WorldWideScience

Sample records for hydrology model predictions

  1. Model complexity control for hydrologic prediction

    NARCIS (Netherlands)

    Schoups, G.; Van de Giesen, N.C.; Savenije, H.H.G.

    2008-01-01

    A common concern in hydrologic modeling is overparameterization of complex models given limited and noisy data. This leads to problems of parameter nonuniqueness and equifinality, which may negatively affect prediction uncertainties. A systematic way of controlling model complexity is therefore

  2. Multi-model analysis in hydrological prediction

    Science.gov (United States)

    Lanthier, M.; Arsenault, R.; Brissette, F.

    2017-12-01

    Hydrologic modelling, by nature, is a simplification of the real-world hydrologic system. Therefore ensemble hydrological predictions thus obtained do not present the full range of possible streamflow outcomes, thereby producing ensembles which demonstrate errors in variance such as under-dispersion. Past studies show that lumped models used in prediction mode can return satisfactory results, especially when there is not enough information available on the watershed to run a distributed model. But all lumped models greatly simplify the complex processes of the hydrologic cycle. To generate more spread in the hydrologic ensemble predictions, multi-model ensembles have been considered. In this study, the aim is to propose and analyse a method that gives an ensemble streamflow prediction that properly represents the forecast probabilities and reduced ensemble bias. To achieve this, three simple lumped models are used to generate an ensemble. These will also be combined using multi-model averaging techniques, which generally generate a more accurate hydrogram than the best of the individual models in simulation mode. This new predictive combined hydrogram is added to the ensemble, thus creating a large ensemble which may improve the variability while also improving the ensemble mean bias. The quality of the predictions is then assessed on different periods: 2 weeks, 1 month, 3 months and 6 months using a PIT Histogram of the percentiles of the real observation volumes with respect to the volumes of the ensemble members. Initially, the models were run using historical weather data to generate synthetic flows. This worked for individual models, but not for the multi-model and for the large ensemble. Consequently, by performing data assimilation at each prediction period and thus adjusting the initial states of the models, the PIT Histogram could be constructed using the observed flows while allowing the use of the multi-model predictions. The under-dispersion has been

  3. Refining the Committee Approach and Uncertainty Prediction in Hydrological Modelling

    NARCIS (Netherlands)

    Kayastha, N.

    2014-01-01

    Due to the complexity of hydrological systems a single model may be unable to capture the full range of a catchment response and accurately predict the streamflows. The multi modelling approach opens up possibilities for handling such difficulties and allows improve the predictive capability of

  4. HESS Opinions: Hydrologic predictions in a changing environment: behavioral modeling

    Directory of Open Access Journals (Sweden)

    S. J. Schymanski

    2011-02-01

    Full Text Available Most hydrological models are valid at most only in a few places and cannot be reasonably transferred to other places or to far distant time periods. Transfer in space is difficult because the models are conditioned on past observations at particular places to define parameter values and unobservable processes that are needed to fully characterize the structure and functioning of the landscape. Transfer in time has to deal with the likely temporal changes to both parameters and processes under future changed conditions. This remains an important obstacle to addressing some of the most urgent prediction questions in hydrology, such as prediction in ungauged basins and prediction under global change. In this paper, we propose a new approach to catchment hydrological modeling, based on universal principles that do not change in time and that remain valid across many places. The key to this framework, which we call behavioral modeling, is to assume that there are universal and time-invariant organizing principles that can be used to identify the most appropriate model structure (including parameter values and responses for a given ecosystem at a given moment in time. These organizing principles may be derived from fundamental physical or biological laws, or from empirical laws that have been demonstrated to be time-invariant and to hold at many places and scales. Much fundamental research remains to be undertaken to help discover these organizing principles on the basis of exploration of observed patterns of landscape structure and hydrological behavior and their interpretation as legacy effects of past co-evolution of climate, soils, topography, vegetation and humans. Our hope is that the new behavioral modeling framework will be a step forward towards a new vision for hydrology where models are capable of more confidently predicting the behavior of catchments beyond what has been observed or experienced before.

  5. Improving Permafrost Hydrology Prediction Through Data-Model Integration

    Science.gov (United States)

    Wilson, C. J.; Andresen, C. G.; Atchley, A. L.; Bolton, W. R.; Busey, R.; Coon, E.; Charsley-Groffman, L.

    2017-12-01

    The CMIP5 Earth System Models were unable to adequately predict the fate of the 16GT of permafrost carbon in a warming climate due to poor representation of Arctic ecosystem processes. The DOE Office of Science Next Generation Ecosystem Experiment, NGEE-Arctic project aims to reduce uncertainty in the Arctic carbon cycle and its impact on the Earth's climate system by improved representation of the coupled physical, chemical and biological processes that drive how much buried carbon will be converted to CO2 and CH4, how fast this will happen, which form will dominate, and the degree to which increased plant productivity will offset increased soil carbon emissions. These processes fundamentally depend on permafrost thaw rate and its influence on surface and subsurface hydrology through thermal erosion, land subsidence and changes to groundwater flow pathways as soil, bedrock and alluvial pore ice and massive ground ice melts. LANL and its NGEE colleagues are co-developing data and models to better understand controls on permafrost degradation and improve prediction of the evolution of permafrost and its impact on Arctic hydrology. The LANL Advanced Terrestrial Simulator was built using a state of the art HPC software framework to enable the first fully coupled 3-dimensional surface-subsurface thermal-hydrology and land surface deformation simulations to simulate the evolution of the physical Arctic environment. Here we show how field data including hydrology, snow, vegetation, geochemistry and soil properties, are informing the development and application of the ATS to improve understanding of controls on permafrost stability and permafrost hydrology. The ATS is being used to inform parameterizations of complex coupled physical, ecological and biogeochemical processes for implementation in the DOE ACME land model, to better predict the role of changing Arctic hydrology on the global climate system. LA-UR-17-26566.

  6. Impact of modellers' decisions on hydrological a priori predictions

    Science.gov (United States)

    Holländer, H. M.; Bormann, H.; Blume, T.; Buytaert, W.; Chirico, G. B.; Exbrayat, J.-F.; Gustafsson, D.; Hölzel, H.; Krauße, T.; Kraft, P.; Stoll, S.; Blöschl, G.; Flühler, H.

    2014-06-01

    In practice, the catchment hydrologist is often confronted with the task of predicting discharge without having the needed records for calibration. Here, we report the discharge predictions of 10 modellers - using the model of their choice - for the man-made Chicken Creek catchment (6 ha, northeast Germany, Gerwin et al., 2009b) and we analyse how well they improved their prediction in three steps based on adding information prior to each following step. The modellers predicted the catchment's hydrological response in its initial phase without having access to the observed records. They used conceptually different physically based models and their modelling experience differed largely. Hence, they encountered two problems: (i) to simulate discharge for an ungauged catchment and (ii) using models that were developed for catchments, which are not in a state of landscape transformation. The prediction exercise was organized in three steps: (1) for the first prediction the modellers received a basic data set describing the catchment to a degree somewhat more complete than usually available for a priori predictions of ungauged catchments; they did not obtain information on stream flow, soil moisture, nor groundwater response and had therefore to guess the initial conditions; (2) before the second prediction they inspected the catchment on-site and discussed their first prediction attempt; (3) for their third prediction they were offered additional data by charging them pro forma with the costs for obtaining this additional information. Holländer et al. (2009) discussed the range of predictions obtained in step (1). Here, we detail the modeller's assumptions and decisions in accounting for the various processes. We document the prediction progress as well as the learning process resulting from the availability of added information. For the second and third steps, the progress in prediction quality is evaluated in relation to individual modelling experience and costs of

  7. Hydrological model parameter dimensionality is a weak measure of prediction uncertainty (discussion paper)

    NARCIS (Netherlands)

    Pande, S.; Arkesteijn, L.; Savenije, H.H.G.; Bastidas, L.A.

    2015-01-01

    This paper shows that instability of hydrological system representation in response to different pieces of information and associated prediction uncertainty is a function of model complexity. After demonstrating the connection between unstable model representation and model complexity, complexity is

  8. Hydrologic nonstationarity and extrapolating models to predict the future: overview of session and proceeding

    Directory of Open Access Journals (Sweden)

    F. H. S. Chiew

    2015-06-01

    Full Text Available This paper provides an overview of this IAHS symposium and PIAHS proceeding on "hydrologic nonstationarity and extrapolating models to predict the future". The paper provides a brief review of research on this topic, presents approaches used to account for nonstationarity when extrapolating models to predict the future, and summarises the papers in this session and proceeding.

  9. Hydrological-niche models predict water plant functional group distributions in diverse wetland types.

    Science.gov (United States)

    Deane, David C; Nicol, Jason M; Gehrig, Susan L; Harding, Claire; Aldridge, Kane T; Goodman, Abigail M; Brookes, Justin D

    2017-06-01

    Human use of water resources threatens environmental water supplies. If resource managers are to develop policies that avoid unacceptable ecological impacts, some means to predict ecosystem response to changes in water availability is necessary. This is difficult to achieve at spatial scales relevant for water resource management because of the high natural variability in ecosystem hydrology and ecology. Water plant functional groups classify species with similar hydrological niche preferences together, allowing a qualitative means to generalize community responses to changes in hydrology. We tested the potential for functional groups in making quantitative prediction of water plant functional group distributions across diverse wetland types over a large geographical extent. We sampled wetlands covering a broad range of hydrogeomorphic and salinity conditions in South Australia, collecting both hydrological and floristic data from 687 quadrats across 28 wetland hydrological gradients. We built hydrological-niche models for eight water plant functional groups using a range of candidate models combining different surface inundation metrics. We then tested the predictive performance of top-ranked individual and averaged models for each functional group. Cross validation showed that models achieved acceptable predictive performance, with correct classification rates in the range 0.68-0.95. Model predictions can be made at any spatial scale that hydrological data are available and could be implemented in a geographical information system. We show the response of water plant functional groups to inundation is consistent enough across diverse wetland types to quantify the probability of hydrological impacts over regional spatial scales. © 2017 by the Ecological Society of America.

  10. A meteo-hydrological prediction system based on a multi-model approach for precipitation forecasting

    Directory of Open Access Journals (Sweden)

    S. Davolio

    2008-02-01

    Full Text Available The precipitation forecasted by a numerical weather prediction model, even at high resolution, suffers from errors which can be considerable at the scales of interest for hydrological purposes. In the present study, a fraction of the uncertainty related to meteorological prediction is taken into account by implementing a multi-model forecasting approach, aimed at providing multiple precipitation scenarios driving the same hydrological model. Therefore, the estimation of that uncertainty associated with the quantitative precipitation forecast (QPF, conveyed by the multi-model ensemble, can be exploited by the hydrological model, propagating the error into the hydrological forecast.

    The proposed meteo-hydrological forecasting system is implemented and tested in a real-time configuration for several episodes of intense precipitation affecting the Reno river basin, a medium-sized basin located in northern Italy (Apennines. These episodes are associated with flood events of different intensity and are representative of different meteorological configurations responsible for severe weather affecting northern Apennines.

    The simulation results show that the coupled system is promising in the prediction of discharge peaks (both in terms of amount and timing for warning purposes. The ensemble hydrological forecasts provide a range of possible flood scenarios that proved to be useful for the support of civil protection authorities in their decision.

  11. Impact of different satellite soil moisture products on the predictions of a continuous distributed hydrological model

    Science.gov (United States)

    Laiolo, P.; Gabellani, S.; Campo, L.; Silvestro, F.; Delogu, F.; Rudari, R.; Pulvirenti, L.; Boni, G.; Fascetti, F.; Pierdicca, N.; Crapolicchio, R.; Hasenauer, S.; Puca, S.

    2016-06-01

    The reliable estimation of hydrological variables in space and time is of fundamental importance in operational hydrology to improve the flood predictions and hydrological cycle description. Nowadays remotely sensed data can offer a chance to improve hydrological models especially in environments with scarce ground based data. The aim of this work is to update the state variables of a physically based, distributed and continuous hydrological model using four different satellite-derived data (three soil moisture products and a land surface temperature measurement) and one soil moisture analysis to evaluate, even with a non optimal technique, the impact on the hydrological cycle. The experiments were carried out for a small catchment, in the northern part of Italy, for the period July 2012-June 2013. The products were pre-processed according to their own characteristics and then they were assimilated into the model using a simple nudging technique. The benefits on the model predictions of discharge were tested against observations. The analysis showed a general improvement of the model discharge predictions, even with a simple assimilation technique, for all the assimilation experiments; the Nash-Sutcliffe model efficiency coefficient was increased from 0.6 (relative to the model without assimilation) to 0.7, moreover, errors on discharge were reduced up to the 10%. An added value to the model was found in the rainfall season (autumn): all the assimilation experiments reduced the errors up to the 20%. This demonstrated that discharge prediction of a distributed hydrological model, which works at fine scale resolution in a small basin, can be improved with the assimilation of coarse-scale satellite-derived data.

  12. Predicting the natural flow regime: Models for assessing hydrological alteration in streams

    Science.gov (United States)

    Carlisle, D.M.; Falcone, J.; Wolock, D.M.; Meador, M.R.; Norris, R.H.

    2009-01-01

    Understanding the extent to which natural streamflow characteristics have been altered is an important consideration for ecological assessments of streams. Assessing hydrologic condition requires that we quantify the attributes of the flow regime that would be expected in the absence of anthropogenic modifications. The objective of this study was to evaluate whether selected streamflow characteristics could be predicted at regional and national scales using geospatial data. Long-term, gaged river basins distributed throughout the contiguous US that had streamflow characteristics representing least disturbed or near pristine conditions were identified. Thirteen metrics of the magnitude, frequency, duration, timing and rate of change of streamflow were calculated using a 20-50 year period of record for each site. We used random forests (RF), a robust statistical modelling approach, to develop models that predicted the value for each streamflow metric using natural watershed characteristics. We compared the performance (i.e. bias and precision) of national- and regional-scale predictive models to that of models based on landscape classifications, including major river basins, ecoregions and hydrologic landscape regions (HLR). For all hydrologic metrics, landscape stratification models produced estimates that were less biased and more precise than a null model that accounted for no natural variability. Predictive models at the national and regional scale performed equally well, and substantially improved predictions of all hydrologic metrics relative to landscape stratification models. Prediction error rates ranged from 15 to 40%, but were 25% for most metrics. We selected three gaged, non-reference sites to illustrate how predictive models could be used to assess hydrologic condition. These examples show how the models accurately estimate predisturbance conditions and are sensitive to changes in streamflow variability associated with long-term land-use change. We also

  13. Identifying influential data points in hydrological model calibration and their impact on streamflow predictions

    Science.gov (United States)

    Wright, David; Thyer, Mark; Westra, Seth

    2015-04-01

    Highly influential data points are those that have a disproportionately large impact on model performance, parameters and predictions. However, in current hydrological modelling practice the relative influence of individual data points on hydrological model calibration is not commonly evaluated. This presentation illustrates and evaluates several influence diagnostics tools that hydrological modellers can use to assess the relative influence of data. The feasibility and importance of including influence detection diagnostics as a standard tool in hydrological model calibration is discussed. Two classes of influence diagnostics are evaluated: (1) computationally demanding numerical "case deletion" diagnostics; and (2) computationally efficient analytical diagnostics, based on Cook's distance. These diagnostics are compared against hydrologically orientated diagnostics that describe changes in the model parameters (measured through the Mahalanobis distance), performance (objective function displacement) and predictions (mean and maximum streamflow). These influence diagnostics are applied to two case studies: a stage/discharge rating curve model, and a conceptual rainfall-runoff model (GR4J). Removing a single data point from the calibration resulted in differences to mean flow predictions of up to 6% for the rating curve model, and differences to mean and maximum flow predictions of up to 10% and 17%, respectively, for the hydrological model. When using the Nash-Sutcliffe efficiency in calibration, the computationally cheaper Cook's distance metrics produce similar results to the case-deletion metrics at a fraction of the computational cost. However, Cooks distance is adapted from linear regression with inherit assumptions on the data and is therefore less flexible than case deletion. Influential point detection diagnostics show great potential to improve current hydrological modelling practices by identifying highly influential data points. The findings of this

  14. The Rangeland Hydrology and Erosion Model: A dynamic approach for predicting soil loss on rangelands

    Science.gov (United States)

    In this study we present the improved Rangeland Hydrology and Erosion Model (RHEM V2.3), a process-based erosion prediction tool specific for rangeland application. The article provides the mathematical formulation of the model and parameter estimation equations. Model performance is assessed agains...

  15. Nonlinear Prediction Model for Hydrologic Time Series Based on Wavelet Decomposition

    Science.gov (United States)

    Kwon, H.; Khalil, A.; Brown, C.; Lall, U.; Ahn, H.; Moon, Y.

    2005-12-01

    Traditionally forecasting and characterizations of hydrologic systems is performed utilizing many techniques. Stochastic linear methods such as AR and ARIMA and nonlinear ones such as statistical learning theory based tools have been extensively used. The common difficulty to all methods is the determination of sufficient and necessary information and predictors for a successful prediction. Relationships between hydrologic variables are often highly nonlinear and interrelated across the temporal scale. A new hybrid approach is proposed for the simulation of hydrologic time series combining both the wavelet transform and the nonlinear model. The present model employs some merits of wavelet transform and nonlinear time series model. The Wavelet Transform is adopted to decompose a hydrologic nonlinear process into a set of mono-component signals, which are simulated by nonlinear model. The hybrid methodology is formulated in a manner to improve the accuracy of a long term forecasting. The proposed hybrid model yields much better results in terms of capturing and reproducing the time-frequency properties of the system at hand. Prediction results are promising when compared to traditional univariate time series models. An application of the plausibility of the proposed methodology is provided and the results conclude that wavelet based time series model can be utilized for simulating and forecasting of hydrologic variable reasonably well. This will ultimately serve the purpose of integrated water resources planning and management.

  16. Can assimilation of crowdsourced data in hydrological modelling improve flood prediction?

    Science.gov (United States)

    Mazzoleni, Maurizio; Verlaan, Martin; Alfonso, Leonardo; Monego, Martina; Norbiato, Daniele; Ferri, Miche; Solomatine, Dimitri P.

    2017-02-01

    Monitoring stations have been used for decades to properly measure hydrological variables and better predict floods. To this end, methods to incorporate these observations into mathematical water models have also been developed. Besides, in recent years, the continued technological advances, in combination with the growing inclusion of citizens in participatory processes related to water resources management, have encouraged the increase of citizen science projects around the globe. In turn, this has stimulated the spread of low-cost sensors to allow citizens to participate in the collection of hydrological data in a more distributed way than the classic static physical sensors do. However, two main disadvantages of such crowdsourced data are the irregular availability and variable accuracy from sensor to sensor, which makes them challenging to use in hydrological modelling. This study aims to demonstrate that streamflow data, derived from crowdsourced water level observations, can improve flood prediction if integrated in hydrological models. Two different hydrological models, applied to four case studies, are considered. Realistic (albeit synthetic) time series are used to represent crowdsourced data in all case studies. In this study, it is found that the data accuracies have much more influence on the model results than the irregular frequencies of data availability at which the streamflow data are assimilated. This study demonstrates that data collected by citizens, characterized by being asynchronous and inaccurate, can still complement traditional networks formed by few accurate, static sensors and improve the accuracy of flood forecasts.

  17. Copula Entropy coupled with Wavelet Neural Network Model for Hydrological Prediction

    Science.gov (United States)

    Wang, Yin; Yue, JiGuang; Liu, ShuGuang; Wang, Li

    2018-02-01

    Artificial Neural network(ANN) has been widely used in hydrological forecasting. in this paper an attempt has been made to find an alternative method for hydrological prediction by combining Copula Entropy(CE) with Wavelet Neural Network(WNN), CE theory permits to calculate mutual information(MI) to select Input variables which avoids the limitations of the traditional linear correlation(LCC) analysis. Wavelet analysis can provide the exact locality of any changes in the dynamical patterns of the sequence Coupled with ANN Strong non-linear fitting ability. WNN model was able to provide a good fit with the hydrological data. finally, the hybrid model(CE+WNN) have been applied to daily water level of Taihu Lake Basin, and compared with CE ANN, LCC WNN and LCC ANN. Results showed that the hybrid model produced better results in estimating the hydrograph properties than the latter models.

  18. Predicting Phosphorus Dynamics Across Physiographic Regions Using a Mixed Hortonian Non-Hortonian Hydrology Model

    Science.gov (United States)

    Collick, A.; Easton, Z. M.; Auerbach, D.; Buchanan, B.; Kleinman, P. J. A.; Fuka, D.

    2017-12-01

    Predicting phosphorus (P) loss from agricultural watersheds depends on accurate representation of the hydrological and chemical processes governing P mobility and transport. In complex landscapes, P predictions are complicated by a broad range of soils with and without restrictive layers, a wide variety of agricultural management, and variable hydrological drivers. The Soil and Water Assessment Tool (SWAT) is a watershed model commonly used to predict runoff and non-point source pollution transport, but is commonly only used with Hortonian (traditional SWAT) or non-Hortonian (SWAT-VSA) initializations. Many shallow soils underlain by a restricting layer commonly generate saturation excess runoff from variable source areas (VSA), which is well represented in a re-conceptualized version, SWAT-VSA. However, many watersheds exhibit traits of both infiltration excess and saturation excess hydrology internally, based on the hydrologic distance from the stream, distribution of soils across the landscape, and characteristics of restricting layers. The objective of this research is to provide an initial look at integrating distributed predictive capabilities that consider both Hortonian and Non-Hortonian solutions simultaneously within a single SWAT-VSA initialization. We compare results from all three conceptual watershed initializations against measured surface runoff and stream P loads and to highlight the model's ability to drive sub-field management of P. All three initializations predict discharge similarly well (daily Nash-Sutcliffe Efficiencies above 0.5), but the new conceptual SWAT-VSA initialization performed best in predicting P export from the watershed, while also identifying critical source areas - those areas generating large runoff and P losses at the sub field level. These results support the use of mixed Hortonian non-Hortonian SWAT-VSA initializations in predicting watershed-scale P losses and identifying critical source areas of P loss in landscapes

  19. Model structural uncertainty quantification and hydrologic parameter and prediction error analysis using airborne electromagnetic data

    DEFF Research Database (Denmark)

    Minsley, B. J.; Christensen, Nikolaj Kruse; Christensen, Steen

    Model structure, or the spatial arrangement of subsurface lithological units, is fundamental to the hydrological behavior of Earth systems. Knowledge of geological model structure is critically important in order to make informed hydrological predictions and management decisions. Model structure...... is never perfectly known, however, and incorrect assumptions can be a significant source of error when making model predictions. We describe a systematic approach for quantifying model structural uncertainty that is based on the integration of sparse borehole observations and large-scale airborne...... electromagnetic (AEM) data. Our estimates of model structural uncertainty follow a Bayesian framework that accounts for both the uncertainties in geophysical parameter estimates given AEM data, and the uncertainties in the relationship between lithology and geophysical parameters. Using geostatistical sequential...

  20. Prediction of Hydrologic Characteristics for Ungauged Catchments to Support Hydroecological Modeling

    Science.gov (United States)

    Bond, Nick R.; Kennard, Mark J.

    2017-11-01

    Hydrologic variability is a fundamental driver of ecological processes and species distribution patterns within river systems, yet the paucity of gauges in many catchments means that streamflow data are often unavailable for ecological survey sites. Filling this data gap is an important challenge in hydroecological research. To address this gap, we first test the ability to spatially extrapolate hydrologic metrics calculated from gauged streamflow data to ungauged sites as a function of stream distance and catchment area. Second, we examine the ability of statistical models to predict flow regime metrics based on climate and catchment physiographic variables. Our assessment focused on Australia's largest catchment, the Murray-Darling Basin (MDB). We found that hydrologic metrics were predictable only between sites within ˜25 km of one another. Beyond this, correlations between sites declined quickly. We found less than 40% of fish survey sites from a recent basin-wide monitoring program (n = 777 sites) to fall within this 25 km range, thereby greatly limiting the ability to utilize gauge data for direct spatial transposition of hydrologic metrics to biological survey sites. In contrast, statistical model-based transposition proved effective in predicting ecologically relevant aspects of the flow regime (including metrics describing central tendency, high- and low-flows intermittency, seasonality, and variability) across the entire gauge network (median R2 ˜ 0.54, range 0.39-0.94). Modeled hydrologic metrics thus offer a useful alternative to empirical data when examining biological survey data from ungauged sites. More widespread use of these statistical tools and modeled metrics could expand our understanding of flow-ecology relationships.

  1. Remote sensing inputs to landscape models which predict future spatial land use patterns for hydrologic models

    Science.gov (United States)

    Miller, L. D.; Tom, C.; Nualchawee, K.

    1977-01-01

    A tropical forest area of Northern Thailand provided a test case of the application of the approach in more natural surroundings. Remote sensing imagery subjected to proper computer analysis has been shown to be a very useful means of collecting spatial data for the science of hydrology. Remote sensing products provide direct input to hydrologic models and practical data bases for planning large and small-scale hydrologic developments. Combining the available remote sensing imagery together with available map information in the landscape model provides a basis for substantial improvements in these applications.

  2. Hydrological model parameter dimensionality is a weak measure of prediction uncertainty

    Science.gov (United States)

    Pande, S.; Arkesteijn, L.; Savenije, H.; Bastidas, L. A.

    2015-04-01

    This paper shows that instability of hydrological system representation in response to different pieces of information and associated prediction uncertainty is a function of model complexity. After demonstrating the connection between unstable model representation and model complexity, complexity is analyzed in a step by step manner. This is done measuring differences between simulations of a model under different realizations of input forcings. Algorithms are then suggested to estimate model complexity. Model complexities of the two model structures, SAC-SMA (Sacramento Soil Moisture Accounting) and its simplified version SIXPAR (Six Parameter Model), are computed on resampled input data sets from basins that span across the continental US. The model complexities for SIXPAR are estimated for various parameter ranges. It is shown that complexity of SIXPAR increases with lower storage capacity and/or higher recession coefficients. Thus it is argued that a conceptually simple model structure, such as SIXPAR, can be more complex than an intuitively more complex model structure, such as SAC-SMA for certain parameter ranges. We therefore contend that magnitudes of feasible model parameters influence the complexity of the model selection problem just as parameter dimensionality (number of parameters) does and that parameter dimensionality is an incomplete indicator of stability of hydrological model selection and prediction problems.

  3. Hyper-resolution hydrological modeling: Completeness of Formulation, Appropriateness of Descritization, and Physical LImits of Predictability

    Science.gov (United States)

    Ogden, F. L.

    2017-12-01

    HIgh performance computing and the widespread availabilities of geospatial physiographic and forcing datasets have enabled consideration of flood impact predictions with longer lead times and more detailed spatial descriptions. We are now considering multi-hour flash flood forecast lead times at the subdivision level in so-called hydroblind regions away from the National Hydrography network. However, the computational demands of such models are high, necessitating a nested simulation approach. Research on hyper-resolution hydrologic modeling over the past three decades have illustrated some fundamental limits on predictability that are simultaneously related to runoff generation mechanism(s), antecedent conditions, rates and total amounts of precipitation, discretization of the model domain, and complexity or completeness of the model formulation. This latter point is an acknowledgement that in some ways hydrologic understanding in key areas related to land use, land cover, tillage practices, seasonality, and biological effects has some glaring deficiencies. This presentation represents a review of what is known related to the interacting effects of precipitation amount, model spatial discretization, antecedent conditions, physiographic characteristics and model formulation completeness for runoff predictions. These interactions define a region in multidimensional forcing, parameter and process space where there are in some cases clear limits on predictability, and in other cases diminished uncertainty.

  4. Predicting hydrological response to forest changes by simple statistical models: the selection of the best indicator of forest changes with a hydrological perspective

    Science.gov (United States)

    Ning, D.; Zhang, M.; Ren, S.; Hou, Y.; Yu, L.; Meng, Z.

    2017-01-01

    Forest plays an important role in hydrological cycle, and forest changes will inevitably affect runoff across multiple spatial scales. The selection of a suitable indicator for forest changes is essential for predicting forest-related hydrological response. This study used the Meijiang River, one of the headwaters of the Poyang Lake as an example to identify the best indicator of forest changes for predicting forest change-induced hydrological responses. Correlation analysis was conducted first to detect the relationships between monthly runoff and its predictive variables including antecedent monthly precipitation and indicators for forest changes (forest coverage, vegetation indices including EVI, NDVI, and NDWI), and by use of the identified predictive variables that were most correlated with monthly runoff, multiple linear regression models were then developed. The model with best performance identified in this study included two independent variables -antecedent monthly precipitation and NDWI. It indicates that NDWI is the best indicator of forest change in hydrological prediction while forest coverage, the most commonly used indicator of forest change is insignificantly related to monthly runoff. This highlights the use of vegetation index such as NDWI to indicate forest changes in hydrological studies. This study will provide us with an efficient way to quantify the hydrological impact of large-scale forest changes in the Meijiang River watershed, which is crucial for downstream water resource management and ecological protection in the Poyang Lake basin.

  5. Integrating geophysics and hydrology for reducing the uncertainty of groundwater model predictions and improved prediction performance

    DEFF Research Database (Denmark)

    Christensen, Nikolaj Kruse; Christensen, Steen; Ferre, Ty

    the integration of geophysical data in the construction of a groundwater model increases the prediction performance. We suggest that modelers should perform a hydrogeophysical “test-bench” analysis of the likely value of geophysics data for improving groundwater model prediction performance before actually...... and the resulting predictions can be compared with predictions from the ‘true’ model. By performing this analysis we expect to give the modeler insight into how the uncertainty of model-based prediction can be reduced.......A major purpose of groundwater modeling is to help decision-makers in efforts to manage the natural environment. Increasingly, it is recognized that both the predictions of interest and their associated uncertainties should be quantified to support robust decision making. In particular, decision...

  6. A radar-based hydrological model for flash flood prediction in the dry regions of Israel

    Science.gov (United States)

    Ronen, Alon; Peleg, Nadav; Morin, Efrat

    2014-05-01

    Flash floods are floods which follow shortly after rainfall events, and are among the most destructive natural disasters that strike people and infrastructures in humid and arid regions alike. Using a hydrological model for the prediction of flash floods in gauged and ungauged basins can help mitigate the risk and damage they cause. The sparsity of rain gauges in arid regions requires the use of radar measurements in order to get reliable quantitative precipitation estimations (QPE). While many hydrological models use radar data, only a handful do so in dry climate. This research presents a robust radar-based hydro-meteorological model built specifically for dry climate. Using this model we examine the governing factors of flash floods in the arid and semi-arid regions of Israel in particular and in dry regions in general. The hydrological model built is a semi-distributed, physically-based model, which represents the main hydrological processes in the area, namely infiltration, flow routing and transmission losses. Three infiltration functions were examined - Initial & Constant, SCS-CN and Green&Ampt. The parameters for each function were found by calibration based on 53 flood events in three catchments, and validation was performed using 55 flood events in six catchments. QPE were obtained from a C-band weather radar and adjusted using a weighted multiple regression method based on a rain gauge network. Antecedent moisture conditions were calculated using a daily recharge assessment model (DREAM). We found that the SCS-CN infiltration function performed better than the other two, with reasonable agreement between calculated and measured peak discharge. Effects of storm characteristics were studied using synthetic storms from a high resolution weather generator (HiReS-WG), and showed a strong correlation between storm speed, storm direction and rain depth over desert soils to flood volume and peak discharge.

  7. Predictive occurrence models for coastal wetland plant communities: delineating hydrologic response surfaces with multinomial logistic regression

    Science.gov (United States)

    Snedden, Gregg A.; Steyer, Gregory D.

    2013-01-01

    Understanding plant community zonation along estuarine stress gradients is critical for effective conservation and restoration of coastal wetland ecosystems. We related the presence of plant community types to estuarine hydrology at 173 sites across coastal Louisiana. Percent relative cover by species was assessed at each site near the end of the growing season in 2008, and hourly water level and salinity were recorded at each site Oct 2007–Sep 2008. Nine plant community types were delineated with k-means clustering, and indicator species were identified for each of the community types with indicator species analysis. An inverse relation between salinity and species diversity was observed. Canonical correspondence analysis (CCA) effectively segregated the sites across ordination space by community type, and indicated that salinity and tidal amplitude were both important drivers of vegetation composition. Multinomial logistic regression (MLR) and Akaike's Information Criterion (AIC) were used to predict the probability of occurrence of the nine vegetation communities as a function of salinity and tidal amplitude, and probability surfaces obtained from the MLR model corroborated the CCA results. The weighted kappa statistic, calculated from the confusion matrix of predicted versus actual community types, was 0.7 and indicated good agreement between observed community types and model predictions. Our results suggest that models based on a few key hydrologic variables can be valuable tools for predicting vegetation community development when restoring and managing coastal wetlands.

  8. Predictive occurrence models for coastal wetland plant communities: Delineating hydrologic response surfaces with multinomial logistic regression

    Science.gov (United States)

    Snedden, Gregg A.; Steyer, Gregory D.

    2013-02-01

    Understanding plant community zonation along estuarine stress gradients is critical for effective conservation and restoration of coastal wetland ecosystems. We related the presence of plant community types to estuarine hydrology at 173 sites across coastal Louisiana. Percent relative cover by species was assessed at each site near the end of the growing season in 2008, and hourly water level and salinity were recorded at each site Oct 2007-Sep 2008. Nine plant community types were delineated with k-means clustering, and indicator species were identified for each of the community types with indicator species analysis. An inverse relation between salinity and species diversity was observed. Canonical correspondence analysis (CCA) effectively segregated the sites across ordination space by community type, and indicated that salinity and tidal amplitude were both important drivers of vegetation composition. Multinomial logistic regression (MLR) and Akaike's Information Criterion (AIC) were used to predict the probability of occurrence of the nine vegetation communities as a function of salinity and tidal amplitude, and probability surfaces obtained from the MLR model corroborated the CCA results. The weighted kappa statistic, calculated from the confusion matrix of predicted versus actual community types, was 0.7 and indicated good agreement between observed community types and model predictions. Our results suggest that models based on a few key hydrologic variables can be valuable tools for predicting vegetation community development when restoring and managing coastal wetlands.

  9. Predictive Models of the Hydrological Regime of Unregulated Streams in Arizona

    Science.gov (United States)

    Anning, David W.; Parker, John T.C.

    2009-01-01

    Three statistical models were developed by the U.S. Geological Survey in cooperation with the Arizona Department of Environmental Quality to improve the predictability of flow occurrence in unregulated streams throughout Arizona. The models can be used to predict the probabilities of the hydrological regime being one of four categories developed by this investigation: perennial, which has streamflow year-round; nearly perennial, which has streamflow 90 to 99.9 percent of the year; weakly perennial, which has streamflow 80 to 90 percent of the year; or nonperennial, which has streamflow less than 80 percent of the year. The models were developed to assist the Arizona Department of Environmental Quality in selecting sites for participation in the U.S. Environmental Protection Agency's Environmental Monitoring and Assessment Program. One model was developed for each of the three hydrologic provinces in Arizona - the Plateau Uplands, the Central Highlands, and the Basin and Range Lowlands. The models for predicting the hydrological regime were calibrated using statistical methods and explanatory variables of discharge, drainage-area, altitude, and location data for selected U.S. Geological Survey streamflow-gaging stations and a climate index derived from annual precipitation data. Models were calibrated on the basis of streamflow data from 46 stations for the Plateau Uplands province, 82 stations for the Central Highlands province, and 90 stations for the Basin and Range Lowlands province. The models were developed using classification trees that facilitated the analysis of mixed numeric and factor variables. In all three models, a threshold stream discharge was the initial variable to be considered within the classification tree and was the single most important explanatory variable. If a stream discharge value at a station was below the threshold, then the station record was determined as being nonperennial. If, however, the stream discharge was above the threshold

  10. Flood Prediction for the Tam Nong District in Mekong Delta Using Hydrological Modelling and Hydrologic Remote Sensing Technique

    Science.gov (United States)

    Kappas, Martin; Nguyen Hong, Quang; Thanh, Nga Pham Thi; Thu, Hang Le Thi; Nguyen Vu, Giang; Degener, Jan; Rafiei Emam, Ammar

    2017-04-01

    There has been an increasing attention to the large trans-boundary Mekong river basin due to various problems related to water management and flood control, for instance. Vietnam Mekong delta is located at the downstream of the river basin where is affected most by this human-induced reduction in flows from the upstream. On the other hand, the flood plain of nine anastomosing channels is increasingly effected by the seawater intrusion due to sea level rising of climate change. This results in negative impacts of salinization, drought, and floods, while formerly flooding had frequently brought positive natural gain of irrigation water and alluvial aggradation. In this research, our aim is to predict flooding for the better water management adaptation and control. We applied the model HEC-SSP 2.1 to analyze flood flow frequency, two-dimensional unsteady flow calculations in HEC-RAS 5.0 for simulating a floodplain inundation. Remote sensing-based water level (Jason-2) and inundation map were used for validation and comparison with the model simulations. The results revealed a reduction of water level at all the monitoring stations, particularly in the last decade. In addition, a trend of the inundation extension gradually declined, but in some periods it remained severe due to water release from upstream reservoirs during the rainy season (October-November). We found an acceptable agreement between the HEC-RAS and remote sensing flooding maps (around 70%). Based on the flood routine analysis, we could conclude that the water level will continue lower and lead to a trend of drought and salinization harsher in the near future. Keywords: Mekong delta, flood control, inundation, water management, hydrological modelling, remote sensing

  11. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application

    Directory of Open Access Journals (Sweden)

    A. Elshorbagy

    2010-10-01

    Full Text Available In this second part of the two-part paper, the data driven modeling (DDM experiment, presented and explained in the first part, is implemented. Inputs for the five case studies (half-hourly actual evapotranspiration, daily peat soil moisture, daily till soil moisture, and two daily rainfall-runoff datasets are identified, either based on previous studies or using the mutual information content. Twelve groups (realizations were randomly generated from each dataset by randomly sampling without replacement from the original dataset. Neural networks (ANNs, genetic programming (GP, evolutionary polynomial regression (EPR, Support vector machines (SVM, M5 model trees (M5, K-nearest neighbors (K-nn, and multiple linear regression (MLR techniques are implemented and applied to each of the 12 realizations of each case study. The predictive accuracy and uncertainties of the various techniques are assessed using multiple average overall error measures, scatter plots, frequency distribution of model residuals, and the deterioration rate of prediction performance during the testing phase. Gamma test is used as a guide to assist in selecting the appropriate modeling technique. Unlike two nonlinear soil moisture case studies, the results of the experiment conducted in this research study show that ANNs were a sub-optimal choice for the actual evapotranspiration and the two rainfall-runoff case studies. GP is the most successful technique due to its ability to adapt the model complexity to the modeled data. EPR performance could be close to GP with datasets that are more linear than nonlinear. SVM is sensitive to the kernel choice and if appropriately selected, the performance of SVM can improve. M5 performs very well with linear and semi linear data, which cover wide range of hydrological situations. In highly nonlinear case studies, ANNs, K-nn, and GP could be more successful than other modeling techniques. K-nn is also successful in linear situations, and it

  12. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application

    Science.gov (United States)

    Elshorbagy, A.; Corzo, G.; Srinivasulu, S.; Solomatine, D. P.

    2010-10-01

    In this second part of the two-part paper, the data driven modeling (DDM) experiment, presented and explained in the first part, is implemented. Inputs for the five case studies (half-hourly actual evapotranspiration, daily peat soil moisture, daily till soil moisture, and two daily rainfall-runoff datasets) are identified, either based on previous studies or using the mutual information content. Twelve groups (realizations) were randomly generated from each dataset by randomly sampling without replacement from the original dataset. Neural networks (ANNs), genetic programming (GP), evolutionary polynomial regression (EPR), Support vector machines (SVM), M5 model trees (M5), K-nearest neighbors (K-nn), and multiple linear regression (MLR) techniques are implemented and applied to each of the 12 realizations of each case study. The predictive accuracy and uncertainties of the various techniques are assessed using multiple average overall error measures, scatter plots, frequency distribution of model residuals, and the deterioration rate of prediction performance during the testing phase. Gamma test is used as a guide to assist in selecting the appropriate modeling technique. Unlike two nonlinear soil moisture case studies, the results of the experiment conducted in this research study show that ANNs were a sub-optimal choice for the actual evapotranspiration and the two rainfall-runoff case studies. GP is the most successful technique due to its ability to adapt the model complexity to the modeled data. EPR performance could be close to GP with datasets that are more linear than nonlinear. SVM is sensitive to the kernel choice and if appropriately selected, the performance of SVM can improve. M5 performs very well with linear and semi linear data, which cover wide range of hydrological situations. In highly nonlinear case studies, ANNs, K-nn, and GP could be more successful than other modeling techniques. K-nn is also successful in linear situations, and it should

  13. Multi-variable evaluation of hydrological model predictions for a headwater basin in the Canadian Rocky Mountains

    Directory of Open Access Journals (Sweden)

    X. Fang

    2013-04-01

    Full Text Available One of the purposes of the Cold Regions Hydrological Modelling platform (CRHM is to diagnose inadequacies in the understanding of the hydrological cycle and its simulation. A physically based hydrological model including a full suite of snow and cold regions hydrology processes as well as warm season, hillslope and groundwater hydrology was developed in CRHM for application in the Marmot Creek Research Basin (~ 9.4 km2, located in the Front Ranges of the Canadian Rocky Mountains. Parameters were selected from digital elevation model, forest, soil, and geological maps, and from the results of many cold regions hydrology studies in the region and elsewhere. Non-calibrated simulations were conducted for six hydrological years during the period 2005–2011 and were compared with detailed field observations of several hydrological cycle components. The results showed good model performance for snow accumulation and snowmelt compared to the field observations for four seasons during the period 2007–2011, with a small bias and normalised root mean square difference (NRMSD ranging from 40 to 42% for the subalpine conifer forests and from 31 to 67% for the alpine tundra and treeline larch forest environments. Overestimation or underestimation of the peak SWE ranged from 1.6 to 29%. Simulations matched well with the observed unfrozen moisture fluctuation in the top soil layer at a lodgepole pine site during the period 2006–2011, with a NRMSD ranging from 17 to 39%, but with consistent overestimation of 7 to 34%. Evaluations of seasonal streamflow during the period 2006–2011 revealed that the model generally predicted well compared to observations at the basin scale, with a NRMSD of 60% and small model bias (1%, while at the sub-basin scale NRMSDs were larger, ranging from 72 to 76%, though overestimation or underestimation for the cumulative seasonal discharge was within 29%. Timing of discharge was better predicted at the Marmot Creek basin outlet

  14. Thermal-hydrological models

    Energy Technology Data Exchange (ETDEWEB)

    Buscheck, T., LLNL

    1998-04-29

    This chapter describes the physical processes and natural and engineered system conditions that affect thermal-hydrological (T-H) behavior in the unsaturated zone (UZ) at Yucca Mountain and how these effects are represented in mathematical and numerical models that are used to predict T-H conditions in the near field, altered zone, and engineered barrier system (EBS), and on waste package (WP) surfaces.

  15. Comparing large-scale hydrological model predictions with observed streamflow in the Pacific Northwest: effects of climate and groundwater

    Science.gov (United States)

    Mohammad Safeeq; Guillaume S. Mauger; Gordon E. Grant; Ivan Arismendi; Alan F. Hamlet; Se-Yeun Lee

    2014-01-01

    Assessing uncertainties in hydrologic models can improve accuracy in predicting future streamflow. Here, simulated streamflows using the Variable Infiltration Capacity (VIC) model at coarse (1/16°) and fine (1/120°) spatial resolutions were evaluated against observed streamflows from 217 watersheds. In...

  16. Influence of forest roads standards and networks on water yield as predicted by the distributed hydrology-soil-vegetation model

    Science.gov (United States)

    Salli F. Dymond; W. Michael Aust; Steven P. Prisley; Mark H. Eisenbies; James M. Vose

    2013-01-01

    Throughout the country, foresters are continually looking at the effects of logging and forest roads on stream discharge and overall stream health. In the Pacific Northwest, a distributed hydrology-soil-vegetation model (DHSVM) has been used to predict the effects of logging on peak discharge in mountainous regions. DHSVM uses elevation, meteorological, vegetation, and...

  17. A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors

    NARCIS (Netherlands)

    Schoups, G.; Vrugt, J.A.

    2010-01-01

    Estimation of parameter and predictive uncertainty of hydrologic models has traditionally relied on several simplifying assumptions. Residual errors are often assumed to be independent and to be adequately described by a Gaussian probability distribution with a mean of zero and a constant variance.

  18. Seasonal changes in the European gravity field from GRACE: A comparison with superconducting gravimeters and hydrology model predictions

    Science.gov (United States)

    Hinderer, Jacques; Andersen, Ole; Lemoine, Frank; Crossley, David; Boy, Jean-Paul

    2006-01-01

    This paper is devoted to the investigation of seasonal changes of the Earth's gravity field from GRACE satellites and the comparison with surface gravity measurements in Europe from the Global Geodynamics Project (GGP) sub-network, as well as with recent hydrology models for continental soil moisture and snow. We used gravity maps in Europe retrieved from the initial GRACE monthly solutions spanning a 21-month duration from April 2002 to December 2003 for various truncation levels of the initial spherical harmonic decomposition of the field. The transfer function between satellite-derived and ground gravity changes due to continental hydrology is studied and we also compute the theoretical ratio of gravity versus radial displacement (in μGal/mm) involved in the hydrological loading process. The 'mean' value (averaged in time and in space over Europe) from hydrologic forward modeling is found to be close to -1.0 μGal/mm and we show that this value can be explained by a strong low degree ( n = 5-6) peak in the hydrology amplitude spectrum. The dominant time-variable signal from GRACE is found to be annual with an amplitude and a phase both of which are in fair agreement with predictions in Europe from recent hydrology models. Initial results suggest that all three data sets (GRACE, hydrology and GGP) respond to annual changes in near-surface water in Europe of a few μGal (at length scales of ˜1000 km) that show a high value in winter and a summer minimum. Despite the limited time span of our analysis and the uncertainties in separating purely local effects from regional ones in superconducting gravimeter data, the calibration and validation aspects of the GRACE data processing based on the annual hydrology cycle in Europe are in progress.

  19. Data assimilation in hydrological modelling

    DEFF Research Database (Denmark)

    Drecourt, Jean-Philippe

    Data assimilation is an invaluable tool in hydrological modelling as it allows to efficiently combine scarce data with a numerical model to obtain improved model predictions. In addition, data assimilation also provides an uncertainty analysis of the predictions made by the hydrological model....... In this thesis, the Kalman filter is used for data assimilation with a focus on groundwater modelling. However the developed techniques are general and can be applied also in other modelling domains. Modelling involves conceptualization of the processes of Nature. Data assimilation provides a way to deal...... with model non-linearities and biased errors. A literature review analyzes the most popular techniques and their application in hydrological modelling. Since bias is an important problem in groundwater modelling, two bias aware Kalman filters have been implemented and compared using an artificial test case...

  20. Evaluating the role of evapotranspiration remote sensing data in improving hydrological modeling predictability

    Science.gov (United States)

    Herman, Matthew R.; Nejadhashemi, A. Pouyan; Abouali, Mohammad; Hernandez-Suarez, Juan Sebastian; Daneshvar, Fariborz; Zhang, Zhen; Anderson, Martha C.; Sadeghi, Ali M.; Hain, Christopher R.; Sharifi, Amirreza

    2018-01-01

    As the global demands for the use of freshwater resources continues to rise, it has become increasingly important to insure the sustainability of this resources. This is accomplished through the use of management strategies that often utilize monitoring and the use of hydrological models. However, monitoring at large scales is not feasible and therefore model applications are becoming challenging, especially when spatially distributed datasets, such as evapotranspiration, are needed to understand the model performances. Due to these limitations, most of the hydrological models are only calibrated for data obtained from site/point observations, such as streamflow. Therefore, the main focus of this paper is to examine whether the incorporation of remotely sensed and spatially distributed datasets can improve the overall performance of the model. In this study, actual evapotranspiration (ETa) data was obtained from the two different sets of satellite based remote sensing data. One dataset estimates ETa based on the Simplified Surface Energy Balance (SSEBop) model while the other one estimates ETa based on the Atmosphere-Land Exchange Inverse (ALEXI) model. The hydrological model used in this study is the Soil and Water Assessment Tool (SWAT), which was calibrated against spatially distributed ETa and single point streamflow records for the Honeyoey Creek-Pine Creek Watershed, located in Michigan, USA. Two different techniques, multi-variable and genetic algorithm, were used to calibrate the SWAT model. Using the aforementioned datasets, the performance of the hydrological model in estimating ETa was improved using both calibration techniques by achieving Nash-Sutcliffe efficiency (NSE) values >0.5 (0.73-0.85), percent bias (PBIAS) values within ±25% (±21.73%), and root mean squared error - observations standard deviation ratio (RSR) values <0.7 (0.39-0.52). However, the genetic algorithm technique was more effective with the ETa calibration while significantly

  1. Effect of radar rainfall time resolution on the predictive capability of a distributed hydrologic model

    Science.gov (United States)

    Atencia, A.; Llasat, M. C.; Garrote, L.; Mediero, L.

    2010-10-01

    The performance of distributed hydrological models depends on the resolution, both spatial and temporal, of the rainfall surface data introduced. The estimation of quantitative precipitation from meteorological radar or satellite can improve hydrological model results, thanks to an indirect estimation at higher spatial and temporal resolution. In this work, composed radar data from a network of three C-band radars, with 6-minutal temporal and 2 × 2 km2 spatial resolution, provided by the Catalan Meteorological Service, is used to feed the RIBS distributed hydrological model. A Window Probability Matching Method (gage-adjustment method) is applied to four cases of heavy rainfall to improve the observed rainfall sub-estimation in both convective and stratiform Z/R relations used over Catalonia. Once the rainfall field has been adequately obtained, an advection correction, based on cross-correlation between two consecutive images, was introduced to get several time resolutions from 1 min to 30 min. Each different resolution is treated as an independent event, resulting in a probable range of input rainfall data. This ensemble of rainfall data is used, together with other sources of uncertainty, such as the initial basin state or the accuracy of discharge measurements, to calibrate the RIBS model using probabilistic methodology. A sensitivity analysis of time resolutions was implemented by comparing the various results with real values from stream-flow measurement stations.

  2. Hydrological model calibration for flood prediction in current and future climates using probability distributions of observed peak flows and model based rainfall

    Science.gov (United States)

    Haberlandt, Uwe; Wallner, Markus; Radtke, Imke

    2013-04-01

    Derived flood frequency analysis based on continuous hydrological modelling is very demanding regarding the required length and temporal resolution of precipitation input data. Often such flood predictions are obtained using long precipitation time series from stochastic approaches or from regional climate models as input. However, the calibration of the hydrological model is usually done using short time series of observed data. This inconsistent employment of different data types for calibration and application of a hydrological model increases its uncertainty. Here, it is proposed to calibrate a hydrological model directly on probability distributions of observed peak flows using model based rainfall in line with its later application. Two examples are given to illustrate the idea. The first one deals with classical derived flood frequency analysis using input data from an hourly stochastic rainfall model. The second one concerns a climate impact analysis using hourly precipitation from a regional climate model. The results show that: (I) the same type of precipitation input data should be used for calibration and application of the hydrological model, (II) a model calibrated on extreme conditions works quite well for average conditions but not vice versa, (III) the calibration of the hydrological model using regional climate model data works as an implicit bias correction method and (IV) the best performance for flood estimation is usually obtained when model based precipitation and observed probability distribution of peak flows are used for model calibration.

  3. Nitrate reduction in geologically heterogeneous catchments — A framework for assessing the scale of predictive capability of hydrological models

    International Nuclear Information System (INIS)

    Refsgaard, Jens Christian; Auken, Esben; Bamberg, Charlotte A.; Christensen, Britt S.B.; Clausen, Thomas; Dalgaard, Esben; Effersø, Flemming; Ernstsen, Vibeke; Gertz, Flemming; Hansen, Anne Lausten; He, Xin; Jacobsen, Brian H.; Jensen, Karsten Høgh; Jørgensen, Flemming; Jørgensen, Lisbeth Flindt; Koch, Julian; Nilsson, Bertel; Petersen, Christian; De Schepper, Guillaume; Schamper, Cyril

    2014-01-01

    In order to fulfil the requirements of the EU Water Framework Directive nitrate load from agricultural areas to surface water in Denmark needs to be reduced by about 40%. The regulations imposed until now have been uniform, i.e. the same restrictions for all areas independent of the subsurface conditions. Studies have shown that on a national basis about 2/3 of the nitrate leaching from the root zone is reduced naturally, through denitrification, in the subsurface before reaching the streams. Therefore, it is more cost-effective to identify robust areas, where nitrate leaching through the root zone is reduced in the saturated zone before reaching the streams, and vulnerable areas, where no subsurface reduction takes place, and then only impose regulations/restrictions on the vulnerable areas. Distributed hydrological models can make predictions at grid scale, i.e. at much smaller scale than the entire catchment. However, as distributed models often do not include local scale hydrogeological heterogeneities, they are typically not able to make accurate predictions at scales smaller than they are calibrated. We present a framework for assessing nitrate reduction in the subsurface and for assessing at which spatial scales modelling tools have predictive capabilities. A new instrument has been developed for airborne geophysical measurements, Mini-SkyTEM, dedicated to identifying geological structures and heterogeneities with horizontal and lateral resolutions of 30–50 m and 2 m, respectively, in the upper 30 m. The geological heterogeneity and uncertainty are further analysed by use of the geostatistical software TProGS by generating stochastic geological realisations that are soft conditioned against the geophysical data. Finally, the flow paths within the catchment are simulated by use of the MIKE SHE hydrological modelling system for each of the geological models generated by TProGS and the prediction uncertainty is characterised by the variance between the

  4. Nitrate reduction in geologically heterogeneous catchments — A framework for assessing the scale of predictive capability of hydrological models

    Energy Technology Data Exchange (ETDEWEB)

    Refsgaard, Jens Christian, E-mail: jcr@geus.dk [Geological Survey of Denmark and Greenland (GEUS) (Denmark); Auken, Esben [Department of Earth Sciences, Aarhus University (Denmark); Bamberg, Charlotte A. [City of Aarhus (Denmark); Christensen, Britt S.B. [Geological Survey of Denmark and Greenland (GEUS) (Denmark); Clausen, Thomas [DHI, Hørsholm (Denmark); Dalgaard, Esben [Department of Earth Sciences, Aarhus University (Denmark); Effersø, Flemming [SkyTEM Aps, Beder (Denmark); Ernstsen, Vibeke [Geological Survey of Denmark and Greenland (GEUS) (Denmark); Gertz, Flemming [Knowledge Center for Agriculture, Skejby (Denmark); Hansen, Anne Lausten [Department of Geosciences and Natural Resource Management, University of Copenhagen (Denmark); He, Xin [Geological Survey of Denmark and Greenland (GEUS) (Denmark); Jacobsen, Brian H. [Department of Food and Resource Economics, University of Copenhagen (Denmark); Jensen, Karsten Høgh [Department of Geosciences and Natural Resource Management, University of Copenhagen (Denmark); Jørgensen, Flemming; Jørgensen, Lisbeth Flindt [Geological Survey of Denmark and Greenland (GEUS) (Denmark); Koch, Julian [Department of Geosciences and Natural Resource Management, University of Copenhagen (Denmark); Nilsson, Bertel [Geological Survey of Denmark and Greenland (GEUS) (Denmark); Petersen, Christian [City of Odder (Denmark); De Schepper, Guillaume [Université Laval, Québec (Canada); Schamper, Cyril [Department of Earth Sciences, Aarhus University (Denmark); and others

    2014-01-01

    In order to fulfil the requirements of the EU Water Framework Directive nitrate load from agricultural areas to surface water in Denmark needs to be reduced by about 40%. The regulations imposed until now have been uniform, i.e. the same restrictions for all areas independent of the subsurface conditions. Studies have shown that on a national basis about 2/3 of the nitrate leaching from the root zone is reduced naturally, through denitrification, in the subsurface before reaching the streams. Therefore, it is more cost-effective to identify robust areas, where nitrate leaching through the root zone is reduced in the saturated zone before reaching the streams, and vulnerable areas, where no subsurface reduction takes place, and then only impose regulations/restrictions on the vulnerable areas. Distributed hydrological models can make predictions at grid scale, i.e. at much smaller scale than the entire catchment. However, as distributed models often do not include local scale hydrogeological heterogeneities, they are typically not able to make accurate predictions at scales smaller than they are calibrated. We present a framework for assessing nitrate reduction in the subsurface and for assessing at which spatial scales modelling tools have predictive capabilities. A new instrument has been developed for airborne geophysical measurements, Mini-SkyTEM, dedicated to identifying geological structures and heterogeneities with horizontal and lateral resolutions of 30–50 m and 2 m, respectively, in the upper 30 m. The geological heterogeneity and uncertainty are further analysed by use of the geostatistical software TProGS by generating stochastic geological realisations that are soft conditioned against the geophysical data. Finally, the flow paths within the catchment are simulated by use of the MIKE SHE hydrological modelling system for each of the geological models generated by TProGS and the prediction uncertainty is characterised by the variance between the

  5. Using isotopes to improve impact and hydrological predictions of land-surface schemes in global climate models

    International Nuclear Information System (INIS)

    McGuffie, K.; Henderson-Sellers, A.

    2002-01-01

    Global climate model (GCM) predictions of the impact of large-scale land-use change date back to 1984 as do the earliest isotopic studies of large-basin hydrology. Despite this coincidence in interest and geography, with both papers focussed on the Amazon, there have been few studies that have tried to exploit isotopic information with the goal of improving climate model simulations of the land-surface. In this paper we analyze isotopic results from the IAEA global data base specifically with the goal of identifying signatures of potential value for improving global and regional climate model simulations of the land-surface. Evaluation of climate model predictions of the impacts of deforestation of the Amazon has been shown to be of significance by recent results which indicate impacts occurring distant from the Amazon i.e. tele-connections causing climate change elsewhere around the globe. It is suggested that these could be similar in magnitude and extent to the global impacts of ENSO events. Validation of GCM predictions associated with Amazonian deforestation are increasingly urgently required because of the additional effects of other aspects of climate change, particularly synergies occurring between forest removal and greenhouse gas increases, especially CO 2 . Here we examine three decades distributions of deuterium excess across the Amazon and use the results to evaluate the relative importance of the fractionating (partial evaporation) and non-fractionating (transpiration) processes. These results illuminate GCM scenarios of importance to the regional climate and hydrology: (i) the possible impact of increased stomatal resistance in the rainforest caused by higher levels of atmospheric CO2 [4]; and (ii) the consequences of the combined effects of deforestation and global warming on the regions climate and hydrology

  6. Comment on "Can assimilation of crowdsourced data in hydrological modelling improve flood prediction?" by Mazzoleni et al. (2017)

    Science.gov (United States)

    Viero, Daniele P.

    2018-01-01

    Citizen science and crowdsourcing are gaining increasing attention among hydrologists. In a recent contribution, Mazzoleni et al. (2017) investigated the integration of crowdsourced data (CSD) into hydrological models to improve the accuracy of real-time flood forecasts. The authors used synthetic CSD (i.e. not actually measured), because real CSD were not available at the time of the study. In their work, which is a proof-of-concept study, Mazzoleni et al. (2017) showed that assimilation of CSD improves the overall model performance; the impact of irregular frequency of available CSD, and that of data uncertainty, were also deeply assessed. However, the use of synthetic CSD in conjunction with (semi-)distributed hydrological models deserves further discussion. As a result of equifinality, poor model identifiability, and deficiencies in model structure, internal states of (semi-)distributed models can hardly mimic the actual states of complex systems away from calibration points. Accordingly, the use of synthetic CSD that are drawn from model internal states under best-fit conditions can lead to overestimation of the effectiveness of CSD assimilation in improving flood prediction. Operational flood forecasting, which results in decisions of high societal value, requires robust knowledge of the model behaviour and an in-depth assessment of both model structure and forcing data. Additional guidelines are given that are useful for the a priori evaluation of CSD for real-time flood forecasting and, hopefully, for planning apt design strategies for both model calibration and collection of CSD.

  7. Hydrological model parameter dimensionality is a weak measure of prediction uncertainty (discussion paper)

    NARCIS (Netherlands)

    Pande, S.; Arkesteijn, L.; Savenije, H.H.G.; Bastidas, L.A.

    2014-01-01

    This paper presents evidence that model prediction uncertainty does not necessarily rise with parameter dimensionality (the number of parameters). Here by prediction we mean future simulation of a variable of interest conditioned on certain future values of input variables. We utilize a relationship

  8. Prediction of soil stability and erosion in semiarid regions using numerical hydrological model (MCAT) and airborne hyperspectral imagery

    Science.gov (United States)

    Brook, Anna; Wittenberg, Lea

    2015-04-01

    Long-term environmental monitoring is addressed to identify physical and biological changes and progresses taking place in the ecosystem. This basic action of landscape monitoring is an essential part of the systematic long-term surveillance, aiming to evaluate, assess and predict the spatial change and progresses. Indeed, it provides a context for wide range of diverse studies and research frameworks from regional or global scale. Spatial-temporal trends and changes at various scales (massive to less certain) require establishing consistent baseline data over time. One of the spatial cases of landscape monitoring is dedicated to soil formation and pedological progresses. It is previously acknowledged that changes in soil affect the functionality of the environment, so monitoring changes recently become important cause considerable resources in areas such as environmental management, sustainability services, and protecting the environment healthy. Given the above, it can be concluded that monitoring changes in the base for sustainable development. The hydrological response of bare soils and watersheds in semiarid regions to intense rainfall events is known to be complex due to multiply physical and structural impacts and feedbacks. As a result, the comprehensive evaluations of mathematical models including detailed consideration of uncertainties in the modeling of hydrological and environmental systems are of increasing importance. The presented method incorporates means of remote sensing data, hydrological and climate data and implementing dedicated and integrative Monte Carlo Analysis Toolbox (MCAT) model for semiarid region. Complexity of practical models to represent spatial systems requires an extensive understanding of the spatial phenomena, while providing realistic balance of sensitivity and corresponding uncertainty levels. Nowadays a large number of dedicated mathematical models applied to assess environmental hydrological process. Among the most

  9. netherland hydrological modeling instrument

    Science.gov (United States)

    Hoogewoud, J. C.; de Lange, W. J.; Veldhuizen, A.; Prinsen, G.

