Sample records for hydrological systems evidence

  1. Stochastic Modelling of Hydrologic Systems

    DEFF Research Database (Denmark)

    Jonsdottir, Harpa


    In this PhD project several stochastic modelling methods are studied and applied on various subjects in hydrology. The research was prepared at Informatics and Mathematical Modelling at the Technical University of Denmark. The thesis is divided into two parts. The first part contains an introduct......In this PhD project several stochastic modelling methods are studied and applied on various subjects in hydrology. The research was prepared at Informatics and Mathematical Modelling at the Technical University of Denmark. The thesis is divided into two parts. The first part contains...... an introduction and an overview of the papers published. Then an introduction to basic concepts in hydrology along with a description of hydrological data is given. Finally an introduction to stochastic modelling is given. The second part contains the research papers. In the research papers the stochastic methods...... are described, as at the time of publication these methods represent new contribution to hydrology. The second part also contains additional description of software used and a brief introduction to stiff systems. The system in one of the papers is stiff....

  2. CUAHSI Hydrologic Information System and its role in hydrologic observatories (United States)

    Maidment, D.; Helly, J. J.; Graham, W.; Kruger, A.; Kumar, P.; Lakshmi, V.; Lettenmaier, D.; Zheng, C.; Lall, U.; Piasecki, M.; Duffy, C.


    The Hydrologic Information System component of CUAHSI focuses on building a hydrologic information system to support the advancement of hydrologic science. This system is intended to help with rapidly acquiring diverse geospatial and temporal hydrologic datasets, integrating them into a hydrologic data model or framework describing a region, and supporting analysis, modeling and visualization of the movement of water and the transport of constituents through that region. In addition, the system will feature interfaces for advanced technologies like knowledge discovery in databases (KDD) and also provide a comprehensive metadata description including a hydrologic ontology (HOW) for integration with the Semantic Web. The prototype region is the Neuse river basin in North Carolina. A "digital watershed" is to be built for this basin to help formulate and test the hydrologic data model at a range of spatial scales, from the scale of the whole basin down to the scale of individual experimental sites. This data model will be further developed and refined as additional hydrologic observatories are selected by CUAHSI. This will result in a consistent means for the characterization and comparison of processes in different geographic regions of the nation using a common data framework. The HIS will also provide a generalized digital library capability to manage collections of thematically-organized data from primary sources as well as derived analytical results in the form of data publications. The HIS will be designed from the beginning as an open federation of observatory-based collections that are interoperable with other data and digital library systems. The CUAHSI Hydrologic Information System project involves collaboration among several CUAHSI member institutions, with the San Diego Supercomputer Center serving as the technology partner to facilitate the development of a prototype system.

  3. Hydrological modelling in forested systems (United States)

    This chapter provides a brief overview of forest hydrology modelling approaches for answering important global research and management questions. Many hundreds of hydrological models have been applied globally across multiple decades to represent and predict forest hydrological p...

  4. Hydrological modeling in forested systems (United States)

    H.E. Golden; G.R. Evenson; S. Tian; Devendra Amatya; Ge Sun


    Characterizing and quantifying interactions among components of the forest hydrological cycle is complex and usually requires a combination of field monitoring and modelling approaches (Weiler and McDonnell, 2004; National Research Council, 2008). Models are important tools for testing hypotheses, understanding hydrological processes and synthesizing experimental data...

  5. Sharing Hydrologic Data with the CUAHSI Hydrologic Information System (Invited) (United States)

    Tarboton, D. G.; Maidment, D. R.; Zaslavsky, I.; Horsburgh, J. S.; Whiteaker, T.; Piasecki, M.; Goodall, J. L.; Valentine, D. W.; Whitenack, T.


    The CUAHSI Hydrologic Information System (HIS) is an internet based system to support the sharing of hydrologic data consisting of databases connected using the internet through web services as well as software for data discovery, access and publication. The HIS is founded upon an information model for observations at stationary points that supports its data services. A data model, the CUAHSI Observations Data Model (ODM), provides community defined semantics needed to allow sharing information from diverse data sources. A defined set of CUAHSI HIS web services allows for the development of data services, which scale from centralized data services which support access to National Datasets such as the USGS National Water Information System (NWIS) and EPA Storage and Retrieval System (STORET), in a standard way; to distributed data services which allow users to establish their own server and publish their data. User data services are registered to a central HIS website, and they become searchable and accessible through the centralized discovery and data access tools. HIS utilizes both an XML and relational database schema for transmission and storage of data respectively. WaterML is the XML schema used for data transmission that underlies the machine to machine communications, while the ODM is implemented as relational database model for persistent data storage. Web services support access to hydrologic data stored in ODM and communicate using WaterML directly from applications software such as Excel, MATLAB and ArcGIS that have Simple Object Access Protocol (SOAP) capability. A significant value of web services derives from the capability to use them from within a user’s preferred analysis environment, using community defined semantics, rather than requiring a user to learn new software. This allows a user to work with data from national and academic sources, almost as though it was on their local disk. Users wishing to share or publish their data through CUAHSI

  6. Hydrologic and Water Quality System (HAWQS) (United States)

    The Hydrologic and Water Quality System (HAWQS) is a web-based interactive water quantity and quality modeling system that employs as its core modeling engine the Soil and Water Assessment Tool (SWAT), an internationally-recognized public domain model. HAWQS provides users with i...

  7. Visualizing complex (hydrological) systems with correlation matrices (United States)

    Haas, J. C.


    When trying to understand or visualize the connections of different aspects of a complex system, this often requires deeper understanding to start with, or - in the case of geo data - complicated GIS software. To our knowledge, correlation matrices have rarely been used in hydrology (e.g. Stoll et al., 2011; van Loon and Laaha, 2015), yet they do provide an interesting option for data visualization and analysis. We present a simple, python based way - using a river catchment as an example - to visualize correlations and similarities in an easy and colorful way. We apply existing and easy to use python packages from various disciplines not necessarily linked to the Earth sciences and can thus quickly show how different aquifers work or react, and identify outliers, enabling this system to also be used for quality control of large datasets. Going beyond earlier work, we add a temporal and spatial element, enabling us to visualize how a system reacts to local phenomena such as for example a river, or changes over time, by visualizing the passing of time in an animated movie. References: van Loon, A.F., Laaha, G.: Hydrological drought severity explained by climate and catchment characteristics, Journal of Hydrology 526, 3-14, 2015, Drought processes, modeling, and mitigation Stoll, S., Hendricks Franssen, H. J., Barthel, R., Kinzelbach, W.: What can we learn from long-term groundwater data to improve climate change impact studies?, Hydrology and Earth System Sciences 15(12), 3861-3875, 2011

  8. Grey Box Modelling of Hydrological Systems

    DEFF Research Database (Denmark)

    Thordarson, Fannar Ørn

    The main topic of the thesis is grey box modelling of hydrologic systems, as well as formulation and assessment of their embedded uncertainties. Grey box model is a combination of a white box model, a physically-based model that is traditionally formulated using deterministic ordinary differential...... represent a stochastic state space model. In the grey box model the total noise is divided into a measurement noise and a process noise. The process noise is due to model approximations, undiscovered input and uncertainties in the input series. Estimates of the process noise can be used to highlight...... in the model, or formulation of process noise can be considered so that it meets the physical limits of the hydrological system and give an adequate description of the embedded uncertainty in model structure. The thesis consists of two parts: a summary report and a part which contains six scientific papers...

  9. An integrated crop and hydrologic modeling system to estimate hydrologic impacts of crop irrigation demands (United States)

    R.T. McNider; C. Handyside; K. Doty; W.L. Ellenburg; J.F. Cruise; J.R. Christy; D. Moss; V. Sharda; G. Hoogenboom; Peter Caldwell


    The present paper discusses a coupled gridded crop modeling and hydrologic modeling system that can examine the benefits of irrigation and costs of irrigation and the coincident impact of the irrigation water withdrawals on surface water hydrology. The system is applied to the Southeastern U.S. The system tools to be discussed include a gridded version (GriDSSAT) of...

  10. Hydrological modelling in forested systems | Science ... (United States)

    This chapter provides a brief overview of forest hydrology modelling approaches for answering important global research and management questions. Many hundreds of hydrological models have been applied globally across multiple decades to represent and predict forest hydrological processes. The focus of this chapter is on process-based models and approaches, specifically 'forest hydrology models'; that is, physically based simulation tools that quantify compartments of the forest hydrological cycle. Physically based models can be considered those that describe the conservation of mass, momentum and/or energy. The purpose of this chapter is to provide a brief overview of forest hydrology modeling approaches for answering important global research and management questions. The focus of this chapter is on process-based models and approaches, specifically “forest hydrology models”, i.e., physically-based simulation tools that quantify compartments of the forest hydrological cycle.

  11. Hydrological Monitoring System Design and Implementation Based on IOT (United States)

    Han, Kun; Zhang, Dacheng; Bo, Jingyi; Zhang, Zhiguang

    In this article, an embedded system development platform based on GSM communication is proposed. Through its application in hydrology monitoring management, the author makes discussion about communication reliability and lightning protection, suggests detail solutions, and also analyzes design and realization of upper computer software. Finally, communication program is given. Hydrology monitoring system from wireless communication network is a typical practical application of embedded system, which has realized intelligence, modernization, high-efficiency and networking of hydrology monitoring management.

  12. China's dimming and brightening: evidence, causes and hydrological implications

    Directory of Open Access Journals (Sweden)

    Y. W. Wang


    Full Text Available There is growing evidence that, corresponding to global dimming and brightening, surface solar radiation and sunshine hours over China have undergone decadal fluctuations during the 1960s–2000s. The results of a number of these analyses are, however, very different. In this study, we synthesize reliable results and conclusively address recent advances and insufficiencies in studies on dimming and brightening in China. A temporally and spatially prevalent dimming trend is noted in surface solar radiation, direct solar radiation and sunshine hours since the 1960s. Meanwhile, the changing trend in diffuse solar radiation is less pronounced. Increasing anthropogenic aerosol loading is regarded as the most plausible explanation for China's dimming. The brightening trend since 1990, which mainly occurs in southeastern China and in the spring season, is weak and insignificant. The reverse in the solar radiation trend is associated with climate change by cloud suppression and slowdown in anthropogenic emissions. The future solar radiation trend in China could largely depend on the development of air quality control. Other potential driving factors such as wind speed, water vapor and surface albedo are also non-negligible in specific regions of China. Hydrological implications of dimming and brightening in China lack systematic investigation. However, the fact that solar radiation and pan evaporation trends in China track a similar curve in 1990 further suggests that the pan evaporation paradox could be partly resolved by changes in solar radiation.

  13. Hydrologi

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    Hydro1ogi er den videnskab, der omhand1er jordens vand, dets forekomst, cirku1ation og forde1ing, dets kemiske og fysiske egenskaber samt indvirkning på omgivelserne, herunder dets relation ti1 alt liv på jorden. Således lyder en b1andt mange definitioner på begrebet hydrologi, og som man kan se...

  14. Hydrological Forecasting in Mexico: Extending the University of Washington West-wide Seasonal Hydrologic Forecast System (United States)

    Munoz-Arriola, F.; Thomas, G.; Wood, A.; Wagner-Gomez, A.; Lobato-Sanchez, R.; Lettenmaier, D. P.


    Hydrologic forecasting in areas constrained by the availability of hydrometeorological records is a notable challenge in water resource management. Techniques from the University of Washington West-wide Seasonal Hydrologic Forecast system for generating daily nowcasts in areas with sparse and time-varying station coverage have been extended from the western U.S. into Mexico. The primary forecasting approaches consist of ensembles based on the NWS ensemble streamflow prediction method (ESP; essentially resampling of climatology) and on NCEP Coupled Forecast System (CFS) outputs. These in turn are used to force the Variable Infiltration Capacity (VIC) macroscale hydrology model to produce streamflow ensembles. The initial hydrologic state utilized in the seasonal forecasting is generated by VIC using daily real-time hydrologic nowcasts, produced using forcings derived via an 'index-station percentile' approach from meteorological station data accessed in real time from Servicio Meteorológico Nacional (SMN). One-year lead time streamflow forecasts at monthly time step are produced at a set of major river locations in Mexico. As a case study, the streamflow forecasts, along with forecasts of reservoir evaporation, are used as input to the Simulation-Optimization (SIMOP) model of the Rio Yaqui system, one of the major agricultural production centers of Mexico. This is the first step in an eventual planned water management implementation over all of Mexico.

  15. Modeling the Hydrologic Processes of a Permeable Pavement System (United States)

    A permeable pavement system can capture stormwater to reduce runoff volume and flow rate, improve onsite groundwater recharge, and enhance pollutant controls within the site. A new unit process model for evaluating the hydrologic performance of a permeable pavement system has be...

  16. Integrating hydrology within a fully coupled environmental prediction system (United States)

    Best, Martin; Lewis, Huw; Ashton, Heather; Blyth, Eleanor; Martinez, Alberto


    Historically the hydrological community and the community developing the land surface component of atmospheric models have both been tasked with representing the terrestrial hydrological cycle, but have focused on different ends, namely streamflow and evaporation respectively. To date the lack of computational resources and representative observations have limited the integration of the skills within these two communities. However, this is no longer the case. In addition, the drive toward fully integrated high resolution environmental prediction systems, coupling atmosphere, land and ocean on regional domains, requires an accurate representation for all aspects of terrestrial hydrology. Hence a new focus is emerging to integrate improved hydrological processes within the land surface components of atmospheric models. The UK Environmental Prediction (UKEP) project is a research experiment aimed at understanding the potential benefits for detailed environmental forecasting from a fully coupled atmosphere/land/ocean system at km-scale resolution for the UK. The prototype model utilises the Joint UK Land Environment Simulator (JULES) as its land surface component, coupled to the RFM river flow model. Although JULES has been previously used for climate studies that close the global water cycle, the JULES/RFM system has not been comprehensively evaluated for its ability to simulate river discharge. In this study we attempt some initial evaluation of the JULES/RFM system for all aspects of the terrestrial hydrological cycle, including evaporation, soil moisture and streamflow. In addition, comparisons are made between the results from the fully coupled environmental prediction system and stand alone JULES/RFM simulations forced by atmospheric driving data from the UK weather forecasting model. This provides an opportunity to assess the impact of fully coupled versus a one way coupled response for terrestrial hydrology. Finally we consider the potential for coupling JULES

  17. A Community Publication and Dissemination System for Hydrology Education Materials (United States)

    Ruddell, B. L.


    Hosted by CUAHSI and the Science Education Resource Center (SERC), federated by the National Science Digital Library (NSDL), and allied with the Water Data Center (WDC), Hydrologic Information System (HIS), and HydroShare projects, a simple cyberinfrastructure has been launched for the publication and dissemination of data and model driven university hydrology education materials. This lightweight system's metadata describes learning content as a data-driven module with defined data inputs and outputs. This structure allows a user to mix and match modules to create sequences of content that teach both hydrology and computer learning outcomes. Importantly, this modular infrastructure allows an instructor to substitute a module based on updated computer methods for one based on outdated computer methods, hopefully solving the problem of rapid obsolescence that has hampered previous community efforts. The prototype system is now available from CUAHSI and SERC, with some example content. The system is designed to catalog, link to, make visible, and make accessible the existing and future contributions of the community; this system does not create content. Submissions from hydrology educators are eagerly solicited, especially for existing content.

  18. Improvements of Physically-Based Hydrological Modelling using the ACRU Agro-Hydrological Modelling System (United States)

    Bonifacio, C. M. T.; Kienzle, S. W.; Xu, W.; Zhang, J.


    The uncertainty of future water availability due to climate change in the Upper Oldman River Basin in Alberta, Canada, and downstream users is considered in this study. A changing climate can significantly perturb hydrological response within a region, thereby affecting the available water resources within southern Alberta. The ACRU agro-hydrological modelling system is applied to simulate historical (1950-2010) and future (2041-2070) streamflows and volumes of a major irrigation reservoir. Like many highly complex, process-based distributed models, major limitations include the data availability and data quality at finer spatial resolutions. With the use of a scripting language, certain limitations can be greatly reduced. Three phases of the project will be emphasized. First, the assimilation of solar radiation, relative humidity, sunshine hours and wind speed daily data into the Canadian 10KM daily climate data that contains daily precipitation, maximum and minimum temperature data for the period 1950-2010, so as to enable potential evapotranspiration calculations using the Penman-Monteith equation. Second, the downscaling of five regional climate model (RCM) data to match the 10KM spatial resolution was undertaken. Third, a total of 1722 hydrological response units (HRUs) were delineated within the 4403 km2 large upper Oldman River Basin. In all phases of model input data parameterization and calibration, the automation of known external procedures greatly decreased erroneous model inputs and increased the efficiency of validating the quality of input data to be used within the ACRU model.

  19. 30 CFR 717.17 - Protection of the hydrologic system. (United States)


    ... of paragraph (a) of this section shall not apply to drainage from access and haul roads located... INTERIOR INITIAL PROGRAM REGULATIONS UNDERGROUND MINING GENERAL PERFORMANCE STANDARDS § 717.17 Protection of the hydrologic system. The permittee shall plan and conduct underground coal mining and...

  20. Climate-hydrology-ecology interactions in glacierized river systems (United States)

    Hannah, David; Brown, Lee; Milner, Alexander


    High climatic sensitivity and low anthropogenic influence make glacierized river basins important environments for examining hydrological and ecological response to global change. This presentation is based on previous and ongoing research in glacierized river basins (located in the French Pyrenees, New Zealand and Swedish Lapland), which adopts an interdisciplinary approach to investigate the climate-hydrology-ecology cascade. Data are used to advance hypotheses concerning impacts of climate change/ variability on glacier river system hydrology and ecology. Aquatic ecosystems in high latitude and altitude environments are influenced strongly by cryospheric and hydrological processes due to links between atmospheric forcing, snowpack/ glacier mass-balance, river runoff, physico-chemistry and biota. In the current phase of global warming, many glaciers are retreating. Shrinking snow and ice-masses may alter spatial and temporal dynamics in bulk basin runoff with significant changes in the relative contributions of snowmelt, glacier-melt and groundwater to stream flow. The timing of peak snow- and ice-melt may shift; and proportion of stream flow sourced from rainfall-runoff and groundwater may increase. In this presentation, the influence of changing water source contributions on physico-chemical habitat and, in turn, benthic communities is assessed using an alternative alpine stream classification. In the future, this model predicts more rapid downstream change in benthic communities as meltwater contributions decline; and, at the basin-scale, biodiversity may be reduced due to less spatio-temporal heterogeneity in water sources contributions and, thus, physico-chemical habitat. Integrated, long-term research into the climate-hydrology-ecology cascade in other glacierized river basins is vital because interdisciplinary science is fundamental: to predicting stream hydrology and ecology under scenarios of future climate/ variability, to assessing the utility of

  1. Hydrological, ecological, land use, economic, and sociocultural evidence for resilience of traditional irrigation communities in New Mexico, USA (United States)

    Fernald, A.; Guldan, S.; Boykin, K.; Cibils, A.; Gonzales, M.; Hurd, B. H.; Lopez, S.; Ochoa, C. G.; Ortiz, M.; Rivera, J.; Rodriguez, S.; Steele, C. M.


    Southwestern US irrigated landscapes are facing upheaval due to climate change-induced water scarcity and economic change-induced land use conversion. Clues to community longevity are found in the traditionally irrigated valleys of northern New Mexico. Human systems have interacted with hydrologic processes over the last 400 yr in river fed irrigated valleys to create linked systems. In this study, we asked if concurrent data from multiple disciplines show that human adapted hydrologic and socioeconomic systems have created conditions for resilience. We identify and describe several areas of resilience: hydrological, ecological, land use, economic, and sociocultural. We found that there are multiple hydrologic benefits of the water seepage from the traditional irrigation systems; it recharges groundwater that recharges rivers, supports threatened biodiversity by maintaining riparian vegetation, and ameliorates impacts of climate change by prolonging streamflow hydrographs. In terms of land use and economics, place-based adaptability manifests itself in transformations of irrigation infrastructure and specific animal and crop systems; as grazing has diminished over time on public land watersheds, it has increased on irrigated valley pastures while outside income allows irrigators to retain their land. Sociocultural evidence shows that traditional local knowledge about the hydrosocial cycle of acequia operations is a key factor in acequia resilience. When irrigators are confronted with unexpected disturbances or changing climate that affect water supply, they adapt specific practices while maintaining community cohesion. Our ongoing work will quantify the multiple disciplinary components of these systems, translate them into a common language of causal loop diagrams, and model future scenarios to identify thresholds and tipping points of sustainability. Early indications are that these systems are not immune to upheaval, but have astonishing resilience.

  2. A System for Continuous Hydrological Ensemble Forecasting (SCHEF) to lead times of 9 days (United States)

    Bennett, James C.; Robertson, David E.; Shrestha, Durga Lal; Wang, Q. J.; Enever, David; Hapuarachchi, Prasantha; Tuteja, Narendra K.


    This study describes a System for Continuous Hydrological Ensemble Forecasting (SCHEF) designed to forecast streamflows to lead times of 9 days. SCHEF is intended to support optimal management of water resources for consumptive and environmental purposes and ultimately to support the management of impending floods. Deterministic rainfall forecasts from the ACCESS-G numerical weather prediction (NWP) model are post-processed using a Bayesian joint probability model to correct biases and quantify uncertainty. Realistic temporal and spatial characteristics are instilled in the rainfall forecast ensemble with the Schaake shuffle. The ensemble rainfall forecasts are then used as inputs to the GR4H hydrological model to produce streamflow forecasts. A hydrological error correction is applied to ensure forecasts transit smoothly from recent streamflow observations. SCHEF forecasts streamflows skilfully for a range of hydrological and climate conditions. Skill is particularly evident in forecasts of streamflows at lead times of 1-6 days. Forecasts perform best in temperate perennially flowing rivers, while forecasts are poorest in intermittently flowing rivers. The poor streamflow forecasts in intermittent rivers are primarily the result of poor rainfall forecasts, rather than an inadequate representation of hydrological processes. Forecast uncertainty becomes more reliably quantified at longer lead times; however there is considerable scope for improving the reliability of streamflow forecasts at all lead times. Additionally, we show that the choice of forecast time-step can influence forecast accuracy: forecasts generated at a 1-h time-step tend to be more accurate than at longer time-steps (e.g. 1-day). This is largely because at shorter time-steps the hydrological error correction is able to correct streamflow forecasts with more recent information, rather than the ability of GR4H to simulate hydrological processes better at shorter time-steps. SCHEF will form the

  3. HAWQS (Hydrologic and Water Quality System) (United States)

    A water quantity and quality modeling system to evaluate the impacts of management alternatives, pollution control scenarios, and climate change scenarios on the quantity and quality of water at a national scale.

  4. Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene

    National Research Council Canada - National Science Library

    Thompson, S. E; Sivapalan, M; Harman, C. J; Srinivasan, V; Hipsey, M. R; Reed, P; Montanari, A; Blöschl, G


    ... to address internal and exogenous changes in the properties of hydrologic systems. To do this, new hydrologic research must identify, describe and model feedbacks between water and other changing, coupled environmental subsystems...

  5. Distribution of geogenic arsenic in hydrologic systems: Controls and challenges (United States)

    Mukherjee, Abhijit; Bhattacharya, Prosun; Savage, Kaye; Foster, Andrea; Bundschuh, Jochen


    The presence of elevated concentration of arsenic (As) in natural hydrologic systems is regarded as the most formidable environmental crisis in the contemporary world. With its substantial presence in the drinking water of more than thirty countries worldwide, and with an affected population of more than 100 million, it has been termed as the largest mass poisoning in human history. In this special issue, we have tried to provide the most recent research advances on controls and challenges of this severe groundwater contaminant. The articles in this issue, originally presented in the 2006 Geological Society of America Annual Meeting, address the distribution of As in various geologic and geographic settings, the controls of redox and other geochemical parameters on its spatial and temporal variability, the influence of sedimentology and stratigraphy on its occurrence, and mechanisms controlling its mobility. The knowledge available from these studies should provide a roadmap for future research in arsenic contamination hydrology.

  6. Glacier shrinkage drives changes in river system hydrology and ecology (United States)

    Hannah, D. M.; Khamis, K.; Blaen, P. J.; Hainie, S.; Mellor, C.; Brown, L. E.; Milner, A. M.


    High climatic sensitivity and low anthropogenic influence make glacierized river basins important environments for examining hydrological and ecological response to global change. This paper synthesises findings from previous and ongoing research in glacierized Alpine and Arctic river basins (located in the French Pyrenees, New Zealand, Swedish Lapland and Svalbard), which adopts an interdisciplinary approach to investigate the climate-cryosphere-hydrology-ecology cascade. Data are used to advance hypotheses concerning the consequences of climate change/ variability on glacier river system hydrology and ecology. Aquatic ecosystems in high latitude and altitude environments are influenced strongly by cryospheric and hydrological processes due to links between atmospheric forcing, snowpack/ glacier mass-balance, river runoff, physico-chemistry and biota. In the current phase of global warming, many glaciers are retreating. Using downscaled regional climate projections as inputs to a distributed hydrological model for a study basin in the French Pyrenees (i.e. an environment at the contemporary limit of valley glaciation), we show how shrinking snow and ice-masses may alter space-time dynamics in basin runoff. Notably, the timing of peak snow- and ice-melt may shift; and the proportion of stream flow sourced from rainfall-runoff (cf. meltwater) may increase. Across our range of Alpine and Arctic study basins, we quantify observed links between relative water source contributions (% meltwater : % groundwater), physico-chemical habitat (e.g. water temperature, electrical conductivity, suspended sediment and channel stability) and benthic communities. At the site scale, results point towards increased community diversity (taxonomic and functional) as meltwater contributions decline and physico-chemical habitat becomes less harsh. However, basin-scale biodiversity may be reduced due to less spatio-temporal heterogeneity in water source contributions and habitats, and the

  7. Hydrologic Drought Decision Support System (HyDroDSS) (United States)

    Granato, Gregory E.


    The hydrologic drought decision support system (HyDroDSS) was developed by the U.S. Geological Survey (USGS) in cooperation with the Rhode Island Water Resources Board (RIWRB) for use in the analysis of hydrologic variables that may indicate the risk for streamflows to be below user-defined flow targets at a designated site of interest, which is defined herein as data-collection site on a stream that may be adversely affected by pumping. Hydrologic drought is defined for this study as a period of lower than normal streamflows caused by precipitation deficits and (or) water withdrawals. The HyDroDSS is designed to provide water managers with risk-based information for balancing water-supply needs and aquatic-habitat protection goals to mitigate potential effects of hydrologic drought. This report describes the theory and methods for retrospective streamflow-depletion analysis, rank correlation analysis, and drought-projection analysis. All three methods are designed to inform decisions made by drought steering committees and decisionmakers on the basis of quantitative risk assessment. All three methods use estimates of unaltered streamflow, which is the measured or modeled flow without major withdrawals or discharges, to approximate a natural low-flow regime. Retrospective streamflow-depletion analysis can be used by water-resource managers to evaluate relations between withdrawal plans and the potential effects of withdrawal plans on streams at one or more sites of interest in an area. Retrospective streamflow-depletion analysis indicates the historical risk of being below user-defined flow targets if different pumping plans were implemented for the period of record. Retrospective streamflow-depletion analysis also indicates the risk for creating hydrologic drought conditions caused by use of a pumping plan. Retrospective streamflow-depletion analysis is done by calculating the net streamflow depletions from withdrawals and discharges and applying these depletions

  8. Linked hydrologic and social systems that support resilience of traditional irrigation communities (United States)

    Fernald, A.; Guldan, S.; Boykin, K.; Cibils, A.; Gonzales, M.; Hurd, B.; Lopez, S.; Ochoa, C.; Ortiz, M.; Rivera, J.; Rodriguez, S.; Steele, C.


    Southwestern US irrigated landscapes are facing upheaval due to water scarcity and land use conversion associated with climate change, population growth, and changing economics. In the traditionally irrigated valleys of northern New Mexico, these stresses, as well as instances of community longevity in the face of these stresses, are apparent. Human systems have interacted with hydrologic processes over the last 400 years in river-fed irrigated valleys to create linked systems. In this study, we ask if concurrent data from multiple disciplines could show that human-adapted hydrologic and socioeconomic systems have created conditions for resilience. Various types of resiliencies are evident in the communities. Traditional local knowledge about the hydrosocial cycle of community water management and ability to adopt new water management practices is a key response to disturbances such as low water supply from drought. Livestock producers have retained their irrigated land by adapting: changing from sheep to cattle and securing income from outside their livestock operations. Labor-intensive crops decreased as off-farm employment opportunities became available. Hydrologic resilience of the system can be affected by both human and natural elements. We find, for example, that there are multiple hydrologic benefits of traditional irrigation system water seepage: it recharges the groundwater that recharges rivers, supports threatened biodiversity by maintaining riparian vegetation, and ameliorates impacts of climate change by prolonging streamflow hydrographs. Human decisions to transfer water out of agriculture or change irrigation management, as well as natural changes such as long-term drought or climate change, can result in reduced seepage and the benefits it provides. We have worked with the communities to translate the multidisciplinary dimensions of these systems into a common language of causal loop diagrams, which form the basis for modeling future scenarios to

  9. From Engineering Hydrology to Earth System Science: Milestones in the Transformation of Hydrologic Science (Alfred Wegener Medal Lecture) (United States)

    Sivapalan, Murugesu


    Hydrologic science has undergone almost transformative changes over the past 50 years. Huge strides have been made in the transition from early empirical approaches to rigorous approaches based on the fluid mechanics of water movement on and below the land surface. However, further progress has been hampered by problems posed by the presence of heterogeneity, especially subsurface heterogeneity, at all scales. The inability to measure or map subsurface heterogeneity everywhere prevented further development of balance equations and associated closure relations at the scales of interest, and has led to the virtual impasse we are presently in, in terms of development of physically based models needed for hydrologic predictions. An alternative to the mapping of subsurface heterogeneity everywhere is a new earth system science view, which sees the heterogeneity as the end result of co-evolutionary hydrological, geomorphological, ecological and pedological processes, each operating at a different rate, which have helped to shape the landscapes that we see in nature, including the heterogeneity below that we do not see. The expectation is that instead of specifying exact details of the heterogeneity in our models, we can replace it, without loss of information, with the ecosystem function they perform. Guided by this new earth system science perspective, development of hydrologic science is now guided by altogether new questions and new approaches to address them, compared to the purely physical, fluid mechanics based approaches that we inherited from the past. In the emergent Anthropocene, the co-evolutionary view is expanded further to involve interactions and feedbacks with human-social processes as well. In this lecture, I will present key milestones in the transformation of hydrologic science from Engineering Hydrology to Earth System Science, and what this means for hydrologic observations, theory development and predictions.

  10. Understanding Socio-Hydrology System in the Kissimmee River Basin (United States)

    Chen, X.; Wang, D.; Tian, F.; Sivapalan, M.


    This study is to develop a conceptual socio-hydrology model for the Kissimmee River Basin. The Kissimmee River located in Florida was channelized in mid-20 century for flood protection. However, the environmental issues caused by channelization led Floridians to conduct a restoration project recently, focusing on wetland recovery. As a complex coupled human-water system, Kissimmee River Basin shows the typical socio-hydrology interactions. Hypothetically, the major reason to drive the system from channelization to restoration is that the community sensitivity towards the environment has changed from controlling to restoring. The model developed in this study includes 5 components: water balance, flood risk, wetland area, crop land area, and community sensitivity. Furthermore, urban population and rural population in the basin have different community sensitivities towards the hydrologic system. The urban population, who live further away from the river are more sensitive to wetland restoration; while the rural population, who live closer to the river are more sensitive to flood protection. The power dynamics between the two groups and its impact on management decision making is described in the model. The model is calibrated based on the observed watershed outflow, wetland area and crop land area. The results show that the overall focus of community sensitivity has changed from flood protection to wetland restoration in the past 60 years in Kissimmee River Basin, which confirms the study hypothesis. There are two main reasons for the community sensitivity change. Firstly, people's flood memory is fading because of the effective flood protection, while the continuously shrinking wetland and the decreasing bird and fish population draw more and more attention. Secondly, in the last 60 years, the urban population in Florida drastically increased compared with a much slower increase of rural population. As a result, the community sensitivity of urban population towards

  11. Advances in Modeling of Coupled Hydrologic-Socioeconomic Systems (United States)

    Amadio, Mattia; Mysiak, Jaroslav; Pecora, Silvano; Agnetti, Alberto


    River flooding is the most common natural disaster in Europe, causing deaths and huge amount of economic losses. Disastrous flood events are often related to extreme meteorological conditions; therefore, climate change is expected to have an important influence over the intensity and frequency of major floods. While approximated large-scale assessments of flood risk scenarios have been carried out, the knowledge of the effects at smaller scales is poor or incomplete, with few localized studies. Also, the methods are still coarse and uneven. The approach of this study starts from the definition of the risk paradigm and the elaboration of local climatic scenarios to track a methodology aimed at elaborating and combining the three elements concurring to the determination of risk: hydrological hazard, value exposure and vulnerability. First, hydrological hazard scenarios are provided by hydrological and hydrodynamic models, used in to a flood forecasting system capable to define "what-if" scenario in a flexible way. These results are then integrated with land-use data (exposure) and depth-damage functions (vulnerability) in a GIS environment, to assess the final risk value (potential flood damage) and visualize it in form of risk maps. In this paper results from a pilot study in the Polesine area are presented, where four simulated levee breach scenarios are compared. The outcomes of the analysis may be instrumental to authorities to increase the knowledge of possible direct losses and guide decision making and planning processes also. As future perspective, the employed methodology can also be extended at the basin scale through integration with the existent flood warning system to gain a real-time estimate of floods direct costs.

  12. An experimental seasonal hydrological forecasting system over the Yellow River basin - Part 1: Understanding the role of initial hydrological conditions (United States)

    Yuan, Xing; Ma, Feng; Wang, Linying; Zheng, Ziyan; Ma, Zhuguo; Ye, Aizhong; Peng, Shaoming


    The hydrological cycle over the Yellow River has been altered by the climate change and human interventions greatly during past decades, with a decadal drying trend mixed with a large variation of seasonal hydrological extremes. To provide support for the adaptation to a changing environment, an experimental seasonal hydrological forecasting system is established over the Yellow River basin. The system draws from a legacy of a global hydrological forecasting system that is able to make use of real-time seasonal climate predictions from North American Multimodel Ensemble (NMME) climate models through a statistical downscaling approach but with a higher resolution and a spatially disaggregated calibration procedure that is based on a newly compiled hydrological observation dataset with 5 decades of naturalized streamflow at 12 mainstream gauges and a newly released meteorological observation dataset including 324 meteorological stations over the Yellow River basin. While the evaluation of the NMME-based seasonal hydrological forecasting will be presented in a companion paper to explore the added values from climate forecast models, this paper investigates the role of initial hydrological conditions (ICs) by carrying out 6-month Ensemble Streamflow Prediction (ESP) and reverse ESP-type simulations for each calendar month during 1982-2010 with the hydrological models in the forecasting system, i.e., a large-scale land surface hydrological model and a global routing model that is regionalized over the Yellow River. In terms of streamflow predictability, the ICs outweigh the meteorological forcings up to 2-5 months during the cold and dry seasons, but the latter prevails over the former in the predictability after the first month during the warm and wet seasons. For the streamflow forecasts initialized at the end of the rainy season, the influence of ICs for lower reaches of the Yellow River can be 5 months longer than that for the upper reaches, while such a difference

  13. Adaptable Web Modules to Stimulate Active Learning in Engineering Hydrology using Data and Model Simulations of Three Regional Hydrologic Systems (United States)

    Habib, E. H.; Tarboton, D. G.; Lall, U.; Bodin, M.; Rahill-Marier, B.; Chimmula, S.; Meselhe, E. A.; Ali, A.; Williams, D.; Ma, Y.


    The hydrologic community has long recognized the need for broad reform in hydrologic education. A paradigm shift is critically sought in undergraduate hydrology and water resource education by adopting context-rich, student-centered, and active learning strategies. Hydrologists currently deal with intricate issues rooted in complex natural ecosystems containing a multitude of interconnected processes. Advances in the multi-disciplinary field include observational settings such as Critical Zone and Water, Sustainability and Climate Observatories, Hydrologic Information Systems, instrumentation and modeling methods. These research advances theory and practices call for similar efforts and improvements in hydrologic education. The typical, text-book based approach in hydrologic education has focused on specific applications and/or unit processes associated with the hydrologic cycle with idealizations, rather than the contextual relations in the physical processes and the spatial and temporal dynamics connecting climate and ecosystems. An appreciation of the natural variability of these processes will lead to graduates with the ability to develop independent learning skills and understanding. This appreciation cannot be gained in curricula where field components such as observational and experimental data are deficient. These types of data are also critical when using simulation models to create environments that support this type of learning. Additional sources of observations in conjunction with models and field data are key to students understanding of the challenges associated with using models to represent such complex systems. Recent advances in scientific visualization and web-based technologies provide new opportunities for the development of active learning techniques utilizing ongoing research. The overall goal of the current study is to develop visual, case-based, data and simulation driven learning experiences to instructors and students through a web

  14. The state of the art of flood forecasting - Hydrological Ensemble Prediction Systems (United States)

    Thielen-Del Pozo, J.; Pappenberger, F.; Salamon, P.; Bogner, K.; Burek, P.; de Roo, A.


    , has become evident. However, despite the demonstrated advantages, worldwide the incorporation of HEPS in operational flood forecasting is still limited. The applicability of HEPS for smaller river basins was tested in MAP D-Phase, an acronym for "Demonstration of Probabilistic Hydrological and Atmospheric Simulation of flood Events in the Alpine region" which was launched in 2005 as a Forecast Demonstration Project of World Weather Research Programme of WMO, and entered a pre-operational and still active testing phase in 2007. In Europe, a comparatively high number of EPS driven systems for medium-large rivers exist. National flood forecasting centres of Sweden, Finland and the Netherlands, have already implemented HEPS in their operational forecasting chain, while in other countries including France, Germany, Czech Republic and Hungary, hybrids or experimental chains have been installed. As an example of HEPS, the European Flood Alert System (EFAS) is being presented. EFAS provides medium-range probabilistic flood forecasting information for large trans-national river basins. It incorporates multiple sets of weather forecast including different types of EPS and deterministic forecasts from different providers. EFAS products are evaluated and visualised as exceedance of critical levels only - both in forms of maps and time series. Different sources of uncertainty and its impact on the flood forecasting performance for every grid cell has been tested offline but not yet incorporated operationally into the forecasting chain for computational reasons. However, at stations where real-time discharges are available, a hydrological uncertainty processor is being applied to estimate the total predictive uncertainty from the hydrological and input uncertainties. Research on long-term EFAS results has shown the need for complementing statistical analysis with case studies for which examples will be shown.

  15. Debates—Perspectives on socio-hydrology: Changing water systems and the "tyranny of small problems"—Socio-hydrology (United States)

    Sivapalan, Murugesu


    We are well and truly in the Anthropocene. Humans can no longer be considered as mere external drivers or boundary conditions in the hydrologic systems we study. The interactions and feedbacks between human actions and water cycle dynamics on the planet, combined with the evolution of human norms/values in relation to water, are throwing up a range of emergent "big problems." Understanding and offering sustainable solutions to these "big problems" require a broadening of hydrologic science to embrace the perspectives of both social and natural scientists. The new science of socio-hydrology was introduced with this in mind, yet faces major challenges due to the wide gulf that separates the knowledge foundations and methodologies of natural and social sciences. Yet, the benefits of working together are enormous, including through adoption of natural science methods for social science problems, and vice versa. Bringing together the perspectives of both social and natural scientists dealing with water is good for hydrologic science, having the salutary effect of revitalizing it as use-inspired basic science. It is good for management too, in that the broader, holistic perspectives provided by socio-hydrology can help recognize potential "big" problems that may otherwise be unforeseen and, equally, identify potential "alternative" solutions to otherwise intractable problems.

  16. Value assessment of a global hydrological forecasting system (United States)

    Candogan Yossef, N.; Winsemius, H.; van Beek, L. P. H.; van Beek, E.; Bierkens, M. F. P.


    The inter-annual variability in streamflow presents risks and opportunities in the management of water resources systems. Reliable hydrological forecasts, effective communication and proper response allow several sectors to make more informed management decisions. In many developing regions of the world, there are no efficient hydrological forecasting systems. A global forecasting system which indicates increased probabilities of streamflow excesses or shortages over long lead-times can be of great value for these regions. FEWS-World system is developed for this purpose. It is based on the Delft-FEWS (flood early warning system) developed by Deltares and incorporates the global hydrological model PCR-GLOBWB. This study investigates the skill and value of FEWS-World. Skill is defined as the ability of the system to forecast discharge extremes; and value as its usefulness for possible users and ultimately for affected populations. Skill is assessed in historical simulation mode as well as retroactive forecasting mode. For the assessment in historical simulation mode a meteorological forcing based on observations from the Climate Research Unit of the University of East Anglia and the ERA-40 reanalysis of the European Center for Medium-Range Weather Forecasts (ECMWF) was used. For the assessment in retroactive forecasting mode the model was forced with ensemble forecasts from the seasonal forecast archives of ECMWF. The eventual goal is to transfer FEWS-World to operational forecasting mode, where the system will use operational seasonal forecasts from ECMWF. The results will be disseminated on the internet, and hopefully provide information that is valuable for users in data and model-poor regions of the world. The results of the preliminary assessment show that although forecasting skill decreases with increasing lead time, the value of forecasts does not necessarily decrease. The forecast requirements and response options of several water related sectors was

  17. Isotope hydrology of catchment basins: lithogenic and cosmogenic isotopic systems

    Energy Technology Data Exchange (ETDEWEB)

    Nimz, G. J., LLNL


    A variety of physical processes affect solute concentrations within catchment waters. The isotopic compositions of the solutes can indicate which processes have determined the observed concentrations. These processes together constitute the physical history of the water. Many solutes in natural waters are derived from the interaction between the water and the rock and/or soil within the system - these are termed `lithogenic` solutes. The isotopic compositions of these solutes provide information regarding rock-water interactions. Many other solutes have their isotopic compositions determined both within and outside of the catchment - i.e., in addition to being derived from catchment rock and soil, they are solutes that are also transported into the catchment. Important members of this group include solutes that have isotopic compositions produced by atomic particle interactions with other nuclides. The source of the atomic particles can be cosmic radiation (producing `cosmogenic` nuclides in the atmosphere and land surface), anthropogenic nuclear reactions (producing `thermonuclear` nuclides), or radioactive and fission decay of naturally-occurring elements, principally {sup 238}U (producing `in-situ` lithogenic nuclides in the deep subsurface). Current language usage often combines all of the atomic particle-produced nuclides under the heading `cosmogenic nuclides`, and for simplicity we will often follow that usage here, although always indicating which variety is being discussed. This paper addresses the processes that affect the lithogenic and cosmogenic solute concentrations in catchment waters, and how the isotopic compositions of the solutes can be used in integrative ways to identify these processes, thereby revealing the physical history of the water within a catchment system. The concept of a `system` is important in catchment hydrology. A catchment is the smallest landscape unit that can both participate in all of the aspects of the hydrologic cycle and

  18. Causal analysis of time series from hydrological systems (United States)

    Selle, Benny; Aufgebauer, Britta; Knorr, Klaus-Holger


    It is often difficult to infer cause and effect in hydrological systems for which time series of system inputs, outputs and state variables are observed. A recently published technique called Convergent Cross Mapping could be a promising tool to detect causality between time series. A response variable Y may be causally related to a forcing variable X, if the so called cross mapping of X using Y improves with the amount of data included. The idea is that a response variable contains information on the history of its driving variable whereas the reverse may not be true. We propose an alternative approach based on similar ideas using neural networks. Our approach is firstly compared to Convergent Cross Mapping using a synthetic time series of precipitation and streamflow generated by a rainfall runoff model. Secondly, measured concentrations of dissolved organic carbon and dissolved iron from a mountainous stream in Germany, that were previously hypothesised to be casually linked, are tested.

  19. International Water Information Systems: Evolving the CUAHSI Hydrologic Information System to a Standards-based Infrastructure (United States)

    Valentine, D. W.; Taylor, P.; Arctur, D. K.; Zaslavsky, I.


    The CUAHSI Hydrologic Information System (HIS) project is migrating core components of its service-oriented infrastructure to information models and service interfaces being standardized by the Open Geospatial Consortium (OGC), through coordination with the joint Hydrology Domain Working Group (HDWG) of the OGC and the World Meteorological Organization. The CUAHSI cyberinfrastructure for hydrologic observations will rely on OGC service standards including Web Map Service (WMS) for map portrayal, Web Feature Service (WFS) for delivery of geographic feature information, Catalog Services for the Web (CSW) for discovery in service catalogs, and Sensor Observation Service (SOS) for data delivery. These standards will be supplemented by additional services and corresponding standards, such as the Water Quality Exchange (WQX), which is presently in use at the USGS and US EPA for delivery of water quality and ex situ analytical data. One of the key standards being developed through the OGC process is Water Markup Language (WaterML) 2.0, which specifies standard encoding for the representation of in-situ hydrological observations. Implemented as an application schema of OGC Observations and Measurements (O&M) standard, WaterML 2.0 incorporates the semantics of the hydrologic information: location, procedure, and observations, focusing on encoding different types of hydrologic time series. In addition to developing this exchange standard, the HDWG conducts Interoperability Experiments (IE) to test WaterML 2.0 and OGC services to see they meet the requirements of the Hydrologic community. The Groundwater IE tested cross border exchange of water information between the US and Canada, and exercised, not only a prototype of WaterML 2.0, but existing standards GeoSciML and GroundwaterML. A Surface Water IE is testing 3 use cases focusing on cross-border exchange of surface water information, hydrologic forecasting, and automated monthly and yearly volume calculations from large

  20. Regional hydrology controls stream microbial biofilms: evidence from a glacial catchment (United States)

    Battin, T. J.; Wille, A.; Psenner, R.; Richter, A.


    Glaciers are highly responsive to global warming and important agents of landscape heterogeneity. While it is well established that glacial ablation and snowmelt regulate stream discharge, linkage among streams and streamwater hydrogeochemistry, the controls of these factors on stream microbial biofilms remain insufficiently understood. We investigated glacial (metakryal, hypokryal), groundwater-fed (krenal) and snow-fed (rhithral) streams - all of them representative for alpine stream networks - and present evidence that these hydrologic and hydrogeochemical factors differentially affect sediment microbial biofilms. Average microbial biomass and bacterial carbon production were low in the glacial streams, whereas bacterial cell size, biomass, and carbon production were higher in the tributaries, most notably in the krenal stream. Whole-cell in situ fluorescence hybridization revealed reduced detection rates of the Eubacteria and higher abundance of α-Proteobacteria in the glacial stream, a pattern that most probably reflects the trophic status of this ecosystem. Our data suggest low flow during the onset of snowmelt and autumn as a short period (hot moment) of favorable environmental conditions with pulsed inputs of allochthonous nitrate and dissolved organic carbon, and with disproportional high microbial growth. Krenal and rhithral streams with more constant and favorable environments serve as possible sources of microbes and organic matter to the main glacial channel during periods (e.g. snowmelt) of elevated hydrologic linkage among streams. Ice and snow dynamics have a crucial impact on microbial biofilms, and we thus need better understanding of the microbial ecology and enhanced consideration of critical hydrological episodes in future models predicting alpine stream communities.

  1. Remote sensing approach for hydrologic assessments of complex lake systems (United States)

    Bhang, Kon Joon

    Lake studies play an important role in understanding water management, ecology, climatology, etc. because most of earth processes are strongly related to water dynamics. Because the studies have only used on-site gage readings, it is almost impossible to access individual lakes and to evaluate regional scale hydrology as a whole system. Especially in the Prairie Pothole Region (PPR) of North America has millions of potholes and lakes. Measuring lake levels in this region is one of the critical issues in hydrology or other related sciences and applications. The remote sensing approach with the Geographic Information System (GIS) technique could be used to overcome the difficulty associated with on-site measurements. In this study, the SRTM data was used as a main topographic dataset because the dataset provides accurate and consistent elevation data on a worldwide basis. The first chapter introduced the whole idea of this study. In the second chapter, the elevation values of the C-band SRTM 30-meter DEM were compared with point-wise elevations from the Ice, Cloud and land Elevation Satellite (ICESat) laser altimetry for Otter Tail County, MN. The accuracy of SRTM DEM was measured as a function of land cover and geomorphologic characteristics. The typical mean vertical difference between the SRTM DEM and ICESat elevations in this study was determined for each classified land use type and the data properties were investigated. Also, the feasibility of using SRTM data for hydrologic applications, especially in a region of low relief exemplified by the Otter Tail basin in Minnesota, was examined in Chapter 3. For measuring lake levels, several lake-level estimation techniques using image processing and feature detection were tested with the Landsat imagery and SRTM data and the efficiency of the techniques were evaluated in Chapter 4. Lastly, the power law distribution of lake was simulated in Chapter 5. For the simulation, one-dimensional fractal landscapes were

  2. Hydrogeology and hydrologic conditions of the Ozark Plateaus aquifer system (United States)

    Hays, Phillip D.; Knierim, Katherine J.; Breaker, Brian K.; Westerman, Drew A.; Clark, Brian R.


    The hydrogeology and hydrologic characteristics of the Ozark Plateaus aquifer system were characterized as part of ongoing U.S. Geological Survey efforts to assess groundwater availability across the Nation. The need for such a study in the Ozark Plateaus physiographic province (Ozark Plateaus) is highlighted by increasing demand on groundwater resources by the 5.3 million people of the Ozark Plateaus, water-level declines in some areas, and potential impacts of climate change on groundwater availability. The subject study integrates knowledge gained through local investigation within a regional perspective to develop a regional conceptual model of groundwater flow in the Ozark Plateaus aquifer system (Ozark system), a key phase of groundwater availability assessment. The Ozark system extends across much of southern Missouri and northwestern and north-central Arkansas and smaller areas of southeastern Kansas and northeastern Oklahoma. The region is one of the major karst landscapes in the United States, and karst aquifers are predominant in the Ozark system. Groundwater flow is ultimately controlled by aquifer and confining unit lithologies and stratigraphic relations, geologic structure, karst development, and the character of surficial lithologies and regolith mantle. The regolith mantle is a defining element of Ozark Plateaus karst, affecting recharge, karst development, and vulnerability to surface-derived contaminants. Karst development is more advanced—as evidenced by larger springs, hydraulic characteristics, and higher well yields—in the Salem Plateau and in the northern part of the Springfield Plateau (generally north of the Arkansas-Missouri border) as compared with the southern part of the Springfield Plateau in Arkansas, largely due to thinner, less extensive regolith and purer carbonate lithology.Precipitation is the ultimate source of all water to the Ozark system, and the hydrologic budget for the Ozark system includes inputs from recharge

  3. Integrating remote sensing, geographic information systems and global positioning system techniques with hydrological modeling (United States)

    Thakur, Jay Krishna; Singh, Sudhir Kumar; Ekanthalu, Vicky Shettigondahalli


    Integration of remote sensing (RS), geographic information systems (GIS) and global positioning system (GPS) are emerging research areas in the field of groundwater hydrology, resource management, environmental monitoring and during emergency response. Recent advancements in the fields of RS, GIS, GPS and higher level of computation will help in providing and handling a range of data simultaneously in a time- and cost-efficient manner. This review paper deals with hydrological modeling, uses of remote sensing and GIS in hydrological modeling, models of integrations and their need and in last the conclusion. After dealing with these issues conceptually and technically, we can develop better methods and novel approaches to handle large data sets and in a better way to communicate information related with rapidly decreasing societal resources, i.e. groundwater.

  4. A framework for improving a seasonal hydrological forecasting system using sensitivity analysis (United States)

    Arnal, Louise; Pappenberger, Florian; Smith, Paul; Cloke, Hannah


    Seasonal streamflow forecasts are of great value for the socio-economic sector, for applications such as navigation, flood and drought mitigation and reservoir management for hydropower generation and water allocation to agriculture and drinking water. However, as we speak, the performance of dynamical seasonal hydrological forecasting systems (systems based on running seasonal meteorological forecasts through a hydrological model to produce seasonal hydrological forecasts) is still limited in space and time. In this context, the ESP (Ensemble Streamflow Prediction) remains an attractive forecasting method for seasonal streamflow forecasting as it relies on forcing a hydrological model (starting from the latest observed or simulated initial hydrological conditions) with historical meteorological observations. This makes it cheaper to run than a standard dynamical seasonal hydrological forecasting system, for which the seasonal meteorological forecasts will first have to be produced, while still producing skilful forecasts. There is thus the need to focus resources and time towards improvements in dynamical seasonal hydrological forecasting systems which will eventually lead to significant improvements in the skill of the streamflow forecasts generated. Sensitivity analyses are a powerful tool that can be used to disentangle the relative contributions of the two main sources of errors in seasonal streamflow forecasts, namely the initial hydrological conditions (IHC; e.g., soil moisture, snow cover, initial streamflow, among others) and the meteorological forcing (MF; i.e., seasonal meteorological forecasts of precipitation and temperature, input to the hydrological model). Sensitivity analyses are however most useful if they inform and change current operational practices. To this end, we propose a method to improve the design of a seasonal hydrological forecasting system. This method is based on sensitivity analyses, informing the forecasters as to which element of

  5. Description of the National Hydrologic Model for use with the Precipitation-Runoff Modeling System (PRMS) (United States)

    Regan, R. Steven; Markstrom, Steven L.; Hay, Lauren E.; Viger, Roland J.; Norton, Parker A.; Driscoll, Jessica M.; LaFontaine, Jacob H.


    This report documents several components of the U.S. Geological Survey National Hydrologic Model of the conterminous United States for use with the Precipitation-Runoff Modeling System (PRMS). It provides descriptions of the (1) National Hydrologic Model, (2) Geospatial Fabric for National Hydrologic Modeling, (3) PRMS hydrologic simulation code, (4) parameters and estimation methods used to compute spatially and temporally distributed default values as required by PRMS, (5) National Hydrologic Model Parameter Database, and (6) model extraction tool named Bandit. The National Hydrologic Model Parameter Database contains values for all PRMS parameters used in the National Hydrologic Model. The methods and national datasets used to estimate all the PRMS parameters are described. Some parameter values are derived from characteristics of topography, land cover, soils, geology, and hydrography using traditional Geographic Information System methods. Other parameters are set to long-established default values and computation of initial values. Additionally, methods (statistical, sensitivity, calibration, and algebraic) were developed to compute parameter values on the basis of a variety of nationally-consistent datasets. Values in the National Hydrologic Model Parameter Database can periodically be updated on the basis of new parameter estimation methods and as additional national datasets become available. A companion ScienceBase resource provides a set of static parameter values as well as images of spatially-distributed parameters associated with PRMS states and fluxes for each Hydrologic Response Unit across the conterminuous United States.

  6. Statistical evaluation of bioretention system for hydrologic performance. (United States)

    Li, Z Y; Lam, K M


    Long-term retention performance is a common performance indicator for low-impact development practices, such as rain barrels, rain gardens, and green roofs. This paper introduces a numerical approach for the estimation of annual retention ratios of stormwater by bioretention. The annual retention ratio is taken as the ratio of the annual accumulated volume of stormwater retained by bioretention over the total volume of runoff draining into the system. The hydrologic model Storm Water Management Model (SWMM) is used to simulate the relevant flows of a bioretention system with parametric variations of the watershed area ratio and hydraulic conductivity of the soil media. Under these two dominant performance-governing parameters, retention ratios are calculated using the 10-year (2004-2013) rainfall record in Hong Kong at 1-min intervals. This indicator can be readily applied to estimate the long-term retention performance of a bioretention using particular values of watershed area ratio and hydraulic conductivity of soil media under the climate of Hong Kong. The study also analyzes the influence of variation of annual precipitation on the estimated retention performance. Flow data monitored on a pilot-scale physical model of bioretention during a number of rainfall events are used to validate the numerical simulation.

  7. Governance and decision making in complex socio-hydrological systems (United States)

    Elshorbagy, Amin; Wheater, Howard; Gober, Patricia; Hassanzadeh, Elmira


    Manitoba. The model highlights the spatial tradeoffs across the three provinces and sectoral trade-offs among the differing water uses. These trade-offs represent challenging dilemmas for water management decisions in a complex system. The study reveals the need for a holistic framework of water resources analysis that can dynamically capture the feedback loops among hydrological, social, and administrative/political analysis units to support public discussion of critical water tradeoffs and a consensual water value framework to guide future development decisions.

  8. Extending Hydrologic Information Systems to accommodate Arctic marine observations data (United States)

    Hersh, Eric S.; Maidment, David R.


    The Chukchi Sea Offshore Monitoring in Drilling Area - Chemical and Benthos (COMIDA CAB) project characterizes the biota and chemistry of the continental shelf ecosystem of a region of the Chukchi Sea to form a baseline survey of environmental conditions before drilling for oil commences. This paper describes the COMIDA CAB project data and processing methods, which provide a novel approach to data tracking and archiving from marine sampling cruises. This approach features an adaptation of the Consortium of Universities for the Advancement of Hydrologic Science. Observations Data Model for application with physical, chemical, and biological oceanographic data - a new extension of the CUAHSI Hydrologic Information System - thus bringing hydroinformatics into the oceanographic realm. Environmental sampling has been carried out by five separate scientific teams who characterize particular classes of physical, chemical and biological variables, and who each have their own methods of processing samples in their laboratories following the two sampling cruises made to the Chukchi Sea in the summers of 2009 and 2010. The results of their observations and analyses are stored in data files, mostly in Excel format, whose structure is defined differently by each scientific team. In all, the 2009 and 2010 COMIDA CAB field efforts yielded a database of 510,405 data values. Of these, 474,129 were derived from continuous in-situ data sonde profiles and 36,276 were derived from non-sonde extracted samples of the sediment, epibenthos, and water column. These data values represent 301 variables measured at 65 sites and originated from 26 different source files. The biological observations represented 519 distinct taxa. The data from these files are transformed and synthesized into a comprehensive project database in which a set of standardized descriptors of each observed data value are specified and each data value is linked to the data file from which it was created to establish a

  9. An Active Englacial Hydrological System in a Cold Glacier: Blood Falls, Taylor Glacier, Antarctica (United States)

    Carr, C. G.; Pettit, E. C.; Carmichael, J.; Badgeley, J.; Tulaczyk, S. M.; Lyons, W. B.; Mikucki, J.


    Blood Falls is a supraglacial hydrological feature formed by episodic release of iron-rich subglacial brine derived from an extensive aquifer beneath the cold, polar, Taylor Glacier. While fluid transport in non-temperate ice typically occurs through meltwater delivery from the glacier surface to the bed (hydrofracturing, supraglacial lake drainage), Blood Falls represents the opposite situation: brine moves from a subglacial source to the glacier surface. Here, we present the first complete conceptual model for brine transport and release, as well as the first direct evidence of a wintertime brine release at Blood Falls obtained through year-round time-lapse photography. Related analyses show that brine pools subglacially underneath the northern terminus of Taylor Glacier, rather than flowing directly into proglacial Lake Bonney because ice-cored moraines and channelized surface topography provide hydraulic barriers. This pooled brine is pressurized by hydraulic head from the upglacier brine source region. Based on seismic data, we propose that episodic supraglacial release is initiated by high strain rates coupled with pressurized subglacial brine that drive intermittent subglacial and englacial fracturing. Ultimately, brine-filled basal crevasses propagate upward to link with surface crevasses, allowing brine to flow from the bed to the surface. The observation of wintertime brine release indicates that surface-generated meltwater is not necessary to trigger crack propagation or to maintain the conduit as previously suggested. The liquid brine persists beneath and within the cold ice (-17°C) despite ambient ice/brine temperature differences of as high as 10°C through both locally depressed brine freezing temperatures through cryoconcentration of salts and increased ice temperatures through release of latent heat during partial freezing of brine. The existence of an englacial hydrological system initiated by basal crevassing extends to polar glaciers a process

  10. A seamless global hydrological monitoring and forecasting system for water resources assessment and hydrological hazard early warning (United States)

    Sheffield, Justin; He, Xiaogang; Wood, Eric; Pan, Ming; Wanders, Niko; Zhan, Wang; Peng, Liqing


    Sustainable management of water resources and mitigation of the impacts of hydrological hazards are becoming ever more important at large scales because of inter-basin, inter-country and inter-continental connections in water dependent sectors. These include water resources management, food production, and energy production, whose needs must be weighed against the water needs of ecosystems and preservation of water resources for future generations. The strains on these connections are likely to increase with climate change and increasing demand from burgeoning populations and rapid development, with potential for conflict over water. At the same time, network connections may provide opportunities to alleviate pressures on water availability through more efficient use of resources such as trade in water dependent goods. A key constraint on understanding, monitoring and identifying solutions to increasing competition for water resources and hazard risk is the availability of hydrological data for monitoring and forecasting water resources and hazards. We present a global online system that provides continuous and consistent water products across time scales, from the historic instrumental period, to real-time monitoring, short-term and seasonal forecasts, and climate change projections. The system is intended to provide data and tools for analysis of historic hydrological variability and trends, water resources assessment, monitoring of evolving hazards and forecasts for early warning, and climate change scale projections of changes in water availability and extreme events. The system is particular useful for scientists and stakeholders interested in regions with less available in-situ data, and where forecasts have the potential to help decision making. The system is built on a database of high-resolution climate data from 1950 to present that merges available observational records with bias-corrected reanalysis and satellite data, which then drives a coupled land

  11. Online Hydrologic Impact Assessment Decision Support System using Internet and Web-GIS Capability (United States)

    Choi, J.; Engel, B. A.; Harbor, J.


    Urban sprawl and the corresponding land use change from lower intensity uses, such as agriculture and forests, to higher intensity uses including high density residential and commercial has various long- and short-term environment impacts on ground water recharge, water pollution, and storm water drainage. A web-based Spatial Decision Support System, SDSS, for Web-based operation of long-term hydrologic impact modeling and analysis was developed. The system combines a hydrologic model, databases, web-GIS capability and HTML user interfaces to create a comprehensive hydrologic analysis system. The hydrologic model estimates daily direct runoff using the NRCS Curve Number technique and annual nonpoint source pollution loading by an event mean concentration approach. This is supported by a rainfall database with over 30 years of daily rainfall for the continental US. A web-GIS interface and a robust Web-based watershed delineation capability were developed to simplify the spatial data preparation task that is often a barrier to hydrologic model operation. The web-GIS supports browsing of map layers including hydrologic soil groups, roads, counties, streams, lakes and railroads, as well as on-line watershed delineation for any geographic point the user selects with a simple mouse click. The watershed delineation results can also be used to generate data for the hydrologic and water quality models available in the DSS. This system is already being used by city and local government planners for hydrologic impact evaluation of land use change from urbanization, and can be found at This system can assist local community, city and watershed planners, and even professionals when they are examining impacts of land use change on water resources. They can estimate the hydrologic impact of possible land use changes using this system with readily available data supported through the Internet. This system provides a cost effective

  12. Land Sea Level Difference Impacts on Socio-Hydrological System. (United States)

    Sung, K.; Yu, D. J.; Oh, W. S.; Sangwan, N.


    Allowing moderate shocks can be a new solution that helps to build adaptive capacity in society is a rising issue. In Social-Ecological field, Carpenter et al. (2015) suggested that exposure to short-term variability leads to long term resilience by enlarging safe operating space (SOS). The SOS refers to the boundary of favorable state that ecosystem can maintain resilience without imposing certain conditions (Carpenter et al. 2015). Our work is motivated by defining SOS in socio-hydrological system(SHS) because it can be an alternative way for flood management beyond optimized or robust flood control. In this context, large flood events that make system to cross the SOS should be fully managed, but frequent small floods need to be allowed if the system is located in SOS. Especially, land sea level change is critical factor to change flood resilience since it is one of the most substantial disturbance that changes the entire boundary of SOS. In order to have broader perspective of vulnerability and resilience of the coastal region, it is crucial to understand the land sea level dynamics changed with human activities and natural variances.The risk of land sea level change has been researched , but most of these researches have focused on explain cause and effect of land sea level change, paying little attention to its dynamics interacts with human activities. Thus, an objective of this research is to study dynamics of human work, land sea level change and resilience to flood with SOS approach. Especially, we focus on the case in Ganges-Brahmaputra, Bangladesh where has high vulnerability to flood, and is faced with relatively rapid land sea level change problem. To acheive the goal, this study will develop a stylized model by extending the human - flood interaction model combined with relative sea level difference equation. The model describes the dynamics of flood protection system which is changed by SHS and land sea level chage. we will focus on the aggradation

  13. Hydrology of the Texas Gulf Coast aquifer systems (United States)

    Ryder, Paul D.; Ardis, Ann F.


