Enhanced Vascularity, and Decreased Infiltration of M1 Macrophages

    Science.gov (United States)

    Liu, Yueying; Metzinger, Matthew N.; Lewellen, Kyle A.; Cripps, Stephanie N.; Carey, Kyle D.; Harper, Elizabeth I.; Shi, Zonggao; Tarwater, Laura; Grisoli, Annie; Lee, Eric; Slusarz, Ania; Yang, Jing; Loughran, Elizabeth A.; Conley, Kaitlyn; Johnson, Jeff J.; Klymenko, Yuliya; Bruney, Lana; Liang, Zhong; Dovichi, Norman J.; Cheatham, Bentley; Leevy, W. Matthew; Stack, M. Sharon

    2015-01-01

    Epithelial ovarian cancer (EOC) is the leading cause of death from gynecologic malignancy, with high mortality attributable to widespread intra-peritoneal (i.p.) metastases. Recent meta-analyses report an association between obesity, ovarian cancer incidence, and ovarian cancer survival, but the effect of obesity on metastasis has not been evaluated. The objective of this study was to use an integrative approach combining in vitro, ex vivo, and in vivo studies to test the hypothesis that obesity contributes to ovarian cancer metastatic success. Initial in vitro studies using three-dimensional meso-mimetic cultures showed enhanced cell-cell adhesion to the lipid-loaded mesothelium. Furthermore, in an ex vivo colonization assay, ovarian cancer cells exhibited increased adhesion to mesothelial explants excised from mice modeling diet-induced obesity (DIO), in which they were fed a "Western" diet. Examination of mesothelial ultrastructure revealed a substantial increase in the density of microvilli in DIO mice. Moreover, enhanced i.p. tumor burden was observed in overweight or obese animals in three distinct in vivo models. Further histological analyses suggested that alterations in lipid regulatory factors, enhanced vascularity, and decreased M1/M2 macrophage ratios may account for the enhanced tumorigenicity. Together, these findings show that obesity potently impacts ovarian cancer metastatic success, which likely contributes to the negative correlation between obesity and ovarian cancer survival. PMID:26573796

  15. Increased expression of interleukin-1β in triglyceride-induced macrophage cell death is mediated by p38 MAP kinase.

    Science.gov (United States)

    Sung, Ho Joong; Son, Sin Jee; Yang, Seung-ju; Rhee, Ki-Jong; Kim, Yoon Suk

    2012-07-01

    Triglycerides (TG) are implicated in the development of atherosclerosis through formation of foam cells and induction of macrophage cell death. In this study, we report that addition of exogenous TG induced cell death in phorbol 12-myristate 13-acetate-differentiated THP-1 human macrophages. TG treatment induced a dramatic decrease in interleukin-1β (IL-1β) mRNA expression in a dose- and time-dependent manner. The expression of granulocyte macrophage colony-stimulating factor and platelet endothelial cell adhesion molecule remained unchanged. To identify signaling pathways involved in TG-induced downregulation of IL-1β, we added p38 MAPK, protein kinase C (PKC) or c-Raf1 specific inhibitors. We found that inhibition of p38 MAPK alleviated the TG-induced downregulation of IL-1β, whereas inhibition of PKC and c-Raf1 had no effect. This is the first report showing decreased IL-1β expression during TG-induced cell death in a human macrophage line. Our results suggest that downregulation of IL-1β expression by TG-treated macrophages may play a role during atherogenesis.

  16. Degradation of carbonyl hydroperoxides in the atmosphere and in combustion

    KAUST Repository

    Xing, Lili

    2017-10-12

    Oxygenates with carbonyl and hydroperoxy functional groups are important intermediates that are generated during the autooxidation of organic compounds in the atmosphere and during the autoignition of transport fuels. In the troposphere, the degradation of carbonyl hydroperoxides leads to low-vapor-pressure polyfunctional species that be taken into in cloud and fog droplets or to the formation of secondary organic aerosols (SOAs). In combustion, the fate of carbonyl hydroperoxides is important for the performance of advanced combustion engines, especially for autoignition. A key fate of the carbonyl hydroperoxides is reac-tion with OH radicals, for which kinetics data are experimentally unavailable. Here, we study 4-hydroperoxy-2-pentanone (CH3C(=O)CH2CH(OOH)CH3) as a model compound to clarify the kinetics of OH reactions with carbonyl hydroperoxides, in par-ticular H-atom abstraction and OH addition reactions. With a combination of electronic structure calculations, we determine previ-ously missing thermochemical data, and with multipath variational transition state theory (MP-VTST), a multidimensional tunnel-ing (MT) approximation, multiple-structure anharmonicity, and torsional potential anharmonicity we obtained much more accurate rate constants than the ones that can computed by conventional single-structure harmonic transition state theory (TST) and than the empirically estimated rate constants that are currently used in atmospheric and combustion modeling. The roles of various factors in determining the rates are elucidated. The pressure-dependent rate constants for the addition reaction are computed using system-specific quantum RRK theory. The calculated temperature range is 298-2400 K, and the pressure range is 0.01–100 atm. The accu-rate thermodynamic and kinetics data determined in this work are indispensable in the global modeling of SOAs in atmospheric science and in the detailed understanding and prediction of ignition properties of hydrocarbons

  17. [Macrophages in human semen].

    Science.gov (United States)

    Bouvet, Beatriz Reina; Brufman, Adriana Silvia; Paparella, Cecilia Vicenta; Feldman, Rodolfo Nestor; Gatti, Vanda Nora; Solis, Edita Amalia

    2003-11-01

    To investigate the presence of macrophages in human semen samples and the function they carry out in the seminal fluid. Their presence was studied in relation to spermatic morphology, percentage of spermatozoids with native DNA, and presence of antispermatic antibodies. The work was performed with semen samples from 31 unfertile males from 63 couples in which the "female factor" was ruled out as the cause of infertility. Sperm study according to WHO (1992) was carried out in all samples, in addition to: DNA study with acridine orange as fluorocrom, macrophage concentration by neutral red in a Neubauer camera, and detection of antispermatic antibodies with a mixed agglutination test (TAC II) (validated with Mar Screen-Fertility technologies). Sperm morphology was evaluated by Papanicolaou test. 19/31 selected sperm samples (61.3%) showed increased concentration of macrophages, 13 of them (41.9%) with denaturalized DNA, and 8 (25.8%) abnormal morphology. Six samples showed increased macrophage concentration and predominance of native DNA, whereas 11 samples showed increased macrophages and abnormal morphology. Among 18 (58.1%) samples showing antispermatic antibodies 14 (77.7%) had an increased concentration of macrophages. Statistical analysis resulted in a high correlation between macrophage concentration and increased percentage of spermatozoids with denaturalized DNA (p < 0.05). An increased concentration of macrophages is associated with the presence of antispermatic antibodies (p < 0.05). There was not evidence of significant association between concentration of macrophages and percentage of morphologically normal spermatozoids (p < 0.05). We can conclude that macrophages are present in human semen and participate in immunovigilance contributing to improve the seminal quality.

  18. Increased production of granulocyte-macrophage colony-stimulating factor in Crohn's disease--a possible target for infliximab treatment

    DEFF Research Database (Denmark)

    Agnholt, Jørgen; Kelsen, Jens; Brandsborg, Birgitte

    2004-01-01

    The presence of neutrophils among epithelial cells is one of the major features of the inflammation in Crohn's disease, and has been used to indicate disease activity. The survival of neutrophils outside the blood vessels is limited and their longevity is influenced by granulocyte-macrophage colo...

  19. Depletion of H2S during obesity enhances store-operated Ca2+ entry in adipose tissue macrophages to increase cytokine production.

    Science.gov (United States)

    Velmurugan, Gopal V; Huang, Huiya; Sun, Hongbin; Candela, Joseph; Jaiswal, Mukesh K; Beaman, Kenneth D; Yamashita, Megumi; Prakriya, Murali; White, Carl

    2015-12-15

    The increased production of proinflammatory cytokines by adipose tissue macrophages (ATMs) contributes to chronic, low-level inflammation during obesity. We found that obesity in mice reduced the bioavailability of the gaseous signaling molecule hydrogen sulfide (H2S). Steady-state, intracellular concentrations of H2S were lower in ATMs isolated from mice with diet-induced obesity than in ATMs from lean mice. In addition, the intracellular concentration of H2S in the macrophage cell line RAW264.7 was reduced during an acute inflammatory response evoked by the microbial product lipopolysaccharide (LPS). Reduced intracellular concentrations of H2S led to increased Ca(2+) influx through the store-operated Ca(2+) entry (SOCE) pathway, which was prevented by the exogenous H2S donor GYY4137. Furthermore, GYY4137 inhibited the Orai3 channel, a key component of the SOCE machinery. The enhanced production of proinflammatory cytokines by RAW264.7 cells and ATMs from obese mice was reduced by exogenous H2S or by inhibition of SOCE. Together, these data suggest that the depletion of macrophage H2S that occurs during acute (LPS-induced) or chronic (obesity) inflammation increases SOCE through disinhibition of Orai3 and promotes the production of proinflammatory cytokines. Copyright © 2015, American Association for the Advancement of Science.

  20. CD54-Mediated Interaction with Pro-inflammatory Macrophages Increases the Immunosuppressive Function of Human Mesenchymal Stromal Cells

    OpenAIRE

    Espagnolle, Nicolas; Balguerie, Ad?lie; Arnaud, Emmanuelle; Senseb?, Luc; Varin, Audrey

    2017-01-01

    Summary: Mesenchymal stromal cells (MSCs) sense and modulate inflammation and represent potential clinical treatment for immune disorders. However, many details of the bidirectional interaction of MSCs and the innate immune compartment are still unsolved. Here we describe an unconventional but functional interaction between pro-inflammatory classically activated macrophages (M1MΦ) and MSCs, with CD54 playing a central role. CD54 was upregulated and enriched specifically at the contact area be...

  1. Photoinduced azidohydroperoxidation of myrtenyl hydroperoxide with semiconductor particles and lucigenin as PET-catalysts.

    Science.gov (United States)

    Griesbeck, Axel G; Reckenthäler, Melissa; Uhlig, Johannes

    2010-06-01

    The allylic hydroperoxide 2 (myrtenyl hydroperoxide), available from singlet oxygen photooxygenation of beta-pinene (1), is converted into the azido bis-hydroperoxide 3 by an electron-transfer induced azidyl radical formation and trapping of the initial tertiary carbon radical by triplet oxygen. The azido bis-hydroperoxide 3 is reduced to the azido 1,2-diol 4 or the amino diol 5, respectively. Beside classical fluorescent PET sensitizers such as rhodamines, also nanosized semiconductor particles as well as lucigenin were applied as catalysts. The electron transfer rate of azide oxidation was determined for lucigenin by fluorescence quenching analysis.

  2. Artesunate Reduces Serum Lipopolysaccharide in Cecal Ligation/Puncture Mice via Enhanced LPS Internalization by Macrophages through Increased mRNA Expression of Scavenger Receptors

    Directory of Open Access Journals (Sweden)

    Bin Li

    2014-01-01

    Full Text Available Innate immunity is the first line of defense in human beings against pathogen infection; monocytes/macrophages are the primary cells of the innate immune system. Recently, macrophages/monocytes have been discovered to participate in LPS clearance, and the clearance efficiency determines the magnitude of the inflammatory response and subsequent organ injury. Previously, we reported that artesunate (AS protected sepsis mice against heat-killed E. coli challenge. Herein, we further confirmed that AS protected cecal ligation/puncture (CLP sepsis mice. Its protection on sepsis mice was related to not only reduction of pro-inflammatory cytokines and serum LPS levels but also improvement of liver function. Based on the fact that AS did not directly bind and neutralize LPS, we hypothesized that the reduction of serum LPS level might be related to enhancement of LPS internalization and subsequent detoxification. Our results showed that AS increased FITC-LPS internalization by peritoneal macrophage and liver Kupffer cell, but enhancement of LPS internalization by AS was not related to the clathrin-dependent pathway. However, AS induced mRNA expression of important scavenger receptors (SRs; SR-A and MARCO mRNA expression was upregulated, suggesting that AS enhancement of LPS internalization and inhibition of pro-inflammatory cytokines was related to changes in mRNA expression of SRs.

  3. Hydroperoxide production from linoleic acid by heterologous Gaeumannomyces graminis tritici lipoxygenase: Optimization and scale-up

    NARCIS (Netherlands)

    Villaverde, J.J.; Vlist, van der V.; Santos, S.A.O.; Haarmann, T.; Langfelder, K.; Pirttimaa, M.; Nyyssola, A.; Jylhä, S.; Tamminen, T.; Kruus, K.; Graaff, de L.H.; Pascoal Neto, C.; Simoes, M.M.Q.; Domingues, M.R.M.; Silvestre, A.J.D.; Eidner, J.; Buchert, J.

    2013-01-01

    Linoleic acid was converted into hydroperoxides by a Gaeumannomyces graminis tritici lipoxygenase produced recombinantly in Trichoderma reesei. Hydroperoxide production was optimized using a face-centred experimental design in order to study the effects of pH, temperature and time on the conversion

  4. Radiation induced peroxidation of polyunsaturated fatty acids: recent results on formation of hydroperoxides

    Energy Technology Data Exchange (ETDEWEB)

    Hauville, C.; Remita, S. [Lab. de Chimie Physique, Univ. Rene Descartes, Paris (France); Therond, P. [Lab. de Biochimie, Hopital de Bicetre, Le Kremlin Bicetre (France); Jore, D.; Gardes-Albert, M. [Lab. de Chimie Physique, Univ. Rene Descartes, Paris (France)

    2001-02-01

    Aqueous solutions of linoleic acid were irradiated in air with {gamma}-rays of {sup 137}Cs. High pressure liquid chromatography (HPLC) was been used to separate and measure the production of hydroperoxides. The results obtained after reverse phase chromatography, associated with a microperoxydase for hydroperoxide detection, indicate the presence of two different hydroperoxides. One type of hydroperoxide was the major product obtained when the initial linoleic concentrations were below the critical micellar concentration (2 mM), and the second type was produced when the concentrations were above 2 mM. A further separation carried out on the second hydroperoxide by direct phase HPLC showed that it contains three compounds, mainly HPODE 9 and 13. (author)

  5. Analysis of Hydroperoxides in Solid Polyethylene by MAS (13)C NMR and EPR

    International Nuclear Information System (INIS)

    ASSINK, ROGER A.; CELINA, MATHIAS C.; DUNBAR, TIMOTHY D.; ALAM, TODD M.; CLOUGH, ROGER LEE; GILLEN, KENNETH T.

    1999-01-01

    13 C-enriched polyethylene was subjected to γ-irradiation in the presence of air at 25 and 80 C for total doses ranging from 71 to 355 kGy. Significant quantities of hydroperoxides were detected in the 25 C irradiated sample by 13 C magic angle spinning NMR spectroscopy. This method of detection was performed on the solid polymer and required no chemical derivatization or addition of solvent. The chemical stability and subsequent products of the hydroperoxide species were studied by annealing the irradiated samples in air at temperatures ranging from 22 to 110 C. A time-temperature superposition analysis provided an activation energy of 108 kJ/mol for the hydroperoxide decomposition process. The primary products of hydroperoxide decomposition were ketones and secondary alcohols with lesser amounts of acids and esters. EPR measurements suggest that the reactive hydroperoxide species reside in the amorphous phase of polyethylene, consistent with degradation occurring in the amorphous phase

  6. Radicals derived from histone hydroperoxides damage nucleobases in RNA and DNA

    DEFF Research Database (Denmark)

    Luxford, C; Dean, R T; Davies, Michael Jonathan

    2000-01-01

    Exposure of individual histone proteins (H1, H2A, H2B, H3, or H4) and histone octamers (consisting of two molecules each of H2A, H2B, H3, and H4) to hydroxyl radicals, generated by gamma-irradiation, in the presence of O(2) generates protein-bound hydroperoxides in a dose-dependent fashion......; this is in accord with previous studies with other proteins. These histone hydroperoxides are stable in the absence of exogenous catalysts (e.g., heat, light, and transition metal ions), but in the presence of these agents decompose rapidly to give a variety of radicals which have been identified by EPR spin...... trapping. Histone hydroperoxide-derived radicals generated on decomposition of the hydroperoxides with Cu(+) react with both pyrimidine and purine nucleobases. Thus, with uridine the histone hydroperoxide-derived radicals undergo addition across the C(5)-C(6) double bond of the pyrimidine ring to give...

  7. Radiation induced peroxidation of polyunsaturated fatty acids: recent results on formation of hydroperoxides

    International Nuclear Information System (INIS)

    Hauville, C.; Remita, S.; Therond, P.; Jore, D.; Gardes-Albert, M.

    2001-01-01

    Aqueous solutions of linoleic acid were irradiated in air with γ-rays of 137 Cs. High pressure liquid chromatography (HPLC) was been used to separate and measure the production of hydroperoxides. The results obtained after reverse phase chromatography, associated with a microperoxydase for hydroperoxide detection, indicate the presence of two different hydroperoxides. One type of hydroperoxide was the major product obtained when the initial linoleic concentrations were below the critical micellar concentration (2 mM), and the second type was produced when the concentrations were above 2 mM. A further separation carried out on the second hydroperoxide by direct phase HPLC showed that it contains three compounds, mainly HPODE 9 and 13. (author)

  8. General regularities of olefin epoxidation by hydroperoxide catalyzed by V, W and Ti compounds

    International Nuclear Information System (INIS)

    Sapunov, V.N.; Sharykin, V.G.; Logvinov, A.S.; Litvintsev, I.Yu.; Lebedev, N.N.

    1983-01-01

    The kinetic analysis of cyclohexane epoxidation by ethylbenzene hydroperoxide when catalyzed by titanium- and tungsten cyclohexandiolates has shown that the reaction follows the main regularities of hydroperoxide epoxidation previously established for catalysis by molybdenum- and vanadiUm compounds. The catalyst activity varies depending on the metal nature and forms the following series: Mo>V>W>Ti, which agrees with their π-acceptor capacity. During the cyclohexane epoxidation on all catalysts the hydroperoxide activities vary according to the following series: ethylbenzene hydroperoxide>cumene>tertiarybutyl>tertiaryamyl. Correlation relationships between the olefine structure, characterized by th constants, and the reactivity of olefines are foUnd. The reaction sensitivity during catalysis by WV, and Ti cyclohexandiolates is -1.2, -1.0- and -1.3, respectively. The mechanism of hydroperoxide epoxidation of olefine is discussed

  9. Mycoplasma hyopneumoniae-derived lipid-associated membrane proteins induce apoptosis in porcine alveolar macrophage via increasing nitric oxide production, oxidative stress, and caspase-3 activation.

    Science.gov (United States)

    Bai, Fangfang; Ni, Bo; Liu, Maojun; Feng, Zhixin; Xiong, Qiyan; Xiao, Shaobo; Shao, Guoqing

    2013-09-15

    Mycoplasma hyopneumoniae is the primary etiological agent of enzootic pneumonia in swine. Lipid-associated membrane proteins (LAMP) of mycoplasma are the main pathogenicity factors in mycoplasma diseases. In this study, we investigated the effects of M. hyopneumoniae LAMP on porcine alveolar macrophage (PAM) 3D4/21 cell line. Apoptotic features, such as chromatin condensation and apoptotic bodies, were observed in LAMP-treated PAM 3D4/21 cells. Moreover, LAMP significantly increased the number of TUNEL positive apoptotic cells in PAM 3D4/21 cells compared with the untreated control. In addition, flow cytometric analysis using dual staining with annexin-V-FITC and propidium iodide (PI) showed that LAMP of M. hyopneumoniae induced a time-dependent apoptosis in PAM 3D4/21 cells. Moreover, increased levels of superoxide anion production and activated caspase-3 in PAM 3D4/21 cells were observed after exposure to LAMP. Increased production of nitric oxide (NO) was also confirmed in the cell supernatants. Besides, apoptotic rates increase and caspase-3 activation were suppressed by NOS inhibitor or antioxidant. It is suggested that LAMP of M. hyopneumoniae induced apoptosis in porcine alveolar macrophage via NO production, superoxide anion production, and caspase-3 activation. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. PI3K/Akt contributes to increased expression of Toll-like receptor 4 in macrophages exposed to hypoxic stress

    International Nuclear Information System (INIS)

    Kim, So Young; Jeong, Eunshil; Joung, Sun Myung; Lee, Joo Young

    2012-01-01

    Highlights: ► Hypoxic stress-induced TLR4 expression is mediated by PI3K/Akt in macrophages. ► PI3K/Akt regulated HIF-1 activation leading to TLR4 expression. ► p38 mitogen-activated protein kinase was not involved in TLR4 expression by hypoxic stress. ► Sulforaphane suppressed hypoxia-mediated TLR4 expression by inhibiting PI3K/Akt. -- Abstract: Toll-like receptors (TLRs) play critical roles in triggering immune and inflammatory responses by detecting invading microbial pathogens and endogenous danger signals. Increased expression of TLR4 is implicated in aggravated inflammatory symptoms in ischemic tissue injury and chronic diseases. Results from our previous study showed that TLR4 expression was upregulated by hypoxic stress mediated by hypoxia-inducible factor-1 (HIF-1) at a transcriptional level in macrophages. In this study, we further investigated the upstream signaling pathway that contributed to the increase of TLR4 expression by hypoxic stress. Either treatment with pharmacological inhibitors of PI3K and Akt or knockdown of Akt expression by siRNA blocked the increase of TLR4 mRNA and protein levels in macrophages exposed to hypoxia and CoCl 2 . Phosphorylation of Akt by hypoxic stress preceded nuclear accumulation of HIF-1α. A PI3K inhibitor (LY294002) attenuated CoCl 2 -induced nuclear accumulation and transcriptional activation of HIF-1α. In addition, HIF-1α-mediated upregulation of TLR4 expression was blocked by LY294002. Furthermore, sulforaphane suppressed hypoxia- and CoCl 2 -induced upregulation of TLR4 mRNA and protein by inhibiting PI3K/Akt activation and the subsequent nuclear accumulation and transcriptional activation of HIF-1α. However, p38 was not involved in HIF-1α activation and TLR4 expression induced by hypoxic stress in macrophages. Collectively, our results demonstrate that PI3K/Akt contributes to hypoxic stress-induced TLR4 expression at least partly through the regulation of HIF-1 activation. These reveal a novel

  11. PI3K/Akt contributes to increased expression of Toll-like receptor 4 in macrophages exposed to hypoxic stress

    Energy Technology Data Exchange (ETDEWEB)

    Kim, So Young; Jeong, Eunshil; Joung, Sun Myung [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Joo Young, E-mail: joolee@catholic.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); College of Pharmacy, The Catholic University of Korea, Bucheon 420-743 (Korea, Republic of)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer Hypoxic stress-induced TLR4 expression is mediated by PI3K/Akt in macrophages. Black-Right-Pointing-Pointer PI3K/Akt regulated HIF-1 activation leading to TLR4 expression. Black-Right-Pointing-Pointer p38 mitogen-activated protein kinase was not involved in TLR4 expression by hypoxic stress. Black-Right-Pointing-Pointer Sulforaphane suppressed hypoxia-mediated TLR4 expression by inhibiting PI3K/Akt. -- Abstract: Toll-like receptors (TLRs) play critical roles in triggering immune and inflammatory responses by detecting invading microbial pathogens and endogenous danger signals. Increased expression of TLR4 is implicated in aggravated inflammatory symptoms in ischemic tissue injury and chronic diseases. Results from our previous study showed that TLR4 expression was upregulated by hypoxic stress mediated by hypoxia-inducible factor-1 (HIF-1) at a transcriptional level in macrophages. In this study, we further investigated the upstream signaling pathway that contributed to the increase of TLR4 expression by hypoxic stress. Either treatment with pharmacological inhibitors of PI3K and Akt or knockdown of Akt expression by siRNA blocked the increase of TLR4 mRNA and protein levels in macrophages exposed to hypoxia and CoCl{sub 2}. Phosphorylation of Akt by hypoxic stress preceded nuclear accumulation of HIF-1{alpha}. A PI3K inhibitor (LY294002) attenuated CoCl{sub 2}-induced nuclear accumulation and transcriptional activation of HIF-1{alpha}. In addition, HIF-1{alpha}-mediated upregulation of TLR4 expression was blocked by LY294002. Furthermore, sulforaphane suppressed hypoxia- and CoCl{sub 2}-induced upregulation of TLR4 mRNA and protein by inhibiting PI3K/Akt activation and the subsequent nuclear accumulation and transcriptional activation of HIF-1{alpha}. However, p38 was not involved in HIF-1{alpha} activation and TLR4 expression induced by hypoxic stress in macrophages. Collectively, our results demonstrate that PI3K

  12. Recommendation to test limonene hydroperoxides 0·3% and linalool hydroperoxides 1·0% in the British baseline patch test series.

    Science.gov (United States)

    Wlodek, C; Penfold, C M; Bourke, J F; Chowdhury, M M U; Cooper, S M; Ghaffar, S; Green, C; Holden, C R; Johnston, G A; Mughal, A A; Reckling, C; Sabroe, R A; Stone, N M; Thompson, D; Wilkinson, S M; Buckley, D A

    2017-12-01

    There is a significant rate of sensitization worldwide to the oxidized fragrance terpenes limonene and linalool. Patch testing to oxidized terpenes is not routinely carried out; the ideal patch test concentration is unknown. To determine the best test concentrations for limonene and linalool hydroperoxides, added to the British baseline patch test series, to optimize detection of true allergy and to minimize irritant reactions. During 2013-2014, 4563 consecutive patients in 12 U.K. centres were tested to hydroperoxides of limonene in petrolatum (pet.) 0·3%, 0·2% and 0·1%, and hydroperoxides of linalool 1·0%, 0·5% and 0·25% pet. Irritant reactions were recorded separately from doubtful reactions. Concomitant reactions to other fragrance markers and clinical relevance were documented. Limonene hydroperoxide 0·3% gave positive reactions in 241 (5·3%) patients, irritant reactions in 93 (2·0%) and doubtful reactions in 110 (2·4%). Linalool hydroperoxide 1·0% gave positive reactions in 352 (7·7%), irritant reactions in 178 (3·9%) and doubtful reactions in 132 (2·9%). A total of 119 patients with crescendo reactions to 0·3% limonene would have been missed if only tested with 0·1% and 131 patients with crescendo reactions to 1·0% linalool would have been missed if only tested with 0·25%. In almost two-thirds of patients with positive patch tests to limonene and linalool the reaction was clinically relevant. The majority of patients did not react to any fragrance marker in the baseline series. We recommend that limonene hydroperoxides be tested at 0·3% and linalool hydroperoxides at 1·0% in the British baseline patch test series. © 2017 British Association of Dermatologists.

  13. Ameloginins promote an alternatively activated macrophage phenotype in vitro

    DEFF Research Database (Denmark)

    Almqvist, S; Werthen, M; Lyngstadas, SP

    2011-01-01

    aggregates were visualised by transmission electron microscopy. The amelogenin treatment of macrophages increased several pro- and anti-inflammatory cytokines, including alternative macrophage activation marker AMAC-1 (p

  14. Contact Allergy to Hydroperoxides of Linalool and D-Limonene in a US Population.

    Science.gov (United States)

    Nath, Neel Som; Liu, Beiyu; Green, Cynthia; Atwater, Amber Reck

    Linalool and D-limonene are common fragrance ingredients that readily oxidize on exposure to air. The resulting hydroperoxides of linalool and D-limonene have been shown to have high frequencies of positive patch test reactions in several European and international studies. The aim of the study was to investigate the prevalence of contact allergy to the hydroperoxides of linalool and D-limonene in a US population. In this retrospective study, 103 patients with suspected fragrance allergy were patch tested to linalool 10% petrolatum (pet), hydroperoxides of linalool 1% pet, D-limonene 10% pet, and/or the hydroperoxides of D-limonene 0.3% pet between July 9, 2014, and October 25, 2016. In this study, the frequency of positive patch test reactions to the hydroperoxides of linalool is 20% (19/96), and the frequency of positive reactions to the hydroperoxides of D-limonene is 8% (7/90). These high frequencies suggest that patch testing to the hydroperoxides of linalool and limonene should be performed in all patients with suspected fragrance allergy.

  15. Macrophage immunoregulatory pathways in tuberculosis.

    Science.gov (United States)

    Rajaram, Murugesan V S; Ni, Bin; Dodd, Claire E; Schlesinger, Larry S

    2014-12-01

    Macrophages, the major host cells harboring Mycobacterium tuberculosis (M.tb), are a heterogeneous cell type depending on their tissue of origin and host they are derived from. Significant discord in macrophage responses to M.tb exists due to differences in M.tb strains and the various types of macrophages used to study tuberculosis (TB). This review will summarize current concepts regarding macrophage responses to M.tb infection, while pointing out relevant differences in experimental outcomes due to the use of divergent model systems. A brief description of the lung environment is included since there is increasing evidence that the alveolar macrophage (AM) has immunoregulatory properties that can delay optimal protective host immune responses. In this context, this review focuses on selected macrophage immunoregulatory pattern recognition receptors (PRRs), cytokines, negative regulators of inflammation, lipid mediators and microRNAs (miRNAs). Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Analysis of Hydroperoxides in solid Polyethylene by NMR and EPR Spectroscopy

    International Nuclear Information System (INIS)

    Assink, Roger A.; Celina, Mathias C.; Dunbar, Timothy D.; Alam, Todd M.; Clough, Roger Lee; Gillen, Kenneth T.

    2000-01-01

    The authors have shown that the hydroperoxide species in γ-irradiated 13 C-polyethylene can be directly observed by 13 C MAS NMR spectroscopy. The experiment was performed without the need for special sample preparation such as chemical derivatization or dissolution. Annealing experiments were employed to study the thermal decomposition of the hydroperoxide species and to measure an activation energy of 98 kJ/mol. EPR spectroscopy suggests that residual polyenyl and alkylperoxy radicals are predominantly trapped in interracial or crystalline regions, while the peroxy radicals observed after UV-photolysis of hydroperoxides are in amorphous regions

  17. Macrophage inhibitory cytokine-1 (MIC-1/GDF15 slows cancer development but increases metastases in TRAMP prostate cancer prone mice.

    Directory of Open Access Journals (Sweden)

    Yasmin Husaini

    Full Text Available Macrophage inhibitory cytokine-1 (MIC-1/GDF15, a divergent member of the TGF-β superfamily, is over-expressed by many common cancers including those of the prostate (PCa and its expression is linked to cancer outcome. We have evaluated the effect of MIC-1/GDF15 overexpression on PCa development and spread in the TRAMP transgenic model of spontaneous prostate cancer. TRAMP mice were crossed with MIC-1/GDF15 overexpressing mice (MIC-1(fms to produce syngeneic TRAMP(fmsmic-1 mice. Survival rate, prostate tumor size, histopathological grades and extent of distant organ metastases were compared. Metastasis of TC1-T5, an androgen independent TRAMP cell line that lacks MIC-1/GDF15 expression, was compared by injecting intravenously into MIC-1(fms and syngeneic C57BL/6 mice. Whilst TRAMP(fmsmic-1 survived on average 7.4 weeks longer, had significantly smaller genitourinary (GU tumors and lower PCa histopathological grades than TRAMP mice, more of these mice developed distant organ metastases. Additionally, a higher number of TC1-T5 lung tumor colonies were observed in MIC-1(fms mice than syngeneic WT C57BL/6 mice. Our studies strongly suggest that MIC-1/GDF15 has complex actions on tumor behavior: it limits local tumor growth but may with advancing disease, promote metastases. As MIC-1/GDF15 is induced by all cancer treatments and metastasis is the major cause of cancer treatment failure and cancer deaths, these results, if applicable to humans, may have a direct impact on patient care.

  18. Histone H1- and other protein- and amino acid-hydroperoxides can give rise to free radicals which oxidize DNA

    DEFF Research Database (Denmark)

    Luxford, C; Morin, B; Dean, R T

    1999-01-01

    analysis has demonstrated that radicals from histone H1-hydroperoxides, and other protein and amino acid hydroperoxides, can also oxidize both free 2'-deoxyguanosine and intact calf thymus DNA to give the mutagenic oxidized base 7, 8-dihydro-8-oxo-2'-deoxyguanosine (8-hydroxy-2'-deoxyguanosine, 8-oxod......Exposure of amino acids, peptides and proteins to radicals, in the presence of oxygen, gives high yields of hydroperoxides. These materials are readily decomposed by transition metal ions to give further radicals. We hypothesized that hydroperoxide formation on nuclear proteins, and subsequent...... decomposition of these hydroperoxides to radicals, might result in oxidative damage to associated DNA. We demonstrate here that exposure of histone H1 and model compounds to gamma-radiation in the presence of oxygen gives hydroperoxides in a dose-dependent manner. These hydroperoxides decompose to oxygen...

  19. Peripheral innate immune challenge exaggerated microglia activation, increased the number of inflammatory CNS macrophages, and prolonged social withdrawal in socially defeated mice.

    Science.gov (United States)

    Wohleb, Eric S; Fenn, Ashley M; Pacenta, Ann M; Powell, Nicole D; Sheridan, John F; Godbout, Jonathan P

    2012-09-01

    Repeated social defeat (RSD) activates neuroendocrine pathways that have a significant influence on immunity and behavior. Previous studies from our lab indicate that RSD enhances the inflammatory capacity of CD11b⁺ cells in the brain and promotes anxiety-like behavior in an interleukin (IL)-1 and β-adrenergic receptor-dependent manner. The purpose of this study was to determine the degree to which mice subjected to RSD were more responsive to a secondary immune challenge. Therefore, RSD or control (HCC) mice were injected with saline or lipopolysaccharide (LPS) and activation of brain CD11b⁺ cells and behavioral responses were determined. Peripheral LPS (0.5 mg/kg) injection caused an extended sickness response with exaggerated weight loss and prolonged social withdrawal in socially defeated mice. LPS injection also amplified mRNA expression of IL-1β, tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS), and CD14 in enriched CD11b⁺ cells isolated from socially defeated mice. In addition, IL-1β mRNA levels in enriched CD11b⁺ cells remained elevated in socially defeated mice 24 h and 72 h after LPS. Moreover, microglia and CNS macrophages isolated from socially defeated mice had the highest CD14 expression after LPS injection. Both social defeat and LPS injection increased the percentage of CD11b⁺/CD45(high) macrophages in the brain and the number of inflammatory macrophages (CD11b⁺/CD45(high)/CCR2⁺) was highest in RSD-LPS mice. Anxiety-like behavior was increased by social defeat, but was not exacerbated by the LPS challenge. Nonetheless, reduced locomotor activity and increased social withdrawal were still present in socially defeated mice 72 h after LPS. Last, LPS-induced microglia activation was most evident in the hippocampus of socially defeated mice. Taken together, these findings demonstrate that repeated social defeat enhanced the neuroinflammatory response and caused prolonged sickness following innate immune challenge

  20. Ternary catalyst-olefin-hydroperoxide complexes and their contribution to epoxidation

    International Nuclear Information System (INIS)

    Svitych, R.B.; Rzhevskaya, N.N.; Buchachenko, A.L.; Yablonskij, O.P.; Petukhov, A.A.; Belyaev, V.A.

    1976-01-01

    Electron and NMR spectroscopy have been used for studying the complex formation of catalysts (Mo 5+ , Mn 2+ , Co 2+ ) in double and triple systems: metal-olefin and metal-olefin-hydroperoxide. It has been established that ions of metals form complexes with olefins in the first sphere. The formation has been proved of ternary complexes metal-olefin-hydroperoxide. The structure of the complexes has been proposed with olefins in the first and hydroperoxide in the second sphere of the metal ion. The structure explains known kinetic regularities of epoxydation and the mechanism of the formation of final products, oxide and alcohol. It has been shown that the best catalysts for epoxydation of olefins with hydroperoxides must be the compounds of the metals with an electron state of ion d 0 [ru

  1. Cholesterol Hydroperoxide Generation, Translocation, and Reductive Turnover in Biological Systems.

    Science.gov (United States)

    Girotti, Albert W; Korytowski, Witold

    2017-12-01

    Cholesterol is like other unsaturated lipids in being susceptible to peroxidative degradation upon exposure to strong oxidants like hydroxyl radical or peroxynitrite generated under conditions of oxidative stress. In the eukaryotic cell plasma membrane, where most of the cellular cholesterol resides, peroxidation leads to membrane structural and functional damage from which pathological states may arise. In low density lipoprotein, cholesterol and phospholipid peroxidation have long been associated with atherogenesis. Among the many intermediates/products of cholesterol oxidation, hydroperoxide species (ChOOHs) have a number of different fates and deserve special attention. These fates include (a) damage-enhancement via iron-catalyzed one-electron reduction, (b) damage containment via two-electron reduction, and (c) inter-membrane, inter-lipoprotein, and membrane-lipoprotein translocation, which allows dissemination of one-electron damage or off-site suppression thereof depending on antioxidant location and capacity. In addition, ChOOHs can serve as reliable and conveniently detected mechanistic reporters of free radical-mediated reactions vs. non-radical (e.g., singlet oxygen)-mediated reactions. Iron-stimulated peroxidation of cholesterol and other lipids underlies a newly discovered form of regulated cell death called ferroptosis. These and other deleterious consequences of radical-mediated lipid peroxidation will be discussed in this review.

  2. Prostaglandin endoperoxide H synthases: peroxidase hydroperoxide specificity and cyclooxygenase activation.

    Science.gov (United States)

    Liu, Jiayan; Seibold, Steve A; Rieke, Caroline J; Song, Inseok; Cukier, Robert I; Smith, William L

    2007-06-22

    The cyclooxygenase (COX) activity of prostaglandin endoperoxide H synthases (PGHSs) converts arachidonic acid and O2 to prostaglandin G2 (PGG2). PGHS peroxidase (POX) activity reduces PGG2 to PGH2. The first step in POX catalysis is formation of an oxyferryl heme radical cation (Compound I), which undergoes intramolecular electron transfer forming Intermediate II having an oxyferryl heme and a Tyr-385 radical required for COX catalysis. PGHS POX catalyzes heterolytic cleavage of primary and secondary hydroperoxides much more readily than H2O2, but the basis for this specificity has been unresolved. Several large amino acids form a hydrophobic "dome" over part of the heme, but when these residues were mutated to alanines there was little effect on Compound I formation from H2O2 or 15-hydroperoxyeicosatetraenoic acid, a surrogate substrate for PGG2. Ab initio calculations of heterolytic bond dissociation energies of the peroxyl groups of small peroxides indicated that they are almost the same. Molecular Dynamics simulations suggest that PGG2 binds the POX site through a peroxyl-iron bond, a hydrogen bond with His-207 and van der Waals interactions involving methylene groups adjoining the carbon bearing the peroxyl group and the protoporphyrin IX. We speculate that these latter interactions, which are not possible with H2O2, are major contributors to PGHS POX specificity. The distal Gln-203 four residues removed from His-207 have been thought to be essential for Compound I formation. However, Q203V PGHS-1 and PGHS-2 mutants catalyzed heterolytic cleavage of peroxides and exhibited native COX activity. PGHSs are homodimers with each monomer having a POX site and COX site. Cross-talk occurs between the COX sites of adjoining monomers. However, no cross-talk between the POX and COX sites of monomers was detected in a PGHS-2 heterodimer comprised of a Q203R monomer having an inactive POX site and a G533A monomer with an inactive COX site.

  3. Investigation of the reactions of histone protein hydroperoxides and their role in DNA damage

    International Nuclear Information System (INIS)

    Luxford, C.; Dean, R.T.; Davies, M.J.

    1998-01-01

    Free radical attack on DNA results in base changes, cross-linking and strand cleavage leading to mutations if unrepaired. Histone proteins are intimately involved in DNA packaging and are excellent candidates for investigating DNA damage arising from protein-OOH-derived radicals. This study aimed (i) to investigate the formation of hydroperoxide on the linker histone H1 via radical reactions in the presence of O 2 ; (ii) to examine the radicals formed from transition metal ion-catalyzed breakdown of histone H1-OOH and (iii) to determine whether histone H1-OOH-derived radicals can damage DNA and free bases. (i) Histone H1 solutions were γ-irradiated ( 60 Co source) in the presence of O 2 and histone H1-OOH concentrations determined using a manual iodometric assay. Formation ( histone H1-OOH was dose-dependent and, in the absence of light or transition metal ions these hydroperoxides were found to be very stable (half life of 24 hours at 4degC ). (ii) Electron Paramagnetic Resonance (EPR) spectroscopy and spin trapping was used t investigate the Cu + -catalyzed breakdown of histone H1-OOH to form histone H1 protein side chain and -backbone carbon-centred radicals. Further EPR/spin trapping experiments showed that histone H1-OOH-derived radicals can oxidise pyrimidine bases (eg. uridine with the resultant trapping of three radical species; two pyrimidine radicals, C5-yl and Ct yl adducts (via addition of histone H1-OOH-derived radicals to the C5-C6 double bond o the pyrimidine ring) and an acyl radical adduct, whose origin is currently unknown. (iii) Damage to DNA and 2'-deoxyguanosine after reaction of histone H1-OOH-derive radicals were detected and quantified using HPLC (with EC and UV detection). We have identified 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) as a significant product ( histone H1-OOH-derived oxidative DNA modification. Increasing histone H1-OOH concentrations resulted in a concomitant increase in the amount of 8-oxodG formed. Our studies show

  4. Detection Identification and Quantification of Keto-Hydroperoxides in Low-Temperature Oxidation.

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Nils; Moshammer, Kai; Jasper, Ahren W.

    2017-07-01

    Keto-hydroperoxides are reactive partially oxidized intermediates that play a central role in chain-branching reactions during the low-temperature oxidation of hydrocarbons. In this Perspective, we outline how these short lived species can be detected, identified, and quantified using integrated experimental and theoretical approaches. The procedures are based on direct molecular-beam sampling from reactive environments, followed by mass spectrometry with single-photon ionization, identification of fragmentation patterns, and theoretical calculations of ionization thresholds, fragment appearance energies, and photoionization cross sections. Using the oxidation of neo-pentane and tetrahydrofuran as examples, the individual steps of the experimental approaches are described in depth together with a detailed description of the theoretical efforts. For neo-pentane, the experimental data are consistent with the calculated ionization and fragment appearance energies of the keto-hydroperoxide, thus adding confidence to the analysis routines and the employed levels of theory. For tetrahydrofuran, multiple keto-hydroperoxide isomers are possible due to the presence of nonequivalent O2 addition sites. Despite this additional complexity, the experimental data allow for the identification of two to four keto-hydroperoxides. Mole fraction profiles of the keto-hydroperoxides, which are quantified using calculated photoionization cross sections, are provided together with estimated uncertainties as function of the temperature of the reactive mixture and can serve as validation targets for chemically detailed mechanisms.

  5. Formation of protein hydroperoxides in mouse myeloma cell line Sp2/0-Ag14

    International Nuclear Information System (INIS)

    Du, J.; Gebicki, J.

    2000-01-01

    Full text: Free radicals generated by normal cell metabolism or from environmental sources can cause damage to DNA, proteins and lipids-the important components of mammalian cells. As function molecules and cell constituent, the abundant and easily available nature of proteins make them the prime target of free radicals. Previous research in our lab have shown protein hydroperoxides in turn can react with other proteins, result in the lose of enzymatic function of the later, or crosslink with DNA, which may interfere gene transcription if not repaired. The formation of protein hydroperoxides in Sp2/0-Ag14 cells was induced by exposing them to peroxyl radical or gamma radiation. Cells were then washed and precipitated by tichloroacetic acid. Concentration of protein and lipid hydroperoxides were measured by FOX assay. No significant amount of lipid peroxides were detected. The effects of reducing agents dithiothreitol, glutathione, sodium borohydride identified the nature of protein hydroperoxides. The life time of cell protein hydroperoxides is about 2 hours

  6. Macrophages under pressure: the role of macrophage polarization in hypertension.

    Science.gov (United States)

    Harwani, Sailesh C

    2018-01-01

    Hypertension is a multifactorial disease involving the nervous, renal, and cardiovascular systems. Macrophages are the most abundant and ubiquitous immune cells, placing them in a unique position to serve as key mediators between these components. The polarization of macrophages confers vast phenotypic and functional plasticity, allowing them to act as proinflammatory, homeostatic, and anti-inflammatory agents. Key differences between the M1 and M2 phenotypes, the 2 subsets at the extremes of this polarization spectrum, place macrophages at a juncture to mediate many mechanisms involved in the pathogenesis of hypertension. Neuronal and non-neuronal regulation of the immune system, that is, the "neuroimmuno" axis, plays an integral role in the polarization of macrophages. In hypertension, the neuroimmuno axis results in synchronization of macrophage mobilization from immune cell reservoirs and their chemotaxis, via increased expression of chemoattractants, to end organs critical in the development of hypertension. This complicated system is largely coordinated by the dichotomous actions of the autonomic neuronal and non-neuronal activation of cholinergic, adrenergic, and neurohormonal receptors on macrophages, leading to their ability to "switch" between phenotypes at sites of active inflammation. Data from experimental models and human studies are in concordance with each other and support a central role for macrophage polarization in the pathogenesis of hypertension. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Oxidative stress response to menadione and cumene hydroperoxide in the opportunistic fungal pathogen Candida glabrata

    Directory of Open Access Journals (Sweden)

    Mayra Cuéllar-Cruz

    2009-07-01

    Full Text Available Candida glabrata is an opportunistic fungal pathogen that can cause severe invasive infections and can evade phagocytic cell clearance. We are interested in understanding the virulence of this fungal pathogen, in particular its oxidative stress response. Here we investigated C. glabrata, Saccharomyces cerevisiae and Candida albicans responses to two different oxidants: menadione and cumene hydroperoxide (CHP. In log-phase, in the presence of menadione, C. glabrata requires Cta1p (catalase, while in a stationary phase (SP, Cta1p is dispensable. In addition, C. glabrata is less resistant to menadione than C. albicans in SP. The S. cerevisiae laboratory reference strain is less resistant to menadione than C. glabrata and C. albicans; however S. cerevisiaeclinical isolates (CIs are more resistant than the lab reference strain. Furthermore, S. cerevisiae CIs showed an increased catalase activity. Interestingly, in SP C. glabrata and S. cerevisiae are more resistant to CHP than C. albicans and Cta1p plays no apparent role in detoxifying this oxidant.

  8. Protective effects of hesperidin against oxidative stress of tert-butyl hydroperoxide in human hepatocytes.

    Science.gov (United States)

    Chen, Mingcang; Gu, Honggang; Ye, Yiyi; Lin, Bing; Sun, Lijuan; Deng, Weiping; Zhang, Jingzhe; Liu, Jianwen

    2010-10-01

    Increasing evidence regarding free radical generating agents and the inflammatory process suggest that accumulation of reactive oxygen species (ROS) could involve hepatotoxicity. Hesperidin, a naturally occurring flavonoid presents in fruits and vegetables, has been reported to exert a wide range of pharmacological effects that include antioxidant, anti-inflammatory, antihypercholesterolemic, and anticarcinogenic actions. However, the cytoprotection and mechanism of hesperidin to neutralize oxidative stress in human hepatic L02 cells remain unclear. In this work, we assessed the capability of hesperidin to prevent tert-butyl hydroperoxide (t-BuOOH)-induced cell damage by augmenting cellular antioxidant defense. Hesperidin significantly protected hepatocytes against t-BuOOH-induced cell cytotoxicity, such as mitochondrial membrane potential (MMP) deplete and lactate dehydrogenase (LDH) release. Hesperidin also remarkably prevented indicators of oxidative stress, such as the ROS and lipid peroxidation level in a dose-dependent manner. Western blot showed that hesperidin facilitated ERK/MAPK phosphorylation which appeared to be responsible for nuclear translocation of Nrf2, thereby inducing cytoprotective heme oxygenase-1 (HO-1) expression. Based on the results described above, it suggested that hesperidin has potential as a therapeutic agent in the treatment of oxidative stress-related hepatocytes injury and liver dysfunctions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Degradation Of α-Chitosan By Combined Treatment With Hydroperoxide And Gamma 60Co Radiation

    International Nuclear Information System (INIS)

    Nguyen Quoc Hien; Dang Van Phu; Bui Phuoc Phuc; Ha Thuc Huy

    2008-01-01

    Chitosan samples prepared from shrimp shell (α-chitosan) with degree of deacetylation (DD) of 70, 84 and 94% were treated with H 2 O 2 1.5% at room temperature for degradation. The oxidative chitosan was irradiated by gamma 60 Co radiation for further reduction of molecular weight. Viscosity-average molecular weight of chitosan was measured by capillary viscometer. Results showed that H 2 O 2 was an effective reagent for chitosan degradation. Radiation degradation yield (G s ) increased for chitosan with higher DD. Interestingly Gs-values for oxidative degraded chitosan were found out of 0.96, 5.73 and 7.80 scissions/100 eV that were remarkably higher compared to 0.20, 1.05 and 1.69 scissions/100 eV for initial chitosan with DD 70, 84 and 94%, respectively. Based on results obtained it can be concluded that combined treatment with hydroperoxide and gamma 60 Co radiation was remarkably effective for degradation of chitosan. (author)

  10. Hydroperoxide-dependent oxygenation of polycyclic aromatic hydrocarbons and their metabolites

    International Nuclear Information System (INIS)

    Marnett, L.J.

    1985-01-01

    Fatty acid hydroperoxides in the presence of heme complexes and heme proteins oxidize benzo(a)pyrene and 7,8-dihydroxy-7, 8-dihydrobenzo(a)pyrene to quinones and diol epoxides, respectively. The oxidizing agent is a peroxyl radical derived from the fatty acid hydroperoxide but not a higher oxidation state of a mammalian peroxidase. The stereochemistry of (+-)-BP-dihydrodiol epoxidation is distinct from that catalyzed by mixed-function oxidases, which provides a convenient method for discriminating the contributions of the two systems to BP-7,8-dihydrodiol metabolism in cell homogenates, cell or organ culture. Using this method, epoxidation of BP-7,89-dihydroodiol has been detected during prostaglandin biosynthesis, lipid peroxidation, and xenobiotic oxygenation. Fatty acid hydroperoxide-dependent oxidation constitutes a novel pathway for metabolic activation of polycyclic hydrocarbons and other carcinogens which has widespread potential in vivo significance

  11. Reaction of biscyclopentadienyl molybdendihalides with tert.-butyl hydroperoxide and its using for cyclohexene epoxidation

    International Nuclear Information System (INIS)

    Aleksandrov, Yu.A.; Fomin, V.M.; Kolmakov, A.O.

    1983-01-01

    As a result of reactions of biscyclopentadienyl molybden-dihalides (Cp 2 MoX 2 , X=Cl, Br or I) with tert.-butyl hydroperoxide, tert.-butylperoxides of biscyclopentadienyl molybdendichloride and-dibromide are synthesized for the first time, which are characterized by physico-chemical properties. Cyclohexene in the reaction mixture of Cp 2 MoX 2 with tert -butyl hydroperoxide is oxidated to form cyclohexene oxide, the reaction proceeding at a high rate and with a quantitative yield. Tert.-butylperoxide of biscyclopentadienyl molybdendihalide is responsible for the cyclohexene epoxidation reaction. The schemes for the mechanism of Cp 2 MoX 2 reactions with tert.-butyl hydroperoxide in the absence and presence of olefine are suggested

  12. Inhibition of Apoptosis by Escherichia coli K1 Is Accompanied by Increased Expression of BclXL and Blockade of Mitochondrial Cytochrome c Release in Macrophages

    OpenAIRE

    Sukumaran, Sunil K.; Selvaraj, Suresh K.; Prasadarao, Nemani V.

    2004-01-01

    Escherichia coli K1 survival in the blood is a critical step for the onset of meningitis in neonates. Therefore, the circulating bacteria are impelled to avoid host defense mechanisms by finding a niche to survive and multiply. Our recent studies have shown that E. coli K1 enters and survives in both monocytes and macrophages in the newborn rat model of meningitis as well as in macrophage cell lines. Here we demonstrate that E. coli K1 not only extends the survival of human and murine infecte...

  13. Increased cerebrospinal fluid levels of cytokines monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1β (MIP-1β) in patients with amyotrophic lateral sclerosis.

    Science.gov (United States)

    Martínez, H R; Escamilla-Ocañas, C E; Camara-Lemarroy, C R; González-Garza, M T; Moreno-Cuevas, J; García Sarreón, M A

    2017-10-10

    Neuroinflammation has recently been described in amyotrophic lateral sclerosis (ALS). However, the precise role of such proinflammatory cytokines as monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1β (MIP-1β) in ALS has not yet been determined. In this study, we determined cerebrospinal fluid (CSF) MCP-1 and MIP-1β levels and assessed their association with the duration and severity of ALS. Concentrations of MCP-1 and MIP-1β were determined in the CSF of 77 patients diagnosed with ALS and 13 controls. Cytokine levels were analysed in relation to ALS duration (12months) and severity (30points on the ALS Functional Rating Scale administered at hospital admission). Higher CSF MIP-1β (10.68pg/mL vs. 4.69pg/mL, P<.0001) and MCP-1 (234.89pg/mL vs. 160.95pg/mL, P=.011) levels were found in the 77 patients with ALS compared to controls. There were no differences in levels of either cytokine in relation to disease duration or severity. However, we did observe a significant positive correlation between MIP-1β and MCP-1 in patients with ALS. The increase in MIP-1β and MCP-1 levels suggests that these cytokines may have a synergistic effect on ALS pathogenesis. However, in our cohort, no association was found with either the duration or the clinical severity of the disease. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Deficiency of ATP-Binding Cassette Transporters A1 and G1 in Macrophages Increases Inflammation and Accelerates Atherosclerosis in Mice

    NARCIS (Netherlands)

    Westerterp, Marit; Murphy, Andrew J.; Wang, Mi; Pagler, Tamara A.; Vengrenyuk, Yuliya; Kappus, Mojdeh S.; Gorman, Darren J.; Nagareddy, Prabhakara R.; Zhu, Xuewei; Abramowicz, Sandra; Parks, John S.; Welch, Carrie; Fisher, Edward A.; Wang, Nan; Yvan-Charvet, Laurent; Tall, Alan R.

    2013-01-01

    Rationale: Plasma high-density lipoprotein levels are inversely correlated with atherosclerosis. Although it is widely assumed that this is attributable to the ability of high-density lipoprotein to promote cholesterol efflux from macrophage foam cells, direct experimental support for this

  15. Increased severity of experimental autoimmune encephalomyelitis, chronic macrophage/microglial reactivity, and demyelination in transgenic mice producing tumor necrosis factor-alpha in the central nervous system

    DEFF Research Database (Denmark)

    Taupin, V; Renno, T; Bourbonnière, L

    1997-01-01

    are a target of immune attack. TNF-alpha also regulates macrophage activity which could contribute to autoimmune inflammation. We have expressed TNF-alpha at disease-equivalent levels in the central nervous system of transgenic mice, using a myelin basic protein (MBP) promoter. These mice were normal...

  16. Urotensin II increases foam cell formation by repressing ABCA1 expression through the ERK/NF-κB pathway in THP-1 macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan [Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan (China); Wu, Jian-Feng [Department of Cardiovascular Medicine, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan (China); Tang, Yan-Yan; Zhang, Min; Li, Yuan [Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan (China); Chen, Kong; Zeng, Meng-Ya [Department of Cardiovascular Medicine, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan (China); Yao, Feng; Xie, Wei [Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan (China); Zheng, Xi-Long [Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1 (Canada); Zeng, Gao-Feng, E-mail: qichingnudou@tom.com [Department of Cardiovascular Medicine, The Second Affiliated Hospital of University of South China, Hengyang 421001, Hunan (China); Tang, Chao-Ke, E-mail: tangchaoke@qq.com [Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang 421001, Hunan (China)

    2014-10-03

    Highlights: • U II reduces cholesterol efflux in THP-1 macrophages. • U II decreases the expression of ABCA1. • Inhibition of the ERK/NF-κB pathway reduces U II effects on ABCA1 expression and cholesterol efflux. - Abstract: Objective: Foam cell formation in the arterial wall plays a key role in the development of atherosclerosis. Recent studies showed that Urotensin II (U II) is involved in the pathogenesis of atherosclerosis. Here we examined the effects of human U II on ATP-binding cassette transporter A1 (ABCA1) expression and the underlying mechanism in THP-1 macrophages. Methods and results: Cultured THP-1 macrophages were treated with U II, followed by measuring the intracellular lipid contents, cholesterol efflux and ABCA1 levels. The results showed that U II dramatically decreased ABCA1 levels and impaired cholesterol efflux. However, the effects of U II on ABCA1 protein expression and cellular cholesterol efflux were partially reversed by inhibition of extracellular signal regulated kinase 1/2 (ERK1/2) and nuclear factor kappa B (NF-κB) activity, suggesting the potential roles of ERK1/2 and NF-κB in ABCA1 expression, respectively. Conclusion: Our current data indicate that U II may have promoting effects on the progression of atherosclerosis, likely through suppressing ABCA1 expression via activation of the ERK/NF-κB pathway and reducing cholesterol efflux to promote macrophage foam cell formation.

  17. Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II.

    Directory of Open Access Journals (Sweden)

    Vinay Pathak

    Full Text Available Singlet oxygen (1O2 is formed by triplet-triplet energy transfer from triplet chlorophyll to O2 via Type II photosensitization reaction in photosystem II (PSII. Formation of triplet chlorophyll is associated with the change in spin state of the excited electron and recombination of triplet radical pair in the PSII antenna complex and reaction center, respectively. Here, we have provided evidence for the formation of 1O2 by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. Protein hydroperoxide is formed by protein oxidation initiated by highly oxidizing chlorophyll cation radical and hydroxyl radical formed by Type I photosensitization reaction. Under highly oxidizing conditions, protein hydroperoxide is oxidized to protein peroxyl radical which either cyclizes to dioxetane or recombines with another protein peroxyl radical to tetroxide. These highly unstable intermediates decompose to triplet carbonyls which transfer energy to O2 forming 1O2. Data presented in this study show for the first time that 1O2 is formed by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex.

  18. Saturated Fats from Butter but Not from Cheese Increase HDL-Mediated Cholesterol Efflux Capacity from J774 Macrophages in Men and Women with Abdominal Obesity.

    Science.gov (United States)

    Brassard, Didier; Arsenault, Benoît J; Boyer, Marjorie; Bernic, Daniela; Tessier-Grenier, Maude; Talbot, Denis; Tremblay, Angelo; Levy, Emile; Asztalos, Bela; Jones, Peter J H; Couture, Patrick; Lamarche, Benoît

    2018-04-01

    Recent evidence suggests that the association between dietary saturated fatty acids (SFAs) and coronary artery disease risk varies according to food sources. How SFAs from butter and cheese influence HDL-mediated cholesterol efflux capacity (CEC), a key process in reverse cholesterol transport, is currently unknown. In a predefined secondary analysis of a previously published trial, we have examined how diets rich in SFAs from either cheese or butter influence HDL-mediated CEC, compared with diets rich in either monounsaturated fatty acids (MUFAs) or polyunsaturated fatty acids (PUFAs). In a randomized crossover controlled consumption trial, 46 men and women with abdominal obesity consumed 5 isocaloric diets, each for 4 wk. Two diets were rich in SFAs either from cheese (CHEESE) or butter (BUTTER) [12.4-12.6% of energy (%E) as SFAs, 32%E as fat, 52%E as carbohydrates]. In 2 other diets, SFAs (5.8%E) were replaced with either MUFAs from refined olive oil (MUFA) or PUFAs from corn oil (PUFA). Finally, a lower fat and carbohydrate diet was used as a control (5.8%E as SFAs, 25.0%E as fat, 59%E as carbohydrates; CHO). Post-diet HDL-mediated CEC was determined ex vivo using radiolabelled J774 macrophages incubated with apolipoprotein B-depleted serum from the participants. Mean (±SD) age was 41.4 ± 14.2 y, and waist circumference was 107.6 ± 11.5 cm in men and 94.3 ± 12.4 cm in women. BUTTER and MUFA increased HDL-mediated CEC compared with CHEESE (+4.3%, P = 0.026 and +4.7%, P = 0.031, respectively). Exploring the significant diet × sex interaction (P = 0.044) revealed that the increase in HDL-mediated CEC after BUTTER compared with CHEESE was significant among men (+6.0%, P = 0.047) but not women (+2.9%, P = 0.19), whereas the increase after MUFA compared with CHEESE was significant among women (+9.1%, P = 0.008) but not men (-0.6%, P = 0.99). These results provide evidence of a food matrix effect modulating the impact of dairy SFAs on HDL

  19. Purinergic signaling during macrophage differentiation results in M2 alternative activated macrophages.

    Science.gov (United States)

    Barberà-Cremades, Maria; Baroja-Mazo, Alberto; Pelegrín, Pablo

    2016-02-01

    Macrophages represent a highly heterogenic cell population of the innate immune system, with important roles in the initiation and resolution of the inflammatory response. Purinergic signaling regulates both M1 and M2 macrophage function at different levels by controlling the secretion of cytokines, phagocytosis, and the production of reactive oxygen species. We found that extracellular nucleotides arrest macrophage differentiation from bone marrow precursors via adenosine and P2 receptors. This results in a mature macrophage with increased expression of M2, but not M1, genes. Similar to adenosine and ATP, macrophage growth arrested with LPS treatment resulted in an increase of the M2-related marker Ym1. Recombinant Ym1 was able to affect macrophage proliferation and could, potentially, be involved in the arrest of macrophage growth during hematopoiesis. © Society for Leukocyte Biology.

  20. Epithelial-mesenchymal interactions in early and late hepatocarcinogenesis with focus on the role of linoleic acid and its hydroperoxides

    International Nuclear Information System (INIS)

    Sagmeister, S.

    2009-01-01

    Hepatocellular carcinomas are devastating cancers with high mortality rates. Major risk factors are chronic hepatitis and associated cirrhosis as consequence of viral hepatitis infections, chronically ethanol consumption or metabolic disorders. While the stepwise development of liver cancer is well investigated, the role of mesenchymal cells in this process is largely unknown. To analyse epithelial-mesenchymal interactions in advanced stages of hepatocarcinogenesis, we established new cell lines from human hepatocellular carcinomas and obtained several hepatocarcinoma (HCC)-, B-lymphoblastoid (BLC)- and myofibroblastoid (MF)-lines. BLC- and MF-supernatants were able to increase DNA replication of premalignant hepatocytes. Supernatants of MF-lines enhanced angiogenesis and increased migration of HCC-lines. Besides these pro-tumourigenic effects we could also observe tumouricidal properties of mesenchymal cells, as BLC-supernatants induced cell death of HCC-lines. Linoleic acid is an important source for hydroperoxides, which may be generated either endogenously in the course of inflammation or exogenously during food processing. We found that linoleic acid hydroperoxides (=LOOH) were able to activate mesenchymal cells of the liver resulting in the release of pro-inflammatory cytokines and growth factors including TNF-alpha (=tumour necrosis factor alpha) and HB-EGF (=heparin-binding epidermal growth factor-like growth factor), which turned out to be a growth factor for premalignant hepatocytes. Furthermore LOOH enhanced the growth of hepatocarcinoma cells via upregulation of the antiapoptotic enzyme heme oxygenase 1 and stimulation of cell proliferation. In conclusion, the results of our studies confirm the crucial role of different mesenchymal cells in early and late hepatocarcinogenesis and propose a tumour-promoting effect of LOOH. (author) [de

  1. Optimized sampling of hydroperoxides and investigations of the water vapour dependence of hydroperoxide formation during ozonolysis of alkenes; Optimierung der Probenahme von Hydroperoxiden und Untersuchungen zur Wasserdampfabhaengigkeit der Bildung von Hydroperoxiden bei der Ozonolyse von Alkenen

    Energy Technology Data Exchange (ETDEWEB)

    Becker, K.H.; Plagens, H.

    1997-06-01

    There are several sampling methods for hydroperoxides none of which is particularly reliable. The authors therefore tested three new methods in order to optimize hydroperoxide sampling and, using the optimized sampling procedure, to investigate the water vapour dependence of hydroperoxide formation during ozonolysis of alkenes. (orig.) [Deutsch] Fuer die Probenahme von Hydroperoxiden existieren verschiedene Verfahren, von denen bisher keines als besonders zuverlaessig angesehen werden konnte. Daher wurden in dieser Arbeit drei Verfahren getestet, um die Probenahme von Hydroperoxiden zu optimieren und mit dem entsprechenden Verfahren die Wasserdampfabhaengigkeit der Bildung von Hydroperoxiden bei der Ozonolyse von Alkenen zu untersuchen. (orig.)

