WorldWideScience

Sample records for hydrological ensemble forecasting

  1. Seasonal hydrological ensemble forecasts over Europe

    Science.gov (United States)

    Arnal, Louise; Wetterhall, Fredrik; Pappenberger, Florian

    2015-04-01

    Seasonal forecasts have an important socio-economic value in hydro-meteorological forecasting. The applications are for example hydropower management, spring flood prediction and water resources management. The latter includes prediction of low flows, primordial for navigation, water quality assessment, droughts and agricultural water needs. Traditionally, seasonal hydrological forecasts are done using the observed discharge from previous years, so called Ensemble Streamflow Prediction (ESP). With the recent increasing development of seasonal meteorological forecasts, the incentive for developing and improving seasonal hydrological forecasts is great. In this study, a seasonal hydrological forecast, driven by the ECMWF's System 4 (SEA), was compared with an ESP of modelled discharge using observations. The hydrological model used for both forecasts was the LISFLOOD model, run over a European domain with a spatial resolution of 5 km. The forecasts were produced from 1990 until the present time, with a daily time step. They were issued once a month with a lead time of seven months. The SEA forecasts are constituted of 15 ensemble members, extended to 51 members every three months. The ESP forecasts comprise 20 ensembles and served as a benchmark for this comparative study. The forecast systems were compared using a diverse set of verification metrics, such as continuous ranked probability scores, ROC curves, anomaly correlation coefficients and Nash-Sutcliffe efficiency coefficients. These metrics were computed over several time-scales, ranging from a weekly to a six-months basis, for each season. The evaluation enabled the investigation of several aspects of seasonal forecasting, such as limits of predictability, timing of high and low flows, as well as exceedance of percentiles. The analysis aimed at exploring the spatial distribution and timely evolution of the limits of predictability.

  2. Seasonal hydrological ensemble forecasts over Europe

    Science.gov (United States)

    Arnal, Louise; Wetterhall, Fredrik; Stephens, Elisabeth; Cloke, Hannah; Pappenberger, Florian

    2016-04-01

    This study investigates the limits of predictability in dynamical seasonal discharge forecasting, in both space and time, over Europe. Seasonal forecasts have an important socioeconomic value. Applications are numerous and cover hydropower management, spring flood prediction, low flow prediction for navigation and agricultural water demands. Additionally, the constant increase in NWP skill for longer lead times and the predicted increase in the intensity and frequency of hydro-meteorological extremes, have amplified the incentive to promote and further improve hydrological forecasts on sub-seasonal to seasonal timescales. In this study, seasonal hydrological forecasts (SEA), driven by the ECMWF's System 4 in hindcast mode, were analysed against an Ensemble Streamflow Prediction (ESP) benchmark. The ESP was forced with an ensemble of resampled historical meteorological observations and started with perfect initial conditions. Both forecasts were produced by the LISFLOOD model, run on the pan-European scale with a spatial resolution of 5 by 5 km. The forecasts were issued monthly on a daily time step, from 1990 until the current time, up to a lead time of 7 months. The seasonal discharge forecasts were analysed against the ESP on a catchment scale in terms of their accuracy, skill and sharpness, using a diverse set of verification metrics (e.g. KGE, CRPSS and ROC). Additionally, a reverse-ESP was constructed by forcing the LISFLOOD model with a single perfect meteorological set of observations and initiated from an ensemble of resampled historical initial conditions. The comparison of the ESP with the reverse-ESP approach enabled the identification of the respective contribution of meteorological forcings and hydrologic initial conditions errors to seasonal discharge forecasting uncertainties in Europe. These results could help pinpoint target elements of the forecasting chain which, after being improved, could lead to substantial increase in discharge predictability

  3. Application of quantitative precipitation forecasting and precipitation ensemble prediction for hydrological forecasting

    Directory of Open Access Journals (Sweden)

    P. Tao

    2015-05-01

    Full Text Available The precipitation in the forecast period influences flood forecasting precision, due to the uncertainty of the input to the hydrological model. Taking the ZhangHe basin as the example, the research adopts the precipitation forecast and ensemble precipitation forecast product of the AREM model, uses the Xin Anjiang hydrological model, and tests the flood forecasts. The results show that the flood forecast result can be clearly improved when considering precipitation during the forecast period. Hydrological forecast based on Ensemble Precipitation prediction gives better hydrological forecast information, better satisfying the need for risk information for flood prevention and disaster reduction, and has broad development opportunities.

  4. Application of quantitative precipitation forecasting and precipitation ensemble prediction for hydrological forecasting

    OpenAIRE

    Tao, P.; Tie-Yuan, S.; Zhi-Yuan, Y.; Jun-Chao, W.

    2015-01-01

    The precipitation in the forecast period influences flood forecasting precision, due to the uncertainty of the input to the hydrological model. Taking the ZhangHe basin as the example, the research adopts the precipitation forecast and ensemble precipitation forecast product of the AREM model, uses the Xin Anjiang hydrological model, and tests the flood forecasts. The results show that the flood forecast result can be clearly improved when considering precipitation during the forecast period....

  5. Mesoscale hydrological ensemble forecasting for water resources management

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, V. [Meteorological Research Div., Environment Canada, Dorval, Quebec (Canada); Turcotte, R. [Government of Quebec, Centre of Quebec' s Water Expertise, Quebec (Canada); Anctil, F. [Univ. Laval, Dept. of Civil Engineering, Laval, Quebec (Canada); Favre, A.-C. [INRS, Water Earth and Environment, Quebec (Canada); Petit, Th. [Univ. Laval, Dept. of Civil Engineering, Laval, Quebec (Canada)

    2008-07-01

    This poster discusses meso-scale hydrological ensemble forecasting for water resources management. Environment Canada will produce a 20 member meso-scale (35 km), short range (48 h) meteorological ensemble prediction system (M-EPS). Each of the 20 members of the global EPS will be dynamically down scaled from 100 to 35 km over North America using limited area model GEM-LAM. Preliminary tests have been conducted on Lie'vre watershed to assess the impact of using short range M-EPS for hydrological forecasting.

  6. Role of Hydrological Ensemble Forecasts in Operational Decision Making

    Science.gov (United States)

    Ramaswamy, V.; Saleh, F.; Georgas, N.; Blumberg, A. F.

    2016-12-01

    Considerable importance has been placed on addressing uncertainties in hydrologic forecasts, particularly in regards to operational decision making. This work investigates the utility of short term hydrological ensemble forecasts for operational decision making using meteorological inputs from more than 100 ensemble members from different numerical weather prediction (NWP) models. To this end, an advanced automated hydrologic framework comprising of a regional scale hydrologic model, GIS datasets and the meteorological ensemble predictions from different weather prediction facilities was implemented over the Hudson and Raritan River basins, USA. The uncertainties associated with ensemble streamflow forecasts was analysed for three different flood events classified as minor, moderate and major. This was done by visually and statistically comparing the spread, magnitude and timing of the peak of the hydrologic outputs. Results from this work demonstrate the effectiveness of different NWP models for different operational scenarios, thus providing a better understanding of the uncertainties and risks associated with decision making. In addition to gaining insights into the risks associated with issuing flood alerts, this work also offers useful perspectives on the operationally managing water resources.

  7. Accounting for three sources of uncertainty in ensemble hydrological forecasting

    Directory of Open Access Journals (Sweden)

    A. Thiboult

    2015-07-01

    Full Text Available Seeking for more accuracy and reliability, the hydrometeorological community has developed several tools to decipher the different sources of uncertainty in relevant modeling processes. Among them, the Ensemble Kalman Filter, multimodel approaches and meteorological ensemble forecasting proved to have the capability to improve upon deterministic hydrological forecast. This study aims at untangling the sources of uncertainty by studying the combination of these tools and assessing their contribution to the overall forecast quality. Each of these components is able to capture a certain aspect of the total uncertainty and improve the forecast at different stage in the forecasting process by using different means. Their combination outperforms any of the tool used solely. The EnKF is shown to contribute largely to the ensemble accuracy and dispersion, indicating that the initial condition uncertainty is dominant. However, it fails to maintain the required dispersion throughout the entire forecast horizon and needs to be supported by a multimodel approach to take into account structural uncertainty. Moreover, the multimodel approach contributes to improve the general forecasting performance and prevents from falling into the model selection pitfall since models differ strongly in their ability. Finally, the use of probabilistic meteorological forcing was found to contribute mostly to long lead time reliability. Particular attention needs to be paid to the combination of the tools, especially in the Ensemble Kalman Filter tuning to avoid overlapping in error deciphering.

  8. An evaluation of the canadian global meteorological ensemble prediction system for short-term hydrological forecasting

    Directory of Open Access Journals (Sweden)

    J. A. Velázquez

    2009-07-01

    Full Text Available Hydrological forecasting consists in the assessment of future streamflow. Current deterministic forecasts do not give any information concerning the uncertainty, which might be limiting in a decision-making process. Ensemble forecasts are expected to fill this gap.

    In July 2007, the Meteorological Service of Canada has improved its ensemble prediction system, which has been operational since 1998. It uses the GEM model to generate a 20-member ensemble on a 100 km grid, at mid-latitudes. This improved system is used for the first time for hydrological ensemble predictions. Five watersheds in Quebec (Canada are studied: Chaudière, Châteauguay, Du Nord, Kénogami and Du Lièvre. An interesting 17-day rainfall event has been selected in October 2007. Forecasts are produced in a 3 h time step for a 3-day forecast horizon. The deterministic forecast is also available and it is compared with the ensemble ones. In order to correct the bias of the ensemble, an updating procedure has been applied to the output data. Results showed that ensemble forecasts are more skilful than the deterministic ones, as measured by the Continuous Ranked Probability Score (CRPS, especially for 72 h forecasts. However, the hydrological ensemble forecasts are under dispersed: a situation that improves with the increasing length of the prediction horizons. We conjecture that this is due in part to the fact that uncertainty in the initial conditions of the hydrological model is not taken into account.

  9. An evaluation of the Canadian global meteorological ensemble prediction system for short-term hydrological forecasting

    Directory of Open Access Journals (Sweden)

    F. Anctil

    2009-11-01

    Full Text Available Hydrological forecasting consists in the assessment of future streamflow. Current deterministic forecasts do not give any information concerning the uncertainty, which might be limiting in a decision-making process. Ensemble forecasts are expected to fill this gap.

    In July 2007, the Meteorological Service of Canada has improved its ensemble prediction system, which has been operational since 1998. It uses the GEM model to generate a 20-member ensemble on a 100 km grid, at mid-latitudes. This improved system is used for the first time for hydrological ensemble predictions. Five watersheds in Quebec (Canada are studied: Chaudière, Châteauguay, Du Nord, Kénogami and Du Lièvre. An interesting 17-day rainfall event has been selected in October 2007. Forecasts are produced in a 3 h time step for a 3-day forecast horizon. The deterministic forecast is also available and it is compared with the ensemble ones. In order to correct the bias of the ensemble, an updating procedure has been applied to the output data. Results showed that ensemble forecasts are more skilful than the deterministic ones, as measured by the Continuous Ranked Probability Score (CRPS, especially for 72 h forecasts. However, the hydrological ensemble forecasts are under dispersed: a situation that improves with the increasing length of the prediction horizons. We conjecture that this is due in part to the fact that uncertainty in the initial conditions of the hydrological model is not taken into account.

  10. A System for Continuous Hydrological Ensemble Forecasting (SCHEF) to lead times of 9 days

    Science.gov (United States)

    Bennett, James C.; Robertson, David E.; Shrestha, Durga Lal; Wang, Q. J.; Enever, David; Hapuarachchi, Prasantha; Tuteja, Narendra K.

    2014-11-01

    This study describes a System for Continuous Hydrological Ensemble Forecasting (SCHEF) designed to forecast streamflows to lead times of 9 days. SCHEF is intended to support optimal management of water resources for consumptive and environmental purposes and ultimately to support the management of impending floods. Deterministic rainfall forecasts from the ACCESS-G numerical weather prediction (NWP) model are post-processed using a Bayesian joint probability model to correct biases and quantify uncertainty. Realistic temporal and spatial characteristics are instilled in the rainfall forecast ensemble with the Schaake shuffle. The ensemble rainfall forecasts are then used as inputs to the GR4H hydrological model to produce streamflow forecasts. A hydrological error correction is applied to ensure forecasts transit smoothly from recent streamflow observations. SCHEF forecasts streamflows skilfully for a range of hydrological and climate conditions. Skill is particularly evident in forecasts of streamflows at lead times of 1-6 days. Forecasts perform best in temperate perennially flowing rivers, while forecasts are poorest in intermittently flowing rivers. The poor streamflow forecasts in intermittent rivers are primarily the result of poor rainfall forecasts, rather than an inadequate representation of hydrological processes. Forecast uncertainty becomes more reliably quantified at longer lead times; however there is considerable scope for improving the reliability of streamflow forecasts at all lead times. Additionally, we show that the choice of forecast time-step can influence forecast accuracy: forecasts generated at a 1-h time-step tend to be more accurate than at longer time-steps (e.g. 1-day). This is largely because at shorter time-steps the hydrological error correction is able to correct streamflow forecasts with more recent information, rather than the ability of GR4H to simulate hydrological processes better at shorter time-steps. SCHEF will form the

  11. Uncertainty analysis of hydrological ensemble forecasts in a distributed model utilising short-range rainfall prediction

    Directory of Open Access Journals (Sweden)

    Y. Xuan

    2009-03-01

    Full Text Available Advances in mesoscale numerical weather predication make it possible to provide rainfall forecasts along with many other data fields at increasingly higher spatial resolutions. It is currently possible to incorporate high-resolution NWPs directly into flood forecasting systems in order to obtain an extended lead time. It is recognised, however, that direct application of rainfall outputs from the NWP model can contribute considerable uncertainty to the final river flow forecasts as the uncertainties inherent in the NWP are propagated into hydrological domains and can also be magnified by the scaling process. As the ensemble weather forecast has become operationally available, it is of particular interest to the hydrologist to investigate both the potential and implication of ensemble rainfall inputs to the hydrological modelling systems in terms of uncertainty propagation. In this paper, we employ a distributed hydrological model to analyse the performance of the ensemble flow forecasts based on the ensemble rainfall inputs from a short-range high-resolution mesoscale weather model. The results show that: (1 The hydrological model driven by QPF can produce forecasts comparable with those from a raingauge-driven one; (2 The ensemble hydrological forecast is able to disseminate abundant information with regard to the nature of the weather system and the confidence of the forecast itself; and (3 the uncertainties as well as systematic biases are sometimes significant and, as such, extra effort needs to be made to improve the quality of such a system.

  12. A Global Hydrological Ensemble Forecasting System: Uncertainty Quantification and Data Assimilation

    Science.gov (United States)

    Hong, Y.; Zhang, Y.; Xue, X.; Wang, X.; Gourley, J. J.; Kirstetter, P.

    2012-12-01

    A Global Hydrological Ensemble Forecasting System (GHEFS) driven by TRMM Multi-satellite Prediction Analysis (TMPA) precipitation ensembles and Global Ensemble Forecast System (GEFS) Quantitative Precipitation Forecast (QPF) ensembles, via the Coupled Routing and Excess STorage (CREST) distributed hydrological model, provides deterministic and probabilistic (e.g. 95% confidence boundaries) simulations of streamflow. The TMPA inputs enable flood monitoring and short-term forecasts while the GEFS ensembles provide for forecasts up to a seven-day lead time. This talk will focus on a quantification of the system's uncertainty and streamflow ensemble prediction generation using the following three techniques: 1) an error model that first quantifies and then perturbs both temporal and spatial variability of the real-time, TMPA precipitation estimates by considering the version-7 research product as the reference rainfall product; 2) in forecast mode, utilization of the Ensemble Transform method to account for the uncertainty of GEFS forecasts from its initial condition errors; 3) a sequential data assimilation approach - the Ensemble Square Root Kalman Filter (EnSRF) applied to update the CREST model's internal states whenever observations (e.g. streamflow, soil moisture, and actual ET etc.) are available. The GHEFS is validated in several basins in the U.S. and other continents in terms of flood detection capability (e.g. CSI, NSCE, Peak, Timing), showing improved prognostic capability by offering more time for responding agencies and yielding unique uncertainty information about the magnitude of the forecast impacts.

  13. National Weather Service (NWS) Implementation of the Hydrologic Ensemble Forecast Service

    Science.gov (United States)

    Hartman, R. K.; Fresch, M. A.; Wells, E.

    2015-12-01

    Operational hydrologic forecasters as well as the communities that they serve have long recognized the value of including uncertainty in hydrologic projections. While single value (deterministic) forecasts are easy to understand and link to specific mitigation actions, the potential for using modern risk management strategies is very limited. This is particularly evident at lead times beyond a few days when forecast skill may be low but the value (and costs) of mitigation actions may be quite high. Based on nearly ten years of research and development, the NWS's National Water Center (NWC, formerly the Office of Hydrologic Development) implemented and evaluated the Hydrologic Ensemble Forecast Service (HEFS, see Demargne et al. 2014 Brown et al., 2013, Brown et al., 2014a/b/c). The HEFS provides hydrologic forecasts that reflect the total uncertainty, including that contributed by the meteorological forcing and the hydrologic modeling. The HEFS leverages the skill in weather and climate forecasts to produce ensemble forecasts of precipitation, temperature and streamflow at forecast lead times ranging from one hour to one year. The resulting ensembles represent a rich dataset from which a wide variety of risk-based decision support information can be derived. The NWS River Forecast Centers (RFCs) are starting to incorporate the Hydrologic Ensemble Forecast Service (HEFS,) into their routine operations. In 2012, five (of thirteen) RFCs began running and testing HEFS in an experimental mode. In 2015, HEFS was deployed (including training and software support) to the eight remaining RFCs. Currently, all RFCs are running the HEFS every day in real-time for an increasing number of forecast locations. Eventually, forecasts from the HEFS will be integrated into the warning/hazard services at the NWS Weather Forecast Offices (WFOs). This contribution describes the HEFS framework, the development and deployment strategy, and the operational plans for HEFS going forward.

  14. Using the TIGGE database for ensemble hydrological forecasting: a study on 74 catchments in France (Invited)

    Science.gov (United States)

    Ramos, M.; Zalachori, I.; Mathevet, T.; Loumagne, C.

    2010-12-01

    This study assesses the quality of streamflow forecasts issued by the GRP rainfall-runoff model, driven by ensemble weather predictions from the TIGGE database. The GRP is a lumped soil-moisture-accounting type model developed at Cemagref in France for operational flood forecasting. In this study, the model is run at daily time steps and its assimilation procedure makes use of the last observed discharge at the time of the forecast to update the state of the model routing store. Ensemble predictions from 8 meteorological centres from the TIGGE archive are considered. They are available over a 2-year period, from October 2006 to October 2008. Single ensembles from each centre, with a number of members ranging from 15 to 51 ensembles, are considered in the hydrological model, as well as a combined multi-model ensemble that takes into account all members available at each day of the forecast period. Forecast data were spatially averaged over the studied catchments to obtain the areal forecast precipitation at each lead time. Hydrological forecast evaluation is performed at catchment-based spatial scales and for lead-times up to 15 days. Simulations were carried out over 74 catchments in France, with areas ranging from 1000 km2 to 44,000 km2. Forecasts are compared to observed data and typical skill scores used for forecast verification are computed. Issues related to the quality of the ensemble hydrological forecasts, and the impacts of factors like catchment area and hydrological regime type on the performance of the forecasts are discussed.

  15. Investigating the interactions between data assimilation and post-processing in hydrological ensemble forecasting

    Science.gov (United States)

    Bourgin, François; Ramos, Maria-Helena; Thirel, Guillaume; Andreassian, Vazken

    2015-04-01

    Statistical post-processing and data assimilation (also called real-time model updating in the engineering community), although generally dealt with separately, can be intrinsically related in the hydrological forecasting framework. Both represent techniques that may be used in a forecasting system to improve the quality of the forecasts (i.e., to provide more accurate and reliable forecasts) and to, ultimately, enhance the usefulness of the forecasts in decision-making. In this study, we investigate how data assimilation and post-processing contribute, either separately or together, to the skill of a hydrological ensemble forecasting system. Based on a set of 202 unregulated catchments spread over France, we compare four forecasting options: without data assimilation and post-processing, without data assimilation but with post-processing, with data assimilation but without post-processing, and with both data assimilation and post-processing. A short-range meteorological ensemble prediction system, the Météo-France PEARP EPS, and the GRP hydrological model, a continuous, lumped storage-type model specifically designed for flood forecasting, were used to produce hourly hydrological ensemble forecasts. The data assimilation procedure used exploits the last available observed discharge to directly update the routing store state of the hydrological model, and the last relative error to correct the model output with a multiplicative coefficient. For post-processing, we used a hydrological uncertainty processor (HUP) that assesses model simulation uncertainties and compute empirical uncertainty bounds to flow simulations. Results indicate that both strategies have complementary effects. Data assimilation has mainly a very positive effect on forecast accuracy. Its impact however decreases with increasing lead time. Post-processing, by accounting specifically for hydrological uncertainty, has a very positive and longer lasting effect on forecast reliability. As a

  16. The state of the art of flood forecasting - Hydrological Ensemble Prediction Systems

    Science.gov (United States)

    Thielen-Del Pozo, J.; Pappenberger, F.; Salamon, P.; Bogner, K.; Burek, P.; de Roo, A.

    2010-09-01

    Flood forecasting systems form a key part of ‘preparedness' strategies for disastrous floods and provide hydrological services, civil protection authorities and the public with information of upcoming events. Provided the warning leadtime is sufficiently long, adequate preparatory actions can be taken to efficiently reduce the impacts of the flooding. Because of the specific characteristics of each catchment, varying data availability and end-user demands, the design of the best flood forecasting system may differ from catchment to catchment. However, despite the differences in concept and data needs, there is one underlying issue that spans across all systems. There has been an growing awareness and acceptance that uncertainty is a fundamental issue of flood forecasting and needs to be dealt with at the different spatial and temporal scales as well as the different stages of the flood generating processes. Today, operational flood forecasting centres change increasingly from single deterministic forecasts to probabilistic forecasts with various representations of the different contributions of uncertainty. The move towards these so-called Hydrological Ensemble Prediction Systems (HEPS) in flood forecasting represents the state of the art in forecasting science, following on the success of the use of ensembles for weather forecasting (Buizza et al., 2005) and paralleling the move towards ensemble forecasting in other related disciplines such as climate change predictions. The use of HEPS has been internationally fostered by initiatives such as "The Hydrologic Ensemble Prediction Experiment" (HEPEX), created with the aim to investigate how best to produce, communicate and use hydrologic ensemble forecasts in hydrological short-, medium- und long term prediction of hydrological processes. The advantages of quantifying the different contributions of uncertainty as well as the overall uncertainty to obtain reliable and useful flood forecasts also for extreme events

  17. Multi-Model Grand Ensemble Hydrologic Forecasting in the Fu River Basin Using Bayesian Model Averaging

    Directory of Open Access Journals (Sweden)

    Bo Qu

    2017-01-01

    Full Text Available Statistical post-processing for multi-model grand ensemble (GE hydrologic predictions is necessary, in order to achieve more accurate and reliable probabilistic forecasts. This paper presents a case study which applies Bayesian model averaging (BMA to statistically post-process raw GE runoff forecasts in the Fu River basin in China, at lead times ranging from 6 to 120 h. The raw forecasts were generated by running the Xinanjiang hydrologic model with ensemble forecasts (164 forecast members, using seven different “THORPEX Interactive Grand Global Ensemble” (TIGGE weather centres as forcing inputs. Some measures, such as data transformation and high-dimensional optimization, were included in the experiment after considering the practical water regime and data conditions. The results indicate that the BMA post-processing method is capable of improving the performance of raw GE runoff forecasts, yielding more calibrated and sharp predictive probability density functions (PDFs, over a range of lead times from 24 to 120 h. The analysis of percentile forecasts in two different flood events illustrates the great potential and prospects of BMA GE probabilistic river discharge forecasts, for taking precautions against severe flooding events.

  18. Hydrological-oriented verification for ensemble forecasting systems: the case of the PIT diagram

    Science.gov (United States)

    Bourgin, François; Ramos, Maria-Helena; Perrin, Charles; Renard, Benjamin

    2017-04-01

    The most common way to communicate uncertainty in streamflow predictions for water resources and risk management is through the use of ensemble scenarios or prediction intervals. While the advantages of probabilistic flow forecasting for decision-making are recognized, the evaluation of the quality of ensemble-based or probabilistic forecasts remains a challenge. Reliability is a fundamental attribute when evaluating the quality of probabilistic flow predictions. It is related to the statistical coherence of the associated uncertainty estimates. Reliable predictions are thus important for users who take actions based on prediction intervals (e.g., reservoir inflow volume forecasts) or on the forecast probability of a given critical event (e.g., exceedance of a flood threshold). However, forecast systems are usually developed to serve many users and, in general, they are evaluated without considering the user's specific decision-making problem. This means that a forecasting system must be reliable in all situations (for normal, high or low flows; for peak flow probabilities or volume probabilities of occurrence), regardless of the event of interest for the user. At the same time, users are often interested in knowing if a forecasting system performs well for their case of application. Application-focused evaluations of the quality of a forecast are thus also important to enhance the usefulness of a forecasting system. Here, we investigate the specificities of hydrological-oriented verification of reliability that is commonly assessed with the Probability Integral Transform (PIT) diagram. We applied an ensemble forecasting system to a large set of catchments in France to assess the impact of conditioning strategies used to stratifying the data on the evaluation of forecast performance. For example, we considered separating low and high flows, or focusing on rainfall-driven or recession parts of the hydrographs. We show that the use of conditioning strategies can

  19. Integrating weather and climate predictions for seamless hydrologic ensemble forecasting: A case study in the Yalong River basin

    Science.gov (United States)

    Ye, Aizhong; Deng, Xiaoxue; Ma, Feng; Duan, Qingyun; Zhou, Zheng; Du, Chao

    2017-04-01

    Despite the tremendous improvement made in numerical weather and climate models over the recent years, the forecasts generated by those models still cannot be used directly for hydrological forecasting. A post-processor like the Ensemble Pre-Processor (EPP) developed by U.S. National Weather Service must be used to remove various biases and to extract useful predictive information from those forecasts. In this paper, we investigate how different designs of canonical events in the EPP can help post-process precipitation forecasts from the Global Ensemble Forecast System (GEFS) and Climate Forecast System Version 2 (CFSv2). The use of canonical events allow those products to be linked seamlessly and then the post-processed ensemble precipitation forecasts can be generated using the Schaake Shuffle procedure. We used the post-processed ensemble precipitation forecasts to drive a distributed hydrological model to obtain ensemble streamflow forecasts and evaluated those forecasts against the observed streamflow. We found that the careful design of canonical events can help extract more useful information, especially when up-to-date observed precipitation is used to setup the canonical events. We also found that streamflow forecasts using post-processed precipitation forecasts have longer lead times and higher accuracy than streamflow forecasts made by traditional Extend Streamflow Prediction (ESP) and the forecasts based on original GEFS and CFSv2 precipitation forecasts.

  20. A retrospective streamflow ensemble forecast for an extreme hydrologic event: a case study of Hurricane Irene and on the Hudson River basin

    National Research Council Canada - National Science Library

    Saleh, Firas; Ramaswamy, Venkatsundar; Georgas, Nickitas; Blumberg, Alan F; Pullen, Julie

    2016-01-01

      This paper investigates the uncertainties in hourly streamflow ensemble forecasts for an extreme hydrological event using a hydrological model forced with short-range ensemble weather prediction models...

  1. Error reduction and representation in stages (ERRIS) in hydrological modelling for ensemble streamflow forecasting

    Science.gov (United States)

    Li, Ming; Wang, Q. J.; Bennett, James C.; Robertson, David E.

    2016-09-01

    This study develops a new error modelling method for ensemble short-term and real-time streamflow forecasting, called error reduction and representation in stages (ERRIS). The novelty of ERRIS is that it does not rely on a single complex error model but runs a sequence of simple error models through four stages. At each stage, an error model attempts to incrementally improve over the previous stage. Stage 1 establishes parameters of a hydrological model and parameters of a transformation function for data normalization, Stage 2 applies a bias correction, Stage 3 applies autoregressive (AR) updating, and Stage 4 applies a Gaussian mixture distribution to represent model residuals. In a case study, we apply ERRIS for one-step-ahead forecasting at a range of catchments. The forecasts at the end of Stage 4 are shown to be much more accurate than at Stage 1 and to be highly reliable in representing forecast uncertainty. Specifically, the forecasts become more accurate by applying the AR updating at Stage 3, and more reliable in uncertainty spread by using a mixture of two Gaussian distributions to represent the residuals at Stage 4. ERRIS can be applied to any existing calibrated hydrological models, including those calibrated to deterministic (e.g. least-squares) objectives.

  2. A one-way coupled atmospheric-hydrological modeling system with combination of high-resolution and ensemble precipitation forecasting

    Science.gov (United States)

    Wu, Zhiyong; Wu, Juan; Lu, Guihua

    2016-09-01

    Coupled hydrological and atmospheric modeling is an effective tool for providing advanced flood forecasting. However, the uncertainties in precipitation forecasts are still considerable. To address uncertainties, a one-way coupled atmospheric-hydrological modeling system, with a combination of high-resolution and ensemble precipitation forecasting, has been developed. It consists of three high-resolution single models and four sets of ensemble forecasts from the THORPEX Interactive Grande Global Ensemble database. The former provides higher forecasting accuracy, while the latter provides the range of forecasts. The combined precipitation forecasting was then implemented to drive the Chinese National Flood Forecasting System in the 2007 and 2008 Huai River flood hindcast analysis. The encouraging results demonstrated that the system can clearly give a set of forecasting hydrographs for a flood event and has a promising relative stability in discharge peaks and timing for warning purposes. It not only gives a deterministic prediction, but also generates probability forecasts. Even though the signal was not persistent until four days before the peak discharge was observed in the 2007 flood event, the visualization based on threshold exceedance provided clear and concise essential warning information at an early stage. Forecasters could better prepare for the possibility of a flood at an early stage, and then issue an actual warning if the signal strengthened. This process may provide decision support for civil protection authorities. In future studies, different weather forecasts will be assigned various weight coefficients to represent the covariance of predictors and the extremes of distributions.

  3. Should we use seasonnal meteorological ensemble forecasts for hydrological forecasting? A case study for nordic watersheds in Canada.

    Science.gov (United States)

    Bazile, Rachel; Boucher, Marie-Amélie; Perreault, Luc; Leconte, Robert; Guay, Catherine

    2017-04-01

    Hydro-electricity is a major source of energy for many countries throughout the world, including Canada. Long lead-time streamflow forecasts are all the more valuable as they help decision making and dam management. Different techniques exist for long-term hydrological forecasting. Perhaps the most well-known is 'Extended Streamflow Prediction' (ESP), which considers past meteorological scenarios as possible, often equiprobable, future scenarios. In the ESP framework, those past-observed meteorological scenarios (climatology) are used in turn as the inputs of a chosen hydrological model to produce ensemble forecasts (one member corresponding to each year in the available database). Many hydropower companies, including Hydro-Québec (province of Quebec, Canada) use variants of the above described ESP system operationally for long-term operation planning. The ESP system accounts for the hydrological initial conditions and for the natural variability of the meteorological variables. However, it cannot consider the current initial state of the atmosphere. Climate models can help remedy this drawback. In the context of a changing climate, dynamical forecasts issued from climate models seem to be an interesting avenue to improve upon the ESP method and could help hydropower companies to adapt their management practices to an evolving climate. Long-range forecasts from climate models can also be helpful for water management at locations where records of past meteorological conditions are short or nonexistent. In this study, we compare 7-month hydrological forecasts obtained from climate model outputs to an ESP system. The ESP system mimics the one used operationally at Hydro-Québec. The dynamical climate forecasts are produced by the European Center for Medium range Weather Forecasts (ECMWF) System4. Forecasts quality is assessed using numerical scores such as the Continuous Ranked Probability Score (CRPS) and the Ignorance score and also graphical tools such as the

  4. Hydrological Ensemble Prediction System (HEPS)

    Science.gov (United States)

    Thielen-Del Pozo, J.; Schaake, J.; Martin, E.; Pailleux, J.; Pappenberger, F.