    2012-04-01

    Netherlands Hydrological Modeling Instrument A decision support system for water basin management. J.C. Hoogewoud , W.J. de Lange ,A. Veldhuizen , G. Prinsen , The Netherlands Hydrological modeling Instrument (NHI) is the center point of a framework of models, to coherently model the hydrological system and the multitude of functions it supports. Dutch hydrological institutes Deltares, Alterra, Netherlands Environmental Assessment Agency, RWS Waterdienst, STOWA and Vewin are cooperating in enhancing the NHI for adequate decision support. The instrument is used by three different ministries involved in national water policy matters, for instance the WFD, drought management, manure policy and climate change issues. The basis of the modeling instrument is a state-of-the-art on-line coupling of the groundwater system (MODFLOW), the unsaturated zone (metaSWAP) and the surface water system (MOZART-DM). It brings together hydro(geo)logical processes from the column to the basin scale, ranging from 250x250m plots to the river Rhine and includes salt water flow. The NHI is validated with an eight year run (1998-2006) with dry and wet periods. For this run different parts of the hydrology have been compared with measurements. For instance, water demands in dry periods (e.g. for irrigation), discharges at outlets, groundwater levels and evaporation. A validation alone is not enough to get support from stakeholders. Involvement from stakeholders in the modeling process is needed. There fore to gain sufficient support and trust in the instrument on different (policy) levels a couple of actions have been taken: 1. a transparent evaluation of modeling-results has been set up 2. an extensive program is running to cooperate with regional waterboards and suppliers of drinking water in improving the NHI 3. sharing (hydrological) data via newly setup Modeling Database for local and national models 4. Enhancing the NHI with "local" information. The NHI is and has been used for many

  10. Hydrological land surface modelling

    DEFF Research Database (Denmark)

    Ridler, Marc-Etienne Francois

    Recent advances in integrated hydrological and soil-vegetation-atmosphere transfer (SVAT) modelling have led to improved water resource management practices, greater crop production, and better flood forecasting systems. However, uncertainty is inherent in all numerical models ultimately leading...... temperature are explored in a multi-objective calibration experiment to optimize the parameters in a SVAT model in the Sahel. The two satellite derived variables were effective at constraining most land-surface and soil parameters. A data assimilation framework is developed and implemented with an integrated...... and disaster management. The objective of this study is to develop and investigate methods to reduce hydrological model uncertainty by using supplementary data sources. The data is used either for model calibration or for model updating using data assimilation. Satellite estimates of soil moisture and surface...

  11. Toward seamless hydrologic predictions across spatial scales

    Science.gov (United States)

    Samaniego, Luis; Kumar, Rohini; Thober, Stephan; Rakovec, Oldrich; Zink, Matthias; Wanders, Niko; Eisner, Stephanie; Müller Schmied, Hannes; Sutanudjaja, Edwin H.; Warrach-Sagi, Kirsten; Attinger, Sabine

    2017-09-01

    Land surface and hydrologic models (LSMs/HMs) are used at diverse spatial resolutions ranging from catchment-scale (1-10 km) to global-scale (over 50 km) applications. Applying the same model structure at different spatial scales requires that the model estimates similar fluxes independent of the chosen resolution, i.e., fulfills a flux-matching condition across scales. An analysis of state-of-the-art LSMs and HMs reveals that most do not have consistent hydrologic parameter fields. Multiple experiments with the mHM, Noah-MP, PCR-GLOBWB, and WaterGAP models demonstrate the pitfalls of deficient parameterization practices currently used in most operational models, which are insufficient to satisfy the flux-matching condition. These examples demonstrate that J. Dooge's 1982 statement on the unsolved problem of parameterization in these models remains true. Based on a review of existing parameter regionalization techniques, we postulate that the multiscale parameter regionalization (MPR) technique offers a practical and robust method that provides consistent (seamless) parameter and flux fields across scales. Herein, we develop a general model protocol to describe how MPR can be applied to a particular model and present an example application using the PCR-GLOBWB model. Finally, we discuss potential advantages and limitations of MPR in obtaining the seamless prediction of hydrological fluxes and states across spatial scales.

  12. Toward seamless hydrologic predictions across spatial scales

    Directory of Open Access Journals (Sweden)

    L. Samaniego

    2017-09-01

    Full Text Available Land surface and hydrologic models (LSMs/HMs are used at diverse spatial resolutions ranging from catchment-scale (1–10 km to global-scale (over 50 km applications. Applying the same model structure at different spatial scales requires that the model estimates similar fluxes independent of the chosen resolution, i.e., fulfills a flux-matching condition across scales. An analysis of state-of-the-art LSMs and HMs reveals that most do not have consistent hydrologic parameter fields. Multiple experiments with the mHM, Noah-MP, PCR-GLOBWB, and WaterGAP models demonstrate the pitfalls of deficient parameterization practices currently used in most operational models, which are insufficient to satisfy the flux-matching condition. These examples demonstrate that J. Dooge's 1982 statement on the unsolved problem of parameterization in these models remains true. Based on a review of existing parameter regionalization techniques, we postulate that the multiscale parameter regionalization (MPR technique offers a practical and robust method that provides consistent (seamless parameter and flux fields across scales. Herein, we develop a general model protocol to describe how MPR can be applied to a particular model and present an example application using the PCR-GLOBWB model. Finally, we discuss potential advantages and limitations of MPR in obtaining the seamless prediction of hydrological fluxes and states across spatial scales.

  13. Acting, predicting and intervening in a socio-hydrological world

    Science.gov (United States)

    Lane, S. N.

    2014-03-01

    This paper asks a simple question: if humans and their actions co-evolve with hydrological systems (Sivapalan et al., 2012), what is the role of hydrological scientists, who are also humans, within this system? To put it more directly, as traditionally there is a supposed separation of scientists and society, can we maintain this separation as socio-hydrologists studying a socio-hydrological world? This paper argues that we cannot, using four linked sections. The first section draws directly upon the concern of science-technology studies to make a case to the (socio-hydrological) community that we need to be sensitive to constructivist accounts of science in general and socio-hydrology in particular. I review three positions taken by such accounts and apply them to hydrological science, supported with specific examples: (a) the ways in which scientific activities frame socio-hydrological research, such that at least some of the knowledge that we obtain is constructed by precisely what we do; (b) the need to attend to how socio-hydrological knowledge is used in decision-making, as evidence suggests that hydrological knowledge does not flow simply from science into policy; and (c) the observation that those who do not normally label themselves as socio-hydrologists may actually have a profound knowledge of socio-hydrology. The second section provides an empirical basis for considering these three issues by detailing the history of the practice of roughness parameterisation, using parameters like Manning's n, in hydrological and hydraulic models for flood inundation mapping. This history sustains the third section that is a more general consideration of one type of socio-hydrological practice: predictive modelling. I show that as part of a socio-hydrological analysis, hydrological prediction needs to be thought through much more carefully: not only because hydrological prediction exists to help inform decisions that are made about water management; but also because

  14. Hydrological models are mediating models

    Science.gov (United States)

    Babel, L. V.; Karssenberg, D.

    2013-08-01

    Despite the increasing role of models in hydrological research and decision-making processes, only few accounts of the nature and function of models exist in hydrology. Earlier considerations have traditionally been conducted while making a clear distinction between physically-based and conceptual models. A new philosophical account, primarily based on the fields of physics and economics, transcends classes of models and scientific disciplines by considering models as "mediators" between theory and observations. The core of this approach lies in identifying models as (1) being only partially dependent on theory and observations, (2) integrating non-deductive elements in their construction, and (3) carrying the role of instruments of scientific enquiry about both theory and the world. The applicability of this approach to hydrology is evaluated in the present article. Three widely used hydrological models, each showing a different degree of apparent physicality, are confronted to the main characteristics of the "mediating models" concept. We argue that irrespective of their kind, hydrological models depend on both theory and observations, rather than merely on one of these two domains. Their construction is additionally involving a large number of miscellaneous, external ingredients, such as past experiences, model objectives, knowledge and preferences of the modeller, as well as hardware and software resources. We show that hydrological models convey the role of instruments in scientific practice by mediating between theory and the world. It results from these considerations that the traditional distinction between physically-based and conceptual models is necessarily too simplistic and refers at best to the stage at which theory and observations are steering model construction. The large variety of ingredients involved in model construction would deserve closer attention, for being rarely explicitly presented in peer-reviewed literature. We believe that devoting

  15. Daily river flow prediction based on Two-Phase Constructive Fuzzy Systems Modeling: A case of hydrological - meteorological measurements asymmetry

    Science.gov (United States)

    Bou-Fakhreddine, Bassam; Mougharbel, Imad; Faye, Alain; Abou Chakra, Sara; Pollet, Yann

    2018-03-01

    Accurate daily river flow forecast is essential in many applications of water resources such as hydropower operation, agricultural planning and flood control. This paper presents a forecasting approach to deal with a newly addressed situation where hydrological data exist for a period longer than that of meteorological data (measurements asymmetry). In fact, one of the potential solutions to resolve measurements asymmetry issue is data re-sampling. It is a matter of either considering only the hydrological data or the balanced part of the hydro-meteorological data set during the forecasting process. However, the main disadvantage is that we may lose potentially relevant information from the left-out data. In this research, the key output is a Two-Phase Constructive Fuzzy inference hybrid model that is implemented over the non re-sampled data. The introduced modeling approach must be capable of exploiting the available data efficiently with higher prediction efficiency relative to Constructive Fuzzy model trained over re-sampled data set. The study was applied to Litani River in the Bekaa Valley - Lebanon by using 4 years of rainfall and 24 years of river flow daily measurements. A Constructive Fuzzy System Model (C-FSM) and a Two-Phase Constructive Fuzzy System Model (TPC-FSM) are trained. Upon validating, the second model has shown a primarily competitive performance and accuracy with the ability to preserve a higher day-to-day variability for 1, 3 and 6 days ahead. In fact, for the longest lead period, the C-FSM and TPC-FSM were able of explaining respectively 84.6% and 86.5% of the actual river flow variation. Overall, the results indicate that TPC-FSM model has provided a better tool to capture extreme flows in the process of streamflow prediction.

  16. Predicting Hydrologic Function With Aquatic Gene Fragments

    Science.gov (United States)

    Good, S. P.; URycki, D. R.; Crump, B. C.

    2018-03-01

    Recent advances in microbiology techniques, such as genetic sequencing, allow for rapid and cost-effective collection of large quantities of genetic information carried within water samples. Here we posit that the unique composition of aquatic DNA material within a water sample contains relevant information about hydrologic function at multiple temporal scales. In this study, machine learning was used to develop discharge prediction models trained on the relative abundance of bacterial taxa classified into operational taxonomic units (OTUs) based on 16S rRNA gene sequences from six large arctic rivers. We term this approach "genohydrology," and show that OTU relative abundances can be used to predict river discharge at monthly and longer timescales. Based on a single DNA sample from each river, the average Nash-Sutcliffe efficiency (NSE) for predicted mean monthly discharge values throughout the year was 0.84, while the NSE for predicted discharge values across different return intervals was 0.67. These are considerable improvements over predictions based only on the area-scaled mean specific discharge of five similar rivers, which had average NSE values of 0.64 and -0.32 for seasonal and recurrence interval discharge values, respectively. The genohydrology approach demonstrates that genetic diversity within the aquatic microbiome is a large and underutilized data resource with benefits for prediction of hydrologic function.

  17. Gradation of complexity and predictability of hydrological processes

    Science.gov (United States)

    Sang, Yan-Fang; Singh, Vijay P.; Wen, Jun; Liu, Changming

    2015-06-01

    Quantification of the complexity and predictability of hydrological systems is important for evaluating the impact of climate change on hydrological processes, and for guiding water activities. In the literature, the focus seems to have been on describing the complexity of spatiotemporal distribution of hydrological variables, but little attention has been paid to the study of complexity gradation, because the degree of absolute complexity of hydrological systems cannot be objectively evaluated. Here we show that complexity and predictability of hydrological processes can be graded into three ranks (low, middle, and high). The gradation is based on the difference in the energy distribution of hydrological series and that of white noise under multitemporal scales. It reflects different energy concentration levels and contents of deterministic components of the hydrological series in the three ranks. Higher energy concentration level reflects lower complexity and higher predictability, but scattered energy distribution being similar to white noise has the highest complexity and is almost unpredictable. We conclude that the three ranks (low, middle, and high) approximately correspond to deterministic, stochastic, and random hydrological systems, respectively. The result of complexity gradation can guide hydrological observations and modeling, and identification of similarity patterns among different hydrological systems.

  18. PATHS groundwater hydrologic model

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.W.; Schur, J.A.

    1980-04-01

    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  19. Seasonal changes in the European gravity field from GRACE: A comparison with superconducting gravimeters and hydrology model predictions

    DEFF Research Database (Denmark)

    Hinderer, J.; Andersen, Ole Baltazar; Lemoine, F.

    2006-01-01

    This paper is devoted to the investigation of seasonal changes of the Earth's gravity field from GRACE satellites and the comparison with surface gravity measurements in Europe from the Global Geodynamics Project (GGP) sub-network, as well as with recent hydrology models for continental soil...... moisture and snow. We used gravity maps in Europe retrieved from the initial GRACE monthly solutions spanning a 21 -month duration from April 2002 to December 2003 for various truncation levels of the initial spherical harmonic decomposition of the field. The transfer function between satellite......-derived and ground gravity changes due to continental hydrology is studied and we also compute the theoretical ratio of gravity versus radial displacement (in mu Gal/mm) involved in the hydrological loading process. The 'mean' value (averaged in time and in space over Europe) from hydrologic forward modeling...

  20. Hydrological models for environmental management

    National Research Council Canada - National Science Library

    Bolgov, Mikhail V

    2002-01-01

    .... Stochastic modelling and forecasting cannot at present adequately represent the characteristics of hydrological regimes, nor analyze the influence of water on processes that arise in biological...

  1. It's the parameters, stupid! Moving beyond multi-model and multi-physics approaches to characterize and reduce predictive uncertainty in process-based hydrological models

    Science.gov (United States)

    Clark, Martyn; Samaniego, Luis; Freer, Jim

    2014-05-01

    Multi-model and multi-physics approaches are a popular tool in environmental modelling, with many studies focusing on optimally combining output from multiple model simulations to reduce predictive errors and better characterize predictive uncertainty. However, a careful and systematic analysis of different hydrological models reveals that individual models are simply small permutations of a master modeling template, and inter-model differences are overwhelmed by uncertainty in the choice of the parameter values in the model equations. Furthermore, inter-model differences do not explicitly represent the uncertainty in modeling a given process, leading to many situations where different models provide the wrong results for the same reasons. In other cases, the available morphological data does not support the very fine spatial discretization of the landscape that typifies many modern applications of process-based models. To make the uncertainty characterization problem worse, the uncertain parameter values in process-based models are often fixed (hard-coded), and the models lack the agility necessary to represent the tremendous heterogeneity in natural systems. This presentation summarizes results from a systematic analysis of uncertainty in process-based hydrological models, where we explicitly analyze the myriad of subjective decisions made throughout both the model development and parameter estimation process. Results show that much of the uncertainty is aleatory in nature - given a "complete" representation of dominant hydrologic processes, uncertainty in process parameterizations can be represented using an ensemble of model parameters. Epistemic uncertainty associated with process interactions and scaling behavior is still important, and these uncertainties can be represented using an ensemble of different spatial configurations. Finally, uncertainty in forcing data can be represented using ensemble methods for spatial meteorological analysis. Our systematic

  2. A Combined Hydrological and Hydraulic Model for Flood Prediction in Vietnam Applied to the Huong River Basin as a Test Case Study

    Directory of Open Access Journals (Sweden)

    Dang Thanh Mai

    2017-11-01

    Full Text Available A combined hydrological and hydraulic model is presented for flood prediction in Vietnam. This model is applied to the Huong river basin as a test case study. Observed flood flows and water surface levels of the 2002–2005 flood seasons are used for model calibration, and those of the 2006–2007 flood seasons are used for validation of the model. The physically based distributed hydrologic model WetSpa is used for predicting the generation and propagation of flood flows in the mountainous upper sub-basins, and proves to predict flood flows accurately. The Hydrologic Engineering Center River Analysis System (HEC-RAS hydraulic model is applied to simulate flood flows and inundation levels in the downstream floodplain, and also proves to predict water levels accurately. The predicted water profiles are used for mapping of inundations in the floodplain. The model may be useful in developing flood forecasting and early warning systems to mitigate losses due to flooding in Vietnam.

  3. Hydrological Predictability for the Peruvian Amazon

    Science.gov (United States)

    Towner, Jamie; Stephens, Elizabeth; Cloke, Hannah; Bazo, Juan; Coughlan, Erin; Zsoter, Ervin

    2017-04-01

    Population growth in the Peruvian Amazon has prompted the expansion of livelihoods further into the floodplain and thus increasing vulnerability to the annual rise and fall of the river. This growth has coincided with a period of increasing hydrological extremes with more frequent severe flood events. The anticipation and forecasting of these events is crucial for mitigating vulnerability. Forecast-based Financing (FbF) an initiative of the German Red Cross implements risk reducing actions based on threshold exceedance within hydrometeorological forecasts using the Global Flood Awareness System (GloFAS). However, the lead times required to complete certain actions can be long (e.g. several weeks to months ahead to purchase materials and reinforce houses) and are beyond the current capabilities of GloFAS. Therefore, further calibration of the model is required in addition to understanding the climatic drivers and associated hydrological response for specific flood events, such as those observed in 2009, 2012 and 2015. This review sets out to determine the current capabilities of the GloFAS model while exploring the limits of predictability for the Amazon basin. More specifically, how the temporal patterns of flow within the main coinciding tributaries correspond to the overall Amazonian flood wave under various climatic and meteorological influences. Linking the source areas of flow to predictability within the seasonal forecasting system will develop the ability to expand the limit of predictability of the flood wave. This presentation will focus on the Iquitos region of Peru, while providing an overview of the new techniques and current challenges faced within seasonal flood prediction.

  4. Testing a distributed hydrological model to predict scenarios of extreme events on a marginal olive orchard microcatchment

    Science.gov (United States)

    Guzmán, Enrique; Aguilar, Cristina; Taguas, Encarnación V.

    2014-05-01

    Olive groves constitute a traditional Mediterranean crop and thus, an important source of income to these regions and a crucial landscape component. Despite its importance, most of the olive groves in the region of Andalusia, Southern Spain, are located in sloping areas, which implies a significant risk of erosion. The combination of data and models allow enhancing the knowledge about processes taking place in these areas as well as the prediction of future scenarios. This aspect might be essential to plan soil protection strategies within a context of climate change where the IPCC estimates a significant increase of soil aridity and torrential events by the end of the century. The objective of this study is to estimate the rainfall-runoff-sediment dynamics in a microcatchment olive grove with the aid of a physically-based distributed hydrological model in order to evaluate the effect of extreme events on runoff and erosion. This study will allow to improve land-use and management planning activities in similar areas. In addition, the scale of the study (microcatchment) will allow to contrast the results in larger areas such as catchment regional spatial scales.

  5. Geostatistical enhancement of european hydrological predictions

    Science.gov (United States)

    Pugliese, Alessio; Castellarin, Attilio; Parajka, Juraj; Arheimer, Berit; Bagli, Stefano; Mazzoli, Paolo; Montanari, Alberto; Blöschl, Günter

    2016-04-01

    Geostatistical Enhancement of European Hydrological Prediction (GEEHP) is a research experiment developed within the EU funded SWITCH-ON project, which proposes to conduct comparative experiments in a virtual laboratory in order to share water-related information and tackle changes in the hydrosphere for operational needs (http://www.water-switch-on.eu). The main objective of GEEHP deals with the prediction of streamflow indices and signatures in ungauged basins at different spatial scales. In particular, among several possible hydrological signatures we focus in our experiment on the prediction of flow-duration curves (FDCs) along the stream-network, which has attracted an increasing scientific attention in the last decades due to the large number of practical and technical applications of the curves (e.g. hydropower potential estimation, riverine habitat suitability and ecological assessments, etc.). We apply a geostatistical procedure based on Top-kriging, which has been recently shown to be particularly reliable and easy-to-use regionalization approach, employing two different type of streamflow data: pan-European E-HYPE simulations (http://hypeweb.smhi.se/europehype) and observed daily streamflow series collected in two pilot study regions, i.e. Tyrol (merging data from Austrian and Italian stream gauging networks) and Sweden. The merger of the two study regions results in a rather large area (~450000 km2) and might be considered as a proxy for a pan-European application of the approach. In a first phase, we implement a bidirectional validation, i.e. E-HYPE catchments are set as training sites to predict FDCs at the same sites where observed data are available, and vice-versa. Such a validation procedure reveals (1) the usability of the proposed approach for predicting the FDCs over the entire river network of interest using alternatively observed data and E-HYPE simulations and (2) the accuracy of E-HYPE-based predictions of FDCs in ungauged sites. In a

  6. Evaluation of remote-sensing-based rainfall products through predictive capability in hydrological runoff modelling

    DEFF Research Database (Denmark)

    Stisen, Simon; Sandholt, Inge

    2010-01-01

    SRFEs, Climate Prediction Center MORPHing technique (CMORPH), Tropical Rainfall Measuring Mission (TRMM) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN). The best performing SRFE, CPC-FEWS, produced good results with values of R2NS between 0...

  7. An Implementation of Estimation Techniques to a Hydrological Model for Prediction of Runoff to a Hydroelectric Power-Station

    Directory of Open Access Journals (Sweden)

    Magne Fjeld

    1981-01-01

    Full Text Available Parameter and state estimation algorithms have been applied to a hydrological model of a catchment area in southern Norway to yield improved control of the household of water resources and better economy and efficiency in the running of the power station, as experience proves since the system was installed on-line in the summer of 1978.

  8. A CN-Based Ensembled Hydrological Model for Enhanced Watershed Runoff Prediction

    Directory of Open Access Journals (Sweden)

    Muhammad Ajmal

    2016-01-01

    Full Text Available A major structural inconsistency of the traditional curve number (CN model is its dependence on an unstable fixed initial abstraction, which normally results in sudden jumps in runoff estimation. Likewise, the lack of pre-storm soil moisture accounting (PSMA procedure is another inherent limitation of the model. To circumvent those problems, we used a variable initial abstraction after ensembling the traditional CN model and a French four-parameter (GR4J model to better quantify direct runoff from ungauged watersheds. To mimic the natural rainfall-runoff transformation at the watershed scale, our new parameterization designates intrinsic parameters and uses a simple structure. It exhibited more accurate and consistent results than earlier methods in evaluating data from 39 forest-dominated watersheds, both for small and large watersheds. In addition, based on different performance evaluation indicators, the runoff reproduction results show that the proposed model produced more consistent results for dry, normal, and wet watershed conditions than the other models used in this study.

  9. Modeling Subsurface Hydrology in Floodplains

    Science.gov (United States)

    Evans, Cristina M.; Dritschel, David G.; Singer, Michael B.

    2018-03-01

    Soil-moisture patterns in floodplains are highly dynamic, owing to the complex relationships between soil properties, climatic conditions at the surface, and the position of the water table. Given this complexity, along with climate change scenarios in many regions, there is a need for a model to investigate the implications of different conditions on water availability to riparian vegetation. We present a model, HaughFlow, which is able to predict coupled water movement in the vadose and phreatic zones of hydraulically connected floodplains. Model output was calibrated and evaluated at six sites in Australia to identify key patterns in subsurface hydrology. This study identifies the importance of the capillary fringe in vadose zone hydrology due to its water storage capacity and creation of conductive pathways. Following peaks in water table elevation, water can be stored in the capillary fringe for up to months (depending on the soil properties). This water can provide a critical resource for vegetation that is unable to access the water table. When water table peaks coincide with heavy rainfall events, the capillary fringe can support saturation of the entire soil profile. HaughFlow is used to investigate the water availability to riparian vegetation, producing daily output of water content in the soil over decadal time periods within different depth ranges. These outputs can be summarized to support scientific investigations of plant-water relations, as well as in management applications.

  10. Data assimilation in integrated hydrological modelling

    DEFF Research Database (Denmark)

    Rasmussen, Jørn

    Integrated hydrological models are useful tools for water resource management and research, and advances in computational power and the advent of new observation types has resulted in the models generally becoming more complex and distributed. However, the models are often characterized by a high...... degree of parameterization which results in significant model uncertainty which cannot be reduced much due to observations often being scarce and often taking the form of point measurements. Data assimilation shows great promise for use in integrated hydrological models , as it allows for observations...... to be efficiently combined with models to improve model predictions, reduce uncertainty and estimate model parameters. In this thesis, a framework for assimilating multiple observation types and updating multiple components and parameters of a catchment scale integrated hydrological model is developed and tested...

  11. The Hydrologic Ensemble Prediction Experiment (HEPEX)

    Science.gov (United States)

    Wood, A. W.; Thielen, J.; Pappenberger, F.; Schaake, J. C.; Hartman, R. K.

    2012-12-01

    The Hydrologic Ensemble Prediction Experiment was established in March, 2004, at a workshop hosted by the European Center for Medium Range Weather Forecasting (ECMWF). With support from the US National Weather Service (NWS) and the European Commission (EC), the HEPEX goal was to bring the international hydrological and meteorological communities together to advance the understanding and adoption of hydrological ensemble forecasts for decision support in emergency management and water resources sectors. The strategy to meet this goal includes meetings that connect the user, forecast producer and research communities to exchange ideas, data and methods; the coordination of experiments to address specific challenges; and the formation of testbeds to facilitate shared experimentation. HEPEX has organized about a dozen international workshops, as well as sessions at scientific meetings (including AMS, AGU and EGU) and special issues of scientific journals where workshop results have been published. Today, the HEPEX mission is to demonstrate the added value of hydrological ensemble prediction systems (HEPS) for emergency management and water resources sectors to make decisions that have important consequences for economy, public health, safety, and the environment. HEPEX is now organised around six major themes that represent core elements of a hydrologic ensemble prediction enterprise: input and pre-processing, ensemble techniques, data assimilation, post-processing, verification, and communication and use in decision making. This poster presents an overview of recent and planned HEPEX activities, highlighting case studies that exemplify the focus and objectives of HEPEX.

  12. Daily Streamflow Predictions in an Ungauged Watershed in Northern California Using the Precipitation-Runoff Modeling System (PRMS): Calibration Challenges when nearby Gauged Watersheds are Hydrologically Dissimilar

    Science.gov (United States)

    Dhakal, A. S.; Adera, S.

    2017-12-01

    Accurate daily streamflow prediction in ungauged watersheds with sparse information is challenging. The ability of a hydrologic model calibrated using nearby gauged watersheds to predict streamflow accurately depends on hydrologic similarities between the gauged and ungauged watersheds. This study examines daily streamflow predictions using the Precipitation-Runoff Modeling System (PRMS) for the largely ungauged San Antonio Creek watershed, a 96 km2 sub-watershed of the Alameda Creek watershed in Northern California. The process-based PRMS model is being used to improve the accuracy of recent San Antonio Creek streamflow predictions generated by two empirical methods. Although San Antonio Creek watershed is largely ungauged, daily streamflow data exists for hydrologic years (HY) 1913 - 1930. PRMS was calibrated for HY 1913 - 1930 using streamflow data, modern-day land use and PRISM precipitation distribution, and gauged precipitation and temperature data from a nearby watershed. The PRMS model was then used to generate daily streamflows for HY 1996-2013, during which the watershed was ungauged, and hydrologic responses were compared to two nearby gauged sub-watersheds of Alameda Creek. Finally, the PRMS-predicted daily flows between HY 1996-2013 were compared to the two empirically-predicted streamflow time series: (1) the reservoir mass balance method and (2) correlation of historical streamflows from 80 - 100 years ago between San Antonio Creek and a nearby sub-watershed located in Alameda Creek. While the mass balance approach using reservoir storage and transfers is helpful for estimating inflows to the reservoir, large discrepancies in daily streamflow estimation can arise. Similarly, correlation-based predicted daily flows which rely on a relationship from flows collected 80-100 years ago may not represent current watershed hydrologic conditions. This study aims to develop a method of streamflow prediction in the San Antonio Creek watershed by examining PRMS

  13. Uncertainty in hydrological change modelling

    DEFF Research Database (Denmark)

    Seaby, Lauren Paige

    applied at the grid scale. Flux and state hydrological outputs which integrate responses over time and space showed more sensitivity to precipitation mean spatial biases and less so on extremes. In the investigated catchments, the projected change of groundwater levels and basin discharge between current......Hydrological change modelling methodologies generally use climate models outputs to force hydrological simulations under changed conditions. There are nested sources of uncertainty throughout this methodology, including choice of climate model and subsequent bias correction methods. This Ph.......D. study evaluates the uncertainty of the impact of climate change in hydrological simulations given multiple climate models and bias correction methods of varying complexity. Three distribution based scaling methods (DBS) were developed and benchmarked against a more simplistic and commonly used delta...

  14. Hydrological catchment modelling: past, present and future

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available This paper discusses basic issues in hydrological modelling and flood forecasting, ranging from the roles of physically-based and data-driven rainfall runoff models, to the concepts of predictive uncertainty and equifinality and their implications. The evolution of a wide range of hydrological catchment models employing the physically meaningful and data-driven approaches introduces the need for objective test beds or benchmarks to assess the merits of the different models in reconciling the alternative approaches. In addition, the paper analyses uncertainty in models and predictions by clarifying the meaning of uncertainty, by distinguishing between parameter and predictive uncertainty and by demonstrating how the concept of equifinality must be addressed by appropriate and robust inference approaches. Finally, the importance of predictive uncertainty in the decision making process is highlighted together with possible approaches aimed at overcoming the diffidence of end-users.

  15. Toward seamless hydrologic predictions across spatial scales

    NARCIS (Netherlands)

    Samaniego, Luis; Kumar, Rohini; Thober, Stephan; Rakovec, Oldrich; Zink, Matthias; Wanders, Niko; Eisner, Stephanie; Müller Schmied, Hannes; Sutanudjaja, Edwin; Warrach-Sagi, Kirsten; Attinger, Sabine

    2017-01-01

    Land surface and hydrologic models (LSMs/HMs) are used at diverse spatial resolutions ranging from catchment-scale (1-10 km) to global-scale (over 50 km) applications. Applying the same model structure at different spatial scales requires that the model estimates similar fluxes independent of the

  16. Stochastic Modelling of Hydrologic Systems

    DEFF Research Database (Denmark)

    Jonsdottir, Harpa

    2007-01-01

    In this PhD project several stochastic modelling methods are studied and applied on various subjects in hydrology. The research was prepared at Informatics and Mathematical Modelling at the Technical University of Denmark. The thesis is divided into two parts. The first part contains...... an introduction and an overview of the papers published. Then an introduction to basic concepts in hydrology along with a description of hydrological data is given. Finally an introduction to stochastic modelling is given. The second part contains the research papers. In the research papers the stochastic methods...... are described, as at the time of publication these methods represent new contribution to hydrology. The second part also contains additional description of software used and a brief introduction to stiff systems. The system in one of the papers is stiff....

  17. Integrating SMOS brightness temperatures with a new conceptual spatially distributed hydrological model for improving flood and drought predictions at large scale.

    Science.gov (United States)

    Hostache, Renaud; Rains, Dominik; Chini, Marco; Lievens, Hans; Verhoest, Niko E. C.; Matgen, Patrick

    2017-04-01

    Motivated by climate change and its impact on the scarcity or excess of water in many parts of the world, several agencies and research institutions have taken initiatives in monitoring and predicting the hydrologic cycle at a global scale. Such a monitoring/prediction effort is important for understanding the vulnerability to extreme hydrological events and for providing early warnings. This can be based on an optimal combination of hydro-meteorological models and remote sensing, in which satellite measurements can be used as forcing or calibration data or for regularly updating the model states or parameters. Many advances have been made in these domains and the near future will bring new opportunities with respect to remote sensing as a result of the increasing number of spaceborn sensors enabling the large scale monitoring of water resources. Besides of these advances, there is currently a tendency to refine and further complicate physically-based hydrologic models to better capture the hydrologic processes at hand. However, this may not necessarily be beneficial for large-scale hydrology, as computational efforts are therefore increasing significantly. As a matter of fact, a novel thematic science question that is to be investigated is whether a flexible conceptual model can match the performance of a complex physically-based model for hydrologic simulations at large scale. In this context, the main objective of this study is to investigate how innovative techniques that allow for the estimation of soil moisture from satellite data can help in reducing errors and uncertainties in large scale conceptual hydro-meteorological modelling. A spatially distributed conceptual hydrologic model has been set up based on recent developments of the SUPERFLEX modelling framework. As it requires limited computational efforts, this model enables early warnings for large areas. Using as forcings the ERA-Interim public dataset and coupled with the CMEM radiative transfer model

  18. An Integrated Modelling System to Predict Hydrological Processes under Climate and Land-Use/Cover Change Scenarios

    Directory of Open Access Journals (Sweden)

    Babak Farjad

    2017-10-01

    Full Text Available This study proposes an integrated modeling system consisting of the physically-based MIKE SHE/MIKE 11 model, a cellular automata model, and general circulation models (GCMs scenarios to investigate the independent and combined effects of future climate and land-use/land-cover (LULC changes on the hydrology of a river system. The integrated modelling system is applied to the Elbow River watershed in southern Alberta, Canada in conjunction with extreme GCM scenarios and two LULC change scenarios in the 2020s and 2050s. Results reveal that LULC change substantially modifies the river flow regime in the east sub-catchment, where rapid urbanization is occurring. It is also shown that the change in LULC causes an increase in peak flows in both the 2020s and 2050s. The impacts of climate and LULC change on streamflow are positively correlated in winter and spring, which intensifies their influence and leads to a significant rise in streamflow, and, subsequently, increases the vulnerability of the watershed to spring floods. This study highlights the importance of using an integrated modeling approach to investigate both the independent and combined impacts of climate and LULC changes on the future of hydrology to improve our understanding of how watersheds will respond to climate and LULC changes.

  19. Mathematical modelling of fracture hydrology

    International Nuclear Information System (INIS)

    Herbert, A.W.; Hodgkinson, D.P.; Lever, D.A.; Robinson, P.C.; Rae, J.

    1985-06-01

    This report summarises the work performed between January 1983 and December 1984 for the CEC/DOE contract 'Mathematical Modelling of Fracture Hydrology', under the following headings: 1) Statistical fracture network modelling, 2) Continuum models of flow and transport, 3) Simplified models, 4) Analysis of laboratory experiments and 5) Analysis of field experiments. (author)

  20. The Hydrologic Ensemble Prediction Experiment (HEPEX)

    Science.gov (United States)

    Wood, Andy; Wetterhall, Fredrik; Ramos, Maria-Helena

    2015-04-01

    The Hydrologic Ensemble Prediction Experiment was established in March, 2004, at a workshop hosted by the European Center for Medium Range Weather Forecasting (ECMWF), and co-sponsored by the US National Weather Service (NWS) and the European Commission (EC). The HEPEX goal was to bring the international hydrological and meteorological communities together to advance the understanding and adoption of hydrological ensemble forecasts for decision support. HEPEX pursues this goal through research efforts and practical implementations involving six core elements of a hydrologic ensemble prediction enterprise: input and pre-processing, ensemble techniques, data assimilation, post-processing, verification, and communication and use in decision making. HEPEX has grown through meetings that connect the user, forecast producer and research communities to exchange ideas, data and methods; the coordination of experiments to address specific challenges; and the formation of testbeds to facilitate shared experimentation. In the last decade, HEPEX has organized over a dozen international workshops, as well as sessions at scientific meetings (including AMS, AGU and EGU) and special issues of scientific journals where workshop results have been published. Through these interactions and an active online blog (www.hepex.org), HEPEX has built a strong and active community of nearly 400 researchers & practitioners around the world. This poster presents an overview of recent and planned HEPEX activities, highlighting case studies that exemplify the focus and objectives of HEPEX.

  1. Evaluating spatial patterns in hydrological modelling

    DEFF Research Database (Denmark)

    Koch, Julian

    the contiguous United Sates (10^6 km2). To this end, the thesis at hand applies a set of spatial performance metrics on various hydrological variables, namely land-surface-temperature (LST), evapotranspiration (ET) and soil moisture. The inspiration for the applied metrics is found in related fields...... is not fully exploited by current modelling frameworks due to the lack of suitable spatial performance metrics. Furthermore, the traditional model evaluation using discharge is found unsuitable to lay confidence on the predicted catchment inherent spatial variability of hydrological processes in a fully...

  2. Virtual hydrology observatory: an immersive visualization of hydrology modeling

    Science.gov (United States)

    Su, Simon; Cruz-Neira, Carolina; Habib, Emad; Gerndt, Andreas

    2009-02-01

    The Virtual Hydrology Observatory will provide students with the ability to observe the integrated hydrology simulation with an instructional interface by using a desktop based or immersive virtual reality setup. It is the goal of the virtual hydrology observatory application to facilitate the introduction of field experience and observational skills into hydrology courses through innovative virtual techniques that mimic activities during actual field visits. The simulation part of the application is developed from the integrated atmospheric forecast model: Weather Research and Forecasting (WRF), and the hydrology model: Gridded Surface/Subsurface Hydrologic Analysis (GSSHA). Both the output from WRF and GSSHA models are then used to generate the final visualization components of the Virtual Hydrology Observatory. The various visualization data processing techniques provided by VTK are 2D Delaunay triangulation and data optimization. Once all the visualization components are generated, they are integrated into the simulation data using VRFlowVis and VR Juggler software toolkit. VR Juggler is used primarily to provide the Virtual Hydrology Observatory application with fully immersive and real time 3D interaction experience; while VRFlowVis provides the integration framework for the hydrologic simulation data, graphical objects and user interaction. A six-sided CAVETM like system is used to run the Virtual Hydrology Observatory to provide the students with a fully immersive experience.

  3. Integrating Remote Sensing Information Into A Distributed Hydrological Model for Improving Water Budget Predictions in Large-scale Basins through Data Assimilation

    Science.gov (United States)

    Qin, Changbo; Jia, Yangwen; Su, Z.(Bob); Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen

    2008-01-01

    This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems. PMID:27879946

  4. Model Calibration in Watershed Hydrology

    Science.gov (United States)

    Yilmaz, Koray K.; Vrugt, Jasper A.; Gupta, Hoshin V.; Sorooshian, Soroosh

    2009-01-01

    Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must, therefore, be estimated using measurements of the system inputs and outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior of the model approximates, as closely and consistently as possible, the observed response of the hydrologic system over some historical period of time. This Chapter reviews the current state-of-the-art of model calibration in watershed hydrology with special emphasis on our own contributions in the last few decades. We discuss the historical background that has led to current perspectives, and review different approaches for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the recent developments in the calibration of distributed hydrologic models using parameter dimensionality reduction sampling, parameter regularization and parallel computing.

  5. Mathematical modelling of fracture hydrology

    International Nuclear Information System (INIS)

    Rae, J.; Hodgkinson, D.P.; Robinson, P.C.; Herbert, A.W.

    1984-04-01

    This progress report contains notes on three aspects of hydrological modelling. Work on hydrodynamic dispersion in fractured media has been extended to transverse dispersion. Further work has been done on diffusion into the rock matrix and its effect on solute transport. The program NAMSOL has been used for the MIRAGE code comparison exercise being organised by Atkins R and D. (author)

  6. Time Changes of the European Gravity Field from GRACE: A Comparison with Ground Measurements from Superconducting Gravimeters and with Hydrology Model Predictions

    Science.gov (United States)

    Hinderer, J.; Lemoine, Frank G.; Crossley, D.; Boy, J.-P.

    2004-01-01

    We investigate the time-variable gravity changes in Europe retrieved from the initial GRACE monthly solutions spanning a 18 month duration from April 2002 to October 2003. Gravity anomaly maps are retrieved in Central Europe from the monthly satellite solutions we compare the fields according to various truncation levels (typically between degree 10 and 20) of the initial fields (expressed in spherical harmonics to degree 120). For these different degrees, an empirical orthogonal function (EOF) decomposition of the time-variable gravity field leads us to its main spatial and temporal characteristics. We show that the dominant signal is found to be annual with an amplitude and a phase both in agreement with predictions in Europe modeled using snow and soil-moisture variations from recent hydrology models. We compare these GRACE gravity field changes to surface gravity observations from 6 superconducting gravimeters of the GGP (Global Geodynamics Project) European sub-network, with a special attention to loading corrections. Initial results suggest that all 3 data sets (GRACE, hydrology and GGP) are responding to annual changes in near-surface water in Europe of a few microGal (at length scales of approx.1000 km) that show a high value in winter and a summer minimum. We also point out that the GRACE gravity field evolution seems to indicate that there is a trend in gravity between summer 2002 and summer 2003 which can be related to the 2003 heatwave in Europe and its hydrological consequences (drought). Despite the limited time span of our analysis and the uncertainties in retrieving a regional solution from the network of gravimeters, the calibration and validation aspects of the GRACE data processing based on the annual hydrology cycle in Europe are in progress.

  7. Integrated climate and hydrology modelling

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl

    To ensure optimal management and sustainable strategies for water resources, infrastructures, food production and ecosystems there is a need for an improved understanding of feedback and interaction mechanisms between the atmosphere and the land surface. This is especially true in light of expected...... global warming and increased frequency of extreme events. The skill in developing projections of both the present and future climate depends essentially on the ability to numerically simulate the processes of atmospheric circulation, hydrology, energy and ecology. Previous modelling efforts of climate...... and hydrology models to more directly include the interaction between the atmosphere and the land surface. The present PhD study is motivated by an ambition of developing and applying a modelling tool capable of including the interaction and feedback mechanisms between the atmosphere and the land surface...

  8. Impacts of Spatial Climatic Representation on Hydrological Model Calibration and Prediction Uncertainty: A Mountainous Catchment of Three Gorges Reservoir Region, China

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-02-01

    Full Text Available Sparse climatic observations represent a major challenge for hydrological modeling of mountain catchments with implications for decision-making in water resources management. Employing elevation bands in the Soil and Water Assessment Tool-Sequential Uncertainty Fitting (SWAT2012-SUFI2 model enabled representation of precipitation and temperature variation with altitude in the Daning river catchment (Three Gorges Reservoir Region, China where meteorological inputs are limited in spatial extent and are derived from observations from relatively low lying locations. Inclusion of elevation bands produced better model performance for 1987–1993 with the Nash–Sutcliffe efficiency (NSE increasing by at least 0.11 prior to calibration. During calibration prediction uncertainty was greatly reduced. With similar R-factors from the earlier calibration iterations, a further 11% of observations were included within the 95% prediction uncertainty (95PPU compared to the model without elevation bands. For behavioral simulations defined in SWAT calibration using a NSE threshold of 0.3, an additional 3.9% of observations were within the 95PPU while the uncertainty reduced by 7.6% in the model with elevation bands. The calibrated model with elevation bands reproduced observed river discharges with the performance in the calibration period changing to “very good” from “poor” without elevation bands. The output uncertainty of calibrated model with elevation bands was satisfactory, having 85% of flow observations included within the 95PPU. These results clearly demonstrate the requirement to account for orographic effects on precipitation and temperature in hydrological models of mountainous catchments.

  9. Assimilation of remote sensing observations into a continuous distributed hydrological model: impacts on the hydrologic cycle

    Science.gov (United States)

    Laiolo, Paola; Gabellani, Simone; Campo, Lorenzo; Cenci, Luca; Silvestro, Francesco; Delogu, Fabio; Boni, Giorgio; Rudari, Roberto

    2015-04-01

    The reliable estimation of hydrological variables (e.g. soil moisture, evapotranspiration, surface temperature) in space and time is of fundamental importance in operational hydrology to improve the forecast of the rainfall-runoff response of catchments and, consequently, flood predictions. Nowadays remote sensing can offer a chance to provide good space-time estimates of several hydrological variables and then improve hydrological model performances especially in environments with scarce in-situ data. This work investigates the impact of the assimilation of different remote sensing products on the hydrological cycle by using a continuous physically based distributed hydrological model. Three soil moisture products derived by ASCAT (Advanced SCATterometer) are used to update the model state variables. The satellite-derived products are assimilated into the hydrological model using different assimilation techniques: a simple nudging and the Ensemble Kalman Filter. Moreover two assimilation strategies are evaluated to assess the impact of assimilating the satellite products at model spatial resolution or at the satellite scale. The experiments are carried out for three Italian catchments on multi year period. The benefits on the model predictions of discharge, LST, evapotranspiration and soil moisture dynamics are tested and discussed.

  10. Solid phase evolution in the Biosphere 2 hillslope experiment as predicted by modeling of hydrologic and geochemical fluxes

    Directory of Open Access Journals (Sweden)

    K. Dontsova

    2009-12-01

    Full Text Available A reactive transport geochemical modeling study was conducted to help predict the mineral transformations occurring over a ten year time-scale that are expected to impact soil hydraulic properties in the Biosphere 2 (B2 synthetic hillslope experiment. The modeling sought to predict the rate and extent of weathering of a granular basalt (selected for hillslope construction as a function of climatic drivers, and to assess the feedback effects of such weathering processes on the hydraulic properties of the hillslope. Flow vectors were imported from HYDRUS into a reactive transport code, CrunchFlow2007, which was then used to model mineral weathering coupled to reactive solute transport. Associated particle size evolution was translated into changes in saturated hydraulic conductivity using Rosetta software. We found that flow characteristics, including velocity and saturation, strongly influenced the predicted extent of incongruent mineral weathering and neo-phase precipitation on the hillslope. Results were also highly sensitive to specific surface areas of the soil media, consistent with surface reaction controls on dissolution. Effects of fluid flow on weathering resulted in significant differences in the prediction of soil particle size distributions, which should feedback to alter hillslope hydraulic conductivities.

  11. Comment on “Can assimilation of crowdsourced data in hydrological modelling improve flood prediction?” by Mazzoleni et al. (2017

    Directory of Open Access Journals (Sweden)

    D. P. Viero

    2018-01-01

    Full Text Available Citizen science and crowdsourcing are gaining increasing attention among hydrologists. In a recent contribution, Mazzoleni et al. (2017 investigated the integration of crowdsourced data (CSD into hydrological models to improve the accuracy of real-time flood forecasts. The authors used synthetic CSD (i.e. not actually measured, because real CSD were not available at the time of the study. In their work, which is a proof-of-concept study, Mazzoleni et al. (2017 showed that assimilation of CSD improves the overall model performance; the impact of irregular frequency of available CSD, and that of data uncertainty, were also deeply assessed. However, the use of synthetic CSD in conjunction with (semi-distributed hydrological models deserves further discussion. As a result of equifinality, poor model identifiability, and deficiencies in model structure, internal states of (semi-distributed models can hardly mimic the actual states of complex systems away from calibration points. Accordingly, the use of synthetic CSD that are drawn from model internal states under best-fit conditions can lead to overestimation of the effectiveness of CSD assimilation in improving flood prediction. Operational flood forecasting, which results in decisions of high societal value, requires robust knowledge of the model behaviour and an in-depth assessment of both model structure and forcing data. Additional guidelines are given that are useful for the a priori evaluation of CSD for real-time flood forecasting and, hopefully, for planning apt design strategies for both model calibration and collection of CSD.

  12. iTree-Hydro: Snow hydrology update for the urban forest hydrology model

    Science.gov (United States)

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2011-01-01

    This article presents snow hydrology updates made to iTree-Hydro, previously called the Urban Forest Effects—Hydrology model. iTree-Hydro Version 1 was a warm climate model developed by the USDA Forest Service to provide a process-based planning tool with robust water quantity and quality predictions given data limitations common to most urban areas. Cold climate...

  13. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 1: Concepts and methodology

    Directory of Open Access Journals (Sweden)

    A. Elshorbagy

    2010-10-01

    Full Text Available A comprehensive data driven modeling experiment is presented in a two-part paper. In this first part, an extensive data-driven modeling experiment is proposed. The most important concerns regarding the way data driven modeling (DDM techniques and data were handled, compared, and evaluated, and the basis on which findings and conclusions were drawn are discussed. A concise review of key articles that presented comparisons among various DDM techniques is presented. Six DDM techniques, namely, neural networks, genetic programming, evolutionary polynomial regression, support vector machines, M5 model trees, and K-nearest neighbors are proposed and explained. Multiple linear regression and naïve models are also suggested as baseline for comparison with the various techniques. Five datasets from Canada and Europe representing evapotranspiration, upper and lower layer soil moisture content, and rainfall-runoff process are described and proposed, in the second paper, for the modeling experiment. Twelve different realizations (groups from each dataset are created by a procedure involving random sampling. Each group contains three subsets; training, cross-validation, and testing. Each modeling technique is proposed to be applied to each of the 12 groups of each dataset. This way, both prediction accuracy and uncertainty of the modeling techniques can be evaluated. The description of the datasets, the implementation of the modeling techniques, results and analysis, and the findings of the modeling experiment are deferred to the second part of this paper.

  14. Assessing predictability of a hydrological stochastic-dynamical system

    Science.gov (United States)

    Gelfan, Alexander

    2014-05-01

    The water cycle includes the processes with different memory that creates potential for predictability of hydrological system based on separating its long and short memory components and conditioning long-term prediction on slower evolving components (similar to approaches in climate prediction). In the face of the Panta Rhei IAHS Decade questions, it is important to find a conceptual approach to classify hydrological system components with respect to their predictability, define predictable/unpredictable patterns, extend lead-time and improve reliability of hydrological predictions based on the predictable patterns. Representation of hydrological systems as the dynamical systems subjected to the effect of noise (stochastic-dynamical systems) provides possible tool for such conceptualization. A method has been proposed for assessing predictability of hydrological system caused by its sensitivity to both initial and boundary conditions. The predictability is defined through a procedure of convergence of pre-assigned probabilistic measure (e.g. variance) of the system state to stable value. The time interval of the convergence, that is the time interval during which the system losses memory about its initial state, defines limit of the system predictability. The proposed method was applied to assess predictability of soil moisture dynamics in the Nizhnedevitskaya experimental station (51.516N; 38.383E) located in the agricultural zone of the central European Russia. A stochastic-dynamical model combining a deterministic one-dimensional model of hydrothermal regime of soil with a stochastic model of meteorological inputs was developed. The deterministic model describes processes of coupled heat and moisture transfer through unfrozen/frozen soil and accounts for the influence of phase changes on water flow. The stochastic model produces time series of daily meteorological variables (precipitation, air temperature and humidity), whose statistical properties are similar

  15. Merging Real-Time Channel Sensor Networks with Continental-Scale Hydrologic Models: A Data Assimilation Approach for Improving Accuracy in Flood Depth Predictions

    Directory of Open Access Journals (Sweden)

    Amir Javaheri

    2018-01-01

    Full Text Available This study proposes a framework that (i uses data assimilation as a post processing technique to increase the accuracy of water depth prediction, (ii updates streamflow generated by the National Water Model (NWM, and (iii proposes a scope for updating the initial condition of continental-scale hydrologic models. Predicted flows by the NWM for each stream were converted to the water depth using the Height Above Nearest Drainage (HAND method. The water level measurements from the Iowa Flood Inundation System (a test bed sensor network in this study were converted to water depths and then assimilated into the HAND model using the ensemble Kalman filter (EnKF. The results showed that after assimilating the water depth using the EnKF, for a flood event during 2015, the normalized root mean square error was reduced by 0.50 m (51% for training tributaries. Comparison of the updated modeled water stage values with observations at testing locations showed that the proposed methodology was also effective on the tributaries with no observations. The overall error reduced from 0.89 m to 0.44 m for testing tributaries. The updated depths were then converted to streamflow using rating curves generated by the HAND model. The error between updated flows and observations at United States Geological Survey (USGS station at Squaw Creek decreased by 35%. For future work, updated streamflows could also be used to dynamically update initial conditions in the continental-scale National Water Model.

  16. Grid based calibration of SWAT hydrological models

    Directory of Open Access Journals (Sweden)

    D. Gorgan

    2012-07-01

    Full Text Available The calibration and execution of large hydrological models, such as SWAT (soil and water assessment tool, developed for large areas, high resolution, and huge input data, need not only quite a long execution time but also high computation resources. SWAT hydrological model supports studies and predictions of the impact of land management practices on water, sediment, and agricultural chemical yields in complex watersheds. The paper presents the gSWAT application as a web practical solution for environmental specialists to calibrate extensive hydrological models and to run scenarios, by hiding the complex control of processes and heterogeneous resources across the grid based high computation infrastructure. The paper highlights the basic functionalities of the gSWAT platform, and the features of the graphical user interface. The presentation is concerned with the development of working sessions, interactive control of calibration, direct and basic editing of parameters, process monitoring, and graphical and interactive visualization of the results. The experiments performed on different SWAT models and the obtained results argue the benefits brought by the grid parallel and distributed environment as a solution for the processing platform. All the instances of SWAT models used in the reported experiments have been developed through the enviroGRIDS project, targeting the Black Sea catchment area.

  17. Mathematical modelling of fracture hydrology

    International Nuclear Information System (INIS)

    Herbert, A.W.; Hodgkindon, D.P.; Lever, D.A.; Robinson, P.C.; Rae, J.

    1985-01-01

    This report reviews work carried out between January 1983 and December 1984 for the CEC/DOE contract 'Mathematical Modelling of Fracture Hydrology' which forms part of the CEC Mirage project (CEC 1984. Come 1985. Bourke et. al. 1983). It describes the development and use of a variety of mathematical models for the flow of water and transport of radionuclides in flowing groundwater. These models have an important role to play in assessing the long-term safety of radioactive waste burial, and in the planning and interpretation of associated experiments. The work is reported under five headings, namely 1) Statistical fracture network modelling, 2) Continuum models of flow and transport, 3) Simplified models, 4) Analysis of laboratory experiments, 5) Analysis of field experiments

  18. Why hydrological predictions should be evaluated using information theory

    Directory of Open Access Journals (Sweden)

    S. V. Weijs

    2010-12-01

    Full Text Available Probabilistic predictions are becoming increasingly popular in hydrology. Equally important are methods to test such predictions, given the topical debate on uncertainty analysis in hydrology. Also in the special case of hydrological forecasting, there is still discussion about which scores to use for their evaluation. In this paper, we propose to use information theory as the central framework to evaluate predictions. From this perspective, we hope to shed some light on what verification scores measure and should measure. We start from the ''divergence score'', a relative entropy measure that was recently found to be an appropriate measure for forecast quality. An interpretation of a decomposition of this measure provides insight in additive relations between climatological uncertainty, correct information, wrong information and remaining uncertainty. When the score is applied to deterministic forecasts, it follows that these increase uncertainty to infinity. In practice, however, deterministic forecasts tend to be judged far more mildly and are widely used. We resolve this paradoxical result by proposing that deterministic forecasts either are implicitly probabilistic or are implicitly evaluated with an underlying decision problem or utility in mind. We further propose that calibration of models representing a hydrological system should be the based on information-theoretical scores, because this allows extracting all information from the observations and avoids learning from information that is not there. Calibration based on maximizing utility for society trains an implicit decision model rather than the forecasting system itself. This inevitably results in a loss or distortion of information in the data and more risk of overfitting, possibly leading to less valuable and informative forecasts. We also show this in an example. The final conclusion is that models should preferably be explicitly probabilistic and calibrated to maximize the

  19. Macroscale hydrologic modeling of ecologically relevant flow metrics

    Science.gov (United States)

    Wenger, Seth J.; Luce, Charles H.; Hamlet, Alan F.; Isaak, Daniel J.; Neville, Helen M.

    2010-09-01

    Stream hydrology strongly affects the structure of aquatic communities. Changes to air temperature and precipitation driven by increased greenhouse gas concentrations are shifting timing and volume of streamflows potentially affecting these communities. The variable infiltration capacity (VIC) macroscale hydrologic model has been employed at regional scales to describe and forecast hydrologic changes but has been calibrated and applied mainly to large rivers. An important question is how well VIC runoff simulations serve to answer questions about hydrologic changes in smaller streams, which are important habitat for many fish species. To answer this question, we aggregated gridded VIC outputs within the drainage basins of 55 streamflow gages in the Pacific Northwest United States and compared modeled hydrographs and summary metrics to observations. For most streams, several ecologically relevant aspects of the hydrologic regime were accurately modeled, including center of flow timing, mean annual and summer flows and frequency of winter floods. Frequencies of high and low flows in the summer were not well predicted, however. Predictions were worse for sites with strong groundwater influence, and some sites showed errors that may result from limitations in the forcing climate data. Higher resolution (1/16th degree) modeling provided small improvements over lower resolution (1/8th degree). Despite some limitations, the VIC model appears capable of representing several ecologically relevant hydrologic characteristics in streams, making it a useful tool for understanding the effects of hydrology in delimiting species distributions and predicting the potential effects of climate shifts on aquatic organisms.

  20. Impact of Uncertainty Characterization of Satellite Rainfall Inputs and Model Parameters on Hydrological Data Assimilation with the Ensemble Kalman Filter for Flood Prediction

    Science.gov (United States)

    Vergara, H. J.; Kirstetter, P.; Hong, Y.; Gourley, J. J.; Wang, X.

    2013-12-01

    The Ensemble Kalman Filter (EnKF) is arguably the assimilation approach that has found the widest application in hydrologic modeling. Its relatively easy implementation and computational efficiency makes it an attractive method for research and operational purposes. However, the scientific literature featuring this approach lacks guidance on how the errors in the forecast need to be characterized so as to get the required corrections from the assimilation process. Moreover, several studies have indicated that the performance of the EnKF is 'sub-optimal' when assimilating certain hydrologic observations. Likewise, some authors have suggested that the underlying assumptions of the Kalman Filter and its dependence on linear dynamics make the EnKF unsuitable for hydrologic modeling. Such assertions are often based on ineffectiveness and poor robustness of EnKF implementations resulting from restrictive specification of error characteristics and the absence of a-priori information of error magnitudes. Therefore, understanding the capabilities and limitations of the EnKF to improve hydrologic forecasts require studying its sensitivity to the manner in which errors in the hydrologic modeling system are represented through ensembles. This study presents a methodology that explores various uncertainty representation configurations to characterize the errors in the hydrologic forecasts in a data assimilation context. The uncertainty in rainfall inputs is represented through a Generalized Additive Model for Location, Scale, and Shape (GAMLSS), which provides information about second-order statistics of quantitative precipitation estimates (QPE) error. The uncertainty in model parameters is described adding perturbations based on parameters covariance information. The method allows for the identification of rainfall and parameter perturbation combinations for which the performance of the EnKF is 'optimal' given a set of objective functions. In this process, information about

  1. Integration of Local Hydrology into Regional Hydrologic Simulation Model

    Science.gov (United States)

    Van Zee, R. J.; Lal, W. A.

    2002-05-01

    South Florida hydrology is dominated by the Central and South Florida (C&SF) Project that is managed to provide flood protection, water supply and environmental protection. A complex network of levees canals and structures provide these services to the individual drainage basins. The landscape varies widely across the C&SF system, with corresponding differences in the way water is managed within each basin. Agricultural areas are managed for optimal crop production. Urban areas maximize flood protection while maintaining minimum water levels to protect adjacent wetlands and local water supplies. "Natural" areas flood and dry out in response to the temporal distribution of rainfall. The evaluation of planning, regulation and operational issues require access to a simulation model that captures the effects of both regional and local hydrology. The Regional Simulation Model (RSM) uses a "pseudo-cell" approach to integrate local hydrology within the context of a regional hydrologic system. A 2-dimensional triangulated mesh is used to represent the regional surface and ground water systems and a 1-dimensional canal network is superimposed onto this mesh. The movement of water is simulated using a finite volume formulation with a diffusive wave approximation. Each cell in the triangulated mesh has a "pseudo-cell" counterpart, which represents the same area as the cell, but it is conceptualized such that it simulates the localized hydrologic conditions Protocols have been established to provide an interface between a cell and its pseudo-cell counterpart. . A number of pseudo-cell types have already been developed and tested in the simulation of Water Conservation Area 1 and several have been proposed to deal with specific local issues in the Southwest Florida Feasibility Study. This presentation will provide an overview of the overall RSM design, describe the relationship between cells and pseudo-cells, and illustrate how pseudo-cells are be used to simulate agriculture

  2. Using a lumped conceptual hydrological model for five different catchments in Sweden

    OpenAIRE

    Ekenberg, Madeleine

    2016-01-01

    Hydrological models offer powerful tools for understanding and predicting. In this thesis we havereviewed the advantages and disadvantages of physically based distributed hydrological models andconceptually lumped hydrological models. Based on that review, we went into depth and developed aMATLAB code to test if a simple conceptual lumped hydrological model, namely GR2M, wouldperform satisfactory for five different catchments in different parts of Sweden. The model had ratherunsatisfactory re...

  3. Estimating real-time predictive hydrological uncertainty

    NARCIS (Netherlands)

    Verkade, J.S.

    2015-01-01

    Flood early warning systems provide a potentially highly effective flood risk reduction measure. The effectiveness of early warning, however, is affected by forecasting uncertainty: the impossibility of knowing, in advance, the exact future state of hydrological systems. Early warning systems

  4. Subdivision of Texas watersheds for hydrologic modeling.

    Science.gov (United States)

    2009-06-01

    The purpose of this report is to present a set of findings and examples for subdivision of watersheds for hydrologic modeling. Three approaches were used to examine the impact of watershed subdivision on modeled hydrologic response: (1) An equal-area...

  5. A Community Data Model for Hydrologic Observations

    Science.gov (United States)

    Tarboton, D. G.; Horsburgh, J. S.; Zaslavsky, I.; Maidment, D. R.; Valentine, D.; Jennings, B.

    2006-12-01

    The CUAHSI Hydrologic Information System project is developing information technology infrastructure to support hydrologic science. Hydrologic information science involves the description of hydrologic environments in a consistent way, using data models for information integration. This includes a hydrologic observations data model for the storage and retrieval of hydrologic observations in a relational database designed to facilitate data retrieval for integrated analysis of information collected by multiple investigators. It is intended to provide a standard format to facilitate the effective sharing of information between investigators and to facilitate analysis of information within a single study area or hydrologic observatory, or across hydrologic observatories and regions. The observations data model is designed to store hydrologic observations and sufficient ancillary information (metadata) about the observations to allow them to be unambiguously interpreted and used and provide traceable heritage from raw measurements to usable information. The design is based on the premise that a relational database at the single observation level is most effective for providing querying capability and cross dimension data retrieval and analysis. This premise is being tested through the implementation of a prototype hydrologic observations database, and the development of web services for the retrieval of data from and ingestion of data into the database. These web services hosted by the San Diego Supercomputer center make data in the database accessible both through a Hydrologic Data Access System portal and directly from applications software such as Excel, Matlab and ArcGIS that have Standard Object Access Protocol (SOAP) capability. This paper will (1) describe the data model; (2) demonstrate the capability for representing diverse data in the same database; (3) demonstrate the use of the database from applications software for the performance of hydrologic analysis

  6. WEB-DHM: A distributed biosphere hydrological model developed by coupling a simple biosphere scheme with a hillslope hydrological model

    Science.gov (United States)

    The coupling of land surface models and hydrological models potentially improves the land surface representation, benefiting both the streamflow prediction capabilities as well as providing improved estimates of water and energy fluxes into the atmosphere. In this study, the simple biosphere model 2...

  7. Technical review of large-scale hydrological models for implementation in operational flood forecasting schemes on continental level

    OpenAIRE

    KAUFFELD Anna; WETTERHALL F.; Pappenberger F.; SALAMON Peter; THIELEN DEL POZO Jutta

    2014-01-01

    The uncertainty in operational hydrological forecast systems driven with numerical weather predictions inputs are often assessed by quantifying the uncertainty from the inputs and not from the hydrological model itself. However, part of the uncertainty in modelled discharge stems from the hydrological model and some models may be more suitable than others for particular processes. A hydrological multi-model hydrological system can account for some of this uncertainty, but there exists a p...

  8. Statistical analysis and ANN modeling for predicting hydrological extremes under climate change scenarios: the example of a small Mediterranean agro-watershed.