    A complex, multilayered ground-water flow system exists in the Coastal Plain sediments of Texas. The Tertiary and Quaternary clastic deposits have an areal extent of 114,000 square miles onshore and in the Gulf of Mexico. Two distinct aquifer systems are recognized within the sediments, which range in thickness from a few feet to more than 12,000 feet The older system--the Texas coastal uplands aquifer system-consists of four aquifers and two confining units in the Claiborne and Wilcox Groups. It is underlain by the practically impermeable Midway confining unit or by the top of the geopressured zone. It is overlain by the nearly impermeable Vicksburg-Jackson confining unit, which separates it from the younger coastal lowlands aquifer system. The coastal lowlands aquifer system consists of five permeable zones and two confining units that range in age from Oligocene to Holocene. The hydrogeologic units of both systems are exposed in bands that parallel the coastline. The units dip and thicken toward the Gulf. Quality of water in the aquifer systems is highly variable, with dissolved solids ranging from less than 500 to 150,000 milligrams per liter.Substantial withdrawal from the aquifer systems began in the early 1900's and increased nearly continuously into the 1970's. The increase in withdrawal was relatively rapid from about 1940 to 1970. Adverse hydrologic effects, such as saltwater encroachment in coastal areas, land-surface subsidence in the Houston-Galveston area, and long-term dewatering in the Whiter Garden area, were among some of the factors that caused pumping increases to slow or to cease in the 1970's and 1980's.Ground-water withdrawals in the study area in 1980 were about 1.7 billion gallons per day. Nearly all of the withdrawal was from four units: Permeable zones A, B, and C of Miocene age and younger, and the lower Claiborae-upper Wilcox aquifer. Ground-water levels have declined hundreds of feet in the intensively pumped areas of Houston

  14. Present Permafrost Thaw in Central Yakutia, North-East Siberia: Surficial Geology and Hydrology Evidence (United States)

    Czerniawska, Jolanta; Chlachula, Jiri


    Current climate change in the high-latitudes of Eurasia is a generally accepted phenomenon characterized by increased annual temperature values and marked weather anomalies observed in the sub-polar and polar regions. In the northern and NE Siberia, this trend of the MAT rise, documented particularly over the last three decades, is believed to account for the territorial lowland as well as insular mountain frozen ground thaw that in turn has triggered ecosystem feedbacks on the local as well as regional scales. In the northern regions of Yakutia, this is principally witnessed by accelerated near-surface dynamics of seasonally activated de-freezing grounds and inter-linked geomorphic and hydrological actions affecting large-scale tundra landscape settings. In the southern and central taiga-forest areas with perennial alpine and continuous permafrost conditions, respectively, an increased depth of the seasonally melted top-soil layers has become evident accompanied by thermokarst lake expansion and ground surface collapsing. Some cryogenic depressions generated from small gullies over the past decades eloquently demonstrate the intensity and scales of the current permafrost degradation in the Siberian North. The fluvial discharge is most dynamic in late spring to mid-summer because of the cumulative effect of snow-melting because of a high solar radiation and short intervals of torrential rains. Yet, the climate-change-dependent and most active geomorphic agent is the accelerated permafrost thaw seen in landslides and tundra-forest cover decay due to a higher water table. Numerous preserved biotic fossiliferous records Pleistocene and early Holocene in age are being exposed in this process providing unique palaeoecology evidence at particular sites. These climate-generated processes have mostly highly negative effects to the natural habitats (migratory animal routes and riverine biota due to an earlier ice-melting) as well as the local settlement communities

  15. Water System Adaptation To Hydrological Changes: Module 8, Regulatory Framework Intersections: Past, Present, and Future (United States)

    This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...

  16. Water System Adaptation To Hydrological Changes: Module 7, Adaptation Principles and Considerations (United States)

    This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...

  17. Socio-Hydrologic Modeling: Characterizing the Dynamics of Coupled Human-Water Systems Using Natural Science Methods (United States)

    Sivapalan, M.; Elshafei, Y.; Srinivasan, V.


    A challenging research puzzle in the research on sustainable water management in the Anthropocene is why some societies successfully recover from "ecological destruction" to transition to "successful adaptation" over decadal timescales, while others fail. We present a conceptual modeling framework to understand and characterize these transitions. In this way, we aim to capture the potential drivers of the desired shift towards achieving sustainability of socio-hydrological systems. This is done through a synthesis of detailed socio-hydrological analyses of four river basins in three continents, carried out using different quantitative socio-hydrologic models: Murrumbidgee River Basin in eastern Australia, Lake Toolibin Catchment in Western Australia, Tarim River Basin in Western China and Kissimmee River Basin, in south-east United States. The case studies are analysed using either place-based models designed specifically to mimic observed long-term socio-hydrologic trends, or generic conceptual models with foundations in diverse strands of literature including sustainability science and resilience theory. A comparative analysis of the four case studies reveals a commonality in the building blocks employed to model these socio-hydrologic systems; including water balance, economic, environmental and human-feedback components. Each model reveals varying interpretations of a common organising principle that could explain the shift between productive (socio-economic) and restorative (environmental) forces that was evident in each of these systems observed over a long time frame. The emergent principle is related to the essential drivers of the human feedback component and rests with a general formulation of human well-being, as reflected by both their economic and environmental well-being. It is envisaged that the understanding of the system drivers gained from such a comparative study would enable more targeted water management strategies that can be administered in

  18. Modelling socio-hydrological systems: a review of concepts, approaches and applications (United States)

    Blair, P.; Buytaert, W.


    Interactions between humans and the environment are occurring on a scale that has never previously been seen; one environmental facet that has seen particular co-evolution with society is water. The scale of human interaction with the water cycle, along with the coupling present between social and hydrological systems, means that decisions that impact water also impact people. Models are often used to assist in decision-making regarding hydrological systems, and so in order for effective decisions to be made regarding water resource management, these interactions and feedbacks should be accounted for in models used to analyse systems in which water and humans interact. This paper reviews literature surrounding aspects of socio-hydrological modelling. It begins with background information regarding the current state of socio-hydrology as a discipline, before covering reasons for modelling and potential applications. Some important concepts that underlie socio-hydrological modelling efforts are then discussed, including ways of viewing socio-hydrological systems, space and time in modelling, complexity, data and model conceptualisation. Several modelling approaches are described, the stages in their development detailed and their applicability to socio-hydrological cases discussed. Gaps in research are then highlighted to guide directions for future research. The review of literature suggests that the nature of socio-hydrological study, being interdisciplinary, focusing on complex interactions between human and natural systems, and dealing with long horizons, is such that modelling will always present a challenge; it is, however, the task of the modeller to use the wide range tools afforded to them to overcome these challenges as much as possible. The focus in socio-hydrology is on understanding the human-water system in a holistic sense, which differs from the problem solving focus of other water management fields, and as such models in socio-hydrology should be

  19. Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems (United States)

    Chapelle, Francis H.; McMahon, Peter B.; Dubrovsky, Neil M.; Fujii, Roger F.; Oaksford, Edward T.; Vroblesky, Don A.


    The distribution of microbially mediated terminal electron-accepting processes (TEAPs( was investigated in four hydrologically diverse groundwater systems by considering patterns of electron acceptor (nitrate, sulfate) consumption, intermediate product (hydrogen (H2)) concentrations, and final product (ferrous iron, sulfide, and methane) production. In each hydrologic system a determination of predominant TEAPs could be arrived at, but the level of confidence appropriate for each determination differed. In a portion of the lacustrine aquifer of the San Joaquin Valley, for example, all three indicators (sulfate concentrations decreasing, H2concentrations in the 1–2 nmol range, and sulfide concentrations increasing along flow paths identified sulfate reduction as the predominant TEAP, leading to a high degree of confidence in the determination. In portions of the Floridan aquifer and a petroleum hydrocarbon-contaminated aquifer, sulfate reduction and methanogenesis are indicated by production of sulfide and methane, and hydrogen oncentrations in the 1–4 nmol and 5–14 nmol range, respectively. However, because electron acceptor consumption could not be documented in these systems, less confidence is warranted in the TEAP determination. In the Black Creek aquifer, no pattern of sulfate consumption and sulfide production were observed, but H2 concentrations indicated sulfate reduction as the predominant TEAP. In this case, where just a single line of evidence is available, the least confidence in the TEAP diagnosis is justified. Because this methodology is based on measurable water chemistry parameters and upon the physiology of microbial electron transfer processes, it provides a better description of predominant redox processes in groundwater systems than more traditional Eh-based methods.

  20. Thermodynamic limits of hydrologic cycling within the Earth system: concepts, estimates and implications

    Directory of Open Access Journals (Sweden)

    A. Kleidon


    Full Text Available The hydrologic cycle results from the combination of energy conversions and atmospheric transport, and the laws of thermodynamics set limits to both. Here, we apply thermodynamics to derive the limits of the strength of hydrologic cycling within the Earth system and about the properties and processes that shape these limits. We set up simple models to derive analytical expressions of the limits of evaporation and precipitation in relation to vertical and horizontal differences in solar radiative forcing. These limits result from a fundamental trade-off by which a greater evaporation rate reduces the temperature gradient and thus the driver for atmospheric motion that exchanges moistened air from the surface with the drier air aloft. The limits on hydrologic cycling thus reflect the strong interaction between the hydrologic flux, motion, and the driving gradient. Despite the simplicity of the models, they yield estimates for the limits of hydrologic cycling that are within the observed magnitude, suggesting that the global hydrologic cycle operates near its maximum strength. We close with a discussion of how thermodynamic limits can provide a better characterization of the interaction of vegetation and human activity with hydrologic cycling.

  1. On modeling complex interplay in small-scale self-organized socio-hydrological systems (United States)

    Muneepeerakul, Rachata


    Successful and sustainable socio-hydrological systems, as in any coupled natural human-systems, require effective governance, which depends on the existence of proper infrastructure (both hard and soft). Recent work has addressed systems in which resource users and the organization responsible for maintaining the infrastructure are separate entities. However, many socio-hydrological systems, especially in developing countries, are small and without such formal division of labor; rather, such division of labor typically arises from self-organization within the population. In this work, we modify and mathematically operationalize a conceptual framework by developing a system of differential equations that capture the strategic behavior within such a self-organized population, its interplay with infrastructure characteristics and hydrological dynamics, and feedbacks between these elements. The model yields a number of insightful conditions related to long-term sustainability and collapse of the socio-hydrological system in the form of relationships between biophysical and social factors. These relationships encapsulate nonlinear interactions of these factors. The modeling framework is grounded in a solid conceptual foundation upon which additional modifications and realism can be built for potential reconciliation between socio-hydrology with other related fields and further applications.

  2. Embedding complex hydrology in the regional climate system – Dynamic coupling across different modelling domains

    DEFF Research Database (Denmark)

    Butts, Michael; Drews, Martin; Larsen, Morten Andreas Dahl


    To improve our understanding of the impacts of feedback between the atmosphere and the terrestrial water cycle including groundwater and to improve the integration of water resource management modelling for climate adaption we have developed a dynamically coupled climate–hydrological modelling...... system. The OpenMI modelling interface is used to couple a comprehensive hydrological modelling system, MIKE SHE running on personal computers, and a regional climate modelling system, HIRHAM running on a high performance computing platform. The coupled model enables two-way interaction between...... the atmosphere and the groundwater via the land surface and can represent the lateral movement of water in both the surface and subsurface and their interactions, not normally accounted for in climate models. Meso-scale processes are important for climate in general and rainfall in particular. Hydrological...

  3. Role of Hydrological Studies for the Development of the TDPS System

    Directory of Open Access Journals (Sweden)

    Claudia Canedo


    Full Text Available The South American Altiplano in the Andes is, aside from Tibet, the most extensive high plateau on Earth. This semiarid area represents important water resources storages, including the Lakes Titicaca and Poopó located in the northern and central Altiplano, respectively. The two lake basins and the southern saltpans constitute a large watershed, called the Lake Titicaca, Desaguadero River, Lake Poopó, and Coipasa Salt Flat System (TDPS hydrologic system. The Altiplano climate, topography, and location determine the TDPS hydrologic functioning. Scarce data and high spatial variability represent challenges to correctly simulate the TDPS water budget. Consequently, there is an important need to improve the understanding of the water resources in current and future climate over the area. The paper provides a comprehensive state-of-the-art regarding current knowledge of the TDPS hydro-socioeconomic system and summarizes the data needs to improve the current hydrological understanding.

  4. Well-controlled experimentation in artificial catchments as the key to better understand natural hydrologic systems? (United States)

    Holländer, H.; Schoenheinz, D.; Stadler, S.


    Catchments are open dynamic systems that process mass and momentum, and drive energy and entropy towards an equilibrium state of development. The formulation of equations to explain these systems results in a number of redundant variables for which constitutive relationships are required at the scale of integration. This so called "closure problem" exists due to the generally unknown relationship between hydrologic state variables and fluxes. Traditionally, we deal with two complementary approaches in hydrological research: i) experimental catchment studies and ii) physically-based hydrological modelling. The unique character of each catchment and of its eco-hydrological processes often does not allow conclusions by analogy, which would require similarity and homogeneity of catchment features. Generalised theories to cope with both the closure problem and the singularity of catchments in hydrological research have not been derived so far, and the modelling of flow processes in catchments is still impeded e. g. by scale incompatibilities of involved parameters. One of the main questions addressed in our contribution is: How much improvement in hydrological research is possible by well-controlled experimentation fields as artificially created catchments? The definition of parameters and boundary conditions in such well-controlled experiments allows for an improvement in observation strategies and therefore a systematic learning from observed data and an enhanced understanding of the interrelation of given structures and process triggers. Also, the conditions for targeted testing of hydrological hypotheses are considered to be the best possible. In our contribution we identify examples for the determination of such processes and their description e.g. for water transport in the soil matrix, structure and dynamics of sedimentation as well as erosion in the artificial catchment Chicken Creek, Lusatia, Germany. We also show that there are still challenging aspects even

  5. Hydrologic monitoring using open-source Arduino logging platforms in a socio-hydrological system of the drought-prone tropics, Guanacaste, Costa Rica (United States)

    Hund, S. V.; Johnson, M. S.; Steyn, D. G.; Keddie, T.; Morillas, L.


    Water supply is highly disputed in the tropics of northwestern Costa Rica where rainfall exhibits high seasonal variability and long annual dry seasons. Water shortages are common during the dry season, and water conflicts emerge between domestic water users, intensively irrigated agriculture, the tourism industry, and ecological flows. Climate change may further increase the variability of precipitation and the risk for droughts, and pose challenges for small rural agricultural communities experiencing water stress. To adapt to seasonal droughts and improve resilience of communities to future changes, it is essential to increase understanding of interactions between components of the coupled hydrological-social system. Yet, hydrological monitoring and data on water use within developing countries of the humid tropics is limited. To address these challenges and contribute to extended monitoring networks, low-cost and open-source monitoring platforms were developed based off Arduino microelectronic boards and software and combined with hydrological sensors to monitor river stage and groundwater levels in two watersheds of Guanacaste, Costa Rica. Hydrologic monitoring stations are located in remote locations and powered by solar panels. Monitoring efforts were made possible through collaboration with local rural communities, and complemented with a mix of digitized water extraction data and community water use narratives to increase understanding of water use and challenges. We will present the development of the Arduino logging system, results of water supply in relation to water use for both the wet and dry season, and discuss these results within a socio-hydrological system context.

  6. HYDROGEOCHEM: A coupled model of HYDROlogic transport and GEOCHEMical equilibria in reactive multicomponent systems

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Tripathi, V.S.


    This report presents the development of a hydrogeochemical transport model for multicomponent systems. The model is designed for applications to proper hydrological setting, accommodation of complete suite of geochemical equilibrium processes, easy extension to deal with chemical kinetics, and least constraints of computer resources. The hydrological environment to which the model can be applied is the heterogeneous, anisotropic, saturated-unsaturated subsurface media under either transient or steady state flow conditions. The geochemical equilibrium processes included in the model are aqueous complexation, adsorption-desorption, ion exchange, precipitation-dissolution, redox, and acid-base reactions. To achieve the inclusion of the full complement of these geochemical processes, total analytical concentrations of all chemical components are chosen as the primary dependent variables in the hydrological transport equations. Attendant benefits of this choice are to make the extension of the model to deal with kinetics of adsorption-desorption, ion exchange, precipitation-dissolution, and redox relatively easy. To make the negative concentrations during the iteration between the hydrological transport and geochemical equilibrium least likely, an implicit form of transport equations are proposed. To alleviate severe constraints of computer resources in terms of central processing unit (CPU) time and CPU memory, various optional numerical schemes are incorporated in the model. The model consists of a hydrological transport module and geochemical equilibrium module. Both modules were thoroughly tested in code consistency and were found to yield plausible results. The model is verified with ten examples. 79 refs., 21 figs., 17 tabs.

  7. An Evaluation System for the Online Training Programs in Meteorology and Hydrology (United States)

    Wang, Yong; Zhi, Xiefei


    This paper studies the current evaluation system for the online training program in meteorology and hydrology. CIPP model that includes context evaluation, input evaluation, process evaluation and product evaluation differs from Kirkpatrick model including reactions evaluation, learning evaluation, transfer evaluation and results evaluation in…

  8. The effects of changes to estuarine hydrology on system phosphorous retention capacity: The Mondego estuary, Portugal

    DEFF Research Database (Denmark)

    Lillebo, A. I.; Otero, M.; Coelho, J. P.


    The Mondego estuary is a mainly polyhaline estuary in central Portugal in which eutrophication increased during the last decades of the 20th century. In 1998 the system hydrology was changed, aiming to reverse the eutrophication process. A long environmental monitoring database showed that the mean...

  9. A system dynamic model to estimate hydrological processes and water use in a eucalypt plantation (United States)

    Ying Ouyang; Daping Xu; Ted Leininger; Ningnan Zhang


    Eucalypts have been identified as one of the best feedstocks for bioenergy production due to theirfast-growth rate and coppicing ability. However, their water use efficiency along with the adverse envi-ronmental impacts is still a controversial issue. In this study, a system dynamic model was developed toestimate the hydrological processes and water use in a eucalyptus...

  10. Optimizing Use of Water Management Systems during Changes of Hydrological Conditions (United States)

    Výleta, Roman; Škrinár, Andrej; Danáčová, Michaela; Valent, Peter


    When designing the water management systems and their components, there is a need of more detail research on hydrological conditions of the river basin, runoff of which creates the main source of water in the reservoir. Over the lifetime of the water management systems the hydrological time series are never repeated in the same form which served as the input for the design of the system components. The design assumes the observed time series to be representative at the time of the system use. However, it is rather unrealistic assumption, because the hydrological past will not be exactly repeated over the design lifetime. When designing the water management systems, the specialists may occasionally face the insufficient or oversized capacity design, possibly wrong specification of the management rules which may lead to their non-optimal use. It is therefore necessary to establish a comprehensive approach to simulate the fluctuations in the interannual runoff (taking into account the current dry and wet periods) in the form of stochastic modelling techniques in water management practice. The paper deals with the methodological procedure of modelling the mean monthly flows using the stochastic Thomas-Fiering model, while modification of this model by Wilson-Hilferty transformation of independent random number has been applied. This transformation usually applies in the event of significant asymmetry in the observed time series. The methodological procedure was applied on the data acquired at the gauging station of Horné Orešany in the Parná Stream. Observed mean monthly flows for the period of 1.11.1980 - 31.10.2012 served as the model input information. After extrapolation the model parameters and Wilson-Hilferty transformation parameters the synthetic time series of mean monthly flows were simulated. Those have been compared with the observed hydrological time series using basic statistical characteristics (e. g. mean, standard deviation and skewness) for testing

  11. Hydrological states and fluxes in terrestrial systems: from observation to prediction (John Dalton Medal Lecture) (United States)

    Vereecken, Harry


    Quantification and prediction of hydrological processes requires information on the spatial and temporal distribution of soil water fluxes and soil water content. The access to spatially and temporally highly resolved soil water content and fluxes is needed to adequately test hydrological hypotheses and to validate hydrological models. In this presentation we will discuss new developments for the determination of soil water content and quantification and prediction of hydrological fluxes based on hydrogeophysical measurement techniques and novel ground- and satellite based sensing platforms. At the field scale, ground penetrating radar and passive microwave methods are presently being developed which provide the possibility to map soil water content with a high spatial and temporal resolution, also in the subsurface environment. Recent developments show that the application of full wave form inversion methods is a unique technique to derive soil water and soil hydraulic parameters from on- and off-ground systems with high spatial resolution. At the small catchment scale, wireless sensor networks are presently being developed providing soil moisture content values with a high spatial and temporal resolution. Stochastic theories have been used to interpret the relationship between average soil water content and its standard deviation. Cosmic ray sensors are presently being deployed within the TERENO observatories. These sensors provide soil moisture content values with a high temporal resolution at a scale of one to two hundred meters, thereby bridging the gap between local scale measurements and remote sensing platforms. Cosmic ray probes are extremely valuable for the determination of soil water content in agriculturally managed soils. Data assimilation methods provide a unique approach to fully exploit the value of spatially and temporally highly resolved soil water content measurements and states of the terrestrial system for the prediction of hydrological fluxes

  12. A national-scale seasonal hydrological forecast system: development and evaluation over Britain

    Directory of Open Access Journals (Sweden)

    V. A. Bell


    Full Text Available Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts from the GloSea5 model (1996 to 2009 are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region. Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 % in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows, whereas for the 3-month ahead lead time, GloSea5 forecasts account for  ∼ 70

  13. A national-scale seasonal hydrological forecast system: development and evaluation over Britain (United States)

    Bell, Victoria A.; Davies, Helen N.; Kay, Alison L.; Brookshaw, Anca; Scaife, Adam A.


    Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better) rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts) from the GloSea5 model (1996 to 2009) are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean) rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region). Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 %) in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows), whereas for the 3-month ahead lead time, GloSea5 forecasts account for ˜ 70 % of the forecast

  14. Quantifying biogeochemical responses to hydrological perturbations in terrestrial systems using geophysical monitoring and inversion schemes (United States)

    Hubbard, S. S.; Dafflon, B.; Tran, A. P.; Chen, J.; Wainwright, H. M.


    Although recognized that terrestrial hydrological processes drive a variety of biogeochemical processes, quantifying interactions that occur across a range of scales and compartments is challenging. We describe recently developed approaches to quantify these interactions, and demonstrate the value of developed approaches in two different terrestrial systems. The first is a relatively flat Arctic tundra polygonal ground system, where snowmelt-dominated, surface water distribution significantly influences soil microbial activity and resulting production of greenhouse gasses. The second is a Colorado River floodplain-catchment, where a transient snowmelt pulse leads to hydrological and biogeochemical interactions between different compartents of the system. Three capabilties were developed to improve understanding of hydrology influences on biogeochemistry at these sites. The first is a networked sensing system that coincidently measures below-, at- and above-ground critical properties (such as soil moisture, soil temperature, canopy greenness, surface water inundation, active layer depth, and snow thickness). The approach takes advantage of autonomous data acquisition using unmanned aerial vehicles, tram-based sensors, and surface geophysical approaches. The dense datasets enable 'visualization' of interactions that occur across compartments in response to freeze-thaw and runoff processes. The second advance is the development of a coupled hydro-thermal-geophysical inversion scheme that takes advantage of spatially extensive geophysical data as well as direct but sparse measurements in the quantitative estimation of terrestrial responses to hydrological perturbations. The third is the development of stochastic 'zonation' approaches, which use multi-type, multi-scale datasets to identify regions in the landscape that have unique distributions of properties that influence biogeochemical cycling. Together, the sensing, modeling, and integrative functional zonation

  15. Interactive Learning Environment: Web-based Virtual Hydrological Simulation System using Augmented and Immersive Reality (United States)

    Demir, I.


    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The hydrological simulation system is a web-based 3D interactive learning environment for teaching hydrological processes and concepts. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create or load predefined scenarios, control environmental parameters, and evaluate environmental mitigation alternatives. The web-based simulation system provides an environment for students to learn about the hydrological processes (e.g. flooding and flood damage), and effects of development and human activity in the floodplain. The system utilizes latest web technologies and graphics processing unit (GPU) for water simulation and object collisions on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various visualization and interaction modes.

  16. An evaluation of the Canadian global meteorological ensemble prediction system for short-term hydrological forecasting

    Directory of Open Access Journals (Sweden)

    F. Anctil


    Full Text Available Hydrological forecasting consists in the assessment of future streamflow. Current deterministic forecasts do not give any information concerning the uncertainty, which might be limiting in a decision-making process. Ensemble forecasts are expected to fill this gap.

    In July 2007, the Meteorological Service of Canada has improved its ensemble prediction system, which has been operational since 1998. It uses the GEM model to generate a 20-member ensemble on a 100 km grid, at mid-latitudes. This improved system is used for the first time for hydrological ensemble predictions. Five watersheds in Quebec (Canada are studied: Chaudière, Châteauguay, Du Nord, Kénogami and Du Lièvre. An interesting 17-day rainfall event has been selected in October 2007. Forecasts are produced in a 3 h time step for a 3-day forecast horizon. The deterministic forecast is also available and it is compared with the ensemble ones. In order to correct the bias of the ensemble, an updating procedure has been applied to the output data. Results showed that ensemble forecasts are more skilful than the deterministic ones, as measured by the Continuous Ranked Probability Score (CRPS, especially for 72 h forecasts. However, the hydrological ensemble forecasts are under dispersed: a situation that improves with the increasing length of the prediction horizons. We conjecture that this is due in part to the fact that uncertainty in the initial conditions of the hydrological model is not taken into account.

  17. Hydrologic system state at debris flow initiation in the Pitztal catchment, Austria (United States)

    Mostbauer, Karin; Hrachowitz, Markus; Prenner, David; Kaitna, Roland


    Debris flows represent a severe hazard in mountain regions. Though significant effort has been made to forecast such events, the trigger conditions as well as the hydrologic disposition of a watershed at the time of debris flow occurrence are not well understood. To improve our knowledge on the connection between debris flow initiation and the hydrologic system, this study applies a semi-distributed conceptual rainfall-runoff model, linking different system state variables such as soil moisture, snowmelt, or runoff with documented debris flow events in the Pitztal watershed, western Austria. The hydrologic modelling was performed on a daily basis between 1953 and 2012. High-intensity rainfall could be identified as the dominant trigger (31 out of 43 debris flows), while triggering exclusively by low-intensity, long-lasting rainfall was only observed in one single case. The remaining events were related to snowmelt; whether all of these events where triggered by rain-on-snow, or whether some of these events were actually triggered by snowmelt only, remains unclear since the occurrence of un- resp. underrecorded rainfall was detected frequently. The usage of a conceptual hydrological model for investigating debris flow initiation constitutes a novel approach in debris flow research and was assessed as very valuable. For future studies, it is recommended to evaluate also sub-daily information. As antecedent snowmelt was found to be much more important to debris flow initiation than antecedent rainfall, it might prove beneficial to include snowmelt in the commonly used rainfall intensity-duration thresholds.

  18. Identification of Groundwater Nitrate Contamination from Explosives Used in Road Construction: Isotopic, Chemical, and Hydrologic Evidence. (United States)

    Degnan, James R; Böhlke, J K; Pelham, Krystle; Langlais, David M; Walsh, Gregory J


    Explosives used in construction have been implicated as sources of NO3(-) contamination in groundwater, but direct forensic evidence is limited. Identification of blasting-related NO3(-) can be complicated by other NO3(-) sources, including agriculture and wastewater disposal, and by hydrogeologic factors affecting NO3(-) transport and stability. Here we describe a study that used hydrogeology, chemistry, stable isotopes, and mass balance calculations to evaluate groundwater NO3(-) sources and transport in areas surrounding a highway construction site with documented blasting in New Hampshire. Results indicate various groundwater responses to contamination: (1) rapid breakthrough and flushing of synthetic NO3(-) (low δ(15)N, high δ(18)O) from dissolution of unexploded NH4NO3 blasting agents in oxic groundwater; (2) delayed and reduced breakthrough of synthetic NO3(-) subjected to partial denitrification (high δ(15)N, high δ(18)O); (3) relatively persistent concentrations of blasting-related biogenic NO3(-) derived from nitrification of NH4(+) (low δ(15)N, low δ(18)O); and (4) stable but spatially variable biogenic NO3(-) concentrations, consistent with recharge from septic systems (high δ(15)N, low δ(18)O), variably affected by denitrification. Source characteristics of denitrified samples were reconstructed from dissolved-gas data (Ar, N2) and isotopic fractionation trends associated with denitrification (Δδ(15)N/Δδ(18)O ≈ 1.31). Methods and data from this study are expected to be applicable in studies of other aquifers affected by explosives used in construction.

  19. Hydrologic modeling of Low Impact Development systems at the urban catchment scale (United States)

    Palla, Anna; Gnecco, Ilaria


    In this paper, the implementation of Low Impact Development systems (LIDs) as source control solutions that contribute to restore the critical components of natural flow regimes, is analyzed at the urban catchment scale. The hydrologic response of a small urban catchment is investigated under different land use conversion scenarios including the installation of green roofs and permeable pavements. The modeling is undertaken using the EPA SWMM; the "do nothing" scenario is calibrated and validated based on field measurements while the LID control modules are calibrated and validated based on laboratory test measurements. The simulations are carried out by using as input the synthetic hyetographs derived for three different return periods (T = 2, 5 and 10 years). Modeling results confirm the effectiveness of LID solutions even for the design storm event (T = 10 years): in particular a minimum land use conversion area, corresponding to the Effective Impervious Area reduction of 5%, is required to obtain noticeable hydrologic benefits. The conversion scenario response is analyzed by using the peak flow reduction, the volume reduction and the hydrograph delay as hydrologic performance indexes. Findings of the present research show that the hydrologic performance linearly increases with increasing the EIA reduction percentages: at 36% EIA reduction (corresponding to the whole conversion of rooftops and parking lot areas), the peak and volume reductions rise till 0.45 and 0.23 respectively while the hydrograph delay increases till 0.19.

  20. Hydrological regulation drives regime shifts: evidence from paleolimnology and ecosystem modeling of a large shallow Chinese lake. (United States)

    Kong, Xiangzhen; He, Qishuang; Yang, Bin; He, Wei; Xu, Fuliu; Janssen, Annette B G; Kuiper, Jan J; van Gerven, Luuk P A; Qin, Ning; Jiang, Yujiao; Liu, Wenxiu; Yang, Chen; Bai, Zelin; Zhang, Min; Kong, Fanxiang; Janse, Jan H; Mooij, Wolf M


    Quantitative evidence of sudden shifts in ecological structure and function in large shallow lakes is rare, even though they provide essential benefits to society. Such 'regime shifts' can be driven by human activities which degrade ecological stability including water level control (WLC) and nutrient loading. Interactions between WLC and nutrient loading on the long-term dynamics of shallow lake ecosystems are, however, often overlooked and largely underestimated, which has hampered the effectiveness of lake management. Here, we focus on a large shallow lake (Lake Chaohu) located in one of the most densely populated areas in China, the lower Yangtze River floodplain, which has undergone both WLC and increasing nutrient loading over the last several decades. We applied a novel methodology that combines consistent evidence from both paleolimnological records and ecosystem modeling to overcome the hurdle of data insufficiency and to unravel the drivers and underlying mechanisms in ecosystem dynamics. We identified the occurrence of two regime shifts: one in 1963, characterized by the abrupt disappearance of submerged vegetation, and another around 1980, with strong algal blooms being observed thereafter. Using model scenarios, we further disentangled the roles of WLC and nutrient loading, showing that the 1963 shift was predominantly triggered by WLC, whereas the shift ca. 1980 was attributed to aggravated nutrient loading. Our analysis also shows interactions between these two stressors. Compared to the dynamics driven by nutrient loading alone, WLC reduced the critical P loading and resulted in earlier disappearance of submerged vegetation and emergence of algal blooms by approximately 26 and 10 years, respectively. Overall, our study reveals the significant role of hydrological regulation in driving shallow lake ecosystem dynamics, and it highlights the urgency of using multi-objective management criteria that includes ecological sustainability perspectives when

  1. Tropical rainfall over the last two millennia: evidence for a low-latitude hydrologic seesaw (United States)

    Lechleitner, Franziska A.; Breitenbach, Sebastian F. M.; Rehfeld, Kira; Ridley, Harriet E.; Asmerom, Yemane; Prufer, Keith M.; Marwan, Norbert; Goswami, Bedartha; Kennett, Douglas J.; Aquino, Valorie V.; Polyak, Victor; Haug, Gerald H.; Eglinton, Timothy I.; Baldini, James U. L.


    The presence of a low- to mid-latitude interhemispheric hydrologic seesaw is apparent over orbital and glacial-interglacial timescales, but its existence over the most recent past remains unclear. Here we investigate, based on climate proxy reconstructions from both hemispheres, the inter-hemispherical phasing of the Intertropical Convergence Zone (ITCZ) and the low- to mid-latitude teleconnections in the Northern Hemisphere over the past 2000 years. A clear feature is a persistent southward shift of the ITCZ during the Little Ice Age until the beginning of the 19th Century. Strong covariation between our new composite ITCZ-stack and North Atlantic Oscillation (NAO) records reveals a tight coupling between these two synoptic weather and climate phenomena over decadal-to-centennial timescales. This relationship becomes most apparent when comparing two precisely dated, high-resolution paleorainfall records from Belize and Scotland, indicating that the low- to mid-latitude teleconnection was also active over annual-decadal timescales. It is likely a combination of external forcing, i.e., solar and volcanic, and internal feedbacks, that drives the synchronous ITCZ and NAO shifts via energy flux perturbations in the tropics.

  2. Modelling hydrology of a single bioretention system with HYDRUS-1D. (United States)

    Meng, Yingying; Wang, Huixiao; Chen, Jiangang; Zhang, Shuhan


    A study was carried out on the effectiveness of bioretention systems to abate stormwater using computer simulation. The hydrologic performance was simulated for two bioretention cells using HYDRUS-1D, and the simulation results were verified by field data of nearly four years. Using the validated model, the optimization of design parameters of rainfall return period, filter media depth and type, and surface area was discussed. And the annual hydrologic performance of bioretention systems was further analyzed under the optimized parameters. The study reveals that bioretention systems with underdrains and impervious boundaries do have some detention capability, while their total water retention capability is extremely limited. Better detention capability is noted for smaller rainfall events, deeper filter media, and design storms with a return period smaller than 2 years, and a cost-effective filter media depth is recommended in bioretention design. Better hydrologic effectiveness is achieved with a higher hydraulic conductivity and ratio of the bioretention surface area to the catchment area, and filter media whose conductivity is between the conductivity of loamy sand and sandy loam, and a surface area of 10% of the catchment area is recommended. In the long-term simulation, both infiltration volume and evapotranspiration are critical for the total rainfall treatment in bioretention systems.

  3. Dynamic hydrologic economic modeling of tradeoffs in hydroelectric systems (United States)

    Kern, Jordan D.

    Hydropower producers face a future beset by unprecedented changes in the electric power industry, including the rapid growth of installed wind power capacity and a vastly increased supply of natural gas due to horizontal hydraulic fracturing (or "fracking"). There is also increased concern surrounding the potential for climate change to impact the magnitude and frequency of droughts. These developments may significantly alter the financial landscape for hydropower producers and have important ramifications for the environmental impacts of dams. Incorporating wind energy into electric power systems has the potential to affect price dynamics in electricity markets and, in so doing, alter the short-term financial signals on which dam operators rely to schedule reservoir releases. Chapter 1 of this doctoral dissertation develops an integrated reservoir-power system model for assessing the impact of large scale wind power integration of hydropower resources. Chapter 2 explores how efforts to reduce the carbon footprint of electric power systems by using wind energy to displace fossil fuel-based generation may inadvertently yield further impacts to river ecosystems by disrupting downstream flow patterns. Increased concern about the potential for climate change to alter the frequency and magnitude of droughts has led to growing interest in "index insurance" that compensates hydropower producers when values of an environmental variable (or index), such as reservoir inflows, crosses an agreed upon threshold (e.g., low flow conditions). Chapter 3 demonstrates the need for such index insurance contracts to also account for changes in natural gas prices in order to be cost-effective. Chapter 4 of this dissertation analyzes how recent low natural gas prices (partly attributable to fracking) have reduced the cost of implementing ramp rate restrictions at dams, which help restore sub-daily variability in river flows by limiting the flexibility of dam operators in scheduling

  4. Water and the Earth System in the Anthropocene: Evolution of Socio-Hydrology (United States)

    Sivapalan, M.; Bloeschl, G.


    Over the past century, hydrological science has evolved through distinct eras as judged by ideas, information sources, technological advances and societal influences: Empirical Era which was data based with little theory, Systems Era that focused on input-output relationships, Process Era with a focus on processes, and the Geosciences Era where hydrology was considered an Earth System science. We argue that as the human footprint on earth becomes increasingly dominant, we are moving into a Co-evolution Era. Co-evolution implies that the components of the Earth system are intimately intertwined at many time scales - fast scales of immediate feedbacks that translate into slow scale interdependencies and trends. These involve feedbacks between the atmosphere, biota, soils and landforms, mediated by water flow and transport processes. The human factor is becoming a key component of this coupled system. While there is a long tradition of considering effects of water on humans, and vice versa, the new thrust on socio-hydrology has a number of defining characteristics that sets it apart from traditional approaches: - Capturing feedbacks of human-natural water system in a dynamic way (slow and fast processes) to go beyond prescribing human factors as mere boundary conditions. These feedbacks will be essential to understand how the system may evolve in the future into new, perhaps previously unobserved, states. - Quantifying system dynamics in a generalizable way. So far, water resources assessment has been context dependent, tied to local conditions. While for immediate decision making this is undoubtedly essential, for more scientific inquiry, a more uniform knowledge base is indispensable. - Not necessarily predictive. The coupled human-nature system is inherently non-linear, which may prohibit predictability in the traditional sense. The socio-hydrologic approach may still be predictive in a statistical sense and, perhaps even more importantly, it may yet reveal

  5. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xubin [Univ. of Arizona, Tucson, AZ (United States); Troch, Peter [Univ. of Arizona, Tucson, AZ (United States); Pelletier, Jon [Univ. of Arizona, Tucson, AZ (United States); Niu, Guo-Yue [Univ. of Arizona, Tucson, AZ (United States); Gochis, David [NCAR Research Applications Lab., Boulder, CO (United States)


    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM).

  6. RIMS: An Integrated Mapping and Analysis System with Applications to Earth Sciences and Hydrology (United States)

    Proussevitch, A. A.; Glidden, S.; Shiklomanov, A. I.; Lammers, R. B.


    A web-based information and computational system for analysis of spatially distributed Earth system, climate, and hydrologic data have been developed. The System allows visualization, data exploration, querying, manipulation and arbitrary calculations with any loaded gridded or vector polygon dataset. The system's acronym, RIMS, stands for its core functionality as a Rapid Integrated Mapping System. The system can be deployed for a Global scale projects as well as for regional hydrology and climatology studies. In particular, the Water Systems Analysis Group of the University of New Hampshire developed the global and regional (Northern Eurasia, pan-Arctic) versions of the system with different map projections and specific data. The system has demonstrated its potential for applications in other fields of Earth sciences and education. The key Web server/client components of the framework include (a) a visualization engine built on Open Source libraries (GDAL, PROJ.4, etc.) that are utilized in a MapServer; (b) multi-level data querying tools built on XML server-client communication protocols that allow downloading map data on-the-fly to a client web browser; and (c) data manipulation and grid cell level calculation tools that mimic desktop GIS software functionality via a web interface. Server side data management of the system is designed around a simple database of dataset metadata facilitating mounting of new data to the system and maintaining existing data in an easy manner. RIMS contains "built-in" river network data that allows for query of upstream areas on-demand which can be used for spatial data aggregation and analysis of sub-basin areas. RIMS is an ongoing effort and currently being used to serve a number of websites hosting a suite of hydrologic, environmental and other GIS data.

  7. Hydrological characteristics and problems of Calma hydro accumulation system

    Directory of Open Access Journals (Sweden)

    Dolinaj Dragan


    Full Text Available Srem, as traditional farming, orchard and wine-growing region, faces the problem of shortage of water needed for agriculture. During the seventies of the last century brook valleys in the southern part of Fruska Gora loess plateau were intended to be dammed. Thus, artificial lakes could have been formed. It took long period of time to put these projects into practice and numerous projects have not started yet. After the dams had been built and lakes filled with water, planners faced hydro-geological problems at many locations. Nevertheless, these accumulations fulfill their primary function, i.e. they ensure water for irrigation and protect agricultural land from floods. There is a hydroaccumulation system, Calma lakes, near the village of Calma. Its primary function was to ensure water supplies for agriculture, but eventually it got new significance which can be noticed in fish raising and sport fishing development.

  8. Drinking water systems, hydrology, and childhood gastrointestinal illness in Central and Northern Wisconsin. (United States)

    Uejio, Christopher K; Yale, Steven H; Malecki, Kristen; Borchardt, Mark A; Anderson, Henry A; Patz, Jonathan A


    This study investigated if the type of drinking water source (treated municipal, untreated municipal, and private well water) modifies the effect of hydrology on childhood (aged hydrologic and weather conditions with childhood gastrointestinal illness from 1991 to 2010. The Central and Northern Wisconsin study area includes households using all 3 types of drinking water systems. Separate time series models were created for each system and half-year period (winter/spring, summer/fall). More precipitation (summer/fall) systematically increased childhood gastrointestinal illness in municipalities accessing untreated water. The relative risk of contracting gastrointestinal illness was 1.4 in weeks with 3 centimeters of precipitation and 2.4 in very wet weeks with 12 centimeters of precipitation. By contrast, gastrointestinal illness in private well and treated municipal areas was not influenced by hydrologic conditions, although warmer winter temperatures slightly increased incidence. Our study suggests that improved drinking water protection, treatment, and delivery infrastructure may improve public health by specifically identifying municipal water systems lacking water treatment that may transmit waterborne disease.

  9. Introducing the CUAHSI Hydrologic Information System Desktop Application (HydroDesktop) and Open Development Community (United States)

    Ames, D.; Kadlec, J.; Horsburgh, J. S.; Maidment, D. R.


    The Consortium of Universities for the Advancement of Hydrologic Sciences (CUAHSI) Hydrologic Information System (HIS) project includes extensive development of data storage and delivery tools and standards including WaterML (a language for sharing hydrologic data sets via web services); and HIS Server (a software tool set for delivering WaterML from a server); These and other CUASHI HIS tools have been under development and deployment for several years and together, present a relatively complete software “stack” to support the consistent storage and delivery of hydrologic and other environmental observation data. This presentation describes the development of a new HIS software tool called “HydroDesktop” and the development of an online open source software development community to update and maintain the software. HydroDesktop is a local (i.e. not server-based) client side software tool that ultimately will run on multiple operating systems and will provide a highly usable level of access to HIS services. The software provides many key capabilities including data query, map-based visualization, data download, local data maintenance, editing, graphing, data export to selected model-specific data formats, linkage with integrated modeling systems such as OpenMI, and ultimately upload to HIS servers from the local desktop software. As the software is presently in the early stages of development, this presentation will focus on design approach and paradigm and is viewed as an opportunity to encourage participation in the open development community. Indeed, recognizing the value of community based code development as a means of ensuring end-user adoption, this project has adopted an “iterative” or “spiral” software development approach which will be described in this presentation.

  10. A flexible hydrological modelling system developed using an object oriented methodology

    Energy Technology Data Exchange (ETDEWEB)

    Rinde, Trond


    The report presents a software system called Process Integrating Network (PINE). The capabilities, working principles, programming technical design and principles of use of the system are described as are some practical applications. PINE is a simulation tool for modelling of hydrological and hydrologically related phenomena. The system is based on object oriented programming principles and was specially designed to provide freedom in the choice of model structures and algorithms for process descriptions. It supports full freedom with regards to spatial distribution and temporal resolution. Geographical information systems (GIS) may be integrated with PINE in order to provide full spatial distribution in system parametrisation, process simulation and visualisation of simulation results. Simulation models are developed by linking components for process description together in a structure. The system can handle compound working media such as water with chemical or biological constituents. Non-hydrological routines may then be included to describe the responses of such constituents. Features such as extensibility and reuse of program components are emphasised in the program design. Separation between process topology, process descriptions and process data facilitates simple and consistent implementation of components for process description. Such components may be automatically prototyped and their response functions may be implemented without knowledge of other parts of the program system and without the need to program import or export routines or a user interface. Model extension is thus a rapid process that does not require extensive programming skills. Components for process descriptions may further be placed in separate program libraries, which can be included in the program as required. The program system can thus be very compact while it still has a large number of process algorithms available. The system can run on both PC and UNIX platforms. 106 figs., 20

  11. Multiproxy Evidence for a Positive Hydrological Budget during the Little Ice Age in the East African Rift, Kenya (United States)

    Goman, M.; Ashley, G. M.; Hover, V. C.; Owen, R.


    Hominin evolution took place in Africa during the Plio-Pleistocene and climate change is thought to be a factor, with Africa experiencing a general cooling and increasing aridification over the last several million years. Today, the climate of the East African Rift Valley of Kenya is characterized as semi-arid with evapotranspiration four times precipitation. Water resources are a valuable commodity for the many millions of inhabitants of the Valley. The short instrumental record shows precipitation fluctuates at sub-decadal timeframes as a result of the ENSO cycle; while during prehistory variations in monsoonal precipitation occurred on Milankovitch timescales (i.e. African Humid Period). Both timescales exhibit significant impacts on the distribution of surface water. However, little is known regarding precipitation variability over sub-millennial timescales. Emerging paleoclimate data indicates that the near surface presence of water has also varied over century length timescales. We present paleoclimate data from multiple sites along a north-south 600 km transect of the Gregory Rift Valley (Kenya) that indicate the region experienced wetter conditions during the Little Ice Age (A.D. 1400-1850). Our reconstructions of landscape and climate during this time frame rely upon a multiproxy and interdisciplinary approach. We discuss data from a variety of environmental settings (e.g. lakes, wetlands, and springs) that indicate an overall increase in hydrologic balance. Evidence is derived from biologic microfossils such as pollen, diatom and testate amoebae assemblages as well as inorganic components of the sedimentary record and geomorphic changes. The data differs significantly from studies undertaken to the west in Uganda and the Congo, where negative hydrologic balances occurred during the Little Ice Age. While the atmospheric dynamics causing this disparity are not yet recognized, interactions between the Intertropical Convergence Zone and the Congo Air Boundary

  12. NATO Advanced Study Institute on Recent Advances in the Modeling of Hydrologic Systems

    CERN Document Server

    O’Connell, P


    Modeling of the rainfall-runoff process is of both scientific and practical significance. Many of the currently used mathematical models of hydrologic systems were developed a genera­ tion ago. Much of the effort since then has focused on refining these models rather than on developing new models based on improved scientific understanding. In the past few years, however, a renewed effort has been made to improve both our fundamental understanding of hydrologic processes and to exploit technological advances in computing and remote sensing. It is against this background that the NATO Advanced Study Institute on Recent Advances in the Modeling of Hydrologic Systems was organized. The idea for holding a NATO ASI on this topic grew out of an informal discussion between one of the co-directors and Professor Francisco Nunes-Correia at a previous NATO ASI held at Tucson, Arizona in 1985. The Special Program Panel on Global Transport Mechanisms in the Geo-Sciences of the NATO Scientific Affairs Division agreed to sp...

  13. Using the object modeling system for hydrological model development and application

    Directory of Open Access Journals (Sweden)

    S. Kralisch


    Full Text Available State of the art challenges in sustainable management of water resources have created demand for integrated, flexible and easy to use hydrological models which are able to simulate the quantitative and qualitative aspects of the hydrological cycle with a sufficient degree of certainty. Existing models which have been de-veloped to fit these needs are often constrained to specific scales or purposes and thus can not be easily adapted to meet different challenges. As a solution for flexible and modularised model development and application, the Object Modeling System (OMS has been developed in a joint approach by the USDA-ARS, GPSRU (Fort Collins, CO, USA, USGS (Denver, CO, USA, and the FSU (Jena, Germany. The OMS provides a modern modelling framework which allows the implementation of single process components to be compiled and applied as custom tailored model assemblies. This paper describes basic principles of the OMS and its main components and explains in more detail how the problems during coupling of models or model components are solved inside the system. It highlights the integration of different spatial and temporal scales by their representation as spatial modelling entities embedded into time compound components. As an exam-ple the implementation of the hydrological model J2000 is discussed.

  14. Hydrological and ecological impacts of dams on the Kafue Flats floodplain system, southern Zambia (United States)

    Mumba, M.; Thompson, J. R.

    Developmental changes in river basins in Africa have become a reality. Many wetland ecosystems have been impacted by dams and other hydrological interventions resulting in both foreseen and unexpected consequences. The Kafue Flats in southern Zambia is an extensive floodplain system that lies within the middle Kafue river basin. The floodplain is about 255 km long and 60 km wide, covering an area of approximately 6,500 km 2. It is currently sandwiched between two large dams which are approximately 270 km apart. These dams have completely altered the hydrological regime of the system. Backwater from the downstream dam and releases from upstream have created a permanently flooded area within the floodplain that was not present in the past. Elsewhere, flooding has been reduced. The ecological consequences of these changes for the floodplain, which hosts two national parks (both Ramsar sites), have been extensive. Hydrological and vegetation changes have impacted the habitat for important wildlife communities including the endemic antelope, Kobus leche kafuensis. The most dramatic change in vegetation is associated with the colonisation of parts of the floodplain by the invasive alien plant, Mimosa pigra. This paper discusses these changes and their potential consequences.

  15. Enhancing Hydrologic Modelling in the Coupled Weather Research and Forecasting-Urban Modelling System (United States)

    Yang, Jiachuan; Wang, Zhi-Hua; Chen, Fei; Miao, Shiguang; Tewari, Mukul; Voogt, James A.; Myint, Soe


    Urbanization modifies surface energy and water budgets, and has significant impacts on local and regional hydroclimate. In recent decades, a number of urban canopy models have been developed and implemented into the Weather Research and Forecasting (WRF) model to capture urban land-surface processes. Most of these models are inadequate due to the lack of realistic representation of urban hydrological processes. Here, we implement physically-based parametrizations of urban hydrological processes into the single layer urban canopy model in the WRF model. The new single-layer urban canopy model features the integration of, (1) anthropogenic latent heat, (2) urban irrigation, (3) evaporation from paved surfaces, and (4) the urban oasis effect. The new WRF-urban modelling system is evaluated against field measurements for four different cities; results show that the model performance is substantially improved as compared to the current schemes, especially for latent heat flux. In particular, to evaluate the performance of green roofs as an urban heat island mitigation strategy, we integrate in the urban canopy model a multilayer green roof system, enabled by the physical urban hydrological schemes. Simulations show that green roofs are capable of reducing surface temperature and sensible heat flux as well as enhancing building energy efficiency.

  16. Evaluating and improving hydrologic processes in the community land model for integrated earth system modeling (United States)

    Hannah, D. M.; Khamis, K.; Blaen, P. J.; Hainie, S.; Mellor, C.; Brown, L. E.; Milner, A. M.


    High climatic sensitivity and low anthropogenic influence make glacierized river basins important environments for examining hydrological and ecological response to global change. This paper synthesises findings from previous and ongoing research in glacierized Alpine and Arctic river basins (located in the French Pyrenees, New Zealand, Swedish Lapland and Svalbard), which adopts an interdisciplinary approach to investigate the climate-cryosphere-hydrology-ecology cascade. Data are used to advance hypotheses concerning the consequences of climate change/ variability on glacier river system hydrology and ecology. Aquatic ecosystems in high latitude and altitude environments are influenced strongly by cryospheric and hydrological processes due to links between atmospheric forcing, snowpack/ glacier mass-balance, river runoff, physico-chemistry and biota. In the current phase of global warming, many glaciers are retreating. Using downscaled regional climate projections as inputs to a distributed hydrological model for a study basin in the French Pyrenees (i.e. an environment at the contemporary limit of valley glaciation), we show how shrinking snow and ice-masses may alter space-time dynamics in basin runoff. Notably, the timing of peak snow- and ice-melt may shift; and the proportion of stream flow sourced from rainfall-runoff (cf. meltwater) may increase. Across our range of Alpine and Arctic study basins, we quantify observed links between relative water source contributions (% meltwater : % groundwater), physico-chemical habitat (e.g. water temperature, electrical conductivity, suspended sediment and channel stability) and benthic communities. At the site scale, results point towards increased community diversity (taxonomic and functional) as meltwater contributions decline and physico-chemical habitat becomes less harsh. However, basin-scale biodiversity may be reduced due to less spatio-temporal heterogeneity in water source contributions and habitats, and the

  17. Global system for hydrological monitoring and forecasting in real time at high resolution (United States)

    Ortiz, Enrique; De Michele, Carlo; Todini, Ezio; Cifres, Enrique


    This project presented at the EGU 2016 born of solidarity and the need to dignify the most disadvantaged people living in the poorest countries (Africa, South America and Asia, which are continually exposed to changes in the hydrologic cycle suffering events of large floods and/or long periods of droughts. It is also a special year this 2016, Year of Mercy, in which we must engage with the most disadvantaged of our Planet (Gaia) making available to them what we do professionally and scientifically. The project called "Global system for hydrological monitoring and forecasting in real time at high resolution" is Non-Profit and aims to provide at global high resolution (1km2) hydrological monitoring and forecasting in real time and continuously coupling Weather Forecast of Global Circulation Models, such us GFS-0.25° (Deterministic and Ensembles Run) forcing a physically based distributed hydrological model computationally efficient, such as the latest version extended of TOPKAPI model, named TOPKAPI-eXtended. Finally using the MCP approach for the proper use of ensembles for Predictive Uncertainty assessment essentially based on a multiple regression in the Normal space, can be easily extended to use ensembles to represent the local (in time) smaller or larger conditional predictive uncertainty, as a function of the ensemble spread. In this way, each prediction in time accounts for both the predictive uncertainty of the ensemble mean and that of the ensemble spread. To perform a continuous hydrological modeling with TOPKAPI-X model and have hot start of hydrological status of watersheds, the system assimilated products of rainfall and temperature derived from remote sensing, such as product 3B42RT of TRMM NASA and others.The system will be integrated into a Decision Support System (DSS) platform, based on geographical data. The DSS is a web application (For Pc, Tablet/Mobile phone): It does not need installation (all you need is a web browser and an internet

  18. Coupling Socioeconomic and Hydrologic Models to Improve Understanding of Human-Natural Systems Linkages in a Water-Rich Environment (United States)

    Hermans, C. M.; Parolari, A.; Wreschnig, A. J.; Ruffing, C. M.; McCormack, S. M.; Urbanova, T.; Linton, J.; Vorosmarty, C. J.


    In many areas of the world, humans have altered the water cycle through a variety of actions including land cover change, pollution and water abstraction. Through these alterations, they have fundamentally changed the character of the water cycle, often leading to unintended economic and social costs. Understanding the consequences of human actions on the water cycle and the impacts of those actions on the human system requires an examination of the dynamic feedbacks and interdependencies between human and hydrologic systems. Using a dynamic systems model, we present a framework for understanding hydrologic-human interactions in the Northeastern United States over time from socioeconomic, ecological and hydrological perspectives. Quantifying the historical dynamics between human processes such as urbanization, industrialization and technological change, and land use and hydrologic change to inform future water resource planning through forecasting and scenario planning tools is discussed.

  19. Water and chemical budgets in an urbanized river system under various hydrological conditions (United States)

    Brion, Natacha; Carbonnel, Vincent; Elskens, Marc; Claeys, Philippe; Verbanck, Michel A.


    Since historical times, riversides are preferential settlement places for human life and activities, ultimately leading to the development of Cities. Available water resources are not only essential to ensure human's vital functions, they are also used for the production of food, goods, and energy, as transport routes and as evacuation ways for domestic and industrial waste products. All these activities profoundly modify natural water circulation as well as water quality, with increased hydrological risks (floods, droughts,…) and chemical hazards (untreated sewage releases, industrial pollution,…) as consequence. An extreme example of strongly modified river system is the river Zenne crossing the city of Brussels. In and around the city, the river together with its connected navigation canal, determine a small vertical urbanized area (800 km2) combining extreme land-use landscapes. While the southern upstream part of this area lies in a region of intensive agricultural activities, the central part is occupied by a dense cityscape including a forested area, and the downstream part is mainly under industrial influence. In this context, we established a box-model representation of water and selected polluting chemicals (N and P, biological oxygen demand, and a selection of metals, pesticides and PAHs) budgets for the studied area under variable hydrological conditions. We first have identified the general distribution of water and pollutant tracers in the various background sources of the system: waters in streams located in the very upstream parts of the catchment, and untreated and treated sewage. Secondly we have assessed the distribution of water flows, and pollutant tracer concentrations at the boundaries of the studied water systems for different stable hydrological conditions and during flood events. Finally we will discuss water budgets and pollution tracer budgets for a yearly average hydrological situation and for dry and wet weather conditions in order

  20. Verification of ECMWF System 4 for seasonal hydrological forecasting in a northern climate (United States)

    Bazile, Rachel; Boucher, Marie-Amélie; Perreault, Luc; Leconte, Robert


    Hydropower production requires optimal dam and reservoir management to prevent flooding damage and avoid operation losses. In a northern climate, where spring freshet constitutes the main inflow volume, seasonal forecasts can help to establish a yearly strategy. Long-term hydrological forecasts often rely on past observations of streamflow or meteorological data. Another alternative is to use ensemble meteorological forecasts produced by climate models. In this paper, those produced by the ECMWF (European Centre for Medium-Range Forecast) System 4 are examined and bias is characterized. Bias correction, through the linear scaling method, improves the performance of the raw ensemble meteorological forecasts in terms of continuous ranked probability score (CRPS). Then, three seasonal ensemble hydrological forecasting systems are compared: (1) the climatology of simulated streamflow, (2) the ensemble hydrological forecasts based on climatology (ESP) and (3) the hydrological forecasts based on bias-corrected ensemble meteorological forecasts from System 4 (corr-DSP). Simulated streamflow computed using observed meteorological data is used as benchmark. Accounting for initial conditions is valuable even for long-term forecasts. ESP and corr-DSP both outperform the climatology of simulated streamflow for lead times from 1 to 5 months depending on the season and watershed. Integrating information about future meteorological conditions also improves monthly volume forecasts. For the 1-month lead time, a gain exists for almost all watersheds during winter, summer and fall. However, volume forecasts performance for spring varies from one watershed to another. For most of them, the performance is close to the performance of ESP. For longer lead times, the CRPS skill score is mostly in favour of ESP, even if for many watersheds, ESP and corr-DSP have comparable skill. Corr-DSP appears quite reliable but, in some cases, under-dispersion or bias is observed. A more complex bias

  1. Insights on Uranium Behavior in a Dynamic Vadose Zone-Aquifer-River Hydrologic System (United States)

    Yabusaki, S.; Fang, Y.; Waichler, S.


    In this study, conceptual process models of uranium behavior for a vadose zone-aquifer-river hydrologic system are evaluated using numerical simulations of dynamic hydrologic and geochemical conditions. The simulations target (1) the vadose zone-aquifer interface under multiple time scales of water table fluctuation, and (2) the aquifer-river interface under spatially and temporally variable solution chemistry in the subsurface of the Hanford Site 300 Area. The large range of diurnal and seasonal fluctuations in the Columbia River stage and the highly transmissive subsurface sediments result in groundwater flow reversals, inland transport above the average water table (in contrast to the net groundwater flow to the river), and cycles of river water incursion into the aquifer. The lower pH, bicarbonate, and calcium in the dilute river water favor the formation of increased amounts of adsorbing uranyl species. Spatially and temporally variable solution chemistry in the unconfined aquifer is shown to significantly alter uranium mobility. In this case, the simulations provide a framework for upscaling and evaluating bench scale uranium sorption characterizations in the context of site-specific hydrology and geochemistry. They also offer insight on the potential for uranium-contaminated sediments in the lower vadose zone to act as a long-term, chronic source of uranium to the groundwater.

  2. A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system (United States)

    Li, Xin; Liu, Shaomin; Xiao, Qin; Ma, Mingguo; Jin, Rui; Che, Tao; Wang, Weizhen; Hu, Xiaoli; Xu, Ziwei; Wen, Jianguang; Wang, Liangxu


    We introduce a multiscale dataset obtained from Heihe Watershed Allied Telemetry Experimental Research (HiWATER) in an oasis-desert area in 2012. Upscaling of eco-hydrological processes on a heterogeneous surface is a grand challenge. Progress in this field is hindered by the poor availability of multiscale observations. HiWATER is an experiment designed to address this challenge through instrumentation on hierarchically nested scales to obtain multiscale and multidisciplinary data. The HiWATER observation system consists of a flux observation matrix of eddy covariance towers, large aperture scintillometers, and automatic meteorological stations; an eco-hydrological sensor network of soil moisture and leaf area index; hyper-resolution airborne remote sensing using LiDAR, imaging spectrometer, multi-angle thermal imager, and L-band microwave radiometer; and synchronical ground measurements of vegetation dynamics, and photosynthesis processes. All observational data were carefully quality controlled throughout sensor calibration, data collection, data processing, and datasets generation. The data are freely available at figshare and the Cold and Arid Regions Science Data Centre. The data should be useful for elucidating multiscale eco-hydrological processes and developing upscaling methods.

  3. An integrated modelling framework for regulated river systems in Land Surface Hydrological Models (United States)

    Rehan Anis, Muhammad; razavi, Saman; Wheater, Howard


    Many of the large river systems around the world are highly regulated with numerous physical flow control and storage structures as well as a range of water abstraction rules and regulations. Most existing Land Surface Models (LSM) do not represent the modifications to the hydrological regimes introduced by water management (reservoirs, irrigation diversions, etc.). The interactions between natural hydrological processes and changes in water and energy fluxes and storage due to human interventions are important to the understanding of how these systems may respond to climate change amongst other drivers for change as well as to the assessment of their feedbacks to the climate system at regional and global scales. This study presents an integrated modelling approach to include human interventions within natural hydrological systems using a fully coupled modelling platform. The Bow River Basin in Alberta (26,200 km2), one of the most managed Canadian rivers, is used to demonstrate the approach. We have dynamically linked the MESH modelling system, which embeds the Canadian Land Surface Scheme (CLASS), with the MODSIM-DSS water management modelling tool. MESH models the natural hydrology while MODSIM optimizes the reservoir operation of 4 simulated reservoirs to satisfy demands within the study basin. MESH was calibrated for the catchments upstream the reservoirs and gave good performance (NSE = 0.81) while BIAS was only 2.3% at the catchment outlet. Without coupling with MODSIM (i.e. no regulation), simulated hydrographs at the catchment outlet were in complete disagreement with observations (NSE = 0.28). The coupled model simulated the optimization introduced by the operation of the multi-reservoir system in the Bow river basin and shows excellent agreement between observed and simulated hourly flows (NSE = 0.98). Irrigation demands are fully satisfied during summer, however, there are some shortages in winter demand from industries, which can be rectified by

  4. Joint Geophysical and Hydrologic Constraints on Shallow Groundwater Flow Systems in Clastic Salt Marshes of the South Atlantic Bight (United States)

    Ruppel, C.; Fulton, P.; Schultz, G. M.; Castillo, L.; Bartlett, J.; Sibley, S.