    2010-09-01

    Flood forecasting systems form a key part of ‘preparedness' strategies for disastrous floods and provide hydrological services, civil protection authorities and the public with information of upcoming events. Provided the warning leadtime is sufficiently long, adequate preparatory actions can be taken to efficiently reduce the impacts of the flooding. Following on the success of the use of ensembles for weather forecasting, the hydrological community now moves increasingly towards Hydrological Ensemble Prediction Systems (HEPS) for improved flood forecasting using operationally available NWP products as inputs. However, these products are often generated on relatively coarse scales compared to hydrologically relevant basin units and suffer systematic biases that may have considerable impact when passed through the non-linear hydrological filters. Therefore, a better understanding on how best to produce, communicate and use hydrologic ensemble forecasts in hydrological short-, medium- und long term prediction of hydrological processes is necessary. The "Hydrologic Ensemble Prediction Experiment" (HEPEX), is an international initiative consisting of hydrologists, meteorologist and end-users to advance probabilistic hydrologic forecast techniques for flood, drought and water management applications. Different aspects of the hydrological ensemble processor are being addressed including • Production of useful meteorological products relevant for hydrological applications, ranging from nowcasting products to seasonal forecasts. The importance of hindcasts that are consistent with the operational weather forecasts will be discussed to support bias correction and downscaling, statistically meaningful verification of HEPS, and the development and testing of operating rules; • Need for downscaling and post-processing of weather ensembles to reduce bias before entering hydrological applications; • Hydrological model and parameter uncertainty and how to correct and

  5. The value of the North American Multi Model Ensemble phase 2 for sub-seasonal hydrological forecasting

    Science.gov (United States)

    Wanders, Niko; Wood, Eric

    2016-04-01

    Sub-seasonal to seasonal weather and hydrological forecasts have the potential to provide vital information for a variety of water-related decision makers. For example, seasonal forecasts of drought risk can enable farmers to make adaptive choices on crop varieties, labour usage, and technology investments. Seasonal and sub-seasonal predictions can increase preparedness to hydrological extremes that regularly occur in all regions of the world with large impacts on society. We investigated the skill of six seasonal forecast models from the NMME-2 ensemble coupled to two global hydrological models (VIC and PCRGLOBWB) for the period 1982-2012. The 31 years of NNME-2 hindcast data is used in combination with an ensemble mean and ESP forecast, to forecast important hydrological variables (e.g. soil moisture, groundwater storage, snow, reservoir levels and river discharge). By using two global hydrological models we are able to quantify both the uncertainty in the meteorological input and the uncertainty created by the different hydrological models. We show that the NMME-2 forecast outperforms the ESP forecasts in terms of anomaly correlation and brier skill score for all forecasted hydrological variables, with a low uncertainty in the performance amongst the hydrological models. However, the continuous ranked probability score (CRPS) of the NMME-2 ensemble is inferior to the ESP due to a large spread between the individual ensemble members. We use a cost analysis to show that the damage caused by floods and droughts in large scale rivers can globally be reduced by 48% (for leads from 1-2 months) to 20% (for leads between 6-9 months) when precautions are taken based on the NMME-2 ensemble instead of an ESP forecast. In collaboration with our local partner in West Africa (AGHRYMET), we looked at the performance of the sub-seasonal forecasts for crop planting dates and high flow season in West Africa. We show that the uncertainty in the optimal planting date is reduced

  6. Using the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale

    Directory of Open Access Journals (Sweden)

    A. Pietroniro

    2006-08-01

    Full Text Available Environment Canada has been developing a community environmental modelling system (Modélisation Environmentale Communautaire – MEC, which is designed to facilitate coupling between models focusing on different components of the earth system. The ultimate objective of MEC is to use the coupled models to produce operational forecasts. MESH (MEC – Surface and Hydrology, a configuration of MEC currently under development, is specialized for coupled land-surface and hydrological models. To determine the specific requirements for MESH, its different components were implemented on the Laurentian Great Lakes watershed, situated on the Canada–U.S. border. This experiment showed that MESH can help us better understand the behaviour of different land-surface models, test different schemes for producing ensemble streamflow forecasts, and provide a means of sharing the data, the models and the results with collaborators and end-users. This modelling framework is at the heart of a testbed proposal for the Hydrologic Ensemble Prediction Experiment (HEPEX which should allow us to make use of the North American Ensemble Forecasting System (NAEFS to improve streamflow forecasts of the Great Lakes tributaries, and demonstrate how MESH can contribute to a Community Hydrologic Prediction System (CHPS.

  7. Dynamical forecast vs Ensemble Streamflow Prediction (ESP): how sensitive are monthly and seasonal hydrological forecasts to the quality of rainfall drivers?

    Science.gov (United States)

    Tanguy, Maliko; Prudhomme, Christel; Harrigan, Shaun; Smith, Katie

    2017-04-01

    Seasonal forecasting of hydrological extremes is challenging for the hydro-meteorological modelling community, and the performance of hydrological forecasts at lead times over 1 month is still poor especially for catchments with limited hydrological memory. A considerable amount of effort is being invested within the meteorological community to improve dynamic meteorological forecasting which can then be used to drive hydrological models to produce physically-driven hydrological forecasts. However, currently for the UK, these meteorological forecasts are being produced at 1 month or seasonal time-step, whereas hydrological models often require daily or sub-daily time-steps. A simpler way to get seasonal forecasts is to use historical climate data to drive hydrological models using Ensemble Streamflow Prediction (ESP). This gives a range of possible future hydrological status given known initial conditions, but it does not contain any information on the future dynamic of the atmosphere. The error is highly dependent on the type of catchment, but ESP is an improvement compared to simply using climatology of river flows, especially in groundwater dominated catchments. The objective of this study is to find out how accurate the seasonal rainfall forecast has to be (in terms of total rainfall and temporal distribution) for the dynamical seasonal forecast to beat ESP. To this aim, we have looked at the sensitivity of hydrological models to the quality of driving rainfall input, proxy of 'best possible' forecasts. Study catchments representative of the range of UK's hydro-climatic conditions were selected. For these catchments, synthetic rainfall time series derived from observed data were created by increasingly degrading the data. The number of rainy days, their intensity and their sequencing were artificially modified to analyse which of these characteristics is most important to get a better hydrological forecast using a simple lumped hydrological model (GR4J), and

  8. A retrospective streamflow ensemble forecast for an extreme hydrologic event: a case study of Hurricane Irene and on the Hudson River basin

    Science.gov (United States)

    Saleh, Firas; Ramaswamy, Venkatsundar; Georgas, Nickitas; Blumberg, Alan F.; Pullen, Julie

    2016-07-01

    This paper investigates the uncertainties in hourly streamflow ensemble forecasts for an extreme hydrological event using a hydrological model forced with short-range ensemble weather prediction models. A state-of-the art, automated, short-term hydrologic prediction framework was implemented using GIS and a regional scale hydrological model (HEC-HMS). The hydrologic framework was applied to the Hudson River basin ( ˜ 36 000 km2) in the United States using gridded precipitation data from the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) and was validated against streamflow observations from the United States Geologic Survey (USGS). Finally, 21 precipitation ensemble members of the latest Global Ensemble Forecast System (GEFS/R) were forced into HEC-HMS to generate a retrospective streamflow ensemble forecast for an extreme hydrological event, Hurricane Irene. The work shows that ensemble stream discharge forecasts provide improved predictions and useful information about associated uncertainties, thus improving the assessment of risks when compared with deterministic forecasts. The uncertainties in weather inputs may result in false warnings and missed river flooding events, reducing the potential to effectively mitigate flood damage. The findings demonstrate how errors in the ensemble median streamflow forecast and time of peak, as well as the ensemble spread (uncertainty) are reduced 48 h pre-event by utilizing the ensemble framework. The methodology and implications of this work benefit efforts of short-term streamflow forecasts at regional scales, notably regarding the peak timing of an extreme hydrologic event when combined with a flood threshold exceedance diagram. Although the modeling framework was implemented on the Hudson River basin, it is flexible and applicable in other parts of the world where atmospheric reanalysis products and streamflow data are available.

  9. Flood Forecasting Based on TIGGE Precipitation Ensemble Forecast

    OpenAIRE

    Jinyin Ye; Yuehong Shao; Zhijia Li

    2016-01-01

    TIGGE (THORPEX International Grand Global Ensemble) was a major part of the THORPEX (Observing System Research and Predictability Experiment). It integrates ensemble precipitation products from all the major forecast centers in the world and provides systematic evaluation on the multimodel ensemble prediction system. Development of meteorologic-hydrologic coupled flood forecasting model and early warning model based on the TIGGE precipitation ensemble forecast can provide flood probability fo...

  10. Precipitation and temperature ensemble forecasts from single-value forecasts

    Directory of Open Access Journals (Sweden)

    J. Schaake

    2007-04-01

    Full Text Available A procedure is presented to construct ensemble forecasts from single-value forecasts of precipitation and temperature. This involves dividing the spatial forecast domain and total forecast period into a number of parts that are treated as separate forecast events. The spatial domain is divided into hydrologic sub-basins. The total forecast period is divided into time periods, one for each model time step. For each event archived values of forecasts and corresponding observations are used to model the joint distribution of forecasts and observations. The conditional distribution of observations for a given single-value forecast is used to represent the corresponding probability distribution of events that may occur for that forecast. This conditional forecast distribution subsequently is used to create ensemble members that vary in space and time using the "Schaake Shuffle" (Clark et al, 2004. The resulting ensemble members have the same space-time patterns as historical observations so that space-time joint relationships between events that have a significant effect on hydrological response tend to be preserved.

    Forecast uncertainty is space and time-scale dependent. For a given lead time to the beginning of the valid period of an event, forecast uncertainty depends on the length of the forecast valid time period and the spatial area to which the forecast applies. Although the "Schaake Shuffle" procedure, when applied to construct ensemble members from a time-series of single value forecasts, may preserve some of this scale dependency, it may not be sufficient without additional constraint. To account more fully for the time-dependent structure of forecast uncertainty, events for additional "aggregate" forecast periods are defined as accumulations of different "base" forecast periods.

    The generated ensemble members can be ingested by an Ensemble Streamflow Prediction system to produce ensemble forecasts of streamflow and other

  11. Comparison of the performance and reliability of 18 lumped hydrological models driven by ECMWF rainfall ensemble forecasts: a case study on 29 French catchments

    Science.gov (United States)

    Velázquez, Juan Alberto; Anctil, François; Ramos, Maria-Helena; Perrin, Charles

    2010-05-01

    An ensemble forecasting system seeks to assess and to communicate the uncertainty of hydrological predictions by proposing, at each time step, an ensemble of forecasts from which one can estimate the probability distribution of the predictant (the probabilistic forecast), in contrast with a single estimate of the flow, for which no distribution is obtainable (the deterministic forecast). In the past years, efforts towards the development of probabilistic hydrological prediction systems were made with the adoption of ensembles of numerical weather predictions (NWPs). The additional information provided by the different available Ensemble Prediction Systems (EPS) was evaluated in a hydrological context on various case studies (see the review by Cloke and Pappenberger, 2009). For example, the European ECMWF-EPS was explored in case studies by Roulin et al. (2005), Bartholmes et al. (2005), Jaun et al. (2008), and Renner et al. (2009). The Canadian EC-EPS was also evaluated by Velázquez et al. (2009). Most of these case studies investigate the ensemble predictions of a given hydrological model, set up over a limited number of catchments. Uncertainty from weather predictions is assessed through the use of meteorological ensembles. However, uncertainty from the tested hydrological model and statistical robustness of the forecasting system when coping with different hydro-meteorological conditions are less frequently evaluated. The aim of this study is to evaluate and compare the performance and the reliability of 18 lumped hydrological models applied to a large number of catchments in an operational ensemble forecasting context. Some of these models were evaluated in a previous study (Perrin et al. 2001) for their ability to simulate streamflow. Results demonstrated that very simple models can achieve a level of performance almost as high (sometimes higher) as models with more parameters. In the present study, we focus on the ability of the hydrological models to

  12. Real-time flood forecasting coupling different postprocessing techniques of precipitation forecast ensembles with a distributed hydrological model. The case study of may 2008 flood in western Piemonte, Italy

    Directory of Open Access Journals (Sweden)

    D. Cane

    2013-02-01

    Full Text Available In this work, we compare the performance of an hydrological model when driven by probabilistic rain forecast derived from two different post-processing techniques. The region of interest is Piemonte, northwestern Italy, a complex orography area close to the Mediterranean Sea where the forecast are often a challenge for weather models. The May 2008 flood is here used as a case study, and the very dense weather station network allows us for a very good description of the event and initialization of the hydrological model. The ensemble probabilistic forecasts of the rainfall fields are obtained with the Bayesian model averaging, with the classical poor man ensemble approach and with a new technique, the Multimodel SuperEnsemble Dressing. In this case study, the meteo-hydrological chain initialized with the Multimodel SuperEnsemble Dressing is able to provide more valuable discharge ranges with respect to the one initialized with Bayesian model averaging multi-model.

  13. Flood Forecasting Based on TIGGE Precipitation Ensemble Forecast

    Directory of Open Access Journals (Sweden)

    Jinyin Ye

    2016-01-01

    Full Text Available TIGGE (THORPEX International Grand Global Ensemble was a major part of the THORPEX (Observing System Research and Predictability Experiment. It integrates ensemble precipitation products from all the major forecast centers in the world and provides systematic evaluation on the multimodel ensemble prediction system. Development of meteorologic-hydrologic coupled flood forecasting model and early warning model based on the TIGGE precipitation ensemble forecast can provide flood probability forecast, extend the lead time of the flood forecast, and gain more time for decision-makers to make the right decision. In this study, precipitation ensemble forecast products from ECMWF, NCEP, and CMA are used to drive distributed hydrologic model TOPX. We focus on Yi River catchment and aim to build a flood forecast and early warning system. The results show that the meteorologic-hydrologic coupled model can satisfactorily predict the flow-process of four flood events. The predicted occurrence time of peak discharges is close to the observations. However, the magnitude of the peak discharges is significantly different due to various performances of the ensemble prediction systems. The coupled forecasting model can accurately predict occurrence of the peak time and the corresponding risk probability of peak discharge based on the probability distribution of peak time and flood warning, which can provide users a strong theoretical foundation and valuable information as a promising new approach.

  14. Development and Use of the Hydrologic Ensemble Forecast System by the National Weather Service to Support the New York City Water Supply

    Science.gov (United States)

    Shedd, R.; Reed, S. M.; Porter, J. H.

    2015-12-01

    The National Weather Service (NWS) has been working for several years on the development of the Hydrologic Ensemble Forecast System (HEFS). The objective of HEFS is to provide ensemble river forecasts incorporating the best precipitation and temperature forcings at any specific time horizon. For the current implementation, this includes the Global Ensemble Forecast System (GEFS) and the Climate Forecast System (CFSv2). One of the core partners that has been working with the NWS since the beginning of the development phase of HEFS is the New York City Department of Environmental Protection (NYCDEP) which is responsible for the complex water supply system for New York City. The water supply system involves a network of reservoirs in both the Delaware and Hudson River basins. At the same time that the NWS was developing HEFS, NYCDEP was working on enhancing the operations of their water supply reservoirs through the development of a new Operations Support Tool (OST). OST is designed to guide reservoir system operations to ensure an adequate supply of high-quality drinking water for the city, as well as to meet secondary objectives for reaches downstream of the reservoirs assuming the primary water supply goals can be met. These secondary objectives include fisheries and ecosystem support, enhanced peak flow attenuation beyond that provided natively by the reservoirs, salt front management, and water supply for other cities. Since January 2014, the NWS Northeast and Middle Atlantic River Forecast Centers have provided daily one year forecasts from HEFS to NYCDEP. OST ingests these forecasts, couples them with near-real-time environmental and reservoir system data, and drives models of the water supply system. The input of ensemble forecasts results in an ensemble of model output, from which information on the range and likelihood of possible future system states can be extracted. This type of probabilistic information provides system managers with additional

  15. Multi-objective Optimization Based Calibration of Hydrologic Model and Ensemble Hydrologic Forecast for Java Island, Indonesia

    Science.gov (United States)

    Yanto, M.; Kasprzyk, J. R.; Rajagopalan, B.; Livneh, B.

    2016-12-01

    This study explores the benefits of multi-objective optimization of Variable Infiltration Capacity (VIC) model for five watersheds in Java, the most populous island in Indonesia. Six objective functions: Nash Sutcliffe Efficiency (NSE), percent bias (PBIAS), logarithmic function of root mean square error (Log-RMSE), predictive efficiency (Pe), percent errors in peak (PEP) and slope of flow duration curve error (SFDCE) were selected as evaluation metrics. These metrics were optimized by tuning four VIC model parameters: infiltration shape parameter (b), fraction of maximum baseflow where nonlinear baseflow begin (Ds), thickness of soil layer 2 (thick2) and thickness of soil layer 3 (thick3). We employed Borg Multiobjective Evolutionary Algorithm (Borg MOEA), an automatic simulation-optimization algorithm, to search for non-dominated solutions. We identified the redundancy between NSE and Log-RMSE, Pe, and PEP through visual inspection of their sensitivity to parameters b and Ds of VIC model and to baseflow index (BFI). Accordingly, we proposed NSE, PBIAS and SFDCE as critical objective functions to represent hydrologic processes in tropical region of Java, Indonesia. Using these three objective functions, we culled the objective functions based on at least - NSE > 0.75, PBIAS resources planning and management.

  16. Flood Forecast and Early Warning with High-Resolution Ensemble Rainfall from Numerical Weather Prediction Model

    OpenAIRE

    Yu, Wansik; NAKAKITA, Eiichi; Jung, Kwansue

    2016-01-01

    This paper investigates the applicability of ensemble forecasts of numerical weather prediction (NWP) model for flood forecasting. In this study, 10 km resolution ensemble rainfalls forecast and their downscaled forecasts of 2 km resolution were used in the hydrologic model as input data for flood forecasting and application of flood early warning. Ensemble data consists of 51 members and 48 hr forecast time. Ensemble outputs are verified spatially whether they can produce suitable rainfall p...

  17. Uncertainty assessment via Bayesian revision of ensemble streamflow predictions in the operational river Rhine forecasting system

    NARCIS (Netherlands)

    Reggiani, P.; Renner, M.; Weerts, A.H.; Van Gelder, P.A.H.J.M.

    2009-01-01

    Ensemble streamflow forecasts obtained by using hydrological models with ensemble weather products are becoming more frequent in operational flow forecasting. The uncertainty of the ensemble forecast needs to be assessed for these products to become useful in forecasting operations. A comprehensive

  18. Uncertainty assessment via Bayesian revision of ensemble streamflow predictions in the operational river Rhine forecasting system

    NARCIS (Netherlands)

    Reggiani, P.; Renner, M.; Weerts, A.H.; Van Gelder, P.A.H.J.M.

    2009-01-01

    Ensemble streamflow forecasts obtained by using hydrological models with ensemble weather products are becoming more frequent in operational flow forecasting. The uncertainty of the ensemble forecast needs to be assessed for these products to become useful in forecasting operations. A comprehensive

  19. Global Ensemble Forecast System (GEFS) [1 Deg.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Ensemble Forecast System (GEFS) is a weather forecast model made up of 21 separate forecasts, or ensemble members. The National Centers for Environmental...

  20. Ensemble Bayesian forecasting system Part I: Theory and algorithms

    Science.gov (United States)

    Herr, Henry D.; Krzysztofowicz, Roman

    2015-05-01

    The ensemble Bayesian forecasting system (EBFS), whose theory was published in 2001, is developed for the purpose of quantifying the total uncertainty about a discrete-time, continuous-state, non-stationary stochastic process such as a time series of stages, discharges, or volumes at a river gauge. The EBFS is built of three components: an input ensemble forecaster (IEF), which simulates the uncertainty associated with random inputs; a deterministic hydrologic model (of any complexity), which simulates physical processes within a river basin; and a hydrologic uncertainty processor (HUP), which simulates the hydrologic uncertainty (an aggregate of all uncertainties except input). It works as a Monte Carlo simulator: an ensemble of time series of inputs (e.g., precipitation amounts) generated by the IEF is transformed deterministically through a hydrologic model into an ensemble of time series of outputs, which is next transformed stochastically by the HUP into an ensemble of time series of predictands (e.g., river stages). Previous research indicated that in order to attain an acceptable sampling error, the ensemble size must be on the order of hundreds (for probabilistic river stage forecasts and probabilistic flood forecasts) or even thousands (for probabilistic stage transition forecasts). The computing time needed to run the hydrologic model this many times renders the straightforward simulations operationally infeasible. This motivates the development of the ensemble Bayesian forecasting system with randomization (EBFSR), which takes full advantage of the analytic meta-Gaussian HUP and generates multiple ensemble members after each run of the hydrologic model; this auxiliary randomization reduces the required size of the meteorological input ensemble and makes it operationally feasible to generate a Bayesian ensemble forecast of large size. Such a forecast quantifies the total uncertainty, is well calibrated against the prior (climatic) distribution of

  1. Calibration and parameterization of a semi-distributed hydrological model to support sub-daily ensemble flood forecasting; a watershed in southeast Brazil

    Science.gov (United States)

    de Almeida Bressiani, D.; Srinivasan, R.; Mendiondo, E. M.

    2013-12-01

    The use of distributed or semi-distributed models to represent the processes and dynamics of a watershed in the last few years has increased. These models are important tools to predict and forecast the hydrological responses of the watersheds, and they can subside disaster risk management and planning. However they usually have a lot of parameters, of which, due to the spatial and temporal variability of the processes, are not known, specially in developing countries; therefore a robust and sensible calibration is very important. This study conduced a sub-daily calibration and parameterization of the Soil & Water Assessment Tool (SWAT) for a 12,600 km2 watershed in southeast Brazil, and uses ensemble forecasts to evaluate if the model can be used as a tool for flood forecasting. The Piracicaba Watershed, in São Paulo State, is mainly rural, but has about 4 million of population in highly relevant urban areas, and three cities in the list of critical cities of the National Center for Natural Disasters Monitoring and Alerts. For calibration: the watershed was divided in areas with similar hydrological characteristics, for each of these areas one gauge station was chosen for calibration; this procedure was performed to evaluate the effectiveness of calibrating in fewer places, since areas with the same group of groundwater, soil, land use and slope characteristics should have similar parameters; making calibration a less time-consuming task. The sensibility analysis and calibration were performed on the software SWAT-CUP with the optimization algorithm: Sequential Uncertainly Fitting Version 2 (SUFI-2), which uses Latin hypercube sampling scheme in an iterative process. The performance of the models to evaluate the calibration and validation was done with: Nash-Sutcliffe efficiency coefficient (NSE), determination coefficient (r2), root mean square error (RMSE), and percent bias (PBIAS), with monthly average values of NSE around 0.70, r2 of 0.9, normalized RMSE of 0

  2. Total probabilities of ensemble runoff forecasts

    Science.gov (United States)

    Olav Skøien, Jon; Bogner, Konrad; Salamon, Peter; Smith, Paul; Pappenberger, Florian

    2017-04-01

    Ensemble forecasting has a long history from meteorological modelling, as an indication of the uncertainty of the forecasts. However, it is necessary to calibrate and post-process the ensembles as the they often exhibit both bias and dispersion errors. Two of the most common methods for this are Bayesian Model Averaging (Raftery et al., 2005) and Ensemble Model Output Statistics (EMOS) (Gneiting et al., 2005). There are also methods for regionalizing these methods (Berrocal et al., 2007) and for incorporating the correlation between lead times (Hemri et al., 2013). Engeland and Steinsland Engeland and Steinsland (2014) developed a framework which can estimate post-processing parameters varying in space and time, while giving a spatially and temporally consistent output. However, their method is computationally complex for our larger number of stations, which makes it unsuitable for our purpose. Our post-processing method of the ensembles is developed in the framework of the European Flood Awareness System (EFAS - http://www.efas.eu), where we are making forecasts for whole Europe, and based on observations from around 700 catchments. As the target is flood forecasting, we are also more interested in improving the forecast skill for high-flows rather than in a good prediction of the entire flow regime. EFAS uses a combination of ensemble forecasts and deterministic forecasts from different meteorological forecasters to force a distributed hydrologic model and to compute runoff ensembles for each river pixel within the model domain. Instead of showing the mean and the variability of each forecast ensemble individually, we will now post-process all model outputs to estimate the total probability, the post-processed mean and uncertainty of all ensembles. The post-processing parameters are first calibrated for each calibration location, but we are adding a spatial penalty in the calibration process to force a spatial correlation of the parameters. The penalty takes

  3. CME Ensemble Forecasting - A Primer

    Science.gov (United States)

    Pizzo, V. J.; de Koning, C. A.; Cash, M. D.; Millward, G. H.; Biesecker, D. A.; Codrescu, M.; Puga, L.; Odstrcil, D.

    2014-12-01

    SWPC has been evaluating various approaches for ensemble forecasting of Earth-directed CMEs. We have developed the software infrastructure needed to support broad-ranging CME ensemble modeling, including composing, interpreting, and making intelligent use of ensemble simulations. The first step is to determine whether the physics of the interplanetary propagation of CMEs is better described as chaotic (like terrestrial weather) or deterministic (as in tsunami propagation). This is important, since different ensemble strategies are to be pursued under the two scenarios. We present the findings of a comprehensive study of CME ensembles in uniform and structured backgrounds that reveals systematic relationships between input cone parameters and ambient flow states and resulting transit times and velocity/density amplitudes at Earth. These results clearly indicate that the propagation of single CMEs to 1 AU is a deterministic process. Thus, the accuracy with which one can forecast the gross properties (such as arrival time) of CMEs at 1 AU is determined primarily by the accuracy of the inputs. This is no tautology - it means specifically that efforts to improve forecast accuracy should focus upon obtaining better inputs, as opposed to developing better propagation models. In a companion paper (deKoning et al., this conference), we compare in situ solar wind data with forecast events in the SWPC operational archive to show how the qualitative and quantitative findings presented here are entirely consistent with the observations and may lead to improved forecasts of arrival time at Earth.

  4. Total probabilities of ensemble runoff forecasts

    Science.gov (United States)

    Olav Skøien, Jon; Bogner, Konrad; Salamon, Peter; Smith, Paul; Pappenberger, Florian

    2016-04-01

    Ensemble forecasting has for a long time been used as a method in meteorological modelling to indicate the uncertainty of the forecasts. However, as the ensembles often exhibit both bias and dispersion errors, it is necessary to calibrate and post-process them. Two of the most common methods for this are Bayesian Model Averaging (Raftery et al., 2005) and Ensemble Model Output Statistics (EMOS) (Gneiting et al., 2005). There are also methods for regionalizing these methods (Berrocal et al., 2007) and for incorporating the correlation between lead times (Hemri et al., 2013). Engeland and Steinsland Engeland and Steinsland (2014) developed a framework which can estimate post-processing parameters which are different in space and time, but still can give a spatially and temporally consistent output. However, their method is computationally complex for our larger number of stations, and cannot directly be regionalized in the way we would like, so we suggest a different path below. The target of our work is to create a mean forecast with uncertainty bounds for a large number of locations in the framework of the European Flood Awareness System (EFAS - http://www.efas.eu) We are therefore more interested in improving the forecast skill for high-flows rather than the forecast skill of lower runoff levels. EFAS uses a combination of ensemble forecasts and deterministic forecasts from different forecasters to force a distributed hydrologic model and to compute runoff ensembles for each river pixel within the model domain. Instead of showing the mean and the variability of each forecast ensemble individually, we will now post-process all model outputs to find a total probability, the post-processed mean and uncertainty of all ensembles. The post-processing parameters are first calibrated for each calibration location, but assuring that they have some spatial correlation, by adding a spatial penalty in the calibration process. This can in some cases have a slight negative

  5. A seasonal hydrologic ensemble prediction system for water resource management

    Science.gov (United States)

    Luo, L.; Wood, E. F.

    2006-12-01

    A seasonal hydrologic ensemble prediction system, developed for the Ohio River basin, has been improved and expanded to several other regions including the Eastern U.S., Africa and East Asia. The prediction system adopts the traditional Extended Streamflow Prediction (ESP) approach, utilizing the VIC (Variable Infiltration Capacity) hydrological model as the central tool for producing ensemble prediction of soil moisture, snow and streamflow with lead times up to 6-month. VIC is forced by observed meteorology to estimate the hydrological initial condition prior to the forecast, but during the forecast period the atmospheric forcing comes from statistically downscaled, seasonal forecast from dynamic climate models. The seasonal hydrologic ensemble prediction system is currently producing realtime seasonal hydrologic forecast for these regions on a monthly basis. Using hindcasts from a 19-year period (1981-1999), during which seasonal hindcasts from NCEP Climate Forecast System (CFS) and European Union DEMETER project are available, we evaluate the performance of the forecast system over our forecast regions. The evaluation shows that the prediction system using the current forecast approach is able to produce reliable and accurate precipitation, soil moisture and streamflow predictions. The overall skill is much higher then the traditional ESP. In particular, forecasts based on multiple climate model forecast are more skillful than single model-based forecast. This emphasizes the significant need for producing seasonal climate forecast with multiple climate models for hydrologic applications. Forecast from this system is expected to provide very valuable information about future hydrologic states and associated risks for end users, including water resource management and financial sectors.

  6. A past discharge assimilation system for ensemble streamflow forecasts over France – Part 2: Impact on the ensemble streamflow forecasts

    Directory of Open Access Journals (Sweden)

    G. Thirel

    2010-08-01

    Full Text Available The use of ensemble streamflow forecasts is developing in the international flood forecasting services. Ensemble streamflow forecast systems can provide more accurate forecasts and useful information about the uncertainty of the forecasts, thus improving the assessment of risks. Nevertheless, these systems, like all hydrological forecasts, suffer from errors on initialization or on meteorological data, which lead to hydrological prediction errors. This article, which is the second part of a 2-part article, concerns the impacts of initial states, improved by a streamflow assimilation system, on an ensemble streamflow prediction system over France. An assimilation system was implemented to improve the streamflow analysis of the SAFRAN-ISBA-MODCOU (SIM hydro-meteorological suite, which initializes the ensemble streamflow forecasts at Météo-France. This assimilation system, using the Best Linear Unbiased Estimator (BLUE and modifying the initial soil moisture states, showed an improvement of the streamflow analysis with low soil moisture increments. The final states of this suite were used to initialize the ensemble streamflow forecasts of Météo-France, which are based on the SIM model and use the European Centre for Medium-range Weather Forecasts (ECMWF 10-day Ensemble Prediction System (EPS. Two different configurations of the assimilation system were used in this study: the first with the classical SIM model and the second using improved soil physics in ISBA. The effects of the assimilation system on the ensemble streamflow forecasts were assessed for these two configurations, and a comparison was made with the original (i.e. without data assimilation and without the improved physics ensemble streamflow forecasts. It is shown that the assimilation system improved most of the statistical scores usually computed for the validation of ensemble predictions (RMSE, Brier Skill Score and its decomposition, Ranked Probability Skill Score, False Alarm

  7. Post Processing Numerical Weather Prediction Model Rainfall Forecasts for Use in Ensemble Streamflow Forecasting in Australia

    Science.gov (United States)

    Shrestha, D. L.; Robertson, D.; Bennett, J.; Ward, P.; Wang, Q. J.