  2. Alternatively activated macrophages (M2 macrophages) in the skin of patient with localized scleroderma.

    Science.gov (United States)

    Higashi-Kuwata, Nobuyo; Makino, Takamitsu; Inoue, Yuji; Takeya, Motohiro; Ihn, Hironobu

    2009-08-01

    Localized scleroderma is a connective tissue disorder that is limited to the skin and subcutaneous tissue. Macrophages have been reported to be particularly activated in patients with skin disease including systemic sclerosis and are potentially important sources for fibrosis-inducing cytokines, such as transforming growth factor beta. To clarify the features of immunohistochemical characterization of the immune cell infiltrates in localized scleroderma focusing on macrophages, skin biopsy specimens were analysed by immunohistochemistry. The number of cells stained with monoclonal antibodies, CD68, CD163 and CD204, was calculated. An evident macrophage infiltrate and increased number of alternatively activated macrophages (M2 macrophages) in their fibrotic areas were observed along with their severity of inflammation. This study revealed that alternatively activated macrophages (M2 macrophages) may be a potential source of fibrosis-inducing cytokines in localized scleroderma, and may play a crucial role in the pathogenesis of localized scleroderma.

  3. Grapevine fatty acid hydroperoxide lyase generates actin-disrupting volatiles and promotes defence-related cell death

    Science.gov (United States)

    Wang, Hao; Claudel, Patricia; Riemann, Michael; Hause, Bettina; Hugueney, Philippe; Nick, Peter

    2018-01-01

    Abstract Fatty acid hydroperoxides can generate short-chained volatile aldehydes that may participate in plant defence. A grapevine hydroperoxide lyase (VvHPL1) clustering to the CYP74B class was functionally characterized with respect to a role in defence. In grapevine leaves, transcripts of this gene accumulated rapidly to high abundance in response to wounding. Cellular functions of VvHPL1 were investigated upon heterologous expression in tobacco BY-2 cells. A C-terminal green fluorescent protein (GFP) fusion of VvHPL1 was located in plastids. The overexpression lines were found to respond to salinity stress or the bacterial elicitor harpin by increasing cell death. This signal-dependent mortality response was mitigated either by addition of exogenous jasmonic acid or by treatment with diphenyleneiodonium (DPI), an inhibitor of NADPH oxidases. By feeding different substrates to recombinantly expressed enzyme, VvHPL1 could also be functionally classified as true 13-HPL. The cognate products generated by this 13-HPL were cis-3-hexenal and trans-2-hexenal. Using a GFP-tagged actin marker line, one of these isomeric products, cis-3-hexenal, was found specifically to elicit a rapid disintegration of actin filaments. This response was not only observed in the heterologous system (tobacco BY-2), but also in a grapevine cell strain expressing this marker, as well as in leaf discs from an actin marker grape used as a homologous system. These results are discussed in the context of a role for VvHPL1 in a lipoxygenase-dependent signalling pathway triggering cell death-related defence that bifurcates from jasmonate-dependent basal immunity. PMID:29659985

  4. Infection with Salmonella enterica Serovar Typhimurium Leads to Increased Proportions of F4/80+ Red Pulp Macrophages and Decreased Proportions of B and T Lymphocytes in the Spleen.

    Directory of Open Access Journals (Sweden)

    Kristin L Rosche

    Full Text Available Infection of mice with Salmonella enterica serovar Typhimurium (Salmonella causes systemic inflammatory disease and enlargement of the spleen (splenomegaly. Splenomegaly has been attributed to a general increase in the numbers of phagocytes, lymphocytes, as well as to the expansion of immature CD71+Ter119+ reticulocytes. The spleen is important for recycling senescent red blood cells (RBCs and for the capture and eradication of blood-borne pathogens. Conservation of splenic tissue architecture, comprised of the white pulp (WP, marginal zone (MZ, and red pulp (RP is essential for initiation of adaptive immune responses to captured pathogens. Using flow cytometry and four color immunofluorescence microscopy (IFM, we show that Salmonella-induced splenomegaly is characterized by drastic alterations of the splenic tissue architecture and cell population proportions, as well as in situ cell distributions. A major cause of splenomegaly appears to be the significant increase in immature RBC precursors and F4/80+ macrophages that are important for recycling of heme-associated iron. In contrast, the proportions of B220+, CD4+ and CD8+ lymphocytes, as well as MZ MOMA+ macrophages decrease significantly as infection progresses. Spleen tissue sections show visible tears and significantly altered tissue architecture with F4/80+ macrophages and RBCs expanding beyond the RP and taking over most of the spleen tissue. Additionally, F4/80+ macrophages actively phagocytose not only RBCs, but also lymphocytes, indicating that they may contribute to declining lymphocyte proportions during Salmonella infection. Understanding how these alterations of spleen microarchitecture impact the generation of adaptive immune responses to Salmonella has implications for understanding Salmonella pathogenesis and for the design of more effective Salmonella-based vaccines.

  5. Infection with Salmonella enterica Serovar Typhimurium Leads to Increased Proportions of F4/80+ Red Pulp Macrophages and Decreased Proportions of B and T Lymphocytes in the Spleen.

    Science.gov (United States)

    Rosche, Kristin L; Aljasham, Alanoud T; Kipfer, James N; Piatkowski, Bryan T; Konjufca, Vjollca

    2015-01-01

    Infection of mice with Salmonella enterica serovar Typhimurium (Salmonella) causes systemic inflammatory disease and enlargement of the spleen (splenomegaly). Splenomegaly has been attributed to a general increase in the numbers of phagocytes, lymphocytes, as well as to the expansion of immature CD71+Ter119+ reticulocytes. The spleen is important for recycling senescent red blood cells (RBCs) and for the capture and eradication of blood-borne pathogens. Conservation of splenic tissue architecture, comprised of the white pulp (WP), marginal zone (MZ), and red pulp (RP) is essential for initiation of adaptive immune responses to captured pathogens. Using flow cytometry and four color immunofluorescence microscopy (IFM), we show that Salmonella-induced splenomegaly is characterized by drastic alterations of the splenic tissue architecture and cell population proportions, as well as in situ cell distributions. A major cause of splenomegaly appears to be the significant increase in immature RBC precursors and F4/80+ macrophages that are important for recycling of heme-associated iron. In contrast, the proportions of B220+, CD4+ and CD8+ lymphocytes, as well as MZ MOMA+ macrophages decrease significantly as infection progresses. Spleen tissue sections show visible tears and significantly altered tissue architecture with F4/80+ macrophages and RBCs expanding beyond the RP and taking over most of the spleen tissue. Additionally, F4/80+ macrophages actively phagocytose not only RBCs, but also lymphocytes, indicating that they may contribute to declining lymphocyte proportions during Salmonella infection. Understanding how these alterations of spleen microarchitecture impact the generation of adaptive immune responses to Salmonella has implications for understanding Salmonella pathogenesis and for the design of more effective Salmonella-based vaccines.

  6. Colonic macrophage polarization in homeostasis, inflammation, and cancer

    Science.gov (United States)

    Appleyard, Caroline B.

    2016-01-01

    Our review focuses on the colonic macrophage, a monocyte-derived, tissue-resident macrophage, and the role it plays in health and disease, specifically in inflammatory conditions such as inflammatory bowel disease and cancer of the colon and rectum. We give special emphasis to macrophage polarization, or phenotype, in these different states. We focus on macrophages because they are one of the most numerous leukocytes in the colon, and because they normally contribute to homeostasis through an anti-inflammatory phenotype. However, in conditions such as inflammatory bowel disease, proinflammatory macrophages are increased in the colon and have been linked to disease severity and progression. In colorectal cancer, tumor cells may employ anti-inflammatory macrophages to promote tumor growth and dissemination, whereas proinflammatory macrophages may antagonize tumor growth. Given the key roles that this cell type plays in homeostasis, inflammation, and cancer, the colonic macrophage is an intriguing therapeutic target. As such, potential macrophage-targeting strategies are discussed. PMID:27229123

  7. Nicotine Impairs Macrophage Control of Mycobacterium tuberculosis.

    Science.gov (United States)

    Bai, Xiyuan; Stitzel, Jerry A; Bai, An; Zambrano, Cristian A; Phillips, Matthew; Marrack, Philippa; Chan, Edward D

    2017-09-01

    Pure nicotine impairs macrophage killing of Mycobacterium tuberculosis (MTB), but it is not known whether the nicotine component in cigarette smoke (CS) plays a role. Moreover, the mechanisms by which nicotine impairs macrophage immunity against MTB have not been explored. To neutralize the effects of nicotine in CS extract, we used a competitive inhibitor to the nicotinic acetylcholine receptor (nAChR)-mecamylamine-as well as macrophages derived from mice with genetic disruption of specific subunits of nAChR. We also determined whether nicotine impaired macrophage autophagy and whether nicotine-exposed T regulatory cells (Tregs) could subvert macrophage anti-MTB immunity. Mecamylamine reduced the CS extract increase in MTB burden by 43%. CS extract increase in MTB was also significantly attenuated in macrophages from mice with genetic disruption of either the α7, β2, or β4 subunit of nAChR. Nicotine inhibited autophagosome formation in MTB-infected THP-1 cells and primary murine alveolar macrophages, as well as increased the intracellular MTB burden. Nicotine increased migration of THP-1 cells, consistent with the increased number of macrophages found in the lungs of smokers. Nicotine induced Tregs to produce transforming growth factor-β. Naive mouse macrophages co-cultured with nicotine-exposed Tregs had significantly greater numbers of viable MTB recovered with increased IL-10 production and urea production, but no difference in secreted nitric oxide as compared with macrophages cocultured with unexposed Tregs. We conclude that nicotine in CS plays an important role in subverting macrophage control of MTB infection.

  8. Leucine supplementation attenuates macrophage foam-cell formation: Studies in humans, mice, and cultured macrophages.

    Science.gov (United States)

    Grajeda-Iglesias, Claudia; Rom, Oren; Hamoud, Shadi; Volkova, Nina; Hayek, Tony; Abu-Saleh, Niroz; Aviram, Michael

    2018-02-05

    Whereas atherogenicity of dietary lipids has been largely studied, relatively little is known about the possible contribution of dietary amino acids to macrophage foam-cell formation, a hallmark of early atherogenesis. Recently, we showed that leucine has antiatherogenic properties in the macrophage model system. In this study, an in-depth investigation of the role of leucine in macrophage lipid metabolism was conducted by supplementing humans, mice, or cultured macrophages with leucine. Macrophage incubation with serum obtained from healthy adults supplemented with leucine (5 g/d, 3 weeks) significantly decreased cellular cholesterol mass by inhibiting the rate of cholesterol biosynthesis and increasing cholesterol efflux from macrophages. Similarly, leucine supplementation to C57BL/6 mice (8 weeks) resulted in decreased cholesterol content in their harvested peritoneal macrophages (MPM) in relation with reduced cholesterol biosynthesis rate. Studies in J774A.1 murine macrophages revealed that leucine dose-dependently decreased cellular cholesterol and triglyceride mass. Macrophages treated with leucine (0.2 mM) showed attenuated uptake of very low-density lipoproteins and triglyceride biosynthesis rate, with a concurrent down-regulation of diacylglycerol acyltransferase-1, a key enzyme catalyzing triglyceride biosynthesis in macrophages. Similar effects were observed when macrophages were treated with α-ketoisocaproate, a key leucine metabolite. Finally, both in vivo and in vitro leucine supplementation significantly improved macrophage mitochondrial respiration and ATP production. The above studies, conducted in human, mice, and cultured macrophages, highlight a protective role for leucine attenuating macrophage foam-cell formation by mechanisms related to the metabolism of cholesterol, triglycerides, and energy production. © 2018 BioFactors, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  9. Macrophage Plasticity in Skeletal Muscle Repair

    Directory of Open Access Journals (Sweden)

    Elena Rigamonti

    2014-01-01

    Full Text Available Macrophages are one of the first barriers of host defence against pathogens. Beyond their role in innate immunity, macrophages play increasingly defined roles in orchestrating the healing of various injured tissues. Perturbations of macrophage function and/or activation may result in impaired regeneration and fibrosis deposition as described in several chronic pathological diseases. Heterogeneity and plasticity have been demonstrated to be hallmarks of macrophages. In response to environmental cues they display a proinflammatory (M1 or an alternative anti-inflammatory (M2 phenotype. A lot of evidence demonstrated that after acute injury M1 macrophages infiltrate early to promote the clearance of necrotic debris, whereas M2 macrophages appear later to sustain tissue healing. Whether the sequential presence of two different macrophage populations results from a dynamic shift in macrophage polarization or from the recruitment of new circulating monocytes is a subject of ongoing debate. In this paper, we discuss the current available information about the role that different phenotypes of macrophages plays after injury and during the remodelling phase in different tissue types, with particular attention to the skeletal muscle.

  10. Cell-mediated reduction of protein and peptide hydroperoxides to reactive free radicals

    DEFF Research Database (Denmark)

    Headlam, Henrietta A; Davies, Michael Jonathan

    2003-01-01

    Radical attack on proteins in the presence of O(2) gives protein hydroperoxides in high yields. These peroxides are decomposed by transition metal ions, reducing agents, UV light and heat, with the formation of a range of reactive radicals that are capable of initiating further damage. Evidence has...... been presented for the formation of alcohols as stable products of peroxide decomposition, and these have been employed as markers of oxidative damage in vivo. The mechanism of formation of these alcohols is unclear, with both radical and nonradical pathways capable of generating these products....... In this study we have investigated the reduction of peptide and protein hydroperoxides by THP-1 (human monocyte-like) cells and it is shown that this process is accompanied by radical formation as detected by EPR spin trapping. The radicals detected, which are similar to those detected from metal-ion catalyzed...

  11. Comparison of wet-chemical methods for determination of lipid hydroperoxides

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Timm Heinrich, Maike; Jacobsen, Charlotte

    2003-01-01

    Five methods for determination of lipid hydroperoxides were evaluated, including two iodometric procedures involving a titration and a spectrophotometric micro method, and three other spectrophotometric methods namely the ferro, International Dairy Federation (IDF) and FOX2 (ferrous oxidation...... in xylenol orange). Peroxide values determined in a range of food products by these five methods gave different results. The ferro method required large amounts of solvent (50 mL/sample); the FOX2 method had a low range (0.005-0.04 mumol hydroperoxide); the end point detection of the titration method...... was subjective and required a large amount of sample (1 g); and the micro method was sensitive to interruptions during execution. Therefore, only the modified IDF method was chosen for further testing and validation. Stability tests of the standard curve showed a variation coefficient of 4% and within runs...

  12. FEATURES OF INITIATION OF STYRENE POLYMERIZATION BY CUMENE HYDROPEROXIDE IN PRESENCE OF ACETULACETONATE OF COPPER(II

    Directory of Open Access Journals (Sweden)

    A. V. Grekova

    2016-04-01

    Full Text Available Kinetics of sectional styrene polymerization initiated by cumene hydroperoxide, acetylacetonate of copper(II and by the system of cumene hydroperoxide — acetylacetonate of copper(II in a temperature range 333-363 K is studied. Kinetic parameters of polymerization process are determined. It is shown, that system of cumene hydroperoxide — acetylacetonate of copper(II is in 5-6 times more effective on the initiating ability comparatively to application of its individual components. From findings ensues that decline of energy of activating of initiation from 110 kdzh/mol’ to 87 kdzh/mol’ for cumene hydroperoxide at the use of the studied system is caused with participating of monomer in preliminary complexation facilitating formation of free radicals.

  13. Adipocyte-Macrophage Cross-Talk in Obesity.

    Science.gov (United States)

    Engin, Ayse Basak

    2017-01-01

    Obesity is characterized by the chronic low-grade activation of the innate immune system. In this respect, macrophage-elicited metabolic inflammation and adipocyte-macrophage interaction has a primary importance in obesity. Large amounts of macrophages are accumulated by different mechanisms in obese adipose tissue. Hypertrophic adipocyte-derived chemotactic monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2) pathway also promotes more macrophage accumulation into the obese adipose tissue. However, increased local extracellular lipid concentrations is a final mechanism for adipose tissue macrophage accumulation. A paracrine loop involving free fatty acids and tumor necrosis factor-alpha (TNF-alpha) between adipocytes and macrophages establishes a vicious cycle that aggravates inflammatory changes in the adipose tissue. Adipocyte-specific caspase-1 and production of interleukin-1beta (IL-1beta) by macrophages; both adipocyte and macrophage induction by toll like receptor-4 (TLR4) through nuclear factor-kappaB (NF-kappaB) activation; free fatty acid-induced and TLR-mediated activation of c-Jun N-terminal kinase (JNK)-related pro-inflammatory pathways in CD11c+ immune cells; are effective in macrophage accumulation and in the development of adipose tissue inflammation. Old adipocytes are removed by macrophages through trogocytosis or sending an "eat me" signal. The obesity-induced changes in adipose tissue macrophage numbers are mainly due to increases in the triple-positive CD11b+ F4/80+ CD11c+ adipose tissue macrophage subpopulation. The ratio of M1-to-M2 macrophages is increased in obesity. Furthermore, hypoxia along with higher concentrations of free fatty acids exacerbates macrophage-mediated inflammation in obesity. The metabolic status of adipocytes is a major determinant of macrophage inflammatory output. Macrophage/adipocyte fatty-acid-binding proteins act at the interface of metabolic and inflammatory pathways. Both macrophages and

  14. Atmospheric measurements of hydroperoxides and aldehydes during field campaigns : new results due to improvement of measurements techniques

    Science.gov (United States)

    François, S.; Sowka, I.; Poulain, L.; Monod, A.; Wortham, H.

    2003-04-01

    Hydroperoxides and aldehydes are considered as atmospheric reservoirs of OH, HO_2 and RO_2 radicals and can reflect the oxidizing levels of the atmosphere. They are considered as important gas phase photo-oxidants present in the atmosphere. However, the atmospheric role of these compounds can vary from one species to another, therefore it is essential to investigate their measurement and speciation in the atmosphere. Atmospheric measurements were realized during two different field campaigns in the Marseilles area (France). Hydroperoxides were trapped in aqueous phase, with a glass coil and analyzed by HPLC/fluorescence detector with post column derivatization. Aldehydes were trapped in a liquid phase containing 2-4 DNPH, with a mist chamber and analyzed by HPLC/UV. The analytical techniques provided individual separation and quantification of seven hydroperoxides (hydrogen peroxide, hydroxymethyl hydroperoxide, bis(hydroxymethyl) peroxide, 1-hydroxyethyl hydroperoxide, methyl hydroperoxide, ethyl hydroperoxide and peroxyacetic acid) and eleven volatile aldehydes (formaldehyde, acetaldehyde, acrolein, acetone, propionaldehyde, crotonaldehyde, butyraldehyde, benzaldehyde, glyoxal, valeraldehyde and methylglyoxal). The first field campaign was part of the ESCOMPTE project (June 4th to July 16th 2001). During this campaign five different sampling sites, at low altitudes (<= 285 m), were investigated (maritime, urban, sub-industrial, biogenic and rural sites) and atmospheric measurements were realized during photochemical air pollution events. The second field campaign was part of the BOND project (July 2nd to July 14th 2002). Atmospheric measurements of hydroperoxides were carried out on one biogenic site, at altitude 690 m. The measurement system was improved allowing online sampling and analysis. During these field campaigns collection efficiencies were better than 96% for hydroperoxides, and from 78% to 96% for aldehydes. Detection limits were between 7,3× 10-3

  15. On the interaction of molybdenum cyanide complexes with hydroperoxide of tertiary butyl

    International Nuclear Information System (INIS)

    Vretsena, N.B.; Nikipanchuk, M.V.; Chernyak, B.I.

    1979-01-01

    Conducted is investigation of interaction of potassium dioxotetracyanomolybdate (4) K 4 [MoO 2 (CN) 4 ], potassium oxotetracyanomolybdate (2) K 4 [MoO(CN) 4 ] and potassium tetracyanomolybdate K 4 [Mo(CN) 4 ] in CCl 4 and hydroperoxide of tertiary butyl medium, (HPTB). Shown is the process complex mechanism which leads to molybdenum oxidation in complexes and also to coordination and HPTB decomposition. Calculated are parameters of complex formation process of molybdenum with HPTB cyanide complexes

  16. Synthesis of deuterium-labeled analogs of the lipid hydroperoxide-derived bifunctional electrophile 4-oxo-2(E)-nonenal

    OpenAIRE

    Arora, Jasbir S.; Oe, Tomoyuki; Blair, Ian A.

    2011-01-01

    Lipid hydroperoxides undergo homolytic decomposition into the bifunctional 4-hydroxy-2(E)-nonenal and 4-oxo-2(E)-nonenal (ONE). These bifunctional electrophiles are highly reactive and can readily modify intracellular molecules including glutathione (GSH), deoxyribonucleic acid (DNA) and proteins. Lipid hydroperoxide-derived bifunctional electrophiles are thought to contribute to the pathogenesis of a number of diseases. ONE is an α,β-unsaturated aldehyde that can react in multiple ways and w...

  17. A dioxygenase of Pleurotus sapidus transforms (+)-valencene regio-specifically to (+)-nootkatone via a stereo-specific allylic hydroperoxidation.

    Science.gov (United States)

    Krügener, Sven; Krings, Ulrich; Zorn, Holger; Berger, Ralf G

    2010-01-01

    A selective and highly efficient allylic oxidation of the sesquiterpene (+)-valencene to the grapefruit flavour compound (+)-nootkatone was achieved with lyophilisate of the edible mushroom Pleurotus sapidus. The catalytic reaction sequence was elucidated through the identification of intermediate, (+)-valencene derived hydroperoxides. A specific staining of hydroperoxides allowed the semi-preparative isolation of two secondary (+)-valencene hydroperoxides, 6(R)-Isopropenyl-4(R),4a(S)-dimethyl-2,3,4,4a,5,6,7,8-octahydro-naphthalen-4(S)-yl-hydroperoxide and 6(R)-Isopropenyl-4(R),4a(S)-dimethyl-2,3,4,4a,5,6,7,8-octahydro-naphthalen-2(R)-yl-hydroperoxide. Chemical reduction of the biotransformation products yielded a tertiary alcohol identified as 2(R)-Isopropenyl-8(R),8a(S)-dimethyl-1,3,4,7,8,8a-hexahydro-2H-naphthalen-4a(R)-ol. This suggested a lipoxygenase-type oxidation of (+)-valencene via secondary and tertiary hydroperoxides and confirmed homology data of the key enzyme obtained previously from amino acid sequencing.

  18. The V1-V3 region of a brain-derived HIV-1 envelope glycoprotein determines macrophage tropism, low CD4 dependence, increased fusogenicity and altered sensitivity to entry inhibitors

    Directory of Open Access Journals (Sweden)

    Martín-García Julio

    2008-10-01

    Full Text Available Abstract Background HIV-1 infects macrophages and microglia in the brain and can cause neurological disorders in infected patients. We and others have shown that brain-derived envelope glycoproteins (Env have lower CD4 dependence and higher avidity for CD4 than those from peripheral isolates, and we have also observed increased fusogenicity and reduced sensitivity to the fusion inhibitor T-1249. Due to the genetic differences between brain and spleen env from one individual throughout gp120 and in gp41's heptad repeat 2 (HR2, we investigated the viral determinants for the phenotypic differences by performing functional studies with chimeric and mutant Env. Results Chimeric Env showed that the V1/V2-C2-V3 region in brain's gp120 determines the low CD4 dependence and high avidity for CD4, as well as macrophage tropism and reduced sensitivity to the small molecule BMS-378806. Changes in brain gp41's HR2 region did not contribute to the increased fusogenicity or to the reduced sensitivity to T-1249, since a T-1249-based peptide containing residues found in brain's but not in spleen's HR2 had similar potency than T-1249 and interacted similarly with an immobilized heptad repeat 1-derived peptide in surface plasmon resonance analysis. However, the increased fusogenicity and reduced T-1249 sensitivity of brain and certain chimeric Env mostly correlated with the low CD4 dependence and high avidity for CD4 determined by brain's V1-V3 region. Remarkably, most but not all of these low CD4-dependent, macrophage tropic envelopes glycoproteins also had increased sensitivity to the novel allosteric entry inhibitor HNG-105. The gp120's C2 region asparagine 283 (N283 has been previously associated with macrophage tropism, brain infection, lower CD4 dependence and higher CD4 affinity. Therefore, we introduced the N283T mutation into an env clone from a brain-derived isolate and into a brain tissue-derived env clone, and the T283N change into a spleen-derived env

  19. Wip1-dependent modulation of macrophage migration and phagocytosis

    DEFF Research Database (Denmark)

    Tang, Yiting; Pan, Bing; Zhou, Xin

    2017-01-01

    Macrophage accumulation within the vascular wall is a hallmark of atherosclerosis. Controlling macrophage conversion into foam cells remains a major challenge for treatment of atherosclerotic diseases. Here, we show that Wip1, a member of the PP2C family of Ser/Thr protein phosphatases, modulates...... macrophage migration and phagocytosis associated with atherosclerotic plaque formation. Wip1 deficiency increases migratory and phagocytic activities of the macrophage under stress conditions. Enhanced migration of Wip1-/- macrophages is mediated by Rac1-GTPase and PI3K/AKT signalling pathways. Elevated...... phagocytic ability of Wip1-/- macrophages is linked to CD36 plasma membrane recruitment that is regulated by AMPK activity. Our study identifies Wip1 as an intrinsic negative regulator of macrophage chemotaxis. We propose that Wip1-dependent control of macrophage function may provide avenues for preventing...

  20. Epithelial-mesenchymal interactions in early and late hepatocarcinogenesis with focus on the role of linoleic acid and its hydroperoxides

    Energy Technology Data Exchange (ETDEWEB)

    Sagmeister, S

    2009-07-01

    Hepatocellular carcinomas are devastating cancers with high mortality rates. Major risk factors are chronic hepatitis and associated cirrhosis as consequence of viral hepatitis infections, chronically ethanol consumption or metabolic disorders. While the stepwise development of liver cancer is well investigated, the role of mesenchymal cells in this process is largely unknown. To analyse epithelial-mesenchymal interactions in advanced stages of hepatocarcinogenesis, we established new cell lines from human hepatocellular carcinomas and obtained several hepatocarcinoma (HCC)-, B-lymphoblastoid (BLC)- and myofibroblastoid (MF)-lines. BLC- and MF-supernatants were able to increase DNA replication of premalignant hepatocytes. Supernatants of MF-lines enhanced angiogenesis and increased migration of HCC-lines. Besides these pro-tumourigenic effects we could also observe tumouricidal properties of mesenchymal cells, as BLC-supernatants induced cell death of HCC-lines. Linoleic acid is an important source for hydroperoxides, which may be generated either endogenously in the course of inflammation or exogenously during food processing. We found that linoleic acid hydroperoxides (=LOOH) were able to activate mesenchymal cells of the liver resulting in the release of pro-inflammatory cytokines and growth factors including TNF-alpha (=tumour necrosis factor alpha) and HB-EGF (=heparin-binding epidermal growth factor-like growth factor), which turned out to be a growth factor for premalignant hepatocytes. Furthermore LOOH enhanced the growth of hepatocarcinoma cells via upregulation of the antiapoptotic enzyme heme oxygenase 1 and stimulation of cell proliferation. In conclusion, the results of our studies confirm the crucial role of different mesenchymal cells in early and late hepatocarcinogenesis and propose a tumour-promoting effect of LOOH. (author) [German] Bei hepatozellulaeren Karzinomen handelt es sich um Krebserkrankungen mit einer ausserordentlich hohen

  1. Antioxidant and hepatoprotective effects of Capparis spinosa L. fractions and Quercetin on tert-butyl hydroperoxide- induced acute liver damage in mice

    Directory of Open Access Journals (Sweden)

    Heibatullah Kalantari

    2018-01-01

    Full Text Available The present study investigates the antioxidant and hepatoprotective effects of Capparis spinosa L. and Quercetin in tert-butyl hydroperoxide (t-BHP induced acute liver damage. Different fractions of C. spinosa were examined for total phenolic content and antioxidant property. Among these fractions, hydroalcoholic extract was used to assess the hepatoprotective effect in tert-butyl hydroperoxide (t-BHP induced hepatotoxicity model by determining serum biochemical markers, sleeping time and antioxidant assay such as reduced glutathione (GSH as well as histopathological examination of liver tissues. The total phenolic and Quercetin contents of hydroalcoholic fraction were significantly higher than other fractions. It also showed high antioxidant activity. Pretreatment with hydroalcoholic fraction at the dose of 400 mg/kg and Quercetin at the dose of 20 mg/kg showed liver protection against t-BHP induced hepatic injury, as it was evident by a significant decrease in serum enzymes marker, sleeping time and MDA and an increase in the GSH, SOD and CAT activities confirmed by pathology tests. The final results ascertained the hepatoprotective and antioxidant effects of C. spinosa and Quercetin in a dose-dependent manner. Moreover, this study suggests that possible mechanism of this protection may be associated with its property of scavenging free radicals which may be due to the presence of phenolic compounds.

  2. Macrophage Migration Inhibitory Factor (MIF) Gene Promotor Polymorphism Is Associated with Increased Fibrosis in Biliary Atresia Patients, but Not with Disease Susceptibility.

    Science.gov (United States)

    Sadek, Khaled H; Ezzat, Sameera; Abdel-Aziz, Samira A; Alaraby, Hanaa; Mosbeh, Asmaa; Abdel-Rahman, Mohamed H

    2017-09-01

    Two polymorphisms, rs755622 and rs5844572, in the promoter region of the macrophage migration inhibitory factor (MIF) gene influence the basal and/or induced transcriptional activity and have been linked to several inflammatory and autoimmune diseases. The aim of this study was to investigate the association between these two polymorphisms and disease susceptibility in patients with biliary atresia (BA). Allele frequencies of rs755622 and rs5844572 were assessed in 60 Egyptian infants with a confirmed diagnosis of BA. DNA was extracted from archival material. For the rs755622, samples were tested using Taqman real-time PCR, and for the rs5844572, samples were tested using fluorescence-based genotyping. The allele frequency in the general population was assessed in 141 healthy adults from the same geographical location. No statistical differences were observed in the allele frequencies of either rs755622 or rs5844572 between BA patients and controls. The homozygous and heterozygous short repeats (5/5, or 5/X) of rs5844572 were observed more frequently (16/28, 57.1%) in BA patients with mild to moderate fibrosis compared with those with marked fibrosis (10/32, 31.3%). The difference was statistically significant (P  =  0.032). In conclusion, we observed no association between MIF rs755622 and rs5844572 polymorphisms and susceptibility to BA; however, the rs5844572 could be linked to the rate of progression of the disease and extent of fibrosis. © 2017 John Wiley & Sons Ltd/University College London.

  3. Development of an online analyzer of atmospheric H 2O 2 and several organic hydroperoxides for field campaigns

    Science.gov (United States)

    François, S.; Sowka, I.; Monod, A.; Temime-Roussel, B.; Laugier, J. M.; Wortham, H.

    2005-03-01

    An online automated instrument was developed for atmospheric measurements of hydroperoxides with separation and quantification of H 2O 2 and several organic hydroperoxides. Samples were trapped in aqueous solutions in a scrubbing glass coil. Analyses were performed on an HPLC column followed by para-hydroxyphenylacetic acid (POPHA) acetic acid and peroxidase derivatization and fluorescence detection. Analytical and sampling tests were performed on different parameters to obtain optimum signal-to-noise ratios, high resolution and collection efficiencies higher than 95% for H 2O 2 and organic hydroperoxides. The obtained performances show large improvements compared to previous studies. The sampling and analytical devices can be coupled providing an online analyzer. The device was used during two field campaigns in the Marseilles area in June 2001 (offline analyzer) and in July 2002 (online analyzer) at rural sites at low and high altitudes, respectively, during the ESCOMPTE and BOND campaigns. During the ESCOMPTE campaign, H 2O 2 was detected occasionally, and no organic hydroperoxides was observed. During the BOND campaign, substantial amounts of H 2O 2 and 1-HEHP+MHP were often detected, and two other organic hydroperoxides were occasionally detected. These observations are discussed.

  4. Side-by-Side Comparison of Hydroperoxide and Corresponding Alcohol as Hydrogen-Bond Donors

    DEFF Research Database (Denmark)

    Møller, Kristian Holten; Tram, Camilla Mia; Kjærgaard, Henrik Grum

    2017-01-01

    tert-butanol (t-BuOH), with dimethyl ether (DME) as the hydrogen-bond acceptor. Using a combination of Fourier-transform infrared spectroscopy and quantum chemical calculations, we compare the strength of the OH-O hydrogen bond and the total strength of complexation. We find that, both in terms...... results, we find that the hydroperoxide complex is stabilized by ∼4 kJ/mol (Gibbs free energy) more than the alcohol complex. Measured red shifts show the same trend in hydrogen-bond strength with trimethylamine (N acceptor atom) and dimethyl sulfide (S acceptor atom) as the hydrogen-bond acceptors....

  5. Lysosomal Disorders Drive Susceptibility to Tuberculosis by Compromising Macrophage Migration

    Science.gov (United States)

    Berg, Russell D.; Levitte, Steven; O’Sullivan, Mary P.; O’Leary, Seónadh M.; Cambier, C.J.; Cameron, James; Takaki, Kevin K.; Moens, Cecilia B.; Tobin, David M.; Keane, Joseph; Ramakrishnan, Lalita

    2016-01-01

    Summary A zebrafish genetic screen for determinants of susceptibility to Mycobacterium marinum identified a hypersusceptible mutant deficient in lysosomal cysteine cathepsins that manifests hallmarks of human lysosomal storage diseases. Under homeostatic conditions, mutant macrophages accumulate undigested lysosomal material, which disrupts endocytic recycling and impairs their migration to, and thus engulfment of, dying cells. This causes a buildup of unengulfed cell debris. During mycobacterial infection, macrophages with lysosomal storage cannot migrate toward infected macrophages undergoing apoptosis in the tuberculous granuloma. The unengulfed apoptotic macrophages undergo secondary necrosis, causing granuloma breakdown and increased mycobacterial growth. Macrophage lysosomal storage similarly impairs migration to newly infecting mycobacteria. This phenotype is recapitulated in human smokers, who are at increased risk for tuberculosis. A majority of their alveolar macrophages exhibit lysosomal accumulations of tobacco smoke particulates and do not migrate to Mycobacterium tuberculosis. The incapacitation of highly microbicidal first-responding macrophages may contribute to smokers’ susceptibility to tuberculosis. PMID:27015311

  6. A Suppressor of the Menadione-Hypersensitive Phenotype of a Xanthomonas campestris pv. phaseoli oxyR Mutant Reveals a Novel Mechanism of Toxicity and the Protective Role of Alkyl Hydroperoxide Reductase

    Science.gov (United States)

    Vattanaviboon, Paiboon; Whangsuk, Wirongrong; Mongkolsuk, Skorn

    2003-01-01

    We isolated menadione-resistant mutants of Xanthomonas campestris pv. phaseoli oxyR (oxyRXp). The oxyRR2Xp mutant was hyperresistant to the superoxide generators menadione and plumbagin and was moderately resistant to H2O2 and tert-butyl hydroperoxide. Analysis of enzymes involved in oxidative-stress protection in the oxyRR2Xp mutant revealed a >10-fold increase in AhpC and AhpF levels, while the levels of superoxide dismutase (SOD), catalase, and the organic hydroperoxide resistance protein (Ohr) were not significantly altered. Inactivation of ahpC in the oxyRR2Xp mutant resulted in increased sensitivity to menadione killing. Moreover, high levels of expression of cloned ahpC and ahpF in the oxyRXp mutant complemented the menadione hypersensitivity phenotype. High levels of other oxidant-scavenging enzymes such as catalase and SOD did not protect the cells from menadione toxicity. These data strongly suggest that the toxicity of superoxide generators could be mediated via organic peroxide production and that alkyl hydroperoxide reductase has an important novel function in the protection against the toxicity of these compounds in X. campestris. PMID:12591894

  7. MiR-146a modulates macrophage polarization by inhibiting Notch1 pathway in RAW264.7 macrophages.

    Science.gov (United States)

    Huang, Cheng; Liu, Xue-Jiao; QunZhou; Xie, Juan; Ma, Tao-Tao; Meng, Xiao-Ming; Li, Jun

    2016-03-01

    Macrophages are heterogeneous and plastic cells which are able to undergo dynamic transition between M1 and M2 polarized phenotypes in response to the microenvironment signals. However, the underlying molecular mechanisms of macrophage polarization are still obscure. In the current study, it was revealed that miR-146a might play a pivotal role in macrophage polarization. As our results indicated, miR-146a was highly expressed in M2 macrophages rather than M1 macrophages. Over-expression of miR-146a resulted in significantly decreased production of pro-inflammatory cytokines including iNOS and TNF-α in M1 macrophages, while increased production of M2 marker genes such as Arg1 and CD206 in M2 macrophages. In contrast, knockdown of miR-146a promoted M1 macrophage polarization but diminished M2 macrophage polarization. Mechanistically, it was revealed that miR-146a modulated macrophage polarization by targeting Notch1. Of note, PPARγ was responsible as another target for miR-146a-mediated macrophage polarization. Taken together, it was suggested that miR-146a might serve as a molecular regulator in macrophage polarization and is a potential therapeutic target for inflammatory diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Macrophages in synovial inflammation

    Directory of Open Access Journals (Sweden)

    Aisling eKennedy

    2011-10-01

    Full Text Available AbstractSynovial macrophages are one of the resident cell types in synovial tissue and while they remain relatively quiescent in the healthy joint, they become activated in the inflamed joint and, along with infiltrating monocytes/macrophages, regulate secretion of pro-inflammatory cytokines and enzymes involved in driving the inflammatory response and joint destruction. Synovial macrophages are positioned throughout the sub-lining layer and lining layer at the cartilage-pannus junction and mediate articular destruction. Sub-lining macrophages are now also considered as the most reliable biomarker for disease severity and response to therapy in rheumatoid arthritis (RA. There is a growing understanding of the molecular drivers of inflammation and an appreciation that the resolution of inflammation is an active process rather than a passive return to homeostasis, and this has implications for our understanding of the role of macrophages in inflammation. Macrophage phenotype determines the cytokine secretion profile and tissue destruction capabilities of these cells. Whereas inflammatory synovial macrophages have not yet been classified into one phenotype or another it is widely known that TNFα and IL-l, characteristically released by M1 macrophages, are abundant in RA while IL-10 activity, characteristic of M2 macrophages, is somewhat diminished.Here we will briefly review our current understanding of macrophages and macrophage polarisation in RA as well as the elements implicated in controlling polarisation, such as cytokines and transcription factors like NFκB, IRFs and NR4A, and pro-resolving factors, such as LXA4 and other lipid mediators which may promote a non-inflammatory, pro-resolving phenotype and may represent a novel therapeutic paradigm.

  9. Immunization of Mice with Recombinant Brucella abortus Organic Hydroperoxide Resistance (Ohr) Protein Protects Against a Virulent Brucella abortus 544 Infection.

    Science.gov (United States)

    Hop, Huynh Tan; Reyes, Alisha Wehdnesday Bernardo; Simborio, Hannah Leah Tadeja; Arayan, Lauren Togonon; Min, Won Gi; Lee, Hu Jang; Lee, Jin Ju; Chang, Hong Hee; Kim, Suk

    2016-01-01

    In this study, the Brucella abortus ohr gene coding for an organic hydroperoxide resistance protein (Ohr) was cloned into a maltose fusion protein expression system (pMAL), inserted into Escherichia coli, and purified, and its immunogenicity was evaluated by western blot analysis using Brucella-positive mouse sera. The purified recombinant Ohr (rOhr) was treated with adjuvant and injected intraperitoneally into BALB/c mice. A protective immune response analysis revealed that rOhr induced a significant increase in both the IgG1 and IgG2a titers, and IgG2a reached a higher level than IgG1 after the second and third immunizations. Additionally, immunization with rOhr induced high production of IFN-γ as well as proinflammatory cytokines such as TNF, MCP-1, IL-12p70, and IL-6, but a lesser amount of IL-10, suggesting that rOhr predominantly elicited a cell-mediated immune response. In addition, immunization with rOhr caused a significantly higher degree of protection against a virulent B. abortus infection compared with a positive control group consisting of mice immunized with maltose-binding protein. These findings showed that B. abortus rOhr was able to induce both humoral and cell-mediated immunity in mice, which suggested that this recombinant protein could be a potential vaccine candidate for animal brucellosis.

  10. Protective effect of kombucha tea against tertiary butyl hydroperoxide induced cytotoxicity and cell death in murine hepatocytes.

    Science.gov (United States)

    Bhattacharya, Semantee; Manna, Prasenjit; Gachhui, Ratan; Sil, Parames C

    2011-07-01

    Kombucha (KT), a fermented black tea (BT), is known to have many beneficial properties. In the present study, antioxidant property of KT has been investigated against tertiary butyl hydroperoxide (TBHP) induced cytotoxicity using murine hepatocytes. TBHP, a reactive oxygen species inducer, causes oxidative stress resulting in organ pathophysiology. Exposure to TBHP caused a reduction in cell viability, increased membrane leakage and disturbed the intra-cellular antioxidant machineries in hepatocytes. TBHP exposure disrupted mitochondrial membrane potential and induced apoptosis as evidenced by flow cytometric analyses. KT treatment, however, counteracted the changes in mitochondrial membrane potential and prevented apoptotic cell death of the hepatocytes. BT treatment also reverted TBHP induced hepatotoxicity, however KT was found to be more efficient. This may be due to the formation of antioxidant molecules like D-saccharic acid-1,4-lactone (DSL) during fermentation process and are absent in BT. Moreover, the radical scavenging activities of KT were found to be higher than BT. Results of the study showed that KT has the potential to ameliorate TBHP induced oxidative insult and cell death in murine hepatocytes more effectively than BT.

  11. Protective Effects of Alkaloid Compounds from Nelumbinis Plumula on tert-Butyl Hydroperoxide-Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Ze-Bin Guo

    2013-08-01

    Full Text Available This study was conducted to investigate the effect of Nelumbinis Plumula total alkaloid (NPA and its main alkaloid components on oxidative stress induced by tert-butyl hydroperoxide (t-BHP in the human hepatocellular HepG2 cell line. According to HPLC analysis, several major alkaloid compounds such as liensinine, isoliensinine and neferine were present in NPA. The cytotoxic effects in 0.55 mM t-BHP-induced HepG2 cells were significantly inhibited by NPA and the major compound in NPA, neferine, showed the strongest activities. The protective effect of neferine against oxidative stress induced by t-BHP may be associated with decreased ROS formation, TBARS generation, LDH release and increased GSH levels, suggesting their involvement of the cytoprotective on oxidative stress. The effects were comparable with quercetin, which was used as positive control. Overall, total alkaloid and alkaloid compounds from Nelumbinis Plumula displayed a significant cytoprotective effect against oxidative stress. Further study is needed to elucidate the relationship between the chemical structures of the components in NPA and their protective effect on oxidative stress.

  12. Macrophage mitochondrial damage from StAR transport of 7-hydroperoxycholesterol: implications for oxidative stress-impaired reverse cholesterol transport.

    Science.gov (United States)

    Korytowski, Witold; Wawak, Katarzyna; Pabisz, Pawel; Schmitt, Jared C; Girotti, Albert W

    2014-01-03

    StAR family proteins in vascular macrophages participate in reverse cholesterol transport (RCT). We hypothesize that under pathophysiological oxidative stress, StARs will transport not only cholesterol to macrophage mitochondria, but also pro-oxidant cholesterol hydroperoxides (7-OOHs), thereby impairing early-stage RCT. Upon stimulation with dibutyryl-cAMP, RAW264.7 macrophages exhibited a strong time-dependent induction of mitochondrial StarD1 and plasma membrane ABCA1, which exports cholesterol. 7α-OOH uptake by stimulated RAW cell mitochondria (like cholesterol uptake) was strongly reduced by StarD1 knockdown, consistent with StarD1 involvement. Upon uptake by mitochondria, 7α-OOH (but not redox-inactive 7α-OH) triggered lipid peroxidation and membrane depolarization while reducing ABCA1 upregulation. These findings provide strong initial support for our hypothesis. Copyright © 2013. Published by Elsevier B.V.

  13. Aircraft and ground-based measurements of hydroperoxides during the 2006 MILAGRO field campaign

    Directory of Open Access Journals (Sweden)

    L. J. Nunnermacker

    2008-12-01

    Full Text Available Mixing ratios of hydrogen peroxide and hydroxymethyl hydroperoxide were determined aboard the US Department of Energy G-1 Research Aircraft during the March, 2006 MILAGRO field campaign in Mexico. Ground measurements of total hydroperoxide were made at Tecámac University, about 35 km NW of Mexico City. In the air and on the ground, peroxide mixing ratios near the source region were generally near 1 ppbv. Strong southerly flow resulted in transport of pollutants from Mexico City to two downwind surface sites on several flight days. On these days, it was observed that peroxide concentrations slightly decreased as the G-1 flew progressively downwind. This observation is consistent with low or negative net peroxide production rates calculated for the source region and is due to the very high NOx concentrations in the Mexico City plateau. However, relatively high values of peroxide were observed at takeoff and landing near Veracruz, a site with much higher humidity and lower NOx concentrations.

  14. Hydroperoxide Traces in Common Cyclic Ethers as Initiators for Controlled RAFT Polymerizations.

    Science.gov (United States)

    Eggers, Steffen; Abetz, Volker

    2018-04-01

    Herein, a reversible addition-fragmentation chain transfer (RAFT) polymerization is introduced for reactive monomers like N-acryloylpyrrolidine or N,N-dimethylacrylamide working without a conventional radical initiator. As a very straightforward proof of principle, the method takes advantage of the usually inconvenient radical-generating hydroperoxide contaminations in cyclic ethers like tetrahydrofuran or 1,4-dioxane, which are very common solvents in polymer sciences. The polymerizations are surprisingly well controlled and the polymers can be extended with a second block, indicating their high livingness. "Solvent-initiated" RAFT polymerizations hence prove to be a feasible access to tailored materials with minimal experimental effort and standard laboratory equipment, only requiring the following ingredients: hydroperoxide-contaminated solvent, monomer, and RAFT agent. In other respects, however, the potential coinitiating ability of the used solvent is to be considered when investigating the kinetics of RAFT polymerizations or aiming for the synthesis of high-livingness polymers, e.g., multiblock copolymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Redox Regulation of the Tumor Suppressor PTEN by Hydrogen Peroxide and Tert-Butyl Hydroperoxide

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2017-05-01

    Full Text Available Organic peroxides and hydroperoxides are skin tumor promoters. Free radical derivatives from these compounds are presumed to be the prominent mediators of tumor promotion. However, the molecular targets of these species are unknown. Phosphatase and tensin homologs deleted on chromosome 10 (PTEN are tumor suppressors that play important roles in cell growth, proliferation, and cell survival by negative regulation of phosphoinositol-3-kinase/protein kinase B signaling. PTEN is reversibly oxidized in various cells by exogenous and endogenous hydrogen peroxide. Oxidized PTEN is converted back to the reduced form by cellular reducing agents, predominantly by the thioredoxin (Trx system. Here, the role of tert-butyl hydroperoxide (t-BHP in redox regulation of PTEN was analyzed by using cell-based and in vitro assays. Exposure to t-BHP led to oxidation of recombinant PTEN. In contrast to H2O2, PTEN oxidation by t-BHP was irreversible in HeLa cells. However, oxidized PTEN was reduced by exogenous Trx system. Taken together, these results indicate that t-BHP induces PTEN oxidation and inhibits Trx system, which results in irreversible PTEN oxidation in HeLa cells. Collectively, these results suggest a novel mechanism of t-BHP in the promotion of tumorigenesis.

  16. Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages.

    Directory of Open Access Journals (Sweden)

    Mário Henrique M Barros

    Full Text Available Macrophage polarization is increasingly recognised as an important pathogenetic factor in inflammatory and neoplastic diseases. Proinflammatory M1 macrophages promote T helper (Th 1 responses and show tumoricidal activity. M2 macrophages contribute to tissue repair and promote Th2 responses. CD68 and CD163 are used to identify macrophages in tissue sections. However, characterisation of polarised macrophages in situ has remained difficult. Macrophage polarisation is regulated by transcription factors, pSTAT1 and RBP-J for M1, and CMAF for M2. We reasoned that double-labelling immunohistochemistry for the detection of macrophage markers together with transcription factors may be suitable to characterise macrophage polarisation in situ. To test this hypothesis, we have studied conditions associated with Th1- and Th2-predominant immune responses: infectious mononucleosis and Crohn's disease for Th1 and allergic nasal polyps, oxyuriasis, wound healing and foreign body granulomas for predominant Th2 response. In all situations, CD163+ cells usually outnumbered CD68+ cells. Moreover, CD163+ cells, usually considered as M2 macrophages, co-expressing pSTAT1 and RBP-J were found in all conditions examined. The numbers of putative M1 macrophages were higher in Th1- than in Th2-associated diseases, while more M2 macrophages were seen in Th2- than in Th1 related disorders. In most Th1-related diseases, the balance of M1 over M2 cells was shifted towards M1 cells, while the reverse was observed for Th2-related conditions. Hierarchical cluster analysis revealed two distinct clusters: cluster I included Th1 diseases together with cases with high numbers of CD163+pSTAT1+, CD68+pSTAT1+, CD163+RBP-J+ and CD68+RBP-J+ macrophages; cluster II comprised Th2 conditions together with cases displaying high numbers of CD163+CMAF+ and CD68+CMAF+ macrophages. These results suggest that the detection of pSTAT1, RBP-J, and CMAF in the context of CD68 or CD163 expression is a

  17. Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages.

    Science.gov (United States)

    Barros, Mário Henrique M; Hauck, Franziska; Dreyer, Johannes H; Kempkes, Bettina; Niedobitek, Gerald

    2013-01-01

    Macrophage polarization is increasingly recognised as an important pathogenetic factor in inflammatory and neoplastic diseases. Proinflammatory M1 macrophages promote T helper (Th) 1 responses and show tumoricidal activity. M2 macrophages contribute to tissue repair and promote Th2 responses. CD68 and CD163 are used to identify macrophages in tissue sections. However, characterisation of polarised macrophages in situ has remained difficult. Macrophage polarisation is regulated by transcription factors, pSTAT1 and RBP-J for M1, and CMAF for M2. We reasoned that double-labelling immunohistochemistry for the detection of macrophage markers together with transcription factors may be suitable to characterise macrophage polarisation in situ. To test this hypothesis, we have studied conditions associated with Th1- and Th2-predominant immune responses: infectious mononucleosis and Crohn's disease for Th1 and allergic nasal polyps, oxyuriasis, wound healing and foreign body granulomas for predominant Th2 response. In all situations, CD163+ cells usually outnumbered CD68+ cells. Moreover, CD163+ cells, usually considered as M2 macrophages, co-expressing pSTAT1 and RBP-J were found in all conditions examined. The numbers of putative M1 macrophages were higher in Th1- than in Th2-associated diseases, while more M2 macrophages were seen in Th2- than in Th1 related disorders. In most Th1-related diseases, the balance of M1 over M2 cells was shifted towards M1 cells, while the reverse was observed for Th2-related conditions. Hierarchical cluster analysis revealed two distinct clusters: cluster I included Th1 diseases together with cases with high numbers of CD163+pSTAT1+, CD68+pSTAT1+, CD163+RBP-J+ and CD68+RBP-J+ macrophages; cluster II comprised Th2 conditions together with cases displaying high numbers of CD163+CMAF+ and CD68+CMAF+ macrophages. These results suggest that the detection of pSTAT1, RBP-J, and CMAF in the context of CD68 or CD163 expression is a suitable tool for

  18. C12 derivatives of the hydroperoxide lyase pathway are produced by product recycling through lipoxygenase-2 in Nicotiana attenuata leaves

    NARCIS (Netherlands)

    Kallenbach, M.; Gilardoni, P.A.; Allmann, S.; Baldwin, I.T.; Bonaventure, G.

    2011-01-01

    In response to diverse stresses, the hydroperoxide lyase (HPL) pathway produces C(6) aldehydes and 12-oxo-(9Z )-dodecenoic acid ((9Z )-traumatin). Since the original characterization of (10E )-traumatin and traumatic acid, little has been added to our knowledge of the metabolism and fluxes

  19. Expression of alkyl hydroperoxide reductase is regulated negatively by OxyR1 and positively by RpoE2 sigma factor in Azospirillum brasilense Sp7.

    Science.gov (United States)

    Singh, Sudhir; Dwivedi, Susheel Kumar; Singh, Vijay Shankar; Tripathi, Anil Kumar

    2016-10-01

    OxyR proteins are LysR-type transcriptional regulators, which play an important role in responding to oxidative stress in bacteria. Azospirillum brasilense Sp7 harbours two copies of OxyR. The inactivation of the oxyR1, the gene organized divergently to ahpC in A. brasilense Sp7, led to an increased tolerance to alkyl hydroperoxides, which was corroborated by an increase in alkyl hydroperoxide reductase (AhpC) activity, enhanced expression of ahpC :lacZ fusion and increased synthesis of AhpC protein in the oxyR1::km mutant. The upstream region of ahpC promoter harboured a putative OxyR binding site, T-N11-A. Mutation of T, A or both in the T-N11-Amotif caused derepression of ahpC in A. brasilense suggesting that T-N11-A might be the binding site for a negative regulator. Retardation of the electrophoretic mobility of the T-N11-A motif harbouring oxyR1-ahpC intergenic DNA by recombinant OxyR1, under reducing as well as oxidizing conditions, indicated that OxyR1 acts as a negative regulator of ahpC in A. brasilense. Sequence of the promoter of ahpC, predicted on the basis of transcriptional start site, and an enhanced expression of ahpC:lacZ fusion in chrR2::km mutant background suggested that ahpC promoter was RpoE2 dependent. Thus, this study shows that in A. brasilense Sp7, ahpC expression is regulated negatively by OxyR1 but is regulated positively by RpoE2, an oxidative-stress-responsive sigma factor. It also shows that OxyR1 regulates the expression RpoE1, which is known to play an important role during photooxidative stress in A. brasilense.

  20. Resistance to organic hydroperoxides requires ohr and ohrR genes in Sinorhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Dufour Virginie

    2011-05-01

    Full Text Available Abstract Background Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodules on roots of host plants Medicago sativa. During nodule formation bacteria have to withstand oxygen radicals produced by the plant. Resistance to H2O2 and superoxides has been extensively studied in S. meliloti. In contrast resistance to organic peroxides has not been investigated while S. meliloti genome encodes putative organic peroxidases. Organic peroxides are produced by plants and are highly toxic. The resistance to these oxygen radicals has been studied in various bacteria but never in plant nodulating bacteria. Results In this study we report the characterisation of organic hydroperoxide resistance gene ohr and its regulator ohrR in S. meliloti. The inactivation of ohr affects resistance to cumene and ter-butyl hydroperoxides but not to hydrogen peroxide or menadione in vitro. The expression of ohr and ohrR genes is specifically induced by organic peroxides. OhrR binds to the intergenic region between the divergent genes ohr and ohrR. Two binding sites were characterised. Binding to the operator is prevented by OhrR oxidation that promotes OhrR dimerisation. The inactivation of ohr did not affect symbiosis and nitrogen fixation, suggesting that redundant enzymatic activity exists in this strain. Both ohr and ohrR are expressed in nodules suggesting that they play a role during nitrogen fixation. Conclusions This report demonstrates the significant role Ohr and OhrR proteins play in bacterial stress resistance against organic peroxides in S. meliloti. The ohr and ohrR genes are expressed in nodule-inhabiting bacteroids suggesting a role during nodulation.

  1. The elusive antifibrotic macrophage

    Directory of Open Access Journals (Sweden)

    Adhyatmika eAdhyatmika

    2015-11-01

    Full Text Available Fibrotic diseases, especially of the liver, the cardiovascular system, the kidneys, and the lungs account for approximately 45% of deaths in Western societies. Fibrosis is a serious complication associated with aging and/or chronic inflammation or injury and cannot be treated effectively yet. It is characterized by excessive deposition of extracellular matrix (ECM proteins by myofibroblasts and impaired degradation by macrophages. This ultimately destroys the normal structure of an organ, which leads to loss of function. Most efforts to develop drugs have focused on inhibiting ECM production by myofibroblasts and have not yielded many effective drugs yet. Another option is to stimulate the cells that are responsible for degradation and uptake of excess ECM, i.e. antifibrotic macrophages. However, macrophages are plastic cells that have many faces in fibrosis, including profibrotic behaviour stimulating ECM production. This can be dependent on their origin, as the different organs have tissue-resident macrophages with different origins and a various influx of incoming monocytes in steady-state conditions and during fibrosis. To be able to pharmacologically stimulate the right kind of behaviour in fibrosis, a thorough characterization of antifibrotic macrophages is necessary, as well as an understanding of the signals they need to degrade ECM. In this review we will summarize the current state of the art regarding the antifibrotic macrophage phenotype and the signals that stimulate its behaviour.

  2. The genome-wide early temporal response of Saccharomyces cerevisiae to oxidative stress induced by cumene hydroperoxide.

    Directory of Open Access Journals (Sweden)

    Wei Sha

    Full Text Available Oxidative stress is a well-known biological process that occurs in all respiring cells and is involved in pathophysiological processes such as aging and apoptosis. Oxidative stress agents include peroxides such as hydrogen peroxide, cumene hydroperoxide, and linoleic acid hydroperoxide, the thiol oxidant diamide, and menadione, a generator of superoxide, amongst others. The present study analyzed the early temporal genome-wide transcriptional response of Saccharomyces cerevisiae to oxidative stress induced by the aromatic peroxide cumene hydroperoxide. The accurate dataset obtained, supported by the use of temporal controls, biological replicates and well controlled growth conditions, provided a detailed picture of the early dynamics of the process. We identified a set of genes previously not implicated in the oxidative stress response, including several transcriptional regulators showing a fast transient response, suggesting a coordinated process in the transcriptional reprogramming. We discuss the role of the glutathione, thioredoxin and reactive oxygen species-removing systems, the proteasome and the pentose phosphate pathway. A data-driven clustering of the expression patterns identified one specific cluster that mostly consisted of genes known to be regulated by the Yap1p and Skn7p transcription factors, emphasizing their mediator role in the transcriptional response to oxidants. Comparison of our results with data reported for hydrogen peroxide identified 664 genes that specifically respond to cumene hydroperoxide, suggesting distinct transcriptional responses to these two peroxides. Genes up-regulated only by cumene hydroperoxide are mainly related to the cell membrane and cell wall, and proteolysis process, while those down-regulated only by this aromatic peroxide are involved in mitochondrial function.

  3. Macrophage Phenotype and Function in Different Stages of Atherosclerosis

    Science.gov (United States)

    Tabas, Ira; Bornfeldt, Karin E.

    2016-01-01

    The remarkable plasticity and plethora of biological functions performed by macrophages have enticed scientists to study these cells in relation to atherosclerosis for more than 50 years, and major discoveries continue to be made today. It is now understood that macrophages play important roles in all stages of atherosclerosis, from initiation of lesions and lesion expansion, to necrosis leading to rupture and the clinical manifestations of atherosclerosis, to resolution and regression of atherosclerotic lesions. Lesional macrophages are derived primarily from blood monocytes, although recent research has shown that lesional macrophage-like cells can also be derived from smooth muscle cells. Lesional macrophages take on different phenotypes depending on their environment and which intracellular signaling pathways are activated. Rather than a few distinct populations of macrophages, the phenotype of the lesional macrophage is more complex and likely changes during the different phases of atherosclerosis and with the extent of lipid and cholesterol loading, activation by a plethora of receptors, and metabolic state of the cells. These different phenotypes allow the macrophage to engulf lipids, dead cells, and other substances perceived as danger signals; efflux cholesterol to HDL; proliferate and migrate; undergo apoptosis and death; and secrete a large number of inflammatory and pro-resolving molecules. This review article, part of the Compendium on Atherosclerosis, discusses recent advances in our understanding of lesional macrophage phenotype and function in different stages of atherosclerosis. With the increasing understanding of the roles of lesional macrophages, new research areas and treatment strategies are beginning to emerge. PMID:26892964

  4. Clonorchis sinensis antigens alter hepatic macrophage polarization in vitro and in vivo.

    Science.gov (United States)

    Kim, Eun-Min; Kwak, You Shine; Yi, Myung-Hee; Kim, Ju Yeong; Sohn, Woon-Mok; Yong, Tai-Soon

    2017-05-01

    Clonorchis sinensis infection elicits hepatic inflammation, which can lead to cholangitis, periductal hepatic fibrosis, liver cirrhosis, and even cholangiocarcinoma. Hepatic macrophages are an intrinsic element of both innate and acquired immunity. This study was conducted to demonstrate the dynamics of hepatic macrophage polarization during C. sinensis infection in mice and to identify factors regulating this polarization. Treatment of hepatic macrophages isolated from normal mice with C. sinensis excretory/secretory products (ESPs) resulted in the preferential generation of classically activated hepatic macrophages (M1 macrophages) and the production of pro-inflammatory cytokines. Additionally, cells stimulated with C. sinensis ESPs exhibited changes in cellular morphology. During the early stages of C. sinensis infection, hepatic macrophages preferentially differentiated into M1 macrophages; however, during the C. sinensis mature worm stage, when eggs are released, there were significant increases in the abundance of both M1 macrophages and alternatively activated hepatic macrophages (M2 macrophages). Moreover, there was a further increase in the M2 macrophage count during the fibrotic and cirrhotic stage of infection. Notably, this fibrotic and cirrhotic stage promoted a strong increase in the proportion of Arg-1-producing macrophages (M2 phenotype), which were associated with fibrosis and tissue repair in the liver. Our results suggest that the dynamic polarization of hepatic macrophages as C. sinensis infection progresses is related to the histological lesions present in liver tissue. Hepatic macrophages thus play an important role in local immunity during C. sinensis infection.

  5. Clonorchis sinensis antigens alter hepatic macrophage polarization in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Eun-Min Kim

    2017-05-01

    Full Text Available Clonorchis sinensis infection elicits hepatic inflammation, which can lead to cholangitis, periductal hepatic fibrosis, liver cirrhosis, and even cholangiocarcinoma. Hepatic macrophages are an intrinsic element of both innate and acquired immunity. This study was conducted to demonstrate the dynamics of hepatic macrophage polarization during C. sinensis infection in mice and to identify factors regulating this polarization. Treatment of hepatic macrophages isolated from normal mice with C. sinensis excretory/secretory products (ESPs resulted in the preferential generation of classically activated hepatic macrophages (M1 macrophages and the production of pro-inflammatory cytokines. Additionally, cells stimulated with C. sinensis ESPs exhibited changes in cellular morphology. During the early stages of C. sinensis infection, hepatic macrophages preferentially differentiated into M1 macrophages; however, during the C. sinensis mature worm stage, when eggs are released, there were significant increases in the abundance of both M1 macrophages and alternatively activated hepatic macrophages (M2 macrophages. Moreover, there was a further increase in the M2 macrophage count during the fibrotic and cirrhotic stage of infection. Notably, this fibrotic and cirrhotic stage promoted a strong increase in the proportion of Arg-1-producing macrophages (M2 phenotype, which were associated with fibrosis and tissue repair in the liver. Our results suggest that the dynamic polarization of hepatic macrophages as C. sinensis infection progresses is related to the histological lesions present in liver tissue. Hepatic macrophages thus play an important role in local immunity during C. sinensis infection.

  6. M2 polarization enhances silica nanoparticle uptake by macrophages

    Directory of Open Access Journals (Sweden)

    Jessica eHoppstädter

    2015-03-01

    Full Text Available While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth.We employed different models of M1 and M2 polarization: GM-CSF/LPS/IFN-gamma was used to generate primary human M1 cells and M-CSF/IL-10 to differentiate M2 monocyte-derived macrophages. PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-gamma and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø 26 and 41 nm and microparticles (Ø 1.75 µm was quantified. At the concentration used (50 µg/ml, silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human monocyte-derived macrophages compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages (TAM obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue.In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but might also open up therapeutic perspectives allowing to specifically target M2

  7. Salvianic acid A sodium protects HUVEC cells against tert-butyl hydroperoxide induced oxidative injury via mitochondria-dependent pathway.