    Salt marsh systems play a critical role in buffering upland coastal areas from the influence of open saltwater bodies and in filtering contaminants that originate offshore or are flushed from uplands. For these reasons, it is important to understand the salt marsh hydrologic cycle, especially the interaction of groundwater and surface water across low-lying coastal fringes and the changes in physical, chemical, and ecological parameters across salinity gradients extending from upland to tidal creek to open water. For the past 5 years, we have conducted hydrogeophysical surveys (inductive EM and DC resistivity) and collected limited, coincident groundwater hydrologic data in clastic salt marshes throughout the South Atlantic Bight (SAB), stretching from South Carolina on the north to the Georgia-Florida border on the south. All of the marshes are dominated by Spartina and Juncus grasses and are cut by tidally-influenced creeks, but both the lithology and age of the marshes vary widely. For example, one highly homogeneous marsh study site has formed only within the past century, while most sites have existed for thousands of years and have laterally and vertically heterogeneous lithology. Geophysical images of the marsh subsurface and coincident monitoring of groundwater temperature, water level, and/or chemistry consistently show that marshes in the mixed energy environment of the middle part of the SAB (GCE LTER) tend to be dominated by submarsh discharge of freshwater to adjacent tidal creeks. In the South Carolina part of the SAB, we have greater evidence for seepage, particularly through biologically-created macropore networks and permeable sediment bodies that intersect tidal creeks. It is possible though that the South Carolina results are not so much 'universal' as reflective of local lithology. In a very young marsh near the Florida border, geophysical imaging implies a mixture of seepage and submarsh flow, and hydrologic data provide unequivocal proof that

  5. Experimental Hydrologic Ensemble Forecast System for Collaborative R&D and Research-to-Operations Transition in NWS (United States)

    Seo, D.; Liu, Y.; Herr, H.


    Providing uncertainty information is one of the most pressing needs of operational hydrologic forecasting in the National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) today. To address this need, the NWS Office of Hydrologic Development (OHD) is developing the EXperimental Ensemble Forecast System (XEFS), an integrated short- to long-range hydrologic ensemble prediction system to be implemented at the NWS River Forecast Centers for experimental operation within the next two years. The baseline system includes the Ensemble Pre-Processor (EPP3), Ensemble Streamflow Prediction (ESP2) subsystem, Hydrologic Model Output Statistics (HMOS) streamflow ensemble processor, Ensemble Post-Processor (EnsPost) and the Ensemble Product Generator (EPG), and will use the service-oriented architecture of the Early Flood Warning System (FEWS) of Deltares. To support in-house and collaborative research and development of hydrologic ensemble prediction and data assimilation capabilities, NWS/OHD is developing a research and development version of XEFS, or R&D XEFS, of which the above baseline system is a subset. In this presentation, we describe the overall framework and major components of the R&D XEFS, progress to date, plans, challenges and opportunities for collaborative R&D and research-to-operations transition of the research outcome into NWS hydrologic operations and services.

  6. Towards the development of a multimodel hydrological ensemble prediction system for La Mojana, Colombia (United States)

    Brochero, D.; Peña, J.; Anctil, F.; Boucher, M. A.; Nogales, J.; Reyes, N.


    The impacts of floods in Colombia during 2010 and 2011 as a result of ENSO in its cold phase (La Niña) marked a milestone in Colombian politics. In La Mojana region the balance was around 100,000 homeless and 3 km2 of flooded crops. We model the upstream basin of La Mojana (3600 km2 and a mean annual precipitation from 1000mm in valleys to 4500 mm in mountains). A forecasting system of at least three days in advance was judged prudent. This basin receives an streamflow highly regulated by multiple reservoirs that we model with a recurrent neural networks from 1 to 3-days ahead. For hydrological modeling purposes we use the GR4J, HBV, and SIMHYD models, records of daily precipitation, temperature, and streamflows, and 110 prediction scenarios of precipitation and temperature from Canada, USA, Brazil, and Europe extracted from the TIGGE database (MEPS). Calibration period is between January 2004 and August 2011. Validation from September to December 2011, taking as meteorological input the MEPS. We analised four alternative for the 3-day Hydrological Ensemble Prediction System (HEPS) Calibration: 1) only the GR4J model and observed values, 2). as 1 but HBV and SIMHYD are included, 3). Simultaneous optimization of the three hydrological models based on the reliability maximisation and the CRPS minimisation using the multiobjective calibration, observed and forecasted temperature and precipitation from the MEPS and, 4). as 3 but adding the daily streamflow data assimilation. Results show that the use of multiple hydrological models is clearly advantageous but even more performing the simultaneous optimization of hydrological models in the probabilistic context directly. The results evolution of the MAE on the reliability diagram (MAE-RD) are 43%, 27%, 17% and 15% respectively for the four alternatives. Regarding CRPS, MAE results show that the probabilistic prediction improves the deterministic estimate based on the daily mean HEPS scenario, despite the improvement in

  7. Development of a prototype spatial information processing system for hydrologic research (United States)

    Sircar, Jayanta K.


    Significant advances have been made in the last decade in the areas of Geographic Information Systems (GIS) and spatial analysis technology, both in hardware and software. Science user requirements are so problem specific that currently no single system can satisfy all of the needs. The work presented here forms part of a conceptual framework for an all-encompassing science-user workstation system. While definition and development of the system as a whole will take several years, it is intended that small scale projects such as the current work will address some of the more short term needs. Such projects can provide a quick mechanism to integrate tools into the workstation environment forming a larger, more complete hydrologic analysis platform. Described here are two components that are very important to the practical use of remote sensing and digital map data in hydrology. Described here is a graph-theoretic technique to rasterize elevation contour maps. Also described is a system to manipulate synthetic aperture radar (SAR) data files and extract soil moisture data.

  8. Real-Time Operation Of A Multipurpose Multi-Reservoir System Using A Distributed Hydrological Model And Quantitative Precipitation Forecast (United States)

    Saavedra Valeriano, O. C.; Koike, T.; Yang, K.; Yang, D.


    Taking advantage of a distributed hydrological model's capabilities such as capturing spatial heterogeneity, this study couples a physically based hydrological model with embedded dam network operation to a heuristic model for real-time operation. The input rainfall is a meso-scale quantitative precipitation forecast at 0.125 degrees resolution issued every 6 hours. It was analyzed 3 different series and the complete 18 hours lead-time. The system attempts to 1) reduce flood peaks down stream and 2) replenish water level at reservoirs after flood event. The proposed scheme takes advantage of the heuristic algorithm in order to evaluate different release combination sets automatically based on stochastic seeding considering the dam constraints and objective function. Latter is defined to minimize the absolute difference between the forecasted flood volume at protecting point and the total released volume from reservoirs. To estimate the flood volume a desirable discharge is to be set at protecting point. The desirable discharge is defined as the average of observed values exceeding the mean annual discharge; however, this can be modified according to flood warning levels and water resources management. The optimization variables are the release-inflow ratios. In addition, it was introduced the standard deviation of the error forecast as a weight in the objective function. The developed system was applied to upper Tone River in Japan using up to three multipurpose reservoirs. The efficiency of the system's response was evident reducing the flood peaks and volume at protecting point comparing the optimized releases against observed data. This approach has shown feasibility to be used by dam operators as a real-time reference tool for more efficient water resources management.

  9. Improving calibration of two key parameters in Hydrologic Engineering Center hydrologic modelling system, and analysing the influence of initial loss on flood peak flows. (United States)

    Lin, Musheng; Chen, Xingwei; Chen, Ying; Yao, Huaxia


    Parameter calibration is a key and difficult issue for a hydrological model. Taking the Jinjiang Xixi watershed of south-east China as the study area, we proposed methods to improve the calibration of two very sensitive parameters, Muskingum K and initial loss, in the Hydrologic Engineering Center hydrologic modelling system (HEC-HMS) model. Twenty-three rainstorm flood events occurring from 1972 to 1977 were used to calibrate the model using a trial-and-error approach, and a relationship between initial loss and initial discharge for these flood events was established; seven rainstorm events occurring from 1978 to 1979 were used to validate the two parameters. The influence of initial loss change on different return-period floods was evaluated. A fixed Muskingum K value, which was calibrated by assuming a flow wave velocity at 3 m/s, could be used to simulate a flood hydrograph, and the empirical power-function relationship between initial loss and initial discharge made the model more applicable for flood forecasting. The influence of initial loss on peak floods was significant but not identical for different flood levels, and the change rate of peak floods caused by the same initial loss change was more remarkable when the return period increased.

  10. Numerical models for calculating hydrologic processes in river and lake-river systems (United States)

    Nikiforovskaya, V. S.; Voevodin, A. F.


    We use one-dimensional (1D) and two-dimensional (2D) longitudinal-vertical mathematical models and their 2D+1D combination as well as numerical methods to study unsteady processes in the complex open channel systems under the influence of water management measures. The analysis shows the economic feasibility and efficiency of using the developed mathematical models to study hydrological process in water bodies. The study of the physical processes in complex water body, consisting of significantly different components, based on the use of only one chosen mathematical model, is uneconomical and inefficient from the viewpoint of computational expense.

  11. A process-based model for the definition of hydrological alert systems in landslide risk mitigation

    Directory of Open Access Journals (Sweden)

    M. Floris


    Full Text Available The definition of hydrological alert systems for rainfall-induced landslides is strongly related to a deep knowledge of the geological and geomorphological features of the territory. Climatic conditions, spatial and temporal evolution of the phenomena and characterization of landslide triggering, together with propagation mechanisms, are the key elements to be considered. Critical steps for the development of the systems consist of the identification of the hydrological variable related to landslide triggering and of the minimum rainfall threshold for landslide occurrence.

    In this paper we report the results from a process-based model to define a hydrological alert system for the Val di Maso Landslide, located in the northeastern Italian Alps and included in the Vicenza Province (Veneto region, NE Italy. The instability occurred in November 2010, due to an exceptional rainfall event that hit the Vicenza Province and the entire NE Italy. Up to 500 mm in 3-day cumulated rainfall generated large flood conditions and triggered hundreds of landslides. During the flood, the Soil Protection Division of the Vicenza Province received more than 500 warnings of instability phenomena. The complexity of the event and the high level of risk to infrastructure and private buildings are the main reasons for deepening the specific phenomenon occurred at Val di Maso.

    Empirical and physically-based models have been used to identify the minimum rainfall threshold for the occurrence of instability phenomena in the crown area of Val di Maso landslide, where a retrogressive evolution by multiple rotational slides is expected. Empirical models helped in the identification and in the evaluation of recurrence of critical rainfall events, while physically-based modelling was essential to verify the effects on the slope stability of determined rainfall depths. Empirical relationships between rainfall and landslide consist of the calculation of rainfall

  12. Water System Adaptation to Hydrological Changes: Module 1, Introduction to Water System Adaptation (United States)

    Contemporary water management requires resilience, the ability to meet ever increasing water needs, and capacity to adapt to abrupt or transient changes in water quality and availability. For this purpose, effective adaptation to extreme hydrological events (e.g. intense storms, ...

  13. Hydrology and phosphorus transport simulation in a lowland polder by a coupled modeling system. (United States)

    Yan, Renhua; Huang, Jiacong; Li, Lingling; Gao, Junfeng


    Modeling the rain-runoff processes and phosphorus transport processes in lowland polders is critical in finding reasonable measures to alleviate the eutrophication problem of downstream rivers and lakes. This study develops a lowland Polder Hydrology and Phosphorus modeling System (PHPS) by coupling the WALRUS-paddy model and an improved phosphorus module of a Phosphorus Dynamic model for lowland Polder systems (PDP). It considers some important hydrological characteristics, such as groundwater-unsaturated zone coupling, groundwater-surface water feedback, human-controlled irrigation and discharge, and detailed physical and biochemical cycles of phosphorus in surface water. The application of the model in the Jianwei polder shows that the simulated phosphorus matches well with the measured values. The high precision of this model combined with its low input data requirement and efficient computation make it practical and easy to the water resources management of Chinese polders. Parameter sensitivity analysis demonstrates that K uptake , c Q2 , c W1 , and c Q1 exert a significant effect on the modeled results, whereas K resuspensionMax , K settling , and K mineralization have little effect on the modeled total phosphorus. Among the three types of uncertainties (i.e., parameter, initial condition, and forcing uncertainties), forcing uncertainty produces the strongest effect on the simulated phosphorus. Based on the analysis result of annual phosphorus balance when considering the high import from irrigation and fertilization, lowland polder is capable of retaining phosphorus and reducing phosphorus export to surrounding aquatic ecosystems because of their special hydrological regulation regime. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Quantifying human impact on hydrological drought using an Earth System Model (United States)

    van Huijgevoort, Marjolein; Chaney, Nathaniel; Malyshev, Sergey; Shevliakova, Elena; Milly, Chris


    Predicting the human impact on the present and future hydrological cycle remains a significant scientific challenge. Anthropogenic impact includes water management practices like diverting water for irrigation, abstraction of groundwater, and reservoirs. Hydrological extremes, in particular, are heavily affected by water management practices, due to the existing stress on the system during droughts and floods. Therefore, to prepare adaptation plans for hydrological extremes in the future, it is essential to account for water management and other human influences in Earth System Models. In this study we have implemented water management practices in the state-of-the-art GFDL land model, which includes terrestrial water, energy, and carbon balances. Both irrigation practices and reservoirs have been added in the land surface model component of the model. Irrigation amounts are determined from the soil water balance, the evaporative demand of the vegetation and fractional coverage of croplands. The resulting water demand is fulfilled by abstractions from surface water and groundwater. Reservoir outflow is dynamically coupled to the downstream water demand and available reservoir storage. Retrospective model simulations over the contiguous United States indicate a strong human influence on hydrological drought. A water management attribution analysis shows a significant impact on the water availability, mostly in the Midwest of the United States and California. Implementation of reservoirs alters the flow regime, thereby decreasing the short-term drought impact, however, in the case of multi-year drought, impacts are delayed due to the dependency on the reservoir outflow. Irrigation, on the other hand, decreases the water availability in rivers due to increased evapotranspiration leading to a higher drought impact. The average increase in evapotranspiration amounted up to 2 mm/day for cropland areas in California and Texas. Overall, the results show the importance of

  15. JGrass-NewAge hydrological system: an open-source platform for the replicability of science. (United States)

    Bancheri, Marialaura; Serafin, Francesco; Formetta, Giuseppe; Rigon, Riccardo; David, Olaf


    JGrass-NewAge is an open source semi-distributed hydrological modelling system. It is based on the object modelling framework (OMS version 3), on the JGrasstools and on the Geotools. OMS3 allows to create independent packages of software which can be connected at run-time in a working modelling solution. These components are available as library/dependency or as repository to fork in order to add further features. Different tools are adopted to make easier the integration, the interoperability and the use of each package. Most of the components are Gradle integrated, since it represents the state-of-art of the building systems, especially for Java projects. The continuous integration is a further layer between local source code (client-side) and remote repository (server-side) and ensures the building and the testing of the source code at each commit. Finally, the use of Zenodo makes the code hosted in GitHub unique, citable and traceable, with a defined DOI. Following the previous standards, each part of the hydrological cycle is implemented in JGrass-NewAge as a component that can be selected, adopted, and connected to obtain a user "customized" hydrological model. A variety of modelling solutions are possible, allowing a complete hydrological analysis. Moreover, thanks to the JGrasstools and the Geotools, the visualization of the data and of the results using a selected GIS is possible. After the geomorphological analysis of the watershed, the spatial interpolation of the meteorological inputs can be performed using both deterministic (IDW) and geostatistic (Kriging) algorithms. For the radiation balance, the shortwave and longwave radiation can be estimated, which are, in turn, inputs for the simulation of the evapotranspiration, according to Priestly-Taylor and Penman-Monteith formulas. Three degree-day models are implemented for the snow melting and SWE. The runoff production can be simulated using two different components, "Adige" and "Embedded Reservoirs

  16. Hydrological Modeling of Rainfall-Watershed-Bioretention System with EPA SWMM (United States)

    gülbaz, sezar; melek kazezyılmaz-alhan, cevza


    Water resources should be protected for the sustainability of water supply and water quality. Human activities such as high urbanization with lack of infrastructure system and uncontrolled agricultural facilities adversely affect the water resources. Therefore, recent techniques should be investigated in detail to avoid present and future problems like flood, drought and water pollution. Low Impact Development-Best Management Practice (LID-BMP) is such a technique to manage storm water runoff and quality. There are several LID storm water BMPs such as bioretention facilities, rain gardens, storm water wetlands, vegetated rooftops, rain barrels, vegetative swales and permeable pavements. Bioretention is a type of Low Impact Developments (LIDs) implemented to diminish adverse effects of urbanization by reducing peak flows over the surface and improving surface water quality simultaneously. Different soil types in different ratios are considered in bioretention design which affects the performance of bioretention systems. Therefore, in this study, a hydrologic model for bioretention is developed by using Environmental Protection Agency Storm Water Management Model (EPA SWMM). Part of the input data is supplied to the hydrologic model by experimental setup called Rainfall-Watershed-Bioretention (RWB). RWB System is developed to investigate the relation among rainfall, watershed and bioretention. This setup consists of three main parts which are artificial rainfall system, drainage area and four bioretention columns with different soil mixture. EPA SWMM is a dynamic simulation model for the surface runoff which develops on a watershed during a rainfall event. The model is commonly used to plan, analyze, and control storm water runoff, to design drainage system components and to evaluate watershed management of both urban and rural areas. Furthermore, EPA SWMM is a well-known program to model LID-Bioretention in the literature. Therefore, EPA SWMM is employed in drainage

  17. Framework for studying the hydrological impact of climate change in an alley cropping system (United States)

    Hallema, Dennis W.; Rousseau, Alain N.; Gumiere, Silvio J.; Périard, Yann; Hiemstra, Paul H.; Bouttier, Léa; Fossey, Maxime; Paquette, Alain; Cogliastro, Alain; Olivier, Alain


    Alley cropping is an agroforestry practice whereby crops are grown between hedgerows of trees planted at wide spacings. The local climate and the physiological adaptation mechanisms of the trees are key factors in the growth and survival of the trees and intercrops, because they directly affect the soil moisture distribution. In order to evaluate the long-term hydrological impact of climate change in an alley cropping system in eastern Canada, we developed a framework that combines local soil moisture data with local projections of climate change and a model of soil water movement, root uptake and evapotranspiration. Forty-five frequency domain reflectometers (FDR) along a transect perpendicular to the tree rows generated a two-year dataset that we used for the parameterization and evaluation of the model. An impact study with simulations based on local projections of three global and one regional climate simulation suggest that the soil becomes drier overall in the period between 2041 and 2070, while the number of critically wet periods with a length of one day increases slightly with respect to the reference period between 1967 and 1996. Hydrological simulations based on a fourth climate scenario however point toward wetter conditions. In all cases the changes are minor. Although our simulations indicate that the experimental alley cropping system will possibly suffer drier conditions in response to higher temperatures and increased evaporative demand, these conditions are not necessarily critical for vegetation during the snow-free season.

  18. Camera based low-cost system to monitor hydrological parameters in small catchments (United States)

    Eltner, Anette; Sardemann, Hannes; Kröhnert, Melanie; Schwalbe, Ellen


    Gauging stations in small catchments to measure hydrological parameters are usually solely installed at few selected locations. Thus, extreme events that can evolve rapidly, particularly in small catchments (especially in mountainous areas), potentially causing severe damage, are insufficiently documented eventually leading to difficulties of modeling and forecasting of these events. A conceptual approach using a low-cost camera based alternative is introduced to measure water level, flow velocity and changing river cross sections. Synchronized cameras are used for 3D reconstruction of the water surface, enabling the location of flow velocity vectors measured in video sequences. Furthermore, water levels are measured automatically using an image based approach originally developed for smartphone applications. Additional integration of a thermal sensor can increase the speed and reliability of the water level extraction. Finally, the reconstruction of the water surface as well as the surrounding topography allows for the detection of changing morphology. The introduced approach can help to increase the density of the monitoring system of hydrological parameters in (remote) small catchments and subsequently might be used as warning system for extreme events.

  19. Application of a global hydrologic prediction system to the Zambezi River Basin (Invited) (United States)

    Voisin, N.; Pappenberger, F.; Buizza, R.; Lettenmaier, D. P.


    We evaluate a 10-day globally applicable flood prediction scheme over the Zambezi River basin for the period 2003-2007. The hydrological core of the scheme is the Variable Infiltration Capacity (VIC) hydrology model, which we forced with the European Centre for Medium Range Weather Forecasts (ECMWF) temperature and wind analyses, and the near real-time Tropical Rainfall Monitoring Mission (TRMM) precipitation product (3B42RT) up to the day of forecast. During the forecast period, the VIC model was forced with calibrated and downscaled 10-day forecasts from the ECMWF ensemble prediction system (EPS). We also tested a parallel setup where the EPS ensemble forecasts were interpolated to the 0.25 degree spatial resolution of the hydrology model. Each set of forecasts was extended by 5 days using monthly mean climatological variables and zero precipitation in order to account for the effect of initial conditions (the EPS was extended to 15 days only in 2006). The 15-day spatially distributed ensemble runoff forecasts were then routed to several locations in the basin. Surrogates for observed daily runoff and streamflow were provided by the reference run, i.e. the VIC simulations forced with ECMWF analysis fields and TRMM precipitation. Mean forecast errors and skills for the two sets of ensemble forecasts are evaluated with respect to the reference on a seasonal basis, and are compared to previous results from a similarly designed study over the Ohio River Basin. The influence on forecast accuracy of basin drainage area, hydroclimatic diversity within the basin, and storm type on forecast skill scores is evaluated.

  20. Holocene extreme hydrological events and their climatic implications: evidence from the middle Satluj valley, western Himalaya, India (United States)

    Sharma, Shubhra; Shukla, Anil; Marh, Bhupinder; Bartarya, Sukesh; Juyal, Navin


    Extreme hydrological events and associated climatic processes are investigated and inferred through palaeoflood deposits preserved in the middle Satluj valley, India. Satluj River is the largest tributary of the Indus River having third largest catchment area in the Himalaya. Both Indian summer monsoon (ISM) and the mid-latitude westerlies contribute to the hydrological budget of the river. The steep southern orographic front prevents the northward penetration of ISM, while the mid-latitude westerlies bring moisture in form of winter snow to the orogenic interiors. It has been observed that the floods in the Himalaya are intimately associated with the variability in the above climate systems. The optical chronology indicates that floods were clustered around three time domains. The oldest flood phase-1 is dated to ˜14-12 ka which climatically occurred during the initiation of the ISM after the Last Glacial Maximum. The second phase-2 is dated between 8-5 ka and is attributed to the moderate ISM. Whereas, the youngest phase-3 is assigned the Little Ice Age (LIA) and were associated with the variability in the mid-latitude westerlies. Geochemical analyses suggest that floods were generated in higher Himalayan crystalline (HHC) zone, as the extreme precipitation destabilised the precipitous slopes creating Landslide induced Lake Outbursts Floods (LLOFs). Further, the average interval between floods has decreased since 14 ka from 500 years, to 250 years and 100 years during respective flood phases. The southern slopes of Himalaya are influenced by both the monsoon and mid-latitude westerlies and any abrupt changes in the circulation pattern were found to associate with heavy rainfall events in this region. Although an interaction between the westerlies and the monsoon is implicated for extreme floods in the western Himalaya. However, exact mechanism of these interactions is still illusive except for the observational based studies which state that extreme floods

  1. Data and Models as Social Objects in the HydroShare System for Collaboration in the Hydrology Community and Beyond (United States)

    Tarboton, D. G.; Idaszak, R.; Horsburgh, J. S.; Ames, D. P.; Goodall, J. L.; Band, L. E.; Merwade, V.; Couch, A.; Hooper, R. P.; Maidment, D. R.; Dash, P. K.; Stealey, M.; Yi, H.; Gan, T.; Castronova, A. M.; Miles, B.; Li, Z.; Morsy, M. M.; Crawley, S.; Ramirez, M.; Sadler, J.; Xue, Z.; Bandaragoda, C.


    How do you share and publish hydrologic data and models for a large collaborative project? HydroShare is a new, web-based system for sharing hydrologic data and models with specific functionality aimed at making collaboration easier. HydroShare has been developed with U.S. National Science Foundation support under the auspices of the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) to support the collaboration and community cyberinfrastructure needs of the hydrology research community. Within HydroShare, we have developed new functionality for creating datasets, describing them with metadata, and sharing them with collaborators. We cast hydrologic datasets and models as "social objects" that can be shared, collaborated around, annotated, published and discovered. In addition to data and model sharing, HydroShare supports web application programs (apps) that can act on data stored in HydroShare, just as software programs on your PC act on your data locally. This can free you from some of the limitations of local computing capacity and challenges in installing and maintaining software on your own PC. HydroShare's web-based cyberinfrastructure can take work off your desk or laptop computer and onto infrastructure or "cloud" based data and processing servers. This presentation will describe HydroShare's collaboration functionality that enables both public and private sharing with individual users and collaborative user groups, and makes it easier for collaborators to iterate on shared datasets and models, creating multiple versions along the way, and publishing them with a permanent landing page, metadata description, and citable Digital Object Identifier (DOI) when the work is complete. This presentation will also describe the web app architecture that supports interoperability with third party servers functioning as application engines for analysis and processing of big hydrologic datasets. While developed to support the

  2. A model of the socio-hydrologic dynamics in a semiarid catchment: Isolating feedbacks in the coupled human-hydrology system (United States)

    Elshafei, Y.; Coletti, J. Z.; Sivapalan, M.; Hipsey, M. R.


    The challenge of sustainable freshwater management requires identification and characterization of the underlying components and dynamic interactions within the coupled human-hydrology system. This paper builds a model that captures the dynamic water balance evolution and coupled human response within the Lake Toolibin catchment in West Australia's wheatbelt region. Two subcatchments in different parts of the landscape were selected to examine the key emergent properties of the coupled socio-hydrology system over a 100 year period, by analyzing the two-way feedbacks of land use management (human system feedback) and land degradation (natural system feedback). Using a relatively simple parameterization of community sensitivity to land degradation within the model, we identified positive and negative feedbacks, the presence of threshold behavior, time scale differences between fast and slow moving variables, differences in time lags resulting from disparate resistance levels of the natural system, and the degree of adaptive learning inherent in the human system. Specifically, the valley floor subcatchment transitioned through four phases—expansion, contraction, recession, and recovery—demonstrating a threshold shift in the human feedback after 60 years, while the upslope subcatchment appears to still be in the contraction phase, with no sign of reaching a threshold shift in 100 years. These results demonstrate that the model is capable of isolating the two-way feedbacks of the coupled system and has implications for resilience theory, suggesting that greater resistance in the underlying natural system counteracts the onset of a negative feedback loop and instigation of adaptive behaviors in the human system.

  3. Variability of Water Quality across Headwater Catchments with Distinct Soils and Hydrologic Systems in Central Missouri (United States)

    Takhachhe, P.; Liu, F.; Lerch, R. N.; Yang, J.; Balakumar, S.


    Surface water and groundwater contamination by herbicides and fertilizers continues to be a major water quality problem in central Missouri. The purpose of this study was to examine spatial variability of water quality among three different headwater catchments - Goodwater Creek Experimental Watershed (GCEW) with claypan soils, Sulphur Creek Watershed (SCW) with deep loess soils, and Wet Glaize Creek Watershed (WGCW) with weathered forest soils and karst hydrology - to better understand hydrologic controls on contaminant transport. Samples were collected from February 2015 to June 2016 from streams, springs and groundwater and analyzed for major nutrients and herbicides. Mean nitrate concentrations in stream water were 3.6 (±4.0) ppm, 1.6 (±1.4) ppm and 3.4 (±0.17) ppm in GCEW, SCW and WGCW, respectively. Mean nitrate concentrations in groundwater were higher than those in stream water at GCEW and SCW, with 22.4 (±15.6) ppm in GCEW and 8.0 (±6.6) ppm in SCW. However, mean nitrate concentration in groundwater at WGCW (3.2±1.3 ppm) was similar to that in stream water, demonstrating the direct interaction of surface water and groundwater in karst hydrologic systems. Atrazine concentrations in stream water were higher than in groundwater at both GCEW and SCW. Mean atrazine concentrations in stream water were 2.4 (±4.6) ppb in GCEW and 1.5 ppb (±2.0) ppb in SCW. In groundwater, mean atrazine concentrations were 0.06 (±0.18) ppb in GCEW and 0.01(±0.01) ppb in SCW. The results indicated that surface water and groundwater interactions are much more important in understanding the controls on contaminant transport in the claypan and deep loess watersheds compared to the karst-dominated one. This approach provided insights into the differences in hydrologic controls on contaminant transport leading to better strategies for water quality management over various watersheds in central Missouri. Keywords; nutrients, herbicides, water quality

  4. Hydrological functioning and water balance in a heavily modified hydrographic system (United States)

    Carbonnel, Vincent; Brion, Natacha; Elskens, Marc; Claeys, Philippe; Verbanck, Michel A.


    Rivers and canals are often the location for the historical settlement of cities and the backbone for their expansion, as they permit the transport of goods and people, the access to water for industrial activities and energy production, and the evacuation of the domestic and industrial wastewaters. In turn, human activities can result in modifications of the natural river systems to allow for instance ship transport or protection against flooding. The complex interconnected hydrographic network composed of the Zenne and the parallel Charleroi-Brussels-Scheldt Canal, which supports the development of the economy and urbanization of Brussels Metropolitan Area (Belgium), is a good example of such an altered system. The natural water course has been profoundly modified by the deviation of rivers to feed the canal, the control of the water flow in the canal by locks and pumps and the overflow exchange of water between the river and the canal for flood protection purposes. Also, the functioning of this system is strongly impacted by urban hydrology in Brussels, which results in amounts of wastewater discharged in the Zenne River that are nearly equivalent to the natural riverine flow. Water and water quality management in such complex and altered systems correspond to difficult tasks. They require, as a first step, a deep understanding of their hydrological functioning. Building an accurate water budget is also a necessary step in the investigation of the pollution sources, sinks, dynamics and mass-balance. In order to assess the water quality and provide insights for water management in the Zenne-Canal hydrographic network (cf. other contributions in this session), we established a detailed box-model representation of the water budget for the whole system, with a particular interest on the importance and the effects of the exchanges of water between the river and the canal. A particularity of this study is that, in contrast to the widespread use of hydrological

  5. Use of oxygen-18 and deuterium to assess the hydrology of groundwater-lake systems: Chapter 3: Advances in chemistry (United States)

    Krabbenhoft, David P.; Bowser, Carl J.; Kendall, Carol; Gat, Joel


    A thorough understanding of a lake's hydrology is essential for many lake studies. In some situations the interactions between groundwater systems and lakes are complex; in other cases the hydrology of a multilake system needs to be quantified. In such places, stable isotopes offer an alternative to the more traditional piezometer networks, which are costly to install and time-consuming to maintain. The stable-isotope mass-balance relations presented here can be used to estimate groundwater exchange rates for individual lakes and geographically clustered lakes. These relations also can be used to estimate other hydrological factors, such as average relative humidity. In places where the groundwater system is unstable (e.g., where flow reversals occur), natural solute tracers may provide a better alternative than stable isotopes for estimating rates of groundwater flow to and from lakes.

  6. Integrated hydrologic modeling of a transboundary aquifer system —Lower Rio Grande (United States)

    Hanson, Randall T.; Schmid, Wolfgang; Knight, Jacob E.; Maddock, Thomas


    For more than 30 years the agreements developed for the aquifer systems of the lower Rio Grande and related river compacts of the Rio Grande River have evolved into a complex setting of transboundary conjunctive use. The conjunctive use now includes many facets of water rights, water use, and emerging demands between the states of New Mexico and Texas, the United States and Mexico, and various water-supply agencies. The analysis of the complex relations between irrigation and streamflow supplyand-demand components and the effects of surface-water and groundwater use requires an integrated hydrologic model to track all of the use and movement of water. MODFLOW with the Farm Process (MFFMP) provides the integrated approach needed to assess the stream-aquifer interactions that are dynamically affected by irrigation demands on streamflow allotments that are supplemented with groundwater pumpage. As a first step to the ongoing full implementation of MF-FMP by the USGS, the existing model (LRG_2007) was modified to include some FMP features, demonstrating the ability to simulate the existing streamflow-diversion relations known as the D2 and D3 curves, departure of downstream deliveries from these curves during low allocation years and with increasing efficiency upstream, and the dynamic relation between surface-water conveyance and estimates of pumpage and recharge. This new MF-FMP modeling framework can now internally analyze complex relations within the Lower Rio Grande Hydrologic Model (LRGHM_2011) that previous techniques had limited ability to assess.

  7. The UP modelling system for large scale hydrology: simulation of the Arkansas-Red River basin

    Directory of Open Access Journals (Sweden)

    C. G. Kilsby


    Full Text Available The UP (Upscaled Physically-based hydrological modelling system to the Arkansas-Red River basin (USA is designed for macro-scale simulations of land surface processes, and aims for a physical basis and, avoids the use of discharge records in the direct calibration of parameters. This is achieved in a two stage process: in the first stage parametrizations are derived from detailed modelling of selected representative small and then used in a second stage in which a simple distributed model is used to simulate the dynamic behaviour of the whole basin. The first stage of the process is described in a companion paper (Ewen et al., this issue, and the second stage of this process is described here. The model operated at an hourly time-step on 17-km grid squares for a two year simulation period, and represents all the important hydrological processes including regional aquifer recharge, groundwater discharge, infiltration- and saturation-excess runoff, evapotranspiration, snowmelt, overland and channel flow. Outputs from the model are discussed, and include river discharge at gauging stations and space-time fields of evaporation and soil moisture. Whilst the model efficiency assessed by comparison of simulated and observed discharge records is not as good as could be achieved with a model calibrated against discharge, there are considerable advantages in retaining a physical basis in applications to ungauged river basins and assessments of impacts of land use or climate change.

  8. A framework for evaluating food-web responses to hydrological manipulations in riverine systems. (United States)

    Rolls, Robert J; Baldwin, Darren S; Bond, Nick R; Lester, Rebecca E; Robson, Barbara J; Ryder, Daren S; Thompson, Ross M; Watson, Garth A


    Environmental flows are used to restore elements of the hydrological regime altered by human use of water. One of the primary justifications and purposes for environmental flows is the maintenance of target species populations but, paradoxically, there has been little emphasis on incorporating the food-web and trophic dynamics that determine population-level responses into the monitoring and evaluation of environmental flow programs. We develop a generic framework for incorporating trophic dynamics into monitoring programs to identify the food-web linkages between hydrological regimes and population-level objectives of environmental flows. These linkages form the basis for objective setting, ecological targets and indicator selection that are necessary for planning monitoring programs with a rigorous scientific basis. Because there are multiple facets of trophic dynamics that influence energy production and transfer through food webs, the specific objectives of environmental flows need to be defined during the development of monitoring programs. A multitude of analytical methods exist that each quantify distinct aspects of food webs (e.g. energy production, prey selection, energy assimilation), but no single method can provide a basis for holistic understanding of food webs. Our paper critiques a range of analytical methods for quantifying attributes of food webs to inform the setting, monitoring and evaluation of trophic outcomes of environmental flows and advance the conceptual understanding of trophic dynamics in river-floodplain systems. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  9. Hydrological behaviour of a small catchment in the dehesa landuse system (Extremadura, SW Spain) (United States)

    Ceballos, Antonio; Schnabel, Susanne


    Investigations of the hydrological processes operating in a small experimental catchment representative of the dehesa ecosystem were carried out. The dehesa constitutes a system of agro-silvo-pastoral landuse, which is characterized by a Mediterranean, semi-arid climate. The study includes an analysis of the relationships between rainfall, soil water content and discharge, as well as the establishment of the annual water budget. The results demonstrate a complex hydrological response. The relationships between the factors involved and the operating processes are difficult to explain because of the decisive role played by the valley bottoms. These areas typically possess a sediment fill, and contrast with the shallow soils developed on the hillslopes. Genesis and quantity of runoff (Hortonian or saturation) measured at the outlet depend on the antecedent moisture conditions of the valley bottoms because of their water-retention capacity. Annual runoff coefficients are similar to those reported from other semi-arid areas. The analysis of the annual water budget shows that rainfall is positively related with both actual evapotranspiration and discharge.

  10. Forest hydrology (United States)

    Ge Sun; Devendra Amatya; Steve McNulty


    Forest hydrology studies the distribution, storage, movement, and quality of water and the hydrological processes in forest-dominated ecosystems. Forest hydrological science is regarded as the foundation of modern integrated water¬shed management. This chapter provides an overview of the history of forest hydrology and basic principles of this unique branch of...

  11. Telemetric system for hydrology and water quality monitoring in watersheds of northern New Mexico, USA. (United States)

    Meyer, Michael L; Huey, Greg M


    This study utilized telemetric systems to sample microbes and pathogens in forest, burned forest, rangeland, and urban watersheds to assess surface water quality in northern New Mexico. Four sites included remote mountainous watersheds, prairie rangelands, and a small urban area. The telemetric system was linked to dataloggers with automated event monitoring equipment to monitor discharge, turbidity, electrical conductivity, water temperature, and rainfall during base flow and storm events. Site data stored in dataloggers was uploaded to one of three types of telemetry: 1) radio in rangeland and urban settings; 2) a conventional phone/modem system with a modem positioned at the urban/forest interface; and 3) a satellite system used in a remote mountainous burned forest watershed. The major variables affecting selection of each system were site access, distance, technology, and cost. The systems were compared based on operation and cost. Utilization of telecommunications systems in this varied geographic area facilitated the gathering of hydrologic and water quality data on a timely basis.

  12. Ecological and hydrological response of farmlands abandoned for different lengths of time: Evidence from the Loess Hill Slope of China (United States)

    Hou, Jian; Fu, Bojie; Liu, Yu; Lu, Nan; Gao, Guangyao; Zhou, Ji


    As a widely distributed land use type, abandoned farmland has become a research focus due to its complex ecological and hydrological responses. Most recent studies have focussed on the interactions between the ecological and hydrological responses in degradation processes, whilst little research has focussed on the recovery of the ecosystem. Moreover, some in-depth analyses are required to further elucidate their interactive on abandoned farmland. In addition, although runoff generation and soil erosion on abandoned farmland have been investigated, few reports have investigated nutrient transport in runoff and eroded sediments.

  13. Integrating Data from GRACE and Other Observing Systems for Hydrological Research and Applications (United States)

    Rodell, M.; Famiglietti, J. S.; McWilliams, E.; Beaudoing, H. K.; Li, B.; Zaitchik, B.; Reichle, R.; Bolten, J.


    The Gravity Recovery and Climate Experiment (GRACE) mission provides a unique view of water cycle dynamics, enabling the only space based observations of water on and beneath the land surface that are not limited by depth. GRACE data are immediately useful for large scale applications such as ice sheet ablation monitoring, but they are even more valuable when combined with other types of observations, either directly or within a data assimilation system. Here we describe recent results of hydrological research and applications projects enabled by GRACE. These include the following: 1) global monitoring of interannual variability of terrestrial water storage and groundwater; 2) water balance estimates of evapotranspiration over several large river basins; 3) NASA's Energy and Water Cycle Study (NEWS) state of the global water budget project; 4) drought indicator products now being incorporated into the U.S. Drought Monitor; 5) GRACE data assimilation over several regions.

  14. A Lightweight Modeling System for Region-Wide Monitoring of Hydrologic Threats (United States)

    Luna, D.; Hernandez, F.; Wang, R.; Liang, Y.; Teng, W. L.; Liang, X.


    Transportation infrastructure is subject to multiple hydrology-related threats, including floods, bridge scouring, landslides, and icing. While modern land-surface models could potentially assist in forecast and response operations, applying these models is challenging, because of the extensiveness of the infrastructure that the government transportation agencies are responsible for. Constructing detailed models for every point of interest and running them in real time would require significant efforts from a team of modeling professionals and considerable computational resources. To address this challenge, we introduce the Hydrologic Disaster Forecast and Response (HDFR) system, a lightweight software framework (under development) that streamlines the process of acquiring real-time and forecast data, inputting it into hydrologic models, and translating the results into concrete actionable information for field-team deployment. HDFR integrates a series of data, modeling, and severity modules behind a unified GIS graphical user interface. The latter interface allows non-expert users to easily execute complex workflows, ranging from forcing information acquisition to severity level computations at specific locations. The HDFR allows the performance of these monitoring tasks without the need of a supercomputer-grade infrastructure. Currently, the HDFR uses a regression algorithm as a proxy for physically-based models, to estimate return periods of variables of interest for watersheds of concern, based on key forcing and state variables (e.g., precipitation, soil moisture). This method only requires the execution of land-surface simulations during an offline training phase; however, the HDFR also features a hierarchical multi-scale modeling strategy for improved forecast precision. This approach minimizes the number of models runs to those for selected areas and resolutions, depending on observed conditions. Several prototype versions of the HDFR built on GRASS GIS

  15. An Integrated Decision Support System with Hydrological Processes and Socio-economic Assessments (United States)

    Yu, Yang; Disse, Markus; Yu, Ruide


    The debate over the effectiveness of Integrated Water Resources Management (IWRM) in practice has lasted for years. As the complexity and scope of IWRM increases, the difficulties of hydrological modeling is shifting from the model itself into the links with other cognate sciences, to understand the interactions among water, earth, ecosystem and humans. This work presents the design and development of a decision support system (DSS) that links the outputs of hydrological models with real-time decision making on social-economic assessments and land use changes. Discharge and glacier geometry changes were simulated with hydrological model WASA. Irrigation and ecological water were simulated by a new commercial software MIKE HYDRO. Groundwater was simulated by MODFLOW. All the outputs of theses hydrological models were integrated as inputs into the DSS in three types of links: regression equations, stationary data inputs, or dynamic data inputs into DSS as the models running parallel in the simulation periods. Within DSS, three types of logics were established: equations, conditional statements and fuzzy logics. The programming was realized in C++. The implementation of DSS takes place in the Tarim River Basin. With the mainstream of 1,321km and located in an arid area in northwest China, the Tarim River is China's longest inland river. The Tarim basin on the northern edge of the Taklamakan desert is an extremely arid region. In this region, agricultural water consumption and allocation management are crucial to address the conflicts among irrigation water users from upstream to downstream. Since 2011, the German Ministry of Science and Education BMBF established the Sino-German SuMaRiO project, for the sustainable management of river oases along the Tarim River. Project SuMaRiO focus on realizable management strategies, considering social, economic and ecological criteria. This will have positive effects for nearly 10 million inhabitants of different ethnic groups

  16. Sustainable groundwater management system based on the regional hydrological cycle in the warm humid country, Japan (United States)

    Shimada, J.; Crest Kumamoto Groundwater Team


    The increase of precipitation variability with the global warming and the rapid population growth lead to the shortage of water resources on a global scale. Groundwater bocome attracted as a relatively stable water resource because of its larger reservoir and a longer residence time. As our country belongs to a warm humid climate with much precipitation and a steep topography, the regional hydrological cycle is extremely active. Surface water could be taken easily and was often used to a water supply until now, but recently groundwater is taking the place of surface water because of the stability of water supply. While in our hydro-climatic condition, the sustainable use of groundwater is possible under the appropriative management, that is, groundwater pumping rate does not exceed the recharge rate in a basin. For the sustainable use of groundwater resources, this project aims to develop new technologies relating to the quantity and quality aspects of groundwater resources. For the precise understanding of groundwater flow system, new technologies will be developed, like frequency changeable electric resistivity exploration method to evaluate an aquifer structure. There are many problems about groundwater quality including nitrate-nitrogen contamination and toxic substances from the domestic and industrial waste disposals. It is necessary to understand the production mechanism to prevent groundwater contamination and the degradation process of nitrate-nitrogen contamination to improve the water quality. Therefore this project will develop new technologies including the reduction of NO3=N and natural toxic substances loads before groundwater recharge, the on-site removal of contaminants from aquifers, and simple and effective equipment to improve groundwater quality after pumping. Furthermore, this project will also develop a new biological monitoring technique for local groundwater users to notice the contamination at a glance; change colar fish by specific ion

  17. Hydrological system analysis and modelling of the Nam Co basin in Tibet (United States)

    Krause, P.; Biskop, S.; Helmschrot, J.; Flügel, W.-A.; Kang, S.; Gao, T.


    The Tibetan Plateau and the adjacent high mountain regions of the Himalayas play an important role in the global climate dynamic through its impact on the Asian monsoon system, which in turn is impacting the water resources of this extremely vulnerable region. To provide further knowledge about the changing impact of rainfall patterns, spatial and temporal variability of snow cover contribution, amount of snow and ice melt runoff, evapotranspiration as well as dynamics of wetlands and permafrost water balance studies are required. This is of particular importance in terms of global climate change because of a severe gap in the knowledge of the short, mid and long term implications on the hydrological system. This study concentrates on the macroscale catchment of the lake Nam Co, located at 4718 m a.s.l. at the foot of the Nyainqentanglha Mountains in central Tibet (30° N, 90° E). The water balance of the Nam Co basin is dominated by semi-arid climate, snow and ice melt runoff and high evaporation rates due to the high radiation input and the low air humidity. The observed temperature rise, glacier retreat, permafrost decay and lake level increase indicate significant system changes and the high sensitivity of the Tibetan Plateau on global warming. The development of a suitable water balance model and its preliminary application was the main objective of this study. The development was done with the Jena Adaptable Modelling System JAMS along with existing scientific process components of the J2000 module library which were partly further developed to reflect the specific conditions of the high elevation Nam Co basin. The preliminary modelling exercise based on gridded data from a downscaled ECHAM5 data set provided reasonable estimates about the important hydrological water balance components of the Nam Co basin. With the modelling results the observed lake level rise could be reproduced and it could be shown that the runoff from the glaciered areas seems to be

  18. Threshold behaviour in hydrological systems as (human geo-ecosystems: manifestations, controls, implications

    Directory of Open Access Journals (Sweden)

    M. Sivapalan


    Full Text Available In this paper we review threshold behaviour in environmental systems, which are often associated with the onset of floods, contamination and erosion events, and other degenerative processes. Key objectives of this review are to a suggest indicators for detecting threshold behavior, b discuss their implications for predictability, c distinguish different forms of threshold behavior and their underlying controls, and d hypothesise on possible reasons for why threshold behaviour might occur. Threshold behaviour involves a fast qualitative change of either a single process or the response of a system. For elementary phenomena this switch occurs when boundary conditions (e.g., energy inputs or system states as expressed by dimensionless quantities (e.g. the Reynolds number exceed threshold values. Mixing, water movement or depletion of thermodynamic gradients becomes much more efficient as a result. Intermittency is a very good indicator for detecting event scale threshold behavior in hydrological systems. Predictability of intermittent processes/system responses is inherently low for combinations of systems states and/or boundary conditions that push the system close to a threshold. Post hoc identification of "cause-effect relations" to explain when the system became critical is inherently difficult because of our limited ability to perform observations under controlled identical experimental conditions. In this review, we distinguish three forms of threshold behavior. The first one is threshold behavior at the process level that is controlled by the interplay of local soil characteristics and states, vegetation and the rainfall forcing. Overland flow formation, particle detachment and preferential flow are examples of this. The second form of threshold behaviour is the response of systems of intermediate complexity – e.g., catchment runoff response and sediment yield – governed by the redistribution of water and sediments in space and time

  19. Coogoon Valles, western Arabia Terra: Hydrological evolution of a complex Martian channel system (United States)

    Molina, Antonio; López, Iván; Prieto-Ballesteros, Olga; Fernández-Remolar, David; de Pablo, Miguel Ángel; Gómez, Felipe


    Coogoon Valles is an intricate fluvial system, and its main channel was formed during the Noachian period through the erosion of the clay-bearing basement of the Western Arabia Terra. This region is characterized by a thinner crust compared to the rest of the highlands and by the occurrence of massive phyllosilicate-bearing materials. The origin of this region is still under discussion. Its surface has been exposed to a large-scale volcanism, and several episodes of extensive denudation were primarily controlled by fluvial activity. In this regard, the study of the oldest channels in Arabia Terra is crucial for understanding the global geological evolution of early Mars. The reactivation of the hydrological system by sapping followed by aeolian erosion had reshaped the channel, as well as exposed ancient materials and landforms. The examination of the bed deposits suggests an old episode of detrital sedimentation covering the Noachian basement followed by an erosive event that formed the current Coogoon Valles configuration. A complex system of deltas and alluvial fans is situated at the termination of this channel, which has been proposed as a landing site for the upcoming ExoMars and Mars 2020 missions.

  20. Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale (United States)

    Hatt, Belinda E.; Fletcher, Tim D.; Deletic, Ana


    SummaryBiofiltration systems are a recommended and increasingly popular technology for stormwater management; however there is a general lack of performance data for these systems, particularly at the field scale. The objective of this study was to investigate the hydrologic and pollutant removal performance of three field-scale biofiltration systems in two different climates. Biofilters were shown to effectively attenuate peak runoff flow rates by at least 80%. Performance assessment of a lined biofilter demonstrated that retention of inflow volumes by the filter media, for subsequent loss via evapotranspiration, reduced runoff volumes by 33% on average. Retention of water was found to be most influenced by inflow volumes, although only small to medium storms could be assessed. Vegetation was shown to be important for maintaining hydraulic capacity, because root growth and senescence countered compaction and clogging. Suspended solids and heavy metals were effectively removed, irrespective of the design configuration, with load reductions generally in excess of 90%. In contrast, nutrient retention was variable, and ranged from consistent leaching to effective and reliable removal, depending on the design. To ensure effective removal of phosphorus, a filter medium with a low phosphorus content should be selected. Nitrogen is more difficult to remove because it is highly soluble and strongly influenced by the variable wetting and drying regime that is inherent in biofilter operation. The results of this research suggest that reconfiguration of biofilter design to manage the deleterious effects of drying on biological activity is necessary to ensure long term nitrogen removal.

  1. A flexible hydrological warning system in Denmark for real-time surface water and groundwater simulations (United States)

    He, Xin; Stisen, Simon; Wiese, Marianne B.; Jørgen Henriksen, Hans


    In Denmark, increasing focus on extreme weather events has created considerable demand for short term forecasts and early warnings in relation to groundwater and surface water flooding. The Geological Survey of Denmark and Greenland (GEUS) has setup, calibrated and applied a nationwide water resources model, the DK-Model, primarily for simulating groundwater and surface water flows and groundwater levels during the past 20 years. So far, the DK-model has only been used in offline historical and future scenario simulations. Therefore, challenges arise in operating such a model for online forecasts and early warnings, which requires access to continuously updated observed climate input data and forecast data of precipitation, temperature and global radiation for the next 48 hours or longer. GEUS has a close collaboration with the Danish Meteorological Institute in order to test and enable this data input for the DK model. Due to the comprehensive physical descriptions of the DK-Model, the simulation results can potentially be any component of the hydrological cycle within the models domain. Therefore, it is important to identify which results need to be updated and saved in the real-time mode, since it is not computationally economical to save every result considering the heavy load of data. GEUS have worked closely with the end-users and interest groups such as water planners and emergency managers from the municipalities, water supply and waste water companies, consulting companies and farmer organizations, in order to understand their possible needs for real time simulation and monitoring of the nationwide water cycle. This participatory process has been supported by a web based questionnaire survey, and a workshop that connected the model developers and the users. For qualifying the stakeholder engagement, GEUS has selected a representative catchment area (Skjern River) for testing and demonstrating a prototype of the web based hydrological warning system at the

  2. Temperature as a tracer of hydrological dynamics in an anchialine cave system with a submarine spring (United States)

    Domínguez-Villar, David; Cukrov, Neven; Krklec, Kristina


    Although temperature is a nonconservative tracer, it often provides useful information to understand hydrological processes. This study explores the potential of temperature to characterize the hydrological dynamics of a submarine spring and its coastal karst aquifer in Krka Estuary (Croatia). The estuary is well stratified and its water column has a clear thermocline. A network of loggers was designed to monitor the temperature along vertical profiles in the estuary and the coastal aquifer, taking advantage of an anchialine cave that enabled access to the subterranean estuary. The location of the thermocline in the groundwater, which defines the upper boundary of the saline intrusion, depends on (1) the recharge of the aquifer via infiltration of precipitation, (2) the evolution of the thermocline in the estuary, and (3) the tidal oscillations. The sources of water flowing though the anchialine cave were identified: brackish water from the estuary above the thermocline, saline water from the estuary below the thermocline, and freshwater from infiltrated precipitation. A conceptual model is described that characterizes the hydrological dynamics of this coastal aquifer and its interactions with the estuary. Thus, at least for some hydrological settings, temperature is a valid tracer to characterize the main hydrological processes. The measurement of temperature is inexpensive compared to other (conservative) tracers. Therefore, for those hydrological settings that have water masses with distinct temperatures, the use of temperature as a tracer to establish conceptual models of the hydrological dynamics is encouraged.

  3. Development of a Historical Hydrological online research and application platform for Switzerland - Historical Hydrological Atlas of Switzerland (HHAS) (United States)

    Wetter, Oliver


    It is planned to develop and maintain a historical hydrological online platform for Switzerland, which shall be specially designed for the needs of research and federal, cantonal or private institutions being interested in hydrological risk assessment and protection measures. The aim is on the one hand to facilitate the access to raw data which generally is needed for further historical hydrological reconstruction and quantification, so that future research will be achieved in significantly shorter time. On the other hand, new historical hydrological research results shall be continuously included in order to establish this platform as a useful tool for the assessment of hydrological risk by including the long term experience of reconstructed pre-instrumental hydrological extreme events like floods and droughts. Meteorological parameters that may trigger extreme hydrological events, like monthly or seasonally resolved reconstructions of temperature and precipitation shall be made accessible in this platform as well. The ultimate goal will be to homogenise the reconstructed hydrological extreme events which usually appeared in the pre anthropogenic influence period under different climatological as well as different hydrological regimes and topographical conditions with the present day state. Long term changes of reconstructed small- to extreme flood seasonality, based on municipal accounting records, will be included in the platform as well. This helps - in combination with the before mentioned meteorological parameters - to provide an increased understanding of the major changes in the generally complex overall system that finally causes hydrological extreme events. The goal of my presentation at the Historical Climatology session is to give an overview about the applied historical climatological and historical hydrological methodologies that are applied on the historical raw data (evidence) to reconstruct pre instrumental hydrological events and meteorological

  4. Hydrological-oriented verification for ensemble forecasting systems: the case of the PIT diagram (United States)

    Bourgin, François; Ramos, Maria-Helena; Perrin, Charles; Renard, Benjamin


    The most common way to communicate uncertainty in streamflow predictions for water resources and risk management is through the use of ensemble scenarios or prediction intervals. While the advantages of probabilistic flow forecasting for decision-making are recognized, the evaluation of the quality of ensemble-based or probabilistic forecasts remains a challenge. Reliability is a fundamental attribute when evaluating the quality of probabilistic flow predictions. It is related to the statistical coherence of the associated uncertainty estimates. Reliable predictions are thus important for users who take actions based on prediction intervals (e.g., reservoir inflow volume forecasts) or on the forecast probability of a given critical event (e.g., exceedance of a flood threshold). However, forecast systems are usually developed to serve many users and, in general, they are evaluated without considering the user's specific decision-making problem. This means that a forecasting system must be reliable in all situations (for normal, high or low flows; for peak flow probabilities or volume probabilities of occurrence), regardless of the event of interest for the user. At the same time, users are often interested in knowing if a forecasting system performs well for their case of application. Application-focused evaluations of the quality of a forecast are thus also important to enhance the usefulness of a forecasting system. Here, we investigate the specificities of hydrological-oriented verification of reliability that is commonly assessed with the Probability Integral Transform (PIT) diagram. We applied an ensemble forecasting system to a large set of catchments in France to assess the impact of conditioning strategies used to stratifying the data on the evaluation of forecast performance. For example, we considered separating low and high flows, or focusing on rainfall-driven or recession parts of the hydrographs. We show that the use of conditioning strategies can

  5. CEREF: A hybrid data-driven model for forecasting annual streamflow from a socio-hydrological system (United States)

    Zhang, Hongbo; Singh, Vijay P.; Wang, Bin; Yu, Yinghao


    Hydrological forecasting is complicated by flow regime alterations in a coupled socio-hydrologic system, encountering increasingly non-stationary, nonlinear and irregular changes, which make decision support difficult for future water resources management. Currently, many hybrid data-driven models, based on the decomposition-prediction-reconstruction principle, have been developed to improve the ability to make predictions of annual streamflow. However, there exist many problems that require further investigation, the chief among which is the direction of trend components decomposed from annual streamflow series and is always difficult to ascertain. In this paper, a hybrid data-driven model was proposed to capture this issue, which combined empirical mode decomposition (EMD), radial basis function neural networks (RBFNN), and external forces (EF) variable, also called the CEREF model. The hybrid model employed EMD for decomposition and RBFNN for intrinsic mode function (IMF) forecasting, and determined future trend component directions by regression with EF as basin water demand representing the social component in the socio-hydrologic system. The Wuding River basin was considered for the case study, and two standard statistical measures, root mean squared error (RMSE) and mean absolute error (MAE), were used to evaluate the performance of CEREF model and compare with other models: the autoregressive (AR), RBFNN and EMD-RBFNN. Results indicated that the CEREF model had lower RMSE and MAE statistics, 42.8% and 7.6%, respectively, than did other models, and provided a superior alternative for forecasting annual runoff in the Wuding River basin. Moreover, the CEREF model can enlarge the effective intervals of streamflow forecasting compared to the EMD-RBFNN model by introducing the water demand planned by the government department to improve long-term prediction accuracy. In addition, we considered the high-frequency component, a frequent subject of concern in EMD

  6. Moment-based metrics for global sensitivity analysis of hydrological systems (United States)

    Dell'Oca, Aronne; Riva, Monica; Guadagnini, Alberto


    We propose new metrics to assist global sensitivity analysis, GSA, of hydrological and Earth systems. Our approach allows assessing the impact of uncertain parameters on main features of the probability density function, pdf, of a target model output, y. These include the expected value of y, the spread around the mean and the degree of symmetry and tailedness of the pdf of y. Since reliable assessment of higher-order statistical moments can be computationally demanding, we couple our GSA approach with a surrogate model, approximating the full model response at a reduced computational cost. Here, we consider the generalized polynomial chaos expansion (gPCE), other model reduction techniques being fully compatible with our theoretical framework. We demonstrate our approach through three test cases, including an analytical benchmark, a simplified scenario mimicking pumping in a coastal aquifer and a laboratory-scale conservative transport experiment. Our results allow ascertaining which parameters can impact some moments of the model output pdf while being uninfluential to others. We also investigate the error associated with the evaluation of our sensitivity metrics by replacing the original system model through a gPCE. Our results indicate that the construction of a surrogate model with increasing level of accuracy might be required depending on the statistical moment considered in the GSA. The approach is fully compatible with (and can assist the development of) analysis techniques employed in the context of reduction of model complexity, model calibration, design of experiment, uncertainty quantification and risk assessment.

  7. River networks as ecological corridors: A complex systems perspective for integrating hydrologic, geomorphologic, and ecologic dynamics (United States)

    Rodriguez-Iturbe, Ignacio; Muneepeerakul, Rachata; Bertuzzo, Enrico; Levin, Simon A.; Rinaldo, Andrea


    This paper synthesizes recent works at the interface of hydrology, geomorphology, and ecology under an integrated framework of analysis with an aim for a general theory. It addresses a wide range of related topics, including biodiversity of freshwater fish in river networks and vegetation along riparian systems, how river networks affected historic spreading of human populations, and how they influence the spreading of water-borne diseases. Given the commonalities among various dendritic structures and despite the variety and complexity of the ecosystems involved, we present here an integrated line of research addressing the above and related topics through a unique, coherent ecohydrological thread and similar mathematical methods. Metacommunity and individual-based models are studied in the context of hydrochory, population, and species migrations and the spreading of infections of water-borne diseases along the ecological corridors of river basins. A general theory emerges on the effects of dendritic geometries on the ecological processes and dynamics operating on river basins that will establish a new significant scientific branch. Insights provided by such a theory will lend themselves to issues of great practical importance such as integration of riparian systems into large-scale resource management, spatial strategies to minimize loss of freshwater biodiversity, and effective prevention campaigns against water-borne diseases.

  8. Moment-based metrics for global sensitivity analysis of hydrological systems

    Directory of Open Access Journals (Sweden)

    A. Dell'Oca


    Full Text Available We propose new metrics to assist global sensitivity analysis, GSA, of hydrological and Earth systems. Our approach allows assessing the impact of uncertain parameters on main features of the probability density function, pdf, of a target model output, y. These include the expected value of y, the spread around the mean and the degree of symmetry and tailedness of the pdf of y. Since reliable assessment of higher-order statistical moments can be computationally demanding, we couple our GSA approach with a surrogate model, approximating the full model response at a reduced computational cost. Here, we consider the generalized polynomial chaos expansion (gPCE, other model reduction techniques being fully compatible with our theoretical framework. We demonstrate our approach through three test cases, including an analytical benchmark, a simplified scenario mimicking pumping in a coastal aquifer and a laboratory-scale conservative transport experiment. Our results allow ascertaining which parameters can impact some moments of the model output pdf while being uninfluential to others. We also investigate the error associated with the evaluation of our sensitivity metrics by replacing the original system model through a gPCE. Our results indicate that the construction of a surrogate model with increasing level of accuracy might be required depending on the statistical moment considered in the GSA. The approach is fully compatible with (and can assist the development of analysis techniques employed in the context of reduction of model complexity, model calibration, design of experiment, uncertainty quantification and risk assessment.

  9. Enhancing Access to and Use of NASA Earth Sciences Data via CUAHSI-HIS (Hydrologic Information System) and Other Hydrologic Community Tools (United States)

    Rui, H.; Strub, R.; Teng, W. L.; Vollmer, B.; Mocko, D. M.; Maidment, D. R.; Whiteaker, T. L.


    The way NASA earth sciences data are typically archived (by time steps, one step per file, often containing multiple variables) is not optimal for their access by the hydrologic community, particularly if the data volume and/or number of data files are large. To enhance the access to and use of these NASA data, the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) adopted two approaches, in a project supported by the NASA ACCESS Program. The first is to optimally reorganize two large hydrological data sets for more efficient access, as time series, and to integrate the time series data (aka 'data rods') into hydrologic community tools, such as CUAHSI-HIS, EPA-BASINS, and Esri-ArcGIS. This effort has thus far resulted in the reorganization and archive (as data rods) of the following variables from the North American and Global Land Data Assimilation Systems (NLDAS and GLDAS, respectively): precipitation, soil moisture, evapotranspiration, runoff, near-surface specific humidity, potential evaporation, soil temperature, near surface air temperature, and near-surface wind. The second approach is to leverage the NASA Simple Subset Wizard (SSW), which was developed to unite data search and subsetters at various NASA EOSDIS data centers into a single, simple, seamless process. Data accessed via SSW are converted to time series before being made available via Web service. Leveraging SSW makes all data accessible via SSW potentially available to HIS users, which increases the number of data sets available as time series beyond those available as data rods. Thus far, a set of selected variables from the NASA Modern Era-Retrospective Analysis for Research and Applications Land Surface (MERRA-Land) data set has been integrated into CUAHSI-HIS, including evaporation, land surface temperature, runoff, soil moisture, soil temperature, precipitation, and transpiration. All data integration into these tools has been conducted in collaboration with their

  10. Short-term Hydropower Reservoir Operations in Chile's Central Interconnected System: Tradeoffs between Hydrologic Alteration and Economic Performance (United States)

    Olivares, M. A.


    Hydropower accounts for about 50% of the installed capacity in Chile's Central Interconnected System (CIS) and new developments are envisioned in the near future. Large projects involving reservoirs are perceived negatively by the general public. In terms of operations, hydropower scheduling takes place at monthly, weekly, daily and hourly intervals, and operations at each level affect different environmental processes. Due to its ability to quickly and inexpensively respond to short-term changes in demand, hydropower reservoirs often are operated to provide power during periods of peak demand. This operational scheme, known as hydropeaking, changes the hydrologic regime by altering the rate and frequency of changes in flow magnitude on short time scales. To mitigate impacts on downstream ecosystems, operational constraints -typically minimum instream flows and maximum ramping rates- are imposed on hydropower plants. These operational restrictions limit reduce operational flexibility and can reduce the economic value of energy generation by imposing additional costs on the operation of interconnected power systems. Methods to predict the degree of hydrologic alteration rely on statistical analyses of instream flow time series. Typically, studies on hydrologic alteration use historical operational records for comparison between pre- and post-dam conditions. Efforts to assess hydrologic alteration based on future operational schemes of reservoirs are scarce. This study couples two existing models: a mid-term operations planning and a short-term economic dispatch to simulate short-term hydropower reservoir operations under different future scenarios. Scenarios of possible future configurations of the Chilean CIS are defined with emphasis on the introduction of non-conventional renewables (particularly wind energy) and large hydropower projects in Patagonia. Both models try to reproduce the actual decision making process in the Chilean Central Interconnected System

  11. Climate Change, Hydrology and Landscapes of America's Heartland: A Coupled Natural-Human System (United States)

    Lant, C.; Misgna, G.; Secchi, S.; Schoof, J. T.