    2012-12-01

    Through the water information research and development alliance (WIRADA) project, CSIRO is conducting research to improve flood and short-term streamflow forecasting services delivered by the Australian Bureau of Meteorology. WIRADA aims to build and test systems to generate ensemble flood and short-term streamflow forecasts with lead times of up to 10 days by integrating rainfall forecasts from Numerical Weather Prediction (NWP) models and hydrological modelling. Here we present an overview of the latest progress towards developing this system. Rainfall during the forecast period is a major source of uncertainty in streamflow forecasting. Ensemble rainfall forecasts are used in streamflow forecasting to characterise the rainfall uncertainty. In Australia, NWP models provide forecasts of rainfall and other weather conditions for lead times of up to 10 days. However, rainfall forecasts from Australian NWP models are deterministic and often contain systematic errors. We use a simplified Bayesian joint probability (BJP) method to post-process rainfall forecasts from the latest generation of Australian NWP models. The BJP method generates reliable and skilful ensemble rainfall forecasts. The post-processed rainfall ensembles are then used to force a semi-distributed conceptual rainfall runoff model to produce ensemble streamflow forecasts. The performance of the ensemble streamflow forecasts is evaluated on a number of Australian catchments and the benefits of using post processed rainfall forecasts are demonstrated.

  8. Perturbation of convection-permitting NWP forecasts for flash-flood ensemble forecasting

    Directory of Open Access Journals (Sweden)

    B. Vincendon

    2011-05-01

    Full Text Available Mediterranean intense weather events often lead to devastating flash-floods. Extending the forecasting lead times further than the watershed response times, implies the use of numerical weather prediction (NWP to drive hydrological models. However, the nature of the precipitating events and the temporal and spatial scales of the watershed response make them difficult to forecast, even using a high-resolution convection-permitting NWP deterministic forecasting. This study proposes a new method to sample the uncertainties of high-resolution NWP precipitation forecasts in order to quantify the predictability of the streamflow forecasts. We have developed a perturbation method based on convection-permitting NWP-model error statistics. It produces short-term precipitation ensemble forecasts from single-value meteorological forecasts. These rainfall ensemble forecasts are then fed into a hydrological model dedicated to flash-flood forecasting to produce ensemble streamflow forecasts. The verification on two flash-flood events shows that this forecasting ensemble performs better than the deterministic forecast. The performance of the precipitation perturbation method has also been found to be broadly as good as that obtained using a state-of-the-art research convection-permitting NWP ensemble, while requiring less computing time.

  9. A past discharge assimilation system for ensemble streamflow forecasts over France – Part 2: Impact on the ensemble streamflow forecasts

    Directory of Open Access Journals (Sweden)

    G. Thirel

    2010-04-01

    Full Text Available The use of ensemble streamflow forecasts is developing in the international flood forecasting services. Such systems can provide more accurate forecasts and useful information about the uncertainty of the forecasts, thus improving the assessment of risks. Nevertheless, these systems, like all hydrological forecasts, suffer from errors on initialization or on meteorological data, which lead to hydrological prediction errors. This article, which is the second part of a 2-part article, concerns the impacts of initial states, improved by a streamflow assimilation system, on an ensemble streamflow prediction system over France. An assimilation system was implemented to improve the streamflow analysis of the SAFRAN-ISBA-MODCOU (SIM hydro-meteorological suite, which initializes the ensemble streamflow forecasts at Météo-France. This assimilation system, using the Best Linear Unbiased Estimator (BLUE and modifying the initial soil moisture states, showed an improvement of the streamflow analysis with low soil moisture increments. The final states of this suite were used to initialize the ensemble streamflow forecasts of Météo-France, which are based on the SIM model and use the European Centre for Medium-range Weather Forecasts (ECMWF 10-day Ensemble Prediction System (EPS. Two different configurations of the assimilation system were used in this study: the first with the classical SIM model and the second using improved soil physics in ISBA. The effects of the assimilation system on the ensemble streamflow forecasts were assessed for these two configurations, and a comparison was made with the original (i.e. without data assimilation and without the improved physics ensemble streamflow forecasts. It is shown that the assimilation system improved most of the statistical scores usually computed for the validation of ensemble predictions (RMSE, Brier Skill Score and its decomposition, Ranked Probability Skill Score, False Alarm Rate, etc., especially

  10. Impacts of calibration strategies and ensemble methods on ensemble flood forecasting over Lanjiang basin, Southeast China

    Science.gov (United States)

    Liu, Li; Xu, Yue-Ping

    2017-04-01

    Ensemble flood forecasting driven by numerical weather prediction products is becoming more commonly used in operational flood forecasting applications.In this study, a hydrological ensemble flood forecasting system based on Variable Infiltration Capacity (VIC) model and quantitative precipitation forecasts from TIGGE dataset is constructed for Lanjiang Basin, Southeast China. The impacts of calibration strategies and ensemble methods on the performance of the system are then evaluated.The hydrological model is optimized by parallel programmed ɛ-NSGAII multi-objective algorithm and two respectively parameterized models are determined to simulate daily flows and peak flows coupled with a modular approach.The results indicatethat the ɛ-NSGAII algorithm permits more efficient optimization and rational determination on parameter setting.It is demonstrated that the multimodel ensemble streamflow mean have better skills than the best singlemodel ensemble mean (ECMWF) and the multimodel ensembles weighted on members and skill scores outperform other multimodel ensembles. For typical flood event, it is proved that the flood can be predicted 3-4 days in advance, but the flows in rising limb can be captured with only 1-2 days ahead due to the flash feature. With respect to peak flows selected by Peaks Over Threshold approach, the ensemble means from either singlemodel or multimodels are generally underestimated as the extreme values are smoothed out by ensemble process.

  11. Seamless Hourly Rainfall Ensemble Forecasts for 0 - 10 days

    Science.gov (United States)

    Cooper, Shaun; Seed, Alan

    2014-05-01

    The Australian Bureau of Meteorology uses a number of Numerical Weather Prediction (NWP) models to generate deterministic rainfall forecasts over a range of lead-times, each with a different resolution in space and time and with different forecast domains. High resolution regional NWP models are used to generate forecasts for the first three days, and are typically more accurate than lower resolution Global NWP models that produce forecasts for longer lead times. Consequently, there is a requirement for a seamless forecast system that is able to blend the various NWP forecasts into a single forecast with a uniform resolution over the entire forecast period. NWP rainfall forecasts contain errors at scales that are significant for even large river basins, and ensemble hydrological prediction systems require ensembles of the order of 100 members, which is well beyond the size that can be generated by NWP ensemble systems. The idea, therefore, is to blend the NWP models in such a way that recognises the skill of the NWP at a particular scale and lead time and to use a stochastic model of forecast errors to perturb the blended deterministic forecast to generate a large ensemble. NWP uncertainties are scale and forecast lead time dependent, especially at long forecast lead times, and are characteristic to each model. By blending the models scale by scale it is possible to recognise the increased skill of the models at larger spatial scales and shorter lead times. The stochastic model is applied at each scale, adding increasingly more variability at smaller spatial scales, while preserving the space-time structure of rain. This process allows an ensemble to be generated by blending deterministic forecasts. Two NWP models from the Bureau, ACCESS-G (Global) (~40 km by ~40 km, 3 hourly out to 10 days) and ACCESS-R (Regional) (~12 km by ~12 km, 1 hourly out to 3 days), are downscaled and blended with the stochastic model to produce an ensemble of hourly forecasts out to 10

  12. Multivariate postprocessing techniques for probabilistic hydrological forecasting

    Science.gov (United States)

    Hemri, Stephan; Lisniak, Dmytro; Klein, Bastian

    2016-04-01

    Hydrologic ensemble forecasts driven by atmospheric ensemble prediction systems need statistical postprocessing in order to account for systematic errors in terms of both mean and spread. Runoff is an inherently multivariate process with typical events lasting from hours in case of floods to weeks or even months in case of droughts. This calls for multivariate postprocessing techniques that yield well calibrated forecasts in univariate terms and ensure a realistic temporal dependence structure at the same time. To this end, the univariate ensemble model output statistics (EMOS; Gneiting et al., 2005) postprocessing method is combined with two different copula approaches that ensure multivariate calibration throughout the entire forecast horizon. These approaches comprise ensemble copula coupling (ECC; Schefzik et al., 2013), which preserves the dependence structure of the raw ensemble, and a Gaussian copula approach (GCA; Pinson and Girard, 2012), which estimates the temporal correlations from training observations. Both methods are tested in a case study covering three subcatchments of the river Rhine that represent different sizes and hydrological regimes: the Upper Rhine up to the gauge Maxau, the river Moselle up to the gauge Trier, and the river Lahn up to the gauge Kalkofen. The results indicate that both ECC and GCA are suitable for modelling the temporal dependences of probabilistic hydrologic forecasts (Hemri et al., 2015). References Gneiting, T., A. E. Raftery, A. H. Westveld, and T. Goldman (2005), Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation, Monthly Weather Review, 133(5), 1098-1118, DOI: 10.1175/MWR2904.1. Hemri, S., D. Lisniak, and B. Klein, Multivariate postprocessing techniques for probabilistic hydrological forecasting, Water Resources Research, 51(9), 7436-7451, DOI: 10.1002/2014WR016473. Pinson, P., and R. Girard (2012), Evaluating the quality of scenarios of short-term wind power

  13. Towards reliable seasonal ensemble streamflow forecasts for ephemeral rivers

    Science.gov (United States)

    Bennett, James; Wang, Qj; Li, Ming; Robertson, David

    2016-04-01

    Despite their inherently variable nature, ephemeral rivers are an important water resource in many dry regions. Water managers are likely benefit considerably from even mildly skilful ensemble forecasts of streamflow in ephemeral rivers. As with any ensemble forecast, forecast uncertainty - i.e., the spread of the ensemble - must be reliably quantified to allow users of the forecasts to make well-founded decisions. Correctly quantifying uncertainty in ephemeral rivers is particularly challenging because of the high incidence of zero flows, which are difficult to handle with conventional statistical techniques. Here we apply a seasonal streamflow forecasting system, the model for generating Forecast Guided Stochastic Scenarios (FoGSS), to 26 Australian ephemeral rivers. FoGSS uses post-processed ensemble rainfall forecasts from a coupled ocean-atmosphere prediction system to force an initialised monthly rainfall runoff model, and then applies a staged hydrological error model to describe and propagate hydrological uncertainty in the forecast. FoGSS produces 12-month streamflow forecasts; as forecast skill declines with lead time, the forecasts are designed to transit seamlessly to stochastic scenarios. The ensemble rainfall forecasts used in FoGSS are known to be unbiased and reliable, and we concentrate here on the hydrological error model. The FoGSS error model has several features that make it well suited to forecasting ephemeral rivers. First, FoGSS models the error after data is transformed with a log-sinh transformation. The log-sinh transformation is able to normalise even highly skewed data and homogenise its variance, allowing us to assume that errors are Gaussian. Second, FoGSS handles zero values using data censoring. Data censoring allows streamflow in ephemeral rivers to be treated as a continuous variable, rather than having to model the occurrence of non-zero values and the distribution of non-zero values separately. This greatly simplifies parameter

  14. Analysis of mesoscale forecasts using ensemble methods

    CERN Document Server

    Gross, Markus

    2016-01-01

    Mesoscale forecasts are now routinely performed as elements of operational forecasts and their outputs do appear convincing. However, despite their realistic appearance at times the comparison to observations is less favorable. At the grid scale these forecasts often do not compare well with observations. This is partly due to the chaotic system underlying the weather. Another key problem is that it is impossible to evaluate the risk of making decisions based on these forecasts because they do not provide a measure of confidence. Ensembles provide this information in the ensemble spread and quartiles. However, running global ensembles at the meso or sub mesoscale involves substantial computational resources. National centers do run such ensembles, but the subject of this publication is a method which requires significantly less computation. The ensemble enhanced mesoscale system presented here aims not at the creation of an improved mesoscale forecast model. Also it is not to create an improved ensemble syste...

  15. First Assessment of Itaipu Dam Ensemble Inflow Forecasting System

    Science.gov (United States)

    Mainardi Fan, Fernando; Machado Vieira Lisboa, Auder; Gomes Villa Trinidad, Giovanni; Rógenes Monteiro Pontes, Paulo; Collischonn, Walter; Tucci, Carlos; Costa Buarque, Diogo

    2017-04-01

    Inflow forecasting for Hydropower Plants (HPP) Dams is one of the prominent uses for hydrological forecasts. A very important HPP in terms of energy generation for South America is the Itaipu Dam, located in the Paraná River, between Brazil and Paraguay countries, with a drainage area of 820.000km2. In this work, we present the development of an ensemble forecasting system for Itaipu, operational since November 2015. The system is based in the MGB-IPH hydrological model, includes hydrodynamics simulations of the main river, and is run every day morning forced by seven different rainfall forecasts: (i) CPTEC-ETA 15km; (ii) CPTEC-BRAMS 5km; (iii) SIMEPAR WRF Ferrier; (iv) SIMEPAR WRF Lin; (v) SIMEPAR WRF Morrison; (vi) SIMEPAR WRF WDM6; (vii) SIMEPAR MEDIAN. The last one (vii) corresponds to the median value of SIMEPAR WRF model versions (iii to vi) rainfall forecasts. Besides the developed system, the "traditional" method for inflow forecasting generation for the Itaipu Dam is also run every day. This traditional method consists in the approximation of the future inflow based on the discharge tendency of upstream telemetric gauges. Nowadays, after all the forecasts are run, the hydrology team of Itaipu develop a consensus forecast, based on all obtained results, which is the one used for the Itaipu HPP Dam operation. After one year of operation a first evaluation of the Ensemble Forecasting System was conducted. Results show that the system performs satisfactory for rising flows up to five days lead time. However, some false alarms were also issued by most ensemble members in some cases. And not in all cases the system performed better than the traditional method, especially during hydrograph recessions. In terms of meteorological forecasts, some members usage are being discontinued. In terms of the hydrodynamics representation, it seems that a better information of rivers cross section could improve hydrographs recession curves forecasts. Those opportunities for

  16. Ozone ensemble forecast with machine learning algorithms

    OpenAIRE

    Mallet, Vivien; Stoltz, Gilles; Mauricette, Boris

    2009-01-01

    International audience; We apply machine learning algorithms to perform sequential aggregation of ozone forecasts. The latter rely on a multimodel ensemble built for ozone forecasting with the modeling system Polyphemus. The ensemble simulations are obtained by changes in the physical parameterizations, the numerical schemes, and the input data to the models. The simulations are carried out for summer 2001 over western Europe in order to forecast ozone daily peaks and ozone hourly concentrati...

  17. Probabilistic flood forecasting on the Rhone River: evaluation with ensemble and analogue-based precipitation forecasts

    Directory of Open Access Journals (Sweden)

    Bellier Joseph

    2016-01-01

    Full Text Available Hydrological ensemble forecasting performances are analysed over 5 basins up to 2000 km2 in the French Upper Rhone region. Streamflow forecasts are issued at an hourly time step from lumped ARX rainfall-runoff models forced by different precipitation forecasts. Ensemble meteorological forecasts from ECMWF and NCEP are considered, as well as analogue-based forecasts fed by their corresponding control forecast. Analogue forecasts are rearranged using an adaptation of the Schaake-Shuffle method in order to ensure the temporal coherence. A new evaluation approach is proposed, separating forecasting performances on peak amplitudes and peak timings for high flow events. Evaluation is conducted against both simulated and observed streamflow (so that relative meteorological and hydrological uncertainties can be assessed, by means of CRPS and rank histograms, over the 2007-2014 period. Results show a general agreement of the forecasting performances when averaged over the 5 basins. However, ensemble-based and analogue-based streamflow forecasts produce a different signature on peak events in terms of bias, spread and reliability. Strengths and weaknesses of both approaches are discussed as well as potential improvements, notably towards their merging.

  18. Impact Assessment of Uncertainty Propagation of Ensemble NWP Rainfall to Flood Forecasting with Catchment Scale

    OpenAIRE

    Wansik Yu; Eiichi Nakakita; Sunmin Kim; Kosei Yamaguchi

    2016-01-01

    The common approach to quantifying the precipitation forecast uncertainty is ensemble simulations where a numerical weather prediction (NWP) model is run for a number of cases with slightly different initial conditions. In practice, the spread of ensemble members in terms of flood discharge is used as a measure of forecast uncertainty due to uncertain precipitation forecasts. This study presents the uncertainty propagation of rainfall forecast into hydrological response with catchment scale t...

  19. Layered Ensemble Architecture for Time Series Forecasting.

    Science.gov (United States)

    Rahman, Md Mustafizur; Islam, Md Monirul; Murase, Kazuyuki; Yao, Xin

    2016-01-01

    Time series forecasting (TSF) has been widely used in many application areas such as science, engineering, and finance. The phenomena generating time series are usually unknown and information available for forecasting is only limited to the past values of the series. It is, therefore, necessary to use an appropriate number of past values, termed lag, for forecasting. This paper proposes a layered ensemble architecture (LEA) for TSF problems. Our LEA consists of two layers, each of which uses an ensemble of multilayer perceptron (MLP) networks. While the first ensemble layer tries to find an appropriate lag, the second ensemble layer employs the obtained lag for forecasting. Unlike most previous work on TSF, the proposed architecture considers both accuracy and diversity of the individual networks in constructing an ensemble. LEA trains different networks in the ensemble by using different training sets with an aim of maintaining diversity among the networks. However, it uses the appropriate lag and combines the best trained networks to construct the ensemble. This indicates LEAs emphasis on accuracy of the networks. The proposed architecture has been tested extensively on time series data of neural network (NN)3 and NN5 competitions. It has also been tested on several standard benchmark time series data. In terms of forecasting accuracy, our experimental results have revealed clearly that LEA is better than other ensemble and nonensemble methods.

  20. Global Ensemble Forecast System (GEFS) [2.5 Deg.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Ensemble Forecast System (GEFS) is a weather forecast model made up of 21 separate forecasts, or ensemble members. The National Centers for Environmental...

  1. Uncertainty Assessment: Reservoir Inflow Forecasting with Ensemble Precipitation Forecasts and HEC-HMS

    Directory of Open Access Journals (Sweden)

    Sheng-Chi Yang

    2014-01-01

    Full Text Available During an extreme event, having accurate inflow forecasting with enough lead time helps reservoir operators decrease the impact of floods downstream. Furthermore, being able to efficiently operate reservoirs could help maximize flood protection while saving water for drier times of the year. This study combines ensemble quantitative precipitation forecasts and a hydrological model to provide a 3-day reservoir inflow in the Shihmen Reservoir, Taiwan. A total of six historical typhoons were used for model calibration, validation, and application. An understanding of cascaded uncertainties from the numerical weather model through the hydrological model is necessary for a better use for forecasting. This study thus conducted an assessment of forecast uncertainty on magnitude and timing of peak and cumulative inflows. It found that using the ensemble-mean had less uncertainty than randomly selecting individual member. The inflow forecasts with shorter length of cumulative time had a higher uncertainty. The results showed that using the ensemble precipitation forecasts with the hydrological model would have the advantage of extra lead time and serve as a valuable reference for operating reservoirs.

  2. Correcting Unintended Perturbation Biases in Hydrologic Data Assimilation Using the Ensemble Kalman Filter

    Science.gov (United States)

    Recent advances in hydrologic data assimilation have demonstrated the value of remotely sensed surface soil moisture in improving forecasts of key hydrologic variables such as root-zone soil moisture and surface runoff. In hydrologic data assimilation, the ensemble Kalman filter (EnKF) provides a ro...

  3. Ensemble Streamflow Forecast Improvements in NYC's Operations Support Tool

    Science.gov (United States)

    Wang, L.; Weiss, W. J.; Porter, J.; Schaake, J. C.; Day, G. N.; Sheer, D. P.

    2013-12-01

    Like most other water supply utilities, New York City's Department of Environmental Protection (DEP) has operational challenges associated with drought and wet weather events. During drought conditions, DEP must maintain water supply reliability to 9 million customers as well as meet environmental release requirements downstream of its reservoirs. During and after wet weather events, DEP must maintain turbidity compliance in its unfiltered Catskill and Delaware reservoir systems and minimize spills to mitigate downstream flooding. Proactive reservoir management - such as release restrictions to prepare for a drought or preventative drawdown in advance of a large storm - can alleviate negative impacts associated with extreme events. It is important for water managers to understand the risks associated with proactive operations so unintended consequences such as endangering water supply reliability with excessive drawdown prior to a storm event are minimized. Probabilistic hydrologic forecasts are a critical tool in quantifying these risks and allow water managers to make more informed operational decisions. DEP has recently completed development of an Operations Support Tool (OST) that integrates ensemble streamflow forecasts, real-time observations, and a reservoir system operations model into a user-friendly graphical interface that allows its water managers to take robust and defensible proactive measures in the face of challenging system conditions. Since initial development of OST was first presented at the 2011 AGU Fall Meeting, significant improvements have been made to the forecast system. First, the monthly AR1 forecasts ('Hirsch method') were upgraded with a generalized linear model (GLM) utilizing historical daily correlations ('Extended Hirsch method' or 'eHirsch'). The development of eHirsch forecasts improved predictive skill over the Hirsch method in the first week to a month from the forecast date and produced more realistic hydrographs on the tail

  4. Ensemble stream flow predictions using the ECMWF forecasts

    Science.gov (United States)

    Kiczko, Adam; Romanowicz, Renata; Osuch, Marzena; Pappenberger, Florian; Karamuz, Emilia

    2015-04-01

    Floods and low flows in rivers are seasonal phenomena that can cause several problems to society. To anticipate high and low flow events, flow forecasts are crucial. They are of particular importance in mountainous catchments, where the lead time of forecasts is usually short. In order to prolong the forecast lead-time, numerical weather predictions (NWPs) are used as a hydrological model driving force. The forecasted flow is commonly given as one value, even though it is uncertain. There is an increasing interest in accounting for the uncertainty in flood early warning and decision support systems. When NWP are given in the form of ensembles, such as the ECMWF forecasts, the uncertainty of these forecasts can be accounted for. Apart from the forecast uncertainty the uncertainty related to the hydrological model used also plays an important role in the uncertainty of the final flow prediction. The aim of this study is the development of a stream flow prediction system for the Biała Tarnowska, a mountainous catchment in the south of Poland. We apply two different hydrological models. One is a conceptual HBV model for rainfall-flow predictions, applied within a Generalised Likelihood Uncertainty Estimation (GLUE) framework, the second is a data-based DBM model, adjusted for Polish conditions by adding the Soil Moisture Accounting (SMA) and snow-melt modules. Both models provide the uncertainty of the predictions, but the DBM approach is much more numerically efficient, therefore more suitable for the real-time forecasting.. The ECMWF forecasts require bias reduction in order to correspond to observations. Therefore we applied Quantile Mapping with and without seasonal adjustment for bias correction. Up to seven-days ahead forecast skills are compared using the Relative Operation Characteristic (ROC) graphs, for the flood warning and flood alarm flow value thresholds. The ECMWF forecasts are obtained from the project TIGGE (http

  5. Ensemble Forecasting of Major Solar Flares

    CERN Document Server

    Guerra, J A; Uritsky, V M

    2015-01-01

    We present the results from the first ensemble prediction model for major solar flares (M and X classes). Using the probabilistic forecasts from three models hosted at the Community Coordinated Modeling Center (NASA-GSFC) and the NOAA forecasts, we developed an ensemble forecast by linearly combining the flaring probabilities from all four methods. Performance-based combination weights were calculated using a Monte Carlo-type algorithm by applying a decision threshold $P_{th}$ to the combined probabilities and maximizing the Heidke Skill Score (HSS). Using the probabilities and events time series from 13 recent solar active regions (2012 - 2014), we found that a linear combination of probabilities can improve both probabilistic and categorical forecasts. Combination weights vary with the applied threshold and none of the tested individual forecasting models seem to provide more accurate predictions than the others for all values of $P_{th}$. According to the maximum values of HSS, a performance-based weights ...

  6. Ensemble postprocessing for probabilistic quantitative precipitation forecasts

    Science.gov (United States)

    Bentzien, S.; Friederichs, P.

    2012-12-01

    Precipitation is one of the most difficult weather variables to predict in hydrometeorological applications. In order to assess the uncertainty inherent in deterministic numerical weather prediction (NWP), meteorological services around the globe develop ensemble prediction systems (EPS) based on high-resolution NWP systems. With non-hydrostatic model dynamics and without parameterization of deep moist convection, high-resolution NWP models are able to describe convective processes in more detail and provide more realistic mesoscale structures. However, precipitation forecasts are still affected by displacement errors, systematic biases and fast error growth on small scales. Probabilistic guidance can be achieved from an ensemble setup which accounts for model error and uncertainty of initial and boundary conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) provides such an ensemble system based on the German-focused limited-area model COSMO-DE. With a horizontal grid-spacing of 2.8 km, COSMO-DE is the convection-permitting high-resolution part of the operational model chain at DWD. The COSMO-DE-EPS consists of 20 realizations of COSMO-DE, driven by initial and boundary conditions derived from 4 global models and 5 perturbations of model physics. Ensemble systems like COSMO-DE-EPS are often limited with respect to ensemble size due to the immense computational costs. As a consequence, they can be biased and exhibit insufficient ensemble spread, and probabilistic forecasts may be not well calibrated. In this study, probabilistic quantitative precipitation forecasts are derived from COSMO-DE-EPS and evaluated at more than 1000 rain gauges located all over Germany. COSMO-DE-EPS is a frequently updated ensemble system, initialized 8 times a day. We use the time-lagged approach to inexpensively increase ensemble spread, which results in more reliable forecasts especially for extreme precipitation events. Moreover, we will show that statistical

  7. Skill and relative economic value of medium-range hydrological ensemble predictions

    Directory of Open Access Journals (Sweden)

    E. Roulin

    2007-01-01

    Full Text Available A hydrological ensemble prediction system, integrating a water balance model with ensemble precipitation forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF Ensemble Prediction System (EPS, is evaluated for two Belgian catchments using verification methods borrowed from meteorology. The skill of the probability forecast that the streamflow exceeds a given level is measured with the Brier Skill Score. Then the value of the system is assessed using a cost-loss decision model. The verification results of the hydrological ensemble predictions are compared with the corresponding results obtained for simpler alternatives as the one obtained by using of the deterministic forecast of ECMWF which is characterized by a higher spatial resolution or by using of the EPS ensemble mean.

  8. Optimization of multi-model ensemble forecasting of typhoon waves

    Directory of Open Access Journals (Sweden)

    Shun-qi Pan

    2016-01-01

    Full Text Available Accurately forecasting ocean waves during typhoon events is extremely important in aiding the mitigation and minimization of their potential damage to the coastal infrastructure, and the protection of coastal communities. However, due to the complex hydrological and meteorological interaction and uncertainties arising from different modeling systems, quantifying the uncertainties and improving the forecasting accuracy of modeled typhoon-induced waves remain challenging. This paper presents a practical approach to optimizing model-ensemble wave heights in an attempt to improve the accuracy of real-time typhoon wave forecasting. A locally weighted learning algorithm is used to obtain the weights for the wave heights computed by the WAVEWATCH III wave model driven by winds from four different weather models (model-ensembles. The optimized weights are subsequently used to calculate the resulting wave heights from the model-ensembles. The results show that the Optimization is capable of capturing the different behavioral effects of the different weather models on wave generation. Comparison with the measurements at the selected wave buoy locations shows that the optimized weights, obtained through a training process, can significantly improve the accuracy of the forecasted wave heights over the standard mean values, particularly for typhoon-induced peak waves. The results also indicate that the algorithm is easy to implement and practical for real-time wave forecasting.

  9. Dynamic Analogue Initialization for Ensemble Forecasting

    Institute of Scientific and Technical Information of China (English)

    LI Shan; RONG Xingyao; LIU Yun; LIU Zhengyu; Klaus FRAEDRICH

    2013-01-01

    This paper introduces a new approach for the initialization of ensemble numerical forecasting:Dynamic Analogue Initialization (DAI).DAI assumes that the best model state trajectories for the past provide the initial conditions for the best forecasts in the future.As such,DAI performs the ensemble forecast using the best analogues from a full size ensemble.As a pilot study,the Lorenz63 and Lorenz96 models were used to test DAI's effectiveness independently.Results showed that DAI can improve the forecast significantly.Especially in lower-dimensional systems,DAI can reduce the forecast RMSE by ~50% compared to the Monte Carlo forecast (MC).This improvement is because DAI is able to recognize the direction of the analysis error through the embedding process and therefore selects those good trajectories with reduced initial error.Meanwhile,a potential improvement of DAI is also proposed,and that is to find the optimal range of embedding time based on the error's growing speed.

  10. Ensemble Forecast: A New Approach to Uncertainty and Predictability

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Ensemble techniques have been used to generate daily numerical weather forecasts since the 1990s in numerical centers around the world due to the increase in computation ability. One of the main purposes of numerical ensemble forecasts is to try to assimilate the initial uncertainty (initial error) and the forecast uncertainty (forecast error) by applying either the initial perturbation method or the multi-model/multiphysics method. In fact, the mean of an ensemble forecast offers a better forecast than a deterministic (or control) forecast after a short lead time (3 5 days) for global modelling applications. There is about a 1-2-day improvement in the forecast skill when using an ensemble mean instead of a single forecast for longer lead-time. The skillful forecast (65% and above of an anomaly correlation) could be extended to 8 days (or longer) by present-day ensemble forecast systems. Furthermore, ensemble forecasts can deliver a probabilistic forecast to the users, which is based on the probability density function (PDF)instead of a single-value forecast from a traditional deterministic system. It has long been recognized that the ensemble forecast not only improves our weather forecast predictability but also offers a remarkable forecast for the future uncertainty, such as the relative measure of predictability (RMOP) and probabilistic quantitative precipitation forecast (PQPF). Not surprisingly, the success of the ensemble forecast and its wide application greatly increase the confidence of model developers and research communities.

  11. Advances in Data Assimilation for Operational Hydrologic Forecasting

    Science.gov (United States)

    Weerts, Albrecht; Liu, Yuqiong

    2011-02-01

    International Workshop on Data Assimilation for Operational Hydrologic Forecasting and Water Resources Management; Delft, Netherlands, 1-3 November 2010 ; The abundance of new hydrologic observations (in situ or remotely sensed) in the past couple of decades has stimulated a great deal of research into the use of these observations for improved hydrologic predictions via model-data infusion applications. Generally speaking, however, hydrologic data assimilation (DA) as an objective tool for reducing predictive uncertainty is not yet technically ready for operational hydrologic forecasting and water resources management. This is due in part to a lack of mechanisms to properly quantify the uncertainty in observations and forecast models in real-time forecasting situations and to conduct the merging of data and models in a way that is adequately efficient and transparent to operational forecasters. Nevertheless, the need for effective assimilation of useful data into the forecast process is increasing. Within the framework of the Hydrologic Ensemble Prediction Experiment (HEPEX; http://www.hepex.org/), a workshop was held in the Netherlands. The overall goal of the workshop was to develop and foster community-based efforts for collaborative research, development, and synthesis of techniques and tools for hydrologic data assimilation and for the cost-effective transition of these techniques and tools from research to operations.