    Science.gov (United States)

    Jia, Dan; Li, Tian; Chen, Xiaofei; Ding, Xuan; Chai, Yifeng; Chen, Alex F; Zhu, Zhenyu; Zhang, Chuan

    2018-01-05

    Salvianic acid A (Danshensu) is a major water-soluble component extracted from Salvia miltiorrhiza (Danshen), which has been widely used in clinic in China for treatment of cardiovascular diseases (CVDs). This study aimed to investigate the protective effects of salvianic acid A sodium (SAAS) against tert-butyl hydroperoxide (t-BHP) induced human umbilical vein endothelial cell (HUVEC) oxidative injury and the underlying molecular mechanisms. In the antioxidant activity-assessing model, SAAS pretreatment significantly ameliorated the cell growth inhibition and apoptosis induced by t-BHP. An ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) based-metabolic profiling was developed to investigate the metabolic changes of HUVEC cells in response to t-BHP and SAAS. The results revealed that t-BHP injury upregulated 13 metabolites mainly involved in tryptophan metabolism and phenylalanine metabolism which were highly correlated with mitochondrial function and oxidative stress, and 50 μM SAAS pretreatment effectively reversed these metabolic changes. Further biomedical research indicated that SAAS pretreatment reduced the t-BHP induced increase of lactate dehydrogenase (LDH), intracellular reactive oxygen species (ROS), malondialdehyde (MDA) and mitochondrial membrane potential (MMP), and the decrease of key antioxidant enzymes through mitochondria antioxidative pathways via JAK2/STAT3 and PI3K/Akt/GSK-3β signalings. Taken together, our results suggested that SAAS may protect HUVEC cells against t-BHP induced oxidative injury via mitochondrial antioxidative defense system. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Type I diabetes mellitus decreases in vivo macrophage-to-feces reverse cholesterol transport despite increased biliary sterol secretion in mice

    NARCIS (Netherlands)

    de Boer, Jan Freark; Annema, Wijtske; Schreurs, Marijke; van der Veen, Jelske N; van der Giet, Markus; Nijstad, Niels; Kuipers, Folkert; Tietge, Uwe J F

    Type I diabetes mellitus (T1DM) increases atherosclerotic cardiovascular disease; however, the underlying pathophysiology is still incompletely understood. We investigated whether experimental T1DM impacts HDL-mediated reverse cholesterol transport (RCT). C57BL/6J mice with alloxan-induced T1DM had

  9. Tumor-Associated Macrophages in Oncolytic Virotherapy: Friend or Foe?

    Directory of Open Access Journals (Sweden)

    Nicholas L. Denton

    2016-07-01

    Full Text Available Cancer therapy remains a challenge due to toxicity limitations of chemotherapy and radiation therapy. Oncolytic viruses that selectively replicate and destroy cancer cells are of increasing interest. In addition to direct cell lysis, these vectors stimulate an anti-tumor immune response. A key regulator of tumor immunity is the tumor-associated macrophage population. Macrophages can either support oncolytic virus therapy through pro-inflammatory stimulation of the anti-tumor response at the cost of hindering direct oncolysis or through immunosuppressive protection of virus replication at the cost of hindering the anti-tumor immune response. Despite similarities in macrophage interaction between adult and pediatric tumors and the abundance of research supporting macrophage modulation in adult tumors, there are few studies investigating macrophage modulation in pediatric cancers or modulation of immunotherapy. We review the current state of knowledge regarding macrophages in cancers and their influence on oncolytic virotherapy.

  10. BMP pathway regulation of and by macrophages.

    Directory of Open Access Journals (Sweden)

    Megha Talati

    Full Text Available Pulmonary arterial hypertension (PAH is a disease of progressively increasing pulmonary vascular resistance, associated with mutations of the type 2 receptor for the BMP pathway, BMPR2. The canonical signaling pathway for BMPR2 is through the SMAD family of transcription factors. BMPR2 is expressed in every cell type, but the impact of BMPR2 mutations affecting SMAD signaling, such as Bmpr2delx4+, had only previously been investigated in smooth muscle and endothelium. In the present study, we created a mouse with universal doxycycline-inducible expression of Bmpr2delx4+ in order to determine if broader expression had an impact relevant to the development of PAH. We found that the most obvious phenotype was a dramatic, but patchy, increase in pulmonary inflammation. We crossed these double transgenic mice onto an NF-κB reporter strain, and by luciferase assays on live mice, individual organs and isolated macrophages, we narrowed down the origin of the inflammatory phenotype to constitutive activation of tissue macrophages. Study of bone marrow-derived macrophages from mutant and wild-type mice suggested a baseline difference in differentiation state in Bmpr2 mutants. When activated with LPS, both mutant and wild-type macrophages secrete BMP pathway inhibitors sufficient to suppress BMP pathway activity in smooth muscle cells (SMC treated with conditioned media. Functionally, co-culture with macrophages results in a BMP signaling-dependent increase in scratch closure in cultured SMC. We conclude that SMAD signaling through BMP is responsible, in part, for preventing macrophage activation in both live animals and in cells in culture, and that activated macrophages secrete BMP inhibitors in sufficient quantity to cause paracrine effect on vascular smooth muscle.

  11. M1 Macrophages but Not M2 Macrophages Are Characterized by Upregulation of CRP Expression via Activation of NFκB: a Possible Role for Ox-LDL in Macrophage Polarization.

    Science.gov (United States)

    Kaplan, Marielle; Shur, Anna; Tendler, Yvgeny

    2018-04-23

    Arterial macrophages comprise a heterogeneous population: pro-inflammatory (M1) and anti-inflammatory (M2). Since C-reactive protein (CRP) is produced by macrophages in atherosclerotic lesions, understanding of CRP regulation in macrophages could be crucial to decipher inflammatory patterns in atherogenesis. We aimed to analyze CRP expression in M1/M2 macrophages and to question whether it involves NFκB signaling pathway. Furthermore, we questioned whether oxidative stress affect macrophage phenotype and modulate macrophage CRP expression. M1/M2 macrophage polarization was validated using THP-1 macrophages. CRP mRNA and protein expression were determined using real-time PCR and immunohistochemistry. Involvement of NFκB was determined by nuclear translocation of p50 subunit and the use of NFκB inhibitor. Involvement of oxidative stress in macrophage phenotypes induction was studied using oxidized-LDL (Ox-LDL) and antioxidants. M1 macrophages were characterized by elevated CRP mRNA expression (by 67%), CRP protein levels (by 108%), and upregulation of NFκB activation compared to control, but these features were not shared by M2 macrophages. Macrophages incubation with Ox-LDL led to a moderate M1 phenotype combined with a M2 phenotype, correlated with increased CRP mRNA expression. Antioxidants inhibited by up to 86% IL6 expression but did not significantly affect IL10 secretion. Antioxidants significantly inhibited CRP expression in M1 macrophages, but not in M2 macrophages. Elevated expression of CRP was characteristic of M1 macrophages rather than M2 through NFκB activation. Oxidative stress could be one of the endogenous triggers for macrophage activation to a mixed M1 and M2 phenotype, in association with increased expression of CRP.

  12. TNF-alpha, produced by feline infectious peritonitis virus (FIPV)-infected macrophages, upregulates expression of type II FIPV receptor feline aminopeptidase N in feline macrophages.

    Science.gov (United States)

    Takano, Tomomi; Hohdatsu, Tsutomu; Toda, Ayako; Tanabe, Maki; Koyama, Hiroyuki

    2007-07-20

    The pathogenicity of feline infectious peritonitis virus (FIPV) is known to depend on macrophage tropism, and this macrophage infection is enhanced by mediation via anti-S antibody (antibody-dependent enhancement, ADE). In this study, we found that TNF-alpha production was increased with viral replication in macrophages inoculated with a mixture of FIPV and anti-S antibody, and demonstrated that this culture supernatant had feline PBMC apoptosis-inducing activity. We also demonstrated that the expression level of the FIPV virus receptor, feline aminopeptidase N (fAPN), was increased in macrophages of FIP cats. For upregulation of TNF-alpha and fAPN in macrophages, viral replication in macrophages is necessary, and their expressions were increased by ADE of FIPV infection. It was demonstrated that a heat-resistant fAPN-inducing factor was present in the culture supernatant of FIPV-infected macrophages, and this factor was TNF-alpha: fAPN expression was upregulated in recombinant feline TNF-alpha-treated macrophages, and FIPV infectivity was increased in these macrophages. These findings suggested that FIPV replication in macrophages increases TNF-alpha production in macrophages, and the produced TNF-alpha acts and upregulates fAPN expression, increasing FIPV sensitivity.

  13. Cell Elasticity Determines Macrophage Function

    Science.gov (United States)

    Patel, Naimish R.; Bole, Medhavi; Chen, Cheng; Hardin, Charles C.; Kho, Alvin T.; Mih, Justin; Deng, Linhong; Butler, James; Tschumperlin, Daniel; Fredberg, Jeffrey J.; Krishnan, Ramaswamy; Koziel, Henry

    2012-01-01

    Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function. PMID:23028423

  14. Cell elasticity determines macrophage function.

    Directory of Open Access Journals (Sweden)

    Naimish R Patel

    Full Text Available Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function.

  15. Functional modifications of macrophage activity after sublethal irradiation

    International Nuclear Information System (INIS)

    Swartz, R.P.

    1982-01-01

    The modifications of macrophage activity following sublethal irradiation, both in vivo and in vitro, were studied using spreading and C3b-receptor-mediated ingestion assays. Nonelicited peritoneal washout cells were examined for changes in activity and selected population characteristics. The cells from irradiated mice were from a resident peritoneal population and not immigrating cells. The macrophage population showed enhanced activity early with a refractory period (24-48) when the macrophages were unresponsive to stimulation by irradiated lymphocytes. The enhanced activity was inversely dose dependent on macrophage. The lymphocytes showed a regulatory function(s) on the time post irradiation at which they were examined. Early lymphocytes exhibited the ability to enhance the activity of normal macrophages while lymphocytes removed 24 hours post irradiation could suppress the activity of already activated macrophages. The effect(s) of the various lymphocyte populations were reproduced with cell-free supernatants which was indicative of the production of lymphokines. Separation on nylon wool columns indicated that the activity resided primarily in the T-cell population of lymphocytes. In vitro irradiation indicated that stimulation of the lymphocytes is macrophage dependent. Additional work indicated that sublethally irradiated macrophages did not inhibit replication of the coccidian protozoon Toxoplasma gondii although they did show increased phagocytosis. Examination of the serum from whole body irradiated mice showed the presence of a postirradiation substance which enhanced the phagocytosis of normal macrophages. It was not present in the serum of normal mice and was not endotoxin

  16. Alternatively Activated (M2) Macrophage Phenotype Is Inducible by Endothelin-1 in Cultured Human Macrophages.

    Science.gov (United States)

    Soldano, Stefano; Pizzorni, Carmen; Paolino, Sabrina; Trombetta, Amelia Chiara; Montagna, Paola; Brizzolara, Renata; Ruaro, Barbara; Sulli, Alberto; Cutolo, Maurizio

    2016-01-01

    Alternatively activated (M2) macrophages are phenotypically characterized by the expression of specific markers, mainly macrophage scavenger receptors (CD204 and CD163) and mannose receptor-1 (CD206), and participate in the fibrotic process by over-producing pro-fibrotic molecules, such as transforming growth factor-beta1 (TGFbeta1) and metalloproteinase (MMP)-9. Endothelin-1 (ET-1) is implicated in the fibrotic process, exerting its pro-fibrotic effects through the interaction with its receptors (ETA and ETB). The study investigated the possible role of ET-1 in inducing the transition from cultured human macrophages into M2 cells. Cultured human monocytes (THP-1 cell line) were activated into macrophages (M0 macrophages) with phorbol myristate acetate and subsequently maintained in growth medium (M0-controls) or treated with either ET-1 (100nM) or interleukin-4 (IL-4, 10ng/mL, M2 inducer) for 72 hours. Similarly, primary cultures of human peripheral blood monocyte (PBM)-derived macrophages obtained from healthy subjects, were maintained in growth medium (untreated cells) or treated with ET-1 or IL-4 for 6 days. Both M0 and PBM-derived macrophages were pre-treated with ET receptor antagonist (ETA/BRA, bosentan 10-5M) for 1 hour before ET-1 stimulation. Protein and gene expression of CD204, CD206, CD163, TGFbeta1 were analysed by immunocytochemistry, Western blotting and quantitative real time polymerase chain reaction (qRT-PCR). Gene expression of interleukin(IL)-10 and macrophage derived chemokine (CCL-22) was evaluated by qRT-PCR. MMP-9 production was investigated by gel zymography. ET-1 significantly increased the expression of M2 phenotype markers CD204, CD206, CD163, IL-10 and CCL-22, and the production of MMP-9 in both cultures of M0 and PBM-derived macrophages compared to M0-controls and untreated cells. In cultured PBM-derived macrophages, ET-1 increased TGFbeta1 protein and gene expression compared to untreated cells. The ET-1-mediated effects were

  17. Epigenetic pathways in macrophages emerge as novel targets in atherosclerosis

    NARCIS (Netherlands)

    Neele, Annette E.; van den Bossche, Jan; Hoeksema, Marten A.; de Winther, Menno P. J.

    2015-01-01

    Atherosclerosis is a lipid-driven chronic inflammatory disorder. Monocytes and macrophages are key immune cells in the development of disease and clinical outcome. It is becoming increasingly clear that epigenetic pathways govern many aspects of monocyte and macrophage differentiation and

  18. Analytical approaches for the detection of epoxides and hydroperoxides in active pharmaceutical ingredients, drug products and herbals.

    Science.gov (United States)

    Elder, D P; Snodin, D; Teasdale, A

    2010-04-06

    This review summarizes the analytical approaches reported in the literature relating to epoxide and hydroperoxide impurities. It is intended that it should provide guidance for analysts faced by the need to control such impurities, particularly where this is due to concerns relating to their potential genotoxicity. An extensive search of the literature relating to this class of impurities revealed a large number of references relating to analysis of epoxides/hydroperoxides associated with herbal remedies. Given the general applicability of the analytical methodology and due to the widespread use of herbal products the authors decided to include herbal medicines in this review. The review also reflects on the very different approaches taken in terms of the assessment/control of genotoxic impurities for such herbal remedies to that required for pharmaceutical products. Copyright 2009 Elsevier B.V. All rights reserved.

  19. Oxidation of cumene hydroperoxide on glassy carbon electrodes in aqueous solution and its interaction with ascorbic and gallic acids

    International Nuclear Information System (INIS)

    Estévez, Rafael; Mellado, José Miguel Rodríguez; Mayén, Manuel

    2015-01-01

    The cumene hydroperoxide oxidation on glassy carbon electrodes involves an irreversible one-electron transfer to peroxide and phenoxy radicals, being the main end products hydroquinone and acetone. The overall oxidation mechanism occurs in two steps: formation of acetone and a phenoxy radical, and the reaction of this phenoxy radical with water, getting stability by oxidizing into p-benzoquinone The interaction of such radicals with ascorbic and gallic acids decreases the oxidation signal of cumene hydroperoxide in differential pulse voltammetry. This decrease, due to the scavenging of the radicals formed after the electron transfer, is related to the antioxidant activities. So, it is possible to substitute the mercury as a probe for the electrochemical determination of antioxidant activity.

  20. Detection and Identification of the Keto-Hydroperoxide (HOOCH 2 OCHO) and Other Intermediates during Low-Temperature Oxidation of Dimethyl Ether

    KAUST Repository

    Moshammer, Kai; Jasper, Ahren W.; Popolan-Vaida, Denisia M.; Lucassen, Arnas; Dié vart, Pascal; Selim, Hatem; Eskola, Arkke J.; Taatjes, Craig A.; Leone, Stephen R.; Sarathy, Mani; Ju, Yiguang; Dagaut, Philippe; Kohse-Hö inghaus, Katharina; Hansen, Nils

    2015-01-01

    hydroperoxide), HC(O)OH (formic acid), and H2O2 (hydrogen peroxide). We show that the theoretical characterization of multiple conformeric structures of some intermediates is required when interpreting the experimentally observed ionization thresholds, and a

  1. Proliferating macrophages prevail in atherosclerosis.

    Science.gov (United States)

    Randolph, Gwendalyn J

    2013-09-01

    Macrophages accumulate in atherosclerotic lesions during the inflammation that is part of atherosclerosis development and progression. A new study in mice indicates that the accumulation of macrophages in atherosclerotic plaques depends on local macrophage proliferation rather than the recruitment of circulating monocytes.

  2. Levels of protein hydroperoxides and carbonyl groups in guinea pigs native of high altitudes (Huancavelica, 3660 m)

    OpenAIRE

    Huayta, Roxana; Zúñiga, Haydée; Esquerre, Cynthia; Hernández, Luz; Carranza, Elizabeth

    2014-01-01

    The influence of hypobaric hypoxia on protein oxidation in lungs, heart, liver, kidneys and testicles of high altitude native guinea pigs (Huancavelica, 3660 m) in comparison to sea level (Lima, 150 m) native guinea pigs was evaluated. The concentration of protein hydroperoxides (POOH) and carbonyl groups (GC) as markers of protein oxidation, as well as total thiols (TT) concentration, powerful reducing agents that act as live antioxidants were determined. The results showed low concentration...

  3. Measuring hydroperoxide chain-branching agents during n-pentane low-temperature oxidation

    KAUST Repository

    Rodriguez, Anne

    2016-06-23

    The reactions of chain-branching agents, such as HO and hydroperoxides, have a decisive role in the occurrence of autoignition. The formation of these agents has been investigated in an atmospheric-pressure jet-stirred reactor during the low-temperature oxidation of n-pentane (initial fuel mole fraction of 0.01, residence time of 2s) using three different diagnostics: time-of-flight mass spectrometry combined with tunable synchrotron photoionization, time-of-flight mass spectrometry combined with laser photoionization, and cw-cavity ring-down spectroscopy. These three diagnostics enable a combined analysis of HO, C-C, and C alkylhydroperoxides, C-C alkenylhydroperoxides, and C alkylhydroperoxides including a carbonyl function (ketohydroperoxides). Results using both types of mass spectrometry are compared for the stoichiometric mixture. Formation data are presented at equivalence ratios from 0.5 to 2 for these peroxides and of two oxygenated products, ketene and pentanediones, which are not usually analyzed during jet-stirred reactor oxidation. The formation of alkenylhydroperoxides during alkane oxidation is followed for the first time. A recently developed model of n-pentane oxidation aids discussion of the kinetics of these products and of proposed pathways for C-C alkenylhydroperoxides and the pentanediones.

  4. Development of an efficient process for radiation vulcanization of natural rubber latex using hydroperoxide with sensitizer

    International Nuclear Information System (INIS)

    Siri-upathum, C.; Sonsuk, M.

    1996-01-01

    An attempt was made to reduce irradiation dose for radiation vulcanization of natural rubber latex. A promising method was to partially crosslink the latex by radiation vulcanization using n-butyl acrylate (n-BA) as sensitizer and t-butyl hydroperoxide (BHPO) as a co-sensitizer followed by redox vulcanization using residual BHPO as an oxidant and either fructose or tetra ethylene penta mine as reducing agents. It was found that the irradiation dose was reduced to 4 kGy with 5 phr n-BA as sensitizer and 0.1 phr BHPO as co-sensitizer. Successive crosslinking to full vulcanization was done by redox vulcanization using either 4 phr fructose at 60 degree C for 3 hours of 0.4 phr tetra-ethylene penta mine at room temperature for 1 hour. The rubber films obtained had tensile strength of about 25 MPa, modulus 300% of 0.9 MPa and crosslink density of about 1.5 x 10 19 crosslink/cm 3 . It was noted that the rubber film from the co-vulcanization was the average value of the values obtained by radiation vulcanization and redox vulcanization

  5. Accumulation of M1-like macrophages in type 2 diabetic islets is followed by a systemic shift in macrophage polarization.

    Science.gov (United States)

    Cucak, Helena; Grunnet, Lars Groth; Rosendahl, Alexander

    2014-01-01

    Human T2D is characterized by a low-grade systemic inflammation, loss of β-cells, and diminished insulin production. Local islet immunity is still poorly understood, and hence, we evaluated macrophage subpopulations in pancreatic islets in the well-established murine model of T2D, the db/db mouse. Already at 8 weeks of disease, on average, 12 macrophages were observed in the diabetic islets, whereas only two were recorded in the nondiabetic littermates. On a detailed level, the islet resident macrophages increased fourfold compared with nondiabetic littermates, whereas a pronounced recruitment (eightfold) of a novel subset of macrophages (CD68+F4/80-) was observed. The majority of the CD68+F4/80+ but only 40% of the CD68+F4/80- islet macrophages expressed CD11b. Both islet-derived macrophage subsets expressed moderate MHC-II, high galectin-3, and low CD80/CD86 levels, suggesting the cells to be macrophages rather than DCs. On a functional level, the vast majority of the macrophages in the diabetic islets was of the proinflammatory, M1-like phenotype. The systemic immunity in diabetic animals was characterized by a low-grade inflammation with elevated cytokine levels and increase of splenic cytokine, producing CD68+F4/80- macrophages. In late-stage diabetes, the cytokine signature changed toward a TGF-β-dominated profile, coinciding with a significant increase of galectin-3-positive macrophages in the spleen. In summary, our results show that proinflammatory M1-like galectin-3+ CD80/CD86(low) macrophages invade diabetic islets. Moreover, the innate immunity matures in a diabetes-dependent manner from an initial proinflammatory toward a profibrotic phenotype, supporting the concept that T2D is an inflammatory disease.

  6. C-reactive protein interaction with macrophages: in vitro induction of tumor cytotoxicity, and characterization of C-reactive protein binding to macrophages

    International Nuclear Information System (INIS)

    Zahedi, K.A.

    1987-01-01

    The ability of C-reactive protein (CRP) to activate macrophages to tumoricidal state was examined. CRP was able to activate macrophages to kill tumor cells. The activation was shown to be due to CRP and not to low levels of other activators present in the CRP preparations, since specific removal of CRP led to abrogation of the CRP mediated activation of macrophages. The role of lipopolysaccharide (LPS) as a contaminating activator was eliminated by showing the ability of CRP preparations to activate macrophages from LPS non-responsive strains of mice, and to activate macrophages under conditions which specifically inactivated or removed the contaminating LPS. In order to exclude the possibility of indirect activation of macrophages by other cells present in the peritoneal exudate cell population, effect of CRP on pure macrophages was examined. Bone marrow derived macrophages as well as well as macrophage cell lines exhibited a significant increase in their capacity to kill tumor cells after treatment with CRP. The nature of CRP and macrophage interaction was examined using radioiodinated CRP. Labelled CRP bound specifically to macrophages and macrophage cell lines

  7. Atmospheric hydrogen peroxide and organic hydroperoxides during PRIDE-PRD'06, China: their concentration, formation mechanism and contribution to secondary aerosols

    Directory of Open Access Journals (Sweden)

    W. Hua

    2008-11-01

    Full Text Available Atmospheric hydrogen peroxide (H2O2 and organic hydroperoxides were measured from 18 to 30 July in 2006 during the PRIDE-PRD'06 campaign at Backgarden, a rural site located 48 km north of Guangzhou, a mega-city in southern China. A ground-based instrument was used as a scrubbing coil collector to sample ambient air, followed by on-site analysis by high-performance liquid chromatography (HPLC coupled with post-column derivatization and fluorescence detection. The H2O2 mixing ratio over the 13 days ranged from below the detection limit to a maximum of 4.6 ppbv, with a mean (and standard deviation of (1.26±1.24 ppbv during the daytime (08:00–20:00 LT. Methyl hydroperoxide (MHP, with a maximum of 0.8 ppbv and a mean (and standard deviation of (0.28±0.10 ppbv during the daytime, was the dominant organic hydroperoxide. Other organic peroxides, including bis-hydroxymethyl hydroperoxide (BHMP, peroxyacetic acid (PAA, hydroxymethyl hydroperoxide (HMHP, 1-hydroxy-ethyl hydroperoxide (1-HEHP and ethyl hydroperoxide (EHP, were detected occasionally. The concentration of H2O2 exhibited a pronounced diurnal variation on sunny days, with a peak mixing ratio in the afternoon (12:00–18:00 LT, but lacked an explicit diurnal cycle on cloudy days. Sometimes a second peak mixing ratio of H2O2 was observed during the evening, suggesting that H2O2 was produced by the ozonolysis of alkenes. The diurnal variation profile of MHP was, in general, consistent with that of H2O2. The estimation indicated that in the morning the H2O2 detected was formed mostly through local photochemical activity, with the rest probably attributable to vertical transport. It is notable that relatively high levels of H2O2 and MHP were found in polluted air. The unexpectedly high level of HO2 radicals

  8. Atmospheric hydrogen peroxide and organic hydroperoxides during PRIDE-PRD'06, China: their concentration, formation mechanism and contribution to secondary aerosols

    Science.gov (United States)

    Hua, W.; Chen, Z. M.; Jie, C. Y.; Kondo, Y.; Hofzumahaus, A.; Takegawa, N.; Chang, C. C.; Lu, K. D.; Miyazaki, Y.; Kita, K.; Wang, H. L.; Zhang, Y. H.; Hu, M.

    2008-11-01

    Atmospheric hydrogen peroxide (H2O2) and organic hydroperoxides were measured from 18 to 30 July in 2006 during the PRIDE-PRD'06 campaign at Backgarden, a rural site located 48 km north of Guangzhou, a mega-city in southern China. A ground-based instrument was used as a scrubbing coil collector to sample ambient air, followed by on-site analysis by high-performance liquid chromatography (HPLC) coupled with post-column derivatization and fluorescence detection. The H2O2 mixing ratio over the 13 days ranged from below the detection limit to a maximum of 4.6 ppbv, with a mean (and standard deviation) of (1.26±1.24) ppbv during the daytime (08:00 20:00 LT). Methyl hydroperoxide (MHP), with a maximum of 0.8 ppbv and a mean (and standard deviation) of (0.28±0.10) ppbv during the daytime, was the dominant organic hydroperoxide. Other organic peroxides, including bis-hydroxymethyl hydroperoxide (BHMP), peroxyacetic acid (PAA), hydroxymethyl hydroperoxide (HMHP), 1-hydroxy-ethyl hydroperoxide (1-HEHP) and ethyl hydroperoxide (EHP), were detected occasionally. The concentration of H2O2 exhibited a pronounced diurnal variation on sunny days, with a peak mixing ratio in the afternoon (12:00 18:00 LT), but lacked an explicit diurnal cycle on cloudy days. Sometimes a second peak mixing ratio of H2O2 was observed during the evening, suggesting that H2O2 was produced by the ozonolysis of alkenes. The diurnal variation profile of MHP was, in general, consistent with that of H2O2. The estimation indicated that in the morning the H2O2 detected was formed mostly through local photochemical activity, with the rest probably attributable to vertical transport. It is notable that relatively high levels of H2O2 and MHP were found in polluted air. The unexpectedly high level of HO2 radicals detected in this region can account for the production of hydroperoxides, while the moderate level of NOx suppressed the formation of hydroperoxides. High concentrations of hydroperoxides were detected

  9. Nanopatterned bulk metallic glass-based biomaterials modulate macrophage polarization.

    Science.gov (United States)

    Shayan, Mahdis; Padmanabhan, Jagannath; Morris, Aaron H; Cheung, Bettina; Smith, Ryan; Schroers, Jan; Kyriakides, Themis R

    2018-06-01

    Polarization of macrophages by chemical, topographical and mechanical cues presents a robust strategy for designing immunomodulatory biomaterials. Here, we studied the ability of nanopatterned bulk metallic glasses (BMGs), a new class of metallic biomaterials, to modulate murine macrophage polarization. Cytokine/chemokine analysis of IL-4 or IFNγ/LPS-stimulated macrophages showed that the secretion of TNF-α, IL-1α, IL-12, CCL-2 and CXCL1 was significantly reduced after 24-hour culture on BMGs with 55 nm nanorod arrays (BMG-55). Additionally, under these conditions, macrophages increased phagocytic potential and exhibited decreased cell area with multiple actin protrusions. These in vitro findings suggest that nanopatterning can modulate biochemical cues such as IFNγ/LPS. In vivo evaluation of the subcutaneous host response at 2 weeks demonstrated that the ratio of Arg-1 to iNOS increased in macrophages adjacent to BMG-55 implants, suggesting modulation of polarization. In addition, macrophage fusion and fibrous capsule thickness decreased and the number and size of blood vessels increased, which is consistent with changes in macrophage responses. Our study demonstrates that nanopatterning of BMG implants is a promising technique to selectively polarize macrophages to modulate the immune response, and also presents an effective tool to study mechanisms of macrophage polarization and function. Implanted biomaterials elicit a complex series of tissue and cellular responses, termed the foreign body response (FBR), that can be influenced by the polarization state of macrophages. Surface topography can influence polarization, which is broadly characterized as either inflammatory or repair-like. The latter has been linked to improved outcomes of the FBR. However, the impact of topography on macrophage polarization is not fully understood, in part, due to a lack of high moduli biomaterials that can be reproducibly processed at the nanoscale. Here, we studied

  10. Heterogeneous catalytic epoxidation of C/sub 8/-C/sub 1/4 olefins by tert. -butyl hydroperoxide

    Energy Technology Data Exchange (ETDEWEB)

    Dahlmann, J; Hoeft, E; Boeden, H F; Dilcher, H

    1979-09-01

    Heterogeneous catalytic epoxidation of C/sub 8/-C/sub 14/ olefins by tert.-butyl hydroperoxide (TBHP) avoids large product losses to side reactions, associated with the use of homogeneous catalysts, such as Mo(CO)/sub 6/. With an unsupported MoO/sub 3/ catalyst, 48% TBHP conversion was achieved after one hour (vs. 24% after two hours for Mo(CO)/sub 6/) in 1-octene epoxidation at 90/sup 0/C and 2:1:3 octene/TBHP/toluene (solvent) molar ratio. The use of silica-supported catalysts, such as Bi/sub 9/PMo/sub 12/O/sub 52//30% SiO/sub 2/ (ACN, an industrial catalyst for acrylonitrile), MoO/sub 3//30% SiO/sub 2/ (D-1), 3MoO/sub 3/-Sb/sub 2/O/sub 5//50% SiO/sub 2/ (D-2), or 2MoO/sub 3/-As/sub 2/O/sub 3//50% SiO/sub 2/ (D-3) increased the conversion to 68, 67, 70, and 73%, respectively, with up to 95-99% selectivities for the epoxide. Under optimum conditions of 3:1 olefin/TBHP, 110/sup 0/C, and 2-4 g/l. catalyst, TBHP conversions in epoxidation of 1-tetradecene in a batch reactor over ACN, D-2, and D-3 after two hours were 94, 88, and 91%, respectively, but they decreased to 52, 78, and 79%, respectively, after five two-hour operating cycles. In epoxidation of 1-decene or a mixture of decene isomers (a model for the industrial olefin mixtures obtained by paraffin dehydrogenation via the Parex process) carried out in a continuous flow reactor over the D-3 catalyst at 90/sup 0/-110/sup 0/C, stable catalytic activities with TBHP conversions of approx. 90% and 90-96% selectivities for epoxides were observed for about 900 hr.

  11. Differential S1P Receptor Profiles on M1- and M2-Polarized Macrophages Affect Macrophage Cytokine Production and Migration.

    Science.gov (United States)

    Müller, Jan; von Bernstorff, Wolfram; Heidecke, Claus-Dieter; Schulze, Tobias

    2017-01-01

    Introduction . Macrophages are key players in complex biological processes. In response to environmental signals, macrophages undergo polarization towards a proinflammatory (M1) or anti-inflammatory (M2) phenotype. Sphingosine 1-phosphate (S1P) is a bioactive lysophospholipid that acts via 5 G-protein coupled receptors (S1P 1-5 ) in order to influence a broad spectrum of biological processes. This study assesses S1P receptor expression on macrophages before and after M1 and M2 polarization and performs a comparative analysis of S1P signalling in the two activational states of macrophages. Methods . Bone marrow derived macrophages (BMDM) from C57 BL/6 mice were cultured under either M1- or M2-polarizing conditions. S1P-receptor expression was determined by quantitative RT-PCR. Influence of S1P on macrophage activation, migration, phagocytosis, and cytokine secretion was assessed in vitro. Results . All 5 S1P receptor subclasses were expressed in macrophages. Culture under both M1- and M2-polarizing conditions led to significant downregulation of S1P 1 . In contrast, M1-polarized macrophages significantly downregulated S1P 4 . The expression of the remaining three S1P receptors did not change. S1P increased expression of iNOS under M2-polarizing conditions. Furthermore, S1P induced chemotaxis in M1 macrophages and changed cytokine production in M2 macrophages. Phagocytosis was not affected by S1P-signalling. Discussion . The expression of different specific S1P receptor profiles may provide a possibility to selectively influence M1- or M2-polarized macrophages.

  12. Soluble ICAM-1 activates lung macrophages and enhances lung injury

    DEFF Research Database (Denmark)

    Schmal, H; Czermak, B J; Lentsch, A B

    1998-01-01

    production of TNF-alpha and the CXC chemokine, macrophage inflammatory protein-2 (MIP-2). Alveolar macrophages exhibited cytokine responses to both sICAM-1 and immobilized sICAM-1, while rat PBMCs failed to demonstrate similar responses. Exposure of alveolar macrophages to sICAM-1 resulted in NFkappa......B activation (which was blocked by the presence of the aldehyde peptide inhibitor of 28S proteosome and by genistein, a tyrosine kinase inhibitor). As expected, cross-linking of CD18 on macrophages with Ab resulted in generation of TNF-alpha and MIP-2. This response was also inhibited in the presence...... of TNF-alpha and MIP-2 and increased neutrophil recruitment. Therefore, through engagement of beta2 integrins, sICAM-1 enhances alveolar macrophage production of MIP-2 and TNF-alpha, the result of which is intensified lung injury after intrapulmonary disposition of immune complexes....

  13. Cytokine expression of macrophages in HIV-1-associated vacuolar myelopathy.

    Science.gov (United States)

    Tyor, W R; Glass, J D; Baumrind, N; McArthur, J C; Griffin, J W; Becker, P S; Griffin, D E

    1993-05-01

    Macrophages are frequently present within the periaxonal and intramyelinic vacuoles that are located primarily in the posterior and lateral funiculi of the thoracic spinal cord in HIV-associated vacuolar myelopathy. But the role of these macrophages in the formation of the vacuoles is unclear. One hypothesis is that cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor (TNF)-alpha, are produced locally by macrophages and have toxic effects on myelin or oligodendrocytes. The resulting myelin damage eventually culminates in the removal of myelin by macrophages and vacuole formation. We studied thoracic spinal cord specimens taken at autopsy from HIV-positive (+) and HIV-negative individuals. The predominant mononuclear cells present in HIV+ spinal cords are macrophages. They are located primarily in the posterior and lateral funiculi regardless of the presence or absence of vacuolar myelopathy. Macrophages and microglia are more frequent in HIV+ than HIV-negative individuals and these cells frequently stain for class I and class II antigens, IL-1, and TNF-alpha. Activated macrophages positive for IL-1 and TNF-alpha are great increased in the posterior and lateral funiculi of HIV+ individuals with and without vacuolar myelopathy, suggesting they are present prior to the development of vacuoles. Cytokines, such as TNF-alpha, may be toxic for myelin or oligodendrocytes, leading to myelin damage and removal by macrophages and vacuole formation.

  14. The role of autophagy in THP-1 macrophages resistance to HIV- vpr-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hua-ying, E-mail: zhouhuaying_2004@126.com; Zheng, Yu-huang; He, Yan; Chen, Zi; He, Bo

    2017-02-01

    Macrophages are resistant to cell death and are one of HIV reservoirs. HIV viral protein Vpr has the potential to promote infection of and survival of macrophages, which could be a highly significant factor in the development and/or maintenance of macrophage viral reservoirs. However, the impact of vpr on macrophages resistance to apoptosis is yet to be comprehended. Autophagy is a cell survival mechanism under stress state. In this study, we investigated whether autophagy is involved in macrophages resistant to vpr-induced apoptosis. Using the THP1 macrophages, we studied the interconnection between macrophages resistance to apoptosis and autophagy. We found that vpr is able to trigger autophagy in transfected THP-1 macrophages confirmed by electron microscopy (EM) and western blot analysis, and inhibition of autophagy with 3MA increased vpr-induced apoptosis. The results indicate that autophagy may be responsible for maintenance of macrophage HIV reservoirs. - Highlights: • HIV Vpr is able to trigger autophagy in transfected THP-1 macrophages. • Autophagy inhibition increases vpr-transfected THP1-macrophages apoptosis. • Autophagy is involved in THP-1 macrophages resistant to vpr-induced apoptosis.

  15. Mechanisms of macrophage accumulation in the lungs of asbestos-exposed subjects

    International Nuclear Information System (INIS)

    Spurzem, J.R.; Saltini, C.; Rom, W.; Winchester, R.J.; Crystal, R.G.

    1987-01-01

    Chronic asbestos exposure is associated with the accumulation of mononuclear phagocytes in the lower respiratory tract. This process can be both protective and injurious, since macrophages can aid in asbestos clearance yet also modulate structural derangements of the alveolar walls. To understand why macrophages accumulate in the lungs of asbestos-exposed persons, 2 possible mechanisms were evaluated using alveolar macrophages from subjects with histories of chronic high exposure to airborne asbestos: enhanced recruitment of blood monocytes to the lung, and an increased rate of replication of macrophages in situ. Monoclonal antibody analysis with antibodies that detect surface antigens on the majority of circulating blood monocytes but only on a minority of mature alveolar macrophages demonstrated that an increased proportion of alveolar macrophages of asbestos workers expressed monocyte lineage antigens, suggesting the presence of young newly recruited macrophages and thus enhanced recruitment. Culture of the alveolar macrophages from these subjects with [ 3 H]thymidine followed by autoradiography demonstrated an increased proportion of alveolar macrophages synthesizing DNA, suggesting the macrophages are replicating at an increased rate in situ. These observations are consistent with the concept that both enhanced recruitment of blood monocytes and increased local proliferation of alveolar macrophages contribute to the accumulation mononuclear phagocytes in the lung of persons with chronic asbestos exposure

  16. The influence of macrophage growth factors on Theiler's Murine Encephalomyelitis Virus (TMEV) infection and activation of macrophages.

    Science.gov (United States)

    Schneider, Karin M; Watson, Neva B; Minchenberg, Scott B; Massa, Paul T

    2018-02-01

    Macrophages are common targets for infection and innate immune activation by many pathogenic viruses including the neurotropic Theiler's Murine Encephalomyelitis Virus (TMEV). As both infection and innate activation of macrophages are key determinants of viral pathogenesis especially in the central nervous system (CNS), an analysis of macrophage growth factors on these events was performed. C3H mouse bone-marrow cells were differentiated in culture using either recombinant macrophage colony stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF), inoculated with TMEV (BeAn) and analyzed at various times thereafter. Cytokine RNA and protein analysis, virus titers, and flow cytometry were performed to characterize virological parameters under these culture conditions. GM-CSF-differentiated macrophages showed higher levels of TMEV viral RNA and proinflammatory molecules compared to infected M-CSF-differentiated cells. Thus, GM-CSF increases both TMEV infection and TMEV-induced activation of macrophages compared to that seen with M-CSF. Moreover, while infectious viral particles decreased from a peak at 12h to undetectable levels at 48h post infection, TMEV viral RNA remained higher in GM-CSF- compared to M-CSF-differentiated macrophages in concert with increased proinflammatory gene expression. Analysis of a possible basis for these differences determined that glycolytic rates contributed to heightened virus replication and proinflammatory cytokine secretion in GM-CSF compared to M-CSF-differentiated macrophages. In conclusion, we provide evidence implicating a role for GM-CSF in promoting virus replication and proinflammatory cytokine expression in macrophages, indicating that GM-CSF may be a key factor for TMEV infection and the induction of chronic TMEV-induced immunopathogenesis in the CNS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Biology of Bony Fish Macrophages

    OpenAIRE

    Hodgkinson, Jordan W.; Grayfer, Leon; Belosevic, Miodrag

    2015-01-01

    Macrophages are found across all vertebrate species, reside in virtually all animal tissues, and play critical roles in host protection and homeostasis. Various mechanisms determine and regulate the highly plastic functional phenotypes of macrophages, including antimicrobial host defenses (pro-inflammatory, M1-type), and resolution and repair functions (anti-inflammatory/regulatory, M2-type). The study of inflammatory macrophages in immune defense of teleosts has garnered much attention, and ...

  18. Bioelectric modulation of macrophage polarization

    Science.gov (United States)

    Li, Chunmei; Levin, Michael; Kaplan, David L.

    2016-02-01

    Macrophages play a critical role in regulating wound healing and tissue regeneration by changing their polarization state in response to local microenvironmental stimuli. The native roles of polarized macrophages encompass biomaterials and tissue remodeling needs, yet harnessing or directing the polarization response has been largely absent as a potential strategy to exploit in regenerative medicine to date. Recent data have revealed that specific alteration of cells’ resting potential (Vmem) is a powerful tool to direct proliferation and differentiation in a number of complex tissues, such as limb regeneration, craniofacial patterning and tumorigenesis. In this study, we explored the bioelectric modulation of macrophage polarization by targeting ATP sensitive potassium channels (KATP). Glibenclamide (KATP blocker) and pinacidil (KATP opener) treatment not only affect macrophage polarization, but also influence the phenotype of prepolarized macrophages. Furthermore, modulation of cell membrane electrical properties can fine-tune macrophage plasticity. Glibenclamide decreased the secretion and gene expression of selected M1 markers, while pinacidil augmented M1 markers. More interestingly, glibencalmide promoted macrophage alternative activation by enhancing certain M2 markers during M2 polarization. These findings suggest that control of bioelectric properties of macrophages could offer a promising approach to regulate macrophage phenotype as a useful tool in regenerative medicine.

  19. Theory favors a stepwise mechanism of porphyrin degradation by a ferric hydroperoxide model of the active species of heme oxygenase.

    Science.gov (United States)

    Kumar, Devesh; de Visser, Samuël P; Shaik, Sason

    2005-06-08

    The report uses density functional theory to address the mechanism of heme degradation by the enzyme heme oxygenase (HO) using a model ferric hydroperoxide complex. HO is known to trap heme molecules and degrade them to maintain iron homeostasis in the biosystem. The degradation is initiated by complexation of the heme, then formation of the iron-hydroperoxo species, which subsequently oxidizes the meso position of the porphyrin by hydroxylation, thereby enabling eventually the cleavage of the porphyrin ring. Kinetic isotope effect studies indicate that the mechanism is assisted by general acid catalysis, via a chain of water molecules, and that all the events occur in concert. However, previous theoretical treatments indicated that the concerted mechanism has a high barrier, much higher than an alternative mechanism that is initiated by O-O bond homolysis of iron-hydroperoxide. The present contribution studies the stepwise and concerted acid-catalyzed mechanisms using H(3)O(+)(H(2)O)(n)(), n = 0-2. The effect of the acid strength is tested using the H(4)N(+)(H(2)O)(2) cluster and a fully protonated ferric hydroperoxide. All the calculations show that a stepwise mechanism that involves proton relay and O-O homolysis, in the rate-determining step, has a much lower barrier (>10 kcal/mol) than the corresponding fully concerted mechanism. The best fit of the calculated solvent kinetic isotope effect, to the experimental data, is obtained for the H(3)O(+)(H(2)O)(2) cluster. The calculated alpha-deuterium secondary kinetic isotope effect is inverse (0.95-0.98), but much less so than the experimental value (0.7). Possible reasons for this quantitative difference are discussed. Some probes are suggested that may enable experiment to distinguish the stepwise from the concerted mechanism.

  20. Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over γ-Al2O3 supported copper and gold nanoparticles

    International Nuclear Information System (INIS)

    Ndolomingo, Matumuene Joe; Meijboom, Reinout

    2017-01-01

    Highlights: • Cu and Au on γ-Al 2 O 3 catalysts were prepared and characterized. • Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide in the absence of any solvent using the prepared catalysts. • The as prepared catalysts exhibited good performance in terms of conversion and selectivity towards benzaldehyde. • The kinetics of the reaction was investigated; k app was proportional to the amount of nano catalyst and oxidant present in the system. • The catalysts was recycled and reused with neither significant loss of activity nor selectivity. - Abstract: Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide (TBHP) in the absence of any solvent using γ-Al 2 O 3 supported copper and gold nanoparticles. Li 2 O and ionic liquids were used as additive and stabilizers for the synthesis of the catalysts. The physico-chemical properties of the catalysts were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction spectroscopy (XRD), N 2 absorption/desorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and temperature programmed reduction (TPR), whereas, the oxidation reaction was followed by gas chromatography with a flame ionization detector (GC-FID). The as prepared catalysts exhibited good catalytic performance in terms of conversion and selectivity towards benzaldehyde. The performance of the Au-based catalysts is significantly higher than that of the Cu-based catalysts. For both Cu and Au catalysts, the conversion of benzyl alcohol increased as the reaction proceeds, while the selectivity for benzaldehyde decreased. Moreover, the catalysts can be easily recycled and reused with neither significant loss of activity nor selectivity. A kinetic study for the Cu and Au-catalyzed oxidation of benzyl alcohol to benzyldehyde is reported. The rate at which the oxidation of benzyl alcohol is occurring as a function of

  1. Down regulation of macrophage IFNGR1 exacerbates systemic L. monocytogenes infection.

    Directory of Open Access Journals (Sweden)

    Emily M Eshleman

    2017-05-01

    Full Text Available Interferons (IFNs target macrophages to regulate inflammation and resistance to microbial infections. The type II IFN (IFNγ acts on a cell surface receptor (IFNGR to promote gene expression that enhance macrophage inflammatory and anti-microbial activity. Type I IFNs can dampen macrophage responsiveness to IFNγ and are associated with increased susceptibility to numerous bacterial infections. The precise mechanisms responsible for these effects remain unclear. Type I IFNs silence macrophage ifngr1 transcription and thus reduce cell surface expression of IFNGR1. To test how these events might impact macrophage activation and host resistance during bacterial infection, we developed transgenic mice that express a functional FLAG-tagged IFNGR1 (fGR1 driven by a macrophage-specific promoter. Macrophages from fGR1 mice expressed physiologic levels of cell surface IFNGR1 at steady state and responded equivalently to WT C57Bl/6 macrophages when treated with IFNγ alone. However, fGR1 macrophages retained cell surface IFNGR1 and showed enhanced responsiveness to IFNγ in the presence of type I IFNs. When fGR1 mice were infected with the bacterium Listeria monocytogenes their resistance was significantly increased, despite normal type I and II IFN production. Enhanced resistance was dependent on IFNγ and associated with increased macrophage activation and antimicrobial function. These results argue that down regulation of myeloid cell IFNGR1 is an important mechanism by which type I IFNs suppress inflammatory and anti-bacterial functions of macrophages.

  2. Statin action enriches HDL3 in polyunsaturated phospholipids and plasmalogens and reduces LDL-derived phospholipid hydroperoxides in atherogenic mixed dyslipidemia

    Science.gov (United States)

    Tan, Ricardo; Giral, Philippe; Robillard, Paul; Kontush, Anatol; Chapman, M. John

    2016-01-01

    Atherogenic mixed dyslipidemia associates with oxidative stress and defective HDL antioxidative function in metabolic syndrome (MetS). The impact of statin treatment on the capacity of HDL to inactivate LDL-derived, redox-active phospholipid hydroperoxides (PCOOHs) in MetS is indeterminate. Insulin-resistant, hypertriglyceridemic, hypertensive, obese males were treated with pitavastatin (4 mg/day) for 180 days, resulting in marked reduction in plasma TGs (−41%) and LDL-cholesterol (−38%), with minor effects on HDL-cholesterol and apoAI. Native plasma LDL (baseline vs. 180 days) was oxidized by aqueous free radicals under mild conditions in vitro either alone or in the presence of the corresponding pre- or poststatin HDL2 or HDL3 at authentic plasma mass ratios. Lipidomic analyses revealed that statin treatment i) reduced the content of oxidizable polyunsaturated phosphatidylcholine (PUPC) species containing DHA and linoleic acid in LDL; ii) preferentially increased the content of PUPC species containing arachidonic acid (AA) in small, dense HDL3; iii) induced significant elevation in the content of phosphatidylcholine and phosphatidylethanolamine (PE) plasmalogens containing AA and DHA in HDL3; and iv) induced formation of HDL3 particles with increased capacity to inactivate PCOOH with formation of redox-inactive phospholipid hydroxide. Statin action attenuated LDL oxidability Concomitantly, the capacity of HDL3 to inactivate redox-active PCOOH was enhanced relative to HDL2, consistent with preferential enrichment of PE plasmalogens and PUPC in HDL3. PMID:27581680

  3. The Synergistic Effects of Heat Shock Protein 70 and Ginsenoside Rg1 against Tert-Butyl Hydroperoxide Damage Model In Vitro

    Directory of Open Access Journals (Sweden)

    Dan Lu

    2015-01-01

    Full Text Available Neural stem cells (NSCs transplanted is one of the hottest research to treat Alzheimer’s disease (AD, but cholinergic neurons from stem cells were also susceptible to cell death which Heat shock protein 70 (HSP70 was affirmed to reverse. Related to cognitive impairment, cholinergic nervous cells should be investigated and ginsenoside Rg1 (G-Rg1 was considered to increase them. We chose tert-butyl hydroperoxide (t-BHP damage model to study in vitro. Functional properties of our recombination plasmid pEGFP-C2-HSP70 were affirmed by SH-SY5Y cells. To opposite the transitory appearance of HSP70, NSCs used as the vectors of HSP70 gene overexpressed HSP70 for at least 7 days in vitro. After transfection for 3 days, G-Rg1 pretreatment for 4 hours, and coculture for 3 days, the expression of acetylcholinesterase (ChAT, synaptophysin, and the ratio of NeuN and GFAP were assessed by western blot; Morphological properties were detected by 3D reconstruction and immunofluorescence. ChAT was markedly improved in the groups contained G-Rg1. In coculture system, the ratio of neurons/astrocytes and the filaments of neurons were increased; apoptosis cells were decreased, compared to monotherapy (P<0.05. In conclusion, we demonstrated that, as a safe cotreatment affirmed in vitro, overexpression of HSP70 in NSCs plus G-Rg1 promoted nervous cells regeneration from chronic oxidative damage.

  4. Intramacrophage survival of uropathogenic Escherichia coli: Differences between diverse clinical isolates and between mouse and human macrophages

    KAUST Repository

    Bokil, Nilesh J.; Totsika, Makrina; Carey, Alison J.; Stacey, Katryn J.; Hancock, Viktoria; Saunders, Bernadette M.; Ravasi, Timothy; Ulett, Glen C.; Schembri, Mark A.; Sweet, Matthew J.

    2011-01-01

    within the host. Given that many intracellular pathogens target macrophages, we assessed the interactions between UPEC and macrophages. Colonization of the mouse bladder by UPEC strain CFT073 resulted in increased expression of myeloid-restricted genes

  5. Macrophage ABCA2 deletion modulates intracellular cholesterol deposition, affects macrophage apoptosis, and decreases early atherosclerosis in LDL receptor knockout mice.

    Science.gov (United States)

    Calpe-Berdiel, Laura; Zhao, Ying; de Graauw, Marjo; Ye, Dan; van Santbrink, Peter J; Mommaas, A Mieke; Foks, Amanda; Bot, Martine; Meurs, Illiana; Kuiper, Johan; Mack, Jody T; Van Eck, Miranda; Tew, Kenneth D; van Berkel, Theo J C

    2012-08-01

    The ABCA2 transporter shares high structural homology to ABCA1, which is crucial for the removal of excess cholesterol from macrophages and, by extension, in atherosclerosis. It has been suggested that ABCA2 sequesters cholesterol inside the lysosomes, however, little is known of the macrophage-specific role of ABCA2 in regulating lipid homeostasis in vivo and in modulating susceptibility to atherosclerosis. Chimeras with dysfunctional macrophage ABCA2 were generated by transplantation of bone marrow from ABCA2 knockout (KO) mice into irradiated LDL receptor (LDLr) KO mice. Interestingly, lack of ABCA2 in macrophages resulted in a diminished lesion size in the aortic root (-24.5%) and descending thoracic aorta (-36.6%) associated with a 3-fold increase in apoptotic cells, as measured by both caspase 3 and TUNEL. Upon oxidized LDL exposure, macrophages from wildtype (WT) transplanted animals developed filipin-positive droplets in lysosomal-like compartments, corresponding to free cholesterol (FC) accumulation. In contrast, ABCA2-deficient macrophages displayed an abnormal diffuse distribution of FC over peripheral regions. The accumulation of neutral sterols in lipid droplets was increased in ABCA2-deficient macrophages, but primarily in cytoplasmic clusters and not in lysosomes. Importantly, apoptosis of oxLDL loaded macrophages lacking ABCA2 was increased 2.7-fold, probably as a consequence of the broad cellular distribution of FC. Lack of functional ABCA2 generates abnormalities in intracellular lipid distribution/trafficking in macrophages consistent with its lysosomal sequestering role, leading to an increased susceptibility to apoptosis in response to oxidized lipids and reduced atherosclerotic lesion development. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Soluble human leukocyte antigen G5 polarizes differentiation of macrophages toward a decidual macrophage-like phenotype.

    Science.gov (United States)

    Lee, Cheuk-Lun; Guo, YiFan; So, Kam-Hei; Vijayan, Madhavi; Guo, Yue; Wong, Vera H H; Yao, YuanQing; Lee, Kai-Fai; Chiu, Philip C N; Yeung, William S B

    2015-10-01

    What are the actions of soluble human leukocyte antigen G5 (sHLAG5) on macrophage differentiation? sHLAG5 polarizes the differentiation of macrophages toward a decidual macrophage-like phenotype, which could regulate fetomaternal tolerance and placental development. sHLAG5 is a full-length soluble isoform of human leukocyte antigen implicated in immune tolerance during pregnancy. Low or undetectable circulating level of sHLAG5 in first trimester of pregnancy is associated with pregnancy complications such as pre-eclampsia and spontaneous abortion. Decidual macrophages are located in close proximity to invasive trophoblasts, and are involved in regulating fetomaternal tolerance and placental development. Human peripheral blood monocytes were differentiated into macrophages by treatment with granulocyte macrophage colony-stimulating factor in the presence or absence of recombinant sHLAG5 during the differentiation process. The phenotypes and the biological activities of the resulting macrophages were compared. Recombinant sHLAG5 was produced in Escherichia coli BL21 and the protein identity was verified by tandem mass spectrometry. The expression of macrophage markers were analyzed by flow cytometry and quantitative PCR. Phagocytosis was determined by flow cytometry. Indoleamine 2,3-dioxygenase 1 expression and activity were measured by western blot analysis and kynurenine assay, respectively. Cell proliferation and cell cycling were determined by fluorometric cell proliferation assay and flow cytometry, respectively. Cytokine secretion was determined by cytokine array and ELISA kits. Intracellular cytokine expression was measured by flow cytometry. Cell invasion and migration were determined by trans-well invasion and migration assay, respectively. sHLAG5 drove the differentiation of macrophages with 'immuno-modulatory' characteristics, including reduced expression of M1 macrophage marker CD86 and increased expression of M2 macrophage marker CD163. sHLAG5-polarized

  7. Effect of sulfite treatment on total antioxidant capacity, total oxidant status, lipid hydroperoxide, and total free sulfydryl groups contents in normal and sulfite oxidase-deficient rat plasma.

    Science.gov (United States)

    Herken, Emine Nur; Kocamaz, Erdogan; Erel, Ozcan; Celik, Hakim; Kucukatay, Vural

    2009-08-01

    Sulfites, which are commonly used as preservatives, are continuously formed in the body during the metabolism of sulfur-containing amino acids. Sulfite oxidase (SOX) is an essential enzyme in the pathway of the oxidative degradation of sulfite to sulfate protecting cells from sulfite toxicity. This article investigated the effect of sulfite on total antioxidant capacity (TAC), total oxidant status, lipid hydroperoxide (LOOH), and total free sulfydryl groups (-SH) levels in normal and SOX-deficient male albino rat plasma. For this purpose, rats were divided into four groups: control, sulfite-treated, SOX-deficient, and sulfite-treated SOX-deficient groups. SOX deficiency was established by feeding rats a low molybdenum diet and adding to their drinking water 200 ppm tungsten. Sulfite (70 mg/kg) was administered to the animals via their drinking water. SOX deficiency together with sulfite treatment caused a significant increase in the plasma LOOH and total oxidant status levels. -SH content of rat plasma significantly decreased by both sulfite treatment and SOX deficiency compared to the control. There was also a significant decrease in plasma TAC level by sulfite treatment. In conclusion, sulfite treatment affects the antioxidant/oxidant balance of the plasma cells of the rats toward oxidants in SOX-deficient groups.

  8. Role of hydroperoxide lyase in white-backed planthopper (Sogatella furcifera Horváth)-induced resistance to bacterial blight in rice, Oryza sativa L.

    Science.gov (United States)

    Gomi, Kenji; Satoh, Masaru; Ozawa, Rika; Shinonaga, Yumi; Sanada, Sachiyo; Sasaki, Katsutomo; Matsumura, Masaya; Ohashi, Yuko; Kanno, Hiroo; Akimitsu, Kazuya; Takabayashi, Junji

    2010-01-01

    A pre-infestation of the white-backed planthopper (WBPH), Sogatella furcifera Horváth, conferred resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) in rice (Oryza sativa L.) under both laboratory and field conditions. The infestation of another planthopper species, the brown planthopper (BPH) Nilaparvata lugens Stål, did not significantly reduce the incidence of bacterial blight symptoms. A large-scale screening using a rice DNA microarray and quantitative RT-PCR revealed that WBPH infestation caused the upregulation of more defence-related genes than did BPH infestation. Hydroperoxide lyase 2 (OsHPL2), an enzyme for producing C(6) volatiles, was upregulated by WBPH infestation, but not by BPH infestation. One C(6) volatile, (E)-2-hexenal, accumulated in rice after WBPH infestation, but not after BPH infestation. A direct application of (E)-2-hexenal to a liquid culture of Xoo inhibited the growth of the bacterium. Furthermore, a vapour treatment of rice plants with (E)-2-hexenal induced resistance to bacterial blight. OsHPL2-overexpressing transgenic rice plants exhibited increased resistance to bacterial blight. Based on these data, we conclude that OsHPL2 and its derived (E)-2-hexenal play some role in WBPH-induced resistance in rice.

  9. Protective Effects of Black Rice Extracts on Oxidative Stress Induced by tert-Butyl Hydroperoxide in HepG2 Cells

    Science.gov (United States)

    Lee, Seon-Mi; Choi, Youngmin; Sung, Jeehye; Kim, Younghwa; Jeong, Heon-Sang; Lee, Junsoo

    2014-01-01

    Black rice contains many biologically active compounds. The aim of this study was to investigate the protective effects of black rice extracts (whole grain extract, WGE and rice bran extract, RBE) on tert-butyl hydroperoxide (TBHP)-induced oxidative injury in HepG2 cells. Cellular reactive oxygen species (ROS), antioxidant enzyme activities, malondialdehyde (MDA) and glutathione (GSH) concentrations were evaluated as biomarkers of cellular oxidative status. Cells pretreated with 50 and 100 μg/mL of WGE or RBE were more resistant to oxidative stress in a dose-dependent manner. The highest WGE and BRE concentrations enhanced GSH concentrations and modulated antioxidant enzyme activities (glutathione reductase, glutathione-S-transferase, catalase, and superoxide dismutase) compared to TBHP-treated cells. Cells treated with RBE showed higher protective effect compared to cells treated with WGE against oxidative insult. Black rice extracts attenuated oxidative insult by inhibiting cellular ROS and MDA increase and by modulating antioxidant enzyme activities in HepG2 cells. PMID:25580401

  10. Epigenetic regulation of macrophage function

    NARCIS (Netherlands)

    Hoeksema, M.A.

    2016-01-01

    Atherosclerosis is a lipid-driven chronic inflammatory disorder with a key role for macrophages in all disease stages. Macrophages are involved as scavengers of lipids, regulate inflammation, attract other immune cells and contribute to the resolution of inflammation, fibrosis and plaque stability.

  11. Biology of Bony Fish Macrophages

    Directory of Open Access Journals (Sweden)

    Jordan W. Hodgkinson

    2015-11-01

    Full Text Available Macrophages are found across all vertebrate species, reside in virtually all animal tissues, and play critical roles in host protection and homeostasis. Various mechanisms determine and regulate the highly plastic functional phenotypes of macrophages, including antimicrobial host defenses (pro-inflammatory, M1-type, and resolution and repair functions (anti-inflammatory/regulatory, M2-type. The study of inflammatory macrophages in immune defense of teleosts has garnered much attention, and antimicrobial mechanisms of these cells have been extensively studied in various fish models. Intriguingly, both similarities and differences have been documented for the regulation of lower vertebrate macrophage antimicrobial defenses, as compared to what has been described in mammals. Advances in our understanding of the teleost macrophage M2 phenotypes likewise suggest functional conservation through similar and distinct regulatory strategies, compared to their mammalian counterparts. In this review, we discuss the current understanding of the molecular mechanisms governing teleost macrophage functional heterogeneity, including monopoetic development, classical macrophage inflammatory and antimicrobial responses as well as alternative macrophage polarization towards tissues repair and resolution of inflammation.

  12. Biology of Bony Fish Macrophages.

    Science.gov (United States)

    Hodgkinson, Jordan W; Grayfer, Leon; Belosevic, Miodrag

    2015-11-30

    Macrophages are found across all vertebrate species, reside in virtually all animal tissues, and play critical roles in host protection and homeostasis. Various mechanisms determine and regulate the highly plastic functional phenotypes of macrophages, including antimicrobial host defenses (pro-inflammatory, M1-type), and resolution and repair functions (anti-inflammatory/regulatory, M2-type). The study of inflammatory macrophages in immune defense of teleosts has garnered much attention, and antimicrobial mechanisms of these cells have been extensively studied in various fish models. Intriguingly, both similarities and differences have been documented for the regulation of lower vertebrate macrophage antimicrobial defenses, as compared to what has been described in mammals. Advances in our understanding of the teleost macrophage M2 phenotypes likewise suggest functional conservation through similar and distinct regulatory strategies, compared to their mammalian counterparts. In this review, we discuss the current understanding of the molecular mechanisms governing teleost macrophage functional heterogeneity, including monopoetic development, classical macrophage inflammatory and antimicrobial responses as well as alternative macrophage polarization towards tissues repair and resolution of inflammation.

  13. Activation of peritoneal macrophages to cytoxicity against B16 melanoma cells by Serratia marcescens polyribosome fractions

    International Nuclear Information System (INIS)

    Hoover, S.K.

    1985-01-01

    Serratia marcescens polyribosomes (SMPR) have been shown to elicit an anti-tumor response in vivo. The in-vitro effects of SMPR on macrophages as the nonspecific mediators of the anti-tumor response have not previously been examined. The first objective of this research project is to corroborate and analyze the in-vivo results by the development and application of an in-vitro cytotoxicity assay. The second objective is to examine the effect of SMPR upon previously unstimulated peritoneal macrophages as representing the mechanism of cytotoxicity. The third objective is to identify the minimal effective component of SMPR responsible for an effect on macrophages. Results revealed that SMPR preparations exert a number of effects upon macrophages. Morphologic changes included increased spreading and increased perinuclear vacuolization. Macrophages were shown to be metabolically activate by two lines of evidence. SMPR-treated macrophages exhibited increased cellular metabolism by the increased uptake of 3 H-thymidine and by the increased levels of secreted leucine aminopeptidase as compared to control macrophages. Results also showed that SMPR activates macrophages to cytotoxicity against syngeneic tumor target cells. Buoyant-density fractions were isolated and assayed for macrophage activating ability. Results showed 50S ribosomal subunits to be the smallest fraction effective for macrophage activation. Both the RNA and protein were necessary for complete effectiveness

  14. Rediscovering peritoneal macrophages in a murine endometriosis model.

    Science.gov (United States)

    Yuan, Ming; Li, Dong; An, Min; Li, Qiuju; Zhang, Lu; Wang, Guoyun

    2017-01-01

    What are the features of peritoneal macrophage subgroups and T helper cells in the development of murine endometriosis? During the development of endometriosis in a murine model, large peritoneal macrophages (LPMs) and small peritoneal macrophages (SPMs) are polarized into M1 and M2 cells, respectively, and the proportions of T helper (Th) 1, Th17 and T regulatory (T reg ) cells are increased. Numerous studies investigating the etiology and pathogenesis of endometriosis have focused on the polarization states of peritoneal macrophages in endometriosis models and patients, but the results are inconclusive. Further studies indicate that peritoneal macrophages are composed of two distinct subsets: LPMs and SPMs, although their roles in endometriosis are unknown. This study involves a prospective and randomized experiment. Fifty C57BL/6 female mice were randomly allocated to five control and five experimental groups (n = 5/group) according to the presence or absence of transplantation. The transplant periods are 0.25, 3, 14, 28 and 42 days. C57BL/6 mice were utilized to establish an endometriosis model by i.p. injection of allogeneic endometrial segments. Dynamic changes of peritoneal macrophage subsets and polarization profiles were evaluated by flow cytometry (FCM). Macrophage morphology and density were assessed by cell counting under a microscope. Dynamic changes of Th1, Th2, Th17 and T reg cells were estimated by FCM. Peritoneal macrophages are composed of two distinct subsets: LPMs and SPMs. The proportion of SPMs increased immediately after peritoneal injection of endometrial tissues, whereas LPMs showed an opposite trend. Peritoneal macrophages differentiated into both M1 and M2 macrophages. The bidirectional polarization of macrophages was caused by the inverse trends of polarization of LPMs and SPMs. Consistently, the proportions of Th1, Th17 and T reg cells were all increased in mice with endometriosis. N/A. In this study, detection was only performed in a

  15. Synthesis of deuterium-labeled analogs of the lipid hydroperoxide-derived bifunctional electrophile 4-oxo-2(E)-nonenal.