    Science.gov (United States)

    Kourgialas, Nektarios N; Dokou, Zoi; Karatzas, George P

    2015-05-01

    The purpose of this study was to create a modeling management tool for the simulation of extreme flow events under current and future climatic conditions. This tool is a combination of different components and can be applied in complex hydrogeological river basins, where frequent flood and drought phenomena occur. The first component is the statistical analysis of the available hydro-meteorological data. Specifically, principal components analysis was performed in order to quantify the importance of the hydro-meteorological parameters that affect the generation of extreme events. The second component is a prediction-forecasting artificial neural network (ANN) model that simulates, accurately and efficiently, river flow on an hourly basis. This model is based on a methodology that attempts to resolve a very difficult problem related to the accurate estimation of extreme flows. For this purpose, the available measurements (5 years of hourly data) were divided in two subsets: one for the dry and one for the wet periods of the hydrological year. This way, two ANNs were created, trained, tested and validated for a complex Mediterranean river basin in Crete, Greece. As part of the second management component a statistical downscaling tool was used for the creation of meteorological data according to the higher and lower emission climate change scenarios A2 and B1. These data are used as input in the ANN for the forecasting of river flow for the next two decades. The final component is the application of a meteorological index on the measured and forecasted precipitation and flow data, in order to assess the severity and duration of extreme events. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Genetic Programming for Automatic Hydrological Modelling

    Science.gov (United States)

    Chadalawada, Jayashree; Babovic, Vladan

    2017-04-01

    One of the recent challenges for the hydrologic research community is the need for the development of coupled systems that involves the integration of hydrologic, atmospheric and socio-economic relationships. This poses a requirement for novel modelling frameworks that can accurately represent complex systems, given, the limited understanding of underlying processes, increasing volume of data and high levels of uncertainity. Each of the existing hydrological models vary in terms of conceptualization and process representation and is the best suited to capture the environmental dynamics of a particular hydrological system. Data driven approaches can be used in the integration of alternative process hypotheses in order to achieve a unified theory at catchment scale. The key steps in the implementation of integrated modelling framework that is influenced by prior understanding and data, include, choice of the technique for the induction of knowledge from data, identification of alternative structural hypotheses, definition of rules, constraints for meaningful, intelligent combination of model component hypotheses and definition of evaluation metrics. This study aims at defining a Genetic Programming based modelling framework that test different conceptual model constructs based on wide range of objective functions and evolves accurate and parsimonious models that capture dominant hydrological processes at catchment scale. In this paper, GP initializes the evolutionary process using the modelling decisions inspired from the Superflex framework [Fenicia et al., 2011] and automatically combines them into model structures that are scrutinized against observed data using statistical, hydrological and flow duration curve based performance metrics. The collaboration between data driven and physical, conceptual modelling paradigms improves the ability to model and manage hydrologic systems. Fenicia, F., D. Kavetski, and H. H. Savenije (2011), Elements of a flexible approach

  10. Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene

    Science.gov (United States)

    Thompson, S. E.; Sivapalan, M.; Harman, C. J.; Srinivasan, V.; Hipsey, M. R.; Reed, P.; Montanari, A.; Blöschl, G.

    2013-12-01

    Globally, many different kinds of water resources management issues call for policy- and infrastructure-based responses. Yet responsible decision-making about water resources management raises a fundamental challenge for hydrologists: making predictions about water resources on decadal- to century-long timescales. Obtaining insight into hydrologic futures over 100 yr timescales forces researchers to address internal and exogenous changes in the properties of hydrologic systems. To do this, new hydrologic research must identify, describe and model feedbacks between water and other changing, coupled environmental subsystems. These models must be constrained to yield useful insights, despite the many likely sources of uncertainty in their predictions. Chief among these uncertainties are the impacts of the increasing role of human intervention in the global water cycle - a defining challenge for hydrology in the Anthropocene. Here we present a research agenda that proposes a suite of strategies to address these challenges from the perspectives of hydrologic science research. The research agenda focuses on the development of co-evolutionary hydrologic modeling to explore coupling across systems, and to address the implications of this coupling on the long-time behavior of the coupled systems. Three research directions support the development of these models: hydrologic reconstruction, comparative hydrology and model-data learning. These strategies focus on understanding hydrologic processes and feedbacks over long timescales, across many locations, and through strategic coupling of observational and model data in specific systems. We highlight the value of use-inspired and team-based science that is motivated by real-world hydrologic problems but targets improvements in fundamental understanding to support decision-making and management. Fully realizing the potential of this approach will ultimately require detailed integration of social science and physical science

  11. Assimilation of remote sensing and hydrological data using adaptive filtering techniques for watershed modelling

    OpenAIRE

    Kumar, Sat; Sekhar, M; Bandyopadhyay, Sanjoy

    2009-01-01

    The knowledge of hydrological variables (e. g. soil moisture, evapotranspiration) are of pronounced importance in various applications including flood control, agricultural production and effective water resources management. These applications require the accurate prediction of hydrological variables spatially and temporally in watershed/basin. Though hydrological models can simulate these variables at desired resolution (spatial and temporal), often they are validated against the variab...

  12. Assessing the value of variational assimilation of streamflow data into distributed hydrologic models for improved streamflow monitoring and prediction at ungauged and gauged locations in the catchment

    Science.gov (United States)

    Lee, Hak Su; Seo, Dong-Jun; Liu, Yuqiong; McKee, Paul; Corby, Robert

    2010-05-01

    State updating of distributed hydrologic models via assimilation of streamflow data is subject to "overfitting" because large dimensionality of the state space of the model may render the assimilation problem seriously underdetermined. To examine the issue in the context of operational hydrology, we carried out a set of real-world experiments in which we assimilate streamflow data at interior and/or outlet locations into gridded SAC and kinematic-wave routing models of the U.S. National Weather Service (NWS) Research Distributed Hydrologic Model (RDHM). We used for the experiments nine basins in the southern plains of the U.S. The experiments consist of selectively assimilating streamflow at different gauge locations, outlet and/or interior, and carrying out both dependent and independent validation. To assess the sensitivity of the quality of assimilation-aided streamflow simulation to the reduced dimensionality of the state space, we carried out data assimilation at spatially semi-distributed or lumped scale and by adjusting biases in precipitation and potential evaporation at a 6-hourly or larger scale. In this talk, we present the results and findings.

  13. The transferability of hydrological models under nonstationary climatic conditions

    Directory of Open Access Journals (Sweden)

    C. Z. Li

    2012-04-01

    Full Text Available This paper investigates issues involved in calibrating hydrological models against observed data when the aim of the modelling is to predict future runoff under different climatic conditions. To achieve this objective, we tested two hydrological models, DWBM and SIMHYD, using data from 30 unimpaired catchments in Australia which had at least 60 yr of daily precipitation, potential evapotranspiration (PET, and streamflow data. Nash-Sutcliffe efficiency (NSE, modified index of agreement (d1 and water balance error (WBE were used as performance criteria. We used a differential split-sample test to split up the data into 120 sub-periods and 4 different climatic sub-periods in order to assess how well the calibrated model could be transferred different periods. For each catchment, the models were calibrated for one sub-period and validated on the other three. Monte Carlo simulation was used to explore parameter stability compared to historic climatic variability. The chi-square test was used to measure the relationship between the distribution of the parameters and hydroclimatic variability. The results showed that the performance of the two hydrological models differed and depended on the model calibration. We found that if a hydrological model is set up to simulate runoff for a wet climate scenario then it should be calibrated on a wet segment of the historic record, and similarly a dry segment should be used for a dry climate scenario. The Monte Carlo simulation provides an effective and pragmatic approach to explore uncertainty and equifinality in hydrological model parameters. Some parameters of the hydrological models are shown to be significantly more sensitive to the choice of calibration periods. Our findings support the idea that when using conceptual hydrological models to assess future climate change impacts, a differential split-sample test and Monte Carlo simulation should be used to quantify uncertainties due to

  14. An approach to measure parameter sensitivity in watershed hydrologic modeling

    Data.gov (United States)

    U.S. Environmental Protection Agency — Abstract Hydrologic responses vary spatially and temporally according to watershed characteristics. In this study, the hydrologic models that we developed earlier...

  15. Applicability of Hydrologic Landscapes for Model Calibration ...

    Science.gov (United States)

    The Pacific Northwest Hydrologic Landscapes (PNW HL) at the assessment unit scale has provided a solid conceptual classification framework to relate and transfer hydrologically meaningful information between watersheds without access to streamflow time series. A collection of techniques were applied to the HL assessment unit composition in watersheds across the Pacific Northwest to aggregate the hydrologic behavior of the Hydrologic Landscapes from the assessment unit scale to the watershed scale. This non-trivial solution both emphasizes HL classifications within the watershed that provide that majority of moisture surplus/deficit and considers the relative position (upstream vs. downstream) of these HL classifications. A clustering algorithm was applied to the HL-based characterization of assessment units within 185 watersheds to help organize watersheds into nine classes hypothesized to have similar hydrologic behavior. The HL-based classes were used to organize and describe hydrologic behavior information about watershed classes and both predictions and validations were independently performed with regard to the general magnitude of six hydroclimatic signature values. A second cluster analysis was then performed using the independently calculated signature values as similarity metrics, and it was found that the six signature clusters showed substantial overlap in watershed class membership to those in the HL-based classes. One hypothesis set forward from thi

  16. Putting hydrological modelling practice to the test

    NARCIS (Netherlands)

    Melsen, Lieke Anna

    2017-01-01

    Six steps can be distinguished in the process of hydrological modelling: the perceptual model (deciding on the processes), the conceptual model (deciding on the equations), the procedural model (get the code to run on a computer), calibration (identify the parameters), evaluation (confronting

  17. Hydrologic modeling of the Columbia Plateau basalts

    International Nuclear Information System (INIS)

    Dove, F.H.; Cole, C.R.; Bond, F.W.; Zimmerman, D.A.

    1982-09-01

    The Office of Nuclear Waste Isolation (ONWI) directed the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program to conduct a technology demonstration of current performance assessment techniques for the Department of Energy (DOE) as applied to a nuclear waste repository in the Columbia Plateau Basalts. Hypothetical repository coordinates were selected for an actual geographical setting on the Hanford Reservation in the state of Washington. Published hydrologic and geologic data used in the analyses were gathered in 1979 or earlier. The hydrologic simulation was divided into three major parts: (1) aquifer recharge calculations, (2) a regional hydrologic model, and (3) a local hydrologic model of the Pasco Basin. The presentation discusses the regional model. An estimate of the amount of water transmitted through the groundwater system was required to bound the transmissivity values and to estimate the transmissivity distributions for the deeper basalts. The multiple layer two-dimensional Variable Thickness Transient (VTT) code was selected as appropriate for the amount of data available and for the conditions existing in the regional systems. This model uses a finite difference formulation to represent the partial differential flow equation. The regional study area as defined for the VTT model was divided into 55 by 55 square pattern with each grid 5 kilometers on a side. The regional system was modeled as a held potential surface layer and two underlying basalt layers. The regional model established the boundary conditions for the hydrologic model the Pasco Basin

  18. A polynomial chaos ensemble hydrologic prediction system for efficient parameter inference and robust uncertainty assessment

    Science.gov (United States)

    Wang, S.; Huang, G. H.; Baetz, B. W.; Huang, W.

    2015-11-01

    This paper presents a polynomial chaos ensemble hydrologic prediction system (PCEHPS) for an efficient and robust uncertainty assessment of model parameters and predictions, in which possibilistic reasoning is infused into probabilistic parameter inference with simultaneous consideration of randomness and fuzziness. The PCEHPS is developed through a two-stage factorial polynomial chaos expansion (PCE) framework, which consists of an ensemble of PCEs to approximate the behavior of the hydrologic model, significantly speeding up the exhaustive sampling of the parameter space. Multiple hypothesis testing is then conducted to construct an ensemble of reduced-dimensionality PCEs with only the most influential terms, which is meaningful for achieving uncertainty reduction and further acceleration of parameter inference. The PCEHPS is applied to the Xiangxi River watershed in China to demonstrate its validity and applicability. A detailed comparison between the HYMOD hydrologic model, the ensemble of PCEs, and the ensemble of reduced PCEs is performed in terms of accuracy and efficiency. Results reveal temporal and spatial variations in parameter sensitivities due to the dynamic behavior of hydrologic systems, and the effects (magnitude and direction) of parametric interactions depending on different hydrological metrics. The case study demonstrates that the PCEHPS is capable not only of capturing both expert knowledge and probabilistic information in the calibration process, but also of implementing an acceleration of more than 10 times faster than the hydrologic model without compromising the predictive accuracy.

  19. Hydrological and hydraulic modelling of the Nyl River floodplain Part ...

    African Journals Online (AJOL)

    Catchment land-use and water resource developments may threaten the ecological integrity of the Nyl River floodplain, a world-renowned conservation area. The effect of developments on the water supply regime to the floodplain can be predicted by hydrological modelling, but assessing their ecological consequences ...

  20. Open source data assimilation framework for hydrological modeling

    Science.gov (United States)

    Ridler, Marc; Hummel, Stef; van Velzen, Nils; Katrine Falk, Anne; Madsen, Henrik

    2013-04-01

    An open-source data assimilation framework is proposed for hydrological modeling. Data assimilation (DA) in hydrodynamic and hydrological forecasting systems has great potential to improve predictions and improve model result. The basic principle is to incorporate measurement information into a model with the aim to improve model results by error minimization. Great strides have been made to assimilate traditional in-situ measurements such as discharge, soil moisture, hydraulic head and snowpack into hydrologic models. More recently, remotely sensed data retrievals of soil moisture, snow water equivalent or snow cover area, surface water elevation, terrestrial water storage and land surface temperature have been successfully assimilated in hydrological models. The assimilation algorithms have become increasingly sophisticated to manage measurement and model bias, non-linear systems, data sparsity (time & space) and undetermined system uncertainty. It is therefore useful to use a pre-existing DA toolbox such as OpenDA. OpenDA is an open interface standard for (and free implementation of) a set of tools to quickly implement DA and calibration for arbitrary numerical models. The basic design philosophy of OpenDA is to breakdown DA into a set of building blocks programmed in object oriented languages. To implement DA, a model must interact with OpenDA to create model instances, propagate the model, get/set variables (or parameters) and free the model once DA is completed. An open-source interface for hydrological models exists capable of all these tasks: OpenMI. OpenMI is an open source standard interface already adopted by key hydrological model providers. It defines a universal approach to interact with hydrological models during simulation to exchange data during runtime, thus facilitating the interactions between models and data sources. The interface is flexible enough so that models can interact even if the model is coded in a different language, represent

  1. Hydrologic modeling in a marsh-mangrove ecotone: Predicting wetland surface water and salinity response to restoration in the Ten Thousand Islands region of Florida, USA

    Science.gov (United States)

    Michot, B.D.; Meselhe, E.A.; Krauss, Ken W.; Shrestha, Surendra; From, Andrew S.; Patino, Eduardo

    2017-01-01

    At the fringe of Everglades National Park in southwest Florida, United States, the Ten Thousand Islands National Wildlife Refuge (TTINWR) habitat has been heavily affected by the disruption of natural freshwater flow across the Tamiami Trail (U.S. Highway 41). As the Comprehensive Everglades Restoration Plan (CERP) proposes to restore the natural sheet flow from the Picayune Strand Restoration Project area north of the highway, the impact of planned measures on the hydrology in the refuge needs to be taken into account. The objective of this study was to develop a simple, computationally efficient mass balance model to simulate the spatial and temporal patterns of water level and salinity within the area of interest. This model could be used to assess the effects of the proposed management decisions on the surface water hydrological characteristics of the refuge. Surface water variations are critical to the maintenance of wetland processes. The model domain is divided into 10 compartments on the basis of their shared topography, vegetation, and hydrologic characteristics. A diversion of +10% of the discharge recorded during the modeling period was simulated in the primary canal draining the Picayune Strand forest north of the Tamiami Trail (Faka Union Canal) and this discharge was distributed as overland flow through the refuge area. Water depths were affected only modestly. However, in the northern part of the refuge, the hydroperiod, i.e., the duration of seasonal flooding, was increased by 21 days (from 115 to 136 days) for the simulation during the 2008 wet season, with an average water level rise of 0.06 m. The average salinity over a two-year period in the model area just south of Tamiami Trail was reduced by approximately 8 practical salinity units (psu) (from 18 to 10 psu), whereas the peak dry season average was reduced from 35 to 29 psu (by 17%). These salinity reductions were even larger with greater flow diversions (+20%). Naturally, the reduction

  2. Green roof hydrologic performance and modeling: a review.

    Science.gov (United States)

    Li, Yanling; Babcock, Roger W

    2014-01-01

    Green roofs reduce runoff from impervious surfaces in urban development. This paper reviews the technical literature on green roof hydrology. Laboratory experiments and field measurements have shown that green roofs can reduce stormwater runoff volume by 30 to 86%, reduce peak flow rate by 22 to 93% and delay the peak flow by 0 to 30 min and thereby decrease pollution, flooding and erosion during precipitation events. However, the effectiveness can vary substantially due to design characteristics making performance predictions difficult. Evaluation of the most recently published study findings indicates that the major factors affecting green roof hydrology are precipitation volume, precipitation dynamics, antecedent conditions, growth medium, plant species, and roof slope. This paper also evaluates the computer models commonly used to simulate hydrologic processes for green roofs, including stormwater management model, soil water atmosphere and plant, SWMS-2D, HYDRUS, and other models that are shown to be effective for predicting precipitation response and economic benefits. The review findings indicate that green roofs are effective for reduction of runoff volume and peak flow, and delay of peak flow, however, no tool or model is available to predict expected performance for any given anticipated system based on design parameters that directly affect green roof hydrology.

  3. Advances in Applications of Hierarchical Bayesian Methods with Hydrological Models

    Science.gov (United States)

    Alexander, R. B.; Schwarz, G. E.; Boyer, E. W.

    2017-12-01

    Mechanistic and empirical watershed models are increasingly used to inform water resource decisions. Growing access to historical stream measurements and data from in-situ sensor technologies has increased the need for improved techniques for coupling models with hydrological measurements. Techniques that account for the intrinsic uncertainties of both models and measurements are especially needed. Hierarchical Bayesian methods provide an efficient modeling tool for quantifying model and prediction uncertainties, including those associated with measurements. Hierarchical methods can also be used to explore spatial and temporal variations in model parameters and uncertainties that are informed by hydrological measurements. We used hierarchical Bayesian methods to develop a hybrid (statistical-mechanistic) SPARROW (SPAtially Referenced Regression On Watershed attributes) model of long-term mean annual streamflow across diverse environmental and climatic drainages in 18 U.S. hydrological regions. Our application illustrates the use of a new generation of Bayesian methods that offer more advanced computational efficiencies than the prior generation. Evaluations of the effects of hierarchical (regional) variations in model coefficients and uncertainties on model accuracy indicates improved prediction accuracies (median of 10-50%) but primarily in humid eastern regions, where model uncertainties are one-third of those in arid western regions. Generally moderate regional variability is observed for most hierarchical coefficients. Accounting for measurement and structural uncertainties, using hierarchical state-space techniques, revealed the effects of spatially-heterogeneous, latent hydrological processes in the "localized" drainages between calibration sites; this improved model precision, with only minor changes in regional coefficients. Our study can inform advances in the use of hierarchical methods with hydrological models to improve their integration with stream

  4. Hydrological model in STEALTH 2-D code

    International Nuclear Information System (INIS)

    Hart, R.; Hofmann, R.

    1979-10-01

    Porous media fluid flow logic has been added to the two-dimensional version of the STEALTH explicit finite-difference code. It is a first-order hydrological model based upon Darcy's Law. Anisotropic permeability can be prescribed through x and y directional permeabilities. The fluid flow equations are formulated for either two-dimensional translation symmetry or two-dimensional axial symmetry. The addition of the hydrological model to STEALTH is a first step toward analyzing a physical system's response to the coupling of thermal, mechanical, and fluid flow phenomena

  5. Using expert knowledge of the hydrological system to constrain multi-objective calibration of SWAT models

    Science.gov (United States)

    The SWAT model is a helpful tool to predict hydrological processes in a study catchment and their impact on the river discharge at the catchment outlet. For reliable discharge predictions, a precise simulation of hydrological processes is required. Therefore, SWAT has to be calibrated accurately to ...

  6. Hydrologic modeling and field testing at Yucca mountain, Nevada

    International Nuclear Information System (INIS)

    Hoxie, D.T.

    1991-01-01

    Yucca Mountain, Nevada, is being evaluated as a possible site for a mined geologic repository for the disposal of high-level nuclear waste. The repository is proposed to be constructed in fractured, densely welded tuff within the thick (500 to 750 meters) unsaturated zone at the site. Characterization of the site unsaturated-zone hydrogeologic system requires quantitative specification of the existing state of the system and the development of numerical hydrologic models to predict probable evolution of the hydrogeologic system over the lifetime of the repository. To support development of hydrologic models for the system, a testing program has been designed to characterize the existing state of the system, to measure hydrologic properties for the system and to identify and quantify those processes that control system dynamics. 12 refs

  7. Multi-criteria evaluation of hydrological models

    Science.gov (United States)

    Rakovec, Oldrich; Clark, Martyn; Weerts, Albrecht; Hill, Mary; Teuling, Ryan; Uijlenhoet, Remko

    2013-04-01

    Over the last years, there is a tendency in the hydrological community to move from the simple conceptual models towards more complex, physically/process-based hydrological models. This is because conceptual models often fail to simulate the dynamics of the observations. However, there is little agreement on how much complexity needs to be considered within the complex process-based models. One way to proceed to is to improve understanding of what is important and unimportant in the models considered. The aim of this ongoing study is to evaluate structural model adequacy using alternative conceptual and process-based models of hydrological systems, with an emphasis on understanding how model complexity relates to observed hydrological processes. Some of the models require considerable execution time and the computationally frugal sensitivity analysis, model calibration and uncertainty quantification methods are well-suited to providing important insights for models with lengthy execution times. The current experiment evaluates two version of the Framework for Understanding Structural Errors (FUSE), which both enable running model inter-comparison experiments. One supports computationally efficient conceptual models, and the second supports more-process-based models that tend to have longer execution times. The conceptual FUSE combines components of 4 existing conceptual hydrological models. The process-based framework consists of different forms of Richard's equations, numerical solutions, groundwater parameterizations and hydraulic conductivity distribution. The hydrological analysis of the model processes has evolved from focusing only on simulated runoff (final model output), to also including other criteria such as soil moisture and groundwater levels. Parameter importance and associated structural importance are evaluated using different types of sensitivity analyses techniques, making use of both robust global methods (e.g. Sobol') as well as several

  8. Ensemble catchment hydrological modelling for climate change impact analysis

    Science.gov (United States)

    Vansteenkiste, Thomas; Ntegeka, Victor; Willems, Patrick

    2014-05-01

    It is vital to investigate how the hydrological model structure affects the climate change impact given that future changes not in the range for which the models were calibrated or validated are likely. Thus an ensemble modelling approach which involves a diversity of models with different structures such as spatial resolutions and process descriptions is crucial. The ensemble modelling approach was applied to a set of models: from the lumped conceptual models NAM, PDM and VHM, an intermediate detailed and distributed model WetSpa, to the highly detailed and fully distributed model MIKE-SHE. Explicit focus was given to the high and low flow extremes. All models were calibrated for sub flows and quick flows derived from rainfall and potential evapotranspiration (ETo) time series. In general, all models were able to produce reliable estimates of the flow regimes under the current climate for extreme peak and low flows. An intercomparison of the low and high flow changes under changed climatic conditions was made using climate scenarios tailored for extremes. Tailoring was important for two reasons. First, since the use of many scenarios was not feasible it was necessary to construct few scenarios that would reasonably represent the range of extreme impacts. Second, scenarios would be more informative as changes in high and low flows would be easily traced to changes of ETo and rainfall; the tailored scenarios are constructed using seasonal changes that are defined using different levels of magnitude (high, mean and low) for rainfall and ETo. After simulation of these climate scenarios in the five hydrological models, close agreement was found among the models. The different models predicted similar range of peak flow changes. For the low flows, however, the differences in the projected impact range by different hydrological models was larger, particularly for the drier scenarios. This suggests that the hydrological model structure is critical in low flow predictions

  9. Approaches to modelling hydrology and ecosystem interactions

    Science.gov (United States)

    Silberstein, Richard P.

    2014-05-01

    As the pressures of industry, agriculture and mining on groundwater resources increase there is a burgeoning un-met need to be able to capture these multiple, direct and indirect stresses in a formal framework that will enable better assessment of impact scenarios. While there are many catchment hydrological models and there are some models that represent ecological states and change (e.g. FLAMES, Liedloff and Cook, 2007), these have not been linked in any deterministic or substantive way. Without such coupled eco-hydrological models quantitative assessments of impacts from water use intensification on water dependent ecosystems under changing climate are difficult, if not impossible. The concept would include facility for direct and indirect water related stresses that may develop around mining and well operations, climate stresses, such as rainfall and temperature, biological stresses, such as diseases and invasive species, and competition such as encroachment from other competing land uses. Indirect water impacts could be, for example, a change in groundwater conditions has an impact on stream flow regime, and hence aquatic ecosystems. This paper reviews previous work examining models combining ecology and hydrology with a view to developing a conceptual framework linking a biophysically defensable model that combines ecosystem function with hydrology. The objective is to develop a model capable of representing the cumulative impact of multiple stresses on water resources and associated ecosystem function.

  10. Ensemble Analysis of Variational Assimilation of Hydrologic and Hydrometeorological Data into Distributed Hydrologic Model

    Science.gov (United States)

    Lee, H.; Seo, D.; Koren, V.

    2008-12-01

    A prototype 4DVAR (four-dimensional variational) data assimilator for gridded Sacramento soil-moisture accounting and kinematic-wave routing models in the Hydrology Laboratory's Research Distributed Hydrologic Model (HL-RDHM) has been developed. The prototype assimilates streamflow and in-situ soil moisture data and adjusts gridded precipitation and climatological potential evaporation data to reduce uncertainty in the model initial conditions for improved monitoring and prediction of streamflow and soil moisture at the outlet and interior locations within the catchment. Due to large degrees of freedom involved, data assimilation (DA) into distributed hydrologic models is complex. To understand and assess sensitivity of the performance of DA to uncertainties in the model initial conditions and in the data, two synthetic experiments have been carried out in an ensemble framework. Results from the synthetic experiments shed much light on the potential and limitations with DA into distributed models. For initial real-world assessment, the prototype DA has also been applied to the headwater basin at Eldon near the Oklahoma-Arkansas border. We present these results and describe the next steps.

  11. A Dynamic Hydrology-Critical Zone Framework for Rainfall-triggered Landslide Hazard Prediction

    Science.gov (United States)

    Dialynas, Y. G.; Foufoula-Georgiou, E.; Dietrich, W. E.; Bras, R. L.

    2017-12-01

    Watershed-scale coupled hydrologic-stability models are still in their early stages, and are characterized by important limitations: (a) either they assume steady-state or quasi-dynamic watershed hydrology, or (b) they simulate landslide occurrence based on a simple one-dimensional stability criterion. Here we develop a three-dimensional landslide prediction framework, based on a coupled hydrologic-slope stability model and incorporation of the influence of deep critical zone processes (i.e., flow through weathered bedrock and exfiltration to the colluvium) for more accurate prediction of the timing, location, and extent of landslides. Specifically, a watershed-scale slope stability model that systematically accounts for the contribution of driving and resisting forces in three-dimensional hillslope segments was coupled with a spatially-explicit and physically-based hydrologic model. The landslide prediction framework considers critical zone processes and structure, and explicitly accounts for the spatial heterogeneity of surface and subsurface properties that control slope stability, including soil and weathered bedrock hydrological and mechanical characteristics, vegetation, and slope morphology. To test performance, the model was applied in landslide-prone sites in the US, the hydrology of which has been extensively studied. Results showed that both rainfall infiltration in the soil and groundwater exfiltration exert a strong control on the timing and magnitude of landslide occurrence. We demonstrate the extent to which three-dimensional slope destabilizing factors, which are modulated by dynamic hydrologic conditions in the soil-bedrock column, control landslide initiation at the watershed scale.

  12. Land-surface modelling in hydrological perspective

    DEFF Research Database (Denmark)

    Overgaard, Jesper; Rosbjerg, Dan; Butts, M.B.

    2006-01-01

    The purpose of this paper is to provide a review of the different types of energy-based land-surface models (LSMs) and discuss some of the new possibilities that will arise when energy-based LSMs are combined with distributed hydrological modelling. We choose to focus on energy-based approaches......, and the difficulties inherent in various evaluation procedures are presented. Finally, the dynamic coupling of hydrological and atmospheric models is explored, and the perspectives of such efforts are discussed......., because in comparison to the traditional potential evapotranspiration models, these approaches allow for a stronger link to remote sensing and atmospheric modelling. New opportunities for evaluation of distributed land-surface models through application of remote sensing are discussed in detail...

  13. Modeling the hydrological cycle on Mars

    Directory of Open Access Journals (Sweden)

    Ghada Machtoub

    2012-03-01

    Full Text Available The study provides a detailed analysis of the hydrological cycle on Mars simulated with a newly developed microphysical model, incorporated in a spectral Mars General Circulation Model. The modeled hydrological cycle is compared well with simulations of other global climate models. The simulated seasonal migration ofwater vapor, circulation instability, and the high degree of temporal variability of localized water vapor outbursts are shown closely consistent with recent observations. The microphysical parameterization provides a significant improvement in the modeling of ice clouds evolved over the tropics and major ancient volcanoes on Mars. The most significant difference between the simulations presented here and other GCM results is the level at which the water ice clouds are found. The model findings also support interpretation of observed thermal anomalies in the Martian tropics during northern spring and summer seasons.

  14. Moving towards Hyper-Resolution Hydrologic Modeling

    Science.gov (United States)

    Rouf, T.; Maggioni, V.; Houser, P.; Mei, Y.

    2017-12-01

    Developing a predictive capability for terrestrial hydrology across landscapes, with water, energy and nutrients as the drivers of these dynamic systems, faces the challenge of scaling meter-scale process understanding to practical modeling scales. Hyper-resolution land surface modeling can provide a framework for addressing science questions that we are not able to answer with coarse modeling scales. In this study, we develop a hyper-resolution forcing dataset from coarser resolution products using a physically based downscaling approach. These downscaling techniques rely on correlations with landscape variables, such as topography, roughness, and land cover. A proof-of-concept has been implemented over the Oklahoma domain, where high-resolution observations are available for validation purposes. Hourly NLDAS (North America Land Data Assimilation System) forcing data (i.e., near-surface air temperature, pressure, and humidity) have been downscaled to 500m resolution over the study area for 2015-present. Results show that correlation coefficients between the downscaled temperature dataset and ground observations are consistently higher than the ones between the NLDAS temperature data at their native resolution and ground observations. Not only correlation coefficients are higher, but also the deviation around the 1:1 line in the density scatterplots is smaller for the downscaled dataset than the original one with respect to the ground observations. Results are therefore encouraging as they demonstrate that the 500m temperature dataset has a good agreement with the ground information and can be adopted to force the land surface model for soil moisture estimation. The study has been expanded to wind speed and direction, incident longwave and shortwave radiation, pressure, and precipitation. Precipitation is well known to vary dramatically with elevation and orography. Therefore, we are pursuing a downscaling technique based on both topographical and vegetation

  15. Hydrological Modelling the Middle Magdalena Valley (Colombia)

    Science.gov (United States)

    Arenas, M. C.; Duque, N.; Arboleda, P.; Guadagnini, A.; Riva, M.; Donado-Garzon, L. D.

    2017-12-01

    Hydrological distributed modeling is key point for a comprehensive assessment of the feedback between the dynamics of the hydrological cycle, climate conditions and land use. Such modeling results are markedly relevant in the fields of water resources management, natural hazards and oil and gas industry. Here, we employ TopModel (TOPography based hydrological MODEL) for the hydrological modeling of an area in the Middle Magdalena Valley (MMV), a tropical basin located in Colombia. This study is located over the intertropical convergence zone and is characterized by special meteorological conditions, with fast water fluxes over the year. It has been subject to significant land use changes, as a result of intense economical activities, i.e., and agriculture, energy and oil & gas production. The model employees a record of 12 years of daily precipitation and evapotranspiration data as inputs. Streamflow data monitored across the same time frame are used for model calibration. The latter is performed by considering data from 2000 to 2008. Model validation then relies on observations from 2009 to 2012. The robustness of our analyses is based on the Nash-Sutcliffe coefficient (values of this metric being 0.62 and 0.53, respectively for model calibration and validation). Our results reveal high water storage capacity in the soil, and a marked subsurface runoff, consistent with the characteristics of the soil types in the regions. A significant influence on runoff response of the basin to topographical factors represented in the model is evidenced. Our calibrated model provides relevant indications about recharge in the region, which is important to quantify the interaction between surface water and groundwater, specially during the dry season, which is more relevant in climate-change and climate-variability scenarios.

  16. eWaterCycle: A global operational hydrological forecasting model

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2015-04-01

    Development of an operational hyper-resolution hydrological global model is a central goal of the eWaterCycle project (www.ewatercycle.org). This operational model includes ensemble forecasts (14 days) to predict water related stress around the globe. Assimilation of near-real time satellite data is part of the intended product that will be launched at EGU 2015. The challenges come from several directions. First, there are challenges that are mainly computer science oriented but have direct practical hydrological implications. For example, we aim to make use as much as possible of existing standards and open-source software. For example, different parts of our system are coupled through the Basic Model Interface (BMI) developed in the framework of the Community Surface Dynamics Modeling System (CSDMS). The PCR-GLOBWB model, built by Utrecht University, is the basic hydrological model that is the engine of the eWaterCycle project. Re-engineering of parts of the software was needed for it to run efficiently in a High Performance Computing (HPC) environment, and to be able to interface using BMI, and run on multiple compute nodes in parallel. The final aim is to have a spatial resolution of 1km x 1km, which is currently 10 x 10km. This high resolution is computationally not too demanding but very memory intensive. The memory bottleneck becomes especially apparent for data assimilation, for which we use OpenDA. OpenDa allows for different data assimilation techniques without the need to build these from scratch. We have developed a BMI adaptor for OpenDA, allowing OpenDA to use any BMI compatible model. To circumvent memory shortages which would result from standard applications of the Ensemble Kalman Filter, we have developed a variant that does not need to keep all ensemble members in working memory. At EGU, we will present this variant and how it fits well in HPC environments. An important step in the eWaterCycle project was the coupling between the hydrological and

  17. Practical guidance on representing the heteroscedasticity of residual errors of hydrological predictions

    Science.gov (United States)

    McInerney, David; Thyer, Mark; Kavetski, Dmitri; Kuczera, George

    2016-04-01

    Appropriate representation of residual errors in hydrological modelling is essential for accurate and reliable probabilistic streamflow predictions. In particular, residual errors of hydrological predictions are often heteroscedastic, with large errors associated with high runoff events. Although multiple approaches exist for representing this heteroscedasticity, few if any studies have undertaken a comprehensive evaluation and comparison of these approaches. This study fills this research gap by evaluating a range of approaches for representing heteroscedasticity in residual errors. These approaches include the 'direct' weighted least squares approach and 'transformational' approaches, such as logarithmic, Box-Cox (with and without fitting the transformation parameter), logsinh and the inverse transformation. The study reports (1) theoretical comparison of heteroscedasticity approaches, (2) empirical evaluation of heteroscedasticity approaches using a range of multiple catchments / hydrological models / performance metrics and (3) interpretation of empirical results using theory to provide practical guidance on the selection of heteroscedasticity approaches. Importantly, for hydrological practitioners, the results will simplify the choice of approaches to represent heteroscedasticity. This will enhance their ability to provide hydrological probabilistic predictions with the best reliability and precision for different catchment types (e.g. high/low degree of ephemerality).

  18. Bayesian estimation of parameters in a regional hydrological model

    Directory of Open Access Journals (Sweden)

    K. Engeland

    2002-01-01

    Full Text Available This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC analysis. The Bayesian method requires formulation of a likelihood function for the parameters and three alternative formulations are used. The first is a subjectively chosen objective function that describes the goodness of fit between the simulated and observed streamflow, as defined in the GLUE framework. The second and third formulations are more statistically correct likelihood models that describe the simulation errors. The full statistical likelihood model describes the simulation errors as an AR(1 process, whereas the simple model excludes the auto-regressive part. The statistical parameters depend on the catchments and the hydrological processes and the statistical and the hydrological parameters are estimated simultaneously. The results show that the simple likelihood model gives the most robust parameter estimates. The simulation error may be explained to a large extent by the catchment characteristics and climatic conditions, so it is possible to transfer knowledge about them to ungauged catchments. The statistical models for the simulation errors indicate that structural errors in the model are more important than parameter uncertainties. Keywords: regional hydrological model, model uncertainty, Bayesian analysis, Markov Chain Monte Carlo analysis

  19. Impact of multicollinearity on small sample hydrologic regression models

    Science.gov (United States)

    Kroll, Charles N.; Song, Peter

    2013-06-01

    Often hydrologic regression models are developed with ordinary least squares (OLS) procedures. The use of OLS with highly correlated explanatory variables produces multicollinearity, which creates highly sensitive parameter estimators with inflated variances and improper model selection. It is not clear how to best address multicollinearity in hydrologic regression models. Here a Monte Carlo simulation is developed to compare four techniques to address multicollinearity: OLS, OLS with variance inflation factor screening (VIF), principal component regression (PCR), and partial least squares regression (PLS). The performance of these four techniques was observed for varying sample sizes, correlation coefficients between the explanatory variables, and model error variances consistent with hydrologic regional regression models. The negative effects of multicollinearity are magnified at smaller sample sizes, higher correlations between the variables, and larger model error variances (smaller R2). The Monte Carlo simulation indicates that if the true model is known, multicollinearity is present, and the estimation and statistical testing of regression parameters are of interest, then PCR or PLS should be employed. If the model is unknown, or if the interest is solely on model predictions, is it recommended that OLS be employed since using more complicated techniques did not produce any improvement in model performance. A leave-one-out cross-validation case study was also performed using low-streamflow data sets from the eastern United States. Results indicate that OLS with stepwise selection generally produces models across study regions with varying levels of multicollinearity that are as good as biased regression techniques such as PCR and PLS.

  20. Modelling the effect of land use change on hydrological model ...

    African Journals Online (AJOL)

    Modelling the effect of land use change on hydrological model parameters via linearized calibration method in the upstream of Huaihe River Basin, China. ... is presented, based on the analysis of the problems of the objective function of the ...

  1. Life history theory predicts fish assemblage response to hydrologic regimes.

    Science.gov (United States)

    Mims, Meryl C; Olden, Julian D

    2012-01-01

    The hydrologic regime is regarded as the primary driver of freshwater ecosystems, structuring the physical habitat template, providing connectivity, framing biotic interactions, and ultimately selecting for specific life histories of aquatic organisms. In the present study, we tested ecological theory predicting directional relationships between major dimensions of the flow regime and life history composition of fish assemblages in perennial free-flowing rivers throughout the continental United States. Using long-term discharge records and fish trait and survey data for 109 stream locations, we found that 11 out of 18 relationships (61%) tested between the three life history strategies (opportunistic, periodic, and equilibrium) and six hydrologic metrics (two each describing flow variability, predictability, and seasonality) were statistically significant (P history strategies, with 82% of all significant relationships observed supporting predictions from life history theory. Specifically, we found that (1) opportunistic strategists were positively related to measures of flow variability and negatively related to predictability and seasonality, (2) periodic strategists were positively related to high flow seasonality and negatively related to variability, and (3) the equilibrium strategists were negatively related to flow variability and positively related to predictability. Our study provides important empirical evidence illustrating the value of using life history theory to understand both the patterns and processes by which fish assemblage structure is shaped by adaptation to natural regimes of variability, predictability, and seasonality of critical flow events over broad biogeographic scales.

  2. Improving Robustness of Hydrologic Ensemble Predictions Through Probabilistic Pre- and Post-Processing in Sequential Data Assimilation

    Science.gov (United States)

    Wang, S.; Ancell, B. C.; Huang, G. H.; Baetz, B. W.

    2018-03-01

    Data assimilation using the ensemble Kalman filter (EnKF) has been increasingly recognized as a promising tool for probabilistic hydrologic predictions. However, little effort has been made to conduct the pre- and post-processing of assimilation experiments, posing a significant challenge in achieving the best performance of hydrologic predictions. This paper presents a unified data assimilation framework for improving the robustness of hydrologic ensemble predictions. Statistical pre-processing of assimilation experiments is conducted through the factorial design and analysis to identify the best EnKF settings with maximized performance. After the data assimilation operation, statistical post-processing analysis is also performed through the factorial polynomial chaos expansion to efficiently address uncertainties in hydrologic predictions, as well as to explicitly reveal potential interactions among model parameters and their contributions to the predictive accuracy. In addition, the Gaussian anamorphosis is used to establish a seamless bridge between data assimilation and uncertainty quantification of hydrologic predictions. Both synthetic and real data assimilation experiments are carried out to demonstrate feasibility and applicability of the proposed methodology in the Guadalupe River basin, Texas. Results suggest that statistical pre- and post-processing of data assimilation experiments provide meaningful insights into the dynamic behavior of hydrologic systems and enhance robustness of hydrologic ensemble predictions.

  3. Representing northern peatland microtopography and hydrology within the Community Land Model

    Science.gov (United States)

    X. Shi; P.E. Thornton; D.M. Ricciuto; P J. Hanson; J. Mao; Stephen Sebestyen; N.A. Griffiths; G. Bisht

    2015-01-01

    Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth...

  4. Development of hydrological models and surface process modelization Study case in High Mountain slopes

    International Nuclear Information System (INIS)

    Loaiza, Juan Carlos; Pauwels, Valentijn R

    2011-01-01

    Hydrological models are useful because allow to predict fluxes into the hydrological systems, which is useful to predict foods and violent phenomenon associated to water fluxes, especially in materials under a high meteorization level. The combination of these models with meteorological predictions, especially with rainfall models, allow to model water behavior into the soil. On most of cases, this type of models is really sensible to evapotranspiration. On climatic studies, the superficial processes have to be represented adequately. Calibration and validation of these models is necessary to obtain reliable results. This paper is a practical exercise of application of complete hydrological information at detailed scale in a high mountain catchment, considering the soil use and types more representatives. The information of soil moisture, infiltration, runoff and rainfall is used to calibrate and validate TOPLATS hydrological model to simulate the behavior of soil moisture. The finds show that is possible to implement an hydrological model by means of soil moisture information use and an equation of calibration by Extended Kalman Filter (EKF).

  5. Proving the ecosystem value through hydrological modelling

    International Nuclear Information System (INIS)

    Dorner, W; Spachinger, K; Metzka, R; Porter, M

    2008-01-01

    Ecosystems provide valuable functions. Also natural floodplains and river structures offer different types of ecosystem functions such as habitat function, recreational area and natural detention. From an economic stand point the loss (or rehabilitation) of these natural systems and their provided natural services can be valued as a damage (or benefit). Consequently these natural goods and services must be economically valued in project assessments e.g. cost-benefit-analysis or cost comparison. Especially in smaller catchments and river systems exists significant evidence that natural flood detention reduces flood risk and contributes to flood protection. Several research projects evaluated the mitigating effect of land use, river training and the loss of natural flood plains on development, peak and volume of floods. The presented project analysis the hypothesis that ignoring natural detention and hydrological ecosystem services could result in economically inefficient solutions for flood protection and mitigation. In test areas, subcatchments of the Danube in Germany, a combination of hydrological and hydrodynamic models with economic evaluation techniques was applied. Different forms of land use, river structure and flood protection measures were assed and compared from a hydrological and economic point of view. A hydrodynamic model was used to simulate flows to assess the extent of flood affected areas and damages to buildings and infrastructure as well as to investigate the impacts of levees and river structure on a local scale. These model results provided the basis for an economic assessment. Different economic valuation techniques, such as flood damage functions, cost comparison method and substation-approach were used to compare the outcomes of different hydrological scenarios from an economic point of view and value the ecosystem service. The results give significant evidence that natural detention must be evaluated as part of flood mitigation projects

  6. Grey Box Modelling of Hydrological Systems

    DEFF Research Database (Denmark)

    Thordarson, Fannar Ørn

    of two papers where the stochastic differential equation based model is used for sewer runoff from a drainage system. A simple model is used to describe a complex rainfall-runoff process in a catchment, but the stochastic part of the system is formulated to include the increasing uncertainty when...... rainwater flows through the system, as well as describe the lower limit of the uncertainty when the flow approaches zero. The first paper demonstrates in detail the grey box model and all related transformations required to obtain a feasible model for the sewer runoff. In the last paper this model is used......The main topic of the thesis is grey box modelling of hydrologic systems, as well as formulation and assessment of their embedded uncertainties. Grey box model is a combination of a white box model, a physically-based model that is traditionally formulated using deterministic ordinary differential...

  7. Effect of Using Extreme Years in Hydrologic Model Calibration Performance

    Science.gov (United States)

    Goktas, R. K.; Tezel, U.; Kargi, P. G.; Ayvaz, T.; Tezyapar, I.; Mesta, B.; Kentel, E.

    2017-12-01

    Hydrological models are useful in predicting and developing management strategies for controlling the system behaviour. Specifically they can be used for evaluating streamflow at ungaged catchments, effect of climate change, best management practices on water resources, or identification of pollution sources in a watershed. This study is a part of a TUBITAK project named "Development of a geographical information system based decision-making tool for water quality management of Ergene Watershed using pollutant fingerprints". Within the scope of this project, first water resources in Ergene Watershed is studied. Streamgages found in the basin are identified and daily streamflow measurements are obtained from State Hydraulic Works of Turkey. Streamflow data is analysed using box-whisker plots, hydrographs and flow-duration curves focusing on identification of extreme periods, dry or wet. Then a hydrological model is developed for Ergene Watershed using HEC-HMS in the Watershed Modeling System (WMS) environment. The model is calibrated for various time periods including dry and wet ones and the performance of calibration is evaluated using Nash-Sutcliffe Efficiency (NSE), correlation coefficient, percent bias (PBIAS) and root mean square error. It is observed that calibration period affects the model performance, and the main purpose of the development of the hydrological model should guide calibration period selection. Acknowledgement: This study is funded by The Scientific and Technological Research Council of Turkey (TUBITAK) under Project Number 115Y064.

  8. An evaluation of the Canadian global meteorological ensemble prediction system for short-term hydrological forecasting

    Directory of Open Access Journals (Sweden)

    F. Anctil

    2009-11-01

    Full Text Available Hydrological forecasting consists in the assessment of future streamflow. Current deterministic forecasts do not give any information concerning the uncertainty, which might be limiting in a decision-making process. Ensemble forecasts are expected to fill this gap.

    In July 2007, the Meteorological Service of Canada has improved its ensemble prediction system, which has been operational since 1998. It uses the GEM model to generate a 20-member ensemble on a 100 km grid, at mid-latitudes. This improved system is used for the first time for hydrological ensemble predictions. Five watersheds in Quebec (Canada are studied: Chaudière, Châteauguay, Du Nord, Kénogami and Du Lièvre. An interesting 17-day rainfall event has been selected in October 2007. Forecasts are produced in a 3 h time step for a 3-day forecast horizon. The deterministic forecast is also available and it is compared with the ensemble ones. In order to correct the bias of the ensemble, an updating procedure has been applied to the output data. Results showed that ensemble forecasts are more skilful than the deterministic ones, as measured by the Continuous Ranked Probability Score (CRPS, especially for 72 h forecasts. However, the hydrological ensemble forecasts are under dispersed: a situation that improves with the increasing length of the prediction horizons. We conjecture that this is due in part to the fact that uncertainty in the initial conditions of the hydrological model is not taken into account.

  9. Robust estimation of hydrological model parameters

    Directory of Open Access Journals (Sweden)

    A. Bárdossy

    2008-11-01

    Full Text Available The estimation of hydrological model parameters is a challenging task. With increasing capacity of computational power several complex optimization algorithms have emerged, but none of the algorithms gives a unique and very best parameter vector. The parameters of fitted hydrological models depend upon the input data. The quality of input data cannot be assured as there may be measurement errors for both input and state variables. In this study a methodology has been developed to find a set of robust parameter vectors for a hydrological model. To see the effect of observational error on parameters, stochastically generated synthetic measurement errors were applied to observed discharge and temperature data. With this modified data, the model was calibrated and the effect of measurement errors on parameters was analysed. It was found that the measurement errors have a significant effect on the best performing parameter vector. The erroneous data led to very different optimal parameter vectors. To overcome this problem and to find a set of robust parameter vectors, a geometrical approach based on Tukey's half space depth was used. The depth of the set of N randomly generated parameters was calculated with respect to the set with the best model performance (Nash-Sutclife efficiency was used for this study for each parameter vector. Based on the depth of parameter vectors, one can find a set of robust parameter vectors. The results show that the parameters chosen according to the above criteria have low sensitivity and perform well when transfered to a different time period. The method is demonstrated on the upper Neckar catchment in Germany. The conceptual HBV model was used for this study.

  10. An integrated crop and hydrologic modeling system to estimate hydrologic impacts of crop irrigation demands

    Science.gov (United States)

    R.T. McNider; C. Handyside; K. Doty; W.L. Ellenburg; J.F. Cruise; J.R. Christy; D. Moss; V. Sharda; G. Hoogenboom; Peter Caldwell

    2015-01-01

    The present paper discusses a coupled gridded crop modeling and hydrologic modeling system that can examine the benefits of irrigation and costs of irrigation and the coincident impact of the irrigation water withdrawals on surface water hydrology. The system is applied to the Southeastern U.S. The system tools to be discussed include a gridded version (GriDSSAT) of...

  11. A Smallholder Socio-hydrological Modelling Framework

    Science.gov (United States)

    Pande, S.; Savenije, H.; Rathore, P.

    2014-12-01

    Small holders are farmers who own less than 2 ha of farmland. They often have low productivity and thus remain at subsistence level. A fact that nearly 80% of Indian farmers are smallholders, who merely own a third of total farmlands and belong to the poorest quartile, but produce nearly 40% of countries foodgrains underlines the importance of understanding the socio-hydrology of a small holder. We present a framework to understand the socio-hydrological system dynamics of a small holder. It couples the dynamics of 6 main variables that are most relevant at the scale of a small holder: local storage (soil moisture and other water storage), capital, knowledge, livestock production, soil fertility and grass biomass production. The model incorporates rule-based adaptation mechanisms (for example: adjusting expenditures on food and fertilizers, selling livestocks etc.) of small holders when they face adverse socio-hydrological conditions, such as low annual rainfall, higher intra-annual variability in rainfall or variability in agricultural prices. It allows us to study sustainability of small holder farming systems under various settings. We apply the framework to understand the socio-hydrology of small holders in Aurangabad, Maharashtra, India. This district has witnessed suicides of many sugarcane farmers who could not extricate themselves out of the debt trap. These farmers lack irrigation and are susceptible to fluctuating sugar prices and intra-annual hydroclimatic variability. This presentation discusses two aspects in particular: whether government interventions to absolve the debt of farmers is enough and what is the value of investing in local storages that can buffer intra-annual variability in rainfall and strengthening the safety-nets either by creating opportunities for alternative sources of income or by crop diversification.

  12. Physical models for classroom teaching in hydrology

    Directory of Open Access Journals (Sweden)

    A. Rodhe

    2012-09-01

    Full Text Available Hydrology teaching benefits from the fact that many important processes can be illustrated and explained with simple physical models. A set of mobile physical models has been developed and used during many years of lecturing at basic university level teaching in hydrology. One model, with which many phenomena can be demonstrated, consists of a 1.0-m-long plexiglass container containing an about 0.25-m-deep open sand aquifer through which water is circulated. The model can be used for showing the groundwater table and its influence on the water content in the unsaturated zone and for quantitative determination of hydraulic properties such as the storage coefficient and the saturated hydraulic conductivity. It is also well suited for discussions on the runoff process and the significance of recharge and discharge areas for groundwater. The flow paths of water and contaminant dispersion can be illustrated in tracer experiments using fluorescent or colour dye. This and a few other physical models, with suggested demonstrations and experiments, are described in this article. The finding from using models in classroom teaching is that it creates curiosity among the students, promotes discussions and most likely deepens the understanding of the basic processes.

  13. Embedding complex hydrology in the climate system - towards fully coupled climate-hydrology models

    DEFF Research Database (Denmark)

    Butts, M.; Rasmussen, S.H.; Ridler, M.

    2013-01-01

    Motivated by the need to develop better tools to understand the impact of future management and climate change on water resources, we present a set of studies with the overall aim of developing a fully dynamic coupling between a comprehensive hydrological model, MIKE SHE, and a regional climate...... distributed parameters using satellite remote sensing. Secondly, field data are used to investigate the effects of model resolution and parameter scales for use in a coupled model. Finally, the development of the fully coupled climate-hydrology model is described and some of the challenges associated...... with coupling models for hydrological processes on sub-grid scales of the regional climate model are presented....

  14. Scale effect challenges in urban hydrology highlighted with a distributed hydrological model

    Science.gov (United States)

    Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire

    2018-01-01

    Hydrological models are extensively used in urban water management, development and evaluation of future scenarios and research activities. There is a growing interest in the development of fully distributed and grid-based models. However, some complex questions related to scale effects are not yet fully understood and still remain open issues in urban hydrology. In this paper we propose a two-step investigation framework to illustrate the extent of scale effects in urban hydrology. First, fractal tools are used to highlight the scale dependence observed within distributed data input into urban hydrological models. Then an intensive multi-scale modelling work is carried out to understand scale effects on hydrological model performance. Investigations are conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model is implemented at 17 spatial resolutions ranging from 100 to 5 m. Results clearly exhibit scale effect challenges in urban hydrology modelling. The applicability of fractal concepts highlights the scale dependence observed within distributed data. Patterns of geophysical data change when the size of the observation pixel changes. The multi-scale modelling investigation confirms scale effects on hydrological model performance. Results are analysed over three ranges of scales identified in the fractal analysis and confirmed through modelling. This work also discusses some remaining issues in urban hydrology modelling related to the availability of high-quality data at high resolutions, and model numerical instabilities as well as the computation time requirements. The main findings of this paper enable a replacement of traditional methods of model calibration by innovative methods of model resolution alteration based on the spatial data variability and scaling of flows in urban hydrology.

  15. Simplifying a hydrological ensemble prediction system with a backward greedy selection of members – Part 1: Optimization criteria

    Directory of Open Access Journals (Sweden)

    D. Brochero

    2011-11-01

    Full Text Available Hydrological Ensemble Prediction Systems (HEPS, obtained by forcing rainfall-runoff models with Meteorological Ensemble Prediction Systems (MEPS, have been recognized as useful approaches to quantify uncertainties of hydrological forecasting systems. This task is complex both in terms of the coupling of information and computational time, which may create an operational barrier. The main objective of the current work is to assess the degree of simplification (reduction of the number of hydrological members that can be achieved with a HEPS configured using 16 lumped hydrological models driven by the 50 weather ensemble forecasts from the European Centre for Medium-range Weather Forecasts (ECMWF. Here, Backward Greedy Selection (BGS is proposed to assess the weight that each model must represent within a subset that offers similar or better performance than a reference set of 800 hydrological members. These hydrological models' weights represent the participation of each hydrological model within a simplified HEPS which would issue real-time forecasts in a relatively short computational time. The methodology uses a variation of the k-fold cross-validation, allowing an optimal use of the information, and employs a multi-criterion framework that represents the combination of resolution, reliability, consistency, and diversity. Results show that the degree of reduction of members can be established in terms of maximum number of members required (complexity of the HEPS or the maximization of the relationship between the different scores (performance.

  16. Snow multivariable data assimilation for hydrological predictions in mountain areas

    Science.gov (United States)

    Piazzi, Gaia; Campo, Lorenzo; Gabellani, Simone; Rudari, Roberto; Castelli, Fabio; Cremonese, Edoardo; Morra di Cella, Umberto; Stevenin, Hervé; Ratto, Sara Maria

    2016-04-01

    The seasonal presence of snow on alpine catchments strongly impacts both surface energy balance and water resource. Thus, the knowledge of the snowpack dynamics is of critical importance for several applications, such as water resource management, floods prediction and hydroelectric power production. Several independent data sources provide information about snowpack state: ground-based measurements, satellite data and physical models. Although all these data types are reliable, each of them is affected by specific flaws and errors (respectively dependency on local conditions, sensor biases and limitations, initialization and poor quality forcing data). Moreover, there are physical factors that make an exhaustive reconstruction of snow dynamics complicated: snow intermittence in space and time, stratification and slow phenomena like metamorphism processes, uncertainty in snowfall evaluation, wind transportation, etc. Data Assimilation (DA) techniques provide an objective methodology to combine observational and modeled information to obtain the most likely estimate of snowpack state. Indeed, by combining all the available sources of information, the implementation of DA schemes can quantify and reduce the uncertainties of the estimations. This study presents SMASH (Snow Multidata Assimilation System for Hydrology), a multi-layer snow dynamic model, strengthened by a robust multivariable data assimilation algorithm. The model is physically based on mass and energy balances and can be used to reproduce the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity, relative air humidity, precipitation and incident solar radiation) to provide a complete estimate of snowpack state. The implementation of an Ensemble Kalman Filter (EnKF) scheme enables to assimilate simultaneously ground

  17. Hydrology under change: an evaluation protocol to investigate how hydrological models deal with changing catchments

    Science.gov (United States)

    G. Thirel; V. Andreassian; C. Perrin; J.-N. Audouy; L. Berthet; Pamela Edwards; N. Folton; C. Furusho; A. Kuentz; J. Lerat; G. Lindstrom; E. Martin; T. Mathevet; R. Merz; J. Parajka; D. Ruelland; J. Vaze

    2015-01-01

    Testing hydrological models under changing conditions is essential to evaluate their ability to cope with changing catchments and their suitability for impact studies. With this perspective in mind, a workshop dedicated to this issue was held at the 2013 General Assembly of the International Association of Hydrological Sciences (IAHS) in Göteborg, Sweden, in July 2013...

  18. Modeled hydrologic metrics show links between hydrology and the functional composition of stream assemblages.

    Science.gov (United States)

    Patrick, Christopher J; Yuan, Lester L

    2017-07-01

    Flow alteration is widespread in streams, but current understanding of the effects of differences in flow characteristics on stream biological communities is incomplete. We tested hypotheses about the effect of variation in hydrology on stream communities by using generalized additive models to relate watershed information to the values of different flow metrics at gauged sites. Flow models accounted for 54-80% of the spatial variation in flow metric values among gauged sites. We then used these models to predict flow metrics in 842 ungauged stream sites in the mid-Atlantic United States that were sampled for fish, macroinvertebrates, and environmental covariates. Fish and macroinvertebrate assemblages were characterized in terms of a suite of metrics that quantified aspects of community composition, diversity, and functional traits that were expected to be associated with differences in flow characteristics. We related modeled flow metrics to biological metrics in a series of stressor-response models. Our analyses identified both drying and base flow instability as explaining 30-50% of the observed variability in fish and invertebrate community composition. Variations in community composition were related to variations in the prevalence of dispersal traits in invertebrates and trophic guilds in fish. The results demonstrate that we can use statistical models to predict hydrologic conditions at bioassessment sites, which, in turn, we can use to estimate relationships between flow conditions and biological characteristics. This analysis provides an approach to quantify the effects of spatial variation in flow metrics using readily available biomonitoring data. © 2017 by the Ecological Society of America.

  19. ERM model analysis for adaptation to hydrological model errors

    Science.gov (United States)

    Baymani-Nezhad, M.; Han, D.

    2018-05-01

    Hydrological conditions are changed continuously and these phenomenons generate errors on flood forecasting models and will lead to get unrealistic results. Therefore, to overcome these difficulties, a concept called model updating is proposed in hydrological studies. Real-time model updating is one of the challenging processes in hydrological sciences and has not been entirely solved due to lack of knowledge about the future state of the catchment under study. Basically, in terms of flood forecasting process, errors propagated from the rainfall-runoff model are enumerated as the main source of uncertainty in the forecasting model. Hence, to dominate the exciting errors, several methods have been proposed by researchers to update the rainfall-runoff models such as parameter updating, model state updating, and correction on input data. The current study focuses on investigations about the ability of rainfall-runoff model parameters to cope with three types of existing errors, timing, shape and volume as the common errors in hydrological modelling. The new lumped model, the ERM model, has been selected for this study to evaluate its parameters for its use in model updating to cope with the stated errors. Investigation about ten events proves that the ERM model parameters can be updated to cope with the errors without the need to recalibrate the model.

  20. Towards improved hydrologic predictions using data assimilation techniques for water resource management at the continental scale

    Science.gov (United States)

    Naz, Bibi; Kurtz, Wolfgang; Kollet, Stefan; Hendricks Franssen, Harrie-Jan; Sharples, Wendy; Görgen, Klaus; Keune, Jessica; Kulkarni, Ketan

    2017-04-01

    More accurate and reliable hydrologic simulations are important for many applications such as water resource management, future water availability projections and predictions of extreme events. However, simulation of spatial and temporal variations in the critical water budget components such as precipitation, snow, evaporation and runoff is highly uncertain, due to errors in e.g. model structure and inputs (hydrologic parameters and forcings). In this study, we use data assimilation techniques to improve the predictability of continental-scale water fluxes using in-situ measurements along with remotely sensed information to improve hydrologic predications for water resource systems. The Community Land Model, version 3.5 (CLM) integrated with the Parallel Data Assimilation Framework (PDAF) was implemented at spatial resolution of 1/36 degree (3 km) over the European CORDEX domain. The modeling system was forced with a high-resolution reanalysis system COSMO-REA6 from Hans-Ertel Centre for Weather Research (HErZ) and ERA-Interim datasets for time period of 1994-2014. A series of data assimilation experiments were conducted to assess the efficiency of assimilation of various observations, such as river discharge data, remotely sensed soil moisture, terrestrial water storage and snow measurements into the CLM-PDAF at regional to continental scales. This setup not only allows to quantify uncertainties, but also improves streamflow predictions by updating simultaneously model states and parameters utilizing observational information. The results from different regions, watershed sizes, spatial resolutions and timescales are compared and discussed in this study.

  1. Assessing climate change impact by integrated hydrological modelling

    Science.gov (United States)

    Lajer Hojberg, Anker; Jørgen Henriksen, Hans; Olsen, Martin; der Keur Peter, van; Seaby, Lauren Paige; Troldborg, Lars; Sonnenborg, Torben; Refsgaard, Jens Christian

    2013-04-01

    Future climate may have a profound effect on the freshwater cycle, which must be taken into consideration by water management for future planning. Developments in the future climate are nevertheless uncertain, thus adding to the challenge of managing an uncertain system. To support the water managers at various levels in Denmark, the national water resources model (DK-model) (Højberg et al., 2012; Stisen et al., 2012) was used to propagate future climate to hydrological response under considerations of the main sources of uncertainty. The DK-model is a physically based and fully distributed model constructed on the basis of the MIKE SHE/MIKE11 model system describing groundwater and surface water systems and the interaction between the domains. The model has been constructed for the entire 43.000 km2 land area of Denmark only excluding minor islands. Future climate from General Circulation Models (GCM) was downscaled by Regional Climate Models (RCM) by a distribution-based scaling method (Seaby et al., 2012). The same dataset was used to train all combinations of GCM-RCMs and they were found to represent the mean and variance at the seasonal basis equally well. Changes in hydrological response were computed by comparing the short term development from the period 1990 - 2010 to 2021 - 2050, which is the time span relevant for water management. To account for uncertainty in future climate predictions, hydrological response from the DK-model using nine combinations of GCMs and RCMs was analysed for two catchments representing the various hydrogeological conditions in Denmark. Three GCM-RCM combinations displaying high, mean and low future impacts were selected as representative climate models for which climate impact studies were carried out for the entire country. Parameter uncertainty was addressed by sensitivity analysis and was generally found to be of less importance compared to the uncertainty spanned by the GCM-RCM combinations. Analysis of the simulations

  2. Coupling meteorological and hydrological models for flood forecasting

    Directory of Open Access Journals (Sweden)

    Bartholmes

    2005-01-01

    Full Text Available This paper deals with the problem of analysing the coupling of meteorological meso-scale quantitative precipitation forecasts with distributed rainfall-runoff models to extend the forecasting horizon. Traditionally, semi-distributed rainfall-runoff models have been used for real time flood forecasting. More recently, increased computer capabilities allow the utilisation of distributed hydrological models with mesh sizes from tenths of metres to a few kilometres. On the other hand, meteorological models, providing the quantitative precipitation forecast, tend to produce average values on meshes ranging from slightly less than 10 to 200 kilometres. Therefore, to improve the quality of flood forecasts, the effects of coupling the meteorological and the hydrological models at different scales were analysed. A distributed hydrological model (TOPKAPI was developed and calibrated using a 1x1 km mesh for the case of the river Po closed at Ponte Spessa (catchment area c. 37000 km2. The model was then coupled with several other European meteorological models ranging from the Limited Area Models (provided by DMI and DWD with resolutions from 0.0625° * 0.0625°, to the ECMWF ensemble predictions with a resolution of 1.85° * 1.85°. Interesting results, describing the coupled model behaviour, are available for a meteorological extreme event in Northern Italy (Nov. 1994. The results demonstrate the poor reliability of the quantitative precipitation forecasts produced by meteorological models presently available; this is not resolved using the Ensemble Forecasting technique, when compared with results obtainable with measured rainfall.