  12. Hydro-meteorological evaluation of downscaled global ensemble rainfall forecasts

    Science.gov (United States)

    Gaborit, Étienne; Anctil, François; Fortin, Vincent; Pelletier, Geneviève

    2013-04-01

    Ensemble rainfall forecasts are of high interest for decision making, as they provide an explicit and dynamic assessment of the uncertainty in the forecast (Ruiz et al. 2009). However, for hydrological forecasting, their low resolution currently limits their use to large watersheds (Maraun et al. 2010). In order to bridge this gap, various implementations of the statistic-stochastic multi-fractal downscaling technique presented by Perica and Foufoula-Georgiou (1996) were compared, bringing Environment Canada's global ensemble rainfall forecasts from a 100 by 70-km resolution down to 6 by 4-km, while increasing each pixel's rainfall variance and preserving its original mean. For comparison purposes, simpler methods were also implemented such as the bi-linear interpolation, which disaggregates global forecasts without modifying their variance. The downscaled meteorological products were evaluated using different scores and diagrams, from both a meteorological and a hydrological view points. The meteorological evaluation was conducted comparing the forecasted rainfall depths against nine days of observed values taken from Québec City rain gauge database. These 9 days present strong precipitation events occurring during the summer of 2009. For the hydrologic evaluation, the hydrological models SWMM5 and (a modified version of) GR4J were implemented on a small 6 km2 urban catchment located in the Québec City region. Ensemble hydrologic forecasts with a time step of 3 hours were then performed over a 3-months period of the summer of 2010 using the original and downscaled ensemble rainfall forecasts. The most important conclusions of this work are that the overall quality of the forecasts was preserved during the disaggregation procedure and that the disaggregated products using this variance-enhancing method were of similar quality than bi-linear interpolation products. However, variance and dispersion of the different members were, of course, much improved for the

  13. Improved sub-seasonal meteorological forecast skill using weighted multi-model ensemble simulations

    NARCIS (Netherlands)

    Wanders, Niko|info:eu-repo/dai/nl/364253940; Wood, Eric F.

    2016-01-01

    Sub-seasonal to seasonal weather and hydrological forecasts have the potential to provide vital information for a variety of water-related decision makers. Here, we investigate the skill of four sub-seasonal forecast models from phase-2 of the North American Multi-Model Ensemble using reforecasts

  14. Seasonal UK hydrological forecasts using rainfall forecasts - what level of skill?

    Science.gov (United States)

    Bell, Victoria; Davies, Helen; Kay, Alison; Scaife, Adam

    2017-04-01

    Skilful winter seasonal predictions for the North Atlantic circulation and Northern Europe, including the UK have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. The Hydrological Outlook UK (HOUK: www.hydoutuk.net) is the first operational hydrological forecast system for the UK that delivers monthly outlooks of the water situation for both river flow and groundwater levels. The output from the HOUK are publicly available and used each month by government agencies, practitioners and academics alongside other sources of information such as flood warnings and meteorological forecasts. The HOUK brings together information on current and forecast weather conditions, and river flows, and uses several modelling approaches to explore possible future hydrological conditions. One of the techniques combines ensembles of monthly-resolution seasonal rainfall forecasts provided by the Met Office GloSea5 forecast system with hydrological modelling tools to provide estimates of river flows up to a few months ahead. The approach combines a high resolution, spatially distributed hydrological initial condition (HIC) provided by a hydrological model (Grid-to-Grid) driven by weather observations up to the forecast time origin. Considerable efforts have been made to accommodate the temporal and spatial resolution of the GloSea5 rainfall forecasts (monthly time-step and national-scale) in a spatially distributed forecasting system, leading to the development of a monthly resolution water balance model (WBM) to forecast regional mean river flows for the next 1 and 3 months ahead. The work presented here provides the first assessment of the skill in the HOUK national-scale flow forecasts using an ensemble of rainfall forecasts (hindcasts) from the GloSea5 model (1996 to 2009). The skill in the combined modelling system has been assessed for different seasons and regions of Britain, and compared to what might be achieved using

  15. The potential of radar-based ensemble forecasts for flash-flood early warning in the southern Swiss Alps

    OpenAIRE

    Liechti, K.; L. Panziera; U. Germann; Zappa, M.

    2013-01-01

    This study explores the limits of radar-based forecasting for hydrological runoff prediction. Two novel radar-based ensemble forecasting chains for flash-flood early warning are investigated in three catchments in the southern Swiss Alps and set in relation to deterministic discharge forecasts for the same catchments. The first radar-based ensemble forecasting chain is driven by NORA (Nowcasting of Orographic Rainfall by means of Analogues), an analogue-based heuristic nowca...

  16. Skill of global hydrological forecasting system FEWS GLOWASIS using climatic ESP forecasts

    Science.gov (United States)

    Weerts, A. H.; Candogan, N.; Winsemius, H. C.; van Beek, R.; Westerhoff, R.

    2012-04-01

    Forecasting of water availability and scarcity is a prerequisite for the management of hydropower reservoirs, basin-scale management of water resources, agriculture and disaster relief. The EU 7th Framework Program project Global Water Scarcity Information Service (GLOWASIS) aims to pre-validate a service that provides real-time global-scale information on water scarcity. In this contribution, we demonstrate what skill (compared to a climatology) may be reached with a global seasonal ensemble forecasting system consisting of: a) a global hydrological model PCR-GLOBWB; b) an updating procedure for initial forecasting states, based on the best-guess global rainfall information. As best guess, a combination of ERA-Interim Reanalysis rainfall and Global Precipitation Climatology Project (GPCP) observations is being used; c) a forecast based on Ensemble Streamflow Prediction (ESP)procedure and reverse ESP procedure (Wood and Lettenmaier, 2008). In the ESP procedure, a meteorological forecast ensemble is generated based on past years of observation series (i.e. climatological observations). As observations, the combination of ERA-Interim and GPCP is used. In reverse ESP, an ensemble is generated by using a set of initial states from a large sample of updates at the specific month of interest, and forecasts are produced using one observed set. This analysis allows us to measure how much skill may be expected from hydrological inertia and climatology alone, leaving aside for the moment potential skill improvement by using seasonal meteorological forecasts. In future work, we will measure how much skill improvement compared to the forecasts mentioned above may be reached, when ECMWF Seasonal forecasts are used. This will allow us to measure the contributions to skill of each component (initial state inertia, hydrology and meteorological inputs) of the forecast system.

  17. Comparison of ensemble post-processing approaches, based on empirical and dynamical error modelisation of rainfall-runoff model forecasts

    Science.gov (United States)

    Chardon, J.; Mathevet, T.; Le Lay, M.; Gailhard, J.

    2012-04-01

    In the context of a national energy company (EDF : Electricité de France), hydro-meteorological forecasts are necessary to ensure safety and security of installations, meet environmental standards and improve water ressources management and decision making. Hydrological ensemble forecasts allow a better representation of meteorological and hydrological forecasts uncertainties and improve human expertise of hydrological forecasts, which is essential to synthesize available informations, coming from different meteorological and hydrological models and human experience. An operational hydrological ensemble forecasting chain has been developed at EDF since 2008 and is being used since 2010 on more than 30 watersheds in France. This ensemble forecasting chain is characterized ensemble pre-processing (rainfall and temperature) and post-processing (streamflow), where a large human expertise is solicited. The aim of this paper is to compare 2 hydrological ensemble post-processing methods developed at EDF in order improve ensemble forecasts reliability (similar to Monatanari &Brath, 2004; Schaefli et al., 2007). The aim of the post-processing methods is to dress hydrological ensemble forecasts with hydrological model uncertainties, based on perfect forecasts. The first method (called empirical approach) is based on a statistical modelisation of empirical error of perfect forecasts, by streamflow sub-samples of quantile class and lead-time. The second method (called dynamical approach) is based on streamflow sub-samples of quantile class and streamflow variation, and lead-time. On a set of 20 watersheds used for operational forecasts, results show that both approaches are necessary to ensure a good post-processing of hydrological ensemble, allowing a good improvement of reliability, skill and sharpness of ensemble forecasts. The comparison of the empirical and dynamical approaches shows the limits of the empirical approach which is not able to take into account hydrological

  18. Improving medium-range ensemble streamflow forecasts through statistical post-processing

    Science.gov (United States)

    Mendoza, Pablo; Wood, Andy; Clark, Elizabeth; Nijssen, Bart; Clark, Martyn; Ramos, Maria-Helena; Nowak, Kenneth; Arnold, Jeffrey

    2017-04-01

    Probabilistic hydrologic forecasts are a powerful source of information for decision-making in water resources operations. A common approach is the hydrologic model-based generation of streamflow forecast ensembles, which can be implemented to account for different sources of uncertainties - e.g., from initial hydrologic conditions (IHCs), weather forecasts, and hydrologic model structure and parameters. In practice, hydrologic ensemble forecasts typically have biases and spread errors stemming from errors in the aforementioned elements, resulting in a degradation of probabilistic properties. In this work, we compare several statistical post-processing techniques applied to medium-range ensemble streamflow forecasts obtained with the System for Hydromet Applications, Research and Prediction (SHARP). SHARP is a fully automated prediction system for the assessment and demonstration of short-term to seasonal streamflow forecasting applications, developed by the National Center for Atmospheric Research, University of Washington, U.S. Army Corps of Engineers, and U.S. Bureau of Reclamation. The suite of post-processing techniques includes linear blending, quantile mapping, extended logistic regression, quantile regression, ensemble analogs, and the generalized linear model post-processor (GLMPP). We assess and compare these techniques using multi-year hindcasts in several river basins in the western US. This presentation discusses preliminary findings about the effectiveness of the techniques for improving probabilistic skill, reliability, discrimination, sharpness and resolution.

  19. Verification of Ensemble Forecasts for the New York City Operations Support Tool

    Science.gov (United States)

    Day, G.; Schaake, J. C.; Thiemann, M.; Draijer, S.; Wang, L.

    2012-12-01

    The New York City water supply system operated by the Department of Environmental Protection (DEP) serves nine million people. It covers 2,000 square miles of portions of the Catskill, Delaware, and Croton watersheds, and it includes nineteen reservoirs and three controlled lakes. DEP is developing an Operations Support Tool (OST) to support its water supply operations and planning activities. OST includes historical and real-time data, a model of the water supply system complete with operating rules, and lake water quality models developed to evaluate alternatives for managing turbidity in the New York City Catskill reservoirs. OST will enable DEP to manage turbidity in its unfiltered system while satisfying its primary objective of meeting the City's water supply needs, in addition to considering secondary objectives of maintaining ecological flows, supporting fishery and recreation releases, and mitigating downstream flood peaks. The current version of OST relies on statistical forecasts of flows in the system based on recent observed flows. To improve short-term decision making, plans are being made to transition to National Weather Service (NWS) ensemble forecasts based on hydrologic models that account for short-term weather forecast skill, longer-term climate information, as well as the hydrologic state of the watersheds and recent observed flows. To ensure that the ensemble forecasts are unbiased and that the ensemble spread reflects the actual uncertainty of the forecasts, a statistical model has been developed to post-process the NWS ensemble forecasts to account for hydrologic model error as well as any inherent bias and uncertainty in initial model states, meteorological data and forecasts. The post-processor is designed to produce adjusted ensemble forecasts that are consistent with the DEP historical flow sequences that were used to develop the system operating rules. A set of historical hindcasts that is representative of the real-time ensemble

  20. Pre- and post-processing of hydro-meteorological ensembles for the Norwegian flood forecasting system in 145 basins.

    Science.gov (United States)

    Jahr Hegdahl, Trine; Steinsland, Ingelin; Merete Tallaksen, Lena; Engeland, Kolbjørn

    2016-04-01

    Probabilistic flood forecasting has an added value for decision making. The Norwegian flood forecasting service is based on a flood forecasting model that run for 145 basins. Covering all of Norway the basins differ in both size and hydrological regime. Currently the flood forecasting is based on deterministic meteorological forecasts, and an auto-regressive procedure is used to achieve probabilistic forecasts. An alternative approach is to use meteorological and hydrological ensemble forecasts to quantify the uncertainty in forecasted streamflow. The hydrological ensembles are based on forcing a hydrological model with meteorological ensemble forecasts of precipitation and temperature. However, the ensembles of precipitation are often biased and the spread is too small, especially for the shortest lead times, i.e. they are not calibrated. These properties will, to some extent, propagate to hydrological ensembles, that most likely will be uncalibrated as well. Pre- and post-processing methods are commonly used to obtain calibrated meteorological and hydrological ensembles respectively. Quantitative studies showing the effect of the combined processing of the meteorological (pre-processing) and the hydrological (post-processing) ensembles are however few. The aim of this study is to evaluate the influence of pre- and post-processing on the skill of streamflow predictions, and we will especially investigate if the forecasting skill depends on lead-time, basin size and hydrological regime. This aim is achieved by applying the 51 medium-range ensemble forecast of precipitation and temperature provided by the European Center of Medium-Range Weather Forecast (ECMWF). These ensembles are used as input to the operational Norwegian flood forecasting model, both raw and pre-processed. Precipitation ensembles are calibrated using a zero-adjusted gamma distribution. Temperature ensembles are calibrated using a Gaussian distribution and altitude corrected by a constant gradient

  1. Generation of scenarios from calibrated ensemble forecasts with a dynamic ensemble copula coupling approach

    CERN Document Server

    Bouallegue, Zied Ben; Theis, Susanne E; Pinson, Pierre

    2015-01-01

    Probabilistic forecasts in the form of ensemble of scenarios are required for complex decision making processes. Ensemble forecasting systems provide such products but the spatio-temporal structures of the forecast uncertainty is lost when statistical calibration of the ensemble forecasts is applied for each lead time and location independently. Non-parametric approaches allow the reconstruction of spatio-temporal joint probability distributions at a low computational cost.For example, the ensemble copula coupling (ECC) method consists in rebuilding the multivariate aspect of the forecast from the original ensemble forecasts. Based on the assumption of error stationarity, parametric methods aim to fully describe the forecast dependence structures. In this study, the concept of ECC is combined with past data statistics in order to account for the autocorrelation of the forecast error. The new approach which preserves the dynamical development of the ensemble members is called dynamic ensemble copula coupling (...

  2. Impact Assessment of Uncertainty Propagation of Ensemble NWP Rainfall to Flood Forecasting with Catchment Scale

    Directory of Open Access Journals (Sweden)

    Wansik Yu

    2016-01-01

    Full Text Available The common approach to quantifying the precipitation forecast uncertainty is ensemble simulations where a numerical weather prediction (NWP model is run for a number of cases with slightly different initial conditions. In practice, the spread of ensemble members in terms of flood discharge is used as a measure of forecast uncertainty due to uncertain precipitation forecasts. This study presents the uncertainty propagation of rainfall forecast into hydrological response with catchment scale through distributed rainfall-runoff modeling based on the forecasted ensemble rainfall of NWP model. At first, forecast rainfall error based on the BIAS is compared with flood forecast error to assess the error propagation. Second, the variability of flood forecast uncertainty according to catchment scale is discussed using ensemble spread. Then we also assess the flood forecast uncertainty with catchment scale using an estimation regression equation between ensemble rainfall BIAS and discharge BIAS. Finally, the flood forecast uncertainty with RMSE using specific discharge in catchment scale is discussed. Our study is carried out and verified using the largest flood event by typhoon “Talas” of 2011 over the 33 subcatchments of Shingu river basin (2,360 km2, which is located in the Kii Peninsula, Japan.

  3. A framework for improving a seasonal hydrological forecasting system using sensitivity analysis

    Science.gov (United States)

    Arnal, Louise; Pappenberger, Florian; Smith, Paul; Cloke, Hannah

    2017-04-01

    Seasonal streamflow forecasts are of great value for the socio-economic sector, for applications such as navigation, flood and drought mitigation and reservoir management for hydropower generation and water allocation to agriculture and drinking water. However, as we speak, the performance of dynamical seasonal hydrological forecasting systems (systems based on running seasonal meteorological forecasts through a hydrological model to produce seasonal hydrological forecasts) is still limited in space and time. In this context, the ESP (Ensemble Streamflow Prediction) remains an attractive forecasting method for seasonal streamflow forecasting as it relies on forcing a hydrological model (starting from the latest observed or simulated initial hydrological conditions) with historical meteorological observations. This makes it cheaper to run than a standard dynamical seasonal hydrological forecasting system, for which the seasonal meteorological forecasts will first have to be produced, while still producing skilful forecasts. There is thus the need to focus resources and time towards improvements in dynamical seasonal hydrological forecasting systems which will eventually lead to significant improvements in the skill of the streamflow forecasts generated. Sensitivity analyses are a powerful tool that can be used to disentangle the relative contributions of the two main sources of errors in seasonal streamflow forecasts, namely the initial hydrological conditions (IHC; e.g., soil moisture, snow cover, initial streamflow, among others) and the meteorological forcing (MF; i.e., seasonal meteorological forecasts of precipitation and temperature, input to the hydrological model). Sensitivity analyses are however most useful if they inform and change current operational practices. To this end, we propose a method to improve the design of a seasonal hydrological forecasting system. This method is based on sensitivity analyses, informing the forecasters as to which element of

  4. Towards an Australian ensemble streamflow forecasting system for flood prediction and water management

    Science.gov (United States)

    Bennett, J.; David, R. E.; Wang, Q.; Li, M.; Shrestha, D. L.

    2016-12-01

    Flood forecasting in Australia has historically relied on deterministic forecasting models run only when floods are imminent, with considerable forecaster input and interpretation. These now co-existed with a continually available 7-day streamflow forecasting service (also deterministic) aimed at operational water management applications such as environmental flow releases. The 7-day service is not optimised for flood prediction. We describe progress on developing a system for ensemble streamflow forecasting that is suitable for both flood prediction and water management applications. Precipitation uncertainty is handled through post-processing of Numerical Weather Prediction (NWP) output with a Bayesian rainfall post-processor (RPP). The RPP corrects biases, downscales NWP output, and produces reliable ensemble spread. Ensemble precipitation forecasts are used to force a semi-distributed conceptual rainfall-runoff model. Uncertainty in precipitation forecasts is insufficient to reliably describe streamflow forecast uncertainty, particularly at shorter lead-times. We characterise hydrological prediction uncertainty separately with a 4-stage error model. The error model relies on data transformation to ensure residuals are homoscedastic and symmetrically distributed. To ensure streamflow forecasts are accurate and reliable, the residuals are modelled using a mixture-Gaussian distribution with distinct parameters for the rising and falling limbs of the forecast hydrograph. In a case study of the Murray River in south-eastern Australia, we show ensemble predictions of floods generally have lower errors than deterministic forecasting methods. We also discuss some of the challenges in operationalising short-term ensemble streamflow forecasts in Australia, including meeting the needs for accurate predictions across all flow ranges and comparing forecasts generated by event and continuous hydrological models.

  5. Generation of scenarios from calibrated ensemble forecasts with a dynamic ensemble copula coupling approach

    DEFF Research Database (Denmark)

    Ben Bouallègue, Zied; Heppelmann, Tobias; Theis, Susanne E.

    2015-01-01

    Probabilistic forecasts in the form of ensemble of scenarios are required for complex decision making processes. Ensemble forecasting systems provide such products but the spatio-temporal structures of the forecast uncertainty is lost when statistical calibration of the ensemble forecasts...... is applied for each lead time and location independently. Non-parametric approaches allow the reconstruction of spatio-temporal joint probability distributions at a low computational cost.For example, the ensemble copula coupling (ECC) method consists in rebuilding the multivariate aspect of the forecast...... from the original ensemble forecasts. Based on the assumption of error stationarity, parametric methods aim to fully describe the forecast dependence structures. In this study, the concept of ECC is combined with past data statistics in order to account for the autocorrelation of the forecast error...

  6. Generation of scenarios from calibrated ensemble forecasts with a dual ensemble copula coupling approach

    DEFF Research Database (Denmark)

    Ben Bouallègue, Zied; Heppelmann, Tobias; Theis, Susanne E.

    2016-01-01

    Probabilistic forecasts in the form of ensemble of scenarios are required for complex decision making processes. Ensemble forecasting systems provide such products but the spatio-temporal structures of the forecast uncertainty is lost when statistical calibration of the ensemble forecasts...... is applied for each lead time and location independently. Non-parametric approaches allow the reconstruction of spatio-temporal joint probability distributions at a low computational cost. For example, the ensemble copula coupling (ECC) method rebuilds the multivariate aspect of the forecast from...... the original ensemble forecasts. Based on the assumption of error stationarity, parametric methods aim to fully describe the forecast dependence structures. In this study, the concept of ECC is combined with past data statistics in order to account for the autocorrelation of the forecast error. The new...

  7. Ensemble data assimilation with an adjusted forecast spread

    Directory of Open Access Journals (Sweden)

    Sabrina Rainwater

    2013-04-01

    Full Text Available Ensemble data assimilation typically evolves an ensemble of model states whose spread is intended to represent the algorithm's uncertainty about the state of the physical system that produces the data. The analysis phase treats the forecast ensemble as a random sample from a background distribution, and it transforms the ensemble according to the background and observation error statistics to provide an appropriate sample for the next forecast phase. We find that in the presence of model nonlinearity and model error, it can be fruitful to rescale the ensemble spread prior to the forecast and then reverse this rescaling after the forecast. We call this approach forecast spread adjustment, which we discuss and test in this article using an ensemble Kalman filter and a 2005 model due to Lorenz. We argue that forecast spread adjustment provides a tunable parameter, that is, complementary to covariance inflation, which cumulatively increases ensemble spread to compensate for underestimation of uncertainty. We also show that as the adjustment parameter approaches zero, the filter approaches the extended Kalman filter if the ensemble size is sufficiently large. We find that varying the adjustment parameter can significantly reduce analysis and forecast errors in some cases. We evaluate how the improvement provided by forecast spread adjustment depends on ensemble size, observation error and model error. Our results indicate that the technique is most effective for small ensembles, small observation error and large model error, though the effectiveness depends significantly on the nature of the model error.

  8. Improving the accuracy of flood forecasting with transpositions of ensemble NWP rainfall fields considering orographic effects

    Science.gov (United States)

    Yu, Wansik; Nakakita, Eiichi; Kim, Sunmin; Yamaguchi, Kosei

    2016-08-01

    The use of meteorological ensembles to produce sets of hydrological predictions increased the capability to issue flood warnings. However, space scale of the hydrological domain is still much finer than meteorological model, and NWP models have challenges with displacement. The main objective of this study to enhance the transposition method proposed in Yu et al. (2014) and to suggest the post-processing ensemble flood forecasting method for the real-time updating and the accuracy improvement of flood forecasts that considers the separation of the orographic rainfall and the correction of misplaced rain distributions using additional ensemble information through the transposition of rain distributions. In the first step of the proposed method, ensemble forecast rainfalls from a numerical weather prediction (NWP) model are separated into orographic and non-orographic rainfall fields using atmospheric variables and the extraction of topographic effect. Then the non-orographic rainfall fields are examined by the transposition scheme to produce additional ensemble information and new ensemble NWP rainfall fields are calculated by recombining the transposition results of non-orographic rain fields with separated orographic rainfall fields for a generation of place-corrected ensemble information. Then, the additional ensemble information is applied into a hydrologic model for post-flood forecasting with a 6-h interval. The newly proposed method has a clear advantage to improve the accuracy of mean value of ensemble flood forecasting. Our study is carried out and verified using the largest flood event by typhoon 'Talas' of 2011 over the two catchments, which are Futatsuno (356.1 km2) and Nanairo (182.1 km2) dam catchments of Shingu river basin (2360 km2), which is located in the Kii peninsula, Japan.

  9. Evaluation of seasonal ensemble forecasts in Norway

    Science.gov (United States)

    Tore Sinnes, Svein; Engeland, Kolbjørn; Langsholt, Elin; Roar Sælthun, Nils

    2017-04-01

    Throughout the winter and spring season, seasonal forecasts are used by the Norwegian Water Resources and Energy Directorate (NVE) in order to assess the probability for sever floods or for low seasonal runoff volumes. The latter is especially important for hydropower production. The seasonal forecasts are generated by a set of 145 lumped, elevation distributed HBV models distributed all over Norway. The observed weather is used to establish the initial snow cover, soil moisture and groundwater levels in the HBV model. Subsequently, scenarios are created by using time series of observed weather the previous 50 years, creating a total of 50 ensembles. The predictability of this seasonal forecasting system depends therefore on the importance of the initial conditions, and in Norway the seasonal snow cover is especially important. The aim of this study is to evaluate the performance of the seasonal forecasts of flood peaks and seasonal runoff volumes and especially to evaluate of the predictability depends on (i) catchment climatology and (ii) issue dates and lead times. For achieving these aims, evaluation criterions assessing reliability and sharpness were used. The results shows that the predictability is the highest for catchments where the spring runoff is dominated by snow melt. The predictability is the highest for the shortest lead times (up to 1 months ahead).The predictive performance is higher for runoff volumes than for the flood peaks.

  10. Skill of a global forecasting system in seasonal ensemble streamflow prediction

    Science.gov (United States)

    Candogan Yossef, Naze; van Beek, Rens; Weerts, Albrecht; Winsemius, Hessel; Bierkens, Marc F. P.

    2017-08-01

    In this study we assess the skill of seasonal streamflow forecasts with the global hydrological forecasting system Flood Early Warning System (FEWS)-World, which has been set up within the European Commission 7th Framework Programme Project Global Water Scarcity Information Service (GLOWASIS). FEWS-World incorporates the distributed global hydrological model PCR-GLOBWB (PCRaster Global Water Balance). We produce ensemble forecasts of monthly discharges for 20 large rivers of the world, with lead times of up to 6 months, forcing the system with bias-corrected seasonal meteorological forecast ensembles from the European Centre for Medium-range Weather Forecasts (ECMWF) and with probabilistic meteorological ensembles obtained following the ESP procedure. Here, the ESP ensembles, which contain no actual information on weather, serve as a benchmark to assess the additional skill that may be obtained using ECMWF seasonal forecasts. We use the Brier skill score (BSS) to quantify the skill of the system in forecasting high and low flows, defined as discharges higher than the 75th and lower than the 25th percentiles for a given month, respectively. We determine the theoretical skill by comparing the results against model simulations and the actual skill in comparison to discharge observations. We calculate the ratios of actual-to-theoretical skill in order to quantify the percentage of the potential skill that is achieved. The results suggest that the performance of ECMWF S3 forecasts is close to that of the ESP forecasts. While better meteorological forecasts could potentially lead to an improvement in hydrological forecasts, this cannot be achieved yet using the ECMWF S3 dataset.

  11. Skill of a global forecasting system in seasonal ensemble streamflow prediction

    Directory of Open Access Journals (Sweden)

    N. Candogan Yossef

    2017-08-01

    Full Text Available In this study we assess the skill of seasonal streamflow forecasts with the global hydrological forecasting system Flood Early Warning System (FEWS-World, which has been set up within the European Commission 7th Framework Programme Project Global Water Scarcity Information Service (GLOWASIS. FEWS-World incorporates the distributed global hydrological model PCR-GLOBWB (PCRaster Global Water Balance. We produce ensemble forecasts of monthly discharges for 20 large rivers of the world, with lead times of up to 6 months, forcing the system with bias-corrected seasonal meteorological forecast ensembles from the European Centre for Medium-range Weather Forecasts (ECMWF and with probabilistic meteorological ensembles obtained following the ESP procedure. Here, the ESP ensembles, which contain no actual information on weather, serve as a benchmark to assess the additional skill that may be obtained using ECMWF seasonal forecasts. We use the Brier skill score (BSS to quantify the skill of the system in forecasting high and low flows, defined as discharges higher than the 75th and lower than the 25th percentiles for a given month, respectively. We determine the theoretical skill by comparing the results against model simulations and the actual skill in comparison to discharge observations. We calculate the ratios of actual-to-theoretical skill in order to quantify the percentage of the potential skill that is achieved. The results suggest that the performance of ECMWF S3 forecasts is close to that of the ESP forecasts. While better meteorological forecasts could potentially lead to an improvement in hydrological forecasts, this cannot be achieved yet using the ECMWF S3 dataset.

  12. Demonstrating the value of larger ensembles in forecasting physical systems

    Directory of Open Access Journals (Sweden)

    Reason L. Machete

    2016-12-01

    Full Text Available Ensemble simulation propagates a collection of initial states forward in time in a Monte Carlo fashion. Depending on the fidelity of the model and the properties of the initial ensemble, the goal of ensemble simulation can range from merely quantifying variations in the sensitivity of the model all the way to providing actionable probability forecasts of the future. Whatever the goal is, success depends on the properties of the ensemble, and there is a longstanding discussion in meteorology as to the size of initial condition ensemble most appropriate for Numerical Weather Prediction. In terms of resource allocation: how is one to divide finite computing resources between model complexity, ensemble size, data assimilation and other components of the forecast system. One wishes to avoid undersampling information available from the model's dynamics, yet one also wishes to use the highest fidelity model available. Arguably, a higher fidelity model can better exploit a larger ensemble; nevertheless it is often suggested that a relatively small ensemble, say ~16 members, is sufficient and that larger ensembles are not an effective investment of resources. This claim is shown to be dubious when the goal is probabilistic forecasting, even in settings where the forecast model is informative but imperfect. Probability forecasts for a ‘simple’ physical system are evaluated at different lead times; ensembles of up to 256 members are considered. The pure density estimation context (where ensemble members are drawn from the same underlying distribution as the target differs from the forecasting context, where one is given a high fidelity (but imperfect model. In the forecasting context, the information provided by additional members depends also on the fidelity of the model, the ensemble formation scheme (data assimilation, the ensemble interpretation and the nature of the observational noise. The effect of increasing the ensemble size is quantified by

  13. Discrete post-processing of total cloud cover ensemble forecasts

    Science.gov (United States)

    Hemri, Stephan; Haiden, Thomas; Pappenberger, Florian

    2017-04-01

    This contribution presents an approach to post-process ensemble forecasts for the discrete and bounded weather variable of total cloud cover. Two methods for discrete statistical post-processing of ensemble predictions are tested. The first approach is based on multinomial logistic regression, the second involves a proportional odds logistic regression model. Applying them to total cloud cover raw ensemble forecasts from the European Centre for Medium-Range Weather Forecasts improves forecast skill significantly. Based on station-wise post-processing of raw ensemble total cloud cover forecasts for a global set of 3330 stations over the period from 2007 to early 2014, the more parsimonious proportional odds logistic regression model proved to slightly outperform the multinomial logistic regression model. Reference Hemri, S., Haiden, T., & Pappenberger, F. (2016). Discrete post-processing of total cloud cover ensemble forecasts. Monthly Weather Review 144, 2565-2577.