    This paper will present a methodological overview of an NSF-funded project under the Coupled Natural and Human System program. Climate change, coupled with variations and changes in economic and policy environments and agricultural techniques, will alter the landscape of the U.S. Midwest. Assessing the effects of these changes on watersheds, and thus on water quantity, water quality, and agricultural production, entails modeling a coupled natural-human system capable of answering research questions such as: (1) How will the climate of the U.S. Midwest change through the remainder of the 21st Century? (2) How will climate change, together with changing markets and policies, affect land use patterns at various scales, from the U.S. Midwest, to agricultural regions, to watersheds, to farms and fields? (3) Under what policies and prices does landscape change induced by climate change generate a positive or a negative feedback through changes in carbon storage, evapotranspiration, and albedo? (4) Will climate change expand or diminish the agricultural production and ecosystem service generation capacities of specific watersheds? Such research can facilitate early adaptation and make a timely contribution to the successful integration of agricultural, environmental, and trade policy. Rural landscapes behave as a system through a number of feedback mechanisms: climatic, agro-technology, market, and policy. Methods, including agent-based modeling, SWAT modeling, map algebra using logistic regression, and genetic algorithms for analyzing each of these feedback mechanisms will be described. Selected early results that link sub-system models and incorporate critical feedbacks will also be presented.igure 1. Overall Modeling framework for Climate Change, Hydrology and Landscapes of America's Heartland.

  12. Acting, predicting and intervening in a socio-hydrological world (United States)

    Lane, S. N.


    This paper asks a simple question: if humans and their actions co-evolve with hydrological systems (Sivapalan et al., 2012), what is the role of hydrological scientists, who are also humans, within this system? To put it more directly, as traditionally there is a supposed separation of scientists and society, can we maintain this separation as socio-hydrologists studying a socio-hydrological world? This paper argues that we cannot, using four linked sections. The first section draws directly upon the concern of science-technology studies to make a case to the (socio-hydrological) community that we need to be sensitive to constructivist accounts of science in general and socio-hydrology in particular. I review three positions taken by such accounts and apply them to hydrological science, supported with specific examples: (a) the ways in which scientific activities frame socio-hydrological research, such that at least some of the knowledge that we obtain is constructed by precisely what we do; (b) the need to attend to how socio-hydrological knowledge is used in decision-making, as evidence suggests that hydrological knowledge does not flow simply from science into policy; and (c) the observation that those who do not normally label themselves as socio-hydrologists may actually have a profound knowledge of socio-hydrology. The second section provides an empirical basis for considering these three issues by detailing the history of the practice of roughness parameterisation, using parameters like Manning's n, in hydrological and hydraulic models for flood inundation mapping. This history sustains the third section that is a more general consideration of one type of socio-hydrological practice: predictive modelling. I show that as part of a socio-hydrological analysis, hydrological prediction needs to be thought through much more carefully: not only because hydrological prediction exists to help inform decisions that are made about water management; but also because

  13. Flood Simulations and Uncertainty Analysis for the Pearl River Basin Using the Coupled Land Surface and Hydrological Model System

    Directory of Open Access Journals (Sweden)

    Yongnan Zhu


    Full Text Available The performances of hydrological simulations for the Pearl River Basin in China were analysed using the Coupled Land Surface and Hydrological Model System (CLHMS. Three datasets, including East Asia (EA, high-resolution gauge satellite-merged China Merged Precipitation Analysis (CMPA-Daily, and the Asian Precipitation Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE daily precipitation were used to drive the CLHMS model to simulate daily hydrological processes from 1998 to 2006. The results indicate that the precipitation data was the most important source of uncertainty in the hydrological simulation. The simulated streamflow driven by the CMPA-Daily agreed well with observations, with a Pearson correlation coefficient (PMC greater than 0.70 and an index of agreement (IOA similarity coefficient greater than 0.82 at Liuzhou, Shijiao, and Wuzhou Stations. Comparison of the Nash-Sutcliffe efficiency coefficient (NSE shows that the peak flow simulation ability of CLHMS driven with the CMPA-Daily rainfall is relatively superior to that with the EA and APHRODITE datasets. The simulation results for the high-flow periods in 1998 and 2005 indicate that the CLHMS is promising for its future application in the flood simulation and prediction.

  14. Hydrological Climate Change Impact Analysis for the Figeh-Spring System in Damascus/Syria (United States)

    Kunstmann, H.; Smiatek, G.; Kaspar, S.


    The Figeh spring is one of the worlds largest springs and the major drinking water source for Damascus/Syria serving a population of over 2.9 million. Decreasing precipitation trends observed in various parts of the Eastern Mediterranean region together with recent drought periods increased concerns about drinking water availability for Damascus in changing future climate conditions. For that purpose first a hydrological model able to describe the observed daily discharge by meteorological driving only was developed for the data sparse and hydro-geologically complex Figeh spring. This was realized by an Artifical Neural Network (ANN) approach. It is the first hydrological model for this important spring that is able to reproduce the observed discharge behavior on a daily scale. We were able to identify the explicit algebraic transfer function of the ANN that allows transferring meteorological driving into discharge. Second, a set of downscaled climate change data from transient experiments with regional climate models employing the A1B SRES scenario has been used to access the future climate change signal in the area of the Figeh spring system and its potential effects of the future water availability for Damascus. In total, a data ensemble from 9 different regional models (MM5 in 4 different setups, RegCM, COSMO-CLM, CNRM-RM4, RACMO-2, HadRM3) at spatial resolution of 0.25 degree has been investigated for the periods 1961-1990 for present day climate and the periods 2021-2050 and 2070 - 2099 for expected future climate. The focus is on changes to annual, seasonal and monthly surface air temperature and precipitation, and the inter-annual variability. The potential impact of the climate change on Figeh spring discharge has been assessed by driving the ANN-based hydrological model with daily data of the different RCMs. The investigations show that water supply from the spring might face serious problems under changed climate conditions in the already vulnerable arid

  15. The Effects of Different Tillage Systems on Soil Hydrology and Erosion in Southeastern Brazil (United States)

    Bertolino, A. V. F. A.; Fernandes, N. F.; Souza, A. P.; Miranda, J. P.; Rocha, M. L.


    Conventional tillage usually imposes a variety of modifications on soil properties that can lead to important changes in the type and magnitude of the hydrological processes that take place at the upper portion of the soil profile. Plough pan formation, for example, is considered to be an important consequence of conventional tillage practices in southeastern Brazil, decreasing infiltration rates and contributing to soil erosion, especially in steep slopes. In order to characterize the changes in soil properties and soil hydrology due to the plough pan formation we carried out detailed investigations in two experimental plots in Paty do Alferes region, located in the hilly landscape of Serra do Mar in southeastern Brazil, close to Rio de Janeiro city. Farming activities are very important in this area, in particular the ones related to the tomato production. The local hilly topography with short and steep hillslopes, as well as an average annual rainfall of almost 2000 mm, favor surface runoff and the evolution of rill and gully erosion. The two runoff plots are 22m long by 4m wide and were installed side by side along a representative hillslope, both in terms of soil (Oxisol) and steepness. At the lower portion of each plot there is a collecting trough connected by a PVC pipe to a 500 and 1000 liters sediment storage boxes. Soil tillage treatments used in the two plots were: Conventional Tillage (CT), with one plowing using disc-type plow (about 18 cm depth) and one downhill tractor leveling, in addition to burning residues from previous planting; and Minimum Tillage (MT), which did not allow burning residues from previous planting and preserved a vegetative cover between plantation lines. Runoff and soil erosion measurements were carried out in both plots immediately after each rainfall event. In order to characterize soil water movements under the two tillage systems (CT and MT), 06 nests of tensiometers and 04 nests of Watermark sensors were installed in each

  16. Automating Geographic Information Systems (GIS) through Python for the Hydrological Sciences (United States)

    Madsen, K.


    Geographic Information Systems (GIS) have many applications in the hydrological sciences. However, GIS software is often expensive and difficult to automate. This paper will demonstrate how to automate GRASS GIS software using the Python programming language. Both GRASS GIS and Python are open source projects that are free for anyone to use. Automation of GIS processes is important when dealing with large-scale geographic studies, as large GIS maps are usually divided into discrete tiles. When conducting GIS transformations on such maps, the user must repeat the action for each tile, a process that is greatly expedited through automation. The paper will work through several examples of automated GIS processes and provide complete Python codes that demonstrate correct syntax for working with GRASS GIS applications. The provided examples will demonstrate automation of the following processes 1.) using raster math to calculate foliage thickness from LIDAR and DEM data; 2.) conducting raster interpolation from a set of vector points to develop a continuous hydraulic conductivity coverage; 3.) automating raster coloration to sync the coloration of a large number of raster tiles for website display, and 4.) constructing contoured vector lines from topography rasters. These examples programs will serve as the building blocks for readers, giving them the tools to automate any GIS process using Python and GRASS GIS.

  17. Evaluation of Proteus as a Tool for the Rapid Development of Models of Hydrologic Systems (United States)

    Weigand, T. M.; Farthing, M. W.; Kees, C. E.; Miller, C. T.


    Models of modern hydrologic systems can be complex and involve a variety of operators with varying character. The goal is to implement approximations of such models that are both efficient for the developer and computationally efficient, which is a set of naturally competing objectives. Proteus is a Python-based toolbox that supports prototyping of model formulations as well as a wide variety of modern numerical methods and parallel computing. We used Proteus to develop numerical approximations for three models: Richards' equation, a brine flow model derived using the Thermodynamically Constrained Averaging Theory (TCAT), and a multiphase TCAT-based tumor growth model. For Richards' equation, we investigated discontinuous Galerkin solutions with higher order time integration based on the backward difference formulas. The TCAT brine flow model was implemented using Proteus and a variety of numerical methods were compared to hand coded solutions. Finally, an existing tumor growth model was implemented in Proteus to introduce more advanced numerics and allow the code to be run in parallel. From these three example models, Proteus was found to be an attractive open-source option for rapidly developing high quality code for solving existing and evolving computational science models.

  18. A generic system dynamics model for simulating and evaluating the hydrological performance of reconstructed watersheds

    Directory of Open Access Journals (Sweden)

    N. Keshta


    Full Text Available A generic system dynamics watershed (GSDW model is developed and applied to five reconstructed watersheds located in the Athabasca mining basin, Alberta, Canada, and one natural watershed (boreal forest located in Saskatchewan, Canada, to simulate various hydrological processes in reconstructed and natural watersheds. This paper uses the root mean square error (RMSE, the mean absolute relative error (MARE, and the correlation coefficient (R as the main performance indicators, in addition to the visual comparison. For the South Bison Hills (SBH, South West Sand Storage (SWSS and Old Aspen (OA simulated soil moisture, the RMSE values ranges between 2.5–4.8 mm, and the MARE ranges from 7% to 18%, except for the D2-cover it was 26% for the validation year. The R statistics ranges from 0.3 to 0.77 during the validation period. The error between the measured and simulated cumulative actual evapotranspiration (AET flux for the SWSS, SBH, and the OA sites were 2%, 5%, and 8%, respectively. The developed GSDW model enables the investigation of the utility of different soil cover designs and evaluation of their performance. The model is capable of capturing the dynamics of water balance components, and may used to conduct short- and long- term predictions under different climate scenarios.

  19. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xubin [Univ. of Arizona, Tucson, AZ (United States); Troch, Peter [Univ. of Arizona, Tucson, AZ (United States); Pelletier, Jon [Univ. of Arizona, Tucson, AZ (United States); Niu, Guo-Yue [Univ. of Arizona, Tucson, AZ (United States); Gochis, David [NCAR Research Applications (RAL), Boulder, CO (United States)


    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM). We have made substantial progress in model development and evaluation, computational efficiencies and software engineering, and data development and evaluation, as discussed in Sections 2-4. Section 5 presents our success in data dissemination, while Section 6 discusses the scientific impacts of our work. Section 7 discusses education and mentoring success of our project, while Section 8 lists our relevant DOE services. All peer-reviewed papers that acknowledged this project are listed in Section 9. Highlights of our achievements include: • We have finished 20 papers (most published already) on model development and evaluation, computational efficiencies and software engineering, and data development and evaluation • The global datasets developed under this project have been permanently archived and publicly available • Some of our research results have already been implemented in WRF and CLM • Patrick Broxton and Michael Brunke have received their Ph.D. • PI Zeng has served on DOE proposal review panels and DOE lab scientific focus area (SFA) review panels

  20. Evidence for an enhanced hydrologic cycle during the Paleocene-Eocene thermal maximum from salinity variations on the New Jersey paleoshelf (United States)

    Makarova, M.; Miller, K. G.; Wright, J. D.; Rosenthal, Y.; Babila, T. L.


    The Paleocene-Eocene Thermal Maximum (PETM) was an abrupt global warming event ( 5-8°C) associated with a massive injection of carbon indicated by the negative carbon isotopic excursion (CIE). Reconstructions of the hydrologic cycle during the PETM warming are especially important to understand the ocean-atmosphere system response to changing warming climate. It has been proposed that the PETM warming would have enhanced the hydrologic cycle, resulting in increased rainfall and river discharge. Here, we evaluate salinity changes along the New Jersey paleoshelf and their implications to changes in the hydrologic cycle during the PETM. We use two independent paleothermometers (Mg/Ca ratio of planktonic foraminifera and TEX86) to constrain temperature changes associated with planktonic foraminiferal δ18O variations, with the residual attributed to salinity changes. Our study at Millville, New Jersey coastal plain core (ODP Leg 174AX), shows a salinity decrease of at least 4 psu associated with the onset of the PETM, which is coherent with observations from other New Jersey cores. This implies freshening of surface and thermocline waters on the mid Atlantic margin and supports the hypothesis of an enhanced hydrologic cycle, the "Appalachian Amazon", with increased river runoff to the New Jersey paleoshelf during the PETM. The TEXL 86 temperature calibration provides the best temperature estimate (warming from 23 to 30°C vs. 30 to 35.5°C for TEXH 86) because it is the only one that yields realistic salinities. Use of the TEXH 86 calibration yields extremely high sea surface salinities ( 48 psu in the latest Paleocene) and is thus unsuitable for this location during the PETM.

  1. Evidence of Hydroperiod Shortening in a Preserved System of Temporary Ponds

    Directory of Open Access Journals (Sweden)

    Carola Gómez-Rodríguez


    Full Text Available Based on field data simultaneous with Landsat overpasses from six different dates, we developed a robust linear model to predict subpixel fractions of water cover. The model was applied to a time series of 174 Landsat TM and ETM+ images to reconstruct the flooding regime of a system of small temporary ponds and to study their spatio-temporal changes in a 23-year period. We tried to differentiate natural fluctuations from trends in hydrologic variables (i.e., hydroperiod shortening that may threaten the preservation of the system. Although medium-resolution remote sensing data have rarely been applied to the monitoring of small-sized wetlands, this study evidences its utility to understand the hydrology of temporary ponds at a local scale. We show that the temporary ponds in Doñana National Park constitute a large and heterogeneous system with high intra and inter-annual variability. We also evidence that the conservation value of this ecosystem is threatened by the observed tendency to shorter annual hydroperiods in recent years, probably due to aquifer exploitation. This system of temporary ponds deserves special attention for the high density and heterogeneity of natural ponds, not common in Europe. For this reason, management decisions to avoid its destruction or degradation are critical.

  2. An enhanced model of land water and energy for global hydrologic and earth-system studies (United States)

    Milly, Paul C.D.; Malyshev, Sergey L.; Shevliakova, Elena; Dunne, Krista A.; Findell, Kirsten L.; Gleeson, Tom; Liang, Zhi; Phillips, Peter; Stouffer, Ronald J.; Swenson, Sean


    LM3 is a new model of terrestrial water, energy, and carbon, intended for use in global hydrologic analyses and as a component of earth-system and physical-climate models. It is designed to improve upon the performance and to extend the scope of the predecessor Land Dynamics (LaD) and LM3V models by better quantifying the physical controls of climate and biogeochemistry and by relating more directly to components of the global water system that touch human concerns. LM3 includes multilayer representations of temperature, liquid water content, and ice content of both snowpack and macroporous soil–bedrock; topography-based description of saturated area and groundwater discharge; and transport of runoff to the ocean via a global river and lake network. Sensible heat transport by water mass is accounted throughout for a complete energy balance. Carbon and vegetation dynamics and biophysics are represented as in LM3V. In numerical experiments, LM3 avoids some of the limitations of the LaD model and provides qualitatively (though not always quantitatively) reasonable estimates, from a global perspective, of observed spatial and/or temporal variations of vegetation density, albedo, streamflow, water-table depth, permafrost, and lake levels. Amplitude and phase of annual cycle of total water storage are simulated well. Realism of modeled lake levels varies widely. The water table tends to be consistently too shallow in humid regions. Biophysical properties have an artificial stepwise spatial structure, and equilibrium vegetation is sensitive to initial conditions. Explicit resolution of thick (>100 m) unsaturated zones and permafrost is possible, but only at the cost of long (≫300 yr) model spinup times.

  3. Integrated Data-Archive and Distributed Hydrological Modelling System for Optimized Dam Operation (United States)

    Shibuo, Yoshihiro; Jaranilla-Sanchez, Patricia Ann; Koike, Toshio


    In 2012, typhoon Bopha, which passed through the southern part of the Philippines, devastated the nation leaving hundreds of death tolls and significant destruction of the country. Indeed the deadly events related to cyclones occur almost every year in the region. Such extremes are expected to increase both in frequency and magnitude around Southeast Asia, during the course of global climate change. Our ability to confront such hazardous events is limited by the best available engineering infrastructure and performance of weather prediction. An example of the countermeasure strategy is, for instance, early release of reservoir water (lowering the dam water level) during the flood season to protect the downstream region of impending flood. However, over release of reservoir water affect the regional economy adversely by losing water resources, which still have value for power generation, agricultural and industrial water use. Furthermore, accurate precipitation forecast itself is conundrum task, due to the chaotic nature of the atmosphere yielding uncertainty in model prediction over time. Under these circumstances we present a novel approach to optimize contradicting objectives of: preventing flood damage via priori dam release; while sustaining sufficient water supply, during the predicted storm events. By evaluating forecast performance of Meso-Scale Model Grid Point Value against observed rainfall, uncertainty in model prediction is probabilistically taken into account, and it is then applied to the next GPV issuance for generating ensemble rainfalls. The ensemble rainfalls drive the coupled land-surface- and distributed-hydrological model to derive the ensemble flood forecast. Together with dam status information taken into account, our integrated system estimates the most desirable priori dam release through the shuffled complex evolution algorithm. The strength of the optimization system is further magnified by the online link to the Data Integration and

  4. Hydrologic Engineering Center River Analysis System (HEC-RAS) Water Temperature Models Developed for the Missouri River Recovery Management Plan and Environmental Impact Statement (United States)


    ER D C/ EL T R- 17 -1 8 Missouri River Recovery Program (MRRP) Hydrologic Engineering Center-River Analysis System (HEC-RAS) Water... Engineering Center-River Analysis System (HEC-RAS) Water Temperature Models Developed for the Missouri River Recovery Management Plan and Environmental...Impact Statement” ERDC/EL TR-17-18 ii Abstract This report describes the Hydrologic Engineering Center-River Analysis System (HEC-RAS) water

  5. Linking Three Gorges Dam and downstream hydrological regimes along the Yangtze River, China

    NARCIS (Netherlands)

    Mei, X.; Dai, Z.; Van Gelder, P.H.A.J.M.; Gao, J.


    The magnitude of anthropogenic influence, especially dam regulation, on hydrological system is of scientific and practical value for large river management. As the largest dam in the world by far, Three Gorges Dam (TGD) is expected to be a strong evidence on dam impacts on downstream hydrological

  6. Hydrological consequences of global warming

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Norman L.


    The 2007 Intergovernmental Panel for Climate Change indicates there is strong evidence that the atmospheric concentration of carbon dioxide far exceeds the natural range over the last 650,000 years, and this recent warming of the climate system is unequivocal, resulting in more frequent extreme precipitation events, earlier snowmelt runoff, increased winter flood likelihoods, increased and widespread melting of snow and ice, longer and more widespread droughts, and rising sea level. The effects of recent warming has been well documented and climate model projections indicate a range of hydrological impacts with likely to very likely probabilities (67 to 99 percent) of occurring with significant to severe consequences in response to a warmer lower atmosphere with an accelerating hydrologic cycle.

  7. Coupling biophysical processes and water rights to simulate spatially distributed water use in an intensively managed hydrologic system (United States)

    Han, Bangshuai; Benner, Shawn G.; Bolte, John P.; Vache, Kellie B.; Flores, Alejandro N.


    Humans have significantly altered the redistribution of water in intensively managed hydrologic systems, shifting the spatiotemporal patterns of surface water. Evaluating water availability requires integration of hydrologic processes and associated human influences. In this study, we summarize the development and evaluation of an extensible hydrologic model that explicitly integrates water rights to spatially distribute irrigation waters in a semi-arid agricultural region in the western US, using the Envision integrated modeling platform. The model captures both human and biophysical systems, particularly the diversion of water from the Boise River, which is the main water source that supports irrigated agriculture in this region. In agricultural areas, water demand is estimated as a function of crop type and local environmental conditions. Surface water to meet crop demand is diverted from the stream reaches, constrained by the amount of water available in the stream, the water-rights-appropriated amount, and the priority dates associated with particular places of use. Results, measured by flow rates at gaged stream and canal locations within the study area, suggest that the impacts of irrigation activities on the magnitude and timing of flows through this intensively managed system are well captured. The multi-year averaged diverted water from the Boise River matches observations well, reflecting the appropriation of water according to the water rights database. Because of the spatially explicit implementation of surface water diversion, the model can help diagnose places and times where water resources are likely insufficient to meet agricultural water demands, and inform future water management decisions.

  8. Hydrology team (United States)

    Ragan, R.


    General problems faced by hydrologists when using historical records, real time data, statistical analysis, and system simulation in providing quantitative information on the temporal and spatial distribution of water are related to the limitations of these data. Major problem areas requiring multispectral imaging-based research to improve hydrology models involve: evapotranspiration rates and soil moisture dynamics for large areas; the three dimensional characteristics of bodies of water; flooding in wetlands; snow water equivalents; runoff and sediment yield from ungaged watersheds; storm rainfall; fluorescence and polarization of water and its contained substances; discriminating between sediment and chlorophyll in water; role of barrier island dynamics in coastal zone processes; the relationship between remotely measured surface roughness and hydraulic roughness of land surfaces and stream networks; and modeling the runoff process.

  9. Soil texture in a coppice dune system: The relative role of aeolian and hydrologic processes (United States)

    Li, J. J.; Ravi, S.


    The desert grasslands of the southwestern U.S. have undergone extensive woody shrub encroachment over the last 150 years. The formation of coppice dunes represents a late stage of the shrub encroachment and is also associated with the redistribution of soil recourses including soil fines. The conversion of perennial grasslands into desert shrublands and the consequent redistribution of soil resources have important implications for local pastoral economics, regional and global climate, biogeochemical cycles, biodiversity, and human health. It is generally reported that the nutrient-enriched fine soil particles are more concentrated on the coppice dunes due to aeolian interception. However, a systematic investigation on the characteristics of soil texture from the dune interspaces to the top of the dunes in the coppice dune system is still not available. Here, we investigated a series of coppice dunes (with various age, length, height, and orientation) located on the P. glandulosa (mesquite) dunelands in the Jornada Basin, Chihuahuan Desert, southern New Mexico. On each of the dunes, we collected soil samples (top 5 cm) along the transects that are parallel with and perpendicular to the prevailing wind directions every 25-100 cm. The soil transects extended from the dune interspaces to the top of the dunes. Our studies show that soils under the coppice dunes are not necessary finer than the dune interspaces. Actually, soil fines with grain diameters <100 μm are more concentrated under the dune interspaces than those of the dunes. We suggest that the interactions between aeolian processes and vegetation alone, cannot explain the observed pattern of soil texture distribution in this duneland. Hydrologic process, in particular the directional movement of soil fines from the dunes to the dune interspaces, explained the accumulation of fine sands in the dune interspaces relative to the center of the dunes.

  10. Valuing year-to-go hydrologic forecast improvements for a peaking hydropower system in the Sierra Nevada (United States)

    Rheinheimer, David E.; Bales, Roger C.; Oroza, Carlos A.; Lund, Jay R.; Viers, Joshua H.


    We assessed the potential value of hydrologic forecasting improvements for a snow-dominated high-elevation hydropower system in the Sierra Nevada of California, using a hydropower optimization model. To mimic different forecasting skill levels for inflow time series, rest-of-year inflows from regression-based forecasts were blended in different proportions with representative inflows from a spatially distributed hydrologic model. The statistical approach mimics the simpler, historical forecasting approach that is still widely used. Revenue was calculated using historical electricity prices, with perfect price foresight assumed. With current infrastructure and operations, perfect hydrologic forecasts increased annual hydropower revenue by 0.14 to 1.6 million, with lower values in dry years and higher values in wet years, or about $0.8 million (1.2%) on average, representing overall willingness-to-pay for perfect information. A second sensitivity analysis found a wider range of annual revenue gain or loss using different skill levels in snow measurement in the regression-based forecast, mimicking expected declines in skill as the climate warms and historical snow measurements no longer represent current conditions. The value of perfect forecasts was insensitive to storage capacity for small and large reservoirs, relative to average inflow, and modestly sensitive to storage capacity with medium (current) reservoir storage. The value of forecasts was highly sensitive to powerhouse capacity, particularly for the range of capacities in the northern Sierra Nevada. The approach can be extended to multireservoir, multipurpose systems to help guide investments in forecasting.

  11. Water System Adaptation To Hydrological Changes: Module 3, Consequences of Prolonged Drought on Urban Water System Resilience: Case Study from Las Vegas, Nevada, USA (United States)

    This course focuses on water system adaptation to short-term and long-term climate and hydrologic stressors that affect water availability, water quality, security, and resilience. The course is organized into 15 sequential modules. The lectures will be augmented by weekly assign...

  12. [Socio-hydrology: A review]. (United States)

    Ding, Jing-yi; Zhao, Wen-wu; Fang, Xue-ning


    Socio-hydrology is an interdiscipline of hydrology, nature, society and humanity. It mainly explores the two-way feedbacks of coupled human-water system and its dynamic mechanism of co-evolution, and makes efforts to solve the issues that human faces today such as sustainable utilization of water resources. Starting from the background, formation process, and fundamental concept of socio-hydrology, this paper summarized the features of socio-hydrology. The main research content of socio-hydrology was reduced to three aspects: The tradeoff in coupled human-water system, interests in water resources management and virtual water research in coupled human-water system. And its differences as well as relations with traditional hydrology, eco-hydrology and hydro-sociology were dwelled on. Finally, with hope to promote the development of socio-hydrology researches in China, the paper made prospects for the development of the subject from following aspects: Completing academic content and deepening quantitative research, focusing on scale studies of socio-hydrology, fusing socio-hydrology and eco-hydrology.

  13. Soil hydrology of agroforestry systems: Competition for water or positive tree-crops interactions? (United States)

    Gerjets, Rowena; Richter, Falk; Jansen, Martin; Carminati, Andrea


    In dry periods during the growing season crops may suffer from severe water stress. The question arises whether the alternation of crop and tree strips might enhance and sustain soil water resources available for crops during drought events. Trees reduce wind exposure, decreasing the potential evapotranspiration of crops and soils; additionally hydraulic lift from the deep roots of trees to the drier top soil might provide additional water for shallow-rooted crops. To understand the above and belowground water relations of agroforestry systems, we measured soil moisture and soil water potential in crop strips as a function of distance to the trees at varying depth as well as meteorological parameters. At the agroforestry site Reiffenhausen, Lower Saxony, Germany, two different tree species are planted, each in one separated tree strip: willow breed Tordis ((Salix viminalis x Salix Schwerinii) x Salix viminalis) and poplar clone Max 1 (Populus nigra x Populus maximowiczii). In between the tree strips a crop strip of 24 m width was established with annual crop rotation, managed the same way as the reference site. During a drought period in May 2016 with less than 2 mm rain in four weeks, an overall positive effect on hydrological conditions of the agroforestry system was observed. The results show that trees shaded the soil surface, lowering the air temperature and further increasing the soil moisture in the crop strips compared to the reference site, which was located far from the trees. At the reference site the crops took up water in the upper soil (<20 cm depth); after the soil reached water potentials below -100 kPa, root water uptake moved to deeper soil layers (<40 cm). Because of the higher wind and solar radiation exposure the reference soil profile was severely dried out. Also in the crop strips of the agroforestry system, crops took up water in the upper soil. However, the lower soil layers remained wet for an extended period of time. The tree strips

  14. Wetland Hydrology (United States)

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefit...

  15. Hydrologic Education and Undergraduate Research in a Passive Wetland Treatment System (United States)

    Fredrick, K. C.; Lohr, L.


    Legacy coal mine drainage has been found to impair surface water throughout southwestern Pennsylvania. Though few of our incoming students know what "acid mine drainage" is, nearly all have seen the orange streams and seeps that are its most obvious characteristic. On the other end of the spectrum, our geology majors are typically finding jobs in the oil and gas industry related to shale gas, or in environmental fields especially related to local and regional surface water. To take advantage of their early familiarity with local stream impacts and the likelihood they will have to deal with mine effluent during their post-academic careers, we have leveraged a local passive wetland treatment system to bring a relevant, real-life scenario into the classroom and lab. Moraine State Park, in western PA, is centered on Lake Arthur, an artificial reservoir of Muddy Creek. The park, particularly the lake, is a destination for recreational visitors, including boating and fishing enthusiasts. There is concern among visitors and park administrators about the health of the local streams and the lake. The area has been extensively undermined, with most coal mines sealed prior to the damming of the reservoir. One such instance of these sealed mine ports failed along one of the many embayments of Lake Arthur and a passive treatment system was installed. It was used as an example of the environmental impacts to the area for park guests, with an access road and signage. However, at this time, the three-pond system may be failing, five years beyond its projected life span and showing signs of stress and downstream contamination. Though the system is small, it provides a robust opportunity for hydrologic and geochemical analyses. We have used the pond system extensively for undergraduate research. Over the past five years, a Master's thesis was completed, and numerous undergraduate projects followed. Students have measured precipitate thickness and deposition rates, endeavored to

  16. Soil Systems for Upscaling Saturated Hydraulic Conductivity (Ksat) for Hydrological Modeling in the Critical Zone (United States)

    Successful hydrological model predictions depend on appropriate framing of scale and the spatial-temporal accuracy of input parameters describing soil hydraulic properties. Saturated soil hydraulic conductivity (Ksat) is one of the most important properties influencing water movement through soil un...

  17. Building hydrologic information systems to promote climate resilience in the Blue Nile/Abay higlands (United States)

    Climate adaptation requires information about climate and land-surface conditions – spatially distributed, and at scales of human influence (the field scale). This article describes a project aimed at combining meteorological data, satellite remote sensing, hydrologic modeling, and downscaled clima...

  18. Scaling biodiversity responses to hydrological regimes. (United States)

    Rolls, Robert J; Heino, Jani; Ryder, Darren S; Chessman, Bruce C; Growns, Ivor O; Thompson, Ross M; Gido, Keith B


    Of all ecosystems, freshwaters support the most dynamic and highly concentrated biodiversity on Earth. These attributes of freshwater biodiversity along with increasing demand for water mean that these systems serve as significant models to understand drivers of global biodiversity change. Freshwater biodiversity changes are often attributed to hydrological alteration by water-resource development and climate change owing to the role of the hydrological regime of rivers, wetlands and floodplains affecting patterns of biodiversity. However, a major gap remains in conceptualising how the hydrological regime determines patterns in biodiversity's multiple spatial components and facets (taxonomic, functional and phylogenetic). We synthesised primary evidence of freshwater biodiversity responses to natural hydrological regimes to determine how distinct ecohydrological mechanisms affect freshwater biodiversity at local, landscape and regional spatial scales. Hydrological connectivity influences local and landscape biodiversity, yet responses vary depending on spatial scale. Biodiversity at local scales is generally positively associated with increasing connectivity whereas landscape-scale biodiversity is greater with increasing fragmentation among locations. The effects of hydrological disturbance on freshwater biodiversity are variable at separate spatial scales and depend on disturbance frequency and history and organism characteristics. The role of hydrology in determining habitat for freshwater biodiversity also depends on spatial scaling. At local scales, persistence, stability and size of habitat each contribute to patterns of freshwater biodiversity yet the responses are variable across the organism groups that constitute overall freshwater biodiversity. We present a conceptual model to unite the effects of different ecohydrological mechanisms on freshwater biodiversity across spatial scales, and develop four principles for applying a multi-scaled understanding of

  19. Landfilling: Hydrology

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Beaven, R.


    Landfill hydrology deals with the presence and movement of water through a landfill. The main objective in landfill hydrology is usually to predict leachate generation, but the presence and movement of water in a landfill also affect the degradation of the waste, the leaching of pollutants...... and the geotechnical stability of the fill. Understanding landfill hydrology is thus important for many aspects of landfill, in particular siting, design and operation. The objective of this chapter is to give a basic understanding of the hydrology of landfills, and to present ways to estimate leachate quantities......-circuiting. In the final section different existing hydrological models for landfills are presented with a special focus on the HELP model. This model is the most widely used tool for the prediction of leachate quantities in landfills, and for the sizing of leachate control and management infrastructure....

  20. Hydrology and Soil Manipulations of Iron-Rich Ditch Mesocosms Provide Little Evidence of Phosphorus Capture within the Profile. (United States)

    Ruppert, David E; Needelman, Brian A; Kleinman, Peter J A; Rabenhorst, Martin C; Momen, Bahram; Wester, David B


    Agricultural drainage ditches function as first-order streams and affect nutrient management. Soil mesocosms from a ditch featuring a vertical (increasing upward) gradient in iron (Fe) and phosphorus (P) were subjected to hydraulic and soil treatments. These manipulations mimicked aspects of dredging and controlled drainage and inspected the soil release and retention of P. Treatments did not remove P from simulated groundwater. Throughput water either gained in P (lack of dredging, especially under Fe-reducing conditions) or had P concentrations indistinguishable from input water (dredging). Undredged mesocosms, when Fe-reducing, released Fe and P simultaneously. Simultaneous release of P and Fe from our Fe-reducing mesocosms indicates a mechanism whereby P capture occurs by Fe precipitation upon emergence to aerated surficial waters. Upwelling and surficial phases of ditch hydrology and the lowering of the ditch surface on dredging complicate interpretation of traditional means of describing ditch P retention and release. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Sedimentary evidence for enhanced hydrological cycling in response to rapid carbon release during the early Toarcian oceanic anoxic event (United States)

    Izumi, Kentaro; Kemp, David B.; Itamiya, Shoma; Inui, Mutsuko


    A pronounced excursion in the carbon-isotope composition of biospheric carbon and coeval seawater warming during the early Toarcian (∼183 Ma) has been linked to the large-scale transfer of 12C-enriched carbon to the oceans and atmosphere. A European bias in the distribution of available data means that the precise pattern, tempo and global expression of this carbon cycle perturbation, and the associated environmental responses, remain uncertain. Here, we present a new cm-scale terrestrial-dominated carbon-isotope record through an expanded lower Toarcian section from Japan that displays a negative excursion pattern similar to marine and terrestrial carbon-isotope records documented from Europe. These new data suggest that 12C-enriched carbon was added to the biosphere in at least one rapid, millennial-scale pulse. Sedimentological analysis indicates a close association between the carbon-isotope excursion and high-energy sediment transport and enhanced fluvial discharge. Together, these data support the hypothesis that a sudden strengthening of the global hydrological cycle occurred in direct and immediate response to rapid carbon release and atmospheric warming.

  2. Incorporating grazing into an eco-hydrologic model: Simulating coupled human and natural systems in rangelands (United States)

    Reyes, J. J.; Liu, M.; Tague, C.; Choate, J. S.; Evans, R. D.; Johnson, K. A.; Adam, J. C.


    Rangelands provide an opportunity to investigate the coupled feedbacks between human activities and natural ecosystems. These areas comprise at least one-third of the Earth's surface and provide ecological support for birds, insects, wildlife and agricultural animals including grazing lands for livestock. Capturing the interactions among water, carbon, and nitrogen cycles within the context of regional scale patterns of climate and management is important to understand interactions, responses, and feedbacks between rangeland systems and humans, as well as provide relevant information to stakeholders and policymakers. The overarching objective of this research is to understand the full consequences, intended and unintended, of human activities and climate over time in rangelands by incorporating dynamics related to rangeland management into an eco-hydrologic model that also incorporates biogeochemical and soil processes. Here we evaluate our model over ungrazed and grazed sites for different rangeland ecosystems. The Regional Hydro-ecologic Simulation System (RHESSys) is a process-based, watershed-scale model that couples water with carbon and nitrogen cycles. Climate, soil, vegetation, and management effects within the watershed are represented in a nested landscape hierarchy to account for heterogeneity and the lateral movement of water and nutrients. We incorporated a daily time-series of plant biomass loss from rangeland to represent grazing. The TRY Plant Trait Database was used to parameterize genera of shrubs and grasses in different rangeland types, such as tallgrass prairie, Intermountain West cold desert, and shortgrass steppe. In addition, other model parameters captured the reallocation of carbon and nutrients after grass defoliation. Initial simulations were conducted at the Curlew Valley site in northern Utah, a former International Geosphere-Biosphere Programme Desert Biome site. We found that grasses were most sensitive to model parameters affecting

  3. Hydrology of the southeastern Coastal Plain aquifer system in South Carolina and parts of Georgia and North Carolina (United States)

    Aucott, Walter R.


    The wedge of sediments present beneath the Coastal Plain of South Carolina and adjacent parts of Georgia and North Carolina consists of sand, silt, clay, and limestone. These strata have been subdivided into six regional aquifers: the surficial aquifer, the Floridan aquifer system, the Tertiary sand aquifer, the Black Creek aquifer, the Middendorf aquifer, and the Cape Fear aquifer. Intervening confining units separate the aquifers, except for the Floridan aquifer system and the Tertiary sand aquifer, which together function as a single hydrologic unit.

  4. GC23G-1310: Investigation Into the Effects of Climate Variability and Land Cover Change on the Hydrologic System of the Lower Mekong Basin (United States)

    Markert, Kel N.; Griffin, Robert; Limaye, Ashutosh S.; McNider, Richard T.; Anderson, Eric R.


    The Lower Mekong Basin (LMB) is an economically and ecologically important region that experiences hydrologic hazards such as floods and droughts, which can directly affect human well-being and limit economic growth and development. To effectively develop long-term plans for addressing hydrologic hazards, the regional hydrological response to climate variability and land cover change needs to be evaluated. This research aims to investigate how climate variability, specifically variations in the precipitation regime, and land cover change will affect hydrologic parameters both spatially and temporally within the LMB. The research goal is achieved by (1) modeling land cover change for a baseline land cover change scenario as well as changes in land cover with increases in forest or agriculture and (2) using projected climate variables and modeled land cover data as inputs into the Variable Infiltration Capacity (VIC) hydrologic model to simulate the changes to the hydrologic system. The VIC model outputs were analyzed against historic values to understand the relative contribution of climate variability and land cover to change, where these changes occur, and to what degree these changes affect the hydrology. This study found that the LMB hydrologic system is more sensitive to climate variability than land cover change. On average, climate variability was found to increase discharge and evapotranspiration (ET) while decreasing water storage. The change in land cover show that increasing forest area will slightly decrease discharge and increase ET while increasing agriculture area increases discharge and decreases ET. These findings will help the LMB by supporting individual country policy to plan for future hydrologic changes as well as policy for the basin as a whole.

  5. Integration of a Hydrological Model within a Geographical Information System: Application to a Forest Watershed

    Directory of Open Access Journals (Sweden)

    Dimitris Fotakis


    Full Text Available Watershed simulation software used for operational purposes must possess both dependability of results and flexibility in parameter selection and testing. The UBC watershed model (UBCWM contains a wide spectrum of parameters expressing meteorological, geological, as well as ecological watershed characteristics. The hydrological model was coupled to the MapInfo GIS and the software created was named Watershed Mapper (WM. WM is endowed with several features permitting operational utilization. These include input data and basin geometry visualization, land use/cover and soil simulation, exporting of statistical results and thematic maps and interactive variation of disputed parameters. For the application of WM two hypothetical scenarios of forest fires were examined in a study watershed. Four major rainfall events were selected from 12-year daily precipitation data and the corresponding peak flows were estimated for the base line data and hypothetical scenarios. A significant increase was observed as an impact of forest fires on peak flows. Due to its flexibility the combined tool described herein may be utilized in modeling long-term hydrological changes in the context of unsteady hydrological analyses.

  6. Effects of hydrologic connectivity and environmental nariables on nekton assemblage in a coastal marsh system (United States)

    Kang, Sung-Ryong; King, Sammy L.


    Hydrologic connectivity and environmental variation can influence nekton assemblages in coastal ecosystems. We evaluated the effects of hydrologic connectivity (permanently connected pond: PCP; temporary connected pond: TCP), salinity, vegetation coverage, water depth and other environmental variables on seasonal nekton assemblages in freshwater, brackish, and saline marshes of the Chenier Plain, Louisiana, USA. We hypothesize that 1) nekton assemblages in PCPs have higher metrics (density, biomass, assemblage similarity) than TCPs within all marsh types and 2) no nekton species would be dominant across all marsh types. In throw traps, freshwater PCPs in Fall (36.0 ± 1.90) and Winter 2009 (43.2 ± 22.36) supported greater biomass than freshwater TCPs (Fall 2009: 9.1 ± 4.65; Winter 2009: 8.3 ± 3.42). In minnow traps, saline TCPs (5.9 ± 0.85) in Spring 2009 had higher catch per unit effort than saline PCPs (0.7 ± 0.67). Our data only partially support our first hypothesis as freshwater marsh PCPs had greater assemblage similarity than TCPs. As predicted by our second hypothesis, no nekton species dominated across all marsh types. Nekton assemblages were structured by individual species responses to the salinity gradient as well as pond habitat attributes (submerged aquatic vegetation coverage, dissolved oxygen, hydrologic connectivity).

  7. HIBAL: A hydrologic-isotopic-balance model for application to paleolake systems (United States)

    Benson, L.; Paillet, F.


    A simple hydrologic-isotopic-balance (HIBAL) model for application to paleolake ??18O records is presented. Inputs to the model include discharge, on-lake precipitation, evaporation, and the ??18O values of these fluid fluxes. Monthly values of climatic parameters that govern the fractionation of 18O and 16O during evaporation have been extracted from historical data sets and held constant in the model. The ability of the model to simulate changes in the hydrologic balance and the ??18O evolution of the mixed layer has been demonstrated using measured data from Pyramid Lake, Nevada. Simulations of the response in ??18O to step- and periodic-function changes in fluid inputs indicate that the hydrologic balance and ??18O values lag climate change. Input of reconstructed river discharges and their ??18O values to Pyramid and Walker lakes indicates that minima and maxima in simulated ??18O records correspond to minima and maxima in the reconstructed volume records and that the overall shape of the volume and ??18O records is similar. The model was also used in a simulation of abrupt oscillations in the ??18O values of paleo-Owens Lake, California.

  8. Technology demonstration: geostatistical and hydrologic analysis of salt areas. Assessment of effectiveness of geologic isolation systems

    Energy Technology Data Exchange (ETDEWEB)

    Doctor, P.G.; Oberlander, P.L.; Rice, W.A.; Devary, J.L.; Nelson, R.W.; Tucker, P.E.


    The Office of Nuclear Waste Isolation (ONWI) requested Pacific Northwest Laboratory (PNL) to: (1) use geostatistical analyses to evaluate the adequacy of hydrologic data from three salt regions, each of which contains a potential nuclear waste repository site; and (2) demonstrate a methodology that allows quantification of the value of additional data collection. The three regions examined are the Paradox Basin in Utah, the Permian Basin in Texas, and the Mississippi Study Area. Additional and new data became available to ONWI during and following these analyses; therefore, this report must be considered a methodology demonstration here would apply as illustrated had the complete data sets been available. A combination of geostatistical and hydrologic analyses was used for this demonstration. Geostatistical analyses provided an optimal estimate of the potentiometric surface from the available data, a measure of the uncertainty of that estimate, and a means for selecting and evaluating the location of future data. The hydrologic analyses included the calculation of transmissivities, flow paths, travel times, and ground-water flow rates from hypothetical repository sites. Simulation techniques were used to evaluate the effect of optimally located future data on the potentiometric surface, flow lines, travel times, and flow rates. Data availability, quality, quantity, and conformance with model assumptions differed in each of the salt areas. Report highlights for the three locations are given.

  9. Facets of Hydrology II (United States)

    Smigielski, Frank J.

    The editor states that this book should have a wide appeal to the research hydrologist, to operational hydrologists, and to those who have only a limited knowledge or are beginners in the study of hydrology. I agree with the editor that this publication should appeal to a large cross section of people whose interests lie in the various facets of hydrology.This publication takes a look at the newest interpretational tools available to hydrologists, such as environmental satellites. It considers a diverse menu of topics, such as sediment load of rivers, water resource systems, water quality monitoring, and the physical aspects of lakes. The volume also presents a look at international organizations that are concerned with worldwide water problems. The quality, quantity, and distribution of water over the globe is covered unde the topic headings “Large Scale Water Transfers,” “Technology Transfer in Hydrology,” and “The Organization of Hydrologic Services.”

  10. Coupling biophysical processes and water rights to simulate spatially distributed water use in an intensively managed hydrologic system

    Directory of Open Access Journals (Sweden)

    B. Han


    Full Text Available Humans have significantly altered the redistribution of water in intensively managed hydrologic systems, shifting the spatiotemporal patterns of surface water. Evaluating water availability requires integration of hydrologic processes and associated human influences. In this study, we summarize the development and evaluation of an extensible hydrologic model that explicitly integrates water rights to spatially distribute irrigation waters in a semi-arid agricultural region in the western US, using the Envision integrated modeling platform. The model captures both human and biophysical systems, particularly the diversion of water from the Boise River, which is the main water source that supports irrigated agriculture in this region. In agricultural areas, water demand is estimated as a function of crop type and local environmental conditions. Surface water to meet crop demand is diverted from the stream reaches, constrained by the amount of water available in the stream, the water-rights-appropriated amount, and the priority dates associated with particular places of use. Results, measured by flow rates at gaged stream and canal locations within the study area, suggest that the impacts of irrigation activities on the magnitude and timing of flows through this intensively managed system are well captured. The multi-year averaged diverted water from the Boise River matches observations well, reflecting the appropriation of water according to the water rights database. Because of the spatially explicit implementation of surface water diversion, the model can help diagnose places and times where water resources are likely insufficient to meet agricultural water demands, and inform future water management decisions.

  11. Hydrologic controls and anthropogenic drivers of the zebra mussel invasion of the Mississippi-Missouri river system (United States)

    Mari, L.; Bertuzzo, E.; Casagrandi, R.; Gatto, M.; Levin, S. A.; Rodriguez-Iturbe, I.; Rinaldo, A.


    We propose a novel ecohydrological model for the invasion of inland waters by the zebra mussel Dreissena polymorpha and test it against field data gathered within the Mississippi-Missouri river system in North America. This biological invasion poses major ecological and economic threats, especially due to the huge population densities reached by local zebra mussel colonies and the species' unparalleled dispersal abilities within fluvial systems. We focus on a quantitative evaluation, attempted here for the first time, of the individual roles and the mutual interactions of drivers and controls of the Mississippi-Missouri invasion. To this end, we use a multilayer network model accounting explicitly for zebra mussel demographic dynamics, hydrologic transport, and dispersal due to anthropic activities. By testing our results against observations, we show that hydrologic transport alone is not sufficient to explain the spread of the species at the basin scale. We also quantify the role played by commercial navigation in promoting the initial, selective colonization of the river system, and show how recreational boating may have determined the capillary penetration of the species into the water system. The role of post-establishment dispersal mechanisms and the effectiveness of possible prevention measures are also discussed in the context of model sensitivity and robustness to reparametrization.

  12. gis-based hydrological model based hydrological model upstream

    African Journals Online (AJOL)


    Hydrological. Hydrological modeling tools have been increasingl modeling tools have been increasingl watershed watershed level. The application of these tools hav. The application of these tools hav sensing and G sensing and Geographical Information System (GIS) eographical Information System (GIS) based models ...

  13. Non-stationarity in experimental travel time measured in a lysimeter: theoretical and modeling lessons from a simplified hydrological system (United States)

    Queloz, Pierre; Carraro, Luca; Bertuzzo, Enrico; Botter, Gianluca; Rao, P. Suresh C.; Rinaldo, Andrea


    Experimental data have been collected over a year-long period in a large weighing lysimeter. Natural climatic forcing occurs, except for rainfall which is artificially generated as a given Poisson process at a daily timescale. A constant water table is maintained and excess infiltrated water is discharged through the outlet at the bottom of the lysimeter. Soil water storage and evapotranspiration fluxes (accentuated by a willow tree planted in the lysimeter) were monitored throughout the experiment, so that accurate time series of all in- and out-fluxes are available. Five rainfall inputs were marked with individually traceable passive solutes (fluorobenzoic acids) at various initial soil moisture conditions during the first month of the experiment. Tracer concentrations were measured in the soil water and in the discharge at high temporal resolution. We aim here at directly measuring solute travel times, a proxy of hydrological transport with the main advantage to blend the bulk effects of water velocity distributions. The drivers of water displacement in this hydrological setting - and in any other realistic case - have intrinsically a non-stationary nature (e.g. random rainfall occurrence, seasonal evapotranspiration cycles and moisture-related soil connectivity), but the integration of these processes over a larger time scale (i.e. typically the time scale of the mean travel time) often lead to the stationary assumption thus considerably simplifying the data interpretation. Results clearly show that even in such a hydrological system with reduced complexity, experimental travel time distributions are non-stationary and are strongly influenced by the states encountered by the system during the transport phase. The measurements help at identifying the relevant key features influencing the experimental bulk transport. Modeling efforts have demonstrated the inability of a plug-flow reactor (old-water first reservoir) to reproduce the solute outfluxes dynamics. On

  14. A meteo-hydrological modelling system for the reconstruction of river runoff: the case of the Ofanto river catchment (United States)

    Verri, Giorgia; Pinardi, Nadia; Gochis, David; Tribbia, Joseph; Navarra, Antonio; Coppini, Giovanni; Vukicevic, Tomislava


    A meteo-hydrological modelling system has been designed for the reconstruction of long time series of rainfall and river runoff events. The modelling chain consists of the mesoscale meteorological model of the Weather Research and Forecasting (WRF), the land surface model NOAH-MP and the hydrology-hydraulics model WRF-Hydro. Two 3-month periods are reconstructed for winter 2011 and autumn 2013, containing heavy rainfall and river flooding events. Several sensitivity tests were performed along with an assessment of which tunable parameters, numerical choices and forcing data most impacted on the modelling performance.The calibration of the experiments highlighted that the infiltration and aquifer coefficients should be considered as seasonally dependent.The WRF precipitation was validated by a comparison with rain gauges in the Ofanto basin. The WRF model was demonstrated to be sensitive to the initialization time and a spin-up of about 1.5 days was needed before the start of the major rainfall events in order to improve the accuracy of the reconstruction. However, this was not sufficient and an optimal interpolation method was developed to correct the precipitation simulation. It is based on an objective analysis (OA) and a least square (LS) melding scheme, collectively named OA+LS. We demonstrated that the OA+LS method is a powerful tool to reduce the precipitation uncertainties and produce a lower error precipitation reconstruction that itself generates a better river discharge time series. The validation of the river streamflow showed promising statistical indices.The final set-up of our meteo-hydrological modelling system was able to realistically reconstruct the local rainfall and the Ofanto hydrograph.

  15. Application of Large-Scale, Multi-Resolution Watershed Modeling Framework Using the Hydrologic and Water Quality System (HAWQS

    Directory of Open Access Journals (Sweden)

    Haw Yen


    Full Text Available In recent years, large-scale watershed modeling has been implemented broadly in the field of water resources planning and management. Complex hydrological, sediment, and nutrient processes can be simulated by sophisticated watershed simulation models for important issues such as water resources allocation, sediment transport, and pollution control. Among commonly adopted models, the Soil and Water Assessment Tool (SWAT has been demonstrated to provide superior performance with a large amount of referencing databases. However, it is cumbersome to perform tedious initialization steps such as preparing inputs and developing a model with each changing targeted study area. In this study, the Hydrologic and Water Quality System (HAWQS is introduced to serve as a national-scale Decision Support System (DSS to conduct challenging watershed modeling tasks. HAWQS is a web-based DSS developed and maintained by Texas A & M University, and supported by the U.S. Environmental Protection Agency. Three different spatial resolutions of Hydrologic Unit Code (HUC8, HUC10, and HUC12 and three temporal scales (time steps in daily/monthly/annual are available as alternatives for general users. In addition, users can specify preferred values of model parameters instead of using the pre-defined sets. With the aid of HAWQS, users can generate a preliminarily calibrated SWAT project within a few minutes by only providing the ending HUC number of the targeted watershed and the simulation period. In the case study, HAWQS was implemented on the Illinois River Basin, USA, with graphical demonstrations and associated analytical results. Scientists and/or decision-makers can take advantage of the HAWQS framework while conducting relevant topics or policies in the future.

  16. Simulation of the Lower Walker River Basin hydrologic system, west-central Nevada, using PRMS and MODFLOW models (United States)

    Allander, Kip K.; Niswonger, Richard G.; Jeton, Anne E.


    Walker Lake is a terminal lake in west-central Nevada with almost all outflow occurring through evaporation. Diversions from Walker River since the early 1900s have contributed to a substantial reduction in flow entering Walker Lake. As a result, the lake is receding, and salt concentrations have increased to a level in which Oncorhynchus clarkii henshawi (Lahontan Cutthroat trout) are no longer present, and the lake ecosystem is threatened. Consequently, there is a concerted effort to restore the Walker Lake ecosystem and fishery to a level that is more sustainable. However, Walker Lake is interlinked with the lower Walker River and adjacent groundwater system which makes it difficult to understand the full effect of upstream water-management actions on the overall hydrologic system including the lake level, volume, and dissolved-solids concentrations of Walker Lake. To understand the effects of water-management actions on the lower Walker River Basin hydrologic system, a watershed model and groundwater flow model have been developed by the U.S. Geological Survey in cooperation with the Bureau of Reclamation and the National Fish and Wildlife Foundation.

  17. An Integrated Modelling System to Predict Hydrological Processes under Climate and Land-Use/Cover Change Scenarios

    Directory of Open Access Journals (Sweden)

    Babak Farjad


    Full Text Available This study proposes an integrated modeling system consisting of the physically-based MIKE SHE/MIKE 11 model, a cellular automata model, and general circulation models (GCMs scenarios to investigate the independent and combined effects of future climate and land-use/land-cover (LULC changes on the hydrology of a river system. The integrated modelling system is applied to the Elbow River watershed in southern Alberta, Canada in conjunction with extreme GCM scenarios and two LULC change scenarios in the 2020s and 2050s. Results reveal that LULC change substantially modifies the river flow regime in the east sub-catchment, where rapid urbanization is occurring. It is also shown that the change in LULC causes an increase in peak flows in both the 2020s and 2050s. The impacts of climate and LULC change on streamflow are positively correlated in winter and spring, which intensifies their influence and leads to a significant rise in streamflow, and, subsequently, increases the vulnerability of the watershed to spring floods. This study highlights the importance of using an integrated modeling approach to investigate both the independent and combined impacts of climate and LULC changes on the future of hydrology to improve our understanding of how watersheds will respond to climate and LULC changes.

  18. Towards realistic representation of hydrological processes in integrated WRF-urban modeling system (United States)

    Yang, Jiachuan; Wang, Zhi-hua; Chen, Fei; Miao, Shiguang; Tewari, Mukul; Georgescu, Matei


    To meet the demand of the ever-increasing urbanized global population, substantial conversion of natural landscapes to urban terrains is expected in the next few decades. The landscape modification will emerge as the source of many adverse effects that challenge the environmental sustainability of cities under changing climatic patterns. To address these adverse effects and to develop corresponding adaptation/mitigation strategies, physically-based single layer urban canopy model (SLUCM) has been developed and implemented into the Weather Research and Forecasting (WRF) platform. However, due to the lack of realistic representation of urban hydrological processes, simulation of urban climatology by current coupled WRF/SLUCM is inevitably inadequate. Aiming at improving the accuracy of simulations, in this study we implement physically-based parameterization of urban hydrological processes into the model, including (1) anthropogenic latent heat, (2) urban irrigation, (3) evaporation over water-holding engineered pavements, (4) urban oasis effect, and (5) green roof. In addition, we use an advanced Monte Carlo approach to quantify the sensitivity of urban hydrological modeling to parameter uncertainties. Evaluated against field observations at four major metropolitan areas, results show that the enhanced model is significantly improved in accurately predicting turbulent fluxes arising from built surfaces, especially the latent heat flux. Case studies show that green roof is capable of reducing urban surface temperature and sensible heat flux effectively, and modifying local and regional hydroclimate. Meanwhile, it is efficient in decreasing energy loading of buildings, not only cooling demand in summers but also heating demand in winters, through the combined evaporative cooling and insulation effect. Effectiveness of green roof is found to be limited by availability of water resources and highly sensitive to surface roughness heights. The enhanced WRF/SLUCM model

  19. An Integrated Hydrological and Water Management Study of the Entire Nile River System - Lake Victoria to Nile Delta (United States)

    Habib, Shahid; Zaitchik, Benjamin; Alo, Clement; Ozdogan, Mutlu; Anderson, Martha; Policelli, Fritz


    The Nile basin River system spans 3 million km(exp 2) distributed over ten nations. The eight upstream riparian nations, Ethiopia, Eretria, Uganda, Rwanda, Burundi, Congo, Tanzania and Kenya are the source of approximately 86% of the water inputs to the Nile, while the two downstream riparian countries Sudan and Egypt, presently rely on the river's flow for most of the their needs. Both climate and agriculture contribute to the complicated nature of Nile River management: precipitation in the headwaters regions of Ethiopia and Lake Victoria is variable on a seasonal and inter-annual basis, while demand for irrigation water in the arid downstream region is consistently high. The Nile is, perhaps, one of the most difficult trans-boundary water issue in the world, and this study would be the first initiative to combine NASA satellite observations with the hydrologic models study the overall water balance in a to comprehensive manner. The cornerstone application of NASA's Earth Science Research Results under this project are the NASA Land Data Assimilation System (LDAS) and the USDA Atmosphere-land Exchange Inverse (ALEXI) model. These two complementary research results are methodologically independent methods for using NASA observations to support water resource analysis in data poor regions. Where an LDAS uses multiple sources of satellite data to inform prognostic simulations of hydrological process, ALEXI diagnoses evapotranspiration and water stress on the basis of thermal infrared satellite imagery. Specifically, this work integrates NASA Land Data Assimilation systems into the water management decision support systems that member countries of the Nile Basin Initiative (NBI) and Regional Center for Mapping of Resources for Development (RCMRD, located in Nairobi, Kenya) use in water resource analysis, agricultural planning, and acute drought response to support sustainable development of Nile Basin water resources. The project is motivated by the recognition that

  20. Assessing the reduction of the hydrological connectivity of gully systems through vegetation restoration: field experiments and numerical modelling

    Directory of Open Access Journals (Sweden)

    A. Molina


    well, as the error on the simulated total outflow volumes is below 13% for 15 out of 16 cases. However, predicting infiltration amounts is difficult: the high sensitivity of model results to some crucial hydraulic parameters (runoff width, hydraulic conductivity and sorptivity is one of the reasons why the relationships between model parameter values and gully features are relatively weak.

    The results obtained from the field experiments show that gully systems are key elements in the hydrological connectivity of degraded landscapes. The transfer of overland flow and sediment from the slopes towards the river system highly depends on the presence/absence of vegetation in the gully beds and should therefore be accounted for in assessments of landscape degradation and/or recovery.

  1. A 3-D hydrologic transport model of a water recharge system using carbamazepine and chloride as tracers (United States)

    Rona, Michael; Gasser, Guy; Negev, Ido; Pankratov, Irena; Elhanany, Sara; Lev, Ovadia; Gvirtzman, Haim


    Wastewater recharge facilities are often used as a final water treatment before the discharge to the sea or before water reclamation. These facilities are often located in active aquifers that supply drinking water. Thus, leakage from the water recharge facility and gradual expansion of the underground wastewater plume are of considerable health concern. Hydrological modeling of water recharge systems are widely used as operational and predictive tools. These models rely on distributed water head monitoring and at least one chemical or physical tracer to model solutes' transport. Refractory micropollutants have proven useful in qualitative identification of pollution leakages and for quantification of pollution to a specific site near water recharge facilities. However, their usefulness as tracers for hydrological modeling is still questionable. In this article, we describe a long term, 3-D hydraulic model of a large-scale wastewater effluents recharge system in which a combination of chloride and a refractory micropollutant, carbamazepine is used to trace the solute transport. The combination of the two tracers provides the model with the benefits of the high specificity of the carbamazepine and the extensive historic data base that is available for chloride. The model predicts westward expansion of the pollution plume, whereas a standing front is formed at the east. These trends can be confirmed by the time trace of the carbamazepine concentrations at specific locations. We show that the combination of two tracers accounts better (at least at some locations) for the evolution of the pollution plume than a model based on chloride or carbamazepine alone.

  2. The Challenge of Fully-Predictive Hydrologic Models Supported by Observations: Recent Experiences and Prospects in Semiarid Systems (Invited) (United States)

    Vivoni, E. R.


    After several decades of development and applications, distributed watershed models are now common tools in hydrologic research and increasingly used in practice. Unfortunately, the sophistication of these tools has not been accompanied by comparable levels of observational data collection. Ultimately, predictions from distributed watershed models need to be verified to build confidence in their ability to simulate the past and subsequently the future, under changing conditions. This talk will describe our efforts to develop, apply and test a distributed watershed model for semiarid regions in the southwestern United States and northwestern Mexico. We will provide examples from forested mountain, semiarid desert and subtropical shrubland systems which all have marked seasonality due to the North American monsoon. Our previous efforts include comparisons to eddy covariance data, distributed soil moisture patterns and runoff observations, among others. After building model confidence, we explore the underlying patterns, processes and mechanisms in the distributed simulations to identify emergent behavior. The intent of this synthesis stage is to infer generalizable features of the hydrologic system that may help explain the observed data and build predictive capacity for other settings. We also discuss prospects for improved joint use of distributed watershed models and distributed observations from ground, aerial and satellite platforms.

  3. Groundwater hydrology (United States)

    The international conference on Advances in Ground-Water Hydrology was held November 16-19, 1988, in Tampa, Fla. More than 320 scientists and engineers attended the conference, which was dedicated to the memory of the late C. V. Theis, formerly with the U.S. Geological Survey, an AGU Fellow, holder of the Robert E. Horton Medal, and member of the AGU Hydrology Section since 1934. The 3-day meeting had presentations by more than 100 speakers from Canada, Europe, and the U.S. The conference was organized to review advances in hydrology in the past 10 years. Discussions were held on the need for research and practical applications in groundwater hydrology for the 1990s. The conference was sponsored by the American Institute of Hydrology, in cooperation with the U.S. Geological Survey, Environmental Protection Agency, Universities Council on Water Resources, Wisconsin Geological and Natural History Survey, American Geological Institute, American Society of Agricultural Engineers, American Water Resources Association, Geological Society of America, and International Association of Hydrogeologists.