  3. From spatially variable streamflow to distributed hydrological models: Analysis of key modeling decisions

    Science.gov (United States)

    Fenicia, Fabrizio; Kavetski, Dmitri; Savenije, Hubert H. G.; Pfister, Laurent

    2016-02-01

    This paper explores the development and application of distributed hydrological models, focusing on the key decisions of how to discretize the landscape, which model structures to use in each landscape element, and how to link model parameters across multiple landscape elements. The case study considers the Attert catchment in Luxembourg—a 300 km2 mesoscale catchment with 10 nested subcatchments that exhibit clearly different streamflow dynamics. The research questions are investigated using conceptual models applied at hydrologic response unit (HRU) scales (1-4 HRUs) on 6 hourly time steps. Multiple model structures are hypothesized and implemented using the SUPERFLEX framework. Following calibration, space/time model transferability is tested using a split-sample approach, with evaluation criteria including streamflow prediction error metrics and hydrological signatures. Our results suggest that: (1) models using geology-based HRUs are more robust and capture the spatial variability of streamflow time series and signatures better than models using topography-based HRUs; this finding supports the hypothesis that, in the Attert, geology exerts a stronger control than topography on streamflow generation, (2) streamflow dynamics of different HRUs can be represented using distinct and remarkably simple model structures, which can be interpreted in terms of the perceived dominant hydrologic processes in each geology type, and (3) the same maximum root zone storage can be used across the three dominant geological units with no loss in model transferability; this finding suggests that the partitioning of water between streamflow and evaporation in the study area is largely independent of geology and can be used to improve model parsimony. The modeling methodology introduced in this study is general and can be used to advance our broader understanding and prediction of hydrological behavior, including the landscape characteristics that control hydrologic response, the

  4. Diagnosing the impact of alternative calibration strategies on coupled hydrologic models

    Science.gov (United States)

    Smith, T. J.; Perera, C.; Corrigan, C.

    2017-12-01

    Hydrologic models represent a significant tool for understanding, predicting, and responding to the impacts of water on society and society on water resources and, as such, are used extensively in water resources planning and management. Given this important role, the validity and fidelity of hydrologic models is imperative. While extensive focus has been paid to improving hydrologic models through better process representation, better parameter estimation, and better uncertainty quantification, significant challenges remain. In this study, we explore a number of competing model calibration scenarios for simple, coupled snowmelt-runoff models to better understand the sensitivity / variability of parameterizations and its impact on model performance, robustness, fidelity, and transferability. Our analysis highlights the sensitivity of coupled snowmelt-runoff model parameterizations to alterations in calibration approach, underscores the concept of information content in hydrologic modeling, and provides insight into potential strategies for improving model robustness / fidelity.

  5. Calibration of hydrological model with programme PEST

    Science.gov (United States)

    Brilly, Mitja; Vidmar, Andrej; Kryžanowski, Andrej; Bezak, Nejc; Šraj, Mojca

    2016-04-01

    PEST is tool based on minimization of an objective function related to the root mean square error between the model output and the measurement. We use "singular value decomposition", section of the PEST control file, and Tikhonov regularization method for successfully estimation of model parameters. The PEST sometimes failed if inverse problems were ill-posed, but (SVD) ensures that PEST maintains numerical stability. The choice of the initial guess for the initial parameter values is an important issue in the PEST and need expert knowledge. The flexible nature of the PEST software and its ability to be applied to whole catchments at once give results of calibration performed extremely well across high number of sub catchments. Use of parallel computing version of PEST called BeoPEST was successfully useful to speed up calibration process. BeoPEST employs smart slaves and point-to-point communications to transfer data between the master and slaves computers. The HBV-light model is a simple multi-tank-type model for simulating precipitation-runoff. It is conceptual balance model of catchment hydrology which simulates discharge using rainfall, temperature and estimates of potential evaporation. Version of HBV-light-CLI allows the user to run HBV-light from the command line. Input and results files are in XML form. This allows to easily connecting it with other applications such as pre and post-processing utilities and PEST itself. The procedure was applied on hydrological model of Savinja catchment (1852 km2) and consists of twenty one sub-catchments. Data are temporary processed on hourly basis.

  6. An experimental test of fitness variation across a hydrologic gradient predicts willow and poplar species distributions.

    Science.gov (United States)

    Wei, Xiaojing; Savage, Jessica A; Riggs, Charlotte E; Cavender-Bares, Jeannine

    2017-05-01

    Environmental filtering is an important community assembly process influencing species distributions. Contrasting species abundance patterns along environmental gradients are commonly used to provide evidence for environmental filtering. However, the same abundance patterns may result from alternative or concurrent assembly processes. Experimental tests are an important means to decipher whether species fitness varies with environment, in the absence of dispersal constraints and biotic interactions, and to draw conclusions about the importance of environmental filtering in community assembly. We performed an experimental test of environmental filtering in 14 closely related willow and poplar species (family Salicaceae) by transplanting cuttings of each species into 40 common gardens established along a natural hydrologic gradient in the field, where competition was minimized and herbivory was controlled. We analyzed species fitness responses to the hydrologic environment based on cumulative growth and survival over two years using aster fitness models. We also examined variation in nine drought and flooding tolerance traits expected to contribute to performance based on a priori understanding of plant function in relation to water availability and stress. We found substantial evidence that environmental filtering along the hydrologic gradient played a critical role in determining species distributions. Fitness variation of each species in the field experiment was used to model their water table depth optima. These optima predicted 68% of the variation in species realized hydrologic niches based on peak abundance in naturally assembled communities in the surrounding region. Multiple traits associated with water transport efficiency and water stress tolerance were correlated with species hydrologic niches, but they did not necessarily covary with each other. As a consequence, species occupying similar hydrologic niches had different combinations of trait values

  7. Hydrological modelling in sandstone rocks watershed

    Science.gov (United States)

    Ponížilová, Iva; Unucka, Jan

    2015-04-01

    The contribution is focused on the modelling of surface and subsurface runoff in the Ploučnice basin. The used rainfall-runoff model is HEC-HMS comprising of the method of SCS CN curves and a recession method. The geological subsurface consisting of sandstone is characterised by reduced surface runoff and, on the contrary, it contributes to subsurface runoff. The aim of this paper is comparison of the rate of influence of sandstone on reducing surface runoff. The recession method for subsurface runoff was used to determine the subsurface runoff. The HEC-HMS model allows semi- and fully distributed approaches to schematisation of the watershed and rainfall situations. To determine the volume of runoff the method of SCS CN curves is used, which results depend on hydrological conditions of the soils. The rainfall-runoff model assuming selection of so-called methods of event of the SCS-CN type is used to determine the hydrograph and peak flow rate based on simulation of surface runoff in precipitation exceeding the infiltration capacity of the soil. The recession method is used to solve the baseflow (subsurface) runoff. The method is based on the separation of hydrograph to direct runoff and subsurface or baseflow runoff. The study area for the simulation of runoff using the method of SCS CN curves to determine the hydrological transformation is the Ploučnice basin. The Ploučnice is a hydrologically significant river in the northern part of the Czech Republic, it is a right tributary of the Elbe river with a total basin area of 1.194 km2. The average value of CN curves for the Ploučnice basin is 72. The geological structure of the Ploučnice basin is predominantly formed by Mesozoic sandstone. Despite significant initial loss of rainfall the basin response to the causal rainfall was demonstrated by a rapid rise of the surface runoff from the watershed and reached culmination flow. Basically, only surface runoff occures in the catchment during the initial phase of

  8. Modeling post-wildfire hydrological processes with ParFlow

    Science.gov (United States)

    Escobar, I. S.; Lopez, S. R.; Kinoshita, A. M.

    2017-12-01

    Wildfires alter the natural processes within a watershed, such as surface runoff, evapotranspiration rates, and subsurface water storage. Post-fire hydrologic models are typically one-dimensional, empirically-based models or two-dimensional, conceptually-based models with lumped parameter distributions. These models are useful for modeling and predictions at the watershed outlet; however, do not provide detailed, distributed hydrologic processes at the point scale within the watershed. This research uses ParFlow, a three-dimensional, distributed hydrologic model to simulate post-fire hydrologic processes by representing the spatial and temporal variability of soil burn severity (via hydrophobicity) and vegetation recovery. Using this approach, we are able to evaluate the change in post-fire water components (surface flow, lateral flow, baseflow, and evapotranspiration). This work builds upon previous field and remote sensing analysis conducted for the 2003 Old Fire Burn in Devil Canyon, located in southern California (USA). This model is initially developed for a hillslope defined by a 500 m by 1000 m lateral extent. The subsurface reaches 12.4 m and is assigned a variable cell thickness to explicitly consider soil burn severity throughout the stages of recovery and vegetation regrowth. We consider four slope and eight hydrophobic layer configurations. Evapotranspiration is used as a proxy for vegetation regrowth and is represented by the satellite-based Simplified Surface Energy Balance (SSEBOP) product. The pre- and post-fire surface runoff, subsurface storage, and surface storage interactions are evaluated at the point scale. Results will be used as a basis for developing and fine-tuning a watershed-scale model. Long-term simulations will advance our understanding of post-fire hydrological partitioning between water balance components and the spatial variability of watershed processes, providing improved guidance for post-fire watershed management. In reference

  9. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change

    DEFF Research Database (Denmark)

    Karlsson, Ida B.; Sonnenborg, Torben O.; Refsgaard, Jens Christian

    2016-01-01

    Impact studies of the hydrological response of future climate change are important for the water authorities when risk assessment, management and adaptation to a changing climate are carried out. The objective of this study was to model the combined effect of land use and climate changes...... use scenarios. The results revealed that even though the hydrological models all showed similar performance during calibration, the mean discharge response to climate change varied up to 30%, and the variations were even higher for extreme events (1th and 99th percentile). Land use changes appeared...... to cause little change in mean hydrological responses and little variation between hydrological models. Differences in hydrological model responses to land use were, however, significant for extremes due to dissimilarities in hydrological model structure and process equations. The climate model choice...

  10. Distributed Hydrologic Modeling Apps for Decision Support in the Cloud

    Science.gov (United States)

    Swain, N. R.; Latu, K.; Christiensen, S.; Jones, N.; Nelson, J.

    2013-12-01

    Advances in computation resources and greater availability of water resources data represent an untapped resource for addressing hydrologic uncertainties in water resources decision-making. The current practice of water authorities relies on empirical, lumped hydrologic models to estimate watershed response. These models are not capable of taking advantage of many of the spatial datasets that are now available. Physically-based, distributed hydrologic models are capable of using these data resources and providing better predictions through stochastic analysis. However, there exists a digital divide that discourages many science-minded decision makers from using distributed models. This divide can be spanned using a combination of existing web technologies. The purpose of this presentation is to present a cloud-based environment that will offer hydrologic modeling tools or 'apps' for decision support and the web technologies that have been selected to aid in its implementation. Compared to the more commonly used lumped-parameter models, distributed models, while being more intuitive, are still data intensive, computationally expensive, and difficult to modify for scenario exploration. However, web technologies such as web GIS, web services, and cloud computing have made the data more accessible, provided an inexpensive means of high-performance computing, and created an environment for developing user-friendly apps for distributed modeling. Since many water authorities are primarily interested in the scenario exploration exercises with hydrologic models, we are creating a toolkit that facilitates the development of a series of apps for manipulating existing distributed models. There are a number of hurdles that cloud-based hydrologic modeling developers face. One of these is how to work with the geospatial data inherent with this class of models in a web environment. Supporting geospatial data in a website is beyond the capabilities of standard web frameworks and it

  11. Analysing the temporal dynamics of model performance for hydrological models

    NARCIS (Netherlands)

    Reusser, D.E.; Blume, T.; Schaefli, B.; Zehe, E.

    2009-01-01

    The temporal dynamics of hydrological model performance gives insights into errors that cannot be obtained from global performance measures assigning a single number to the fit of a simulated time series to an observed reference series. These errors can include errors in data, model parameters, or

  12. The evolution of process-based hydrologic models

    NARCIS (Netherlands)

    Clark, Martyn P.; Bierkens, Marc F.P.; Samaniego, Luis; Woods, Ross A.; Uijlenhoet, Remko; Bennett, Katrina E.; Pauwels, Valentijn R.N.; Cai, Xitian; Wood, Andrew W.; Peters-Lidard, Christa D.

    2017-01-01

    The diversity in hydrologic models has historically led to great controversy on the "correct" approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this

  13. Coupled hydrologic and hydraulic modeling of Upper Niger River Basin

    Science.gov (United States)

    Fleischmann, Ayan; Siqueira, Vinícius; Paris, Adrien; Collischonn, Walter; Paiva, Rodrigo; Gossett, Marielle; Pontes, Paulo; Calmant, Stephane; Biancamaria, Sylvain; Crétaux, Jean-François; Tanimoune, Bachir

    2017-04-01

    The Upper Niger Basin is located in Western Africa, flowing from Guinea Highlands towards the Sahel region. In this area lies the seasonally inundated Niger Inland Delta, which supports important environmental services such as habitats for wildlife, climate and flood regulation, as well as large fishery and agricultural areas. In this study, we present the application of MGB-IPH large scale hydrologic and hydrodynamic model for the Upper Niger Basin, totaling c.a. 650,000 km2 and set up until the city of Niamey in Niger. The model couples hydrological vertical balance and runoff generation with hydrodynamic flood wave propagation, by allowing infiltration from floodplains into soil column as well as representing backwater effects and floodplain storage throughout flat areas such as the Inland Delta. The model is forced with TRMM 3B42 daily precipitation and Climate Research Unit (CRU) climatology for the period 2000-2010, and was calibrated against in-situ discharge gauges and validated with in-situ water level, remotely sensed estimations of flooded areas (classification of MODIS imagery) and satellite altimetry (JASON-2 mission). Model results show good predictions for calibrated daily discharge and validated water level and altimetry at stations both upstream and downstream of the delta (Nash-Sutcliffe Efficiency>0.7 for all stations), as well as for flooded areas within the delta region (ENS=0.5; r2=0.8), allowing a good representation of flooding dynamics basinwide and simulation of flooding behavior of both perennial (e.g., Niger main stem) and ephemeral rivers (e.g., Niger Red Flood tributaries in Sahel). Coupling between hydrology and hydrodynamic processes indicates an important feedback between floodplain and soil water storage that allows high evapotranspiration rates even after the flood passage around the inner delta area. Also, representation of water retention in floodplain channels and distributaries in the inner delta (e.g., Diaka river

  14. Validation of A Global Hydrological Model

    Science.gov (United States)

    Doell, P.; Lehner, B.; Kaspar, F.; Vassolo, S.

    Freshwater availability has been recognized as a global issue, and its consistent quan- tification not only in individual river basins but also at the global scale is required to support the sustainable use of water. The Global Hydrology Model WGHM, which is a submodel of the global water use and availability model WaterGAP 2, computes sur- face runoff, groundwater recharge and river discharge at a spatial resolution of 0.5. WGHM is based on the best global data sets currently available, including a newly developed drainage direction map and a data set of wetlands, lakes and reservoirs. It calculates both natural and actual discharge by simulating the reduction of river discharge by human water consumption (as computed by the water use submodel of WaterGAP 2). WGHM is calibrated against observed discharge at 724 gauging sta- tions (representing about 50% of the global land area) by adjusting a parameter of the soil water balance. It not only computes the long-term average water resources but also water availability indicators that take into account the interannual and seasonal variability of runoff and discharge. The reliability of the model results is assessed by comparing observed and simulated discharges at the calibration stations and at se- lected other stations. We conclude that reliable results can be obtained for basins of more than 20,000 km2. In particular, the 90% reliable monthly discharge is simu- lated well. However, there is the tendency that semi-arid and arid basins are modeled less satisfactorily than humid ones, which is partially due to neglecting river channel losses and evaporation of runoff from small ephemeral ponds in the model. Also, the hydrology of highly developed basins with large artificial storages, basin transfers and irrigation schemes cannot be simulated well. The seasonality of discharge in snow- dominated basins is overestimated by WGHM, and if the snow-dominated basin is uncalibrated, discharge is likely to be underestimated

  15. Assessing The Performance of Hydrological Models

    Science.gov (United States)

    van der Knijff, Johan

    The performance of hydrological models is often characterized using the coefficient of efficiency, E. The sensitivity of E to extreme streamflow values, and the difficulty of deciding what value of E should be used as a threshold to identify 'good' models or model parameterizations, have proven to be serious shortcomings of this index. This paper reviews some alternative performance indices that have appeared in the litera- ture. Legates and McCabe (1999) suggested a more generalized form of E, E'(j,B). Here, j is a parameter that controls how much emphasis is put on extreme streamflow values, and B defines a benchmark or 'null hypothesis' against which the results of the model are tested. E'(j,B) was used to evaluate a large number of parameterizations of a conceptual rainfall-runoff model, using 6 different combinations of j and B. First, the effect of j and B is explained. Second, it is demonstrated how the index can be used to explicitly test hypotheses about the model and the data. This approach appears to be particularly attractive if the index is used as a likelihood measure within a GLUE-type analysis.

  16. Updating of states in operational hydrological models

    Science.gov (United States)

    Bruland, O.; Kolberg, S.; Engeland, K.; Gragne, A. S.; Liston, G.; Sand, K.; Tøfte, L.; Alfredsen, K.

    2012-04-01

    Operationally the main purpose of hydrological models is to provide runoff forecasts. The quality of the model state and the accuracy of the weather forecast together with the model quality define the runoff forecast quality. Input and model errors accumulate over time and may leave the model in a poor state. Usually model states can be related to observable conditions in the catchment. Updating of these states, knowing their relation to observable catchment conditions, influence directly the forecast quality. Norway is internationally in the forefront in hydropower scheduling both on short and long terms. The inflow forecasts are fundamental to this scheduling. Their quality directly influence the producers profit as they optimize hydropower production to market demand and at the same time minimize spill of water and maximize available hydraulic head. The quality of the inflow forecasts strongly depends on the quality of the models applied and the quality of the information they use. In this project the focus has been to improve the quality of the model states which the forecast is based upon. Runoff and snow storage are two observable quantities that reflect the model state and are used in this project for updating. Generally the methods used can be divided in three groups: The first re-estimates the forcing data in the updating period; the second alters the weights in the forecast ensemble; and the third directly changes the model states. The uncertainty related to the forcing data through the updating period is due to both uncertainty in the actual observation and to how well the gauging stations represent the catchment both in respect to temperatures and precipitation. The project looks at methodologies that automatically re-estimates the forcing data and tests the result against observed response. Model uncertainty is reflected in a joint distribution of model parameters estimated using the Dream algorithm.

  17. A framework for human-hydrologic system model development integrating hydrology and water management: application to the Cutzamala water system in Mexico

    Science.gov (United States)

    Wi, S.; Freeman, S.; Brown, C.

    2017-12-01

    This study presents a general approach to developing computational models of human-hydrologic systems where human modification of hydrologic surface processes are significant or dominant. A river basin system is represented by a network of human-hydrologic response units (HHRUs) identified based on locations where river regulations happen (e.g., reservoir operation and diversions). Natural and human processes in HHRUs are simulated in a holistic framework that integrates component models representing rainfall-runoff, river routing, reservoir operation, flow diversion and water use processes. We illustrate the approach in a case study of the Cutzamala water system (CWS) in Mexico, a complex inter-basin water transfer system supplying the Mexico City Metropolitan Area (MCMA). The human-hydrologic system model for CWS (CUTZSIM) is evaluated in terms of streamflow and reservoir storages measured across the CWS and to water supplied for MCMA. The CUTZSIM improves the representation of hydrology and river-operation interaction and, in so doing, advances evaluation of system-wide water management consequences under altered climatic and demand regimes. The integrated modeling framework enables evaluation and simulation of model errors throughout the river basin, including errors in representation of the human component processes. Heretofore, model error evaluation, predictive error intervals and the resultant improved understanding have been limited to hydrologic processes. The general framework represents an initial step towards fuller understanding and prediction of the many and varied processes that determine the hydrologic fluxes and state variables in real river basins.

  18. Evaluation and hydrological modelization in the natural hazard prevention

    International Nuclear Information System (INIS)

    Pla Sentis, Ildefonso

    2011-01-01

    Soil degradation affects negatively his functions as a base to produce food, to regulate the hydrological cycle and the environmental quality. All over the world soil degradation is increasing partly due to lacks or deficiencies in the evaluations of the processes and causes of this degradation on each specific situation. The processes of soil physical degradation are manifested through several problems as compaction, runoff, hydric and Eolic erosion, landslides with collateral effects in situ and in the distance, often with disastrous consequences as foods, landslides, sedimentations, droughts, etc. These processes are frequently associated to unfavorable changes into the hydrologic processes responsible of the water balance and soil hydric regimes, mainly derived to soil use changes and different management practices and climatic changes. The evaluation of these processes using simple simulation models; under several scenarios of climatic change, soil properties and land use and management; would allow to predict the occurrence of this disastrous processes and consequently to select and apply the appropriate practices of soil conservation to eliminate or reduce their effects. This simulation models require, as base, detailed climatic information and hydrologic soil properties data. Despite of the existence of methodologies and commercial equipment (each time more sophisticated and precise) to measure the different physical and hydrological soil properties related with degradation processes, most of them are only applicable under really specific or laboratory conditions. Often indirect methodologies are used, based on relations or empiric indexes without an adequate validation, that often lead to expensive mistakes on the evaluation of soil degradation processes and their effects on natural disasters. It could be preferred simple field methodologies, direct and adaptable to different soil types and climates and to the sample size and the spatial variability of the

  19. Modeling the hydrologic impacts of forest harvesting on Florida flatwoods

    Science.gov (United States)

    Ge Sun; Hans Rierkerk; Nicholas B. Comerford

    1998-01-01

    The great temporal and spatial variability of pine flatwoods hydrology suggests traditional short-term field methods may not be effective in evaluating the hydrologic effects of forest management. The flatwoods model was developed, calibrated and validated specifically for the cypress wetland-pine upland landscape. The model was applied to two typical flatwoods sites...

  20. Hydrology

    Science.gov (United States)

    Sharp, John M.

    1977-01-01

    Lists many recent research projects in hydrology, including flow in fractured media, improvements in remote-sensing techniques, effects of urbanization on water resources, and developments in drainage basins. (MLH)

  1. Hydrology

    International Nuclear Information System (INIS)

    Obando G, E.

    1989-01-01

    Isotopical techniques are used in hydrology area for exploration, evaluation and exploration of water investigation. These techniques have been used successfully and are often the best or only means for providing certain hydrogeological parameters

  2. Hydrological modelling of fine sediments in the Odzi River, Zimbabwe

    African Journals Online (AJOL)

    Hydrological modelling of fine sediments in the Odzi River, Zimbabwe. ... An analysis of the model structure and a comparison with the rating curve function ... model validation through split sample and proxy basin comparison was performed.

  3. Lumped hydrological models is an Occam' razor for runoff modeling in large Russian Arctic basins

    OpenAIRE

    Ayzel Georgy

    2018-01-01

    This study is aimed to investigate the possibility of three lumped hydrological models to predict daily runoff of large-scale Arctic basins for the modern period (1979-2014) in the case of substantial data scarcity. All models were driven only by meteorological forcing reanalysis dataset without any additional information about landscape, soil or vegetation cover properties of studied basins. We found limitations of model parameters calibration in ungauged basins using global optimization alg...

  4. An Educational Model for Hands-On Hydrology Education

    Science.gov (United States)

    AghaKouchak, A.; Nakhjiri, N.; Habib, E. H.

    2014-12-01

    This presentation provides an overview of a hands-on modeling tool developed for students in civil engineering and earth science disciplines to help them learn the fundamentals of hydrologic processes, model calibration, sensitivity analysis, uncertainty assessment, and practice conceptual thinking in solving engineering problems. The toolbox includes two simplified hydrologic models, namely HBV-EDU and HBV-Ensemble, designed as a complement to theoretical hydrology lectures. The models provide an interdisciplinary application-oriented learning environment that introduces the hydrologic phenomena through the use of a simplified conceptual hydrologic model. The toolbox can be used for in-class lab practices and homework assignments, and assessment of students' understanding of hydrological processes. Using this modeling toolbox, students can gain more insights into how hydrological processes (e.g., precipitation, snowmelt and snow accumulation, soil moisture, evapotranspiration and runoff generation) are interconnected. The educational toolbox includes a MATLAB Graphical User Interface (GUI) and an ensemble simulation scheme that can be used for teaching more advanced topics including uncertainty analysis, and ensemble simulation. Both models have been administered in a class for both in-class instruction and a final project, and students submitted their feedback about the toolbox. The results indicate that this educational software had a positive impact on students understanding and knowledge of hydrology.

  5. Hydrological system dynamics of glaciated Karnali River Basin Nepal Himalaya using J2000 Hydrological model

    Science.gov (United States)

    Khatiwada, K. R.; Nepal, S.; Panthi, J., Sr.; Shrestha, M.

    2015-12-01

    Hydrological modelling plays an important role in understanding hydrological processes of a catchment. In the context of climate change, the understanding of hydrological characteristic of the catchment is very vital to understand how the climate change will affect the hydrological regime. This research facilitates in better understanding of the hydrological system dynamics of a himalayan mountainous catchment in western Nepal. The Karnali River, longest river flowing inside Nepal, is one of the three major basins of Nepal, having the area of 45269 sq. km. is unique. The basin has steep topography and high mountains to the northern side. The 40% of the basin is dominated by forest land while other land cover are: grass land, bare rocky land etc. About 2% of the areas in basin is covered by permanent glacier apart from that about 12% of basin has the snow and ice cover. There are 34 meteorological stations distributed across the basin. A process oriented distributed J2000 hydrologial model has been applied to understand the hydrological system dynamics. The model application provides distributed output of various hydrological components. The J2000 model applies Hydrological Response Unit (HRU) as a modelling entity. With 6861 HRU and 1010 reaches, the model was calibrated (1981-1999) and validated (2000-2004) at a daily scale using split-sample test. The model is able to capture the overall hydrological dynamics well. The rising limbs and recession limbs are simulated equally and with satisfactory ground water conditions. Based on the graphical and statistical evaluation of the model performance the model is able to simulate hydrological processes fairly well. Calibration shows that Nash Sutcliffe efficiency is 0.91, coefficient of determination is 0.92 Initial observation shows that during the pre-monsoon season(March to May) the glacial runoff is 25% of the total discharge while in the monsoon(June to September) season it is only 13%. The surface runoff

  6. Post-fire hydrologic behavior and recovery: Advancing spatial and temporal prediction with an emphasis on remote sensing

    OpenAIRE

    Kinoshita, Alicia

    2012-01-01

    This work has investigated the policy of wildfires, modeling techniques for post-fire assessment, and the influence of controlling variables on post-fire recovery. Post-fire mitigation and management require reliable predictions of immediate hydrologic consequences and long-term recovery to pre-fire conditions. This research shows that models used by agencies are not adaptable to all geographical and climatological conditions. Results show inconsistencies between model predictions for peak di...

  7. A comparison of MIKE SHE and DRAINMOD for modeling forested wetland hydrology in coastal South Carolina, USA

    Science.gov (United States)

    Zhaohua Dai; Devendra M. Amatya; Ge Sun; Carl C. Trettin; Changsheng Li; Harbin Li

    2010-01-01

    Models are widely used to assess hydrologic impacts of land-management, land-use change and climate change. Two hydrologic models with different spatial scales, MIKE SHE (spatially distributed, watershed-scale) and DRAINMOD (lumped, fieldscale), were compared in terms of their performance in predicting stream flow and water table depth in a first-order forested...

  8. Uncertainty of climate change impacts and consequences on the prediction of future hydrological trends

    International Nuclear Information System (INIS)

    Minville, M.; Brissette, F.; Leconte, R.

    2008-01-01

    In the future, water is very likely to be the resource that will be most severely affected by climate change. It has been shown that small perturbations in precipitation frequency and/or quantity can result in significant impacts on the mean annual discharge. Moreover, modest changes in natural inflows result in larger changes in reservoir storage. There is however great uncertainty linked to changes in both the magnitude and direction of future hydrological trends. This presentation discusses the various sources of this uncertainty and their potential impact on the prediction of future hydrological trends. A companion paper will look at adaptation potential, taking into account some of the sources of uncertainty discussed in this presentation. Uncertainty is separated into two main components: climatic uncertainty and 'model and methods' uncertainty. Climatic uncertainty is linked to uncertainty in future greenhouse gas emission scenarios (GHGES) and to general circulation models (GCMs), whose representation of topography and climate processes is imperfect, in large part due to computational limitations. The uncertainty linked to natural variability (which may or may not increase) is also part of the climatic uncertainty. 'Model and methods' uncertainty regroups the uncertainty linked to the different approaches and models needed to transform climate data so that they can be used by hydrological models (such as downscaling methods) and the uncertainty of the models themselves and of their use in a changed climate. The impacts of the various sources of uncertainty on the hydrology of a watershed are demonstrated on the Peribonka River basin (Quebec, Canada). The results indicate that all sources of uncertainty can be important and outline the importance of taking these sources into account for any impact and adaptation studies. Recommendations are outlined for such studies. (author)

  9. Hydrology

    Science.gov (United States)

    Brutsaert, Wilfried

    2005-08-01

    Water in its different forms has always been a source of wonder, curiosity and practical concern for humans everywhere. Hydrology - An Introduction presents a coherent introduction to the fundamental principles of hydrology, based on the course that Wilfried Brutsaert has taught at Cornell University for the last thirty years. Hydrologic phenomena are dealt with at spatial and temporal scales at which they occur in nature. The physics and mathematics necessary to describe these phenomena are introduced and developed, and readers will require a working knowledge of calculus and basic fluid mechanics. The book will be invaluable as a textbook for entry-level courses in hydrology directed at advanced seniors and graduate students in physical science and engineering. In addition, the book will be more broadly of interest to professional scientists and engineers in hydrology, environmental science, meteorology, agronomy, geology, climatology, oceanology, glaciology and other earth sciences. Emphasis on fundamentals Clarification of the underlying physical processes Applications of fluid mechanics in the natural environment

  10. Development of a "Hydrologic Equivalent Wetland" Concept for Modeling Cumulative Effects of Wetlands on Watershed Hydrology

    Science.gov (United States)

    Wang, X.; Liu, T.; Li, R.; Yang, X.; Duan, L.; Luo, Y.

    2012-12-01

    and wetland characteristics (e.g., size and morphology) to be accurately represented in the models. The loss of the first 10 to 20% of the wetlands in the Minnesota study area would drastically increase the peak discharge and loadings of sediment, total phosphorus (TP), and total nitrogen (TN). On the other hand, the justifiable reductions of the peak discharge and loadings of sediment, TP, and TN in the Manitoba study area may require that 50 to 80% of the lost wetlands be restored. Further, the comparison between the predicted restoration and conservation effects revealed that wetland conservation seems to deserve a higher priority while both wetland conservation and restoration may be equally important. Moreover, although SWAT was used in this study, the HEW concept is generic and can also be applied with any other hydrologic models.

  11. A comparison of hydrologic models for ecological flows and water availability

    Science.gov (United States)

    Peter V. Caldwell; Jonathan G. Kennen; Ge Sun; Julie E. Kiang; Jon B. Butcher; Michele C. Eddy; Lauren E. Hay; Jacob H. LaFontaine; Ernie F. Hain; Stacy A. C. Nelson; Steve G. McNulty

    2015-01-01

    Robust hydrologic models are needed to help manage water resources for healthy aquatic ecosystems and reliable water supplies for people, but there is a lack of comprehensive model comparison studies that quantify differences in streamflow predictions among model applications developed to answer management questions. We assessed differences in daily streamflow...

  12. Improved Seasonal Prediction of European Summer Temperatures With New Five-Layer Soil-Hydrology Scheme

    Science.gov (United States)

    Bunzel, Felix; Müller, Wolfgang A.; Dobrynin, Mikhail; Fröhlich, Kristina; Hagemann, Stefan; Pohlmann, Holger; Stacke, Tobias; Baehr, Johanna

    2018-01-01

    We evaluate the impact of a new five-layer soil-hydrology scheme on seasonal hindcast skill of 2 m temperatures over Europe obtained with the Max Planck Institute Earth System Model (MPI-ESM). Assimilation experiments from 1981 to 2010 and 10-member seasonal hindcasts initialized on 1 May each year are performed with MPI-ESM in two soil configurations, one using a bucket scheme and one a new five-layer soil-hydrology scheme. We find the seasonal hindcast skill for European summer temperatures to improve with the five-layer scheme compared to the bucket scheme and investigate possible causes for these improvements. First, improved indirect soil moisture assimilation allows for enhanced soil moisture-temperature feedbacks in the hindcasts. Additionally, this leads to improved prediction of anomalies in the 500 hPa geopotential height surface, reflecting more realistic atmospheric circulation patterns over Europe.

  13. Pursuing the method of multiple working hypotheses for hydrological modeling

    NARCIS (Netherlands)

    Clark, M.P.; Kavetski, D.; Fenicia, F.

    2011-01-01

    Ambiguities in the representation of environmental processes have manifested themselves in a plethora of hydrological models, differing in almost every aspect of their conceptualization and implementation. The current overabundance of models is symptomatic of an insufficient scientific understanding

  14. Bayesian analysis of data and model error in rainfall-runoff hydrological models

    Science.gov (United States)

    Kavetski, D.; Franks, S. W.; Kuczera, G.

    2004-12-01

    A major unresolved issue in the identification and use of conceptual hydrologic models is realistic description of uncertainty in the data and model structure. In particular, hydrologic parameters often cannot be measured directly and must be inferred (calibrated) from observed forcing/response data (typically, rainfall and runoff). However, rainfall varies significantly in space and time, yet is often estimated from sparse gauge networks. Recent work showed that current calibration methods (e.g., standard least squares, multi-objective calibration, generalized likelihood uncertainty estimation) ignore forcing uncertainty and assume that the rainfall is known exactly. Consequently, they can yield strongly biased and misleading parameter estimates. This deficiency confounds attempts to reliably test model hypotheses, to generalize results across catchments (the regionalization problem) and to quantify predictive uncertainty when the hydrologic model is extrapolated. This paper continues the development of a Bayesian total error analysis (BATEA) methodology for the calibration and identification of hydrologic models, which explicitly incorporates the uncertainty in both the forcing and response data, and allows systematic model comparison based on residual model errors and formal Bayesian hypothesis testing (e.g., using Bayes factors). BATEA is based on explicit stochastic models for both forcing and response uncertainty, whereas current techniques focus solely on response errors. Hence, unlike existing methods, the BATEA parameter equations directly reflect the modeler's confidence in all the data. We compare several approaches to approximating the parameter distributions: a) full Markov Chain Monte Carlo methods and b) simplified approaches based on linear approximations. Studies using synthetic and real data from the US and Australia show that BATEA systematically reduces the parameter bias, leads to more meaningful model fits and allows model comparison taking

  15. Relative effects of statistical preprocessing and postprocessing on a regional hydrological ensemble prediction system

    Science.gov (United States)

    Sharma, Sanjib; Siddique, Ridwan; Reed, Seann; Ahnert, Peter; Mendoza, Pablo; Mejia, Alfonso

    2018-03-01

    The relative roles of statistical weather preprocessing and streamflow postprocessing in hydrological ensemble forecasting at short- to medium-range forecast lead times (day 1-7) are investigated. For this purpose, a regional hydrologic ensemble prediction system (RHEPS) is developed and implemented. The RHEPS is comprised of the following components: (i) hydrometeorological observations (multisensor precipitation estimates, gridded surface temperature, and gauged streamflow); (ii) weather ensemble forecasts (precipitation and near-surface temperature) from the National Centers for Environmental Prediction 11-member Global Ensemble Forecast System Reforecast version 2 (GEFSRv2); (iii) NOAA's Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM); (iv) heteroscedastic censored logistic regression (HCLR) as the statistical preprocessor; (v) two statistical postprocessors, an autoregressive model with a single exogenous variable (ARX(1,1)) and quantile regression (QR); and (vi) a comprehensive verification strategy. To implement the RHEPS, 1 to 7 days weather forecasts from the GEFSRv2 are used to force HL-RDHM and generate raw ensemble streamflow forecasts. Forecasting experiments are conducted in four nested basins in the US Middle Atlantic region, ranging in size from 381 to 12 362 km2. Results show that the HCLR preprocessed ensemble precipitation forecasts have greater skill than the raw forecasts. These improvements are more noticeable in the warm season at the longer lead times (> 3 days). Both postprocessors, ARX(1,1) and QR, show gains in skill relative to the raw ensemble streamflow forecasts, particularly in the cool season, but QR outperforms ARX(1,1). The scenarios that implement preprocessing and postprocessing separately tend to perform similarly, although the postprocessing-alone scenario is often more effective. The scenario involving both preprocessing and postprocessing consistently outperforms the other scenarios. In some cases

  16. Testing the Structure of Hydrological Models using Genetic Programming

    Science.gov (United States)

    Selle, B.; Muttil, N.

    2009-04-01

    Genetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that genetic programming can be used to test the structure hydrological models and to identify dominant processes in hydrological systems. To test this, genetic programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, water table depths and water ponding times during surface irrigation. Using genetic programming, a simple model of deep percolation was consistently evolved in multiple model runs. This simple and interpretable model confirmed the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that genetic programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  17. Hydrologi

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    Hydro1ogi er den videnskab, der omhand1er jordens vand, dets forekomst, cirku1ation og forde1ing, dets kemiske og fysiske egenskaber samt indvirkning på omgivelserne, herunder dets relation ti1 alt liv på jorden. Således lyder en b1andt mange definitioner på begrebet hydrologi, og som man kan se...

  18. Use of hydrological modelling and isotope techniques in Guvenc basin

    International Nuclear Information System (INIS)

    Altinbilek, D.

    1991-07-01

    The study covers the work performed under Project No. 335-RC-TUR-5145 entitled ''Use of Hydrologic Modelling and Isotope Techniques in Guvenc Basin'' and is an initial part of a program for estimating runoff from Central Anatolia Watersheds. The study presented herein consists of mainly three parts: 1) the acquisition of a library of rainfall excess, direct runoff and isotope data for Guvenc basin; 2) the modification of SCS model to be applied to Guvenc basin first and then to other basins of Central Anatolia for predicting the surface runoff from gaged and ungaged watersheds; and 3) the use of environmental isotope technique in order to define the basin components of streamflow of Guvenc basin. 31 refs, figs and tabs

  19. Using models for the optimization of hydrologic monitoring

    Science.gov (United States)

    Fienen, Michael N.; Hunt, Randall J.; Doherty, John E.; Reeves, Howard W.

    2011-01-01

    Hydrologists are often asked what kind of monitoring network can most effectively support science-based water-resources management decisions. Currently (2011), hydrologic monitoring locations often are selected by addressing observation gaps in the existing network or non-science issues such as site access. A model might then be calibrated to available data and applied to a prediction of interest (regardless of how well-suited that model is for the prediction). However, modeling tools are available that can inform which locations and types of data provide the most 'bang for the buck' for a specified prediction. Put another way, the hydrologist can determine which observation data most reduce the model uncertainty around a specified prediction. An advantage of such an approach is the maximization of limited monitoring resources because it focuses on the difference in prediction uncertainty with or without additional collection of field data. Data worth can be calculated either through the addition of new data or subtraction of existing information by reducing monitoring efforts (Beven, 1993). The latter generally is not widely requested as there is explicit recognition that the worth calculated is fundamentally dependent on the prediction specified. If a water manager needs a new prediction, the benefits of reducing the scope of a monitoring effort, based on an old prediction, may be erased by the loss of information important for the new prediction. This fact sheet focuses on the worth or value of new data collection by quantifying the reduction in prediction uncertainty achieved be adding a monitoring observation. This calculation of worth can be performed for multiple potential locations (and types) of observations, which then can be ranked for their effectiveness for reducing uncertainty around the specified prediction. This is implemented using a Bayesian approach with the PREDUNC utility in the parameter estimation software suite PEST (Doherty, 2010). The

  20. Seasonal Gravity Field Variations from GRACE and Hydrological Models

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Hinderer, Jacques; Lemoine, Frank G.

    2004-01-01

    . Four global hydrological models covering the same period in 2002–2003 as the GRACE observations were investigated to for their mutual consistency in estimates of annual variation in terrestrial water storage and related temporal changes in gravity field. The hydrological models differ by a maximum of 2...... µGal or nearly 5 cm equivalent water storage in selected regions. Integrated over all land masses the standard deviation among the annual signal from the four hydrological models are 0.6 µGal equivalent to around 1.4 cm in equivalent water layer thickness. The estimated accuracy of the annual...

  1. Testing the structure of a hydrological model using Genetic Programming

    Science.gov (United States)

    Selle, Benny; Muttil, Nitin

    2011-01-01

    SummaryGenetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that Genetic Programming can be used to test the structure of hydrological models and to identify dominant processes in hydrological systems. To test this, Genetic Programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, watertable depths and water ponding times during surface irrigation. Using Genetic Programming, a simple model of deep percolation was recurrently evolved in multiple Genetic Programming runs. This simple and interpretable model supported the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that Genetic Programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  2. A Flexible Framework Hydrological Informatic Modeling System - HIMS

    Science.gov (United States)

    WANG, L.; Wang, Z.; Changming, L.; Li, J.; Bai, P.

    2017-12-01

    Simulating water cycling process temporally and spatially fitting for the characteristics of the study area was important for floods prediction and streamflow simulation with high accuracy, as soil properties, land scape, climate, and land managements were the critical factors influencing the non-linear relationship of rainfall-runoff at watershed scales. Most existing hydrological models cannot simulate water cycle process at different places with customized mechanisms with fixed single structure and mode. This study develops Hydro-Informatic Modeling System (HIMS) model with modular of each critical hydrological process with multiple choices for various scenarios to solve this problem. HIMS has the structure accounting for two runoff generation mechanisms of infiltration excess and saturation excess and estimated runoff with different methods including Time Variance Gain Model (TVGM), LCM which has good performance at ungauged areas, besides the widely used Soil Conservation Service-Curve Number (SCS-CN) method. Channel routing model contains the most widely used Muskingum, and kinematic wave equation with new solving method. HIMS model performance with its symbolic runoff generation model LCM was evaluated through comparison with the observed streamflow datasets of Lasha river watershed at hourly, daily, and monthly time steps. Comparisons between simulational and obervational streamflows were found with NSE higher than 0.87 and WE within ±20%. Water balance analysis about precipitation, streamflow, actual evapotranspiration (ET), and soil moisture change was conducted temporally at annual time step and it has been proved that HIMS model performance was reliable through comparison with literature results at the Lhasa River watershed.

  3. Advancements in Hydrology and Erosion Process Understanding and Post-Fire Hydrologic and Erosion Model Development for Semi-Arid Landscapes

    Science.gov (United States)

    Williams, C. Jason; Pierson, Frederick B.; Al-Hamdan, Osama Z.; Robichaud, Peter R.; Nearing, Mark A.; Hernandez, Mariano; Weltz, Mark A.; Spaeth, Kenneth E.; Goodrich, David C.

    2017-04-01

    Fire activity continues to increase in semi-arid regions around the globe. Private and governmental land management entities are challenged with predicting and mitigating post-fire hydrologic and erosion responses on these landscapes. For more than a decade, a team of scientists with the US Department of Agriculture has collaborated on extensive post-fire hydrologic field research and the application of field research to development of post-fire hydrology and erosion predictive technologies. Experiments funded through this research investigated the impacts of fire on vegetation and soils and the effects of these fire-induced changes on infiltration, runoff generation, erodibility, and soil erosion processes. The distribution of study sites spans diverse topography across grassland, shrubland, and woodland landscapes throughout the western United States. Knowledge gleaned from the extensive field experiments was applied to develop and enhance physically-based models for hillslope- to watershed-scale runoff and erosion prediction. Our field research and subsequent data syntheses have identified key knowledge gaps and challenges regarding post-fire hydrology and erosion modeling. Our presentation details some consistent trends across a diverse domain and varying landscape conditions based on our extensive field campaigns. We demonstrate how field data have advanced our understanding of post-fire hydrology and erosion for semi-arid landscapes and highlight remaining key knowledge gaps. Lastly, we briefly show how our well-replicated experimental methodologies have contributed to advancements in hydrologic and erosion model development for the post-fire environment.

  4. Revisiting an interdisciplinary hydrological modelling project. A socio-hydrology (?) example from the early 2000s

    Science.gov (United States)

    Seidl, Roman; Barthel, Roland

    2016-04-01

    Interdisciplinary scientific and societal knowledge plays an increasingly important role in global change research. Also, in the field of water resources interdisciplinarity as well as cooperation with stakeholders from outside academia have been recognized as important. In this contribution, we revisit an integrated regional modelling system (DANUBIA), which was developed by an interdisciplinary team of researchers and relied on stakeholder participation in the framework of the GLOWA-Danube project from 2001 to 2011 (Mauser and Prasch 2016). As the model was developed before the current increase in literature on participatory modelling and interdisciplinarity, we ask how a socio-hydrology approach would have helped and in what way it would have made the work different. The present contribution firstly presents the interdisciplinary concept of DANUBIA, mainly with focus on the integration of human behaviour in a spatially explicit, process-based numerical modelling system (Roland Barthel, Janisch, Schwarz, Trifkovic, Nickel, Schulz, and Mauser 2008; R. Barthel, Nickel, Meleg, Trifkovic, and Braun 2005). Secondly, we compare the approaches to interdisciplinarity in GLOWA-Danube with concepts and ideas presented by socio-hydrology. Thirdly, we frame DANUBIA and a review of key literature on socio-hydrology in the context of a survey among hydrologists (N = 184). This discussion is used to highlight gaps and opportunities of the socio-hydrology approach. We show that the interdisciplinary aspect of the project and the participatory process of stakeholder integration in DANUBIA were not entirely successful. However, important insights were gained and important lessons were learnt. Against the background of these experiences we feel that in its current state, socio-hydrology is still lacking a plan for knowledge integration. Moreover, we consider necessary that socio-hydrology takes into account the lessons learnt from these earlier examples of knowledge integration

  5. Hydrological Modeling of the Jiaoyi Watershed (China) Using HSPF Model

    Science.gov (United States)

    Yan, Chang-An; Zhang, Wanchang; Zhang, Zhijie

    2014-01-01

    A watershed hydrological model, hydrological simulation program-Fortran (HSPF), was applied to simulate the spatial and temporal variation of hydrological processes in the Jiaoyi watershed of Huaihe River Basin, the heaviest shortage of water resources and polluted area in China. The model was calibrated using the years 2001–2004 and validated with data from 2005 to 2006. Calibration and validation results showed that the model generally simulated mean monthly and daily runoff precisely due to the close matching hydrographs between simulated and observed runoff, as well as the excellent evaluation indicators such as Nash-Sutcliffe efficiency (NSE), coefficient of correlation (R 2), and the relative error (RE). The similar simulation results between calibration and validation period showed that all the calibrated parameters had a certain representation in Jiaoyi watershed. Additionally, the simulation in rainy months was more accurate than the drought months. Another result in this paper was that HSPF was also capable of estimating the water balance components reasonably and realistically in space through the whole watershed. The calibrated model can be used to explore the effects of climate change scenarios and various watershed management practices on the water resources and water environment in the basin. PMID:25013863

  6. Hydrological Process Simulation of Inland River Watershed: A Case Study of the Heihe River Basin with Multiple Hydrological Models

    OpenAIRE

    Lili Wang; Zhonggen Wang; Jingjie Yu; Yichi Zhang; Suzhen Dang

    2018-01-01

    Simulating the hydrological processes of an inland river basin can help provide the scientific guidance to the policies of water allocation among different subbasins and water resource management groups within the subbasins. However, it is difficult to simulate the hydrological processes of an inland river basin with hydrological models due to the non-consistent hydrological characteristics of the entire basin. This study presents a solution to this problem with a case study about the hydrolo...

  7. Thermal and hydrologic responses to climate change predict marked alterations in boreal stream invertebrate assemblages.

    Science.gov (United States)

    Mustonen, Kaisa-Riikka; Mykrä, Heikki; Marttila, Hannu; Sarremejane, Romain; Veijalainen, Noora; Sippel, Kalle; Muotka, Timo; Hawkins, Charles P

    2018-06-01

    Air temperature at the northernmost latitudes is predicted to increase steeply and precipitation to become more variable by the end of the 21st century, resulting in altered thermal and hydrological regimes. We applied five climate scenarios to predict the future (2070-2100) benthic macroinvertebrate assemblages at 239 near-pristine sites across Finland (ca. 1200 km latitudinal span). We used a multitaxon distribution model with air temperature and modeled daily flow as predictors. As expected, projected air temperature increased the most in northernmost Finland. Predicted taxonomic richness also increased the most in northern Finland, congruent with the predicted northwards shift of many species' distributions. Compositional changes were predicted to be high even without changes in richness, suggesting that species replacement may be the main mechanism causing climate-induced changes in macroinvertebrate assemblages. Northern streams were predicted to lose much of the seasonality of their flow regimes, causing potentially marked changes in stream benthic assemblages. Sites with the highest loss of seasonality were predicted to support future assemblages that deviate most in compositional similarity from the present-day assemblages. Macroinvertebrate assemblages were also predicted to change more in headwaters than in larger streams, as headwaters were particularly sensitive to changes in flow patterns. Our results emphasize the importance of focusing protection and mitigation on headwater streams with high-flow seasonality because of their vulnerability to climate change. © 2018 John Wiley & Sons Ltd.

  8. An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems

    Science.gov (United States)

    Yu Zhang; Changsheng Li; Carl C. Trettin; Harbin Li; Ge Sun

    2002-01-01

    Wetland ecosystems are an important component in global carbon (C) cycles and may exert a large influence on global clinlate change. Predictions of C dynamics require us to consider interactions among many critical factors of soil, hydrology, and vegetation. However, few such integrated C models exist for wetland ecosystems. In this paper, we report a simulation model...

  9. Probabilistic hydrological nowcasting using radar based nowcasting techniques and distributed hydrological models: application in the Mediterranean area

    Science.gov (United States)

    Poletti, Maria Laura; Pignone, Flavio; Rebora, Nicola; Silvestro, Francesco

    2017-04-01

    The exposure of the urban areas to flash-floods is particularly significant to Mediterranean coastal cities, generally densely-inhabited. Severe rainfall events often associated to intense and organized thunderstorms produced, during the last century, flash-floods and landslides causing serious damages to urban areas and in the worst events led to human losses. The temporal scale of these events has been observed strictly linked to the size of the catchments involved: in the Mediterranean area a great number of catchments that pass through coastal cities have a small drainage area (less than 100 km2) and a corresponding hydrologic response timescale in the order of a few hours. A suitable nowcasting chain is essential for the on time forecast of this kind of events. In fact meteorological forecast systems are unable to predict precipitation at the scale of these events, small both at spatial (few km) and temporal (hourly) scales. Nowcasting models, covering the time interval of the following two hours starting from the observation try to extend the predictability limits of the forecasting models in support of real-time flood alert system operations. This work aims to present the use of hydrological models coupled with nowcasting techniques. The nowcasting model PhaSt furnishes an ensemble of equi-probable future precipitation scenarios on time horizons of 1-3 h starting from the most recent radar observations. The coupling of the nowcasting model PhaSt with the hydrological model Continuum allows to forecast the flood with a few hours in advance. In this way it is possible to generate different discharge prediction for the following hours and associated return period maps: these maps can be used as a support in the decisional process for the warning system.

  10. Publishing and sharing of hydrologic models through WaterHUB

    Science.gov (United States)

    Merwade, V.; Ruddell, B. L.; Song, C.; Zhao, L.; Kim, J.; Assi, A.

    2011-12-01

    Most hydrologists use hydrologic models to simulate the hydrologic processes to understand hydrologic pathways and fluxes for research, decision making and engineering design. Once these tasks are complete including publication of results, the models generally are not published or made available to the public for further use and improvement. Although publication or sharing of models is not required for journal publications, sharing of models may open doors for new collaborations, and avoids duplication of efforts if other researchers are interested in simulating a particular watershed for which a model already exists. For researchers, who are interested in sharing models, there are limited avenues to publishing their models to the wider community. Towards filling this gap, a prototype cyberinfrastructure (CI), called WaterHUB, is developed for sharing hydrologic data and modeling tools in an interactive environment. To test the utility of WaterHUB for sharing hydrologic models, a system to publish and share SWAT (Soil Water Assessment Tool) is developed. Users can utilize WaterHUB to search and download existing SWAT models, and also upload new SWAT models. Metadata such as the name of the watershed, name of the person or agency who developed the model, simulation period, time step, and list of calibrated parameters also published with individual model.

  11. Data-Driven Model Uncertainty Estimation in Hydrologic Data Assimilation

    Science.gov (United States)

    Pathiraja, S.; Moradkhani, H.; Marshall, L.; Sharma, A.; Geenens, G.

    2018-02-01

    The increasing availability of earth observations necessitates mathematical methods to optimally combine such data with hydrologic models. Several algorithms exist for such purposes, under the umbrella of data assimilation (DA). However, DA methods are often applied in a suboptimal fashion for complex real-world problems, due largely to several practical implementation issues. One such issue is error characterization, which is known to be critical for a successful assimilation. Mischaracterized errors lead to suboptimal forecasts, and in the worst case, to degraded estimates even compared to the no assimilation case. Model uncertainty characterization has received little attention relative to other aspects of DA science. Traditional methods rely on subjective, ad hoc tuning factors or parametric distribution assumptions that may not always be applicable. We propose a novel data-driven approach (named SDMU) to model uncertainty characterization for DA studies where (1) the system states are partially observed and (2) minimal prior knowledge of the model error processes is available, except that the errors display state dependence. It includes an approach for estimating the uncertainty in hidden model states, with the end goal of improving predictions of observed variables. The SDMU is therefore suited to DA studies where the observed variables are of primary interest. Its efficacy is demonstrated through a synthetic case study with low-dimensional chaotic dynamics and a real hydrologic experiment for one-day-ahead streamflow forecasting. In both experiments, the proposed method leads to substantial improvements in the hidden states and observed system outputs over a standard method involving perturbation with Gaussian noise.

  12. Comparison of global optimization approaches for robust calibration of hydrologic model parameters

    Science.gov (United States)

    Jung, I. W.

    2015-12-01

    Robustness of the calibrated parameters of hydrologic models is necessary to provide a reliable prediction of future performance of watershed behavior under varying climate conditions. This study investigated calibration performances according to the length of calibration period, objective functions, hydrologic model structures and optimization methods. To do this, the combination of three global optimization methods (i.e. SCE-UA, Micro-GA, and DREAM) and four hydrologic models (i.e. SAC-SMA, GR4J, HBV, and PRMS) was tested with different calibration periods and objective functions. Our results showed that three global optimization methods provided close calibration performances under different calibration periods, objective functions, and hydrologic models. However, using the agreement of index, normalized root mean square error, Nash-Sutcliffe efficiency as the objective function showed better performance than using correlation coefficient and percent bias. Calibration performances according to different calibration periods from one year to seven years were hard to generalize because four hydrologic models have different levels of complexity and different years have different information content of hydrological observation. Acknowledgements This research was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  13. Does model performance improve with complexity? A case study with three hydrological models

    Science.gov (United States)

    Orth, Rene; Staudinger, Maria; Seneviratne, Sonia I.; Seibert, Jan; Zappa, Massimiliano

    2015-04-01

    In recent decades considerable progress has been made in climate model development. Following the massive increase in computational power, models became more sophisticated. At the same time also simple conceptual models have advanced. In this study we validate and compare three hydrological models of different complexity to investigate whether their performance varies accordingly. For this purpose we use runoff and also soil moisture measurements, which allow a truly independent validation, from several sites across Switzerland. The models are calibrated in similar ways with the same runoff data. Our results show that the more complex models HBV and PREVAH outperform the simple water balance model (SWBM) in case of runoff but not for soil moisture. Furthermore the most sophisticated PREVAH model shows an added value compared to the HBV model only in case of soil moisture. Focusing on extreme events we find generally improved performance of the SWBM during drought conditions and degraded agreement with observations during wet extremes. For the more complex models we find the opposite behavior, probably because they were primarily developed for prediction of runoff extremes. As expected given their complexity, HBV and PREVAH have more problems with over-fitting. All models show a tendency towards better performance in lower altitudes as opposed to (pre-) alpine sites. The results vary considerably across the investigated sites. In contrast, the different metrics we consider to estimate the agreement between models and observations lead to similar conclusions, indicating that the performance of the considered models is similar at different time scales as well as for anomalies and long-term means. We conclude that added complexity does not necessarily lead to improved performance of hydrological models, and that performance can vary greatly depending on the considered hydrological variable (e.g. runoff vs. soil moisture) or hydrological conditions (floods vs. droughts).

  14. Using radar altimetry to update a large-scale hydrological model of the Brahmaputra river basin

    DEFF Research Database (Denmark)

    Finsen, F.; Milzow, Christian; Smith, R.

    2014-01-01

    Measurements of river and lake water levels from space-borne radar altimeters (past missions include ERS, Envisat, Jason, Topex) are useful for calibration and validation of large-scale hydrological models in poorly gauged river basins. Altimetry data availability over the downstream reaches...... of the Brahmaputra is excellent (17 high-quality virtual stations from ERS-2, 6 from Topex and 10 from Envisat are available for the Brahmaputra). In this study, altimetry data are used to update a large-scale Budyko-type hydrological model of the Brahmaputra river basin in real time. Altimetry measurements...... improved model performance considerably. The Nash-Sutcliffe model efficiency increased from 0.77 to 0.83. Real-time river basin modelling using radar altimetry has the potential to improve the predictive capability of large-scale hydrological models elsewhere on the planet....

  15. A remote sensing driven distributed hydrological model of the Senegal River basin

    DEFF Research Database (Denmark)

    Stisen, Simon; Jensen, Karsten Høgh; Sandholt, Inge

    2008-01-01

    outputs of AET from both model setups was carried out. This revealed substantial differences in the spatial patterns of AET for the examined subcatchment, in spite of similar values of predicted discharge and average AET. The potential for driving large scale hydrological models using remote sensing data......Distributed hydrological models require extensive data amounts for driving the models and for parameterization of the land surface and subsurface. This study investigates the potential of applying remote sensing (RS) based input data in a hydrological model for the 350,000 km2 Senegal River basin...... in West Africa. By utilizing remote sensing data to estimate precipitation, potential evapotranspiration (PET) and leaf area index (LAI) the model was driven entirely by remote sensing based data and independent of traditional meteorological data. The remote sensing retrievals were based on data from...

  16. Cyberinfrastructure to Support Collaborative and Reproducible Computational Hydrologic Modeling

    Science.gov (United States)

    Goodall, J. L.; Castronova, A. M.; Bandaragoda, C.; Morsy, M. M.; Sadler, J. M.; Essawy, B.; Tarboton, D. G.; Malik, T.; Nijssen, B.; Clark, M. P.; Liu, Y.; Wang, S. W.

    2017-12-01

    Creating cyberinfrastructure to support reproducibility of computational hydrologic models is an important research challenge. Addressing this challenge requires open and reusable code and data with machine and human readable metadata, organized in ways that allow others to replicate results and verify published findings. Specific digital objects that must be tracked for reproducible computational hydrologic modeling include (1) raw initial datasets, (2) data processing scripts used to clean and organize the data, (3) processed model inputs, (4) model results, and (5) the model code with an itemization of all software dependencies and computational requirements. HydroShare is a cyberinfrastructure under active development designed to help users store, share, and publish digital research products in order to improve reproducibility in computational hydrology, with an architecture supporting hydrologic-specific resource metadata. Researchers can upload data required for modeling, add hydrology-specific metadata to these resources, and use the data directly within HydroShare.org for collaborative modeling using tools like CyberGIS, Sciunit-CLI, and JupyterHub that have been integrated with HydroShare to run models using notebooks, Docker containers, and cloud resources. Current research aims to implement the Structure For Unifying Multiple Modeling Alternatives (SUMMA) hydrologic model within HydroShare to support hypothesis-driven hydrologic modeling while also taking advantage of the HydroShare cyberinfrastructure. The goal of this integration is to create the cyberinfrastructure that supports hypothesis-driven model experimentation, education, and training efforts by lowering barriers to entry, reducing the time spent on informatics technology and software development, and supporting collaborative research within and across research groups.

  17. Hydrological model for the transport of radioisotope in surface water

    International Nuclear Information System (INIS)

    Adoboah, E.K.

    2011-01-01

    The use of radioisotopes has gained grounds in Ghana as a result of the numerous benefits that could be derived from it. In Ghana, radioisotope materials are used for various purposes in a number of institutions. However, improper disposal of the waste poses threat to the environment. To evaluate the environmental impact of radioisotope pollution, mathematical models play a major role in predicting the pollution level in any medium. This study is concerned with the hydrological model for the transport of radioactive material in the river. The model was composed by employing partial differential equations, describing relevant physical processes evolution (water level, velocities and dissolved substances concentrations) that occurs in water bodies. The mass conservation and momentum laws, state equation and state transport equations are equation system basis. The explicit central difference scheme in space and a forward difference method in time were used for the evaluation of the generalized transport equation, the Advection-Dispersion Equation. A Matlab code was developed to predict the concentration of the radioactive contaminant at any particular time along the river and in a reservoir. The model was able to simulate accurately the various levels of radionuclide concentration changes in the flowing rivers as the flows are augmented by tributary inflows. (au)

  18. A Four-Stage Hybrid Model for Hydrological Time Series Forecasting

    Science.gov (United States)

    Di, Chongli; Yang, Xiaohua; Wang, Xiaochao

    2014-01-01

    Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on the principle of ‘denoising, decomposition and ensemble’. The proposed model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an extension of nonlinear prediction models. PMID:25111782

  19. A four-stage hybrid model for hydrological time series forecasting.

    Science.gov (United States)

    Di, Chongli; Yang, Xiaohua; Wang, Xiaochao

    2014-01-01

    Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on the principle of 'denoising, decomposition and ensemble'. The proposed model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an extension of nonlinear prediction models.