  14. The potential of radar-based ensemble forecasts for flash-flood early warning in the southern Swiss Alps

    Directory of Open Access Journals (Sweden)

    K. Liechti

    2013-10-01

    Full Text Available This study explores the limits of radar-based forecasting for hydrological runoff prediction. Two novel radar-based ensemble forecasting chains for flash-flood early warning are investigated in three catchments in the southern Swiss Alps and set in relation to deterministic discharge forecasts for the same catchments. The first radar-based ensemble forecasting chain is driven by NORA (Nowcasting of Orographic Rainfall by means of Analogues, an analogue-based heuristic nowcasting system to predict orographic rainfall for the following eight hours. The second ensemble forecasting system evaluated is REAL-C2, where the numerical weather prediction COSMO-2 is initialised with 25 different initial conditions derived from a four-day nowcast with the radar ensemble REAL. Additionally, three deterministic forecasting chains were analysed. The performance of these five flash-flood forecasting systems was analysed for 1389 h between June 2007 and December 2010 for which NORA forecasts were issued, due to the presence of orographic forcing. A clear preference was found for the ensemble approach. Discharge forecasts perform better when forced by NORA and REAL-C2 rather then by deterministic weather radar data. Moreover, it was observed that using an ensemble of initial conditions at the forecast initialisation, as in REAL-C2, significantly improved the forecast skill. These forecasts also perform better then forecasts forced by ensemble rainfall forecasts (NORA initialised form a single initial condition of the hydrological model. Thus the best results were obtained with the REAL-C2 forecasting chain. However, for regions where REAL cannot be produced, NORA might be an option for forecasting events triggered by orographic precipitation.

  15. Communicating uncertainty in hydrological forecasts: mission impossible?

    Science.gov (United States)

    Ramos, Maria-Helena; Mathevet, Thibault; Thielen, Jutta; Pappenberger, Florian

    2010-05-01

    Cascading uncertainty in meteo-hydrological modelling chains for forecasting and integrated flood risk assessment is an essential step to improve the quality of hydrological forecasts. Although the best methodology to quantify the total predictive uncertainty in hydrology is still debated, there is a common agreement that one must avoid uncertainty misrepresentation and miscommunication, as well as misinterpretation of information by users. Several recent studies point out that uncertainty, when properly explained and defined, is no longer unwelcome among emergence response organizations, users of flood risk information and the general public. However, efficient communication of uncertain hydro-meteorological forecasts is far from being a resolved issue. This study focuses on the interpretation and communication of uncertain hydrological forecasts based on (uncertain) meteorological forecasts and (uncertain) rainfall-runoff modelling approaches to decision-makers such as operational hydrologists and water managers in charge of flood warning and scenario-based reservoir operation. An overview of the typical flow of uncertainties and risk-based decisions in hydrological forecasting systems is presented. The challenges related to the extraction of meaningful information from probabilistic forecasts and the test of its usefulness in assisting operational flood forecasting are illustrated with the help of two case-studies: 1) a study on the use and communication of probabilistic flood forecasting within the European Flood Alert System; 2) a case-study on the use of probabilistic forecasts by operational forecasters from the hydroelectricity company EDF in France. These examples show that attention must be paid to initiatives that promote or reinforce the active participation of expert forecasters in the forecasting chain. The practice of face-to-face forecast briefings, focusing on sharing how forecasters interpret, describe and perceive the model output forecasted

  16. Flood forecast sensitivity to temperature using ECMWF ensembles for 145 catchments in Norway

    Science.gov (United States)

    Jahr Hegdahl, Trine; Engeland, Kolbjørn; Grønbech, Bård Johan; Steinsland, Ingelin; Merete Tallaksen, Lena

    2017-04-01

    The Norwegian flood forecasting service is based on a flood-forecasting model run on 145 basins. The basins are located all across Norway and differ in both size and hydrological regime. Current flood forecasting system is based on deterministic meteorological forecasts, and uses an auto-regressive procedure to achieve probabilistic forecasts. An alternative approach is to use meteorological and hydrological ensemble forecasts to quantify the uncertainty in forecasted streamflow. The aim of our study is to establish and assess the performance of both meteorological and hydrological ensembles for 145 catchments in Norway, which differ in size, elevation and hydrological regime. We identify regional differences and improvements in performance for preprocessed meteorological forecasts. A separate study further investigates the sensitivity to forecasted temperature for specific snowmelt induced floods. In Norway, snowmelt and combined rain and snowmelt floods are frequent. Hence, temperature is important for correct calculations of snowmelt. Temperature and precipitation ensembles are derived from ECMWF covering a period of nearly three years (01.03.2013 to 31.12.2015). To improve the spread and reduce bias we used standard methods provided by the Norwegian Meteorological Institute. Precipitation is corrected applying a zero-adjusted gamma distribution method (correcting the spread), and temperature is bias corrected using a quantile-quantile mapping (using Hirlam (RCM) 5 km temperature grid as a reference). Observed temperature and precipitation data are station data for all of Norway, interpolated to a 1×1 km2 grid (SeNorge.no). Streamflow observations are available from the NVE database. The hydrological model is the flood-forecasting operational HBV model, run with daily catchment average values. The results show that the methods applied to meteorological ensemble data reduce the cold bias present in the ECMWF temperature ensembles. Catchments on the western coast

  17. The use of MOGREPS ensemble rainfall forecasts in operational flood forecasting systems across England and Wales

    OpenAIRE

    J. Schellekens; Weerts, A. H.; Moore, R J; Pierce, C.E.; S. Hildon

    2011-01-01

    Operational flood forecasting systems share a fundamental challenge: forecast uncertainty which needs to be considered when making a flood warning decision. One way of representing this uncertainty is through employing an ensemble approach. This paper presents research funded by the Environment Agency in which ensemble rainfall forecasts are utilised and tested for operational use. The form of ensemble rainfall forecast used is the Met Office short-range product called MOGRE...

  18. Towards a GME ensemble forecasting system: Ensemble initialization using the breeding technique

    Directory of Open Access Journals (Sweden)

    Jan D. Keller

    2008-12-01

    Full Text Available The quantitative forecast of precipitation requires a probabilistic background particularly with regard to forecast lead times of more than 3 days. As only ensemble simulations can provide useful information of the underlying probability density function, we built a new ensemble forecasting system (GME-EFS based on the GME model of the German Meteorological Service (DWD. For the generation of appropriate initial ensemble perturbations we chose the breeding technique developed by Toth and Kalnay (1993, 1997, which develops perturbations by estimating the regions of largest model error induced uncertainty. This method is applied and tested in the framework of quasi-operational forecasts for a three month period in 2007. The performance of the resulting ensemble forecasts are compared to the operational ensemble prediction systems ECMWF EPS and NCEP GFS by means of ensemble spread of free atmosphere parameters (geopotential and temperature and ensemble skill of precipitation forecasting. This comparison indicates that the GME ensemble forecasting system (GME-EFS provides reasonable forecasts with spread skill score comparable to that of the NCEP GFS. An analysis with the continuous ranked probability score exhibits a lack of resolution for the GME forecasts compared to the operational ensembles. However, with significant enhancements during the 3 month test period, the first results of our work with the GME-EFS indicate possibilities for further development as well as the potential for later operational usage.

  19. Coupling meteorological and hydrological models for flood forecasting

    Directory of Open Access Journals (Sweden)

    Bartholmes

    2005-01-01

    Full Text Available This paper deals with the problem of analysing the coupling of meteorological meso-scale quantitative precipitation forecasts with distributed rainfall-runoff models to extend the forecasting horizon. Traditionally, semi-distributed rainfall-runoff models have been used for real time flood forecasting. More recently, increased computer capabilities allow the utilisation of distributed hydrological models with mesh sizes from tenths of metres to a few kilometres. On the other hand, meteorological models, providing the quantitative precipitation forecast, tend to produce average values on meshes ranging from slightly less than 10 to 200 kilometres. Therefore, to improve the quality of flood forecasts, the effects of coupling the meteorological and the hydrological models at different scales were analysed. A distributed hydrological model (TOPKAPI was developed and calibrated using a 1x1 km mesh for the case of the river Po closed at Ponte Spessa (catchment area c. 37000 km2. The model was then coupled with several other European meteorological models ranging from the Limited Area Models (provided by DMI and DWD with resolutions from 0.0625° * 0.0625°, to the ECMWF ensemble predictions with a resolution of 1.85° * 1.85°. Interesting results, describing the coupled model behaviour, are available for a meteorological extreme event in Northern Italy (Nov. 1994. The results demonstrate the poor reliability of the quantitative precipitation forecasts produced by meteorological models presently available; this is not resolved using the Ensemble Forecasting technique, when compared with results obtainable with measured rainfall.

  20. Seasonal streamflow forecasting with the global hydrological forecasting system FEWS-World

    Science.gov (United States)

    Candogan Yossef, N.; Van Beek, L. P.; Winsemius, H.; Bierkens, M. F.

    2011-12-01

    anomalies and extreme events. The prospects for seasonal/monthly forecasting of hydrological extremes are therefore positive. Next, the true skill of the global hydrological forecasting system FEWS-World is assessed in retroactive forecasting mode, using seasonal meteorological forecasts subject to uncertainty from numerical weather prediction (NWP) models. The system is forced with ensemble seasonal meteorological forecasts from the seasonal forecast archives of ECMWF. We assess the skill of FEWS-World in forecasting monthly anomalies and extreme events on a range of different lead-times by applying verification measures for ensemble forecasts. Although forecasting skill decreases with increasing lead time, the value of forecasts does not necessarily do so. The real value of a forecast is to be determined on the basis of the benefits and costs of possible actions that can be taken in response to a forecast, provided that information on forecast reliability is properly communicated. A preliminary investigation of the forecast requirements and response options of several sectors over lead times from short-range through medium-range to monthly and seasonal show that most sectors benefit from seasonal forecasts to prepare for appropriate response.

  1. Application of hydrologic forecast model.

    Science.gov (United States)

    Hua, Xu; Hengxin, Xue; Zhiguo, Chen

    2012-01-01

    In order to overcome the shortcoming of the solution may be trapped into the local minimization in the traditional TSK (Takagi-Sugeno-Kang) fuzzy inference training, this paper attempts to consider the TSK fuzzy system modeling approach based on the visual system principle and the Weber law. This approach not only utilizes the strong capability of identifying objects of human eyes, but also considers the distribution structure of the training data set in parameter regulation. In order to overcome the shortcoming of it adopting the gradient learning algorithm with slow convergence rate, a novel visual TSK fuzzy system model based on evolutional learning is proposed by introducing the particle swarm optimization algorithm. The main advantage of this method lies in its very good optimization, very strong noise immunity and very good interpretability. The new method is applied to long-term hydrological forecasting examples. The simulation results show that the method is feasible and effective, the new method not only inherits the advantages of traditional visual TSK fuzzy models but also has the better global convergence and accuracy than the traditional model.

  2. Stochastic and dynamical downscaling of ensemble precipitation forecasts

    Science.gov (United States)

    Brussolo, E.; von Hardenberg, J.; Rebora, N.

    2009-04-01

    Forecasting hydrogeological risk in small basins requires quantitative forecasts and an estimate of the probability of occurrence of severe, localized precipitation events at spatial scales of the order of tens of kilometers or less, significantly smaller than those currently provided by large scale, global, ensemble forecasting systems (EPS). Dynamically based forecasts at these scales can be obtained extending EPS scenarios with high-resolution, non-hydrostatic, limited area ensemble prediction systems. An alternative is represented by the direct application of stochastic downscaling techniques to the large scale ensemble forecasts. This work compares the performances of these two very different ensemble forecast downscaling approaches. To this purpose we consider ensemble forecasts provided by the ECMWF EPS, downscaled in space using the RainFARM stochastic technique [1], and ensembles of forecasts obtained from the COSMO-LEPS limited area prediction system (which also uses ECMWF EPS ensemble members as boundary conditions), for three intense precipitation events over northern Italy in 2006. The statistical properties of the fields produced with these two techniques are compared and the skill of the resulting ensembles is verified against direct precipitation measurements from a dense network of rain gauges. Reference: 1. Rebora, N., L. Ferraris, J. von Hardenberg, and A. Provenzale, 2006: The RainFARM: Rainfall Downscaling by a Filtered AutoRegressive Model. J. Hydrometeorol., 7, 724-738.

  3. Reliable long-range ensemble streamflow forecasts: Combining calibrated climate forecasts with a conceptual runoff model and a staged error model

    Science.gov (United States)

    Bennett, James C.; Wang, Q. J.; Li, Ming; Robertson, David E.; Schepen, Andrew

    2016-10-01

    We present a new streamflow forecasting system called forecast guided stochastic scenarios (FoGSS). FoGSS makes use of ensemble seasonal precipitation forecasts from a coupled ocean-atmosphere general circulation model (CGCM). The CGCM forecasts are post-processed with the method of calibration, bridging and merging (CBaM) to produce ensemble precipitation forecasts over river catchments. CBaM corrects biases and removes noise from the CGCM forecasts, and produces highly reliable ensemble precipitation forecasts. The post-processed CGCM forecasts are used to force the Wapaba monthly rainfall-runoff model. Uncertainty in the hydrological modeling is accounted for with a three-stage error model. Stage 1 applies the log-sinh transformation to normalize residuals and homogenize their variance; Stage 2 applies a conditional bias-correction to correct biases and help remove negative forecast skill; Stage 3 applies an autoregressive model to improve forecast accuracy at short lead-times and propagate uncertainty through the forecast. FoGSS generates ensemble forecasts in the form of time series for the coming 12 months. In a case study of two catchments, FoGSS produces reliable forecasts at all lead-times. Forecast skill with respect to climatology is evident to lead-times of about 3 months. At longer lead-times, forecast skill approximates that of climatology forecasts; that is, forecasts become like stochastic scenarios. Because forecast skill is virtually never negative at long lead-times, forecasts of accumulated volumes can be skillful. Forecasts of accumulated 12 month streamflow volumes are significantly skillful in several instances, and ensembles of accumulated volumes are reliable. We conclude that FoGSS forecasts could be highly useful to water managers.

  4. Towards an improved ensemble precipitation forecast: A probabilistic post-processing approach

    Science.gov (United States)

    Khajehei, Sepideh; Moradkhani, Hamid

    2017-03-01

    Recently, ensemble post-processing (EPP) has become a commonly used approach for reducing the uncertainty in forcing data and hence hydrologic simulation. The procedure was introduced to build ensemble precipitation forecasts based on the statistical relationship between observations and forecasts. More specifically, the approach relies on a transfer function that is developed based on a bivariate joint distribution between the observations and the simulations in the historical period. The transfer function is used to post-process the forecast. In this study, we propose a Bayesian EPP approach based on copula functions (COP-EPP) to improve the reliability of the precipitation ensemble forecast. Evaluation of the copula-based method is carried out by comparing the performance of the generated ensemble precipitation with the outputs from an existing procedure, i.e. mixed type meta-Gaussian distribution. Monthly precipitation from Climate Forecast System Reanalysis (CFS) and gridded observation from Parameter-Elevation Relationships on Independent Slopes Model (PRISM) have been employed to generate the post-processed ensemble precipitation. Deterministic and probabilistic verification frameworks are utilized in order to evaluate the outputs from the proposed technique. Distribution of seasonal precipitation for the generated ensemble from the copula-based technique is compared to the observation and raw forecasts for three sub-basins located in the Western United States. Results show that both techniques are successful in producing reliable and unbiased ensemble forecast, however, the COP-EPP demonstrates considerable improvement in the ensemble forecast in both deterministic and probabilistic verification, in particular in characterizing the extreme events in wet seasons.

  5. On noice in data assimilation schemes for improved flood forecasting using distributed hydrological models

    NARCIS (Netherlands)

    Noh, S.J.; Rakovec, O.; Weerts, A.H.; Tachikawa, Y.

    2014-01-01

    We investigate the effects of noise specification on the quality of hydrological forecasts via an advanced data assimilation (DA) procedure using a distributed hydrological model driven by numerical weather predictions. The sequential DA procedure is based on (1) a multivariate rainfall ensemble

  6. A national-scale seasonal hydrological forecast system: development and evaluation over Britain

    Science.gov (United States)

    Bell, Victoria A.; Davies, Helen N.; Kay, Alison L.; Brookshaw, Anca; Scaife, Adam A.

    2017-09-01

    Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better) rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts) from the GloSea5 model (1996 to 2009) are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean) rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region). Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 %) in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows), whereas for the 3-month ahead lead time, GloSea5 forecasts account for ˜ 70 % of the forecast

  7. A national-scale seasonal hydrological forecast system: development and evaluation over Britain

    Directory of Open Access Journals (Sweden)

    V. A. Bell

    2017-09-01

    Full Text Available Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts from the GloSea5 model (1996 to 2009 are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region. Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 % in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows, whereas for the 3-month ahead lead time, GloSea5 forecasts account for  ∼ 70

  8. Evaluation of bias-correction methods for ensemble streamflow volume forecasts

    Directory of Open Access Journals (Sweden)

    T. Hashino

    2007-01-01

    Full Text Available Ensemble prediction systems are used operationally to make probabilistic streamflow forecasts for seasonal time scales. However, hydrological models used for ensemble streamflow prediction often have simulation biases that degrade forecast quality and limit the operational usefulness of the forecasts. This study evaluates three bias-correction methods for ensemble streamflow volume forecasts. All three adjust the ensemble traces using a transformation derived with simulated and observed flows from a historical simulation. The quality of probabilistic forecasts issued when using the three bias-correction methods is evaluated using a distributions-oriented verification approach. Comparisons are made of retrospective forecasts of monthly flow volumes for a north-central United States basin (Des Moines River, Iowa, issued sequentially for each month over a 48-year record. The results show that all three bias-correction methods significantly improve forecast quality by eliminating unconditional biases and enhancing the potential skill. Still, subtle differences in the attributes of the bias-corrected forecasts have important implications for their use in operational decision-making. Diagnostic verification distinguishes these attributes in a context meaningful for decision-making, providing criteria to choose among bias-correction methods with comparable skill.

  9. Verification of inflow into hydropower reservoirs using ensemble forecasts of the TIGGE database for large scale basins in Brazil

    Directory of Open Access Journals (Sweden)

    Fernando Mainardi Fan

    2015-09-01

    New hydrological insights for the region: This work presents one of the first extensive efforts to evaluate ensemble forecasts for large-scale basins in South America using TIGGE archive data. Results from these scenarios provide validation criteria and confirm that ensemble forecasts depend on the particular EPS used to run the hydrological model and on the basin studied. Furthermore, the use of the Super Ensemble seems to be a good strategy in terms of performance and robustness. The importance of the TIGGE database is also highlighted.

  10. Ensemble Forecasting of Volcanic Emissions in Hawai’i

    Directory of Open Access Journals (Sweden)

    Andre Kristofer Pattantyus

    2015-03-01

    Full Text Available Deterministic model forecasts do not convey to the end users the forecast uncertainty the models possess as a result of physics parameterizations, simplifications in model representation of physical processes, and errors in initial conditions. This lack of understanding leads to a level of uncertainty in the forecasted value when only a single deterministic model forecast is available. Increasing computational power and parallel software architecture allows multiple simulations to be carried out simultaneously that yield useful measures of model uncertainty that can be derived from ensemble model results. The Hybrid Single Particle Lagrangian Integration Trajectory and Dispersion model has the ability to generate ensemble forecasts. A meteorological ensemble was formed to create probabilistic forecast products and an ensemble mean forecast for volcanic emissions from the Kilauea volcano that impacts the state of Hawai’i. The probabilistic forecast products show uncertainty in pollutant concentrations that are especially useful for decision-making regarding public health. Initial comparison of the ensemble mean forecasts with observations and a single model forecast show improvements in event timing for both sulfur dioxide and sulfate aerosol forecasts.  

  11. Improved sub-seasonal meteorological forecast skill using weighted multi-model ensemble simulations

    Science.gov (United States)

    Wanders, Niko; Wood, Eric F.

    2016-09-01

    Sub-seasonal to seasonal weather and hydrological forecasts have the potential to provide vital information for a variety of water-related decision makers. Here, we investigate the skill of four sub-seasonal forecast models from phase-2 of the North American Multi-Model Ensemble using reforecasts for the period 1982-2012. Two weighted multi-model ensemble means from the models have been developed for predictions of both sub-seasonal precipitation and temperature. By combining models through optimal weights, the multi-model forecast skill is significantly improved compared to a ‘standard’ equally weighted multi-model forecast mean. We show that optimal model weights are robust and the forecast skill is maintained for increased length of time and regions with a low initial forecast skill show significant skill after optimal weighting of the individual model forecast. The sub-seasonal model forecasts models show high skill over the tropics, approximating their skill at monthly resolution. Using the weighted approach, a significant increase is found in the forecast skill for dry, wet, cold and warm extreme events. The weighted mean approach brings significant advances to sub-seasonal forecasting due to its reduced uncertainty in the forecasts with a gain in forecast skill. This significantly improves their value for end-user applications and our ability to use them to prepare for upcoming extreme conditions, like floods and droughts.

  12. Benchmark verification of deterministic and ensemble forecasts for the river Rhine

    Science.gov (United States)

    van Osnabrugge, Bart; Weerts, Albrecht; Verkade, Jan; den Toom, Matthijs; Uijlenhoet, Remko; Sprokkereef, Eric

    2016-04-01

    As part of the IMPREX project (IMproving PRedictions and management of EXtremes) we perform a benchmark verification study (tier 1) of an operational active hydrological forecasting system of the river Rhine. We assess the current forecast skill and contributions of current DA methods (e.g. error correction) to forecast skill. Our results will be compared with previous verification studies (Renner et al., 2009, Verkade et al., 2013) for the Rhine. Based on the results we will identify weaknesses and opportunities for future improvements. After model improvements and introduction of more advanced (ensemble) DA methods the benchmark will be conducted again later in the project (tier 2). From these experiments, we hope to show the relative importance of data assimilation, the availability of real-time hydrologic measured data in comparison with (improved) meteorological forecast skill and their effect on hydrologic predictability for the river Rhine.

  13. Data assimilation in integrated hydrological modeling using ensemble Kalman filtering

    DEFF Research Database (Denmark)

    Rasmussen, Jørn; Madsen, H.; Jensen, Karsten Høgh

    2015-01-01

    Groundwater head and stream discharge is assimilated using the ensemble transform Kalman filter in an integrated hydrological model with the aim of studying the relationship between the filter performance and the ensemble size. In an attempt to reduce the required number of ensemble members...

  14. Data assimilation in integrated hydrological modeling using ensemble Kalman filtering

    DEFF Research Database (Denmark)

    Rasmussen, Jørn; Madsen, H.; Jensen, Karsten Høgh;

    2015-01-01

    Groundwater head and stream discharge is assimilated using the ensemble transform Kalman filter in an integrated hydrological model with the aim of studying the relationship between the filter performance and the ensemble size. In an attempt to reduce the required number of ensemble members...

  15. Ensemble Forecasts with Useful Skill-Spread Relationships for African meningitis and Asia Streamflow Forecasting

    Science.gov (United States)

    Hopson, T. M.

    2014-12-01

    One potential benefit of an ensemble prediction system (EPS) is its capacity to forecast its own forecast error through the ensemble spread-error relationship. In practice, an EPS is often quite limited in its ability to represent the variable expectation of forecast error through the variable dispersion of the ensemble, and perhaps more fundamentally, in its ability to provide enough variability in the ensembles dispersion to make the skill-spread relationship even potentially useful (irrespective of whether the EPS is well-calibrated or not). In this paper we examine the ensemble skill-spread relationship of an ensemble constructed from the TIGGE (THORPEX Interactive Grand Global Ensemble) dataset of global forecasts and a combination of multi-model and post-processing approaches. Both of the multi-model and post-processing techniques are based on quantile regression (QR) under a step-wise forward selection framework leading to ensemble forecasts with both good reliability and sharpness. The methodology utilizes the ensemble's ability to self-diagnose forecast instability to produce calibrated forecasts with informative skill-spread relationships. A context for these concepts is provided by assessing the constructed ensemble in forecasting district-level humidity impacting the incidence of meningitis in the meningitis belt of Africa, and in forecasting flooding events in the Brahmaputra and Ganges basins of South Asia.

  16. Verification of inflow into hydropower reservoirs using ensemble forecasts of the TIGGE database for large scale basins in Brazil

    NARCIS (Netherlands)

    Mainardi Fan, F.; Schwanenberg, D.; Collischonn, W.; Weerts, A.H.

    2015-01-01

    Study region This paper describes a major ensemble-forecasts verification effort for inflows of three large-scale river basins of Brazil: Upper São Francisco, Doce, and Tocantins Rivers. Study focus In experimental scenarios, inflow forecasts were generated forcing one hydrological model with

  17. Verification of inflow into hydropower reservoirs using ensemble forecasts of the TIGGE database for large scale basins in Brazil

    NARCIS (Netherlands)

    Mainardi Fan, F.; Schwanenberg, D.; Collischonn, W.; Weerts, A.H.

    2015-01-01

    Study region This paper describes a major ensemble-forecasts verification effort for inflows of three large-scale river basins of Brazil: Upper São Francisco, Doce, and Tocantins Rivers. Study focus In experimental scenarios, inflow forecasts were generated forcing one hydrological model with quanti

  18. Global operational hydrological forecasts through eWaterCycle

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2015-04-01

    Central goal of the eWaterCycle project (www.ewatercycle.org) is the development of an operational hyper-resolution hydrological global model. This model is able to produce 14 day ensemble forecasts based on a hydrological model and operational weather data (presently NOAA's Global Ensemble Forecast System). Special attention is paid to prediction of situations in which water related issues are relevant, such as floods, droughts, navigation, hydropower generation, and irrigation stress. Near-real time satellite data will be assimilated in the hydrological simulations, which is a feature that will be presented for the first time at EGU 2015. First, we address challenges that are mainly computer science oriented but have direct practical hydrological implications. An important feature in this is the use of existing standards and open-source software to the maximum extent possible. For example, we use the Community Surface Dynamics Modeling System (CSDMS) approach to coupling models (Basic Model Interface (BMI)). The hydrological model underlying the project is PCR-GLOBWB, built by Utrecht University. This is the motor behind the predictions and state estimations. Parts of PCR-GLOBWB have been re-engineered to facilitate running it in a High Performance Computing (HPC) environment, run parallel on multiple nodes, as well as to use BMI. Hydrological models are not very CPU intensive compared to, say, atmospheric models. They are, however, memory hungry due to the localized processes and associated effective parameters. To accommodate this memory need, especially in an ensemble setting, a variation on the traditional Ensemble Kalman Filter was developed that needs much less on-chip memory. Due to the operational nature, the coupling of the hydrological model with hydraulic models is very important. The idea is not to run detailed hydraulic routing schemes over the complete globe but to have on-demand simulation prepared off-line with respect to topography and

  19. Value assessment of a global hydrological forecasting system

    Science.gov (United States)

    Candogan Yossef, N.; Winsemius, H.; van Beek, L. P. H.; van Beek, E.; Bierkens, M. F. P.

    2012-04-01

    The inter-annual variability in streamflow presents risks and opportunities in the management of water resources systems. Reliable hydrological forecasts, effective communication and proper response allow several sectors to make more informed management decisions. In many developing regions of the world, there are no efficient hydrological forecasting systems. A global forecasting system which indicates increased probabilities of streamflow excesses or shortages over long lead-times can be of great value for these regions. FEWS-World system is developed for this purpose. It is based on the Delft-FEWS (flood early warning system) developed by Deltares and incorporates the global hydrological model PCR-GLOBWB. This study investigates the skill and value of FEWS-World. Skill is defined as the ability of the system to forecast discharge extremes; and value as its usefulness for possible users and ultimately for affected populations. Skill is assessed in historical simulation mode as well as retroactive forecasting mode. For the assessment in historical simulation mode a meteorological forcing based on observations from the Climate Research Unit of the University of East Anglia and the ERA-40 reanalysis of the European Center for Medium-Range Weather Forecasts (ECMWF) was used. For the assessment in retroactive forecasting mode the model was forced with ensemble forecasts from the seasonal forecast archives of ECMWF. The eventual goal is to transfer FEWS-World to operational forecasting mode, where the system will use operational seasonal forecasts from ECMWF. The results will be disseminated on the internet, and hopefully provide information that is valuable for users in data and model-poor regions of the world. The results of the preliminary assessment show that although forecasting skill decreases with increasing lead time, the value of forecasts does not necessarily decrease. The forecast requirements and response options of several water related sectors was

  20. Forecasting Global Point Rainfall using ECMWF's Ensemble Forecasting System

    Science.gov (United States)

    Pillosu, Fatima; Hewson, Timothy; Zsoter, Ervin; Baugh, Calum

    2017-04-01

    ECMWF (the European Centre for Medium range Weather Forecasts), in collaboration with the EFAS (European Flood Awareness System) and GLOFAS (GLObal Flood Awareness System) teams, has developed a new operational system that post-processes grid box rainfall forecasts from its ensemble forecasting system to provide global probabilistic point-rainfall predictions. The project attains a higher forecasting skill by applying an understanding of how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals. In turn this approach facilitates identification of cases in which very localized extreme totals are much more likely. This approach aims also to improve the rainfall input required in different hydro-meteorological applications. Flash flood forecasting, in particular in urban areas, is a good example. In flash flood scenarios precipitation is typically characterised by high spatial variability and response times are short. In this case, to move beyond radar based now casting, the classical approach has been to use very high resolution hydro-meteorological models. Of course these models are valuable but they can represent only very limited areas, may not be spatially accurate and may give reasonable results only for limited lead times. On the other hand, our method aims to use a very cost-effective approach to downscale global rainfall forecasts to a point scale. It needs only rainfall totals from standard global reporting stations and forecasts over a relatively short period to train it, and it can give good results even up to day 5. For these reasons we believe that this approach better satisfies user needs around the world. This presentation aims to describe two phases of the project: The first phase, already completed, is the implementation of this new system to provide 6 and 12 hourly point-rainfall accumulation probabilities. To do this we use a limited number of physically relevant global model parameters (i

  1. Adaptive calibration of (u,v)‐wind ensemble forecasts

    DEFF Research Database (Denmark)

    Pinson, Pierre

    2012-01-01

    Ensemble forecasts of (u,v)‐wind are of crucial importance for a number of decision‐making problems related to e.g. air traffic control, ship routeing and energy management. The skill of these ensemble forecasts as generated by NWP‐based models can be maximised by correcting for their lack...... of sufficient reliability. The original framework introduced here allows for an adaptive bivariate calibration of these ensemble forecasts. The originality of this methodology lies in the fact that calibrated ensembles still consist of a set of (space–time) trajectories, after translation and dilation...... on the adaptive calibration of ECMWF ensemble forecasts of (u,v)‐wind at 10 m above ground level over Europe over a three‐year period between December 2006 and December 2009. Substantial improvements in (bivariate) reliability and in various deterministic/probabilistic scores are observed. Finally, the maps...