    Science.gov (United States)

    Arora, Jasbir S; Oe, Tomoyuki; Blair, Ian A

    2011-05-15

    Lipid hydroperoxides undergo homolytic decomposition into the bifunctional 4-hydroxy-2( E )-nonenal and 4-oxo-2( E )-nonenal (ONE). These bifunctional electrophiles are highly reactive and can readily modify intracellular molecules including glutathione (GSH), deoxyribonucleic acid (DNA) and proteins. Lipid hydroperoxide-derived bifunctional electrophiles are thought to contribute to the pathogenesis of a number of diseases. ONE is an α , β -unsaturated aldehyde that can react in multiple ways and with glutathione, proteins and DNA. Heavy isotope-labeled analogs of ONE are not readily available for conducting mechanistic studies or for use as internal standards in mass spectrometry (MS)-based assays. An efficient onestep cost-effective method has been developed for the preparation of C-9 deuterium-labeled ONE. In addition, a method for specific deuterium labeling of ONE at C-2, C-3 or both C-2 and C-3 has been developed. This latter method involved the selective reduction of an intermediate alkyne either by lithium aluminum hydride or lithium aluminum deuteride and quenching with water or deuterium oxide. The availability of these heavy isotope analogs will be useful as internal standards for quantitative studies employing MS and for conducting mechanistic studies of complex interactions between ONE and DNA bases as well as between ONE and proximal amino acid residues in peptides and proteins.

  16. Effects of lipopolysaccharide on the catabolic activity of macrophages

    International Nuclear Information System (INIS)

    Cluff, C.; Ziegler, H.K.

    1986-01-01

    The ability of macrophages to degrade and catabolize antigens is of relevance both as a means to process complex antigens prior to presentation to T cells, as well as a way to down regulate immune responses by destroying the antigenicity of polypeptides. With these considerations, the authors have investigated the regulation of macrophage catabolic activity by lipopolysaccharide (LPS). Catabolic activity was quantitated by following the distribution and molecular form of 125 -I labelled surface components of heat-killed Listeria monocytogenes (HKLM) subsequent to their uptake by macrophages. They have compared the catabolic activity of macrophages from peritoneal exudates of mice injected i.p. with saline or LPS and have found that LPS-elicited macrophages display a greatly enhanced (3 fold) rate of catabolism. This increase in catabolic activity peaks 3 days after LPS injection and steadily declines thereafter, approaching a baseline level after 3 weeks. The enhancement of catabolic activity is under LPS gene control. LPS-elicited macrophages rapidly destroy the antigenicity of bacterial antigens and function poorly as antigen presenting cells in vitro. These results suggest that LPS elicits a macrophage population specialized for antigen degradation functions with negative regulatory effects on the induction of specific immune responses

  17. FcγRI (CD64): an identity card for intestinal macrophages.

    Science.gov (United States)

    De Calisto, Jaime; Villablanca, Eduardo J; Mora, J Rodrigo

    2012-12-01

    Macrophages are becoming increasingly recognized as key cellular players in intestinal immune homeostasis. However, differentiating between macrophages and dendritic cells (DCs) is often difficult, and finding a specific phenotypic signature for intestinal macrophage identification has remained elusive. In this issue of the European Journal of Immunology, Tamoutounour et al. [Eur. J. Immunol. 2012. 42: 3150-3166] identify CD64 as a specific macrophage marker that can be used to discriminate DCs from macrophages in the murine small and large intestine, under both steady-state and inflammatory conditions. The authors also propose a sequential 'monocyte-waterfall' model for intestinal macrophage differentiation, with implications for immune tolerance and inflammation at the gut mucosal interface. This Commentary will discuss the advantages and potential limitations of CD64 as a marker for intestinal macrophages. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ebola Virus: The Role of Macrophages and Dendritic Cells in the Pathogenesis of Ebola Hemorrhagic Fever

    National Research Council Canada - National Science Library

    Bray, Mike; Geisbert, Thomas W

    2005-01-01

    .... Infected macrophages produce proinflammatory cytokines, chemokines and tissue factor, attracting additional target cells and inducing vasodilation, increased vascular permeability and disseminated...

  19. Adventitial fibroblasts induce a distinct proinflammatory/profibrotic macrophage phenotype in pulmonary hypertension.

    Science.gov (United States)

    El Kasmi, Karim C; Pugliese, Steven C; Riddle, Suzette R; Poth, Jens M; Anderson, Aimee L; Frid, Maria G; Li, Min; Pullamsetti, Soni S; Savai, Rajkumar; Nagel, Maria A; Fini, Mehdi A; Graham, Brian B; Tuder, Rubin M; Friedman, Jacob E; Eltzschig, Holger K; Sokol, Ronald J; Stenmark, Kurt R

    2014-07-15

    Macrophage accumulation is not only a characteristic hallmark but is also a critical component of pulmonary artery remodeling associated with pulmonary hypertension (PH). However, the cellular and molecular mechanisms that drive vascular macrophage activation and their functional phenotype remain poorly defined. Using multiple levels of in vivo (bovine and rat models of hypoxia-induced PH, together with human tissue samples) and in vitro (primary mouse, rat, and bovine macrophages, human monocytes, and primary human and bovine fibroblasts) approaches, we observed that adventitial fibroblasts derived from hypertensive pulmonary arteries (bovine and human) regulate macrophage activation. These fibroblasts activate macrophages through paracrine IL-6 and STAT3, HIF1, and C/EBPβ signaling to drive expression of genes previously implicated in chronic inflammation, tissue remodeling, and PH. This distinct fibroblast-activated macrophage phenotype was independent of IL-4/IL-13-STAT6 and TLR-MyD88 signaling. We found that genetic STAT3 haplodeficiency in macrophages attenuated macrophage activation, complete STAT3 deficiency increased macrophage activation through compensatory upregulation of STAT1 signaling, and deficiency in C/EBPβ or HIF1 attenuated fibroblast-driven macrophage activation. These findings challenge the current paradigm of IL-4/IL-13-STAT6-mediated alternative macrophage activation as the sole driver of vascular remodeling in PH, and uncover a cross-talk between adventitial fibroblasts and macrophages in which paracrine IL-6-activated STAT3, HIF1α, and C/EBPβ signaling are critical for macrophage activation and polarization. Thus, targeting IL-6 signaling in macrophages by completely inhibiting C/EBPβ or HIF1α or by partially inhibiting STAT3 may hold therapeutic value for treatment of PH and other inflammatory conditions characterized by increased IL-6 and absent IL-4/IL-13 signaling. Copyright © 2014 by The American Association of Immunologists

  20. Adventitial Fibroblasts induce a distinct Pro-inflammatory/Pro-fibrotic Macrophage Phenotype in Pulmonary Hypertension

    Science.gov (United States)

    El Kasmi, Karim C.; Pugliese, Steven C.; Riddle, Suzette R.; Poth, Jens M.; Anderson, Aimee L.; Frid, Maria G.; Li, Min; Pullamsetti, Soni S.; Savai, Rajkumar; Nagel, Maria A.; Fini, Mehdi A.; Graham, Brian B.; Tuder, Rubin M.; Friedman, Jacob E.; Eltzschig, Holger K.; Sokol, Ronald J.; Stenmark, Kurt R.

    2014-01-01

    Macrophage accumulation is not only a characteristic hallmark but also a critical component of pulmonary artery (PA) remodeling associated with pulmonary hypertension (PH). However, the cellular and molecular mechanisms that drive vascular macrophage activation and their functional phenotype remain poorly defined. Utilizing multiple levels of in vivo (bovine and rat models of hypoxia-induced PH, together with human tissue samples) and in vitro (primary mouse, rat, and bovine macrophages, human monocytes, as well as primary human and bovine fibroblasts) approaches, we observed that adventitial fibroblasts derived from hypertensive Pas (bovine and human) regulate macrophage activation. These fibroblasts activate macrophages through paracrine IL6 and STAT3, HIF1, and C/EBPβ signaling to drive expression of genes previously implicated in chronic inflammation, tissue remodeling, and PH. This distinct fibroblast-activated macrophage phenotype was independent of IL4/IL13-STAT6 and TLR-MyD88 signaling. We found that genetic STAT3 haplodeficiency in macrophages attenuated macrophage activation while complete STAT3 deficiency increased macrophage activation through compensatory upregulation of STAT1 signaling, while deficiency in C/EBPβ or HIF1 attenuated fibroblast driven macrophage activation. These findings challenge the current paradigm of IL4/IL13-STAT6 mediated alternative macrophage activation as the sole driver of vascular remodeling in PH and uncover a crosstalk between adventitial fibroblasts and macrophages in which paracrine IL6 activated STAT3, HIF1, and C/EBPβ signaling is critical for macrophage activation and polarization. Thus, targeting IL6 signaling in macrophages by completely inhibiting C/EBPβ, HIF1a or partially inhibiting STAT3 may hold therapeutic value for treatment of PH and other inflammatory conditions characterized by increased IL6 and absent IL4/IL13 signaling. PMID:24928992

  1. Rhinovirus infection induces distinct transcriptome profiles in polarized human macrophages.

    Science.gov (United States)

    Rajput, Charu; Walsh, Megan P; Eder, Breanna N; Metitiri, Ediri E; Popova, Antonia P; Hershenson, Marc B

    2018-05-01

    Infections with rhinovirus (RV) cause asthma exacerbations. Recent studies suggest that macrophages play a role in asthmatic airway inflammation and the innate immune response to RV infection. Macrophages exhibit phenotypes based on surface markers and gene expression. We hypothesized that macrophage polarization state alters gene expression in response to RV infection. Cells were derived from human peripheral blood derived monocytes. M1 and M2 polarization was carried out by using IFN-γ and IL-4, respectively, and RNA was extracted for Affymetrix Human Gene ST2.1 exon arrays. Selected genes were validated by quantitative (q)PCR. Treatment of nonactivated (M0) macrophages with IFN-γ and IL-4 induced the expression of 252 and 153 distinct genes, respectively, including previously-identified M1 and M2 markers. RV infection of M0 macrophages induced upregulation of 232 genes; pathway analysis showed significant overrepresentation of genes involved in IFN-α/β signaling and cytokine signaling in the immune system. RV infection induced differential expression of 195 distinct genes in M1-like macrophages but only seven distinct genes in M2-like-polarized cells. In a secondary analysis, comparison between M0-, RV-infected, and M1-like-polarized, RV-infected macrophages revealed differential expression of 227 genes including those associated with asthma and its exacerbation. qPCR demonstrated increased expression of CCL8, CXCL10, TNFSF10, TNFSF18, IL6, NOD2, and GSDMD and reduced expression of VNN1, AGO1, and AGO2. Together, these data show that, in contrast to M2-like-polarized macrophages, gene expression of M1-like macrophages is highly regulated by RV.

  2. DMPD: Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflammatory activities. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12472665 Macrophage-stimulating protein and RON receptor tyrosine kinase: potential...:545-53. (.png) (.svg) (.html) (.csml) Show Macrophage-stimulating protein and RON receptor tyrosine kinase:...le Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflam

  3. Granulocyte-macrophage colony-stimulating factor primes interleukin-13 production by macrophages via protease-activated receptor-2.

    Science.gov (United States)

    Aoki, Manabu; Yamaguchi, Rui; Yamamoto, Takatoshi; Ishimaru, Yasuji; Ono, Tomomichi; Sakamoto, Arisa; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-04-01

    Chronic inflammation is often linked to the presence of type 2-polarized macrophages, which are induced by the T helper type 2 cytokines interleukin-4 and interleukin-13 (IL-13). IL-13 is a key mediator of tissue fibrosis caused by T helper type 2-based inflammation. Human neutrophil elastase (HNE) plays a pivotal role in the pathogenesis of pulmonary fibrosis. This study investigated the priming effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on IL-13 expression by macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. Expression of IL-13 mRNA and protein by GM-CSF-dependent macrophages was investigated after stimulation with HNE, using the polymerase chain reaction and enzyme-linked immunosorbent assay. GM-CSF had a priming effect on IL-13 mRNA and protein expression by macrophages stimulated with HNE, while this effect was not observed for various other cytokines. GM-CSF-dependent macrophages showed a significant increase in the expression of protease activated receptor-2 (PAR-2) mRNA and protein. The response of IL-13 mRNA to HNE was significantly decreased by pretreatment with alpha1-antitrypsin, a PAR-2 antibody (SAM11), or a PAR-2 antagonist (ENMD-1068). These findings suggest that stimulation with HNE can induce IL-13 production by macrophages, especially GM-CSF-dependent macrophages. Accordingly, neutrophil elastase may have a key role in fibrosis associated with chronic inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Macrophage Depletion Ameliorates Peripheral Neuropathy in Aging Mice.

    Science.gov (United States)

    Yuan, Xidi; Klein, Dennis; Kerscher, Susanne; West, Brian L; Weis, Joachim; Katona, Istvan; Martini, Rudolf

    2018-05-09

    Aging is known as a major risk factor for the structure and function of the nervous system. There is urgent need to overcome such deleterious effects of age-related neurodegeneration. Here we show that peripheral nerves of 24-month-old aging C57BL/6 mice of either sex show similar pathological alterations as nerves from aging human individuals, whereas 12-month-old adult mice lack such alterations. Specifically, nerve fibers showed demyelination, remyelination and axonal lesion. Moreover, in the aging mice, neuromuscular junctions showed features typical for dying-back neuropathies, as revealed by a decline of presynaptic markers, associated with α-bungarotoxin-positive postsynapses. In line with these observations were reduced muscle strengths. These alterations were accompanied by elevated numbers of endoneurial macrophages, partially comprising the features of phagocytosing macrophages. Comparable profiles of macrophages could be identified in peripheral nerve biopsies of aging persons. To determine the pathological impact of macrophages in aging mice, we selectively targeted the cells by applying an orally administered CSF-1R specific kinase (c-FMS) inhibitor. The 6-month-lasting treatment started before development of degenerative changes at 18 months and reduced macrophage numbers in mice by ∼70%, without side effects. Strikingly, nerve structure was ameliorated and muscle strength preserved. We show, for the first time, that age-related degenerative changes in peripheral nerves are driven by macrophages. These findings may pave the way for treating degeneration in the aging peripheral nervous system by targeting macrophages, leading to reduced weakness, improved mobility, and eventually increased quality of life in the elderly. SIGNIFICANCE STATEMENT Aging is a major risk factor for the structure and function of the nervous system. Here we show that peripheral nerves of 24-month-old aging mice show similar degenerative alterations as nerves from aging

  5. Conditioned medium from alternatively activated macrophages induce mesangial cell apoptosis via the effect of Fas

    International Nuclear Information System (INIS)

    Huang, Yuan; Luo, Fangjun; Li, Hui; Jiang, Tao; Zhang, Nong

    2013-01-01

    During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechst 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions. - Highlights: • Conditioned-medium from M2 macrophages induces rat mesangial cell (MsC) apoptosis. • M2 macrophage conditioned medium exerts its pro-apoptotic effects via Fas ligand. • Arginase-1 activity in M2 macrophages plays a role in inducing apoptosis in rat MsC

  6. Conditioned medium from alternatively activated macrophages induce mesangial cell apoptosis via the effect of Fas

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuan; Luo, Fangjun; Li, Hui; Jiang, Tao; Zhang, Nong, E-mail: nzhang@fudan.edu.cn

    2013-11-15

    During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechst 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions. - Highlights: • Conditioned-medium from M2 macrophages induces rat mesangial cell (MsC) apoptosis. • M2 macrophage conditioned medium exerts its pro-apoptotic effects via Fas ligand. • Arginase-1 activity in M2 macrophages plays a role in inducing apoptosis in rat MsC.

  7. Characteristics of adipose tissue macrophages and macrophage-derived insulin-like growth factor-1 in virus-induced obesity.

    Science.gov (United States)

    Park, S; Park, H-L; Lee, S-Y; Nam, J-H

    2016-03-01

    Various pathogens are implicated in the induction of obesity. Previous studies have confirmed that human adenovirus 36 (Ad36) is associated with increased adiposity, improved glycemic control and induction of inflammation. The Ad36-induced inflammation is reflected in the infiltration of macrophages into adipose tissue. However, the characteristics and role of adipose tissue macrophages (ATMs) and macrophage-secreted factors in virus-induced obesity (VIO) are unclear. Although insulin-like growth factor-1 (IGF-1) is involved in obesity metabolism, the contribution of IGF secreted by macrophages in VIO has not been studied. Four-week-old male mice were studied 1 week and 12 weeks after Ad36 infection for determining the characteristics of ATMs in VIO and diet-induced obesity (DIO). In addition, macrophage-specific IGF-1-deficient (MIKO) mice were used to study the involvement of IGF-1 in VIO. In the early stage of VIO (1 week after Ad36 infection), the M1 ATM sub-population increased, which increased the M1/M2 ratio, whereas DIO did not cause this change. In the late stage of VIO (12 weeks after Ad36 infection), the M1/M2 ratio did not change because the M1 and M2 ATM sub-populations increased to a similar extent, despite an increase in adiposity. By contrast, DIO increased the M1/M2 ratio. In addition, VIO in wild-type mice upregulated angiogenesis in adipose tissue and improved glycemic control. However, MIKO mice showed no increase in adiposity, angiogenesis, infiltration of macrophages into adipose tissue, or improvement in glycemic control after Ad36 infection. These data suggest that IGF-1 secreted by macrophages may contribute to hyperplasia and hypertrophy in adipose tissue by increasing angiogenesis, which helps to maintain the 'adipose tissue robustness'.

  8. Legumain is activated in macrophages during pancreatitis

    Science.gov (United States)

    Wartmann, Thomas; Fleming, Alicia K.; Gocheva, Vasilena; van der Linden, Wouter A.; Withana, Nimali P.; Verdoes, Martijn; Aurelio, Luigi; Edgington-Mitchell, Daniel; Lieu, TinaMarie; Parker, Belinda S.; Graham, Bim; Reinheckel, Thomas; Furness, John B.; Joyce, Johanna A.; Storz, Peter; Halangk, Walter; Bogyo, Matthew; Bunnett, Nigel W.

    2016-01-01

    Pancreatitis is an inflammatory disease of the pancreas characterized by dysregulated activity of digestive enzymes, necrosis, immune infiltration, and pain. Repeated incidence of pancreatitis is an important risk factor for pancreatic cancer. Legumain, a lysosomal cysteine protease, has been linked to inflammatory diseases such as atherosclerosis, stroke, and cancer. Until now, legumain activation has not been studied during pancreatitis. We used a fluorescently quenched activity-based probe to assess legumain activation during caerulein-induced pancreatitis in mice. We detected activated legumain by ex vivo imaging, confocal microscopy, and gel electrophoresis. Compared with healthy controls, legumain activity in the pancreas of caerulein-treated mice was increased in a time-dependent manner. Legumain was localized to CD68+ macrophages and was not active in pancreatic acinar cells. Using a small-molecule inhibitor of legumain, we found that this protease is not essential for the initiation of pancreatitis. However, it may serve as a biomarker of disease, since patients with chronic pancreatitis show strongly increased legumain expression in macrophages. Moreover, the occurrence of legumain-expressing macrophages in regions of acinar-to-ductal metaplasia suggests that this protease may influence reprogramming events that lead to inflammation-induced pancreatic cancer. PMID:27514475

  9. Interaction between t-butyl hydroperoxide (I) and positive halogen compounds. part I. Intermediates in the reaction between I and CI2O

    NARCIS (Netherlands)

    Ham, J. van; Schors, A.; Kooyman, E.C.

    1973-01-01

    “positive halogen” compounds were found to induce the decomposition of t-butyl hydroperoxide (I) in the dark. In this Cl2O proved to be particularly effective, liberating oxygen from I instantaneously at 0°. At temperature between −80° and −30°, two oxygen-rich intermediates could be observed with

  10. X-ray absorption spectroscopy of soybean lipoxygenase-1 : Influence of lipid hydroperoxide activation and lyophilization on the structure of the non-heme iron active site

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Heijdt, L.M. van der; Feiters, M.C.; Navaratnam, S.; Nolting, H.-F.; Hermes, C.; Veldink, G.A.

    1992-01-01

    X-ray absorption spectra at the Fe K-edge of the non-heme iron site in Fe(II) as well as Fe(III) soybean lipoxygenase-1, in frozen solution or lyophilized, are presented; the latter spectra were obtained by incubation of the Fe(II) enzyme with its product hydroperoxide. An edge shift of about 23 eV

  11. The macrophage-histiocytic system

    Energy Technology Data Exchange (ETDEWEB)

    Cross, A

    1971-04-01

    The macrophage-histiocytic system is primarily concerned with the phagocytosis and degradation either of foreign material that enters the organism or of senile and damaged cells belonging to the organism itself. The system includes various kinds of cells with the common ability to process and eventually degrade and digest the ingested material. Two morphological characteristics of these cells are linked to their phagocytic functions: intra-cytoplasmic vacuoles and lysosomes. Although endothelial and fibroblastic cells can ingest particles, it seems that most cells of the macrophage-histiocytic system belong to the monocyte series. The stem cell of the system is still a matter for discussion and the mature cells have attracted a large and confusing array of names. Most of the experimental work with irradiation has involved macrophages of the peritoneal cavity and lymph nodes. It is likely that the other cells of the macrophage-histiocytic system are affected in the same way by irradiation, but this is not certain.

  12. Experimental Stroke Differentially Affects Discrete Subpopulations of Splenic Macrophages

    Directory of Open Access Journals (Sweden)

    Laura McCulloch

    2018-05-01

    Full Text Available Changes to the immune system after stroke are complex and can result in both pro-inflammatory and immunosuppressive consequences. Following ischemic stroke, brain resident microglia are activated and circulating monocytes are recruited to the injury site. In contrast, there is a systemic deactivation of monocytes/macrophages that may contribute to immunosuppression and the high incidence of bacterial infection experienced by stroke patients. The manipulation of macrophage subsets may be a useful therapeutic strategy to reduce infection and improve outcome in patients after stroke. Recent research has enhanced our understanding of the heterogeneity of macrophages even within the same tissue. The spleen is the largest natural reservoir of immune cells, many of which are mobilized to the site of injury after ischemic stroke and is notable for the diversity of its functionally distinct macrophage subpopulations associated with specific micro-anatomical locations. Here, we describe the effects of experimental stroke in mice on these distinct splenic macrophage subpopulations. Red pulp (RP and marginal zone macrophages (MZM specifically showed increases in density and alterations in micro-anatomical location. These changes were not due to increased recruitment from the bone marrow but may be associated with increases in local proliferation. Genes associated with phagocytosis and proteolytic processing were upregulated in the spleen after stroke with increased expression of the lysosome-associated protein lysosomal-associated membrane proteins specifically increased in RP and MZM subsets. In contrast, MHC class II expression was reduced specifically in these populations. Furthermore, genes associated with macrophage ability to communicate with other immune cells, such as co-stimulatory molecules and inflammatory cytokine production, were also downregulated in the spleen after stroke. These findings suggest that selective splenic macrophage functions

  13. DMPD: The actions of bacterial DNA on murine macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10534106 The actions of bacterial DNA on murine macrophages. Sester DP, Stacey KJ, ... Show The actions of bacterial DNA on murine macrophages. PubmedID 10534106 Title The actions of bacterial DNA on murine macrophage

  14. Immunomodulatory Molecule IRAK-M Balances Macrophage Polarization and Determines Macrophage Responses during Renal Fibrosis.

    Science.gov (United States)

    Steiger, Stefanie; Kumar, Santhosh V; Honarpisheh, Mohsen; Lorenz, Georg; Günthner, Roman; Romoli, Simone; Gröbmayr, Regina; Susanti, Heni-Eka; Potempa, Jan; Koziel, Joanna; Lech, Maciej

    2017-08-15

    Activation of various innate immune receptors results in IL-1 receptor-associated kinase (IRAK)-1/IRAK-4-mediated signaling and secretion of proinflammatory cytokines such as IL-12, IL-6, or TNF-α, all of which are implicated in tissue injury and elevated during tissue remodeling processes. IRAK-M, also known as IRAK-3, is an inhibitor of proinflammatory cytokine and chemokine expression in intrarenal macrophages. Innate immune activation contributes to both acute kidney injury and tissue remodeling that is associated with chronic kidney disease (CKD). Our study assessed the contribution of macrophages in CKD and the role of IRAK-M in modulating disease progression. To evaluate the effect of IRAK-M in chronic renal injury in vivo, a mouse model of unilateral ureteral obstruction (UUO) was employed. The expression of IRAK-M increased within 2 d after UUO in obstructed compared with unobstructed kidneys. Mice deficient in IRAK-M were protected from fibrosis and displayed a diminished number of alternatively activated macrophages. Compared to wild-type mice, IRAK-M-deficient mice showed reduced tubular injury, leukocyte infiltration, and inflammation following renal injury as determined by light microscopy, immunohistochemistry, and intrarenal mRNA expression of proinflammatory and profibrotic mediators. Taken together, these results strongly support a role for IRAK-M in renal injury and identify IRAK-M as a possible modulator in driving an alternatively activated profibrotic macrophage phenotype in UUO-induced CKD. Copyright © 2017 by The American Association of Immunologists, Inc.

  15. Human Adipose Tissue Macrophages Are Enhanced but Changed to an Anti-Inflammatory Profile in Obesity

    Directory of Open Access Journals (Sweden)

    Karen Fjeldborg

    2014-01-01

    Full Text Available Objective. Adipose tissue (AT macrophages are increased in obesity and associated with low grade inflammation. We aimed to characterize the phenotype of AT macrophages in humans in relation to obesity and insulin resistance. Design. Gene-expression levels of general macrophage markers (CD68 and CD14, proinflammatory markers/M1 (TNF-α, MCP-1, and IL-6, and anti-inflammatory markers/M2 (CD163, CD206, and IL-10 were determined by RT-PCR in subcutaneous AT samples from lean and obese subjects. Insulin resistance was determined by HOMA-IR. Results. All the macrophage markers were elevated in the AT from obese compared to lean subjects (P<0.001. To determine the phenotype of the macrophages the level of CD14 was used to adjust the total number of macrophages. The relative expression of CD163 and IL-10 was elevated, and TNF-α and IL-6 were reduced in AT from obese subjects (all P<0.05. In a multivariate regression analysis CD163 was the only macrophage marker significantly associated with HOMA-IR (β: 0.57; P<0.05. Conclusion. Obesity is associated with elevated numbers of macrophages in the AT. Unexpectedly, the macrophages change phenotype by obesity, with a preponderance of M2 and a decrement of M1 markers in AT from obese subjects. Moreover, CD163 was the only macrophage marker associated with HOMA-IR after multiple adjustments.

  16. Oxidized LDL Induces Alternative Macrophage Phenotype through Activation of CD36 and PAFR

    Directory of Open Access Journals (Sweden)

    Francisco J. Rios

    2013-01-01

    Full Text Available OxLDL is recognized by macrophage scavenger receptors, including CD36; we have recently found that Platelet-Activating Factor Receptor (PAFR is also involved. Since PAFR in macrophages is associated with suppressor function, we examined the effect of oxLDL on macrophage phenotype. It was found that the presence of oxLDL during macrophage differentiation induced high mRNA levels to IL-10, mannose receptor, PPARγ and arginase-1 and low levels of IL-12 and iNOS. When human THP-1 macrophages were pre-treated with oxLDL then stimulated with LPS, the production of IL-10 and TGF-β significantly increased, whereas that of IL-6 and IL-8 decreased. In murine TG-elicited macrophages, this protocol significantly reduced NO, iNOS and COX2 expression. Thus, oxLDL induced macrophage differentiation and activation towards the alternatively activated M2-phenotype. In murine macrophages, oxLDL induced TGF-β, arginase-1 and IL-10 mRNA expression, which were significantly reduced by pre-treatment with PAFR antagonists (WEB and CV or with antibodies to CD36. The mRNA expression of IL-12, RANTES and CXCL2 were not affected. We showed that this profile of macrophage activation is dependent on the engagement of both CD36 and PAFR. We conclude that oxLDL induces alternative macrophage activation by mechanisms involving CD36 and PAFR.

  17. Cuscuta chinensis seeds water extraction protecting murine osteoblastic MC3T3-E1 cells against tertiary butyl hydroperoxide induced injury.

    Science.gov (United States)

    Gao, Jian-mei; Li, Ran; Zhang, Lei; Jia, Li-long; Ying, Xi-xiang; Dou, De-qiang; Li, Jian-chun; Li, Hai-bo

    2013-07-09

    Cuscuta chinensis (C. chinensis) is a well-known traditional Chinese herb that has been used to treat heart disease, diabetes, liver injury, cancer, and aging. Murine osteoblastic MC3T3-E1 cells were treated with various concentrations of C. chinensis water extraction at different time intervals. The antioxidant effect of C. chinensis on MC3T3-E1 cells was evaluated using MTT and TUNEL assays. The effect of C. chinensis on cell cycle was analyzed by flow cytometry with propidium iodide. Lipid peroxidation was measured by the HPLC method. The cellular redox status was determined from the reduced glutathione to oxidized glutathione ratio (GSH/GSSG) and the enzymes involved in glutathione metabolism, including glutathione reductase (GR), Glutathione S-transferase (GST), and Glucose-6-phosphate dehydrogenase (G6PD). The changes in relative mitochondrial transmembrane potential (ΔΨm) in the MC3T3-E1 cells were analyzed with rhodamine 123 staining. Western blot analysis was used to evaluate the levels of cytochrome c (cyto c), Bax, Bcl-2, caspase 3, Sirt3, and IDH2 expressions. The C. chinensis water extraction protects tertiary butyl hydroperoxide (TBHP)-treated MC3T3-E1 cells from death in a dose-dependent manner. C. chinensis treatment significantly inhibited the reactive oxygen species (ROS) generation, malondialdehyde (MDA) production, and increased the activity of superoxide dismutase (SOD), GR, GST, and G6PD. The release of cyto c from mitochondria was reduced by C. chinensis, which increased the expression of antiapoptotic IDH2, Sirt3, and Bcl-2 and decreased the expression of Bax, cyto c, and caspase 3. C. chinensis modulated the oxidative stress-induced apoptosis in MC3T3-E1 cells, probably due to its antioxidant activity and functioning via mitochondria-dependent pathways. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. The role of HFE genotype in macrophage phenotype.

    Science.gov (United States)

    Nixon, Anne M; Neely, Elizabeth; Simpson, Ian A; Connor, James R

    2018-02-01

    Iron regulation is essential for cellular energy production. Loss of cellular iron homeostasis has critical implications for both normal function and disease progression. The H63D variant of the HFE gene is the most common gene variant in Caucasians. The resulting mutant protein alters cellular iron homeostasis and is associated with a number of neurological diseases and cancer. In the brain, microglial and infiltrating macrophages are critical to maintaining iron homeostasis and modulating inflammation associated with the pathogenic process in multiple diseases. This study addresses whether HFE genotype affects macrophage function and the implications of these findings for disease processes. Bone marrow macrophages were isolated from wildtype and H67D HFE knock-in mice. The H67D gene variant in mice is the human equivalent of the H63D variant. Upon differentiation, the macrophages were used to analyze iron regulatory proteins, cellular iron release, migration, phagocytosis, and cytokine expression. The results of this study demonstrate that the H67D HFE genotype significantly impacts a number of critical macrophage functions. Specifically, fundamental activities such as proliferation in response to iron exposure, L-ferritin expression in response to iron loading, secretion of BMP6 and cytokines, and migration and phagocytic activity were all found to be impacted by genotype. Furthermore, we demonstrated that exposure to apo-Tf (iron-poor transferrin) can increase the release of iron from macrophages. In normal conditions, 70% of circulating transferrin is unsaturated. Therefore, the ability of apo-Tf to induce iron release could be a major regulatory mechanism for iron release from macrophages. These studies demonstrate that the HFE genotype impacts fundamental components of macrophage phenotype that could alter their role in degenerative and reparative processes in neurodegenerative disorders.

  19. Liver macrophages: friend or foe during hepatitis B infection?

    Science.gov (United States)

    Faure-Dupuy, Suzanne; Durantel, David; Lucifora, Julie

    2018-05-17

    The Hepatitis B virus chronically infects the liver of 250 million people worldwide. Over the past decades, major advances have been made in the understanding of Hepatitis B virus life cycle in hepatocytes. Beside these parenchymal cells, the liver also contains resident and infiltrating myeloid cells involved in immune responses to pathogens and much less is known about their interplay with Hepatitis B virus. In this review, we summarized and discussed the current knowledge of the role of liver macrophages (including Kupffer cells and liver monocyte-derived macrophages), in HBV infection. While it is still unclear if liver macrophages play a role in the establishment and persistence of HBV infection, several studies disclosed data suggesting that HBV would favour liver macrophage anti-inflammatory phenotypes and thereby increase liver tolerance. In addition, alternatively activated liver macrophages might also play in the long term a key role in hepatitis B associated pathogenesis, especially through the activation of hepatic stellate cells. Therapies aiming at a transient activation of pro-inflammatory liver macrophages should therefore be considered for the treatment of chronic HBV infection. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Human macrophage hemoglobin-iron metabolism in vitro

    International Nuclear Information System (INIS)

    Custer, G.; Balcerzak, S.; Rinehart, J.

    1982-01-01

    An entirely in vitro technique was employed to characterize hemoglobin-iron metabolism by human macrophages obtained by culture of blood monocytes and pulmonary alveolar macrophages. Macrophages phagocytized about three times as many erythrocytes as monocytes and six times as many erythrocytes as pulmonary alveolar macrophages. The rate of subsequent release of 59 Fe to the extracellular transferrin pool was two- to fourfold greater for macrophages as compared to the other two cell types. The kinetics of 59 Fe-transferrin release were characterized by a relatively rapid early phase (hours 1-4) followed by a slow phase (hours 4-72) for all three cell types. Intracellular movement of iron was characterized by a rapid shift from hemoglobin to ferritin that was complete with the onset of the slow phase of extracellular release. A transient increase in 59 Fe associated with an intracellular protein eluting with transferrin was also observed within 1 hour after phagocytosis. The process of hemoglobin-iron release to extracellular transferrin was inhibited at 4 degrees C but was unaffected by inhibitory of protein synthesis, glycolysis, microtubule function, and microfilament function. These data emphasize the rapidity of macrophage hemoglobin iron metabolism, provide a model for characterization of this process in vitro, and in general confirm data obtained utilizing in vivo animal models

  1. Pegylated silica nanoparticles: cytotoxicity and macrophage uptake

    Science.gov (United States)

    Glorani, Giulia; Marin, Riccardo; Canton, Patrizia; Pinto, Marcella; Conti, Giamaica; Fracasso, Giulio; Riello, Pietro

    2017-08-01

    Here, we present a thorough study of pegylated silica nanoparticle (SNP) interaction with different biological environments. The SNPs have a mean diameter of about 40 nm and are coated with polyethylene glycol (PEG) of different molecular weights. The physicochemical characterization of SNPs allowed the confirmation of the binding of PEG chains to the silica surface, the reproducibility of the synthesis and the narrow size-dispersion. In view of clarifying the SNP interaction with biological environments, we first assessed the SNP reactivity after the incubation with two cell lines (macrophages RAW 264.7 and primary human fibroblasts), observing a reduced toxicity of pegylated SNPs compared to the bare ones. Then, we investigated the effect of the protein adsorption on the SNP surface using the model serum protein, bovine serum albumin (BSA). We found that the protein adsorption takes place more heavily on poorly pegylated SNPs, promoting the uptake of the latter by macrophages and leading to an increased mortality of these cells. To better understand this mechanism by means of flow cytometry, the dye Ru(bpy)3Cl2 was incorporated in the SNPs. The overall results highlight the SNP potentialities as a drug delivery system, thanks to the low interactions with the macrophages.

  2. Cathepsin E deficiency impairs autophagic proteolysis in macrophages.

    Directory of Open Access Journals (Sweden)

    Takayuki Tsukuba

    Full Text Available Cathepsin E is an endosomal aspartic proteinase that is predominantly expressed in immune-related cells. Recently, we showed that macrophages derived from cathepsin E-deficient (CatE(-/- mice display accumulation of lysosomal membrane proteins and abnormal membrane trafficking. In this study, we demonstrated that CatE(-/- macrophages exhibit abnormalities in autophagy, a bulk degradation system for aggregated proteins and damaged organelles. CatE(-/- macrophages showed increased accumulation of autophagy marker proteins such as LC3 and p62, and polyubiquitinated proteins. Cathepsin E deficiency also altered autophagy-related signaling pathways such as those mediated by the mammalian target of rapamycin (mTOR, Akt, and extracellular signal-related kinase (ERK. Furthermore, immunofluorescence microscopy analyses showed that LC3-positive vesicles were merged with acidic compartments in wild-type macrophages, but not in CatE(-/- macrophages, indicating inhibition of fusion of autophagosome with lysosomes in CatE(-/- cells. Delayed degradation of LC3 protein was also observed under starvation-induced conditions. Since the autophagy system is involved in the degradation of damaged mitochondria, we examined the accumulation of damaged mitochondria in CatE(-/- macrophages. Several mitochondrial abnormalities such as decreased intracellular ATP levels, depolarized mitochondrial membrane potential, and decreased mitochondrial oxygen consumption were observed. Such mitochondrial dysfunction likely led to the accompanying oxidative stress. In fact, CatE(-/- macrophages showed increased reactive oxygen species (ROS production and up-regulation of oxidized peroxiredoxin-6, but decreased antioxidant glutathione. These results indicate that cathepsin E deficiency causes autophagy impairment concomitantly with increased aberrant mitochondria as well as increased oxidative stress.

  3. Agmatine Modulates the Phenotype of Macrophage Acute Phase after Spinal Cord Injury in Rats.

    Science.gov (United States)

    Kim, Jae Hwan; Kim, Jae Young; Mun, Chin Hee; Suh, Minah; Lee, Jong Eun

    2017-10-01

    Agmatine is a decarboxylated arginine by arginine decarboxylase. Agmatine is known to be a neuroprotective agent. It has been reported that agmatine works as a NMDA receptor blocker or a competitive nitric oxide synthase inhibitor in CNS injuries. In spinal cord injury, agmatine showed reduction of neuropathic pain, improvement of locomotor function, and neuroprotection. Macrophage is a key cellular component in neuroinflammation, a major cause of impairment after spinal cord injury. Macrophage has subtypes, M1 and M2 macrophages. M1 macrophage induces a pro-inflammatory response, but M2 inspires an anti-inflammatory response. In this study, it was clarified whether the neuroprotective effect of agmatine is related with the modulation of macrophage subdivision after spinal cord injury. Spinal cord injury was induced in rats with contusion using MASCIS. Animals received agmatine (100 mg/kg, IP) daily for 6 days beginning the day after spinal cord injury. The proportion of M1 and M2 macrophages are confirmed with immunohistochemistry and FACS. CD206 + & ED1 + cells were counted as M2 macrophages. The systemic treatment of agmatine increased M2 macrophages caudal side to epicenter 1 week after spinal cord injury in immunohistochemistry. M2 macrophage related markers, Arginase-1 and CD206 mRNA, were increased in the agmatine treatment group and M2 macrophage expressing and stimulated cytokine, IL-10 mRNA, also was significantly overexpressed by agmatine injection. Among BMPs, BMP2/4/7, agmatine significantly increased only the expression of BMP2 known to reduce M1 macrophage under inflammatory status. These results suggest that agmatine reduces impairment after spinal cord injury through modulating the macrophage phenotype.

  4. Effect of irradiation on lysosomal enzyme activation in cultured macrophages

    International Nuclear Information System (INIS)

    Clarke, C.; Wills, E.D.

    1980-01-01

    The effect of γrays on lysosomal enzyme activity of normal and immune macrophages of DBA/2 mice cultured in vitro has been studied. A dose of 500 rad did not significantly affect lysosomal enzyme activity 3 hours after irradiation but caused the activity to increase to 1.4 times the control value 22.5 hours after irradiation. 22.5 hours after a dose of 3000 rad the enzyme activity increased to 2.5 times the control. Lysosomal enzyme activity of the macrophages was also markedly increased by immunization of the mice with D lymphoma cells, before culture in vitro, but irradiation of these cells with a dose of 500 rad caused a further increase in lysosomal enzyme activity. The results indicate that immunization and irradiation both cause stimulation of lysosomal enzyme activity in macrophages but that the mechanisms of activation are unlikely to be identical. (author)

  5. Oxidation of Commercial Petronas Diesel with Tert-Butyl Hydroperoxide Over Poly molybdate Alumina Supported Catalyst Modified With Alkaline Earth Metals

    International Nuclear Information System (INIS)

    Wan Nazwanie Wan Abdullah; Rusmidah Ali; Wan Azlee Wan Abu Bakar

    2016-01-01

    Due to strict environmental legislation for ultra-low sulfur diesel fuels, increasing technical and operational challenges are imposed to conventional hydrodesulfurization (HDS) technology. Therefore, catalytic oxidative desulfurization (Cat-ODS) has been suggested to be an alternative method to replace a conventional method which is hydrodesulfurization. In this study, catalytic oxidation of commercial diesel was performed using an oil-soluble oxidant, tert-butyl hydroperoxide (TBHP), over poly molybdate supported on alumina MoO_3-PO_4/ Al_2O_3 catalyst. A commercial Petronas diesel with 440 ppm of total sulfur was employed to evaluate the elimination of sulfur compounds. Besides, the percentage of sulfur removal was measured by (GC-FPD). Alkaline earth metals, such as Calcium (Ca), Barium (Ba) and Strontium (Sr) were introduced on the surface of MoO_3-PO_4/ Al_2O_3. The results showed that the catalytic activity decreased in the order, Ca/ MoO_3-PO_4/ Al_2O_3>Sr/ MoO_3-PO_4/ Al_2O_3> Ba/ MoO_3-PO_4/ Al_2O_3. The Ca/ MoO_3-PO_4/ Al_2O_3 catalyst was characterized by XRD and FESEM. XRD results showed that the best catalyst was highly amorphous while FESEM micrograph illustrated an aggregation and agglomeration of various particle sizes. The catalytic activity of Ca/ MoO_3-PO_4/ Al_2O_3 catalyst with various Ca/ Mo ratios were also studied. When the Ca/ Mo ratio was 15:85, the sulfur removal was the highest (79 %) at 45 degree Celsius, 30 min and O/ S molar ratio 3.0 with solvent = dimethylformamide (DMF), diesel/ solvent ratio = 1.0. (author)

  6. Brucella infection inhibits macrophages apoptosis via Nedd4-dependent degradation of calpain2.

    Science.gov (United States)

    Cui, Guimei; Wei, Pan; Zhao, Yuxi; Guan, Zhenhong; Yang, Li; Sun, Wanchun; Wang, Shuangxi; Peng, Qisheng

    2014-11-07

    The calcium-dependent protease calpain2 is involved in macrophages apoptosis. Brucella infection-induced up-regulation of intracellular calcium level is an essential factor for the intracellular survival of Brucella within macrophages. Here, we hypothesize that calcium-dependent E3 ubiquitin ligase Nedd4 ubiquitinates calpain2 and inhibits Brucella infection-induced macrophage apoptosis via degradation of calpain2.Our results reveal that Brucella infection induces increases in Nedd4 activity in an intracellular calcium dependent manner. Furthermore, Brucella infection-induced degradation of calpain2 is mediated by Nedd4 ubiquitination of calpain2. Brucella infection-induced calpain2 degradation inhibited macrophages apoptosis. Treatment of Brucella infected macrophages with calcium chelator BAPTA or Nedd4 knock-down decreased Nedd4 activity, prevented calpain2 degradation, and resulted in macrophages apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Imaging of macrophage-related lung diseases

    International Nuclear Information System (INIS)

    Marten, Katharina; Hansell, David M.

    2005-01-01

    Macrophage-related pulmonary diseases are a heterogeneous group of disorders characterized by macrophage accumulation, activation or dysfunction. These conditions include smoking-related interstitial lung diseases, metabolic disorders such as Niemann-Pick or Gaucher disease, and rare primary lung tumors. High-resolution computed tomography abnormalities include pulmonary ground-glass opacification secondary to infiltration by macrophages, centrilobular nodules or interlobular septal thickening reflecting peribronchiolar or septal macrophage accumulation, respectively, emphysema caused by macrophage dysfunction, and honeycombing following macrophage-related lung matrix remodeling. (orig.)

  8. Amplification of the spleen macrophage population in malaria: possible role of a factor chemotactic for blood mononuclear cells

    International Nuclear Information System (INIS)

    Wyler, D.J.; Gallin, J.I.

    1976-01-01

    The mechanism of amplification of the splenic macrophages' population was investigated using mice infected with malaria as a model of an obligate intravascular infection. It was observed that these macrophages derived from blood monocytes rather than by local proliferation in the spleen. A factor, chemotactic for blood mononuclear cells, was present in spleen cells shortly after infection and preceded detectable increases in spleen macrophage number by 48 hours. This factor, in concert with spleen derived macrophage migration inhibition factor, may be important in the amplification of splenic macrophage population in intravascular infections

  9. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    International Nuclear Information System (INIS)

    Permana, Paska A.; Menge, Christopher; Reaven, Peter D.

    2006-01-01

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-κB) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-κB inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity

  10. Progastrin represses the alternative activation of human macrophages and modulates their influence on colon cancer epithelial cells.

    Directory of Open Access Journals (Sweden)

    Carlos Hernández

    Full Text Available Macrophage infiltration is a negative prognostic factor for most cancers but gastrointestinal tumors seem to be an exception. The effect of macrophages on cancer progression depends on their phenotype, which may vary between M1 (pro-inflammatory, defensive to M2 (tolerogenic, pro-tumoral. Gastrointestinal cancers often become an ectopic source of gastrins and macrophages present receptors for these peptides. The aim of the present study is to analyze whether gastrins can affect the pattern of macrophage infiltration in colorectal tumors. We have evaluated the relationship between gastrin expression and the pattern of macrophage infiltration in samples from colorectal cancer and the influence of these peptides on the phenotype of macrophages differentiated from human peripheral monocytes in vitro. The total number of macrophages (CD68+ cells was similar in tumoral and normal surrounding tissue, but the number of M2 macrophages (CD206+ cells was significantly higher in the tumor. However, the number of these tumor-associated M2 macrophages correlated negatively with the immunoreactivity for gastrin peptides in tumor epithelial cells. Macrophages differentiated from human peripheral monocytes in the presence of progastrin showed lower levels of M2-markers (CD206, IL10 with normal amounts of M1-markers (CD86, IL12. Progastrin induced similar effects in mature macrophages treated with IL4 to obtain a M2-phenotype or with LPS plus IFNγ to generate M1-macrophages. Macrophages differentiated in the presence of progastrin presented a reduced expression of Wnt ligands and decreased the number and increased cell death of co-cultured colorectal cancer epithelial cells. Our results suggest that progastrin inhibits the acquisition of a M2-phenotype in human macrophages. This effect exerted on tumor associated macrophages may modulate cancer progression and should be taken into account when analyzing the therapeutic value of gastrin immunoneutralization.

  11. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide

    International Nuclear Information System (INIS)

    Genin, Marie; Clement, Francois; Fattaccioli, Antoine; Raes, Martine; Michiels, Carine

    2015-01-01

    Tumor associated macrophages (TAMs) are present in high density in solid tumors. TAMs share many characteristics with alternatively activated macrophages, also called M2. They have been shown to favor tumor development and a role in chemoresistance has also been suggested. Here, we investigated the effects of M2 in comparison to M1 macrophages on cancer cell sensitivity to etoposide. We set up a model of macrophage polarization, starting from THP-1 monocytes differentiated into macrophages using PMA (Phorbol 12-myristate 13-acetate). Once differentiated (M0 macrophages), they were incubated with IL-4 and IL-13 in order to obtain M2 polarized macrophages or with IFN-gamma and LPS for classical macrophage activation (M1). To mimic the communication between cancer cells and TAMs, M0, M1 or M2 macrophages and HepG2 or A549 cancer cells were co-cultured during respectively 16 (HepG2) or 24 (A549) hours, before etoposide exposure for 24 (HepG2) or 16 (A549) hours. After the incubation, the impact of etoposide on macrophage polarization was studied and cancer cell apoptosis was assessed by western-blot for cleaved caspase-3 and cleaved PARP-1 protein, caspase activity assay and FACS analysis of Annexin V and PI staining. mRNA and protein expression of M1 and M2 markers confirmed the polarization of THP-1-derived macrophages, which provide a new, easy and well-characterized model of polarized human macrophages. Etoposide-induced cancer cell apoptosis was markedly reduced in the presence of THP-1 M2 macrophages, while apoptosis was increased in cells co-cultured with M1 macrophages. On the other hand, etoposide did not influence M1 or M2 polarization. These results evidence for the first time a clear protective effect of M2 on the contrary to M1 macrophages on etoposide-induced cancer cell apoptosis

  12. IAP survivin regulates atherosclerotic macrophage survival

    NARCIS (Netherlands)

    Blanc-Brude, Olivier P.; Teissier, Elisabeth; Castier, Yves; Lesèche, Guy; Bijnens, Ann-Pascal; Daemen, Mat; Staels, Bart; Mallat, Ziad; Tedgui, Alain

    2007-01-01

    Inflammatory macrophage apoptosis is critical to atherosclerotic plaque formation, but its mechanisms remain enigmatic. We hypothesized that inhibitor of apoptosis protein (IAP) survivin regulates macrophage death in atherosclerosis. Western blot analysis revealed discrete survivin expression in

  13. Intracellular glutathione status regulates mouse bone marrow monocyte-derived macrophage differentiation and phagocytic activity

    International Nuclear Information System (INIS)

    Kim, Jin-Man; Kim, Hyunsoo; Kwon, Soon Bok; Lee, Soo Young; Chung, Sung-Chang; Jeong, Dae-Won; Min, Byung-Moo

    2004-01-01

    Although a redox shift can regulate the development of cells, including proliferation, differentiation, and survival, the role of the glutathione (GSH) redox status in macrophage differentiation remains unclear. In order to elucidate the role of a redox shift, macrophage-like cells were differentiated from the bone marrow-derived monocytes that were treated with a macrophage colony stimulating factor (M-CSF or CSF-1) for 3 days. The macrophagic cells were characterized by a time-dependent increase in three major symptoms: the number of phagocytic cells, the number of adherent cells, and the mRNA expression of c-fms, a M-CSF receptor that is one of the macrophage-specific markers and mediates development signals. Upon M-CSF-driven macrophage differentiation, the GSH/GSSG ratio was significantly lower on day 1 than that observed on day 0 but was constant on days 1-3. To assess the effect of the GSH-depleted and -repleted status on the differentiation and phagocytosis of the macrophages, GSH depletion by BSO, a specific inhibitor of the de novo GSH synthesis, inhibited the formation of the adherent macrophagic cells by the down-regulation of c-fms, but did not affect the phagocytic activity of the macrophages. To the contrary, GSH repletion by the addition of NAC, which is a GSH precursor, or reduced GSH in media had no effect on macrophage differentiation, and led to a decrease in the phagocytic activity. Furthermore, we observed that there is checkpoint that is capable of releasing from the inhibition of the formation of the adherent macrophagic cells according to GSH depletion by BSO. Summarizing, these results indicate that the intracellular GSH status plays an important role in the differentiation and phagocytosis of macrophages

  14. Induction of different activated phenotypes of mouse peritoneal macrophages grown in different tissue culture media.

    Science.gov (United States)

    Kawakami, Tomoya; Koike, Atsushi; Amano, Fumio

    2017-08-01

    The role of activated macrophages in the host defense against pathogens or tumor cells has been investigated extensively. Many researchers have been using various culture media in in vitro experiments using macrophages. We previously reported that J774.1/JA-4 macrophage-like cells showed great differences in their activated macrophage phenotypes, such as production of reactive oxygen, nitric oxide (NO) or cytokines depending on the culture medium used, either F-12 (Ham's F-12 nutrient mixture) or Dulbecco modified Eagle's medium (DMEM). To examine whether a difference in the culture medium would influence the functions of primary macrophages, we used BALB/c mouse peritoneal macrophages in this study. Among the activated macrophage phenotypes, the expression of inducible NO synthase in LPS- and/or IFN-γ-treated peritoneal macrophages showed the most remarkable differences between F-12 and DMEM; i.e., NO production by LPS- and/or IFN-γ-treated cells was far lower in DMEM than in F-12. Similar results were obtained with C57BL mouse peritoneal macrophages. Besides, dilution of F-12 medium with saline resulted in a slight decrease in NO production, whereas that of DMEM with saline resulted in a significant increase, suggesting the possibility that DMEM contained some inhibitory factor(s) for NO production. However, such a difference in NO production was not observed when macrophage-like cell lines were examined. These results suggest that phenotypes of primary macrophages could be changed significantly with respect to host inflammatory responses by the surrounding environment including nutritional factors and that these altered macrophage phenotypes might influence the biological host defense.

  15. Macrophage models of Gaucher disease for evaluating disease pathogenesis and candidate drugs.

    Science.gov (United States)

    Aflaki, Elma; Stubblefield, Barbara K; Maniwang, Emerson; Lopez, Grisel; Moaven, Nima; Goldin, Ehud; Marugan, Juan; Patnaik, Samarjit; Dutra, Amalia; Southall, Noel; Zheng, Wei; Tayebi, Nahid; Sidransky, Ellen

    2014-06-11

    Gaucher disease is caused by an inherited deficiency of glucocerebrosidase that manifests with storage of glycolipids in lysosomes, particularly in macrophages. Available cell lines modeling Gaucher disease do not demonstrate lysosomal storage of glycolipids; therefore, we set out to develop two macrophage models of Gaucher disease that exhibit appropriate substrate accumulation. We used these cellular models both to investigate altered macrophage biology in Gaucher disease and to evaluate candidate drugs for its treatment. We generated and characterized monocyte-derived macrophages from 20 patients carrying different Gaucher disease mutations. In addition, we created induced pluripotent stem cell (iPSC)-derived macrophages from five fibroblast lines taken from patients with type 1 or type 2 Gaucher disease. Macrophages derived from patient monocytes or iPSCs showed reduced glucocerebrosidase activity and increased storage of glucocerebroside and glucosylsphingosine in lysosomes. These macrophages showed efficient phagocytosis of bacteria but reduced production of intracellular reactive oxygen species and impaired chemotaxis. The disease phenotype was reversed with a noninhibitory small-molecule chaperone drug that enhanced glucocerebrosidase activity in the macrophages, reduced glycolipid storage, and normalized chemotaxis and production of reactive oxygen species. Macrophages differentiated from patient monocytes or patient-derived iPSCs provide cellular models that can be used to investigate disease pathogenesis and facilitate drug development. Copyright © 2014, American Association for the Advancement of Science.

  16. Monocyte to macrophage differentiation-associated (MMD) positively regulates ERK and Akt activation and TNF-α and NO production in macrophages.

    Science.gov (United States)

    Liu, Qiang; Zheng, Jin; Yin, Dan-Dan; Xiang, Jie; He, Fei; Wang, Yao-Chun; Liang, Liang; Qin, Hong-Yan; Liu, Li; Liang, Ying-Min; Han, Hua

    2012-05-01

    Macrophage activation is modulated by both environmental cues and endogenous programs. In the present study, we investigated the role of a PAQR family protein, monocyte to macrophage differentiation-associated (MMD), in macrophage activation and unveiled its underlying molecular mechanism. Our results showed that while MMD expression could be detected in all tissues examined, its expression level is significantly up-regulated upon monocyte differentiation. Within cells, EGFP-MMD fusion protein could be co-localized to endoplasmic reticulum, mitochondria, Golgi apparatus, but not lysosomes and cytoplasm. MMD expression is up-regulated in macrophages after LPS stimulation, and this might be modulated by RBP-J, the critical transcription factor of Notch signaling. Overexpression of MMD in macrophages increased the production of TNF-α and NO upon LPS stimulation. We found that MMD overexpression enhanced ERK1/2 and Akt phosphorylation in macrophages after LPS stimulation. Blocking Erk or Akt by pharmacological agent reduced TNF-α or NO production in MMD-overexpressing macrophages, respectively. These results suggested that MMD modulates TNF-α and NO production in macrophages, and this process might involves Erk or Akt.

  17. Surface plasma functionalization influences macrophage behavior on carbon nanowalls

    Energy Technology Data Exchange (ETDEWEB)

    Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Vizireanu, Sorin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Stancu, Claudia Elena [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Luculescu, Catalin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Dinescu, Gheorghe [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania)

    2015-03-01

    The surfaces of carbon nanowall samples as scaffolds for tissue engineering applications were treated with oxygen or nitrogen plasma to improve their wettability and to functionalize their surfaces with different functional groups. X-ray photoelectron spectroscopy and water contact angle results illustrated the effective conversion of the carbon nanowall surfaces from hydrophobic to hydrophilic and the incorporation of various amounts of carbon, oxygen and nitrogen functional groups during the treatments. The early inflammatory responses elicited by un-treated and modified carbon nanowall surfaces were investigated by quantifying tumor necrosis factor-alpha and macrophage inflammatory protein-1 alpha released by attached RAW 264.7 macrophage cells. Scanning electron microscopy and fluorescence studies were employed to investigate the changes in macrophage morphology and adhesive properties, while MTT assay was used to quantify cell proliferation. All samples sustained macrophage adhesion and growth. In addition, nitrogen plasma treatment was more beneficial for cell adhesion in comparison with un-modified carbon nanowall surfaces. Instead, oxygen plasma functionalization led to increased macrophage adhesion and spreading suggesting a more activated phenotype, confirmed by elevated cytokine release. Thus, our findings showed that the chemical surface alterations which occur as a result of plasma treatment, independent of surface wettability, affect macrophage response in vitro. - Highlights: • N{sub 2} and O{sub 2} plasma treatments alter the CNW surface chemistry and wettability. • Cells seeded on CNW scaffolds are viable and metabolically active. • Surface functional groups, independent of surface wettability, affect cell response. • O{sub 2} plasma treatment of CNW leads to a more activated macrophage phenotype.

  18. Role of Osteal Macrophages in Bone Metabolism

    Directory of Open Access Journals (Sweden)

    Sun Wook Cho

    2015-03-01

    Full Text Available Macrophages have been shown to have pleiotropic functions in various pathophysiologies, especially in terms of anti-inflammatory and regenerative activity. Recently, the novel functions of bone marrow resident macrophages (called osteal macrophages were intensively studied in bone development, remodeling and tissue repair processes. This review discusses the current evidence for a role of osteal macrophages in bone modeling, remodeling, and fracture healing processes.

  19. Periodontitis-activated monocytes/macrophages cause aortic inflammation

    Science.gov (United States)

    Miyajima, Shin-ichi; Naruse, Keiko; Kobayashi, Yasuko; Nakamura, Nobuhisa; Nishikawa, Toru; Adachi, Kei; Suzuki, Yuki; Kikuchi, Takeshi; Mitani, Akio; Mizutani, Makoto; Ohno, Norikazu; Noguchi, Toshihide; Matsubara, Tatsuaki

    2014-01-01

    A relationship between periodontal disease and atherosclerosis has been suggested by epidemiological studies. Ligature-induced experimental periodontitis is an adequate model for clinical periodontitis, which starts from plaque accumulation, followed by inflammation in the periodontal tissue. Here we have demonstrated using a ligature-induced periodontitis model that periodontitis activates monocytes/macrophages, which subsequently circulate in the blood and adhere to vascular endothelial cells without altering the serum TNF-α concentration. Adherent monocytes/macrophages induced NF-κB activation and VCAM-1 expression in the endothelium and increased the expression of the TNF-α signaling cascade in the aorta. Peripheral blood-derived mononuclear cells from rats with experimental periodontitis showed enhanced adhesion and increased NF-κB/VCAM-1 in cultured vascular endothelial cells. Our results suggest that periodontitis triggers the initial pathogenesis of atherosclerosis, inflammation of the vasculature, through activating monocytes/macrophages. PMID:24893991

  20. Targeting androgen receptor to suppress macrophage-induced EMT and benign prostatic hyperplasia (BPH) development.

    Science.gov (United States)

    Lu, Tianjing; Lin, Wen-Jye; Izumi, Kouji; Wang, Xiaohai; Xu, Defeng; Fang, Lei-Ya; Li, Lei; Jiang, Qi; Jin, Jie; Chang, Chawnshang

    2012-10-01

    Early studies suggested macrophages might play roles in inflammation-associated benign prostatic hyperplasia (BPH) development, yet the underlying mechanisms remain unclear. Here we first showed that CD68(+) macrophages were identified in both epithelium and the stromal area of human BPH tissues. We then established an in vitro co-culture model with prostate epithelial and macrophage cell lines to study the potential impacts of infiltrating macrophages in the BPH development and found that co-culturing prostate epithelial cells with macrophages promoted migration of macrophages. In a three-dimensional culture system, the sphere diameter of BPH-1 prostate cells was significantly increased during coculture with THP-1 macrophage cells. Mechanism dissection suggested that expression levels of epithelial-mesenchymal transition (EMT) markers, such as N-cadherin, Snail, and TGF-β2, were increased, and administration of anti-TGF-β2 neutralizing antibody during co-culture suppressed the EMT and THP-1-mediated growth of BPH-1 cells, suggesting THP-1 might go through EMT to influence the BPH development and progression. Importantly, we found that modulation of androgen receptor (AR) in BPH-1 and mPrE cells significantly increased THP-1 and RAW264.7 cell migration, respectively, and enhanced expression levels of EMT markers, suggesting that AR in prostate epithelial cells might play a role in promoting macrophage-mediated EMT in prostate epithelial cells. Silencing AR function via an AR degradation enhancer, ASC-J9, decreased the macrophage migration to BPH-1 cells and suppressed EMT marker expression. Together, these results provide the first evidence to demonstrate that prostate epithelial AR function is important for macrophage-mediated EMT and proliferation of prostate epithelial cells, which represents a previously unrecognized role of AR in the cross-talk between macrophages and prostate epithelial cells. These results may provide new insights for a new therapeutic

  1. The role of hydroperoxides as a precursor in the radiation-induced graft polymerization of methyl methacrylate to ultra-high molecular weight polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Ichiro, E-mail: enomoto.ichiro@iri-tokyo.j [Tokyo Metropolitan Industrial Technology Research Institute, KFC bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan); School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Katsumura, Yosuke [School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Kudo, Hisaaki [School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Sekiguchi, Masayuki [Tokyo Metropolitan Industrial Technology Research Institute, KFC bldg., 12F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 (Japan)

    2010-06-15

    A graft polymerization of methyl methacrylate (MMA) to ultra-high molecular weight polyethylene (UHMWPE) with Co-60 gamma-ray irradiation in air at room temperature has been carried out. The grafting yields were measured as a function of the storage time (elapsed time from the end of irradiation to the start of grafting), and it was found that the yields reach at the maximum values at around several days since the end of irradiation. In order to clarify the precursor of the graft polymerization, changes of the radical yields and the carbonyl groups were measured as a function of storage time with ESR and microscopic FT-IR, respectively. From the similarities between the depth profiles of the hydroperoxide formation and the grafting products, it was concluded that the hydroperoxides can be main precursors of the grafting of the radiation-induced polymerization of MMA to UHMWPE under the given conditions.