  20. A high-resolution European dataset for hydrologic modeling

    Science.gov (United States)

    Ntegeka, Victor; Salamon, Peter; Gomes, Goncalo; Sint, Hadewij; Lorini, Valerio; Thielen, Jutta

    2013-04-01

    There is an increasing demand for large scale hydrological models not only in the field of modeling the impact of climate change on water resources but also for disaster risk assessments and flood or drought early warning systems. These large scale models need to be calibrated and verified against large amounts of observations in order to judge their capabilities to predict the future. However, the creation of large scale datasets is challenging for it requires collection, harmonization, and quality checking of large amounts of observations. For this reason, only a limited number of such datasets exist. In this work, we present a pan European, high-resolution gridded dataset of meteorological observations (EFAS-Meteo) which was designed with the aim to drive a large scale hydrological model. Similar European and global gridded datasets already exist, such as the HadGHCND (Caesar et al., 2006), the JRC MARS-STAT database (van der Goot and Orlandi, 2003) and the E-OBS gridded dataset (Haylock et al., 2008). However, none of those provide similarly high spatial resolution and/or a complete set of variables to force a hydrologic model. EFAS-Meteo contains daily maps of precipitation, surface temperature (mean, minimum and maximum), wind speed and vapour pressure at a spatial grid resolution of 5 x 5 km for the time period 1 January 1990 - 31 December 2011. It furthermore contains calculated radiation, which is calculated by using a staggered approach depending on the availability of sunshine duration, cloud cover and minimum and maximum temperature, and evapotranspiration (potential evapotranspiration, bare soil and open water evapotranspiration). The potential evapotranspiration was calculated using the Penman-Monteith equation with the above-mentioned meteorological variables. The dataset was created as part of the development of the European Flood Awareness System (EFAS) and has been continuously updated throughout the last years. The dataset variables are used as

  1. Landscape-based hydrological modelling : Understanding the influence of climate, topography, and vegetation on catchment hydrology

    NARCIS (Netherlands)

    Gao, H.

    2015-01-01

    In this thesis, a novel landscape-based hydrological model is presented that was developed and tested in numerous catchments around the world with various landscapes and climate conditions. A landscape is considered to consist of a topography and an ecosystem living on it. Firstly, the influence of

  2. Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation

    NARCIS (Netherlands)

    Vrugt, J.A.; Braak, ter C.J.F.; Clark, M.P.; Hyman, J.M.; Robinson, B.A.

    2008-01-01

    There is increasing consensus in the hydrologic literature that an appropriate framework for streamflow forecasting and simulation should include explicit recognition of forcing and parameter and model structural error. This paper presents a novel Markov chain Monte Carlo (MCMC) sampler, entitled

  3. A question driven socio-hydrological modeling process

    Science.gov (United States)

    Garcia, M.; Portney, K.; Islam, S.

    2016-01-01

    Human and hydrological systems are coupled: human activity impacts the hydrological cycle and hydrological conditions can, but do not always, trigger changes in human systems. Traditional modeling approaches with no feedback between hydrological and human systems typically cannot offer insight into how different patterns of natural variability or human-induced changes may propagate through this coupled system. Modeling of coupled human-hydrological systems, also called socio-hydrological systems, recognizes the potential for humans to transform hydrological systems and for hydrological conditions to influence human behavior. However, this coupling introduces new challenges and existing literature does not offer clear guidance regarding model conceptualization. There are no universally accepted laws of human behavior as there are for the physical systems; furthermore, a shared understanding of important processes within the field is often used to develop hydrological models, but there is no such consensus on the relevant processes in socio-hydrological systems. Here we present a question driven process to address these challenges. Such an approach allows modeling structure, scope and detail to remain contingent on and adaptive to the question context. We demonstrate the utility of this process by revisiting a classic question in water resources engineering on reservoir operation rules: what is the impact of reservoir operation policy on the reliability of water supply for a growing city? Our example model couples hydrological and human systems by linking the rate of demand decreases to the past reliability to compare standard operating policy (SOP) with hedging policy (HP). The model shows that reservoir storage acts both as a buffer for variability and as a delay triggering oscillations around a sustainable level of demand. HP reduces the threshold for action thereby decreasing the delay and the oscillation effect. As a result, per capita demand decreases during

  4. Calibration of hydrological models using flow-duration curves

    Directory of Open Access Journals (Sweden)

    I. K. Westerberg

    2011-07-01

    Full Text Available The degree of belief we have in predictions from hydrologic models will normally depend on how well they can reproduce observations. Calibrations with traditional performance measures, such as the Nash-Sutcliffe model efficiency, are challenged by problems including: (1 uncertain discharge data, (2 variable sensitivity of different performance measures to different flow magnitudes, (3 influence of unknown input/output errors and (4 inability to evaluate model performance when observation time periods for discharge and model input data do not overlap. This paper explores a calibration method using flow-duration curves (FDCs to address these problems. The method focuses on reproducing the observed discharge frequency distribution rather than the exact hydrograph. It consists of applying limits of acceptability for selected evaluation points (EPs on the observed uncertain FDC in the extended GLUE approach. Two ways of selecting the EPs were tested – based on equal intervals of discharge and of volume of water. The method was tested and compared to a calibration using the traditional model efficiency for the daily four-parameter WASMOD model in the Paso La Ceiba catchment in Honduras and for Dynamic TOPMODEL evaluated at an hourly time scale for the Brue catchment in Great Britain. The volume method of selecting EPs gave the best results in both catchments with better calibrated slow flow, recession and evaporation than the other criteria. Observed and simulated time series of uncertain discharges agreed better for this method both in calibration and prediction in both catchments. An advantage with the method is that the rejection criterion is based on an estimation of the uncertainty in discharge data and that the EPs of the FDC can be chosen to reflect the aims of the modelling application, e.g. using more/less EPs at high/low flows. While the method appears less sensitive to epistemic input/output errors than previous use of limits of

  5. Hydrological Process Simulation of Inland River Watershed: A Case Study of the Heihe River Basin with Multiple Hydrological Models

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2018-04-01

    Full Text Available Simulating the hydrological processes of an inland river basin can help provide the scientific guidance to the policies of water allocation among different subbasins and water resource management groups within the subbasins. However, it is difficult to simulate the hydrological processes of an inland river basin with hydrological models due to the non-consistent hydrological characteristics of the entire basin. This study presents a solution to this problem with a case study about the hydrological process simulation in an inland river basin in China, Heihe River basin. It is divided into the upper, middle, and lower reaches based on the distinctive hydrological characteristics in the Heihe River basin, and three hydrological models are selected, applied, and tested to simulate the hydrological cycling processes for each reach. The upper reach is the contributing area with the complex runoff generation processes, therefore, the hydrological informatic modeling system (HIMS is utilized due to its combined runoff generation mechanisms. The middle reach has strong impacts of intensive human activities on the interactions of surface and subsurface flows, so a conceptual water balance model is applied to simulate the water balance process. For the lower reach, as the dissipative area with groundwater dominating the hydrological process, a groundwater modeling system with the embedment of MODFLOW model is applied to simulate the groundwater dynamics. Statistical parameters and water balance analysis prove that the three models have excellent performances in simulating the hydrological process of the three reaches. Therefore, it is an effective way to simulate the hydrological process of inland river basin with multiple hydrological models according to the characteristics of each subbasin.

  6. Catchment coevolution: A useful framework for improving predictions of hydrological change?

    Science.gov (United States)

    Troch, Peter A.

    2017-04-01

    The notion that landscape features have co-evolved over time is well known in the Earth sciences. Hydrologists have recently called for a more rigorous connection between emerging spatial patterns of landscape features and the hydrological response of catchments, and have termed this concept catchment coevolution. In this presentation we present a general framework of catchment coevolution that could improve predictions of hydrologic change. We first present empirical evidence of the interaction and feedback of landscape evolution and changes in hydrological response. From this review it is clear that the independent drivers of catchment coevolution are climate, geology, and tectonics. We identify common currency that allows comparing the levels of activity of these independent drivers, such that, at least conceptually, we can quantify the rate of evolution or aging. Knowing the hydrologic age of a catchment by itself is not very meaningful without linking age to hydrologic response. Two avenues of investigation have been used to understand the relationship between (differences in) age and hydrological response: (i) one that is based on relating present landscape features to runoff processes that are hypothesized to be responsible for the current fingerprints in the landscape; and (ii) one that takes advantage of an experimental design known as space-for-time substitution. Both methods have yielded significant insights in the hydrologic response of landscapes with different histories. If we want to make accurate predictions of hydrologic change, we will also need to be able to predict how the catchment will further coevolve in association with changes in the activity levels of the drivers (e.g., climate). There is ample evidence in the literature that suggests that whole-system prediction of catchment coevolution is, at least in principle, plausible. With this imperative we outline a research agenda that implements the concepts of catchment coevolution for building

  7. Hillslope hydrological modeling : the role of bedrock geometry and hillslope-stream interaction

    NARCIS (Netherlands)

    Shahedi, K.

    2008-01-01

    Keywords: Hillslope hydrology, hydrological modeling, bedrock geometry, boundary condition, numerical solution.

    This thesis focuses on hillslope subsurface flow as a dominant control on the hydrological processes defining the catchment response to rainfall. Due to the difficulties

  8. Coupling Hydrologic and Hydrodynamic Models to Estimate PMF

    Science.gov (United States)

    Felder, G.; Weingartner, R.

    2015-12-01

    Most sophisticated probable maximum flood (PMF) estimations derive the PMF from the probable maximum precipitation (PMP) by applying deterministic hydrologic models calibrated with observed data. This method is based on the assumption that the hydrological system is stationary, meaning that the system behaviour during the calibration period or the calibration event is presumed to be the same as it is during the PMF. However, as soon as a catchment-specific threshold is reached, the system is no longer stationary. At or beyond this threshold, retention areas, new flow paths, and changing runoff processes can strongly affect downstream peak discharge. These effects can be accounted for by coupling hydrologic and hydrodynamic models, a technique that is particularly promising when the expected peak discharge may considerably exceed the observed maximum discharge. In such cases, the coupling of hydrologic and hydraulic models has the potential to significantly increase the physical plausibility of PMF estimations. This procedure ensures both that the estimated extreme peak discharge does not exceed the physical limit based on riverbed capacity and that the dampening effect of inundation processes on peak discharge is considered. Our study discusses the prospect of considering retention effects on PMF estimations by coupling hydrologic and hydrodynamic models. This method is tested by forcing PREVAH, a semi-distributed deterministic hydrological model, with randomly generated, physically plausible extreme precipitation patterns. The resulting hydrographs are then used to externally force the hydraulic model BASEMENT-ETH (riverbed in 1D, potential inundation areas in 2D). Finally, the PMF estimation results obtained using the coupled modelling approach are compared to the results obtained using ordinary hydrologic modelling.

  9. airGRteaching: an R-package designed for teaching hydrology with lumped hydrological models

    Science.gov (United States)

    Thirel, Guillaume; Delaigue, Olivier; Coron, Laurent; Andréassian, Vazken; Brigode, Pierre

    2017-04-01

    Lumped hydrological models are useful and convenient tools for research, engineering and educational purposes. They propose catchment-scale representations of the precipitation-discharge relationship. Thanks to their limited data requirements, they can be easily implemented and run. With such models, it is possible to simulate a number of hydrological key processes over the catchment with limited structural and parametric complexity, typically evapotranspiration, runoff, underground losses, etc. The Hydrology Group at Irstea (Antony) has been developing a suite of rainfall-runoff models over the past 30 years. This resulted in a suite of models running at different time steps (from hourly to annual) applicable for various issues including water balance estimation, forecasting, simulation of impacts and scenario testing. Recently, Irstea has developed an easy-to-use R-package (R Core Team, 2016), called airGR (Coron et al., 2016, 2017), to make these models widely available. Although its initial target public was hydrological modellers, the package is already used for educational purposes. Indeed, simple models allow for rapidly visualising the effects of parameterizations and model components on flows hydrographs. In order to avoid the difficulties that students may have when manipulating R and datasets, we developed (Delaigue and Coron, 2016): - Three simplified functions to prepare data, calibrate a model and run a simulation - Simplified and dynamic plot functions - A shiny (Chang et al., 2016) interface that connects this R-package to a browser-based visualisation tool. On this interface, the students can use different hydrological models (including the possibility to use a snow-accounting model), manually modify their parameters and automatically calibrate their parameters with diverse objective functions. One of the visualisation tabs of the interface includes observed precipitation and temperature, simulated snowpack (if any), observed and simulated

  10. Using the SIMGRO regional hydrological model to evaluate salinity control measures in an irrigation area

    NARCIS (Netherlands)

    Kupper, E.; Querner, E.P.; Morábito, J.A.; Menenti, M.

    2002-01-01

    In irrigated areas with drainage and an important interaction with the groundwater system, it is often difficult to predict effects of measures to control salinity. Therefore, in order to evaluate measures to control salinity the SIMGRO integrated regional hydrological model was extended with a

  11. Soil Systems for Upscaling Saturated Hydraulic Conductivity (Ksat) for Hydrological Modeling in the Critical Zone

    Science.gov (United States)

    Successful hydrological model predictions depend on appropriate framing of scale and the spatial-temporal accuracy of input parameters describing soil hydraulic properties. Saturated soil hydraulic conductivity (Ksat) is one of the most important properties influencing water movement through soil un...

  12. A sensitivity analysis of regional and small watershed hydrologic models

    Science.gov (United States)

    Ambaruch, R.; Salomonson, V. V.; Simmons, J. W.

    1975-01-01

    Continuous simulation models of the hydrologic behavior of watersheds are important tools in several practical applications such as hydroelectric power planning, navigation, and flood control. Several recent studies have addressed the feasibility of using remote earth observations as sources of input data for hydrologic models. The objective of the study reported here was to determine how accurately remotely sensed measurements must be to provide inputs to hydrologic models of watersheds, within the tolerances needed for acceptably accurate synthesis of streamflow by the models. The study objective was achieved by performing a series of sensitivity analyses using continuous simulation models of three watersheds. The sensitivity analysis showed quantitatively how variations in each of 46 model inputs and parameters affect simulation accuracy with respect to five different performance indices.

  13. Evaluation TRMM Rainfall Data In Hydrological Modeling For An Ungaged In Lhasa River Basin

    Science.gov (United States)

    Ji, H. J.; Liu, J.

    2017-12-01

    Evaluation TRMM Rainfall Data In Hydrological Modeling For An Ungaged In Lhasa River BasinHaijuan Ji1* Jintao Liu1,2 Shanshan Xu1___________________ 1College of Hydrology and Water Resources, Hohai University, Nanjing 210098, People's Republic of China 2State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, People's Republic of China ___________________ * Corresponding author. Tel.: +86-025-83786973; Fax: +86-025-83786606. E-mail address: Hhu201510@163.com (H.J. Ji). Abstract: The Tibetan Plateau plays an important role in regulating the regional hydrological processes due to its high elevations and being the headwaters of many major Asian river basins. If familiar with the distribution of hydrological characteristics, will help us improve the level of development and utilization the water resources. However, there exist glaciers and snow with few sites. It is significance for us to understand the glacier and snow hydrological process in order to recognize the evolution of water resources in the Tibetan. This manuscript takes Lhasa River as the study area, taking use of ground, remote sensing and assimilation data, taking advantage of high precision TRMM precipitation data and MODIS snow cover data, first, according to the data from ground station evaluation of TRMM data in the application of the accuracy of the Lhasa River, and based on MODIS data fusion of multi source microwave snow making cloudless snow products, which are used for discriminant and analysis glacier and snow regulation mechanism on day scale, add snow and glacier unit into xinanjing model, this model can simulate the study region's runoff evolution, parameter sensitivity even spatial variation of hydrological characteristics the next ten years on region grid scale. The results of hydrological model in Lhasa River can simulate the glacier and snow runoff variation in high cold region better, to enhance the predictive ability of the spring

  14. Impact of precipitation spatial resolution on the hydrological response of an integrated distributed water resources model

    DEFF Research Database (Denmark)

    Fu, Suhua; Sonnenborg, Torben; Jensen, Karsten Høgh

    2011-01-01

    Precipitation is a key input variable to hydrological models, and the spatial variability of the input is expected to impact the hydrological response predicted by a distributed model. In this study, the effect of spatial resolution of precipitation on runoff , recharge and groundwater head...... of the total catchment and runoff discharge hydrograph at watershed outlet. On the other hand, groundwater recharge and groundwater head were both aff ected. The impact of the spatial resolution of precipitation input is reduced with increasing catchment size. The effect on stream discharge is relatively low...... was analyzed in the Alergaarde catchment in Denmark. Six different precipitation spatial resolutions were used as inputs to a physically based, distributed hydrological model, the MIKE SHE model. The results showed that the resolution of precipitation input had no apparent effect on annual water balance...

  15. Modeling alpine grasslands with two integrated hydrologic models: a comparison of the different process representation in CATHY and GEOtop

    Science.gov (United States)

    Camporese, M.; Bertoldi, G.; Bortoli, E.; Wohlfahrt, G.

    2017-12-01

    Integrated hydrologic surface-subsurface models (IHSSMs) are increasingly used as prediction tools to solve simultaneously states and fluxes in and between multiple terrestrial compartments (e.g., snow cover, surface water, groundwater), in an attempt to tackle environmental problems in a holistic approach. Two such models, CATHY and GEOtop, are used in this study to investigate their capabilities to reproduce hydrological processes in alpine grasslands. The two models differ significantly in the complexity of the representation of the surface energy balance and the solution of Richards equation for water flow in the variably saturated subsurface. The main goal of this research is to show how these differences in process representation can lead to different predictions of hydrologic states and fluxes, in the simulation of an experimental site located in the Venosta Valley (South Tyrol, Italy). Here, a large set of relevant hydrological data (e.g., evapotranspiration, soil moisture) has been collected, with ground and remote sensing observations. The area of interest is part of a Long-Term Ecological Research (LTER) site, a mountain steep, heterogeneous slope, where the predominant land use types are meadow, pasture, and forest. The comparison between data and model predictions, as well as between simulations with the two IHSSMs, contributes to advance our understanding of the tradeoffs between different complexities in modeĺs process representation, model accuracy, and the ability to explain observed hydrological dynamics in alpine environments.

  16. Seasonal streamflow prediction by a combined climate-hydrologic system for river basins of Taiwan

    Science.gov (United States)

    Kuo, Chun-Chao; Gan, Thian Yew; Yu, Pao-Shan

    2010-06-01

    SummaryA combined, climate-hydrologic system with three components to predict the streamflow of two river basins of Taiwan at one season (3-month) lead time for the NDJ and JFM seasons was developed. The first component consists of the wavelet-based, ANN-GA model (Artificial Neural Network calibrated by Genetic Algorithm) which predicts the seasonal rainfall by using selected sea surface temperature (SST) as predictors, given that SST are generally predictable by climate models up to 6-month lead time. For the second component, three disaggregation models, Valencia and Schaake (VS), Lane, and Canonical Random Cascade Model (CRCM), were tested to compare the accuracy of seasonal rainfall disaggregated by these three models to 3-day time scale rainfall data. The third component consists of the continuous rainfall-runoff model modified from HBV (called the MHBV) and calibrated by a global optimization algorithm against the observed rainfall and streamflow data of the Shihmen and Tsengwen river basins of Taiwan. The proposed system was tested, first by disaggregating the predicted seasonal rainfall of ANN-GA to rainfall of 3-day time step using the Lane model; then the disaggregated rainfall data was used to drive the calibrated MHBV to predict the streamflow for both river basins at 3-day time step up to a season's lead time. Overall, the streamflow predicted by this combined system for the NDJ season, which is better than that of the JFM season, will be useful for the seasonal planning and management of water resources of these two river basins of Taiwan.

  17. Characterizing the utility of the TMPA real-time product for hydrologic predictions over global river basins across scales

    Science.gov (United States)

    Gao, H.; Zhang, S.; Nijssen, B.; Zhou, T.; Voisin, N.; Sheffield, J.; Lee, K.; Shukla, S.; Lettenmaier, D. P.

    2017-12-01

    Despite its errors and uncertainties, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis real-time product (TMPA-RT) has been widely used for hydrological monitoring and forecasting due to its timely availability for real-time applications. To evaluate the utility of TMPA-RT in hydrologic predictions, many studies have compared modeled streamflows driven by TMPA-RT against gauge data. However, because of the limited availability of streamflow observations in data sparse regions, there is still a lack of comprehensive comparisons for TMPA-RT based hydrologic predictions at the global scale. Furthermore, it is expected that its skill is less optimal at the subbasin scale than the basin scale. In this study, we evaluate and characterize the utility of the TMPA-RT product over selected global river basins during the period of 1998 to 2015 using the TMPA research product (TMPA-RP) as a reference. The Variable Infiltration Capacity (VIC) model, which was calibrated and validated previously, is adopted to simulate streamflows driven by TMPA-RT and TMPA-RP, respectively. The objective of this study is to analyze the spatial and temporal characteristics of the hydrologic predictions by answering the following questions: (1) How do the precipitation errors associated with the TMPA-RT product transform into streamflow errors with respect to geographical and climatological characteristics? (2) How do streamflow errors vary across scales within a basin?

  18. The relation between geometry, hydrology and stability of complex hillslopes examined using low-dimensional hydrological models

    NARCIS (Netherlands)

    Talebi, A.

    2008-01-01

    Key words: Hillslope geometry, Hillslope hydrology, Hillslope stability, Complex hillslopes, Modeling shallow landslides, HSB model, HSB-SM model.

    The hydrologic response of a hillslope to rainfall involves a complex, transient saturated-unsaturated interaction that usually leads to a

  19. Advancing Collaboration through Hydrologic Data and Model Sharing

    Science.gov (United States)

    Tarboton, D. G.; Idaszak, R.; Horsburgh, J. S.; Ames, D. P.; Goodall, J. L.; Band, L. E.; Merwade, V.; Couch, A.; Hooper, R. P.; Maidment, D. R.; Dash, P. K.; Stealey, M.; Yi, H.; Gan, T.; Castronova, A. M.; Miles, B.; Li, Z.; Morsy, M. M.

    2015-12-01

    HydroShare is an online, collaborative system for open sharing of hydrologic data, analytical tools, and models. It supports the sharing of and collaboration around "resources" which are defined primarily by standardized metadata, content data models for each resource type, and an overarching resource data model based on the Open Archives Initiative's Object Reuse and Exchange (OAI-ORE) standard and a hierarchical file packaging system called "BagIt". HydroShare expands the data sharing capability of the CUAHSI Hydrologic Information System by broadening the classes of data accommodated to include geospatial and multidimensional space-time datasets commonly used in hydrology. HydroShare also includes new capability for sharing models, model components, and analytical tools and will take advantage of emerging social media functionality to enhance information about and collaboration around hydrologic data and models. It also supports web services and server/cloud based computation operating on resources for the execution of hydrologic models and analysis and visualization of hydrologic data. HydroShare uses iRODS as a network file system for underlying storage of datasets and models. Collaboration is enabled by casting datasets and models as "social objects". Social functions include both private and public sharing, formation of collaborative groups of users, and value-added annotation of shared datasets and models. The HydroShare web interface and social media functions were developed using the Django web application framework coupled to iRODS. Data visualization and analysis is supported through the Tethys Platform web GIS software stack. Links to external systems are supported by RESTful web service interfaces to HydroShare's content. This presentation will introduce the HydroShare functionality developed to date and describe ongoing development of functionality to support collaboration and integration of data and models.

  20. “Black Swans” of Hydrology: Can our Models Address the Science of Hydrologic Change?

    Science.gov (United States)

    Kumar, P.

    2009-12-01

    Coupled models of terrestrial hydrology and climate have grown in complexity leading to better understanding of the coupling between the hydrosphere, biosphere, and the climate system. During the past two decades, these models have evolved through generational changes as they have grown in sophistication in their ability to resolve spatial heterogeneity as well as vegetation dynamics and biogeochemistry. These developments have, in part, been driven by data collection efforts ranging from focused field campaigns to long-term observational networks, advances in remote sensing and other measurement technologies, along with sophisticated estimation and assimilation methods. However, the hydrologic cycle is changing leading to unexpected and unanticipated behavior through emergent dynamics and patterns that are not part of the historical milieu. Is there a new thinking that is needed to address this challenge? The goal of this talk is to draw from the modeling developments in the past two decades to foster a debate for moving forward.

  1. Gsflow-py: An integrated hydrologic model development tool

    Science.gov (United States)

    Gardner, M.; Niswonger, R. G.; Morton, C.; Henson, W.; Huntington, J. L.

    2017-12-01

    Integrated hydrologic modeling encompasses a vast number of processes and specifications, variable in time and space, and development of model datasets can be arduous. Model input construction techniques have not been formalized or made easily reproducible. Creating the input files for integrated hydrologic models (IHM) requires complex GIS processing of raster and vector datasets from various sources. Developing stream network topology that is consistent with the model resolution digital elevation model is important for robust simulation of surface water and groundwater exchanges. Distribution of meteorologic parameters over the model domain is difficult in complex terrain at the model resolution scale, but is necessary to drive realistic simulations. Historically, development of input data for IHM models has required extensive GIS and computer programming expertise which has restricted the use of IHMs to research groups with available financial, human, and technical resources. Here we present a series of Python scripts that provide a formalized technique for the parameterization and development of integrated hydrologic model inputs for GSFLOW. With some modifications, this process could be applied to any regular grid hydrologic model. This Python toolkit automates many of the necessary and laborious processes of parameterization, including stream network development and cascade routing, land coverages, and meteorological distribution over the model domain.

  2. Vegetation root zone storage and rooting depth, derived from local calibration of a global hydrological model

    Science.gov (United States)

    van der Ent, R.; Van Beek, R.; Sutanudjaja, E.; Wang-Erlandsson, L.; Hessels, T.; Bastiaanssen, W.; Bierkens, M. F.

    2017-12-01

    The storage and dynamics of water in the root zone control many important hydrological processes such as saturation excess overland flow, interflow, recharge, capillary rise, soil evaporation and transpiration. These processes are parameterized in hydrological models or land-surface schemes and the effect on runoff prediction can be large. Root zone parameters in global hydrological models are very uncertain as they cannot be measured directly at the scale on which these models operate. In this paper we calibrate the global hydrological model PCR-GLOBWB using a state-of-the-art ensemble of evaporation fields derived by solving the energy balance for satellite observations. We focus our calibration on the root zone parameters of PCR-GLOBWB and derive spatial patterns of maximum root zone storage. We find these patterns to correspond well with previous research. The parameterization of our model allows for the conversion of maximum root zone storage to root zone depth and we find that these correspond quite well to the point observations where available. We conclude that climate and soil type should be taken into account when regionalizing measured root depth for a certain vegetation type. We equally find that using evaporation rather than discharge better allows for local adjustment of root zone parameters within a basin and thus provides orthogonal data to diagnose and optimize hydrological models and land surface schemes.

  3. Visualization in hydrological and atmospheric modeling and observation

    Science.gov (United States)

    Helbig, C.; Rink, K.; Kolditz, O.

    2013-12-01

    In recent years, visualization of geoscientific and climate data has become increasingly important due to challenges such as climate change, flood prediction or the development of water management schemes for arid and semi-arid regions. Models for simulations based on such data often have a large number of heterogeneous input data sets, ranging from remote sensing data and geometric information (such as GPS data) to sensor data from specific observations sites. Data integration using such information is not straightforward and a large number of potential problems may occur due to artifacts, inconsistencies between data sets or errors based on incorrectly calibrated or stained measurement devices. Algorithms to automatically detect various of such problems are often numerically expensive or difficult to parameterize. In contrast, combined visualization of various data sets is often a surprisingly efficient means for an expert to detect artifacts or inconsistencies as well as to discuss properties of the data. Therefore, the development of general visualization strategies for atmospheric or hydrological data will often support researchers during assessment and preprocessing of the data for model setup. When investigating specific phenomena, visualization is vital for assessing the progress of the ongoing simulation during runtime as well as evaluating the plausibility of the results. We propose a number of such strategies based on established visualization methods that - are applicable to a large range of different types of data sets, - are computationally inexpensive to allow application for time-dependent data - can be easily parameterized based on the specific focus of the research. Examples include the highlighting of certain aspects of complex data sets using, for example, an application-dependent parameterization of glyphs, iso-surfaces or streamlines. In addition, we employ basic rendering techniques allowing affine transformations, changes in opacity as well

  4. Incorporating modelled subglacial hydrology into inversions for basal drag

    Directory of Open Access Journals (Sweden)

    C. P. Koziol

    2017-12-01

    Full Text Available A key challenge in modelling coupled ice-flow–subglacial hydrology is initializing the state and parameters of the system. We address this problem by presenting a workflow for initializing these values at the start of a summer melt season. The workflow depends on running a subglacial hydrology model for the winter season, when the system is not forced by meltwater inputs, and ice velocities can be assumed constant. Key parameters of the winter run of the subglacial hydrology model are determined from an initial inversion for basal drag using a linear sliding law. The state of the subglacial hydrology model at the end of winter is incorporated into an inversion of basal drag using a non-linear sliding law which is a function of water pressure. We demonstrate this procedure in the Russell Glacier area and compare the output of the linear sliding law with two non-linear sliding laws. Additionally, we compare the modelled winter hydrological state to radar observations and find that it is in line with summer rather than winter observations.

  5. Coupling Radar Rainfall to Hydrological Models for Water Abstraction Management

    Science.gov (United States)

    Asfaw, Alemayehu; Shucksmith, James; Smith, Andrea; MacDonald, Ken

    2015-04-01

    The impacts of climate change and growing water use are likely to put considerable pressure on water resources and the environment. In the UK, a reform to surface water abstraction policy has recently been proposed which aims to increase the efficiency of using available water resources whilst minimising impacts on the aquatic environment. Key aspects to this reform include the consideration of dynamic rather than static abstraction licensing as well as introducing water trading concepts. Dynamic licensing will permit varying levels of abstraction dependent on environmental conditions (i.e. river flow and quality). The practical implementation of an effective dynamic abstraction strategy requires suitable flow forecasting techniques to inform abstraction asset management. Potentially the predicted availability of water resources within a catchment can be coupled to predicted demand and current storage to inform a cost effective water resource management strategy which minimises environmental impacts. The aim of this work is to use a historical analysis of UK case study catchment to compare potential water resource availability using modelled dynamic abstraction scenario informed by a flow forecasting model, against observed abstraction under a conventional abstraction regime. The work also demonstrates the impacts of modelling uncertainties on the accuracy of predicted water availability over range of forecast lead times. The study utilised a conceptual rainfall-runoff model PDM - Probability-Distributed Model developed by Centre for Ecology & Hydrology - set up in the Dove River catchment (UK) using 1km2 resolution radar rainfall as inputs and 15 min resolution gauged flow data for calibration and validation. Data assimilation procedures are implemented to improve flow predictions using observed flow data. Uncertainties in the radar rainfall data used in the model are quantified using artificial statistical error model described by Gaussian distribution and

  6. Hydrological model uncertainty due to spatial evapotranspiration estimation methods

    Science.gov (United States)

    Yu, Xuan; Lamačová, Anna; Duffy, Christopher; Krám, Pavel; Hruška, Jakub

    2016-05-01

    Evapotranspiration (ET) continues to be a difficult process to estimate in seasonal and long-term water balances in catchment models. Approaches to estimate ET typically use vegetation parameters (e.g., leaf area index [LAI], interception capacity) obtained from field observation, remote sensing data, national or global land cover products, and/or simulated by ecosystem models. In this study we attempt to quantify the uncertainty that spatial evapotranspiration estimation introduces into hydrological simulations when the age of the forest is not precisely known. The Penn State Integrated Hydrologic Model (PIHM) was implemented for the Lysina headwater catchment, located 50°03‧N, 12°40‧E in the western part of the Czech Republic. The spatial forest patterns were digitized from forest age maps made available by the Czech Forest Administration. Two ET methods were implemented in the catchment model: the Biome-BGC forest growth sub-model (1-way coupled to PIHM) and with the fixed-seasonal LAI method. From these two approaches simulation scenarios were developed. We combined the estimated spatial forest age maps and two ET estimation methods to drive PIHM. A set of spatial hydrologic regime and streamflow regime indices were calculated from the modeling results for each method. Intercomparison of the hydrological responses to the spatial vegetation patterns suggested considerable variation in soil moisture and recharge and a small uncertainty in the groundwater table elevation and streamflow. The hydrologic modeling with ET estimated by Biome-BGC generated less uncertainty due to the plant physiology-based method. The implication of this research is that overall hydrologic variability induced by uncertain management practices was reduced by implementing vegetation models in the catchment models.

  7. A distributed eco-hydrological model and its application

    Directory of Open Access Journals (Sweden)

    Zong-xue Xu

    2017-10-01

    Full Text Available Eco-hydrological processes in arid areas are the focus of many hydrological and water resources studies. However, the hydrological cycle and the ecological system have usually been considered separately in most previous studies, and the correlation between the two has not been fully understood. Interdisciplinary research on eco-hydrological processes using multidisciplinary knowledge has been insufficient. In order to quantitatively analyze and evaluate the interaction between the ecosystem and the hydrological cycle, a new kind of eco-hydrological model, the ecology module for a grid-based integrated surface and groundwater model (Eco-GISMOD, is proposed with a two-way coupling approach, which combines the ecological model (EPIC and hydrological model (GISMOD by considering water exchange in the soil layer. Water interaction between different soil layers is simply described through a generalized physical process in various situations. A special method was used to simulate the water exchange between plants and the soil layer, taking into account precipitation, evapotranspiration, infiltration, soil water replenishment, and root water uptake. In order to evaluate the system performance, the Heihe River Basin in northwestern China was selected for a case study. The results show that forests and crops were generally growing well with sufficient water supply, but water shortages, especially in the summer, inhibited the growth of grass and caused grass degradation. This demonstrates that water requirements and water consumption for different kinds of vegetation can be estimated by considering the water-supply rules of Eco-GISMOD, which will be helpful for the planning and management of water resources in the future.

  8. Coupled geomechanical/hydrological modeling: an overview of basalt waste isolation project studies

    International Nuclear Information System (INIS)

    Baca, R.G.; Case, J.B.; Patricio, J.G.

    1980-07-01

    Basalt Waste Isolation Project investigations of the Columbia River basalts are multi-disciplinary in nature with a broad scope spanning such areas as geology, seismology, geochemistry, hydrology, rock mechanics, and many other disciplines as well. In this paper, an overview is presented which surveys recent work on numerical modeling of geomechanical and hydrological processes in a basalt rock environment. A major objective of the ongoing numerical modeling work is to establish a predictive technology base with which to: interpret the interrelationships between geomechanical behavior of rock media, the natural hydrologic phenomena, and repository conditions; evaluate the effectiveness of preconceptual repository designs and assist in the design of in situ field testing; and assess the waste isolation capability of candidate host rocks within the Columbia River basalts. To accomplish this objective, a systems approach has been adopted which is based on the use of digital simulation models

  9. Olkiluoto surface and near-surface hydrological modelling in 2010

    International Nuclear Information System (INIS)

    Karvonen, T.

    2011-08-01

    The modeling approaches carried out with the Olkiluoto surface hydrological model (SHYD) include palaeohydrological evolution of the Olkiluoto Island, examination of the boundary condition at the geosphere-biosphere interface zone, simulations related to infiltration experiment, prediction of the influence of ONKALO on hydraulic head in shallow and deep bedrock and optimisation of the shallow monitoring network. A so called short-term prediction system was developed for continuous updating of the estimated drawdowns caused by ONKALO. The palaeohydrological simulations were computed for a period starting from the time when the highest hills on Olkiluoto Island rose above sea level around 2 500 years ago. The input data needed in the model were produced by the UNTAMO-toolbox. The groundwater flow evolution is primarily driven by the postglacial land uplift and the uncertainty in the land uplift model is the biggest single factor that influences the accuracy of the results. The consistency of the boundary condition at the geosphere-biosphere interface zone (GBIZ) was studied during 2010. The comparison carried out during 2010 showed that pressure head profiles computed with the SHYD model and deep groundwater flow model FEFTRA are in good agreement with each other in the uppermost 100 m of the bedrock. This implies that flux profiles computed with the two approaches are close to each other and hydraulic heads computed at level z=0 m with the SHYD can be used as head boundary condition in the deep groundwater flow model FEFTRA. The surface hydrological model was used to analyse the results of the infiltration experiment. Increase in bedrock recharge inside WCA explains around 60-63 % from the amount of water pumped from OL-KR14 and 37-40 % of the water pumped from OL-KR14 flows towards pumping section via the hydrogeological zones. Pumping from OL-KR14 has only a minor effect on heads and fluxes in zones HZ19A and HZ19C compared to responses caused by leakages into

  10. Modeling the Hydrological Regime of Turkana Lake (Kenya, Ethiopia) by Combining Spatially Distributed Hydrological Modeling and Remote Sensing Datasets

    Science.gov (United States)

    Anghileri, D.; Kaelin, A.; Peleg, N.; Fatichi, S.; Molnar, P.; Roques, C.; Longuevergne, L.; Burlando, P.

    2017-12-01

    Hydrological modeling in poorly gauged basins can benefit from the use of remote sensing datasets although there are challenges associated with the mismatch in spatial and temporal scales between catchment scale hydrological models and remote sensing products. We model the hydrological processes and long-term water budget of the Lake Turkana catchment, a transboundary basin between Kenya and Ethiopia, by integrating several remote sensing products into a spatially distributed and physically explicit model, Topkapi-ETH. Lake Turkana is the world largest desert lake draining a catchment of 145'500 km2. It has three main contributing rivers: the Omo river, which contributes most of the annual lake inflow, the Turkwel river, and the Kerio rivers, which contribute the remaining part. The lake levels have shown great variations in the last decades due to long-term climate fluctuations and the regulation of three reservoirs, Gibe I, II, and III, which significantly alter the hydrological seasonality. Another large reservoir is planned and may be built in the next decade, generating concerns about the fate of Lake Turkana in the long run because of this additional anthropogenic pressure and increasing evaporation driven by climate change. We consider different remote sensing datasets, i.e., TRMM-V7 for precipitation, MERRA-2 for temperature, as inputs to the spatially distributed hydrological model. We validate the simulation results with other remote sensing datasets, i.e., GRACE for total water storage anomalies, GLDAS-NOAH for soil moisture, ERA-Interim/Land for surface runoff, and TOPEX/Poseidon for satellite altimetry data. Results highlight how different remote sensing products can be integrated into a hydrological modeling framework accounting for their relative uncertainties. We also carried out simulations with the artificial reservoirs planned in the north part of the catchment and without any reservoirs, to assess their impacts on the catchment hydrological

  11. Modeling of reservoir operation in UNH global hydrological model

    Science.gov (United States)

    Shiklomanov, Alexander; Prusevich, Alexander; Frolking, Steve; Glidden, Stanley; Lammers, Richard; Wisser, Dominik

    2015-04-01

    Climate is changing and river flow is an integrated characteristic reflecting numerous environmental processes and their changes aggregated over large areas. Anthropogenic impacts on the river flow, however, can significantly exceed the changes associated with climate variability. Besides of irrigation, reservoirs and dams are one of major anthropogenic factor affecting streamflow. They distort hydrological regime of many rivers by trapping of freshwater runoff, modifying timing of river discharge and increasing the evaporation rate. Thus, reservoirs is an integral part of the global hydrological system and their impacts on rivers have to be taken into account for better quantification and understanding of hydrological changes. We developed a new technique, which was incorporated into WBM-TrANS model (Water Balance Model-Transport from Anthropogenic and Natural Systems) to simulate river routing through large reservoirs and natural lakes based on information available from freely accessible databases such as GRanD (the Global Reservoir and Dam database) or NID (National Inventory of Dams for US). Different formulations were applied for unregulated spillway dams and lakes, and for 4 types of regulated reservoirs, which were subdivided based on main purpose including generic (multipurpose), hydropower generation, irrigation and water supply, and flood control. We also incorporated rules for reservoir fill up and draining at the times of construction and decommission based on available data. The model were tested for many reservoirs of different size and types located in various climatic conditions using several gridded meteorological data sets as model input and observed daily and monthly discharge data from GRDC (Global Runoff Data Center), USGS Water Data (US Geological Survey), and UNH archives. The best results with Nash-Sutcliffe model efficiency coefficient in the range of 0.5-0.9 were obtained for temperate zone of Northern Hemisphere where most of large

  12. Development of a Coupled Hydrological/Sediment Yield Model for a Watershed at Regional Level

    Science.gov (United States)

    Rajbhandaril, Narayan; Crosson, William; Tsegaye, Teferi; Coleman, Tommy; Liu, Yaping; Soman, Vishwas

    1998-01-01

    Development of a hydrologic model for the study of environmental conservation requires a comprehensive understanding of individual-storm affecting hydrologic and sedimentologic processes. The hydrologic models that we are currently coupling are the Simulator for Hydrology and Energy Exchange at the Land Surface (SHEELS) and the Distributed Runoff Model (DRUM). SHEELS runs continuously to estimate surface energy fluxes and sub-surface soil water fluxes, while DRUM operates during and following precipitation events to predict surface runoff and peak flow through channel routing. The lateral re-distribution of surface water determined by DRUM is passed to SHEELS, which then adjusts soil water contents throughout the profile. The model SHEELS is well documented in Smith et al. (1993) and Laymen and Crosson (1995). The model DRUM is well documented in Vieux et al. (1990) and Vieux and Gauer (1994). The coupled hydrologic model, SHEELS/DRUM, does not simulate sedimentologic processes. The simulation of the sedimentologic process is important for environmental conservation planning and management. Therefore, we attempted to develop a conceptual frame work for coupling a sediment yield model with SHEELS/DRUM to estimate individual-storm sediment yield from a watershed at a regional level. The sediment yield model that will be used for this study is the Universal Soil Loss Equation (USLE) with some modifications to enable the model to predict individual-storm sediment yield. The predicted sediment yield does not include wind erosion and erosion caused by irrigation and snow melt. Units used for this study are those given by Foster et al. (1981) for SI units.

  13. Creating Data and Modeling Enabled Hydrology Instruction Using Collaborative Approach

    Science.gov (United States)

    Merwade, V.; Rajib, A.; Ruddell, B. L.; Fox, S.

    2017-12-01

    Hydrology instruction typically involves teaching of the hydrologic cycle and the processes associated with it such as precipitation, evapotranspiration, infiltration, runoff generation and hydrograph analysis. With the availability of observed and remotely sensed data related to many hydrologic fluxes, there is an opportunity to use these data for place based learning in hydrology classrooms. However, it is not always easy and possible for an instructor to complement an existing hydrology course with new material that requires both the time and technical expertise, which the instructor may not have. The work presented here describes an effort where students create the data and modeling driven instruction material as a part of their class assignment for a hydrology course at Purdue University. The data driven hydrology education project within Science Education Resources Center (SERC) is used as a platform to publish and share the instruction material so it can be used by future students in the same course or any other course anywhere in the world. Students in the class were divided into groups, and each group was assigned a topic such as precipitation, evapotranspiration, streamflow, flow duration curve and frequency analysis. Each student in the group was then asked to get data and do some analysis for an area with specific landuse characteristic such as urban, rural and agricultural. The student contribution were then organized into learning units such that someone can do a flow duration curve analysis or flood frequency analysis to see how it changes for rural area versus urban area. The hydrology education project within SERC cyberinfrastructure enables any other instructor to adopt this material as is or through modification to suit his/her place based instruction needs.

  14. Hydrological Modeling in Alaska with WRF-Hydro

    Science.gov (United States)

    Elmer, N. J.; Zavodsky, B.; Molthan, A.

    2017-12-01

    The operational National Water Model (NWM), implemented in August 2016, is an instantiation of the Weather Research and Forecasting hydrological extension package (WRF-Hydro). Currently, the NWM only covers the contiguous United States, but will be expanded to include an Alaska domain in the future. It is well known that Alaska presents several hydrological modeling challenges, including unique arctic/sub-arctic hydrological processes not observed elsewhere in the United States and a severe lack of in-situ observations for model initialization. This project sets up an experimental version of WRF-Hydro in Alaska mimicking the NWM to gauge the ability of WRF-Hydro to represent hydrological processes in Alaska and identify model calibration challenges. Recent and upcoming launches of hydrology-focused NASA satellite missions such as the Soil Moisture Active Passive (SMAP) and Surface Water Ocean Topography (SWOT) expand the spatial and temporal coverage of observations in Alaska, so this study also lays the groundwork for assimilating these NASA datasets into WRF-Hydro in the future.

  15. How to handle spatial heterogeneity in hydrological models.

    Science.gov (United States)

    Loritz, Ralf; Neuper, Malte; Gupta, Hoshin; Zehe, Erwin

    2017-04-01

    The amount of data we observe in our environmental systems is larger than ever. This leads to a new kind of problem where hydrological modelers can have access to large datasets with various quantitative and qualitative observations but are uncertain about the information content with respect to the hydrological functioning of a landscape. For example digital elevation models obviously contain plenty of information about the topography of a landscape; however the question of relevance for Hydrology is how much of this information is important for the hydrological functioning of a landscape. This kind of question is not limited to topography and we can ask similar questions when handling distributed rainfall data or geophysical images. In this study we would like to show how one can separate dominant patterns in the landscape from idiosyncratic system details. We use a 2D numerical hillslope model in combination with an extensive research data set to test a variety of different model setups that are built upon different landscape characteristics and run by different rainfalls measurements. With the help of information theory based measures we can identify and learn how much heterogeneity is really necessary for successful hydrological simulations and how much of it we can neglect.

  16. Prediction of future hydrological regimes in poorly gauged high altitude basins: the case study of the upper Indus, Pakistan

    Directory of Open Access Journals (Sweden)

    D. Bocchiola

    2011-07-01

    Full Text Available In the mountain regions of the Hindu Kush, Karakoram and Himalaya (HKH the "third polar ice cap" of our planet, glaciers play the role of "water towers" by providing significant amount of melt water, especially in the dry season, essential for agriculture, drinking purposes, and hydropower production. Recently, most glaciers in the HKH have been retreating and losing mass, mainly due to significant regional warming, thus calling for assessment of future water resources availability for populations down slope. However, hydrology of these high altitude catchments is poorly studied and little understood. Most such catchments are poorly gauged, thus posing major issues in flow prediction therein, and representing in fact typical grounds of application of PUB concepts, where simple and portable hydrological modeling based upon scarce data amount is necessary for water budget estimation, and prediction under climate change conditions. In this preliminarily study, future (2060 hydrological flows in a particular watershed (Shigar river at Shigar, ca. 7000 km2, nested within the upper Indus basin and fed by seasonal melt from major glaciers, are investigated.

    The study is carried out under the umbrella of the SHARE-Paprika project, aiming at evaluating the impact of climate change upon hydrology of the upper Indus river. We set up a minimal hydrological model, tuned against a short series of observed ground climatic data from a number of stations in the area, in situ measured ice ablation data, and remotely sensed snow cover data. The future, locally adjusted, precipitation and temperature fields for the reference decade 2050–2059 from CCSM3 model, available within the IPCC's panel, are then fed to the hydrological model. We adopt four different glaciers' cover scenarios, to test sensitivity to decreased glacierized areas. The projected flow duration curves, and some selected flow descriptors are evaluated. The uncertainty of

  17. Towards simplification of hydrologic modeling: Identification of dominant processes

    Science.gov (United States)

    Markstrom, Steven; Hay, Lauren E.; Clark, Martyn P.

    2016-01-01

    The Precipitation–Runoff Modeling System (PRMS), a distributed-parameter hydrologic model, has been applied to the conterminous US (CONUS). Parameter sensitivity analysis was used to identify: (1) the sensitive input parameters and (2) particular model output variables that could be associated with the dominant hydrologic process(es). Sensitivity values of 35 PRMS calibration parameters were computed using the Fourier amplitude sensitivity test procedure on 110 000 independent hydrologically based spatial modeling units covering the CONUS and then summarized to process (snowmelt, surface runoff, infiltration, soil moisture, evapotranspiration, interflow, baseflow, and runoff) and model performance statistic (mean, coefficient of variation, and autoregressive lag 1). Identified parameters and processes provide insight into model performance at the location of each unit and allow the modeler to identify the most dominant process on the basis of which processes are associated with the most sensitive parameters. The results of this study indicate that: (1) the choice of performance statistic and output variables has a strong influence on parameter sensitivity, (2) the apparent model complexity to the modeler can be reduced by focusing on those processes that are associated with sensitive parameters and disregarding those that are not, (3) different processes require different numbers of parameters for simulation, and (4) some sensitive parameters influence only one hydrologic process, while others may influence many

  18. Use of remote sensing data in distributed hydrological models: applications in the Senegal River basin

    DEFF Research Database (Denmark)

    Sandholt, Inge; Andersen, Jens Asger; Gybkjær, Gorm

    1999-01-01

    Earth observation, remote sensing, hydrology, distributed hydrological modelling, West Africa, Senegal river basin, land cover, soil moisture, NOAA AVHRR, SPOT, Mike-she......Earth observation, remote sensing, hydrology, distributed hydrological modelling, West Africa, Senegal river basin, land cover, soil moisture, NOAA AVHRR, SPOT, Mike-she...

  19. The application of a Grey Markov Model to forecasting annual maximum water levels at hydrological stations

    Science.gov (United States)

    Dong, Sheng; Chi, Kun; Zhang, Qiyi; Zhang, Xiangdong

    2012-03-01

    Compared with traditional real-time forecasting, this paper proposes a Grey Markov Model (GMM) to forecast the maximum water levels at hydrological stations in the estuary area. The GMM combines the Grey System and Markov theory into a higher precision model. The GMM takes advantage of the Grey System to predict the trend values and uses the Markov theory to forecast fluctuation values, and thus gives forecast results involving two aspects of information. The procedure for forecasting annul maximum water levels with the GMM contains five main steps: 1) establish the GM (1, 1) model based on the data series; 2) estimate the trend values; 3) establish a Markov Model based on relative error series; 4) modify the relative errors caused in step 2, and then obtain the relative errors of the second order estimation; 5) compare the results with measured data and estimate the accuracy. The historical water level records (from 1960 to 1992) at Yuqiao Hydrological Station in the estuary area of the Haihe River near Tianjin, China are utilized to calibrate and verify the proposed model according to the above steps. Every 25 years' data are regarded as a hydro-sequence. Eight groups of simulated results show reasonable agreement between the predicted values and the measured data. The GMM is also applied to the 10 other hydrological stations in the same estuary. The forecast results for all of the hydrological stations are good or acceptable. The feasibility and effectiveness of this new forecasting model have been proved in this paper.

  20. Modeling urbanized watershed flood response changes with distributed hydrological model: key hydrological processes, parameterization and case studies

    Science.gov (United States)

    Chen, Y.

    2017-12-01

    Urbanization is the world development trend for the past century, and the developing countries have been experiencing much rapider urbanization in the past decades. Urbanization brings many benefits to human beings, but also causes negative impacts, such as increasing flood risk. Impact of urbanization on flood response has long been observed, but quantitatively studying this effect still faces great challenges. For example, setting up an appropriate hydrological model representing the changed flood responses and determining accurate model parameters are very difficult in the urbanized or urbanizing watershed. In the Pearl River Delta area, rapidest urbanization has been observed in China for the past decades, and dozens of highly urbanized watersheds have been appeared. In this study, a physically based distributed watershed hydrological model, the Liuxihe model is employed and revised to simulate the hydrological processes of the highly urbanized watershed flood in the Pearl River Delta area. A virtual soil type is then defined in the terrain properties dataset, and its runoff production and routing algorithms are added to the Liuxihe model. Based on a parameter sensitive analysis, the key hydrological processes of a highly urbanized watershed is proposed, that provides insight into the hydrological processes and for parameter optimization. Based on the above analysis, the model is set up in the Songmushan watershed where there is hydrological data observation. A model parameter optimization and updating strategy is proposed based on the remotely sensed LUC types, which optimizes model parameters with PSO algorithm and updates them based on the changed LUC types. The model parameters in Songmushan watershed are regionalized at the Pearl River Delta area watersheds based on the LUC types of the other watersheds. A dozen watersheds in the highly urbanized area of Dongguan City in the Pearl River Delta area were studied for the flood response changes due to

  1. Modelling catchment hydrological responses in a Himalayan Lake ...

    Indian Academy of Sciences (India)

    water extent of the lake barely covers 11.5 km2. (Badar and Romshoo ... Recent developments of decision support systems based on GIS and distributed hydrological models .... flow of the methodology is given in figure 2. 3.1.1 Model structure ...

  2. Towards simplification of hydrologic modeling: identification of dominant processes

    Directory of Open Access Journals (Sweden)

    S. L. Markstrom

    2016-11-01

    Full Text Available parameter hydrologic model, has been applied to the conterminous US (CONUS. Parameter sensitivity analysis was used to identify: (1 the sensitive input parameters and (2 particular model output variables that could be associated with the dominant hydrologic process(es. Sensitivity values of 35 PRMS calibration parameters were computed using the Fourier amplitude sensitivity test procedure on 110 000 independent hydrologically based spatial modeling units covering the CONUS and then summarized to process (snowmelt, surface runoff, infiltration, soil moisture, evapotranspiration, interflow, baseflow, and runoff and model performance statistic (mean, coefficient of variation, and autoregressive lag 1. Identified parameters and processes provide insight into model performance at the location of each unit and allow the modeler to identify the most dominant process on the basis of which processes are associated with the most sensitive parameters. The results of this study indicate that: (1 the choice of performance statistic and output variables has a strong influence on parameter sensitivity, (2 the apparent model complexity to the modeler can be reduced by focusing on those processes that are associated with sensitive parameters and disregarding those that are not, (3 different processes require different numbers of parameters for simulation, and (4 some sensitive parameters influence only one hydrologic process, while others may influence many.

  3. A fully integrated SWAT-MODFLOW hydrologic model

    Science.gov (United States)

    The Soil and Water Assessment Tool (SWAT) and MODFLOW models are being used worldwide for managing surface and groundwater water resources. The SWAT models hydrological processes occurring at the surface including shallow aquifers, while MODFLOW simulate groundwater processes. However, neither SWAT ...

  4. Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surface-hydrology coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Yang; Lei, Huimin; Yang, Dawen; Huang, Maoyi; Liu, Dengfeng; Yuan, Xing

    2017-08-01

    Land surface models (LSMs) are widely used to understand the interactions between hydrological processes and vegetation dynamics, which is important for the attribution and prediction of regional hydrological variations. However, most LSMs have large uncertainties in their representations of ecohydrological processes due to deficiencies in hydrological parameterizations. In this study, the Community Land Model version 4 (CLM4) LSM was modified with an advanced runoff generation and flow routing scheme, resulting in a new land surface-hydrology coupled model, CLM-GBHM. Both models were implemented in the Wudinghe River Basin (WRB), which is a semi-arid basin located in the middle reaches of the Yellow River, China. Compared with CLM, CLM-GBHM increased the Nash Sutcliffe efficiency for daily river discharge simulation (1965–1969) from 0.03 to 0.23 and reduced the relative bias in water table depth simulations (2010–2012) from 32.4% to 13.4%. The CLM-GBHM simulations with static, remotely sensed and model-predicted vegetation conditions showed that the vegetation in the WRB began to recover in the 2000s due to the Grain for Green Program but had not reached the same level of vegetation cover as regions in natural eco-hydrological equilibrium. Compared with a simulation using remotely sensed vegetation cover, the simulation with a dynamic vegetation model that considers only climate-induced change showed a 10.3% increase in evapotranspiration, a 47.8% decrease in runoff, and a 62.7% and 71.3% deceleration in changing trend of the outlet river discharge before and after the year 2000, respectively. This result suggests that both natural and anthropogenic factors should be incorporated in dynamic vegetation models to better simulate the eco-hydrological cycle.

  5. Hydrologic and Water Quality Model Development Using Simulink

    Directory of Open Access Journals (Sweden)

    James D. Bowen

    2014-11-01

    Full Text Available A stormwater runoff model based on the Soil Conservation Service (SCS method and a finite-volume based water quality model have been developed to investigate the use of Simulink for use in teaching and research. Simulink, a MATLAB extension, is a graphically based model development environment for system modeling and simulation. Widely used for mechanical and electrical systems, Simulink has had less use for modeling of hydrologic systems. The watershed model is being considered for use in teaching graduate-level courses in hydrology and/or stormwater modeling. Simulink’s block (data process and arrow (data transfer object model, the copy and paste user interface, the large number of existing blocks, and the absence of computer code allows students to become model developers almost immediately. The visual depiction of systems, their component subsystems, and the flow of data through the systems are ideal attributes for hands-on teaching of hydrologic and mass balance processes to today’s computer-savvy visual learners. Model development with Simulink for research purposes is also investigated. A finite volume, multi-layer pond model using the water quality kinetics present in CE-QUAL-W2 has been developed using Simulink. The model is one of the first uses of Simulink for modeling eutrophication dynamics in stratified natural systems. The model structure and a test case are presented. One use of the model for teaching a graduate-level water quality modeling class is also described.

  6. Use of hydrologic and hydrodynamic modeling for ecosystem restoration

    Science.gov (United States)

    Obeysekera, J.; Kuebler, L.; Ahmed, S.; Chang, M.-L.; Engel, V.; Langevin, C.; Swain, E.; Wan, Y.

    2011-01-01

    Planning and implementation of unprecedented projects for restoring the greater Everglades ecosystem are underway and the hydrologic and hydrodynamic modeling of restoration alternatives has become essential for success of restoration efforts. In view of the complex nature of the South Florida water resources system, regional-scale (system-wide) hydrologic models have been developed and used extensively for the development of the Comprehensive Everglades Restoration Plan. In addition, numerous subregional-scale hydrologic and hydrodynamic models have been developed and are being used for evaluating project-scale water management plans associated with urban, agricultural, and inland costal ecosystems. The authors provide a comprehensive summary of models of all scales, as well as the next generation models under development to meet the future needs of ecosystem restoration efforts in South Florida. The multiagency efforts to develop and apply models have allowed the agencies to understand the complex hydrologic interactions, quantify appropriate performance measures, and use new technologies in simulation algorithms, software development, and GIS/database techniques to meet the future modeling needs of the ecosystem restoration programs. Copyright ?? 2011 Taylor & Francis Group, LLC.

  7. Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates.

    Science.gov (United States)

    Guse, Björn; Kail, Jochem; Radinger, Johannes; Schröder, Maria; Kiesel, Jens; Hering, Daniel; Wolter, Christian; Fohrer, Nicola

    2015-11-15

    Climate and land use changes affect the hydro- and biosphere at different spatial scales. These changes alter hydrological processes at the catchment scale, which impact hydrodynamics and habitat conditions for biota at the river reach scale. In order to investigate the impact of large-scale changes on biota, a cascade of models at different scales is required. Using scenario simulations, the impact of climate and land use change can be compared along the model cascade. Such a cascade of consecutively coupled models was applied in this study. Discharge and water quality are predicted with a hydrological model at the catchment scale. The hydraulic flow conditions are predicted by hydrodynamic models. The habitat suitability under these hydraulic and water quality conditions is assessed based on habitat models for fish and macroinvertebrates. This modelling cascade was applied to predict and compare the impacts of climate- and land use changes at different scales to finally assess their effects on fish and macroinvertebrates. Model simulations revealed that magnitude and direction of change differed along the modelling cascade. Whilst the hydrological model predicted a relevant decrease of discharge due to climate change, the hydraulic conditions changed less. Generally, the habitat suitability for fish decreased but this was strongly species-specific and suitability even increased for some species. In contrast to climate change, the effect of land use change on discharge was negligible. However, land use change had a stronger impact on the modelled nitrate concentrations affecting the abundances of macroinvertebrates. The scenario simulations for the two organism groups illustrated that direction and intensity of changes in habitat suitability are highly species-dependent. Thus, a joined model analysis of different organism groups combined with the results of hydrological and hydrodynamic models is recommended to assess the impact of climate and land use changes on

  8. A coupled mechanical/hydrologic model for WIPP shaft seals

    International Nuclear Information System (INIS)

    Ehgartner, B.

    1991-06-01

    Effective sealing of the Waste Isolation Pilot Plant (WIPP) shafts will be required to isolate defense-generated transuranic wastes from the accessible environment. Shafts penetrate water-bearing hard rock formations before entering a massive creeping-salt formation (Salado) where the WIPP is located. Short and long-term seals are planned for the shafts. Short-term seals, a composite of concrete and bentonite, will primarily be located in the hard rock formations separating the water-bearing zones from the Salado Formation. These seals will limit water flow to the underlying long-term seals in the Salado. The long-term seals will consist of lengthly segments of initially unsaturated crushed salt. Creep closure of the shaft will consolidate unsaturated crushed salt, thereby reducing its permeability. However, water passing through the upper short-term seals and brine inherent to the salt host rock itself will eventually saturate the crushed salt and consolidation could be inhibited. Before saturating, portions of the crushed salt in the shafts are expected to consolidate to a permeability equivalent to the salt host rock, thereby effectively isolating the waste from the overlying water-bearing formations. A phenomenological model is developed for the coupled mechanical/hydrologic behavior of sealed WIPP shafts. The model couples creep closure of the shaft, crushed salt consolidation, and the associated reduction in permeability with Darcy's law for saturated fluid flow to predict the overall permeability of the shaft seal system with time. 17 refs., 6 figs., 1 tab

  9. An SVM model with hybrid kernels for hydrological time series

    Science.gov (United States)

    Wang, C.; Wang, H.; Zhao, X.; Xie, Q.

    2017-12-01

    Support Vector Machine (SVM) models have been widely applied to the forecast of climate/weather and its impact on other environmental variables such as hydrologic response to climate/weather. When using SVM, the choice of the kernel function plays the key role. Conventional SVM models mostly use one single type of kernel function, e.g., radial basis kernel function. Provided that there are several featured kernel functions available, each having its own advantages and drawbacks, a combination of these kernel functions may give more flexibility and robustness to SVM approach, making it suitable for a wide range of application scenarios. This paper presents such a linear combination of radial basis kernel and polynomial kernel for the forecast of monthly flowrate in two gaging stations using SVM approach. The results indicate significant improvement in the accuracy of predicted series compared to the approach with either individual kernel function, thus demonstrating the feasibility and advantages of such hybrid kernel approach for SVM applications.

  10. Land-surface modelling in hydrological perspective ? a review

    OpenAIRE

    Overgaard , J.; Rosbjerg , D.; Butts , M. B.

    2006-01-01

    International audience; The purpose of this paper is to provide a review of the different types of energy-based land-surface models (LSMs) and discuss some of the new possibilities that will arise when energy-based LSMs are combined with distributed hydrological modelling. We choose to focus on energy-based approaches, because in comparison to the traditional potential evapotranspiration models, these approaches allow for a stronger link to remote sensing and atmospheric modelling. New opport...

  11. Flood Modelling of Banjir Kanal Barat (Integration of Hydrology Model and GIS

    Directory of Open Access Journals (Sweden)

    Muhammad Aris Marfai

    2004-01-01

    Full Text Available Hydrological modelling has an advantage on river flood study. Hydrological factors can be easily determined and calculated using hydrological model. HEC-RAS (Hydrological Engineering Centre-River Analysis System software is well known as hydrological modelling software for flood simulation and encroachment analysis of the floodplain area. For spatial performance and analysis of flood, the integration of the Geographic Information Systems (GIS and hydrological model is needed. The aims of this research are 1 to perform a flood encroachment using HEC-RAS software, and 2 to generate a flood hazard map. The methodology for this research omprise of 1 generating geometric data as a requirement of the data input on HEC-RAS hydrological model, 2 Hydrological data inputting, 3 generating of the flood encroachment analysis, and 4 transformation of flood encroachment into flood hazard map. The spatial pattern of the flood hazard is illustrated in a map. The result shows that hydrological model as integration with GIS can be used for flood hazard map generation. This method has advantages on the calculation of the hydrological factors of flood and spatial performance of the flood hazard map. For further analysis, the landuse map can be used on the overlay operation with the flood hazard map in order to obtain the impact of the flood on the landuse.