  4. Multi-scale Evaluation of a Real Time Multi-satellite Precipitation Forced Global Hydrological Modeling System (United States)

    Zhang, Y.; Hong, Y.; Gao, H.; Xue, X.; Gourley, J. J.


    A Global Hydrological Modeling System (GHMS), with its core part of a physical based distributed hydrological model called Coupled Routing and Excess STorage (CREST), has been established and applied for real time global flood monitoring thus providing early warning for decision makers and stakeholders. The updated Version 7 Near Real Time TRMM Multi-satellite Precipitation Analysis (TRMM-RT) with the potential to apply for real time flood prediction without gauge adjustment especially beneficial to those regions sparsely covered by gauge networks, was used to force the CREST model with the spatial resolution of 1/8 degree from 50N to 50S quasi-globally ( for a retrospective period (2002-2012). The simulated hydrological variables (e.g. runoff depth and streamflow) were compared with Global Runoff Data Center (GRDC) observations in terms of gridded global runoff climatology (mm/yr), the selected basins based annual mean and seasonality of streamflow prediction, daily and monthly scale based streamflow prediction skills over different continents, etc. At global scale, the TRMM RT derived gridded global runoff climatology (mm/yr) and model simulated annual streamflow mean over selected basins are in general agreement with GRDC observation, though with performance variation over different continents (e.g. Africa shows relatively poorer performance due to the sparsely in-situ networks for TMPA RT algorithm development). The results also indicate that the modeling performance is better with a larger basin size and a location near the equator. Given the global availability of satellite-based precipitation in near real-time, this study demonstrates the opportunities and challenges that exist for the real time flood prediction on basis of GHMS, which is particularly useful for the vast ungauged regions of the globe.

  5. Simulation, evaluation and optimization of hydrological storage systems; Simulation, Bewertung und Optimierung von Betriebsregeln fuer wasserwirtschaftliche Speichersysteme

    Energy Technology Data Exchange (ETDEWEB)

    Lohr, H.


    The investigation focused on controlled hydrological storage system. Existing operating schedules and new control options were analyzed, classified and generalized in order to obtain a standardized terminology and operating concept. This generalized approach will do away with the need for system-specific analyses and models for every single new system. [German] Der Schwerpunkt dieser Arbeit ist der wasserwirtschaftliche Betrieb von regelbaren Speichersystemen und ihre Simulation. Dabei bestand das Ziel darin, bestehende Betriebsplaene und neue praktikable Steuerungsmoeglichkeiten zu analysieren, zu klassifizieren und so zu generalisieren, dass eine einheitliche Terminologie und Konzeption zum Betrieb von Speichern entstand. Dieses Konzept erlaubt, in Verbindung mit den Prinzipien aus der Modellierung von Flussgebieten, verschieden strukturierte Speichersysteme mit unterschiedlichsten Steuerungsvorschriften abzubilden. Damit erhaelt man den Vorteil einer generalisierten Anwendung im Gegensatz zu einer fuer den speziellen Fall konzipierten und nicht uebertragbaren Einzelloesung. Als Folge davon entfaellt das systemspezifische, je nach Aufgabenstellung neu zu entwerfende und zu programmierende Einzelmodell. (orig.)

  6. Hydrogeology and hydrologic conditions of the Northern Atlantic Coastal Plain aquifer System from Long Island, New York, to North Carolina (United States)

    Masterson, John P.; Pope, Jason P.; Monti, Jack; Nardi, Mark R.; Finkelstein, Jason S.; McCoy, Kurt J.


    The seaward-dipping sedimentary wedge that underlies the Northern Atlantic Coastal Plain forms a complex groundwater system. This major source of water provides for public and domestic supply and serves as a vital source of freshwater for industrial and agricultural uses throughout the region. Population increases and land-use and climate changes, however, have led to competing demands for water. The regional response of the aquifer system to these stresses poses regional challenges for water-resources management at the State level because hydrologic effects often extend beyond State boundaries. In response to these challenges, the U.S. Geological Survey Groundwater Resources Program began a regional assessment of the groundwater availability of the Northern Atlantic Coastal Plain aquifer system in 2010.

  7. A hydrologic retention system and water quality monitoring program for a human decomposition research facility: concept and design. (United States)

    Wozniak, Jeffrey R; Thies, Monte L; Bytheway, Joan A; Lutterschmidt, William I


    Forensic taphonomy is an essential research field; however, the decomposition of human cadavers at forensic science facilities may lead to nutrient loading and the introduction of unique biological compounds to adjacent areas. The infrastructure of a water retention system may provide a mechanism for the biogeochemical processing and retention of nutrients and compounds, ensuring the control of runoff from forensic facilities. This work provides a proof of concept for a hydrologic retention system and an autonomous water quality monitoring program designed to mitigate runoff from The Southeast Texas Applied Forensic Science (STAFS) Facility. Water samples collected along a sample transect were analyzed for total phosphorous, total nitrogen, NO3-, NO2-, NH4, F(-), and Cl(-). Preliminary water quality analyses confirm the overall effectiveness of the water retention system. These results are discussed with relation to how this infrastructure can be expanded upon to monitor additional, more novel, byproducts of forensic science research facilities. © 2014 American Academy of Forensic Sciences.

  8. Copula-based probability of concurrent hydrological drought in the Poyang lake-catchment-river system (China) from 1960 to 2013 (United States)

    Zhang, Dan; Chen, Peng; Zhang, Qi; Li, Xianghu


    Investigation of concurrent hydrological drought events is helpful for understanding the inherent mechanism of hydrological extremes and designing corresponding adaptation strategy. This study investigates concurrent hydrological drought in the Poyang lake-catchment-river system from 1960 to 2013 based on copula functions. The standard water level index (SWI) and the standard runoff index (SRI) are employed to identify hydrological drought in the lake-catchment-river system. The appropriate marginal distributions and copulas are selected by the corrected Akaike Information Criterion and Bayesian copulas selection method. The probability of hydrological drought in Poyang Lake in any given year is 16.6% (return period of 6 years), and droughts occurred six times from 2003 to 2013. Additionally, the joint probability of concurrent drought events between the lake and catchment is 10.1% (return period of 9.9 years). Since 2003, concurrent drought has intensified in spring due to frequent hydrological drought in the catchment. The joint probability of concurrent drought between the lake and the Yangtze River is 11.5% (return period of 8.7 years). This simultaneous occurrence intensified in spring, summer and autumn from 2003 to 2013 due to the weakened blocking effect of the Yangtze River. Notably, although the lake drought intensified in winter during the past decade, hydrological drought in the catchment and the Yangtze River did not intensify simultaneously. Thus, this winter intensification might be caused by human activities in the lake region. The results of this study demonstrate that the Poyang lake-catchment-river system has been drying since 2003 based on a statistical approach. An adaptation strategy should be urgently established to mitigate the worsening situation in the Poyang lake-catchment-river system.

  9. eWaterCycle: Building an operational global Hydrological forecasting system based on standards and open source software (United States)

    Drost, Niels; Bierkens, Marc; Donchyts, Gennadii; van de Giesen, Nick; Hummel, Stef; Hut, Rolf; Kockx, Arno; van Meersbergen, Maarten; Sutanudjaja, Edwin; Verlaan, Martin; Weerts, Albrecht; Winsemius, Hessel


    At EGU 2015, the eWaterCycle project ( will launch an operational high-resolution Hydrological global model, including 14 day ensemble forecasts. Within the eWaterCycle project we aim to use standards and open source software as much as possible. This ensures the sustainability of the software created, and the ability to swap out components as newer technologies and solutions become available. It also allows us to build the system much faster than would otherwise be the case. At the heart of the eWaterCycle system is the PCRGLOB-WB Global Hydrological model ( developed at Utrecht University. Version 2.0 of this model is implemented in Python, and models a wide range of Hydrological processes at 10 x 10km (and potentially higher) resolution. To assimilate near-real time satellite data into the model, and run an ensemble forecast we use the OpenDA system ( This allows us to make use of different data assimilation techniques without the need to implement these from scratch. As a data assimilation technique we currently use (variant of) an Ensemble Kalman Filter, specifically optimized for High Performance Computing environments. Coupling of the model with the DA is done with the Basic Model Interface (BMI), developed in the framework of the Community Surface Dynamics Modeling System (CSDMS) ( We have added support for BMI to PCRGLOB-WB, and developed a BMI adapter for OpenDA, allowing OpenDA to use any BMI compatible model. We currently use multiple different BMI models with OpenDA, already showing the benefits of using this standard. Throughout the system, all file based input and output is done via NetCDF files. We use several standard tools to be used for pre- and post-processing data. Finally we use ncWMS, an NetCDF based implementation of the Web Map Service (WMS) protocol to serve the forecasting result. We have build a 3D web application based on Cesium.js to visualize the output. In

  10. First evidence of bighead carp wild recruitment in Western Europe, and its relation to hydrology and temperature (United States)

    Milardi, Marco; Chapman, Duane C.; Long, James M.; Castaldelli, Giuseppe


    Bighead carp (Hypophthalmichthys nobilis) have been introduced throughout Europe, mostly unintentionally, and little attention has been given to their potential for natural reproduction. We investigated the presence of young-of-the-year bighead carp in an irrigation canal network of Northern Italy and the environmental conditions associated with spawning in 2011–2015. The adult bighead carp population of the canal network was composed by large, likely mature, individuals with an average density of 45.2 kg/ha (over 10 fold more than in the main river). The 29 juvenile bighead carp found were 7.4–13.1 cm long (TL) and weighed 9.5–12.7 g. Using otolith-derived spawning dates we estimated that these juveniles were 94–100 days old, placing their fertilization and hatch dates in mid-to-end-June. Using this information in combination with thermal and hydraulic data, we examined the validity of existing models predicting the onset of spawning conditions and the viability of egg pathways to elucidate spawning location of the species. While evidence of reproduction was not found every year, we determined that potentially viable spawning conditions (annual degree-days and temperature thresholds) and pathways of egg drift suitable for hatching are present in short, slow-flowing canals.

  11. Geochemical Controls on the Partitioning and Hydrological Transport of Metals in a Human Impacted, Non-Acidic, River System (United States)

    Thorslund, J.; Jarsjo, J.; Wällstedt, T.; Morth, C. M.; Lychagin, M.; Chalov, S.


    The knowledge of coupled processes controlling the spreading and fate of metals in non-acidic river systems is currently much more limited than the knowledge of metal behavior under acidic conditions (e.g., in acid mine drainage systems). Critical geochemical controls governing metal speciation may thus differ substantially between acidic and non-acidic hydrological systems. We here aim at expanding the knowledge of metals in non-acidic river systems, by considering a high pH river, influenced by mining by the largest gold mining area in the Mongolian part of the transboundary Lake Baikal drainage basin. The combined impact of geochemical and hydrological processes is investigated, to be able to understand the solubility of various heavy metals, their partitioning between particulate and dissolved phase and its impact on overall transport. We show, through site specific measurements and a geochemical modelling approach, that the combined effects of precipitation of ferrihydrite and gibbsite and associated sorption complexes of several metals can explain the high impact of suspended transport relative to total transport often seen under non-acidic conditions. Our results also identifies the phosphate mineral Hydroxyapatite as a potential key sorption site for many metals, which has both site specific and general relevance for metal partitioning under non-acidic conditions. However, an adsorption database, which is currently unavailable for hydroxyapatite, needs to be developed for appropriate sorption quantification. Furthermore, Cd, Fe, Pb and Zn were particularly sensitive to increasing DOC concentrations, which increased the solubility of these metals due to metal-organic complexation. Modeling the sensitivity to changes in geochemical parameters showed that decreasing pH and increasing DOC concentrations in downstream regions would increase the dissolution and hence the toxicity and bioavailability of many pollutants of concern in the downstream ecosystem. In

  12. Investigations of the Hydrologic Cycle in the Arctic Climate System Using Water Isotopes (United States)

    Kopec, Ben Gordon

    Warming has caused widespread changes to the Arctic hydrologic cycle, indicated by sea ice reductions, the Greenland Ice Sheet (GIS) mass loss, and permafrost degradation. Understanding Arctic hydrologic processes is essential for quantifying hydrological responses to climate change. A valuable tool to study these responses is the hydrogen and oxygen isotope ratios of water. Studies presented here aim to both innovatively apply water isotopes with existing understanding, and gain new knowledge in isotope systematics. I present several studies here. First, I show that Arctic precipitation increases with enhanced evaporation due to sea ice reduction; each 100,000 km2 loss in sea ice area increases the fraction of Arctic sourced moisture in total precipitation by 11 to 18%. Second, I argue that vapor sublimated from the GIS significantly contributes to summer precipitation at Summit, Greenland. This conclusion is first supported by isotopic variations in the daily precipitation collected at Summit for three years, and then further verified by 30 annual isotopic cycles in a shallow ice core. The result is not only important for quantifying the current ice sheet mass balance, but also for inferences of paleoclimate from ice cores. Third, I demonstrate that local scale atmospheric circulation in the glacier-free strip of West Greenland is dominated by convergence of dry glacial air masses from the east and moist marine air masses from the west. The dynamics of this convergence are affected by both regional radiation balance differences and broader circulation patterns such as the North Atlantic Oscillation. Humidity variations associated with these air masses control local precipitation and lake evaporation. Finally, along the east-west moisture gradient in West Greenland, lake evaporation also exhibits systematic changes in rate and isotopic enrichment, a result that is important for lake sediment core research. I have made advances in understanding water isotope

  13. GIS model-based real-time hydrological forecasting and operation management system for the Lake Balaton and its watershed (United States)

    Adolf Szabó, János; Zoltán Réti, Gábor; Tóth, Tünde


    Today, the most significant mission of the decision makers on integrated water management issues is to carry out sustainable management for sharing the resources between a variety of users and the environment under conditions of considerable uncertainty (such as climate/land-use/population/etc. change) conditions. In light of this increasing water management complexity, we consider that the most pressing needs is to develop and implement up-to-date GIS model-based real-time hydrological forecasting and operation management systems for aiding decision-making processes to improve water management. After years of researches and developments the HYDROInform Ltd. has developed an integrated, on-line IT system (DIWA-HFMS: DIstributed WAtershed - Hydrologyc Forecasting & Modelling System) which is able to support a wide-ranging of the operational tasks in water resources management such as: forecasting, operation of lakes and reservoirs, water-control and management, etc. Following a test period, the DIWA-HFMS has been implemented for the Lake Balaton and its watershed (in 500 m resolution) at Central-Transdanubian Water Directorate (KDTVIZIG). The significant pillars of the system are: - The DIWA (DIstributed WAtershed) hydrologic model, which is a 3D dynamic water-balance model that distributed both in space and its parameters, and which was developed along combined principles but its mostly based on physical foundations. The DIWA integrates 3D soil-, 2D surface-, and 1D channel-hydraulic components as well. - Lakes and reservoir-operating component; - Radar-data integration module; - fully online data collection tools; - scenario manager tool to create alternative scenarios, - interactive, intuitive, highly graphical user interface. In Vienna, the main functions, operations and results-management of the system will be presented.

  14. Hydrologic Sub-basins of Greenland (United States)

    National Aeronautics and Space Administration — The Hydrologic Sub-basins of Greenland data set contains Geographic Information System (GIS) polygon shapefiles that include 293 hydrologic sub-basins of the...

  15. Hydrologic Landscape Classification to Estimate Bristol Bay Watershed Hydrology (United States)

    The use of hydrologic landscapes has proven to be a useful tool for broad scale assessment and classification of landscapes across the United States. These classification systems help organize larger geographical areas into areas of similar hydrologic characteristics based on cl...

  16. Local irrigation systems, regional hydrological problems and the demand for overarching solutions at the example of an irrigation system in the P.R. of China (United States)

    Nijssen, David; Schumann, Andreas H.; Monninkhoff, Bertram


    The utilization of groundwater for irrigation purposes becomes problematic if groundwater recharge decreases through climate variability. Nevertheless, the degree of groundwater utilization for irrigation increases significantly in dry periods, when the amount of green water is strongly limited. With an increasing gap between water demand and supply, new water management activities are started, which are mostly directed to increase the supply, often by overuse of local resources. In many cases such local activities results in their summarization in side-effects, which worsen the hydrological conditions throughout a region. Step by step the spatial scale of water management measures has to be extended in such cases by implementation of water transfer systems. In this contribution this general scale problem of water management is discussed at the example of an agricultural region in the Province of Shandong (P.R. of China). The local irrigation systems and the options to increase the water supply at the local scale (e.g. by waste water reuse) are discussed as well as regional measures e.g. reservoirs or barrages in rivers to increase the groundwater recharge. For this purpose, several socio-economic and hydrological models were combined. It is shown how a change of water policy towards a demand management requires a new approach to spatial aspects. Here the question arises, how hydrological most effective measures can be allocated within a region. In the case study, a reduction of agricultural irrigation and a change of the crop structure would be essential to improve the groundwater conditions, which are impaired by ongoing sea-water intrusions. A model hierarchy, which is needed to answer such problems not only from the hydrological point of view, but also considering their socio-economic feasibility, are presented.

  17. Modeling Hydrological Services in Shade Grown Coffee Systems: Case Study of the Pico Duarte Region of the Dominican Republic (United States)

    Erickson, J. D.; Gross, L.; Agosto Filion, N.; Bagstad, K.; Voigt, B. G.; Johnson, G.


    The modification of hydrologic systems in coffee-dominated landscapes varies widely according to the degree of shade trees incorporated in coffee farms. Compared to mono-cropping systems, shade coffee can produce both on- and off-farm benefits in the form of soil retention, moderation of sediment transport, and lower hydropower generating costs. The Pico Duarte Coffee Region and surrounding Madres de Las Aguas (Mother of Waters) Conservation Area in the Dominican Republic is emblematic of the challenges and opportunities of ecosystem service management in coffee landscapes. Shade coffee poly-cultures in the region play an essential role in ensuring ecosystem function to conserve water resources, as well as provide habitat for birds, sequester carbon, and provide consumptive resources to households. To model the provision, use, and flow of ecosystem services from coffee farms in the region, an application of the Artificial Intelligence for Ecosystem Services (ARIES) model was developed with particular focus on sediment regulation. ARIES incorporates an array of techniques from data mining, image analysis, neural networks, Bayesian statistics, information theory, and expert systems to model the production, delivery, and demand for ecosystem services. Geospatial data on slope, soils, and vegetation cover is combined with on-farm data collection of coffee production, tree diversity, and intercropping of household food. Given hydropower production and river recreation in the region, the management of sedimentation through on-farm practices has substantial, currently uncompensated value that has received recent attention as the foundation for a payment for ecosystem services system. Scenario analysis of the implications of agro-forestry management choices on farmer livelihoods and the multiple beneficiaries of farm-provided hydrological services provide a foundation for ongoing discussions in the region between local, national, and international interests.

  18. Towards Optimal Operation of the Reservoir System in Upper Yellow River: Incorporating Long- and Short-term Operations and Using Rolling Updated Hydrologic Forecast Information (United States)

    Si, Y.; Li, X.; Li, T.; Huang, Y.; Yin, D.


    The cascade reservoirs in Upper Yellow River (UYR), one of the largest hydropower bases in China, play a vital role in peak load and frequency regulation for Northwest China Power Grid. The joint operation of this system has been put forward for years whereas has not come into effect due to management difficulties and inflow uncertainties, and thus there is still considerable improvement room for hydropower production. This study presents a decision support framework incorporating long- and short-term operation of the reservoir system. For long-term operation, we maximize hydropower production of the reservoir system using historical hydrological data of multiple years, and derive operating rule curves for storage reservoirs. For short-term operation, we develop a program consisting of three modules, namely hydrologic forecast module, reservoir operation module and coordination module. The coordination module is responsible for calling the hydrologic forecast module to acquire predicted inflow within a short-term horizon, and transferring the information to the reservoir operation module to generate optimal release decision. With the hydrologic forecast information updated, the rolling short-term optimization is iterated until the end of operation period, where the long-term operating curves serve as the ending storage target. As an application, the Digital Yellow River Integrated Model (referred to as "DYRIM", which is specially designed for runoff-sediment simulation in the Yellow River basin by Tsinghua University) is used in the hydrologic forecast module, and the successive linear programming (SLP) in the reservoir operation module. The application in the reservoir system of UYR demonstrates that the framework can effectively support real-time decision making, and ensure both computational accuracy and speed. Furthermore, it is worth noting that the general framework can be extended to any other reservoir system with any or combination of hydrological model

  19. Hydrological processes obtained on the plot scale under four simulated rainfall tests during the cycle of different crop systems

    Directory of Open Access Journals (Sweden)

    Ildegardis Bertol


    Full Text Available The cropping system influences the interception of water by plants, water storage in depressions on the soil surface, water infiltration into the soil and runoff. The aim of this study was to quantify some hydrological processes under no tillage cropping systems at the edge of a slope, in 2009 and 2010, in a Humic Dystrudept soil, with the following treatments: corn, soybeans, and common beans alone; and intercropped corn and common bean. Treatments consisted of four simulated rainfall tests at different times, with a planned intensity of 64 mm h-1 and 90 min duration. The first test was applied 18 days after sowing, and the others at 39, 75 and 120 days after the first test. Different times of the simulated rainfall and stages of the crop cycle affected soil water content prior to the rain, and the time runoff began and its peak flow and, thus, the surface hydrological processes. The depth of the runoff and the depth of the water intercepted by the crop + soil infiltration + soil surface storage were affected by the crop systems and the rainfall applied at different times. The corn crop was the most effective treatment for controlling runoff, with a water loss ratio of 0.38, equivalent to 75 % of the water loss ratio exhibited by common bean (0.51, the least effective treatment in relation to the others. Total water loss by runoff decreased linearly with an increase in the time that runoff began, regardless of the treatment; however, soil water content on the gravimetric basis increased linearly from the beginning to the end of the rainfall.

  20. Hydrological land surface modelling

    DEFF Research Database (Denmark)

    Ridler, Marc-Etienne Francois

    Recent advances in integrated hydrological and soil-vegetation-atmosphere transfer (SVAT) modelling have led to improved water resource management practices, greater crop production, and better flood forecasting systems. However, uncertainty is inherent in all numerical models ultimately leading...... and disaster management. The objective of this study is to develop and investigate methods to reduce hydrological model uncertainty by using supplementary data sources. The data is used either for model calibration or for model updating using data assimilation. Satellite estimates of soil moisture and surface...... hydrological and tested by assimilating synthetic hydraulic head observations in a catchment in Denmark. Assimilation led to a substantial reduction of model prediction error, and better model forecasts. Also, a new assimilation scheme is developed to downscale and bias-correct coarse satellite derived soil...

  1. A Comprehensive Land-Use/Hydrological Modeling System for Scenario Simulations in the Elbow River Watershed, Alberta, Canada (United States)

    Wijesekara, Gayan Nishad; Farjad, Babak; Gupta, Anil; Qiao, Ying; Delaney, Patrick; Marceau, Danielle J.


    The Elbow River watershed in Alberta covers an area of 1,238 km2 and represents an important source of water for irrigation and municipal use. In addition to being located within the driest area of southern Canada, it is also subjected to considerable pressure for land development due to the rapid population growth in the City of Calgary. In this study, a comprehensive modeling system was developed to investigate the impact of past and future land-use changes on hydrological processes considering the complex surface-groundwater interactions existing in the watershed. Specifically, a spatially explicit land-use change model was coupled with MIKE SHE/MIKE 11, a distributed physically based catchment and channel flow model. Following a rigorous sensitivity analysis along with the calibration and validation of these models, four land-use change scenarios were simulated from 2010 to 2031: business as usual (BAU), new development concentrated within the Rocky View County (RV-LUC) and in Bragg Creek (BC-LUC), respectively, and development based on projected population growth (P-LUC). The simulation results reveal that the rapid urbanization and deforestation create an increase in overland flow, and a decrease in evapotranspiration (ET), baseflow, and infiltration mainly in the east sub-catchment of the watershed. The land-use scenarios affect the hydrology of the watershed differently. This study is the most comprehensive investigation of its nature done so far in the Elbow River watershed. The results obtained are in accordance with similar studies conducted in Canadian contexts. The proposed modeling system represents a unique and flexible framework for investigating a variety of water related sustainability issues.

  2. Analyzing the operational performance of the hydrological models in an alpine flood forecasting system (United States)

    Achleitner, S.; Schöber, J.; Rinderer, M.; Leonhardt, G.; Schöberl, F.; Kirnbauer, R.; Schönlaub, H.


    SummaryDuring recent years a hybrid model has been set up for the operational forecasting of flood discharges in the 6750 km 2 Tyrolean part of the River Inn catchment in Austria. The catchment can be characterized as a typical alpine area with large variations in altitude. The paper is focused on the error analysis of discharge forecasts of four main tributary catchments simulated with hydrological water balance models. The selected catchments cover an area of 2230 km 2, where the non-glaciated and glaciated parts are modeled using the semi-distributed HQsim and the distributed model SES, respectively. The forecast errors are evaluated as a function of forecast lead time and forecasted discharge magnitude using 14 events from 2007 to 2010. The observed and forecasted precipitation inputs were obtained under operational conditions. The mean relative bias of the forecasted discharges revealed to be constant with regard to the forecast lead time, varying between 0.2 and 0.25 for the different catchments. The errors as a function of the forecasted discharge magnitude showed large errors at lower values of the forecast hydrographs, where errors decreased significantly at larger discharges being relevant in flood forecasting.

  3. The Geomorphology, Hydrology and Evolution of a Chain of Ponds River System: A Poorly Recognised and Unique River Planform Type. (United States)

    Williams, R.; Fryirs, K.


    Chain-of-ponds river types are alluvial, discontinuous watercourses that contain irregularly spaced, deep, steep-sided ponds separated by an ephemeral flow path. Despite being widespread, chains of ponds are now rare in Australia, having experienced extensive channelisation since European settlement and landuse intensification. The Mulwaree system is one of the largest remaining chain of ponds systems in the country. Little is known about its geomorphic structure, Quaternary evolution or hydrological function. The valley fill of the Mulwaree River contains layers of gravel and cobble clast-supported sediments at a depth of 20 m. Atop, silt and fine sand sediments are 1-3 m deep. The ponds, which sit in this valley-fill, are large (1000-4000 m2 and up to 8 m deep), and are relic form from a much larger and more energetic gravel-bed river that occurred in this valley in the past. Optically-stimulated luminescence ages date the change from high-energy gravel bed to the very low energy system seen today at approximately 20-25 ka. The oldest dates for the gravel bed system at 5-7 m deep are 60-90 ka. The coarser substrate beneath the fine-grained floodplain is mostly saturated, forming a near-surface aquifer in the valley fill/floodplain. The water levels in the floodplain are similar to the level of the adjacent ponds (within 0.2 m) and this water level adjusts readily (within 0.5-2 days) to rain/flow. There is significant hydrological connectivity between the ponds and adjacent floodplain. During high flow conditions, stable isotope (δ18O and δ2H) results from the ponds show no deviation through the profile as the water column is being mixed. However, during low-flow conditions, water in the ponds is enriched near the surface due to evaporation, and has a similar signal to the adjacent near-surface, floodplain aquifer below a weak thermocline. This shows that these systems have a dual function, behaving more as groundwater dependent systems during low flow

  4. Diatom-inferred hydrological changes and Holocene geomorphic transitioning of Africa's largest estuarine system, Lake St Lucia (United States)

    Gomes, M.; Humphries, M. S.; Kirsten, K. L.; Green, A. N.; Finch, J. M.; de Lecea, A. M.


    The diverse lagoons and coastal lakes along the east coast of South Africa occupy incised valleys that were flooded during the rise and subsequent stabilisation of relative sea-level during the Holocene. Sedimentary deposits contained within these waterbodies provide an opportunity to investigate complex hydrological and sedimentological processes, and examine sea-level controls governing system geomorphic evolution. In this paper, we combine diatom and sulfur isotope analyses from two sediment cores extracted from the northern sub-basins of Lake St Lucia, a large shallow estuarine lake that is today largely isolated from direct ocean influence behind a Holocene-Pleistocene barrier complex. Analyses allow the reconstruction of hydrological changes associated with the geomorphic development of the system over the mid-to late Holocene. The sedimentary sequences indicate that St Lucia was a shallow, partially enclosed estuary/embayment dominated by strong tidal flows prior to ∼6200 cal. BP. Infilling was initiated when sea-level rise slowed and stabilised around present day levels, resulting in the accumulation of fine-grained sediment behind an emergent proto-barrier. Diatom assemblages, dominated by marine benthic and epiphytic species, reveal a system structured by marine water influx and characterised by marsh and tidal flat habitats until ∼4550 cal. BP. A shift in the biological community at ∼4550 cal. BP is linked to the development of a back-barrier water body that supported a brackish community. Marine planktonics and enrichments in δ34S suggest recurrent, large-scale barrier inundation events during this time, coincident with a mid-Holocene sea-level highstand. Periodic marine incursions associated with episodes of enhanced storminess and overwash remained prevalent until ∼1200 cal. BP, when further barrier construction ultimately isolated the northern basins from the ocean. This study provides the first reconstruction of the palaeohydrological

  5. Early-stage hypogene karstification in a mountain hydrologic system: A coupled thermohydrochemical model incorporating buoyant convection (United States)

    Chaudhuri, A.; Rajaram, H.; Viswanathan, H.


    The early stage of hypogene karstification is investigated using a coupled thermohydrochemical model of a mountain hydrologic system, in which water enters along a water table and descends to significant depth (˜1 km) before ascending through a central high-permeability fracture. The model incorporates reactive alteration driven by dissolution/precipitation of limestone in a carbonic acid system, due to both temperature- and pressure-dependent solubility, and kinetics. Simulations were carried out for homogeneous and heterogeneous initial fracture aperture fields, using the FEHM (Finite Element Heat and Mass Transfer) code. Initially, retrograde solubility is the dominant mechanism of fracture aperture growth. As the fracture transmissivity increases, a critical Rayleigh number value is exceeded at some stage. Buoyant convection is then initiated and controls the evolution of the system thereafter. For an initially homogeneous fracture aperture field, deep well-organized buoyant convection rolls form. For initially heterogeneous aperture fields, preferential flow suppresses large buoyant convection rolls, although a large number of smaller rolls form. Even after the onset of buoyant convection, dissolution in the fracture is sustained along upward flow paths by retrograde solubility and by additional "mixing corrosion" effects closer to the surface. Aperture growth patterns in the fracture are very different from those observed in simulations of epigenic karst systems, and retain imprints of both buoyant convection and preferential flow. Both retrograde solubility and buoyant convection contribute to these differences. The paper demonstrates the potential value of coupled models as tools for understanding the evolution and behavior of hypogene karst systems.

  6. Using Evidence to Strengthen Health Systems in Africa and the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Using Evidence to Strengthen Health Systems in Africa and the Middle East. This project will provide evidence to expand the use of rapid response services, which offer promising strategies to support decision-making. This form of knowledge translation aims to meet the urgent needs for concrete research to answer specific ...

  7. Potential effect of changing soil temperature within an integrated biophysical-hydrological modelling system (United States)

    Muerth, Markus; Hank, Tobias; Mauser, Wolfram


    The projection of potential impacts of recent and future climate change on the ecological and geophysical condition of the land surface requires both, the scientific research into the processes triggered by a changing climate, as well as the analysis of the spatial and temporal patterns induced by altering climatic conditions. In general, the potential changes and future distribution of land surface properties (e.g. soil moisture) is investigated in modelling studies. Complex land surface models for regional change detection are typically driven by data from complex climate models. Consequently, the uncertainty of the land surface model results is strongly influenced through the bias and uncertainty inherent to the atmospheric models. Therefore, the impact assessment within the multi-disciplinary research project GLOWA-Danube, which this study is part of, concentrates on two types of climate change scenarios: Uni- and bi-directional coupling of the land surface model with regional climate models ("dynamic downscaling") on one hand, and stochastic rearrangement of climate stations data based on predefined trends in temperature and precipitation ("statistical downscaling") on the other. This allows for profound "what if" impact assessment, based on the historic climate characteristic of the investigated area, which in our case is represented by the 77,000 km2 Upper Danube basin. The water and nutrient cycles of the land surface, as well as the subsurface plant development are strongly influenced by the physical and biochemical state of the soil. Again, the biochemical processes occurring in soils are largely influenced by ambient temperature and moisture. Therefore, knowledge of the temporal and spatial patterns of soil temperature is a prerequisite for impact assessment in the field of plant growth and nutrient cycles. The biological activity at the land surface again exerts impact on soil water availability and quality. The development of the integrated biophysical-hydrological

  8. A component-based, integrated spatially distributed hydrologic/water quality model: AgroEcoSystem-Watershed (AgES-W) overview and application (United States)

    AgroEcoSystem-Watershed (AgES-W) is a modular, Java-based spatially distributed model which implements hydrologic/water quality simulation components. The AgES-W model was previously evaluated for streamflow and recently has been enhanced with the addition of nitrogen (N) and sediment modeling compo...

  9. Estimating impact of rainfall change on hydrological processes in Jianfengling rainforest watershed, China using BASINS-HSPF-CAT modeling system (United States)

    Zhang Zhou; Ying Ouyang; Yide Li; Zhijun Qiu; Matt Moran


    Climate change over the past several decades has resulted in shifting rainfall pattern and modifying rain-fall intensity, which has exacerbated hydrological processes and added the uncertainty and instability tothese processes. This study ascertained impacts of potential future rainfall change on hydrological pro-cesses at the Jianfengling (JFL) tropical mountain...

  10. Project 5322 Mid-Term Report: Key Eco-Hydrological Parameters Retrieval And Land Data Assimilation System Development In A Typical Inland River Basin Of Chinas Arid Region (United States)

    Faivre, R.; Colin, J.; Menenti, M.; Lindenbergh, R.; Van Den Bergh, L.; Yu, H.; Jia, L.; Xin, L.


    Improving the understanding and the monitoring of high elevation regions hydrology is of major relevance from both societal and environmental points of view for many Asian countries, in particular in terms of flood and drought, but also in terms of food security in a chang- ing environment. Satellite and airborne remote sensing technologies are of utmost for such a challenge. Exist- ing imaging spectro-radiometers, radars, microwave ra- diometers and backscatter LIDAR provide a very com- prehensive suite of measurements over a wide rage of wavelengths, time frequencies and spatial resolu- tions. It is however needed to devise new algorithms to convert these radiometric measurements into useful eco-hydrological quantitative parameters for hydrologi- cal modeling and water management. The DRAGON II project entitled Key Eco-Hydrological Parameters Re- trieval and Land Data Assimilation System Development in a Typical Inland River Basin of Chinas Arid Region (ID 5322) aims at improving the monitoring, understand- ing, and predictability of hydrological and ecological pro- cesses at catchment scale, and promote the applicability of quantitative remote sensing in watershed science. Ex- isting Earth Observation platforms provided by the Euro- pean Space Agency as well as prototype airborne systems developed in China - ENVISAT/AATSR, ALOS/PRISM and PALSAR, Airborne LIDAR - are used and combined to retrieve advanced land surface physical properties over high elevation arid regions of China. The existing syn- ergies between this project, the CEOP-AEGIS project (FP7) and the WATER project (CAS) provide incentives for innovative studies. The investigations presented in the following report focus on the development of advanced and innovative methodologies and algorithms to monitor both the state and the trend of key eco-hydrological vari- ables: 3D vegetation properties, land surface evaporation, glacier mass balance and drought indicators.

  11. Thresholds, switches and hysteresis in hydrology from the pedon to the catchment scale: a non-linear systems theory

    Directory of Open Access Journals (Sweden)


    Full Text Available Hysteresis is a rate-independent non-linearity that is expressed through thresholds, switches, and branches. Exceedance of a threshold, or the occurrence of a turning point in the input, switches the output onto a particular output branch. Rate-independent branching on a very large set of switches with non-local memory is the central concept in the new definition of hysteresis. Hysteretic loops are a special case. A self-consistent mathematical description of hydrological systems with hysteresis demands a new non-linear systems theory of adequate generality. The goal of this paper is to establish this and to show how this may be done. Two results are presented: a conceptual model for the hysteretic soil-moisture characteristic at the pedon scale and a hysteretic linear reservoir at the catchment scale. Both are based on the Preisach model. A result of particular significance is the demonstration that the independent domain model of the soil moisture characteristic due to Childs, Poulavassilis, Mualem and others, is equivalent to the Preisach hysteresis model of non-linear systems theory, a result reminiscent of the reduction of the theory of the unit hydrograph to linear systems theory in the 1950s. A significant reduction in the number of model parameters is also achieved. The new theory implies a change in modelling paradigm.

  12. netherland hydrological modeling instrument (United States)

    Hoogewoud, J. C.; de Lange, W. J.; Veldhuizen, A.; Prinsen, G.


    Netherlands Hydrological Modeling Instrument A decision support system for water basin management. J.C. Hoogewoud , W.J. de Lange ,A. Veldhuizen , G. Prinsen , The Netherlands Hydrological modeling Instrument (NHI) is the center point of a framework of models, to coherently model the hydrological system and the multitude of functions it supports. Dutch hydrological institutes Deltares, Alterra, Netherlands Environmental Assessment Agency, RWS Waterdienst, STOWA and Vewin are cooperating in enhancing the NHI for adequate decision support. The instrument is used by three different ministries involved in national water policy matters, for instance the WFD, drought management, manure policy and climate change issues. The basis of the modeling instrument is a state-of-the-art on-line coupling of the groundwater system (MODFLOW), the unsaturated zone (metaSWAP) and the surface water system (MOZART-DM). It brings together hydro(geo)logical processes from the column to the basin scale, ranging from 250x250m plots to the river Rhine and includes salt water flow. The NHI is validated with an eight year run (1998-2006) with dry and wet periods. For this run different parts of the hydrology have been compared with measurements. For instance, water demands in dry periods (e.g. for irrigation), discharges at outlets, groundwater levels and evaporation. A validation alone is not enough to get support from stakeholders. Involvement from stakeholders in the modeling process is needed. There fore to gain sufficient support and trust in the instrument on different (policy) levels a couple of actions have been taken: 1. a transparent evaluation of modeling-results has been set up 2. an extensive program is running to cooperate with regional waterboards and suppliers of drinking water in improving the NHI 3. sharing (hydrological) data via newly setup Modeling Database for local and national models 4. Enhancing the NHI with "local" information. The NHI is and has been used for many

  13. Long-term Regional Drought Forecasting by Combining Seasonal Weather Outlook, Hydrological Model and System Dynamic Model (United States)

    Kuo, C.; Wang, Y.; Yang, T.; Yu, P.


    This study integrated the rainfall-runoff model, seasonal weather outlook, and VENSIM system dynamic model to construct a long-term regional drought forecasting system. Central Taiwan contains several river basins. The water supplies and demands in these river basins compose several water resources systems in the region. To develop a long-term regional drought forecasting system for this region, the simulations of interaction among the water resources systems are required. The future inflows of reservoir for each individual water resources system are forecasted based on the seasonal (3 months ahead) weather outlook and the rainfall-runoff model. Then, the future water usage (trade-off between water demand and supply) of all water resources systems can be simulated by using the VENSIM system dynamic model. Therefore, the long-term regional drought can be forecasted based on the future water usage. The seasonal weather outlook provided by the Central Weather Bureau of Taiwan is the trend probabilities of the monthly rainfall and monthly mean temperature for the three months ahead. By using the re-sampling approach, the trend probabilities for the future three months are converted to daily series as the input of rainfall-runoff model. The inflows of reservoir for each water resources system are simulated by the rainfall-runoff model (i.e., the HBV-based hydrological model) with corresponding calibrated model parameters. Then, the study can simulate the daily inflow series in the next 3 months. Since the study area contains several water resources systems, the VENSIM system dynamic model is used to simulate the trade-off between water supply and demand on the whole region. In the system dynamic model, the interactions among the available water, demand of each location and the adjustable water for neighbor system are simulated. Based on the simulations of VENSIM system dynamic model, the study can forecast the deficit amounts and the locations of possible drought in the

  14. Summary of hydrologic testing of the Floridan aquifer system at Fort Stewart, coastal Georgia, 2009-2010 (United States)

    Gonthier, Gerald J.


    Two test wells were completed at Fort Stewart, coastal Georgia, to investigate the potential for using the Lower Floridan aquifer as a source of water to satisfy anticipated, increased water needs. The U.S. Geological Survey, in cooperation with the U.S. Department of the Army, completed hydrologic testing of the Floridan aquifer system at the study site, including flowmeter surveys, slug tests, and 24- and 72-hour aquifer tests by mid-March 2010. Analytical approaches and model simulation were applied to aquifer-test results to provide estimates of transmissivity and hydraulic conductivity of the multilayered Floridan aquifer system. Data from a 24-hour aquifer test of the Upper Floridan aquifer were evaluated by using the straight-line Cooper-Jacob analytical method. Data from a 72-hour aquifer test of the Lower Floridan aquifer were simulated by using axisymmetric model simulations. Results of aquifer testing indicated that the Upper Floridan aquifer has a transmissivity of 100,000 feet-squared per day, and the Lower Floridan aquifer has a transmissivity of 7,000 feet-squared per day. A specific storage for the Floridan aquifer system as a result of model calibration was 3E-06 ft–1. Additionally, during a 72-hour aquifer test of the Lower Floridan aquifer, a drawdown response was observed in two Upper Floridan aquifer wells, one of which was more than 1 mile away from the pumped well.

  15. Hydrological cycle. (United States)

    Gonçalves, H C; Mercante, M A; Santos, E T


    The Pantanal hydrological cycle holds an important meaning in the Alto Paraguay Basin, comprising two areas with considerably diverse conditions regarding natural and water resources: the Plateau and the Plains. From the perspective of the ecosystem function, the hydrological flow in the relationship between plateau and plains is important for the creation of reproductive and feeding niches for the regional biodiversity. In general, river declivity in the plateau is 0.6 m/km while declivity on the plains varies from 0.1 to 0.3 m/km. The environment in the plains is characteristically seasonal and is home to an exuberant and abundant diversity of species, including some animals threatened with extinction. When the flat surface meets the plains there is a diminished water flow on the riverbeds and, during the rainy season the rivers overflow their banks, flooding the lowlands. Average annual precipitation in the Basin is 1,396 mm, ranging from 800 mm to 1,600 mm, and the heaviest rainfall occurs in the plateau region. The low drainage capacity of the rivers and lakes that shape the Pantanal, coupled with the climate in the region, produce very high evaporation: approximately 60% of all the waters coming from the plateau are lost through evaporation. The Alto Paraguay Basin, including the Pantanal, while boasting an abundant availability of water resources, also has some spots with water scarcity in some sub-basins, at different times of the year. Climate conditions alone are not enough to explain the differences observed in the Paraguay River regime and some of its tributaries. The complexity of the hydrologic regime of the Paraguay River is due to the low declivity of the lands that comprise the Mato Grosso plains and plateau (50 to 30 cm/km from east to west and 3 to 1.5 cm/km from north to south) as well as the area's dimension, which remains periodically flooded with a large volume of water.

  16. Modeling greenhouse gas emissions and nutrient transport in managed arable soils with a fully coupled hydrology-biogeochemical modeling system (United States)

    Haas, Edwin; Klatt, Steffen; Kiese, Ralf; Butterbach-Bahl, Klaus; Kraft, Philipp; Breuer, Lutz


    The use of mineral nitrogen fertilizer sustains the global food production and therefore the livelihood of human kind. The rise in world population will put pressure on the global agricultural system to increase its productivity leading most likely to an intensification of mineral nitrogen fertilizer use. The fate of excess nitrogen and its distribution within landscapes is manifold. Process knowledge on the site scale has rapidly grown in recent years and models have been developed to simulate carbon and nitrogen cycling in managed ecosystems on the site scale. Despite first regional studies, the carbon and nitrogen cycling on the landscape or catchment scale is not fully understood. In this study we present a newly developed modelling approach by coupling the fully distributed hydrology model CMF (catchment modelling framework) to the process based regional ecosystem model LandscapeDNDC for the investigation of hydrological processes and carbon and nitrogen transport and cycling, with a focus on nutrient displacement and resulting greenhouse gas emissions in various virtual landscapes / catchment to demonstrate the capabilities of the modelling system. The modelling system was applied to simulate water and nutrient transport at the at the Yanting Agro-ecological Experimental Station of Purple Soil, Sichuan province, China. The catchment hosts cypress forests on the outer regions, arable fields on the sloping croplands cultivated with wheat-maize rotations and paddy rice fields in the lowland. The catchment consists of 300 polygons vertically stratified into 10 soil layers. Ecosystem states (soil water content and nutrients) and fluxes (evapotranspiration) are exchanged between the models at high temporal scales (hourly to daily) forming a 3-dimensional model application. The water flux and nutrients transport in the soil is modelled using a 3D Richards/Darcy approach for subsurface fluxes with a kinematic wave approach for surface water runoff and the

  17. Hydrologic budget of the late Oligocene Lake Creede and the evolution of the upper Rio Grande drainage system (United States)

    Barton, Paul B.; Steven, Thomas A.; Hayba, Daniel O.


    The filling history, hydrologic budget, and geomorphic development of ancient Lake Creede and its tributary basin are evaluated to determine the factors that controlled its character. The lake filled the Creede caldera that formed in the late Oligocene as a consequence of the eruption of the Snowshoe Mountain Tuff. The caldera's sedimentary fill accumlated to a depth of about 1.26 km and had a volume of about 89 km3. The highest lake level was ~3300 m (10,800 ft) present altitude before it drained eastward across a broad volcanic plateau as the ancestral Rio Grande. A tributary canyon several hundred meters deep was cut into hard rhyolite in the north wall of the caldera before the lake was more than half full; its presence demonstrates that ancient Lake Creede filled slowly and thus occupied a long-lived, closed basin. The slow filling rate is incompatible with the present water flux through the Creede caldera basin, because such a flow would fill the basin geologically instantaneously. This mismatch, together with the recognition that the Oligocene climate was similar to that of today, forces the reexamination of the hydrologic and geomorphic history of the caldera. That appraisal shows that the caldera cannot have resurged rapidly immediately after caldera collapse, and that ancient watershed must have been lass than half as large as the present upper Rio Grande basin. The ancient lake had a more or less constant surface area of about 200 km2 that approximated a steady-state condition between inflow and evaporation. Although the lake level fluctuated with climatic variations, its surface elevation steadily climbed as sediment accumulated, accelerating as resurgance and dome growth usurped spacewithin the basin. It could have had one playa stage early in its development and another after the basin had nearly filled with sediment, but there is no direct evidence for either. At least the lower half of the sedimentary column (the part sampled by the scientific

  18. Proving the ecosystem value through hydrological modelling (United States)

    Dorner, W.; Spachinger, K.; Porter, M.; Metzka, R.


    Ecosystems provide valuable functions. Also natural floodplains and river structures offer different types of ecosystem functions such as habitat function, recreational area and natural detention. From an economic stand point the loss (or rehabilitation) of these natural systems and their provided natural services can be valued as a damage (or benefit). Consequently these natural goods and services must be economically valued in project assessments e.g. cost-benefit-analysis or cost comparison. Especially in smaller catchments and river systems exists significant evidence that natural flood detention reduces flood risk and contributes to flood protection. Several research projects evaluated the mitigating effect of land use, river training and the loss of natural flood plains on development, peak and volume of floods. The presented project analysis the hypothesis that ignoring natural detention and hydrological ecosystem services could result in economically inefficient solutions for flood protection and mitigation. In test areas, subcatchments of the Danube in Germany, a combination of hydrological and hydrodynamic models with economic evaluation techniques was applied. Different forms of land use, river structure and flood protection measures were assed and compared from a hydrological and economic point of view. A hydrodynamic model was used to simulate flows to assess the extent of flood affected areas and damages to buildings and infrastructure as well as to investigate the impacts of levees and river structure on a local scale. These model results provided the basis for an economic assessment. Different economic valuation techniques, such as flood damage functions, cost comparison method and substation-approach were used to compare the outcomes of different hydrological scenarios from an economic point of view and value the ecosystem service. The results give significant evidence that natural detention must be evaluated as part of flood mitigation projects

  19. Hydrologic models of modern and fossil geothermal systems in the Great Basin: Genetic implications for epithermal Au-Ag and Carlin-type gold deposits (United States)

    Person, M.; Banerjee, A.; Hofstra, A.; Sweetkind, D.; Gao, Y.


    The Great Basin region in the western United States contains active geothermal systems, large epithermal Au-Ag deposits, and world-class Carlin-type gold deposits. Temperature profiles, fluid inclusion studies, and isotopic evidence suggest that modern and fossil hydrothermal systems associated with gold mineralization share many common features, including the absence of a clear magmatic fluid source, discharge areas restricted to fault zones, and remarkably high temperatures (>200 ??C) at shallow depths (200-1500 m). While the plumbing of these systems varies, geochemical and isotopic data collected at the Dixie Valley and Beowawe geothermal systems suggest that fluid circulation along fault zones was relatively deep (>5 km) and comprised of relatively unexchanged Pleistocene meteoric water with small (water line (MWL). Many fossil ore-forming systems were also dominated by meteoric water, but usually exhibit ??18O fluid-rock interactions with larger shifts of 5???-20??? from the MWL. Here we present a suite of two-dimensional regional (100 km) and local (40-50 km) scale hydrologic models that we have used to study the plumbing of modern and Tertiary hydrothermal systems of the Great Basin. Geologically and geophysically consistent cross sections were used to generate somewhat idealized hydrogeologic models for these systems that include the most important faults, aquifers, and confining units in their approximate configurations. Multiple constraints were used, including enthalpy, ??18O, silica compositions of fluids and/or rocks, groundwater residence times, fluid inclusion homogenization temperatures, and apatite fission track anomalies. Our results suggest that these hydrothermal systems were driven by natural thermal convection along anisotropic, subvertical faults connected in many cases at depth by permeable aquifers within favorable lithostratigraphic horizons. Those with minimal fluid ?? 18O shifts are restricted to high-permeability fault zones and

  20. Attribution of hydrologic trends using integrated hydrologic and economic models (United States)

    Maneta, M. P.; Brugger, D. R.; Silverman, N. L.


    Hydrologic change has been detected in many regions of the world in the form of trends in annual streamflows, varying depths to the regional water table, or other alterations of the hydrologic balance. Most models used to investigate these changes implement sophisticated descriptions of the physical system but use simplified descriptions of the socioeconomic system. These simplifications come in the form of prescribed water diversions and land use change scenarios, which provide little insight into coupled natural-human systems and have limited predictive capabilities. We present an integrated model that adds realism to the description of the hydrologic system in agricultural regions by incorporating a component that updates the allocation of land and water to crops in response to hydroclimatic (water available) and economic conditions (prices of commodities and agricultural inputs). This component assumes that farmers allocate resources to maximize their net revenues, thus justifying the use of optimality conditions to constrain the parameters of an empirical production function that captures the economic behavior of farmers. Because the model internalizes the feedback between climate, agricultural markets, and farming activity into the hydrologic system, it can be used to understand to what extent human economic activity can exacerbate or buffer the regional hydrologic impacts of climate change in agricultural regions. It can also help in the attribution of causes of hydrologic change. These are important issues because local policy and management cannot solve climate change, but they can address land use and agricultural water use. We demonstrate the model in a case study.

  1. Flood protection effect of the existing and projected reservoirs in the Amur River basin: evaluation by the hydrological modeling system

    Directory of Open Access Journals (Sweden)

    Y. Motovilov


    Full Text Available Hydrological modeling system was developed as a tool addressed supporting flood risk management by the existing and projected reservoirs in the Amur River basin. The system includes the physically-based semi-distributed model of runoff generation ECOMAG coupled with a hydrodynamic MIKE-11 model to simulate channel flow in the main river. The case study was carried out for the middle part of the Amur River where large reservoirs are located on the Zeya and Bureya Rivers. The models were calibrated and validated using streamflow measuruments at the different gauges of the main river and its tributaries. Numerical experiments were carried out to assess the effect of the existing Zeya and Bureya reservoirs regulation on 850 km stretch of the middle Amur River stage. It was shown that in the absence of the reservoirs, the water levels downstream of the Zeya and Bureya Rivers would be 0.5–1.5 m higher than the levels measured during the disastrous flood of 2013. Similar experiments were carried out to assess possible flood protection effect of new projected reservoirs on the Zeya and Bureya Rivers.

  2. Flood protection effect of the existing and projected reservoirs in the Amur River basin: evaluation by the hydrological modeling system (United States)

    Motovilov, Y.; Danilov-Danilyan, V.; Dod, E.; Kalugin, A.


    Hydrological modeling system was developed as a tool addressed supporting flood risk management by the existing and projected reservoirs in the Amur River basin. The system includes the physically-based semi-distributed model of runoff generation ECOMAG coupled with a hydrodynamic MIKE-11 model to simulate channel flow in the main river. The case study was carried out for the middle part of the Amur River where large reservoirs are located on the Zeya and Bureya Rivers. The models were calibrated and validated using streamflow measuruments at the different gauges of the main river and its tributaries. Numerical experiments were carried out to assess the effect of the existing Zeya and Bureya reservoirs regulation on 850 km stretch of the middle Amur River stage. It was shown that in the absence of the reservoirs, the water levels downstream of the Zeya and Bureya Rivers would be 0.5-1.5 m higher than the levels measured during the disastrous flood of 2013. Similar experiments were carried out to assess possible flood protection effect of new projected reservoirs on the Zeya and Bureya Rivers.

  3. Evaporation induced 18O and 13C enrichment in lake systems: A global perspective on hydrologic balance effects (United States)

    Horton, Travis W.; Defliese, William F.; Tripati, Aradhna K.; Oze, Christopher


    Growing pressure on sustainable water resource allocation in the context of global development and rapid environmental change demands rigorous knowledge of how regional water cycles change through time. One of the most attractive and widely utilized approaches for gaining this knowledge is the analysis of lake carbonate stable isotopic compositions. However, endogenic carbonate archives are sensitive to a variety of natural processes and conditions leaving isotopic datasets largely underdetermined. As a consequence, isotopic researchers are often required to assume values for multiple parameters, including temperature of carbonate formation or lake water δ18O, in order to interpret changes in hydrologic conditions. Here, we review and analyze a global compilation of 57 lacustrine dual carbon and oxygen stable isotope records with a topical focus on the effects of shifting hydrologic balance on endogenic carbonate isotopic compositions. Through integration of multiple large datasets we show that lake carbonate δ18O values and the lake waters from which they are derived are often shifted by >+10‰ relative to source waters discharging into the lake. The global pattern of δ18O and δ13C covariation observed in >70% of the records studied and in several evaporation experiments demonstrates that isotopic fractionations associated with lake water evaporation cause the heavy carbon and oxygen isotope enrichments observed in most lakes and lake carbonate records. Modeled endogenic calcite compositions in isotopic equilibrium with lake source waters further demonstrate that evaporation effects can be extreme even in lake records where δ18O and δ13C covariation is absent. Aridisol pedogenic carbonates show similar isotopic responses to evaporation, and the relevance of evaporative modification to paleoclimatic and paleotopographic research using endogenic carbonate proxies are discussed. Recent advances in stable isotope research techniques present unprecedented

  4. Pleistocene hydrology of North America: The role of ice sheets in reorganizing groundwater flow systems

    National Research Council Canada - National Science Library

    Mark Person; Jennifer McIntosh; Victor Bense; V. H. Remenda


    ... the important impact that ice sheet–aquifer interactions have had in controlling subsurface flow patterns, recharge rates, and the distribution of fresh water in confined aquifer systems across North America...

  5. Assessing water resource system vulnerability to unprecedented hydrological drought using copulas to characterize drought duration and deficit (United States)

    Pflug, Georg; Hall, Jim W.; Hochrainer‐Stigler, Stefan


    Abstract Global climate models suggest an increase in evapotranspiration, changing storm tracks, and moisture delivery in many parts of the world, which are likely to cause more prolonged and severe drought, yet the weakness of climate models in modeling persistence of hydroclimatic variables and the uncertainties associated with regional climate projections mean that impact assessments based on climate model output may underestimate the risk of multiyear droughts. In this paper, we propose a vulnerability‐based approach to test water resource system response to drought. We generate a large number of synthetic streamflow series with different drought durations and deficits and use them as input to a water resource system model. Marginal distributions of the streamflow for each month are generated by bootstrapping the historical data, while the joint probability distributions of consecutive months are constructed using a copula‐based method. Droughts with longer durations and larger deficits than the observed record are generated by perturbing the copula parameter and by adopting an importance sampling strategy for low flows. In this way, potential climate‐induced changes in monthly hydrological persistence are factored into the vulnerability analysis. The method is applied to the London water system (England) to investigate under which drought conditions severe water use restrictions would need to be imposed. Results indicate that the water system is vulnerable to drought conditions outside the range of historical events. The vulnerability assessment results were coupled with climate model information to compare alternative water management options with respect to their vulnerability to increasingly long and severe drought. PMID:27609995

  6. Linking collection of stormwater runoff to managed aquifer recharge using a geographic information system and hydrologic modeling (United States)

    Teo, E. K.; Young, K. S.; Beganskas, S.; Fisher, A. T.; Lozano, S.; Weir, W. B.; Harmon, R. E.


    We are completing a regional analysis of Santa Cruz and northern Monterey Counties, CA to assess conditions for using distributed stormwater collection to support managed aquifer recharge (DSC-MAR). DSC-MAR constitutes an important component in a portfolio of innovative techniques being developed in order to improve groundwater management and to adapt to prolonged drought and changes in climate and anthropogenic water demands by increasing recharge during and soon after winter precipitation events, the season when excess water is most abundant. Our analyses focus specifically on the distributed collection of stormwater runoff, a source that has historically been treated as a nuisance, with the goal of infiltrating ≥100 ac-ft/yr within individual projects. The first part of this project is a spatial analysis, using a geographic information system to combine surface and subsurface data. There is complete spatial coverage for most surface data (elevation, soil and bedrock properties, land use) for the full study region ( 1,400 km2), but subsurface data (aquifer distribution, properties, and storage space) are available for only 43% of the region. Sites that are most suitable for DSC-MAR have high soil infiltration capacity, are well-connected to an underlying aquifer with good transmissive and storage properties, and have space to receive water. Based on surface data, 35% of the region is suitable for MAR (480 km2). In contrast, 14% of the area for which both surface and subsurface datasets are available is suitable for MAR (84 km2). We have assessed the availability of hillslope runoff for collection in support of MAR using a distributed hydrologic model (PRMS) and a catalog of historical, high-resolution climate data. In the simulations, enclosed topographic basins are divided into hydrologic response units (HRUs) having an area of 25 to 250 acres (0.1 to 1 km2). Simulations of the San Lorenzo River Basin (SLRB), northern Santa Cruz County, suggest that during

  7. Evaluation of the ISBA-TRIP continental hydrologic system over the Niger basin using in situ and satellite derived datasets

    Directory of Open Access Journals (Sweden)

    V. Pedinotti


    Full Text Available During the 1970s and 1980s, West Africa has faced extreme climate variations with extended drought conditions. Of particular importance is the Niger basin, since it traverses a large part of the Sahel and is thus a critical source of water for an ever-increasing local population in this semi arid region. However, the understanding of the hydrological processes over this basin is currently limited by the lack of spatially distributed surface water and discharge measurements. The purpose of this study is to evaluate the ability of the ISBA-TRIP continental hydrologic system to represent key processes related to the hydrological cycle of the Niger basin. ISBA-TRIP is currently used within a coupled global climate model, so that the scheme must represent the first order processes which are critical for representing the water cycle while retaining a limited number of parameters and a simple representation of the physics. To this end, the scheme uses first-order approximations to account explicitly for the surface river routing, the floodplain dynamics, and the water storage using a deep aquifer reservoir. In the current study, simulations are done at a 0.5 by 0.5° spatial resolution over the 2002–2007 period (in order to take advantage of the recent satellite record and data from the African Monsoon Multidisciplinary Analyses project, AMMA. Four configurations of the model are compared to evaluate the separate impacts of the flooding scheme and the aquifer on the water cycle. Moreover, the model is forced by two different rainfall datasets to consider the sensitivity of the model to rainfall input uncertainties. The model is evaluated using in situ discharge measurements as well as satellite derived flood extent, total continental water storage changes and river height changes. The basic analysis of in situ discharges confirms the impact of the inner delta area, known as a significant flooded area, on the discharge, characterized by a strong

  8. Evaluation of the ISBA-TRIP continental hydrologic system over the Niger basin using in situ and satellite derived datasets (United States)

    Pedinotti, V.; Boone, A.; Decharme, B.; Crétaux, J. F.; Mognard, N.; Panthou, G.; Papa, F.; Tanimoun, B. A.


    During the 1970s and 1980s, West Africa has faced extreme climate variations with extended drought conditions. Of particular importance is the Niger basin, since it traverses a large part of the Sahel and is thus a critical source of water for an ever-increasing local population in this semi arid region. However, the understanding of the hydrological processes over this basin is currently limited by the lack of spatially distributed surface water and discharge measurements. The purpose of this study is to evaluate the ability of the ISBA-TRIP continental hydrologic system to represent key processes related to the hydrological cycle of the Niger basin. ISBA-TRIP is currently used within a coupled global climate model, so that the scheme must represent the first order processes which are critical for representing the water cycle while retaining a limited number of parameters and a simple representation of the physics. To this end, the scheme uses first-order approximations to account explicitly for the surface river routing, the floodplain dynamics, and the water storage using a deep aquifer reservoir. In the current study, simulations are done at a 0.5 by 0.5° spatial resolution over the 2002-2007 period (in order to take advantage of the recent satellite record and data from the African Monsoon Multidisciplinary Analyses project, AMMA). Four configurations of the model are compared to evaluate the separate impacts of the flooding scheme and the aquifer on the water cycle. Moreover, the model is forced by two different rainfall datasets to consider the sensitivity of the model to rainfall input uncertainties. The model is evaluated using in situ discharge measurements as well as satellite derived flood extent, total continental water storage changes and river height changes. The basic analysis of in situ discharges confirms the impact of the inner delta area, known as a significant flooded area, on the discharge, characterized by a strong reduction of the

  9. Global Land Data Assimilation System (GLDAS) Products, Services and Application from NASA Hydrology Data and Information Services Center (HDISC) (United States)

    Fang, Hongliang; Beaudoing, Hiroko K.; Rodell, matthew; Teng, William L.; Vollmer, Bruce E.


    The Global Land Data Assimilation System (GLDAS) is generating a series of land surface state (e.g., soil moisture and surface temperature) and flux (e.g., evaporation and sensible heat flux) products simulated by four land surface models (CLM, Mosaic, Noah and VIC). These products are now accessible at the Hydrology Data and Information Services Center (HDISC), a component of the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Current data holdings include a set of 1.0 degree resolution data products from the four models, covering 1979 to the present; and a 0.25 degree data product from the Noah model, covering 2000 to the present. The products are in Gridded Binary (GRIB) format and can be accessed through a number of interfaces. Users can search the products through keywords and perform on-the-fly spatial and parameter subsetting and format conversion of selected data. More advanced visualization, access and analysis capabilities will be available in the future. The long term GLDAS data are used to develop climatology of water cycle components and to explore the teleconnections of droughts and pluvial.

  10. Incorporating human activities into an earth system model of the Northeastern United States: socio-hydrology at the regional scale (United States)

    Rosenzweig, B.; Vorosmarty, C. J.; Miara, A.; Stewart, R.; Wollheim, W. M.; Lu, X.; Kicklighter, D. W.; Ehsani, N.; Shikhmacheva, K.; Yang, P.


    The Northeastern United States is one of the most urbanized regions of the world and its 70 million residents will be challenged by climate change as well as competing demands for land and water through the remainder of the 21st Century. The strategic management decisions made in the next few years will have major impacts on the region's future water resources, but planners have had limited quantitative information to support their decision-making. We have developed a Northeast Regional Earth System Model (NE-RESM), which allows for the testing of future scenarios of climate change, land use change and infrastructure management to better understand their implications for the region's water resources and ecosystem services. Human features of the water cycle - including thermoelectric power plants, wastewater treatment plants interbasin transfers and changes in impervious cover with different patterns of urban development - are explicitly represented in our modeling. We are currently engaged in a novel, participatory scenario design process with regional stakeholders to ensure the policy relevancy of our modeling experiments. The NE-RESM hydrologic modeling domain. Figure by Stanley Glidden and Rob Stewart

  11. Threshold behaviour in hydrological systems as (human) geo-ecosystems : Manifestations, controls, implications

    NARCIS (Netherlands)

    Zehe, E.; Sivapalan, M.