  2. The role of hydroperoxides as a precursor in the radiation-induced graft polymerization of methyl methacrylate to ultra-high molecular weight polyethylene

    International Nuclear Information System (INIS)

    Enomoto, Ichiro; Katsumura, Yosuke; Kudo, Hisaaki; Sekiguchi, Masayuki

    2010-01-01

    A graft polymerization of methyl methacrylate (MMA) to ultra-high molecular weight polyethylene (UHMWPE) with Co-60 γ-ray irradiation in air at room temperature has been carried out. The grafting yields were measured as a function of the storage time (elapsed time from the end of irradiation to the start of grafting), and it was found that the yields reach at the maximum values at around several days since the end of irradiation. In order to clarify the precursor of the graft polymerization, changes of the radical yields and the carbonyl groups were measured as a function of storage time with ESR and microscopic FT-IR, respectively. From the similarities between the depth profiles of the hydroperoxide formation and the grafting products, it was concluded that the hydroperoxides can be main precursors of the grafting of the radiation-induced polymerization of MMA to UHMWPE under the given conditions.

  3. HIV-1 and the macrophage

    NARCIS (Netherlands)

    Bol, Sebastiaan M.; Cobos-Jimenez, Viviana; Kootstra, Neeltje A.; van 't Wout, Angelique B.

    2011-01-01

    Macrophages and CD4(+) T cells are natural target cells for HIV-1, and both cell types contribute to the establishment of the viral reservoir that is responsible for continuous residual virus replication during antiretroviral therapy and viral load rebound upon treatment interruption. Scientific

  4. The Thr-His Connection on the Distal Heme of Catalase-Related Hemoproteins: A Hallmark of Reaction with Fatty Acid Hydroperoxides.

    Science.gov (United States)

    Mashhadi, Zahra; Newcomer, Marcia E; Brash, Alan R

    2016-11-03

    This review focuses on a group of heme peroxidases that retain the catalase fold in structure, yet show little or no reaction with hydrogen peroxide. Instead of having a role in oxidative defense, these enzymes are involved in secondary metabolite biosynthesis. The prototypical enzyme is catalase-related allene oxide synthase, an enzyme that converts a specific fatty acid hydroperoxide to the corresponding allene oxide (epoxide). Other catalase-related enzymes form allylic epoxides, aldehydes, or a bicyclobutane fatty acid. In all catalases (including these relatives), a His residue on the distal face of the heme is absolutely required for activity. Its immediate neighbor in sequence as well as in 3 D space is conserved as Val in true catalases and Thr in the fatty acid hydroperoxide-metabolizing enzymes. Thr-His on the distal face of the heme is critical in switching the substrate specificity from H 2 O 2 to fatty acid hydroperoxide. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Cysteamine-mediated clearance of antibiotic-resistant pathogens in human cystic fibrosis macrophages.

    Directory of Open Access Journals (Sweden)

    Chandra L Shrestha

    Full Text Available Members of the Burkholderia cepacia complex are virulent, multi-drug resistant pathogens that survive and replicate intracellularly in patients with cystic fibrosis (CF. We have discovered that B. cenocepacia cannot be cleared from CF macrophages due to defective autophagy, causing continued systemic inflammation and infection. Defective autophagy in CF is mediated through constitutive reactive oxygen species (ROS activation of transglutaminase-2 (TG2, which causes the sequestration (accumulation of essential autophagy initiating proteins. Cysteamine is a TG2 inhibitor and proteostasis regulator with the potential to restore autophagy. Therefore, we sought to examine the impact of cysteamine on CF macrophage autophagy and bacterial killing. Human peripheral blood monocyte-derived macrophages (MDMs and alveolar macrophages were isolated from CF and non-CF donors. Macrophages were infected with clinical isolates of relevant CF pathogens. Cysteamine caused direct bacterial growth killing of live B. cenocepacia, B. multivorans, P. aeruginosa and MRSA in the absence of cells. Additionally, B. cenocepacia, B. multivorans, and P. aeruginosa invasion were significantly decreased in CF MDMs treated with cysteamine. Finally, cysteamine decreased TG2, p62, and beclin-1 accumulation in CF, leading to increased Burkholderia uptake into autophagosomes, increased macrophage CFTR expression, and decreased ROS and IL-1β production. Cysteamine has direct anti-bacterial growth killing and improves human CF macrophage autophagy resulting in increased macrophage-mediated bacterial clearance, decreased inflammation, and reduced constitutive ROS production. Thus, cysteamine may be an effective adjunct to antibiotic regimens in CF.

  6. Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure

    International Nuclear Information System (INIS)

    Jessop, Forrest; Hamilton, Raymond F.; Rhoderick, Joseph F.; Shaw, Pamela K.; Holian, Andrij

    2016-01-01

    Autophagy is an important metabolic mechanism that can promote cellular survival following injury. The specific contribution of autophagy to silica-induced inflammation and disease is not known. The objective of these studies was to determine the effects of silica exposure on the autophagic pathway in macrophages, as well as the general contribution of autophagy in macrophages to inflammation and disease. Silica exposure enhanced autophagic activity in vitro in Bone Marrow derived Macrophages and in vivo in Alveolar Macrophages isolated from silica-exposed mice. Impairment of autophagy in myeloid cells in vivo using Atg5 fl/fl LysM-Cre + mice resulted in enhanced cytotoxicity and inflammation after silica exposure compared to littermate controls, including elevated IL-18 and the alarmin HMGB1 in the whole lavage fluid. Autophagy deficiency caused some spontaneous inflammation and disease. Greater silica-induced acute inflammation in Atg5 fl/fl LysM-Cre + mice correlated with increased fibrosis and chronic lung disease. These studies demonstrate a critical role for autophagy in suppressing silica-induced cytotoxicity and inflammation in disease development. Furthermore, this data highlights the importance of basal autophagy in macrophages and other myeloid cells in maintaining lung homeostasis. - Highlights: • Silica exposure increases autophagy in macrophages. • Autophagy deficient mice have enhanced inflammation and silicosis. • Autophagy deficiency in macrophages results in greater silica-induced cytotoxicity. • Autophagy deficiency in macrophages increases extracellular IL-18 and HMGB1.

  7. Differential activation of Fyn kinase distinguishes saturated and unsaturated fats in mouse macrophages.

    Science.gov (United States)

    Tarabra, Elena; An Lee, Ting-Wen; Zammit, Victor A; Vatish, Manu; Yamada, Eijiro; Pessin, Jeffrey E; Bastie, Claire C

    2017-10-17

    Diet-induced obesity is associated with increased adipose tissue activated macrophages. Yet, how macrophages integrate fatty acid (FA) signals remains unclear. We previously demonstrated that Fyn deficiency ( fynKO ) protects against high fat diet-induced adipose tissue macrophage accumulation. Herein, we show that inflammatory markers and reactive oxygen species are not induced in fynKO bone marrow-derived macrophages exposed to the saturated FA palmitate, suggesting that Fyn regulates macrophage function in response to FA signals. Palmitate activates Fyn and re-localizes Fyn into the nucleus of RAW264.7, J774 and wild-type bone marrow-derived macrophages. Similarly, Fyn activity is increased in cells of adipose tissue stromal vascular fraction of high fat-fed control mice, with Fyn protein being located in the nucleus of these cells. We demonstrate that Fyn modulates palmitate-dependent oxidative stress in macrophages. Moreover, Fyn catalytic activity is necessary for its nuclear re-localization and downstream effects, as Fyn pharmacological inhibition abolishes palmitate-induced Fyn nuclear redistribution and palmitate-dependent increase of oxidative stress markers. Importantly, mono-or polyunsaturated FAs do not activate Fyn, and fail to re-localize Fyn to the nucleus. Together these data demonstrate that macrophages integrate nutritional FA signals via a differential activation of Fyn that distinguishes, at least partly, the effects of saturated versus unsaturated fats.

  8. Triglyceride-induced macrophage cell death is triggered by caspase-1.

    Science.gov (United States)

    Son, Sin Jee; Rhee, Ki-Jong; Lim, Jaewon; Kim, Tae Ue; Kim, Tack-Joong; Kim, Yoon Suk

    2013-01-01

    Triglyceride (TG) induces macrophage cell death which contributes to the development of atherosclerosis. We confirmed that exogenous TG accumulates in human THP-1 macrophages and causes cell death. TG treated THP-1 macrophages exhibited no change in tumor necrosis factor (TNF)-α, interleukin (IL)-18, macrophage inflammatory protein (MIP)-1α, and IL-1R1 receptor mRNA expression. However, there was a marked decrease in IL-1β mRNA expression but an increase in IL-1β protein secretion. Decreased expression of IL-1β mRNA and increased secretion of IL-1β protein was not the direct cause of cell death. Until now, TG was assumed to induce necrotic cell death in macrophages. Since caspase-1 is known to be involved in activation and secretion of IL-1β protein and pyroptotic cell death, next we determined whether caspase-1 is associated with TG-induced macrophage cell death. We found an increase in caspase-1 activity in TG-treated THP-1 macrophages and inhibition of caspase-1 activity using a specific inhibitor partially rescued cell death. These results suggest activation of the pyroptotic pathway by TG. This is the first report implicating the activation of caspase-1 and the triggering of the pyroptosis pathway in TG-induced macrophage cell death.

  9. Critical illness induces alternative activation of M2 macrophages in adipose tissue.

    Science.gov (United States)

    Langouche, Lies; Marques, Mirna B; Ingels, Catherine; Gunst, Jan; Derde, Sarah; Vander Perre, Sarah; D'Hoore, André; Van den Berghe, Greet

    2011-01-01

    We recently reported macrophage accumulation in adipose tissue of critically ill patients. Classically activated macrophage accumulation in adipose tissue is a known feature of obesity, where it is linked with increasing insulin resistance. However, the characteristics of adipose tissue macrophage accumulation in critical illness remain unknown. We studied macrophage markers with immunostaining and gene expression in visceral and subcutaneous adipose tissue from healthy control subjects (n = 20) and non-surviving prolonged critically ill patients (n = 61). For comparison, also subcutaneous in vivo adipose tissue biopsies were studied from 15 prolonged critically ill patients. Subcutaneous and visceral adipose tissue biopsies from non-surviving prolonged critically ill patients displayed a large increase in macrophage staining. This staining corresponded with elevated gene expression of "alternatively activated" M2 macrophage markers arginase-1, IL-10 and CD163 and low levels of the "classically activated" M1 macrophage markers tumor necrosis factor (TNF)-α and inducible nitric-oxide synthase (iNOS). Immunostaining for CD163 confirmed positive M2 macrophage staining in both visceral and subcutaneous adipose tissue biopsies from critically ill patients. Surprisingly, circulating levels and tissue gene expression of the alternative M2 activators IL-4 and IL-13 were low and not different from controls. In contrast, adipose tissue protein levels of peroxisome proliferator-activated receptor-γ (PPARγ), a nuclear receptor required for M2 differentiation and acting downstream of IL-4, was markedly elevated in illness. In subcutaneous abdominal adipose tissue biopsies from surviving critically ill patients, we could confirm positive macrophage staining with CD68 and CD163. We also could confirm elevated arginase-1 gene expression and elevated PPARγ protein levels. Unlike obesity, critical illness evokes adipose tissue accumulation of alternatively activated M2

  10. Zinc and zinc transporters in macrophages and their roles in efferocytosis in COPD.

    Directory of Open Access Journals (Sweden)

    Rhys Hamon

    Full Text Available Our previous studies have shown that nutritional zinc restriction exacerbates airway inflammation accompanied by an increase in caspase-3 activation and an accumulation of apoptotic epithelial cells in the bronchioles of the mice. Normally, apoptotic cells are rapidly cleared by macrophage efferocytosis, limiting any secondary necrosis and inflammation. We therefore hypothesized that zinc deficiency is not only pro-apoptotic but also impairs macrophage efferocytosis. Impaired efferocytic clearance of apoptotic epithelial cells by alveolar macrophages occurs in chronic obstructive pulmonary disease (COPD, cigarette-smoking and other lung inflammatory diseases. We now show that zinc is a factor in impaired macrophage efferocytosis in COPD. Concentrations of zinc were significantly reduced in the supernatant of bronchoalveolar lavage fluid of patients with COPD who were current smokers, compared to healthy controls, smokers or COPD patients not actively smoking. Lavage zinc was positively correlated with AM efferocytosis and there was decreased efferocytosis in macrophages depleted of Zn in vitro by treatment with the membrane-permeable zinc chelator TPEN. Organ and cell Zn homeostasis are mediated by two families of membrane ZIP and ZnT proteins. Macrophages of mice null for ZIP1 had significantly lower intracellular zinc and efferocytosis capability, suggesting ZIP1 may play an important role. We investigated further using the human THP-1 derived macrophage cell line, with and without zinc chelation by TPEN to mimic zinc deficiency. There was no change in ZIP1 mRNA levels by TPEN but a significant 3-fold increase in expression of another influx transporter ZIP2, consistent with a role for ZIP2 in maintaining macrophage Zn levels. Both ZIP1 and ZIP2 proteins were localized to the plasma membrane and cytoplasm in normal human lung alveolar macrophages. We propose that zinc homeostasis in macrophages involves the coordinated action of ZIP1 and ZIP2

  11. Macrophage-mediated response to hypoxia in disease

    Directory of Open Access Journals (Sweden)

    Tazzyman S

    2014-11-01

    Full Text Available Simon Tazzyman,1 Craig Murdoch,2 James Yeomans,1 Jack Harrison,1 Munitta Muthana3 1Department of Oncology, 2School of Clinical Dentistry, 3Department of Infection and Immunity, University of Sheffield, Sheffield, UK Abstract: Hypoxia plays a critical role in the pathobiology of various inflamed, diseased tissues, including malignant tumors, atherosclerotic plaques, myocardial infarcts, the synovia of rheumatoid arthritic joints, healing wounds, and sites of bacterial infection. These areas of hypoxia form when the blood supply is occluded and/or the oxygen supply is unable to keep pace with cell growth and/or infiltration of inflammatory cells. Macrophages are ubiquitous in all tissues of the body and exhibit great plasticity, allowing them to perform divergent functions, including, among others, patrolling tissue, combating invading pathogens and tumor cells, orchestrating wound healing, and restoring homeostasis after an inflammatory response. The number of tissue macrophages increases markedly with the onset and progression of many pathological states, with many macrophages accumulating in avascular and necrotic areas, where they are exposed to hypoxia. Recent studies show that these highly versatile cells then respond rapidly to the hypoxia present by altering their expression of a wide array of genes. Here we review the evidence for hypoxia-driven macrophage inflammatory responses in various disease states, and how this influences disease progression and treatment. Keywords: macrophage, hypoxia, inflammation, cytokine

  12. Mesenchymal stem cells ameliorate rhabdomyolysis-induced acute kidney injury via the activation of M2 macrophages

    Science.gov (United States)

    2014-01-01

    Introduction The mortality of rhabdomyolysis-induced acute kidney injury (AKI) is still high, as there is no effective therapy. It has been shown that bone marrow-derived mesenchymal stem cells (MSCs) can induce M2 macrophages, which mediate MSC protection in other experimental inflammation-related organ injury. This study was designed to investigate the protective effects of macrophage activation in MSC therapy of rhabdomyolysis-induced AKI. Methods MSCs were injected into glycerol-induced rhabdomyolysis mice. Renal injury was evaluated using the serum creatinine, urea nitrogen, renal pathology and acute tubular necrosis score. The distribution of MSCs was detected using two-photon fluorescence confocal imaging. Immunofluorescence of anti-F4/80 and anti-CD206 was performed to determine macrophages and M2 macrophages in the tissues of the kidney, and M2 macrophage infiltration was also evaluated using western blotting analyses. After depletion of macrophages using clodronate liposomes at the phase of kidney repair, renal injury was re-evaluated. RAW 264.7 macrophages were incubated with lipopolysaccharide and co-cultured with MSCs and subsequently visualised using immunofluorescence staining and flow cytometry analysis. Finally, disparate phenotype macrophages, including normal macrophages (M0), lipopolysaccharide-stimulated macrophages (M1), and MSC-co-cultured macrophages (M2), were infused into mice with AKI, which were pre-treated with liposomal clodronate. Results In vivo infusion of MSCs protected AKI mice from renal function impairment and severe tubular injury, which was accompanied by a time-dependent increase in CD206-positive M2 macrophage infiltration. In addition, depleting macrophages with clodronate delayed restoration of AKI. In vitro, macrophages co-cultured with MSCs acquired an anti-inflammatory M2 phenotype, which was characterised by an increased expression of CD206 and the secretory cytokine interleukin (IL)-10. The concentrations of IL-10, IL

  13. Corn silk induced cyclooxygenase-2 in murine macrophages.

    Science.gov (United States)

    Kim, Kyung A; Shin, Hyun-Hee; Choi, Sang Kyu; Choi, Hye-Seon

    2005-10-01

    Stimulation of murine macrophages with corn silk induced cyclooxygenase (COX)-2 with secretion of PGE2. Expression of COX-2 was inhibited by pyrolidine dithiocarbamate (PDTC), and increased DNA binding by nuclear factor kappa B (NF-kappaB), indicating that COX-2 induction proceeds also via the NF-kappaB signaling pathway. A specific inhibitor of COX-2 decreased the expression level of inducible nitric oxide synthase (iNOS) stimulated by corn silk. PGE2 elevated the expression level of iNOS, probably via EP2 and EP4 receptors on the surface of the macrophages.

  14. Identification of M2 macrophages in anterior pituitary glands of normal rats and rats with estrogen-induced prolactinoma.

    Science.gov (United States)

    Fujiwara, Ken; Yatabe, Megumi; Tofrizal, Alimuddin; Jindatip, Depicha; Yashiro, Takashi; Nagai, Ryozo

    2017-05-01

    Macrophages are present throughout the anterior pituitary gland. However, the features and function of macrophages in the gland are poorly understood. Recent studies have indicated that there are two main macrophage classes: M1 (classically activated) and M2 (alternatively activated). In this study, we examine whether both M1 and M2 macrophages are present in the anterior pituitary gland of rats. Our findings indicate that macrophages that are positive for CD68 (a pan-macrophage marker) were localized near capillaries in rat anterior pituitary gland. These macrophages were positive for iNOS or mannose receptor (MR), which are markers of M1 and M2 macrophages, respectively. To determine the morphological characteristics of M2 macrophages under pathological conditions, diethylstilbestrol (DES)-treated rats were used as an animal model of prolactinoma. After 2 weeks of DES treatment, a number of MR-immunopositive cells were present in the gland. Immunoelectron microscopy revealed that MR-immunopositive M2 macrophages had many small vesicles and moderately large vacuoles in cytoplasm. Phagosomes were sometimes present in cytoplasm. Interestingly, M2 macrophages in prolactinoma tissues did not usually exhibit distinct changes or differences during the normal, hyperplasia and adenoma stages. This study is the first to confirm that both M1 and M2 macrophages are present in the anterior pituitary gland of rats. Moreover, the number of M2 macrophages was greatly increased in rats with DES-induced prolactinoma. Future studies should attempt to characterize the functional role of M2 macrophages in the gland.

  15. Localization and counting of CD68-labelled macrophages in placentas of normal and preeclamptic women

    Science.gov (United States)

    Al-khafaji, Lina Ali; Al-Yawer, Malak A.

    2017-09-01

    In the human placenta, there are two types of placental macrophages Hofbauer cells of fetal villi and decidual macrophages of maternal decidua basalis. Placental macrophages adopt a specialized phenotype that may hold a key role in synthesis of vital mediators involved in the establishment and maintenance of pregnancy, parturition and maternal-fetal tolerance. Aberrant behavior of these macrophages can affect trophoblast functions and placental development and potentially can lead to a spectrum of adverse pregnancy outcomes. Yet, the populations and functions of placental macrophages in women with different parity and women with preeclampsia remain ill-defined and subject of controversy. Immuno-histochemical study using CD68 primary antibody revealed a significant increase in number of CD68 positive fetal and decidual macrophages in preeclamptic subgroups as compared to controls. Fetal macrophages were seen to be localized near fetal vessel wall and near syncytium which were significantly increased in primiparous preeclamptic subgroup. Our study assumed that there may be intermingling of signals between macrophages and trophoblast cells resulting in impairment of trophoblast invasion and spiral artery remodeling which is the primary placental defect in pregnancies complicated by preeclampsia.

  16. Cyclooxygenase-2 inhibition blocks M2 macrophage differentiation and suppresses metastasis in murine breast cancer model.

    Directory of Open Access Journals (Sweden)

    Yi-Rang Na

    Full Text Available Tumor cells are often associated with abundant macrophages that resemble the alternatively activated M2 subset. Tumor-associated macrophages (TAMs inhibit anti-tumor immune responses and promote metastasis. Cyclooxygenase-2 (COX-2 inhibition is known to prevent breast cancer metastasis. This study hypothesized that COX-2 inhibition affects TAM characteristics potentially relevant to tumor cell metastasis. We found that the specific COX-2 inhibitor, etodolac, inhibited human M2 macrophage differentiation, as determined by decreased CD14 and CD163 expressions and increased TNFα production. Several key metastasis-related mediators, such as vascular endothelial growth factor-A, vascular endothelial growth factor-C, and matrix metalloproteinase-9, were inhibited in the presence of etodolac as compared to untreated M2 macrophages. Murine bone marrow derived M2 macrophages also showed enhanced surface MHCII IA/IE and CD80, CD86 expressions together with enhanced TNFα expressions with etodolac treatment during differentiation. Using a BALB/c breast cancer model, we found that etodolac significantly reduced lung metastasis, possibly due to macrophages expressing increased IA/IE and TNFα, but decreased M2 macrophage-related genes expressions (Ym1, TGFβ. In conclusion, COX-2 inhibition caused loss of the M2 macrophage characteristics of TAMs and may assist prevention of breast cancer metastasis.

  17. Tsc1 is a Critical Regulator of Macrophage Survival and Function

    Directory of Open Access Journals (Sweden)

    Chunmin Fang

    2015-07-01

    Full Text Available Background/Aims: Tuberous sclerosis complex 1 (Tsc1 has been shown to regulate M1/M2 polarization of macrophages, but the precise roles of Tsc1 in the function and stability of macrophages are not fully understood. Here we show that Tsc1 is required for regulating the survival, migration and phagocytosis of macrophages. Methods: Mice with Tsc1 homozygous deletion in myeloid cells (LysMCreTsc1flox/flox; Tsc1 KO were obtained by crossing Tsc1flox/flox mice with mice expressing Cre recombinase under the control of Lysozyme promoter (LysMCre. The apoptosis and growth of macrophages were determined by flow cytometry and Real-time PCR (RT-PCR. The phagocytosis was determined using a Vybrant™ phagocytosis assay kit. The migration of macrophages was determined using transwell migration assay. Results: Peritoneal macrophages of Tsc1 KO mice exhibited increased apoptosis and enlarged cell size. Both M1 and M2 phenotypes in Tsc1-deficient macrophages were elevated in steady-state as well as in inflammatory conditions. Tsc1-deficient macrophages demonstrated impaired migration and reduced expression of chemokine receptors including CCR2 and CCR5. Phagocytosis activity and ROS production were enhanced in Tsc1-deficient macrophages. Furthermore, pharmacological inhibition of the mammalian target of rapamycin complex 1 (mTORC1 partially reversed the aberrance of Tsc1-deficient macrophages. Conclusion: Tsc1 plays a critical role in regulating macrophage survival, function and polarization via inhibition of mTORC1 activity.

  18. A Time- and Compartment-Specific Activation of Lung Macrophages in Hypoxic Pulmonary Hypertension.

    Science.gov (United States)

    Pugliese, Steven C; Kumar, Sushil; Janssen, William J; Graham, Brian B; Frid, Maria G; Riddle, Suzette R; El Kasmi, Karim C; Stenmark, Kurt R

    2017-06-15

    Studies in various animal models suggest an important role for pulmonary macrophages in the pathogenesis of pulmonary hypertension (PH). Yet, the molecular mechanisms characterizing the functional macrophage phenotype relative to time and pulmonary localization and compartmentalization remain largely unknown. In this study, we used a hypoxic murine model of PH in combination with FACS to quantify and isolate lung macrophages from two compartments over time and characterize their programing via RNA sequencing approaches. In response to hypoxia, we found an early increase in macrophage number that was restricted to the interstitial/perivascular compartment, without recruitment of macrophages to the alveolar compartment or changes in the number of resident alveolar macrophages. Principal component analysis demonstrated significant differences in overall gene expression between alveolar and interstitial macrophages (IMs) at baseline and after 4 and 14 d hypoxic exposure. Alveolar macrophages at both day 4 and 14 and IMs at day 4 shared a conserved hypoxia program characterized by mitochondrial dysfunction, proinflammatory gene activation, and mTORC1 signaling, whereas IMs at day 14 demonstrated a unique anti-inflammatory/proreparative programming state. We conclude that the pathogenesis of vascular remodeling in hypoxic PH involves an early compartment-independent activation of lung macrophages toward a conserved hypoxia program, with the development of compartment-specific programs later in the course of the disease. Thus, harnessing time- and compartment-specific differences in lung macrophage polarization needs to be considered in the therapeutic targeting of macrophages in hypoxic PH and potentially other inflammatory lung diseases. Copyright © 2017 by The American Association of Immunologists, Inc.

  19. Macrophage polarization differs between apical granulomas, radicular cysts, and dentigerous cysts.

    Science.gov (United States)

    Weber, Manuel; Schlittenbauer, Tilo; Moebius, Patrick; Büttner-Herold, Maike; Ries, Jutta; Preidl, Raimund; Geppert, Carol-Immanuel; Neukam, Friedrich W; Wehrhan, Falk

    2018-01-01

    Apical periodontitis can appear clinically as apical granulomas or radicular cysts. There is evidence that immunologic factors are involved in the pathogenesis of both pathologies. In contrast to radicular cysts, the dentigerous cysts have a developmental origin. Macrophage polarization (M1 vs M2) is a main regulator of tissue homeostasis and differentiation. There are no studies comparing macrophage polarization in apical granulomas, radicular cysts, and dentigerous cysts. Forty-one apical granulomas, 23 radicular cysts, and 23 dentigerous cysts were analyzed in this study. A tissue microarray (TMA) of the 87 consecutive specimens was created, and CD68-, CD11c-, CD163-, and MRC1-positive macrophages were detected by immunohistochemical methods. TMAs were digitized, and the expression of macrophage markers was quantitatively assessed. Radicular cysts are characterized by M1 polarization of macrophages while apical granulomas show a significantly higher degree of M2 polarization. Dentigerous cysts have a significantly lower M1 polarization than both analyzed periapical lesions (apical granulomas and radicular cysts) and accordingly, a significantly higher M2 polarization than radicular cysts. Macrophage cell density in dentigerous cysts is significantly lower than in the periapical lesions. The development of apical periodontitis towards apical granulomas or radicular cysts might be directed by macrophage polarization. Radicular cyst formation is associated with an increased M1 polarization of infiltrating macrophages. In contrast to radicular cysts, dentigerous cysts are characterized by a low macrophage infiltration and a high degree of M2 polarization, possibly reflecting their developmental rather than inflammatory origin. As M1 polarization of macrophages is triggered by bacterial antigens, these results underline the need for sufficient bacterial clearance during endodontic treatment to prevent a possible M1 macrophage-derived stimulus for radicular cyst

  20. Macrophage Area Content and Phenotype in Hepatic and Adipose Tissue in Patients with Obesity Undergoing Roux-en-Y Gastric Bypass

    DEFF Research Database (Denmark)

    Kristensen, Marianne D; Lund, Michael Taulo; Hansen, Merethe

    2017-01-01

    OBJECTIVE: To investigate hepatic and adipose tissue macrophage content in subjects with obesity and the role of adipose tissue macrophages in weight loss-induced improved insulin sensitivity (IS). METHODS: A cross-sectional and a longitudinal study were combined to investigate the role...... of macrophages in subcutaneous (SAT) and visceral (VAT) adipose tissue and the liver in obesity-induced impaired IS and improvements with weight loss. Macrophage markers (CD68, CD163, and CD206) in SAT, VAT, and the liver from patients with obesity were investigated. The same macrophage markers were investigated...... in SAT from 18 patients with obesity before and ∼18 months after a diet- and Roux-en-Y gastric bypass-induced weight loss. RESULTS: SAT macrophage markers did not decrease with weight loss, but macrophage concentration may have increased, concomitant with improved IS. Hepatic macrophage markers did...

  1. Macrophage Stimulating Protein Enhances Hepatic Inflammation in a NASH Model

    NARCIS (Netherlands)

    Li, Jieyi; Chanda, Dipanjan; van Gorp, Patrick J.; Jeurissen, Mike L. J.; Houben, Tom; Walenbergh, Sofie M. A.; Debets, Jacques; Oligschlaeger, Yvonne; Gijbels, Marion J. J.; Neumann, Dietbert; Shiri-Sverdlov, Ronit

    2016-01-01

    Non-alcoholic steatohepatitis (NASH) is a common liver disease characterized by hepatic lipid accumulation (steatosis) and inflammation. Currently, therapeutic options are poor and the long-term burden to society is constantly increasing. Previously, macrophage stimulating protein (MSP)-a serum

  2. Modeling triple-negative breast cancer heterogeneity: effects of stromal macrophages, fibroblasts and tumor vasculature.

    Science.gov (United States)

    Norton, Kerri-Ann; Jin, Kideok; Popel, Aleksander S

    2018-05-08

    A hallmark of breast tumors is its spatial heterogeneity that includes its distribution of cancer stem cells and progenitor cells, but also heterogeneity in the tumor microenvironment. In this study we focus on the contributions of stromal cells, specifically macrophages, fibroblasts, and endothelial cells on tumor progression. We develop a computational model of triple-negative breast cancer based on our previous work and expand it to include macrophage infiltration, fibroblasts, and angiogenesis. In vitro studies have shown that the secretomes of tumor-educated macrophages and fibroblasts increase both the migration and proliferation rates of triple-negative breast cancer cells. In vivo studies also demonstrated that blocking signaling of selected secreted factors inhibits tumor growth and metastasis in mouse xenograft models. We investigate the influences of increased migration and proliferation rates on tumor growth, the effect of the presence on fibroblasts or macrophages on growth and morphology, and the contributions of macrophage infiltration on tumor growth. We find that while the presence of macrophages increases overall tumor growth, the increase in macrophage infiltration does not substantially increase tumor growth and can even stifle tumor growth at excessive rates. Copyright © 2018. Published by Elsevier Ltd.

  3. [Macrophage activation in atherosclerosis. Message 1: Activation of macrophages normally and in atherosclerotic lesions].

    Science.gov (United States)

    Nikiforov, N G; Kornienko, V Y; Karagodin, V P; Orekhov, A N

    2015-01-01

    Macrophages play important role in initiation and progression of inflammation in atherosclerosis. Plaque macrophages were shown to exhibit a phenotypic range that is intermediate between two extremes, M1 (proinflammatory) and M2 (anti-inflammatory). Indeed, in atherosclerosis, macrophages demonstrate phenotypic plasticity to rapidly adjust to changing microenvironmental conditions. In plaque macrophages demonstrate different phenotypes, and besides macrophage phenotypes could be changed. Phenotypes M1, M2, M4, Mhem, HA-mac, M(Hb) u Mox are described in the article. Ability of macrophages change their phenotype also considered.

  4. Interleukin-6 Contributes to Age-Related Alteration of Cytokine Production by Macrophages

    Science.gov (United States)

    Gomez, Christian R.; Karavitis, John; Palmer, Jessica L.; Faunce, Douglas E.; Ramirez, Luis; Nomellini, Vanessa; Kovacs, Elizabeth J.

    2010-01-01

    Here, we studied in vitro cytokine production by splenic macrophages obtained from young and aged BALB/c wild type (WT) and IL-6 knockout (IL-6 KO) mice. Relative to macrophages obtained from young WT mice given lipopolysaccharide (LPS), those from aged WT mice had decreased production of proinflammatory cytokines. In contrast, when compared to macrophages from young IL-6 KO mice, LPS stimulation yielded higher levels of these cytokines by cells from aged IL-6 KO mice. Aging or IL-6 deficiency did not affected the percentage of F4/80+ macrophages, or the surface expression of Toll-like receptor 4 (TLR4) and components of the IL-6 receptor. Overall, our results indicate that IL-6 plays a role in regulating the age-related defects in macrophages through alteration of proinflammatory cytokines, adding to the complexity of IL-6-mediated impairment of immune cell function with increasing age. PMID:20671912

  5. Chlamydia pneumoniae hides inside apoptotic neutrophils to silently infect and propagate in macrophages.

    Directory of Open Access Journals (Sweden)

    Jan Rupp

    Full Text Available BACKGROUND: Intracellular pathogens have developed elaborate strategies for silent infection of preferred host cells. Chlamydia pneumoniae is a common pathogen in acute infections of the respiratory tract (e.g. pneumonia and associated with chronic lung sequelae in adults and children. Within the lung, alveolar macrophages and polymorph nuclear neutrophils (PMN are the first line of defense against bacteria, but also preferred host phagocytes of chlamydiae. METHODOLOGY/PRINCIPAL FINDINGS: We could show that C. pneumoniae easily infect and hide inside neutrophil granulocytes until these cells become apoptotic and are subsequently taken up by macrophages. C. pneumoniae infection of macrophages via apoptotic PMN results in enhanced replicative activity of chlamydiae when compared to direct infection of macrophages, which results in persistence of the pathogen. Inhibition of the apoptotic recognition of C. pneumoniae infected PMN using PS- masking Annexin A5 significantly lowered the transmission of chlamydial infection to macrophages. Transfer of apoptotic C. pneumoniae infected PMN to macrophages resulted in an increased TGF-ss production, whereas direct infection of macrophages with chlamydiae was characterized by an enhanced TNF-alpha response. CONCLUSIONS/SIGNIFICANCE: Taken together, our data suggest that C. pneumoniae uses neutrophil granulocytes to be silently taken up by long-lived macrophages, which allows for efficient propagation and immune protection within the human host.

  6. Dextran loading protects macrophages from lipid peroxidation and induces a Keap1/Nrf2/ARE-dependent antioxidant response.

    Science.gov (United States)

    Chechushkov, Anton; Zaitseva, Natalia; Vorontsova, Elena; Kozhin, Petr; Menshchikova, Elena; Shkurupiy, Vyacheslav

    2016-12-01

    Linear dextrans are often proposed as drug delivery systems with milder adverse effects and lower effective drug concentrations. Linear dextrans are polysaccharides that can potentially be used to load macrophages with drugs to transport them to a site of inflammation. Recently, it was reported that dextrans may exert a protective effect vis-à-vis drug cytotoxicity and during wound healing. The aim of the current work was to evaluate molecular mechanisms of action of dextrans that may be relevant to the cytoprotective effects. We determined the effect of treatment with 40- or 70-kDa dextran on production of reactive oxygen species, lipid peroxidation, and lysosomal pH in the J774 macrophage cell line. In addition, induction of Keap1/Nrf2/ARE and autophagic activity were evaluated. Dextrans of both molecular weights protected the cells from oxidative stress induced by cumene hydroperoxide and from lysosomal stress induced by ammonium chloride. The effect was associated with induction of the Keap1/Nrf2/ARE signaling pathway. Furthermore, dextran stimulated autophagy in a dose-dependent manner but inhibited the autophagosome-lysosome fusion in a time-dependent manner. This study shows possible cytoprotective effects of dextran under oxidative stress, and these findings may be used for the development of novel (dextran-based) drug delivery approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Macrophage expression in acute radiation colitis in rats

    International Nuclear Information System (INIS)

    Tadami, Tokuma; Shichijo, Kazuko; Matsuu, Mutsumi; Niino, Daisuke; Nakayama, Toshiyuki; Nakashima, Masahiro; Sekine, Ichiro

    2003-01-01

    Although radiation therapy is important in the treatment of tumors in pelvic and abdominal region, it may cause radiation injury as a side effect. But there is no effective way of preventing or curing the damages. The mechanism of acute radiation colitis has not been elucidated yet. Our previous reports have revealed that X-ray irradiation induce apoptosis of epithelial stem cells in colon. Then a hypothesis of the radiation colitis can be put forward, DNA damage by irradiation, apoptosis of mucosal epithelial stem cells and degeneration of epithelial gland structure, macrophages phagocyte the debris, being activated and secreting various inflammatory cytokines, infiltration of inflammatory cells. Several recent reports show that macrophages may play an important role in the process of inflammatory bowel diseases such ulcerative colitis or Crohn's disease. We studied radiation colitis using rat animal models. Male Wister rats were irradiated by a single fraction dose of 22.5 Gy X-ray at laparotomy, shielding except for an approximately 2.5 cm length of rectum. Histological changes and macrophage accumulation in the rectum mucosa were evaluated by immunohistochemistry and western blot method with the specimens which were taken on the 1, 2, 3, 4, 5, 6, 7, 10, and 14th day after irradiation. Severe macrophage accumulation in the lamina propria of the rectum was observed on the 5th day. At the same time, severe destruction of mucosal structure and inflammatory cells infiltration were also observed. Based on the potent pro-inflammatory cytokine producing effects of macrophage in rat and the increased expression in inflammatory bowel disease patients, speculate that intervention in the macrophage-cytokine network could form a future target for the treatment of acute radiation colitis. (author)

  8. Chronic skin inflammation accelerates macrophage cholesterol crystal formation and atherosclerosis

    Science.gov (United States)

    Ng, Qimin; Sanda, Gregory E.; Dey, Amit K.; Teague, Heather L.; Sorokin, Alexander V.; Dagur, Pradeep K.; Silverman, Joanna I.; Harrington, Charlotte L.; Rodante, Justin A.; Rose, Shawn M.; Varghese, Nevin J.; Belur, Agastya D.; Goyal, Aditya; Gelfand, Joel M.; Springer, Danielle A.; Bleck, Christopher K.E.; Thomas, Crystal L.; Yu, Zu-Xi; Winge, Mårten C.G.; Kruth, Howard S.; Marinkovich, M. Peter; Joshi, Aditya A.; Playford, Martin P.; Mehta, Nehal N.

    2018-01-01

    Inflammation is critical to atherogenesis. Psoriasis is a chronic inflammatory skin disease that accelerates atherosclerosis in humans and provides a compelling model to understand potential pathways linking these diseases. A murine model capturing the vascular and metabolic diseases in psoriasis would accelerate our understanding and provide a platform to test emerging therapies. We aimed to characterize a new murine model of skin inflammation (Rac1V12) from a cardiovascular standpoint to identify novel atherosclerotic signaling pathways modulated in chronic skin inflammation. The RacV12 psoriasis mouse resembled the human disease state, including presence of systemic inflammation, dyslipidemia, and cardiometabolic dysfunction. Psoriasis macrophages had a proatherosclerotic phenotype with increased lipid uptake and foam cell formation, and also showed a 6-fold increase in cholesterol crystal formation. We generated a triple-genetic K14-RacV12–/+/Srb1–/–/ApoER61H/H mouse and confirmed psoriasis accelerates atherogenesis (~7-fold increase). Finally, we noted a 60% reduction in superoxide dismutase 2 (SOD2) expression in human psoriasis macrophages. When SOD2 activity was restored in macrophages, their proatherogenic phenotype reversed. We demonstrate that the K14-RacV12 murine model captures the cardiometabolic dysfunction and accelerates vascular disease observed in chronic inflammation and that skin inflammation induces a proatherosclerotic macrophage phenotype with impaired SOD2 function, which associated with accelerated atherogenesis. PMID:29321372

  9. Characteristics and potential role of M2 macrophages in COPD

    Directory of Open Access Journals (Sweden)

    He S

    2017-10-01

    Full Text Available Shengyang He, Lihua Xie, Junjuan Lu, Shenghua SunDepartment of Respiratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China Background: COPD is a multi-pathogenesis disease mainly caused by smoking. A further understanding of the mechanism of smoking-related COPD might contribute to preventions and treatments of this disease in the early stages. This study was designed to identify the characteristics of M2 macrophages in COPD for a better understanding about their potential role.Materials and methods: COPD models were built in the C57BL/6 mouse by cigarette smoke (CS exposure combined with intraperitoneal injection of cigarette smoke extract (CSE. The modeling efficiency was evaluated by lung function and hematoxylin and eosin (H&E staining. The number of different macrophage phenotypes was detected by immunohistochemical staining (IHS of CD206, CD86 and CD68 on the lung tissue paraffin section. The RAW264.7 cells were polarized toward the M2 phenotype by interleukin IL-4 and confirmed by a flow cytometer. The gene expression levels of TGF-βRII, Smad2, Smad3 and Smad7 in CSE-treated M2 macrophages were detected by real-time reverse transcription polymerase chain reaction (RT-PCR. The expression levels of TGF-β/Smad pathway-related makers (TGF-βRII, p-Smad2, p-Smad3, Smad7 and TGF-β in alveolar M2 macrophages were detected by two consecutive paraffin section IHS.Results: The COPD model is well established, which is confirmed by the lung function test and lung H&E staining. The whole number of macrophages and the ratio of M2/M1 phenotype are both increased (p<0.05. The level of CD206+ cells in IL-4-stimulated RAW264.7 cells is up to 93.4%, which is confirmed by a flow cytometer. The gene expression of TGF-βRII, Smad2, Smad3 and Smad7 are all enhanced (p<0.05 in CES-treated M2 macrophages, which is detected by RT-PCR. The protein levels of TGF-β/Smad pathway-related markers are

  10. Dynamic activation of basilar membrane macrophages in response to chronic sensory cell degeneration in aging mouse cochleae.

    Science.gov (United States)

    Frye, Mitchell D; Yang, Weiping; Zhang, Celia; Xiong, Binbin; Hu, Bo Hua

    2017-02-01

    In the sensory epithelium, macrophages have been identified on the scala tympani side of the basilar membrane. These basilar membrane macrophages are the spatially closest immune cells to sensory cells and are able to directly respond to and influence sensory cell pathogenesis. While basilar membrane macrophages have been studied in acute cochlear stresses, their behavior in response to chronic sensory cell degeneration is largely unknown. Here we report a systematic observation of the variance in phenotypes, the changes in morphology and distribution of basilar membrane tissue macrophages in different age groups of C57BL/6J mice, a mouse model of age-related sensory cell degeneration. This study reveals that mature, fully differentiated tissue macrophages, not recently infiltrated monocytes, are the major macrophage population for immune responses to chronic sensory cell death. These macrophages display dynamic changes in their numbers and morphologies as age increases, and the changes are related to the phases of sensory cell degeneration. Notably, macrophage activation precedes sensory cell pathogenesis, and strong macrophage activity is maintained until sensory cell degradation is complete. Collectively, these findings suggest that mature tissue macrophages on the basilar membrane are a dynamic group of cells that are capable of vigorous adaptation to changes in the local sensory epithelium environment influenced by sensory cell status. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Red Wine administration to Apolipoprotein E-deficient Mice reduces their Macrophage-derived Extracellular Matrix Atherogenic Properties

    Directory of Open Access Journals (Sweden)

    MARIELLE KAPLAN

    2004-01-01

    Full Text Available Proteoglycans (PGs from the arterial extracellular matrix (ECM contribute to the trapping of LDL and oxidized LDL (Ox-LDL in the arterial wall, a phenomenon called "lipoprotein retention". Moreover, we have shown that subsequent to their binding to the matrix, LDL and Ox-LDL are taken up by macrophages. Oxidative stress significantly increases macrophage secretion of ECM-PGs, lipoprotein binding to the ECM and the uptake of ECM-retained lipoproteins by macrophages. The aim of the present study was to determine whether red wine administration to atherosclerotic mice would affect their peritoneal macrophage-derived extracellular matrix properties, such as the glycosaminoglycan content and the ability to bind LDL. In addition, we questioned the ability of LDL bound to the mice peritoneal macrophages-derived ECM to be taken up by macrophages. Red wine administration to atherosclerotic mice did not affect the mice peritoneal macrophages-derived ECM glycosaminoglycan content but it significantly reduced the mice peritoneal macrophages-derived ECM ability to bind LDL and the subsequent uptake of ECM-retained LDL by the macrophages. The present study thus clearly demonstrated the inhibitory effect of red wine consumption by E0 mice on their peritoneal macrophage-derived extracellular matrix atherogenic properties.

  12. MicroRNA-223 Is Upregulated in Active Tuberculosis Patients and Inhibits Apoptosis of Macrophages by Targeting FOXO3.

    Science.gov (United States)

    Xi, Xiue; Zhang, Chunxiao; Han, Wei; Zhao, Huayang; Zhang, Huiqiang; Jiao, Junhua

    2015-12-01

    Macrophage apoptosis is a host innate defense mechanism against tuberculosis (TB). In this study, we aimed to investigate the role of microRNA-223 (miR-223) in macrophage apoptosis of TB. We analyzed apoptosis in peripheral blood macrophages of active TB patients, infected human macrophages (TDMs and MDMs) with the Mycobacterium tuberculosis (Mtb) strain H37Rv, and observed the expression of miR-223 to investigate the relationship between miR-223 and macrophage apoptosis induced by Mtb. The apoptosis rate of peripheral blood macrophages decreased in active TB patients compared with healthy controls, and miR-223 expression increased significantly in macrophages after H37Rv infection. Transfection of human macrophages (TDMs and MDMs) with miR-223 inhibited macrophage apoptosis. We also demonstrated that miR-223 directly suppressed forkhead box O3 (FOXO3), and FOXO3 played a critical role as a mediator of the biological effects of miR-223 in macrophage apoptosis. The overexpression of FOXO3 remarkably reversed the apoptosis inhibitory effect of miR-223. Our data provide new clues for the essential role of miR-223 in the regulation of anti-Mtb-directed immune responses, which relies on the regulation of FOXO3 expression.

  13. ACAT1 deletion in murine macrophages associated with cytotoxicity and decreased expression of collagen type 3A1

    International Nuclear Information System (INIS)

    Rodriguez, Annabelle; Ashen, M. Dominique; Chen, Edward S.

    2005-01-01

    In contrast to some published studies of murine macrophages, we previously showed that ACAT inhibitors appeared to be anti-atherogenic in primary human macrophages in that they decreased foam cell formation without inducing cytotoxicity. Herein, we examined foam cell formation and cytotoxicity in murine ACAT1 knockout (KO) macrophages in an attempt to resolve the discrepancies. Elicited peritoneal macrophages from normal C57BL6 and ACAT1 KO mice were incubated with DMEM containing acetylated LDL (acLDL, 100 μg protein/ml) for 48 h. Cells became cholesterol enriched and there were no differences in the total cholesterol mass. Esterified cholesterol mass was lower in ACAT1 KO foam cells compared to normal macrophages (p 14 C]adenine from macrophages, was approximately 2-fold greater in ACAT1 KO macrophages as compared to normal macrophages (p < 0.0001), and this was independent of cholesterol enrichment. cDNA microarray analysis showed that ACAT1 KO macrophages expressed substantially less collagen type 3A1 (26-fold), which was confirmed by RT-PCR. Total collagen content was also significantly reduced (57%) in lung homogenates isolated from ACAT1 KO mice (p < 0.02). Thus, ACAT1 KO macrophages show biochemical changes consistent with increased cytotoxicity and also a novel association with decreased expression of collagen type 3A1

  14. Crotoxin stimulates an M1 activation profile in murine macrophages during Leishmania amazonensis infection.

    Science.gov (United States)

    Farias, L H S; Rodrigues, A P D; Coêlho, E C; Santos, M F; Sampaio, S C; Silva, E O

    2017-09-01

    American tegumentary leishmaniasis is caused by different species of Leishmania. This protozoan employs several mechanisms to subvert the microbicidal activity of macrophages and, given the limited efficacy of current therapies, the development of alternative treatments is essential. Animal venoms are known to exhibit a variety of pharmacological activities, including antiparasitic effects. Crotoxin (CTX) is the main component of Crotalus durissus terrificus venom, and it has several biological effects. Nevertheless, there is no report of CTX activity during macrophage - Leishmania interactions. Thus, the main objective of this study was to evaluate whether CTX has a role in macrophage M1 polarization during Leishmania infection murine macrophages, Leishmania amazonensis promastigotes and L. amazonensis-infected macrophages were challenged with CTX. MTT [3-(4,5dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide] toxicity assays were performed on murine macrophages, and no damage was observed in these cells. Promastigotes, however, were affected by treatment with CTX (IC50 = 22·86 µg mL-1) as were intracellular amastigotes. Macrophages treated with CTX also demonstrated increased reactive oxygen species production. After they were infected with Leishmania, macrophages exhibited an increase in nitric oxide production that converged into an M1 activation profile, as suggested by their elevated production of the cytokines interleukin-6 and tumour necrosis factor-α and changes in their morphology. CTX was able to reverse the L. amazonensis-mediated inhibition of macrophage immune responses and is capable of polarizing macrophages to the M1 profile, which is associated with a better prognosis for cutaneous leishmaniasis treatment.

  15. Monocyte chemoattractant protein-1 (MCP-1 regulates macrophage cytotoxicity in abdominal aortic aneurysm.

    Directory of Open Access Journals (Sweden)

    Qiwei Wang

    Full Text Available AIMS: In abdominal aortic aneurysm (AAA, macrophages are detected in the proximity of aortic smooth muscle cells (SMCs. We have previously demonstrated in a murine model of AAA that apoptotic SMCs attract monocytes and other leukocytes by producing MCP-1. Here we tested whether infiltrating macrophages also directly contribute to SMC apoptosis. METHODS AND RESULTS: Using a SMC/RAW264.7 macrophage co-culture system, we demonstrated that MCP-1-primed RAWs caused a significantly higher level of apoptosis in SMCs as compared to control macrophages. Next, we detected an enhanced Fas ligand (FasL mRNA level and membrane FasL protein expression in MCP-1-primed RAWs. Neutralizing FasL blocked SMC apoptosis in the co-culture. In situ proximity ligation assay showed that SMCs exposed to primed macrophages contained higher levels of receptor interacting protein-1 (RIP1/Caspase 8 containing cell death complexes. Silencing RIP1 conferred apoptosis resistance to SMCs. In the mouse elastase injury model of aneurysm, aneurysm induction increased the level of RIP1/Caspase 8 containing complexes in medial SMCs. Moreover, TUNEL-positive SMCs in aneurysmal tissues were frequently surrounded by CD68(+/FasL(+ macrophages. Conversely, elastase-treated arteries from MCP-1 knockout mice display a reduction of both macrophage infiltration and FasL expression, which was accompanied by diminished apoptosis of SMCs. CONCLUSION: Our data suggest that MCP-1-primed macrophages are more cytotoxic. MCP-1 appears to modulate macrophage cytotoxicity by increasing the level of membrane bound FasL. Thus, we showed that MCP-1-primed macrophages kill SMCs through a FasL/Fas-Caspase8-RIP1 mediated mechanism.

  16. Pseudomonas aeruginosa infection alters the macrophage phenotype switching process during wound healing in diabetic mice.

    Science.gov (United States)

    Chen, Sinuo; Li, Renren; Cheng, Chun; Xu, Jing-Ying; Jin, Caixia; Gao, Furong; Wang, Juan; Zhang, Jieping; Zhang, Jingfa; Wang, Hong; Lu, Lixia; Xu, Guo-Tong; Tian, Haibin

    2018-03-07

    Macrophages play critical roles in wound healing process. They switch from "classically activated" (M1) phenotype in the early inflammatory phase to "alternatively activated" (M2) phenotype in the later healing phase. However, the dynamic process of macrophage phenotype switching in diabetic wounds burdened with bacteria is unclear. In this report, Pseudomonas aeruginosa, frequently detected in diabetic foot ulcers, was inoculated into cutaneous wounds of db/db diabetic mice to mimic bacterium-infected diabetic wound healing. We observed that P. aeruginosa infection impaired diabetic wound healing and quickly promoted the expression of pro-inflammatory genes (M1 macrophage markers) tumor necrosis factor-α (tnf-α), interleukin-1β (il-1β) and il-6 in wounds. The expression of markers of M2 macrophages, including il-10, arginase-1, and ym1 were also upregulated. In addition, similar gene expression patterns were observed in macrophages isolated directly from wounds. Immunostaining showed that P. aeruginosa infection increased both the ratios of M1 and M2 macrophages in wounds compared with that in control groups, which was further confirmed by in vitro culturing macrophages with P. aeruginosa and skin fibroblast conditioned medium. However, the ratios of the expression levels of pro-inflammatory genes to anti-inflammatory gene il-10 was increased markedly in P. aeruginosa infected wounds and macrophages compared with that in control groups, and P. aeruginosa prolonged the presence of M1 macrophages in the wounds. These data demonstrated that P. aeruginosa in diabetic wounds activates a mixed M1/M2 macrophage phenotype with an excessive activation of M1 phenotype or relatively inadequate activation of M2 phenotype. © 2018 International Federation for Cell Biology.

  17. Induction of ER stress in macrophages of tuberculosis granulomas.

    Directory of Open Access Journals (Sweden)

    Tracie A Seimon

    2010-09-01

    Full Text Available The endoplasmic reticulum (ER stress pathway known as the Unfolded Protein Response (UPR is an adaptive survival pathway that protects cells from the buildup of misfolded proteins, but under certain circumstances it can lead to apoptosis. ER stress has been causally associated with macrophage apoptosis in advanced atherosclerosis of mice and humans. Because atherosclerosis shares certain features with tuberculosis (TB with regard to lesional macrophage accumulation, foam cell formation, and apoptosis, we investigated if the ER stress pathway is activated during TB infection.Here we show that ER stress markers such as C/EBP homologous protein (CHOP; also known as GADD153, phosphorylated inositol-requiring enzyme 1 alpha (Ire1α and eukaryotic initiation factor 2 alpha (eIF2α, and activating transcription factor 3 (ATF3 are expressed in macrophage-rich areas of granulomas in lungs of mice infected with virulent Mycobacterium tuberculosis (Mtb. These areas were also positive for numerous apoptotic cells as assayed by TUNEL. Microarray analysis of human caseous TB granulomas isolated by laser capture microdissection reveal that 73% of genes involved in the UPR are upregulated at the mRNA transcript level. The expression of two ER stress markers, ATF3 and CHOP, were also increased in macrophages of human TB granulomas when assayed by immunohistochemistry. CHOP has been causally associated with ER stress-induced macrophage apoptosis. We found that apoptosis was more abundant in granulomas as compared to non-granulomatous tissue isolated from patients with pulmonary TB, and apoptosis correlated with CHOP expression in areas surrounding the centralized areas of caseation.In summary, ER stress is induced in macrophages of TB granulomas in areas where apoptotic cells accumulate in mice and humans. Although macrophage apoptosis is generally thought to be beneficial in initially protecting the host from Mtb infection, death of infected macrophages in

  18. A new and efficient culture method for porcine bone marrow-derived M1- and M2-polarized macrophages.

    Science.gov (United States)

    Gao, Jiye; Scheenstra, Maaike R; van Dijk, Albert; Veldhuizen, Edwin J A; Haagsman, Henk P

    2018-06-01

    Macrophages play an important role in the innate immune system as part of the mononuclear phagocyte system (MPS). They have a pro-inflammatory signature (M1-polarized macrophages) or anti-inflammatory signature (M2-polarized macrophages) based on expression of surface receptors and secretion of cytokines. However, very little is known about the culture of macrophages from pigs and more specific about the M1 and M2 polarization in vitro. Porcine monocytes or mononuclear bone marrow cells were used to culture M1- and M2-polarized macrophages in the presence of GM-CSF and M-CSF, respectively. Surface receptor expression was measured with flow cytometry and ELISA was used to quantify cytokine secretion in response to LPS and PAM 3 CSK 4 stimulation. Human monocyte-derived macrophages were used as control. Porcine M1- and M2-polarized macrophages were cultured best using porcine GM-CSF and murine M-CSF, respectively. Cultures from bone marrow cells resulted in a higher yield M1- and M2-polarized macrophages which were better comparable to human monocyte-derived macrophages than cultures from porcine monocytes. Porcine M1-polarized macrophages displayed the characteristic fried egg shape morphology, lower CD163 expression and low IL-10 production. Porcine M2-polarized macrophages contained the spindle-like morphology, higher CD163 expression and high IL-10 production. Porcine M1- and M2-polarized macrophages can be most efficiently cultured from mononuclear bone marrow cells using porcine GM-CSF and murine M-CSF. The new culture method facilitates more refined studies of porcine macrophages in vitro, important for both porcine and human health since pigs are increasingly used as model for translational research. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. miR-148a-3p Mediates Notch Signaling to Promote the Differentiation and M1 Activation of Macrophages

    Directory of Open Access Journals (Sweden)

    Fei Huang

    2017-10-01

    Full Text Available The Notch pathway plays critical roles in the differentiation and polarized activation of macrophages; however, the downstream molecular mechanisms underlying Notch activity in macrophages remain elusive. Our previous study has identified a group of microRNAs that mediate Notch signaling to regulate macrophage activation and tumor-associated macrophages (TAMs. In this study, we demonstrated that miR-148a-3p functions as a novel downstream molecule of Notch signaling to promote the differentiation of monocytes into macrophages in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF. Meanwhile, miR-148a-3p promoted M1 and inhibited M2 polarization of macrophages upon Notch activation. Macrophages overexpressing miR-148a-3p exhibited enhanced ability to engulf and kill bacteria, which was mediated by excessive production of reactive oxygen species (ROS. Further studies using reporter assay and Western blotting identified Pten as a direct target gene of miR-148a-3p in macrophages. Macrophages overexpressing miR-148a-3p increased their ROS production through the PTEN/AKT pathway, likely to defend against bacterial invasion. Moreover, miR-148a-3p also enhanced M1 macrophage polarization and pro-inflammatory responses through PTEN/AKT-mediated upregulation of NF-κB signaling. In summary, our data establish a novel molecular mechanism by which Notch signaling promotes monocyte differentiation and M1 macrophage activation through miR-148a-3p, and suggest that miR-148a-3p-modified monocytes or macrophages are potential new tools for the treatment of inflammation-related diseases.

  20. Effect of conjugated linoleic acids on the activity and mRNA expression of 5- and 15-lipoxygenases in human macrophages.

    Science.gov (United States)

    Stachowska, Ewa; Dziedziejko, Violetta; Safranow, Krzysztof; Jakubowska, Katarzyna; Olszewska, Maria; Machaliñski, Bogusław; Chlubek, Dariusz

    2007-06-27

    Lipoxygenases are a family of non-heme enzyme dioxygenases. The role of lipoxygenases is synthesis of hydroperoxides of fatty acids, which perform signaling functions in the body. Studies on conjugated linoleic acids (CLAs) as fatty acids with a potential anti-atherosclerotic function have recently been initiated. The aim of the study was to test the effect of CLAs and linoleic acid on 5- and 15-lipoxygenase (5-LO, 15-LO-1) enzyme activity, their mRNA expression, and concentration in the cells. It was also desired to determine whether the CLAs are substrates for the enzymes. For the experiments monocytic cell line (THP-1) and monocytes obtained from human venous blood were used. Monocytes were differentiated to macrophages: THP-1 (CD14+) by PMA administration (100 nM for 24 h) and monocytes from blood (CD14+) by 7-day cultivation with the autologous serum (10%). After differentiation, macrophages were cultured with 30 microM CLAs or linoleic acid for 48 h. The 15- and 5-lipoxygenase products were measured by HPLC method. mRNA expression and protein content were analyzed by real-time PCR and Western blot analysis. The in vitro studies proved that both CLA isomers are not substrates for 15-LO-1; in ex vivo studies hydroxydecadienoic acid (HODE) concentration was significantly reduced (p = 0.019). The trans-10,cis-12 CLA isomer reduced HODE concentration by 28% (p = 0.046) and the cis-9,trans-11 CLA isomer by 35% (p = 0.028). In macrophages obtained from THP-1 fatty acids did not change significantly mRNA expression of the majority of the investigated genes. CLAs did not change the content of 5-LO and 15-LO-1 proteins in macrophages obtained from peripheral blood. Linoleic acid induced 15-LO-1 expression (2.6 times, p < 0.05). CLAs may perform the function of an inhibitor of lipoxygenase 15-LO-1 activity in macrophages.

  1. CRISPR/Cas9-Mediated Gene Editing in Human iPSC-Derived Macrophage Reveals Lysosomal Acid Lipase Function in Human Macrophages-Brief Report.

    Science.gov (United States)

    Zhang, Hanrui; Shi, Jianting; Hachet, Melanie A; Xue, Chenyi; Bauer, Robert C; Jiang, Hongfeng; Li, Wenjun; Tohyama, Junichiro; Millar, John; Billheimer, Jeffrey; Phillips, Michael C; Razani, Babak; Rader, Daniel J; Reilly, Muredach P

    2017-11-01

    To gain mechanistic insights into the role of LIPA (lipase A), the gene encoding LAL (lysosomal acid lipase) protein, in human macrophages. We used CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) technology to knock out LIPA in human induced pluripotent stem cells and then differentiate to macrophage (human-induced pluripotent stem cells-derived macrophage [IPSDM]) to explore the human macrophage LIPA loss-of-function phenotypes. LIPA was abundantly expressed in monocyte-derived macrophages and was markedly induced on IPSDM differentiation to comparable levels as in human monocyte-derived macrophage. IPSDM with knockout of LIPA ( LIPA -/- ) had barely detectable LAL enzymatic activity. Control and LIPA -/- IPSDM were loaded with [ 3 H]-cholesteryl oleate-labeled AcLDL (acetylated low-density lipoprotein) followed by efflux to apolipoprotein A-I. Efflux of liberated [ 3 H]-cholesterol to apolipoprotein A-I was abolished in LIPA -/- IPSDM, indicating deficiency in LAL-mediated lysosomal cholesteryl ester hydrolysis. In cells loaded with [ 3 H]-cholesterol-labeled AcLDL, [ 3 H]-cholesterol efflux was, however, not different between control and LIPA -/- IPSDM. ABCA1 (ATP-binding cassette, subfamily A, member 1) expression was upregulated by AcLDL loading but to a similar extent between control and LIPA -/- IPSDM. In nonlipid loaded state, LIPA -/- IPSDM had high levels of cholesteryl ester mass compared with minute amounts in control IPSDM. Yet, with AcLDL loading, overall cholesteryl ester mass was increased to similar levels in both control and LIPA -/- IPSDM. LIPA -/- did not impact lysosomal apolipoprotein-B degradation or expression of IL1B , IL6 , and CCL5. CONCLUSIONS: LIPA -/- IPSDM reveals macrophage-specific hallmarks of LIPA deficiency. CRISPR/Cas9 and IPSDM provide important tools to study human macrophage biology and more broadly for future studies of disease-associated LIPA genetic variation in human

  2. Dexamethasone palmitate ameliorates macrophages-rich graft-versus-host disease by inhibiting macrophage functions.

    Science.gov (United States)

    Nishiwaki, Satoshi; Nakayama, Takayuki; Murata, Makoto; Nishida, Tetsuya; Terakura, Seitaro; Saito, Shigeki; Kato, Tomonori; Mizuno, Hiroki; Imahashi, Nobuhiko; Seto, Aika; Ozawa, Yukiyasu; Miyamura, Koichi; Ito, Masafumi; Takeshita, Kyosuke; Kato, Hidefumi; Toyokuni, Shinya; Nagao, Keisuke; Ueda, Ryuzo; Naoe, Tomoki

    2014-01-01

    Macrophage infiltration of skin GVHD lesions correlates directly with disease severity, but the mechanisms underlying this relationship remain unclear and GVHD with many macrophages is a therapeutic challenge. Here, we characterize the macrophages involved in GVHD and report that dexamethasone palmitate (DP), a liposteroid, can ameliorate such GVHD by inhibiting macrophage functions. We found that host-derived macrophages could exacerbate GVHD in a mouse model through expression of higher levels of pro-inflammatory TNF-α and IFN-γ, and lower levels of anti-inflammatory IL-10 than resident macrophages in mice without GVHD. DP significantly decreased the viability and migration capacity of primary mouse macrophages compared to conventional dexamethasone in vitro. DP treatment on day 7 and day 14 decreased macrophage number, and attenuated GVHD score and subsequent mortality in a murine model. This is the first study to provide evidence that therapy for GVHD should be changed on the basis of infiltrating cell type.