  12. Predictive modeling of complications.

    Science.gov (United States)

    Osorio, Joseph A; Scheer, Justin K; Ames, Christopher P

    2016-09-01

    Predictive analytic algorithms are designed to identify patterns in the data that allow for accurate predictions without the need for a hypothesis. Therefore, predictive modeling can provide detailed and patient-specific information that can be readily applied when discussing the risks of surgery with a patient. There are few studies using predictive modeling techniques in the adult spine surgery literature. These types of studies represent the beginning of the use of predictive analytics in spine surgery outcomes. We will discuss the advancements in the field of spine surgery with respect to predictive analytics, the controversies surrounding the technique, and the future directions.

  13. GLOFRIM v1.0-A globally applicable computational framework for integrated hydrological-hydrodynamic modelling

    NARCIS (Netherlands)

    Hoch, Jannis M.; Neal, Jeffrey C.; Baart, Fedor; Van Beek, Rens; Winsemius, Hessel C.; Bates, Paul D.; Bierkens, Marc F.P.

    2017-01-01

    We here present GLOFRIM, a globally applicable computational framework for integrated hydrological-hydrodynamic modelling. GLOFRIM facilitates spatially explicit coupling of hydrodynamic and hydrologic models and caters for an ensemble of models to be coupled. It currently encompasses the global

  14. Elements of a flexible approach for conceptual hydrological modeling : 1. Motivation and theoretical development

    NARCIS (Netherlands)

    Fenicia, F.; Kavetski, D.; Savenije, H.H.G.

    2011-01-01

    This paper introduces a flexible framework for conceptual hydrological modeling, with two related objectives: (1) generalize and systematize the currently fragmented field of conceptual models and (2) provide a robust platform for understanding and modeling hydrological systems. In contrast to

  15. A surface hydrology model for regional vector borne disease models

    Science.gov (United States)

    Tompkins, Adrian; Asare, Ernest; Bomblies, Arne; Amekudzi, Leonard

    2016-04-01

    Small, sun-lit temporary pools that form during the rainy season are important breeding sites for many key mosquito vectors responsible for the transmission of malaria and other diseases. The representation of this surface hydrology in mathematical disease models is challenging, due to their small-scale, dependence on the terrain and the difficulty of setting soil parameters. Here we introduce a model that represents the temporal evolution of the aggregate statistics of breeding sites in a single pond fractional coverage parameter. The model is based on a simple, geometrical assumption concerning the terrain, and accounts for the processes of surface runoff, pond overflow, infiltration and evaporation. Soil moisture, soil properties and large-scale terrain slope are accounted for using a calibration parameter that sets the equivalent catchment fraction. The model is calibrated and then evaluated using in situ pond measurements in Ghana and ultra-high (10m) resolution explicit simulations for a village in Niger. Despite the model's simplicity, it is shown to reproduce the variability and mean of the pond aggregate water coverage well for both locations and validation techniques. Example malaria simulations for Uganda will be shown using this new scheme with a generic calibration setting, evaluated using district malaria case data. Possible methods for implementing regional calibration will be briefly discussed.

  16. Legacy model integration for enhancing hydrologic interdisciplinary research

    Science.gov (United States)

    Dozier, A.; Arabi, M.; David, O.

    2013-12-01

    Many challenges are introduced to interdisciplinary research in and around the hydrologic science community due to advances in computing technology and modeling capabilities in different programming languages, across different platforms and frameworks by researchers in a variety of fields with a variety of experience in computer programming. Many new hydrologic models as well as optimization, parameter estimation, and uncertainty characterization techniques are developed in scripting languages such as Matlab, R, Python, or in newer languages such as Java and the .Net languages, whereas many legacy models have been written in FORTRAN and C, which complicates inter-model communication for two-way feedbacks. However, most hydrologic researchers and industry personnel have little knowledge of the computing technologies that are available to address the model integration process. Therefore, the goal of this study is to address these new challenges by utilizing a novel approach based on a publish-subscribe-type system to enhance modeling capabilities of legacy socio-economic, hydrologic, and ecologic software. Enhancements include massive parallelization of executions and access to legacy model variables at any point during the simulation process by another program without having to compile all the models together into an inseparable 'super-model'. Thus, this study provides two-way feedback mechanisms between multiple different process models that can be written in various programming languages and can run on different machines and operating systems. Additionally, a level of abstraction is given to the model integration process that allows researchers and other technical personnel to perform more detailed and interactive modeling, visualization, optimization, calibration, and uncertainty analysis without requiring deep understanding of inter-process communication. To be compatible, a program must be written in a programming language with bindings to a common

  17. Informing hydrological models with ground-based time-lapse relative gravimetry: potential and limitations

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Christiansen, Lars; Rosbjerg, Dan

    2011-01-01

    parameter uncertainty decreased significantly when TLRG data was included in the inversion. The forced infiltration experiment caused changes in unsaturated zone storage, which were monitored using TLRG and ground-penetrating radar. A numerical unsaturated zone model was subsequently conditioned on both......Coupled hydrogeophysical inversion emerges as an attractive option to improve the calibration and predictive capability of hydrological models. Recently, ground-based time-lapse relative gravity (TLRG) measurements have attracted increasing interest because there is a direct relationship between...

  18. Development and evaluation of a watershed-scale hybrid hydrologic model

    OpenAIRE

    Cho, Younghyun

    2016-01-01

    A watershed-scale hybrid hydrologic model (Distributed-Clark), which is a lumped conceptual and distributed feature model, was developed to predict spatially distributed short- and long-term rainfall runoff generation and routing using relatively simple methodologies and state-of-the-art spatial data in a GIS environment. In Distributed-Clark, spatially distributed excess rainfall estimated with the SCS curve number method and a GIS-based set of separated unit hydrographs (spatially distribut...

  19. Effects of temporal and spatial resolution of calibration data on integrated hydrologic water quality model identification

    Science.gov (United States)

    Jiang, Sanyuan; Jomaa, Seifeddine; Büttner, Olaf; Rode, Michael

    2014-05-01

    Hydrological water quality modeling is increasingly used for investigating runoff and nutrient transport processes as well as watershed management but it is mostly unclear how data availablity determins model identification. In this study, the HYPE (HYdrological Predictions for the Environment) model, which is a process-based, semi-distributed hydrological water quality model, was applied in two different mesoscale catchments (Selke (463 km2) and Weida (99 km2)) located in central Germany to simulate discharge and inorganic nitrogen (IN) transport. PEST and DREAM(ZS) were combined with the HYPE model to conduct parameter calibration and uncertainty analysis. Split-sample test was used for model calibration (1994-1999) and validation (1999-2004). IN concentration and daily IN load were found to be highly correlated with discharge, indicating that IN leaching is mainly controlled by runoff. Both dynamics and balances of water and IN load were well captured with NSE greater than 0.83 during validation period. Multi-objective calibration (calibrating hydrological and water quality parameters simultaneously) was found to outperform step-wise calibration in terms of model robustness. Multi-site calibration was able to improve model performance at internal sites, decrease parameter posterior uncertainty and prediction uncertainty. Nitrogen-process parameters calibrated using continuous daily averages of nitrate-N concentration observations produced better and more robust simulations of IN concentration and load, lower posterior parameter uncertainty and IN concentration prediction uncertainty compared to the calibration against uncontinuous biweekly nitrate-N concentration measurements. Both PEST and DREAM(ZS) are efficient in parameter calibration. However, DREAM(ZS) is more sound in terms of parameter identification and uncertainty analysis than PEST because of its capability to evolve parameter posterior distributions and estimate prediction uncertainty based on global

  20. Description of the National Hydrologic Model for use with the Precipitation-Runoff Modeling System (PRMS)

    Science.gov (United States)

    Regan, R. Steven; Markstrom, Steven L.; Hay, Lauren E.; Viger, Roland J.; Norton, Parker A.; Driscoll, Jessica M.; LaFontaine, Jacob H.

    2018-01-08

    This report documents several components of the U.S. Geological Survey National Hydrologic Model of the conterminous United States for use with the Precipitation-Runoff Modeling System (PRMS). It provides descriptions of the (1) National Hydrologic Model, (2) Geospatial Fabric for National Hydrologic Modeling, (3) PRMS hydrologic simulation code, (4) parameters and estimation methods used to compute spatially and temporally distributed default values as required by PRMS, (5) National Hydrologic Model Parameter Database, and (6) model extraction tool named Bandit. The National Hydrologic Model Parameter Database contains values for all PRMS parameters used in the National Hydrologic Model. The methods and national datasets used to estimate all the PRMS parameters are described. Some parameter values are derived from characteristics of topography, land cover, soils, geology, and hydrography using traditional Geographic Information System methods. Other parameters are set to long-established default values and computation of initial values. Additionally, methods (statistical, sensitivity, calibration, and algebraic) were developed to compute parameter values on the basis of a variety of nationally-consistent datasets. Values in the National Hydrologic Model Parameter Database can periodically be updated on the basis of new parameter estimation methods and as additional national datasets become available. A companion ScienceBase resource provides a set of static parameter values as well as images of spatially-distributed parameters associated with PRMS states and fluxes for each Hydrologic Response Unit across the conterminuous United States.

  1. How hydrological factors initiate instability in a model sandy slope

    OpenAIRE

    Terajima, Tomomi; Miyahira, Ei-ichiro; Miyajima, Hiroyuki; Ochiai, Hirotaka; Hattori, Katsumi

    2013-01-01

    Knowledge of the mechanisms of rain-induced shallow landslides can improve the prediction of their occurrence and mitigate subsequent sediment disasters. Here, we examine an artificial slope's subsurface hydrology and propose a new slope stability analysis that includes seepage force and the down-slope transfer of excess shear forces. We measured pore water pressure and volumetric water content immediately prior to a shallow landslide on an artificial sandy slope of 32°: The direction of the ...

  2. Sharing hydrological knowledge: an international comparison of hydrological models in the Meuse River Basin

    Science.gov (United States)

    Bouaziz, Laurène; Sperna Weiland, Frederiek; Drogue, Gilles; Brauer, Claudia; Weerts, Albrecht

    2015-04-01

    International collaboration between institutes and universities working and studying the same transboundary basin is needed for consensus building around possible effects of climate change and climate adaptation measures. Education, experience and expert knowledge of the hydrological community have resulted in the development of a great variety of model concepts, calibration and analysis techniques. Intercomparison could be a first step into consensus modeling or an ensemble based modeling strategy. Besides these practical objectives, such an intercomparison offers the opportunity to explore different ranges of models and learn from each other, hopefully increasing the insight into the hydrological processes that play a role in the transboundary basin. In this experiment, different international research groups applied their rainfall-runoff model in the Ourthe, a Belgium sub-catchment of the Meuse. Data preparation involved the interpolation of hourly precipitation station data collected and owned by the Service Public de Wallonie1 and the freely available E-OBS dataset for daily temperature (Haylock et al., 2008). Daily temperature was disaggregated to hourly values and potential evaporation was derived with the Hargreaves formula. The data was made available to the researchers through an FTP server. The protocol for the modeling involved a split-sample calibration and validation for pre-defined periods. Objective functions for calibration were fixed but the calibration algorithm was a free choice of the research groups. The selection of calibration algorithm was considered model dependent because lumped as well as computationally less efficient distributed models were used. For each model, an ensemble of best performing parameter sets was selected and several performance metrics enabled to assess the models' abilities to simulate discharge. The aim of this experiment is to identify those model components and structures that increase model performance and may best

  3. Modeling the Hydrologic Processes of a Permeable Pavement System

    Science.gov (United States)

    A permeable pavement system can capture stormwater to reduce runoff volume and flow rate, improve onsite groundwater recharge, and enhance pollutant controls within the site. A new unit process model for evaluating the hydrologic performance of a permeable pavement system has be...

  4. Using Modeling Tools to Better Understand Permafrost Hydrology

    Directory of Open Access Journals (Sweden)

    Clément Fabre

    2017-06-01

    Full Text Available Modification of the hydrological cycle and, subsequently, of other global cycles is expected in Arctic watersheds owing to global change. Future climate scenarios imply widespread permafrost degradation caused by an increase in air temperature, and the expected effect on permafrost hydrology is immense. This study aims at analyzing, and quantifying the daily water transfer in the largest Arctic river system, the Yenisei River in central Siberia, Russia, partially underlain by permafrost. The semi-distributed SWAT (Soil and Water Assessment Tool hydrological model has been calibrated and validated at a daily time step in historical discharge simulations for the 2003–2014 period. The model parameters have been adjusted to embrace the hydrological features of permafrost. SWAT is shown capable to estimate water fluxes at a daily time step, especially during unfrozen periods, once are considered specific climatic and soils conditions adapted to a permafrost watershed. The model simulates average annual contribution to runoff of 263 millimeters per year (mm yr−1 distributed as 152 mm yr−1 (58% of surface runoff, 103 mm yr−1 (39% of lateral flow and 8 mm yr−1 (3% of return flow from the aquifer. These results are integrated on a reduced basin area downstream from large dams and are closer to observations than previous modeling exercises.

  5. Improving Hydrological Models of The Netherlands Using ALOS PALSAR

    NARCIS (Netherlands)

    Dekker, R.J.; Schuurmans, J.M.; Berendrecht, W.L.; Borren, W.; Ven, T.J.M. van de; Westerhoff, R.S.

    2010-01-01

    In this paper the improvement of the hydrological model metaSWAP of The Netherlands, with respect to soil moisture, is studied using remote sensing data. Therefore we investigate the value of ALOS PALSAR data of 2007 in combination with the method of Dubois et al. [1] for measuring volumetric

  6. A Model for Wetland Hydrology: Description and Validation

    Science.gov (United States)

    R.S. Mansell; S.A. Bloom; Ge Sun

    2000-01-01

    WETLANDS, a multidimensional model describing water flow in variably saturated soil and evapotranspiration, was used to simulate successfully 3-years of local hydrology for a cypress pond located within a relatively flat Coastal Plain pine forest landscape. Assumptions included negligible net regional groundwater flow and radially symmetric local flow impinging on a...

  7. Uncertainty propagation in urban hydrology water quality modelling

    NARCIS (Netherlands)

    Torres Matallana, Arturo; Leopold, U.; Heuvelink, G.B.M.

    2016-01-01

    Uncertainty is often ignored in urban hydrology modelling. Engineering practice typically ignores uncertainties and uncertainty propagation. This can have large impacts, such as the wrong dimensioning of urban drainage systems and the inaccurate estimation of pollution in the environment caused

  8. Hydrological modeling using a multi-site stochastic weather generator

    Science.gov (United States)

    Weather data is usually required at several locations over a large watershed, especially when using distributed models for hydrological simulations. In many applications, spatially correlated weather data can be provided by a multi-site stochastic weather generator which considers the spatial correl...

  9. Application of hydropedological insights in hydrological modelling of ...

    African Journals Online (AJOL)

    In this paper the output of a digital soil mapping exercise was used as the soil input into a distributed hydrological model (ACRU) for a test site within the Stevenson-Hamilton Research Supersite, Kruger National Park (South ... The outputs evaluated included both streamflow and soil water content at selected soil profiles.

  10. Evaluating hydrological model performance using information theory-based metrics

    Science.gov (United States)

    The accuracy-based model performance metrics not necessarily reflect the qualitative correspondence between simulated and measured streamflow time series. The objective of this work was to use the information theory-based metrics to see whether they can be used as complementary tool for hydrologic m...

  11. Modeling of hydrological processes in arid agricultural regions

    Directory of Open Access Journals (Sweden)

    Jiang LI,Xiaomin MAO,Shaozhong KANG,David A. BARRY

    2015-12-01

    Full Text Available Understanding of hydrological processes, including consideration of interactions between vegetation growth and water transfer in the root zone, underpins efficient use of water resources in arid-zone agriculture. Water transfers take place in the soil-plant-atmosphere continuum, and include groundwater dynamics, unsaturated zone flow, evaporation/transpiration from vegetated/bare soil and surface water, agricultural canal/surface water flow and seepage, and well pumping. Models can be categorized into three classes: (1 regional distributed hydrological models with various land uses, (2 groundwater-soil-plant-atmosphere continuum models that neglect lateral water fluxes, and (3 coupled models with groundwater flow and unsaturated zone water dynamics. This review highlights, in addition, future research challenges in modeling arid-zone agricultural systems, e.g., to effectively assimilate data from remote sensing, and to fully reflect climate change effects at various model scales.

  12. Detecting Human Hydrologic Alteration from Diversion Hydropower Requires Universal Flow Prediction Tools: A Proposed Framework for Flow Prediction in Poorly-gauged, Regulated Rivers

    Science.gov (United States)

    Kibler, K. M.; Alipour, M.

    2016-12-01

    Achieving the universal energy access Sustainable Development Goal will require great investment in renewable energy infrastructure in the developing world. Much growth in the renewable sector will come from new hydropower projects, including small and diversion hydropower in remote and mountainous regions. Yet, human impacts to hydrological systems from diversion hydropower are poorly described. Diversion hydropower is often implemented in ungauged rivers, thus detection of impact requires flow analysis tools suited to prediction in poorly-gauged and human-altered catchments. We conduct a comprehensive analysis of hydrologic alteration in 32 rivers developed with diversion hydropower in southwestern China. As flow data are sparse, we devise an approach for estimating streamflow during pre- and post-development periods, drawing upon a decade of research into prediction in ungauged basins. We apply a rainfall-runoff model, parameterized and forced exclusively with global-scale data, in hydrologically-similar gauged and ungauged catchments. Uncertain "soft" data are incorporated through fuzzy numbers and confidence-based weighting, and a multi-criteria objective function is applied to evaluate model performance. Testing indicates that the proposed framework returns superior performance (NSE = 0.77) as compared to models parameterized by rote calibration (NSE = 0.62). Confident that the models are providing `the right answer for the right reasons', our analysis of hydrologic alteration based on simulated flows indicates statistically significant hydrologic effects of diversion hydropower across many rivers. Mean annual flows, 7-day minimum and 7-day maximum flows decreased. Frequency and duration of flow exceeding Q25 decreased while duration of flows sustained below the Q75 increased substantially. Hydrograph rise and fall rates and flow constancy increased. The proposed methodology may be applied to improve diversion hydropower design in data-limited regions.

  13. Quantification of effective plant rooting depth: advancing global hydrological modelling

    Science.gov (United States)

    Yang, Y.; Donohue, R. J.; McVicar, T.

    2017-12-01

    Plant rooting depth (Zr) is a key parameter in hydrological and biogeochemical models, yet the global spatial distribution of Zr is largely unknown due to the difficulties in its direct measurement. Moreover, Zr observations are usually only representative of a single plant or several plants, which can differ greatly from the effective Zr over a modelling unit (e.g., catchment or grid-box). Here, we provide a global parameterization of an analytical Zr model that balances the marginal carbon cost and benefit of deeper roots, and produce a climatological (i.e., 1982-2010 average) global Zr map. To test the Zr estimates, we apply the estimated Zr in a highly transparent hydrological model (i.e., the Budyko-Choudhury-Porporato (BCP) model) to estimate mean annual actual evapotranspiration (E) across the globe. We then compare the estimated E with both water balance-based E observations at 32 major catchments and satellite grid-box retrievals across the globe. Our results show that the BCP model, when implemented with Zr estimated herein, optimally reproduced the spatial pattern of E at both scales and provides improved model outputs when compared to BCP model results from two already existing global Zr datasets. These results suggest that our Zr estimates can be effectively used in state-of-the-art hydrological models, and potentially biogeochemical models, where the determination of Zr currently largely relies on biome type-based look-up tables.

  14. JAMS - a software platform for modular hydrological modelling

    Science.gov (United States)

    Kralisch, Sven; Fischer, Christian

    2015-04-01

    Current challenges of understanding and assessing the impacts of climate and land use changes on environmental systems demand for an ever-increasing integration of data and process knowledge in corresponding simulation models. Software frameworks that allow for a seamless creation of integrated models based on less complex components (domain models, process simulation routines) have therefore gained increasing attention during the last decade. JAMS is an Open-Source software framework that has been especially designed to cope with the challenges of eco-hydrological modelling. This is reflected by (i) its flexible approach for representing time and space, (ii) a strong separation of process simulation components from the declarative description of more complex models using domain specific XML, (iii) powerful analysis and visualization functions for spatial and temporal input and output data, and (iv) parameter optimization and uncertainty analysis functions commonly used in environmental modelling. Based on JAMS, different hydrological and nutrient-transport simulation models were implemented and successfully applied during the last years. We will present the JAMS core concepts and give an overview of models, simulation components and support tools available for that framework. Sample applications will be used to underline the advantages of component-based model designs and to show how JAMS can be used to address the challenges of integrated hydrological modelling.

  15. Integrated climate and hydrology modelling - Coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model

    Energy Technology Data Exchange (ETDEWEB)

    Dahl Larsen, M.A. [Technical Univ. of Denmark. DTU Management Engineering, DTU Risoe Campus, Roskilde (Denmark)

    2013-10-15

    To ensure optimal management and sustainable strategies for water resources, infrastructures, food production and ecosystems there is a need for an improved understanding of feedback and interaction mechanisms between the atmosphere and the land surface. This is especially true in light of expected global warming and increased frequency of extreme events. The skill in developing projections of both the present and future climate depends essentially on the ability to numerically simulate the processes of atmospheric circulation, hydrology, energy and ecology. Previous modelling efforts of climate and hydrology have used each model component in an offline mode where the models are run in sequential steps and one model serves as a boundary condition or data input source to the other. Within recent years a new field of research has emerged where efforts have been made to dynamically couple existing climate and hydrology models to more directly include the interaction between the atmosphere and the land surface. The present PhD study is motivated by an ambition of developing and applying a modelling tool capable of including the interaction and feedback mechanisms between the atmosphere and the land surface. The modelling tool consists of a fully dynamic two-way coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model. The expected gain is twofold. Firstly, HIRHAM utilizes the land surface component of the combined MIKE SHE/SWET hydrology and land surface model (LSM), which is superior to the LSM in HIRHAM. A wider range of processes are included at the land surface, subsurface flow is distributed in three dimensions and the temporal and spatial resolution is higher. Secondly, the feedback mechanisms of e.g. soil moisture and precipitation between the two models are included. The preparation of the HIRHAM and MIKE SHE models for the coupled study revealed several findings. The performance of HIRHAM was highly affected by the domain size, domain

  16. Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale: a review

    Directory of Open Access Journals (Sweden)

    Ly, S.

    2013-01-01

    Full Text Available Watershed management and hydrological modeling require data related to the very important matter of precipitation, often measured using raingages or weather stations. Hydrological models often require a preliminary spatial interpolation as part of the modeling process. The success of spatial interpolation varies according to the type of model chosen, its mode of geographical management and the resolution used. The quality of a result is determined by the quality of the continuous spatial rainfall, which ensues from the interpolation method used. The objective of this article is to review the existing methods for interpolation of rainfall data that are usually required in hydrological modeling. We review the basis for the application of certain common methods and geostatistical approaches used in interpolation of rainfall. Previous studies have highlighted the need for new research to investigate ways of improving the quality of rainfall data and ultimately, the quality of hydrological modeling.

  17. Long Memory Models to Generate Synthetic Hydrological Series

    Directory of Open Access Journals (Sweden)

    Guilherme Armando de Almeida Pereira

    2014-01-01

    Full Text Available In Brazil, much of the energy production comes from hydroelectric plants whose planning is not trivial due to the strong dependence on rainfall regimes. This planning is accomplished through optimization models that use inputs such as synthetic hydrologic series generated from the statistical model PAR(p (periodic autoregressive. Recently, Brazil began the search for alternative models able to capture the effects that the traditional model PAR(p does not incorporate, such as long memory effects. Long memory in a time series can be defined as a significant dependence between lags separated by a long period of time. Thus, this research develops a study of the effects of long dependence in the series of streamflow natural energy in the South subsystem, in order to estimate a long memory model capable of generating synthetic hydrologic series.

  18. Hydrology in a Mediterranean mountain environment, the Vallcebre Research basins (North Eastern Spain). IV. Testing hydrological and erosion models

    International Nuclear Information System (INIS)

    Gallart, F.; Latron, J.; Llorens, P.; Martinez-Carreras, N.

    2009-01-01

    Three modelling exercises were carried out in the Vallcebre research basins in order to both improve the understanding of the hydrological processes and test the adequate of some models in such Mediterranean mountain conditions. These exercises consisted of i) the analysis of the hydrological role of the agricultural terraces using the TOPMODEL topographic index, ii) the parametrisation of TOPMODEL using internal basin information, and iii) a test of the erosion model KINEROS2 for simulating badlands erosion. (Author) 13 refs.

  19. Estimating predictive hydrological uncertainty by dressing deterministic and ensemble forecasts; a comparison, with application to Meuse and Rhine

    Science.gov (United States)

    Verkade, J. S.; Brown, J. D.; Davids, F.; Reggiani, P.; Weerts, A. H.

    2017-12-01

    Two statistical post-processing approaches for estimation of predictive hydrological uncertainty are compared: (i) 'dressing' of a deterministic forecast by adding a single, combined estimate of both hydrological and meteorological uncertainty and (ii) 'dressing' of an ensemble streamflow forecast by adding an estimate of hydrological uncertainty to each individual streamflow ensemble member. Both approaches aim to produce an estimate of the 'total uncertainty' that captures both the meteorological and hydrological uncertainties. They differ in the degree to which they make use of statistical post-processing techniques. In the 'lumped' approach, both sources of uncertainty are lumped by post-processing deterministic forecasts using their verifying observations. In the 'source-specific' approach, the meteorological uncertainties are estimated by an ensemble of weather forecasts. These ensemble members are routed through a hydrological model and a realization of the probability distribution of hydrological uncertainties (only) is then added to each ensemble member to arrive at an estimate of the total uncertainty. The techniques are applied to one location in the Meuse basin and three locations in the Rhine basin. Resulting forecasts are assessed for their reliability and sharpness, as well as compared in terms of multiple verification scores including the relative mean error, Brier Skill Score, Mean Continuous Ranked Probability Skill Score, Relative Operating Characteristic Score and Relative Economic Value. The dressed deterministic forecasts are generally more reliable than the dressed ensemble forecasts, but the latter are sharper. On balance, however, they show similar quality across a range of verification metrics, with the dressed ensembles coming out slightly better. Some additional analyses are suggested. Notably, these include statistical post-processing of the meteorological forecasts in order to increase their reliability, thus increasing the reliability

  20. Flash flood modeling with the MARINE hydrological distributed model

    Science.gov (United States)

    Estupina-Borrell, V.; Dartus, D.; Ababou, R.

    2006-11-01

    Flash floods are characterized by their violence and the rapidity of their occurrence. Because these events are rare and unpredictable, but also fast and intense, their anticipation with sufficient lead time for warning and broadcasting is a primary subject of research. Because of the heterogeneities of the rain and of the behavior of the surface, spatially distributed hydrological models can lead to a better understanding of the processes and so on they can contribute to a better forecasting of flash flood. Our main goal here is to develop an operational and robust methodology for flash flood forecasting. This methodology should provide relevant data (information) about flood evolution on short time scales, and should be applicable even in locations where direct observations are sparse (e.g. absence of historical and modern rainfalls and streamflows in small mountainous watersheds). The flash flood forecast is obtained by the physically based, space-time distributed hydrological model "MARINE'' (Model of Anticipation of Runoff and INondations for Extreme events). This model is presented and tested in this paper for a real flash flood event. The model consists in two steps, or two components: the first component is a "basin'' flood module which generates flood runoff in the upstream part of the watershed, and the second component is the "stream network'' module, which propagates the flood in the main river and its subsidiaries. The basin flash flood generation model is a rainfall-runoff model that can integrate remotely sensed data. Surface hydraulics equations are solved with enough simplifying hypotheses to allow real time exploitation. The minimum data required by the model are: (i) the Digital Elevation Model, used to calculate slopes that generate runoff, it can be issued from satellite imagery (SPOT) or from French Geographical Institute (IGN); (ii) the rainfall data from meteorological radar, observed or anticipated by the French Meteorological Service (M

  1. Determining hydrological changes in a small Arctic treeline basin using cold regions hydrological modelling and a pseudo-global warming approach

    Science.gov (United States)

    Krogh, S. A.; Pomeroy, J. W.

    2017-12-01

    Increasing temperatures are producing higher rainfall ratios, shorter snow-covered periods, permafrost thaw, more shrub coverage, more northerly treelines and greater interaction between groundwater and surface flow in Arctic basins. How these changes will impact the hydrology of the Arctic treeline environment represents a great challenge. To diagnose the future hydrology along the current Arctic treeline, a physically based cold regions model was used to simulate the hydrology of a small basin near Inuvik, Northwest Territories, Canada. The hydrological model includes hydrological processes such as snow redistribution and sublimation by wind, canopy interception of snow/rain and sublimation/evaporation, snowmelt energy balance, active layer freeze/thaw, infiltration into frozen and unfrozen soils, evapotranspiration, horizontal flow through organic terrain and snowpack, subsurface flow and streamflow routing. The model was driven with weather simulated by a high-resolution (4 km) numerical weather prediction model under two scenarios: (1) control run, using ERA-Interim boundary conditions (2001-2013) and (2) future, using a Pseudo-Global Warming (PGW) approach based on the RCP8.5 projections perturbing the control run. Transient changes in vegetation based on recent observations and ecological expectations were then used to re-parameterise the model. Historical hydrological simulations were validated against daily streamflow, snow water equivalent and active layer thickness records, showing the model's suitability in this environment. Strong annual warming ( 6 °C) and more precipitation ( 20%) were simulated by the PGW scenario, with winter precipitation and fall temperature showing the largest seasonal increase. The joint impact of climate and transient vegetation changes on snow accumulation and redistribution, evapotranspiration, active layer development, runoff generation and hydrograph characteristics are analyzed and discussed.

  2. Representing Northern Peatland Hydrology and Biogeochemistry with ALM Land Surface Model

    Science.gov (United States)

    Shi, X.; Ricciuto, D. M.; Thornton, P. E.; Hanson, P. J.; Xu, X.; Mao, J.; Warren, J.; Yuan, F.; Norby, R. J.; Sebestyen, S.; Griffiths, N.; Weston, D. J.; Walker, A.

    2017-12-01

    Northern peatlands are likely to be important in future carbon cycle-climate feedbacks due to their large carbon pool and vulnerability to hydrological change. Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. Firstly, we introduce a new configuration of the land model (ALM) of Accelerated Climate model for Energy (ACME), which includes a fully prognostic water table calculation for a vegetated peatland. Secondly, we couple our new hydrology treatment with vertically structured soil organic matter pool, and the addition of components from methane biogeochemistry. Thirdly, we introduce a new PFT for mosses and implement the water content dynamics and physiology of mosses. We inform and test our model based on SPRUCE experiment to get the reasonable results for the seasonal dynamics water table depths, water content dynamics and physiology of mosses, and correct soil carbon profiles. Then, we use our new model structure to test the how the water table depth and CH4 emission will respond to elevated CO2 and different warming scenarios.

  3. Archaeological predictive model set.

    Science.gov (United States)

    2015-03-01

    This report is the documentation for Task 7 of the Statewide Archaeological Predictive Model Set. The goal of this project is to : develop a set of statewide predictive models to assist the planning of transportation projects. PennDOT is developing t...

  4. Towards an Improved Represenation of Reservoirs and Water Management in a Land Surface-Hydrology Model

    Science.gov (United States)

    Yassin, F.; Anis, M. R.; Razavi, S.; Wheater, H. S.

    2017-12-01

    Water management through reservoirs, diversions, and irrigation have significantly changed river flow regimes and basin-wide energy and water balance cycles. Failure to represent these effects limits the performance of land surface-hydrology models not only for streamflow prediction but also for the estimation of soil moisture, evapotranspiration, and feedbacks to the atmosphere. Despite recent research to improve the representation of water management in land surface models, there remains a need to develop improved modeling approaches that work in complex and highly regulated basins such as the 406,000 km2 Saskatchewan River Basin (SaskRB). A particular challenge for regional and global application is a lack of local information on reservoir operational management. To this end, we implemented a reservoir operation, water abstraction, and irrigation algorithm in the MESH land surface-hydrology model and tested it over the SaskRB. MESH is Environment Canada's Land Surface-hydrology modeling system that couples Canadian Land Surface Scheme (CLASS) with hydrological routing model. The implemented reservoir algorithm uses an inflow-outflow relationship that accounts for the physical characteristics of reservoirs (e.g., storage-area-elevation relationships) and includes simplified operational characteristics based on local information (e.g., monthly target volume and release under limited, normal, and flood storage zone). The irrigation algorithm uses the difference between actual and potential evapotranspiration to estimate irrigation water demand. This irrigation demand is supplied from the neighboring reservoirs/diversion in the river system. We calibrated the model enabled with the new reservoir and irrigation modules in a multi-objective optimization setting. Results showed that the reservoir and irrigation modules significantly improved the MESH model performance in generating streamflow and evapotranspiration across the SaskRB and that this our approach provides

  5. A practical demonstration in modelling diclofenac and propranolol river water concentrations using a GIS hydrology model in a rural UK catchment

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.C. [Centre for Ecology and Hydrology (CEH) Wallingford, Benson Lane, Wallingford, Oxfordshire OX10 8BB (United Kingdom)]. E-mail: ajo@ceh.ac.uk; Keller, V. [Centre for Ecology and Hydrology (CEH) Wallingford, Benson Lane, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Williams, R.J. [Centre for Ecology and Hydrology (CEH) Wallingford, Benson Lane, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Young, A. [Centre for Ecology and Hydrology (CEH) Wallingford, Benson Lane, Wallingford, Oxfordshire OX10 8BB (United Kingdom)

    2007-03-15

    An existing GIS hydrology water quality model, LF2000-WQX, was applied to predict the concentrations of the pharmaceuticals diclofenac and propranalol in catchments. As a practical exercise the predominantly rural Tamar (UK) catchment was chosen. Consumption, excretion, and fate data were used to estimate the pharmaceutical input load for the model. The predicted concentrations throughout most of the catchment were 1 ng/L or less under low flow (90th percentile) conditions. However, at a few locations, downstream of small sewage treatment plants, concentrations above 25 ng/L were predicted. This exercise shows that it is relatively straightforward to predict the concentrations of new and emerging organic microcontaminants in real catchments using existing GIS hydrology water quality models. Further testing will be required to establish their accuracy. - A GIS hydrology model was used to predict pharmaceutical concentration hot spots in a rural catchment.

  6. A practical demonstration in modelling diclofenac and propranolol river water concentrations using a GIS hydrology model in a rural UK catchment

    International Nuclear Information System (INIS)

    Johnson, A.C.; Keller, V.; Williams, R.J.; Young, A.

    2007-01-01

    An existing GIS hydrology water quality model, LF2000-WQX, was applied to predict the concentrations of the pharmaceuticals diclofenac and propranalol in catchments. As a practical exercise the predominantly rural Tamar (UK) catchment was chosen. Consumption, excretion, and fate data were used to estimate the pharmaceutical input load for the model. The predicted concentrations throughout most of the catchment were 1 ng/L or less under low flow (90th percentile) conditions. However, at a few locations, downstream of small sewage treatment plants, concentrations above 25 ng/L were predicted. This exercise shows that it is relatively straightforward to predict the concentrations of new and emerging organic microcontaminants in real catchments using existing GIS hydrology water quality models. Further testing will be required to establish their accuracy. - A GIS hydrology model was used to predict pharmaceutical concentration hot spots in a rural catchment

  7. DUAL STATE-PARAMETER UPDATING SCHEME ON A CONCEPTUAL HYDROLOGIC MODEL USING SEQUENTIAL MONTE CARLO FILTERS

    Science.gov (United States)

    Noh, Seong Jin; Tachikawa, Yasuto; Shiiba, Michiharu; Kim, Sunmin

    Applications of data assimilation techniques have been widely used to improve upon the predictability of hydrologic modeling. Among various data assimilation techniques, sequential Monte Carlo (SMC) filters, known as "particle filters" provide the capability to handle non-linear and non-Gaussian state-space models. This paper proposes a dual state-parameter updating scheme (DUS) based on SMC methods to estimate both state and parameter variables of a hydrologic model. We introduce a kernel smoothing method for the robust estimation of uncertain model parameters in the DUS. The applicability of the dual updating scheme is illustrated using the implementation of the storage function model on a middle-sized Japanese catchment. We also compare performance results of DUS combined with various SMC methods, such as SIR, ASIR and RPF.

  8. Selection of Hydrological Model for Waterborne Release

    International Nuclear Information System (INIS)

    Blanchard, A.

    1999-01-01

    This evaluation will aid in determining the potential impacts of liquid releases to downstream populations on the Savannah River. The purpose of this report is to evaluate the two available models and determine the appropriate model for use in following waterborne release analyses. Additionally, this report will document the Design Basis and Beyond Design Basis accidents to be used in the future study

  9. Modeling of subglacial hydrological development following rapid supraglacial lake drainage

    OpenAIRE

    Dow, C F; Kulessa, B; Rutt, I C; Tsai, V C; Pimentel, S; Doyle, S H; van As, D; Lindb?ck, K; Pettersson, R; Jones, G A; Hubbard, A

    2015-01-01

    The rapid drainage of supraglacial lakes injects substantial volumes of water to the bed of the Greenland ice sheet over short timescales. The effect of these water pulses on the development of basal hydrological systems is largely unknown. To address this, we develop a lake drainage model incorporating both (1) a subglacial radial flux element driven by elastic hydraulic jacking and (2) downstream drainage through a linked channelized and distributed system. Here we present the model and exa...

  10. Mountain Pine Beetles, Salvage Logging, and Hydrologic Change: Predicting Wet Ground Areas

    Directory of Open Access Journals (Sweden)

    John Rex

    2013-04-01

    Full Text Available The mountain pine beetle epidemic in British Columbia has covered 18.1 million hectares of forest land showing the potential for exceptionally large-scale disturbance to influence watershed hydrology. Pine stands killed by the epidemic can experience reduced levels of evapotranspiration and precipitation interception, which can translate into an increase in soil moisture as observed by some forest practitioners during salvage logging in the epicenter of the outbreak. They reported the replacement of summer ground, dry firm soil areas, with winter ground areas identified by having wetter, less firm soils upon which forestry equipment operation is difficult or impossible before winter freeze-up. To decrease the likelihood of soil disturbance from harvesting, a set of hazard indicators was developed to predict wet ground areas in areas heavily infested by the mountain pine beetle. Hazard indicators were based on available GIS data, aerial photographs, and local knowledge. Indicators were selected by an iterative process that began with office-based selection of potential indicators, model development and prediction, field verification, and model refinement to select those indicators that explained most field data variability. Findings indicate that the most effective indicators were lodgepole pine content, understory, drainage density, soil texture, and the topographic index.

  11. Is there a need for hydrological modelling in decision support systems for nuclear emergencies

    International Nuclear Information System (INIS)

    Raskob, W.; Heling, R.; Zheleznyak, M.

    2004-01-01

    This paper discusses the role of hydrological modelling in decision support systems for nuclear emergencies. In particular, most recent developments such as, the radionuclide transport models integrated in to the decision support system RODOS will be explored. Recent progress in the implementation of physically-based distributed hydrological models for operational forecasting in national and supranational centres, may support a closer cooperation between national hydrological services and therefore, strengthen the use of hydrological and radiological models implemented in decision support systems. (authors)

  12. Integrating hydrologic modeling web services with online data sharing to prepare, store, and execute models in hydrology

    Science.gov (United States)

    Gan, T.; Tarboton, D. G.; Dash, P. K.; Gichamo, T.; Horsburgh, J. S.

    2017-12-01

    Web based apps, web services and online data and model sharing technology are becoming increasingly available to support research. This promises benefits in terms of collaboration, platform independence, transparency and reproducibility of modeling workflows and results. However, challenges still exist in real application of these capabilities and the programming skills researchers need to use them. In this research we combined hydrologic modeling web services with an online data and model sharing system to develop functionality to support reproducible hydrologic modeling work. We used HydroDS, a system that provides web services for input data preparation and execution of a snowmelt model, and HydroShare, a hydrologic information system that supports the sharing of hydrologic data, model and analysis tools. To make the web services easy to use, we developed a HydroShare app (based on the Tethys platform) to serve as a browser based user interface for HydroDS. In this integration, HydroDS receives web requests from the HydroShare app to process the data and execute the model. HydroShare supports storage and sharing of the results generated by HydroDS web services. The snowmelt modeling example served as a use case to test and evaluate this approach. We show that, after the integration, users can prepare model inputs or execute the model through the web user interface of the HydroShare app without writing program code. The model input/output files and metadata describing the model instance are stored and shared in HydroShare. These files include a Python script that is automatically generated by the HydroShare app to document and reproduce the model input preparation workflow. Once stored in HydroShare, inputs and results can be shared with other users, or published so that other users can directly discover, repeat or modify the modeling work. This approach provides a collaborative environment that integrates hydrologic web services with a data and model sharing

  13. On the role of model structure in hydrological modeling : Understanding models

    NARCIS (Netherlands)

    Gharari, S.

    2016-01-01

    Modeling is an essential part of the science of hydrology. Models enable us to formulate what we know and perceive from the real world into a neat package. Rainfall-runoff models are abstract simplifications of how a catchment works. Within the research field of scientific rainfall-runoff modeling,

  14. Wind power prediction models

    Science.gov (United States)

    Levy, R.; Mcginness, H.

    1976-01-01

    Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.

  15. Predicted water quality of oil sands reclamation wetlands : impact of physical design and hydrology

    International Nuclear Information System (INIS)

    2006-01-01

    Although engineered wetlands can be used as treatment systems in the reclamation of oil sands mines, a variety of factors must be considered to improve the biological functioning of many oil sands reclamation landscapes. Key factors in the control of concentrations of dissolved substances include area, depth, shape, surrounding landscape material and contributing water quality and quantity. Seasonal cycles of precipitation and ice cover also require consideration in the planning of wetlands ecosystems. This paper presented details of a model designed to predict constituent concentrations in planned wetlands based on probable inflow and processes. Input variables consisted of key substances and hydrological factors that may be encountered on reclaimed landscapes. The model was constructed to perform sensitivity analyses of wetlands with respect to total dissolved solids (TDS), major ions, and naphthenic acids concentrations. Inputs and assumptions drawn from previous environmental impact assessments completed for proposed and approved oil sands projects were used. Results suggested that wetlands volume is an important factor in the moderation of peak flows and substance decay. The predictions generated by the model suggested that wetlands size, tailings and sandcap placement schedules may be manipulated to achieve desired wetlands salinities. It was observed that the proportion of the watershed covered by specific land types can affect both initial and future concentrations. Long-term climate change that results in 15 per cent more or less runoff was predicted to have little effect on wetlands concentrations, although concentrations may rise during periodic droughts. It was concluded that site-specific modelling and careful planning is needed to achieve desired water quality for the creation of engineered wetlands. 18 refs., 3 tabs., 3 figs

  16. Hydrological storage variations in a lake water balance, observed from multi-sensor satellite data and hydrological models.

    Science.gov (United States)

    Singh, Alka; Seitz, Florian; Schwatke, Christian; Guentner, Andreas

    2013-04-01

    Freshwater lakes and reservoirs account for 74.5% of continental water storage in surface water bodies and only 1.8% resides in rivers. Lakes and reservoirs are a key component of the continental hydrological cycle but in-situ monitoring networks are very limited either because of sparse spatial distribution of gauges or national data policy. Monitoring and predicting extreme events is very challenging in that case. In this study we demonstrate the use of optical remote sensing, satellite altimetry and the GRACE gravity field mission to monitor the lake water storage variations in the Aral Sea. Aral Sea is one of the most unfortunate examples of a large anthropogenic catastrophe. The 4th largest lake of 1960s has been decertified for more than 75% of its area due to the diversion of its primary rivers for irrigation purposes. Our study is focused on the time frame of the GRACE mission; therefore we consider changes from 2002 onwards. Continuous monthly time series of water masks from Landsat satellite data and water level from altimetry missions were derived. Monthly volumetric variations of the lake water storage were computed by intersecting a digital elevation model of the lake with respective water mask and altimetry water level. With this approach we obtained volume from two independent remote sensing methods to reduce the error in the estimated volume through least square adjustment. The resultant variations were then compared with mass variability observed by GRACE. In addition, GARCE estimates of water storage variations were compared with simulation results of the Water Gap Hydrology Model (WGHM). The different observations from all missions agree that the lake reached an absolute minimum in autumn 2009. A marked reversal of the negative trend occured in 2010 but water storage in the lake decreased again afterwards. The results reveal that water storage variations in the Aral Sea are indeed the principal, but not the only contributor to the GRACE signal of

  17. Integrated hydrological modelling of the North China Plain

    DEFF Research Database (Denmark)

    Shu, Yunqiao; Villholth, Karen G.; Jensen, Karsten Høgh

    2012-01-01

    The integrated hydrological model MIKE SHE was applied to a part of the North China Plain to examine the dynamics of the hydrological system and to assess water management options to restore depleted groundwater resources. The model simulates the spatio-temporal distribution of recharge...... for scenario analysis of the effect of different cropping rotations, irrigation intensity, and other water management options, like the implementation of the South to North Water Transfer (SNWT) project. The model analysis verified that groundwater tables in the region are subject to steep declines (up to 1 m....../yr) due to decades of intensive exploitation of the groundwater resources for crop irrigation, primarily the widespread crop rotation of irrigated winter wheat and mostly rainfed summer maize. The SNWT project mitigates water stress in Shijiazhuang city and areas adjacent to wastewater canals but cannot...

  18. The application of remote sensing to the development and formulation of hydrologic planning models

    Science.gov (United States)

    Fowler, T. R.; Castruccio, P. A.; Loats, H. L., Jr.

    1977-01-01

    The development of a remote sensing model and its efficiency in determining parameters of hydrologic models are reviewed. Procedures for extracting hydrologic data from LANDSAT imagery, and the visual analysis of composite imagery are presented. A hydrologic planning model is developed and applied to determine seasonal variations in watershed conditions. The transfer of this technology to a user community and contract arrangements are discussed.

  19. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models

    NARCIS (Netherlands)

    Loon, van A.F.; Huijgevoort, van M.H.J.; Lanen, van H.A.J.

    2012-01-01

    Hydrological drought is increasingly studied using large-scale models. It is, however, not sure whether large-scale models reproduce the development of hydrological drought correctly. The pressing question is how well do large-scale models simulate the propagation from meteorological to hydrological

  20. Selection of Hydrological Model for Waterborne Release

    International Nuclear Information System (INIS)

    Blanchard, A.

    1999-01-01

    Following a request from the States of South Carolina and Georgia, downstream radiological consequences from postulated accidental aqueous releases at the three Savannah River Site nonreactor nuclear facilities will be examined. This evaluation will aid in determining the potential impacts of liquid releases to downstream populations on the Savannah River. The purpose of this report is to evaluate the two available models and determine the appropriate model for use in following waterborne release analyses. Additionally, this report will document the accidents to be used in the future study

  1. eWaterCycle: A high resolution global hydrological model

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2014-05-01

    In 2013, the eWaterCycle project was started, which has the ambitious goal to run a high resolution global hydrological model. Starting point was the PCR-GLOBWB built by Utrecht University. The software behind this model will partially be re-engineered in order to enable to run it in a High Performance Computing (HPC) environment. The aim is to have a spatial resolution of 1km x 1km. The idea is also to run the model in real-time and forecasting mode, using data assimilation. An on-demand hydraulic model will be available for detailed flow and flood forecasting in support of navigation and disaster management. The project faces a set of scientific challenges. First, to enable the model to run in a HPC environment, model runs were analyzed to examine on which parts of the program most CPU time was spent. These parts were re-coded in Open MPI to allow for parallel processing. Different parallelization strategies are thinkable. In our case, it was decided to use watershed logic as a first step to distribute the analysis. There is rather limited recent experience with HPC in hydrology and there is much to be learned and adjusted, both on the hydrological modeling side and the computer science side. For example, an interesting early observation was that hydrological models are, due to their localized parameterization, much more memory intensive than models of sister-disciplines such as meteorology and oceanography. Because it would be deadly to have to swap information between CPU and hard drive, memory management becomes crucial. A standard Ensemble Kalman Filter (enKF) would, for example, have excessive memory demands. To circumvent these problems, an alternative to the enKF was developed that produces equivalent results. This presentation shows the most recent results from the model, including a 5km x 5km simulation and a proof of concept for the new data assimilation approach. Finally, some early ideas about financial sustainability of an operational global

  2. Intercomparison of Streamflow Simulations between WRF-Hydro and Hydrology Laboratory-Research Distributed Hydrologic Model Frameworks

    Science.gov (United States)

    KIM, J.; Smith, M. B.; Koren, V.; Salas, F.; Cui, Z.; Johnson, D.

    2017-12-01

    The National Oceanic and Atmospheric Administration (NOAA)-National Weather Service (NWS) developed the Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) framework as an initial step towards spatially distributed modeling at River Forecast Centers (RFCs). Recently, the NOAA/NWS worked with the National Center for Atmospheric Research (NCAR) to implement the National Water Model (NWM) for nationally-consistent water resources prediction. The NWM is based on the WRF-Hydro framework and is run at a 1km spatial resolution and 1-hour time step over the contiguous United States (CONUS) and contributing areas in Canada and Mexico. In this study, we compare streamflow simulations from HL-RDHM and WRF-Hydro to observations from 279 USGS stations. For streamflow simulations, HL-RDHM is run on 4km grids with the temporal resolution of 1 hour for a 5-year period (Water Years 2008-2012), using a priori parameters provided by NOAA-NWS. The WRF-Hydro streamflow simulations for the same time period are extracted from NCAR's 23 retrospective run of the NWM (version 1.0) over CONUS based on 1km grids. We choose 279 USGS stations which are relatively less affected by dams or reservoirs, in the domains of six different RFCs. We use the daily average values of simulations and observations for the convenience of comparison. The main purpose of this research is to evaluate how HL-RDHM and WRF-Hydro perform at USGS gauge stations. We compare daily time-series of observations and both simulations, and calculate the error values using a variety of error functions. Using these plots and error values, we evaluate the performances of HL-RDHM and WRF-Hydro models. Our results show a mix of model performance across geographic regions.

  3. Modelling floods in the Ammer catchment: limitations and challenges with a coupled meteo-hydrological model approach

    Directory of Open Access Journals (Sweden)

    R. Ludwig

    2003-01-01

    Full Text Available Numerous applications of hydrological models have shown their capability to simulate hydrological processes with a reasonable degree of certainty. For flood modelling, the quality of precipitation data — the key input parameter — is very important but often remains questionable. This paper presents a critical review of experience in the EU-funded RAPHAEL project. Different meteorological data sources were evaluated to assess their applicability for flood modelling and forecasting in the Bavarian pre-alpine catchment of the Ammer river (709 km2, for which the hydrological aspects of runoff production are described as well as the complex nature of floods. Apart from conventional rain gauge data, forecasts from several Numerical Weather Prediction Models (NWP as well as rain radar data are examined, scaled and applied within the framework of a GIS-structured and physically based hydrological model. Multi-scenario results are compared and analysed. The synergetic approach leads to promising results under certain meteorological conditions but emphasises various drawbacks. At present, NWPs are the only source of rainfall forecasts (up to 96 hours with large spatial coverage and high temporal resolution. On the other hand, the coarse spatial resolution of NWP grids cannot yet address, adequately, the heterogeneous structures of orographic rainfields in complex convective situations; hence, a major downscaling problem for mountain catchment applications is introduced. As shown for two selected Ammer flood events, a high variability in prediction accuracy has still to be accepted at present. Sensitivity analysis of both meteo-data input and hydrological model performance in terms of process description are discussed and positive conclusions have been drawn for future applications of an advanced meteo-hydro model synergy. Keywords: RAPHAEL, modelling, forecasting, model coupling, PROMET-D, TOPMODEL

  4. Regionalization Study of Satellite based Hydrological Model (SHM) in Hydrologically Homogeneous River Basins of India

    Science.gov (United States)

    Kumari, Babita; Paul, Pranesh Kumar; Singh, Rajendra; Mishra, Ashok; Gupta, Praveen Kumar; Singh, Raghvendra P.

    2017-04-01

    A new semi-distributed conceptual hydrological model, namely Satellite based Hydrological Model (SHM), has been developed under 'PRACRITI-2' program of Space Application Centre (SAC), Ahmedabad for sustainable water resources management of India by using data from Indian Remote Sensing satellites. Entire India is divided into 5km x 5km grid cells and properties at the center of the cells are assumed to represent the property of the cells. SHM contains five modules namely surface water, forest, snow, groundwater and routing. Two empirical equations (SCS-CN and Hargreaves) and water balance method have been used in the surface water module; the forest module is based on the calculations of water balancing & dynamics of subsurface. 2-D Boussinesq equation is used for groundwater modelling which is solved using implicit finite-difference. The routing module follows a distributed routing approach which requires flow path and network with the key point of travel time estimation. The aim of this study is to evaluate the performance of SHM using regionalization technique which also checks the usefulness of a model in data scarce condition or for ungauged basins. However, homogeneity analysis is pre-requisite to regionalization. Similarity index (Φ) and hierarchical agglomerative cluster analysis are adopted to test the homogeneity in terms of physical attributes of three basins namely Brahmani (39,033 km km^2)), Baitarani (10,982 km km^2)) and Kangsabati (9,660 km km^2)) with respect to Subarnarekha (29,196 km km^2)) basin. The results of both homogeneity analysis show that Brahmani basin is the most homogeneous with respect to Subarnarekha river basin in terms of physical characteristics (land use land cover classes, soiltype and elevation). The calibration and validation of model parameters of Brahmani basin is in progress which are to be transferred into the SHM set up of Subarnarekha basin and results are to be compared with the results of calibrated and validated

  5. Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review

    Science.gov (United States)

    Fahimi, Farzad; Yaseen, Zaher Mundher; El-shafie, Ahmed

    2017-05-01

    Since the middle of the twentieth century, artificial intelligence (AI) models have been used widely in engineering and science problems. Water resource variable modeling and prediction are the most challenging issues in water engineering. Artificial neural network (ANN) is a common approach used to tackle this problem by using viable and efficient models. Numerous ANN models have been successfully developed to achieve more accurate results. In the current review, different ANN models in water resource applications and hydrological variable predictions are reviewed and outlined. In addition, recent hybrid models and their structures, input preprocessing, and optimization techniques are discussed and the results are compared with similar previous studies. Moreover, to achieve a comprehensive view of the literature, many articles that applied ANN models together with other techniques are included. Consequently, coupling procedure, model evaluation, and performance comparison of hybrid models with conventional ANN models are assessed, as well as, taxonomy and hybrid ANN models structures. Finally, current challenges and recommendations for future researches are indicated and new hybrid approaches are proposed.

  6. Socio-Hydrology Modelling for an Uncertain Future, with Examples from the USA and Canada (Invited)

    Science.gov (United States)

    White, D. D.; Gober, P.; Sampson, D. A.; Quay, R.; Kirkwood, C.

    2013-12-01

    Socio-hydrology brings an interest in human values, markets, social organizations and public policy to the traditional emphasis of water science on climate, hydrology, toxicology,and ecology. It also conveys a decision focus in the form of decision support tools, engagement, and new knowledge about the science-policy interface. This paper demonstrates how policy decisions and human behavior can be better integrated into climate and hydrological models to improve their usefulness for support in decision making. Examples from the Southwest USA and Western Canada highlight uncertainties, vulnerabilities, and critical tradeoffs facing water decision makers in the face of rapidly changing environmental and societal conditions. Irreducible uncertainties in downscaled climate and hydrological models limit the usefulness of climate-driven, predict-and-plan methods of water resource planning and management. Thus, it is argued that such methods should be replaced by approaches that use exploratory modelling, scenario planning, and risk assessment in which the emphasis is on managing uncertainty rather than on reducing it.

  7. Hydrologic-geochemical modeling needs for nuclear waste disposal systems performance assessments from the NEA perspective

    International Nuclear Information System (INIS)

    Muller, A.B.

    1986-01-01

    Credible scenarios for releases from high level nuclear waste repositories require radionuclides to be mobilized and transported by ground water. The capability to predict ground water flow velocities and directions as well as radionuclide concentrations in the flow system as a function of time are essential for assessing the performance of disposal systems. The first of these parameters can be estimated by hydrologic modeling while the concentrations can be predicted by geochemical modeling. The complementary use of empirical and phenomenological approaches to the geochemical modeling, when effectively coupled with hydrologic models can provide the tools needed for realistic performance assessment. An overview of the activities of the NEA in this area, with emphasis on the geochemical data bases (ISIRS for Ksub(d) data and the thermochemical data base critical review), rock/water interaction modeling (code development and short-courses), and hydrologic-geochemical code coupling (workshop and in-house activities) is presented in this paper from the perspective of probabilistic risk assessment needs. (author)

  8. Significant uncertainty in global scale hydrological modeling from precipitation data errors

    Science.gov (United States)

    Sperna Weiland, Frederiek C.; Vrugt, Jasper A.; van Beek, Rens (L.) P. H.; Weerts, Albrecht H.; Bierkens, Marc F. P.

    2015-10-01

    In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table depth, soil moisture, or tracer data from relatively small river basins. In this paper, we focus on large-scale hydrologic modeling and analyze the effect of parameter and rainfall data uncertainty on simulated discharge dynamics with the global hydrologic model PCR-GLOBWB. We use three rainfall data products; the CFSR reanalysis, the ERA-Interim reanalysis, and a combined ERA-40 reanalysis and CRU dataset. Parameter uncertainty is derived from Latin Hypercube Sampling (LHS) using monthly discharge data from five of the largest river systems in the world. Our results demonstrate that the default parameterization of PCR-GLOBWB, derived from global datasets, can be improved by calibrating the model against monthly discharge observations. Yet, it is difficult to find a single parameterization of PCR-GLOBWB that works well for all of the five river basins considered herein and shows consistent performance during both the calibration and evaluation period. Still there may be possibilities for regionalization based on catchment similarities. Our simulations illustrate that parameter uncertainty constitutes only a minor part of predictive uncertainty. Thus, the apparent dichotomy between simulations of global-scale hydrologic behavior and actual data cannot be resolved by simply increasing the model complexity of PCR-GLOBWB and resolving sub-grid processes. Instead, it would be more productive to improve the characterization of global rainfall amounts at spatial resolutions of 0.5° and smaller.

  9. Hydrologic modeling of reclaimed strip mine spoil

    International Nuclear Information System (INIS)

    Edwards, K.B.; Stoertz, M.W.; Turney, D.C.

    1998-01-01

    A numerical groundwater flow model (MODFLOW) of a surface coal mine in southeast Ohio was calibrated under steady state conditions to match measured heads by varying hydraulic conductivity (K) and recharge (R). Sensitivity studies indicated that K was not largely dependent on the poorly quantified underclay elevation or on the lake boundary condition. The baseflow recharge was determined to be between 8 and 60 mm/yr (1 to 6% of annual rainfall) and K between 0.004 and 0.01 cm/s for the spoil aquifer

  10. Diagnosis of the hydrology of a small Arctic basin at the tundra-taiga transition using a physically based hydrological model

    Science.gov (United States)

    Krogh, Sebastian A.; Pomeroy, John W.; Marsh, Philip

    2017-07-01

    A better understanding of cold regions hydrological processes and regimes in transitional environments is critical for predicting future Arctic freshwater fluxes under climate and vegetation change. A physically based hydrological model using the Cold Regions Hydrological Model platform was created for a small Arctic basin in the tundra-taiga transition region. The model represents snow redistribution and sublimation by wind and vegetation, snowmelt energy budget, evapotranspiration, subsurface flow through organic terrain, infiltration to frozen soils, freezing and thawing of soils, permafrost and streamflow routing. The model was used to reconstruct the basin water cycle over 28 years to understand and quantify the mass fluxes controlling its hydrological regime. Model structure and parameters were set from the current understanding of Arctic hydrology, remote sensing, field research in the basin and region, and calibration against streamflow observations. Calibration was restricted to subsurface hydraulic and storage parameters. Multi-objective evaluation of the model using observed streamflow, snow accumulation and ground freeze/thaw state showed adequate simulation. Significant spatial variability in the winter mass fluxes was found between tundra, shrubs and forested sites, particularly due to the substantial blowing snow redistribution and sublimation from the wind-swept upper basin, as well as sublimation of canopy intercepted snow from the forest (about 17% of snowfall). At the basin scale, the model showed that evapotranspiration is the largest loss of water (47%), followed by streamflow (39%) and sublimation (14%). The models streamflow performance sensitivity to a set of parameter was analysed, as well as the mean annual mass balance uncertainty associated with these parameters.

  11. A Socio-hydrological Flood Model for the Elbe

    Science.gov (United States)

    Barendrecht, M.; Viglione, A.; Kreibich, H.; Vorogushyn, S.; Merz, B.; Bloeschl, G.

    2017-12-01

    Long-term feedbacks between humans and floods may lead to complex phenomena such as coping strategies, levee effects, call effects, adaptation effects, and poverty traps. Dynamic coupled human-flood models are a promising tool to represent such phenomena and the feedbacks leading to them. These socio-hydrological models may play an important role in integrated flood risk management when they are applied to real world case studies. They can help develop hypotheses about the phenomena that have been observed in the case study of interest, by describing the interactions between the social and hydrological variables as well as other relevant variables, such as economic, environmental, political or technical, that play a role in the system. We discuss the case of Dresden where the 2002 flood, which was preceded by a period without floods but was less severe, resulted in a higher damage than the 2013 flood, which was preceded by the 2002 flood and a couple of less severe floods. The lower damage in 2013 may be explained by the fact that society has become aware of the flood risk and has adapted to it. Developing and applying a socio-hydrological flood model to the case of Dresden can help discover whether it is possible that the lower damage is caused by an adaptation effect, or if there are other feedbacks that can explain the observed phenomenon.