  2. GloFAS-Seasonal: Operational Seasonal Ensemble River Flow Forecasts at the Global Scale

    Science.gov (United States)

    Emerton, Rebecca; Zsoter, Ervin; Smith, Paul; Salamon, Peter

    2017-04-01

    Seasonal hydrological forecasting has potential benefits for many sectors, including agriculture, water resources management and humanitarian aid. At present, no global scale seasonal hydrological forecasting system exists operationally; although smaller scale systems have begun to emerge around the globe over the past decade, a system providing consistent global scale seasonal forecasts would be of great benefit in regions where no other forecasting system exists, and to organisations operating at the global scale, such as disaster relief. We present here a new operational global ensemble seasonal hydrological forecast, currently under development at ECMWF as part of the Global Flood Awareness System (GloFAS). The proposed system, which builds upon the current version of GloFAS, takes the long-range forecasts from the ECMWF System4 ensemble seasonal forecast system (which incorporates the HTESSEL land surface scheme) and uses this runoff as input to the Lisflood routing model, producing a seasonal river flow forecast out to 4 months lead time, for the global river network. The seasonal forecasts will be evaluated using the global river discharge reanalysis, and observations where available, to determine the potential value of the forecasts across the globe. The seasonal forecasts will be presented as a new layer in the GloFAS interface, which will provide a global map of river catchments, indicating whether the catchment-averaged discharge forecast is showing abnormally high or low flows during the 4-month lead time. Each catchment will display the corresponding forecast as an ensemble hydrograph of the weekly-averaged discharge forecast out to 4 months, with percentile thresholds shown for comparison with the discharge climatology. The forecast visualisation is based on a combination of the current medium-range GloFAS forecasts and the operational EFAS (European Flood Awareness System) seasonal outlook, and aims to effectively communicate the nature of a seasonal

  3. Integrating Ensemble Forecasts of Precipitation and Streamflow into Decision Support for Reservoir Operations in North Central Texas

    Science.gov (United States)

    Kim, S.; Limon, R. A.; Alizadeh, B.; Seo, D. J.; Fincannon, T. J.; Winguth, A. M. E.; Brown, J.; Blaylock, L.; Lampe, M.; Philpott, A.; Bell, F.

    2016-12-01

    North Central Texas relies heavily on surface water for water supply. To meet the growing demand, large raw water suppliers, such as the Tarrant Regional Water District (TRWD), operate systems of reservoirs that are connected by extensive networks of pipelines over long distances. To ensure water supply at all times, while minimizing flooding risks and pumping cost, TRWD utilizes a suite of decision support tools. This research aims to improve the operating efficiency of the water delivery system by providing skillful ensemble precipitation and inflow forecasts that can be used to optimize the water supply operations under uncertain environmental conditions. To assess the value of medium- and long-range forecasts of precipitation and inflow to operation and management of the TRWD's reservoir-pipeline system, a set of hindcasting and verification experiments is being carried out. The hindcasting experiments use weather and climate reforecasts from the Global Ensemble Forecast System and the Climate Forecast System Version 2, and the forecasting and verification tools of the National Weather Service's Hydrologic Ensemble Forecast Service, the Community Hydrologic Prediction System, and the Ensemble Verification System. The value of ensemble forecasts will be demonstrated via the TRWD forecasting model, which uses RiverWare. We also present a multiscale bias correction procedure for post-processing the raw streamflow ensembles.

  4. An experimental seasonal hydrological forecasting system over the Yellow River basin - Part 2: The added value from climate forecast models

    Science.gov (United States)

    Yuan, Xing

    2016-06-01

    This is the second paper of a two-part series on introducing an experimental seasonal hydrological forecasting system over the Yellow River basin in northern China. While the natural hydrological predictability in terms of initial hydrological conditions (ICs) is investigated in a companion paper, the added value from eight North American Multimodel Ensemble (NMME) climate forecast models with a grand ensemble of 99 members is assessed in this paper, with an implicit consideration of human-induced uncertainty in the hydrological models through a post-processing procedure. The forecast skill in terms of anomaly correlation (AC) for 2 m air temperature and precipitation does not necessarily decrease over leads but is dependent on the target month due to a strong seasonality for the climate over the Yellow River basin. As there is more diversity in the model performance for the temperature forecasts than the precipitation forecasts, the grand NMME ensemble mean forecast has consistently higher skill than the best single model up to 6 months for the temperature but up to 2 months for the precipitation. The NMME climate predictions are downscaled to drive the variable infiltration capacity (VIC) land surface hydrological model and a global routing model regionalized over the Yellow River basin to produce forecasts of soil moisture, runoff and streamflow. And the NMME/VIC forecasts are compared with the Ensemble Streamflow Prediction method (ESP/VIC) through 6-month hindcast experiments for each calendar month during 1982-2010. As verified by the VIC offline simulations, the NMME/VIC is comparable to the ESP/VIC for the soil moisture forecasts, and the former has higher skill than the latter only for the forecasts at long leads and for those initialized in the rainy season. The forecast skill for runoff is lower for both forecast approaches, but the added value from NMME/VIC is more obvious, with an increase of the average AC by 0.08-0.2. To compare with the observed

  5. Theory and Practice of Phase-aware Ensemble Forecasting

    Science.gov (United States)

    Schulte, J. A.; Georgas, N.

    2016-12-01

    The timing of events represents a source of uncertainty in ensemble forecasting that can produce misleading ensemble statistics. A general theory is presented to overcome drawbacks of traditional ensemble forecasting statistics that perform poorly in the presence of timing disagreements among ensemble members. It was shown, in particular, that ensemble forecasts containing substantial uncertainty in timing can produce non-trivial higher-order statistical moments, rendering the ensemble mean inappropriate as a best available estimate of the future state of the forecast parameter in question. A set of theoretical experiments showed that the existence of large timing differences among ensemble members can produce negative ensemble skewness even when the ensemble members are sinusoids whose amplitudes are drawn from a normal distribution: Consistently, the ensemble mean will tend to fall on the left tail of the normal distribution representing the originally sampled amplitudes, rather than at the mean or median. To remedy the left-tail placement problem of the ensemble mean, a new generally applicable ensemble statistic - the phase-aware ensemble mean - is proposed that is more robust against ensemble skewness resulting from timing spread. The computation of the phase-aware mean involves the transformation of all ensemble members to wavelet space and the subsequent inverse wavelet transformation of the product of the ensemble mean wavelet phase and modulus back to the time domain. The new methods were applied to storm surge reforecasts for Hurricane Irene and Sandy at 8 stations located around the New York City metropolitan area. The phase-aware ensemble mean was found to perform better at detecting the magnitude of events compared to the traditional ensemble mean, consistent with the results from theoretical experiments. The ensemble mean, moreover, was found to be consistently located on the left tail of distributions representing future peak storm surge outcomes. A

  6. Trends in the predictive performance of raw ensemble weather forecasts

    Science.gov (United States)

    Hemri, Stephan; Scheuerer, Michael; Pappenberger, Florian; Bogner, Konrad; Haiden, Thomas

    2015-04-01

    Over the last two decades the paradigm in weather forecasting has shifted from being deterministic to probabilistic. Accordingly, numerical weather prediction (NWP) models have been run increasingly as ensemble forecasting systems. The goal of such ensemble forecasts is to approximate the forecast probability distribution by a finite sample of scenarios. Global ensemble forecast systems, like the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble, are prone to probabilistic biases, and are therefore not reliable. They particularly tend to be underdispersive for surface weather parameters. Hence, statistical post-processing is required in order to obtain reliable and sharp forecasts. In this study we apply statistical post-processing to ensemble forecasts of near-surface temperature, 24-hour precipitation totals, and near-surface wind speed from the global ECMWF model. Our main objective is to evaluate the evolution of the difference in skill between the raw ensemble and the post-processed forecasts. The ECMWF ensemble is under continuous development, and hence its forecast skill improves over time. Parts of these improvements may be due to a reduction of probabilistic bias. Thus, we first hypothesize that the gain by post-processing decreases over time. Based on ECMWF forecasts from January 2002 to March 2014 and corresponding observations from globally distributed stations we generate post-processed forecasts by ensemble model output statistics (EMOS) for each station and variable. Parameter estimates are obtained by minimizing the Continuous Ranked Probability Score (CRPS) over rolling training periods that consist of the n days preceding the initialization dates. Given the higher average skill in terms of CRPS of the post-processed forecasts for all three variables, we analyze the evolution of the difference in skill between raw ensemble and EMOS forecasts. The fact that the gap in skill remains almost constant over time, especially for near

  7. Operational value of ensemble streamflow forecasts for hydropower production: A Canadian case study

    Science.gov (United States)

    Boucher, Marie-Amélie; Tremblay, Denis; Luc, Perreault; François, Anctil

    2010-05-01

    Ensemble and probabilistic forecasts have many advantages over deterministic ones, both in meteorology and hydrology (e.g. Krzysztofowicz, 2001). Mainly, they inform the user on the uncertainty linked to the forecast. It has been brought to attention that such additional information could lead to improved decision making (e.g. Wilks and Hamill, 1995; Mylne, 2002; Roulin, 2007), but very few studies concentrate on operational situations involving the use of such forecasts. In addition, many authors have demonstrated that ensemble forecasts outperform deterministic forecasts in terms of performance (e.g. Jaun et al., 2005; Velazquez et al., 2009; Laio and Tamea, 2007). However, such performance is mostly assessed on the basis of numerical scoring rules, which compare the forecasts to the observations, and seldom in terms of management gains. The proposed case study adopts an operational point of view, on the basis that a novel forecasting system has value only if it leads to increase monetary and societal gains (e.g. Murphy, 1994; Laio and Tamea, 2007). More specifically, Environment Canada operational ensemble precipitation forecasts are used to drive the HYDROTEL distributed hydrological model (Fortin et al., 1995), calibrated on the Gatineau watershed located in Québec, Canada. The resulting hydrological ensemble forecasts are then incorporated into Hydro-Québec SOHO stochastic management optimization tool that automatically search for optimal operation decisions for the all reservoirs and hydropower plants located on the basin. The timeline of the study is the fall season of year 2003. This period is especially relevant because of high precipitations that nearly caused a major spill, and forced the preventive evacuation of a portion of the population located near one of the dams. We show that the use of the ensemble forecasts would have reduced the occurrence of spills and flooding, which is of particular importance for dams located in populous area, and

  8. Skill forecasting from ensemble predictions of wind power

    DEFF Research Database (Denmark)

    Pinson, Pierre; Nielsen, Henrik Aalborg; Madsen, Henrik

    2009-01-01

    Optimal management and trading of wind generation calls for the providing of uncertainty estimates along with the commonly provided short-term wind power point predictions. Alternative approaches for the use of probabilistic forecasting are introduced. More precisely, focus is given to prediction...... risk indices aiming to give a comprehensive signal on the expected level of forecast uncertainty. Ensemble predictions of wind generation are used as input. A proposal for the definition of prediction risk indices is given. Such skill forecasts are based on the spread of ensemble forecasts (i.e. a set...

  9. Constraining the Ensemble Kalman Filter for improved streamflow forecasting

    Science.gov (United States)

    Maxwell, Deborah; Jackson, Bethanna; McGregor, James

    2016-04-01

    Data assimilation techniques such as the Kalman Filter and its variants are often applied to hydrological models with minimal state volume/capacity constraints. Flux constraints are rarely, if ever, applied. Consequently, model states can be adjusted beyond physically reasonable limits, compromising the integrity of model output. In this presentation, we investigate the effect of constraining the Ensemble Kalman Filter (EnKF) on forecast performance. An EnKF implementation with no constraints is compared to model output with no assimilation, followed by a 'typical' hydrological implementation (in which mass constraints are enforced to ensure non-negativity and capacity thresholds of model states are not exceeded), and then a more tightly constrained implementation where flux as well as mass constraints are imposed to limit the rate of water movement within a state. A three year period (2008-2010) with no significant data gaps and representative of the range of flows observed over the fuller 1976-2010 record was selected for analysis. Over this period, the standard implementation of the EnKF (no constraints) contained eight hydrological events where (multiple) physically inconsistent state adjustments were made. All were selected for analysis. Overall, neither the unconstrained nor the "typically" mass-constrained forecasts were significantly better than the non-filtered forecasts; in fact several were significantly degraded. Flux constraints (in conjunction with mass constraints) significantly improved the forecast performance of six events relative to all other implementations, while the remaining two events showed no significant difference in performance. We conclude that placing flux as well as mass constraints on the data assimilation framework encourages physically consistent state updating and results in more accurate and reliable forward predictions of streamflow for robust decision-making. We also experiment with the observation error, and find that this

  10. Hindcast experiments of ensemble streamflow forecasting for the Paraopeba river (Brazil)

    Science.gov (United States)

    Collischonn, W.; Meller, A.; Dias, P. L. S.; Moreira, D. S.

    2012-04-01

    Streamflow forecasts are routinely produced and used in Brazil to predict inflow to major hydropower reservoirs . In this field of application quantitative precipitation forecasts are becoming increasingly used to extend the range and increase the skill of streamflow forecasts. Forecasting systems designed to provide flood alert, on the other side, are relatively rare in Brazil, and are often based on simplified river routing models. However, a number of recent floods with significant loss of lives and economical impact is now motivating the creation of a new governmental institution dedicated to natural disaster and flood forecasting. This will further motivate the incorporation of numerical weather predictions (NWP) as input data to hydrological flood forecasting models, with the aim of increasing forecast lead time. In this context ensemble meteorological forecasts will be increasingly useful, since it is expected that ensembles can give some idea of the confidence level of the forecasts, and that extremes can be better captured by a high number of NWP runs with different initial conditions, or with different meteorological models. Silva Dias and Moreira (2006) organized a grand ensemble including several different models and model members for South America. We used forecasts of individual models of this grand ensemble to run a series of streamflow hindcast experiments (in forecast mode), using the MGB-IPH hydrological model. These tests were conducted in the Paraopeba river basin, which is a tributary of the São Francisco river, located in Minas Gerais State, in a Tropical region in the range from 21 S to 19 S. Results of 72 hour streamflow forecasts were compared to hourly observed discharge at Porto Mesquita gauging station, were the drainage area is 10280 square kilometers, during the Austral Summer of 2011. Results were assessed by visual inspection of hydrographs and by the analysis of a number of summary statistics. These preliminary results suggest that

  11. Time Series Forecasting of Daily Reference Evapotranspiration by Neural Network Ensemble Learning for Irrigation System

    Science.gov (United States)

    Manikumari, N.; Murugappan, A.; Vinodhini, G.

    2017-07-01

    Time series forecasting has gained remarkable interest of researchers in the last few decades. Neural networks based time series forecasting have been employed in various application areas. Reference Evapotranspiration (ETO) is one of the most important components of the hydrologic cycle and its precise assessment is vital in water balance and crop yield estimation, water resources system design and management. This work aimed at achieving accurate time series forecast of ETO using a combination of neural network approaches. This work was carried out using data collected in the command area of VEERANAM Tank during the period 2004 - 2014 in India. In this work, the Neural Network (NN) models were combined by ensemble learning in order to improve the accuracy for forecasting Daily ETO (for the year 2015). Bagged Neural Network (Bagged-NN) and Boosted Neural Network (Boosted-NN) ensemble learning were employed. It has been proved that Bagged-NN and Boosted-NN ensemble models are better than individual NN models in terms of accuracy. Among the ensemble models, Boosted-NN reduces the forecasting errors compared to Bagged-NN and individual NNs. Regression co-efficient, Mean Absolute Deviation, Mean Absolute Percentage error and Root Mean Square Error also ascertain that Boosted-NN lead to improved ETO forecasting performance.

  12. Evaluating uncertainty estimates in hydrologic models: borrowing measures from the forecast verification community

    Directory of Open Access Journals (Sweden)

    K. J. Franz

    2011-11-01

    Full Text Available The hydrologic community is generally moving towards the use of probabilistic estimates of streamflow, primarily through the implementation of Ensemble Streamflow Prediction (ESP systems, ensemble data assimilation methods, or multi-modeling platforms. However, evaluation of probabilistic outputs has not necessarily kept pace with ensemble generation. Much of the modeling community is still performing model evaluation using standard deterministic measures, such as error, correlation, or bias, typically applied to the ensemble mean or median. Probabilistic forecast verification methods have been well developed, particularly in the atmospheric sciences, yet few have been adopted for evaluating uncertainty estimates in hydrologic model simulations. In the current paper, we overview existing probabilistic forecast verification methods and apply the methods to evaluate and compare model ensembles produced from two different parameter uncertainty estimation methods: the Generalized Uncertainty Likelihood Estimator (GLUE, and the Shuffle Complex Evolution Metropolis (SCEM. Model ensembles are generated for the National Weather Service SACramento Soil Moisture Accounting (SAC-SMA model for 12 forecast basins located in the Southeastern United States. We evaluate the model ensembles using relevant metrics in the following categories: distribution, correlation, accuracy, conditional statistics, and categorical statistics. We show that the presented probabilistic metrics are easily adapted to model simulation ensembles and provide a robust analysis of model performance associated with parameter uncertainty. Application of these methods requires no information in addition to what is already available as part of traditional model validation methodology and considers the entire ensemble or uncertainty range in the approach.

  13. Short to sub-seasonal hydrologic forecast to manage water and agricultural resources in India

    Science.gov (United States)

    Shah, Reepal; Sahai, Atul Kumar; Mishra, Vimal

    2017-02-01

    Water resources and agriculture are often affected by the weather anomalies in India resulting in disproportionate damage. While short to sub-seasonal prediction systems and forecast products are available, a skilful hydrologic forecast of runoff and root-zone soil moisture that can provide timely information has been lacking in India. Using precipitation and air temperature forecasts from the Climate Forecast System v2 (CFSv2), the Global Ensemble Forecast System (GEFSv2) and four products from the Indian Institute of Tropical Meteorology (IITM), here we show that the IITM ensemble mean (mean of all four products from the IITM) can be used operationally to provide a hydrologic forecast in India at a 7-45-day accumulation period. The IITM ensemble mean forecast was further improved using bias correction for precipitation and air temperature. Bias corrected precipitation forecast showed an improvement of 2.1 mm (on the all-India median mean absolute error - MAE), while all-India median bias corrected temperature forecast was improved by 2.1 °C for a 45-day accumulation period. Moreover, the Variable Infiltration Capacity (VIC) model simulated forecast of runoff and soil moisture successfully captured the observed anomalies during the severe drought years. The findings reported herein have strong implications for providing timely information that can help farmers and water managers in decision making in India.

  14. Extracting Value from Ensembles for Cloud-Free Forecasting

    Science.gov (United States)

    2011-09-01

    for Medium range Weather Forecasting EMean Ensemble mean ETR Ensemble transform with rescaling EUMETSAT European Organization for the...transform method (ET) with rescaling ( ETR ) to define the initial atmospheric uncertainty (Wei et al. 2008). Adapted from the ET method devised by...variances of each grid point to further restrain the initial ensemble spread. The ETR method replaced the breeding method in GEFS during NCEP’s May

  15. Potentialities of ensemble strategies for flood forecasting over the Milano urban area

    Science.gov (United States)

    Ravazzani, Giovanni; Amengual, Arnau; Ceppi, Alessandro; Homar, Víctor; Romero, Romu; Lombardi, Gabriele; Mancini, Marco

    2016-08-01

    Analysis of ensemble forecasting strategies, which can provide a tangible backing for flood early warning procedures and mitigation measures over the Mediterranean region, is one of the fundamental motivations of the international HyMeX programme. Here, we examine two severe hydrometeorological episodes that affected the Milano urban area and for which the complex flood protection system of the city did not completely succeed. Indeed, flood damage have exponentially increased during the last 60 years, due to industrial and urban developments. Thus, the improvement of the Milano flood control system needs a synergism between structural and non-structural approaches. First, we examine how land-use changes due to urban development have altered the hydrological response to intense rainfalls. Second, we test a flood forecasting system which comprises the Flash-flood Event-based Spatially distributed rainfall-runoff Transformation, including Water Balance (FEST-WB) and the Weather Research and Forecasting (WRF) models. Accurate forecasts of deep moist convection and extreme precipitation are difficult to be predicted due to uncertainties arising from the numeric weather prediction (NWP) physical parameterizations and high sensitivity to misrepresentation of the atmospheric state; however, two hydrological ensemble prediction systems (HEPS) have been designed to explicitly cope with uncertainties in the initial and lateral boundary conditions (IC/LBCs) and physical parameterizations of the NWP model. No substantial differences in skill have been found between both ensemble strategies when considering an enhanced diversity of IC/LBCs for the perturbed initial conditions ensemble. Furthermore, no additional benefits have been found by considering more frequent LBCs in a mixed physics ensemble, as ensemble spread seems to be reduced. These findings could help to design the most appropriate ensemble strategies before these hydrometeorological extremes, given the computational

  16. Online probabilistic learning with an ensemble of forecasts

    Science.gov (United States)

    Thorey, Jean; Mallet, Vivien; Chaussin, Christophe

    2016-04-01

    Our objective is to produce a calibrated weighted ensemble to forecast a univariate time series. In addition to a meteorological ensemble of forecasts, we rely on observations or analyses of the target variable. The celebrated Continuous Ranked Probability Score (CRPS) is used to evaluate the probabilistic forecasts. However applying the CRPS on weighted empirical distribution functions (deriving from the weighted ensemble) may introduce a bias because of which minimizing the CRPS does not produce the optimal weights. Thus we propose an unbiased version of the CRPS which relies on clusters of members and is strictly proper. We adapt online learning methods for the minimization of the CRPS. These methods generate the weights associated to the members in the forecasted empirical distribution function. The weights are updated before each forecast step using only past observations and forecasts. Our learning algorithms provide the theoretical guarantee that, in the long run, the CRPS of the weighted forecasts is at least as good as the CRPS of any weighted ensemble with weights constant in time. In particular, the performance of our forecast is better than that of any subset ensemble with uniform weights. A noteworthy advantage of our algorithm is that it does not require any assumption on the distributions of the observations and forecasts, both for the application and for the theoretical guarantee to hold. As application example on meteorological forecasts for photovoltaic production integration, we show that our algorithm generates a calibrated probabilistic forecast, with significant performance improvements on probabilistic diagnostic tools (the CRPS, the reliability diagram and the rank histogram).

  17. A meteo-hydrological prediction system based on a multi-model approach for precipitation forecasting

    Directory of Open Access Journals (Sweden)

    S. Davolio

    2008-02-01

    Full Text Available The precipitation forecasted by a numerical weather prediction model, even at high resolution, suffers from errors which can be considerable at the scales of interest for hydrological purposes. In the present study, a fraction of the uncertainty related to meteorological prediction is taken into account by implementing a multi-model forecasting approach, aimed at providing multiple precipitation scenarios driving the same hydrological model. Therefore, the estimation of that uncertainty associated with the quantitative precipitation forecast (QPF, conveyed by the multi-model ensemble, can be exploited by the hydrological model, propagating the error into the hydrological forecast.

    The proposed meteo-hydrological forecasting system is implemented and tested in a real-time configuration for several episodes of intense precipitation affecting the Reno river basin, a medium-sized basin located in northern Italy (Apennines. These episodes are associated with flood events of different intensity and are representative of different meteorological configurations responsible for severe weather affecting northern Apennines.

    The simulation results show that the coupled system is promising in the prediction of discharge peaks (both in terms of amount and timing for warning purposes. The ensemble hydrological forecasts provide a range of possible flood scenarios that proved to be useful for the support of civil protection authorities in their decision.

  18. Multi-model ensemble hydrologic prediction and uncertainties analysis

    Directory of Open Access Journals (Sweden)

    S. Jiang

    2014-09-01

    Full Text Available Modelling uncertainties (i.e. input errors, parameter uncertainties and model structural errors inevitably exist in hydrological prediction. A lot of recent attention has focused on these, of which input error modelling, parameter optimization and multi-model ensemble strategies are the three most popular methods to demonstrate the impacts of modelling uncertainties. In this paper the Xinanjiang model, the Hybrid rainfall–runoff model and the HYMOD model were applied to the Mishui Basin, south China, for daily streamflow ensemble simulation and uncertainty analysis. The three models were first calibrated by two parameter optimization algorithms, namely, the Shuffled Complex Evolution method (SCE-UA and the Shuffled Complex Evolution Metropolis method (SCEM-UA; next, the input uncertainty was accounted for by introducing a normally-distributed error multiplier; then, the simulation sets calculated from the three models were combined by Bayesian model averaging (BMA. The results show that both these parameter optimization algorithms generate good streamflow simulations; specifically the SCEM-UA can imply parameter uncertainty and give the posterior distribution of the parameters. Considering the precipitation input uncertainty, the streamflow simulation precision does not improve very much. While the BMA combination not only improves the streamflow prediction precision, it also gives quantitative uncertainty bounds for the simulation sets. The SCEM-UA calculated prediction interval is better than the SCE-UA calculated one. These results suggest that considering the model parameters' uncertainties and doing multi-model ensemble simulations are very practical for streamflow prediction and flood forecasting, from which more precision prediction and more reliable uncertainty bounds can be generated.

  19. Combining 2-m temperature nowcasting and short range ensemble forecasting

    Directory of Open Access Journals (Sweden)

    A. Kann

    2011-12-01

    Full Text Available During recent years, numerical ensemble prediction systems have become an important tool for estimating the uncertainties of dynamical and physical processes as represented in numerical weather models. The latest generation of limited area ensemble prediction systems (LAM-EPSs allows for probabilistic forecasts at high resolution in both space and time. However, these systems still suffer from systematic deficiencies. Especially for nowcasting (0–6 h applications the ensemble spread is smaller than the actual forecast error. This paper tries to generate probabilistic short range 2-m temperature forecasts by combining a state-of-the-art nowcasting method and a limited area ensemble system, and compares the results with statistical methods. The Integrated Nowcasting Through Comprehensive Analysis (INCA system, which has been in operation at the Central Institute for Meteorology and Geodynamics (ZAMG since 2006 (Haiden et al., 2011, provides short range deterministic forecasts at high temporal (15 min–60 min and spatial (1 km resolution. An INCA Ensemble (INCA-EPS of 2-m temperature forecasts is constructed by applying a dynamical approach, a statistical approach, and a combined dynamic-statistical method. The dynamical method takes uncertainty information (i.e. ensemble variance from the operational limited area ensemble system ALADIN-LAEF (Aire Limitée Adaptation Dynamique Développement InterNational Limited Area Ensemble Forecasting which is running operationally at ZAMG (Wang et al., 2011. The purely statistical method assumes a well-calibrated spread-skill relation and applies ensemble spread according to the skill of the INCA forecast of the most recent past. The combined dynamic-statistical approach adapts the ensemble variance gained from ALADIN-LAEF with non-homogeneous Gaussian regression (NGR which yields a statistical mbox{correction} of the first and second moment (mean bias and dispersion for Gaussian distributed continuous

  20. Ensemble-based forecasting at Horns Rev: Ensemble conversion and kernel dressing

    DEFF Research Database (Denmark)

    Pinson, Pierre; Madsen, Henrik

    methodology. In a first stage, ensemble forecasts of meteorological variables are converted to power through a suitable power curve model. The relevance and benefits of employing a newly developed orthogonal fitting method for the power curve model over the traditional least-squares one are discussed...... predictive distributions. Such a methodology has the benefit of yielding predictive distributions that are of increased reliability (in a probabilistic sense) in comparison with the raw ensemble forecasts, while taking advantage of their high resolution....... of probabilistic forecasts, the resolution of which may be maximized by using meteorological ensemble predictions as input. The paper concentrates on the test case of the Horns Rev wind farm over a period of approximately one year, in order to describe, apply and discuss a complete ensemble-based forecasting...

  1. Improving probabilistic forecast skill by calibrating site-specific and gridded ensemble forecasts

    Science.gov (United States)

    Schuhen, Nina; Evans, Gavin; Jackson, Simon; Wright, Bruce

    2016-04-01

    While forecast ensembles allow for the design and usage of novel probabilistic forecast products, they still cannot capture all sources of uncertainty inherent to NWP forecasting. In particular they are often not calibrated, resulting in the fact that the probabilistic forecasts derived from ensembles are not statistically consistent with the corresponding observations. A number of statistical post-processing methods for the purpose of calibrating ensemble forecasts have been proposed over the last decade, with Bayesian Model Averaging and Ensemble Model Output Statistics (or Non-homogeneous Gaussian Regression) being among the most successful, as they can be applied to a variety of weather parameters. At the Met Office, the calibration of probabilistic forecasts has received more and more attention over the last few years and several calibration techniques based on BMA and EMOS are being trialled and assessed for their benefit over the raw ensemble forecasts. Challenges arise when addressing weather parameters which by nature don't exhibit a normal distribution. We present results for the calibration of site-specific and gridded forecasts, in the short- to medium-range, while highlighting the need for preserving the multivariate dependency structure inherent to the ensemble forecasts. We will also draw conclusions on the practicality of operational implementation and discuss the performance at individual sites.

  2. HYDROLOGICAL FORECASTS OF DANUBE FLOOD 2013 BY THE HUNGARIAN HYDROLOGICAL FORECASTING SERVICE

    Directory of Open Access Journals (Sweden)

    A. CSÍK

    2014-10-01

    Full Text Available The significant lead time resulting from the use of the OLSER system of the Hungarian Hydrological Forecasting Service is of key importance in making timely preparations for flood defence. Due to continuous improvements to the quantitative meteorological forecast models (primarily the generally used ECMWF model and the OLSER system over the past years, we have by now reached a point where the previously separately managed flood peak forecasting and continuous forecasting can no longer be interpreted independently. Continuous forecasting taking into account precipitation forecasts and monitoring spatial changes of the complex physics-based concentration process also offers a level of accuracy suitable to identify peak values. The flood wave of June 2013 along the Hungarian Danube section exceeded the ever observed highest high water levels everywhere (except for gauge Mohács. The forecasts prepared by HHFS played a crucial role both in terms of lead time and the forecasted water levels.

  3. Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, WanYin; Zhang, Jie; Florita, Anthony; Hodge, Bri-Mathias; Lu, Siyuan; Hamann, Hendrik F.; Sun, Qian; Lehman, Brad

    2015-12-08

    Uncertainties associated with solar forecasts present challenges to maintain grid reliability, especially at high solar penetrations. This study aims to quantify the errors associated with the day-ahead solar forecast parameters and the theoretical solar power output for a 51-kW solar power plant in a utility area in the state of Vermont, U.S. Forecasts were generated by three numerical weather prediction (NWP) models, including the Rapid Refresh, the High Resolution Rapid Refresh, and the North American Model, and a machine-learning ensemble model. A photovoltaic (PV) performance model was adopted to calculate theoretical solar power generation using the forecast parameters (e.g., irradiance, cell temperature, and wind speed). Errors of the power outputs were quantified using statistical moments and a suite of metrics, such as the normalized root mean squared error (NRMSE). In addition, the PV model's sensitivity to different forecast parameters was quantified and analyzed. Results showed that the ensemble model yielded forecasts in all parameters with the smallest NRMSE. The NRMSE of solar irradiance forecasts of the ensemble NWP model was reduced by 28.10% compared to the best of the three NWP models. Further, the sensitivity analysis indicated that the errors of the forecasted cell temperature attributed only approximately 0.12% to the NRMSE of the power output as opposed to 7.44% from the forecasted solar irradiance.

  4. Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, WanYin; Zhang, Jie; Florita, Anthony; Hodge, Bri-Mathias; Lu, Siyuan; Hamann, Hendrik F.; Sun, Qian; Lehman, Brad

    2015-10-02

    Uncertainties associated with solar forecasts present challenges to maintain grid reliability, especially at high solar penetrations. This study aims to quantify the errors associated with the day-ahead solar forecast parameters and the theoretical solar power output for a 51-kW solar power plant in a utility area in the state of Vermont, U.S. Forecasts were generated by three numerical weather prediction (NWP) models, including the Rapid Refresh, the High Resolution Rapid Refresh, and the North American Model, and a machine-learning ensemble model. A photovoltaic (PV) performance model was adopted to calculate theoretical solar power generation using the forecast parameters (e.g., irradiance, cell temperature, and wind speed). Errors of the power outputs were quantified using statistical moments and a suite of metrics, such as the normalized root mean squared error (NRMSE). In addition, the PV model's sensitivity to different forecast parameters was quantified and analyzed. Results showed that the ensemble model yielded forecasts in all parameters with the smallest NRMSE. The NRMSE of solar irradiance forecasts of the ensemble NWP model was reduced by 28.10% compared to the best of the three NWP models. Further, the sensitivity analysis indicated that the errors of the forecasted cell temperature attributed only approximately 0.12% to the NRMSE of the power output as opposed to 7.44% from the forecasted solar irradiance.