  3. DMPD: Macrophage differentiation and function in health and disease. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available in health and disease. PubmedID 18251777 Title Macrophage differentiation and function in health and disease...thol Int. 2008 Mar;58(3):143-55. (.png) (.svg) (.html) (.csml) Show Macrophage differentiation and function

  4. Micro RNA in Exosomes from HIV-Infected Macrophages

    Directory of Open Access Journals (Sweden)

    William W. Roth

    2015-12-01

    Full Text Available Exosomes are small membrane-bound vesicles secreted by cells that function to shuttle RNA and proteins between cells. To examine the role of exosomal micro RNA (miRNA during the early stage of HIV-1 infection we characterized miRNA in exosomes from HIV-infected macrophages, compared with exosomes from non-infected macrophages. Primary human monocytes from uninfected donors were differentiated to macrophages (MDM which were either mock-infected or infected with the macrophage-tropic HIV-1 BaL strain. Exosomes were recovered from culture media and separated from virus particles by centrifugation on iodixanol density gradients. The low molecular weight RNA fraction was prepared from purified exosomes. After pre-amplification, RNA was hybridized to microarrays containing probes for 1200 miRNA species of known and unknown function. We observed 48 miRNA species in both infected and uninfected MDM exosomes. Additionally, 38 miRNAs were present in infected-cell exosomes but not uninfected-cell exosomes. Of these, 13 miRNAs were upregulated in exosomes from HIV-infected cells, including 4 miRNA species that were increased by more than 10-fold. Though numerous miRNA species have been identified in HIV-infected cells, relatively little is known about miRNA content in exosomes from these cells. In the future, we plan to investigate whether the upregulated miRNA species we identified are increased in exosomes from HIV-1-positive patients.

  5. Toll like receptor 4 (TLR4) mediates the stimulating activities of chitosan oligosaccharide on macrophages.

    Science.gov (United States)

    Zhang, Pei; Liu, Weizhi; Peng, Yanfei; Han, Baoqin; Yang, Yan

    2014-11-01

    The in vivo and in vitro immunostimulating properties of chitosan oligosaccharide (COS) prepared by enzymatic hydrolysis of chitosan and the mechanisms mediating the effects were investigated. Our data showed that the highly active chitosanase isolated could hydrolyze chitosan to the polymerization degree of 3-8. The resulting COS was an efficient immunostimulator. COS markedly enhanced the proliferation and neutral red phagocytosis by RAW 264.7 macrophages. The production of nitric oxide (NO) and tumor necrosis factor alpha (TNF-α) by macrophages was significantly increased after incubation with COS. Oral administration of COS in mice could increase spleen index and serum immunoglobin G (IgG) contents. COS was labeled with FITC to study the pinocytosis by macrophages. Results showed that FITC-COS was phagocyted by macrophages and anti-murine TLR4 antibody completely blocked FITC-COS pinocytosis. RT-PCR indicated that COS treatment of macrophages significantly increased TLR4 and inducible nitric oxide synthase (iNOS) mRNA levels. When cells were pretreated with anti-murine TLR4 antibody, the effect of COS on TLR4 and iNOS mRNA induction was decreased. COS-induced NO secretion by macrophages was also markedly decreased by anti-murine TLR4 antibody pretreatment. In conclusion, the present study revealed that COS possesses potent immune-stimulating properties by activating TLR4 on macrophages. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Impact of Silver and Iron Nanoparticle Exposure on Cholesterol Uptake by Macrophages

    Directory of Open Access Journals (Sweden)

    Jonathan H. Shannahan

    2015-01-01

    Full Text Available Macrophages are central to the development of atherosclerosis by absorbing lipids, promoting inflammation, and increasing plaque deposition. Nanoparticles (NPs are becoming increasingly common in biomedical applications thereby increasing exposure to the immune and vascular systems. This project investigated the influence of NPs on macrophage function and specifically cholesterol uptake. Macrophages were exposed to 20 nm silver NPs (AgNPs, 110 nm AgNPs, or 20 nm Fe3O4 NPs for 2 h and NP uptake, cytotoxicity, and subsequent uptake of fluorescently labeled cholesterol were assessed. Macrophage uptake of NPs did not induce cytotoxicity at concentrations utilized (25 μg/mL; however, macrophage exposure to 20 nm AgNPs reduced subsequent uptake of cholesterol. Further, we assessed the impact of a cholesterol-rich environment on macrophage function following NP exposure. In these sets of experiments, macrophages internalized NPs, exhibited no cytotoxicity, and altered cholesterol uptake. Alterations in the expression of scavenger receptor-B1 following NP exposure, which likely influences cholesterol uptake, were observed. Overall, NPs alter cholesterol uptake, which may have implications in the progression of vascular or immune mediated diseases. Therefore, for the safe development of NPs for biomedical applications, it is necessary to understand their impact on cellular function and biological interactions in underlying disease environments.

  7. Mesenchymal stem cell-educated macrophages

    OpenAIRE

    Eggenhofer Elke; Hoogduijn Martin J

    2012-01-01

    Abstract Mesenchymal stem cells (MSC) mediate their immunosuppressive effects via a variety of mechanisms. One of these mechanisms involves the induction of macrophages with immunomodulatory capacities. This effect of MSC may be exploited when MSC are used as a cell therapeutic product. Furthermore, MSC are resident in tissues where they may locally target infiltrating macrophages to adapt more regulatory properties. The present review discusses the interaction between MSC and macrophages, th...

  8. Quantitative GPCR and ion channel transcriptomics in primary alveolar macrophages and macrophage surrogates

    Directory of Open Access Journals (Sweden)

    Groot-Kormelink Paul J

    2012-10-01

    Full Text Available Abstract Background Alveolar macrophages are one of the first lines of defence against invading pathogens and play a central role in modulating both the innate and acquired immune systems. By responding to endogenous stimuli within the lung, alveolar macrophages contribute towards the regulation of the local inflammatory microenvironment, the initiation of wound healing and the pathogenesis of viral and bacterial infections. Despite the availability of protocols for isolating primary alveolar macrophages from the lung these cells remain recalcitrant to expansion in-vitro and therefore surrogate cell types, such as monocyte derived macrophages and phorbol ester-differentiated cell lines (e.g. U937, THP-1, HL60 are frequently used to model macrophage function. Methods The availability of high throughput gene expression technologies for accurate quantification of transcript levels enables the re-evaluation of these surrogate cell types for use as cellular models of the alveolar macrophage. Utilising high-throughput TaqMan arrays and focussing on dynamically regulated families of integral membrane proteins, we explore the similarities and differences in G-protein coupled receptor (GPCR and ion channel expression in alveolar macrophages and their widely used surrogates. Results The complete non-sensory GPCR and ion channel transcriptome is described for primary alveolar macrophages and macrophage surrogates. The expression of numerous GPCRs and ion channels whose expression were hitherto not described in human alveolar macrophages are compared across primary macrophages and commonly used macrophage cell models. Several membrane proteins known to have critical roles in regulating macrophage function, including CXCR6, CCR8 and TRPV4, were found to be highly expressed in macrophages but not expressed in PMA-differentiated surrogates. Conclusions The data described in this report provides insight into the appropriate choice of cell models for

  9. Macrophage antioxidant protection within atherosclerotic plaques.

    Science.gov (United States)

    Gieseg, Steven P; Leake, David S; Flavall, Elizabeth M; Amit, Zunika; Reid, Linzi; Yang, Ya-Ting

    2009-01-01

    Macrophage cells within inflammatory lesions are exposed to a wide range of degrading and cytotoxic molecules including reactive oxygen species. Unlike neutrophils, macrophages do not normally die in this environment but continue to generate oxidants, phagocytose cellular remains, and release a range of cyto-active agents which modulate the immune response. It is this potential of the macrophage cell to survive in an oxidative environment that allows the growth and complexity of advanced atherosclerotic plaques. This review will examine the oxidants encountered by macrophages within an atherosclerotic plaque and describe some of the potential antioxidant mechanisms which enable macrophages to function within inflammatory lesions. Ascorbate, a-tocopherol, and glutathione appear to be central to the protection of macrophages yet additional antioxidant mechanisms appear to be involved. Gamma-Interferon causes macrophages to generate 7,8-dihydroneopterin, neopterin and 3-hydroxyanthranilic acid both of which have antioxidant properties. Manganese superoxide dismutase is also upregulated in macrophages. The evidence that these antioxidants provide further protection, so allowing the macrophage cells to survive within sites of chronic inflammation such as atherosclerotic plaques, will be described.

  10. MONOCYTES AND MACROPHAGES IN PREGNANCY AND PREECLAMPSIA

    Directory of Open Access Journals (Sweden)

    Marijke M Faas

    2014-06-01

    Full Text Available Preeclampsia is an important complication in pregnancy, characterized byhypertension and proteinuria in the second half of pregnancy. Generalizedactivation of the inflammatory response is thought to play a role in thepathogenesis of preeclampsia. Monocytes may play a central role in thisinflammatory response. Monocytes are short lived cells, that mature in thecirculation and invade into tissues upon an inflammatory stimulus anddevelop into macrophages. Macrophages are abundantly present in theendometrium and play a role in implantation and placentation in normalpregnancy. In preeclampsia, these macrophages appear to be present in largernumbers and are also activated. In the present review we focused on the roleof monocytes and macrophages in the pathophysiology of preeclampsia.

  11. A Catalase-related Hemoprotein in Coral Is Specialized for Synthesis of Short-chain Aldehydes: DISCOVERY OF P450-TYPE HYDROPEROXIDE LYASE ACTIVITY IN A CATALASE.

    Science.gov (United States)

    Teder, Tarvi; Lõhelaid, Helike; Boeglin, William E; Calcutt, Wade M; Brash, Alan R; Samel, Nigulas

    2015-08-07

    In corals a catalase-lipoxygenase fusion protein transforms arachidonic acid to the allene oxide 8R,9-epoxy-5,9,11,14-eicosatetraenoic acid from which arise cyclopentenones such as the prostanoid-related clavulones. Recently we cloned two catalase-lipoxygenase fusion protein genes (a and b) from the coral Capnella imbricata, form a being an allene oxide synthase and form b giving uncharacterized polar products (Lõhelaid, H., Teder, T., Tõldsepp, K., Ekins, M., and Samel, N. (2014) PloS ONE 9, e89215). Here, using HPLC-UV, LC-MS, and NMR methods, we identify a novel activity of fusion protein b, establishing its role in cleaving the lipoxygenase product 8R-hydroperoxy-eicosatetraenoic acid into the short-chain aldehydes (5Z)-8-oxo-octenoic acid and (3Z,6Z)-dodecadienal; these primary products readily isomerize in an aqueous medium to the corresponding 6E- and 2E,6Z derivatives. This type of enzymatic cleavage, splitting the carbon chain within the conjugated diene of the hydroperoxide substrate, is known only in plant cytochrome P450 hydroperoxide lyases. In mechanistic studies using (18)O-labeled substrate and incubations in H2(18)O, we established synthesis of the C8-oxo acid and C12 aldehyde with the retention of the hydroperoxy oxygens, consistent with synthesis of a short-lived hemiacetal intermediate that breaks down spontaneously into the two aldehydes. Taken together with our initial studies indicating differing gene regulation of the allene oxide synthase and the newly identified catalase-related hydroperoxide lyase and given the role of aldehydes in plant defense, this work uncovers a potential pathway in coral stress signaling and a novel enzymatic activity in the animal kingdom. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. DMPD: Shaping of monocyte and macrophage function by adenosine receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17056121 Shaping of monocyte and macrophage function by adenosine receptors. Hasko ...tml) (.csml) Show Shaping of monocyte and macrophage function by adenosine receptors. PubmedID 17056121 Titl...e Shaping of monocyte and macrophage function by adenosine receptors. Authors Has

  13. DMPD: Macrophage activation by endogenous danger signals. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18161744 Macrophage activation by endogenous danger signals. Zhang X, Mosser DM. J ...Pathol. 2008 Jan;214(2):161-78. (.png) (.svg) (.html) (.csml) Show Macrophage activation by endogenous dange...r signals. PubmedID 18161744 Title Macrophage activation by endogenous danger signals. Authors Zhang X, Moss

  14. DMPD: Regulation of endogenous apolipoprotein E secretion by macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18388328 Regulation of endogenous apolipoprotein E secretion by macrophages. Kockx ...svg) (.html) (.csml) Show Regulation of endogenous apolipoprotein E secretion by macrophages. PubmedID 18388...328 Title Regulation of endogenous apolipoprotein E secretion by macrophages. Aut

  15. DMPD: Macrophage migration inhibitory factor and host innate immune responses tomicrobes. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14620137 Macrophage migration inhibitory factor and host innate immune responses to...microbes. Calandra T. Scand J Infect Dis. 2003;35(9):573-6. (.png) (.svg) (.html) (.csml) Show Macrophage migration... inhibitory factor and host innate immune responses tomicrobes. PubmedID 14620137 Title Macrophage migration

  16. DMPD: Cellular signaling in macrophage migration and chemotaxis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11073096 Cellular signaling in macrophage migration and chemotaxis. Jones GE. J Leu...koc Biol. 2000 Nov;68(5):593-602. (.png) (.svg) (.html) (.csml) Show Cellular signaling in macrophage migration... and chemotaxis. PubmedID 11073096 Title Cellular signaling in macrophage migration and chemotaxis. Autho

  17. DMPD: Monocyte/macrophage traffic in HIV and SIV encephalitis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12960230 Monocyte/macrophage traffic in HIV and SIV encephalitis. Kim WK, Corey S, ...Alvarez X, Williams K. J Leukoc Biol. 2003 Nov;74(5):650-6. Epub 2003 Aug 11. (.png) (.svg) (.html) (.csml) Show Monocyte/macrophage... traffic in HIV and SIV encephalitis. PubmedID 12960230 Title Monocyte/macrophage tr

  18. DMPD: CSF-1 and cell cycle control in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 8981359 CSF-1 and cell cycle control in macrophages. Hamilton JA. Mol Reprod Dev. 1...997 Jan;46(1):19-23. (.png) (.svg) (.html) (.csml) Show CSF-1 and cell cycle control in macrophages. PubmedI...D 8981359 Title CSF-1 and cell cycle control in macrophages. Authors Hamilton JA. Publication Mol Reprod Dev

  19. DMPD: Silica binding and toxicity in alveolar macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18226603 Silica binding and toxicity in alveolar macrophages. Hamilton RF Jr, Thaku...l) Show Silica binding and toxicity in alveolar macrophages. PubmedID 18226603 Title Silica binding and toxicity in alveolar macropha...ges. Authors Hamilton RF Jr, Thakur SA, Holian A. Public

  20. DMPD: Iron regulation of hepatic macrophage TNFalpha expression. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11841920 Iron regulation of hepatic macrophage TNFalpha expression. Tsukamoto H. Fr...ee Radic Biol Med. 2002 Feb 15;32(4):309-13. (.png) (.svg) (.html) (.csml) Show Iron regulation of hepatic macrophage... TNFalpha expression. PubmedID 11841920 Title Iron regulation of hepatic macrophage TNFalpha expres

  1. Assessment of carbon nanoparticle exposure on murine macrophage function

    Science.gov (United States)

    Suro-Maldonado, Raquel M.

    There is growing concern about the potential cytotoxicity of nanoparticles. Exposure to respirable ultrafine particles (2.5uM) can adversely affect human health and have been implicated with episodes of increased respiratory diseases such as asthma and allergies. Nanoparticles are of particular interest because of their ability to penetrate into the lung and potentially elicit health effects triggering immune responses. Nanoparticles are structures and devises with length scales in the 1 to 100-nanometer range. Black carbon (BC) nanoparticles have been observed to be products of combustion, especially flame combustion and multi-walled carbon nanotubes (MWCNT) have been shown to be found in both indoor and outdoor air. Furthermore, asbestos, which have been known to cause mesothelioma as well as lung cancer, have been shown to be structurally identical to MWCNTs. The aims of these studies were to examine the effects of carbon nanoparticles on murine macrophage function and clearance mechanisms. Macrophages are immune cells that function as the first line of defense against invading pathogens and are likely to be amongst the first cells affected by nanoparticles. Our research focused on two manufactured nanoparticles, MWCNT and BC. The two were tested against murine-derived macrophages in a chronic contact model. We hypothesized that long-term chronic exposure to carbon nanoparticles would decrease macrophages ability to effectively respond to immunological challenge. Production of nitric oxide (NO), tumor necrosis factor alpha (TNF-alpha), cell surface macrophage; activation markers, reactive oxygen species formation (ROS), and antigen processing and presentation were examined in response to lipopolysaccharide (LPS) following a 144hr exposure to the particulates. Data demonstrated an increase in TNF-alpha, and NO production; a decrease in phagocytosis and antigen processing and presentation; and a decrease in the expression levels of cell surface macrophage

  2. Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over γ-Al{sub 2}O{sub 3} supported copper and gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ndolomingo, Matumuene Joe; Meijboom, Reinout, E-mail: rmeijboom@uj.ac.za

    2017-03-15

    Highlights: • Cu and Au on γ-Al{sub 2}O{sub 3} catalysts were prepared and characterized. • Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide in the absence of any solvent using the prepared catalysts. • The as prepared catalysts exhibited good performance in terms of conversion and selectivity towards benzaldehyde. • The kinetics of the reaction was investigated; k{sub app} was proportional to the amount of nano catalyst and oxidant present in the system. • The catalysts was recycled and reused with neither significant loss of activity nor selectivity. - Abstract: Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide (TBHP) in the absence of any solvent using γ-Al{sub 2}O{sub 3} supported copper and gold nanoparticles. Li{sub 2}O and ionic liquids were used as additive and stabilizers for the synthesis of the catalysts. The physico-chemical properties of the catalysts were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction spectroscopy (XRD), N{sub 2} absorption/desorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and temperature programmed reduction (TPR), whereas, the oxidation reaction was followed by gas chromatography with a flame ionization detector (GC-FID). The as prepared catalysts exhibited good catalytic performance in terms of conversion and selectivity towards benzaldehyde. The performance of the Au-based catalysts is significantly higher than that of the Cu-based catalysts. For both Cu and Au catalysts, the conversion of benzyl alcohol increased as the reaction proceeds, while the selectivity for benzaldehyde decreased. Moreover, the catalysts can be easily recycled and reused with neither significant loss of activity nor selectivity. A kinetic study for the Cu and Au-catalyzed oxidation of benzyl alcohol to benzyldehyde is reported. The rate at which the oxidation of benzyl alcohol

  3. Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine-Containing Nanoparticles in Cultured Macrophages

    Directory of Open Access Journals (Sweden)

    Ji Wang

    2016-06-01

    Full Text Available Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%–8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions.

  4. Phagocytosis of mast cell granules results in decreased macrophage superoxide production

    Directory of Open Access Journals (Sweden)

    Bobby A. Shah

    1995-01-01

    Full Text Available The mechanism by which phagocytosed mast cell granules (MCGs inhibit macrophage superoxide production has not been defined. In this study, rat peritoneal macrophages were co-incubated with either isolated intact MCGs or MCG-sonicate, and their respiratory burst capacity and morphology were studied. Co-incubation of macrophages with either intact MCGs or MCG-sonicate resulted in a dose-dependent inhibition of superoxide- mediated cytochrome c reduction. This inhibitory effect was evident within 5 min of incubation and with MCG-sonicate was completely reversed when macrophages were washed prior to activation with PMA. In the case of intact MCGs, the inhibitory effect was only partially reversed by washing after a prolonged co-incubation time. Electron microscopic analyses revealed that MCGs were rapidly phagocytosed by macrophages and were subsequently disintegrated within the phagolysosomes. Assay of MCGs for superoxide dismutase (SOD revealed the presence of significant activity of this enzyme. A comparison of normal macrophages and those containing phagocytosed MCGs did not reveal a significant difference in total SOD activity. It is speculated that, although there was no significant increase in total SOD activity in macrophages containing phagocytosed MCGs, the phagocytosed MCGs might cause a transient increase in SOD activity within the phagolysosomes. This transient rise in SOD results in scavenging of the newly generated superoxide. Alternatively, MCG inhibition of NADPH oxidase would explain the reported observations.

  5. Development of ostrich thrombocytes and monocyte-derived macrophages in culture and the control of Toxoplasma gondii reproduction after macrophage activation.

    Science.gov (United States)

    Miranda, Farlen J B; Damasceno-Sá, João Cláudio; DaMatta, Renato A

    2016-01-01

    Raising ostriches became an important economic activity after their products became commodities. The health of farm animals is of paramount importance, so assessing basic immunological responses is necessary to better understand health problems. We developed a method to obtain ostrich thrombocytes and macrophages. The thrombocytes died by apoptosis after 48 h in culture, and the macrophages expanded in size and increased the number of acidic compartments. Macrophages were activated by chicken interferon-γ, producing high levels of nitric oxide. Toxoplasma gondii was able to infect these macrophages, and activation controlled parasitic reproduction. T. gondii, however, persisted in these cells, and infection reduced the production of nitric oxide. These results are important for the future assessment of the basic cellular and immunobiology of ostriches and demonstrate T. gondii suppression of nitric oxide production. © 2016 Poultry Science Association Inc.

  6. Domestic smoke exposure is associated with alveolar macrophage particulate load.

    Science.gov (United States)

    Fullerton, Duncan G; Jere, Khuzwayo; Jambo, Kondwani; Kulkarni, Neeta S; Zijlstra, Eduard E; Grigg, Jonathan; French, Neil; Molyneux, Malcolm E; Gordon, Stephen B

    2009-03-01

    Indoor air pollution is associated with impaired respiratory health. The pre-dominant indoor air pollutant to which two billion of the world's population is exposed is biomass fuel smoke. We tested the hypothesis that reported smoke exposure in men and women is associated with increased alveolar macrophage uptake of biomass smoke particulates. Healthy volunteers attending for research bronchoscopy in Malawi completed a questionnaire assessment of smoke exposure. Particulate matter visible in alveolar macrophages (AM) was quantified using digital image analysis. The geometric mean of the percentage area of the cytoplasm occupied by particulates in 50 cover-slip adherent AM was calculated and termed particulate load. In 57 subjects (40 men and 17 women) there was a significant difference between the particulate load in groups divided according to pre-dominant lighting form used at home (ANOVA P = 0.0009) and type of cooking fuel (P = 0.0078). Particulate load observed in macrophages is associated with the reported type of biomass fuel exposure. Macrophage function in relation to respiratory health should now be investigated in biomass smoke exposed subjects.

  7. Ageing and the immune system: focus on macrophages.

    Science.gov (United States)

    Linehan, E; Fitzgerald, D C

    2015-03-01

    A fully functioning immune system is essential in order to maintain good health. However, the immune system deteriorates with advancing age, and this contributes to increased susceptibility to infection, autoimmunity, and cancer in the older population. Progress has been made in identifying age-related defects in the adaptive immune system. In contrast, relatively little research has been carried out on the impact of ageing on the innate immune response. This area requires further research as the innate immune system plays a crucial role in protection against infection and represents a first line of defence. Macrophages are central effector cells of the innate immune system and have many diverse functions. As a result, age-related impairments in macrophage function are likely to have important consequences for the health of the older population. It has been reported that ageing in macrophages impacts on many processes including toll-like receptor signalling, polarisation, phagocytosis, and wound repair. A detailed understanding of the impact of ageing on macrophages is required in order to develop therapeutics that will boost immune responses in the older population.

  8. Response of macrophages in rat skeletal muscle after eccentric exercise.

    Science.gov (United States)

    Zuo, Qun; Wang, Shu-Chen; Yu, Xin-Kai; Chao, Wei-Wei

    2018-04-01

    Macrophages are known to be important for healing numerous injured tissues depending on their functional phenotypes in response to different stimuli. The objective of this study was to reveal macrophage phenotypic changes involved in exercise-induced skeletal muscle injury and regeneration. Adult male Sprague-Dawley rats experienced one session of downhill running (16° decline, 16 m/min) for 90 min. After exercise the blood and soleus muscles were collected at 0 h, 6 h, 12 h, 1 d, 2 d, 3 d, 1 w and 2 w after exercise, separately. It was showed that CD68 + M1 macrophages mainly infiltrated into muscle necrotic sites at 1-3 d, while CD163 + M2 macrophages were present in muscles from 0 h to 2 weeks after exercise. Using transmission electron microscopy, we observed activated satellite cells 1 d after exercise. Th1-associated transcripts of iNOS and Ccl2 were inhibited post exercise, while COX-2 mRNA was dramatically increased 12 h after running (p < 0.01). M2 phenotype marker Arg-1 increased 12 h and 3 d (p < 0.05, p < 0.01) after exercise, and Clec10a and Mrc2 were up-regulated in muscles 12 h following exercise (p < 0.05, p < 0.05). The data demonstrate the dynamic patterns of macrophage phenotype in skeletal muscle upon eccentric exercise stimuli, and M1 and M2 phenotypes perform different functions during exercise-induced skeletal muscle injury and recovery. Copyright © 2018 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  9. BIGH3 protein and macrophages in retinal endothelial cell apoptosis.

    Science.gov (United States)

    Mondragon, Albert A; Betts-Obregon, Brandi S; Moritz, Robert J; Parvathaneni, Kalpana; Navarro, Mary M; Kim, Hong Seok; Lee, Chi Fung; LeBaron, Richard G; Asmis, Reto; Tsin, Andrew T

    2015-01-01

    Diabetes is a pandemic disease with a higher occurrence in minority populations. The molecular mechanism to initiate diabetes-associated retinal angiogenesis remains largely unknown. We propose an inflammatory pathway of diabetic retinopathy in which macrophages in the diabetic eye provide TGFβ to retinal endothelial cells (REC) in the retinal microvasculature. In response to TGFβ, REC synthesize and secrete a pro-apoptotic BIGH3 (TGFβ-Induced Gene Human Clone 3) protein, which acts in an autocrine loop to induce REC apoptosis. Rhesus monkey retinal endothelial cells (RhREC) were treated with dMCM (cell media of macrophages treated with high glucose and LDL) and assayed for apoptosis (TUNEL), BIGH3 mRNA (qPCR), and protein (Western blots) expressions. Cells were also treated with ΤGFβ1 and 2 for BIGH3 mRNA and protein expression. Inhibition assays were carried out using antibodies for TGFβ1 and for BIGH3 to block apoptosis and mRNA expression. BIGH3 in cultured RhREC cells were identified by immunohistochemistry (IHC). Distribution of BIGH3 and macrophages in the diabetic mouse retina was examined with IHC. RhRECs treated with dMCM or TGFβ showed a significant increase in apoptosis and BIGH3 protein expression. Recombinant BIGH3 added to RhREC culture medium led to a dose-dependent increase in apoptosis. Antibodies (Ab) directed against BIGH3 and TGFβ, as well as TGFβ receptor blocker resulted in a significant reduction in apoptosis induced by either dMCM, TGFβ or BIGH3. IHC showed that cultured RhREC constitutively expressed BIGH3. Macrophage and BIGH3 protein were co-localized to the inner retina of the diabetic mouse eye. Our results support a novel inflammatory pathway for diabetic retinopathy. This pathway is initiated by TGFβ released from macrophages, which promotes synthesis and release of BIGH3 protein by REC and REC apoptosis.

  10. Adipose tissue macrophages impair preadipocyte differentiation in humans.

    Directory of Open Access Journals (Sweden)

    Li Fen Liu

    Full Text Available The physiologic mechanisms underlying the relationship between obesity and insulin resistance are not fully understood. Impaired adipocyte differentiation and localized inflammation characterize adipose tissue from obese, insulin-resistant humans. The directionality of this relationship is not known, however. The aim of the current study was to investigate whether adipose tissue inflammation is causally-related to impaired adipocyte differentiation.Abdominal subcutaneous(SAT and visceral(VAT adipose tissue was obtained from 20 human participants undergoing bariatric surgery. Preadipocytes were isolated, and cultured in the presence or absence of CD14+ macrophages obtained from the same adipose tissue sample. Adipocyte differentiation was quantified after 14 days via immunofluorescence, Oil-Red O, and adipogenic gene expression. Cytokine secretion by mature adipocytes cultured with or without CD14+macrophages was quantified.Adipocyte differentiation was significantly lower in VAT than SAT by all measures (p<0.001. With macrophage removal, SAT preadipocyte differentiation increased significantly as measured by immunofluorescence and gene expression, whereas VAT preadipocyte differentiation was unchanged. Adipocyte-secreted proinflammatory cytokines were higher and adiponectin lower in media from VAT vs SAT: macrophage removal reduced inflammatory cytokine and increased adiponectin secretion from both SAT and VAT adipocytes. Differentiation of preadipocytes from SAT but not VAT correlated inversely with systemic insulin resistance.The current results reveal that proinflammatory immune cells in human SAT are causally-related to impaired preadipocyte differentiation, which in turn is associated with systemic insulin resistance. In VAT, preadipocyte differentiation is poor even in the absence of tissue macrophages, pointing to inherent differences in fat storage potential between the two depots.

  11. Strain specific transcriptional response in Mycobacterium tuberculosis infected macrophages

    Directory of Open Access Journals (Sweden)

    Koo Mi-Sun

    2012-01-01

    Full Text Available Abstract Background Tuberculosis (TB, a bacterial infection caused by Mycobacterium tuberculosis (Mtb remains a significant health problem worldwide with a third of the world population infected and nearly nine million new cases claiming 1.1 million deaths every year. The outcome following infection by Mtb is determined by a complex and dynamic host-pathogen interaction in which the phenotype of the pathogen and the immune status of the host play a role. However, the molecular mechanism by which Mtb strains induce different responses during intracellular infection of the host macrophage is not fully understood. To explore the early molecular events triggered upon Mtb infection of macrophages, we studied the transcriptional responses of murine bone marrow-derived macrophages (BMM to infection with two clinical Mtb strains, CDC1551 and HN878. These strains have previously been shown to differ in their virulence/immunogenicity in the mouse and rabbit models of pulmonary TB. Results In spite of similar intracellular growth rates, we observed that compared to HN878, infection by CDC1551 of BMM was associated with an increased global transcriptome, up-regulation of a specific early (6 hours immune response network and significantly elevated nitric oxide production. In contrast, at 24 hours post-infection of BMM by HN878, more host genes involved in lipid metabolism, including cholesterol metabolism and prostaglandin synthesis were up-regulated, compared to infection with CDC1551. In association with the differences in the macrophage responses to infection with the 2 Mtb strains, intracellular CDC1551 expressed higher levels of stress response genes than did HN878. Conclusions In association with the early and more robust macrophage activation, intracellular CDC1551 cells were exposed to a higher level of stress leading to increased up-regulation of the bacterial stress response genes. In contrast, sub-optimal activation of macrophages and induction of

  12. Human immunodeficiency virus impairs reverse cholesterol transport from macrophages.

    Directory of Open Access Journals (Sweden)

    Zahedi Mujawar

    2006-10-01

    Full Text Available Several steps of HIV-1 replication critically depend on cholesterol. HIV infection is associated with profound changes in lipid and lipoprotein metabolism and an increased risk of coronary artery disease. Whereas numerous studies have investigated the role of anti-HIV drugs in lipodystrophy and dyslipidemia, the effects of HIV infection on cellular cholesterol metabolism remain uncharacterized. Here, we demonstrate that HIV-1 impairs ATP-binding cassette transporter A1 (ABCA1-dependent cholesterol efflux from human macrophages, a condition previously shown to be highly atherogenic. In HIV-1-infected cells, this effect was mediated by Nef. Transfection of murine macrophages with Nef impaired cholesterol efflux from these cells. At least two mechanisms were found to be responsible for this phenomenon: first, HIV infection and transfection with Nef induced post-transcriptional down-regulation of ABCA1; and second, Nef caused redistribution of ABCA1 to the plasma membrane and inhibited internalization of apolipoprotein A-I. Binding of Nef to ABCA1 was required for down-regulation and redistribution of ABCA1. HIV-infected and Nef-transfected macrophages accumulated substantial amounts of lipids, thus resembling foam cells. The contribution of HIV-infected macrophages to the pathogenesis of atherosclerosis was supported by the presence of HIV-positive foam cells in atherosclerotic plaques of HIV-infected patients. Stimulation of cholesterol efflux from macrophages significantly reduced infectivity of the virions produced by these cells, and this effect correlated with a decreased amount of virion-associated cholesterol, suggesting that impairment of cholesterol efflux is essential to ensure proper cholesterol content in nascent HIV particles. These results reveal a previously unrecognized dysregulation of intracellular lipid metabolism in HIV-infected macrophages and identify Nef and ABCA1 as the key players responsible for this effect. Our findings

  13. miR-181a Induces Macrophage Polarized to M2 Phenotype and Promotes M2 Macrophage-mediated Tumor Cell Metastasis by Targeting KLF6 and C/EBPα

    Directory of Open Access Journals (Sweden)

    Jia Bi

    2016-01-01

    Full Text Available Macrophages can acquire a variety of polarization status and functions: classically activated macrophages (M1 macrophages; alternatively activated macrophages (M2 macrophages. However, the molecular basis of the process is still unclear. Here, this study addresses that microRNA-181a (miR-181a is a key molecule controlling macrophage polarization. We found that miR-181a is overexpressed in M2 macrophages than in M1 macrophages. miR-181a expression was decreased when M2 phenotype converted to M1, whereas it increased when M1 phenotype converted to M2. Overexpression of miR-181a in M1 macrophages diminished M1 phenotype expression while promoting polarization to the M2 phenotype. In contrast, knockdown of miR-181a in M2 macrophages promoted M1 polarization and diminished M2 phenotype expression. Mechanistically, Bioinformatic analysis revealed that Kruppel-like factor 6 (KLF6 and CCAAT/enhancer binding protein-α (C/EBPα is a potential target of miR-181a and luciferase assay confirmed that KLF6 and C/EBPα translation is suppressed by miR-181a through interaction with the 3′UTR of KLF6 and C/EBPα mRNA. Further analysis showed that induction of miR-181a suppressed KLF6 and C/EBPα protein expression. Importantly, miR-181a also diminishes M2 macrophages-mediated migration and invasion capacity of tumor cells. Collectively, our results suggest that miR-181a plays a significant role in regulating macrophage polarization through directly target KLF6 and C/EBPα.

  14. Proprotein convertase 1/3 inhibited macrophages: A novel therapeutic based on drone macrophages.

    Science.gov (United States)

    Duhamel, Marie; Rodet, Franck; Murgoci, Adriana; Wisztorski, Maxence; Day, Robert; Fournier, Isabelle; Salzet, Michel

    2016-06-01

    We demonstrated here thanks to proteomic, that proprotein convertase 1/3 knockdown macrophages present all the characteristic of activated pro-inflammatory macrophages. TLR4 and TLR9 signaling pathways can be enhanced leading to the secretion of pro-inflammatory factors and antitumor factors. We can control their activation by controlling one enzyme, PC1/3. In a tumor context, PC1/3 inhibition in macrophages may reactivate them and lead to a cytokine storm after stimulation "at distance" with a TLR ligand. Therefore, we name these proprotein convertase inhibited macrophages the "drone macrophages". They constitute an innovative cell therapy to treat efficiently tumors.

  15. Homocysteine elicits an M1 phenotype in murine macrophages through an EMMPRIN-mediated pathway.

    Science.gov (United States)

    Winchester, Lee J; Veeranki, Sudhakar; Givvimani, Srikanth; Tyagi, Suresh C

    2015-07-01

    Hyperhomocysteinemia (HHcy) is associated with inflammatory diseases and is known to increase the production of reactive oxygen species (ROS), matrix metalloproteinase (MMP)-9, and inducible nitric oxide synthase, and to decrease endothelial nitric oxide production. However, the impact of HHcy on macrophage phenotype differentiation is not well-established. It has been documented that macrophages have 2 distinct phenotypes: the "classically activated/destructive" (M1), and the "alternatively activated/constructive" (M2) subtypes. We hypothesize that HHcy increases M1 macrophage differentiation through extracellular matrix metalloproteinase inducer (EMMPRIN), a known inducer of matrix metalloproteinases. murine J774A.1 and Raw 264.7 macrophages were treated with 100 and 500 μmol/L Hcy, respectively, for 24 h. Samples were analyzed using Western blotting and immunocytochemistry. Homocysteine treatment increased cluster of differentiation 40 (CD40; M1 marker) in J774A.1 and Raw 264.7 macrophages. MMP-9 was induced in both cell lines. EMMPRIN protein expression was also increased in both cell lines. Blocking EMMPRIN function by pre-treating cells with anti-EMMPRIN antibody, with or without Hcy, resulted in significantly lower expression of CD40 in both cell lines by comparison with the controls. A DCFDA assay demonstrated increased ROS production in both cell lines with Hcy treatment when compared with the controls. Our results suggest that HHcy results in an increase of the M1 macrophage phenotype. This effect seems to be at least partially mediated by EMMPRIN induction.

  16. Inactivation of p27kip1 Promoted Nonspecific Inflammation by Enhancing Macrophage Proliferation in Islet Transplantation.

    Science.gov (United States)

    Li, Yang; Ding, Xiaoming; Fan, Ping; Guo, Jian; Tian, Xiaohui; Feng, Xinshun; Zheng, Jin; Tian, Puxun; Ding, Chenguang; Xue, Wujun

    2016-11-01

    Islet transplantation suffers from low efficiency caused by nonspecific inflammation-induced graft loss after transplantation. This study reports increased islet loss and enhanced inflammatory response in p27-deficient mice (p27-/-) and proposes a possible mechanism. Compared with wild type, p27-/- mice showed more severe functional injury of islet, with increased serum levels of inflammatory cytokines IL-1 and TNF-α, inducing macrophage proliferation. Furthermore, the increased number, proapoptotic proteins, and nuclear factor-kappa b (NF-κB) phosphorylation status of the infiltrating macrophages were accompanied by increased TNF-α mRNA level of islet graft site in p27-/- mice. Moreover, in vitro, we found that macrophages were still activated and cocultured with islet and promoted islet loss even blocking the direct effect of TNF-α on islets. Malondialdehyde (MDA, an end product of lipid peroxidation) in islet and media were increased after cocultured with macrophages. p27 deficiency also increased macrophage proliferation and islet injury. Therefore, p27 inactivation promotes injury islet graft loss via the elevation of proliferation and inflammatory cytokines secretion in infiltrating macrophages which induced nonspecific inflammation independent of TNF-α/nuclear factor-kappa b pathway. This potentially represents a promising therapeutic target in improving islet graft survival.

  17. T cell-macrophage interaction in arginase-mediated resistance to herpes simplex virus.

    Science.gov (United States)

    Bonina, L; Nash, A A; Arena, A; Leung, K N; Wildy, P

    1984-09-01

    Peritoneal macrophages activated by-products derived from a herpes simplex virus-specific helper T cell clone were used to investigate intrinsic and extrinsic resistance mechanisms to herpes simplex virus type 1 infection in vitro. T cell-activated macrophages produced fewer infective centres, indicating enhanced intrinsic resistance, and markedly reduced the growth of virus in a permissive cell line. The reduction in virus growth correlated with the depletion of arginine in the support medium, presumably resulting from increased arginase production by activated macrophages. The significance of these findings for antiviral immunity in vivo is discussed.

  18. microRNA-150 inhibits the formation of macrophage foam cells through targeting adiponectin receptor 2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing [Department of Geratory, Linzi District People’s Hospital of Zibo City, Zibo, Shandong (China); Zhang, Suhua, E-mail: drsuhuangzhang@qq.com [Department of HealthCare, Qilu Hospital of Shandong University (Qingdao), Qingdao City, Qingdao (China)

    2016-08-05

    Transformation of macrophages into foam cells plays a critical role in the pathogenesis of atherosclerosis. The aim of this study was to determine the expression and biological roles of microRNA (miR)-150 in the formation of macrophage foam cells and to identify its functional target(s). Exposure to 50 μg/ml oxidized low-density lipoprotein (oxLDL) led to a significant upregulation of miR-150 in THP-1 macrophages. Overexpression of miR-150 inhibited oxLDL-induced lipid accumulation in THP-1 macrophages, while knockdown of miR-150 enhanced lipid accumulation. apoA-I- and HDL-mediated cholesterol efflux was increased by 66% and 43%, respectively, in miR-150-overexpressing macrophages relative to control cells. In contrast, downregulation of miR-150 significantly reduced cholesterol efflux from oxLDL-laden macrophages. Bioinformatic analysis and luciferase reporter assay revealed adiponectin receptor 2 (AdipoR2) as a direct target of miR-150. Small interfering RNA-mediated downregulation of AdipoR2 phenocopied the effects of miR-150 overexpression, reducing lipid accumulation and facilitating cholesterol efflux in oxLDL-treated THP-1 macrophages. Knockdown of AdipoR2 induced the expression of proliferator-activated receptor gamma (PPARγ), liver X receptor alpha (LXRα), ABCA1, and ABCG1. Moreover, pharmacological inhibition of PPARγ or LXRα impaired AdipoR2 silencing-induced upregulation of ABCA1 and ABCG1. Taken together, our results indicate that miR-150 can attenuate oxLDL-induced lipid accumulation in macrophages via promotion of cholesterol efflux. The suppressive effects of miR-150 on macrophage foam cell formation are mediated through targeting of AdipoR2. Delivery of miR-150 may represent a potential approach to prevent macrophage foam cell formation in atherosclerosis. -- Highlights: •miR-150 inhibits macrophage foam cell formation. •miR-150 accelerates cholesterol efflux from oxLDL-laden macrophages. •miR-150 suppresses macrophage foam cell

  19. Cigarette smoking decreases global microRNA expression in human alveolar macrophages.

    Directory of Open Access Journals (Sweden)

    Joel W Graff

    Full Text Available Human alveolar macrophages are critical components of the innate immune system. Cigarette smoking-induced changes in alveolar macrophage gene expression are linked to reduced resistance to pulmonary infections and to the development of emphysema/COPD. We hypothesized that microRNAs (miRNAs could control, in part, the unique messenger RNA (mRNA expression profiles found in alveolar macrophages of cigarette smokers. Activation of macrophages with different stimuli in vitro leads to a diverse range of M1 (inflammatory and M2 (anti-inflammatory polarized phenotypes that are thought to mimic activated macrophages in distinct tissue environments. Microarray mRNA data indicated that smoking promoted an "inverse" M1 mRNA expression program, defined by decreased expression of M1-induced transcripts and increased expression of M1-repressed transcripts with few changes in M2-regulated transcripts. RT-PCR arrays identified altered expression of many miRNAs in alveolar macrophages of smokers and a decrease in global miRNA abundance. Stratification of human subjects suggested that the magnitude of the global decrease in miRNA abundance was associated with smoking history. We found that many of the miRNAs with reduced expression in alveolar macrophages of smokers were predicted to target mRNAs upregulated in alveolar macrophages of smokers. For example, miR-452 is predicted to target the transcript encoding MMP12, an important effector of smoking-related diseases. Experimental antagonism of miR-452 in differentiated monocytic cells resulted in increased expression of MMP12. The comprehensive mRNA and miRNA expression profiles described here provide insight into gene expression regulation that may underlie the adverse effects cigarette smoking has on alveolar macrophages.

  20. Macrophage activation induced by the polysaccharides isolated from the roots of Sanguisorba officinalis.

    Science.gov (United States)

    Tong, Haibin; Mao, Dirui; Zhai, Mingyue; Zhang, Zhuorui; Sun, Guangren; Jiang, Guiquan

    2015-01-01

    Macrophage, involved at all stages of immune response, is an important component of the host defense system. Polysaccharides exist almost ubiquitously in medical plants and most of them possess immunomodulation and macrophage activation properties. This study elucidates the effects on macrophage activation and molecular mechanism induced by the polysaccharides (SOPs) from the roots of Sanguisorba officinalis Linne (Rosaceae). Polysaccharides (SOPs) from the roots of S. officinalis were obtained by water extraction and ethanol precipitation. Physicochemical characterization of SOPs was analyzed by phenol-sulfuric acid, m-hydroxydiphenyl, Bradford method, and gas chromatography. Phagocytic capacity of RAW 264.7 macrophages incubated with SOPs (25 and 100 μg/ml) was determined by the aseptic neutral red method. Macrophages were incubated with SOPs (25 and 100 μg/ml), and the TNF-α and NO the secretion were measured using ELISA kit and Griess reagent, respectively. In addition, TNF-α and iNOS transcripts were evaluated by semi-quantitative RT-PCR, and NF-κB signaling activation was detected by Western blot assay. SOPs enhanced the phagocytosis capacity of macrophages to aseptic neutral red solution and increased TNF-α and NO secretion. The amounts of TNF-α and iNOS transcript were increased significantly at the mRNA level when macrophages were exposed to SOPs. Meanwhile, the stimulation of macrophages by SOPs induced phosphorylation of p65 at serine 536 and a marked decrease of IκB expression. These results suggested that SOPs exhibited significant macrophage activation properties through NF-κB signaling pathway and could be considered as a new immunopotentiator.

  1. Macrophage diversity in renal injury and repair

    NARCIS (Netherlands)

    Ricardo, Sharon D.; van Goor, Harry; Eddy, Allison A.

    Monocyte-derived macrophages can determine the outcome of the immune response and whether this response contributes to tissue repair or mediates tissue destruction. In addition to their important role in immune-mediated renal disease and host defense, macrophages play a fundamental role in tissue

  2. Macrophage polarization: the epigenetic point of view

    NARCIS (Netherlands)

    van den Bossche, Jan; Neele, Annette E.; Hoeksema, Marten A.; de Winther, Menno P. J.

    2014-01-01

    The first functions of macrophages to be identified by Metchnikoff were phagocytosis and microbial killing. Although these are important features, macrophages are functionally very complex and involved in virtually all aspects of life, from immunity and host defense, to homeostasis, tissue repair

  3. Macrophages Promote Axon Regeneration with Concurrent Neurotoxicity

    NARCIS (Netherlands)

    Gensel, J.C.; Nakamura, S.; Guan, Z.; Rooijen, van N.; Ankeny, D.P.; Popovich, P.G.

    2009-01-01

    Activated macrophages can promote regeneration of CNS axons. However, macrophages also release factors that kill neurons. These opposing functions are likely induced simultaneously but are rarely considered together in the same experimental preparation. A goal of this study was to unequivocally

  4. Genesis and kinetics of peritoneal macrophages

    International Nuclear Information System (INIS)

    Wacker, H.H.

    1982-01-01

    The author intended to develop an experimental model for investigations of the proliferation kinetics of tissue macrophages, using the example of peritoneal macrophages. To get a suitable cell population, a blood cell population was labelled with 3 H-thymidine and transferred in a parabiotic test. (orig./MG) [de

  5. MicroRNA-24 Modulates Staphylococcus aureus-Induced Macrophage Polarization by Suppressing CHI3L1.

    Science.gov (United States)

    Jingjing, Zhang; Nan, Zhang; Wei, Wu; Qinghe, Guo; Weijuan, Wang; Peng, Wang; Xiangpeng, Wang

    2017-06-01

    Macrophages play a crucial role in host innate anti-Staphylococcus aureus defense, which is tightly regulated by multiple factors, including microRNAs. A recent study showed that miR-24 plays an important role in macrophage polarization. Here, we investigated the biological function of miR-24 in S. aureus-stimulated macrophages. The results revealed that miR-24 expression was significantly decreased in both human and mouse macrophage cell lines with S. aureus stimulation in a time-dependent manner. Moreover, miR-24 overexpression significantly decreased the production of M1 phenotype markers, such as IL-6, iNOS, TNF-α, CD86, and CD80, whereas it increased the production of M2 markers, such as Arg1, CCL17, CCL22, CD163, and CD206, in S. aureus-stimulated macrophages. Conversely, knockdown of miR-24 promoted M1 macrophage polarization but diminished M2 macrophage polarization in S. aureus-stimulated macrophages. Furthermore, CHI3L1 was predicted as a target gene of miR-24 using bioinformatics software and identified by luciferase reporter assay. Additionally, miR-24 overexpression inhibited CHI3L1 expression and downregulated the downstream MAPK pathway in S. aureus-stimulated macrophages. Finally, CHI3L1 overexpression rescued macrophage polarization and MAPK pathway inhibition induced by miR-24 mimic transfection in S. aureus-stimulated macrophages. In conclusion, the data suggest that miR-24 serves as a molecular regulator in S. aureus-induced macrophage polarization through targeting of CHI3L1 and regulation of the MAPK pathway, which may provide a promising therapeutic target for S. aureus-related infections and inflammatory diseases.

  6. Macrophage Activation Mechanisms in Human Monocytic Cell Line-derived Macrophages.

    Science.gov (United States)

    Sumiya, Yu; Ishikawa, Mami; Inoue, Takahiro; Inui, Toshio; Kuchiike, Daisuke; Kubo, Kentaro; Uto, Yoshihiro; Nishikata, Takahito

    2015-08-01

    Although the mechanisms of macrophage activation are important for cancer immunotherapy, they are poorly understood. Recently, easy and robust assay systems for assessing the macrophage-activating factor (MAF) using monocytic cell line-derived macrophages were established. Gene-expression profiles of U937- and THP-1-derived macrophages were compared using gene expression microarray analysis and their responses against several MAFs were examined by in vitro experiments. Activated states of these macrophages could not be assigned to a specific sub-type but showed, however, different unique characteristics. The unique of monocytic cell line-derived macrophages could provide clues to understand the activation mechanism of macrophages and, therefore, help to develop effective cancer immunotherapy with MAFs. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Mycobacteria, Metals, and the Macrophage

    Science.gov (United States)

    Niederweis, Michael; Wolschendorf, Frank; Mitra, Avishek; Neyrolles, Olivier

    2015-01-01

    Summary Mycobacterium tuberculosis is a facultative intracellular pathogen that thrives inside host macrophages. A key trait of M. tuberculosis is to exploit and manipulate metal cation trafficking inside infected macrophages to ensure survival and replication inside the phagosome. Here we describe the recent fascinating discoveries that the mammalian immune system responds to infections with M. tuberculosis by overloading the phagosome with copper and zinc, two metals which are essential nutrients in small quantities but are toxic in excess. M. tuberculosis has developed multi-faceted resistance mechanisms to protect itself from metal toxicity including control of uptake, sequestration inside the cell, oxidation, and efflux. The host response to infections combines this metal poisoning strategy with nutritional immunity mechanisms that deprive M. tuberculosis from metals such as iron and manganese to prevent bacterial replication. Both immune mechanisms rely on the translocation of metal transporter proteins to the phagosomal membrane during the maturation process of the phagosome. This review summarizes these recent findings and discusses how metal-targeted approaches might complement existing TB chemotherapeutic regimens with novel anti-infective therapies. PMID:25703564

  8. Unraveling Macrophage Heterogeneity in Erythroblastic Islands

    Directory of Open Access Journals (Sweden)

    Katie Giger Seu

    2017-09-01

    Full Text Available Mammalian erythropoiesis occurs within erythroblastic islands (EBIs, niches where maturing erythroblasts interact closely with a central macrophage. While it is generally accepted that EBI macrophages play an important role in erythropoiesis, thorough investigation of the mechanisms by which they support erythropoiesis is limited largely by inability to identify and isolate the specific macrophage sub-population that constitute the EBI. Early studies utilized immunohistochemistry or immunofluorescence to study EBI morphology and structure, while more recent efforts have used flow cytometry for high-throughput quantitative characterization of EBIs and their central macrophages. However, these approaches based on the expectation that EBI macrophages are a homogeneous population (F4/80+/CD169+/VCAM-1+ for example provide an incomplete picture and potentially overlook critical information about the nature and biology of the islands and their central macrophages. Here, we present a novel method for analysis of EBI macrophages from hematopoietic tissues of mice and rats using multispectral imaging flow cytometry (IFC, which combines the high-throughput advantage of flow cytometry with the morphological and fluorescence features derived from microscopy. This method provides both quantitative analysis of EBIs, as well as structural and morphological details of the central macrophages and associated cells. Importantly, the images, combined with quantitative software features, can be used to evaluate co-expression of phenotypic markers which is crucial since some antigens used to identify macrophages (e.g., F4/80 and CD11b can be expressed on non-erythroid cells associated with the islands instead of, or in addition to the central macrophage itself. We have used this method to analyze native EBIs from different hematopoietic tissues and evaluated the expression of several markers that have been previously reported to be expressed on EBI macrophages. We

  9. Enhanced M1 macrophage polarization in human helicobacter pylori-associated atrophic gastritis and in vaccinated mice.

    Directory of Open Access Journals (Sweden)

    Marianne Quiding-Järbrink

    Full Text Available BACKGROUND: Infection with Helicobacter pylori triggers a chronic gastric inflammation that can progress to atrophy and gastric adenocarcinoma. Polarization of macrophages is a characteristic of both cancer and infection, and may promote progression or resolution of disease. However, the role of macrophages and their polarization during H. pylori infection has not been well defined. METHODOLOGY/PRINCIPAL FINDINGS: By using a mouse model of infection and gastric biopsies from 29 individuals, we have analyzed macrophage recruitment and polarization during H. pylori infection by flow cytometry and real-time PCR. We found a sequential recruitment of neutrophils, eosinophils and macrophages to the gastric mucosa of infected mice. Gene expression analysis of stomach tissue and sorted macrophages revealed that gastric macrophages were polarized to M1 after H. pylori infection, and this process was substantially accelerated by prior vaccination. Human H. pylori infection was characterized by a mixed M1/M2 polarization of macrophages. However, in H. pylori-associated atrophic gastritis, the expression of inducible nitric oxide synthase was markedly increased compared to uncomplicated gastritis, indicative of an enhanced M1 macrophage polarization in this pre-malignant lesion. CONCLUSIONS/SIGNIFICANCE: These results show that vaccination of mice against H. pylori amplifies M1 polarization of gastric macrophages, and that a similar enhanced M1 polarization is present in human H. pylori-induced atrophic gastritis.

  10. Alveolar macrophage accumulation rates, for 28 nm and 250 nm PSL, are mediated by separate mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Moss, O R; Wong, V A, E-mail: moss@thehamner.or [Hamner Institutes for Health Sciences, Research Triangle Park, NC 27509-2137 (United States)

    2009-02-01

    When macrophages accumulate 28 nm and 250 nm diameter polystyrene latex (PSL) beads, the accumulation rates should reflect differences in molecular and cellular function. We used a confocal microscope to measure the accumulation rates of nanoparticles by F344-rat-alveolar macrophages (approx25,000 cells adhered to a 0.7 cm{sup 2} surface). Over the cells were layered 0.1 ml of media, and 0.1 ml of media-with-beads. Fresh cells were introduced for each exposure scenario. The maximum possible individual macrophage exposures were as follows: 8x10{sup 6}, 8x10{sup 5}, and 8x10{sup 4} 28 nm beads per macrophage; and 8x10{sup 4} and 1.12x10{sup 4} 250 nm beads per macrophage. Accumulation rates were estimated over 23 minutes. The increase in bead accumulation-rate matched changes in bead-availability: 7x increase for 250 nm beads; 100x increase for 28 nm beads; and 700x increase for all bead availabilities. The maximum sustained 28 nm bead accumulation rate was > 30,000 /min (for 5 min). Increases in bead accumulation could be explained by two mechanisms: bead-diffusion; and, for the macrophage, macropinocytosis. Also for the highest concentrations of 28 nm beads, we saw a colligative threshold - possibly due to beads masking the cell surface or obstructing cellular mechanisms.

  11. Erythropoietin protects against rhabdomyolysis-induced acute kidney injury by modulating macrophage polarization

    Science.gov (United States)

    Wang, Shuo; Zhang, Chao; Li, Jiawei; Niyazi, Sidikejiang; Zheng, Long; Xu, Ming; Rong, Ruiming; Yang, Cheng; Zhu, Tongyu

    2017-01-01

    Erythropoietin (EPO) is a well-known hormone that is clinically used for the treatment of anemia. Very recently, an increasing body of evidence showed that EPO could still regulate bioactivities of macrophages. However, the details about the immunomodulatory effect of EPO on macrophages are not fully delineated, particularly in the setting of renal damages. Therefore, in the present study, we determined whether EPO could exert an impact on the dynamics of macrophages in a well-established model of rhabdomyolysis-induced acute kidney injury and explored the potential mechanisms. EPO was found to ameliorate kidney injuries by reducing macrophages recruitment and promoting phenotype switch toward M2 macrophages in vivo. It was also confirmed that EPO could directly suppress pro-inflammatory responses of M1 macrophages and promote M2 marker expression in vitro. Data indicated the possible involvement of Jak2/STAT3/STAT6 pathway in the augmentation of EPO on M2 polarization. These results improved the understanding of the immunoregulatory capacity of EPO on macrophages, which might optimize the therapeutic modalities of EPO. PMID:28383559

  12. Dissolution of short and long rockwool and glasswool fibers by macrophages in flowthrough cell culture.

    Science.gov (United States)

    Luoto, K; Holopainen, M; Kangas, J; Kalliokoski, P; Savolainen, K

    1998-07-01

    Dissolution of MMVF (man-made vitreous fibers) by macrophages has previously been studied utilizing cell cultures in wells. A new, more dynamic method has been developed to explore the effects of macrophages on MMVF dissolution. In this method, the culture medium flows through a membrane on which the macrophages and fibers are placed. The dissolution of short and long rockwool and glasswool fibers was investigated in the present study by macrophages by assessing the dissolution of Si (silicon), Fe (iron), and Al (aluminium) from the fibers. Dissolution of these elements usually increased as a function of time. Generally, the dissolution of elements from the fibers in the flowthrough culture exceeded that observed with the culture in wells system. The dissolution of glasswool fibers was greater in medium than in cell culture, whereas the opposite was true for rockwool fibers. Dissolution of Si was greater from glasswool than from rockwool fibers, while the opposite was true for Fe and Al. Macrophages that had phagocytized fibers in flowthrough culture contained Si, and there were also precipitations with Si in the samples. The fibers in the flowthrough culture also exhibited surface changes such as breakings, pittings, etching, and peeling. The short rockwool fibers tended to fracture more than short glasswool fibers, while long glasswool fibers were more extensively broken than short glasswool fibers. The results with this new, dynamic, flowthrough culture method with macrophages demonstrate that this method provides valuable information on the abilities of macrophages to dissolve MMVF leading to subsequent morphological changes of fibers.

  13. Indirect macrophage responses to ionizing radiation: implications for genotype-dependent bystander signaling.

    Science.gov (United States)

    Coates, Philip J; Rundle, Jana K; Lorimore, Sally A; Wright, Eric G

    2008-01-15

    In addition to the directly mutagenic effects of energy deposition in DNA, ionizing radiation is associated with a variety of untargeted and delayed effects that result in ongoing bone marrow damage. Delayed effects are genotype dependent with CBA/Ca mice, but not C57BL/6 mice, susceptible to the induction of damage and also radiation-induced acute myeloid leukemia. Because macrophages are a potential source of ongoing damaging signals, we have determined their gene expression profiles and we show that bone marrow-derived macrophages show widely different intrinsic expression patterns. The profiles classify macrophages derived from CBA/Ca mice as M1-like (pro-inflammatory) and those from C57BL/6 mice as M2-like (anti-inflammatory); measurements of NOS2 and arginase activity in normal bone marrow macrophages confirm these findings. After irradiation in vivo, but not in vitro, C57BL/6 macrophages show a reduction in NOS2 and an increase in arginase activities, indicating a further M2 response, whereas CBA/Ca macrophages retain an M1 phenotype. Activation of specific signal transducer and activator of transcription signaling pathways in irradiated hemopoietic tissues supports these observations. The data indicate that macrophage activation is not a direct effect of radiation but a tissue response, secondary to the initial radiation exposure, and have important implications for understanding genotype-dependent responses and the mechanisms of the hemotoxic and leukemogenic consequences of radiation exposure.

  14. Inhibition of 5-Lipoxygenase Pathway Attenuates Acute Liver Failure by Inhibiting Macrophage Activation

    Directory of Open Access Journals (Sweden)

    Lu Li

    2014-01-01

    Full Text Available This study aimed to investigate the role of 5-lipoxygenase (5-LO in acute liver failure (ALF and changes in macrophage activation by blocking it. ALF was induced in rats by administration of D-galactosamine (D-GalN/lipopolysaccharide (LPS. Rats were injected intraperitoneally with AA-861 (a specific 5-LO inhibitor, 24 hr before D-GalN/LPS administration. After D-GalN/LPS injection, the liver tissue was collected for assessment of histology, macrophage microstructure, macrophage counts, 5-LO mRNA formation, protein expression, and concentration of leukotrienes. Serum was collected for detecting alanine aminotransferase (ALT, aspartate transaminase (AST, total bilirubin (Tbil, and tumor necrosis factor- (TNF-α. Twenty-four hours after injection, compared with controls, ALF rats were characterized by widespread hepatocyte necrosis and elevated ALT, AST, and Tbil, and 5-LO protein expression reached a peak. Liver leukotriene B4 was also significantly elevated. However, 5-LO mRNA reached a peak 8 hr after D-GalN/LPS injection. Simultaneously, the microstructure of macrophages was changed most significantly and macrophages counts were increased significantly. Moreover, serum TNF-α was also elevated. By contrast, AA-861 pretreatment significantly decreased liver necrosis as well as all of the parameters compared with the rats without pretreatment. Macrophages, via the 5-LO pathway, play a critical role in ALF, and 5-LO inhibitor significantly alleviates ALF, possibly related to macrophage inhibition.

  15. The percentage of macrophage numbers in rat model of sciatic nerve crush injury

    Directory of Open Access Journals (Sweden)

    Satrio Wicaksono

    2016-02-01

    Full Text Available ABSTRACT Excessive accumulation of macrophages in sciatic nerve fascicles inhibits regeneration of peripheral nerves. The aim of this study is to determine the percentage of the macrophages inside and outside of the fascicles at the proximal, at the site of injury and at the distal segment of rat model of sciatic nerve crush injury. Thirty male 3 months age Wistar rats of 200-230 g were divided into sham-operation group and crush injury group. Termination was performed on day 3, 7, and 14 after crush injury. Immunohistochemical examination was done using anti CD68 antibody. Counting of immunopositive and immunonegative cells was done on three representative fields for extrafascicular and intrafascicular area of proximal, injury and distal segments. The data was presented as percentage of immunopositive cells. The percentage of the macrophages was significantly increased in crush injury group compared to the sham-operated group in all segments of the peripheral nerves. While the percentage of macrophages outside fascicle in all segments of sciatic nerve and within the fascicle in the proximal segment reached its peak on day 3, the percentage of macrophages within the fascicles at the site of injury and distal segments reached the peak later at day 7. In conclusions, accumulation of macrophages outside the nerve fascicles occurs at the beginning of the injury, and then followed later by the accumulation of macrophages within nerve fascicles

  16. Inflammation and ER Stress Downregulate BDH2 Expression and Dysregulate Intracellular Iron in Macrophages

    Directory of Open Access Journals (Sweden)

    Susu M. Zughaier

    2014-01-01

    Full Text Available Macrophages play a very important role in host defense and in iron homeostasis by engulfing senescent red blood cells and recycling iron. Hepcidin is the master iron regulating hormone that limits dietary iron absorption from the gut and limits iron egress from macrophages. Upon infection macrophages retain iron to limit its bioavailability which limits bacterial growth. Recently, a short chain butyrate dehydrogenase type 2 (BDH2 protein was reported to contain an iron responsive element and to mediate cellular iron trafficking by catalyzing the synthesis of the mammalian siderophore that binds labile iron; therefore, BDH2 plays a crucial role in intracellular iron homeostasis. However, BDH2 expression and regulation in macrophages have not yet been described. Here we show that LPS-induced inflammation combined with ER stress led to massive BDH2 downregulation, increased the expression of ER stress markers, upregulated hepcidin expression, downregulated ferroportin expression, caused iron retention in macrophages, and dysregulated cytokine release from macrophages. We also show that ER stress combined with inflammation synergistically upregulated the expression of the iron carrier protein NGAL and the stress-inducible heme degrading enzyme heme oxygenase-1 (HO-1 leading to iron liberation. This is the first report to show that inflammation and ER stress downregulate the expression of BDH2 in human THP-1 macrophages.

  17. Neutrophil derived LTB4 induces macrophage aggregation in response to encapsulated Streptococcus iniae infection.

    Directory of Open Access Journals (Sweden)

    William J B Vincent

    Full Text Available Immune cells sense and react to a multitude of factors including both host and microbe-derived signals. Understanding how cells translate these cues into particular cellular behaviors is a complex yet critical area of study. We have previously shown that both neutrophils and macrophages are important for controlling the fish pathogen Streptococcus iniae. Here, we report both host and bacterial determinants leading to the formation of organized macrophage aggregates as part of the host inflammatory response in a subset of infected larvae. Streptococcal capsule was a required signal for aggregate formation. Macrophage aggregation coincided with NFκB activity, and the formation of these aggregates is mediated by leukotriene B4 (LTB4 produced by neutrophils. Depletion, inhibition, or genetic deletion of leukotriene A4 hydrolase (Lta4h, which catalyzes the last step in LTB4 synthesis, resulted in the absence of macrophage aggregation. Larvae with impaired neutrophil function also had impaired macrophage aggregation; however, aggregate formation was partially rescued with the addition of exogenous LTB4. Neutrophil-specific expression of lta4h was sufficient to rescue macrophage aggregation in Lta4h-deficient larvae and increased host survival following infection. In summary, our findings highlight a novel innate immune response to infection in which specific bacterial products drive neutrophils that modulate macrophage behavior through eicosanoid signaling.