  12. Advancing reservoir operation description in physically based hydrological models

    Science.gov (United States)

    Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir

  13. Calibration process of highly parameterized semi-distributed hydrological model

    Science.gov (United States)

    Vidmar, Andrej; Brilly, Mitja

    2017-04-01

    Hydrological phenomena take place in the hydrological system, which is governed by nature, and are essentially stochastic. These phenomena are unique, non-recurring, and changeable across space and time. Since any river basin with its own natural characteristics and any hydrological event therein, are unique, this is a complex process that is not researched enough. Calibration is a procedure of determining the parameters of a model that are not known well enough. Input and output variables and mathematical model expressions are known, while only some parameters are unknown, which are determined by calibrating the model. The software used for hydrological modelling nowadays is equipped with sophisticated algorithms for calibration purposes without possibility to manage process by modeler. The results are not the best. We develop procedure for expert driven process of calibration. We use HBV-light-CLI hydrological model which has command line interface and coupling it with PEST. PEST is parameter estimation tool which is used widely in ground water modeling and can be used also on surface waters. Process of calibration managed by expert directly, and proportionally to the expert knowledge, affects the outcome of the inversion procedure and achieves better results than if the procedure had been left to the selected optimization algorithm. First step is to properly define spatial characteristic and structural design of semi-distributed model including all morphological and hydrological phenomena, like karstic area, alluvial area and forest area. This step includes and requires geological, meteorological, hydraulic and hydrological knowledge of modeler. Second step is to set initial parameter values at their preferred values based on expert knowledge. In this step we also define all parameter and observation groups. Peak data are essential in process of calibration if we are mainly interested in flood events. Each Sub Catchment in the model has own observations group

  14. A hybrid framework for quantifying the influence of data in hydrological model calibration

    Science.gov (United States)

    Wright, David P.; Thyer, Mark; Westra, Seth; McInerney, David

    2018-06-01

    Influence diagnostics aim to identify a small number of influential data points that have a disproportionate impact on the model parameters and/or predictions. The key issues with current influence diagnostic techniques are that the regression-theory approaches do not provide hydrologically relevant influence metrics, while the case-deletion approaches are computationally expensive to calculate. The main objective of this study is to introduce a new two-stage hybrid framework that overcomes these challenges, by delivering hydrologically relevant influence metrics in a computationally efficient manner. Stage one uses computationally efficient regression-theory influence diagnostics to identify the most influential points based on Cook's distance. Stage two then uses case-deletion influence diagnostics to quantify the influence of points using hydrologically relevant metrics. To illustrate the application of the hybrid framework, we conducted three experiments on 11 hydro-climatologically diverse Australian catchments using the GR4J hydrological model. The first experiment investigated how many data points from stage one need to be retained in order to reliably identify those points that have the hightest influence on hydrologically relevant metrics. We found that a choice of 30-50 is suitable for hydrological applications similar to those explored in this study (30 points identified the most influential data 98% of the time and reduced the required recalibrations by 99% for a 10 year calibration period). The second experiment found little evidence of a change in the magnitude of influence with increasing calibration period length from 1, 2, 5 to 10 years. Even for 10 years the impact of influential points can still be high (>30% influence on maximum predicted flows). The third experiment compared the standard least squares (SLS) objective function with the weighted least squares (WLS) objective function on a 10 year calibration period. In two out of three flow

  15. Inverse and Predictive Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Syracuse, Ellen Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-27

    The LANL Seismo-Acoustic team has a strong capability in developing data-driven models that accurately predict a variety of observations. These models range from the simple – one-dimensional models that are constrained by a single dataset and can be used for quick and efficient predictions – to the complex – multidimensional models that are constrained by several types of data and result in more accurate predictions. Team members typically build models of geophysical characteristics of Earth and source distributions at scales of 1 to 1000s of km, the techniques used are applicable for other types of physical characteristics at an even greater range of scales. The following cases provide a snapshot of some of the modeling work done by the Seismo- Acoustic team at LANL.

  16. Sensitivity of Hydrologic Response to Climate Model Debiasing Procedures

    Science.gov (United States)

    Channell, K.; Gronewold, A.; Rood, R. B.; Xiao, C.; Lofgren, B. M.; Hunter, T.

    2017-12-01

    Climate change is already having a profound impact on the global hydrologic cycle. In the Laurentian Great Lakes, changes in long-term evaporation and precipitation can lead to rapid water level fluctuations in the lakes, as evidenced by unprecedented change in water levels seen in the last two decades. These fluctuations often have an adverse impact on the region's human, environmental, and economic well-being, making accurate long-term water level projections invaluable to regional water resources management planning. Here we use hydrological components from a downscaled climate model (GFDL-CM3/WRF), to obtain future water supplies for the Great Lakes. We then apply a suite of bias correction procedures before propagating these water supplies through a routing model to produce lake water levels. Results using conventional bias correction methods suggest that water levels will decline by several feet in the coming century. However, methods that reflect the seasonal water cycle and explicitly debias individual hydrological components (overlake precipitation, overlake evaporation, runoff) imply that future water levels may be closer to their historical average. This discrepancy between debiased results indicates that water level forecasts are highly influenced by the bias correction method, a source of sensitivity that is commonly overlooked. Debiasing, however, does not remedy misrepresentation of the underlying physical processes in the climate model that produce these biases and contribute uncertainty to the hydrological projections. This uncertainty coupled with the differences in water level forecasts from varying bias correction methods are important for water management and long term planning in the Great Lakes region.

  17. Effect of Baseflow Separation on Uncertainty of Hydrological Modeling in the Xinanjiang Model

    Directory of Open Access Journals (Sweden)

    Kairong Lin

    2014-01-01

    Full Text Available Based on the idea of inputting more available useful information for evaluation to gain less uncertainty, this study focuses on how well the uncertainty can be reduced by considering the baseflow estimation information obtained from the smoothed minima method (SMM. The Xinanjiang model and the generalized likelihood uncertainty estimation (GLUE method with the shuffled complex evolution Metropolis (SCEM-UA sampling algorithm were used for hydrological modeling and uncertainty analysis, respectively. The Jiangkou basin, located in the upper of the Hanjiang River, was selected as case study. It was found that the number and standard deviation of behavioral parameter sets both decreased when the threshold value for the baseflow efficiency index increased, and the high Nash-Sutcliffe efficiency coefficients correspond well with the high baseflow efficiency coefficients. The results also showed that uncertainty interval width decreased significantly, while containing ratio did not decrease by much and the simulated runoff with the behavioral parameter sets can fit better to the observed runoff, when threshold for the baseflow efficiency index was taken into consideration. These implied that using the baseflow estimation information can reduce the uncertainty in hydrological modeling to some degree and gain more reasonable prediction bounds.

  18. Hydrological modelling of the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Suprit, K.

    pleasure. I am thankful to our system administrators Dattaram, Kaushik, Krupesh, Ashok and Sarvesh for providing hassle-free computer and peripheral support. After passing M. Sc., I was looking for a research position and NIO was not on my radar. Roxy, my..., and evaporation. The framework is based on Terrestrial Hydrologic Model with Biogeochemistry (THMB) 2, a numerical model developed by Coe [2000]. THMB model provides a reliable water balance of a river system. Figure 1.7 The Mandovi and Zuari (all rivers digitized...

  19. Hydrological Modelling of Small Scale Processes in a Wetland Habitat

    DEFF Research Database (Denmark)

    Johansen, Ole; Jensen, Jacob Birk; Pedersen, Morten Lauge

    2009-01-01

    Numerical modelling of the hydrology in a Danish rich fen area has been conducted. By collecting various data in the field the model has been successfully calibrated and the flow paths as well as the groundwater discharge distribution have been simulated in details. The results of this work have...... shown that distributed numerical models can be applied to local scale problems and that natural springs, ditches, the geological conditions as well as the local topographic variations have a significant influence on the flow paths in the examined rich fen area....

  20. Regional climate model for predicting meteorological and hydrological extremes - the example of the Rhine river catchment area; Regionales Klimamodell zur Vorhersage meteorologischer und hydrologischer Extremereignisse am Beispiel des Rheineinzugsgebietes

    Energy Technology Data Exchange (ETDEWEB)

    Richter, K.G.; Jacob, D.; Ebel, M.; Lenz, C.J.

    2000-07-01

    Although the forecasting of weather extremes has improved during the past few years, there is still a need of improvement in the accurate analysis and forecasting of extreme weather in practice, especially in the case of violent rain and high water events. Direct coupling of the atmospheric circulation model REMO (REgional-MOdell) with the hydrology model LARSIM (Large Area Runoff SImulation Model) can improve the quality of forecasting. The coupling was achieved in several stages. First, the meteorological state variables were calculated using REMO. The calculated output parameters, precipitation, global radiation, temperature, relative moisture, wind and ground level pressure were used as input for the LARSIM model for calculating high water runoff. The high water event of March 1988 was used as an example. [German] Die Vorhersage extremer meteorologischer Wetterphaenomene hat sich im Laufe der letzten Jahre deutlich verbessert. Dennoch besteht bis heute noch ein grosses Defizit an der genaueren Analyse und Vorhersage extremer meteorologischer Ereignisse und ihrer Auswirkung in der Praxis, insbesondere im Hinblick auf Starkregen und Hochwasserereignisse. Durch die direkte Kopplung des atmosphaerischen Zirkulationsmodells REMO (REgional-MOdell) mit dem Hydrologiemodell LARSIM (Large Aera Runoff Simulation Model) kann die Vorhersagequalitaet fuer extreme meteorologische und hydrologische Situationen erhoeht werden. Die Modellkopplung wird stufenweise durchgefuehrt. Bei der hier vorgestellten Einwegekopplung werden zunaechst die meteorologischen Zustandsgroessen mit dem Regionalmodell REMO berechnet. Als berechneter Modelloutput werden die Parameter Niederschlag, Globalstrahlung, Temperatur, relative Feuchte, Wind und Bodendruck an das Hydrologiemodell LARSIM uebergeben und hiermit der Hochwasserabfluss berechnet. Die Vorgehensweise wird im folgenden fuer das Hochwasser Maerz 1988 beschrieben. (orig.)

  1. Parallelization of a hydrological model using the message passing interface

    Science.gov (United States)

    Wu, Yiping; Li, Tiejian; Sun, Liqun; Chen, Ji

    2013-01-01

    With the increasing knowledge about the natural processes, hydrological models such as the Soil and Water Assessment Tool (SWAT) are becoming larger and more complex with increasing computation time. Additionally, other procedures such as model calibration, which may require thousands of model iterations, can increase running time and thus further reduce rapid modeling and analysis. Using the widely-applied SWAT as an example, this study demonstrates how to parallelize a serial hydrological model in a Windows® environment using a parallel programing technology—Message Passing Interface (MPI). With a case study, we derived the optimal values for the two parameters (the number of processes and the corresponding percentage of work to be distributed to the master process) of the parallel SWAT (P-SWAT) on an ordinary personal computer and a work station. Our study indicates that model execution time can be reduced by 42%–70% (or a speedup of 1.74–3.36) using multiple processes (two to five) with a proper task-distribution scheme (between the master and slave processes). Although the computation time cost becomes lower with an increasing number of processes (from two to five), this enhancement becomes less due to the accompanied increase in demand for message passing procedures between the master and all slave processes. Our case study demonstrates that the P-SWAT with a five-process run may reach the maximum speedup, and the performance can be quite stable (fairly independent of a project size). Overall, the P-SWAT can help reduce the computation time substantially for an individual model run, manual and automatic calibration procedures, and optimization of best management practices. In particular, the parallelization method we used and the scheme for deriving the optimal parameters in this study can be valuable and easily applied to other hydrological or environmental models.

  2. Data Assimilation in Integrated and Distributed Hydrological Models

    DEFF Research Database (Denmark)

    Zhang, Donghua

    processes and provide simulations in refined temporal and spatial resolutions. Recent developments in measurement and sensor technologies have significantly improved the coverage, quality, frequency and diversity of hydrological observations. Data assimilation provides a great potential in relation...... point of view, different assimilation methodologies and techniques have been developed or customized to better serve hydrological assimilation. From the application point of view, real data and real-world complex catchments are used with the focus of investigating the models’ improvements with data...... a variety of model uncertainty sources and scales. Next the groundwater head assimilation experiment was tested in a much more complex catchment with assimilation of biased real observations. In such cases, the bias-aware assimilation method significantly outperforms the standard assimilation method...

  3. Modeling the Hydrologic Processes of a Permeable Pavement ...

    Science.gov (United States)

    A permeable pavement system can capture stormwater to reduce runoff volume and flow rate, improve onsite groundwater recharge, and enhance pollutant controls within the site. A new unit process model for evaluating the hydrologic performance of a permeable pavement system has been developed in this study. The developed model can continuously simulate infiltration through the permeable pavement surface, exfiltration from the storage to the surrounding in situ soils, and clogging impacts on infiltration/exfiltration capacity at the pavement surface and the bottom of the subsurface storage unit. The exfiltration modeling component simulates vertical and horizontal exfiltration independently based on Darcy’s formula with the Green-Ampt approximation. The developed model can be arranged with physically-based modeling parameters, such as hydraulic conductivity, Manning’s friction flow parameters, saturated and field capacity volumetric water contents, porosity, density, etc. The developed model was calibrated using high-frequency observed data. The modeled water depths are well matched with the observed values (R2 = 0.90). The modeling results show that horizontal exfiltration through the side walls of the subsurface storage unit is a prevailing factor in determining the hydrologic performance of the system, especially where the storage unit is developed in a long, narrow shape; or with a high risk of bottom compaction and clogging. This paper presents unit

  4. Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling

    International Nuclear Information System (INIS)

    Karvonen, T.

    2013-11-01

    Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from

  5. Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling

    Energy Technology Data Exchange (ETDEWEB)

    Karvonen, T. [WaterHope, Helsinki (Finland)

    2013-11-15

    Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from

  6. Hydrologic modeling of Guinale River Basin using HEC-HMS and synthetic aperture radar

    Science.gov (United States)

    Bien, Ferdinand E.; Plopenio, Joanaviva C.

    2017-09-01

    This paper presents the methods and results of hydrologic modeling of Guinale river basin through the use of HEC-HMS software and Synthetic Aperture Radar Digital Elevation Model (SAR DEM). Guinale River Basin is located in the province of Albay, Philippines which is one of the river basins covered by the Ateneo de Naga University (ADNU) Phil-LiDAR 1. This research project was funded by the Department of Science and Technology (DOST) through the Philippine Council for Industry, Energy and Emerging Technology Research and Development (PCIEERD). Its objectives are to simulate the hydrologic model of Guinale River basin using HEC-HMS software and SAR DEM. Its basin covers an area of 165.395 sq.km. and the hydrologic model was calibrated using the storm event typhoon Nona (international name Melor). Its parameter had undergone a series of optimization processes of HEC-HMS software in order to produce an acceptable level of model efficiency. The Nash-Sutcliffe (E), Percent Bias and Standard Deviation Ratio were used to measure the model efficiency, giving values of 0.880, 0.260 and 0.346 respectively which resulted to a "very good" performance rating of the model. The flood inundation model was simulated using Legazpi Rainfall Intensity Duration Frequency Curves (RIDF) and HEC-RAS software developed by the US Army corps of Engineers (USACE). This hydrologic model will provide the Municipal Disaster Risk Reduction Management Office (MDRRMO), Local Government units (LGUs) and the community a tool for the prediction of runoff in the area.

  7. Towards improved parameterization of a macroscale hydrologic model in a discontinuous permafrost boreal forest ecosystem

    Directory of Open Access Journals (Sweden)

    A. Endalamaw

    2017-09-01

    Full Text Available Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which better represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW in Interior Alaska: one nearly permafrost-free (LowP sub-basin and one permafrost-dominated (HighP sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC mesoscale hydrological model to simulate runoff, evapotranspiration (ET, and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub

  8. Modeling of hydrologic perturbations during reverse circulation drilling: 1, System and model description

    International Nuclear Information System (INIS)

    Sagar, B.; Connelly, M.P.; Long, P.E.

    1988-05-01

    The Hanford site located in southeastern Washington state was under consideration for the location of a high-level nuclear waste repository. As a part of site investigation, a borehole of depth > 3000 ft was drilled using reverse circulation drilling technique with water as the drilling fluid. After completion of drilling, seven piezometers were to be installed in the borehole with their lower ends at different depths to measure equilibrated hydraulic heads and aquifer response during future pumping tests. The hydrologic perturbations caused during the drilling, clean up, and piezometer installation process were of primary concern. A numerical model was used to predict these perturbations and determine efficiency of borehole cleanup. It was found that the boundary condition at the borehole was the most difficult to model. 9 refs., 5 figs

  9. Hydrologic consistency as a basis for assessing complexity of monthly water balance models for the continental United States

    Science.gov (United States)

    Martinez, Guillermo F.; Gupta, Hoshin V.

    2011-12-01

    Methods to select parsimonious and hydrologically consistent model structures are useful for evaluating dominance of hydrologic processes and representativeness of data. While information criteria (appropriately constrained to obey underlying statistical assumptions) can provide a basis for evaluating appropriate model complexity, it is not sufficient to rely upon the principle of maximum likelihood (ML) alone. We suggest that one must also call upon a "principle of hydrologic consistency," meaning that selected ML structures and parameter estimates must be constrained (as well as possible) to reproduce desired hydrological characteristics of the processes under investigation. This argument is demonstrated in the context of evaluating the suitability of candidate model structures for lumped water balance modeling across the continental United States, using data from 307 snow-free catchments. The models are constrained to satisfy several tests of hydrologic consistency, a flow space transformation is used to ensure better consistency with underlying statistical assumptions, and information criteria are used to evaluate model complexity relative to the data. The results clearly demonstrate that the principle of consistency provides a sensible basis for guiding selection of model structures and indicate strong spatial persistence of certain model structures across the continental United States. Further work to untangle reasons for model structure predominance can help to relate conceptual model structures to physical characteristics of the catchments, facilitating the task of prediction in ungaged basins.

  10. Communication of uncertainty in hydrological predictions: a user-driven example web service for Europe

    Science.gov (United States)

    Fry, Matt; Smith, Katie; Sheffield, Justin; Watts, Glenn; Wood, Eric; Cooper, Jon; Prudhomme, Christel; Rees, Gwyn

    2017-04-01

    Water is fundamental to society as it impacts on all facets of life, the economy and the environment. But whilst it creates opportunities for growth and life, it can also cause serious damages to society and infrastructure through extreme hydro-meteorological events such as floods or droughts. Anticipation of future water availability and extreme event risks would both help optimise growth and limit damage through better preparedness and planning, hence providing huge societal benefits. Recent scientific research advances make it now possible to provide hydrological outlooks at monthly to seasonal lead time, and future projections up to the end of the century accounting for climatic changes. However, high uncertainty remains in the predictions, which varies depending on location, time of the year, prediction range and hydrological variable. It is essential that this uncertainty is fully understood by decision makers so they can account for it in their planning. Hence, the challenge is to finds ways to communicate such uncertainty for a range of stakeholders with different technical background and environmental science knowledge. The project EDgE (End-to end Demonstrator for improved decision making in the water sector for Europe) funded by the Copernicus programme (C3S) is a proof-of-concept project that develops a unique service to support decision making for the water sector at monthly to seasonal and to multi-decadal lead times. It is a mutual effort of co-production between hydrologists and environmental modellers, computer scientists and stakeholders representative of key decision makers in Europe for the water sector. This talk will present the iterative co-production process of a web service that serves the need of the user community. Through a series of Focus Group meetings in Spain, Norway and the UK, options for visualising the hydrological predictions and associated uncertainties are presented and discussed first as mock-up dash boards, off-line tools

  11. Understanding controls of hydrologic processes across two headwater monolithological catchments using model-data synthesis

    Science.gov (United States)

    Xiao, D.; Shi, Y.; Hoagland, B.; Del Vecchio, J.; Russo, T. A.; DiBiase, R. A.; Li, L.

    2017-12-01

    How do watershed hydrologic processes differ in catchments derived from different lithology? This study compares two first order, deciduous forest watersheds in Pennsylvania, a sandstone watershed, Garner Run (GR, 1.34 km2), and a shale-derived watershed, Shale Hills (SH, 0.08 km2). Both watersheds are simulated using a combination of national datasets and field measurements, and a physics-based land surface hydrologic model, Flux-PIHM. We aim to evaluate the effects of lithology on watershed hydrology and assess if we can simulate a new watershed without intensive measurements, i.e., directly use calibration information from one watershed (SH) to reproduce hydrologic dynamics of another watershed (GR). Without any calibration, the model at GR based on national datasets and calibration inforamtion from SH cannot capture some discharge peaks or the baseflow during dry periods. The model prediction agrees well with the GR field discharge and soil moisture after calibrating the soil hydraulic parameters using the uncertainty based Hornberger-Spear-Young algorithm and the Latin Hypercube Sampling method. Agreeing with the field observation and national datasets, the difference in parameter values shows that the sandstone watershed has a larger averaged soil pore diameter, greater water storage created by porosity, lower water retention ability, and greater preferential flow. The water budget calculation shows that the riparian zone and the colluvial valley serves as buffer zones that stores water at GR. Using the same procedure, we compared Flux-PIHM simulations with and without a field measured surface boulder map at GR. When the boulder map is used, the prediction of areal averaged soil moisture is improved, without performing extra calibration. When calibrated separately, the cases with or without boulder map yield different calibration values, but their hydrologic predictions are similar, showing equifinality. The calibrated soil hydraulic parameter values in the

  12. Geospatial application of the Water Erosion Prediction Project (WEPP) Model

    Science.gov (United States)

    D. C. Flanagan; J. R. Frankenberger; T. A. Cochrane; C. S. Renschler; W. J. Elliot

    2011-01-01

    The Water Erosion Prediction Project (WEPP) model is a process-based technology for prediction of soil erosion by water at hillslope profile, field, and small watershed scales. In particular, WEPP utilizes observed or generated daily climate inputs to drive the surface hydrology processes (infiltration, runoff, ET) component, which subsequently impacts the rest of the...

  13. Efficient Calibration of Distributed Catchment Models Using Perceptual Understanding and Hydrologic Signatures

    Science.gov (United States)

    Hutton, C.; Wagener, T.; Freer, J. E.; Duffy, C.; Han, D.

    2015-12-01

    Distributed models offer the potential to resolve catchment systems in more detail, and therefore simulate the hydrological impacts of spatial changes in catchment forcing (e.g. landscape change). Such models may contain a large number of model parameters which are computationally expensive to calibrate. Even when calibration is possible, insufficient data can result in model parameter and structural equifinality. In order to help reduce the space of feasible models and supplement traditional outlet discharge calibration data, semi-quantitative information (e.g. knowledge of relative groundwater levels), may also be used to identify behavioural models when applied to constrain spatially distributed predictions of states and fluxes. The challenge is to combine these different sources of information together to identify a behavioural region of state-space, and efficiently search a large, complex parameter space to identify behavioural parameter sets that produce predictions that fall within this behavioural region. Here we present a methodology to incorporate different sources of data to efficiently calibrate distributed catchment models. Metrics of model performance may be derived from multiple sources of data (e.g. perceptual understanding and measured or regionalised hydrologic signatures). For each metric, an interval or inequality is used to define the behaviour of the catchment system, accounting for data uncertainties. These intervals are then combined to produce a hyper-volume in state space. The state space is then recast as a multi-objective optimisation problem, and the Borg MOEA is applied to first find, and then populate the hyper-volume, thereby identifying acceptable model parameter sets. We apply the methodology to calibrate the PIHM model at Plynlimon, UK by incorporating perceptual and hydrologic data into the calibration problem. Furthermore, we explore how to improve calibration efficiency through search initialisation from shorter model runs.

  14. Estimating Runoff From Roadcuts With a Distributed Hydrologic Model

    Science.gov (United States)

    Cuhaciyan, C.; Luce, C.; Voisin, N.; Lettenmaier, D.; Black, T.

    2008-12-01

    Roads can have a substantial effect on hydrologic patterns of forested watersheds; the most noteworthy being the resurfacing of shallow groundwater at roadcuts. The influence of roads on hydrology has compelled hydrologists to include water routing and storage routines in rainfall-runoff models, such as those in the Distributed Hydrologic Soil Vegetation Model (DHSVM). We tested the ability of DHSVM to match observed runoff in roadcuts of a watershed in the Coast Range of Oregon. Eight roadcuts were instrumented using large tipping bucket gauges designed to capture only the water entering the roadside ditch from an 80-m long roadcut. The roadcuts were categorized by the topography of the upstream hillside as either swale, planar, or ridge. The simulation was run from December 2002 to December 2003 at a relatively fine spatial resolution (10-m). Average observed soil depths are 1.8-m across the watershed, below which there lies deep and highly weathered sandstone. DHSVM was designed for relatively impermeable bedrock and shallow soils; therefore it does not provide a mechanism for deep groundwater movement and storage. In the geologic setting of the study basin, however, water is routed through the sandstone allowing water to pass under roads through the parent material. For this reason a uniformly deep soil of 6.5-m with a decreased decay in conductivity with depth was used in the model to allow water to be routed beneath roadcuts that are up to 5.5-m in height. Up to three, typically shallow, soil layers can be modeled in DHSVM. We used the lowest of the three soil layers to mimic the hydraulically-well-connected sandstone exposed at deeper roadcuts. The model was calibrated against observed discharge at the outlet of the watershed. While model results closely matched the observed hydrograph at the watershed outlet, simulated runoff at an upstream gauge and the roadside ditches were varied and often higher than those observed in the field. The timing of the field

  15. The state of the art of flood forecasting - Hydrological Ensemble Prediction Systems

    Science.gov (United States)

    Thielen-Del Pozo, J.; Pappenberger, F.; Salamon, P.; Bogner, K.; Burek, P.; de Roo, A.

    2010-09-01

    Flood forecasting systems form a key part of ‘preparedness' strategies for disastrous floods and provide hydrological services, civil protection authorities and the public with information of upcoming events. Provided the warning leadtime is sufficiently long, adequate preparatory actions can be taken to efficiently reduce the impacts of the flooding. Because of the specific characteristics of each catchment, varying data availability and end-user demands, the design of the best flood forecasting system may differ from catchment to catchment. However, despite the differences in concept and data needs, there is one underlying issue that spans across all systems. There has been an growing awareness and acceptance that uncertainty is a fundamental issue of flood forecasting and needs to be dealt with at the different spatial and temporal scales as well as the different stages of the flood generating processes. Today, operational flood forecasting centres change increasingly from single deterministic forecasts to probabilistic forecasts with various representations of the different contributions of uncertainty. The move towards these so-called Hydrological Ensemble Prediction Systems (HEPS) in flood forecasting represents the state of the art in forecasting science, following on the success of the use of ensembles for weather forecasting (Buizza et al., 2005) and paralleling the move towards ensemble forecasting in other related disciplines such as climate change predictions. The use of HEPS has been internationally fostered by initiatives such as "The Hydrologic Ensemble Prediction Experiment" (HEPEX), created with the aim to investigate how best to produce, communicate and use hydrologic ensemble forecasts in hydrological short-, medium- und long term prediction of hydrological processes. The advantages of quantifying the different contributions of uncertainty as well as the overall uncertainty to obtain reliable and useful flood forecasts also for extreme events

  16. Predicting Geomorphic and Hydrologic Risks after Wildfire Using Harmonic and Stochastic Analyses

    Science.gov (United States)

    Mikesell, J.; Kinoshita, A. M.; Florsheim, J. L.; Chin, A.; Nourbakhshbeidokhti, S.

    2017-12-01

    Wildfire is a landscape-scale disturbance that often alters hydrological processes and sediment flux during subsequent storms. Vegetation loss from wildfires induce changes to sediment supply such as channel erosion and sedimentation and streamflow magnitude or flooding. These changes enhance downstream hazards, threatening human populations and physical aquatic habitat over various time scales. Using Williams Canyon, a basin burned by the Waldo Canyon Fire (2012) as a case study, we utilize deterministic and statistical modeling methods (Fourier series and first order Markov chain) to assess pre- and post-fire geomorphic and hydrologic characteristics, including of precipitation, enhanced vegetation index (EVI, a satellite-based proxy of vegetation biomass), streamflow, and sediment flux. Local precipitation, terrestrial Light Detection and Ranging (LiDAR) scanning, and satellite-based products are used for these time series analyses. We present a framework to assess variability of periodic and nonperiodic climatic and multivariate trends to inform development of a post-wildfire risk assessment methodology. To establish the extent to which a wildfire affects hydrologic and geomorphic patterns, a Fourier series was used to fit pre- and post-fire geomorphic and hydrologic characteristics to yearly temporal cycles and subcycles of 6, 4, 3, and 2.4 months. These cycles were analyzed using least-squares estimates of the harmonic coefficients or amplitudes of each sub-cycle's contribution to fit the overall behavior of a Fourier series. The stochastic variances of these characteristics were analyzed by composing first-order Markov models and probabilistic analysis through direct likelihood estimates. Preliminary results highlight an increased dependence of monthly post-fire hydrologic characteristics on 12 and 6-month temporal cycles. This statistical and probabilistic analysis provides a basis to determine the impact of wildfires on the temporal dependence of

  17. Impact of model structure on flow simulation and hydrological realism: from a lumped to a semi-distributed approach

    Science.gov (United States)

    Garavaglia, Federico; Le Lay, Matthieu; Gottardi, Fréderic; Garçon, Rémy; Gailhard, Joël; Paquet, Emmanuel; Mathevet, Thibault

    2017-08-01

    Model intercomparison experiments are widely used to investigate and improve hydrological model performance. However, a study based only on runoff simulation is not sufficient to discriminate between different model structures. Hence, there is a need to improve hydrological models for specific streamflow signatures (e.g., low and high flow) and multi-variable predictions (e.g., soil moisture, snow and groundwater). This study assesses the impact of model structure on flow simulation and hydrological realism using three versions of a hydrological model called MORDOR: the historical lumped structure and a revisited formulation available in both lumped and semi-distributed structures. In particular, the main goal of this paper is to investigate the relative impact of model equations and spatial discretization on flow simulation, snowpack representation and evapotranspiration estimation. Comparison of the models is based on an extensive dataset composed of 50 catchments located in French mountainous regions. The evaluation framework is founded on a multi-criterion split-sample strategy. All models were calibrated using an automatic optimization method based on an efficient genetic algorithm. The evaluation framework is enriched by the assessment of snow and evapotranspiration modeling against in situ and satellite data. The results showed that the new model formulations perform significantly better than the initial one in terms of the various streamflow signatures, snow and evapotranspiration predictions. The semi-distributed approach provides better calibration-validation performance for the snow cover area, snow water equivalent and runoff simulation, especially for nival catchments.

  18. Hierarchical mixture of experts and diagnostic modeling approach to reduce hydrologic model structural uncertainty: STRUCTURAL UNCERTAINTY DIAGNOSTICS

    Energy Technology Data Exchange (ETDEWEB)

    Moges, Edom [Civil and Environmental Engineering Department, Washington State University, Richland Washington USA; Demissie, Yonas [Civil and Environmental Engineering Department, Washington State University, Richland Washington USA; Li, Hong-Yi [Hydrology Group, Pacific Northwest National Laboratory, Richland Washington USA

    2016-04-01

    In most water resources applications, a single model structure might be inadequate to capture the dynamic multi-scale interactions among different hydrological processes. Calibrating single models for dynamic catchments, where multiple dominant processes exist, can result in displacement of errors from structure to parameters, which in turn leads to over-correction and biased predictions. An alternative to a single model structure is to develop local expert structures that are effective in representing the dominant components of the hydrologic process and adaptively integrate them based on an indicator variable. In this study, the Hierarchical Mixture of Experts (HME) framework is applied to integrate expert model structures representing the different components of the hydrologic process. Various signature diagnostic analyses are used to assess the presence of multiple dominant processes and the adequacy of a single model, as well as to identify the structures of the expert models. The approaches are applied for two distinct catchments, the Guadalupe River (Texas) and the French Broad River (North Carolina) from the Model Parameter Estimation Experiment (MOPEX), using different structures of the HBV model. The results show that the HME approach has a better performance over the single model for the Guadalupe catchment, where multiple dominant processes are witnessed through diagnostic measures. Whereas, the diagnostics and aggregated performance measures prove that French Broad has a homogeneous catchment response, making the single model adequate to capture the response.

  19. Assimilating uncertain, dynamic and intermittent streamflow observations in hydrological models

    Science.gov (United States)

    Mazzoleni, Maurizio; Alfonso, Leonardo; Chacon-Hurtado, Juan; Solomatine, Dimitri

    2015-09-01

    Catastrophic floods cause significant socio-economical losses. Non-structural measures, such as real-time flood forecasting, can potentially reduce flood risk. To this end, data assimilation methods have been used to improve flood forecasts by integrating static ground observations, and in some cases also remote sensing observations, within water models. Current hydrologic and hydraulic research works consider assimilation of observations coming from traditional, static sensors. At the same time, low-cost, mobile sensors and mobile communication devices are becoming also increasingly available. The main goal and innovation of this study is to demonstrate the usefulness of assimilating uncertain streamflow observations that are dynamic in space and intermittent in time in the context of two different semi-distributed hydrological model structures. The developed method is applied to the Brue basin, where the dynamic observations are imitated by the synthetic observations of discharge. The results of this study show how model structures and sensors locations affect in different ways the assimilation of streamflow observations. In addition, it proves how assimilation of such uncertain observations from dynamic sensors can provide model improvements similar to those of streamflow observations coming from a non-optimal network of static physical sensors. This can be a potential application of recent efforts to build citizen observatories of water, which can make the citizens an active part in information capturing, evaluation and communication, helping simultaneously to improvement of model-based flood forecasting.

  20. Post-test comparison of thermal-hydrologic measurements and numerical predictions for the in situ single heater test, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ballard, S.; Francis, N.D.; Sobolik, S.R.; Finley, R.E.

    1998-01-01

    The Single Heater Test (SHT) is a sixteen-month-long heating and cooling experiment begun in August, 1996, located underground within the unsaturated zone near the potential geologic repository at Yucca Mountain, Nevada. During the 9 month heating phase of the test, roughly 15 m 3 of rock were raised to temperatures exceeding 100 C. In this paper, temperatures measured in sealed boreholes surrounding the heater are compared to temperatures predicted by 3D thermal-hydrologic calculations performed with a finite difference code. Three separate model runs using different values of bulk rock permeability (4 microdarcy to 5.2 darcy) yielded significantly different predicted temperatures and temperature distributions. All the models differ from the data, suggesting that to accurately model the thermal-hydrologic behavior of the SHT, the Equivalent Continuum Model (ECM), the conceptual basis for dealing with the fractured porous medium in the numerical predictions, should be discarded in favor of more sophisticated approaches

  1. Assessment of the Suitability of High Resolution Numerical Weather Model Outputs for Hydrological Modelling in Mountainous Cold Regions

    Science.gov (United States)

    Rasouli, K.; Pomeroy, J. W.; Hayashi, M.; Fang, X.; Gutmann, E. D.; Li, Y.

    2017-12-01

    The hydrology of mountainous cold regions has a large spatial variability that is driven both by climate variability and near-surface process variability associated with complex terrain and patterns of vegetation, soils, and hydrogeology. There is a need to downscale large-scale atmospheric circulations towards the fine scales that cold regions hydrological processes operate at to assess their spatial variability in complex terrain and quantify uncertainties by comparison to field observations. In this research, three high resolution numerical weather prediction models, namely, the Intermediate Complexity Atmosphere Research (ICAR), Weather Research and Forecasting (WRF), and Global Environmental Multiscale (GEM) models are used to represent spatial and temporal patterns of atmospheric conditions appropriate for hydrological modelling. An area covering high mountains and foothills of the Canadian Rockies was selected to assess and compare high resolution ICAR (1 km × 1 km), WRF (4 km × 4 km), and GEM (2.5 km × 2.5 km) model outputs with station-based meteorological measurements. ICAR with very low computational cost was run with different initial and boundary conditions and with finer spatial resolution, which allowed an assessment of modelling uncertainty and scaling that was difficult with WRF. Results show that ICAR, when compared with WRF and GEM, performs very well in precipitation and air temperature modelling in the Canadian Rockies, while all three models show a fair performance in simulating wind and humidity fields. Representation of local-scale atmospheric dynamics leading to realistic fields of temperature and precipitation by ICAR, WRF, and GEM makes these models suitable for high resolution cold regions hydrological predictions in complex terrain, which is a key factor in estimating water security in western Canada.

  2. On the importance of measurement error correlations in data assimilation for integrated hydrological models

    Science.gov (United States)

    Camporese, Matteo; Botto, Anna

    2017-04-01

    Data assimilation is becoming increasingly popular in hydrological and earth system modeling, as it allows us to integrate multisource observation data in modeling predictions and, in doing so, to reduce uncertainty. For this reason, data assimilation has been recently the focus of much attention also for physically-based integrated hydrological models, whereby multiple terrestrial compartments (e.g., snow cover, surface water, groundwater) are solved simultaneously, in an attempt to tackle environmental problems in a holistic approach. Recent examples include the joint assimilation of water table, soil moisture, and river discharge measurements in catchment models of coupled surface-subsurface flow using the ensemble Kalman filter (EnKF). One of the typical assumptions in these studies is that the measurement errors are uncorrelated, whereas in certain situations it is reasonable to believe that some degree of correlation occurs, due for example to the fact that a pair of sensors share the same soil type. The goal of this study is to show if and how the measurement error correlations between different observation data play a significant role on assimilation results in a real-world application of an integrated hydrological model. The model CATHY (CATchment HYdrology) is applied to reproduce the hydrological dynamics observed in an experimental hillslope. The physical model, located in the Department of Civil, Environmental and Architectural Engineering of the University of Padova (Italy), consists of a reinforced concrete box containing a soil prism with maximum height of 3.5 m, length of 6 m, and width of 2 m. The hillslope is equipped with sensors to monitor the pressure head and soil moisture responses to a series of generated rainfall events applied onto a 60 cm thick sand layer overlying a sandy clay soil. The measurement network is completed by two tipping bucket flow gages to measure the two components (subsurface and surface) of the outflow. By collecting

  3. Spatial interpolation schemes of daily precipitation for hydrologic modeling

    Science.gov (United States)

    Hwang, Y.; Clark, M.R.; Rajagopalan, B.; Leavesley, G.

    2012-01-01

    Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs. ?? 2011 Springer-Verlag.

  4. Simulated CONUS Flash Flood Climatologies from Distributed Hydrologic Models

    Science.gov (United States)

    Flamig, Z.; Gourley, J. J.; Vergara, H. J.; Kirstetter, P. E.; Hong, Y.

    2016-12-01

    This study will describe a CONUS flash flood climatology created over the period from 2002 through 2011. The MRMS reanalysis precipitation dataset was used as forcing into the Ensemble Framework For Flash Flood Forecasting (EF5). This high resolution 1-sq km 5-minute dataset is ideal for simulating flash floods with a distributed hydrologic model. EF5 features multiple water balance components including SAC-SMA, CREST, and a hydrophobic model all coupled with kinematic wave routing. The EF5/SAC-SMA and EF5/CREST water balance schemes were used for the creation of dual flash flood climatologies based on the differing water balance principles. For the period from 2002 through 2011 the daily maximum streamflow, unit streamflow, and time of peak streamflow was stored along with the minimum soil moisture. These variables are used to describe the states of the soils right before a flash flood event and the peak streamflow that was simulated during the flash flood event. The results will be shown, compared and contrasted. The resulting model simulations will be verified on basins less than 1,000-sq km with USGS gauges to ensure the distributed hydrologic models are reliable. The results will also be compared spatially to Storm Data flash flood event observations to judge the degree of agreement between the simulated climatologies and observations.

  5. Hydrologic Modeling at the National Water Center: Operational Implementation of the WRF-Hydro Model to support National Weather Service Hydrology

    Science.gov (United States)

    Cosgrove, B.; Gochis, D.; Clark, E. P.; Cui, Z.; Dugger, A. L.; Fall, G. M.; Feng, X.; Fresch, M. A.; Gourley, J. J.; Khan, S.; Kitzmiller, D.; Lee, H. S.; Liu, Y.; McCreight, J. L.; Newman, A. J.; Oubeidillah, A.; Pan, L.; Pham, C.; Salas, F.; Sampson, K. M.; Smith, M.; Sood, G.; Wood, A.; Yates, D. N.; Yu, W.; Zhang, Y.

    2015-12-01

    The National Weather Service (NWS) National Water Center(NWC) is collaborating with the NWS National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) to implement a first-of-its-kind operational instance of the Weather Research and Forecasting (WRF)-Hydro model over the Continental United States (CONUS) and contributing drainage areas on the NWS Weather and Climate Operational Supercomputing System (WCOSS) supercomputer. The system will provide seamless, high-resolution, continuously cycling forecasts of streamflow and other hydrologic outputs of value from both deterministic- and ensemble-type runs. WRF-Hydro will form the core of the NWC national water modeling strategy, supporting NWS hydrologic forecast operations along with emergency response and water management efforts of partner agencies. Input and output from the system will be comprehensively verified via the NWC Water Resource Evaluation Service. Hydrologic events occur on a wide range of temporal scales, from fast acting flash floods, to long-term flow events impacting water supply. In order to capture this range of events, the initial operational WRF-Hydro configuration will feature 1) hourly analysis runs, 2) short-and medium-range deterministic forecasts out to two day and ten day horizons and 3) long-range ensemble forecasts out to 30 days. All three of these configurations are underpinned by a 1km execution of the NoahMP land surface model, with channel routing taking place on 2.67 million NHDPlusV2 catchments covering the CONUS and contributing areas. Additionally, the short- and medium-range forecasts runs will feature surface and sub-surface routing on a 250m grid, while the hourly analyses will feature this same 250m routing in addition to nudging-based assimilation of US Geological Survey (USGS) streamflow observations. A limited number of major reservoirs will be configured within the model to begin to represent the first-order impacts of

  6. Transforming Atmospheric and Remotely-Sensed Information to Hydrologic Predictability in South Asia

    Science.gov (United States)

    Hopson, T. M.; Riddle, E. E.; Broman, D.; Brakenridge, G. R.; Birkett, C. M.; Kettner, A.; Sampson, K. M.; Boehnert, J.; Priya, S.; Collins, D. C.; Rostkier-Edelstein, D.; Young, W.; Singh, D.; Islam, A. S.

    2017-12-01

    South Asia is a flashpoint for natural disasters with profound societal impacts for the region and globally. Although close to 40% of the world's population depends on the Greater Himalaya's great rivers, $20 Billion of GDP is affected by river floods each year. The frequent occurrence of floods, combined with large and rapidly growing populations with high levels of poverty, make South Asia highly susceptible to humanitarian disasters. The challenges of mitigating such devastating disasters are exacerbated by the limited availability of real-time rain and stream gauge measuring stations and transboundary data sharing, and by constrained institutional commitments to overcome these challenges. To overcome such limitations, India and the World Bank have committed resources to the National Hydrology Project III, with the development objective to improve the extent, quality, and accessibility of water resources information and to strengthen the capacity of targeted water resources management institutions in India. The availability and application of remote sensing products and weather forecasts from ensemble prediction systems (EPS) have transformed river forecasting capability over the last decade, and is of interest to India. In this talk, we review the potential predictability of river flow contributed by some of the freely-available remotely-sensed and weather forecasting products within the framework of the physics of water migration through a watershed. Our specific geographical context is the Ganges, Brahmaputra, and Meghna river basin and a newly-available set of stream gauge measurements located over the region. We focus on satellite rainfall estimation, river height and width estimation, and EPS weather forecasts. For the later, we utilize the THORPEX-TIGGE dataset of global forecasts, and discuss how atmospheric predictability, as measured by an EPS, is transformed into hydrometeorological predictability. We provide an overview of the strengths and

  7. High-resolution numerical modeling of meteorological and hydrological conditions during May 2014 floods in Serbia

    Science.gov (United States)

    Vujadinovic, Mirjam; Vukovic, Ana; Cvetkovic, Bojan; Pejanovic, Goran; Nickovic, Slobodan; Djurdjevic, Vladimir; Rajkovic, Borivoj; Djordjevic, Marija

    2015-04-01

    In May 2014 west Balkan region was affected by catastrophic floods in Serbia, Bosnia and Herzegovina and eastern parts of Croatia. Observed precipitation amount were extremely high, on many stations largest ever recorded. In the period from 12th to 18th of May, most of Serbia received between 50 to 100 mm of rainfall, while western parts of the country, which were influenced the most, had over 200 mm of rainfall, locally even more than 300 mm. This very intense precipitation came when the soil was already saturated after a very wet period during the second half of April and beginning of May, when most of Serbia received between 120 i 170 mm of rainfall. New abundant precipitation on already saturated soil increased surface and underground water flow, caused floods, soil erosion and landslides. High water levels, most of them record breaking, were measured on the Sava, Drina, Dunav, Kolubara, Ljig, Ub, Toplica, Tamnava, Jadar, Zapadna Morava, Velika Morava, Mlava and Pek river. Overall, two cities and 17 municipals were severely affected by the floods, 32000 people were evacuated from their homes, while 51 died. Material damage to the infrastructure, energy power system, crops, livestock funds and houses is estimated to more than 2 billion euro. Although the operational numerical weather forecast gave in generally good precipitation prediction, flood forecasting in this case was mainly done through the expert judgment rather than relying on dynamic hydrological modeling. We applied an integrated atmospheric-hydrologic modelling system to some of the most impacted catchments in order to timely simulate hydrological response, and examine its potentials as a flood warning system. The system is based on the Non-hydrostatic Multiscale Model NMMB, which is a numerical weather prediction model that can be used on a broad range of spatial and temporal scales. Its non-hydrostatic module allows high horizontal resolution and resolving cloud systems as well as large

  8. Data assimilation in integrated hydrological modeling using ensemble Kalman filtering

    DEFF Research Database (Denmark)

    Rasmussen, Jørn; Madsen, H.; Jensen, Karsten Høgh

    2015-01-01

    Groundwater head and stream discharge is assimilated using the ensemble transform Kalman filter in an integrated hydrological model with the aim of studying the relationship between the filter performance and the ensemble size. In an attempt to reduce the required number of ensemble members...... and estimating parameters requires a much larger ensemble size than just assimilating groundwater head observations. However, the required ensemble size can be greatly reduced with the use of adaptive localization, which by far outperforms distance-based localization. The study is conducted using synthetic data...

  9. Climate change impact on available water resources obtained using multiple global climate and hydrology models

    Directory of Open Access Journals (Sweden)

    S. Hagemann

    2013-05-01

    Full Text Available Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three and hydrological models (eight were used to systematically assess the hydrological response to climate change and project the future state of global water resources. This multi-model ensemble allows us to investigate how the hydrology models contribute to the uncertainty in projected hydrological changes compared to the climate models. Due to their systematic biases, GCM outputs cannot be used directly in hydrological impact studies, so a statistical bias correction has been applied. The results show a large spread in projected changes in water resources within the climate–hydrology modelling chain for some regions. They clearly demonstrate that climate models are not the only source of uncertainty for hydrological change, and that the spread resulting from the choice of the hydrology model is larger than the spread originating from the climate models over many areas. But there are also areas showing a robust change signal, such as at high latitudes and in some midlatitude regions, where the models agree on the sign of projected hydrological changes, indicative of higher confidence in this ensemble mean signal. In many catchments an increase of available water resources is expected but there are some severe decreases in Central and Southern Europe, the Middle East, the Mississippi River basin, southern Africa, southern China and south-eastern Australia.

  10. An operational hydrological ensemble prediction system for the city of Zurich (Switzerland: skill, case studies and scenarios

    Directory of Open Access Journals (Sweden)

    N. Addor

    2011-07-01

    Full Text Available The Sihl River flows through Zurich, Switzerland's most populated city, for which it represents the largest flood threat. To anticipate extreme discharge events and provide decision support in case of flood risk, a hydrometeorological ensemble prediction system (HEPS was launched operationally in 2008. This model chain relies on limited-area atmospheric forecasts provided by the deterministic model COSMO-7 and the probabilistic model COSMO-LEPS. These atmospheric forecasts are used to force a semi-distributed hydrological model (PREVAH, coupled to a hydraulic model (FLORIS. The resulting hydrological forecasts are eventually communicated to the stakeholders involved in the Sihl discharge management. This fully operational setting provides a real framework with which to compare the potential of deterministic and probabilistic discharge forecasts for flood mitigation.

    To study the suitability of HEPS for small-scale basins and to quantify the added-value conveyed by the probability information, a reforecast was made for the period June 2007 to December 2009 for the Sihl catchment (336 km2. Several metrics support the conclusion that the performance gain can be of up to 2 days lead time for the catchment considered. Brier skill scores show that overall COSMO-LEPS-based hydrological forecasts outperforms their COSMO-7-based counterparts for all the lead times and event intensities considered. The small size of the Sihl catchment does not prevent skillful discharge forecasts, but makes them particularly dependent on correct precipitation forecasts, as shown by comparisons with a reference run driven by observed meteorological parameters. Our evaluation stresses that the capacity of the model to provide confident and reliable mid-term probability forecasts for high discharges is limited. The two most intense events of the study period are investigated utilising a novel graphical representation of probability forecasts, and are used

  11. A data-model integration approach toward improved understanding on wetland functions and hydrological benefits at the catchment scale

    Science.gov (United States)

    Yeo, I. Y.; Lang, M.; Lee, S.; Huang, C.; Jin, H.; McCarty, G.; Sadeghi, A.

    2017-12-01

    The wetland ecosystem plays crucial roles in improving hydrological function and ecological integrity for the downstream water and the surrounding landscape. However, changing behaviours and functioning of wetland ecosystems are poorly understood and extremely difficult to characterize. Improved understanding on hydrological behaviours of wetlands, considering their interaction with surrounding landscapes and impacts on downstream waters, is an essential first step toward closing the knowledge gap. We present an integrated wetland-catchment modelling study that capitalizes on recently developed inundation maps and other geospatial data. The aim of the data-model integration is to improve spatial prediction of wetland inundation and evaluate cumulative hydrological benefits at the catchment scale. In this paper, we highlight problems arising from data preparation, parameterization, and process representation in simulating wetlands within a distributed catchment model, and report the recent progress on mapping of wetland dynamics (i.e., inundation) using multiple remotely sensed data. We demonstrate the value of spatially explicit inundation information to develop site-specific wetland parameters and to evaluate model prediction at multi-spatial and temporal scales. This spatial data-model integrated framework is tested using Soil and Water Assessment Tool (SWAT) with improved wetland extension, and applied for an agricultural watershed in the Mid-Atlantic Coastal Plain, USA. This study illustrates necessity of spatially distributed information and a data integrated modelling approach to predict inundation of wetlands and hydrologic function at the local landscape scale, where monitoring and conservation decision making take place.

  12. Stream network geomorphology mediates predicted vulnerability of anadromous fish habitat to hydrologic change in southeast Alaska.

    Science.gov (United States)

    Sloat, Matthew R; Reeves, Gordon H; Christiansen, Kelly R

    2017-02-01

    In rivers supporting Pacific salmon in southeast Alaska, USA, regional trends toward a warmer, wetter climate are predicted to increase mid- and late-21st-century mean annual flood size by 17% and 28%, respectively. Increased flood size could alter stream habitats used by Pacific salmon for reproduction, with negative consequences for the substantial economic, cultural, and ecosystem services these fish provide. We combined field measurements and model simulations to estimate the potential influence of future flood disturbance on geomorphic processes controlling the quality and extent of coho, chum, and pink salmon spawning habitat in over 800 southeast Alaska watersheds. Spawning habitat responses varied widely across watersheds and among salmon species. Little variation among watersheds in potential spawning habitat change was explained by predicted increases in mean annual flood size. Watershed response diversity was mediated primarily by topographic controls on stream channel confinement, reach-scale geomorphic associations with spawning habitat preferences, and complexity in the pace and mode of geomorphic channel responses to altered flood size. Potential spawning habitat loss was highest for coho salmon, which spawn over a wide range of geomorphic settings, including steeper, confined stream reaches that are more susceptible to streambed scour during high flows. We estimated that 9-10% and 13-16% of the spawning habitat for coho salmon could be lost by the 2040s and 2080s, respectively, with losses occurring primarily in confined, higher-gradient streams that provide only moderate-quality habitat. Estimated effects were lower for pink and chum salmon, which primarily spawn in unconfined floodplain streams. Our results illustrate the importance of accounting for valley and reach-scale geomorphic features in watershed assessments of climate vulnerability, especially in topographically complex regions. Failure to consider the geomorphic context of stream

  13. Hydrological modeling of the Simly Dam watershed (Pakistan) using GIS and SWAT model

    OpenAIRE

    Shimaa M. Ghoraba

    2015-01-01

    Modern mathematical models have been developed for studying the complex hydrological processes of a watershed and their direct relation to weather, topography, geology and land use. In this study the hydrology of Simly Dam watershed located in Saon River basin at the north-east of Islamabad is modeled, using the Soil and Water Assessment Tool (SWAT). It aims to simulate the stream flow, establish the water balance and estimate the monthly volume inflow to Simly Dam in order to help the manage...

  14. Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model

    Science.gov (United States)

    Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby

    2013-12-01

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.

  15. Dynamic Hydrological Modeling in Drylands with TRMM Based Rainfall

    Directory of Open Access Journals (Sweden)

    Elena Tarnavsky

    2013-12-01

    Full Text Available This paper introduces and evaluates DryMOD, a dynamic water balance model of the key hydrological process in drylands that is based on free, public-domain datasets. The rainfall model of DryMOD makes optimal use of spatially disaggregated Tropical Rainfall Measuring Mission (TRMM datasets to simulate hourly rainfall intensities at a spatial resolution of 1-km. Regional-scale applications of the model in seasonal catchments in Tunisia and Senegal characterize runoff and soil moisture distribution and dynamics in response to varying rainfall data inputs and soil properties. The results highlight the need for hourly-based rainfall simulation and for correcting TRMM 3B42 rainfall intensities for the fractional cover of rainfall (FCR. Without FCR correction and disaggregation to 1 km, TRMM 3B42 based rainfall intensities are too low to generate surface runoff and to induce substantial changes to soil moisture storage. The outcomes from the sensitivity analysis show that topsoil porosity is the most important soil property for simulation of runoff and soil moisture. Thus, we demonstrate the benefit of hydrological investigations at a scale, for which reliable information on soil profile characteristics exists and which is sufficiently fine to account for the heterogeneities of these. Where such information is available, application of DryMOD can assist in the spatial and temporal planning of water harvesting according to runoff-generating areas and the runoff ratio, as well as in the optimization of agricultural activities based on realistic representation of soil moisture conditions.

  16. Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model

    DEFF Research Database (Denmark)

    Demirel, Mehmet C.; Mai, Juliane; Mendiguren Gonzalez, Gorka

    2018-01-01

    Satellite-based earth observations offer great opportunities to improve spatial model predictions by means of spatial-pattern-oriented model evaluations. In this study, observed spatial patterns of actual evapotranspiration (AET) are utilised for spatial model calibration tailored to target...... and potential evapotranspiration correction parameterisations, based on soil type and vegetation density. These parameterisations are utilised as they are most relevant for simulated AET patterns from the hydrologic model. Due to the fundamental challenges encountered when evaluating spatial pattern performance...

  17. Modeling Hydrologic Processes after Vegetation Restoration in an Urban Watershed with HEC-HMS

    Science.gov (United States)

    Stevenson, K.; Kinoshita, A. M.

    2017-12-01

    The San Diego River Watershed in California (USA) is highly urbanized, where stream channel geomorphology are directly affected by anthropogenic disturbances. Flooding and water quality concerns have led to an increased interest in improving the condition of urban waterways. Alvarado Creek, a 1200-meter section of a tributary to the San Diego River will be used as a case study to understand the degree to which restoration efforts reduce the impacts of climate change and anthropogenic activities on hydrologic processes and water quality in urban stream ecosystems. In 2016, non-native vegetation (i.e. Washingtonia spp. (fan palm), Phoenix canariensis (Canary Island palm)) and approximately 7257 kilograms of refuse were removed from the study reach. This research develops the United States Army Corp of Engineers Hydrologic Engineering Center's Hydraulic Modeling System (USACE HEC-HMS) using field-based data to model and predict the short- and long-term impacts of restoration on geomorphic and hydrologic processes. Observations include cross-sectional area, grain-size distributions, water quality, and continuous measurements of streamflow, temperature, and precipitation. Baseline and design storms are simulated before and after restoration. The model will be calibrated and validated using field observations. The design storms represent statistical likelihoods of storms occurrences, and the pre- and post-restoration hydrologic responses will be compared to evaluate the impact of vegetation and waste removal on runoff processes. Ultimately model parameters will be transferred to other urban creeks in San Diego that may potentially undergo restoration. Modeling will be used to learn about the response trajectory of rainfall-runoff processes following restoration efforts in urban streams and guide future management and restoration activities.

  18. One-Water Hydrologic Flow Model (MODFLOW-OWHM)

    Science.gov (United States)

    Hanson, Randall T.; Boyce, Scott E.; Schmid, Wolfgang; Hughes, Joseph D.; Mehl, Steffen W.; Leake, Stanley A.; Maddock, Thomas; Niswonger, Richard G.

    2014-01-01

    The One-Water Hydrologic Flow Model (MF-OWHM) is a MODFLOW-based integrated hydrologic flow model (IHM) that is the most complete version, to date, of the MODFLOW family of hydrologic simulators needed for the analysis of a broad range of conjunctive-use issues. Conjunctive use is the combined use of groundwater and surface water. MF-OWHM allows the simulation, analysis, and management of nearly all components of human and natural water movement and use in a physically-based supply-and-demand framework. MF-OWHM is based on the Farm Process for MODFLOW-2005 (MF-FMP2) combined with Local Grid Refinement (LGR) for embedded models to allow use of the Farm Process (FMP) and Streamflow Routing (SFR) within embedded grids. MF-OWHM also includes new features such as the Surface-water Routing Process (SWR), Seawater Intrusion (SWI), and Riparian Evapotrasnpiration (RIP-ET), and new solvers such as Newton-Raphson (NWT) and nonlinear preconditioned conjugate gradient (PCGN). This IHM also includes new connectivities to expand the linkages for deformation-, flow-, and head-dependent flows. Deformation-dependent flows are simulated through the optional linkage to simulated land subsidence with a vertically deforming mesh. Flow-dependent flows now include linkages between the new SWR with SFR and FMP, as well as connectivity with embedded models for SFR and FMP through LGR. Head-dependent flows now include a modified Hydrologic Flow Barrier Package (HFB) that allows optional transient HFB capabilities, and the flow between any two layers that are adjacent along a depositional or erosional boundary or displaced along a fault. MF-OWHM represents a complete operational hydrologic model that fully links the movement and use of groundwater, surface water, and imported water for consumption by irrigated agriculture, but also of water used in urban areas and by natural vegetation. Supply and demand components of water use are analyzed under demand-driven and supply

  19. Adaptable Web Modules to Stimulate Active Learning in Engineering Hydrology using Data and Model Simulations of Three Regional Hydrologic Systems

    Science.gov (United States)

    Habib, E. H.; Tarboton, D. G.; Lall, U.; Bodin, M.; Rahill-Marier, B.; Chimmula, S.; Meselhe, E. A.; Ali, A.; Williams, D.; Ma, Y.

    2013-12-01

    The hydrologic community has long recognized the need for broad reform in hydrologic education. A paradigm shift is critically sought in undergraduate hydrology and water resource education by adopting context-rich, student-centered, and active learning strategies. Hydrologists currently deal with intricate issues rooted in complex natural ecosystems containing a multitude of interconnected processes. Advances in the multi-disciplinary field include observational settings such as Critical Zone and Water, Sustainability and Climate Observatories, Hydrologic Information Systems, instrumentation and modeling methods. These research advances theory and practices call for similar efforts and improvements in hydrologic education. The typical, text-book based approach in hydrologic education has focused on specific applications and/or unit processes associated with the hydrologic cycle with idealizations, rather than the contextual relations in the physical processes and the spatial and temporal dynamics connecting climate and ecosystems. An appreciation of the natural variability of these processes will lead to graduates with the ability to develop independent learning skills and understanding. This appreciation cannot be gained in curricula where field components such as observational and experimental data are deficient. These types of data are also critical when using simulation models to create environments that support this type of learning. Additional sources of observations in conjunction with models and field data are key to students understanding of the challenges associated with using models to represent such complex systems. Recent advances in scientific visualization and web-based technologies provide new opportunities for the development of active learning techniques utilizing ongoing research. The overall goal of the current study is to develop visual, case-based, data and simulation driven learning experiences to instructors and students through a web

  20. Evaluating uncertainty estimates in hydrologic models: borrowing measures from the forecast verification community

    Directory of Open Access Journals (Sweden)

    K. J. Franz

    2011-11-01

    Full Text Available The hydrologic community is generally moving towards the use of probabilistic estimates of streamflow, primarily through the implementation of Ensemble Streamflow Prediction (ESP systems, ensemble data assimilation methods, or multi-modeling platforms. However, evaluation of probabilistic outputs has not necessarily kept pace with ensemble generation. Much of the modeling community is still performing model evaluation using standard deterministic measures, such as error, correlation, or bias, typically applied to the ensemble mean or median. Probabilistic forecast verification methods have been well developed, particularly in the atmospheric sciences, yet few have been adopted for evaluating uncertainty estimates in hydrologic model simulations. In the current paper, we overview existing probabilistic forecast verification methods and apply the methods to evaluate and compare model ensembles produced from two different parameter uncertainty estimation methods: the Generalized Uncertainty Likelihood Estimator (GLUE, and the Shuffle Complex Evolution Metropolis (SCEM. Model ensembles are generated for the National Weather Service SACramento Soil Moisture Accounting (SAC-SMA model for 12 forecast basins located in the Southeastern United States. We evaluate the model ensembles using relevant metrics in the following categories: distribution, correlation, accuracy, conditional statistics, and categorical statistics. We show that the presented probabilistic metrics are easily adapted to model simulation ensembles and provide a robust analysis of model performance associated with parameter uncertainty. Application of these methods requires no information in addition to what is already available as part of traditional model validation methodology and considers the entire ensemble or uncertainty range in the approach.

  1. Human impact parameterizations in global hydrological models improve estimates of monthly discharges and hydrological extremes: a multi-model validation study

    NARCIS (Netherlands)

    Veldkamp, T I E; Zhao, F; Ward, P J; Moel, H de; Aerts, J C J H; Schmied, H Müller; Portmann, F T; Masaki, Y; Pokhrel, Y; Liu, X; Satoh, Yusuke; Gerten, Dieter; Gosling, S N; Zaherpour, J; Wada, Yoshihide

    2018-01-01

    Human activity has a profound influence on river discharges, hydrological extremes and water-related hazards. In this study, we compare the results of five state-of-the-art global hydrological models (GHMs) with observations to examine the role of human impact parameterizations (HIP) in the

  2. A hybrid hydrologically complemented warning model for shallow landslides induced by extreme rainfall in Korean Mountain

    Science.gov (United States)

    Singh Pradhan, Ananta Man; Kang, Hyo-Sub; Kim, Yun-Tae

    2016-04-01

    This study uses a physically based approach to evaluate the factor of safety of the hillslope for different hydrological conditions, in Mt Umyeon, south of Seoul. The hydrological conditions were determined using intensity and duration of whole Korea of known landslide inventory data. Quantile regression statistical method was used to ascertain different probability warning levels on the basis of rainfall thresholds. Physically based models are easily interpreted and have high predictive capabilities but rely on spatially explicit and accurate parameterization, which is commonly not possible. Statistical probabilistic methods can include other causative factors which influence the slope stability such as forest, soil and geology, but rely on good landslide inventories of the site. In this study a hybrid approach has described that combines the physically-based landslide susceptibility for different hydrological conditions. A presence-only based maximum entropy model was used to hybrid and analyze relation of landslide with conditioning factors. About 80% of the landslides were listed among the unstable sites identified in the proposed model, thereby presenting its effectiveness and accuracy in determining unstable areas and areas that require evacuation. These cumulative rainfall thresholds provide a valuable reference to guide disaster prevention authorities in the issuance of warning levels with the ability to reduce losses and save lives.

  3. New insight into unstable hillslopes hydrology from hydrogeochemical modelling.

    Science.gov (United States)

    Bertrand, C.; Marc, V.; Malet, J.-P.