  5. eWaterCycle: A global operational hydrological forecasting model

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2015-04-01

    Development of an operational hyper-resolution hydrological global model is a central goal of the eWaterCycle project (www.ewatercycle.org). This operational model includes ensemble forecasts (14 days) to predict water related stress around the globe. Assimilation of near-real time satellite data is part of the intended product that will be launched at EGU 2015. The challenges come from several directions. First, there are challenges that are mainly computer science oriented but have direct practical hydrological implications. For example, we aim to make use as much as possible of existing standards and open-source software. For example, different parts of our system are coupled through the Basic Model Interface (BMI) developed in the framework of the Community Surface Dynamics Modeling System (CSDMS). The PCR-GLOBWB model, built by Utrecht University, is the basic hydrological model that is the engine of the eWaterCycle project. Re-engineering of parts of the software was needed for it to run efficiently in a High Performance Computing (HPC) environment, and to be able to interface using BMI, and run on multiple compute nodes in parallel. The final aim is to have a spatial resolution of 1km x 1km, which is currently 10 x 10km. This high resolution is computationally not too demanding but very memory intensive. The memory bottleneck becomes especially apparent for data assimilation, for which we use OpenDA. OpenDa allows for different data assimilation techniques without the need to build these from scratch. We have developed a BMI adaptor for OpenDA, allowing OpenDA to use any BMI compatible model. To circumvent memory shortages which would result from standard applications of the Ensemble Kalman Filter, we have developed a variant that does not need to keep all ensemble members in working memory. At EGU, we will present this variant and how it fits well in HPC environments. An important step in the eWaterCycle project was the coupling between the hydrological and

  6. Ensemble Forecasting of Major Solar Flares -- First Results

    Science.gov (United States)

    Pulkkinen, A. A.; Guerra, J. A.; Uritsky, V. M.

    2015-12-01

    We present the results from the first ensemble prediction model for major solar flares (M and X classes). Using the probabilistic forecasts from three models hosted at the Community Coordinated Modeling Center (NASA-GSFC) and the NOAA forecasts, we developed an ensemble forecast by linearly combining the flaring probabilities from all four methods. Performance-based combination weights were calculated using a Monte-Carlo-type algorithm that applies a decision threshold PthP_{th} to the combined probabilities and maximizing the Heidke Skill Score (HSS). Using the data for 13 recent solar active regions between years 2012 - 2014, we found that linear combination methods can improve the overall probabilistic prediction and improve the categorical prediction for certain values of decision thresholds. Combination weights vary with the applied threshold and none of the tested individual forecasting models seem to provide more accurate predictions than the others for all values of PthP_{th}. According to the maximum values of HSS, a performance-based weights calculated by averaging over the sample, performed similarly to a equally weighted model. The values PthP_{th} for which the ensemble forecast performs the best are 25 % for M-class flares and 15 % for X-class flares. When the human-adjusted probabilities from NOAA are excluded from the ensemble, the ensemble performance in terms of the Heidke score, is reduced.

  7. Hydrological forecasting in catchments with glaciers

    OpenAIRE

    Nahat, Angèle

    2015-01-01

    The runoff forecast is crucial in Norway because the country bases most of its electricity from hydropower. The hydrological model has thus been improved for years in order to foresee the runoff in the best possible way. In Norway, there are many catchments with extensive water storage: glaciers. Those catchments represent a significant part of the catchments where hydropower is produced. Therefore knowing the right amount of outflow from a catchment with glaciers is essential but more challe...

  8. Probabilistic Quantitative Precipitation Forecasting Using Ensemble Model Output Statistics

    CERN Document Server

    Scheuerer, Michael

    2013-01-01

    Statistical post-processing of dynamical forecast ensembles is an essential component of weather forecasting. In this article, we present a post-processing method that generates full predictive probability distributions for precipitation accumulations based on ensemble model output statistics (EMOS). We model precipitation amounts by a generalized extreme value distribution that is left-censored at zero. This distribution permits modelling precipitation on the original scale without prior transformation of the data. A closed form expression for its continuous rank probability score can be derived and permits computationally efficient model fitting. We discuss an extension of our approach that incorporates further statistics characterizing the spatial variability of precipitation amounts in the vicinity of the location of interest. The proposed EMOS method is applied to daily 18-h forecasts of 6-h accumulated precipitation over Germany in 2011 using the COSMO-DE ensemble prediction system operated by the Germa...

  9. Ensemble hydro-meteorological forecasting for early warning of floods and scheduling of hydropower production

    Science.gov (United States)

    Solvang Johansen, Stian; Steinsland, Ingelin; Engeland, Kolbjørn

    2016-04-01

    Running hydrological models with precipitation and temperature ensemble forcing to generate ensembles of streamflow is a commonly used method in operational hydrology. Evaluations of streamflow ensembles have however revealed that the ensembles are biased with respect to both mean and spread. Thus postprocessing of the ensembles is needed in order to improve the forecast skill. The aims of this study is (i) to to evaluate how postprocessing of streamflow ensembles works for Norwegian catchments within different hydrological regimes and to (ii) demonstrate how post processed streamflow ensembles are used operationally by a hydropower producer. These aims were achieved by postprocessing forecasted daily discharge for 10 lead-times for 20 catchments in Norway by using EPS forcing from ECMWF applied the semi-distributed HBV-model dividing each catchment into 10 elevation zones. Statkraft Energi uses forecasts from these catchments for scheduling hydropower production. The catchments represent different hydrological regimes. Some catchments have stable winter condition with winter low flow and a major flood event during spring or early summer caused by snow melting. Others has a more mixed snow-rain regime, often with a secondary flood season during autumn, and in the coastal areas, the stream flow is dominated by rain, and the main flood season is autumn and winter. For post processing, a Bayesian model averaging model (BMA) close to (Kleiber et al 2011) is used. The model creates a predictive PDF that is a weighted average of PDFs centered on the individual bias corrected forecasts. The weights are here equal since all ensemble members come from the same model, and thus have the same probability. For modeling streamflow, the gamma distribution is chosen as a predictive PDF. The bias correction parameters and the PDF parameters are estimated using a 30-day sliding window training period. Preliminary results show that the improvement varies between catchments depending

  10. Identification of hydrological model parameter variation using ensemble Kalman filter

    Science.gov (United States)

    Deng, Chao; Liu, Pan; Guo, Shenglian; Li, Zejun; Wang, Dingbao

    2016-12-01

    Hydrological model parameters play an important role in the ability of model prediction. In a stationary context, parameters of hydrological models are treated as constants; however, model parameters may vary with time under climate change and anthropogenic activities. The technique of ensemble Kalman filter (EnKF) is proposed to identify the temporal variation of parameters for a two-parameter monthly water balance model (TWBM) by assimilating the runoff observations. Through a synthetic experiment, the proposed method is evaluated with time-invariant (i.e., constant) parameters and different types of parameter variations, including trend, abrupt change and periodicity. Various levels of observation uncertainty are designed to examine the performance of the EnKF. The results show that the EnKF can successfully capture the temporal variations of the model parameters. The application to the Wudinghe basin shows that the water storage capacity (SC) of the TWBM model has an apparent increasing trend during the period from 1958 to 2000. The identified temporal variation of SC is explained by land use and land cover changes due to soil and water conservation measures. In contrast, the application to the Tongtianhe basin shows that the estimated SC has no significant variation during the simulation period of 1982-2013, corresponding to the relatively stationary catchment properties. The evapotranspiration parameter (C) has temporal variations while no obvious change patterns exist. The proposed method provides an effective tool for quantifying the temporal variations of the model parameters, thereby improving the accuracy and reliability of model simulations and forecasts.

  11. ENSEMBLE methods to reconcile disparate national long range dispersion forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, T.; Galmarini, S.; Bianconi, R.; French, S. (eds.)

    2003-11-01

    ENSEMBLE is a web-based decision support system for real-time exchange and evaluation of national long-range dispersion forecasts of nuclear releases with cross-boundary consequences. The system is developed with the purpose to reconcile among disparate national forecasts for long-range dispersion. ENSEMBLE addresses the problem of achieving a common coherent strategy across European national emergency management when national long-range dispersion forecasts differ from one another during an accidental atmospheric release of radioactive material. A series of new decision-making 'ENSEMBLE' procedures and Web-based software evaluation and exchange tools have been created for real-time reconciliation and harmonisation of real-time dispersion forecasts from meteorological and emergency centres across Europe during an accident. The new ENSEMBLE software tools is available to participating national emergency and meteorological forecasting centres, which may choose to integrate them directly into operational emergency information systems, or possibly use them as a basis for future system development. (au)

  12. A Robust Multimodel Framework for Ensemble Seasonal Hydroclimatic Forecasts

    Science.gov (United States)

    Mendoza, P. A.; Rajagopalan, B.; Clark, M. P.; Cortés, G.; McPhee, J. P.

    2014-12-01

    We provide a framework for careful analysis of the different methodological choices we make when constructing multimodel ensemble seasonal forecasts of hydroclimatic variables. Specifically, we focus on three common modeling decisions: (i) number of models, (ii) multimodel combination approach, and (iii) lead time for prediction. The analysis scheme includes a multimodel ensemble forecasting algorithm based on nonparametric regression, a set of alternatives for the options previously pointed, and a selection of probabilistic verification methods for ensemble forecast evaluation. The usefulness of this framework is tested through an example application aimed to generate spring/summer streamflow forecasts at multiple locations in Central Chile. Results demonstrate the high impact that subjectivity in decision-making may have on the quality of ensemble seasonal hydroclimatic forecasts. In particular, we note that the probabilistic verification criteria may lead to different choices regarding the number of models or the multimodel combination method. We also illustrate how this objective analysis scheme may lead to results that are extremely relevant for the case study presented here, such as skillful seasonal streamflow predictions for very dry conditions.

  13. A real-time evaluation and demonstration of strategies for 'Over-The-Loop' ensemble streamflow forecasting in US watersheds

    Science.gov (United States)

    Wood, Andy; Clark, Elizabeth; Mendoza, Pablo; Nijssen, Bart; Newman, Andy; Clark, Martyn; Nowak, Kenneth; Arnold, Jeffrey

    2017-04-01

    Many if not most national operational streamflow prediction systems rely on a forecaster-in-the-loop approach that require the hands-on-effort of an experienced human forecaster. This approach evolved from the need to correct for long-standing deficiencies in the models and datasets used in forecasting, and the practice often leads to skillful flow predictions despite the use of relatively simple, conceptual models. Yet the 'in-the-loop' forecast process is not reproducible, which limits opportunities to assess and incorporate new techniques systematically, and the effort required to make forecasts in this way is an obstacle to expanding forecast services - e.g., though adding new forecast locations or more frequent forecast updates, running more complex models, or producing forecast and hindcasts that can support verification. In the last decade, the hydrologic forecasting community has begun develop more centralized, 'over-the-loop' systems. The quality of these new forecast products will depend on their ability to leverage research in areas including earth system modeling, parameter estimation, data assimilation, statistical post-processing, weather and climate prediction, verification, and uncertainty estimation through the use of ensembles. Currently, many national operational streamflow forecasting and water management communities have little experience with the strengths and weaknesses of over-the-loop approaches, even as such systems are beginning to be deployed operationally in centers such as ECMWF. There is thus a need both to evaluate these forecasting advances and to demonstrate their potential in a public arena, raising awareness in forecast user communities and development programs alike. To address this need, the US National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the US Army Corps of Engineers, using the NCAR 'System for Hydromet Analysis Research and Prediction Applications

  14. Combining stochastic weather generation and ensemble streamflow predictions for short to medium term flow forecasting over Quebec, Canada

    Science.gov (United States)

    Brissette, F.; Chen, J.; Li, Z.; Turcotte, R.

    2012-04-01

    Probabilistic streamflow forecasting has been an important research avenue over the past decade and such approaches are now more commonly being incorporated into operational forecasting systems within government agencies and industries dealing with water management. This work details a prototype for a streamflow forecast operational system in southern Quebec, Canada. The system uses ensemble meteorological forecasts for short term (less than 10 days) forecasting, switching to a stochastic weather generator for the period exceeding 10 days all the way to a three-month lead time. Precipitation and temperature series are then fed to one (or many) hydrological models to produce streamflow forecasts. The ensemble weather forecasts are corrected for biases and under dispersion using logistic regression. Results show that the ensemble streamflow forecasts resulting from the ensemble meteorological forecast have more skill than the deterministic forecasts. Preliminary results indicate that ensemble meteorological forecasts displayed skill for a period up to 5 days for precipitation and up to about 10 days for temperature. Past ten days, probabilistic streamflow forecasts are based on multiple synthetic times series obtained from a stochastic weather generator. The use of stochastic time series result in better forecasts then resampling the historical record and allows for better evaluation of extreme events. The weather generator can easily be linked to large scale seasonal global predictors, is such links exist. Over the tested basins (continental climate), the system forecast has skills up to a lead time of 4 weeks in the best case. For a lead-time between one and three months, using the forecast prototype yielded no better results than using the historical streamflow record. This work also investigated the uncertainty linked to the choice of one hydrology model and the ability of a multi-model approach to improve streamflow forecasting. Preliminary results showed that

  15. Assessing uncertainties in flood forecasts for decision making: prototype of an operational flood management system integrating ensemble predictions

    Directory of Open Access Journals (Sweden)

    J. Dietrich

    2009-08-01

    Full Text Available Ensemble forecasts aim at framing the uncertainties of the potential future development of the hydro-meteorological situation. A probabilistic evaluation can be used to communicate forecast uncertainty to decision makers. Here an operational system for ensemble based flood forecasting is presented, which combines forecasts from the European COSMO-LEPS, SRNWP-PEPS and COSMO-DE prediction systems. A multi-model lagged average super-ensemble is generated by recombining members from different runs of these meteorological forecast systems. A subset of the super-ensemble is selected based on a priori model weights, which are obtained from ensemble calibration. Flood forecasts are simulated by the conceptual rainfall-runoff-model ArcEGMO. Parameter uncertainty of the model is represented by a parameter ensemble, which is a priori generated from a comprehensive uncertainty analysis during model calibration. The use of a computationally efficient hydrological model within a flood management system allows us to compute the hydro-meteorological model chain for all members of the sub-ensemble. The model chain is not re-computed before new ensemble forecasts are available, but the probabilistic assessment of the output is updated when new information from deterministic short range forecasts or from assimilation of measured data becomes available. For hydraulic modelling, with the desired result of a probabilistic inundation map with high spatial resolution, a replacement model can help to overcome computational limitations. A prototype of the developed framework has been applied for a case study in the Mulde river basin. However these techniques, in particular the probabilistic assessment and the derivation of decision rules are still in their infancy. Further research is necessary and promising.

  16. Operational water management of Rijnland water system and pilot of ensemble forecasting system for flood control

    Science.gov (United States)

    van der Zwan, Rene

    2013-04-01

    The Rijnland water system is situated in the western part of the Netherlands, and is a low-lying area of which 90% is below sea-level. The area covers 1,100 square kilometres, where 1.3 million people live, work, travel and enjoy leisure. The District Water Control Board of Rijnland is responsible for flood defence, water quantity and quality management. This includes design and maintenance of flood defence structures, control of regulating structures for an adequate water level management, and waste water treatment. For water quantity management Rijnland uses, besides an online monitoring network for collecting water level and precipitation data, a real time control decision support system. This decision support system consists of deterministic hydro-meteorological forecasts with a 24-hr forecast horizon, coupled with a control module that provides optimal operation schedules for the storage basin pumping stations. The uncertainty of the rainfall forecast is not forwarded in the hydrological prediction. At this moment 65% of the pumping capacity of the storage basin pumping stations can be automatically controlled by the decision control system. Within 5 years, after renovation of two other pumping stations, the total capacity of 200 m3/s will be automatically controlled. In critical conditions there is a need of both a longer forecast horizon and a probabilistic forecast. Therefore ensemble precipitation forecasts of the ECMWF are already consulted off-line during dry-spells, and Rijnland is running a pilot operational system providing 10-day water level ensemble forecasts. The use of EPS during dry-spells and the findings of the pilot will be presented. Challenges and next steps towards on-line implementation of ensemble forecasts for risk-based operational management of the Rijnland water system will be discussed. An important element in that discussion is the question: will policy and decision makers, operator and citizens adapt this Anticipatory Water

  17. Local polynomial method for ensemble forecast of time series

    Directory of Open Access Journals (Sweden)

    S. Regonda

    2005-01-01

    Full Text Available We present a nonparametric approach based on local polynomial regression for ensemble forecast of time series. The state space is first reconstructed by embedding the univariate time series of the response variable in a space of dimension (D with a delay time (τ. To obtain a forecast from a given time point t, three steps are involved: (i the current state of the system is mapped on to the state space, known as the feature vector, (ii a small number (K=α*n, α=fraction (0,1] of the data, n=data length of neighbors (and their future evolution to the feature vector are identified in the state space, and (iii a polynomial of order p is fitted to the identified neighbors, which is then used for prediction. A suite of parameter combinations (D, τ, α, p is selected based on an objective criterion, called the Generalized Cross Validation (GCV. All of the selected parameter combinations are then used to issue a T-step iterated forecast starting from the current time t, thus generating an ensemble forecast which can be used to obtain the forecast probability density function (PDF. The ensemble approach improves upon the traditional method of providing a single mean forecast by providing the forecast uncertainty. Further, for short noisy data it can provide better forecasts. We demonstrate the utility of this approach on two synthetic (Henon and Lorenz attractors and two real data sets (Great Salt Lake bi-weekly volume and NINO3 index. This framework can also be used to forecast a vector of response variables based on a vector of predictors.

  18. Ambiguity in Ensemble Forecasting: Evolution, Estimate Validation and Value

    Science.gov (United States)

    2009-09-01

    background-error covariance ( bP̂ ) from Equation (12)(c) must be estimated diagnostically from the ensemble of background states using Equation (12)(a...Although the beta- fit does not always provide a quality fit to the ˆTp data, it was sufficient for the pedagogical purpose here. For this forecast

  19. Enhancing COSMO-DE ensemble forecasts by inexpensive techniques

    Directory of Open Access Journals (Sweden)

    Zied Ben Bouallègue

    2013-02-01

    Full Text Available COSMO-DE-EPS, a convection-permitting ensemble prediction system based on the high-resolution numerical weather prediction model COSMO-DE, is pre-operational since December 2010, providing probabilistic forecasts which cover Germany. This ensemble system comprises 20 members based on variations of the lateral boundary conditions, the physics parameterizations and the initial conditions. In order to increase the sample size in a computationally inexpensive way, COSMO-DE-EPS is combined with alternative ensemble techniques: the neighborhood method and the time-lagged approach. Their impact on the quality of the resulting probabilistic forecasts is assessed. Objective verification is performed over a six months period, scores based on the Brier score and its decomposition are shown for June 2011. The combination of the ensemble system with the alternative approaches improves probabilistic forecasts of precipitation in particular for high precipitation thresholds. Moreover, combining COSMO-DE-EPS with only the time-lagged approach improves the skill of area probabilities for precipitation and does not deteriorate the skill of 2 m-temperature and wind gusts forecasts.

  20. Evaluating uncertainty estimates in hydrologic models: borrowing measures from the forecast verification community

    Directory of Open Access Journals (Sweden)

    K. J. Franz

    2011-03-01

    Full Text Available The hydrologic community is generally moving towards the use of probabilistic estimates of streamflow, primarily through the implementation of Ensemble Streamflow Prediction (ESP systems, ensemble data assimilation methods, or multi-modeling platforms. However, evaluation of probabilistic outputs has not necessarily kept pace with ensemble generation. Much of the modeling community is still performing model evaluation using standard deterministic measures, such as error, correlation, or bias, typically applied to the ensemble mean or median. Probabilistic forecast verification methods have been well developed, particularly in the atmospheric sciences yet, few have been adopted for evaluating uncertainty estimates in hydrologic model simulations. In the current paper, we overview existing probabilistic forecast verification methods and apply the methods to evaluate and compare model ensembles produced from different parameter uncertainty estimation methods. The Generalized Uncertainty Likelihood Estimator (GLUE, a modified version of GLUE, and the Shuffle Complex Evolution Metropolis (SCEM are used to generate model ensembles for the National Weather Service SACramento Soil Moisture Accounting (SAC-SMA model for 12 forecast basins located in the Southeastern United States. We evaluate the model ensembles using relevant metrics in the following categories: distribution, correlation, accuracy, conditional statistics, and categorical statistics. We show that the probabilistic metrics are easily adapted to model simulation ensembles and provide a robust analysis of parameter uncertainty, one that is commensurate with the dimension of the ensembles themselves. Application of these methods requires no information in addition to what is already available as part of traditional model validation methodology and considers the entire ensemble or uncertainty range in the approach.

  1. GEOWOW - Benefits of TIGGE ensemble forecast data for the GEOSS community

    Science.gov (United States)

    Zsoter, Ervin

    2014-05-01

    & East Africa and tropical cyclones. The approach shown here is based on a two-step process (EOF analysis followed by Fuzzy clustering) which provides clusters to highlight main characteristics & development of the various relevant weather scenarios. An important area where GEOWOW contributes to multi-disciplinary developments is the Weather/Water application of modeling river discharge based on the atmospheric input from TIGGE models. The river discharge ensemble forecasts are produced globally with the HTESSEL land-surface model (operationally used at ECMWF) coupled with CaMa-Flood river routing to integrate runoff over large river catchments. Expected benefits are the improved interoperability of domain resources through the GEOSS Common Infrastructure. The poster will cover all important weather related developments carried out in GEOWOW with particular focus on the hydrological application of river discharge modeling.

  2. Ensemble-based Probabilistic Forecasting at Horns Rev

    DEFF Research Database (Denmark)

    Pinson, Pierre; Madsen, Henrik

    2009-01-01

    of probabilistic forecasts, the resolution of which may be maximized by using meteorological ensemble predictions as input. The paper concentrates on the test case of the Horns Rev wind form over a period of approximately 1 year, in order to describe, apply and discuss a complete ensemble-based probabilistic...... the benefit of yielding predictive distributions that are of increased reliability (in a probabilistic sense) in comparison with the raw ensemble forecasts, at the some time taking advantage of their high resolution. Copyright (C) 2008 John Wiley & Sons, Ltd....... are then converted into predictive distributions with an original adaptive kernel dressing method. The shape of the kernels is driven by a mean-variance model, the parameters of which ore recursively estimated in order to maximize the overall skill of obtained predictive distributions. Such a methodology has...

  3. Characterizing Drought Events from a Hydrological Model Ensemble

    Science.gov (United States)

    Smith, Katie; Parry, Simon; Prudhomme, Christel; Hannaford, Jamie; Tanguy, Maliko; Barker, Lucy; Svensson, Cecilia

    2017-04-01

    Hydrological droughts are a slow onset natural hazard that can affect large areas. Within the United Kingdom there have been eight major drought events over the last 50 years, with several events acting at the continental scale, and covering the entire nation. Many of these events have lasted several years and had significant impacts on agriculture, the environment and the economy. Generally in the UK, due to a northwest-southeast gradient in rainfall and relief, as well as varying underlying geology, droughts tend to be most severe in the southeast, which can threaten water supplies to the capital in London. With the impacts of climate change likely to increase the severity and duration of drought events worldwide, it is crucial that we gain an understanding of the characteristics of some of the longer and more extreme droughts of the 19th and 20th centuries, so we may utilize this information in planning for the future. Hydrological models are essential both for reconstructing such events that predate streamflow records, and for use in drought forecasting. However, whilst the uncertainties involved in modelling hydrological extremes on the flooding end of the flow regime have been studied in depth over the past few decades, the uncertainties in simulating droughts and low flow events have not yet received such rigorous academic attention. The "Cascade of Uncertainty" approach has been applied to explore uncertainty and coherence across simulations of notable drought events from the past 50 years using the airGR family of daily lumped catchment models. Parameter uncertainty has been addressed using a Latin Hypercube sampled experiment of 500,000 parameter sets per model (GR4J, GR5J and GR6J), over more than 200 catchments across the UK. The best performing model parameterisations, determined using a multi-objective function approach, have then been taken forward for use in the assessment of the impact of model parameters and model structure on drought event

  4. A four-stage hybrid model for hydrological time series forecasting.

    Science.gov (United States)

    Di, Chongli; Yang, Xiaohua; Wang, Xiaochao

    2014-01-01

    Hydrological time series forecasting remains a difficult task due to its complicated nonlinear, non-stationary and multi-scale characteristics. To solve this difficulty and improve the prediction accuracy, a novel four-stage hybrid model is proposed for hydrological time series forecasting based on the principle of 'denoising, decomposition and ensemble'. The proposed model has four stages, i.e., denoising, decomposition, components prediction and ensemble. In the denoising stage, the empirical mode decomposition (EMD) method is utilized to reduce the noises in the hydrological time series. Then, an improved method of EMD, the ensemble empirical mode decomposition (EEMD), is applied to decompose the denoised series into a number of intrinsic mode function (IMF) components and one residual component. Next, the radial basis function neural network (RBFNN) is adopted to predict the trend of all of the components obtained in the decomposition stage. In the final ensemble prediction stage, the forecasting results of all of the IMF and residual components obtained in the third stage are combined to generate the final prediction results, using a linear neural network (LNN) model. For illustration and verification, six hydrological cases with different characteristics are used to test the effectiveness of the proposed model. The proposed hybrid model performs better than conventional single models, the hybrid models without denoising or decomposition and the hybrid models based on other methods, such as the wavelet analysis (WA)-based hybrid models. In addition, the denoising and decomposition strategies decrease the complexity of the series and reduce the difficulties of the forecasting. With its effective denoising and accurate decomposition ability, high prediction precision and wide applicability, the new model is very promising for complex time series forecasting. This new forecast model is an extension of nonlinear prediction models.

  5. Evaluation of ECMWF System 4 product for ensemble streamflow forecast in Upper Hanjiang River Basin

    Science.gov (United States)

    Li, Yilu; Tian, Fuqiang

    2017-04-01

    This study attempts to investigate the application of ECMWF System 4 forecast dataset for long term streamflow forecasts with the lead time of 0-2 months in China. The case study is Upper Hanjiang River Basin (UHRB), where forecast results are essential for the central route of South to North Water Diversion Project (SNWDP) in China. A semi-distributed hydrological model (THREW) was applied to simulate the rainfall-runoff processes over the UHRB during the period of 2001-2008. The accuracy of streamflow prediction decreases with lead time, while it is no significant relationship with the drainage areas. All the stations become more reliable as lead time increases, but the Yangxian station shows less reliable than others. The forecast uncertainty is effectively estimated by applying the ECMWF System 4 forecast dataset for the ensemble streamflow forecasts. Significant differences in the performance of ECMWF system 4 are found in seasonal predictions. The forecast is more skillful in Post-dry season than otherwise in term of accuracy and reliability. This study will broaden the application field of ECMWF System 4 dataset to long term streamflow forecast for similar climate region. The results would provide effective guidelines for reservoir operation and be helpful for potential users to employ ECMWF System 4 dataset in other basins over China.

  6. Anticipatory Water Management: Using ensemble weather forecasts for critical events

    OpenAIRE

    Van Andel, S.J.

    2009-01-01

    Day-to-day water management is challenged by meteorological extremes, causing floods and droughts. Often operational water managers are informed too late about these upcoming events to be able to respond and mitigate their effects, such as by taking flood control measures or even requiring evacuation of local inhabitants. Therefore, the use of weather forecast information with hydrological models can be invaluable for the operational water manager to expand the forecast horizon and to have ti...

  7. Bayesian Processor of Ensemble for Precipitation Forecasting: A Development Plan

    Science.gov (United States)

    Toth, Z.; Krzysztofowicz, R.

    2006-05-01

    The Bayesian Processor of Ensemble (BPE) is a new, theoretically-based technique for probabilistic forecasting of weather variates. It is a generalization of the Bayesian Processor of Output (BPO) developed by Krzysztofowicz and Maranzano for processing single values of multiple predictors into a posterior distribution function of a predictand. The BPE processes an ensemble of a predictand generated by multiple integrations of a numerical weather prediction (NWP) model, and optimally fuses the ensemble with climatic data in order to quantify uncertainty about the predictand. As is well known, Bayes theorem provides the optimal theoretical framework for fusing information from different sources and for obtaining the posterior distribution function of a predictand. Using a family of such distribution functions, a given raw ensemble can be mapped into a posterior ensemble, which is well calibrated, has maximum informativeness, and preserves the spatio-temporal and cross-variate dependence structure of the NWP output fields. The challenge is to develop and test the BPE suitable for operational forecasting. This talk will present the basic design components of the BPE, along with a discussion of the climatic and training data to be used in its potential application at the National Centers for Environmental Prediction (NCEP). The technique will be tested first on quasi-normally distributed variates and next on precipitation variates. For reasons of economy, the BPE will be applied on the relatively coarse resolution grid corresponding to the ensemble output, and then the posterior ensemble will be downscaled to finer grids such as that of the National Digital Forecast Database (NDFD).

  8. Hydrological drought forecasting and skill assessment for the Limpopo river basin, Southern Africa

    Directory of Open Access Journals (Sweden)

    P. Trambauer

    2014-08-01

    Full Text Available Ensemble hydrological predictions are normally obtained by forcing hydrological models with ensembles of atmospheric forecasts produced by Numerical weather prediction models. To be of practical value to water users, such forecasts should not only be sufficiently skilful, they should also provide information that is relevant to the decisions end users make. The semi-arid Limpopo basin in Southern Africa has experienced severe droughts in the past, resulting in crop failures, high economic losses and the need for humanitarian aid. In this paper we address the seasonal prediction of hydrological drought for the Limpopo river basin by testing three proposed forecasting systems (FS that can provide operational guidance to dam operators and water managers within the basin at the seasonal time scale. All three FS include a distributed hydrological model of the basin, and are forced with either (i a global atmospheric model forecast (ECMWF seasonal forecast system – S4, (ii the commonly applied Ensemble Streamflow Prediction approach (ESP using resampled historical data, or (iii a conditional ESP approach (ESPcond, which is conditional on the ENSO signal. We determine the skill of the three systems in predicting drought indices and streamflow. We also assess the skill of the model in predicting indicators that are meaningful to the local end users in the basin. FS_S4 shows moderate skill for all lead times (3, 4, and 5 months and aggregation periods. FS_ESP also performs better than climatology for the shorter lead times, but with a lower skill than FS_S4. FS_ESPcond shows skill in between the other two FS, though its skill is shown to be more robust. The skills of FS_ESP and FS_ESPcond reduce rapidly with increasing lead time. Both FS_S4 and FS_ESPcond show good potential for seasonal hydrological drought forecasting in the Limpopo river basin, which is encouraging in the context of providing better operational guidance to water users.