    In this paper we review threshold behaviour in environmental systems, which are often associated with the onset of floods, contamination and erosion events, and other degenerative processes. Key objectives of this review are to a) suggest indicators for detecting threshold behavior, b) discuss their

  12. Nature and hydrological relevance of the Shalbatana complex underground cavernous system (United States)

    Rodriguez, Jose Alexis Palmero; Sasaki, Sho; Miyamoto, Hideaki


    The geomorphology of the North East trending long fractured depression between the Ganges Chasma and the Shalbatana Vallis headwater source region is examined and interpreted to be the result of collapse of part of an extensive underground cavernous system. We propose that this cavernous system undermines at least a valley, which extends from the vicinities of the Ganges Chasma and terminates in the Shalbatana Vallis headwater source region and the Aromatum Chaos. We believe that the origin of this cavernous system was related to the formation and interconnection of discrete cavernous bodies and propose a hypothesis, which involves the interaction of permafrost and intrusive magmatism to explain their formation. The Shalbatana Vallis headwater source is interpreted as produced by a Noachian impact crater and surface collapse over part of the underground cavernous system. Finally, we propose that the water sources, which were involved in the excavation of the Shalbatana and Ravis outflow channels might have included water segregated from the permafrost through interaction of intrusive magmatism and permafrost, water drained from a paleolake in the Ganges Chasma and water released from the catastrophic evacuation of confined aquifers.

  13. An integrated water system model considering hydrological and biogeochemical processes at basin scale: model construction and application (United States)

    Zhang, Y. Y.; Shao, Q. X.; Ye, A. Z.; Xing, H. T.


    Integrated water system modeling is a reasonable approach to provide scientific understanding and possible solutions to tackle the severe water crisis faced over the world and to promote the implementation of integrated river basin management. Such a modeling practice becomes more feasible nowadays due to better computing facilities and available data sources. In this study, the process-oriented water system model (HEXM) is developed by integrating multiple water related processes including hydrology, biogeochemistry, environment and ecology, as well as the interference of human activities. The model was tested in the Shaying River Catchment, the largest, highly regulated and heavily polluted tributary of Huai River Basin in China. The results show that: HEXM is well integrated with good performance on the key water related components in the complex catchments. The simulated daily runoff series at all the regulated and less-regulated stations matches observations, especially for the high and low flow events. The average values of correlation coefficient and coefficient of efficiency are 0.81 and 0.63, respectively. The dynamics of observed daily ammonia-nitrogen (NH4N) concentration, as an important index to assess water environmental quality in China, are well captured with average correlation coefficient of 0.66. Furthermore, the spatial patterns of nonpoint source pollutant load and grain yield are also simulated properly, and the outputs have good agreements with the statistics at city scale. Our model shows clear superior performance in both calibration and validation in comparison with the widely used SWAT model. This model is expected to give a strong reference for water system modeling in complex basins, and provide the scientific foundation for the implementation of integrated river basin management all over the world as well as the technical guide for the reasonable regulation of dams and sluices and environmental improvement in river basins.

  14. Relationships of dispersive mass transport and stochastic convective flow through hydrologic systems

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, C.S.


    Uncertainty in water flow velocity appears to be a major factor in determining the magnitude of contaminant dispersion expected in a ground water system. This report discusses some concepts and mathematical methods relating dispersive contaminant transport to stochastic aspects of ground water flow. The theory developed should not be construed as absolutely rigorous mathematics, but is presented with the intention of clarifying the physical concepts.

  15. Susceptibility of South Korea to hydrologic extremes affecting the global food system (United States)

    Puma, M. J.; Chon, S. Y.


    Food security in South Korea is closely linked to trade in the global food system. The country's production of major grains declined from 5.8 million metric tons (mmt) in 1998 to 4.8 mmt in 2014, which coincided with a shift in grain self sufficiency from 43% down to 24% over this same period. Many factors led to these changes, including reductions in domestic agricultural land, governmental policies supporting industry over agriculture, and a push towards trade liberalization. South Korea's self sufficiency is now one of the lowest among Organisation for Economic Co-operation and Development (OECD) countries, leaving it vulnerable to disruptions in the global food system. Here we explore this vulnerability by assessing how global trade disruptions would affect Korea's food security. We impose historical extreme drought and flood events that would possibly affect today's major food producing regions concurrently. Next we compute food supply deficits in South Korea that might result from these events. Our analyses provide a framework for formulating domestic food policies to enhance South Korea's food security in the increasingly fragile global food system.

  16. Control of impact crater fracture systems on subsurface hydrology, ground subsidence, and collapse, Mars (United States)

    Rodriguez, J.A.P.; Sasaki, S.; Dohm, J.M.; Tanaka, K.L.; Strom, B.; Kargel, J.; Kuzmin, R.; Miyamoto, H.; Spray, J.G.; Fairen, A.G.; Komatsu, G.; Kurita, K.; Baker, V.


    Noachian layered materials are pervasively exposed throughout the highlands of Mars. The layered deposits, in places many kilometers thick, exhibit impact craters of diverse morphologic characteristics, ranging from highly degraded to pristine, most of which formed during the period of heavy bombardment. In addition, exhumed impact craters, ancient channels, and fluvial and alluvial fans are visible in the layered deposits through MOC imagery. These features are more abundant in Noachian terrains, which indicates relatively high erosion rates during ancient Mars that competed with heavy meteoritic bombardment. The Noachian layered materials are thus expected to contain numerous buried impact craters in various states of preservation. Here, we propose that impact craters (buried and exposed) and associated fracture systems dominate the basement structural fabric of the ancient highlands and that they have significantly influenced the hydrogeology. Diversity in the occurrence of high and low densities of impact craters and associated fracture systems controls the magnitude of the local effects of magmatic-driven hydrothermal activity. In and surrounding the Tharsis region, for example, the formation of chaotic terrains (the source regions of the circum-Chryse outflow channel system) and a large diversity of collapse structures, including impact crater moats and pit chains, appear to be the result of enhanced hydrothermal activity. Copyright 2005 by the American Geophysical Union.

  17. Integration of a Three-Dimensional Process-Based Hydrological Model into the Object Modeling System

    Directory of Open Access Journals (Sweden)

    Giuseppe Formetta


    Full Text Available The integration of a spatial process model into an environmental modeling framework can enhance the model’s capabilities. This paper describes a general methodology for integrating environmental models into the Object Modeling System (OMS regardless of the model’s complexity, the programming language, and the operating system used. We present the integration of the GEOtop model into the OMS version 3.0 and illustrate its application in a small watershed. OMS is an environmental modeling framework that facilitates model development, calibration, evaluation, and maintenance. It provides innovative techniques in software design such as multithreading, implicit parallelism, calibration and sensitivity analysis algorithms, and cloud-services. GEOtop is a physically based, spatially distributed rainfall-runoff model that performs three-dimensional finite volume calculations of water and energy budgets. Executing GEOtop as an OMS model component allows it to: (1 interact directly with the open-source geographical information system (GIS uDig-JGrass to access geo-processing, visualization, and other modeling components; and (2 use OMS components for automatic calibration, sensitivity analysis, or meteorological data interpolation. A case study of the model in a semi-arid agricultural catchment is presented for illustration and proof-of-concept. Simulated soil water content and soil temperature results are compared with measured data, and model performance is evaluated using goodness-of-fit indices. This study serves as a template for future integration of process models into OMS.

  18. A socio-hydrological model to explain the 'pendulum swing' in human-water system dynamics in the Murrumbidgee catchment, Australia (United States)

    Sivapalan, M.; van Emmerik, T. H.; Savenije, H.; Pande, S.


    Around the world the demand for water resources is growing in order to satisfy rapidly increasing human populations. Studying the co-evolution of humans, water and ecology will allow for better predictions of changing systems and will eventually lead to sustainable water management. It is the task of the emerging science of socio-hydrology to develop modeling approaches to understand natural systems in a holistic fashion, taking into account hydrology, human behavior and ecology. This study presents a coupled socio-hydrological model based on the Murrumbidgee catchment, Eastern Australia. In the last 100 years, the development of the coupled human-nature system within the Murrumbidgee can be separated into four stages, each with its own characteristics migration patterns, norms/values and policy. Humans initially settled in the downstream area, and over time, slowly moved upstream, following development of reservoir storage. Ultimately, as they hit environmental constraints, the migration of humans and irrigated agriculture show signs of moving in the opposite direction, contributing to a 'pendulum swing' of human-nature dynamics. In the proposed modeling approach, we test the hypothesis that human migration is mainly driven by water availability, agricultural and economical potential. We present a spatially distributed model based on four state variables: water storage, human population, irrigated area and ecology, where all state variables and geographical areas are connected by feedback mechanisms. Simulations with realistic parameters show correspondence with observed patterns of human migration, irrigated area and valuing of the environment. We will present the mechanisms that drive the coupled system, as well as possible scenarios based on economy and government policy. The outcomes of this study highlight the importance of socio-hydrological modeling, since it will lead to a broad understanding of coupled systems and improve overall water resources

  19. [Integrative assessment of evidence in healthcare: the GRADE system]. (United States)

    Schünemann, Holger


    Decisions are a double-edged sword: they always and inevitably come with positive and negative consequences. Decisions in healthcare--from a systems level to the individual patient--are not different. This approach acknowledges that for all recommendations and decisions all the important consequences need to be considered. Along these lines, one must evaluate the certainty that estimates of effects and decisions are likely to be correct. Thus, as institutions, professional societies, organisations and individuals, we should follow approaches focusing on systematic and integrative assessment of available best evidence. Longstanding and broad experience with the development of recommendations, including systematically developed guidelines, led a group of methodologists, health officers, clinicians and guideline developers to form the Grading of Recommendations Assessment, Development and Evaluation (GRADE) Working Group. The GRADE approach differentiates the assessment of the quality of evidence from the strength of a recommendation in healthcare. For a step-by-step evaluation of the quality of evidence, one must consider all patient relevant endpoints. It is common that many relevant and acceptable studies provide evidence for single outcomes. Therefore, integrating summaries and assessments beyond meta-analyses are required. The explicit and transparent description of the single steps in these assessments and the consideration of all currently known criteria for the assessment of the quality of evidence are among the most important advantages and innovations of the GRADE system and are described here briefly. The overall quality of evidence of all outcomes that are critical for decision-making are summarized on the basis of the lowest quality of evidence. If, for example, the evidence for six of seven critical outcomes is of low quality while moderate quality evidence is available for the other critical outcome, the overall quality of evidence is considered low to

  20. Hydrology for everyone: Share your knowledge (United States)

    Dogulu, Nilay; Dogulu, Canay


    Hydrology, the science of water, plays a central role in understanding the function and behaviour of water on the earth. Given the increasingly complex, uncertain, and dynamic nature of this system, the study of hydrology presents challenges in solving water-related problems in societies. While researchers in hydrologic science and engineering embrace these challenges, it is important that we also realize our critical role in promoting the basic understanding of hydrology concepts among the general public. Hydrology is everywhere, yet, the general public often lacks the basic understanding of the hydrologic environment surrounding them. Essentially, we believe that a basic level of knowledge on hydrology is a must for everyone and that this knowledge might facilitate resilience of communities to hydrological extremes. For instance, in case of flood and drought conditions, which are the most frequent and widespread hydrological phenomena that societies live with, a key aspect of facilitating community resilience would be to create awareness on the hydrological, meteorological, and climatological processes behind floods and droughts, and also on their potential implications on water resources management. Such knowledge awareness can lead to an increase in individuals' awareness on their role in water-related problems which in turn can potentially motivate them to adopt preparedness behaviours. For these reasons, embracing an approach that will increase hydrologic literacy of the general public should be a common objective for the hydrologic community. This talk, hopefully, will motivate researchers in hydrologic science and engineering to share their knowledge with the general public. We, as early career hydrologists, should take this responsibility more than anybody else. Start teaching hydrology now and share your knowledge with people around you - friends, family, relatives, neighbours, and others. There is hydrology for everyone!

  1. Recent advances in the multimodel hydrologic ensemble forecasting using the HydroProg system in the Nysa Klodzka river basin (southwestern Poland) (United States)

    Niedzielski, Tomasz; Mizinski, Bartlomiej; Swierczynska-Chlasciak, Malgorzata


    The HydroProg system, the real-time multimodel hydrologic ensemble system elaborated at the University of Wroclaw (Poland) in frame of the research grant no. 2011/01/D/ST10/04171 financed by National Science Centre of Poland, has been experimentally launched in 2013 in the Nysa Klodzka river basin (southwestern Poland). Since that time the system has been working operationally to provide water level predictions in real time. At present, depending on a hydrologic gauge, up to eight hydrologic models are run. They are data- and physically-based solutions, with the majority of them being the data-based ones. The paper aims to report on the performance of the implementation of the HydroProg system for the basin in question. We focus on several high flows episodes and discuss the skills of the individual models in forecasting them. In addition, we present the performance of the multimodel ensemble solution. We also introduce a new prognosis which is determined in the following way: for a given lead time we select the most skillful prediction (from the set of all individual models running at a given gauge and their multimodel ensemble) using the performance statistics computed operationally in real time as a function of lead time.

  2. Hypothesis tests for hydrologic alteration (United States)

    Kroll, Charles N.; Croteau, Kelly E.; Vogel, Richard M.


    Hydrologic systems can be altered by anthropogenic and climatic influences. While there are a number of statistical frameworks for describing and evaluating the extent of hydrologic alteration, here we present a new framework for assessing whether statistically significant hydrologic alteration has occurred, or whether the shift in the hydrologic regime is consistent with the natural variability of the system. Four hypothesis tests based on shifts of flow duration curves (FDCs) are developed and tested using three different experimental designs based on different strategies for resampling of annual FDCs. The four hypothesis tests examined are the Kolmogorov-Smirnov (KS), Kuiper (K), confidence interval (CI), and ecosurplus and ecodeficit (Eco). Here 117 streamflow sites that have potentially undergone hydrologic alteration due to reservoir construction are examined. 20 years of pre-reservoir record is used to develop the critical value of the test statistic for type I errors of 5% and 10%, while 10 years of post-alteration record is used to examine the power of each test. The best experimental design, based on calculating the mean annual FDC from an exhaustive jackknife resampling regime, provided a larger number of unique values of each test statistic and properly reproduced type I errors. Of the four tests, the CI test consistently had the highest power, while the K test had the second highest power; KS and Eco always had the lowest power. The power of the CI test appeared related to the storage ratio of the reservoir, a rough measure of the hydrologic alteration of the system.

  3. Network anomaly detection system with optimized DS evidence theory. (United States)

    Liu, Yuan; Wang, Xiaofeng; Liu, Kaiyu


    Network anomaly detection has been focused on by more people with the fast development of computer network. Some researchers utilized fusion method and DS evidence theory to do network anomaly detection but with low performance, and they did not consider features of network-complicated and varied. To achieve high detection rate, we present a novel network anomaly detection system with optimized Dempster-Shafer evidence theory (ODS) and regression basic probability assignment (RBPA) function. In this model, we add weights for each sensor to optimize DS evidence theory according to its previous predict accuracy. And RBPA employs sensor's regression ability to address complex network. By four kinds of experiments, we find that our novel network anomaly detection model has a better detection rate, and RBPA as well as ODS optimization methods can improve system performance significantly.

  4. Hydrochemistry and Isotope Hydrology for Groundwater Sustainability of the Coastal Multilayered Aquifer System (Zhanjiang, China

    Directory of Open Access Journals (Sweden)

    Pengpeng Zhou


    Full Text Available Groundwater sustainability has become a critical issue for Zhanjiang (China because of serious groundwater level drawdown induced by overexploitation of its coastal multilayered aquifer system. It is necessary to understand the origins, material sources, hydrochemical processes, and dynamics of the coastal groundwater in Zhanjiang to support its sustainable management. To this end, an integrated analysis of hydrochemical and isotopic data of 95 groundwater samples was conducted. Hydrochemical analysis shows that coastal groundwater is fresh; however, relatively high levels of Cl−, Mg2+, and total dissolved solid (TDS imply slight seawater mixing with coastal unconfined groundwater. Stable isotopes (δ18O and δ2H values reveal the recharge sources of groundwater in the multilayered aquifer system. The unconfined groundwater originates from local modern precipitation; the confined groundwater in mainland originates from modern precipitation in northwestern mountain area, and the confined groundwater in Donghai and Leizhou is sourced from rainfall recharge during an older period with a colder climate. Ionic relations demonstrate that silicate weathering, carbonate dissolutions, and cation exchange are the primary processes controlling the groundwater chemical composition. Declining trends of groundwater level and increasing trends of TDS of the confined groundwater in islands reveal the landward extending tendency of the freshwater-seawater mixing zone.

  5. On the optimal design of experiments for conceptual and predictive discrimination of hydrologic system models (United States)

    Kikuchi, C. P.; Ferré, T. P. A.; Vrugt, J. A.


    Experimental design and data collection constitute two main steps of the iterative research cycle (aka the scientific method). To help evaluate competing hypotheses, it is critical to ensure that the experimental design is appropriate and maximizes information retrieval from the system of interest. Scientific hypothesis testing is implemented by comparing plausible model structures (conceptual discrimination) and sets of predictions (predictive discrimination). This research presents a new Discrimination-Inference (DI) methodology to identify prospective data sets highly suitable for either conceptual or predictive discrimination. The DI methodology uses preposterior estimation techniques to evaluate the expected change in the conceptual or predictive probabilities, as measured by the Kullback-Leibler divergence. We present two case studies with increasing complexity to illustrate implementation of the DI for maximizing information withdrawal from a system of interest. The case studies show that highly informative data sets for conceptual discrimination are in general those for which between-model (conceptual) uncertainty is large relative to the within-model (parameter) uncertainty, and the redundancy between individual measurements in the set is minimized. The optimal data set differs if predictive, rather than conceptual, discrimination is the experimental design objective. Our results show that DI analyses highlight measurements that can be used to address critical uncertainties related to the prediction of interest. Finally, we find that the optimal data set for predictive discrimination is sensitive to the predictive grouping definition in ways that are not immediately apparent from inspection of the model structure and parameter values.

  6. Insights into Andean slope hydrology: reservoir characteristics of the thermal Pica spring system, Pampa del Tamarugal, northern Chile (United States)

    Scheihing, Konstantin W.; Moya, Claudio E.; Tröger, Uwe


    The thermal Pica springs, at ˜1,400 m above sea level (asl) in the Pampa del Tamarugal (Chile), represent a low-saline spring system at the eastern margin of the hyper-arid Atacama Desert, where groundwater resources are scarce. This study investigates the hydrogeological and geothermal characteristics of their feed reservoir, fostered by the interpretation of a 20-km east-west-heading reflection-seismic line in the transition zone from the Andean Precordillera to the Pampa del Tamarugal. Additional hydrochemical, isotope and hydrologic time-series data support the integrated analysis. One of the main factors that enabled the development of the spring-related vertical fracture system at Pica, is a disruption zone in the Mesozoic Basement caused by intrusive formations. This destabilized the younger Oligocene units under the given tectonic stress conditions; thus, the respective groundwater reservoir is made up of fractured Oligocene units of low to moderate permeability. Groundwater recharge takes place in the Precordillera at ˜3,800 m asl. From there groundwater flow covers a height difference of ˜3,000 m with a maximum circulation depth of ˜800-950 m, where the waters obtain their geothermal imprint. The maximal expected reservoir temperature, as confirmed by geothermometers, is ˜55 °C. Corrected mean residence times of spring water and groundwater plot at 1,200-4,300 years BP and yield average interstitial velocities of 6.5-22 m/year. At the same time, the hydraulic head signal, as induced by recharge events in the Precordillera, is transmitted within 20-24 months over a distance of ˜32 km towards the Andean foothills at Pica and Puquio Nunez.

  7. Harmonizing human-hydrological system under climate change: A scenario-based approach for the case of the headwaters of the Tagus River (United States)

    Lobanova, Anastasia; Liersch, Stefan; Tàbara, J. David; Koch, Hagen; Hattermann, Fred F.; Krysanova, Valentina


    Conventional water management strategies, that serve solely socio-economic demands and neglect changing natural conditions of the river basins, face significant challenges in governing complex human-hydrological systems, especially in the areas with constrained water availability. In this study we assess the possibility to harmonize the inter-sectoral water allocation scheme within a highly altered human-hydrological system under reduction in water availability, triggered by projected climate change applying scenario-based approach. The Tagus River Basin headwaters, with significant disproportion in the water resources allocation between the environmental and socio-economic targets were taken as a perfect example of such system out of balance. We propose three different water allocation strategies for this region, including two conventional schemes and one imposing shift to sustainable water management and environmental restoration of the river. We combine in one integrated modelling framework the eco-hydrological process-based Soil and Water Integrated Model (SWIM), coupled with the conceptual reservoir and water allocation modules driven by the latest bias-corrected climate projections for the region and investigate possible water allocation scenarios in the region under constrained water availability in the future. Our results show that the socio-economic demands have to be re-considered and lowered under any water allocation strategy, as the climate impacts may significantly reduce water availability in the future. Further, we show that a shift to sustainable water management strategy and river restoration is possible even under reduced water availability. Finally, our results suggest that the adaptation of complex human-hydrological systems to climate change and a shift to a more sustainable water management are likely to be parts of one joint strategy to cope with climate change impacts.

  8. Nigeria Evidence-based Health System Initiative (NEHSI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This goal will be achieved by strengthening health monitoring and demographic surveillance systems; stimulating a demand for improved services by strengthening community participation in health information collection; using the evidence generated to plan, budget and deliver services; and promoting local understanding ...

  9. Health Information Systems From evidence to action | CRDI - Centre ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Equitable health policies demand timely and reliable evidence on what is needed, what works, and who is being left out. A combination of research and training supported by IDRC is strengthening health information systems in low- and middle- income countries to meet peoples' real health needs.

  10. Event Highlight: Nigeria Evidence-based Health System Initiative

    International Development Research Centre (IDRC) Digital Library (Canada)


    Jun 1, 2012 ... Since limited resources are available for life-saving health services in Nigeria, those who plan health programs need to know which interventions are most effective and how to prioritise them. An important objective of the Nigeria Evidence-based Health. System Initiative (NEHSI) is to build the capacity of.

  11. System-Generated Digital Forensic Evidence in Graphic Design Applications


    Enos Mabuto; Hein Venter


    Graphic design applications are often used for the editing and design of digital art. The same applications can be used for creating counterfeit documents such as identity documents (IDs), driver’s licences, passports, etc. However, the use of any graphic design application leaves behind traces of digital information that can be used during a digital forensic investigation. Current digital forensic tools examine a system to find digital evidence, but they do not examine a system specifically ...

  12. Adaption to Extreme Rainfall with Open Urban Drainage System: An Integrated Hydrological Cost-Benefit Analysis

    DEFF Research Database (Denmark)

    Zhou, Qianqian; Panduro, Toke Emil; Thorsen, Bo Jellesmark


    This paper presents a cross-disciplinary framework for assessment of climate change adaptation to increased precipitation extremes considering pluvial flood risk as well as additional environmental services provided by some of the adaptation options. The ability of adaptation alternatives to cope...... amenity effects, an integration of open drainage basins in urban recreational areas is likely the best adaptation strategy, followed by pipe enlargement and local infiltration strategies. All three were improvements compared to the fourth strategy of no measures taken........ The framework was applied to the northern part of the city of Aarhus, Denmark. We investigated four adaptation strategies that encompassed laissez-faire, larger sewer pipes, local infiltration units, and open drainage system in the urban green structure. We found that when taking into account environmental...

  13. Hydrologic impacts of engineering projects on the Tigris Euphrates system and its marshlands (United States)

    Jones, C.; Sultan, M.; Yan, E.; Milewski, A.; Hussein, M.; Al-Dousari, A.; Al-Kaisy, S.; Becker, R.


    SummaryRising demands for fresh water supplies are leading to water management practices that are altering natural flow systems world-wide. One of the most devastated of these natural systems is the Tigris-Euphrates watershed that over the past three decades has witnessed the construction of over 60 engineering projects that eliminated seasonal flooding, reduced natural flow and dramatically reduced the areal extent (1966: 8000 km 2; 2002: 750 km 2) of the Mesopotamian Marshes downstream. We constructed a catchment-based continuous (1964-1998) rainfall runoff model for the watershed (area: 10 6 km 2) using the Soil Water Assessment Tool (SWAT) model to understand the dynamics of the natural flow system, and to investigate the impacts of reduced overall flow and the related land cover and landuse change downstream in the marshes. The model was calibrated (1964-1970) and validated (1971-1998) against stream flow gauge data. Using the calibrated model we calculated the temporal variations in the average monthly flow rate (AMFR), the average monthly peak flow rate (AMPFR), and annual flow volume (AFV) of the Tigris and Euphrates into the marshes at a location near Al-Basrah city (31°N, 47.5°E) throughout the modeled period. Model results indicate that the AMPFR (6301 m 3/s) and average annual flow volume (AAFV: 80 × 10 9 m 3/yr) for period A (10/1/1965-09/30/1973), preceding the construction of the major dams is progressively diminished in periods B1 (10/1/1973-09/30/1989; AMPFR: 3073 m 3/s; AAFV: 55 × 10 9 m 3/yr) and B2 (10/1/1989-09/30/1998; AMPFR, 2319 m 3/s; AAFV: 50 × 10 9 m 3/yr) that witnessed the construction of the major dams (B1: Keban, Tabqa, Hamrin, Haditha, Mosul, Karakaya; B2: Ataturk) due to the combined effects of filling artificial lakes, evaporation and infiltration of impounded water and its utilization for irrigation purposes. To investigate the impacts of reduced flow on the areal extent of the marshes, we examined the variation in marsh size

  14. Hydrologic impacts of engineering projects on the Tigris-Euphrates System and its marshlands.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.; Sultan, M.; Yan, E.; Milewski, A.; Hussein, M.; Al-Dousari, A.; Al-Kaisy, S.; Becker, R.; Environmental Science Division; Western Michigan Univ.; Iraq Reconstruction Management Office, U.S. Embassy, Baghdad, Iraq; Kuwait Institute for Scientific Research, Kuwait City, Kuwait; University of Tikrit


    Rising demands for fresh water supplies are leading to water management practices that are altering natural flow systems world-wide. One of the most devastated of these natural systems is the Tigris-Euphrates watershed that over the past three decades has witnessed the construction of over 60 engineering projects that eliminated seasonal flooding, reduced natural flow and dramatically reduced the areal extent (1966: 8000 km{sup 2}; 2002: 750 km{sup 2}) of the Mesopotamian Marshes downstream. We constructed a catchment-based continuous (1964-1998) rainfall runoff model for the watershed (area: 10{sup 6} km{sup 2}) using the Soil Water Assessment Tool (SWAT) model to understand the dynamics of the natural flow system, and to investigate the impacts of reduced overall flow and the related land cover and land use change downstream in the marshes. The model was calibrated (1964-1970) and validated (1971-1998) against stream flow gauge data. Using the calibrated model we calculated the temporal variations in the average monthly flow rate (AMFR), the average monthly peak flow rate (AMPFR), and annual flow volume (AFV) of the Tigris and Euphrates into the marshes at a location near Al-Basrah city (31{sup o}N, 47.5{sup o}E) throughout the modeled period. Model results indicate that the AMPFR (6301 m{sup 3}/s) and average annual flow volume (AAFV: 80 x 10{sup 9} m{sup 3}/yr) for period A (10/1/1965-09/30/1973), preceding the construction of the major dams is progressively diminished in periods B1 (10/1/1973-09/30/1989; AMPFR: 3073 m{sup 3}/s; AAFV: 55 x 10{sup 9} m{sup 3}/yr) and B2 (10/1/1989-09/30/1998; AMPFR, 2319 m{sup 3}/s; AAFV: 50 x 10{sup 9} m{sup 3}/yr) that witnessed the construction of the major dams (B1: Keban, Tabqa, Hamrin, Haditha, Mosul, Karakaya; B2: Ataturk) due to the combined effects of filling artificial lakes, evaporation and infiltration of impounded water and its utilization for irrigation purposes. To investigate the impacts of reduced flow on the

  15. The strategies of local farmers' water management and the eco-hydrological effects of irrigation-drainage engineering systems in world heritage of Honghe Hani Rice Terraces (United States)

    Gao, Xuan


    Terraces are built in mountainous regions to provide larger area for cultivation,in which the hydrological and geomorphological processes are impacted by local farmers' water management strategies and are modified by manmade irrigation-drainage engineering systems.The Honghe Hani Rice Terraces is a 1300a history of traditional agricultural landscape that was inscribed in the 2013 World Heritage List.The local farmers had developed systematic water management strategies and built perfect irrigation-drainage engineering systems to adapt the local rainfall pattern and rice farming activities.Through field investigation,interviews,combined with Geographic Information Systems,Remote Sensing images and Global Positioning Systems technology,the water management strategies as well as the irrigation-drainage systems and their impacts on eco-hydrological process were studied,the results indicate:Firstly,the local people created and maintained an unique woodcarving allocating management system of irrigating water over hundreds years,which aids distributing water and natural nutrition to each terrace field evenly,and regularly according to cultivation schedule.Secondly,the management of local people play an essential role in effective irrigation-drainage engineering system.A ditch leader takes charge of managing the ditch of their village,keeping ample amount of irrigation water,repairing broken parts of ditches,dealing with unfair water using issues,and so on.Meanwhile,some traditional leaders of minority also take part in.Thus, this traditional way of irrigation-drainage engineering has bringed Hani people around 1300 years of rice harvest for its eco-hydrological effects.Lastly we discuss the future of Honghe Hani Rice Terraces,the traditional cultivation pattern has been influenced by the rapid development of modern civilization,in which some related changes such as the new equipment of county roads and plastic channels and the water overusing by tourism are not totally

  16. Phytoplankton Ecology and Hydrological Dynamics of the Yahuarcaca Lake System, Amazonas, Colombia: Integrated Analysis of 16 Years of Study

    Directory of Open Access Journals (Sweden)

    Maria Juliana Salcedo-Hernández


    Full Text Available This article provides a synthesis of the current knowledge on the evolving relation between the Amazon River and the Yahuarcaca lagoon system, through the limnological features and the ecology of phytoplankton in a period of sixteen years. The synthesis of the information was conducted by reviewing existing data about the system, for the time indicated, and analyzing it by means of descriptive statistics and linear correlation between the variables found. Also, it contains a summary of the most important aspects of the first attempt in Colombia to evaluate the influence of the flood pulse on the phytoplankton in a daily time scale. The thermal pattern of this laggon system corresponds to a warm and constant polymicthic lake type according to the de Lewis (1983 classification. The physical, chemical and biological variables examined in this várzea system change according to the hydrologic period. The conductivity, transparency and richness of the phytoplankton increase in the low water season, while the nutrient concentration, and the density, productivity and the biomass of phytoplankton increase during the high water season. Nitrate during the low water season and phosphate during the high water season are the most restricting nutrients. The changes that have taken place through these years in the connectivity between the river and the Yahuarcaca lagoon system are reflected in the dynamics of the structure and composition of the phytoplankton. Normal 0 21 false false false ES-CO X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman"; mso-ansi-language:ES-CO; mso-fareast-language:ES-CO;}

  17. Experimental evidence for mixed reality states in an interreality system. (United States)

    Gintautas, Vadas; Hübler, Alfred W


    We present experimental data on the limiting behavior of an interreality system comprising a virtual horizontally driven pendulum coupled to its real-world counterpart, where the interaction time scale is much shorter than the time scale of the dynamical system. We present experimental evidence that, if the physical parameters of the simplified virtual system match those of the real system within a certain tolerance, there is a transition from an uncorrelated dual reality state to a mixed reality state of the system in which the motion of the two pendula is highly correlated. The region in parameter space for stable solutions has an Arnold tongue structure for both the experimental data and a numerical simulation. As virtual systems better approximate real ones, even weak coupling in other interreality systems may produce sudden changes to mixed reality states.

  18. Hydrology of and Current Monitoring Issues for the Chicago Area Waterway System, Northeastern Illinois (United States)

    Duncker, James J.; Johnson, Kevin K.


    The Chicago Area Waterway System (CAWS) consists of a combination of natural and manmade channels that form an interconnected navigable waterway of approximately 90-plus miles in the metropolitan Chicago area of northeastern Illinois. The CAWS serves the area as the primary drainage feature, a waterway transportation corridor, and recreational waterbody. The CAWS was constructed by the Metropolitan Water Reclamation District of Greater Chicago (MWRDGC). Completion of the Chicago Sanitary and Ship Canal (initial portion of the CAWS) in 1900 breached a low drainage divide and resulted in a diversion of water from the Lake Michigan Basin. A U.S. Supreme Court decree (Consent Decree 388 U.S. 426 [1967] Modified 449 U.S. 48 [1980]) limits the annual diversion from Lake Michigan. While the State of Illinois is responsible for the diversion, the MWRDGC regulates and maintains water level and water quality within the CAWS by using several waterway control structures. The operation and control of water levels in the CAWS results in a very complex hydraulic setting characterized by highly unsteady flows. The complexity leads to unique gaging requirements and monitoring issues. This report provides a general discussion of the complex hydraulic setting within the CAWS and quantifies this information with examples of data collected at a range of flow conditions from U.S. Geological Survey streamflow gaging stations and other locations within the CAWS. Monitoring to address longstanding issues of waterway operation, as well as current (2014) emerging issues such as wastewater disinfection and the threat from aquatic invasive species, is included in the discussion.

  19. Hydrological responses to channelization and the formation of valley plugs and shoals (United States)

    Pierce, Aaron R.; King, Sammy L.


    Rehabilitation of floodplain systems focuses on restoring interactions between the fluvial system and floodplain, however, there is a paucity of information on the effects of valley plugs and shoals on floodplain hydrological processes. We investigated hydrologic regimes in floodplains at three valley plug sites, two shoal sites, and three unchannelized sites. Valley plug sites had altered surface and sub-surface hydrology relative to unchannelized sites, while only sub-surface hydrology was affected at shoal sites. Some of the changes were unexpected, such as reduced flood duration and flood depth in floodplains associated with valley plugs. Our results emphasize the variability associated with hydrologic processes around valley plugs and our rudimentary understanding of the effects associated with these geomorphic features. Water table levels were lower at valley plug sites compared to unchannelized sites, however, valley plug sites had a greater proportion of days when water table inundation was above mean root collar depth than both shoal and unchannelized sites as a result of lower root collar depths and higher deposition rates. This study has provided evidence that valley plugs can affect both surface and sub-surface hydrology in different ways than previously thought and illustrates the variability in hydrological responses to valley plug formation.

  20. Characterizing the hydrological system in Rosia Montana mining area (Romania) for AMD mitigation (United States)

    Cozma, Alexandra; Baciu, Calin; Olenici, Adriana; Brahaita, Dorian; Pop, Cristian; Lazar, Laura; Roba, Carmen; Popita, Gabriela


    Keywords: mining, AMD mitigation, isotopic analyses, Romania Rosia Montana is one of the most important European gold fields, with a long history of mining. The extraction of gold started on site during the Roman age, and the mining operations that spanned over almost two millennia have produced a visible environmental footprint. More than 140 km of mining galleries are documented by historical sources and recent surveys. Water streams are the main vectors spreading the pollution outside the mining area. The main streams, Rosia, Corna, and Saliste, tributaries of Abruzel River are significantly impacted by the acid waters issued by adits, exposed rock surfaces, or rock waste heaps, and tailings depots. Low contamination has been observed in the streams outside the mining area, artificial ponds, and shallow groundwater. Excepting the shallow groundwater system that can be sampled in domestic wells and some springs, the circulation of groundwater is largely unknown. An important amount of the infiltration water is channelled through galleries. The waters sampled at the galleries outlets have low pH, generally between 2 and 3, and very high content of heavy metals. A systematic approach based on monthly sampling and chemical analyses, and isotopic measurements, has been initiated, in order to better understand the underground itinerary of water and the chemical transformations that occur. A sampling network of 28 water points, including streams, ponds, dug wells, springs, and gallery outlets has been setup. Beyond producing a water circulation model in the mining area, the main purpose of the research is to identify ways of decreasing the acid water production and to design low cost techniques for the AMD mitigation. The deposit still hosts about 300 tonnes of gold, and 1600 tonnes of silver. A new large scale mining project is currently under permitting. Cost-effective solutions for the water treatment would be beneficial, especially for the post-mining stage of any

  1. Changing tides: increasing evidence to embrace a patient classification system. (United States)

    Malloch, Kathy


    The effective use of a patient classification system (PCS) in a way that provides value to all health care organizations has yet to be realized given the challenging developmental pathway of these systems. As the science and technology of workforce management emerges along with evidence to support the relationships between nurse work and patient care needs, it is no longer appropriate to rely on systems that provide aggregated and minimal data to address the need for safer patient care and retention of nurses. Specificity about patient care needs in a valid and reliable PCS is essential on our pathway to improved resource utilization, improved decision making, integration of nurse cognitive and knowledge work, and management of variances from planned resource use. Advancements with technology, the ability to create and monitor equitable nurse-patient assignments, conceptual clarity, evidence, regulatory requirements, and professional role development point to a new receptiveness for PCSs.

  2. Establishing an operational waterhole monitoring system using satellite data and hydrologic modelling: Application in the pastoral regions of East Africa (United States)

    Senay, Gabriel B.; Velpuri, Naga Manohar; Alemu, Henok; Pervez, Shahriar Md; Asante, Kwabena O; Karuki, Gatarwa; Taa, Asefa; Angerer, Jay


    Timely information on the availability of water and forage is important for the sustainable development of pastoral regions. The lack of such information increases the dependence of pastoral communities on perennial sources, which often leads to competition and conflicts. The provision of timely information is a challenging task, especially due to the scarcity or non-existence of conventional station-based hydrometeorological networks in the remote pastoral regions. A multi-source water balance modelling approach driven by satellite data was used to operationally monitor daily water level fluctuations across the pastoral regions of northern Kenya and southern Ethiopia. Advanced Spaceborne Thermal Emission and Reflection Radiometer data were used for mapping and estimating the surface area of the waterholes. Satellite-based rainfall, modelled run-off and evapotranspiration data were used to model daily water level fluctuations. Mapping of waterholes was achieved with 97% accuracy. Validation of modelled water levels with field-installed gauge data demonstrated the ability of the model to capture the seasonal patterns and variations. Validation results indicate that the model explained 60% of the observed variability in water levels, with an average root-mean-squared error of 22%. Up-to-date information on rainfall, evaporation, scaled water depth and condition of the waterholes is made available daily in near-real time via the Internet ( Such information can be used by non-governmental organizations, governmental organizations and other stakeholders for early warning and decision making. This study demonstrated an integrated approach for establishing an operational waterhole monitoring system using multi-source satellite data and hydrologic modelling.

  3. Efficacy of a national hydrological risk communication strategy: Domestic wastewater treatment systems in the Republic of Ireland (United States)

    Hynds, Paul; Naughton, Owen; O'Neill, Eoin; Mooney, Simon


    A significant body of research has focused on the role of domestic wastewater treatment systems (DWWTSs) as sources of human-specific aquatic contaminants in both developed and developing regions. However, to date few studies have sought to investigate the awareness, attitudes and behaviours of DWWTS owners and the efficacy of associated communication initiatives. The current study provides an examination of a public national engagement campaign undertaken in the Republic of Ireland which seeks to minimise the impact of DWWTSs on human and ecological health via concurrent inspection and information dissemination. Overall, 1634 respondents were surveyed using a "before and after" study design to capture if and how awareness, attitudes and behaviours evolved over time. Findings suggest that whilst the campaign provided a modest baseline to raise general awareness associated with the basic operational and maintenance requirements of DWWTS, there has been little or no behavioural engagement as a result, suggesting a significant awareness-behaviour gap. Accordingly, efforts to minimise potential human and ecological impacts have been unsuccessful. Moreover, results suggest that public attitudes towards water-related regulation and policy became increasingly negative over the study period due to parallel political and economic issues, further complicating future engagement. Future strategies, both in Ireland and further afield, should focus on health-based demographically-focused message framing to achieve significant knowledge and attitudinal shifts amongst specific population cohorts, and thus bring about significant behavioural change. Study findings and recommendations may be used by myriad stakeholders including local, provincial and national authorities to effectively engage with individuals and communities prior to and during implementation of legislative and policy-based instruments within numerous spheres including climate change adaptation, environmental

  4. Assessing the Utility of 3-km Land Information System Soil Moisture Data for Drought Monitoring and Hydrologic Applications (United States)

    White, Kristopher D.; Case, Jonathan L.


    The NASA Short term Prediction Research and Transition (SPoRT) Center in Huntsville, AL has been running a real-time configuration of the Noah land surface model within the NASA Land Information System (LIS) since June 2010. The SPoRT LIS version is run as a stand-alone land surface model over a Southeast Continental U.S. domain with 3-km grid spacing. The LIS contains output variables including soil moisture and temperature at various depths, skin temperature, surface heat fluxes, storm surface runoff, and green vegetation fraction (GVF). The GVF represents another real-time SPoRT product, which is derived from the Moderate Resolution Imaging Spectroradiometer instrument aboard NASA's Aqua and Terra satellites. These data have demonstrated operational utility for drought monitoring and hydrologic applications at the National Weather Service (NWS) office in Huntsville, AL since early 2011. The most relevant data for these applications have proven to be the moisture availability (%) in the 0-10 cm and 0-200 cm layers, and the volumetric soil moisture (%) in the 0-10 cm layer. In an effort to better understand their applicability among locations with different terrain, soil and vegetation types, SPoRT is conducting the first formal assessment of these data at NWS offices in Houston, TX, Huntsville, AL and Raleigh, NC during summer 2014. The goal of this assessment is to evaluate the LIS output in the context of assessing flood risk and determining drought designations for the U.S. Drought Monitor. Forecasters will provide formal feedback via a survey question web portal, in addition to the NASA SPoRT blog. In this presentation, the SPoRT LIS and its applications at NWS offices will be presented, along with information about the summer assessment, including training module development and preliminary results.

  5. Water System Adaptation To Hydrological Changes: Module 6, Synchronous Management of Storm Surge, Sea Level Rise, and Salt Water Intrusion: Case Study in Mattapoisett, Massachusetts, U.S.A. (United States)

    This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...

  6. Further development and implementation of the DIWA distributed hydrological model-based integrated hydroinformatics system in the Danube River Basin for supporting decision making in water management (United States)

    Szabó, J. A.; Réti, G. Z.; Tóth, T.


    Today, the most significant mission of the decision makers on integrated water management issues is to carry out sustainable management for sharing the resources between a variety of users and the environment under conditions of considerable uncertainty (such as climate/land use/population/etc. change) conditions. In light of this increasing water management complexity, we consider that the most pressing needs is to develop and implement up-to-date Spatial Decision Support Systems (SDSS) for aiding decision-making processes to improve water management. One of the most important parts of such an SDSS is a distributed hydrologic model-based integrated hydroinformatics system to analyze the different scenarios. The less successful statistical and/or empirical model-experiments of earlier decades have highlighted the importance of paradigm shift in hydrological modelling approach towards the physically based distributed models, to better describe the complex hydrological processes even on catchments of more ten thousands of square km. Answers to questions like what are the effects of human actions in the catchment area (e. g. forestation or deforestation) or the changing of climate/land use on the flood, drought, or water scarcity, or what is the optimal strategy for planning and/or operating reservoirs, have become increasingly important. Nowadays the answers to this kind of questions can be provided more easily than before. The progress of applied mathematical methods, the advanced state of computer technology as well as the development of remote sensing and meteorological radar technology have accelerated the research capable of answering these questions using well-designed integrated hydroinformatics systems. With most emphasis on the recent years of extensive scientific and computational development HYDROInform UnLtd developed a distributed hydrological model-based integrated hydroinformatics system for supporting the various decisions in water management. Our

  7. Application of large-scale, multi-resolution watershed modeling framework using the Hydrologic and Water Quality System (HAWQS) (United States)

    In recent years, large-scale watershed modeling has been implemented broadly in the field of water resources planning and management. Complex hydrological, sediment, and nutrient processes can be simulated by sophisticated watershed simulation models for important issues such as water resources all...

  8. Residential demolition and its impact on vacant lot hydrology: implications for the management of stormwater and sewer system overflows (United States)

    Increased residential demolitions have made vacant lots a ubiquitous feature of the contemporary urban landscape. Vacant lots may provide ecosystem services such as stormwater runoff capture, but the extent of these functions will be regulated by soil hydrology. We evaluated soil...

  9. Informed Systems: Enabling Collaborative Evidence Based Organizational Learning

    Directory of Open Access Journals (Sweden)

    Mary M. Somerville


    Full Text Available Objective – In response to unrelenting disruptions in academic publishing and higher education ecosystems, the Informed Systems approach supports evidence based professional activities to make decisions and take actions. This conceptual paper presents two core models, Informed Systems Leadership Model and Collaborative Evidence-Based Information Process Model, whereby co-workers learn to make informed decisions by identifying the decisions to be made and the information required for those decisions. This is accomplished through collaborative design and iterative evaluation of workplace systems, relationships, and practices. Over time, increasingly effective and efficient structures and processes for using information to learn further organizational renewal and advance nimble responsiveness amidst dynamically changing circumstances. Methods – The integrated Informed Systems approach to fostering persistent workplace inquiry has its genesis in three theories that together activate and enable robust information usage and organizational learning. The information- and learning-intensive theories of Peter Checkland in England, which advance systems design, stimulate participants’ appreciation during the design process of the potential for using information to learn. Within a co-designed environment, intentional social practices continue workplace learning, described by Christine Bruce in Australia as informed learning enacted through information experiences. In addition, in Japan, Ikujiro Nonaka’s theories foster information exchange processes and knowledge creation activities within and across organizational units. In combination, these theories promote the kind of learning made possible through evolving and transferable capacity to use information to learn through design and usage of collaborative communication systems with associated professional practices. Informed Systems therein draws from three antecedent theories to create an original

  10. Granular biodurable nanomaterials: No convincing evidence for systemic toxicity. (United States)

    Moreno-Horn, Marcus; Gebel, Thomas


    Nanomaterials are usually defined by primary particle diameters ranging from 1 to 100 nm. The scope of this review is an evaluation of experimental animal studies dealing with the systemic levels and putative systemic effects induced by nanoparticles which can be characterized as being granular biodurable particles without known specific toxicity (GBP). Relevant examples of such materials comprise nanosized titanium dioxide (TiO2) and carbon black. The question was raised whether GBP nanomaterials systemically accumulate and may possess a relevant systemic toxicity. With few exceptions, the 56 publications reviewed were not performed using established standard protocols, for example, OECD guidelines but used non-standard study designs. The studies including kinetic investigations indicated that GBP nanomaterials were absorbed and systemically distributed to rather low portions only. There was no valid indication that GPB nanomaterials possess novel toxicological hazard properties. In addition, no convincing evidence for a relevant specific systemic toxicity of GBP nanomaterials could be identified. The minority of the papers reviewed (15/56) investigated both nanosized and microsized GBP materials in parallel. A relevant different translocation of GBP nanomaterials in contrast to GBP micromaterials was not observed in these studies. There was no evidence that GPB nanomaterials possess toxicological properties other than their micromaterial counterparts.

  11. Hydrologic response to and recovery from differing silvicultural systems in a deciduous forest landscape with seasonal snow cover (United States)

    Buttle, J. M.; Beall, F. D.; Webster, K. L.; Hazlett, P. W.; Creed, I. F.; Semkin, R. G.; Jeffries, D. S.


    Hydrological consequences of alternative harvesting strategies in deciduous forest landscapes with seasonal snow cover have received relatively little attention. Most forest harvesting experiments in landscapes with seasonal snow cover have focused on clearcutting in coniferous forests. Few have examined alternative strategies such as selection or shelterwood cutting in deciduous stands whose hydrologic responses to harvesting may differ from those of conifers. This study presents results from a 31-year examination of hydrological response to and recovery from alternative harvesting strategies in a deciduous forest landscape with seasonal snow cover in central Ontario, Canada. A quantitative means of assessing hydrologic recovery to harvesting is also developed. Clearcutting resulted in increased water year (WY) runoff. This was accompanied by increased runoff in all seasons, with greatest relative increases in Summer. Direct runoff and baseflow from treatment catchments generally increased following harvesting, although annual peak streamflow did not. Largest increases in WY runoff and seasonal runoff as well as direct runoff and baseflow generally occurred in the selection harvest catchment, likely as a result of interception of hillslope runoff by a forest access road and redirection to the stream channel. Hydrologic recovery appeared to begin towards the end of the experimental period for several streamflow metrics but was incomplete for all harvesting strategies 15 years after harvesting. Geochemical tracing indicated that harvesting enhanced the relative importance of surface and near-surface water pathways on catchment slopes for all treatments, with the clearcut catchment showing the most pronounced and prolonged response. Such insights into water partitioning between flow pathways may assist assessments of the ecological and biogeochemical consequences of forest disturbance.

  12. Hydrological AnthropoScenes (United States)

    Cudennec, Christophe


    The Anthropocene concept encapsulates the planetary-scale changes resulting from accelerating socio-ecological transformations, beyond the stratigraphic definition actually in debate. The emergence of multi-scale and proteiform complexity requires inter-discipline and system approaches. Yet, to reduce the cognitive challenge of tackling this complexity, the global Anthropocene syndrome must now be studied from various topical points of view, and grounded at regional and local levels. A system approach should allow to identify AnthropoScenes, i.e. settings where a socio-ecological transformation subsystem is clearly coherent within boundaries and displays explicit relationships with neighbouring/remote scenes and within a nesting architecture. Hydrology is a key topical point of view to be explored, as it is important in many aspects of the Anthropocene, either with water itself being a resource, hazard or transport force; or through the network, connectivity, interface, teleconnection, emergence and scaling issues it determines. We will schematically exemplify these aspects with three contrasted hydrological AnthropoScenes in Tunisia, France and Iceland; and reframe therein concepts of the hydrological change debate. Bai X., van der Leeuw S., O'Brien K., Berkhout F., Biermann F., Brondizio E., Cudennec C., Dearing J., Duraiappah A., Glaser M., Revkin A., Steffen W., Syvitski J., 2016. Plausible and desirable futures in the Anthropocene: A new research agenda. Global Environmental Change, in press, Brondizio E., O'Brien K., Bai X., Biermann F., Steffen W., Berkhout F., Cudennec C., Lemos M.C., Wolfe A., Palma-Oliveira J., Chen A. C-T. Re-conceptualizing the Anthropocene: A call for collaboration. Global Environmental Change, in review. Montanari A., Young G., Savenije H., Hughes D., Wagener T., Ren L., Koutsoyiannis D., Cudennec C., Grimaldi S., Blöschl G., Sivapalan M., Beven K., Gupta H., Arheimer B., Huang Y

  13. Estimating real-time predictive hydrological uncertainty

    NARCIS (Netherlands)

    Verkade, J.S.


    Flood early warning systems provide a potentially highly effective flood risk reduction measure. The effectiveness of early warning, however, is affected by forecasting uncertainty: the impossibility of knowing, in advance, the exact future state of hydrological systems. Early warning systems

  14. 76 FR 13436 - NIJ Request for Comments on Draft Vehicular Digital Multimedia Evidence Recording System... (United States)


    ... Digital Multimedia Evidence Recording System Selection and Application Guide AGENCY: National Institute of... Vehicular Digital Multimedia Evidence Recording System Selection and Application Guide'' The opportunity to... Office of Justice Programs NIJ Request for Comments on Draft Vehicular Digital Multimedia Evidence...

  15. Simplifying a hydrological ensemble prediction system with a backward greedy selection of members – Part 2: Generalization in time and space

    Directory of Open Access Journals (Sweden)

    D. Brochero


    Full Text Available An uncertainty cascade model applied to stream flow forecasting seeks to evaluate the different sources of uncertainty of the complex rainfall-runoff process. The current trend focuses on the combination of Meteorological Ensemble Prediction Systems (MEPS and hydrological model(s. However, the number of members of such a HEPS may rapidly increase to a level that may not be operationally sustainable. This paper evaluates the generalization ability of a simplification scheme of a 800-member HEPS formed by the combination of 16 lumped rainfall-runoff models with the 50 perturbed members from the European Centre for Medium-range Weather Forecasts (ECMWF EPS. Tests are made at two levels. At the local level, the transferability of the 9th day hydrological member selection for the other 8 forecast horizons exhibits an 82% success rate. The other evaluation is made at the regional or cluster level, the transferability from one catchment to another from within a cluster of watersheds also leads to a good performance (85% success rate, especially for forecast time horizons above 3 days and when the basins that formed the cluster presented themselves a good performance on an individual basis. Diversity, defined as hydrological model complementarity addressing different aspects of a forecast, was identified as the critical factor for proper selection applications.

  16. System-Generated Digital Forensic Evidence in Graphic Design Applications

    Directory of Open Access Journals (Sweden)

    Enos Mabuto


    Full Text Available Graphic design applications are often used for the editing and design of digital art. The same applications can be used for creating counterfeit documents such as identity documents (IDs, driver’s licences, passports, etc. However, the use of any graphic design application leaves behind traces of digital information that can be used during a digital forensic investigation. Current digital forensic tools examine a system to find digital evidence, but they do not examine a system specifically for the creating of counterfeit documents created through the use of graphic design applications.The paper in hand reviews the system-generated digital forensic evidence gathered from certain graphic design applications, which indicates that a counterfeit document was created. This inference is made by associating the digital forensic information gathered with the possible actions taken, more specifically, the scanning, editing, saving and printing of counterfeit documents. The digital forensic information is gathered by analysing the files generated by the particular graphic design application used for creating the document. The acquired digital forensic information is corroborated to the creation of counterfeit documents and interpreted accordingly. In the end determining if a system was utilised for counterfeiting.

  17. Hydrologic Sub-basins of Greenland, Version 1 (United States)

    National Aeronautics and Space Administration — The Hydrologic Sub-basins of Greenland data set contains Geographic Information System (GIS) polygon shapefiles that include 293 hydrologic sub-basins of the...

  18. Application of Large-Scale, Multi-Resolution Watershed Modeling Framework Using the Hydrologic and Water Quality System (HAWQS)


    Haw Yen; Prasad Daggupati; Michael J. White; Raghavan Srinivasan; Arndt Gossel; David Wells; Jeffrey G. Arnold


    In recent years, large-scale watershed modeling has been implemented broadly in the field of water resources planning and management. Complex hydrological, sediment, and nutrient processes can be simulated by sophisticated watershed simulation models for important issues such as water resources allocation, sediment transport, and pollution control. Among commonly adopted models, the Soil and Water Assessment Tool (SWAT) has been demonstrated to provide superior performance with a large amount...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  1. Hydrology, MECKLENBURG COUNTY, NC (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  4. HYDROLOGY, GREENE County, ARKANSAS (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  7. HYDROLOGY, Lawrence County, ARKANSAS (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating ALood discharges for a ALood Insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  11. HYDROLOGY, Cass COUNTY, IN (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...

  16. HYDROLOGY, Allegheny County, PA (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a Flood Insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  18. HYDROLOGY, Butler COUNTY, USA (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  20. Hydrology, ANDROSCOGGIN COUNTY, MAINE (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  8. Connecting the snowpack to the internet of things: an IPv6 architecture for providing real-time measurements of hydrologic systems (United States)

    Kerkez, B.; Zhang, Z.; Oroza, C.; Glaser, S. D.; Bales, R. C.


    We describe our improved, robust, and scalable architecture by which to rapidly instrument large-scale watersheds, while providing the resulting data in real-time. Our system consists of more than twenty wireless sensor networks and thousands of sensors, which will be deployed in the American River basin (5000 sq. km) of California. The core component of our system is known as a mote, a tiny, ultra-low-power, embedded wireless computer that can be used for any number of sensing applications. Our new generation of motes is equipped with IPv6 functionality, effectively giving each sensor in the field its own unique IP address, thus permitting users to remotely interact with the devices without going through intermediary services. Thirty to fifty motes will be deployed across 1-2 square kilometer regions to form a mesh-based wireless sensor network. Redundancy of local wireless links will ensure that data will always be able to traverse the network, even if hash wintertime conditions adversely affect some network nodes. These networks will be used to develop spatial estimates of a number of hydrologic parameters, focusing especially on snowpack. Each wireless sensor network has one main network controller, which is responsible with interacting with an embedded Linux computer to relay information across higher-powered, long-range wireless links (cell modems, satellite, WiFi) to neighboring networks and remote, offsite servers. The network manager is also responsible for providing an Internet connection to each mote. Data collected by the sensors can either be read directly by remote hosts, or stored on centralized servers for future access. With 20 such networks deployed in the American River, our system will comprise an unprecedented cyber-physical architecture for measuring hydrologic parameters in large-scale basins. The spatiotemporal density and real-time nature of the data is also expected to significantly improve operational hydrology and water resource

  9. Was the Little Ice Age more or less El Niño-like than the Medieval Climate Anomaly? Evidence from hydrological and temperature proxy data (United States)

    Henke, Lilo M. K.; Lambert, F. Hugo; Charman, Dan J.


    The El Niño-Southern Oscillation (ENSO) is the most important source of global climate variability on interannual timescales and has substantial environmental and socio-economic consequences. However, it is unclear how it interacts with large-scale climate states over longer (decadal to centennial) timescales. The instrumental ENSO record is too short for analysing long-term trends and variability and climate models are unable to accurately simulate past ENSO states. Proxy data are used to extend the record, but different proxy sources have produced dissimilar reconstructions of long-term ENSO-like climate change, with some evidence for a temperature-precipitation divergence in ENSO-like climate over the past millennium, in particular during the Medieval Climate Anomaly (MCA; AD ˜ 800-1300) and the Little Ice Age (LIA; AD ˜ 1400-1850). This throws into question the stability of the modern ENSO system and its links to the global climate, which has implications for future projections. Here we use a new statistical approach using weighting based on empirical orthogonal function (EOF) to create two new large-scale reconstructions of ENSO-like climate change derived independently from precipitation proxies and temperature proxies. The method is developed and validated using model-derived pseudo-proxy experiments that address the effects of proxy dating error, resolution, and noise to improve uncertainty estimations. We find no evidence that temperature and precipitation disagree over the ENSO-like state over the past millennium, but neither do they agree strongly. There is no statistically significant difference between the MCA and the LIA in either reconstruction. However, the temperature reconstruction suffers from a lack of high-quality proxy records located in ENSO-sensitive regions, which limits its ability to capture the large-scale ENSO signal. Further expansion of the palaeo-database and improvements to instrumental, satellite, and model representations of

  10. Evidences of turbulent mixing in multi-pumping flow systems. (United States)

    Fortes, Paula R; Feres, Mario A; Sasaki, Milton K; Alves, Evandro R; Zagatto, Elias A G; Prior, João A V; Santos, João L M; Lima, José L F C


    Multi-pumping flow systems exploit pulsed flows delivered by solenoid pumps. Their improved performance rely on the enhanced radial mass transport inherent to the pulsed flow, which is a consequence of the establishment of vortices thus a tendency towards turbulent mixing. This paper presents several evidences of turbulent mixing in relation to pulsed flows, such as recorded peak shape, establishment of fluidized beds, exploitation of flow reversal, implementation of relatively slow chemical reactions and/or heating of the reaction medium. In addition, Reynolds number associated with the GO period of a pulsed flow is estimated and photographic images of dispersing samples flowing under laminar regime and pulsed flow conditions are presented.

  11. Towards a hydrologically motivated soil texture classification (United States)

    Bormann, Helge


    Soil texture classification is not designed for hydrological purposes, e.g. for hydrological modelling. Hydrological model applications based on classified soil textures have revealed that different soil texture classes within the same classification system induce different uncertainties with respect to simulated water balances. As a consequence, there is a need to think about required similarity in texture classifications. In different regions of the world, different soil texture classification systems have been developed. These different classification systems divide the soil texture triangle in different numbers of differently shaped soil texture classes. These texture classifications are based on pedological background and practical reasons with respect to soil mapping and analyses. In comparison, a possible soil texture classification motivated by soil hydrology should be based on similarity in hydrological fluxes or in the soil water regime. Therefore, this presentation proposes a procedure how to evaluate the appropriateness of currently used texture classifications and how to derive a new soil texture classification based on a similar behaviour of soils with respect to hydrological processes. Long-term hydrological modelling of water balance terms using the 1-D SVAT scheme SIMULAT serve as the basis of a similarity analysis of 5050 possible realisations of the soil texture triangle (1% grid). Cluster analysis is used for analysing similar hydrological behaviour of theoretical soil columns. Spatial patterns of similar realisations (=clusters) in the soil texture triangle based on annual water balance terms are compared to those based on soil hydraulic parameters and current soil texture classes. The results show that clusters based on soil hydraulic parameterisation are relatively similar to current soil texture classification schemes while hydrological model simulations suggest differing spatial patterns of similar behaviour over the soil texture triangle

  12. Simulation of semi-arid hydrological processes at different spatial resolutions using the AgroEcoSystem-Watershed (AgES-W) model (United States)

    Green, T. R.; Erksine, R. H.; David, O.; Ascough, J. C., II; Kipka, H.; Lloyd, W. J.; McMaster, G. S.


    Water movement and storage within a watershed may be simulated at different spatial resolutions of land areas or hydrological response units (HRUs). Here, effects of HRU size on simulated soil water and surface runoff are tested using the AgroEcoSystem-Watershed (AgES-W) model with three different resolutions of HRUs. We studied a 56-ha agricultural watershed in northern Colorado, USA farmed primarily under a wheat-fallow rotation. The delineation algorithm was based upon topography (surface flow paths), land use (crop management strips and native grass), and mapped soil units (three types), which produced HRUs that follow the land use and soil boundaries. AgES-W model parameters that control surface and subsurface hydrology were calibrated using simulated daily soil moisture at different landscape positions and depths where soil moisture was measured hourly and averaged up to daily values. Parameter sets were both uniform and spatially variable with depth and across the watershed (5 different calibration approaches). Although forward simulations were computationally efficient (less than 1 minute each), each calibration required thousands of model runs. Execution of such large jobs was facilitated by using the Object Modeling System with the Cloud Services Innovation Platform to manage four virtual machines on a commercial web service configured with a total of 64 computational cores and 120 GB of memory. Results show how spatially distributed and averaged soil moisture and runoff at the outlet vary with different HRU delineations. The results will help guide HRU delineation, spatial resolution and parameter estimation methods for improved hydrological simulations in this and other semi-arid agricultural watersheds.

  13. VIC-CropSyst-v2: A regional-scale modeling platform to simulate the nexus of climate, hydrology, cropping systems, and human decisions (United States)

    Malek, Keyvan; Stöckle, Claudio; Chinnayakanahalli, Kiran; Nelson, Roger; Liu, Mingliang; Rajagopalan, Kirti; Barik, Muhammad; Adam, Jennifer C.


    Food supply is affected by a complex nexus of land, atmosphere, and human processes, including short- and long-term stressors (e.g., drought and climate change, respectively). A simulation platform that captures these complex elements can be used to inform policy and best management practices to promote sustainable agriculture. We have developed a tightly coupled framework using the macroscale variable infiltration capacity (VIC) hydrologic model and the CropSyst agricultural model. A mechanistic irrigation module was also developed for inclusion in this framework. Because VIC-CropSyst combines two widely used and mechanistic models (for crop phenology, growth, management, and macroscale hydrology), it can provide realistic and hydrologically consistent simulations of water availability, crop water requirements for irrigation, and agricultural productivity for both irrigated and dryland systems. This allows VIC-CropSyst to provide managers and decision makers with reliable information on regional water stresses and their impacts on food production. Additionally, VIC-CropSyst is being used in conjunction with socioeconomic models, river system models, and atmospheric models to simulate feedback processes between regional water availability, agricultural water management decisions, and land-atmosphere interactions. The performance of VIC-CropSyst was evaluated on both regional (over the US Pacific Northwest) and point scales. Point-scale evaluation involved using two flux tower sites located in agricultural fields in the US (Nebraska and Illinois). The agreement between recorded and simulated evapotranspiration (ET), applied irrigation water, soil moisture, leaf area index (LAI), and yield indicated that, although the model is intended to work on regional scales, it also captures field-scale processes in agricultural areas.