    2010-05-01

    In the black marl outcrops of the French South Alps, sub surface flow conditions are considered as the main triggering factor for initiation and reactivation of landslides. The problem is traditionally addressed in term of hydrological processes (how does percolation to the water table occur?) but in some cases the origin of water is also in question. Direct rainfall is generally assumed as the only water source for groundwater recharge in shallow hillslope aquifers. The bedrock is also supposed impervious and continuous. Yet the geological environment of the study area is very complex owing to the geological history of this alpine sector. The autochthonous callovo-oxfordian black marl bedrock is highly tectonized (Maquaire et al., 2003) and may be affected by large, possibly draining discontinuities. A deep water inflow at the slip surface may at least locally result in increase the pore pressure and decrease the effective shearing resistance of the landslide material. In the active slow-moving landslide of Super-Sauze (Malet and Maquaire, 2003), this question has been addressed using hydrochemical investigations. The groundwater was sampled during five field campaigns uniformly spread out over the year from a network of boreholes. Water chemistry data were completed by geochemical and mineralogical analyses of the marl material. The major hydro-geochemical processes over area proved (1) mixing processes, (2) pyrite alteration, (3) dissolution/precipitation of carbonates and (4) cations exchange (de Montety et al., 2007). A geochemical modelling was carried out using the model Phreeqc (Parkhurst and Appelo, version 2.15, 2008) to check how suitable was observed water chemistry with the reservoir characteristics. The modelling exercise was based on a kinetics approach of soil-water interactions. The model simulates the rock alteration by the dissolution of the primary minerals and the precipitation of new phases. Initial parameters were obtained from geochemical

  4. Techniques to Access Databases and Integrate Data for Hydrologic Modeling

    International Nuclear Information System (INIS)

    Whelan, Gene; Tenney, Nathan D.; Pelton, Mitchell A.; Coleman, Andre M.; Ward, Duane L.; Droppo, James G.; Meyer, Philip D.; Dorow, Kevin E.; Taira, Randal Y.

    2009-01-01

    This document addresses techniques to access and integrate data for defining site-specific conditions and behaviors associated with ground-water and surface-water radionuclide transport applicable to U.S. Nuclear Regulatory Commission reviews. Environmental models typically require input data from multiple internal and external sources that may include, but are not limited to, stream and rainfall gage data, meteorological data, hydrogeological data, habitat data, and biological data. These data may be retrieved from a variety of organizations (e.g., federal, state, and regional) and source types (e.g., HTTP, FTP, and databases). Available data sources relevant to hydrologic analyses for reactor licensing are identified and reviewed. The data sources described can be useful to define model inputs and parameters, including site features (e.g., watershed boundaries, stream locations, reservoirs, site topography), site properties (e.g., surface conditions, subsurface hydraulic properties, water quality), and site boundary conditions, input forcings, and extreme events (e.g., stream discharge, lake levels, precipitation, recharge, flood and drought characteristics). Available software tools for accessing established databases, retrieving the data, and integrating it with models were identified and reviewed. The emphasis in this review was on existing software products with minimal required modifications to enable their use with the FRAMES modeling framework. The ability of four of these tools to access and retrieve the identified data sources was reviewed. These four software tools were the Hydrologic Data Acquisition and Processing System (HDAPS), Integrated Water Resources Modeling System (IWRMS) External Data Harvester, Data for Environmental Modeling Environmental Data Download Tool (D4EM EDDT), and the FRAMES Internet Database Tools. The IWRMS External Data Harvester and the D4EM EDDT were identified as the most promising tools based on their ability to access and

  5. Techniques to Access Databases and Integrate Data for Hydrologic Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, Gene; Tenney, Nathan D.; Pelton, Mitchell A.; Coleman, Andre M.; Ward, Duane L.; Droppo, James G.; Meyer, Philip D.; Dorow, Kevin E.; Taira, Randal Y.

    2009-06-17

    This document addresses techniques to access and integrate data for defining site-specific conditions and behaviors associated with ground-water and surface-water radionuclide transport applicable to U.S. Nuclear Regulatory Commission reviews. Environmental models typically require input data from multiple internal and external sources that may include, but are not limited to, stream and rainfall gage data, meteorological data, hydrogeological data, habitat data, and biological data. These data may be retrieved from a variety of organizations (e.g., federal, state, and regional) and source types (e.g., HTTP, FTP, and databases). Available data sources relevant to hydrologic analyses for reactor licensing are identified and reviewed. The data sources described can be useful to define model inputs and parameters, including site features (e.g., watershed boundaries, stream locations, reservoirs, site topography), site properties (e.g., surface conditions, subsurface hydraulic properties, water quality), and site boundary conditions, input forcings, and extreme events (e.g., stream discharge, lake levels, precipitation, recharge, flood and drought characteristics). Available software tools for accessing established databases, retrieving the data, and integrating it with models were identified and reviewed. The emphasis in this review was on existing software products with minimal required modifications to enable their use with the FRAMES modeling framework. The ability of four of these tools to access and retrieve the identified data sources was reviewed. These four software tools were the Hydrologic Data Acquisition and Processing System (HDAPS), Integrated Water Resources Modeling System (IWRMS) External Data Harvester, Data for Environmental Modeling Environmental Data Download Tool (D4EM EDDT), and the FRAMES Internet Database Tools. The IWRMS External Data Harvester and the D4EM EDDT were identified as the most promising tools based on their ability to access and

  6. Predicting the ungauged basin : Model validation and realism assessment

    NARCIS (Netherlands)

    Van Emmerik, T.H.M.; Mulder, G.; Eilander, D.; Piet, M.; Savenije, H.H.G.

    2015-01-01

    The hydrological decade on Predictions in Ungauged Basins (PUB) led to many new insights in model development, calibration strategies, data acquisition and uncertainty analysis. Due to a limited amount of published studies on genuinely ungauged basins, model validation and realism assessment of

  7. Predicting the ungauged basin: model validation and realism assessment

    NARCIS (Netherlands)

    van Emmerik, Tim; Mulder, Gert; Eilander, Dirk; Piet, Marijn; Savenije, Hubert

    2015-01-01

    The hydrological decade on Predictions in Ungauged Basins (PUB) led to many new insights in model development, calibration strategies, data acquisition and uncertainty analysis. Due to a limited amount of published studies on genuinely ungauged basins, model validation and realism assessment of

  8. Operational use of distributed hydrological models. Experiences and challenges at a Norwegian hydropower company (Agder Energi).

    Science.gov (United States)

    Viggo Matheussen, Bernt; Andresen, Arne; Weisser, Claudia

    2014-05-01

    The Scandinavian hydropower industry has traditionally adopted the lumped conceptual hydrological model - HBV, as the tool for producing forecasts of inflows and mountain snow packs. Such forecasting systems - based on lumped conceptual models - have several drawbacks. Firstly, a lumped model does not produce spatial data, and comparisons with remote sensed snow cover data (which are now available) are complicated. Secondly, several climate parameters such as wind speed are now becoming more available and can potentially improve forecasts due to improved estimates of precipitation gauge efficiency, and more physically correct calculation of turbulent heat fluxes. At last, when the number of catchments increases, it is cumbersome and slow to run multiple hydrology models compared to running one model for all catchments. With the drawbacks of the lumped hydrology models in mind, and with inspiration from other forecasting systems using distributed models, Agder Energy decided to develop a forecasting system applying a physically based distributed model. In this paper we describe an operational inflow and snowpack forecast system developed for the Scandinavian mountain range. The system applies a modern macroscale land surface hydrology model (VIC) which in combination with historical climate data and weather predictions can be used to produce both short-term, and seasonal forecasts of inflow and mountain snowpack. Experiences with the forecast system are illustrated using results from individual subcatchments as well as aggregated regional forecasts of inflow and snowpack. Conversion of water volumes into effective energy inflow are also presented and compared to data from the Nordic hydropower system. Further on, we document several important "lessons-learned" that may be of interest to the hydrological research community. Specifically a semi-automatic data cleansing system combining spatial and temporal visualization techniques with statistical procedures are

  9. Characterizing Drought Events from a Hydrological Model Ensemble

    Science.gov (United States)

    Smith, Katie; Parry, Simon; Prudhomme, Christel; Hannaford, Jamie; Tanguy, Maliko; Barker, Lucy; Svensson, Cecilia

    2017-04-01

    Hydrological droughts are a slow onset natural hazard that can affect large areas. Within the United Kingdom there have been eight major drought events over the last 50 years, with several events acting at the continental scale, and covering the entire nation. Many of these events have lasted several years and had significant impacts on agriculture, the environment and the economy. Generally in the UK, due to a northwest-southeast gradient in rainfall and relief, as well as varying underlying geology, droughts tend to be most severe in the southeast, which can threaten water supplies to the capital in London. With the impacts of climate change likely to increase the severity and duration of drought events worldwide, it is crucial that we gain an understanding of the characteristics of some of the longer and more extreme droughts of the 19th and 20th centuries, so we may utilize this information in planning for the future. Hydrological models are essential both for reconstructing such events that predate streamflow records, and for use in drought forecasting. However, whilst the uncertainties involved in modelling hydrological extremes on the flooding end of the flow regime have been studied in depth over the past few decades, the uncertainties in simulating droughts and low flow events have not yet received such rigorous academic attention. The "Cascade of Uncertainty" approach has been applied to explore uncertainty and coherence across simulations of notable drought events from the past 50 years using the airGR family of daily lumped catchment models. Parameter uncertainty has been addressed using a Latin Hypercube sampled experiment of 500,000 parameter sets per model (GR4J, GR5J and GR6J), over more than 200 catchments across the UK. The best performing model parameterisations, determined using a multi-objective function approach, have then been taken forward for use in the assessment of the impact of model parameters and model structure on drought event

  10. ANNIE - INTERACTIVE PROCESSING OF DATA BASES FOR HYDROLOGIC MODELS.

    Science.gov (United States)

    Lumb, Alan M.; Kittle, John L.

    1985-01-01

    ANNIE is a data storage and retrieval system that was developed to reduce the time and effort required to calibrate, verify, and apply watershed models that continuously simulate water quantity and quality. Watershed models have three categories of input: parameters to describe segments of a drainage area, linkage of the segments, and time-series data. Additional goals for ANNIE include the development of software that is easily implemented on minicomputers and some microcomputers and software that has no special requirements for interactive display terminals. Another goal is for the user interaction to be based on the experience of the user so that ANNIE is helpful to the inexperienced user and yet efficient and brief for the experienced user. Finally, the code should be designed so that additional hydrologic models can easily be added to ANNIE.

  11. Using large hydrological datasets to create a robust, physically based, spatially distributed model for Great Britain

    Science.gov (United States)

    Lewis, Elizabeth; Kilsby, Chris; Fowler, Hayley

    2014-05-01

    The impact of climate change on hydrological systems requires further quantification in order to inform water management. This study intends to conduct such analysis using hydrological models. Such models are of varying forms, of which conceptual, lumped parameter models and physically-based models are two important types. The majority of hydrological studies use conceptual models calibrated against measured river flow time series in order to represent catchment behaviour. This method often shows impressive results for specific problems in gauged catchments. However, the results may not be robust under non-stationary conditions such as climate change, as physical processes and relationships amenable to change are not accounted for explicitly. Moreover, conceptual models are less readily applicable to ungauged catchments, in which hydrological predictions are also required. As such, the physically based, spatially distributed model SHETRAN is used in this study to develop a robust and reliable framework for modelling historic and future behaviour of gauged and ungauged catchments across the whole of Great Britain. In order to achieve this, a large array of data completely covering Great Britain for the period 1960-2006 has been collated and efficiently stored ready for model input. The data processed include a DEM, rainfall, PE and maps of geology, soil and land cover. A desire to make the modelling system easy for others to work with led to the development of a user-friendly graphical interface. This allows non-experts to set up and run a catchment model in a few seconds, a process that can normally take weeks or months. The quality and reliability of the extensive dataset for modelling hydrological processes has also been evaluated. One aspect of this has been an assessment of error and uncertainty in rainfall input data, as well as the effects of temporal resolution in precipitation inputs on model calibration. SHETRAN has been updated to accept gridded rainfall

  12. European Continental Scale Hydrological Model, Limitations and Challenges

    Science.gov (United States)

    Rouholahnejad, E.; Abbaspour, K.

    2014-12-01

    The pressures on water resources due to increasing levels of societal demand, increasing conflict of interest and uncertainties with regard to freshwater availability create challenges for water managers and policymakers in many parts of Europe. At the same time, climate change adds a new level of pressure and uncertainty with regard to freshwater supplies. On the other hand, the small-scale sectoral structure of water management is now reaching its limits. The integrated management of water in basins requires a new level of consideration where water bodies are to be viewed in the context of the whole river system and managed as a unit within their basins. In this research we present the limitations and challenges of modelling the hydrology of the continent Europe. The challenges include: data availability at continental scale and the use of globally available data, streamgauge data quality and their misleading impacts on model calibration, calibration of large-scale distributed model, uncertainty quantification, and computation time. We describe how to avoid over parameterization in calibration process and introduce a parallel processing scheme to overcome high computation time. We used Soil and Water Assessment Tool (SWAT) program as an integrated hydrology and crop growth simulator to model water resources of the Europe continent. Different components of water resources are simulated and crop yield and water quality are considered at the Hydrological Response Unit (HRU) level. The water resources are quantified at subbasin level with monthly time intervals for the period of 1970-2006. The use of a large-scale, high-resolution water resources models enables consistent and comprehensive examination of integrated system behavior through physically-based, data-driven simulation and provides the overall picture of water resources temporal and spatial distribution across the continent. The calibrated model and results provide information support to the European Water

  13. Improved Hydrology over Peatlands in a Global Land Modeling System

    Science.gov (United States)

    Bechtold, M.; Delannoy, G.; Reichle, R.; Koster, R.; Mahanama, S.; Roose, Dirk

    2018-01-01

    Peatlands of the Northern Hemisphere represent an important carbon pool that mainly accumulated since the last ice age under permanently wet conditions in specific geological and climatic settings. The carbon balance of peatlands is closely coupled to water table dynamics. Consequently, the future carbon balance over peatlands is strongly dependent on how hydrology in peatlands will react to changing boundary conditions, e.g. due to climate change or regional water level drawdown of connected aquifers or streams. Global land surface modeling over organic-rich regions can provide valuable global-scale insights on where and how peatlands are in transition due to changing boundary conditions. However, the current global land surface models are not able to reproduce typical hydrological dynamics in peatlands well. We implemented specific structural and parametric changes to account for key hydrological characteristics of peatlands into NASA's GEOS-5 Catchment Land Surface Model (CLSM, Koster et al. 2000). The main modifications pertain to the modeling of partial inundation, and the definition of peatland-specific runoff and evapotranspiration schemes. We ran a set of simulations on a high performance cluster using different CLSM configurations and validated the results with a newly compiled global in-situ dataset of water table depths in peatlands. The results demonstrate that an update of soil hydraulic properties for peat soils alone does not improve the performance of CLSM over peatlands. However, structural model changes for peatlands are able to improve the skill metrics for water table depth. The validation results for the water table depth indicate a reduction of the bias from 2.5 to 0.2 m, and an improvement of the temporal correlation coefficient from 0.5 to 0.65, and from 0.4 to 0.55 for the anomalies. Our validation data set includes both bogs (rain-fed) and fens (ground and/or surface water influence) and reveals that the metrics improved less for fens. In

  14. Improving rainfall representation for large-scale hydrological modelling of tropical mountain basins

    Science.gov (United States)

    Zulkafli, Zed; Buytaert, Wouter; Onof, Christian; Lavado, Waldo; Guyot, Jean-Loup

    2013-04-01

    extended period) in multiple basins, and (2) a comparison of the outcome of hydrological modelling using the distributed JULES (Joint-UK Land Environment Simulator) land surface model. First results indicate an improvement in the water balance that directly translates into an increased hydrological performance. The more interesting aspect of the study, however, will be the insights into the nature of satellite precipitation errors in this extreme environment and the optimal means of improving the data to generate increased confidence in hydrological predictions.

  15. CEREF: A hybrid data-driven model for forecasting annual streamflow from a socio-hydrological system

    Science.gov (United States)

    Zhang, Hongbo; Singh, Vijay P.; Wang, Bin; Yu, Yinghao

    2016-09-01

    Hydrological forecasting is complicated by flow regime alterations in a coupled socio-hydrologic system, encountering increasingly non-stationary, nonlinear and irregular changes, which make decision support difficult for future water resources management. Currently, many hybrid data-driven models, based on the decomposition-prediction-reconstruction principle, have been developed to improve the ability to make predictions of annual streamflow. However, there exist many problems that require further investigation, the chief among which is the direction of trend components decomposed from annual streamflow series and is always difficult to ascertain. In this paper, a hybrid data-driven model was proposed to capture this issue, which combined empirical mode decomposition (EMD), radial basis function neural networks (RBFNN), and external forces (EF) variable, also called the CEREF model. The hybrid model employed EMD for decomposition and RBFNN for intrinsic mode function (IMF) forecasting, and determined future trend component directions by regression with EF as basin water demand representing the social component in the socio-hydrologic system. The Wuding River basin was considered for the case study, and two standard statistical measures, root mean squared error (RMSE) and mean absolute error (MAE), were used to evaluate the performance of CEREF model and compare with other models: the autoregressive (AR), RBFNN and EMD-RBFNN. Results indicated that the CEREF model had lower RMSE and MAE statistics, 42.8% and 7.6%, respectively, than did other models, and provided a superior alternative for forecasting annual runoff in the Wuding River basin. Moreover, the CEREF model can enlarge the effective intervals of streamflow forecasting compared to the EMD-RBFNN model by introducing the water demand planned by the government department to improve long-term prediction accuracy. In addition, we considered the high-frequency component, a frequent subject of concern in EMD

  16. Integrating 3D geological information with a national physically-based hydrological modelling system

    Science.gov (United States)

    Lewis, Elizabeth; Parkin, Geoff; Kessler, Holger; Whiteman, Mark

    2016-04-01

    Robust numerical models are an essential tool for informing flood and water management and policy around the world. Physically-based hydrological models have traditionally not been used for such applications due to prohibitively large data, time and computational resource requirements. Given recent advances in computing power and data availability, a robust, physically-based hydrological modelling system for Great Britain using the SHETRAN model and national datasets has been created. Such a model has several advantages over less complex systems. Firstly, compared with conceptual models, a national physically-based model is more readily applicable to ungauged catchments, in which hydrological predictions are also required. Secondly, the results of a physically-based system may be more robust under changing conditions such as climate and land cover, as physical processes and relationships are explicitly accounted for. Finally, a fully integrated surface and subsurface model such as SHETRAN offers a wider range of applications compared with simpler schemes, such as assessments of groundwater resources, sediment and nutrient transport and flooding from multiple sources. As such, SHETRAN provides a robust means of simulating numerous terrestrial system processes which will add physical realism when coupled to the JULES land surface model. 306 catchments spanning Great Britain have been modelled using this system. The standard configuration of this system performs satisfactorily (NSE > 0.5) for 72% of catchments and well (NSE > 0.7) for 48%. Many of the remaining 28% of catchments that performed relatively poorly (NSE land cover change studies and integrated assessments of groundwater and surface water resources.

  17. SWAT Modeling for Depression-Dominated Areas: How Do Depressions Manipulate Hydrologic Modeling?

    Directory of Open Access Journals (Sweden)

    Mohsen Tahmasebi Nasab

    2017-01-01

    Full Text Available Modeling hydrologic processes for depression-dominated areas such as the North American Prairie Pothole Region is complex and reliant on a clear understanding of dynamic filling-spilling-merging-splitting processes of numerous depressions over the surface. Puddles are spatially distributed over a watershed and their sizes, storages, and interactions vary over time. However, most hydrologic models fail to account for these dynamic processes. Like other traditional methods, depressions are filled as a required preprocessing step in the Soil and Water Assessment Tool (SWAT. The objective of this study was to facilitate hydrologic modeling for depression-dominated areas by coupling SWAT with a Puddle Delineation (PD algorithm. In the coupled PD-SWAT model, the PD algorithm was utilized to quantify topographic details, including the characteristics, distribution, and hierarchical relationships of depressions, which were incorporated into SWAT at the hydrologic response unit (HRU scale. The new PD-SWAT model was tested for a large watershed in North Dakota under real precipitation events. In addition, hydrologic modeling of a small watershed was conducted under two extreme high and low synthetic precipitation conditions. In particular, the PD-SWAT was compared against the regular SWAT based on depressionless DEMs. The impact of depressions on the hydrologic modeling of the large and small watersheds was evaluated. The simulation results for the large watershed indicated that SWAT systematically overestimated the outlet discharge, which can be attributed to the failure to account for the hydrologic effects of depressions. It was found from the PD-SWAT modeling results that at the HRU scale surface runoff initiation was significantly delayed due to the threshold control of depressions. Under the high precipitation scenario, depressions increased the surface runoff peak. However, the low precipitation scenario could not fully fill depressions to reach

  18. Isotopes as validation tools for predictions of the impact of Amazonian deforestation on climate and regional hydrology

    International Nuclear Information System (INIS)

    Henderson-Sellers, A.; Chambers, S.; McGuffie, K.

    2002-01-01

    Isotopic analysis and modelling of the Amazon Basin have both been reported for about thirty years. Isotopic data have been used to explain important characteristics of Amazonian hydrologic cycling by means of simple models. To date there has been no attempt to use isotopic data to evaluate global climate models employed to predict the possible impacts of Amazonian deforestation. This paper reviews the history of isotopic analysis and simulations of deforestation in the Amazon and initiates isotopic evaluation of GCMs. It is shown that one widely reported simulation set gives seasonal transpiration and re-evaporated canopy interception budgets different from those derived from isotopic analysis. It is found that temporal changes (1965 to 1990) in wet season deuterium excess differences between Belem and Manaus are consistent with GCM results only if there has been a relative increase in evaporation from non-fractionating water sources over this period. We propose synergistic future interactions among the climate/hydrological modelling and isotopic analysis communities in order to improve confidence in simulations of Amazonian deforestation. (author)

  19. Cultural Resource Predictive Modeling

    Science.gov (United States)

    2017-10-01

    CR cultural resource CRM cultural resource management CRPM Cultural Resource Predictive Modeling DoD Department of Defense ESTCP Environmental...resource management ( CRM ) legal obligations under NEPA and the NHPA, military installations need to demonstrate that CRM decisions are based on objective...maxim “one size does not fit all,” and demonstrate that DoD installations have many different CRM needs that can and should be met through a variety

  20. An integrated modeling framework of socio-economic, biophysical, and hydrological processes in Midwest landscapes: Remote sensing data, agro-hydrological model, and agent-based model

    Science.gov (United States)

    Ding, Deng

    Intensive human-environment interactions are taking place in Midwestern agricultural systems. An integrated modeling framework is suitable for predicting dynamics of key variables of the socio-economic, biophysical, hydrological processes as well as exploring the potential transitions of system states in response to changes of the driving factors. The purpose of this dissertation is to address issues concerning the interacting processes and consequent changes in land use, water balance, and water quality using an integrated modeling framework. This dissertation is composed of three studies in the same agricultural watershed, the Clear Creek watershed in East-Central Iowa. In the first study, a parsimonious hydrologic model, the Threshold-Exceedance-Lagrangian Model (TELM), is further developed into RS-TELM (Remote Sensing TELM) to integrate remote sensing vegetation data for estimating evapotranspiration. The goodness of fit of RS-TELM is comparable to a well-calibrated SWAT (Soil and Water Assessment Tool) and even slightly superior in capturing intra-seasonal variability of stream flow. The integration of RS LAI (Leaf Area Index) data improves the model's performance especially over the agriculture dominated landscapes. The input of rainfall datasets with spatially explicit information plays a critical role in increasing the model's goodness of fit. In the second study, an agent-based model is developed to simulate farmers' decisions on crop type and fertilizer application in response to commodity and biofuel crop prices. The comparison between simulated crop land percentage and crop rotations with satellite-based land cover data suggest that farmers may be underestimating the effects that continuous corn production has on yields (yield drag). The simulation results given alternative market scenarios based on a survey of agricultural land owners and operators in the Clear Creek Watershed show that, farmers see cellulosic biofuel feedstock production in the form

  1. Translating hydrologically-relevant variables from the ice sheet model SICOPOLIS to the Greenland Analog Project hydrologic modeling domain

    Science.gov (United States)

    Vallot, Dorothée; Applegate, Patrick; Pettersson, Rickard

    2013-04-01

    Projecting future climate and ice sheet development requires sophisticated models and extensive field observations. Given the present state of our knowledge, it is very difficult to say what will happen with certainty. Despite the ongoing increase in atmospheric greenhouse gas concentrations, the possibility that a new ice sheet might form over Scandinavia in the far distant future cannot be excluded. The growth of a new Scandinavian Ice Sheet would have important consequences for buried nuclear waste repositories. The Greenland Analogue Project, initiated by the Swedish Nuclear Fuel and Waste Management Company (SKB), is working to assess the effects of a possible future ice sheet on groundwater flow by studying a constrained domain in Western Greenland by field measurements (including deep bedrock drilling in front of the ice sheet) combined with numerical modeling. To address the needs of the GAP project, we interpolated results from an ensemble of ice sheet model runs to the smaller and more finely resolved modeling domain used in the GAP project's hydrologic modeling. Three runs have been chosen with three fairly different positive degree-day factors among those that reproduced the modern ice margin at the borehole position. The interpolated results describe changes in hydrologically-relevant variables over two time periods, 115 ka to 80 ka, and 20 ka to 1 ka. In the first of these time periods, the ice margin advances over the model domain; in the second time period, the ice margin retreats over the model domain. The spatially-and temporally dependent variables that we treated include the ice thickness, basal melting rate, surface mass balance, basal temperature, basal thermal regime (frozen or thawed), surface temperature, and basal water pressure. The melt flux is also calculated.

  2. Calibration by Hydrological Response Unit of a National Hydrologic Model to Improve Spatial Representation and Distribution of Parameters

    Science.gov (United States)

    Norton, P. A., II

    2015-12-01

    The U. S. Geological Survey is developing a National Hydrologic Model (NHM) to support consistent hydrologic modeling across the conterminous United States (CONUS). The Precipitation-Runoff Modeling System (PRMS) simulates daily hydrologic and energy processes in watersheds, and is used for the NHM application. For PRMS each watershed is divided into hydrologic response units (HRUs); by default each HRU is assumed to have a uniform hydrologic response. The Geospatial Fabric (GF) is a database containing initial parameter values for input to PRMS and was created for the NHM. The parameter values in the GF were derived from datasets that characterize the physical features of the entire CONUS. The NHM application is composed of more than 100,000 HRUs from the GF. Selected parameter values commonly are adjusted by basin in PRMS using an automated calibration process based on calibration targets, such as streamflow. Providing each HRU with distinct values that captures variability within the CONUS may improve simulation performance of the NHM. During calibration of the NHM by HRU, selected parameter values are adjusted for PRMS based on calibration targets, such as streamflow, snow water equivalent (SWE) and actual evapotranspiration (AET). Simulated SWE, AET, and runoff were compared to value ranges derived from multiple sources (e.g. the Snow Data Assimilation System, the Moderate Resolution Imaging Spectroradiometer (i.e. MODIS) Global Evapotranspiration Project, the Simplified Surface Energy Balance model, and the Monthly Water Balance Model). This provides each HRU with a distinct set of parameter values that captures the variability within the CONUS, leading to improved model performance. We present simulation results from the NHM after preliminary calibration, including the results of basin-level calibration for the NHM using: 1) default initial GF parameter values, and 2) parameter values calibrated by HRU.

  3. Candidate Prediction Models and Methods

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Madsen, Henrik

    2005-01-01

    This document lists candidate prediction models for Work Package 3 (WP3) of the PSO-project called ``Intelligent wind power prediction systems'' (FU4101). The main focus is on the models transforming numerical weather predictions into predictions of power production. The document also outlines...... the possibilities w.r.t. different numerical weather predictions actually available to the project....

  4. Hydrologic Modeling of Conservation Farming Practices on the Palouse

    Science.gov (United States)

    van Wie, J.; Adam, J. C.; Ullman, J.

    2009-12-01

    The production of dryland crops such as wheat and barley in a semi-arid region requires a reliable and adequate water supply. This supply of water available for crop use is of heightened importance in areas such as the Palouse region of eastern Washington and northern Idaho where the majority of annual rainfall occurs during the winter months and must be retained in the soil through the dry summer growing season. Farmers can increase conservation of water at the field and watershed scales through the adoption of best management practices that incorporate tillage and crop residue management. This research analyzes conservation farming practices that may be implemented by representing them in a watershed-scale hydrologic model in order to determine whether these practices will effectively save water so that a stable crop yield may be insured. The Distributed Hydrology Soil Vegetation Model (DHSVM) is applied and calibrated to represent the physical changes to infiltration, evaporation, and runoff that result from altered soil and vegetation characteristics brought on by management practices. The model is calibrated with field observations at the basin scale as well as the point scale over individual plots that are under various implementations of conservation management scenarios. Conservation practices are accounted for in DHSVM by adjusting input parameters such as the porosity, roughness, and hydraulic conductivity of the soil to characterize varying levels of tillage. Vegetation parameters such as leaf area index and albedo are altered to represent different amounts of crop residue left on the field through the winter months. After calibration, the model is applied over the entire basin under scenarios representing traditional agricultural methods and a region-wide shift to conservation practices. The resulting water balance suggests that there is a potential to retain water in the seed-zone during the winter months by decreasing evaporation and runoff through

  5. Linking Time and Space Scales in Distributed Hydrological Modelling - a case study for the VIC model

    Science.gov (United States)

    Melsen, Lieke; Teuling, Adriaan; Torfs, Paul; Zappa, Massimiliano; Mizukami, Naoki; Clark, Martyn; Uijlenhoet, Remko

    2015-04-01

    One of the famous paradoxes of the Greek philosopher Zeno of Elea (~450 BC) is the one with the arrow: If one shoots an arrow, and cuts its motion into such small time steps that at every step the arrow is standing still, the arrow is motionless, because a concatenation of non-moving parts does not create motion. Nowadays, this reasoning can be refuted easily, because we know that motion is a change in space over time, which thus by definition depends on both time and space. If one disregards time by cutting it into infinite small steps, motion is also excluded. This example shows that time and space are linked and therefore hard to evaluate separately. As hydrologists we want to understand and predict the motion of water, which means we have to look both in space and in time. In hydrological models we can account for space by using spatially explicit models. With increasing computational power and increased data availability from e.g. satellites, it has become easier to apply models at a higher spatial resolution. Increasing the resolution of hydrological models is also labelled as one of the 'Grand Challenges' in hydrology by Wood et al. (2011) and Bierkens et al. (2014), who call for global modelling at hyperresolution (~1 km and smaller). A literature survey on 242 peer-viewed articles in which the Variable Infiltration Capacity (VIC) model was used, showed that the spatial resolution at which the model is applied has decreased over the past 17 years: From 0.5 to 2 degrees when the model was just developed, to 1/8 and even 1/32 degree nowadays. On the other hand the literature survey showed that the time step at which the model is calibrated and/or validated remained the same over the last 17 years; mainly daily or monthly. Klemeš (1983) stresses the fact that space and time scales are connected, and therefore downscaling the spatial scale would also imply downscaling of the temporal scale. Is it worth the effort of downscaling your model from 1 degree to 1

  6. GIS embedded hydrological modeling: the SID&GRID project

    Science.gov (United States)

    Borsi, I.; Rossetto, R.; Schifani, C.

    2012-04-01

    The SID&GRID research project, started April 2010 and funded by Regione Toscana (Italy) under the POR FSE 2007-2013, aims to develop a Decision Support System (DSS) for water resource management and planning based on open source and public domain solutions. In order to quantitatively assess water availability in space and time and to support the planning decision processes, the SID&GRID solution consists of hydrological models (coupling 3D existing and newly developed surface- and ground-water and unsaturated zone modeling codes) embedded in a GIS interface, applications and library, where all the input and output data are managed by means of DataBase Management System (DBMS). A graphical user interface (GUI) to manage, analyze and run the SID&GRID hydrological models based on open source gvSIG GIS framework (Asociación gvSIG, 2011) and a Spatial Data Infrastructure to share and interoperate with distributed geographical data is being developed. Such a GUI is thought as a "master control panel" able to guide the user from pre-processing spatial and temporal data, running the hydrological models, and analyzing the outputs. To achieve the above-mentioned goals, the following codes have been selected and are being integrated: 1. Postgresql/PostGIS (PostGIS, 2011) for the Geo Data base Management System; 2. gvSIG with Sextante (Olaya, 2011) geo-algorithm library capabilities and Grass tools (GRASS Development Team, 2011) for the desktop GIS; 3. Geoserver and Geonetwork to share and discover spatial data on the web according to Open Geospatial Consortium; 4. new tools based on the Sextante GeoAlgorithm framework; 5. MODFLOW-2005 (Harbaugh, 2005) groundwater modeling code; 6. MODFLOW-LGR (Mehl and Hill 2005) for local grid refinement; 7. VSF (Thoms et al., 2006) for the variable saturated flow component; 8. new developed routines for overland flow; 9. new algorithms in Jython integrated in gvSIG to compute the net rainfall rate reaching the soil surface, as input for

  7. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model intercomparison with current land use

    Science.gov (United States)

    Breuer, L.; Huisman, J.A.; Willems, P.; Bormann, H.; Bronstert, A.; Croke, B.F.W.; Frede, H.-G.; Graff, T.; Hubrechts, L.; Jakeman, A.J.; Kite, G.; Lanini, J.; Leavesley, G.; Lettenmaier, D.P.; Lindstrom, G.; Seibert, J.; Sivapalan, M.; Viney, N.R.

    2009-01-01

    This paper introduces the project on 'Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM)' that aims at investigating the envelope of predictions on changes in hydrological fluxes due to land use change. As part of a series of four papers, this paper outlines the motivation and setup of LUCHEM, and presents a model intercomparison for the present-day simulation results. Such an intercomparison provides a valuable basis to investigate the effects of different model structures on model predictions and paves the ground for the analysis of the performance of multi-model ensembles and the reliability of the scenario predictions in companion papers. In this study, we applied a set of 10 lumped, semi-lumped and fully distributed hydrological models that have been previously used in land use change studies to the low mountainous Dill catchment, Germany. Substantial differences in model performance were observed with Nash-Sutcliffe efficiencies ranging from 0.53 to 0.92. Differences in model performance were attributed to (1) model input data, (2) model calibration and (3) the physical basis of the models. The models were applied with two sets of input data: an original and a homogenized data set. This homogenization of precipitation, temperature and leaf area index was performed to reduce the variation between the models. Homogenization improved the comparability of model simulations and resulted in a reduced average bias, although some variation in model data input remained. The effect of the physical differences between models on the long-term water balance was mainly attributed to differences in how models represent evapotranspiration. Semi-lumped and lumped conceptual models slightly outperformed the fully distributed and physically based models. This was attributed to the automatic model calibration typically used for this type of models. Overall, however, we conclude that there was no superior model if several measures of model

  8. Hydrology model evaluation at the Hanford Nuclear Waste Facility

    International Nuclear Information System (INIS)

    1977-04-01

    One and two-dimensional flow and contaminant transport computer models have been developed at Hanford to assess the rate and direction of contaminant movement from waste disposal sites. The primary objective of this work was to evaluate the potential improvement in accuracy that a three-dimensional model might offer over the simpler one and two-dimensional models. INTERA's hydrology contaminant transport model was used for this evaluation. Although this study was conceptual in nature, an attempt was made to relate it as closely as possible to Hanford conditions. Two-dimensional model runs were performed over the period of 1968 to 1973 using estimates of waste discharge flows, tritium concentrations, vertically averaged values of aquifer properties and boundary conditions. The well test interpretation runs confirmed the applicability of the areal hydraulic conductivity distribution. Velocity fields calculated by the two-dimensional and three-dimensional models and surface concentration profiles calculated by the two-dimensional and three-dimensional models show significant differences. Vertical concentration profiles calculated by a three-dimensional model show better qualitative agreement with the limited observed concentration profile data supplied by ARHCO

  9. Constraining the JULES land-surface model for different land-use types using citizen-science generated hydrological data

    Science.gov (United States)

    Chou, H. K.; Ochoa-Tocachi, B. F.; Buytaert, W.

    2017-12-01

    Community land surface models such as JULES are increasingly used for hydrological assessment because of their state-of-the-art representation of land-surface processes. However, a major weakness of JULES and other land surface models is the limited number of land surface parameterizations that is available. Therefore, this study explores the use of data from a network of catchments under homogeneous land-use to generate parameter "libraries" to extent the land surface parameterizations of JULES. The network (called iMHEA) is part of a grassroots initiative to characterise the hydrological response of different Andean ecosystems, and collects data on streamflow, precipitation, and several weather variables at a high temporal resolution. The tropical Andes are a useful case study because of the complexity of meteorological and geographical conditions combined with extremely heterogeneous land-use that result in a wide range of hydrological responses. We then calibrated JULES for each land-use represented in the iMHEA dataset. For the individual land-use types, the results show improved simulations of streamflow when using the calibrated parameters with respect to default values. In particular, the partitioning between surface and subsurface flows can be improved. But also, on a regional scale, hydrological modelling was greatly benefitted from constraining parameters using such distributed citizen-science generated streamflow data. This study demonstrates the modelling and prediction on regional hydrology by integrating citizen science and land surface model. In the context of hydrological study, the limitation of data scarcity could be solved indeed by using this framework. Improved predictions of such impacts could be leveraged by catchment managers to guide watershed interventions, to evaluate their effectiveness, and to minimize risks.

  10. Robust Hydrological Forecasting for High-resolution Distributed Models Using a Unified Data Assimilation Approach

    Science.gov (United States)

    Hernandez, F.; Liang, X.

    2017-12-01

    Reliable real-time hydrological forecasting, to predict important phenomena such as floods, is invaluable to the society. However, modern high-resolution distributed models have faced challenges when dealing with uncertainties that are caused by the large number of parameters and initial state estimations involved. Therefore, to rely on these high-resolution models for critical real-time forecast applications, considerable improvements on the parameter and initial state estimation techniques must be made. In this work we present a unified data assimilation algorithm called Optimized PareTo Inverse Modeling through Inverse STochastic Search (OPTIMISTS) to deal with the challenge of having robust flood forecasting for high-resolution distributed models. This new algorithm combines the advantages of particle filters and variational methods in a unique way to overcome their individual weaknesses. The analysis of candidate particles compares model results with observations in a flexible time frame, and a multi-objective approach is proposed which attempts to simultaneously minimize differences with the observations and departures from the background states by using both Bayesian sampling and non-convex evolutionary optimization. Moreover, the resulting Pareto front is given a probabilistic interpretation through kernel density estimation to create a non-Gaussian distribution of the states. OPTIMISTS was tested on a low-resolution distributed land surface model using VIC (Variable Infiltration Capacity) and on a high-resolution distributed hydrological model using the DHSVM (Distributed Hydrology Soil Vegetation Model). In the tests streamflow observations are assimilated. OPTIMISTS was also compared with a traditional particle filter and a variational method. Results show that our method can reliably produce adequate forecasts and that it is able to outperform those resulting from assimilating the observations using a particle filter or an evolutionary 4D variational

  11. Predictive Surface Complexation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sverjensky, Dimitri A. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Earth and Planetary Sciences

    2016-11-29

    Surface complexation plays an important role in the equilibria and kinetics of processes controlling the compositions of soilwaters and groundwaters, the fate of contaminants in groundwaters, and the subsurface storage of CO2 and nuclear waste. Over the last several decades, many dozens of individual experimental studies have addressed aspects of surface complexation that have contributed to an increased understanding of its role in natural systems. However, there has been no previous attempt to develop a model of surface complexation that can be used to link all the experimental studies in order to place them on a predictive basis. Overall, my research has successfully integrated the results of the work of many experimentalists published over several decades. For the first time in studies of the geochemistry of the mineral-water interface, a practical predictive capability for modeling has become available. The predictive correlations developed in my research now enable extrapolations of experimental studies to provide estimates of surface chemistry for systems not yet studied experimentally and for natural and anthropogenically perturbed systems.

  12. Is there a need for hydrological modelling in decision support systems for nuclear emergencies

    International Nuclear Information System (INIS)

    Raskob, W.; Heling, R.; Zheleznyak, M.

    2003-01-01

    Full text: Potential releases from nuclear installations may contaminate both the terrestrial and the aquatic environment. Significant dose contributions via the aquatic pathways were shown for releases from Oak Ridge Laboratory (on the Clinch River-Tennessee River basin), for releases from the 'Mayak' plant (on the Techa River - Ob River system) and finally for releases from Chernobyl (on the Dnieper River basin and on the Scandinavian lake system via atmospheric fallout). Of highest concern was the contamination of drinking water, as the public is very sensitive to the quality of this essential nutrient. Consumption of aquatic food products and contamination of terrestrial crops via irrigation are potential exposure pathways which have to be considered in addition in case of a contamination of the aquatic environment. National hydrological services were, among others, responsible for the surveillance of the national water ways. This includes also monitoring of radioactive substances on a routine basis. Besides taking measurements at various locations, models might be available to predict the water discharge and to some extend also the concentration of pollutants in some of the most important river systems. Therefore, one can argue that these services, as they are part of the emergency management team in case of a nuclear emergency, should be able to support decision making to the extend necessary. However, the advice from the hydrological services might be limited to the analysis of the present situation including only limited prediction capabilities mainly focusing on the behaviour of radionuclides in the main river systems in relation to the preduction of drinking water. Contrary to this, a complete hydrological model chain has been established in the RODOS system, covering all relevant processes from the runoff from contaminated areas, transport in river systems and reservoirs, behaviour of radionuclides in lakes and finally the modelling of coastal areas. To

  13. Coupled Monitoring and Inverse Modeling to Investigate Surface - Subsurface Hydrological and Thermal Dynamics in the Arctic Tundra

    Science.gov (United States)

    Tran, A. P.; Dafflon, B.; Hubbard, S. S.; Bisht, G.; Peterson, J.; Ulrich, C.; Romanovsky, V. E.; Kneafsey, T. J.; Wu, Y.

    2015-12-01

    Quantitative characterization of the soil surface-subsurface hydrological and thermal processes is essential as they are primary factors that control the biogeochemical processes, ecological landscapes and greenhouse gas fluxes. In the Artic region, the surface-subsurface hydrological and thermal regimes co-interact and are both largely influenced by soil texture and soil organic content. In this study, we present a coupled inversion scheme that jointly inverts hydrological, thermal and geophysical data to estimate the vertical profiles of clay, sand and organic contents. Within this inversion scheme, the Community Land Model (CLM4.5) serves as a forward model to simulate the land-surface energy balance and subsurface hydrological-thermal processes. Soil electrical conductivity (from electrical resistivity tomography), temperature and water content are linked together via petrophysical and geophysical models. Particularly, the inversion scheme accounts for the influences of the soil organic and mineral content on both of the hydrological-thermal dynamics and the petrophysical relationship. We applied the inversion scheme to the Next Generation Ecosystem Experiments (NGEE) intensive site in Barrow, AK, which is characterized by polygonal-shaped arctic tundra. The monitoring system autonomously provides a suite of above-ground measurements (e.g., precipitation, air temperature, wind speed, short-long wave radiation, canopy greenness and eddy covariance) as well as below-ground measurements (soil moisture, soil temperature, thaw layer thickness, snow thickness and soil electrical conductivity), which complement other periodic, manually collected measurements. The preliminary results indicate that the model can well reproduce the spatiotemporal dynamics of the soil temperature, and therefore, accurately predict the active layer thickness. The hydrological and thermal dynamics are closely linked to the polygon types and polygon features. The results also enable the

  14. On the deterministic and stochastic use of hydrologic models

    Science.gov (United States)

    Farmer, William H.; Vogel, Richard M.

    2016-01-01

    Environmental simulation models, such as precipitation-runoff watershed models, are increasingly used in a deterministic manner for environmental and water resources design, planning, and management. In operational hydrology, simulated responses are now routinely used to plan, design, and manage a very wide class of water resource systems. However, all such models are calibrated to existing data sets and retain some residual error. This residual, typically unknown in practice, is often ignored, implicitly trusting simulated responses as if they are deterministic quantities. In general, ignoring the residuals will result in simulated responses with distributional properties that do not mimic those of the observed responses. This discrepancy has major implications for the operational use of environmental simulation models as is shown here. Both a simple linear model and a distributed-parameter precipitation-runoff model are used to document the expected bias in the distributional properties of simulated responses when the residuals are ignored. The systematic reintroduction of residuals into simulated responses in a manner that produces stochastic output is shown to improve the distributional properties of the simulated responses. Every effort should be made to understand the distributional behavior of simulation residuals and to use environmental simulation models in a stochastic manner.

  15. Coupling of Processes and Data in PennState Integrated Hydrologic Modeling (PIHM) System

    Science.gov (United States)

    Kumar, M.; Duffy, C.

    2007-12-01

    Full physical coupling, "natural" numerical coupling and parsimonious but accurate data coupling is needed to comprehensively and accurately capture the interaction between different components of a hydrologic continuum. Here we present a physically based, spatially distributed hydrologic model that incorporates all the three coupling strategies. Physical coupling of interception, snow melt, transpiration, overland flow, subsurface flow, river flow, macropore based infiltration and stormflow, flow through and over hydraulic structures likes weirs and dams, and evaporation from interception, ground and overland flow is performed. All the physically coupled components are numerically coupled through semi-discrete form of ordinary differential equations, that define each hydrologic process, using Finite-Volume based approach. The fully implicit solution methodology using CVODE solver solves for all the state variables simultaneously at each adaptive time steps thus providing robustness, stability and accuracy. The accurate data coupling is aided by use of constrained unstructured meshes, flexible data model and use of PIHMgis. The spatial adaptivity of decomposed domain and temporal adaptivity of the numerical solver facilitates capture of varied spatio-temporal scales that are inherent in hydrologic process interactions. The implementation of the model has been performed on a meso-scale Little-Juniata Watershed. Model results are validated by comparison of streamflow at multiple locations. We discuss some of the interesting hydrologic interactions between surface, subsurface and atmosphere witnessed during the year long simulation such as a) inverse relationship between evaporation from interception storage and transpiration b) relative influence of forcing (precipitation, temperature and radiation) and source (soil moisture and overland flow) on evaporation c) influence of local topography on gaining, loosing or "flow-through" behavior of river-aquifer interactions

  16. Stress testing hydrologic models using bottom-up climate change assessment

    Science.gov (United States)

    Stephens, C.; Johnson, F.; Marshall, L. A.

    2017-12-01

    Bottom-up climate change assessment is a promising approach for understanding the vulnerability of a system to potential future changes. The technique has been utilised successfully in risk-based assessments of future flood severity and infrastructure vulnerability. We find that it is also an ideal tool for assessing hydrologic model performance in a changing climate. In this study, we applied bottom-up climate change to compare the performance of two different hydrologic models (an event-based and a continuous model) under increasingly severe climate change scenarios. This allowed us to diagnose likely sources of future prediction error in the two models. The climate change scenarios were based on projections for southern Australia, which indicate drier average conditions with increased extreme rainfall intensities. We found that the key weakness in using the event-based model to simulate drier future scenarios was the model's inability to dynamically account for changing antecedent conditions. This led to increased variability in model performance relative to the continuous model, which automatically accounts for the wetness of a catchment through dynamic simulation of water storages. When considering more intense future rainfall events, representation of antecedent conditions became less important than assumptions around (non)linearity in catchment response. The linear continuous model we applied may underestimate flood risk in a future climate with greater extreme rainfall intensity. In contrast with the recommendations of previous studies, this indicates that continuous simulation is not necessarily the key to robust flood modelling under climate change. By applying bottom-up climate change assessment, we were able to understand systematic changes in relative model performance under changing conditions and deduce likely sources of prediction error in the two models.

  17. Hunting Solomonoff's Swans: Exploring the Boundary Between Physics and Statistics in Hydrological Modeling

    Science.gov (United States)

    Nearing, G. S.

    2014-12-01

    Statistical models consistently out-perform conceptual models in the short term, however to account for a nonstationary future (or an unobserved past) scientists prefer to base predictions on unchanging and commutable properties of the universe - i.e., physics. The problem with physically-based hydrology models is, of course, that they aren't really based on physics - they are based on statistical approximations of physical interactions, and we almost uniformly lack an understanding of the entropy associated with these approximations. Thermodynamics is successful precisely because entropy statistics are computable for homogeneous (well-mixed) systems, and ergodic arguments explain the success of Newton's laws to describe systems that are fundamentally quantum in nature. Unfortunately, similar arguments do not hold for systems like watersheds that are heterogeneous at a wide range of scales. Ray Solomonoff formalized the situation in 1968 by showing that given infinite evidence, simultaneously minimizing model complexity and entropy in predictions always leads to the best possible model. The open question in hydrology is about what happens when we don't have infinite evidence - for example, when the future will not look like the past, or when one watershed does not behave like another. How do we isolate stationary and commutable components of watershed behavior? I propose that one possible answer to this dilemma lies in a formal combination of physics and statistics. In this talk I outline my recent analogue (Solomonoff's theorem was digital) of Solomonoff's idea that allows us to quantify the complexity/entropy tradeoff in a way that is intuitive to physical scientists. I show how to formally combine "physical" and statistical methods for model development in a way that allows us to derive the theoretically best possible model given any given physics approximation(s) and available observations. Finally, I apply an analogue of Solomonoff's theorem to evaluate the

  18. A "total parameter estimation" method in the varification of distributed hydrological models

    Science.gov (United States)

    Wang, M.; Qin, D.; Wang, H.

    2011-12-01

    Conventionally hydrological models are used for runoff or flood forecasting, hence the determination of model parameters are common estimated based on discharge measurements at the catchment outlets. With the advancement in hydrological sciences and computer technology, distributed hydrological models based on the physical mechanism such as SWAT, MIKESHE, and WEP, have gradually become the mainstream models in hydrology sciences. However, the assessments of distributed hydrological models and model parameter determination still rely on runoff and occasionally, groundwater level measurements. It is essential in many countries, including China, to understand the local and regional water cycle: not only do we need to simulate the runoff generation process and for flood forecasting in wet areas, we also need to grasp the water cycle pathways and consumption process of transformation in arid and semi-arid regions for the conservation and integrated water resources management. As distributed hydrological model can simulate physical processes within a catchment, we can get a more realistic representation of the actual water cycle within the simulation model. Runoff is the combined result of various hydrological processes, using runoff for parameter estimation alone is inherits problematic and difficult to assess the accuracy. In particular, in the arid areas, such as the Haihe River Basin in China, runoff accounted for only 17% of the rainfall, and very concentrated during the rainy season from June to August each year. During other months, many of the perennial rivers within the river basin dry up. Thus using single runoff simulation does not fully utilize the distributed hydrological model in arid and semi-arid regions. This paper proposed a "total parameter estimation" method to verify the distributed hydrological models within various water cycle processes, including runoff, evapotranspiration, groundwater, and soil water; and apply it to the Haihe river basin in

  19. Modeling the effect of urban infrastructure on hydrologic processes within i-Tree Hydro, a statistically and spatially distributed model

    Science.gov (United States)

    Taggart, T. P.; Endreny, T. A.; Nowak, D.

    2014-12-01

    Gray and green infrastructure in urban environments alters many natural hydrologic processes, creating an urban water balance unique to the developed environment. A common way to assess the consequences of impervious cover and grey infrastructure is by measuring runoff hydrographs. This focus on the watershed outlet masks the spatial variation of hydrologic process alterations across the urban environment in response to localized landscape characteristics. We attempt to represent this spatial variation in the urban environment using the statistically and spatially distributed i-Tree Hydro model, a scoping level urban forest effects water balance model. i-Tree Hydro has undergone expansion and modification to include the effect of green infrastructure processes, road network attributes, and urban pipe system leakages. These additions to the model are intended to increase the understanding of the altered urban hydrologic cycle by examining the effects of the location of these structures on the water balance. Specifically, the effect of these additional structures and functions on the spatially varying properties of interception, soil moisture and runoff generation. Differences in predicted properties and optimized parameter sets between the two models are examined and related to the recent landscape modifications. Datasets used in this study consist of watersheds and sewersheds within the Syracuse, NY metropolitan area, an urban area that has integrated green and gray infrastructure practices to alleviate stormwater problems.

  20. Repurposing of open data through large scale hydrological modelling - hypeweb.smhi.se

    Science.gov (United States)

    Strömbäck, Lena; Andersson, Jafet; Donnelly, Chantal; Gustafsson, David; Isberg, Kristina; Pechlivanidis, Ilias; Strömqvist, Johan; Arheimer, Berit

    2015-04-01

    Hydrological modelling demands large amounts of spatial data, such as soil properties, land use, topography, lakes and reservoirs, ice and snow coverage, water management (e.g. irrigation patterns and regulations), meteorological data and observed water discharge in rivers. By using such data, the hydrological model will in turn provide new data that can be used for new purposes (i.e. re-purposing). This presentation will give an example of how readily available open data from public portals have been re-purposed by using the Hydrological Predictions for the Environment (HYPE) model in a number of large-scale model applications covering numerous subbasins and rivers. HYPE is a dynamic, semi-distributed, process-based, and integrated catchment model. The model output is launched as new Open Data at the web site www.hypeweb.smhi.se to be used for (i) Climate change impact assessments on water resources and dynamics; (ii) The European Water Framework Directive (WFD) for characterization and development of measure programs to improve the ecological status of water bodies; (iii) Design variables for infrastructure constructions; (iv) Spatial water-resource mapping; (v) Operational forecasts (1-10 days and seasonal) on floods and droughts; (vi) Input to oceanographic models for operational forecasts and marine status assessments; (vii) Research. The following regional domains have been modelled so far with different resolutions (number of subbasins within brackets): Sweden (37 000), Europe (35 000), Arctic basin (30 000), La Plata River (6 000), Niger River (800), Middle-East North-Africa (31 000), and the Indian subcontinent (6 000). The Hype web site provides several interactive web applications for exploring results from the models. The user can explore an overview of various water variables for historical and future conditions. Moreover the user can explore and download historical time series of discharge for each basin and explore the performance of the model

  1. Distributed Hydrologic Modeling of Semiarid Basins in Arizona: A Platform for Land Cover and Climate Change Assessments

    Science.gov (United States)

    Hawkins, G. A.; Vivoni, E. R.

    2011-12-01

    Watershed management is challenged by rising concerns over climate change and its potential to interact with land cover alterations to impact regional water supplies and hydrologic processes. The inability to conduct experimental manipulations that address climate and land cover change at watershed scales limits the capacity of water managers to make decisions to protect future supplies. As a result, spatially-explicit, physically-based models possess value for predicting the possible consequences on watershed hydrology. In this study, we apply a distributed watershed model, the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS), to the Beaver Creek basin in Arizona. This sub-basin of the Verde River is representative of the regional topography, land cover, soils distribution and availability of hydrologic data in forested regions of northern Arizona. As such, it can serve as a demonstration study in the broader region to illustrate the utility of distributed models for change assessment studies. Through a model application to summertime conditions, we compare the hydrologic response from three sources of meteorological input: (1) an available network of ground-based stations, (2) weather radar rainfall estimates, and (3) the North American Land Data Assimilation System (NLDAS). Comparisons focus on analysis of spatiotemporal distributions of precipitation, soil moisture, runoff generation, evapotranspiration and recharge from the root zone at high resolution for an assessment of sustainable water supplies for agricultural and domestic purposes. We also present a preliminary analysis of the impact of vegetation change arising from historical treatments in the Beaver Creek to inform the hydrologic consequences in the form of soil moisture and evapotranspiration patterns with differing degrees of proposed forest thinning. Our results are discussed in the context of improved hydrologic predictions for sustainability and decision

  2. Developing an Online Framework for Publication of Uncertainty Information in Hydrological Modeling

    Science.gov (United States)

    Etienne, E.; Piasecki, M.

    2012-12-01

    Inaccuracies in data collection and parameters estimation, and imperfection of models structures imply uncertain predictions of the hydrological models. Finding a way to communicate the uncertainty information in a model output is important in decision-making. This work aims to publish uncertainty information (computed by project partner at Penn State) associated with hydrological predictions on catchments. To this end we have developed a DB schema (derived from the CUAHSI ODM design) which is focused on storing uncertainty information and its associated metadata. The technologies used to build the system are: OGC's Sensor Observation Service (SOS) for publication, the uncertML markup language (also developed by the OGC) to describe uncertainty information, and use of the Interoperability and Automated Mapping (INTAMAP) Web Processing Service (WPS) that handles part of the statistics computations. We develop a service to provide users with the capability to exploit all the functionality of the system (based on DRUPAL). Users will be able to request and visualize uncertainty data, and also publish their data in the system.

  3. Evaluating and improving the representation of heteroscedastic errors in hydrological models

    Science.gov (United States)

    McInerney, D. J.; Thyer, M. A.; Kavetski, D.; Kuczera, G. A.

    2013-12-01

    Appropriate representation of residual errors in hydrological modelling is essential for accurate and reliable probabilistic predictions. In particular, residual errors of hydrological models are often heteroscedastic, with large errors associated with high rainfall and runoff events. Recent studies have shown that using a weighted least squares (WLS) approach - where the magnitude of residuals are assumed to be linearly proportional to the magnitude of the flow - captures some of this heteroscedasticity. In this study we explore a range of Bayesian approaches for improving the representation of heteroscedasticity in residual errors. We compare several improved formulations of the WLS approach, the well-known Box-Cox transformation and the more recent log-sinh transformation. Our results confirm that these approaches are able to stabilize the residual error variance, and that it is possible to improve the representation of heteroscedasticity compared with the linear WLS approach. We also find generally good performance of the Box-Cox and log-sinh transformations, although as indicated in earlier publications, the Box-Cox transform sometimes produces unrealistically large prediction limits. Our work explores the trade-offs between these different uncertainty characterization approaches, investigates how their performance varies across diverse catchments and models, and recommends practical approaches suitable for large-scale applications.

  4. Advancing the Implementation of Hydrologic Models as Web-based Applications

    Science.gov (United States)

    Dahal, P.; Tarboton, D. G.; Castronova, A. M.

    2017-12-01

    Advanced computer simulations are required to understand hydrologic phenomenon such as rainfall-runoff response, groundwater hydrology, snow hydrology, etc. Building a hydrologic model instance to simulate a watershed requires investment in data (diverse geospatial datasets such as terrain, soil) and computer resources, typically demands a wide skill set from the analyst, and the workflow involved is often difficult to reproduce. This work introduces a web-based prototype infrastructure in the form of a web application that provides researchers with easy to use access to complete hydrological modeling functionality. This includes creating the necessary geospatial and forcing data, preparing input files for a model by applying complex data preprocessing, running the model for a user defined watershed, and saving the results to a web repository. The open source Tethys Platform was used to develop the web app front-end Graphical User Interface (GUI). We used HydroDS, a webservice that provides data preparation processing capability to support backend computations used by the app. Results are saved in HydroShare, a hydrologic information system that supports the sharing of hydrologic data, model and analysis tools. The TOPographic Kinematic APproximation and Integration (TOPKAPI) model served as the example for which we developed a complete hydrologic modeling service to demonstrate the approach. The final product is a complete modeling system accessible through the web to create input files, and run the TOPKAPI hydrologic model for a watershed of interest. We are investigating similar functionality for the preparation of input to Regional Hydro-Ecological Simulation System (RHESSys). Key Words: hydrologic modeling, web services, hydrologic information system, HydroShare, HydroDS, Tethys Platform

  5. Investigation of the transferability of hydrological models and a method to improve model calibration

    Directory of Open Access Journals (Sweden)

    G. Hartmann

    2005-01-01

    Full Text Available In order to find a model parameterization such that the hydrological model performs well even under different conditions, appropriate model performance measures have to be determined. A common performance measure is the Nash Sutcliffe efficiency. Usually it is calculated comparing observed and modelled daily values. In this paper a modified version is suggested in order to calibrate a model on different time scales simultaneously (days up to years. A spatially distributed hydrological model based on HBV concept was used. The modelling was applied on the Upper Neckar catchment, a mesoscale river in south western Germany with a basin size of about 4000 km2. The observation period 1961-1990 was divided into four different climatic periods, referred to as "warm", "cold", "wet" and "dry". These sub periods were used to assess the transferability of the model calibration and of the measure of performance. In a first step, the hydrological model was calibrated on a certain period and afterwards applied on the same period. Then, a validation was performed on the climatologically opposite period than the calibration, e.g. the model calibrated on the cold period was applied on the warm period. Optimal parameter sets were identified by an automatic calibration procedure based on Simulated Annealing. The results show, that calibrating a hydrological model that is supposed to handle short as well as long term signals becomes an important task. Especially the objective function has to be chosen very carefully.

  6. Improved Regional Climate Model Simulation of Precipitation by a Dynamical Coupling to a Hydrology Model

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Drews, Martin; Hesselbjerg Christensen, Jens

    convective precipitation systems. As a result climate model simulations let alone future projections of precipitation often exhibit substantial biases. Here we show that the dynamical coupling of a regional climate model to a detailed fully distributed hydrological model - including groundwater-, overland...... of local precipitation dynamics are seen for time scales of app. Seasonal duration and longer. We show that these results can be attributed to a more complete treatment of land surface feedbacks. The local scale effect on the atmosphere suggests that coupled high-resolution climate-hydrology models...... including a detailed 3D redistribution of sub- and land surface water have a significant potential for improving climate projections even diminishing the need for bias correction in climate-hydrology studies....

  7. Land surface modelling in hydrology and meteorology – lessons learned from the Baltic Basin

    Directory of Open Access Journals (Sweden)

    L. P. Graham

    2000-01-01

    Full Text Available By both tradition and purpose, the land parameterization schemes of hydrological and meteorological models differ greatly. Meteorologists are concerned primarily with solving the energy balance, whereas hydrologists are most interested in the water balance. Meteorological climate models typically have multi-layered soil parameterisation that solves temperature fluxes numerically with diffusive equations. The same approach is carried over to a similar treatment of water transport. Hydrological models are not usually so interested in soil temperatures, but must provide a reasonable representation of soil moisture to get runoff right. To treat the heterogeneity of the soil, many hydrological models use only one layer with a statistical representation of soil variability. Such a hydrological model can be used on large scales while taking subgrid variability into account. Hydrological models also include lateral transport of water – an imperative if' river discharge is to be estimated. The concept of a complexity chain for coupled modelling systems is introduced, together with considerations for mixing model components. Under BALTEX (Baltic Sea Experiment and SWECLIM (Swedish Regional Climate Modelling Programme, a large-scale hydrological model of runoff in the Baltic Basin is used to review atmospheric climate model simulations. This incorporates both the runoff record and hydrological modelling experience into atmospheric model development. Results from two models are shown. A conclusion is that the key to improved models may be less complexity. Perhaps the meteorological models should keep their multi-layered approach for modelling soil temperature, but add a simpler, yet physically consistent, hydrological approach for modelling snow processes and water transport in the soil. Keywords: land surface modelling; hydrological modelling; atmospheric climate models; subgrid variability; Baltic Basin

  8. A fractional factorial probabilistic collocation method for uncertainty propagation of hydrologic model parameters in a reduced dimensional space

    Science.gov (United States)

    Wang, S.; Huang, G. H.; Huang, W.; Fan, Y. R.; Li, Z.

    2015-10-01

    In this study, a fractional factorial probabilistic collocation method is proposed to reveal statistical significance of hydrologic model parameters and their multi-level interactions affecting model outputs, facilitating uncertainty propagation in a reduced dimensional space. The proposed methodology is applied to the Xiangxi River watershed in China to demonstrate its validity and applicability, as well as its capability of revealing complex and dynamic parameter interactions. A set of reduced polynomial chaos expansions (PCEs) only with statistically significant terms can be obtained based on the results of factorial analysis of variance (ANOVA)