  18. Tumor-Associated Macrophages Provide Significant Prognostic Information in Urothelial Bladder Cancer.

    Directory of Open Access Journals (Sweden)

    Minna M Boström

    Full Text Available Inflammation is an important feature of carcinogenesis. Tumor-associated macrophages (TAMs can be associated with either poor or improved prognosis, depending on their properties and polarization. Current knowledge of the prognostic significance of TAMs in bladder cancer is limited and was investigated in this study. We analyzed 184 urothelial bladder cancer patients undergoing transurethral resection of a bladder tumor or radical cystectomy. CD68 (pan-macrophage marker, MAC387 (polarized towards type 1 macrophages, and CLEVER-1/Stabilin-1 (type 2 macrophages and lymphatic/blood vessels were detected immunohistochemically. The median follow-up time was 6.0 years. High macrophage counts associated with a higher pT category and grade. Among patients undergoing transurethral resection, all studied markers apart from CLEVER-1/Stabilin-1 were associated with increased risk of progression and poorer disease-specific and overall survival in univariate analyses. High levels of two macrophage markers (CD68/MAC387+/+ or CD68/CLEVER-1+/+ groups had an independent prognostic role after transurethral resection in multivariate analyses. In the cystectomy cohort, MAC387, alone and in combination with CD68, was associated with poorer survival in univariate analyses, but none of the markers were independent predictors of outcome in multivariate analyses. In conclusion, this study demonstrates that macrophage phenotypes provide significant independent prognostic information, particularly in bladder cancers undergoing transurethral resection.

  19. Interaction of water, alkyl hydroperoxide, and allylic alcohol with a single-site homogeneous Ti-Si epoxidation catalyst: A spectroscopic and computational study.

    Science.gov (United States)

    Urakawa, Atsushi; Bürgi, Thomas; Skrabal, Peter; Bangerter, Felix; Baiker, Alfons

    2005-02-17

    Tetrakis(trimethylsiloxy)titanium (TTMST, Ti(OSiMe3)4) possesses an isolated Ti center and is a highly active homogeneous catalyst in epoxidation of various olefins. The structure of TTMST resembles that of the active sites in some heterogeneous Ti-Si epoxidation catalysts, especially silylated titania-silica mixed oxides. Water cleaves the Ti-O-Si bond and deactivates the catalyst. An alkyl hydroperoxide, TBHP (tert-butyl hydroperoxide), does not cleave the Ti-O-Si bond, but interacts via weak hydrogen-bonding as supported by NMR, DOSY, IR, and computational studies. ATR-IR spectroscopy combined with computational investigations shows that more than one, that is, up to four, TBHP can undergo hydrogen-bonding with TTMST, leading to the activation of the O-O bond of TBHP. The greater the number of TBHP molecules that form hydrogen bonds to TTMST, the more electrophilic the O-O bond becomes, and the more active the complex is for epoxidation. An allylic alcohol, 2-cyclohexen-1-ol, does not interact strongly with TTMST, but the interaction is prominent when it interacts with the TTMST-TBHP complex. On the basis of the experimental and theoretical findings, a hydrogen-bond-assisted epoxidation mechanism of TTMST is suggested.

  20. Acute Limonene Toxicity in Escherichia coli Is Caused by Limonene Hydroperoxide and Alleviated by a Point Mutation in Alkyl Hydroperoxidase AhpC.

    Science.gov (United States)

    Chubukov, Victor; Mingardon, Florence; Schackwitz, Wendy; Baidoo, Edward E K; Alonso-Gutierrez, Jorge; Hu, Qijun; Lee, Taek Soon; Keasling, Jay D; Mukhopadhyay, Aindrila

    2015-07-01

    Limonene, a major component of citrus peel oil, has a number of applications related to microbiology. The antimicrobial properties of limonene make it a popular disinfectant and food preservative, while its potential as a biofuel component has made it the target of renewable production efforts through microbial metabolic engineering. For both applications, an understanding of microbial sensitivity or tolerance to limonene is crucial, but the mechanism of limonene toxicity remains enigmatic. In this study, we characterized a limonene-tolerant strain of Escherichia coli and found a mutation in ahpC, encoding alkyl hydroperoxidase, which alleviated limonene toxicity. We show that the acute toxicity previously attributed to limonene is largely due to the common oxidation product limonene hydroperoxide, which forms spontaneously in aerobic environments. The mutant AhpC protein with an L-to-Q change at position 177 (AhpC(L177Q)) was able to alleviate this toxicity by reducing the hydroperoxide to a more benign compound. We show that the degree of limonene toxicity is a function of its oxidation level and that nonoxidized limonene has relatively little toxicity to wild-type E. coli cells. Our results have implications for both the renewable production of limonene and the applications of limonene as an antimicrobial. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Protective Effects of Rooibos (Aspalathus linearis and/or Red Palm Oil (Elaeis guineensis Supplementation on tert-Butyl Hydroperoxide-Induced Oxidative Hepatotoxicity in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Olawale R. Ajuwon

    2013-01-01

    Full Text Available The possible protective effects of an aqueous rooibos extract (Aspalathus linearis, red palm oil (RPO (Elaeis guineensis, or their combination on tert-butyl-hydroperoxide-(t-BHP-induced oxidative hepatotoxicity in Wistar rats were investigated. tert-butyl hydroperoxide caused a significant (P<0.05 elevation in conjugated dienes (CD and malondialdehyde (MDA levels, significantly (P<0.05 decreased reduced glutathione (GSH and GSH : GSSG ratio, and induced varying changes in activities of catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase in the blood and liver. This apparent oxidative injury was associated with histopathological changes in liver architecture and elevated levels of serum alanine aminotransferase (ALT, aspartate aminotransferase (AST, and lactate dehydrogenase (LDH. Supplementation with rooibos, RPO, or their combination significantly (P<0.05 decreased CD and MDA levels in the liver and reduced serum level of ALT, AST, and LDH. Likewise, changes observed in the activities of antioxidant enzymes and impairment in redox status in the erythrocytes and liver were reversed. The observed protective effects when rooibos and RPO were supplemented concomitantly were neither additive nor synergistic. Our results suggested that rooibos and RPO, either supplemented alone or combined, are capable of alleviating t-BHP-induced oxidative hepatotoxicity, and the mechanism of this protection may involve inhibition of lipid peroxidation and modulation of antioxidants enzymes and glutathione status.

  2. Reactions of macrophages exposed to particles <10 μm

    International Nuclear Information System (INIS)

    Monn, Christian; Naef, Roland; Koller, Theo

    2003-01-01

    This study describes experiments on cytotoxic effects and the production of oxidative radicals and the proinflammatory cytokine tumor growth factor alpha (TNFα) in a cell line of rat lung macrophages exposed to aqueou extracts from ambient air particles 10 ) collected on Teflon filters. The particles were collected during the four seasons at two urban sites, one rural site, and one alpine site in Switzerland. Cytotoxic effects determined as a reduction in the metabolic activity, were found in particle extracts from all sites and seasons. Taking together the data from all site and seasons, a dose-response function was observed between the particle mass on the filter and toxicity (r 2 =0.633, linear regression). The release of the pro-inflammatory cytokine TNFα as well as of oxidative radicals was most pronounced in particles collected in spring-summer and autumn. While a Montana (alpine), the stimulation of the cells was positively correlated with the particle mass on the filters, this correlation was negative at the urban sites Zuerich and Lugano. It is interpreted that at high PM 10 levels, as in these cities, macrophages are inhibited by increasing air pollution due to toxic effects. Cytotoxic effects and the release of oxidative radicals could be inhibited when the extracts were treated with an endotoxin-neutralizing protein. This suggests that endotoxin, a cell-wall constituent of gram-negative bacteria, is one of the factors which modulates macrophag activity. All together, the experiments indicate that in the PM 10 fraction water-soluble macrophage-toxic and macrophage-stimulating compounds ar present. The data offer an explanation for at least some of the known harmful effects of PM 10 , and confirm endotoxin as a possible reactant

  3. Ceramic modifications of porous titanium: effects on macrophage activation.

    Science.gov (United States)

    Scislowska-Czarnecka, A; Menaszek, E; Szaraniec, B; Kolaczkowska, E

    2012-12-01

    Porous titanium is one of the most widely used implant materials because of its mechanical properties, however, it is also characterised by low bioactivity. To improve the above parameter we prepared three modifications of the porous (30 wt%) titanium (Ti) surface by covering it with bioactive hydroxyapatite (HA), bioglass (BG) and calcium silicate (CS). Subsequently we tested the impact of the modifications on macrophages directing the inflammatory response that might compromise the implant bioactivity. In the study we investigated the in vitro effects of the materials on murine cell line RAW 264.7 macrophage adherence, morphology and activation (production/release of metalloproteinase MMP-9 and pro- and anti-inflammatory cytokines). CS Ti decreased the macrophage adherence and up-regulated the release of several pro-inflammatory mediators, including TNF-α, IL-6, IL-12. Also HA Ti reduced the cell adherence but other parameters were generally not increased, except of TNF-α. In contrast, BG Ti improved macrophage adherence and either decreased production of multiple mediators (MMP-9, TNF-α, IFN-γ, MCP-1) or did not change it in comparison to the porous titanium. We can conclude that analyzing the effects on the inflammatory response initiated by macrophages in vitro, calcium silicate did not improve the biological properties of the porous titanium. The improved bioactivity of titanium was, however, achieved by the application of the hydroxyapatite and bioglass layers. The present in vitro results suggest that these materials, HA Ti and especially BG Ti, may be suitable for in vivo application and thus justify their further investigation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Granulocyte-macrophage stimulating factor (GM-CSF increases circulating dendritic cells but does not abrogate suppression of adaptive cellular immunity in patients with metastatic colorectal cancer receiving chemotherapy

    Directory of Open Access Journals (Sweden)

    Martinez Micaela

    2012-01-01

    Full Text Available Abstract Background Advanced cancer and chemotherapy are both associated with immune system suppression. We initiated a clinical trial in patients receiving chemotherapy for metastatic colorectal cancer to determine if administration of GM-CSF in this setting was immunostimulatory. Methods Between June, 2003 and January, 2007, 20 patients were enrolled in a clinical trial (NCT00257322 in which they received 500 ug GM-CSF daily for 4 days starting 24 hours after each chemotherapy cycle. There were no toxicities or adverse events reported. Blood was obtained before chemotherapy/GM-CSF administration and 24 hours following the final dose of GM-CSF and evaluated for circulating dendritic cells and adaptive immune cellular subsets by flow cytometry. Peripheral blood mononuclear cell (PBMC expression of γ-interferon and T-bet transcription factor (Tbx21 by quantitative real-time PCR was performed as a measure of Th1 adaptive cellular immunity. Pre- and post-treatment (i.e., chemotherapy and GM-CSF samples were evaluable for 16 patients, ranging from 1 to 5 cycles (median 3 cycles, 6 biologic sample time points. Dendritic cells were defined as lineage (- and MHC class II high (+. Results 73% of patients had significant increases in circulating dendritic cells of ~3x for the overall group (5.8% to 13.6%, p = 0.02 and ~5x excluding non-responders (3.2% to 14.5%, p Tbx21 levels declined by 75% following each chemotherapy cycle despite administration of GM-CSF (p = 0.02. PBMC γ-interferon expression, however was unchanged. Conclusions This clinical trial confirms the suppressive effects of chemotherapy on Th1 cellular immunity in patients with metastatic colorectal cancer but demonstrates that mid-cycle administration of GM-CSF can significantly increase the proportion of circulating dendritic cells. As the role of dendritic cells in anti-tumor immunity becomes better defined, GM-CSF administration may provide a non-toxic intervention to augment this arm

  5. Suppressive effects of ketamine on macrophage functions

    International Nuclear Information System (INIS)

    Chang Yi; Chen, T.-L.; Sheu, J.-R.; Chen, R.-M.

    2005-01-01

    Ketamine is an intravenous anesthetic agent. Clinically, induction of anesthesia with ketamine can cause immunosuppression. Macrophages play important roles in host defense. In this study, we attempted to evaluate the effects of ketamine on macrophage functions and its possible mechanism using mouse macrophage-like Raw 264.7 cells as the experimental model. Exposure of macrophages to 10 and 100 μM ketamine, which correspond to 0.1 and 1 times the clinically relevant concentration, for 1, 6, and 24 h had no effect on cell viability or lactate dehydrogenase release. When the administered concentration reached 1000 μM, ketamine caused a release of lactate dehydrogenase and cell death. Ketamine, at 10 and 100 μM, did not affect the chemotactic activity of macrophages. Administration of 1000 μM ketamine in macrophages resulted in a decrease in cell migration. Treatment of macrophages with ketamine reduced phagocytic activities. The oxidative ability of macrophages was suppressed by ketamine. Treatment with lipopolysaccharide induced TNF-α, IL-1β, and IL-6 mRNA in macrophages. Administration of ketamine alone did not influence TNF-α, IL-1β, or IL-6 mRNA production. Meanwhile, cotreatment with ketamine and lipopolysaccharide significantly inhibited lipopolysaccharide-induced TNF-α, IL-1β, and IL-6 mRNA levels. Exposure to ketamine led to a decrease in the mitochondrial membrane potential. However, the activity of mitochondrial complex I NADH dehydrogenase was not affected by ketamine. This study shows that a clinically relevant concentration of ketamine (100 μM) can suppress macrophage function of phagocytosis, its oxidative ability, and inflammatory cytokine production possibly via reduction of the mitochondrial membrane potential instead of direct cellular toxicity

  6. Extracellular vesicles from Leishmania-infected macrophages confer an anti-infection cytokine-production profile to naïve macrophages.

    Directory of Open Access Journals (Sweden)

    André Cronemberger-Andrade

    2014-09-01

    Full Text Available Extracellular vesicles (EVs are structures with phospholipid bilayer membranes and 100-1000 nm diameters. These vesicles are released from cells upon activation of surface receptors and/or apoptosis. The production of EVs by dendritic cells, mast cells, macrophages, and B and T lymphocytes has been extensively reported in the literature. EVs may express MHC class II and other membrane surface molecules and carry antigens. The aim of this study was to investigate the role of EVs from Leishmania-infected macrophages as immune modulatory particles.In this work it was shown that BALB/c mouse bone marrow-derived macrophages, either infected in vitro with Leishmania amazonensis or left uninfected, release comparable amounts of 50-300 nm-diameter extracellular vesicles (EVs. The EVs were characterized by flow cytometry and electron microscopy. The incubation of naïve macrophages with these EVs for 48 hours led to a statistically significant increase in the production of the cytokines IL-12, IL-1β, and TNF-α.EVs derived from macrophages infected with L. amazonensis induce other macrophages, which in vivo could be bystander cells, to produce the proinflammatory cytokines IL-12, IL-1β and TNF-α. This could contribute both to modulate the immune system in favor of a Th1 immune response and to the elimination of the Leishmania, leading, therefore, to the control the infection.

  7. Mechanism of interleukin-13 production by granulocyte-macrophage colony-stimulating factor-dependent macrophages via protease-activated receptor-2.

    Science.gov (United States)

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-06-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) promotes classically activated M1 macrophages. GM-CSF upregulates protease-activated receptor-2 (PAR-2) protein expression and activation of PAR-2 by human neutrophil elastase (HNE) regulates cytokine production. This study investigated the mechanism of PAR-2-mediated interleukin (IL)-13 production by GM-CSF-dependent macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. After stimulation with HNE to activate the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway, IL-13 mRNA and protein levels were assessed by the reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. PAR-2 protein was detected in GM-CSF-dependent macrophages by Western blotting. Unexpectedly, PD98059 (an ERK1 inhibitor) increased IL-13 production, even at higher concentrations. Interestingly, U0126 (an ERK1/2 inhibitor) reduced IL-13 production in a concentration-dependent manner. Neither SB203580 (a p38alpha/p38beta inhibitor) nor BIRB796 (a p38gamma/p38delta inhibitor) affected IL-13 production, while TMB-8 (a calcium chelator) diminished IL-13 production. Stimulation with HNE promoted the production of IL-13 (a Th2 cytokine) by GM-CSF-dependent M1 macrophages. PAR-2-mediated IL-13 production may be dependent on the Ca(2+)/ERK2 signaling pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Glycyrrhizic Acid Promotes M1 Macrophage Polarization in Murine Bone Marrow-Derived Macrophages Associated with the Activation of JNK and NF-κB.

    Science.gov (United States)

    Mao, Yulong; Wang, Baikui; Xu, Xin; Du, Wei; Li, Weifen; Wang, Youming

    2015-01-01

    The roots and rhizomes of Glycyrrhiza species (licorice) have been widely used as natural sweeteners and herbal medicines. The aim of this study is to investigate the effect of glycyrrhizic acid (GA) from licorice on macrophage polarization. Both phenotypic and functional activities of murine bone marrow-derived macrophages (BMDMs) treated by GA were assessed. Our results showed that GA obviously increased the cell surface expression of CD80, CD86, and MHCII molecules. Meanwhile, GA upregulated the expression of CCR7 and the production of TNF-α, IL-12, IL-6, and NO (the markers of classically activated (M1) macrophages), whereas it downregulated the expression of MR, Ym1, and Arg1 (the markers of alternatively activated (M2) macrophage). The functional tests showed that GA dramatically enhanced the uptake of FITC-dextran and E. coli K88 by BMDMs and decreased the intracellular survival of E. coli K88 and S. typhimurium. Moreover, we demonstrated that JNK and NF-κB activation are required for GA-induced NO and M1-related cytokines production, while ERK1/2 pathway exhibits a regulatory effect via induction of IL-10. Together, these findings indicated that GA promoted polarization of M1 macrophages and enhanced its phagocytosis and bactericidal capacity. The results expanded our knowledge about the role of GA in macrophage polarization.

  9. Elevated S100A9 expression in tumor stroma functions as an early recurrence marker for early-stage oral cancer patients through increased tumor cell invasion, angiogenesis, macrophage recruitment and interleukin-6 production.

    Science.gov (United States)

    Fang, Wei-Yu; Chen, Yi-Wen; Hsiao, Jenn-Ren; Liu, Chiang-Shin; Kuo, Yi-Zih; Wang, Yi-Ching; Chang, Kung-Chao; Tsai, Sen-Tien; Chang, Mei-Zhu; Lin, Siao-Han; Wu, Li-Wha

    2015-09-29

    S100A9 is a calcium-binding protein with two EF-hands and frequently deregulated in several cancer types, however, with no clear role in oral cancer. In this report, the expression of S100A9 in cancer and adjacent tissues from 79 early-stage oral cancer patients was detected by immunohistochemical staining. Although S100A9 protein was present in both tumor and stromal cells, only the early-stage oral cancer patients with high stromal expression had reduced recurrence-free survival. High stromal S100A9 expression was also significantly associated with non-well differentiation and recurrence. In addition to increasing cell migration and invasion, ectopic S100A9 expression in tumor cells promoted xenograft tumorigenesis as well as the dominant expression of myeloid cell markers and pro-inflammatory IL-6. The expression of S100A9 in one stromal component, monocytes, stimulated the aggressiveness of co-cultured oral cancer cells. We also detected the elevation of serum S100A9 levels in early-stage oral cancer patients of a separate cohort of 73 oral cancer patients. The release of S100A9 protein into extracellular milieu enhanced tumor cell invasion, transendothelial monocyte migration and angiogenic activity. S100A9-mediated release of IL-6 requires the crosstalk of tumor cells with monocytes through the activation of NF-κB and STAT-3. Early-stage oral cancer patients with both high S100A9 expression and high CD68+ immune infiltrates in stroma had shortest recurrence-free survival, suggesting the use of both S100A9 and CD68 as poor prognostic markers for oral cancer. Together, both intracellular and extracellular S100A9 exerts a tumor-promoting action through the activation of oral cancer cells and their associated stroma in oral carcinogenesis.

  10. Elevated COX2 expression and PGE2 production by downregulation of RXRα in senescent macrophages

    International Nuclear Information System (INIS)

    Chen, Huimin; Ma, Feng; Hu, Xiaona; Jin, Ting; Xiong, Chuhui; Teng, Xiaochun

    2013-01-01

    Highlights: •Downregulation of RXRα in senescent macrophage. •RXRα suppresses NF-κB activity and COX2 expression. •Increased PGE2 production due to downregulation of RXRα. -- Abstract: Increased systemic level of inflammatory cytokines leads to numerous age-related diseases. In senescent macrophages, elevated prostaglandin E2 (PGE2) production contributes to the suppression of T cell function with aging, which increases the susceptibility to infections. However, the regulation of these inflammatory cytokines and PGE2 with aging still remains unclear. We have verified that cyclooxygenase (COX)-2 expression and PGE2 production are higher in LPS-stimulated macrophages from old mice than that from young mice. Downregulation of RXRα, a nuclear receptor that can suppress NF-κB activity, mediates the elevation of COX2 expression and PGE2 production in senescent macrophages. We also have found less induction of ABCA1 and ABCG1 by RXRα agonist in senescent macrophages, which partially accounts for high risk of atherosclerosis in aged population. Systemic treatment with RXRα antagonist HX531 in young mice increases COX2, TNF-α, and IL-6 expression in splenocytes. Our study not only has outlined a mechanism of elevated NF-κB activity and PGE2 production in senescent macrophages, but also provides RXRα as a potential therapeutic target for treating the age-related diseases

  11. Fluid-Phase Pinocytosis of Native Low Density Lipoprotein Promotes Murine M-CSF Differentiated Macrophage Foam Cell Formation

    Science.gov (United States)

    Xu, Qing; Bohnacker, Thomas; Wymann, Matthias P.; Kruth, Howard S.

    2013-01-01

    During atherosclerosis, low-density lipoprotein (LDL)-derived cholesterol accumulates in macrophages to form foam cells. Macrophage uptake of LDL promotes foam cell formation but the mechanism mediating this process is not clear. The present study investigates the mechanism of LDL uptake for macrophage colony-stimulating factor (M-CSF)-differentiated murine bone marrow-derived macrophages. LDL receptor-null (LDLR−/−) macrophages incubated with LDL showed non-saturable accumulation of cholesterol that did not down-regulate for the 24 h examined. Incubation of LDLR−/− macrophages with increasing concentrations of 125I-LDL showed non-saturable macrophage LDL uptake. A 20-fold excess of unlabeled LDL had no effect on 125I-LDL uptake by wild-type macrophages and genetic deletion of the macrophage scavenger receptors CD36 and SRA did not affect 125I-LDL uptake, showing that LDL uptake occurred by fluid-phase pinocytosis independently of receptors. Cholesterol accumulation was inhibited approximately 50% in wild-type and LDLR−/− mice treated with LY294002 or wortmannin, inhibitors of all classes of phosphoinositide 3-kinases (PI3K). Time-lapse, phase-contrast microscopy showed that macropinocytosis, an important fluid-phase uptake pathway in macrophages, was blocked almost completely by PI3K inhibition with wortmannin. Pharmacological inhibition of the class I PI3K isoforms alpha, beta, gamma or delta did not affect macrophage LDL-derived cholesterol accumulation or macropinocytosis. Furthermore, macrophages from mice expressing kinase-dead class I PI3K beta, gamma or delta isoforms showed no decrease in cholesterol accumulation or macropinocytosis when compared with wild-type macrophages. Thus, non-class I PI3K isoforms mediated macropinocytosis in these macrophages. Further characterization of the components necessary for LDL uptake, cholesterol accumulation, and macropinocytosis identified dynamin, microtubules, actin, and vacuolar type H(+)-ATPase as

  12. Enhanced SCAP glycosylation by inflammation induces macrophage foam cell formation.

    Directory of Open Access Journals (Sweden)

    Chao Zhou

    Full Text Available Inflammatory stress promotes foam cell formation by disrupting LDL receptor feedback regulation in macrophages. Sterol Regulatory Element Binding Proteins (SREBPs Cleavage-Activating Protein (SCAP glycosylation plays crucial roles in regulating LDL receptor and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCoAR feedback regulation. The present study was to investigate if inflammatory stress disrupts LDL receptor and HMGCoAR feedback regulation by affecting SCAP glycosylation in THP-1 macrophages. Intracellular cholesterol content was assessed by Oil Red O staining and quantitative assay. The expression of molecules controlling cholesterol homeostasis was examined using real-time quantitative RT-PCR and Western blotting. The translocation of SCAP from the endoplasmic reticulum (ER to the Golgi was detected by confocal microscopy. We demonstrated that exposure to inflammatory cytokines increased lipid accumulation in THP-1 macrophages, accompanying with an increased SCAP expression even in the presence of a high concentration of LDL. These inflammatory cytokines also prolonged the half-life of SCAP by enhancing glycosylation of SCAP due to the elevated expression of the Golgi mannosidase II. This may enhance translocation and recycling of SCAP between the ER and the Golgi, escorting more SREBP2 from the ER to the Golgi for activation by proteolytic cleavages as evidenced by an increased N-terminal of SREBP2 (active form. As a consequence, the LDL receptor and HMGCoAR expression were up-regulated. Interestingly, these effects could be blocked by inhibitors of Golgi mannosidases. Our results indicated that inflammation increased native LDL uptake and endogenous cholesterol de novo synthesis, thereby causing foam cell formation via increasing transcription and protein glycosylation of SCAP in macrophages. These data imply that inhibitors of Golgi processing enzymes might have a potential vascular-protective role in prevention of atherosclerotic foam

  13. Toll-like receptor 4-positive macrophages protect mice from Pasteurella pneumotropica-induced pneumonia

    Science.gov (United States)

    Hart, Marcia L.; Mosier, Derek A.; Chapes, Stephen K.

    2003-01-01

    This study investigates Toll-like receptor 4 (TLR4)-positive macrophages in early recognition and clearance of pulmonary bacteria. TLR4 is a trans-membrane receptor that is the primary recognition molecule for lipopolysaccharide of gram-negative bacteria. The TLR4(Lps-del) mouse strains C57BL10/ScN (B10) and STOCK Abb(tm1) TLR4(Lps-del) Slc11a1(s)(B10 x C2D) are susceptible to pulmonary infections and develop pneumonia when naturally or experimentally infected by the opportunistic bacterium Pasteurella pneumotropica. Since these mice have the TLR4(Lps-del) genotype, we hypothesized that reconstitution of mice with TLR4-positive macrophages would provide resistance to this bacterium. A cultured macrophage cell line (C2D macrophages) and bone marrow cells from C2D mice were adoptively transferred to B10 and B10 x C2D mice by intraperitoneal injection. C2D macrophages increased B10 and B10 x C2D mouse resistance to P. pneumotropica. In C2D-recipient mice there was earlier transcription of tumor necrosis factor alpha and chemokines JE and macrophage inflammatory protein 2 (MIP-2) in the lungs of B10 and B10 x C2D mice, and there was earlier transcription of KC and MIP-1alpha in B10 x C2D mice. In addition, the course of inflammation following experimental Pasteurella challenge was altered in C2D recipients. C2D macrophages also protected B10 x C2D mice, which lack CD4(+) T cells. These data indicate that macrophages are critical for pulmonary immunity and can provide host resistance to P. pneumotropica. This study indicates that TLR4-positive macrophages are important for early recognition and clearance of pulmonary bacterial infections.

  14. Interaction of differentiated human adipocytes with macrophages leads to trogocytosis and selective IL-6 secretion

    OpenAIRE

    Sárvári, Anitta Kinga; Doan-Xuan, Quang-Minh; Bacsó, Zsolt; Csomós, István; Balajthy, Zoltán; Fésüs, László

    2015-01-01

    Obesity leads to adipose tissue inflammation that is characterized by increased release of proinflammatory molecules and the recruitment of activated immune cells. Although macrophages are present in the highest number among the immune cells in obese adipose tissue, not much is known about their direct interaction with adipocytes. We have introduced an ex vivo experimental system to characterize the cellular interactions and the profile of secreted cytokines in cocultures of macrophages and h...

  15. Susceptibility of bone marrow-derived macrophages to influenza virus infection is dependent on macrophage phenotype.

    Science.gov (United States)

    Campbell, Gillian M; Nicol, Marlynne Q; Dransfield, Ian; Shaw, Darren J; Nash, Anthony A; Dutia, Bernadette M

    2015-10-01

    The role of the macrophage in influenza virus infection is complex. Macrophages are critical for resolution of influenza virus infections but implicated in morbidity and mortality in severe infections. They can be infected with influenza virus and consequently macrophage infection is likely to have an impact on the host immune response. Macrophages display a range of functional phenotypes, from the prototypical pro-inflammatory classically activated cell to alternatively activated anti-inflammatory macrophages involved in immune regulation and wound healing. We were interested in how macrophages of different phenotype respond to influenza virus infection and therefore studied the infection of bone marrow-derived macrophages (BMDMs) of classical and alternative phenotype in vitro. Our results show that alternatively activated macrophages are more readily infected and killed by the virus than classically activated. Classically activated BMDMs express the pro-inflammatory markers inducible nitric oxide synthase (iNOS) and TNF-α, and TNF-α expression was further upregulated following infection. Alternatively activated macrophages express Arginase-1 and CD206; however, following infection, expression of these markers was downregulated whilst expression of iNOS and TNF-α was upregulated. Thus, infection can override the anti-inflammatory state of alternatively activated macrophages. Importantly, however, this results in lower levels of pro-inflammatory markers than those produced by classically activated cells. Our results showed that macrophage phenotype affects the inflammatory macrophage response following infection, and indicated that modulating the macrophage phenotype may provide a route to develop novel strategies to prevent and treat influenza virus infection.

  16. HIV-1 Latency in Monocytes/Macrophages

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2014-04-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 targets CD4+ T cells and cells of the monocyte/macrophage lineage. HIV pathogenesis is characterized by the depletion of T lymphocytes and by the presence of a population of cells in which latency has been established called the HIV-1 reservoir. Highly active antiretroviral therapy (HAART has significantly improved the life of HIV-1 infected patients. However, complete eradication of HIV-1 from infected individuals is not possible without targeting latent sources of infection. HIV-1 establishes latent infection in resting CD4+ T cells and findings indicate that latency can also be established in the cells of monocyte/macrophage lineage. Monocyte/macrophage lineage includes among others, monocytes, macrophages and brain resident macrophages. These cells are relatively more resistant to apoptosis induced by HIV-1, thus are important stable hideouts of the virus. Much effort has been made in the direction of eliminating HIV-1 resting CD4+ T-cell reservoirs. However, it is impossible to achieve a cure for HIV-1 without considering these neglected latent reservoirs, the cells of monocyte/macrophage lineage. In this review we will describe our current understanding of the mechanism of latency in monocyte/macrophage lineage and how such cells can be specifically eliminated from the infected host.

  17. Inflammatory Macrophages Promotes Development of Diabetic Encephalopathy.

    Science.gov (United States)

    Wang, Beiyun; Miao, Ya; Zhao, Zhe; Zhong, Yuan

    2015-01-01

    Diabetes and Alzheimer's disease are often associated with each other, whereas the relationship between two diseases is ill-defined. Although hyperglycemia during diabetes is a major cause of encephalopathy, diabetes may also cause chronic inflammatory complications including peripheral neuropathy. Hence the role and the characteristics of inflammatory macrophages in the development of diabetic encephalopathy need to be clarified. Diabetes were induced in mice by i.p. injection of streptozotocin (STZ). Two weeks after STZ injection and confirmation of development of diabetes, inflammatory macrophages were eliminated by i.p. injection of 20µg saporin-conjugated antibody against a macrophage surface marker CD11b (saporin-CD11b) twice per week, while a STZ-treated group received injection of rat IgG of same frequency as a control. The effects of macrophage depletion on brain degradation markers, brain malondialdehyde (MDA), catalase, superoxidase anion-positive cells and nitric oxide (NO) were measured. Saporin-CD11b significantly reduced inflammatory macrophages in brain, without affecting mouse blood glucose, serum insulin, glucose responses and beta cell mass. However, reduced brain macrophages significantly inhibited the STZ-induced decreases in brain MDA, catalase and superoxidase anion-positive cells, and the STZ-induced decreases in brain NO. Inflammatory macrophages may promote development of diabetic encephalopathy. © 2015 S. Karger AG, Basel.

  18. Arctigenin ameliorates inflammation in vitro and in vivo by inhibiting the PI3K/AKT pathway and polarizing M1 macrophages to M2-like macrophages.

    Science.gov (United States)

    Hyam, Supriya R; Lee, In-Ah; Gu, Wan; Kim, Kyung-Ah; Jeong, Jin-Ju; Jang, Se-Eun; Han, Myung Joo; Kim, Dong-Hyun

    2013-05-15

    Seeds of Arctium lappa, containing arctigenin and its glycoside arctiin as main constituents, have been used as a diuretic, anti-inflammatory and detoxifying agent in Chinese traditional medicine. In our preliminary study, arctigenin inhibited IKKβ and NF-κB activation in peptidoglycan (PGN)- or lipopolysaccharide (LPS)-induced peritoneal macrophages. To understand the anti-inflammatory effect of arctigenin, we investigated its anti-inflammatory effect in LPS-stimulated peritoneal macrophages and on LPS-induced systemic inflammation as well as 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Arctigenin inhibited LPS-increased IL-1β, IL-6 and TNF-α expression in LPS-stimulated peritoneal macrophages, but increased LPS-reduced IL-10 and CD204 expression. Arctigenin inhibited LPS-induced PI3K, AKT and IKKβ phosphorylation, but did not suppress LPS-induced IRAK-1 phosphorylation. However, arctigenin did not inhibit NF-κB activation in LPS-stimulated PI3K siRNA-treated peritoneal macrophages. Arctigenin suppressed the binding of p-PI3K antibody and the nucleus translocation of NF-κB p65 in LPS-stimulated peritoneal macrophages. Arctigenin suppressed blood IL-1β and TNF-α level in mice systemically inflamed by intraperitoneal injection of LPS. Arctigenin also inhibited colon shortening, macroscopic scores and myeloperoxidase activity in TNBS-induced colitic mice. Arctigenin inhibited TNBS-induced IL-1β, TNF-α and IL-6 expression, as well as PI3K, AKT and IKKβ phosphorylation and NF-κB activation in mice, but increased IL-10 and CD204 expression. However, it did not affect IRAK-1 phosphorylation. Based on these findings, arctigenin may ameliorate inflammatory diseases, such as colitis, by inhibiting PI3K and polarizing M1 macrophages to M2-like macrophages. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. LDL Receptor-Related Protein-1 (LRP1 Regulates Cholesterol Accumulation in Macrophages.

    Directory of Open Access Journals (Sweden)

    Anna P Lillis

    Full Text Available Within the circulation, cholesterol is transported by lipoprotein particles and is taken up by cells when these particles associate with cellular receptors. In macrophages, excessive lipoprotein particle uptake leads to foam cell formation, which is an early event in the development of atherosclerosis. Currently, mechanisms responsible for foam cell formation are incompletely understood. To date, several macrophage receptors have been identified that contribute to the uptake of modified forms of lipoproteins leading to foam cell formation, but the in vivo contribution of the LDL receptor-related protein 1 (LRP1 to this process is not known [corrected]. To investigate the role of LRP1 in cholesterol accumulation in macrophages, we generated mice with a selective deletion of LRP1 in macrophages on an LDL receptor (LDLR-deficient background (macLRP1-/-. After feeding mice a high fat diet for 11 weeks, peritoneal macrophages isolated from Lrp+/+ mice contained significantly higher levels of total cholesterol than those from macLRP1-/- mice. Further analysis revealed that this was due to increased levels of cholesterol esters. Interestingly, macLRP1-/- mice displayed elevated plasma cholesterol and triglyceride levels resulting from accumulation of large, triglyceride-rich lipoprotein particles in the circulation. This increase did not result from an increase in hepatic VLDL biosynthesis, but rather results from a defect in catabolism of triglyceride-rich lipoprotein particles in macLRP1-/- mice. These studies reveal an important in vivo contribution of macrophage LRP1 to cholesterol homeostasis.

  20. The thyroid hormone triiodothyronine controls macrophage maturation and functions: protective role during inflammation.

    Science.gov (United States)

    Perrotta, Cristiana; Buldorini, Marcella; Assi, Emma; Cazzato, Denise; De Palma, Clara; Clementi, Emilio; Cervia, Davide

    2014-01-01

    The endocrine system participates in regulating macrophage maturation, although little is known about the modulating role of the thyroid hormones. In vitro results demonstrate a negative role of one such hormone, triiodothyronine (T3), in triggering the differentiation of bone marrow-derived monocytes into unpolarized macrophages. T3-induced macrophages displayed a classically activated (M1) signature. A T3-induced M1-priming effect was also observed on polarized macrophages because T3 reverses alternatively activated (M2) activation, whereas it enhances that of M1 cells. In vivo, circulating T3 increased the content of the resident macrophages in the peritoneal cavity, whereas it reduced the content of the recruited monocyte-derived cells. Of interest, T3 significantly protected mice against endotoxemia induced by lipopolysaccharide i.p. injection; in these damaged animals, decreased T3 levels increased the recruited (potentially damaging) cells, whereas restoring T3 levels decreased recruited and increased resident (potentially beneficial) cells. These data suggest that the anti-inflammatory effect of T3 is coupled to the modulation of peritoneal macrophage content, in a context not fully explained by the M1/M2 framework. Thyroid hormone receptor expression analysis and the use of different thyroid hormone receptor antagonists suggest thyroid hormone receptor β1 as the major player mediating T3 effects on macrophages. The novel homeostatic link between thyroid hormones and the pathophysiological role of macrophages opens new perspectives on the interactions between the endocrine and immune systems. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. The impact of splenectomy on human coronary artery atherosclerosis and vascular macrophage distribution.

    Science.gov (United States)

    Li, Yu; Stone, James R

    Splenectomy can potentially impact atherosclerosis through multiple mechanisms including altered lipid homeostasis, increased coagulation, and altered macrophage recruitment to the plaque. In patients, splenectomy has been associated with increased rates of coronary artery events, while in experimental mice, splenectomy causes increased atherosclerosis but reduces systemic monocyte supply. In this study, the direct impact of splenectomy on human coronary artery atherosclerotic plaque severity and macrophage content was investigated. Coronary artery atherosclerotic plaque severity was determined at autopsy in 18 long-term (≥10 years) splenectomy patients and 90 matched control patients. Coronary artery macrophage content was evaluated in mild atherosclerotic plaques of 11 mid- to long-term (≥1 year) splenectomy patients and 11 matched control patients. Splenectomy was associated with reduced coronary artery atherosclerosis (P=.03). The association was most pronounced for the subgroup of patients who had undergone splenectomy 20 years or more prior to death (P=.02). There was no difference in the density of macrophages in the plaque, media, or adventitia upon comparing splenectomy and control patients. In the control group, there was no correlation between the macrophage densities in the three arterial layers. However, in the splenectomy patients, there was a strong correlation in the macrophage densities across the plaque, media, and adventitia (P≤.0002), with resulting slopes that were significantly greater than seen in the control patients (P=.0007-.011). These findings indicate that, in humans, splenectomy is associated with lower coronary artery atherosclerotic plaque severity and altered coronary artery macrophage distribution. These results suggest that the spleen can modulate the recruitment of macrophages into human coronary arteries and the progression of atherosclerosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. VEGF-production by CCR2-dependent macrophages contributes to laser-induced choroidal neovascularization.

    Directory of Open Access Journals (Sweden)

    Torsten A Krause

    Full Text Available Age-related macular degeneration (AMD is the most prevalent cause of blindness in the elderly, and its exsudative subtype critically depends on local production of vascular endothelial growth factor A (VEGF. Mononuclear phagocytes, such as macrophages and microglia cells, can produce VEGF. Their precursors, for example monocytes, can be recruited to sites of inflammation by the chemokine receptor CCR2, and this has been proposed to be important in AMD. To investigate the role of macrophages and CCR2 in AMD, we studied intracellular VEGF content in a laser-induced murine model of choroidal neovascularisation. To this end, we established a technique to quantify the VEGF content in cell subsets from the laser-treated retina and choroid separately. 3 days after laser, macrophage numbers and their VEGF content were substantially elevated in the choroid. Macrophage accumulation was CCR2-dependent, indicating recruitment from the circulation. In the retina, microglia cells were the main VEGF+ phagocyte type. A greater proportion of microglia cells contained VEGF after laser, and this was CCR2-independent. On day 6, VEGF-expressing macrophage numbers had already declined, whereas numbers of VEGF+ microglia cells remained increased. Other sources of VEGF detectable by flow cytometry included in dendritic cells and endothelial cells in both retina and choroid, and Müller cells/astrocytes in the retina. However, their VEGF content was not increased after laser. When we analyzed flatmounts of laser-treated eyes, CCR2-deficient mice showed reduced neovascular areas after 2 weeks, but this difference was not evident 3 weeks after laser. In summary, CCR2-dependent influx of macrophages causes a transient VEGF increase in the choroid. However, macrophages augmented choroidal neovascularization only initially, presumably because VEGF production by CCR2-independent eye cells prevailed at later time points. These findings identify macrophages as a relevant source

  3. Inflammatory Macrophage Phenotype in BTBR T+tf/J Mice

    Directory of Open Access Journals (Sweden)

    Paul eAshwood

    2013-09-01

    Full Text Available Although autism is a behaviorally defined disorder, many studies report an association with increased pro-inflammatory cytokine production. Recent characterization of the BTBR T+tf/J (BTBR inbred mouse strain has revealed several behavioral characteristics including social deficits, repetitive behavior, and atypical vocalizations which may be relevant to autism. We therefore hypothesized that asocial BTBR mice, which exhibit autism-like behaviors, may have an inflammatory immune profile similar to that observed in children with autism. The objectives of this study were to characterize the myeloid immune profile of BTBR mice and to explore their associations with autism-relevant behaviors. C57BL/6J (C57 mice and BTBR mice were tested for social interest and repetitive self-grooming behavior. Cytokine production was measured in bone-marrow derived macrophages incubated for 24 hours in either growth media alone, LPS, IL-4/ LPS, or IFNγ/ LPS to ascertain any M1/M2 skewing. After LPS stimulation, BTBR macrophages produced higher levels of IL-6, MCP-1, and MIP-1α and lower IL-10 (p<0.01 that C57 mice, suggesting an exaggerated inflammatory profile. After exposure to IL-4/LPS BTBR macrophages produced less IL-10 than C57 macrophages and more IL-12p40 (p<0.01 suggesting poor M2 polarization. Levels of IL-12(p70 (p<0.05 were higher in BTBR macrophages after IFNγ/LPS stimulation, suggesting enhanced M1 polarization. We further observed a positive correlation between grooming frequency, and production of IL-12(p40, IL-12p70, IL-6, and TNFα (p<0.05 after treatment with IFNγ/LPS across both strains. Collectively, these data suggest that the asocial BTBR mouse strain exhibits a more inflammatory, or M1, macrophage profile in comparison to social C57 strain. We have further demonstrated a relationship between this relative increase in inflammation and repetitive grooming behavior, which may have relevance to repetitive and stereotyped behavior of autism.

  4. Macrophages and Uveitis in Experimental Animal Models

    Directory of Open Access Journals (Sweden)

    Salvador Mérida

    2015-01-01

    Full Text Available Resident and infiltrated macrophages play relevant roles in uveitis as effectors of innate immunity and inductors of acquired immunity. They are major effectors of tissue damage in uveitis and are also considered to be potent antigen-presenting cells. In the last few years, experimental animal models of uveitis have enabled us to enhance our understanding of the leading role of macrophages in eye inflammation processes, including macrophage polarization in experimental autoimmune uveoretinitis and the major role of Toll-like receptor 4 in endotoxin-induced uveitis. This improved knowledge should guide advantageous iterative research to establish mechanisms and possible therapeutic targets for human uveitis resolution.

  5. The Alveolar Microenvironment of Patients Infected with Human Immunodeficiency Virus Does Not Modify Alveolar Macrophage Interactions with Streptococcus pneumoniae

    Science.gov (United States)

    Jagoe, R. Thomas; Jarman, Elizabeth R.; North, James C.; Pridmore, Alison; Musaya, Janelisa; French, Neil; Zijlstra, Eduard E.; Molyneux, Malcolm E.; Read, Robert C.

    2013-01-01

    We tested the hypothesis that HIV infection results in activation of alveolar macrophages and that this might be associated with impaired defense against pneumococcus. We compared alveolar macrophages and lymphocytes in 131 bronchoalveolar lavage samples from HIV-infected and healthy controls using inflammatory gene microarrays, flow cytometry, real-time PCR, and enzyme-linked immunosorbent assay (ELISA) to determine the pattern of macrophage activation associated with HIV infection and the effect of this activation on defense against pneumococcus. We used gamma interferon (IFN-γ) priming to mimic the cellular milieu in HIV-infected lungs. InnateDB and BioLayout 3D were used to analyze the interactions of the upregulated genes. Alveolar macrophages from HIV-infected adults showed increased gene expression and cytokine production in a classical pattern. Bronchoalveolar lavage from HIV-infected subjects showed excess CD8+ lymphocytes with activated phenotype. Toll-like receptor 4 (TLR4) expression was increased in macrophages from HIV-infected subjects, but function was similar between the groups; lung lavage fluid did not inhibit TLR function in transfected HeLa cells. Alveolar macrophages from HIV-infected subjects showed normal binding and internalization of opsonized pneumococci, with or without IFN-γ priming. Alveolar macrophages from HIV-infected subjects showed classical activation compared to that of healthy controls, but this does not alter macrophage interactions with pneumococci. PMID:23576675

  6. Impaired IL-10 transcription and release in animal models of Gaucher disease macrophages.

    Science.gov (United States)

    Kacher, Yaacov; Futerman, Anthony H

    2009-01-01

    A number of studies have shown altered cytokine levels in serum from Gaucher disease patients, including changes in levels of the anti-inflammatory cytokine, interleukin-10 (IL-10). However, the source of IL-10, or the mechanisms leading to changes in IL-10 serum levels are not known. We now show that mouse macrophages treated with an active site-directed inhibitor of glucocerebrosidase, or macrophages from a mouse model of Gaucher disease, the L444P mouse, release significantly less IL-10 than their untreated counterparts, but that TNFalpha release is unaffected. These changes are due to reduced transcription of IL-10 mRNA in macrophages. The reduction in IL-10 secretion observed in animal models of Gaucher disease macrophages may be of relevance to explain the increase in inflammation that is often observed in Gaucher disease.

  7. Microarray expression analysis of genes involved in innate immune memory in peritoneal macrophages

    Directory of Open Access Journals (Sweden)

    Keisuke Yoshida

    2016-03-01

    Full Text Available Immunological memory has been believed to be a feature of the adaptive immune system for long period, but recent reports suggest that the innate immune system also exhibits memory-like reaction. Although evidence of innate immune memory is accumulating, no in vivo experimental data has clearly implicated a molecular mechanism, or even a cell-type, for this phenomenon. In this study of data deposited into Gene Expression Omnibus (GEO under GSE71111, we analyzed the expression profile of peritoneal macrophages isolated from mice pre-administrated with toll-like receptor (TLR ligands, mimicking pathogen infection. In these macrophages, increased expression of a group of innate immunity-related genes was sustained over a long period of time, and these genes overlapped with ATF7-regulated genes. We conclude that ATF7 plays an important role in innate immune memory in macrophages. Keywords: Macrophage, ATF7, Innate immune memory, Microarray

  8. Exercise enhances wound healing and prevents cancer progression during aging by targeting macrophage polarity.

    Science.gov (United States)

    Goh, Jorming; Ladiges, Warren C

    2014-07-01

    Physical activity, which can include regular and repetitive exercise training, has been shown to decrease the incidence of age-related diseases. Aging is characterized by aberrant immune responses, including impaired wound healing and increased cancer risk. The behavior and polarized phenotype of tissue macrophages are distinct between young and old organisms. The balance of M1 and M2 macrophages is altered in the aged tissue microenvironment, with a tilt towards an M2-dominant macrophage population, as well as its associated signaling pathways. These M2-type responses may result in unresolved inflammation and create an environment that impairs wound healing and is favorable for cancer growth. We discuss the concept that exercise training can improve the regulation of macrophage polarization and normalize the inflammatory process, and thereby exert anticancer effects and enhance wound healing in older humans. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Immunomodulatory effects of hydroxyethylated Hericium erinaceus polysaccharide on macrophages RAW264.7.

    Science.gov (United States)

    Ren, Zhe; Qin, Tao; Qiu, Fuan; Song, Yulong; Lin, Dandan; Ma, Yufang; Li, Jian; Huang, Yifan

    2017-12-01

    Hericium erinaceus polysaccharide (HEP) has been shown to possess a variety of biological activities. In present study, HEP was successfully modified to obtain its hydroxyethylated derivative hHEP. Its potential immunomodulatory activities on RAW264.7 macrophages were investigated. Results showed that the hHEP were significantly stronger than that of the corresponding unmodified polysaccharide, HEP. Meanwhile, the NO, IL-6 and TNF-α production activities of macrophages were enhanced in the RAW264.7 macrophages by stimulation of hHEP. In addition, the hHEP increase significantly higher iNOS expression than HEP. These results indicated that the hydroxyethylated derivative hHEP could enhance the activation of peritoneal macrophages, and hydroxyethylation modification can enhance the immunomodulation function of HEP. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Dexamethasone targeted directly to macrophages induces macrophage niches that promote erythroid expansion

    DEFF Research Database (Denmark)

    Falchi, Mario; Varricchio, Lilian; Martelli, Fabrizio

    2015-01-01

    Cultures of human CD34(pos) cells stimulated with erythroid growth factors plus dexamethasone, a model for stress erythropoiesis, generate numerous erythroid cells plus a few macrophages (approx. 3%; 3:1 positive and negative for CD169). Interactions occurring between erythroblasts and macrophages...... in these cultures and the biological effects associated with these interactions were documented by live phase-contrast videomicroscopy. Macrophages expressed high motility interacting with hundreds/thousands of erythroblasts per hour. CD169(pos) macrophages established multiple rapid 'loose' interactions...... with proerythroblasts leading to formation of transient erythroblastic island-like structures. By contrast, CD169(neg) macrophages established 'tight' interactions with mature erythroblasts and phagocytosed these cells. 'Loose' interactions of CD169(pos) macrophages were associated with proerythroblast cytokinesis (the...

  11. Caprine arthritis encephalitis virus dysregulates the expression of cytokines in macrophages.

    Science.gov (United States)

    Lechner, F; Machado, J; Bertoni, G; Seow, H F; Dobbelaere, D A; Peterhans, E

    1997-01-01

    Caprine arthritis encephalitis virus (CAEV) is a lentivirus of goats that leads to chronic mononuclear infiltration of various tissues, in particular, the radiocarpal joints. Cells of the monocyte/macrophage lineage are the major host cells of CAEV in vivo. We have shown that infection of cultured goat macrophages with CAEV results in an alteration of cytokine expression in vitro. Constitutive expression of interleukin 8 (IL-8) and monocyte chemoattractant protein 1 (MCP-1) was increased in infected macrophages, whereas transforming growth factor beta1 (TGF-beta1) mRNA was down-regulated. When macrophages were infected with a CAEV clone lacking the trans-acting nuclear regulatory gene tat, IL-8 and MCP-1 were also increased. No significant differences from cells infected with the wild-type clone were observed, suggesting that Tat is not required for the increased expression of IL-8 and MCP-1 in infected macrophages. Furthermore, infection with CAEV led to an altered pattern of cytokine expression in response to lipopolysaccharide (LPS), heat-killed Listeria monocytogenes plus gamma interferon, or fixed cells of Staphylococcus aureus Cowan I. In infected macrophages, tumor necrosis factor alpha, IL-1beta, IL-6, and IL-12 p40 mRNA expression was reduced in response to all stimuli tested whereas changes in expression of granulocyte-macrophage colony-stimulating factor depended on the stimulating agent. Electrophoretic mobility shift assays demonstrated that, in contrast to effects of human immunodeficiency virus infection of macrophages, CAEV infection had no effect on the level of constitutive nuclear factor-kappaB (NF-kappaB) activity or on the level of LPS-stimulated NF-kappaB activity, suggesting that NF-kappaB is not involved in altered regulation of cytokine expression in CAEV-infected cells. In contrast, activator protein 1 (AP-1) binding activity was decreased in infected macrophages. These data show that CAEV infection may result in a dysregulation of

  12. Proteomic Investigation of the Time Course Responses of RAW 264.7 Macrophages to Infection with Salmonella enterica

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang; Chowdhury, Saiful M.; Smallwood, Heather S.; Yoon, Hyunjin; Mottaz-Brewer, Heather M.; Norbeck, Angela D.; McDermott, Jason E.; Clauss, Therese RW; Heffron, Fred; Smith, Richard D.; Adkins, Joshua N.

    2009-08-01

    Macrophages plan important roles in controlling Salmonella-mediated systemic infection. To investigate the responses of macrophages to Salmonella infection, we infected RAW 264.7 macrophages with Salmonella enterica serovar Typhimurium (STM) and then performed a comparative liquid chromatography-tandem mass spectrometry [LC-MS(/MS)]-based proteomics analysis of the infected macrophages. A total of 1006 macrophage and 115 STM proteins were indentified from this study. Most of STM proteins were found at late stage of the time course of infection, consistent with the fact that STM proliferates inside RAW 264.7 macrophages. Majority of the identified macrophage proteins were house keeping-related, including cytoplasmic superoxide dismutase 1 (SOD1), whose peptide abundances were relatively constant during the time course of infection. Compared to those in no infection control, the peptide abundances of 244 macrophage proteins (or 24% of total indentified macrophage proteins) changed considerably after STM infection. The functions of these STM infection-affected macrophage proteins were diverse and ranged from production of antibacterial nitric oxide (i.e., inducible nitric oxide synthase or iNOS) or production of prostaglandin H2 (i.e., prostaglandin-endoperoxide synthase 2, also know as cyclooxygenase-2 or COX-2) to regulation of intracellular traffic (e.g., sorting nexin or SNX 5, 6 and 9), demonstrating a global impact of STM infection on macrophage proteome. Western-blot analysis not only confirmed the LC-MS(/MS) results of SOD1, COX-2 and iNOS, but also revealed that the protein abundances of mitochondrial SOD2 increased after STM infection, indicating an infection-induced oxidative stress in mitochondria.

  13. The role of PTEN in regulation of hepatic macrophages activation and function in progression and reversal of liver fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yahui; Tian, Yuanyao; Xia, Jialu; Wu, Xiaoqin; Yang, Yang; Li, Xiaofeng; Huang, Cheng; Meng, Xiaoming; Ma, Taotao; Li, Jun, E-mail: lj@ahmu.edu.cn

    2017-02-15

    Activation of Kupffer cells (KCs) plays a pivotal role in the pathogenesis of liver fibrosis. The progression and reversal of CCl{sub 4}-induced mouse liver fibrosis showed a mixed induction of hepatic classical (M1) and alternative (M2) macrophage markers. Although the role of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in modulating myeloid cell activation has recently been identified, its function in macrophage activation during hepatic fibrosis remains to be fully appreciated. In our study, PTEN expression of KCs was remarkably decreased in CCl{sub 4}-induced mice but increased to a near-normal level in reversed mice. Moreover, PTEN was significantly decreased in IL4-induced RAW 264.7 cells in vitro and lower expression of PTEN was observed in M2 macrophages in vivo. In addition, loss- and gain-of-function studies suggested that PTEN regulates M2 macrophages polarization via activation of PI3K/Akt/STAT6 signaling, but had a limited effect on M1 macrophages polarization in vitro. Additionally, Ly294002, a chemical inhibitor of PI3K/Akt, could dramatically down-regulate the hallmarks of M2 macrophages. In conclusion, PTEN mediates macrophages activation by PI3K/Akt/STAT6 signaling pathway, which provides novel compelling evidences on the potential of PTEN in liver injury and opens new cellular target for the pharmacological therapy of liver fibrosis. - Highlights: • CCl{sub 4} treatment triggered a mixed M1/M2 macrophage phenotype in fibrosis. • Lower expression of PTEN in murine M2 macrophages in vivo and vitro. • PTEN modulates M2 macrophages activation via PI3K/Akt/STAT6 signaling. • Provide a new cellular target modulate macrophage mediated hepatic fibrosis.

  14. Immunoregulatory mechanisms of macrophage PPAR γ in mice with experimental inflammatory bowel disease

    Science.gov (United States)

    Hontecillas, Raquel; Horne, William T.; Climent, Montse; Guri, Amir J.; Evans, C.; Zhang, Y.; Sobral, Bruno W.; Bassaganya-Riera, Josep

    2010-01-01

    Peroxisome proliferator-activated receptor γ (PPAR γ) is widely expressed in macrophages and has been identified as a putative target for the development of novel therapies against inflammatory bowel disease (IBD). Computational simulations identified macrophages as key targets for therapeutic interventions against IBD. This study aimed to characterize the mechanisms underlying the beneficial effects of macrophage PPAR γ in IBD. Macrophage-specific PPAR γ deletion significantly exacerbated clinical activity and colonic pathology, impaired the splenic and mesenteric lymph node regulatory T cell compartment, increased percentages of LP CD8+ T cells, increased surface expression of CD40, Ly6C, and TLR-4 in LP macrophages, and upregulated expression of colonic IFN-γ, CXCL9, CXCL10, IL-22, IL1RL1, CCR1, suppressor of cytokine signaling 3 and MCH class II in mice with IBD. Moreover, macrophage PPAR γ was required for accelerating pioglitazone-mediated recovery from DSS colitis, providing a cellular target for the anti-inflammatory effects of PPAR γ agonists in IBD. PMID:21068720

  15. Immunoregulatory mechanisms of macrophage PPAR-γ in mice with experimental inflammatory bowel disease.

    Science.gov (United States)

    Hontecillas, R; Horne, W T; Climent, M; Guri, A J; Evans, C; Zhang, Y; Sobral, B W; Bassaganya-Riera, J

    2011-05-01

    Peroxisome proliferator-activated receptor-γ (PPAR-γ) is widely expressed in macrophages and has been identified as a putative target for the development of novel therapies against inflammatory bowel disease (IBD). Computational simulations identified macrophages as key targets for therapeutic interventions against IBD. This study aimed to characterize the mechanisms underlying the beneficial effects of macrophage PPAR-γ in IBD. Macrophage-specific PPAR-γ deletion significantly exacerbated clinical activity and colonic pathology, impaired the splenic and mesenteric lymph node regulatory T-cell compartment, increased percentages of lamina propria (LP) CD8+ T cells, increased surface expression of CD40, Ly6C, and Toll-like receptor 4 (TLR-4) in LP macrophages, and upregulated expression of colonic IFN-γ, CXCL9, CXCL10, IL-22, IL1RL1, CCR1, suppressor of cytokine signaling 3, and MHC class II in mice with IBD. Moreover, macrophage PPAR-γ was required for accelerating pioglitazone-mediated recovery from dextran sodium sulfate (DSS) colitis, providing a cellular target for the anti-inflammatory effects of PPAR-γ agonists in IBD.

  16. Adrenomedullin Regulates IL-1β Gene Expression in F4/80+ Macrophages during Synovial Inflammation

    Science.gov (United States)

    Takano, Shotaro; Miyagi, Masayuki; Inoue, Gen; Aikawa, Jun; Iwabuchi, Kazuya; Takaso, Masashi

    2017-01-01

    Adrenomedullin (AM) plays an important role in the regulation of inflammatory processes; however, the role and expression of AM in synovial inflammation have not been determined. To investigate the expression and role of AM in inflamed synovial tissue (ST), the gene expression profiles of AM in the ST, including synovial macrophages and fibroblasts, of a murine patellar surgical dislocation model were characterized. In addition, the effects of interleukin- (IL-) 1β and AM in cultured synovial cells were also examined. CD11c+ macrophages were found to be elevated in ST of the surgically dislocated patella. Higher gene expression of CD11c, IL-1β, AM, receptor activity-modifying proteins 2 (RAMP2), and 3 (RAMP3) was also observed in ST obtained from the dislocated side. AM expression was also significantly increased in synovial fibroblasts and macrophages in response to IL-1β treatment. Synovial macrophages also highly expressed RAMP3 compared to fibroblasts and this expression was further stimulated by exogenously added IL-1β. Further, the treatment of the F4/80-positive cell fraction obtained from ST with AM inhibited IL-1β expression. Taken together, these findings demonstrated that AM was produced by synovial fibroblasts and macrophages in inflamed ST and that increased levels of AM may exert anti-inflammatory effects on synovial macrophages. PMID:28299347

  17. The Impaired Function of Macrophages Induced by Strenuous Exercise Could Not Be Ameliorated by BCAA Supplementation.

    Science.gov (United States)

    Xiao, Weihua; Chen, Peijie; Liu, Xiaoguang; Zhao, Linlin

    2015-10-21

    The aim of this study was to evaluate the effect of strenuous exercise on the functions of peritoneal macrophages in rats and to test the hypothesis that branched-chain amino acid (BCAA) supplementation will be beneficial to the macrophages of rats from strenuous exercise. Forty male Wistar rats were randomly divided into five groups: (C) Control, E) Exercise, (E1) Exercise with one week to recover, (ES) Exercise + Supplementation and (ES1) Exercise + Supplementation with 1 week to recover. All rats except those of the sedentary control were subjected to four weeks of strenuous exercise. Blood hemoglobin, serum testosterone and BCAA levels were tested. Peritoneal macrophages functions were also determined at the same time. The data showed that hemoglobin, testosterone, BCAA levels, and body weight in group E decreased significantly as compared with that of group C. Meanwhile, phagocytosis capacity (decreased by 17.07%, p = 0.031), reactive oxygen species (ROS) production (decreased by 26%, p = 0.003) and MHC II mRNA (decreased by 22%, p = 0.041) of macrophages decreased in the strenuous exercise group as compared with group C. However, the chemotaxis of macrophages did not change significantly. In addition, BCAA supplementation could slightly increase the serum BCAA levels of rats from strenuous exercise (increased by 6.70%, p > 0.05). Moreover, the body weight, the blood hemoglobin, the serum testosterone and the function of peritoneal macrophages in group ES did not change significantly as compared with group E. These results suggest that long-term intensive exercise impairs the function of macrophages, which is essential for microbicidal capability. This may represent a novel mechanism of immunosuppression induced by strenuous exercise. Moreover, the impaired function of macrophage induced by strenuous exercise could not be ameliorated by BCAA supplementation in the dosing and timing used for this study.

  18. The Impaired Function of Macrophages Induced by Strenuous Exercise Could Not Be Ameliorated by BCAA Supplementation

    Directory of Open Access Journals (Sweden)

    Weihua Xiao

    2015-10-01

    Full Text Available The aim of this study was to evaluate the effect of strenuous exercise on the functions of peritoneal macrophages in rats and to test the hypothesis that branched-chain amino acid (BCAA supplementation will be beneficial to the macrophages of rats from strenuous exercise. Forty male Wistar rats were randomly divided into five groups: (C Control, E Exercise, (E1 Exercise with one week to recover, (ES Exercise + Supplementation and (ES1 Exercise + Supplementation with 1 week to recover. All rats except those of the sedentary control were subjected to four weeks of strenuous exercise. Blood hemoglobin, serum testosterone and BCAA levels were tested. Peritoneal macrophages functions were also determined at the same time. The data showed that hemoglobin, testosterone, BCAA levels, and body weight in group E decreased significantly as compared with that of group C. Meanwhile, phagocytosis capacity (decreased by 17.07%, p = 0.031, reactive oxygen species (ROS production (decreased by 26%, p = 0.003 and MHC II mRNA (decreased by 22%, p = 0.041 of macrophages decreased in the strenuous exercise group as compared with group C. However, the chemotaxis of macrophages did not change significantly. In addition, BCAA supplementation could slightly increase the serum BCAA levels of rats from strenuous exercise (increased by 6.70%, p > 0.05. Moreover, the body weight, the blood hemoglobin, the serum testosterone and the function of peritoneal macrophages in group ES did not change significantly as compared with group E. These results suggest that long-term intensive exercise impairs the function of macrophages, which is essential for microbicidal capability. This may represent a novel mechanism of immunosuppression induced by strenuous exercise. Moreover, the impaired function of macrophage induced by strenuous exercise could not be ameliorated by BCAA supplementation in the dosing and timing used for this study.