  14. Integrated analysis of hydrological system, use and management. Langueyu stream basin, Tandil, Argentina; Analisis integral del sistema hidrico, uso y gestion. Cuenca del arroyo Langueyu, Tandil, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz de Galarreta, V.A.; Banda Noriega, R.B.; Barranquero, R.S.; Diaz, A.A.; Rodriguez, C.I.; Miguel, R.E.


    This work is aim to hydrological and environmental characterization of Langueyu stream basin, where Tandil city is located. This basin is developed on northern hillside of Tandilia system, in Buenos Aires province, and it drains to NE. There are two different hydrogeological units: crystalline rocks and Cenozoic sediments, which correspond with two hydrolithological characters, fissured and clastic porous, respectively. The population is supplied by groundwater sources. Water exploitation and use were analyzed, according to the growing demands from industrial, agricultural and urban uses. The impacts of intense exploitation were evaluated. High levels of nitrate were corroborated in older wells of the city, which nowadays are in use. The hydrodynamic change in a section of the stream, where it converts to influent, was detected. This disturbance of the natural relation could be a potential source of contamination to the aquifer, due to high charges of industrial and urban effluents which the stream receives. Several population sectors, which have neither a drinking water net nor a sewer system, showed microbiological and chemical water contamination. Other water impact is constituted by several abandoned quarries which have historically received wastes, mainly from foundry industries. In conclusion, water management basin does not aim to sustainable development, due to its lack of integration. It demands the knowledge of hydrological system, according with the goal to avoid water quality degradation and to guarantee its protection. (Author).

  15. Evidence for consciousness-related anomalies in random physical systems (United States)

    Radin, Dean I.; Nelson, Roger D.


    Speculations about the role of consciousness in physical systems are frequently observed in the literature concerned with the interpretation of quantum mechanics. While only three experimental investigations can be found on this topic in physics journals, more than 800 relevant experiments have been reported in the literature of parapsychology. A well-defined body of empirical evidence from this domain was reviewed using meta-analytic techniques to assess methodological quality and overall effect size. Results showed effects conforming to chance expectation in control conditions and unequivocal non-chance effects in experimental conditions. This quantitative literature review agrees with the findings of two earlier reviews, suggesting the existence of some form of consciousness-related anomaly in random physical systems.

  16. Nonstationary Approaches to Hydrologic Design (United States)

    Vogel, Richard; Hecht, Jory; Read, Laura


    We introduce a generalized framework for evaluating the risk, reliability and return period of hydrologic events in a nonstationary world. A heteroscedastic regression model is introduced as an elegant and general framework for modeling trends in the mean and/or variance of hydrologic records using ordinary least squares regression methods. A regression approach to modeling trends has numerous advantages over other methods including: (1) ease of application, (2) considers linear or nonlinear trends, (3) graphical display of trends, (4) analytical estimate of the power of the trend test and prediction intervals associated with trend extrapolation. Traditional statements of risk, reliability and return periods which assume that the annual probability of a flood event remains constant throughout the project horizon are revised to include the impacts of trends in the mean and/or variance of hydrologic records. Our analyses reveal that in a nonstationary world, meaningful expressions of the likelihood of future hydrologic events are unlikely to result from knowledge of return periods whereas knowledge of system reliability over future planning horizons can effectively communicate the likelihood of future hydrologic events of interest.

  17. Combination of evidence in recommendation systems characterized by distance functions

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, L. M. (Luis Mateus)


    Recommendation systems for different Document Networks (DN) such as the World Wide Web (WWW), Digitnl Libarries, or Scientific Databases, often make use of distance functions extracted from relationships among documents and between documents and semantic tags. For instance, documents In the WWW are related via a hyperlink network, while documents in bibliographic databases are related by citation and collaboration networks.Furthermore, documents can be related to semantic tags such as keywords used to describe their content, The distance functions computed from these relations establish associative networks among items of the DN, and allow recommendation systems to identify relevant associations for iudividoal users. The process of recommendation can be improved by integrating associative data from different sources. Thus we are presented with a problem of combining evidence (about assochaons between items) from different sonrces characterized by distance functions. In this paper we summarize our work on (1) inferring associations from semi-metric distance functions and (2) combining evidence from different (distance) associative DN.

  18. Hydrology: The interdisciplinary science of water (United States)

    Vogel, Richard M.; Lall, Upmanu; Cai, Ximing; Rajagopalan, Balaji; Weiskel, Peter K.; Hooper, Richard P.; Matalas, Nicholas C.


    We live in a world where biophysical and social processes are tightly coupled. Hydrologic systems change in response to a variety of natural and human forces such as climate variability and change, water use and water infrastructure, and land cover change. In turn, changes in hydrologic systems impact socioeconomic, ecological, and climate systems at a number of scales, leading to a coevolution of these interlinked systems. The Harvard Water Program, Hydrosociology, Integrated Water Resources Management, Ecohydrology, Hydromorphology, and Sociohydrology were all introduced to provide distinct, interdisciplinary perspectives on water problems to address the contemporary dynamics of human interaction with the hydrosphere and the evolution of the Earth’s hydrologic systems. Each of them addresses scientific, social, and engineering challenges related to how humans influence water systems and vice versa. There are now numerous examples in the literature of how holistic approaches can provide a structure and vision of the future of hydrology. We review selected examples, which taken together, describe the type of theoretical and applied integrated hydrologic analyses and associated curricular content required to address the societal issue of water resources sustainability. We describe a modern interdisciplinary science of hydrology needed to develop an in-depth understanding of the dynamics of the connectedness between human and natural systems and to determine effective solutions to resolve the complex water problems that the world faces today. Nearly, every theoretical hydrologic model introduced previously is in need of revision to accommodate how climate, land, vegetation, and socioeconomic factors interact, change, and evolve over time.

  19. Hydrology: The interdisciplinary science of water (United States)

    Vogel, Richard M.; Lall, Upmanu; Cai, Ximing; Rajagopalan, Balaji; Weiskel, Peter K.; Hooper, Richard P.; Matalas, Nicholas C.


    We live in a world where biophysical and social processes are tightly coupled. Hydrologic systems change in response to a variety of natural and human forces such as climate variability and change, water use and water infrastructure, and land cover change. In turn, changes in hydrologic systems impact socioeconomic, ecological, and climate systems at a number of scales, leading to a coevolution of these interlinked systems. The Harvard Water Program, Hydrosociology, Integrated Water Resources Management, Ecohydrology, Hydromorphology, and Sociohydrology were all introduced to provide distinct, interdisciplinary perspectives on water problems to address the contemporary dynamics of human interaction with the hydrosphere and the evolution of the Earth's hydrologic systems. Each of them addresses scientific, social, and engineering challenges related to how humans influence water systems and vice versa. There are now numerous examples in the literature of how holistic approaches can provide a structure and vision of the future of hydrology. We review selected examples, which taken together, describe the type of theoretical and applied integrated hydrologic analyses and associated curricular content required to address the societal issue of water resources sustainability. We describe a modern interdisciplinary science of hydrology needed to develop an in-depth understanding of the dynamics of the connectedness between human and natural systems and to determine effective solutions to resolve the complex water problems that the world faces today. Nearly, every theoretical hydrologic model introduced previously is in need of revision to accommodate how climate, land, vegetation, and socioeconomic factors interact, change, and evolve over time.

  20. Hydrological behavior of a Vertisol under different soil management systems in a rain-fed olive orchard (United States)

    Cabezas, Jose Manuel; Gómez, Jose Alfonso; Auxiliadora Soriano, María


    Soil water availability is a major subject in Mediterranean agricultural systems, mainly due to the limited and highly variable annual rainfall, high evaporative demand, and soil hydrological characteristics. The recent expansion of olive cultivation in the rolling-plains of the Guadalquivir valley, due to the higher profitability of new intensive olive orchards, expanded the presence of olive orchards on Vertisols, soils traditionally used for annual rain-fed crops. These soils have a high content of smectitic clays, which give them a high water storage capacity, and are characterized by vertical and deep shrinkage cracks in the dry season, associated to low soil moisture. Farmers make several tillage passes in these olive groves during the summer, in order to cover the cracks and thus reduce soil water loss by evaporation, which will impact especially in rain-fed in the next olive yield. This tillage practice involves removal of plant residues from the soil surface, as well as burying seeds produced by the plants, so this will remain bared at the beginning of the rainy season, when in the Mediterranean climate is frequent occurrence of high-intensity rainfall, which are ideal conditions for soil loss by water erosion, one of the most serious problems for the sustainability of olive cultivation in Andalusia. Although there are some studies showing that water loss by evaporation from deep horizons of a vertic soil might be elevated (eg. Ritchie and Adams, 1974), the presence of plant residues on the soil surface drastically reduced soil water loss (eg Adams et al., 1969). Thus the aim of this study was to assess of soil moisture dynamics in a rain-fed olive orchard growing on a Vertisol under different soil management practices, in Andalusia (southern Spain). Four different soil management treatments were applied, which combined a cover crop (Bromus rubens L.) or bare soil throughout the year by applying herbicides, with tillage in summer to cover the cracks or non

  1. Hydrogeologic framework and hydrologic budget components of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho (United States)

    Kahle, S.C.; Morgan, D.S.; Welch, W.B.; Ely, D.M.; Hinkle, S.R.; Vaccaro, J.J.; Orzol, L.L.


    groundwater samples indicates that groundwater in the CPRAS ranges in age from modern (10,000 years). The oldest groundwater resides in deep, downgradient locations indicating that groundwater movement and replenishment in parts of this regional aquifer system have operated on long timescales under past natural conditions, which is consistent with the length and depth of long flow paths in the system. The mean annual recharge from infiltration of precipitation for the 23-year period 1985-2007 was estimated to be 4.6 inches per year (14,980 cubic feet per second) using a polynomial regression equation based on annual precipitation and the results of recharge modeling done in the 1980s. A regional-scale hydrologic budget was developed using a monthly SOil WATer (SOWAT) Balance model to estimate irrigation-water demand, groundwater flux (recharge or discharge), direct runoff, and soil moisture within irrigated areas. Mean monthly irrigation throughout the study area peaks in July at 1.6 million acre-feet (MAF), of which 0.45 and 1.15 MAF are from groundwater and surface-water sources, respectively. Annual irrigation water use in the study area averaged 5.3 MAF during the period 1985-2007, with 1.4 MAF (or 26 percent) supplied from groundwater and 3.9 MAF supplied from surface water. Mean annual recharge from irrigation return flow in the study area was 4.2 MAF (1985-2007) with 2.1 MAF (50 percent) occurring within the predominately surface-water irrigated regions of the study area. Annual groundwater-use estimates were made for public supply, self-supplied domestic, industrial, and other uses for the period 1984 through 2009. Public supply groundwater use within the study area increased from 200,600 acre-feet per year (acre-ft/yr) in 1984 to 269,100 acre-ft/yr in 2009. Domestic self-supplied groundwater use increased from 54,580 acre-ft/yr in 1984 to 71,160 acre-ft/yr in 2009. Industrial groundwater use decreased from 53,390 acre-ft/yr in 1984 t

  2. Sustaining Waters: From Hydrology to Drinking Water (United States)

    Toch, S.


    Around the world, disastrous effects of floods and droughts are painful evidence of our continuing struggle between human resource demands and the sustainability of our hydrologic systems. Too much or too little rainfall is often deemed the culprit in these water crises, focussing on water "lacks and needs" instead of exploring the mechanisms of the hydrologic functions and processes that sustain us. Applicable to regions around the world, this unified approach is about our human and environmental qualities with user friendly concepts and how-to guides backed up by real life experiences. From the poorest parts of Africa to Urban France to the wealthest state in the USA, examples from surface to groundwater to marine environments demonstrate how the links between vulerable natural areas, and the basins that they support are integral to the availability, adequacy and accessibility of our drinking water. Watershed management can be an effective means for crisis intervention and pollution control. This project is geared as a reference for groups, individuals and agencies concerned with watershed management, a supplement for interdisciplinary high school through university curriculam, for professional development in technical and field assistance, and for community awareness in the trade-offs and consequences of resource decisions that affect hydrologic systems. This community-based project demonstrates how our human resource demands can be managed within ecological constraints. An inter-disciplinary process is developed that specifically assesses risk to human health from resource use practices, and explores the similarities and interations between our human needs and those of the ecosystems in which we all must live together. Disastrous conditions worldwide have triggered reactions in crisis relief rather than crisis prevention. Through a unified management approach to the preservation of water quality, the flows of water that connect all water users can serve as a

  3. Hydrological simulation of Sperchios River basin in Central Greece using the MIKE SHE model and geographic information systems (United States)

    Paparrizos, Spyridon; Maris, Fotios


    The MIKE SHE model is able to simulate the entire stream flow which includes direct and basic flow. Many models either do not simulate or use simplistic methods to determine the basic flow. The MIKE SHE model takes into account many hydrological data. Since this study was directed towards the simulation of surface runoff and infiltration into saturated and unsaturated zone, the MIKE SHE is an appropriate model for reliable conclusions. In the current research, the MIKE SHE model was used to simulate runoff in the area of Sperchios River basin. Meteorological data from eight rainfall stations within the Sperchios River basin were used as inputs. Vegetation as well as geological data was used to perform the calibration and validation of the physical processes of the model. Additionally, ArcGIS program was used. The results indicated that the model was able to simulate the surface runoff satisfactorily, representing all the hydrological data adequately. Some minor differentiations appeared which can be eliminated with the appropriate adjustments that can be decided by the researcher's experience.

  4. PATHS groundwater hydrologic model

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.W.; Schur, J.A.


    A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.

  5. Dryland soil hydrological processes and their impacts on the nitrogen balance in a soil-maize system of a freeze-thawing agricultural area.

    Directory of Open Access Journals (Sweden)

    Wei Ouyang

    Full Text Available Understanding the fates of soil hydrological processes and nitrogen (N is essential for optimizing the water and N in a dryland crop system with the goal of obtaining a maximum yield. Few investigations have addressed the dynamics of dryland N and its association with the soil hydrological process in a freeze-thawing agricultural area. With the daily monitoring of soil water content and acquisition rates at 15, 30, 60 and 90 cm depths, the soil hydrological process with the influence of rainfall was identified. The temporal-vertical soil water storage analysis indicated the local albic soil texture provided a stable soil water condition for maize growth with the rainfall as the only water source. Soil storage water averages at 0-20, 20-40 and 40-60 cm were observed to be 490.2, 593.8, and 358 m3 ha-1, respectively, during the growing season. The evapo-transpiration (ET, rainfall, and water loss analysis demonstrated that these factors increased in same temporal pattern and provided necessary water conditions for maize growth in a short period. The dry weight and N concentration of maize organs (root, leaf, stem, tassel, and grain demonstrated the N accumulation increased to a peak in the maturity period and that grain had the most N. The maximum N accumulative rate reached about 500 mg m-2d-1 in leaves and grain. Over the entire growing season, the soil nitrate N decreased by amounts ranging from 48.9 kg N ha-1 to 65.3 kg N ha-1 over the 90 cm profile and the loss of ammonia-N ranged from 9.79 to 12.69 kg N ha-1. With soil water loss and N balance calculation, the N usage efficiency (NUE over the 0-90 cm soil profile was 43%. The soil hydrological process due to special soil texture and the temporal features of rainfall determined the maize growth in the freeze-thawing agricultural area.

  6. The JGrass-NewAge system for forecasting and managing the hydrological budgets at the basin scale: models of flow generation and propagation/routing

    Directory of Open Access Journals (Sweden)

    G. Formetta


    Full Text Available This paper presents a discussion of the predictive capacity of the implementation of the semi-distributed hydrological modeling system JGrass-NewAge. This model focuses on the hydrological budgets of medium scale to large scale basins as the product of the processes at the hillslope scale with the interplay of the river network. The part of the modeling system presented here deals with the: (i estimation of the space-time structure of precipitation, (ii estimation of runoff production; (iii aggregation and propagation of flows in channel; (v estimation of evapotranspiration; (vi automatic calibration of the discharge with the method of particle swarming.

    The system is based on a hillslope-link geometrical partition of the landscape, combining raster and vectorial treatment of hillslope data with vector based tracking of flow in channels. Measured precipitation are spatially interpolated with the use of kriging. Runoff production at each channel link is estimated through a peculiar application of the Hymod model. Routing in channels uses an integrated flow equation and produces discharges at any link end, for any link in the river network. Evapotranspiration is estimated with an implementation of the Priestley-Taylor equation. The model system assembly is calibrated using the particle swarming algorithm. A two year simulation of hourly discharge of the Little Washita (OK, USA basin is presented and discussed with the support of some classical indices of goodness of fit, and analysis of the residuals. A novelty with respect to traditional hydrological modeling is that each of the elements above, including the preprocessing and the analysis tools, is implemented as a software component, built upon Object Modelling System v3 and jgrasstools prescriptions, that can be cleanly switched in and out at run-time, rather than at compiling time. The possibility of creating different modeling products by the connection of modules with or without the

  7. Application of near-surface geophysics as part of a hydrologic study of a subsurface drip irrigation system along the Powder River floodplain near Arvada, Wyoming (United States)

    Sams, James I.; Veloski, Garret; Smith, Bruce D.; Minsley, Burke J.; Engle, Mark A.; Lipinski, Brian A.; Hammack, Richard W.; Zupancic, John W.


    Rapid development of coalbed natural gas (CBNG) production in the Powder River Basin (PRB) of Wyoming has occurred since 1997. National attention related to CBNG development has focused on produced water management, which is the single largest cost for on-shore domestic producers. Low-cost treatment technologies allow operators to reduce their disposal costs, provide treated water for beneficial use, and stimulate oil and gas production by small operators. Subsurface drip irrigation (SDI) systems are one potential treatment option that allows for increased CBNG production by providing a beneficial use for the produced water in farmland irrigation.Water management practices in the development of CBNG in Wyoming have been aided by integrated geophysical, geochemical, and hydrologic studies of both the disposal and utilization of water. The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) and the U.S. Geological Survey (USGS) have utilized multi-frequency airborne, ground, and borehole electromagnetic (EM) and ground resistivity methods to characterize the near-surface hydrogeology in areas of produced water disposal. These surveys provide near-surface EM data that can be compared with results of previous surveys to monitor changes in soils and local hydrology over time as the produced water is discharged through SDI.The focus of this investigation is the Headgate Draw SDI site, situated adjacent to the Powder River near the confluence of a major tributary, Crazy Woman Creek, in Johnson County, Wyoming. The SDI system was installed during the summer of 2008 and began operation in October of 2008. Ground, borehole, and helicopter electromagnetic (HEM) conductivity surveys were conducted at the site prior to the installation of the SDI system. After the installation of the subsurface drip irrigation system, ground EM surveys have been performed quarterly (weather permitting). The geophysical surveys map the heterogeneity of the near

  8. Hydrological response in the Danube lower basin to some internal and external forcing factors of the climate system (United States)

    Mares, Ileana; Dobrica, Venera; Demetrescu, Crisan; Mares, Constantin


    The precipitation in the Danube upper and middle basin is the main indicator for the Danube discharge at the entry in the lower basin. Along with precipitation, from the category of internal factors, in the first stage, we tried to find other predictors from the fields of temperature, pressure and geopotential. In the second phase, we considered external factors, taking into account the indices of solar/geomagnetic activity, represented by Wolf numbers, 10.7cm solar flux/aa geomagnetic index. In the Danube upper and middle basin, were considered fields of precipitation (PP), and temperatures (T) at 15 meteorological stations. The large-scale atmospheric circulation was quantified by Greenland-Balkan-Oscillation index (GBOI), North Atlantic Oscillation index and by blocking indices. The hydrological state in the Danube lower basin was represented by the discharge at the Orsova station. To estimate the discharge response in the Danube lower basin to various factors, developments in EOFs, cross correlations, power spectra, filters, composite maps were achieved. For the atmospheric variables, taken simultaneously, the most significant results (confidence level of 95%) are related to the predictors, considering the difference between standardized temperatures and precipitation (TPP), except for winter season, when the best predictors are PC1 of precipitation field and GBOI. In order to see the predictive hydrological response to the considered predictors, the correlative analyses with some lags were achieved. The significant results, were obtained for the winter/spring variables (PC1-precipitation and TPP), which can be considered good predictors for spring/summer discharge in the Danube lower basin. The hydrological response to the solar/ geomagnetic activity is given with a delay of two and three years. Due to the important signal of GBOI in the Danube basin precipitation in winter (correlation coefficient of 0.83), a stochastic modeling was performed between GBOI and

  9. 76 FR 27355 - Law Enforcement Vehicular Digital Multimedia Evidence Recording System Selection and Application... (United States)


    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Office of Justice Programs Law Enforcement Vehicular Digital Multimedia Evidence Recording System Selection... public, the ``Law Enforcement Vehicular Digital Multimedia Evidence Recording System Selection and...

  10. Hydrologic connections and dynamics of water movement in the classical Karst (Kras) Aquifer: evidence from frequent chemical and stable isotope sampling (United States)

    Doctor, Daniel H.


    A review of past research on the hydrogeology of the Classical Karst (Kras) region and new information obtained from a two- year study using environmental tracers are presented in this paper. The main problems addressed are 1) the sources of water to the Kras aquifer resurgence zone-including the famous Timavo springs-under changing flow regimes; 2) a quantification of the storage volumes of the karst massif corresponding to flow regimes defined by hydrograph recessions of the Timavo springs; and 3) changing dynamics between deep phreatic conduit flow and shallow phreatic and epiphreatic storage within the aquifer resurgence zone as determined through changes in chemical and isotopic composition at springs and wells. Particular focus was placed on addressing the long-standing question of the influence of the Soca River on the ground waters of the aquifer resurgence zone. The results indicate that the alluvial aquifer supplied by the sinking of the Soca River on the northwestern edge of the massif contributes approximately 75% of the mean annual outflow to the smaller springs of the aquifer resurgence zone, and as much as 53% to the mean annual outflow of the Timavo springs. As a whole, the Soca River is estimated to contribute 56% of the average outflow of the Kras aquifer resurgence. The proportions of Soca River water increase under drier conditions, and decrease under wetter conditions. Time series analysis of oxygen stable isotope records indicate that the transit time of Soca River water to the Timavo springs, Sardos spring, and well B-4 is on the order of 1-2 months, depending on hydrological conditions. The total baseflow storage of the Timavo springs is estimated to be 518 million m3, and represents 88.5% of the storage capacity estimated for all flow regimes of the springs. The ratio of baseflow storage volume to the average annual volume discharged at the Timavo springs is 0.54. The Reka River sinking in Slovenia supplies substantial allogenic recharge to

  11. Monitoring the hydrologic system for potential effects of geothermal and ground-water development in the Long Valley caldera, Mono County, California, U.S.A. (United States)

    Farrar, C.D.; Lyster, D. L.


    In the early 1980's, renewed interest in the geothermal potential of the Long Valley caldera, California, highlighted the need to balance the benefits of energy development with the established recreational activities of the area. The Long Valley Hydrologic Advisory Committee, formed in 1987, instituted a monitoring program to collect data during the early stages of resource utilization to evaluate potential effects on the hydrologic system. Early data show declines in streamflow, spring flow, and ground-water levels caused by 6 years of below-average precipitation. Springs in the Hot Creek State Fish Hatchery area discharge water that is a mixture of nonthermal and hydrothermal components. Possible sources of nonthermal water have been identified by comparing deuterium concentrations in streams and springs. The equivalent amount of undiluted thermal water discharged from the springs was calculated on the basis of boron and chloride concentrations. Quantifying the thermal and nonthermal fractions of the total flow may allow researchers to assess changes in flow volume or temperature of the springs caused by groundwater or geothermal development.

  12. Geographic Information System and Remote Sensing Approach with Hydrologic Rational Model for Flood Event Analysis in Jakarta (United States)

    Aditya, M. R.; Hernina, R.; Rokhmatuloh


    Rapid development in Jakarta which generates more impervious surface has reduced the amount of rainfall infiltration into soil layer and increases run-off. In some events, continuous high rainfall intensity could create sudden flood in Jakarta City. This article used rainfall data of Jakarta during 10 February 2015 to compute rainfall intensity and then interpolate it with ordinary kriging technique. Spatial distribution of rainfall intensity then overlaid with run-off coefficient based on certain land use type of the study area. Peak run-off within each cell resulted from hydrologic rational model then summed for the whole study area to generate total peak run-off. For this study area, land use types consisted of 51.9 % industrial, 37.57% parks, and 10.54% residential with estimated total peak run-off 6.04 m3/sec, 0.39 m3/sec, and 0.31 m3/sec, respectively.

  13. Model Calibration in Watershed Hydrology (United States)

    Yilmaz, Koray K.; Vrugt, Jasper A.; Gupta, Hoshin V.; Sorooshian, Soroosh


    Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must, therefore, be estimated using measurements of the system inputs and outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior of the model approximates, as closely and consistently as possible, the observed response of the hydrologic system over some historical period of time. This Chapter reviews the current state-of-the-art of model calibration in watershed hydrology with special emphasis on our own contributions in the last few decades. We discuss the historical background that has led to current perspectives, and review different approaches for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the recent developments in the calibration of distributed hydrologic models using parameter dimensionality reduction sampling, parameter regularization and parallel computing.

  14. Clear goals, solid evidence, integrated systems, realistic roles. (United States)

    Thompson, L G


    To maximize the effectiveness of home care in improving or maintaining the health of Canadians, home-care programs must have clear goals, be founded firmly on evidence of effectiveness, form part of an integrated healthcare system and be grounded in constitutional and political reality. Goals should be client-centred and distinguish between curative, supportive and preventive care. Curative and supportive home care can be cost-effective if substitution for more costly institutional services can be achieved, but the cost-effectiveness of preventive home care and comprehensive care for the elderly has not been clearly demonstrated. Integrated delivery systems are a prerequisite for effective substitution of care at home for institutional care. Federal financing dedicated to a home-care program is unnecessary and is a political and constitutional non-starter. Federal leadership for a national home-care approach would be welcome. Canada Health Act protection for access to medically necessary home care is attractive, but such protection for pharmaceuticals is a higher need. Federal support for research and demonstration of new models of care is valuable.

  15. Hydrologic Data Sites for Iron County, Utah (United States)

    U.S. Geological Survey, Department of the Interior — This map shows the USGS (United States Geologic Survey), NWIS (National Water Inventory System) Hydrologic Data Sites for Iron County, Utah. The scope and purpose of...

  16. Hydrologic landscape regions of the United States (United States)

    U.S. Geological Survey, Department of the Interior — Hydrologic landscape regions (HLRs) in the United States were delineated by using geographic information system (GIS) tools and statistical methods including...

  17. Human effects on the hydrologic system of the Verde Valley, central Arizona, 1910–2005 and 2005–2110, using a regional groundwater flow model (United States)

    Garner, Bradley D.; Pool, D.R.; Tillman, Fred D; Forbes, Brandon T.


    Water budgets were developed for the Verde Valley of central Arizona in order to evaluate the degree to which human stresses have affected the hydrologic system and might affect it in the future. The Verde Valley is a portion of central Arizona wherein concerns have been raised about water availability, particularly perennial base flow of the Verde River. The Northern Arizona Regional Groundwater Flow Model (NARGFM) was used to generate the water budgets and was run in several configurations for the 1910–2005 and 2005–2110 time periods. The resultant water budgets were subtracted from one another in order to quantify the relative changes that were attributable solely to human stresses; human stresses included groundwater withdrawals and incidental and artificial recharge but did not include, for example, human effects on the global climate. Three hypothetical and varied conditions of human stresses were developed and applied to the model for the 2005–2110 period. On the basis of this analysis, human stresses during 1910–2005 were found to have already affected the hydrologic system of the Verde Valley, and human stresses will continue to affect the hydrologic system during 2005–2110. Riparian evapotranspiration decreased and underflow into the Verde Valley increased because of human stresses, and net groundwater discharge to the Verde River in the Verde Valley decreased for the 1910–2005 model runs. The model also showed that base flow at the upstream end of the study area, as of 2005, was about 4,900 acre-feet per year less than it would have been in the absence of human stresses. At the downstream end of the Verde Valley, base flow had been reduced by about 10,000 acre-feet per year by the year 2005 because of human stresses. For the 2005–2110 period, the model showed that base flow at the downstream end of the Verde Valley may decrease by an additional 5,400 to 8,600 acre-feet per year because of past, ongoing, and hypothetical future human

  18. Hydrologic assessment of the shallow groundwater flow system beneath the Shinnecock Nation tribal lands, Suffolk County, New York (United States)

    Noll, Michael L.; Rivera, Simonette L.; Busciolano, Ronald J.


    Defining the distribution and flow of shallow groundwater beneath the Shinnecock Nation tribal lands in Suffolk County, New York, is a crucial first step in identifying sources of potential contamination to the surficial aquifer and coastal ecosystems. The surficial or water table aquifer beneath the tribal lands is the primary source of potable water supply for at least 6 percent of the households on the tribal lands. Oyster fisheries and other marine ecosystems are critical to the livelihood of many residents living on the tribal lands, but are susceptible to contamination from groundwater entering the embayment from the surficial aquifer. Contamination of the surficial aquifer from flooding during intense coastal storms, nutrient loading from fertilizers, and septic effluent have been identified as potential sources of human and ecological health concerns on tribal lands.The U.S. Geological Survey (USGS) facilitated the installation of 17 water table wells on and adjacent to the tribal lands during March 2014. These wells were combined with other existing wells to create a 32-well water table monitoring network that was used to assess local hydrologic conditions. Survey-grade, global-navigation-satellite systems provided centimeter-level accuracy for positioning wellhead surveys. Water levels were measured by the USGS during May (spring) and November (fall) 2014 to evaluate seasonal effects on the water table. Water level measurements were made at high and low tide during May 2014 to identify potential effects on the water table caused by changes in tidal stage (tidal flux) in Shinnecock Bay. Water level contour maps indicate that the surficial aquifer is recharged by precipitation and upgradient groundwater flow that moves from the recharge zone located generally beneath Sunrise Highway, to the discharge zone beneath the tribal lands, and eventually discharges into the embayment, tidal creeks, and estuaries that bound the tribal lands to the east, south, and

  19. Advanced electrophysiologic mapping systems: an evidence-based analysis. (United States)


    any of the advanced systems to fluoroscopy-guided ablation of tachycardia. English-language studies with sample sizes greater than or equal to 20 that were published between 2000 and 2005 were included. Observational studies on safety of advanced mapping systems and fluoroscopy were also included. Outcomes of interest were acute success, defined as termination of arrhythmia immediately following ablation; long-term success, defined as being arrhythmia free at follow-up; total procedure time; fluoroscopy time; radiation dose; number of radiofrequency pulses; complications; cost; and the cost-effectiveness ratio. Quality of the individual studies was assessed using established criteria. Quality of the overall evidence was determined by applying the GRADE evaluation system. (3) Qualitative synthesis of the data was performed. Quantitative analysis using Revman 4.2 was performed when appropriate. Quality of the Studies Thirty-four studies met the inclusion criteria. These comprised 18 studies on CARTO (4 randomized controlled trials [RCTs] and 14 non-RCTs), 3 RCTs on EnSite NavX, 4 studies on LocaLisa Navigational System (1 RCT and 3 non-RCTs), 2 studies on EnSite and CARTO, 1 on Polar Constellation basket catheter, and 7 studies on radiation safety. The quality of the studies ranged from moderate to low. Most of the studies had small sample sizes with selection bias, and there was no blinding of patients or care providers in any of the studies. Duration of follow-up ranged from 6 weeks to 29 months, with most having at least 6 months of follow-up. There was heterogeneity with respect to the approach to ablation, definition of success, and drug management before and after the ablation procedure. Evidence is based on a small number of small RCTS and non-RCTS with methodological flaws.Advanced nonfluoroscopy mapping/navigation systems provided real time 3-dimensional images with integration of anatomic and electrical potential information that enable better visualization of

  20. Large scale hydrological studies for the benefit of water resources management - looking up or down? (United States)

    Tallaksen, Lena M.


    Hydrological information at the macro scale has become increasingly available through the establishment of global archives of hydrological observations (e.g. the Global Runoff Data Centre) and the development of hydrological models for the purpose of water resource assessments and climate change impact studies at the global and continental scale. As such, it has contributed to improved knowledge of the present state of global water resources and variability across large spatial domains, the role of terrestrial hydrology in earth system models and the influence of climate variability and change on continental hydrology, including extremes. Recent advances include among other, improved representation of subsurface hydrology and land-surface atmosphere feedback processes. Models are further adapted to multiple sources of input data, including remote sensing products, which in turn has facilitated the development of global and continental scale flood and drought monitoring and forecasting systems (e.g. the European Flood Awareness System and the Global Integrated Drought Monitoring and Prediction System). Nevertheless, there are several challenges related to large-scale modelling due to limited data for ground truth (e.g. soil moisture, groundwater, streamflow), large differences in data availability and quality across regions, sub grid variability, downscaled and bias-corrected climate data as driving force, etc. Limitations that have questioned the usefulness of large-scale model simulations for water resource management and policy making at various scales. Still, one can argue that such models represent a useful source of information, particular for continental-scale hydrological assessments and evidence-based policy making at the EU level, as up-to-date, consistent hydrological data are not easily available across national borders. Transfer of knowledge across scales is essential to improve hydrologic predictions at different spatial scales in an ever

  1. Hydrology Domain Cyberinfrastructures: Successes, Challenges, and Opportunities (United States)

    Horsburgh, J. S.


    Anticipated changes to climate, human population, land use, and urban form will alter the hydrology and availability of water within the water systems on which the world's population relies. Understanding the effects of these changes will be paramount in sustainably managing water resources, as well as maintaining associated capacity to provide ecosystem services (e.g., regulating flooding, maintaining instream flow during dry periods, cycling nutrients, and maintaining water quality). It will require better information characterizing both natural and human mediated hydrologic systems and enhanced ability to generate, manage, store, analyze, and share growing volumes of observational data. Over the past several years, a number of hydrology domain cyberinfrastructures have emerged or are currently under development that are focused on providing integrated access to and analysis of data for cross-domain synthesis studies. These include the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) Hydrologic Information System (HIS), the Critical Zone Observatory Information System (CZOData), HyroShare, the BiG CZ software system, and others. These systems have focused on sharing, integrating, and analyzing hydrologic observations data. This presentation will describe commonalities and differences in the cyberinfrastructure approaches used by these projects and will highlight successes and lessons learned in addressing the challenges of big and complex data. It will also identify new challenges and opportunities for next generation cyberinfrastructure and a next generation of cyber-savvy scientists and engineers as developers and users.

  2. Rhinitis and asthma: evidence for respiratory system integration. (United States)

    Togias, Alkis


    The vast majority of patients with asthma have rhinitis, and rhinitis is a major independent risk factor for asthma in cross-sectional and longitudinal studies. The relationships between rhinitis and asthma can be viewed under the concept that the 2 conditions are manifestations of one syndrome, the chronic allergic respiratory syndrome, in 2 parts of the respiratory tract. At the low end of the syndrome's severity spectrum, rhinitis appears to be the sole manifestation, although pathologic abnormalities in the lower airways are already present. At the higher end, rhinitis is worse, and the lower airways disease becomes clinically evident. Once manifested, the 2 conditions track in parallel in terms of severity. This parallel relationship is influenced by many interactions between the nasal and the lower airways: some interactions stem from the fact that the nasal passages play a major homeostatic role by conditioning inhaled air, but perhaps even more important is the bidirectional interaction that results from the systemic inflammation that is produced after local allergic reactions. Successful management of the chronic allergic respiratory syndrome requires an integrated view of the airways and an understanding of their interactions.

  3. Analysis of Hydrologic Properties Data

    Energy Technology Data Exchange (ETDEWEB)

    H. H. Liu


    This Model Report describes the methods used to determine hydrologic properties based on the available field data from the unsaturated zone (UZ) at Yucca Mountain, Nevada, and documents validation of the active fracture model (AFM). This work was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Sections 1.10.2, 1.10.3, and 1.10.8). Fracture and matrix properties are developed by analyzing available survey data from the Exploratory Studies Facility (ESF), Cross Drift for Enhanced Characterization of Repository Block (ECRB), and/or boreholes; air injection testing data from surface boreholes and from boreholes in the ESF; and data from laboratory testing of core samples. The AFM is validated on the basis of experimental observations and theoretical developments. This report is a revision of an Analysis Model Report, under the same title, as a scientific analysis with Document Identifier number ANL-NBS-HS-000002 (BSC 2001 [159725]) that did not document activities to validate the AFM. The principal purpose of this work is to provide representative uncalibrated estimates of fracture and matrix properties for use in the model report ''Calibrated Properties Model'' (BSC 2003 [160240]). The present work also provides fracture geometry properties for generating dual permeability grids as documented in the Scientific Analysis Report, ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2003 [160109]). The resulting calibrated property sets and numerical grids from these reports will be used in the Unsaturated Zone Flow and Transport Process Model (UZ Model), and Total System Performance Assessment (TSPA) models. The fracture and matrix properties developed in this Model Report include: (1) Fracture properties (frequency, permeability, van Genuchten a and m parameters, aperture, porosity, and interface area) for each UZ Model layer; (2

  4. Hydrogeochemistry and isotope hydrology of surface water and groundwater systems in the Ellembelle district, Ghana, West Africa (United States)

    Edjah, A. K. M.; Akiti, T. T.; Osae, S.; Adotey, D.; Glover, E. T.


    An integrated approach based on the hydrogeochemistry and the isotope hydrology of surface water and groundwater was carried out in the Ellembelle district of the Western Region of Ghana. Measurement of physical parameters (pH, temperature, salinity, total dissolved solutes, total hardness and conductivity), major ions (Ca2+, Mg2+, Na+, K+, HCO3 -, Cl-, SO4 2- and NO3 -), and stable isotopes (δ2H and δ18O) in 7 rivers, 13 hand-dug wells and 18 boreholes were taken. Na+ was the dominant cation and HCO3 - was the dominant anion for both rivers and groundwater. The dominant hydrochemical facies for the rivers were Na-K-HCO3 - type while that of the groundwater (hand-dug wells and boreholes) were Na-Cl and Na-HCO3 - type. According to the Gibbs diagram, majority of the rivers fall in the evaporation-crystallization field and majority of the hand-dug wells and the boreholes fall in the rock dominance field. From the stable isotope composition measurements, all the rivers appeared to be evaporated, 60 % of the hand-dug wells and 70 % of the boreholes clustered along and in between the global meteoric water line and the local meteoric water line, suggesting an integrative and rapid recharge from meteoric origin.

  5. Connecticut River Hydrologic Observatory (United States)

    Ballestero, T. P.


    The Connecticut River basin possesses some characteristics that make it unique for studying hydrologic issues that transcend scale. The watershed was first dramatically altered through natural processes (glaciation) and then heavily impacted by human stresses (dams, deforestation, acid precipitation/deposition), only to exhibit recent decades of return to a more natural state (reforestation, land conservation, stream restoration, pollution abatement, and dam removal). The watershed is sufficiently north to be classified as a cold region. More specifically to hydrology, the watershed exhibits the spectrum of flooding problems: ice dams, convective storms, hurricanes, rain on melting snow, and low pressure systems. The 28,000 square kilometer Connecticut River Watershed covers one third of the states of New Hampshire, Vermont, Massachusetts, and Connecticut. The >640-km long rivers' headwaters start on the Canadian border at the Fourth Connecticut Lake, and flows southward to discharge in Long Island sound. The lower 100 km of river are tidally influenced. The Connecticut River is responsible for 70 % of the freshwater inflow to Long Island Sound. The Connecticut River is a sixth order stream that exhibits a dendritic pattern in an elongated scheme. This setting therefore affords many first and second order streams in almost parallel fashion, flowing west or east towards the central Connecticut River spine. There are 38 major tributaries to the mainstem Connecticut River, and 26 of these tributaries drain greater than 250 square kilometers. There is in excess of 30,000 km of perennially flowing stream length in the watershed. For more information, see:

  6. Fundamentals of watershed hydrology (United States)

    Pamela J. Edwards; Karl W.J. Williard; Jon E. Schoonover


    This is a primer about hydrology, the science of water. Watersheds are the basic land unit for water resource management and their delineation, importance, and variation are explained and illustrated. The hydrologic cycle and its components (precipitation, evaporation, transpiration, soil water, groundwater, and streamflow) which collectively provide a foundation for...

  7. Hands-On Hydrology (United States)

    Mathews, Catherine E.; Monroe, Louise Nelson


    A professional school and university collaboration enables elementary students and their teachers to explore hydrology concepts and realize the beneficial functions of wetlands. Hands-on experiences involve young students in determining water quality at field sites after laying the groundwork with activities related to the hydrologic cycle,…

  8. Hydrologic Services Course. (United States)

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD. National Weather Service.

    A course to develop an understanding of the scope of water resource activities, of the need for forecasting, of the National Weather Service's role in hydrology, and of the proper procedures to follow in fulfilling this role is presented. The course is one of self-help, guided by correspondence. Nine lessons are included: (1) Hydrology in the…

  9. Arid Zone Hydrology (United States)

    Arid zone hydrology encompasses a wide range of topics and hydro-meteorological and ecological characteristics. Although arid and semi-arid watersheds perform the same functions as those in humid environments, their hydrology and sediment transport characteristics cannot be readily predicted by inf...

  10. An eco-hydrological project on Turkey Creek watershed, South Carolina, U.S.A. (United States)

    Devendra Amatya; Carl Trettin


    The low-gradient, forested wetland landscape of the southeastern United States’ Coastal Plain represents an important eco-hydrologic system, yet there is a very little information available on the region’s ecological, hydrological and biogeochemical processes. Long-term hydrologic monitoring can provide the information needed to understand basic hydrologic processes...

  11. Health Information Systems From evidence to action | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)


    Mar 28, 2013 ... GEHS supports efforts that reach beyond healthcare institutions to capture evidence at the community and household level. In doing so, researchers work alongside health sector workers and decision-makers to strengthen state capacity to produce and apply scientifically grounded evidence. They empower ...

  12. Network analysis applications in hydrology (United States)

    Price, Katie


    Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain under­explored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five long­term USGS streamflow and water quality gages, allowing network application of long­term flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long­ term and event­based hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwater­surface water interactions.

  13. Impacts of urbanization on hydrology in the Yangtze River Delta, China. (United States)

    Youpeng, Xu; Jintao, Xu; Jinjia, Ding; Ying, Chen; Yixing, Yin; Xingqi, Zhang


    The Yangtze River Delta is one of the most developed regions in China and the rapid development of urbanization have greatly influenced regional hydrology and water resources. Taking several typical urbanizing areas in the Yangtze River Delta as examples, this paper probes into the impacts of urbanization on hydrologic cycle and hydrological process with the support of RS, GIS and hydrological model. The research centers on the impacts of urbanization on precipitation, hydrological process, river networks, and water environment in some typical cities. The results show that: (1) Urban rain island effect is not evident when the process of urbanization is slow, while the differences of annual precipitation and flood season precipitation between urban and suburban areas increased to a certain extent in the booming stage of urbanization. (2) The annual runoff depth and the runoff coefficient increased with the development of urbanization, and the effect will be more notable when the urban areas expand to a certain size; (3) River network systems, especially low-grade rivers have been greatly destroyed in the process of urbanization, which increases the risk of flood and water degradation, so it is very important to protect natural river systems. Based on the results, some proposals of sustainable utilization and protection of water resources is also addressed.

  14. Hydrological response to land cover changes and human activities in arid regions using a geographic information system and remote sensing. (United States)

    Mahmoud, Shereif H; Alazba, A A


    The hydrological response to land cover changes induced by human activities in arid regions has attracted increased research interest in recent decades. The study reported herein assessed the spatial and quantitative changes in surface runoff resulting from land cover change in the Al-Baha region of Saudi Arabia between 1990 and 2000 using an ArcGIS-surface runoff model and predicted land cover and surface runoff depth in 2030 using Markov chain analysis. Land cover maps for 1990 and 2000 were derived from satellite images using ArcGIS 10.1. The findings reveal a 26% decrease in forest and shrubland area, 28% increase in irrigated cropland, 1.5% increase in sparsely vegetated land and 0.5% increase in bare soil between 1990 and 2000. Overall, land cover changes resulted in a significant decrease in runoff depth values in most of the region. The decrease in surface runoff depth ranged from 25-106 mm/year in a 7020-km2 area, whereas the increase in such depth reached only 10 mm/year in a 243-km2 area. A maximum increase of 73 mm/year was seen in a limited area. The surface runoff depth decreased to the greatest extent in the central region of the study area due to the huge transition in land cover classes associated with the construction of 25 rainwater harvesting dams. The land cover prediction revealed a greater than twofold increase in irrigated cropland during the 2000-2030 period, whereas forest and shrubland are anticipated to occupy just 225 km2 of land area by 2030, a significant decrease from the 747 km2 they occupied in 2000. Overall, changes in land cover are predicted to result in an annual increase in irrigated cropland and dramatic decline in forest area in the study area over the next few decades. The increase in surface runoff depth is likely to have significant implications for irrigation activities.

  15. Hydrological response to land cover changes and human activities in arid regions using a geographic information system and remote sensing.

    Directory of Open Access Journals (Sweden)

    Shereif H Mahmoud

    Full Text Available The hydrological response to land cover changes induced by human activities in arid regions has attracted increased research interest in recent decades. The study reported herein assessed the spatial and quantitative changes in surface runoff resulting from land cover change in the Al-Baha region of Saudi Arabia between 1990 and 2000 using an ArcGIS-surface runoff model and predicted land cover and surface runoff depth in 2030 using Markov chain analysis. Land cover maps for 1990 and 2000 were derived from satellite images using ArcGIS 10.1. The findings reveal a 26% decrease in forest and shrubland area, 28% increase in irrigated cropland, 1.5% increase in sparsely vegetated land and 0.5% increase in bare soil between 1990 and 2000. Overall, land cover changes resulted in a significant decrease in runoff depth values in most of the region. The decrease in surface runoff depth ranged from 25-106 mm/year in a 7020-km2 area, whereas the increase in such depth reached only 10 mm/year in a 243-km2 area. A maximum increase of 73 mm/year was seen in a limited area. The surface runoff depth decreased to the greatest extent in the central region of the study area due to the huge transition in land cover classes associated with the construction of 25 rainwater harvesting dams. The land cover prediction revealed a greater than twofold increase in irrigated cropland during the 2000-2030 period, whereas forest and shrubland are anticipated to occupy just 225 km2 of land area by 2030, a significant decrease from the 747 km2 they occupied in 2000. Overall, changes in land cover are predicted to result in an annual increase in irrigated cropland and dramatic decline in forest area in the study area over the next few decades. The increase in surface runoff depth is likely to have significant implications for irrigation activities.

  16. Petrophysical, Geochemical, and Hydrological Evidence for Extensive Fracture-Mediated Fluid and Heat Transport in the Alpine Fault's Hanging-Wall Damage Zone (United States)

    Townend, John; Sutherland, Rupert; Toy, Virginia G.; Doan, Mai-Linh; Célérier, Bernard; Massiot, Cécile; Coussens, Jamie; Jeppson, Tamara; Janku-Capova, Lucie; Remaud, Léa.; Upton, Phaedra; Schmitt, Douglas R.; Pezard, Philippe; Williams, Jack; Allen, Michael John; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin M.; Boulton, Carolyn; Broderick, Neil; Carpenter, Brett; Chamberlain, Calum J.; Cooper, Alan; Coutts, Ashley; Cox, Simon C.; Craw, Lisa; Eccles, Jennifer D.; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Henry, Gilles; Howarth, Jamie; Jacobs, Katrina; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Tim; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luis; Mori, Hiroshi; Niemeijer, André; Nishikawa, Osamu; Nitsch, Olivier; Paris, Jehanne; Prior, David J.; Sauer, Katrina; Savage, Martha K.; Schleicher, Anja; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Zimmer, Martin


    Fault rock assemblages reflect interaction between deformation, stress, temperature, fluid, and chemical regimes on distinct spatial and temporal scales at various positions in the crust. Here we interpret measurements made in the hanging-wall of the Alpine Fault during the second stage of the Deep Fault Drilling Project (DFDP-2). We present observational evidence for extensive fracturing and high hanging-wall hydraulic conductivity (˜10-9 to 10-7 m/s, corresponding to permeability of ˜10-16 to 10-14 m2) extending several hundred meters from the fault's principal slip zone. Mud losses, gas chemistry anomalies, and petrophysical data indicate that a subset of fractures intersected by the borehole are capable of transmitting fluid volumes of several cubic meters on time scales of hours. DFDP-2 observations and other data suggest that this hydrogeologically active portion of the fault zone in the hanging-wall is several kilometers wide in the uppermost crust. This finding is consistent with numerical models of earthquake rupture and off-fault damage. We conclude that the mechanically and hydrogeologically active part of the Alpine Fault is a more dynamic and extensive feature than commonly described in models based on exhumed faults. We propose that the hydrogeologically active damage zone of the Alpine Fault and other large active faults in areas of high topographic relief can be subdivided into an inner zone in which damage is controlled principally by earthquake rupture processes and an outer zone in which damage reflects coseismic shaking, strain accumulation and release on interseismic timescales, and inherited fracturing related to exhumation.

  17. Quantitative historical hydrology in Europe (United States)

    Benito, G.; Brázdil, R.; Herget, J.; Machado, M. J.


    In recent decades, the quantification of flood hydrological characteristics (peak discharge, hydrograph shape, and runoff volume) from documentary evidence has gained scientific recognition as a method to lengthen flood records of rare and extreme events. This paper describes the methodological evolution of quantitative historical hydrology under the influence of developments in hydraulics and statistics. In the 19th century, discharge calculations based on flood marks were the only source of hydrological data for engineering design, but were later left aside in favour of systematic gauge records and conventional hydrological procedures. In the last two decades, there has been growing scientific and public interest in understanding long-term patterns of rare floods, in maintaining the flood heritage and memory of extremes, and developing methods for deterministic and statistical application to different scientific and engineering problems. A compilation of 46 case studies across Europe with reconstructed discharges demonstrates that (1) in most cases present flood magnitudes are not unusual within the context of the last millennium, although recent floods may exceed past floods in some temperate European rivers (e.g. the Vltava and Po rivers); (2) the frequency of extreme floods has decreased since the 1950s, although some rivers (e.g. the Gardon and Ouse rivers) show a reactivation of rare events over the last two decades. There is a great potential for gaining understanding of individual extreme events based on a combined multiproxy approach (palaeoflood and documentary records) providing high-resolution time flood series and their environmental and climatic changes; and for developing non-systematic and non-stationary statistical models based on relations of past floods with external and internal covariates under natural low-frequency climate variability.

  18. Socio-hydrological flood models (United States)

    Barendrecht, Marlies; Viglione, Alberto; Blöschl, Günter


    Long-term feedbacks between humans and floods may lead to complex phenomena such as coping strategies, levee effects, call effects, adaptation effects, and poverty traps. Such phenomena cannot be represented by traditional flood risk approaches that are based on scenarios. Instead, dynamic models of the coupled human-flood interactions are needed. These types of models should include both social and hydrological variables as well as other relevant variables, such as economic, environmental, political or technical, in order to adequately represent the feedbacks and processes that are of importance in human-flood systems. These socio-hydrological models may play an important role in integrated flood risk management by exploring a wider range of possible futures, including unexpected phenomena, than is possible by creating and studying scenarios. New insights might come to light about the long term effects of certain measures on society and the natural system. Here we discuss a dynamic framework for flood risk and review the models that are presented in literature. We propose a way forward for socio-hydrological modelling of the human-flood system.

  19. Genetic Programming for Automatic Hydrological Modelling (United States)

    Chadalawada, Jayashree; Babovic, Vladan


    One of the recent challenges for the hydrologic research community is the need for the development of coupled systems that involves the integration of hydrologic, atmospheric and socio-economic relationships. This poses a requirement for novel modelling frameworks that can accurately represent complex systems, given, the limited understanding of underlying processes, increasing volume of data and high levels of uncertainity. Each of the existing hydrological models vary in terms of conceptualization and process representation and is the best suited to capture the environmental dynamics of a particular hydrological system. Data driven approaches can be used in the integration of alternative process hypotheses in order to achieve a unified theory at catchment scale. The key steps in the implementation of integrated modelling framework that is influenced by prior understanding and data, include, choice of the technique for the induction of knowledge from data, identification of alternative structural hypotheses, definition of rules, constraints for meaningful, intelligent combination of model component hypotheses and definition of evaluation metrics. This study aims at defining a Genetic Programming based modelling framework that test different conceptual model constructs based on wide range of objective functions and evolves accurate and parsimonious models that capture dominant hydrological processes at catchment scale. In this paper, GP initializes the evolutionary process using the modelling decisions inspired from the Superflex framework [Fenicia et al., 2011] and automatically combines them into model structures that are scrutinized against observed data using statistical, hydrological and flow duration curve based performance metrics. The collaboration between data driven and physical, conceptual modelling paradigms improves the ability to model and manage hydrologic systems. Fenicia, F., D. Kavetski, and H. H. Savenije (2011), Elements of a flexible approach

  20. Gradation of complexity and predictability of hydrological processes (United States)

    Sang, Yan-Fang; Singh, Vijay P.; Wen, Jun; Liu, Changming


    Quantification of the complexity and predictability of hydrological systems is important for evaluating the impact of climate change on hydrological processes, and for guiding water activities. In the literature, the focus seems to have been on describing the complexity of spatiotemporal distribution of hydrological variables, but little attention has been paid to the study of complexity gradation, because the degree of absolute complexity of hydrological systems cannot be objectively evaluated. Here we show that complexity and predictability of hydrological processes can be graded into three ranks (low, middle, and high). The gradation is based on the difference in the energy distribution of hydrological series and that of white noise under multitemporal scales. It reflects different energy concentration levels and contents of deterministic components of the hydrological series in the three ranks. Higher energy concentration level reflects lower complexity and higher predictability, but scattered energy distribution being similar to white noise has the highest complexity and is almost unpredictable. We conclude that the three ranks (low, middle, and high) approximately correspond to deterministic, stochastic, and random hydrological systems, respectively. The result of complexity gradation can guide hydrological observations and modeling, and identification of similarity patterns among different hydrological systems.

  1. Understanding and seasonal forecasting of hydrological drought in the Anthropocene (United States)

    Yuan, Xing; Zhang, Miao; Wang, Linying; Zhou, Tian


    Hydrological drought is not only caused by natural hydroclimate variability but can also be directly altered by human interventions including reservoir operation, irrigation, groundwater exploitation, etc. Understanding and forecasting of hydrological drought in the Anthropocene are grand challenges due to complicated interactions among climate, hydrology and humans. In this paper, five decades (1961-2010) of naturalized and observed streamflow datasets are used to investigate hydrological drought characteristics in a heavily managed river basin, the Yellow River basin in north China. Human interventions decrease the correlation between hydrological and meteorological droughts, and make the hydrological drought respond to longer timescales of meteorological drought. Due to large water consumptions in the middle and lower reaches, there are 118-262 % increases in the hydrological drought frequency, up to 8-fold increases in the drought severity, 21-99 % increases in the drought duration and the drought onset is earlier. The non-stationarity due to anthropogenic climate change and human water use basically decreases the correlation between meteorological and hydrological droughts and reduces the effect of human interventions on hydrological drought frequency while increasing the effect on drought duration and severity. A set of 29-year (1982-2010) hindcasts from an established seasonal hydrological forecasting system are used to assess the forecast skill of hydrological drought. In the naturalized condition, the climate-model-based approach outperforms the climatology method in predicting the 2001 severe hydrological drought event. Based on the 29-year hindcasts, the former method has a Brier skill score of 11-26 % against the latter for the probabilistic hydrological drought forecasting. In the Anthropocene, the skill for both approaches increases due to the dominant influence of human interventions that have been implicitly incorporated by the hydrological post

  2. Hydrological Modeling of Storm Water Drainage System due to Frequent and Intense Precipitation of Dhaka city using Storm Water Management Model (SWMM) (United States)

    Hossain, S., Jr.


    Rainfall induced flooding during rainy season is a regular phenomenon in Dhaka City. Almost every year a significant part of the city suffers badly with drainage congestion. There are some highly dense areas with lower ground elevation which submerge under water even with an intense precipitation of few hours. The higher areas also suffer with the drainage problem due to inadequate maintenance of the system and encroachment or illegal filling up of the drainage canals and lakes. Most part of the city suffered from long term urban flooding during historical extreme rainfall events in September 2004, 2007 and July 2009. The situation is likely to worsen in the future due to Climate Change, which may lead to more frequent and intense precipitation. To assess the major and minor drainage systems and elements of the urban basins using the hydrodynamic modelling and, through this, identifying the flooding events and areas, taking into account the current situation and future flood or drainage scenarios. Stormwater modeling has a major role in preventing issues such as flash floods and urban water-quality problems. Stormwater models of a lowered spatial resolution would thus appear valuable if only their ability to provide realistic results could be proved. The present scenario of urban morphology of Dhaka city and existing drainage system is complex for hydrological and hydrodynamic modeling. Furthermore limitations of background data and uncertain future urban scenarios may confine the potential outputs of a model. Although several studies were carried out including modeling for drainage master planning, a detail model for whole DAP (Detaile Area Plan) of Dhaka city area is not available. The model developed under this study is covering the existing drainage system in the study area as well as natural flows in the fringe area. A good number of models are available for hydrological and hydraulic analysis of urban areas. These are MIKE 11, MOUSE, HEC-RAS, HEC HMS and EPA

  3. The earth's hydrological cycle

    CERN Document Server

    Bonnet, R-M; Calisto, M; Destouni, G; Gurney, R; Johannessen, J; Kerr, Y; Lahoz, WA; Rast, M


    This book gives a comprehensive presentation of our present understanding of the Earth's Hydrological cycle and the problems, consequences and impacts that go with this topic. Water is a central component in the Earth's system. It is indispensable for life on Earth in its present form and influences virtually every aspect of our planet's life support system. On relatively short time scales, atmospheric water vapor interacts with the atmospheric circulation and is crucial in forming the Earth's climate zones. Water vapor is the most powerful of the greenhouse gases and serves to enhance the tropospheric temperature. The dominant part of available water on Earth resides in the oceans. Parts are locked up in the land ice on Greenland and Antarctica and a smaller part is estimated to exist as groundwater. If all the ice over the land and all the glaciers were to melt, the sea level would rise by some 80 m. In comparison, the total amount of water vapor in the atmosphere is small; it amounts to ~ 25 kg/m2, or the ...

  4. Evidence for activity of the Calabrian arc system and implications for historical seismicity in Eastern Sicily (United States)

    Gallais, F.; Gutscher, M.-A.; Graindorge, D.; Polonia, A.


    Calabrian prism, the Ionian Abyssal Plain and the Mediterranean Ridge. A more recent Italian seismic cruise "Calamare" investigated the lateral boundaries of the Calabrian prism. The joint interpretation of these datasets will allow us to seek evidence of continuous tectonic activity of the system, in particular of the Malta-Hyblean escarpment which is also proposed as a candidate source for great earthquakes offshore Sicily (Bianca et al., 99). Additional work is in progress, including a CIRCEE cruise proposal (an OBS + MCS seismic survey, with sediment coring and heat-flow measurements). The objectives are : 1/ to image the deep structure of this subduction zone, 2/ to characterize its thermal state, 3) to determine a geometry of the seismogenic part of the plate interface and 4) to address the recurrence interval for large earthquakes.

  5. Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene-Eocene Thermal Maximum (United States)

    Carmichael, Matthew J.; Inglis, Gordon N.; Badger, Marcus P. S.; Naafs, B. David A.; Behrooz, Leila; Remmelzwaal, Serginio; Monteiro, Fanny M.; Rohrssen, Megan; Farnsworth, Alexander; Buss, Heather L.; Dickson, Alexander J.; Valdes, Paul J.; Lunt, Daniel J.; Pancost, Richard D.


    The Paleocene-Eocene Thermal Maximum (PETM) hyperthermal, 56 million years ago (Ma), is the most dramatic example of abrupt Cenozoic global warming. During the PETM surface temperatures increased between 5 and 9 °C and the onset likely took < 20 kyr. The PETM provides a case study of the impacts of rapid global warming on the Earth system, including both hydrological and associated biogeochemical feedbacks, and proxy data from the PETM can provide constraints on changes in warm climate hydrology simulated by general circulation models (GCMs). In this paper, we provide a critical review of biological and geochemical signatures interpreted as direct or indirect indicators of hydrological change at the PETM, explore the importance of adopting multi-proxy approaches, and present a preliminary model-data comparison. Hydrological records complement those of temperature and indicate that the climatic response at the PETM was complex, with significant regional and temporal variability. This is further illustrated by the biogeochemical consequences of inferred changes in hydrology and, in fact, changes in precipitation and the biogeochemical consequences are often conflated in geochemical signatures. There is also strong evidence in many regions for changes in the episodic and/or intra-annual distribution of precipitation that has not widely been considered when comparing proxy data to GCM output. Crucially, GCM simulations indicate that the response of the hydrological cycle to the PETM was heterogeneous - some regions are associated with increased precipitation - evaporation (P - E), whilst others are characterised by a decrease. Interestingly, the majority of proxy data come from the regions where GCMs predict an increase in PETM precipitation. We propose that comparison of hydrological proxies to GCM output can be an important test of model skill, but this will be enhanced by further data from regions of model-simulated aridity and simulation of extreme precipitation

  6. Allegheny County Hydrology Lines (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Hydrology Feature Dataset contains photogrammetrically compiled water drainage features and structures including rivers, streams, drainage canals, locks, dams,...

  7. Global Hydrology Research Center (United States)

    National Aeronautics and Space Administration — The GHRC is the data management and user services arm of the Global Hydrology and Climate Center. It encompasses the data and information management, supporting...

  8. Hydrologic Engineering Center (United States)

    Federal Laboratory Consortium — The Hydrologic Engineering Center (HEC), an organization within the Institute for Water Resources, is the designated Center of Expertise for the U.S. Army Corps of...

  9. Hydrological or economical obligation?

    Directory of Open Access Journals (Sweden)

    Fiorucci E


    Full Text Available A short comment is made about the obligation of the forest management plan in Italy, that was established as an economical (not hydrological obligation according to the Luzzatti law of 1910.

  10. PNW Hydrologic Landscape Class (United States)

    U.S. Environmental Protection Agency — Work has been done to expand the hydrologic landscapes (HLs) concept and to develop an approach for using it to address streamflow vulnerability from climate change....

  11. Hydrologic Areas of Concern (United States)

    University of New Hampshire — A Hydrologic Area of Concern (HAC) is a land area surrounding a water source, which is intended to include the portion of the watershed in which land uses are likely...

  12. Allegheny County Hydrology Areas (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Hydrology Feature Dataset contains photogrammetrically compiled water drainage features and structures including rivers, streams, drainage canals, locks, dams,...

  13. Strengthening health systems through linking research evidence to ...

    African Journals Online (AJOL)

    Methods: Via broad criteria the authors made the review as inclusive as possible and online search engines and databases including EMBASE, Google Scholar, Medline, SCIRUS and PUBMED were searched over a period of three months. Key words used to generate articles that fit the review topic included Evidence ...

  14. Evidence-based treatment of systemic lupus erythematosus and its ...

    African Journals Online (AJOL)

    In particular, the importance of antimalarial therapy for addressing and preventing a host of complications in SLE has emerged. Furthermore .... [12] Despite the lack of evidence for primary prevention of thombosis and pregnancy .... for miscarriage, stillbirth, preeclampsia and premature delivery. Fetal congenital heart block ...

  15. Towards Reproducibility in Computational Hydrology (United States)

    Hutton, Christopher; Wagener, Thorsten; Freer, Jim; Han, Dawei; Duffy, Chris; Arheimer, Berit


    Reproducibility is a foundational principle in scientific research. The ability to independently re-run an experiment helps to verify the legitimacy of individual findings, and evolve (or reject) hypotheses and models of how environmental systems function, and move them from specific circumstances to more general theory. Yet in computational hydrology (and in environmental science more widely) the code and data that produces published results are not regularly made available, and even if they are made available, there remains a multitude of generally unreported choices that an individual scientist may have made that impact the study result. This situation strongly inhibits the ability of our community to reproduce and verify previous findings, as all the information and boundary conditions required to set up a computational experiment simply cannot be reported in an article's text alone. In Hutton et al 2016 [1], we argue that a cultural change is required in the computational hydrological community, in order to advance and make more robust the process of knowledge creation and hypothesis testing. We need to adopt common standards and infrastructures to: (1) make code readable and re-useable; (2) create well-documented workflows that combine re-useable code together with data to enable published scientific findings to be reproduced; (3) make code and workflows available, easy to find, and easy to interpret, using code and code metadata repositories. To create change we argue for improved graduate training in these areas. In this talk we reflect on our progress in achieving reproducible, open science in computational hydrology, which are relevant to the broader computational geoscience community. In particular, we draw on our experience in the Switch-On (EU funded) virtual water science laboratory (, which is an open platform for collaboration in hydrological experiments (e.g. [2]). While we use computational hydrology as

  16. Weather radar rainfall data in urban hydrology (United States)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick; Ellerbæk Nielsen, Jesper; ten Veldhuis, Marie-Claire; Arnbjerg-Nielsen, Karsten; Rasmussen, Michael R.; Molnar, Peter


    Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology necessitate an updated review of the state of the art in such radar rainfall data and applications. Three key areas with significant advances over the past decade have been identified: (1) temporal and spatial resolution of rainfall data required for different types of hydrological applications, (2) rainfall estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Based on these three fields of research, the paper provides recommendations based on an updated overview of shortcomings, gains, and novel developments in relation to urban hydrological applications. The paper also reviews how the focus in urban hydrology research has shifted over the last decade to fields such as climate change impacts, resilience of urban areas to hydrological extremes, and online prediction/warning systems. It is discussed how radar rainfall data can add value to the aforementioned emerging fields in current and future applications, but also to the analysis of integrated water systems.

  17. Using biodiversity of diatoms to identify hydrological connectivity in the hillslope-riparian zone-stream system (United States)

    Wetzel, C. E.; Martínez-Carreras, N.; Ector, L.; Hlubikova, D.; Frentress, J.; McDonnell, J. J.; Hoffmann, L.; Pfister, L.


    In recent years, there have been increasingly calls for new eco-hydrological approaches to answer questions on water source and connectivity in the landscape. Diatoms are one of the most common and diverse algal groups, and offer the potential for the identification of reproducible flow patterns and a link to underlying watershed behaviour. Our preliminary investigations on the potential for terrestrial diatoms to detect the onset/cessation of surface runoff suggested that diatoms can contribute to confirm or reject the existence of a surface runoff component in total runoff, thereby helping to constrain assumptions made on a potential surface runoff component in a conventional tracer based hydrograph separation. Our investigations currently focus on the Attert River basin (Luxembourg, Europe) and the HJ Andrews experimental forest (Oregon, USA). Here we show results from the schistose Weierbach experimental catchment (0.45 km2), located in the Attert River basin. Ordination analysis revealed a clear distinction between communities belonging to the river bed substrate and the riparian zone. Drift samples corresponding to stream water show a mixed composition of diatoms stemming from the river bed substrate and the riparian zone. Ongoing investigations focus on the composition of hillslope communities. In winter, long-lasting low intensity rainfall events generate a two-tailed hydrograph response of the Weierbach, consisting in an immediate reaction to precipitation, followed by a delayed and much more significant rise of the hydrograph. For these events, mixing diagrams (SiO2 & Absorbance) suggest a substantial contribution of the soil water component to total runoff, with groundwater and especially overland flow remaining insignificant. Terrestrial diatom abundance appeared to be very sensitive to incident precipitation (rising to +/- 15% of the total diatom population), suggesting a rapid connectivity between the soil surface and the stream. In summer, short and

  18. Signals of typhoon induced hydrologic alteration in particulate organic matter from largest tropical river system of Hainan Island, South China Sea (United States)

    Pradhan, U. K.; Wu, Ying; Wang, Xiaona; Zhang, Jing; Zhang, Guosen


    Tropical river systems affected by climatic extremes (typhoon) are recognized as significant source of particulate organic matter (POM) delivered to their adjacent seas. Studies on POM composition in typhoon affected rivers of tropical Hainan Island are limited. The Nandu River-Estuary (NRE) is the largest river system on Hainan Island in the South China Sea, affected by frequent typhoons every year. We used elemental contents, stable isotope ratios of organic carbon and lignin phenols to characterize POM compositions in NRE during typhoon affected wet season (August, 2011) vs. normal wet season (October, 2012). Short term and heavy precipitation during typhoon in August, 2011 was evidenced with a significant hydrologic change as well as change in POM composition along the NRE. The multi-proxy results suggest that POM was degraded and their sources significantly changed along the NRE hydrograph. Results from an end member mixing model indicated that POM constituted nearly similar OM input from soil (35%) and freshwater plankton (32%) during August, 2011, in contrast POM dominated with OM from freshwater plankton (51%) during October 2012 in riverine regions of NRE. In the estuarine region, POM constituted dominant inputs from marine plankton during August, 2011 (44%) and October, 2012 (56%) as compared to other sources. Collectively, the nature of POM composition change in the vicinity of typhoon induced copious precipitation, with potential land-use intervention across the Hainan Island are key factors affecting the carbon cycling in NRE and adjacent South China Sea.

  19. Rangeland Hydrology and Erosion Model (United States)

    Nearing, Mark; Pierson, Fred; Hernandez, Mariano; Al-Hamdan, Osama; Weltz, Mark; Spaeth, Ken; Wei, Haiyan; Stone, Jeff


    Soil loss rates on rangelands are considered one of the few quantitative indicators for assessing rangeland health and conservation practice effectiveness. An erosion model to predict soil loss specific for rangeland applications has been needed for many years. Most erosion models were developed from croplands where the hydrologic and erosion processes are different, largely due to much higher levels of heterogeneity in soil and plant properties at the plot scale and the consolidated nature of the soils. The Rangeland Hydrology and Erosion Model (RHEM) was designed to fill that need. RHEM is an event-based model that estimates runoff, erosion, and sediment delivery rates and volumes at the spatial scale of the hillslope and the temporal scale of a single rainfall event. It represents erosion processes under normal and fire-impacted rangeland conditions, it adopts a new splash erosion and thin sheet-flow transport equation developed from rangeland data, and it links the model hydrologic and erosion parameters with rangeland plant communities by providing a new system of parameter estimation equations based on 204 plots at 49 rangeland sites distributed across 15 western U.S. states. Recent work on the model is focused on representing intra-storm dynamics, using stream-power as the driver for detachment by flow, and deriving parameters for after-fire conditions.

  20. Adaptation of water resources systems to changing society and environment: a statement by the International Association of Hydrological Sciences

    National Research Council Canada - National Science Library

    Ceola, S; Montanari, A; Krueger, T; Dyer, F; Kreibich, H; Westerberg, I; Carr, G; Cudennec, Christophe; Elshorbagy, A; Savenije, H; Van Der Zaag, P; Rosbjerg, D; Aksoy, H; Viola, F; Petrucci, G; Macleod, K; Croke, B; Ganora, D; Hermans, L; Polo, M. J; Xu, Z. X; Borga, M; Helmschrot, J; Toth, E; Ranzi, R; Castellarin, A; Hurford, A; Brilly, M; Viglione, A; Bloschl, G; Sivapalan, M; Domeneghetti, A; Marinelli, A; Di Baldassarre, G


    We explore how to address the challenges of adaptation of water resources systems under changing conditions by supporting flexible, resilient and low-regret solutions, coupled with on-going monitoring and evaluation...

  1. Adaptation of water resources systems to changing society and environment: a statement by the International Association of Hydrological Sciences


    Ceola, Serena; Montanari, Alberto; Krueger, Tobias; Dyer, Fiona; Kreibich, Heidi; Westerberg, Ida; Carr, Gemma; Cudennec, Christophe; Elshorbagy, Amin; Savenije, Hubert; Van Der Zaag, Pieter; Rosbjerg, Dan; Aksoy, Hafzullah; Viola, Francesco; Petrucci, Guido


    We explore how to address the challenges of adaptation of water resources systems under changing conditions by supporting flexible, resilient and low-regret solutions, coupled with on-going monitoring and evaluation. This will require improved understanding of the linkages between biophysical and social aspects in order to better anticipate the possible future co-evolution of water systems and society. We also present a call to enhance the dialogue and foster the actions of governments, the i...

  2. Plant adaptive behaviour in hydrological models (Invited) (United States)

    van der Ploeg, M. J.; Teuling, R.


    Models that will be able to cope with future precipitation and evaporation regimes need a solid base that describes the essence of the processes involved [1]. Micro-behaviour in the soil-vegetation-atmosphere system may have a large impact on patterns emerging at larger scales. A complicating factor in the micro-behaviour is the constant interaction between vegetation and geology in which water plays a key role. The resilience of the coupled vegetation-soil system critically depends on its sensitivity to environmental changes. As a result of environmental changes vegetation may wither and die, but such environmental changes may also trigger gene adaptation. Constant exposure to environmental stresses, biotic or abiotic, influences plant physiology, gene adaptations, and flexibility in gene adaptation [2-6]. Gene expression as a result of different environmental conditions may profoundly impact drought responses across the same plant species. Differences in response to an environmental stress, has consequences for the way species are currently being treated in models (single plant to global scale). In particular, model parameters that control root water uptake and plant transpiration are generally assumed to be a property of the plant functional type. Assigning plant functional types does not allow for local plant adaptation to be reflected in the model parameters, nor does it allow for correlations that might exist between root parameters and soil type. Models potentially provide a means to link root water uptake and transport to large scale processes (e.g. Rosnay and Polcher 1998, Feddes et al. 2001, Jung 2010), especially when powered with an integrated hydrological, ecological and physiological base. We explore the experimental evidence from natural vegetation to formulate possible alternative modeling concepts. [1] Seibert, J. 2000. Multi-criteria calibration of a conceptual runoff model using a genetic algorithm. Hydrology and Earth System Sciences 4(2): 215

  3. [A health system's neoliberal reform: evidence from the Mexican case]. (United States)

    López-Arellano, Oliva; Jarillo-Soto, Edgar C


    This study addressed the shaping of Mexico's health system in recent years, with an analysis of the social determination conditioning the system's current formulation, the consequences for the population's living and working conditions, and the technical and legal reform measures that shaped the system's transformation. The article then analyzes the survival of social security institutions and the introduction of an individual insurance model and its current implications and consequences. From the perspective of the right to health, the article compares the measures, resources, and interventions in both health care models and highlights the relevance of the social security system for Popular Insurance. The article concludes that the measures implemented to reform the Mexican health system have failed to achieve the intended results; on the contrary, they have led to a reduction in interventions, rising costs, and a decrease in the installed capacity and professional personnel for the system's operation, thus falling far short of solving the problem, rather aggravating the inequities without solving the system's structural contradictions. Health systems face new challenges, inevitably requiring that the analyses be situated in a broader framework rather than merely focusing on the functional, administrative, and financial operation of the systems in the respective countries.

  4. Detection of Hydrological changes of Wujiang River (United States)

    Dong, L.; Chen, Y.


    In the century our earth experienced a rapid environment changes due to strong human activities, which impactedthe earth'shydrology and water resources systems negatively, and causedsevere problems to the society, such as increased flood and drought risk, water pollution and ecosystem degradation. Understanding the variations of hydrological characteristics has important meaning to solve the problem of hydrology and water resources and maintain sustainable development of river basin water resources.This paper takesWujiangriveras an example,which is a typical medium watershedaffected by human activities seriously in southern China.Using the methods of Mann-Kendall test and serial cluster analysis, this paper studies the characteristics and laws of historical hydrological process inWujiang river, detectsthe impact of changing environment to watershed hydrological processes, based on the observed hydrological data of 36 years from 1980 to 2015 in three representative hydrological stationsnamedFenshi,Chixi and Pingshi. The results show that the annual runoffandannual precipitation has some kind of changes.

  5. 76 FR 52350 - Vehicular Digital Multimedia Evidence Recording System (VDMERS) Standard, Certification Program... (United States)


    ... of Justice Programs Vehicular Digital Multimedia Evidence Recording System (VDMERS) Standard...) will make available to the general public three draft documents related to Vehicular Digital Multimedia Evidence Recording Systems (VDMERSs) used by law enforcement agencies: 1. Draft VDMERS Standard for Law...

  6. 75 FR 78269 - Vehicular Digital Multimedia Evidence Recording System (VDMERS) Standard for Law Enforcement (United States)


    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Office of Justice Programs Vehicular Digital Multimedia Evidence Recording System (VDMERS) Standard for Law... the general public the draft ``Vehicular Digital Multimedia Evidence Recording System Standard for Law...

  7. Experimental evidence of vibrational resonance in a multistable system (United States)

    Chizhevsky, V. N.


    Experimental evidence of vibrational resonance in a multistable vertical-cavity surface-emitting laser (VCSEL) is reported. The VCSEL is characterized by a coexistence of four polarization states and driven by low-frequency (LF) and high-frequency (HF) periodic signals. In these conditions a series of resonances on the low frequency depending on the HF amplitude is observed. The location of resonances in a parameter space (dc current, amplitude of HF signal) is experimentally studied. For a fixed value of the dc current an evolution of the resonance curves with an increase of the LF amplitude is experimentally investigated.

  8. Lithologic and hydrologic controls of mixed alluvial-bedrock channels in flood-prone fluvial systems: bankfull and macrochannels in the Llano River watershed, central Texas, USA (United States)

    Heitmuller, Frank T.; Hudson, Paul F.; Asquith, William H.


    The rural and unregulated Llano River watershed located in central Texas, USA, has a highly variable flow regime and a wide range of instantaneous peak flows. Abrupt transitions in surface lithology exist along the main-stem channel course. Both of these characteristics afford an opportunity to examine hydrologic, lithologic, and sedimentary controls on downstream changes in channel morphology. Field surveys of channel topography and boundary composition are coupled with sediment analyses, hydraulic computations, flood-frequency analyses, and geographic information system mapping to discern controls on channel geometry (profile, pattern, and shape) and dimensions along the mixed alluvial-bedrock Llano River and key tributaries. Four categories of channel classification in a downstream direction include: (i) uppermost ephemeral reaches, (ii) straight or sinuous gravel-bed channels in Cretaceous carbonate sedimentary zones, (iii) straight or sinuous gravel-bed or bedrock channels in Paleozoic sedimentary zones, and (iv) straight, braided, or multithread mixed alluvial–bedrock channels with sandy beds in Precambrian igneous and metamorphic zones. Principal findings include: (i) a nearly linear channel profile attributed to resistant bedrock incision checkpoints; (ii) statistically significant correlations of both alluvial sinuosity and valley confinement to relatively high f (mean depth) hydraulic geometry values; (iii) relatively high b (width) hydraulic geometry values in partly confined settings with sinuous channels upstream from a prominent incision checkpoint; (iv) different functional flow categories including frequently occurring events (values (most ≤ 0.45) that develop at sites with unit stream power values in excess of 200 watts per square meter (W/m2); and (vi) downstream convergence of hydraulic geometry exponents for bankfull and macrochannels, explained by co-increases of flood magnitude and noncohesive sandy sediments that collectively minimize

  9. The Ancient Maya Landscape: Facing the Challenges and Embracing the Promise of Integrating Archaeology, Remote Sensing, Soil Science and Hydrologic Modeling for Coupled Natural and Human Systems. (United States)

    Murtha, T., Jr.; Duffy, C.; Cook, B. D.; Schroder, W.; Webster, D.; French, K. D.; Alcover, O.; Golden, C.; Balzotti, C.; Shaffer, D.


    Relying on a niche inheritance perspective, this paper discusses the long-term spatial and temporal dynamics of land-use management, agricultural decision making and patterns of resource availability in the tropical lowlands of Central America. We introduce and describe ongoing research that addresses a series of long standing questions about coupled natural and human history dynamics in the Central Maya lowlands, emphasizing the role of landscape and region to address these questions. First, we summarize the results of a CNH pilot study focused on the evolution of the regional landscape of Tikal, Guatemala. Particular attention is centered on how we integrated landscape survey, traditional archaeology and soil studies to understand the spatial and temporal dynamics of agricultural land use and intensification over a two thousand period. Additionally, we discuss how these results were integrated into remote sensing, hydrological and erosion models to better understand how past changes in available water and productive land compare to what we know about settlement patterns in the Tikal Region over that same time period. We not only describe how the Maya transformed this landscape, but also how the region influenced changing patterns of settlement and land use. We finish this section with a discussion of some of the unique challenges integrating archaeological information to study CNH dynamics during this pilot study. Second, we introduce a new project designed to `scale up' the pilot study for a macro-regional analysis of the lowland Maya landscape. The new project leverages a uniquely sampled LIDAR data set designed to refine measurements of above ground carbon storage. Our new project quantitatively examines these data for evidence for past human activity. Preliminary results offer a promising path for tightly integrating archaeology, natural science, remote sensing and modeling for studying CNH dynamics in the deep and recent past.

  10. Empirical Evidence and Policy Implications from National Systems of ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    A national system of innovation can be defined as "the elements and relationships, which interact in the diffusion, production and use of new and economically useful knowledge ... either located within or rooted inside the borders of a nation state." (Lundvall 1992). Earlier efforts to understand national innovation systems in ...

  11. Tapping environmental history to recreate America's colonial hydrology (United States)

    Pastore, Christopher L.; Green, Mark B.; Bain, Daniel J.; Muñoz-Hernandez, Andrea; Vorosmarty, Charles J.; Arrigo, Jennifer; Brandt, Sara; Duncan, Jonathan M.; Greco, Francesca; Kim, Hyojin; Kumar, Sanjiv; Lally, Michael; Parolari, Anthony J.; Pellerin, Brian A.; Salant, Nira; Schlosser, Adam; Zalzal, Kate


    Throughout American history water resources have played integral roles in shaping patterns of human settlement and networks of biological and economic exchange. In turn, humans have altered hydrologic systems to meet their needs. A paucity of climate and water discharge data for the seventeenth and eighteenth centuries, however, has left America's preindustrial hydrology largely unstudied. As a result, there have been few detailed, quantifiable, regional assessments of hydrologic change between the time of first European settlement and the dawn of industrial expansion.

  12. Potential effects of alterations to the hydrologic system on the distribution of salinity in the Biscayne aquifer in Broward County, Florida (United States)

    Hughes, Joseph D.; Sifuentes, Dorothy F.; White, Jeremy T.


    To address concerns about the effects of water-resource management practices and rising sea level on saltwater intrusion, the U.S. Geological Survey in cooperation with the Broward County Environmental Planning and Community Resilience Division, initiated a study to examine causes of saltwater intrusion and predict the effects of future alterations to the hydrologic system on salinity distribution in eastern Broward County, Florida. A three-dimensional, variable-density solute-transport model was calibrated to conditions from 1970 to 2012, the period for which data are most complete and reliable, and was used to simulate historical conditions from 1950 to 2012. These types of models are typically difficult to calibrate by matching to observed groundwater salinities because of spatial variability in aquifer properties that are unknown, and natural and anthropogenic processes that are complex and unknown; therefore, the primary goal was to reproduce major trends and locally generalized distributions of salinity in the Biscayne aquifer. The methods used in this study are relatively new, and results will provide transferable techniques for protecting groundwater resources and maximizing groundwater availability in coastal areas. The model was used to (1) evaluate the sensitivity of the salinity distribution in groundwater to sea-level rise and groundwater pumping, and (2) simulate the potential effects of increases in pumping, variable rates of sea-level rise, movement of a salinity control structure, and use of drainage recharge wells on the future distribution of salinity in the aquifer.

  13. Performance of complex snow cover descriptions in a distributed hydrological model system: A case study for the high Alpine terrain of the Berchtesgaden Alps. (United States)

    Warscher, M; Strasser, U; Kraller, G; Marke, T; Franz, H; Kunstmann, H


    [1] Runoff generation in Alpine regions is typically affected by snow processes. Snow accumulation, storage, redistribution, and ablation control the availability of water. In this study, several robust parameterizations describing snow processes in Alpine environments were implemented in a fully distributed, physically based hydrological model. Snow cover development is simulated using different methods from a simple temperature index approach, followed by an energy balance scheme, to additionally accounting for gravitational and wind-driven lateral snow redistribution. Test site for the study is the Berchtesgaden National Park (Bavarian Alps, Germany) which is characterized by extreme topography and climate conditions. The performance of the model system in reproducing snow cover dynamics and resulting discharge generation is analyzed and validated via measurements of snow water equivalent and snow depth, satellite-based remote sensing data, and runoff gauge data. Model efficiency (the Nash-Sutcliffe coefficient) for simulated runoff increases from 0.57 to 0.68 in a high Alpine headwater catchment and from 0.62 to 0.64 in total with increasing snow model complexity. In particular, the results show that the introduction of the energy balance scheme reproduces daily fluctuations in the snowmelt rates that trace down to the channel stream. These daily cycles measured in snowmelt and resulting runoff rates could not be reproduced by using the temperature index approach. In addition, accounting for lateral snow transport changes the seasonal distribution of modeled snowmelt amounts, which leads to a higher accuracy in modeling runoff characteristics.

  14. Adaptation of water resources systems to changing society and environment: a statement by the International Association of Hydrological Sciences

    DEFF Research Database (Denmark)

    Ceola, Serena; Montanari, Alberto; Krueger, Tobias


    and social aspects in order to better anticipate the possible future co-evolution of water systems and society. We also present a call to enhance the dialogue and foster the actions of governments, the international scientific community, research funding agencies and additional stakeholders in order...... to develop effective solutions to support water resources systems adaptation. Finally, we call the scientific community to a renewed and unified effort to deliver an innovative message to stakeholders. Water science is essential to resolve the water crisis, but the effectiveness of solutions depends, inter...

  15. Understanding Hydrological and Climate Conditions on Early Mars Through Sulfate Cycling and Microbial Activity in Terrestrial Volcanic Systems (United States)

    Szynkiewicz, A.; Mikucki, J.; Vaniman, D.


    Our study is a type of Earth-based investigation in a Mars-analog environment that allows for determination of how changing wet and dry conditions in active volcanic/hydrothermal system affect sulfate fluxes into surface water and groundwater.

  16. Hydrologic Forecasting and Hydropower Production (United States)

    Wigmosta, M. S.; Voisin, N.; Lettenmaier, D. P.; Coleman, A.; Mishra, V.; Schaner, N. A.


    Hydroelectric power production is one of many competing demands for available water along with other priority uses such as irrigation, thermoelectric cooling, municipal, recreation, and environmental performance. Increasingly, hydroelectric generation is being used to offset the intermittent nature of some renewable energy sources such as wind-generated power. An accurate forecast of the magnitude and timing of water supply assists managers in integrated planning and operations to balance competing water uses against current and future supply while protecting against the possibility of water or energy shortages and excesses with real-time actions. We present a medium-range to seasonal ensemble streamflow forecasting system where uncertainty in forecasts is addressed explicitly. The integrated forecast system makes use of remotely-sensed data and automated spatial and temporal data assimilation. Remotely-sensed snow cover, observed snow water equivalent, and observed streamflow data are used to update the hydrologic model state prior to the forecast. In forecast mode, the hydrology model is forced by calibrated ensemble weather/climate forecasts. This system will be fully integrated into a water optimization toolset to inform reservoir and power operations, and guide environmental performance decision making. This flow forecast system development is carried out in agreement with the National Weather Service so that the system can later be incorporated into the NOAA eXperimental Ensemble Forecast Service (XEFS).

  17. Hydrological extremes and security

    Directory of Open Access Journals (Sweden)

    Z. W. Kundzewicz


    Full Text Available Economic losses caused by hydrological extremes – floods and droughts – have been on the rise. Hydrological extremes jeopardize human security and impact on societal livelihood and welfare. Security can be generally understood as freedom from threat and the ability of societies to maintain their independent identity and their functional integrity against forces of change. Several dimensions of security are reviewed in the context of hydrological extremes. The traditional interpretation of security, focused on the state military capabilities, has been replaced by a wider understanding, including economic, societal and environmental aspects that get increasing attention. Floods and droughts pose a burden and serious challenges to the state that is responsible for sustaining economic development, and societal and environmental security. The latter can be regarded as the maintenance of ecosystem services, on which a society depends. An important part of it is water security, which can be defined as the availability of an adequate quantity and quality of water for health, livelihoods, ecosystems and production, coupled with an acceptable level of water-related risks to people, environments and economies. Security concerns arise because, over large areas, hydrological extremes − floods and droughts − are becoming more frequent and more severe. In terms of dealing with water-related risks, climate change can increase uncertainties, which makes the state’s task to deliver security more difficult and more expensive. However, changes in population size and development, and level of protection, drive exposure to hydrological hazards.

  18. A Pore Fluid Study in the Transform Fault System of Western Haiti: Investigating Geochemical Processes and Hydrologic Pathways of the Fluids (United States)

    Battani, A.; Monnin, C.; Ruffine, L.; Ellouz, N.; Leroy, S. D.


    The area of Western Haiti is located between the Enriquillo-Plantain Garden Fault (EPGF) and Ciabao-Oriente Septentrional fault systems. It has been investigated during the Haiti-SIS cruise (November-December 2012) by heat flow measurements and coring. These two strike-slip fault systems accommodate the relative motion between the Caribbean and North American plates. An aftershock study of the MW= 7, 12 January 2010 earthquake indicated that this event originated along the EPGF fault, while the septentrional fault has not been ruptured for about a century. We focused coring operations on specific zones; faults, basin margins, ridge, deep basins delimated using structural/sedimentological surface data. The objective of the pore-fluid study was to determine both the pathways of the fluids and their origin in relation with the fault activity. A total of 14 Kullenberg cores were collected for fluid sampling and sedimentological analyses. Overall, 99 pore fluids were extracted, using Rhizon® samplers. Major and minor dissolved elements were analyzed. The resulting dataset allows us to identify several diagenetic processes occurring within the upper section of the sedimentary column. For the fault-crossing zones, the vertical chloride and sulphate profiles where the dissolved-element concentrations are close to that of normal seawater suggest seawater downward flow (infiltration). There the faults would then act as recharge zones for fluid circulation. On the opposite, for cores recovered in the basins, dissolved element profiles exhibit variable shapes with sulfate concentration decreasing with depth (indicating organic matter oxydation or anaerobic oxidation of methane) These results will be combined with those from the emerged segment of the EPGF (that can be observed on land in Haiti) in order to have a picture of the hydrologic regime of the fault system, its capacity to act as a recharge zone and conversely to supply deep-seated fluids to the surface (discharge

  19. Linear infrastructure impacts on landscape hydrology. (United States)

    Raiter, Keren G; Prober, Suzanne M; Possingham, Hugh P; Westcott, Fiona; Hobbs, Richard J


    The extent of roads and other forms of linear infrastructure is burgeoning worldwide, but their impacts are inadequately understood and thus poorly mitigated. Previous studies have identified many potential impacts, including alterations to the hydrological functions and soil processes upon which ecosystems depend. However, these impacts have seldom been quantified at a regional level, particularly in arid and semi-arid systems where the gap in knowledge is the greatest, and impacts potentially the most severe. To explore the effects of extensive track, road, and rail networks on surface hydrology at a regional level we assessed over 1000 km of linear infrastructure, including approx. 300 locations where ephemeral streams crossed linear infrastructure, in the largely intact landscapes of Australia's Great Western Woodlands. We found a high level of association between linear infrastructure and altered surface hydrology, with erosion and pooling 5 and 6 times as likely to occur on-road than off-road on average (1.06 erosional and 0.69 pooling features km -1 on vehicle tracks, compared with 0.22 and 0.12 km -1 , off-road, respectively). Erosion severity was greater in the presence of tracks, and 98% of crossings of ephemeral streamlines showed some evidence of impact on water movement (flow impedance (62%); diversion of flows (73%); flow concentration (76%); and/or channel initiation (31%)). Infrastructure type, pastoral land use, culvert presence, soil clay content and erodibility, mean annual rainfall, rainfall erosivity, topography and bare soil cover influenced the frequency and severity of these impacts. We conclude that linear infrastructure frequently affects ephemeral stream flows and intercepts natural overland and near-surface flows, artificially changing site-scale moisture regimes, with some parts of the landscape becoming abnormally wet and other parts becoming water-starved. In addition, linear infrastructure frequently triggers or exacerbates erosion

  20. Psychophysical evidence for a purely binocular color system. (United States)

    Shimono, Koichi; Shioiri, Satoshi; Yaguchi, Hirohisa


    Two adaptation experiments were conducted to examine a hypothesis for a purely binocular color system that responds only to simultaneous inputs from the two eyes and that inhibits the activities of a pair of monocular color systems with each receiving input from their respective eye. In the first experiment, after a red or green stimulus was presented to both eyes to adapt the hypothesized binocular system, its compensatory color was presented alternately to each eye to nullify the adaptation effect of the hypothesized monocular systems. Results showed that after adaptation, the color appearance of a test stimulus shifted more to that of the compensatory color in binocular viewing than in monocular viewing. In the second experiment, a red or green stimulus was presented either to both eyes or to the left eye, and then its compensatory color was presented only to the left eye. Comparison was made to the adaptation effect between the binocular presentation of the color stimulus and its monocular presentation. Results showed that the color appearance viewed with the left eye shifted toward the compensatory color for the binocular adaptation and was constant for the monocular adaptation. These results are consistent with the idea of a "purely" binocular color system inhibiting the activity of a pair of monocular systems.

  1. Lithological and hydrological influences on ground-water composition in a heterogeneous carbonate-clay aquifer system (United States)

    Kauffman, S.J.; Herman, J.S.; Jones, B.F.


    The influence of clay units on ground-water composition was investigated in a heterogeneous carbonate aquifer system of Miocene age in southwest Florida, known as the Intermediate aquifer system. Regionally, the ground water is recharged inland, flows laterally and to greater depths in the aquifer systems, and is discharged vertically upward at the saltwater interface along the coast. A depth profile of water composition was obtained by sampling ground water from discrete intervals within the permeable carbonate units during coring and by squeezing pore water from a core of the less-permeable clay layers. A normative salt analysis of solute compositions in the water indicated a marine origin for both types of water and an evolutionary pathway for the clay water that involves clay diagenesis. The chemical composition of the ground water in the carbonate bedrock is significantly different from that of the pore water in the clay layers. Dissolution of clays and opaline silica results in high silica concentrations relative to water in other parts of the Intermediate aquifer system. Water enriched in chloride relative to the overlying and underlying ground water recharges the aquifer inland where the confining clay layer is absent, and it dissolves carbonate and silicate minerals and reacts with clays along its flow path, eventually reaching this coastal site and resulting in the high chloride and silica concentrations observed in the middle part of the Intermediate aquifer system. Reaction-path modeling suggests that the recharging surficial water mixes with sulfate-rich water upwelling from the Upper Floridan aquifer, and carbonate mineral dissolution and precipitation, weathering and exchange reactions, clay mineral diagenesis, clay and silica dissolution, organic carbon oxidation, and iron and sulfate reduction result in the observed water compositions.A study was conducted to clarify the influence of clay units on ground-water composition in a heterogeneous

  2. Summary of the hydrology of the Floridan aquifer system in Florida and in parts of Georgia, South Carolina, and Alabama (United States)

    Johnston, Richard H.; Bush, Peter W.


    The Floridan aquifer system is one of the major sources of ground-water supplies in the United States. This highly productive aquifer system underlies all of Florida, southern Georgia, and small parts of adjoining Alabama and South Carolina, for a total area of about 100,000 square miles. About 3 billion gallons of water per day is withdrawn from the aquifer for all uses, and, in many areas, the Floridan is the sole source of freshwater. The aquifer system is a sequence of hydraulically connected carbonate rocks (principally limestone and some dolomite) that generally range in age from Late Paleocene to Early Miocene. The rocks vary in thickness from a featheredge where they crop out to more than 3,500 ft where the aquifer is deeply buried. The aquifer system generally consists of an upper aquifer and a lower aquifer, separated by a less permeable confining unit of highly variable properties. In parts of north Florida and southwest Georgia, there is little permeability contrast within the aquifer system. Thus in these areas the Floridan is effectively one continuous aquifer. The upper and lower aquifers are defined on the basis of permeability, and their boundaries locally do not coincide with those for either time-stratigraphic or rock-stratigraphic units. Low-permeability clastic rocks overlie much of the Floridan aquifer system. The lithology, thickness, and integrity of these low-permeability rocks have a controlling effect on the development of permeability and ground-water flow in the Floridan locally. The Floridan aquifer system derives its permeability from openings that vary from fossil hashes and networks of many solution-widened joints to large cavernous openings in karst areas. Diffuse flow pre-dominates where the small openings occur, whereas conduit flow may occur where there are large cavernous openings. For the Upper Floridan aquifer, transmissivities are highest (greater than 1,000,000 ft squared per day) in the unconfined karst areas of central

  3. Hydrological sciences and water security: An overview

    Directory of Open Access Journals (Sweden)

    G. Young


    Full Text Available This paper provides an introduction to the concepts of water security including not only the risks to human wellbeing posed by floods and droughts, but also the threats of inadequate supply of water in both quantity and quality for food production, human health, energy and industrial production, and for the natural ecosystems on which life depends. The overall setting is one of constant change in all aspects of Earth systems. Hydrological systems (processes and regimes are changing, resulting from varying and changing precipitation and energy inputs, changes in surface covers, mining of groundwater resources, and storage and diversions by dams and infrastructures. Changes in social, political and economic conditions include population and demographic shifts, political realignments, changes in financial systems and in trade patterns. There is an urgent need to address hydrological and social changes simultaneously and in combination rather than as separate entities, and thus the need to develop the approach of ‘socio-hydrology’. All aspects of water security, including the responses of both UNESCO and the International Association of Hydrological Sciences (IAHS to the concepts of socio-hydrology, are examined in detailed papers within the volume titled Hydrological Sciences and Water Security: Past, Present and Future.

  4. Hillslope hydrology and stability (United States)

    Lu, Ning; Godt, Jonathan


    Landslides are caused by a failure of the mechanical balance within hillslopes. This balance is governed by two coupled physical processes: hydrological or subsurface flow and stress. The stabilizing strength of hillslope materials depends on effective stress, which is diminished by rainfall. This book presents a cutting-edge quantitative approach to understanding hydro-mechanical processes across variably saturated hillslope environments and to the study and prediction of rainfall-induced landslides. Topics covered include historic synthesis of hillslope geomorphology and hydrology, total and effective stress distributions, critical reviews of shear strength of hillslope materials and different bases for stability analysis. Exercises and homework problems are provided for students to engage with the theory in practice. This is an invaluable resource for graduate students and researchers in hydrology, geomorphology, engineering geology, geotechnical engineering and geomechanics and for professionals in the fields of civil and environmental engineering and natural hazard analysis.

  5. Snow and Glacier Hydrology (United States)

    Brubaker, Kaye

    The study of snow and ice is rich in both fundamental science and practical applications. Snow and Glacier Hydrology offers something for everyone, from resource practitioners in regions where water supply depends on seasonal snow pack or glaciers, to research scientists seeking to understand the role of the solid phase in the water cycle and climate. The book is aimed at the advanced undergraduate or graduate-level student. A perusal of online documentation for snow hydrology classes suggests that there is currently no single text or reference book on this topic in general use. Instructors rely on chapters from general hydrology texts or operational manuals, collections of journal papers, or their own notes. This variety reflects the fact that snow and ice regions differ in climate, topography, language, water law, hazards, and resource use (hydropower, irrigation, recreation). Given this diversity, producing a universally applicable book is a challenge.

  6. Microwave hydrology: A trilogy (United States)

    Stacey, J. M.; Johnston, E. J.; Girard, M. A.; Regusters, H. A.


    Microwave hydrology, as the term in construed in this trilogy, deals with the investigation of important hydrological features on the Earth's surface as they are remotely, and passively, sensed by orbiting microwave receivers. Microwave wavelengths penetrate clouds, foliage, ground cover, and soil, in varying degrees, and reveal the occurrence of standing liquid water on and beneath the surface. The manifestation of liquid water appearing on or near the surface is reported by a microwave receiver as a signal with a low flux level, or, equivalently, a cold temperature. Actually, the surface of the liquid water reflects the low flux level from the cosmic background into the input terminals of the receiver. This trilogy describes and shows by microwave flux images: the hydrological features that sustain Lake Baykal as an extraordinary freshwater resource; manifestations of subsurface water in Iran; and the major water features of the Congo Basin, a rain forest.

  7. SWOT Hydrology in the classroom (United States)

    Srinivasan, M. M.; Destaerke, D.; Butler, D. M.; Pavelsky, T.


    The Surface Water and Ocean Topography (SWOT) Mission Education Program will participate in the multinational, multiagency program, Global Learning and Observations to Benefit the Environment (GLOBE). GLOBE is a worldwide hands-on, primary and secondary school-based science and education community of over 24,000 schools in more than 100 countries. Over 1.5 million students have contributed more than 23 million measurements to the GLOBE database for use in inquiry-based science projects. The objectives of the program are to promote the teaching and learning of science; enhance environmental awareness, literacy and stewardship; and contribute to science research and environmental monitoring.SWOT will measure sea surface height and the heights, slopes, and inundated areas of rivers, lakes, and wetlands. This new SWOT-GLOBE partnership will focus on the limnology aspects of SWOT. These measurements will be useful in monitoring the hydrologic cycle, flooding, and climate impacts of a changing environment.GLOBE's cadre of teachers are trained in five core areas of Earth system science, including hydrology. The SWOT Education teams at NASA and CNES are working with the GLOBE Program implementers to develop and promote a new protocol under the Hydrology topic area for students to measure attributes of surface water bodies that will support mission science objectives. This protocol will outline and describe a methodology to measure width and height of rivers and lakes.This new GLOBE protocol will be included in training to provide teachers with expertise and confidence in engaging students in this new scientific investigation. Performing this additional measurement will enhance GLOBE students experience in scientific investigation, and will provide useful measurements to SWOT researchers that can support the SWOT mission research goals.SWOT public engagement will involve communicating the value of its river and lake height measurements, lake water storage, and river

  8. Public health delivery systems: evidence, uncertainty, and emerging research needs. (United States)

    Mays, Glen P; Smith, Sharla A; Ingram, Richard C; Racster, Laura J; Lamberth, Cynthia D; Lovely, Emma S


    The authors review empirical studies published between 1990 and 2007 on the topics of public health organization, financing, staffing, and service delivery. A summary is provided of what is currently known about the attributes of public health delivery systems that influence their performance and outcomes. This review also identifies unanswered questions, highlighting areas where new research is needed. Existing studies suggest that economies of scale and scope exist in the delivery of public health services, and that key organizational and governance characteristics of public health agencies may explain differences in service delivery across communities. Financial resources and staffing characteristics vary widely across public health systems and have expected associations with service delivery and outcomes. Numerous gaps and uncertainties are identified regarding the mechanisms through which organizational, financial, and workforce characteristics influence the effectiveness and efficiency of public health service delivery. This review suggests that new research is needed to evaluate the effects of ongoing changes in delivery system structure, financing, and staffing.

  9. Role of hydrological events in sediment and sediment-associated heavy metals transport within a continental transboundary river system - Tuul River case study (Mongolia) (United States)

    Pietroń, Jan; Jarsjö, Jerker


    The concentration of heavy metals in rivers is often greater in the sediment load than in the water solution. Overall, heavy metal conveyance with sediment transport is a significant contributor to the global transport of heavy metals. Heavy metals once released to a river system may remain in the deposits of the river from short to very long times, for instance depending on to which extent erosion and deposition can influence the sediment mass stored in the river bed. In general, the mobility of contaminated sediments to downstream water recipients may to large extent be governed by natural sediment transport dynamics during hydrological events, such as flow peaks following heavy rainfalls. The Tuul River (Northern Mongolia) belongs to a Tuul River-Orkhon River-Selenga River- transboundary river system that discharges into Lake Baikal. The river system is largely characterized by its natural hydrological regime with numerous rapid peak flow events of the spring-summer periods. However, recent studies indicate contamination of fine sediment with heavy metals coming from placer gold mining area (Zaamar Goldfield) located along the downstream Tuul River. In this work, the general idea is to create a one-dimensional sediment transport model of the downstream Tuul River, and use field-data supported modeling to investigate natural erosion-deposition rates and the role of peak flows in natural sediment transport at 14 km reach just downstream the gold mining area. The model results show that the sediment load of the finest investigated grain size has a great potential to be eroded from the bed of the studied reach, especially during the main peak flow events. However, the same events are associated with a significant deposition of the finest material. The model results also show different hysteresis behavior of the sediment load rating curves (clockwise and counter-clockwise) during the main peak flow events. These are interpreted as effects of changing in

  10. Geochemical and Hydrologic Controls of Copper-Rich Surface Waters in the Yerba Loca-Mapocho System (United States)

    Pasten, P.; Montecinos, M.; Coquery, M.; Pizarro, G. E.; Abarca, M. I.; Arce, G. J.


    Andean watersheds in Northern and Central Chile are naturally enriched with metals, many of them associated to sulfide mineralizations related to copper mining districts. The natural and anthropogenic influx of toxic metals into drinking water sources pose a sustainability challenge for cities that need to provide safe water with the smallest footprint. This work presents our study of the transformations of copper in the Yerba Loca-Mapocho system. Our sampling campaign started from the headwaters at La Paloma Glacier and continues to the inlet of the San Enrique drinking water treatment plant, a system feeding municipalities in the Eastern area of Santiago, Chile. Depending on the season, total copper concentrations go as high as 22 mg/L for the upper sections, which become diluted to total reflection X ray fluorescence) and XRD (X-ray diffraction). Major elements detected in the precipitates were Al (200 g/kg), S (60 g/kg), and Cu (6 g/kg). Likely solid phases include hydrous amorphous phases of aluminum hydroxides and sulfates, and copper hydroxides/carbonates. Efforts are undergoing to find the optimal mixing ratios between the acidic stream and more alkaline streams to maximize attenuation of dissolved copper. The results of this research could be used for enhancing in-stream natural attenuation of copper and reducing treatment needs at the drinking water facility. Acknowledgements to Fondecyt 1130936 and Conicyt Fondap 15110020

  11. Systems Thinking Evidence from Colleges of Business and Their Universities (United States)

    Seiler, John H.; Kowalsky, Michelle


    This study investigated instances of the term "systems thinking" among the websites of the Top 25 business schools as ranked by "U. S. News and World Report" in 2010. Since a greater number of instances of the term and its variants in a university's web documents may indicate an increased interest of the institution in the…

  12. Evidence for compact binary systems around Kepler red giants

    DEFF Research Database (Denmark)

    Colman, Isabel L.; Huber, Daniel; Bedding, Timothy R.


    We present an analysis of 168 oscillating red giants from NASA's Kepler mission that exhibit anomalous peaks in their Fourier amplitude spectra. These peaks result from ellipsoidal variations that are indicative of binary star systems, at frequencies such that the orbit of any stellar companion...

  13. Hydrological modelling of glacierized catchments focussing on the validation of simulated snow patterns - applications within the flood forecasting system of the Tyrolean river Inn (United States)

    Schöber, J.; Achleitner, S.; Kirnbauer, R.; Schöberl, F.; Schönlaub, H.


    The catchment of the river Inn is located in the Swiss and Austrian Alps. In the frame of the flood forecasting system "HoPI" (Hochwasserprognose für den Tiroler Inn), the Austrian part of the river Inn and its tributaries are covered within a hybrid numerical model. The runoff from the glacierized headwaters of the south-western Inn tributaries is calculated using the Snow- and Icemelt Model "SES" which utilizes a spatially-distributed energy balance approach; within SES, the accumulation and melting processes for snow, firn, and ice are considered. It is of great importance that such a type of model is used in the simulation of alpine areas since in these regions stream flow is influenced by the accumulation and melt of snow and ice and snow-free glaciers have also the potential to increase or even induce flood flow. For a prototype of the forecast system, SES was calibrated using the snow depletion of a glacier, but later, following the first results during the operational mode, the model was recalibrated and validated using remotely-sensed data covering all 13 glacierized catchments. Using the final snow-parameter setting, a simulation run of 15 hydrological years without any state corrections achieved overall agreements between observed and simulated snow cover ranging from 68% to 88% for all individual catchments. Runoff was calibrated and validated using the data from three different gauges. A parameter set, including both validated snow and runoff parameters, was applied for the modelling of a fourth gauged catchment and also achieved accurate results. This final unique parameterization was transferred to the remaining, ungauged watersheds.

  14. The evidence-base for family therapy and systemic interventions for child-focused problems




    This review updates similar articles published in the Journal of Family Therapy in 2001 and 2009. It presents evidence from meta-analyses, systematic literature reviews and controlled trials for the effectiveness of systemic interventions for families of children and adolescents with various difficulties. In this context, systemic interventions include both family therapy and other family-based approaches such as parent training. The evidence supports the effectiveness of systemic interventio...

  15. Elements of a flexible approach for conceptual hydrological modeling : 1. Motivation and theoretical development

    NARCIS (Netherlands)

    Fenicia, F.; Kavetski, D.; Savenije, H.H.G.


    This paper introduces a flexible framework for conceptual hydrological modeling, with two related objectives: (1) generalize and systematize the currently fragmented field of conceptual models and (2) provide a robust platform for understanding and modeling hydrological systems. In contrast to

  16. Impact of tree planting configuration on canopy interception and soil hydrological properties: Implications for flood mitigation in silvopastoral systems (United States)

    Lunka, Peter; Patil, Sopan


    Compaction of upper soil layers by intensive sheep grazing has been connected with increased local flood risk in silvopastoral systems. A 12 week field study was conducted at the Henfaes Research Station near Bangor, Wales to compare two silvopastoral configurations, trees planted in fenced off clumps and trees planted evenly spaced, in terms of canopy throughfall, soil water infiltration and soil bulk density. The study's aim was to characterize the potential of these tree planting configurations to reduce local flood risk. The study site (Henfaes) was established in 1992 on 14 ha of agricultural land and is part of the Silvopastoral National Network Experiment sites that have been set up across the UK to examine the potential of silvopasture and agroforestry on UK farms. Automated throughfall gauges were installed in each silvopastoral treatment along with a similarly designed control gauge located in the grazed control pasture. Soil water infiltration and bulk density were measured 20 times in a stratified random design for each treatment and the control. Soil infiltration capacity in the clumped configuration was significantly higher than in the even spaced configuration and control pasture. The clumped configuration had mean infiltration capacity 504% greater than the control pasture and 454% greater than the even spaced configuration. Canopy interception was higher in the clumped trees than in the evenly spaced trees. Average canopy interception was 34% in the clumped treatment and 28% in the evenly spaced treatment. Soil bulk density was lower in the clumped configuration than in the control pasture and evenly spaced configuration. Results suggest that in silvopastoral systems the clumped tree configuration is more likely to reduce local flood risk than the evenly spaced tree configuration due to enhanced infiltration and increased canopy interception.

  17. gis-based hydrological model based hydrological model upstream

    African Journals Online (AJOL)


    er river catchments in Nigeria graphical data [2]. A spatial hydrology which simulates the water flow and pecified region of the earth using GIS. In view of this, the use of modeling with GIS provides the platform to processes tailored towards hydrologic dely applied hydrological models for in recent time is the Soil and Water.

  18. Pulsar Positioning System: A quest for evidence of extraterrestrial engineering


    Vidal, Clément


    Abstract: Pulsars have at least two impressive applications. First, they can be used as highly accurate clocks, comparable in stability to atomic clocks; second, a small subset of pulsars, millisecond X-ray pulsars, provide all the necessary ingredients for a passive galactic positioning system. This is known in astronautics as X-ray pulsar-based navigation (XNAV). XNAV is comparable to GPS, except it operates on a galactic scale. I propose a SETI-XNAV research program, to test the hypothesis...

  19. The number processing and calculation system: evidence from cognitive neuropsychology. (United States)

    Salguero-Alcañiz, M P; Alameda-Bailén, J R


    Cognitive neuropsychology focuses on the concepts of dissociation and double dissociation. The performance of number processing and calculation tasks by patients with acquired brain injury can be used to characterise the way in which the healthy cognitive system manipulates number symbols and quantities. The objective of this study is to determine the components of the numerical processing and calculation system. Participants consisted of 6 patients with acquired brain injuries in different cerebral localisations. We used Batería de evaluación del procesamiento numérico y el cálculo, a battery assessing number processing and calculation. Data was analysed using the difference in proportions test. Quantitative numerical knowledge is independent from number transcoding, qualitative numerical knowledge, and calculation. Recodification is independent from qualitative numerical knowledge and calculation. Quantitative numerical knowledge and calculation are also independent functions. The number processing and calculation system comprises at least 4 components that operate independently: quantitative numerical knowledge, number transcoding, qualitative numerical knowledge, and calculation. Therefore, each one may be damaged selectively without affecting the functioning of another. According to the main models of number processing and calculation, each component has different characteristics and cerebral localisations. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  20. Assessing hydrologic changes across the Lower Mekong Basin

    Directory of Open Access Journals (Sweden)

    Steve W. Lyon


    New hydrological insights for the region: Our results indicate that the majority of catchments (64% of those considered with sufficiently long data records exhibited no discernable trends in hydrological response. Those catchments that did exhibit significant trends in hydrological response were fairly evenly split between increasing trends (between 21% and 24% and decreasing trends (between 15% and 12% with time. There was a lack of evidence that these changes where brought about by shifts in precipitation or potential evapotranspiration; however, catchments exhibiting significant increasing trends in hydrological behavior were found to have different land cover compositions (lower percentage of forest coverage and subsequently higher paddy rice coverage than those exhibiting significant decreasing trends. The approach presented here provides a potentially valuable screening method to highlight regions for further investigation of improved mechanistic understanding. Without this connection, we might be blind to future hydrological shifts that can have significant impact on development.

  1. A system for rating the stability and strength of medical evidence

    Directory of Open Access Journals (Sweden)

    Reston James T


    Full Text Available Abstract Background Methods for describing one's confidence in the available evidence are useful for end-users of evidence reviews. Analysts inevitably make judgments about the quality, quantity consistency, robustness, and magnitude of effects observed in the studies identified. The subjectivity of these judgments in several areas underscores the need for transparency in judgments. Discussion This paper introduces a new system for rating medical evidence. The system requires explicit judgments and provides explicit rules for balancing these judgments. Unlike other systems for rating the strength of evidence, our system draws a distinction between two types of conclusions: quantitative and qualitative. A quantitative conclusion addresses the question, "How well does it work?", whereas a qualitative conclusion addresses the question, "Does it work?" In our system, quantitative conclusions are tied to stability ratings, and qualitative conclusions are tied to strength ratings. Our system emphasizes extensive a priori criteria for judgments to reduce the potential for bias. Further, the system makes explicit the impact of heterogeneity testing, meta-analysis, and sensitivity analyses on evidence ratings. This article provides details of our system, including graphical depictions of how the numerous judgments that an analyst makes can be combined. We also describe two worked examples of how the system can be applied to both interventional and diagnostic technologies. Summary Although explicit judgments and formal combination rules are two important steps on the path to a comprehensive system for rating medical evidence, many additional steps must also be taken. Foremost among these are the distinction between quantitative and qualitative conclusions, an extensive set of a priori criteria for making judgments, and the direct impact of analytic results on evidence ratings. These attributes form the basis for a logically consistent system that can

  2. Sensitivity of geological, geochemical and hydrologic parameters in complex reactive transport systems for in-situ uranium bioremediation (United States)

    Yang, G.; Maher, K.; Caers, J.


    Groundwater contamination associated with remediated uranium mill tailings is a challenging environmental problem, particularly within the Colorado River Basin. To examine the effectiveness of in-situ bioremediation of U(VI), acetate injection has been proposed and tested at the Rifle pilot site. There have been several geologic modeling and simulated contaminant transport investigations, to evaluate the potential outcomes of the process and identify crucial factors for successful uranium reduction. Ultimately, findings from these studies would contribute to accurate predictions of the efficacy of uranium reduction. However, all these previous studies have considered limited model complexities, either because of the concern that data is too sparse to resolve such complex systems or because some parameters are assumed to be less important. Such simplified initial modeling, however, limits the predictive power of the model. Moreover, previous studies have not yet focused on spatial heterogeneity of various modeling components and its impact on the spatial distribution of the immobilized uranium (U(IV)). In this study, we study the impact of uncertainty on 21 parameters on model responses by means of recently developed distance-based global sensitivity analysis (DGSA), to study the main effects and interactions of parameters of various types. The 21 parameters include, for example, spatial variability of initial uranium concentration, mean hydraulic conductivity, and variogram structures of hydraulic conductivity. DGSA allows for studying multi-variate model responses based on spatial and non-spatial model parameters. When calculating the distances between model responses, in addition to the overall uranium reduction efficacy, we also considered the spatial profiles of the immobilized uranium concentration as target response. Results show that the mean hydraulic conductivity and the mineral reaction rate are the two most sensitive parameters with regard to the overall

  3. A Measurement System for Systematic Hydrological Characterization of Unsaturated Fractured Welded Tuff in a Mined Underground Tunnel

    Energy Technology Data Exchange (ETDEWEB)

    R. J. Cook; R. Salve; B.M. Freifeld; Y.W. Tsang


    A field investigation of unsaturated flow through a lithophysal unit of fractured welded tuff containing lithophysal cavities has been initiated. To characterize flow in this spatially heterogeneous medium, a systematic approach has been developed to perform tests in boreholes drilled at regular intervals in an underground tunnel (drift). In this paper, we describe the test equipment system that has been built for this purpose. Since the field-scale measurements, of liquid flow in the unsaturated, fractured rocks, require continuous testing for periods of days to weeks, the control of test equipment has been fully automated, allowing operation with no human presence at the field site. Preliminary results from the first set of tests are described. These tests give insight into the role of the matrix (perhaps also lithophysal cavities) as potential storage during the initial transient flow prior to the breakthrough of water at the drift crown, as well as the role of connected fractures that provide the subsequent quasi-steady flow. These tests also reveal the impact of evaporation on seepage into the drift.

  4. Geologic and hydrologic research on the Moana geothermal system, Washoe County, Nevada. Final report October 1, 1982-December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, T.; Ghusn, G. Jr.


    Combined geologic, geophysical, geochemical, and drilling exploration surveys were used to assess the Moana geothermal resource in Washoe County, Nevada, and to determine its relationship with nearby Steamboat Hot Springs. Moana is the largest single moderate-temperature resource in Nevada that supports geothermal space heating applications. Results show that the general geology and structure for the two systems is similar, but important differences exist with respect to reservoir rocks. Gravity data delineated the contact between important volcanic and sedimentary rocks in Moana, but contour trends did not correlate well with mapped faults. Fluid geochemistry data show major differences in bulk chemical composition, stable-light isotope ratios, and radiocarbon ages for Moana and Steamboat geothermal waters. Water level measurements in observation wells in Moana show simultaneous increasing and decreasing values in different sections of the geothermal area. Temperature-depth profiles changed little during the six-month monitoring period. Direct use of the resource is increasing and longer-lasting, more efficient down-hole heat exchangers are replacing previous equipment that was prone to scaling and corrosion. A computer program that calculates heat output for state-of-the-art heat exchangers is described. Recommendations for continued monitoring, heat exchanger design, and fluid reinjection studies are included. Data are available to government agencies responsible for regulation as well as local residents and potential developers to ensure prudent resource utilization.

  5. Kriging and local polynomial methods for blending satellite-derived and gauge precipitation estimates to support hydrologic early warning systems (United States)

    Verdin, Andrew; Funk, Christopher C.; Rajagopalan, Balaji; Kleiber, William


    Robust estimates of precipitation in space and time are important for efficient natural resource management and for mitigating natural hazards. This is particularly true in regions with developing infrastructure and regions that are frequently exposed to extreme events. Gauge observations of rainfall are sparse but capture the precipitation process with high fidelity. Due to its high resolution and complete spatial coverage, satellite-derived rainfall data are an attractive alternative in data-sparse regions and are often used to support hydrometeorological early warning systems. Satellite-derived precipitation data, however, tend to underrepresent extreme precipitation events. Thus, it is often desirable to blend spatially extensive satellite-derived rainfall estimates with high-fidelity rain gauge observations to obtain more accurate precipitation estimates. In this research, we use two different methods, namely, ordinary kriging and κ-nearest neighbor local polynomials, to blend rain gauge observations with the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates in data-sparse Central America and Colombia. The utility of these methods in producing blended precipitation estimates at pentadal (five-day) and monthly time scales is demonstrated. We find that these blending methods significantly improve the satellite-derived estimates and are competitive in their ability to capture extreme precipitation.

  6. HYDROLOGY, LEVY COUNTY, FL, USA (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  8. HYDROLOGY, DANE COUNTY, WI, USA (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  9. HYDROLOGY, Madison County, Missouri, USA (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data includes spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for the flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  17. DCS Hydrology, Sevier County, Utah (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  2. HYDROLOGY, Choctaw COUNTY, ALABAMA USA (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydrology data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  3. Pulsar Positioning System: A quest for evidence of extraterrestrial engineering


    Vidal, Clement


    Pulsars have at least two impressive applications. First, they can be used as highly accurate clocks, comparable in stability to atomic clocks; secondly, a small subset of pulsars, millisecond X-ray pulsars, provide all the necessary ingredients for a passive galactic positioning system. This is known in astronautics as X-ray pulsar-based navigation (XNAV). XNAV is comparable to GPS, except that it operates on a galactic scale. I propose a SETI-XNAV research program to test the hypothesis tha...

  4. Systemic treatments in paediatric psoriasis: a systematic evidence-based update. (United States)

    van Geel, M J; Mul, K; de Jager, M E A; van de Kerkhof, P C M; de Jong, E M G J; Seyger, M M B


    In 2008, a systematic review revealed that evidence-based data on efficacy and safety of treatments in paediatric psoriasis are scarce and with low level of evidence. In recent years, publications on this topic have increased exponentially. To present a systematic, evidence-based update on the efficacy and safety of systemic treatments in paediatric psoriasis and to provide treatment recommendations, an update of the previous review was performed. PubMed, EMBASE and the Cochrane Controlled Clinical Trial Register were searched between January 2007 and March 2014 for all available literature on efficacy and safety of all systemic treatments in paediatric psoriasis. The levels of evidence were determined on the Oxford Centre for Evidence-based Medicine Levels of Evidence. The newly retrieved evidence was combined with the evidence available in the former review. Fifty-two studies were included: 36 from the former review, plus 16 new articles. New evidence on induction therapy was mainly available on fumaric acid esters (FAEs), which are shown to be effective in a subgroup of patients. Long-term (96 weeks) safety and efficacy data on etanercept were found. Prospective studies are scarce. Most conclusions are formulated on studies with low level of evidence. Of the conventional systemic treatments, methotrexate still has the most evidence albeit in a low number of patients and with a low level of evidence. FAEs seem to be effective in a subgroup of patients, with gastro-intestinal complaints, flushes and temporary shifts in leucocyte counts and liver enzymes being the main side-effects. Etanercept has still accumulated most evidence of the available systematic treatments, with a large efficacy and reassuring safety profile in a 96-week follow-up. © 2014 European Academy of Dermatology and Venereology.

  5. Hydrology Research with the North American Land Data Assimilation System (NLDAS) Datasets at the NASA GES DISC Using Giovanni (United States)

    Mocko, David M.; Rui, Hualan; Acker, James G.


    The North American Land Data Assimilation System (NLDAS) is a collaboration project between NASA/GSFC, NOAA, Princeton Univ., and the Univ. of Washington. NLDAS has created a surface meteorology dataset using the best-available observations and reanalyses the backbone of this dataset is a gridded precipitation analysis from rain gauges. This dataset is used to drive four separate land-surface models (LSMs) to produce datasets of soil moisture, snow, runoff, and surface fluxes. NLDAS datasets are available hourly and extend from Jan 1979 to near real-time with a typical 4-day lag. The datasets are available at 1/8th-degree over CONUS and portions of Canada and Mexico from 25-53 North. The datasets have been extensively evaluated against observations, and are also used as part of a drought monitor. NLDAS datasets are available from the NASA GES DISC and can be accessed via ftp, GDS, Mirador, and Giovanni. GES DISC news articles were published showing figures from the heat wave of 2011, Hurricane Irene, Tropical Storm Lee, and the low-snow winter of 2011-2012. For this presentation, Giovanni-generated figures using NLDAS data from the derecho across the U.S. Midwest and Mid-Atlantic will be presented. Also, similar figures will be presented from the landfall of Hurricane Isaac and the before-and-after drought conditions of the path of the tropical moisture into the central states of the U.S. Updates on future products and datasets from the NLDAS project will also be introduced.

  6. Testing the Hydrological Landscape Unit Classification System and Other Terrain Analysis Measures for Predicting Low-Flow Nitrate and Chloride in Watersheds (United States)

    Poor, Cara J.; McDonnell, Jeffrey J.; Bolte, John


    Elevated nitrate concentrations in streamwater are a major environmental management problem. While land use exerts a large control on stream nitrate, hydrology often plays an equally important role. To date, predictions of low-flow nitrate in ungauged watersheds have been poor because of the difficulty in describing the uniqueness of watershed hydrology over large areas. Clearly, hydrologic response varies depending on the states and stocks of water, flow pathways, and residence times. How to capture the dominant hydrological controls that combine with land use to define streamwater nitrate concentration is a major research challenge. This paper tests the new Hydrologic Landscape Regions (HLRs) watershed classification scheme of Wolock and others (Environmental Management 34:S71-S88, 2004) to address the question: Can HLRs be used as a way to predict low-flow nitrate? We also test a number of other indexes including inverse-distance weighting of land use and the well-known topographic index (TI) to address the question: How do other terrain and land use measures compare to HLR in terms of their ability to predict low-flow nitrate concentration? We test this for 76 watersheds in western Oregon using the U.S. Environmental Protection Agency’s Environmental Monitoring and Assessment Program and Regional Environmental Monitoring and Assessment Program data. We found that HLRs did not significantly improve nitrate predictions beyond the standard TI and land-use metrics. Using TI and inverse-distance weighting did not improve nitrate predictions; the best models were the percentage land use—elevation models. We did, however, see an improvement of chloride predictions using HLRs, TI, and inverse-distance weighting; adding HLRs and TI significantly improved model predictions and the best models used inverse-distance weighting and elevation. One interesting result of this study is elevation consistently predicted nitrate better than TI or the hydrologic classification

  7. [GRADE system: classification of quality of evidence and strength of recommendation]. (United States)

    Aguayo-Albasini, José Luis; Flores-Pastor, Benito; Soria-Aledo, Víctor


    The acquisition and classification of scientific evidence, and subsequent formulation of recommendations constitute the basis for the development of clinical practice guidelines. There are several systems for the classification of evidence and strength of recommendations; the most commonly used nowadays is the Grading of Recommendations, Assessment, Development and Evaluation system (GRADE). The GRADE system initially classifies the evidence into high or low, coming from experimental or observational studies; subsequently and following a series of considerations, the evidence is classified into high, moderate, low or very low. The strength of recommendations is based not only on the quality of the evidence, but also on a series of factors such as the risk/benefit balance, values and preferences of the patients and professionals, and the use of resources or costs. Copyright © 2013 AEC. Published by Elsevier Espana. All rights reserved.

  8. The simulated effects of wastewater-management actions on the hydrologic system and nitrogen-loading rates to wells and ecological receptors, Popponesset Bay Watershed, Cape Cod, Massachusetts (United States)

    Walter, Donald A.


    percent of the instantaneous load within 30 years; this result indicates that loads estimated from recharge areas likely are reasonable for estimating current instantaneous loads. However, recharge areas are assumed to remain static as stresses and hydrologic conditions change in response to wastewater-management actions. Sewering of the Popponesset Bay watershed would not change hydraulic gradients and recharge areas to receptors substantially; however, disposal of wastewater from treatment facilities can change hydraulic gradients and recharge areas to nearby receptors, particularly if the facilities are near the boundary of the recharge area. In these cases, nitrogen loads implicitly estimated by using current recharge areas that do not accurately represent future hydraulic stresses can differ significantly from loads estimated with recharge areas that do represent those stresses. Nitrogen loads to two estuaries in the Popponesset Bay system estimated by using recharge areas delineated for future hydrologic conditions and nitrogen sources were abo