  19. Reduced number and morphofunctional change of alveolar macrophages in MafB gene-targeted mice.

    Directory of Open Access Journals (Sweden)

    Michiko Sato-Nishiwaki

    Full Text Available Alveolar macrophages (AMs play an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD. We previously demonstrated that the transcription factor, MafB, increased in the AMs of mice exposed to cigarette smoke, and in those of human patients with COPD. The aim of this study was to evaluate the role of MafB in AMs using newly established transgenic (TG mice that specifically express dominant negative (DN MafB in macrophages under the control of macrophage scavenger receptor (MSR enhancer-promoter. We performed cell differential analyses in bronchoalveolar lavage cells, morphological analyses with electron microscopy, and flow cytometry-based analyses of surface markers and a phagocytic capacity assay in macrophages. AM number in the TG mice was significantly decreased compared with wild-type (WT mice. Morphologically, the high electron density area in the nucleus increased, the shape of pseudopods on the AMs was altered, and actin filament was less localized in the pseudopods of AMs of TG mice, compared with WT mice. The expression of surface markers, F4/80 and CD11b, on peritoneal macrophages in TG mice was reduced compared with WT mice, while those on AMs remained unchanged. Phagocytic capacity was decreased in AMs from TG mice, compared with WT mice. In conclusion, MafB regulates the phenotype of macrophages with respect to the number of alveolar macrophages, the nuclear compartment, cellular shape, surface marker expression, and phagocytic function. MSR-DN MafB TG mice may present a useful model to clarify the precise role of MafB in macrophages.

  20. Anti-inflammatory effects of octadecylamine-functionalized nanodiamond on primary human macrophages.

    Science.gov (United States)

    Pentecost, A E; Witherel, C E; Gogotsi, Y; Spiller, K L

    2017-09-26

    Chronic inflammatory disorders such as rheumatoid arthritis are characterized by excessive pro-inflammatory or "M1" activation of macrophages, the primary cells of the innate immune system. Current treatments include delivery of glucocorticoids (e.g. dexamethasone - Dex), which reduce pro-inflammatory M1 behaviour in macrophages. However, these treatments have many off-target effects on cells other than macrophages, resulting in broad immunosuppression. To limit such side effects, drug-incorporated nano- and microparticles may be used to selectively target macrophages via phagocytosis, because of their roles as highly effective phagocytes in the body. In this study, surface-modified nanodiamond (ND) was explored as a platform for the delivery of dexamethasone to macrophages because of ND's rich surface chemistry, which contributes to ND's high potential as a versatile drug delivery platform. After finding that octadecylamine-functionalized nanodiamond (ND-ODA) enhanced adsorption of Dex compared to carboxylated ND, the effects of Dex, ND-ODA, and Dex-adsorbed ND-ODA on primary human macrophage gene expression were characterized. Surprisingly, even in the absence of Dex, ND-ODA had strong anti-inflammatory effects, as determined by multiplex gene expression via NanoString and by protein secretion analysis via ELISA. ND-ODA also inhibited expression of M2a markers yet increased the expression of M2c markers and phagocytic receptors. Interestingly, the adsorption of Dex to ND-ODA further increased some anti-inflammatory effects, but abrogated the effect on phagocytic receptors, compared to its individual components. Overall, the ability of ND-ODA to promote anti-inflammatory and pro-phagocytic behaviour in macrophages, even in the absence of loaded drugs, suggests its potential for use as an anti-inflammatory therapeutic to directly target macrophages through phagocytosis.

  1. The response of macrophages to titanium particles is determined by macrophage polarization.

    Science.gov (United States)

    Pajarinen, Jukka; Kouri, Vesa-Petteri; Jämsen, Eemeli; Li, Tian-Fang; Mandelin, Jami; Konttinen, Yrjö T

    2013-11-01

    Aseptic loosening of total joint replacements is driven by the reaction of macrophages to foreign body particles released from the implant. It was hypothesized that the macrophages' response to these particles is dependent, in addition to particle characteristics and contaminating biomolecules, on the state of macrophage polarization as determined by the local cytokine microenvironment. To test this hypothesis we differentiated M1 and M2 macrophages from human peripheral blood monocytes and compared their responses to titanium particles using genome-wide microarray analysis and a multiplex cytokine assay. In comparison to non-activated M0 macrophages, the overall chemotactic and inflammatory responses to titanium particles were greatly enhanced in M1 macrophages and effectively suppressed in M2 macrophages. In addition, the genome-wide approach revealed several novel, potentially osteolytic, particle-induced mediators, and signaling pathway analysis suggested the involvement of toll-like and nod-like receptor signaling in particle recognition. It is concluded that the magnitude of foreign body reaction caused by titanium particles is dependent on the state of macrophage polarization. Thus, by limiting the action of M1 polarizing factors, e.g. bacterial biofilm formation, in peri-implant tissues and promoting M2 macrophage polarization by biomaterial solutions or pharmacologically, it might be possible to restrict wear-particle-induced inflammation and osteolysis. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Macrophage-specific nanotechnology-driven CD163 overexpression in human macrophages results in an M2 phenotype under inflammatory conditions.

    Science.gov (United States)

    Alvarado-Vazquez, Perla Abigail; Bernal, Laura; Paige, Candler A; Grosick, Rachel L; Moracho Vilrriales, Carolina; Ferreira, David Wilson; Ulecia-Morón, Cristina; Romero-Sandoval, E Alfonso

    2017-08-01

    M1 macrophages release proinflammatory factors during inflammation. They transit to an M2 phenotype and release anti-inflammatory factors to resolve inflammation. An imbalance in the transition from M1 to M2 phenotype in macrophages contributes to the development of persistent inflammation. CD163, a member of the scavenger receptor cysteine-rich family, is an M2 macrophage marker. The functional role of CD163 during the resolution of inflammation is not completely known. We postulate that CD163 contributes to the transition from M1 to M2 phenotype in macrophages. We induced CD163 gene in THP-1 and primary human macrophages using polyethylenimine nanoparticles grafted with a mannose ligand (Man-PEI). This nanoparticle specifically targets cells of monocytic origin via mannose receptors. Cells were challenged with a single or a double stimulation of lipopolysaccharide (LPS). A CD163 or empty plasmid was complexed with Man-PEI nanoparticles for cell transfections. Quantitative RT-PCR, immunocytochemistry, and ELISAs were used for molecular assessments. CD163-overexpressing macrophages displayed reduced levels of tumor necrosis factor-alpha (TNF)-α and monocytes chemoattractant protein (MCP)-1 after a single stimulation with LPS. Following a double stimulation paradigm, CD163-overexpressing macrophages showed an increase of interleukin (IL)-10 and IL-1ra and a reduction of MCP-1. This anti-inflammatory phenotype was partially blocked by an anti-CD163 antibody (effects on IL-10 and IL-1ra). A decrease in the release of TNF-α, IL-1β, and IL-6 was observed in CD163-overexpressing human primary macrophages. The release of IL-6 was blocked by an anti-CD163 antibody in the CD163-overexpressing group. Our data show that the induction of the CD163 gene in human macrophages under inflammatory conditions produces changes in cytokine secretion in favor of an anti-inflammatory phenotype. Targeting macrophages to induce CD163 using cell-directed nanotechnology is an attractive

  3. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential.

    Science.gov (United States)

    Schepetkin, Igor A; Quinn, Mark T

    2006-03-01

    Botanical polysaccharides exhibit a number of beneficial therapeutic properties, and it is thought that the mechanisms involved in these effects are due to the modulation of innate immunity and, more specifically, macrophage function. In this review, we summarize our current state of understanding of the macrophage modulatory effects of botanical polysaccharides isolated from a wide array of different species of flora, including higher plants, mushrooms, lichens and algae. Overall, the primary effect of botanical polysaccharides is to enhance and/or activate macrophage immune responses, leading to immunomodulation, anti-tumor activity, wound-healing and other therapeutic effects. Furthermore, botanical and microbial polysaccharides bind to common surface receptors and induce similar immunomodulatory responses in macrophages, suggesting that evolutionarily conserved polysaccharide structural features are shared between these organisms. Thus, the evaluation of botanical polysaccharides provides a unique opportunity for the discovery of novel therapeutic agents and adjuvants that exhibit beneficial immunomodulatory properties.

  4. Epigenetic Regulation of Monocyte and Macrophage Function

    NARCIS (Netherlands)

    Hoeksema, Marten A.; de Winther, Menno P. J.

    2016-01-01

    Monocytes and macrophages are key players in tissue homeostasis and immune responses. Epigenetic processes tightly regulate cellular functioning in health and disease. Recent Advances: Recent technical developments have allowed detailed characterizations of the transcriptional circuitry underlying

  5. Lack of RNase L attenuates macrophage functions.

    Directory of Open Access Journals (Sweden)

    Xin Yi

    Full Text Available Macrophages are one of the major cell types in innate immunity against microbial infection. It is believed that the expression of proinflammatory genes such as tumor necrosis factor-α (TNF-α, interleukin (IL-1β, IL-6, and cyclooxygenase-2 (Cox-2 by macrophages is also crucial for activation of both innate and adaptive immunities. RNase L is an interferon (IFN inducible enzyme which is highly expressed in macrophages. It has been demonstrated that RNase L regulates the expression of certain inflammatory genes. However, its role in macrophage function is largely unknown.Bone marrow-derived macrophages (BMMs were generated from RNase L(+/+and (-/- mice. The migration of BMMs was analyzed by using Transwell migration assays. Endocytosis and phagocytosis of macrophages were assessed by using fluorescein isothiocyanate (FITC-Dextran 40,000 and FITC-E. coli bacteria, respectively. The expression of inflammatory genes was determined by Western Blot and ELISA. The promoter activity of Cox-2 was measured by luciferase reporter assays.Lack of RNase L significantly decreased the migration of BMMs induced by M-CSF, but at a less extent by GM-CSF and chemokine C-C motif ligand-2 (CCL2. Interestingly, RNase L deficient BMMs showed a significant reduction of endocytic activity to FITC-Dextran 40,000, but no any obvious effect on their phagocytic activity to FITC-bacteria under the same condition. RNase L impacts the expression of certain genes related to cell migration and inflammation such as transforming growth factor (TGF-β, IL-1β, IL-10, CCL2 and Cox-2. Furthermore, the functional analysis of the Cox-2 promoter revealed that RNase L regulated the expression of Cox-2 in macrophages at its transcriptional level. Taken together, our findings provide direct evidence showing that RNase L contributes to innate immunity through regulating macrophage functions.

  6. Catalytic Activity of μ-Carbido-Dimeric Iron(IV) Octapropylporphyrazinate in the 3,5,7,2',4'-Pentahydroxyflavone Oxidation Reaction with tert-Butyl Hydroperoxide

    Science.gov (United States)

    Tyurin, D. V.; Zaitseva, S. V.; Kudrik, E. V.

    2018-05-01

    It is found for the first time that μ-carbido-dimeric iron(IV) octapropylporphyrazinate displays catalytic activity in the oxidation reaction of natural flavonol morin with tert-butyl hydroperoxide, with the catalyst being stable under conditions of the reaction. The kinetics of this reaction are studied. It is shown the reaction proceeds via tentative formation of a complex between the catalyst and the oxidant, followed by O‒O bond homolytic cleavage. The kinetics of the reaction is described in the coordinates of the Michaelis-Menten equation. A linear dependence of the apparent reaction rate constant on the concentration of the catalyst is observed, testifying to its participation in the limiting reaction step. The equilibrium constants and rates of interaction are found. A mechanism is proposed for the reaction on the basis of the experimental data.

  7. Multi-wall carbon nanotubes supported molybdenyl acetylacetonate: Efficient and highly reusable catalysts for epoxidation of alkenes with tert-butyl hydroperoxide

    Energy Technology Data Exchange (ETDEWEB)

    Esnaashari, Fariba [Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Moghadam, Majid, E-mail: moghadamm@sci.ui.ac.ir [Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Mirkhani, Valiollah, E-mail: mirkhani@sci.ui.ac.ir [Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj; Khosropour, Ahmad Reza; Zakeri, Maryam [Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2012-11-15

    Efficient epoxidation of olefins catalyzed by MoO{sub 2}(acac){sub 2} supported on amines functionalized MWCNTs is reported. The MWCNTs bearing carboxylic acid groups were modified with 2-aminophenol and 2-aminothiophenol. These amine-MWCNTs act as bidentate ligand for attachment of Mo catalyst. These catalysts were characterized by elemental analysis, scanning electron microscopy, FT-IR and diffuse reflectance UV-Vis spectroscopic methods. The prepared catalysts were used for efficient epoxidation of different alkenes such as cyclic and linear ones with tert-butyl hydroperoxide in refluxing 1,2-dichloroethane. These heterogeneous catalysts can be reused several times without significant loss of their catalytic activity. Highlights: Black-Right-Pointing-Pointer Supporting of molybdenyl acetylacetonate on amine-modified MWCNTs. Black-Right-Pointing-Pointer Heterogeneous catalysts were prepared. Black-Right-Pointing-Pointer These catalysts were highly efficient in the epoxidation of alkenes with TBHP. Black-Right-Pointing-Pointer Makes the catalysts reusable.

  8. Multi-wall carbon nanotubes supported molybdenyl acetylacetonate: Efficient and highly reusable catalysts for epoxidation of alkenes with tert-butyl hydroperoxide

    International Nuclear Information System (INIS)

    Esnaashari, Fariba; Moghadam, Majid; Mirkhani, Valiollah; Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj; Khosropour, Ahmad Reza; Zakeri, Maryam

    2012-01-01

    Efficient epoxidation of olefins catalyzed by MoO 2 (acac) 2 supported on amines functionalized MWCNTs is reported. The MWCNTs bearing carboxylic acid groups were modified with 2-aminophenol and 2-aminothiophenol. These amine–MWCNTs act as bidentate ligand for attachment of Mo catalyst. These catalysts were characterized by elemental analysis, scanning electron microscopy, FT-IR and diffuse reflectance UV–Vis spectroscopic methods. The prepared catalysts were used for efficient epoxidation of different alkenes such as cyclic and linear ones with tert-butyl hydroperoxide in refluxing 1,2-dichloroethane. These heterogeneous catalysts can be reused several times without significant loss of their catalytic activity. Highlights: ► Supporting of molybdenyl acetylacetonate on amine-modified MWCNTs. ► Heterogeneous catalysts were prepared. ► These catalysts were highly efficient in the epoxidation of alkenes with TBHP. ► Makes the catalysts reusable.

  9. Macrophage cholesterol efflux correlates with lipoprotein subclass distribution and risk of obstructive coronary artery disease in patients undergoing coronary angiography

    Directory of Open Access Journals (Sweden)

    Kremer Werner

    2009-04-01

    Full Text Available Abstract Background Studies in patients with low HDL have suggested that impaired cellular cholesterol efflux is a heritable phenotype increasing atherosclerosis risk. Less is known about the association of macrophage cholesterol efflux with lipid profiles and CAD risk in normolipidemic subjects. We have therefore measured macrophage cholesterol efflux in142 normolipidemic subjects undergoing coronary angiography. Methods Monocytes isolated from blood samples of patients scheduled for cardiac catheterization were differentiated into macrophages over seven days. Isotopic cholesterol efflux to exogenously added apolipoprotein A-I and HDL2 was measured. Quantitative cholesterol efflux from macrophages was correlated with lipoprotein subclass distribution in plasma from the same individuals measured by NMR-spectroscopy of lipids and with the extent of coronary artery disease seen on coronary angiography. Results Macrophage cholesterol efflux was positively correlated with particle concentration of smaller HDL and LDL particles but not with total plasma concentrations of HDL or LDL-cholesterol. We observed an inverse relationship between macrophage cholesterol efflux and the concntration of larger and triglyceride rich particles (VLDL, chylomicrons. Subjects with significant stenosis on coronary angiography had lower cholesterol efflux from macrophages compared to individuals without significant stenosis (adjusted p = 0.02. Conclusion Macrophage cholesterol efflux is inversely correlated with lipoprotein particle size and risk of CAD.

  10. Exosomes derived from gastric cancer cells activate NF-κB pathway in macrophages to promote cancer progression.

    Science.gov (United States)

    Wu, Lijun; Zhang, Xu; Zhang, Bin; Shi, Hui; Yuan, Xiao; Sun, Yaoxiang; Pan, Zhaoji; Qian, Hui; Xu, Wenrong

    2016-09-01

    Exosomes are nano-sized membrane vesicles secreted by both normal and cancer cells. Emerging evidence indicates that cancer cells derived exosomes contribute to cancer progression through the modulation of tumor microenvironment. However, the effects of exosomes derived from gastric cancer cells on macrophages are not well understood. In this study, we investigated the biological role of gastric cancer cells derived exosomes in the activation of macrophages. We demonstrated that gastric cancer cells derived exosomes activated macrophages to express increased levels of proinflammatory factors, which in turn promoted tumor cell proliferation and migration. In addition, gastric cancer cells derived exosomes remarkably upregulated the phosphorylation of NF-κB in macrophages. Inhibiting the activation of NF-κB reversed the upregulation of proinflammatory factors in macrophages and blocked their promoting effects on gastric cancer cells. Moreover, we found that gastric cancer cells derived exosomes could also activate macrophages from human peripheral blood monocytes through the activation of NF-κB. In conclusion, our results suggest that gastric cancer cells derived exosomes stimulate the activation of NF-κB pathway in macrophages to promote cancer progression, which provides a potential therapeutic approach for gastric cancer by interfering with the interaction between exosomes and macrophages in tumor microenvironment.

  11. The AP-1 Transcription Factor c-Jun Promotes Arthritis by Regulating Cyclooxygenase-2 and Arginase-1 Expression in Macrophages.

    Science.gov (United States)

    Hannemann, Nicole; Jordan, Jutta; Paul, Sushmita; Reid, Stephen; Baenkler, Hanns-Wolf; Sonnewald, Sophia; Bäuerle, Tobias; Vera, Julio; Schett, Georg; Bozec, Aline

    2017-05-01

    Activation of proinflammatory macrophages is associated with the inflammatory state of rheumatoid arthritis. Their polarization and activation are controlled by transcription factors such as NF-κB and the AP-1 transcription factor member c-Fos. Surprisingly, little is known about the role of the AP-1 transcription factor c-Jun in macrophage activation. In this study, we show that mRNA and protein levels of c-Jun are increased in macrophages following pro- or anti-inflammatory stimulations. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment cluster analyses of microarray data using wild-type and c-Jun-deleted macrophages highlight the central function of c-Jun in macrophages, in particular for immune responses, IL production, and hypoxia pathways. Mice deficient for c-Jun in macrophages show an amelioration of inflammation and bone destruction in the serum-induced arthritis model. In vivo and in vitro gene profiling, together with chromatin immunoprecipitation analysis of macrophages, revealed direct activation of the proinflammatory factor cyclooxygenase-2 and indirect inhibition of the anti-inflammatory factor arginase-1 by c-Jun. Thus, c-Jun regulates the activation state of macrophages and promotes arthritis via differentially regulating cyclooxygenase-2 and arginase-1 levels. Copyright © 2017 by The American Association of Immunologists, Inc.

  12. Hydrogen Sulfide Recruits Macrophage Migration by Integrin β1-Src-FAK/Pyk2-Rac Pathway in Myocardial Infarction

    Science.gov (United States)

    Miao, Lei; Xin, Xiaoming; Xin, Hong; Shen, Xiaoyan; Zhu, Yi-Zhun

    2016-03-01

    Myocardial infarction (MI) triggers an inflammatory reaction, in which macrophages are of key importance for tissue repairing. Infiltration and/or migration of macrophages into the infarct area early after MI is critical for infarct healing, vascularization, and cardiac function. Hydrogen sulfide (H2S) has been demonstrated to possess cardioprotective effects post MI and during the progress of cardiac remodeling. However, the specific molecular and cellular mechanisms involved in macrophage recruitment by H2S remain to be identified. In this study, the NaHS (exogenous sources of H2S) treatment exerted an increased infiltration of macrophages into the infarcted myocardium at early stage of MI cardiac tissues in both wild type (WT) and cystathionine-γ-lyase-knockout (CSE-KO) mice. And NaHS accelerated the migration of macrophage cells in vitro. While, the inhibitors not only significantly diminished the migratory ability in response to NaHS, but also blocked the activation of phospho-Src, -Pyk2, -FAK397, and -FAK925. Furthermore, NaHS induced the internalization of integrin β1 on macrophage surface, but, integrin β1 silencing inhibited macrophage migration and Src signaling activation. These results indicate that H2S may have the potential as an anti-infarct of MI by governing macrophage migration, which was achieved by accelerating internalization of integrin β1 and activating downstream Src-FAK/Pyk2-Rac pathway.

  13. Effect of Cocoa Polyphenolic Extract on Macrophage Polarization from Proinflammatory M1 to Anti-Inflammatory M2 State

    Directory of Open Access Journals (Sweden)

    Laura Dugo

    2017-01-01

    Full Text Available Polyphenols-rich cocoa has many beneficial effects on human health, such as anti-inflammatory effects. Macrophages function as control switches of the immune system, maintaining the balance between pro- and anti-inflammatory activities. We investigated the hypothesis that cocoa polyphenol extract may affect macrophage proinflammatory phenotype M1 by favoring an alternative M2 anti-inflammatory state on macrophages deriving from THP-1 cells. Chemical composition, total phenolic content, and antioxidant capacity of cocoa polyphenols extracted from roasted cocoa beans were determined. THP-1 cells were activated with both lipopolysaccharides and interferon-γ for M1 or with IL-4 for M2 switch, and specific cytokines were quantified. Cellular metabolism, through mitochondrial oxygen consumption, and ATP levels were evaluated. Here, we will show that cocoa polyphenolic extract attenuated in vitro inflammation decreasing M1 macrophage response as demonstrated by a significantly lowered secretion of proinflammatory cytokines. Moreover, treatment of M1 macrophages with cocoa polyphenols influences macrophage metabolism by promoting oxidative pathways, thus leading to a significant increase in O2 consumption by mitochondrial complexes as well as a higher production of ATP through oxidative phosphorylation. In conclusion, cocoa polyphenolic extract suppresses inflammation mediated by M1 phenotype and influences macrophage metabolism by promoting oxidative pathways and M2 polarization of active macrophages.

  14. Macrophages in intestinal homeostasis and inflammation

    Science.gov (United States)

    Bain, Calum C; Mowat, Allan McI

    2014-01-01

    The intestine contains the largest pool of macrophages in the body which are essential for maintaining mucosal homeostasis in the face of the microbiota and the constant need for epithelial renewal but are also important components of protective immunity and are involved in the pathology of inflammatory bowel disease (IBD). However, defining the biological roles of intestinal macrophages has been impeded by problems in defining the phenotype and origins of different populations of myeloid cells in the mucosa. Here, we discuss how multiple parameters can be used in combination to discriminate between functionally distinct myeloid cells and discuss the roles of macrophages during homeostasis and how these may change when inflammation ensues. We also discuss the evidence that intestinal macrophages do not fit the current paradigm that tissue-resident macrophages are derived from embryonic precursors that self-renew in situ, but require constant replenishment by blood monocytes. We describe our recent work demonstrating that classical monocytes constantly enter the intestinal mucosa and how the environment dictates their subsequent fate. We believe that understanding the factors that drive intestinal macrophage development in the steady state and how these may change in response to pathogens or inflammation could provide important insights into the treatment of IBD. PMID:24942685

  15. Endometriosis, a disease of the macrophage

    Directory of Open Access Journals (Sweden)

    Annalisa eCapobianco

    2013-01-01

    Full Text Available Endometriosis, a common cause of pelvic pain and female infertility, depends on the growth of vascularised endometrial tissue at ectopic sites. Endometrial fragments reach the peritoneal cavity during the fertile years: local cues decide whether they yield endometriotic lesions. Macrophages are recruited at sites of hypoxia and tissue stress, where they clear cell debris and heme-iron and generate pro-life and pro-angiogenesis signals. Macrophages are abundant in endometriotic lesions, where are recruited and undergo alternative activation. In rodents macrophages are required for lesions to establish and to grow; bone-marrow derived Tie-2 expressing macrophages specifically contribute to lesions neovasculature, possibly because they concur to the recruitment of circulating endothelial progenitors, and sustain their survival and the integrity of the vessel wall. Macrophages sense cues (hypoxia, cell death, iron overload in the lesions and react delivering signals to restore the local homeostasis: their action represents a necessary, non-redundant step in the natural history of the disease. Endometriosis may be due to a misperception of macrophages about ectopic endometrial tissue. They perceive it as a wound, they activate programs leading to ectopic cell survival and tissue vascularization. Clearing this misperception is a critical area for the development of novel medical treatments of endometriosis, an urgent and unmet medical need.

  16. Macrophages and nerve fibres in peritoneal endometriosis.

    Science.gov (United States)

    Tran, Lu Vinh Phuc; Tokushige, Natsuko; Berbic, Marina; Markham, Robert; Fraser, Ian S

    2009-04-01

    Endometriosis is considered to be an inflammatory disease, and macrophages are the most numerous immune cells in endometriotic lesions. However, the mechanisms underlying the elevation of macrophages and their role in the pathogenesis and manifestations of endometriosis still remain unclear. The number of macrophages stained for CD68 in endometriotic lesions (n = 24) and in peritoneum distant from the lesions (n = 14) from women with endometriosis was compared with the number of macrophages in normal peritoneum from women without endometriosis (n = 18). Peritoneal lesions were also double-stained for CD68 and protein gene product 9.5 to study the relationship between macrophages and nerve fibres. The densities of macrophages in peritoneal endometriotic lesions and unaffected peritoneum from women with endometriosis were both significantly higher than that in normal peritoneum from women without endometriosis (P peritoneal lesions from women with endometriosis compared with normal peritoneum from women without endometriosis. These cells may well play roles in the growth and development of endometriotic lesions and in the generation of pain through interaction with nerve fibres.

  17. Potential of EPR spin-trapping to investigate in situ free radicals generation from skin allergens in reconstructed human epidermis: cumene hydroperoxide as proof of concept.

    Science.gov (United States)

    Kuresepi, Salen; Vileno, Bertrand; Turek, Philippe; Lepoittevin, Jean-Pierre; Giménez-Arnau, Elena

    2018-02-01

    The first step in the development of skin sensitisation to a chemical, and in the elicitation of further allergic contact dermatitis (ACD), is the binding of the allergen to skin proteins after penetrating into the epidermis. The so-formed antigenic adduct is then recognised by the immune system as foreign to the body. Sensitising organic hydroperoxides derived from autoxidation of natural terpenes are believed to form antigens through radical-mediated mechanisms, although this has not yet been established. So far, in vitro investigations on reactive radical intermediates derived from these skin sensitisers have been conducted in solution, yet with experimental conditions being far away from real-life sensitisation. Herein, we report for the first time, the potential use of EPR spin-trapping to study the in situ generation of free radicals derived from cumene hydroperoxide CumOOH in a 3D reconstructed human epidermis (RHE) model, thus much closer to what may happen in vivo. Among the undesirable effects associated with dermal exposure to CumOOH, it is described to cause allergic and irritant dermatitis, being reported as a significant sensitiser. We considered exploiting the usage of spin-trap DEPMPO as an extensive view of all sort of radicals derived from CumOOH were observed all at once in solution. We showed that in the Episkin TM RHE model, both by incubating in the assay medium and by topical application, carbon radicals are mainly formed by redox reactions suggesting the key role of CumOOH-derived carbon radicals in the antigen formation process.

  18. Distribution of 14C after oral administration of [U-14C]labeled methyl linoleate hydroperoxides and their secondary oxidation products in rats

    International Nuclear Information System (INIS)

    Oarada, M.; Miyazawa, T.; Kaneda, T.

    1986-01-01

    To study the toxicity of low molecular weight (LMW) compounds formed during the autoxidation of oils, 14 C-labeled primary monomeric compounds (methyl linoleate hydroperoxides) and secondary oxidation products, i.e., polymer and LMW compounds prepared from autoxidized methyl [U- 14 C]linoleate hydroperoxides (MLHPO) were orally administered to rats, and their radioactive distributions in tissues and organs were compared. The polymeric fraction consisted mainly of dimers of MLHPO. For the LMW fraction, 4-hydroxy-2-nonenal, 8-hydroxy methyl octanoate and 10-formyl methyl-9-decenoate were identified as major constituents by gas chromatography-mass spectrometry (GC-MS) after chemical reduction and derivatization. When LMW compounds were administered to rats, 14 CO 2 expiration and the excreted radioactivity in urine in 12 hr were significantly higher than those from polymer or MLHPO administration. Maximum 14 CO 2 expiration appeared 2-4 hr after the dose of LMW compounds. Radioactivity of the upper part of small intestines six hr after the dose of LMW compounds was higher than the values from administered polymer or MLHPO. The remaining radioactivity in the digestive contents and feces 12 hr after administration of LMW compounds was much lower than the values observed from administered polymer or MLHPO. Among internal organs, the liver contained the highest concentration of radioactivities from polymer, MLHPO and LMW fractions, and an especially higher level of radioactivity was found in liver six hr after the administration of LMW compounds. Six hours after the dose of LMW compounds, a relatively higher level of radioactivity also was detected in kidney, brain, heart and lung

  19. Characterization of a salt-induced DhAHP, a gene coding for alkyl hydroperoxide reductase, from the extremely halophilic yeast Debaryomyces hansenii

    Directory of Open Access Journals (Sweden)

    Ku Maurice SB

    2009-08-01

    Full Text Available Abstract Background Debaryomyces hansenii is one of the most salt tolerant species of yeast and has become a model organism for the study of tolerance mechanisms against salinity. The goal of this study was to identify key upregulated genes that are involved in its adaptation to high salinity. Results By using forward subtractive hybridization we have cloned and sequenced DhAHP from D. hansenii that is significantly upregulated during salinity stress. DhAHP is orthologous to the alkly hydroperoxide reductase of the peroxiredoxin gene family, which catalyzes the reduction of peroxides at the expense of thiol compounds. The full-lengthed cDNA of DhAHP has 674 bp of nucleotide and contains a 516 bp open reading frame (ORF encoding a deduced protein of 172 amino acid residues (18.3 kDa. D. hansenii Ahp is a cytosolic protein that belongs to the Ahp of the 1-Cys type peroxiredoxins. Phylogentically, the DhAhp and Candida albicans Ahp11 (Swiss-Prot: Q5AF44 share a common ancestry but show divergent evolution. Silence of its expression in D. hansenii by RNAi resulted in decreased tolerance to salt whereas overexpression of DhAHP in D. hansenii and the salt-sensitive yeasts Saccharomyces cereviasiae and Pichia methanolica conferred a higher tolerance with a reduced level of reactive oxygen species. Conclusion In conclusion, for the first time our study has identified alkly hydroperoxide reductase as a key protein involved in the salt tolerance of the extremely halophilic D. hansenii. Apparently, this enzyme plays a multi-functional role in the yeast's adaptation to salinity; it serves as a peroxidase in scavenging reactive oxygen species, as a molecular chaperone in protecting essential proteins from denaturation, and as a redox sensor in regulating H2O2-mediated cell defense signaling.

  20. Detection and Identification of the Keto-Hydroperoxide (HOOCH 2 OCHO) and Other Intermediates during Low-Temperature Oxidation of Dimethyl Ether

    KAUST Repository

    Moshammer, Kai

    2015-07-16

    In this paper we report the detection and identification of the keto-hydroperoxide (hydroperoxymethyl formate, HPMF, HOOCH2OCHO) and other partially oxidized intermediate species arising from the low-temperature (540 K) oxidation of dimethyl ether (DME). These observations were made possible by coupling a jet-stirred reactor with molecular-beam sampling capabilities, operated near atmospheric pressure, to a reflectron time-of-flight mass spectrometer that employs single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation. On the basis of experimentally observed ionization thresholds and fragmentation appearance energies, interpreted with the aid of ab initio calculations, we have identified HPMF and its conceivable decomposition products HC(O)O(O)CH (formic acid anhydride), HC(O)OOH (performic acid), and HOC(O)OH (carbonic acid). Other intermediates that were detected and identified include HC(O)OCH3 (methyl formate), cycl-CH2-O-CH2-O- (1,3-dioxetane), CH3OOH (methyl hydroperoxide), HC(O)OH (formic acid), and H2O2 (hydrogen peroxide). We show that the theoretical characterization of multiple conformeric structures of some intermediates is required when interpreting the experimentally observed ionization thresholds, and a simple method is presented for estimating the importance of multiple conformers at the estimated temperature (∼100 K) of the present molecular beam. We also discuss possible formation pathways of the detected species: for example, supported by potential energy surface calculations, we show that performic acid may be a minor channel of the O2 + CH2OCH2OOH reaction, resulting from the decomposition of the HOOCH2OCHOOH intermediate, which predominantly leads to the HPMF. © 2015 American Chemical Society.

  1. Proteomic Analysis Reveals Distinct Metabolic Differences Between Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) and Macrophage Colony Stimulating Factor (M-CSF) Grown Macrophages Derived from Murine Bone Marrow Cells.

    Science.gov (United States)

    Na, Yi Rang; Hong, Ji Hye; Lee, Min Yong; Jung, Jae Hun; Jung, Daun; Kim, Young Won; Son, Dain; Choi, Murim; Kim, Kwang Pyo; Seok, Seung Hyeok

    2015-10-01

    Macrophages are crucial in controlling infectious agents and tissue homeostasis. Macrophages require a wide range of functional capabilities in order to fulfill distinct roles in our body, one being rapid and robust immune responses. To gain insight into macrophage plasticity and the key regulatory protein networks governing their specific functions, we performed quantitative analyses of the proteome and phosphoproteome of murine primary GM-CSF and M-CSF grown bone marrow derived macrophages (GM-BMMs and M-BMMs, respectively) using the latest isobaric tag based tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Strikingly, metabolic processes emerged as a major difference between these macrophages. Specifically, GM-BMMs show significant enrichment of proteins involving glycolysis, the mevalonate pathway, and nitrogen compound biosynthesis. This evidence of enhanced glycolytic capability in GM-BMMs is particularly significant regarding their pro-inflammatory responses, because increased production of cytokines upon LPS stimulation in GM-BMMs depends on their acute glycolytic capacity. In contrast, M-BMMs up-regulate proteins involved in endocytosis, which correlates with a tendency toward homeostatic functions such as scavenging cellular debris. Together, our data describes a proteomic network that underlies the pro-inflammatory actions of GM-BMMs as well as the homeostatic functions of M-BMMs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. PPARγ regulates the expression of cholesterol metabolism genes in alveolar macrophages

    International Nuclear Information System (INIS)

    Baker, Anna D.; Malur, Anagha; Barna, Barbara P.; Kavuru, Mani S.; Malur, Achut G.; Thomassen, Mary Jane

    2010-01-01

    Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear transcription factor involved in lipid metabolism that is constitutively expressed in the alveolar macrophages of healthy individuals. PPARγ has recently been implicated in the catabolism of surfactant by alveolar macrophages, specifically the cholesterol component of surfactant while the mechanism remains unclear. Studies from other tissue macrophages have shown that PPARγ regulates cholesterol influx, efflux, and metabolism. PPARγ promotes cholesterol efflux through the liver X receptor-alpha (LXRα) and ATP-binding cassette G1 (ABCG1). We have recently shown that macrophage-specific PPARγ knockout (PPARγ KO) mice accumulate cholesterol-laden alveolar macrophages that exhibit decreased expression of LXRα and ABCG1 and reduced cholesterol efflux. We hypothesized that in addition to the dysregulation of these cholesterol efflux genes, the expression of genes involved in cholesterol synthesis and influx was also dysregulated and that replacement of PPARγ would restore regulation of these genes. To investigate this hypothesis, we have utilized a Lentivirus expression system (Lenti-PPARγ) to restore PPARγ expression in the alveolar macrophages of PPARγ KO mice. Our results show that the alveolar macrophages of PPARγ KO mice have decreased expression of key cholesterol synthesis genes and increased expression of cholesterol receptors CD36 and scavenger receptor A-I (SRA-I). The replacement of PPARγ (1) induced transcription of LXRα and ABCG1; (2) corrected suppressed expression of cholesterol synthesis genes; and (3) enhanced the expression of scavenger receptors CD36. These results suggest that PPARγ regulates cholesterol metabolism in alveolar macrophages.

  3. Notch signaling regulates expression of Mcl-1 and apoptosis in PPD-treated macrophages.

    Science.gov (United States)

    Palaga, Tanapat; Ratanabunyong, Siriluk; Pattarakankul, Thitiporn; Sangphech, Naunpun; Wongchana, Wipawee; Hadae, Yukihiro; Kueanjinda, Patipark

    2013-09-01

    Macrophages are cellular targets for infection by bacteria and viruses. The fate of infected macrophages plays a key role in determining the outcome of the host immune response. Apoptotic cell death of macrophages is considered to be a protective host defense that eliminates pathogens and infected cells. In this study, we investigated the involvement of Notch signaling in regulating apoptosis in macrophages treated with tuberculin purified protein derivative (PPD). Murine bone marrow-derived macrophages (BMMs) treated with PPD or infected with Mycobacterium bovis Bacillus Calmette-Guérin (BCG) induced upregulation of Notch1. This upregulation correlated well with the upregulation of the anti-apoptotic gene mcl-1 both at the transcriptional and translational levels. Decreased levels of Notch1 and Mcl-1 were observed in BMM treated with PPD when a gamma secretase inhibitor (GSI), which inhibits the processing of Notch receptors, was used. Moreover, silencing Notch1 in the macrophage-like cell line RAW264.7 decreased Mcl-1 protein expression, suggesting that Notch1 is critical for Mcl-1 expression in macrophages. A significant increase in apoptotic cells was observed upon treatment of BMM with PPD in the presence of GSI compared to the vehicle-control treated cells. Finally, analysis of the mcl-1 promoter in humans and mice revealed a conserved potential CSL/RBP-Jκ binding site. The association of Notch1 with the mcl-1 promoter was confirmed by chromatin immunoprecipitation. Taken together, these results indicate that Notch1 inhibits apoptosis of macrophages stimulated with PPD by directly controlling the mcl-1 promoter.

  4. Transcriptomic analysis of human polarized macrophages: more than one role of alternative activation?

    Directory of Open Access Journals (Sweden)

    Eleonora Derlindati

    Full Text Available Macrophages are a heterogeneous cell population which in response to the cytokine milieu polarize in either classically activated macrophages (M1 or alternatively activated macrophages (M2. This plasticity makes macrophages essential in regulating inflammation, immune response and tissue remodeling and a novel therapeutic target in inflammatory diseases such as atherosclerosis. The aim of the study was to describe the transcriptomic profiles of differently polarized human macrophages to generate new hypotheses on the biological function of the different macrophage subtypes.Polarization of circulating monocytes/macrophages of blood donors was induced in vitro by IFN-γ and LPS (M1, by IL-4 (M2a, and by IL-10 (M2c. Unstimulated cells (RM served as time controls. Gene expression profile of M1, M2a, M2c and RM was assessed at 6, 12 and 24h after polarization with Whole Human Genome Agilent Microarray technique. When compared to RM, M1 significantly upregulated pathways involved in immunity and inflammation, whereas M2a did the opposite. Conversely, decreased and increased expression of mitochondrial metabolism, consistent with insulin resistant and insulin sensitive patterns, was seen in M1 and M2a, respectively. The time sequence in the expression of some pathways appeared to have some specific bearing on M1 function. Finally, canonical and non-canonical Wnt genes and gene groups, promoting inflammation and tissue remodeling, were upregulated in M2a compared to RM.Our data in in vitro polarized human macrophages: 1. confirm and extend known inflammatory and anti-inflammatory gene expression patterns; 2. demonstrate changes in mitochondrial metabolism associated to insulin resistance and insulin sensitivity in M1 and M2a, respectively; 3. highlight the potential relevance of gene expression timing in M1 function; 4. unveil enhanced expression of Wnt pathways in M2a suggesting a potential dual (pro-inflammatory and anti-inflammatory role of M2a in

  5. PPAR{gamma} regulates the expression of cholesterol metabolism genes in alveolar macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Anna D.; Malur, Anagha; Barna, Barbara P.; Kavuru, Mani S. [Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, East Carolina University (United States); Malur, Achut G. [Department of Microbiology and Immunology, East Carolina University (United States); Thomassen, Mary Jane, E-mail: thomassenm@ecu.edu [Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, East Carolina University (United States); Department of Microbiology and Immunology, East Carolina University (United States)

    2010-03-19

    Peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) is a nuclear transcription factor involved in lipid metabolism that is constitutively expressed in the alveolar macrophages of healthy individuals. PPAR{gamma} has recently been implicated in the catabolism of surfactant by alveolar macrophages, specifically the cholesterol component of surfactant while the mechanism remains unclear. Studies from other tissue macrophages have shown that PPAR{gamma} regulates cholesterol influx, efflux, and metabolism. PPAR{gamma} promotes cholesterol efflux through the liver X receptor-alpha (LXR{alpha}) and ATP-binding cassette G1 (ABCG1). We have recently shown that macrophage-specific PPAR{gamma} knockout (PPAR{gamma} KO) mice accumulate cholesterol-laden alveolar macrophages that exhibit decreased expression of LXR{alpha} and ABCG1 and reduced cholesterol efflux. We hypothesized that in addition to the dysregulation of these cholesterol efflux genes, the expression of genes involved in cholesterol synthesis and influx was also dysregulated and that replacement of PPAR{gamma} would restore regulation of these genes. To investigate this hypothesis, we have utilized a Lentivirus expression system (Lenti-PPAR{gamma}) to restore PPAR{gamma} expression in the alveolar macrophages of PPAR{gamma} KO mice. Our results show that the alveolar macrophages of PPAR{gamma} KO mice have decreased expression of key cholesterol synthesis genes and increased expression of cholesterol receptors CD36 and scavenger receptor A-I (SRA-I). The replacement of PPAR{gamma} (1) induced transcription of LXR{alpha} and ABCG1; (2) corrected suppressed expression of cholesterol synthesis genes; and (3) enhanced the expression of scavenger receptors CD36. These results suggest that PPAR{gamma} regulates cholesterol metabolism in alveolar macrophages.

  6. 4T1 Murine Mammary Carcinoma Cells Enhance Macrophage-Mediated Innate Inflammatory Responses.

    Directory of Open Access Journals (Sweden)

    Laurence Madera

    Full Text Available Tumor progression and the immune response are intricately linked. While it is known that cancers alter macrophage inflammatory responses to promote tumor progression, little is known regarding how cancers affect macrophage-dependent innate host defense. In this study, murine bone-marrow-derived macrophages (BMDM were exposed to murine carcinoma-conditioned media prior to assessment of the macrophage inflammatory response. BMDMs exposed to 4T1 mammary carcinoma-conditioned medium demonstrated enhanced production of pro-inflammatory cytokines tumor necrosis factor α, interleukin-6, and CCL2 in response to lipopolysaccharide (LPS while production of interleukin-10 remained unchanged. The increased LPS-induced production of pro-inflammatory cytokines was transient and correlated with enhanced cytokine production in response to other Toll-like receptor agonists, including peptidoglycan and flagellin. In addition, 4T1-conditioned BMDMs exhibited strengthened LPS-induced nitric oxide production and enhanced phagocytosis of Escherichia coli. 4T1-mediated augmentation of macrophage responses to LPS was partially dependent on the NFκB pathway, macrophage-colony stimulating factor, and actin polymerization, as well as the presence of 4T1-secreted extracellular vesicles. Furthermore, peritoneal macrophages obtained from 4T1 tumor-bearing mice displayed enhanced pro-inflammatory cytokine production in response to LPS. These results suggest that uptake of 4T1-secreted factors and actin-mediated ingestion of 4T1-secreted exosomes by macrophages cause a transient enhancement of innate inflammatory responses. Mammary carcinoma-mediated regulation of innate immunity may have significant implications for our understanding of host defense and cancer progression.

  7. Macrophage triggering by aggregated immunoglobulins. II. Comparison of IgE and IgG aggregates or immune complexes.

    Science.gov (United States)

    Pestel, J; Dessaint, J P; Joseph, M; Bazin, H; Capron, A

    1984-01-01

    Macrophages incubated with complexed or aggregated IgE released beta-glucuronidase (beta-G) within 30 min. In contrast in the presence of aggregated or complexed IgG, macrophages liberated equivalent amount of beta-G only after 6 h incubation. In addition the rapid macrophage stimulation induced by aggregated IgE was also followed by a faster 3H-glucosamine incorporation when compared to the delayed activation caused by aggregated IgG. However, macrophages stimulated either by IgG or by IgE oligomers produced the same percentage of plasminogen activator at 24 h. In contrast, while the interaction between macrophages and aggregated IgE was only followed by a peak of cyclic GMP and a beta-G release during the first 30 min of incubation, the interaction between macrophages and IgG oligomers was accompanied by a simultaneous increase of cyclic GMP and AMP nucleotides and by an absence of beta-G exocytosis. Moreover, the beta-G release induced by aggregated IgE was increased when macrophages were preincubated with aggregated IgG. This additive effect was not observed in the reverse situation. Finally macrophages activated by IgG oligomers were demonstrated to exert a cytotoxic effect on tumour cells and to kill schistosomula in the presence of a low level of complement. Taken together these results underline the peculiar ability of aggregated or complexed IgE to trigger rapidly the macrophage activation compared to aggregated IgG and can explain the important role of complexed IgE in some macrophage dependent cytotoxicity mechanisms (i.e. in parasitic diseases). PMID:6088135

  8. Ethanol Extract of Mylabris phalerata Inhibits M2 Polarization Induced by Recombinant IL-4 and IL-13 in Murine Macrophages

    Directory of Open Access Journals (Sweden)

    Hwan-Suck Chung

    2017-01-01

    Full Text Available Mylabris phalerata (MP is an insect used in oriental herbal treatments for tumor, tinea infections, and stroke. Recent studies have shown that tumor-associated macrophages (TAM have detrimental roles such as tumor progression, angiogenesis, and metastasis. Although TAM has phenotypes and characteristics in common with M2-polarized macrophages, M1 macrophages have tumor suppression and immune stimulation effects. Medicines polarizing macrophages to M1 have been suggested to have anticancer effects via the modulation of the tumor microenvironment. In this line, we screened oriental medicines to find M1 polarizing medicines in M2-polarized macrophages. Among approximately 400 types of oriental medicine, the ethanol extract of M. phalerata (EMP was the most proficient in increasing TNF-α secretion in M2-polarized macrophages and TAM. Although EMP enhanced the levels of an M1 cytokine (TNF-α and a marker (CD86, it significantly reduced the levels of an M2 marker (arginase-1 in M2-polarized macrophages. In addition, EMP-treated macrophages increased the levels of M1 markers (Inos and Tnf-α and reduced those of the enhanced M2 markers (Fizz-1, Ym-1, and arginase-1. EMP-treated macrophages significantly reduced Lewis lung carcinoma cell migration in a transwell migration assay and inhibited EL4-luc2 lymphoma proliferation. In our mechanism study, EMP was found to inhibit STAT3 phosphorylation in M2-polarized macrophages. These results suggest that EMP is effective in treating TAM-mediated tumor progression and metastasis.

  9. Coenzyme Q10 partially restores pathological alterations in a macrophage model of Gaucher disease.

    Science.gov (United States)

    de la Mata, Mario; Cotán, David; Oropesa-Ávila, Manuel; Villanueva-Paz, Marina; de Lavera, Isabel; Álvarez-Córdoba, Mónica; Luzón-Hidalgo, Raquel; Suárez-Rivero, Juan M; Tiscornia, Gustavo; Sánchez-Alcázar, José A

    2017-02-06

    Gaucher disease (GD) is caused by mutations in the GBA1 gene which encodes lysosomal β-glucocerebrosidase (GCase). In GD, partial or complete loss of GCase activity causes the accumulation of the glycolipids glucosylceramide (GlcCer) and glucosylsphingosine in the lysosomes of macrophages. In this manuscript, we investigated the effects of glycolipids accumulation on lysosomal and mitochondrial function, inflammasome activation and efferocytosis capacity in a THP-1 macrophage model of Gaucher disease. In addition, the beneficial effects of coenzyme Q 10 (CoQ) supplementation on cellular alterations were evaluated. Chemically-induced Gaucher macrophages were developed by differentiateing THP-1 monocytes to macrophages by treatment with phorbol 12-myristate 13-acetate (PMA) and then inhibiting intracellular GCase with conduritol B-epoxide (CBE), a specific irreversible inhibitor of GCase activity, and supplementing the medium with exogenous GlcCer. This cell model accumulated up to 16-fold more GlcCer compared with control THP-1 cells. Chemically-induced Gaucher macrophages showed impaired autophagy flux associated with mitochondrial dysfunction and increased oxidative stress, inflammasome activation and impaired efferocytosis. All abnormalities were partially restored by supplementation with CoQ. These data suggest that targeting mitochondria function and oxidative stress by CoQ can ameliorate the pathological phenotype of Gaucher cells. Chemically-induced Gaucher macrophages provide cellular models that can be used to investigate disease pathogenesis and explore new therapeutics for GD.

  10. Detection of atherosclerotic lesions and intimal macrophages using CD36-targeted nanovesicles.

    Science.gov (United States)

    Nie, Shufang; Zhang, Jia; Martinez-Zaguilan, Raul; Sennoune, Souad; Hossen, Md Nazir; Lichtenstein, Alice H; Cao, Jun; Meyerrose, Gary E; Paone, Ralph; Soontrapa, Suthipong; Fan, Zhaoyang; Wang, Shu

    2015-12-28

    Current approaches to the diagnosis and therapy of atherosclerosis cannot target lesion-determinant cells in the artery wall. Intimal macrophage infiltration promotes atherosclerotic lesion development by facilitating the accumulation of oxidized low-density lipoproteins (oxLDL) and increasing inflammatory responses. The presence of these cells is positively associated with lesion progression, severity and destabilization. Hence, they are an important diagnostic and therapeutic target. The objective of this study was to noninvasively assess the distribution and accumulation of intimal macrophages using CD36-targeted nanovesicles. Soy phosphatidylcholine was used to synthesize liposome-like nanovesicles. 1-(Palmitoyl)-2-(5-keto-6-octene-dioyl) phosphatidylcholine was incorporated on their surface to target the CD36 receptor. All in vitro data demonstrate that these targeted nanovesicles had a high binding affinity for the oxLDL binding site of the CD36 receptor and participated in CD36-mediated recognition and uptake of nanovesicles by macrophages. Intravenous administration into LDL receptor null mice of targeted compared to non-targeted nanovesicles resulted in higher uptake in aortic lesions. The nanovesicles co-localized with macrophages and their CD36 receptors in aortic lesions. This molecular target approach may facilitate the in vivo noninvasive imaging of atherosclerotic lesions in terms of intimal macrophage accumulation and distribution and disclose lesion features related to inflammation and possibly vulnerability thereby facilitate early lesion detection and targeted delivery of therapeutic compounds to intimal macrophages. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. KRAS Mutation and Epithelial-Macrophage Interplay in Pancreatic Neoplastic Transformation.

    Science.gov (United States)

    Bishehsari, Faraz; Zhang, Lijuan; Barlass, Usman; Preite, Nailliw; Turturro, Sanja; Najor, Matthew S; Shetuni, Brandon B; Zayas, Janet P; Mahdavinia, Mahboobeh; Abukhdeir, Abde M; Keshavarzian, Ali

    2018-05-14

    Pancreatic ductal adenocarcinoma (PDA) is characterized by epithelial mutations in KRAS and prominent tumor-associated inflammation, including macrophage infiltration. But knowledge of early interactions between neoplastic epithelium and macrophages in PDA carcinogenesis is limited. Using a pancreatic organoid model, we found that the expression of mutant KRAS in organoids increased i) ductal to acinar gene expression ratios, ii) epithelial cells proliferation, and iii) colony formation capacity in vitro, and endowed pancreatic cells with the ability to generate neoplastic tumors in vivo. KRAS mutations induced a pro-tumorigenic phenotype in macrophages. Altered macrophages decreased epithelial Pigment Epithelial Derived Factor (PEDF) expression and induced a cancerous phenotype. We validated our findings using annotated patient samples from The Cancer Genome Atlas (TCGA) as well as in our human PDA specimens. Epithelium-macrophage cross talk occurs early in pancreatic carcinogenesis where KRAS directly induces cancer-related phenotypes in epithelium, and also promotes a pro-tumorigenic phenotype in macrophages, in turn augmenting neoplastic growth. This article is protected by copyright. All rights reserved. © 2018 UICC.

  12. Macrophage Resistance to HIV-1 Infection Is Enhanced by the Neuropeptides VIP and PACAP

    Science.gov (United States)

    Temerozo, Jairo R.; Joaquim, Rafael; Regis, Eduardo G.; Savino, Wilson; Bou-Habib, Dumith Chequer

    2013-01-01

    It is well established that host factors can modulate HIV-1 replication in macrophages, critical cells in the pathogenesis of HIV-1 infection due to their ability to continuously produce virus. The neuropeptides VIP and PACAP induce well-characterized effects on macrophages through binding to the G protein-coupled receptors VPAC1, VPAC2 and PAC1, but their influence on HIV-1 production by these cells has not been established. Here, we describe that VIP and PACAP reduce macrophage production of HIV-1, acting in a synergistic or additive manner to decrease viral growth. Using receptor antagonists, we detected that the HIV-1 inhibition promoted by VIP is dependent on its ligation to VPAC1/2, whereas PACAP decreases HIV-1 growth via activation of the VPAC1/2 and PAC1 receptors. Specific agonists of VPAC2 or PAC1 decrease macrophage production of HIV-1, whereas sole activation of VPAC1 enhances viral growth. However, the combination of specific agonists mimicking the receptor preference of the natural neuropeptides reproduces the ability of VIP and PACAP to increase macrophage resistance to HIV-1 replication. VIP and PACAP up-regulated macrophage secretion of the β-chemokines CCL3 and CCL5 and the cytokine IL-10, whose neutralization reversed the neuropeptide-induced inhibition of HIV-1 replication. Our results suggest that VIP and PACAP and the receptors VPAC2 and PAC1 could be used as targets for developing alternative therapeutic strategies for HIV-1 infection. PMID:23818986

  13. Immunohistochemical study of macrophage migration inhibitory factor in rat liver fibrosis induced by thioacetamide

    Directory of Open Access Journals (Sweden)

    Y Hori

    2009-06-01

    Full Text Available Macrophage migration inhibitory factor (MIF is a molecule known to regulate macrophage accumulation at sites of inflammation. To elucidate the role of MIF in progression of liver fibrosis, the immunohistochemical localization of MIF and macrophages in the liver were examined. Male Wistar rats received thioacetamide (TA injections (200 mg/kg, i.p. for 1 or 6 weeks. In biochemical and histological tests, it was confirmed that liver fibrosis was induced. In immunohistochemical analyses, the expression of MIF protein was seen in hepatocytes in the areas extending out from the central veins to the portal tracts. In particular, at 6 weeks, immunoreactivity was detected in degenerated hepatocytes adjacent to the fibrotic areas but hardly observed in the fibrotic areas. On the other hand, a number of exudate macrophages stained by antibody ED1 were seen in the areas from the central veins to the portal tracts at 1 week and in the fibrotic areas at 6 weeks. Macrophages also showed a significant increase in number as compared with controls. These results revealed that there was a close relationship between the appearance of MIF expression and ED1-positive exudate macrophages in degenerated hepatocytes during the progression of TA-induced liver fibrosis.

  14. Immunohistochemical study of macrophage migration inhibitory factor in rat liver fibrosis induced by thioacetamide.

    Science.gov (United States)

    Hori, Y; Sato, S; Yamate, J; Kurasaki, M; Nishihira, J; Hosokawa, T; Fujita, H; Saito, T

    2003-01-01

    Macrophage migration inhibitory factor (MIF) is a molecule known to regulate macrophage accumulation at sites of inflammation. To elucidate the role of MIF in progression of liver fibrosis, the immunohistochemical localization of MIF and macrophages in the liver were examined. Male Wistar rats received thioacetamide (TA) injections (200 mg/kg, i.p.) for 1 or 6 weeks. In biochemical and histological tests, it was confirmed that liver fibrosis was induced. In immunohistochemical analyses, the expression of MIF protein was seen in hepatocytes in the areas extending out from the central veins to the portal tracts. In particular, at 6 weeks, immunoreactivity was detected in degenerated hepatocytes adjacent to the fibrotic areas but hardly observed in the fibrotic areas. On the other hand, a number of exudate macrophages stained by antibody ED1 were seen in the areas from the central veins to the portal tracts at 1 week and in the fibrotic areas at 6 weeks. Macrophages also showed a significant increase in number as compared with controls. These results revealed that there was a close relationship between the appearance of MIF expression and ED1-positive exudate macrophages in degenerated hepatocytes during the progression of TA-induced liver fibrosis.

  15. Macrophage Metalloelastase (MMP-12) Deficiency Mitigates Retinal Inflammation and Pathological Angiogenesis in Ischemic Retinopathy

    Science.gov (United States)

    Li, Jingming; Wang, Joshua J.; Peng, Qisheng; Chen, Chen; Humphrey, Mary Beth; Heinecke, Jay; Zhang, Sarah X.

    2012-01-01

    Pathological angiogenesis is a major cause of vision loss in ischemic and inflammatory retinal diseases. Recent evidence implicates macrophage metalloelastase (MMP-12), a macrophage-derived elastinolytic protease in inflammation, tissue remodeling and angiogenesis. However, little is known about the role of MMP-12 in retinal pathophysiology. The present study aims to explore the enzyme’s contributions to retinal angiogenesis in oxygen-induced retinopathy (OIR) using MMP-12 knockout (KO) mice. We find that MMP-12 expression was upregulated in OIR, accompanied by elevated macrophage infiltration and increased inflammatory markers. Compared to wildtype mice, MMP-12 KO mice had decreased levels of adhesion molecule and inflammatory cytokines and reduced vascular leakage in OIR. Concomitantly, these mice had markedly reduced macrophage content in the retina with impaired macrophage migratory capacity. Significantly, loss of MMP-12 attenuated retinal capillary dropout in early OIR and mitigated pathological retinal neovascularization (NV). Similar results were observed in the study using MMP408, a pharmacological inhibitor of MMP-12. Intriguingly, in contrast to reducing pathological angiogenesis, lack of MMP-12 accelerated revascularization of avascular retina in OIR. Taken together, we conclude that MMP-12 is a key regulator of macrophage infiltration and inflammation, contributing to retinal vascular dysfunction and pathological angiogenesis. PMID:23285156

  16. Macrophages improve survival, proliferation and migration of engrafted myogenic precursor cells into MDX skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Pierre-François Lesault

    Full Text Available Transplantation of muscle precursor cells is of therapeutic interest for focal skeletal muscular diseases. However, major limitations of cell transplantation are the poor survival, expansion and migration of the injected cells. The massive and early death of transplanted myoblasts is not fully understood although several mechanisms have been suggested. Various attempts have been made to improve their survival or migration. Taking into account that muscle regeneration is associated with the presence of macrophages, which are helpful in repairing the muscle by both cleansing the debris and deliver trophic cues to myoblasts in a sequential way, we attempted in the present work to improve myoblast transplantation by coinjecting macrophages. The present data showed that in the 5 days following the transplantation, macrophages efficiently improved: i myoblast survival by limiting their massive death, ii myoblast expansion within the tissue and iii myoblast migration in the dystrophic muscle. This was confirmed by in vitro analyses showing that macrophages stimulated myoblast adhesion and migration. As a result, myoblast contribution to regenerating host myofibres was increased by macrophages one month after transplantation. Altogether, these data demonstrate that macrophages are beneficial during the early steps of myoblast transplantation into skeletal muscle, showing that coinjecting these stromal cells may be used as a helper to improve the efficiency of parenchymal cell engraftment.

  17. Regulation of antioxidant enzyme activities in male and female rat macrophages by sex steroids

    Directory of Open Access Journals (Sweden)

    Azevedo R.B.

    2001-01-01

    Full Text Available Human and animal immune functions present sex dimorphism that seems to be mainly regulated by sex hormones. In the present study, the activities of the antioxidant enzymes total superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px were measured in intraperitoneal resident macrophages from adult male and female rats. In addition to comparing males and females, we also examined the regulation of these enzyme activities in macrophages by sex steroids. GSH-Px activity did not differ between male and female macrophages. However, both total SOD and CAT activities were markedly higher in females than in males (83 and 180%. Removal of the gonads in both males and females (comparison between castrated groups increased the difference in SOD activity from 83 to 138% and reduced the difference in CAT activity from 180 to 86%. Castration and testosterone administration did not significantly modify the activities of the antioxidant enzymes in male macrophages. Ovariectomy did not affect SOD or GSH-Px activity but markedly reduced (48% CAT activity. This latter change was fully reversed by estrogen administration, whereas progesterone had a smaller effect. These results led us to conclude that differences in the SOD and CAT activities may partially explain some of the differences in immune function reported for males and females. Also, estrogen is a potent regulator of CAT in macrophages and therefore this enzyme activity in macrophages may vary considerably during the menstrual cycle.

  18. Inhibition of nuclear factor-kappa B activation decreases survival of Mycobacterium tuberculosis in human macrophages.

    Directory of Open Access Journals (Sweden)

    Xiyuan Bai

    Full Text Available Nuclear factor-kappa B (NFκB is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB. However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy.

  19. The role of medicaments, exosomes and miRNA molecules in modulation of macrophage immune activity

    Directory of Open Access Journals (Sweden)

    Katarzyna Nazimek

    2015-01-01

    Full Text Available Macrophages play an important role in innate immunity, in induction and orchestration of acquired immune response as well as in the maintenance of tissue homeostasis. Macrophages as antigen presenting cells induce or inhibit the development of immune response and as effector cells play an important role in innate immunity to infectious agents and in delayed--type hypersensitivity as well. Thus, either up- or down-regulation of their activity leads to the impairment of different biological processes. This often results in the development of immunological diseases or inflammatory response associated with metabolic, cardiovascular or neuroendocrine disorders. Therefore, the possibility of modulation of macrophage function should allow for elaboration of new effective therapeutic strategies. Noteworthy, interaction of medicaments with macrophages may directly mediate their therapeutic activity or is an additional beneficial effect increasing efficacy of treatment. Further, macrophage differentiation is regulated by miRNA-223, while expression of miRNA-146 and miRNA-155 may modulate and/or be a result of the current cell phenotype. Present review is focused on the current knowledge about the action of medicaments, microRNA molecules, exosomes and related vesicles on macrophages leading to modulation of their biological activity.

  20. Pro-oxidant activity of indicaxanthin from Opuntia ficus indica modulates arachidonate metabolism and prostaglandin synthesis through lipid peroxide production in LPS-stimulated RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    M. Allegra

    2014-01-01

    A kinetic study investigating the redox status of LPS-stimulated macrophages between 0.5 and 12 h, either in the absence or in the presence of 50–100 µM indicaxanthin, revealed a differential control of ROS production, with early (0.5–3 h modest inhibition, followed by a progressive (3–12 h concentration-dependent enhancement over the level induced by LPS alone. In addition, indicaxanthin caused early (0.5–3 h concentration-dependent elevation of conjugated diene lipid hydroperoxides, and production of hydroxynonenal-protein adducts, over the amount induced by LPS. In LPS-stimulated macrophages indicaxanthin did not affect PG metabolism when co-incubated with either an inhibitor of NADPH oxidase or vitamin E. It is concluded that LPS-induced pro-oxidant activity of indicaxanthin at the membrane level allows formation of signaling intermediates whose accumulation modulates PG biosynthetic pathway in inflamed macrophages.

  1. Water Extract of Deer Bones Activates Macrophages and Alleviates Neutropenia

    Directory of Open Access Journals (Sweden)

    Han-Seok Choi

    2013-01-01

    Full Text Available Extracts from deer bones, called nok-gol in Korean, have long been used to invigorate Qi. While neutropenia is not well detected in normal physiological condition, it could be a cause of severe problems to develop diseases such as infectious and cancerous diseases. Thus, a prevention of neutropenia in normal physiology and pathophysiological states is important for maintaining Qi and preventing disease progress. In cell biological aspects, activated macrophages are known to prevent neutropenia. In this study, we demonstrate that water extract of deer bone (herein, NG prevents neutropenia by activating macrophages. In mouse neutropenia model system in vivo where ICR mice were treated with cyclophosphamide to immunosuppress, an oral administration of NG altered the number of blood cells including lymphocytes, neutrophils, basophils, and eosinophils. This in vivo effect of NG was relevant to that of granulocyte colony stimulating factor (G-CSF that was known to improve neutropenia. Our in vitro studies further showed that NG treatment increased intracellular reactive oxygen species (ROS and promoted macrophagic differentiation of mouse monocytic Raw264.7 cells in a dose-dependent manner. In addition, NG enhanced nitric oxide (NO synthesis and secretions of cytokines including IL-6 and TNF-α. Consistently, NG treatment induced phosphorylation of ERK, JNK, IKK, IκBα, and NF-κB in Raw264.7 cells. Thus, our data suggest that NG is helpful for alleviating neutropenia.