  9. High-resolution hydrological seasonal forecasting for water resources management over Europe

    Science.gov (United States)

    Pan, Ming; Wanders, Niko; Wood, Eric; Sheffield, Justin; Samaniego, Luis; Thober, Stephan; Kumar, Rohini; Prudhomme, Christel; Houghton-Carr, Helen

    2017-04-01

    To support the decision-making process at the seasonal time scale, hydrological forecasts with a high temporal and spatial resolution are required to provide the level of information needed by water managers. So far high-resolution seasonal forecasts have been unavailable due to 1) lack of availability in meteorological seasonal forecasts, 2) the coarse temporal resolution of meteorological seasonal forecasts, requiring temporal downscaling, and 3) lack of consistency between observations and seasonal forecasts, requiring bias-correction. As part of the EDgE (End-to-end Demonstrator for improved decision making in the water sector in Europe) project, we have created a unique dataset of hydrological seasonal forecasts derived from four atmospheric circulation models (CanCM4, FLOR-B01, ECMF, LFPW) in combination with four global hydrological models (PCR-GLOBWB, VIC, mHM, Noah-MP). The forecasts provide daily values at 5-km spatial resolution and are bias corrected against E-OBS meteorological observations. Consistency in the LSM parameterization ensures synergy in the hydrological forecasts, resulting in 208 forecasts at any given day over Europe. The forecast results are communicated to stakeholders via Sectoral Climate Impact Indicators (SCIIs) that have been co-designed in collaboration with end-users and stakeholders inside the EDgE project. An example of an SCII is the percentage of ensemble realizations above the 10th percentile of monthly river flow or below the 90th percentile, including the persistency in the forecast with increasing lead times. Results show that skillful discharge forecasts can be made throughout Europe 3 months in advance, with predictability up to 6 months for Northern Europe due to the impact of snow. The predictability of soil moisture is limited to the first three months, due to the significant impact of precipitation and the short memory in the initial conditions (only for the first month). The groundwater recharge predictability

  10. Multimodel Ensemble Forecasts for Precipitations in China in 1998

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Different multimodel ensemble methods are used to forecast precipitations in China, 1998, and their forecast skills are compared with those of individual models. Datasets were obtained from monthly simulations of eight models during the period of January 1979 to December 1998 from the "Climate of the 20th Century Experiment" (20C3M) for the Fourth IPCC Assessment Report. Climate Research Unit (CRU)data were chosen for the observation analysis field. Root mean square (RMS) error and correlation coefficients (R) are used to measure the forecast skills. In addition, superensemble forecasts based on different input data and weights are analyzed. Results show that for original data, superensemble forecasting based on multiple linear regression (MLR) performs best. However, for bias-corrected data, the superensemble based on singular value decomposition (SVD) produces a lower RMS error and a higher R than in the MLR superensemble. It is an interesting result that the SVD superensemble based on bias-corrected data performs better than the MLR superensemble, but that the SVD superensemble based on original data is inferior to the corresponding MLR superensemble. In addition, weights calculated by different data formats are shown to affect the forecast skills of the superensembles. In comparison with the MLR superensemble, a slightly significant effect is present in the SVD superensemble. However, both the SVD and MLR superensembles based on different weight formats outperform the ensemble mean of bias-corrected data.

  11. Translating the potential of hydrological forecasts into improved decision making in African regions

    Science.gov (United States)

    Sheffield, J.; He, X.; Wanders, N.; Wood, E. F.; Ali, A.; Olang, L.; Estes, L. D.; Caylor, K. K.; Evans, T. P.

    2015-12-01

    Hydrological forecasts at local scale and seasonal time scales have the potential to inform decision-making by individuals and institutions to improve management of water resources and enhance food security. Much progress has been made in recent years in understanding climate variability and its predictability over African regions. However, there remain many challenges in translating large-scale evaluations and forecasts into locally relevant information. This is hampered by lack of on the ground data of hydrological and agricultural states, and the generally low skill of climate forecasts at time scales beyond one or two weeks. Additionally, the uptake of forecasts is not prevalent because of lack of capacity, and institutional and cultural barriers to using new and uncertain information. New technologies for monitoring and forecasting relevant hydrological variables, and novel approaches to understanding how this information may be used within decision making processes, have the potential to make substantial progress in addressing these challenges. We present a quasi-operational drought and flood monitoring and forecasting system and its use in understanding the potential of hydrological forecasts for improved decision-making. The system monitors in near real-time the terrestrial water cycle for the African continent based on remote sensing data and land surface hydrological modeling. The monitoring forms initial conditions for hydrological forecasts at short time scale, aimed at flood forecasting, and seasonal scale aimed at drought and crop yield forecasts. The flood forecasts are driven by precipitation and temperature forecasts from the Global Forecast System (GFS). The drought forecasts are driven by climate forecasts from the North American Multi-Model Ensemble (NMME). The seasonal forecast skill is modest and seasonally/regionally dependent with part of the skill coming from persistence in initial land surface conditions. We discuss the use of the system

  12. Spatial Ensemble Postprocessing of Precipitation Forecasts Using High Resolution Analyses

    Science.gov (United States)

    Lang, Moritz N.; Schicker, Irene; Kann, Alexander; Wang, Yong

    2017-04-01

    Ensemble prediction systems are designed to account for errors or uncertainties in the initial and boundary conditions, imperfect parameterizations, etc. However, due to sampling errors and underestimation of the model errors, these ensemble forecasts tend to be underdispersive, and to lack both reliability and sharpness. To overcome such limitations, statistical postprocessing methods are commonly applied to these forecasts. In this study, a full-distributional spatial post-processing method is applied to short-range precipitation forecasts over Austria using Standardized Anomaly Model Output Statistics (SAMOS). Following Stauffer et al. (2016), observation and forecast fields are transformed into standardized anomalies by subtracting a site-specific climatological mean and dividing by the climatological standard deviation. Due to the need of fitting only a single regression model for the whole domain, the SAMOS framework provides a computationally inexpensive method to create operationally calibrated probabilistic forecasts for any arbitrary location or for all grid points in the domain simultaneously. Taking advantage of the INCA system (Integrated Nowcasting through Comprehensive Analysis), high resolution analyses are used for the computation of the observed climatology and for model training. The INCA system operationally combines station measurements and remote sensing data into real-time objective analysis fields at 1 km-horizontal resolution and 1 h-temporal resolution. The precipitation forecast used in this study is obtained from a limited area model ensemble prediction system also operated by ZAMG. The so called ALADIN-LAEF provides, by applying a multi-physics approach, a 17-member forecast at a horizontal resolution of 10.9 km and a temporal resolution of 1 hour. The performed SAMOS approach statistically combines the in-house developed high resolution analysis and ensemble prediction system. The station-based validation of 6 hour precipitation sums

  13. Wave Extremes in the North East Atlantic from Ensemble Forecasts

    CERN Document Server

    Breivik, Øyvind; Bidlot, Jean-Raymond; Carrasco, Ana; Saetra, Øyvind; 10.1175/JCLI-D-12-00738.1

    2013-01-01

    A method for estimating return values from ensembles of forecasts at advanced lead times is presented. Return values of significant wave height in the North-East Atlantic, the Norwegian Sea and the North Sea are computed from archived +240-h forecasts of the ECMWF ensemble prediction system (EPS) from 1999 to 2009. We make three assumptions: First, each forecast is representative of a six-hour interval and collectively the data set is then comparable to a time period of 226 years. Second, the model climate matches the observed distribution, which we confirm by comparing with buoy data. Third, the ensemble members are sufficiently uncorrelated to be considered independent realizations of the model climate. We find anomaly correlations of 0.20, but peak events (>P97) are entirely uncorrelated. By comparing return values from individual members with return values of subsamples of the data set we also find that the estimates follow the same distribution and appear unaffected by correlations in the ensemble. The a...

  14. Ensemble-based forecasting at Horns Rev: Ensemble conversion and kernel dressing

    DEFF Research Database (Denmark)

    Pinson, Pierre; Madsen, Henrik

    . The obtained ensemble forecasts of wind power are then converted into predictive distributions with an original adaptive kernel dressing method. The shape of the kernels is driven by a mean-variance model, the parameters of which are recursively estimated in order to maximize the overall skill of obtained...

  15. Evaluating Tropical Cyclone Forecast Track Uncertainty Using A Grand Ensemble of Ensemble Prediction Systems

    Science.gov (United States)

    2011-09-01

    variable is appropriately sized for the region ( UCAR 2010). 4. An Isotropic Joint-Ensemble Majumdar and Finochio (2010) develop a probability circle...Forecasting, 22, 671–675. UCAR , cited 2010: NCEP Perturbation Method. [Available online at http://www.meted.ucar.edu/nwp/pcu2/ens_matrix

  16. Ensemble Forecasting of Tropical Cyclone Motion Using a Baroclinic Model

    Institute of Scientific and Technical Information of China (English)

    Xiaqiong ZHOU; Johnny C.L.CHEN

    2006-01-01

    The purpose of this study is to investigate the effectiveness of two different ensemble forecasting (EF) techniques-the lagged-averaged forecast (LAF) and the breeding of growing modes (BGM). In the BGM experiments, the vortex and the environment are perturbed separately (named BGMV and BGME).Tropical cyclone (TC) motions in two difficult situations are studied: a large vortex interacting with its environment, and an apparent binary interaction. The former is Typhoon Yancy and the latter involves Typhoon Ed and super Typhoon Flo, all occurring during the Tropical Cyclone Motion Experiment TCM-90. The model used is the baroclinic model of the University of New South Wales. The lateral boundary tendencies are computed from atmospheric analysis data. Only the relative skill of the ensemble forecast mean over the control run is used to evaluate the effectiveness of the EF methods, although the EF technique is also used to quantify forecast uncertainty in some studies. In the case of Yancy, the ensemble mean forecasts of each of the three methodologies are better than that of the control, with LAF being the best. The mean track of the LAF is close to the best track, and it predicts landfall over Taiwan. The improvements in LAF and the full BGM where both the environment and vortex are perturbed suggest the importance of combining the perturbation of the vortex and environment when the interaction between the two is appreciable. In the binary interaction case of Ed and Flo, the forecasts of Ed appear to be insensitive to perturbations of the environment and/or the vortex, which apparently results from erroneous forecasts by the model of the interaction between the subtropical ridge and Ed, as well as from the interaction between the two typhoons, thus reducing the effectiveness of the EF technique. This conclusion is reached through sensitivity experiments on the domain of the model and by adding or eliminating certain features in the model atmosphere. Nevertheless, the

  17. Application of evolutionary computation on ensemble forecast of quantitative precipitation

    Science.gov (United States)

    Dufek, Amanda S.; Augusto, Douglas A.; Dias, Pedro L. S.; Barbosa, Helio J. C.

    2017-09-01

    An evolutionary computation algorithm known as genetic programming (GP) has been explored as an alternative tool for improving the ensemble forecast of 24-h accumulated precipitation. Three GP versions and six ensembles' languages were applied to several real-world datasets over southern, southeastern and central Brazil during the rainy period from October to February of 2008-2013. According to the results, the GP algorithms performed better than two traditional statistical techniques, with errors 27-57% lower than simple ensemble mean and the MASTER super model ensemble system. In addition, the results revealed that GP algorithms outperformed the best individual forecasts, reaching an improvement of 34-42%. On the other hand, the GP algorithms had a similar performance with respect to each other and to the Bayesian model averaging, but the former are far more versatile techniques. Although the results for the six ensembles' languages are almost indistinguishable, our most complex linear language turned out to be the best overall proposal. Moreover, some meteorological attributes, including the weather patterns over Brazil, seem to play an important role in the prediction of daily rainfall amount.

  18. Perturbation of convection-permitting NWP forecasts for flash-flood ensemble forecasting

    OpenAIRE

    B. Vincendon; V. Ducrocq; Nuissier, O.; B. Vié

    2011-01-01

    Mediterranean intense weather events often lead to devastating flash-floods. Extending the forecasting lead times further than the watershed response times, implies the use of numerical weather prediction (NWP) to drive hydrological models. However, the nature of the precipitating events and the temporal and spatial scales of the watershed response make them difficult to forecast, even using a high-resolution convection-permitting NWP deterministic forecasting. This study proposes a new metho...

  19. Assessment and added value estimation of an ensemble approach with a focus on global radiation forecasts

    CERN Document Server

    Bouallegue, Zied Ben

    2015-01-01

    The assessment of the high-resolution ensemble weather prediction system COSMO-DE-EPS is achieved with the perspective of using it for renewable energy applications. The performance of the ensemble forecast is explored focusing on global radiation, the main weather variable affecting solar power production, and on quantile forecasts, key probabilistic products for the energy sector. First, the ability of the ensemble system to capture and resolve the observation variability is assessed. Secondly, the potential benefit of the ensemble forecasting strategy compared to a single forecast approach is quantitatively estimated. A new metric called ensemble added value is proposed, aiming at a fair comparison of an ensemble forecast with a single forecast, when optimized to the users' needs. Hourly mean forecasts are verified against pyranometer measurements over verification periods covering 2013. The results show in particular that the added value of the ensemble approach is season-dependent and increases with the ...

  20. Medium Range Ensembles Flood Forecasts for Community Level Applications

    Science.gov (United States)

    Fakhruddin, S.; Kawasaki, A.; Babel, M. S.; AIT

    2013-05-01

    Early warning is a key element for disaster risk reduction. In recent decades, there has been a major advancement in medium range and seasonal forecasting. These could provide a great opportunity to improve early warning systems and advisories for early action for strategic and long term planning. This could result in increasing emphasis on proactive rather than reactive management of adverse consequences of flood events. This can be also very helpful for the agricultural sector by providing a diversity of options to farmers (e.g. changing cropping pattern, planting timing, etc.). An experimental medium range (1-10 days) flood forecasting model has been developed for Bangladesh which provides 51 set of discharge ensembles forecasts of one to ten days with significant persistence and high certainty. This could help communities (i.e. farmer) for gain/lost estimation as well as crop savings. This paper describe the application of ensembles probabilistic flood forecast at the community level for differential decision making focused on agriculture. The framework allows users to interactively specify the objectives and criteria that are germane to a particular situation, and obtain the management options that are possible, and the exogenous influences that should be taken into account before planning and decision making. risk and vulnerability assessment was conducted through community consultation. The forecast lead time requirement, users' needs, impact and management options for crops, livestock and fisheries sectors were identified through focus group discussions, informal interviews and questionnaire survey.

  1. Performance Assessment of Hydrological Models Considering Acceptable Forecast Error Threshold

    Directory of Open Access Journals (Sweden)

    Qianjin Dong

    2015-11-01

    Full Text Available It is essential to consider the acceptable threshold in the assessment of a hydrological model because of the scarcity of research in the hydrology community and errors do not necessarily cause risk. Two forecast errors, including rainfall forecast error and peak flood forecast error, have been studied based on the reliability theory. The first order second moment (FOSM and bound methods are used to identify the reliability. Through the case study of the Dahuofang (DHF Reservoir, it is shown that the correlation between these two errors has great influence on the reliability index of hydrological model. In particular, the reliability index of the DHF hydrological model decreases with the increasing correlation. Based on the reliability theory, the proposed performance evaluation framework incorporating the acceptable forecast error threshold and correlation among the multiple errors can be used to evaluate the performance of a hydrological model and to quantify the uncertainties of a hydrological model output.

  2. Development and evaluation of novel forecasting adaptive ensemble model

    Directory of Open Access Journals (Sweden)

    C.M. Anish

    2016-09-01

    Full Text Available This paper proposes a new ensemble based adaptive forecasting structure for efficient different interval days' ahead prediction of five different asset values (NAV. In this approach three individual adaptive structures such as adaptive moving average (AMA, adaptive auto regressive moving average (AARMA and feedback radial basis function network (FRBF are employed to first train with conventional LMS, conventional forward-backward LMS and corresponding learning algorithm of FRBF respectively. After successful validation of each model the output obtained by each individual model is optimally weighted using Genetic algorithm (GA as well as particle swarm optimization (PSO based techniques to produce the best possible different days ahead prediction accuracy. Finally the results of prediction obtained of the NAV values are compared with the results obtained by individual predictors as well as by other four existing ensemble schemes. It is in general demonstrated that in all cases the proposed forecasting scheme outperforms other competitive methods.

  3. Forecasting Crude Oil Price with Multiscale Denoising Ensemble Model

    Directory of Open Access Journals (Sweden)

    Xia Li

    2014-01-01

    Full Text Available Crude oil price becomes more volatile and sensitive to increasingly diversified influencing factors with higher level of deregulations worldwide. Current methodologies are being challenged as they have been constrained by traditional approaches assuming homogeneous time horizons and investment strategies. Approximations they provided over the long term time horizon no longer satisfy the accuracy requirement at shorter term and more microlevels. This paper proposes a novel crude oil price forecasting model based on the wavelet denoising ARMA models ensemble by least square support vector regression with the reduced forecasting matrix dimensions by independent component analysis. The proposed methodology combines the multi resolution analysis and nonlinear ensemble framework. The wavelet denoising based algorithm is introduced to separate and extract the underlying data components with distinct features, corresponding to investors with different investment scales, which are modeled with time series models of different specifications and parameters. Then least square support vector regression is introduced to nonlinearly ensemble results based on different wavelet families to further reduce the estimation biases and improve the forecasting generalizability. Empirical studies show the significant performance improvement when the proposed model is tested against the bench-mark models.

  4. Space weather forecasting with a Multimodel Ensemble Prediction System (MEPS)

    Science.gov (United States)

    Schunk, R. W.; Scherliess, L.; Eccles, V.; Gardner, L. C.; Sojka, J. J.; Zhu, L.; Pi, X.; Mannucci, A. J.; Butala, M.; Wilson, B. D.; Komjathy, A.; Wang, C.; Rosen, G.

    2016-07-01

    The goal of the Multimodel Ensemble Prediction System (MEPS) program is to improve space weather specification and forecasting with ensemble modeling. Space weather can have detrimental effects on a variety of civilian and military systems and operations, and many of the applications pertain to the ionosphere and upper atmosphere. Space weather can affect over-the-horizon radars, HF communications, surveying and navigation systems, surveillance, spacecraft charging, power grids, pipelines, and the Federal Aviation Administration (FAA's) Wide Area Augmentation System (WAAS). Because of its importance, numerous space weather forecasting approaches are being pursued, including those involving empirical, physics-based, and data assimilation models. Clearly, if there are sufficient data, the data assimilation modeling approach is expected to be the most reliable, but different data assimilation models can produce different results. Therefore, like the meteorology community, we created a Multimodel Ensemble Prediction System (MEPS) for the Ionosphere-Thermosphere-Electrodynamics (ITE) system that is based on different data assimilation models. The MEPS ensemble is composed of seven physics-based data assimilation models for the ionosphere, ionosphere-plasmasphere, thermosphere, high-latitude ionosphere-electrodynamics, and middle to low latitude ionosphere-electrodynamics. Hence, multiple data assimilation models can be used to describe each region. A selected storm event that was reconstructed with four different data assimilation models covering the middle and low latitude ionosphere is presented and discussed. In addition, the effect of different data types on the reconstructions is shown.

  5. Intermediate-term forecasting of aftershocks from an early aftershock sequence: Bayesian and ensemble forecasting approaches

    Science.gov (United States)

    Omi, Takahiro; Ogata, Yosihiko; Hirata, Yoshito; Aihara, Kazuyuki

    2015-04-01

    Because aftershock occurrences can cause significant seismic risks for a considerable time after the main shock, prospective forecasting of the intermediate-term aftershock activity as soon as possible is important. The epidemic-type aftershock sequence (ETAS) model with the maximum likelihood estimate effectively reproduces general aftershock activity including secondary or higher-order aftershocks and can be employed for the forecasting. However, because we cannot always expect the accurate parameter estimation from incomplete early aftershock data where many events are missing, such forecasting using only a single estimated parameter set (plug-in forecasting) can frequently perform poorly. Therefore, we here propose Bayesian forecasting that combines the forecasts by the ETAS model with various probable parameter sets given the data. By conducting forecasting tests of 1 month period aftershocks based on the first 1 day data after the main shock as an example of the early intermediate-term forecasting, we show that the Bayesian forecasting performs better than the plug-in forecasting on average in terms of the log-likelihood score. Furthermore, to improve forecasting of large aftershocks, we apply a nonparametric (NP) model using magnitude data during the learning period and compare its forecasting performance with that of the Gutenberg-Richter (G-R) formula. We show that the NP forecast performs better than the G-R formula in some cases but worse in other cases. Therefore, robust forecasting can be obtained by employing an ensemble forecast that combines the two complementary forecasts. Our proposed method is useful for a stable unbiased intermediate-term assessment of aftershock probabilities.

  6. Climate model forecast biases assessed with a perturbed physics ensemble

    Science.gov (United States)

    Mulholland, David P.; Haines, Keith; Sparrow, Sarah N.; Wallom, David

    2017-09-01

    Perturbed physics ensembles have often been used to analyse long-timescale climate model behaviour, but have been used less often to study model processes on shorter timescales. We combine a transient perturbed physics ensemble with a set of initialised forecasts to deduce regional process errors present in the standard HadCM3 model, which cause the model to drift in the early stages of the forecast. First, it is shown that the transient drifts in the perturbed physics ensembles can be used to recover quantitatively the parameters that were perturbed. The parameters which exert most influence on the drifts vary regionally, but upper ocean mixing and atmospheric convective processes are particularly important on the 1-month timescale. Drifts in the initialised forecasts are then used to recover the `equivalent parameter perturbations', which allow identification of the physical processes that may be at fault in the HadCM3 representation of the real world. Most parameters show positive and negative adjustments in different regions, indicating that standard HadCM3 values represent a global compromise. The method is verified by correcting an unusually widespread positive bias in the strength of wind-driven ocean mixing, with forecast drifts reduced in a large number of areas as a result. This method could therefore be used to improve the skill of initialised climate model forecasts by reducing model biases through regional adjustments to physical processes, either by tuning or targeted parametrisation refinement. Further, such regionally tuned models might also significantly outperform standard climate models, with global parameter configurations, in longer-term climate studies.

  7. Climate model forecast biases assessed with a perturbed physics ensemble

    Science.gov (United States)

    Mulholland, David P.; Haines, Keith; Sparrow, Sarah N.; Wallom, David

    2016-10-01

    Perturbed physics ensembles have often been used to analyse long-timescale climate model behaviour, but have been used less often to study model processes on shorter timescales. We combine a transient perturbed physics ensemble with a set of initialised forecasts to deduce regional process errors present in the standard HadCM3 model, which cause the model to drift in the early stages of the forecast. First, it is shown that the transient drifts in the perturbed physics ensembles can be used to recover quantitatively the parameters that were perturbed. The parameters which exert most influence on the drifts vary regionally, but upper ocean mixing and atmospheric convective processes are particularly important on the 1-month timescale. Drifts in the initialised forecasts are then used to recover the `equivalent parameter perturbations', which allow identification of the physical processes that may be at fault in the HadCM3 representation of the real world. Most parameters show positive and negative adjustments in different regions, indicating that standard HadCM3 values represent a global compromise. The method is verified by correcting an unusually widespread positive bias in the strength of wind-driven ocean mixing, with forecast drifts reduced in a large number of areas as a result. This method could therefore be used to improve the skill of initialised climate model forecasts by reducing model biases through regional adjustments to physical processes, either by tuning or targeted parametrisation refinement. Further, such regionally tuned models might also significantly outperform standard climate models, with global parameter configurations, in longer-term climate studies.

  8. Improved forecasting of thermospheric densities using multi-model ensembles

    Science.gov (United States)

    Elvidge, Sean; Godinez, Humberto C.; Angling, Matthew J.

    2016-07-01

    This paper presents the first known application of multi-model ensembles to the forecasting of the thermosphere. A multi-model ensemble (MME) is a method for combining different, independent models. The main advantage of using an MME is to reduce the effect of model errors and bias, since it is expected that the model errors will, at least partly, cancel. The MME, with its reduced uncertainties, can then be used as the initial conditions in a physics-based thermosphere model for forecasting. This should increase the forecast skill since a reduction in the errors of the initial conditions of a model generally increases model skill. In this paper the Thermosphere-Ionosphere Electrodynamic General Circulation Model (TIE-GCM), the US Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar Exosphere 2000 (NRLMSISE-00), and Global Ionosphere-Thermosphere Model (GITM) have been used to construct the MME. As well as comparisons between the MMEs and the "standard" runs of the model, the MME densities have been propagated forward in time using the TIE-GCM. It is shown that thermospheric forecasts of up to 6 h, using the MME, have a reduction in the root mean square error of greater than 60 %. The paper also highlights differences in model performance between times of solar minimum and maximum.

  9. Probabilistic Ensemble Forecast of Summertime Temperatures in Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Hanif

    2014-01-01

    Full Text Available Snowmelt flooding triggered by intense heat is a major temperature related weather hazard in northern Pakistan, and the frequency of such extreme flood events has increased during the recent years. In this study, the probabilistic temperature forecasts at seasonal and subseasonal time scales based on hindcasts simulations from three state-of-the-art models within the DEMETER project are assessed by the relative operating characteristic (ROC verification method. Results based on direct model outputs reveal significant skill for hot summers in February 3–5 (ROC area=0.707 with lower 95% confidence limit of 0.538 and February 4-5 (ROC area=0.771 with lower 95% confidence limit of 0.623 forecasts when validated against observations. Results for ERA-40 reanalysis also show skill for hot summers. Skilful probabilistic ensemble forecasts of summertime temperatures may be valuable in providing the foreknowledge of snowmelt flooding and water management in Pakistan.

  10. Uncertain Climate Forecasts From Multimodel Ensembles: When to Use Them and When to Ignore Them

    CERN Document Server

    Jewson, Stephen

    2010-01-01

    Uncertainty around multimodel ensemble forecasts of changes in future climate reduces the accuracy of those forecasts. For very uncertain forecasts this effect may mean that the forecasts should not be used. We investigate the use of the well-known Bayesian Information Criterion (BIC) to make the decision as to whether a forecast should be used or ignored.

  11. Flexible modeling frameworks to replace small ensembles of hydrological models and move toward large ensembles?

    Science.gov (United States)

    Addor, Nans; Clark, Martyn P.; Mizukami, Naoki

    2017-04-01

    Climate change impacts on hydrological processes are typically assessed using small ensembles of hydrological models. That is, a handful of hydrological models are typically driven by a larger number of climate models. Such a setup has several limitations. Because the number of hydrological models is small, only a small proportion of the model space is sampled, likely leading to an underestimation of the uncertainties in the projections. Further, sampling is arbitrary: although hydrological models should be selected to provide a representative sample of existing models (in terms of complexity and governing hypotheses), they are instead usually selected based on legacy reasons. Furthermore, running several hydrological models currently constitutes a practical challenge because each model must be setup and calibrated individually. Finally, and probably most importantly, the differences between the projected impacts cannot be directly related to differences between hydrological models, because the models are different in almost every possible aspect. We are hence in a situation in which different hydrological models deliver different projections, but for reasons that are mostly unclear, and in which the uncertainty in the projections is probably underestimated. To overcome these limitations, we are experimenting with the flexible modeling framework FUSE (Framework for Understanding Model Errors). FUSE enables to construct conceptual models piece by piece (in a "pick and mix" approach), so it can be used to generate a large number of models that mimic existing models and/or models that differ from other models in single targeted respect (e.g. how baseflow is generated). FUSE hence allows for controlled modeling experiments, and for a more systematic and exhaustive sampling of the model space. Here we explore climate change impacts over the contiguous USA on a 12km grid using two groups of three models: the first group involves the commonly used models VIC, PRMS and HEC

  12. An experimental seasonal hydrological forecasting system over the Yellow River basin - Part 1: Understanding the role of initial hydrological conditions

    Science.gov (United States)

    Yuan, Xing; Ma, Feng; Wang, Linying; Zheng, Ziyan; Ma, Zhuguo; Ye, Aizhong; Peng, Shaoming

    2016-06-01

    The hydrological cycle over the Yellow River has been altered by the climate change and human interventions greatly during past decades, with a decadal drying trend mixed with a large variation of seasonal hydrological extremes. To provide support for the adaptation to a changing environment, an experimental seasonal hydrological forecasting system is established over the Yellow River basin. The system draws from a legacy of a global hydrological forecasting system that is able to make use of real-time seasonal climate predictions from North American Multimodel Ensemble (NMME) climate models through a statistical downscaling approach but with a higher resolution and a spatially disaggregated calibration procedure that is based on a newly compiled hydrological observation dataset with 5 decades of naturalized streamflow at 12 mainstream gauges and a newly released meteorological observation dataset including 324 meteorological stations over the Yellow River basin. While the evaluation of the NMME-based seasonal hydrological forecasting will be presented in a companion paper to explore the added values from climate forecast models, this paper investigates the role of initial hydrological conditions (ICs) by carrying out 6-month Ensemble Streamflow Prediction (ESP) and reverse ESP-type simulations for each calendar month during 1982-2010 with the hydrological models in the forecasting system, i.e., a large-scale land surface hydrological model and a global routing model that is regionalized over the Yellow River. In terms of streamflow predictability, the ICs outweigh the meteorological forcings up to 2-5 months during the cold and dry seasons, but the latter prevails over the former in the predictability after the first month during the warm and wet seasons. For the streamflow forecasts initialized at the end of the rainy season, the influence of ICs for lower reaches of the Yellow River can be 5 months longer than that for the upper reaches, while such a difference

  13. A flood episode in northern Italy: multi-model and single-model mesoscale meteorological ensembles for hydrological predictions

    Directory of Open Access Journals (Sweden)

    S. Davolio

    2013-06-01

    Full Text Available Numerical weather prediction models can be coupled with hydrological models to generate streamflow forecasts. Several ensemble approaches have been recently developed in order to take into account the different sources of errors and provide probabilistic forecasts feeding a flood forecasting system. Within this framework, the present study aims at comparing two high-resolution limited-area meteorological ensembles, covering short and medium range, obtained via different methodologies, but implemented with similar number of members, horizontal resolution (about 7 km, and driving global ensemble prediction system. The former is a multi-model ensemble, based on three mesoscale models (BOLAM, COSMO, and WRF, while the latter, following a single-model approach, is the operational ensemble forecasting system developed within the COSMO consortium, COSMO-LEPS (limited-area ensemble prediction system. The meteorological models are coupled with a distributed rainfall-runoff model (TOPKAPI to simulate the discharge of the Reno River (northern Italy, for a recent severe weather episode affecting northern Apennines. The evaluation of the ensemble systems is performed both from a meteorological perspective over northern Italy and in terms of discharge prediction over the Reno River basin during two periods of heavy precipitation between 29 November and 2 December 2008. For each period, ensemble performance has been compared at two different forecast ranges. It is found that, for the intercomparison undertaken in this specific study, both mesoscale model ensembles outperform the global ensemble for application at basin scale. Horizontal resolution is found to play a relevant role in modulating the precipitation distribution. Moreover, the multi-model ensemble provides a better indication concerning the occurrence, intensity and timing of the two observed discharge peaks, with respect to COSMO-LEPS. This seems to be ascribable to the different behaviour of the

  14. Development of Ensemble Model Based Water Demand Forecasting Model

    Science.gov (United States)

    Kwon, Hyun-Han; So, Byung-Jin; Kim, Seong-Hyeon; Kim, Byung-Seop

    2014-05-01

    In recent years, Smart Water Grid (SWG) concept has globally emerged over the last decade and also gained significant recognition in South Korea. Especially, there has been growing interest in water demand forecast and optimal pump operation and this has led to various studies regarding energy saving and improvement of water supply reliability. Existing water demand forecasting models are categorized into two groups in view of modeling and predicting their behavior in time series. One is to consider embedded patterns such as seasonality, periodicity and trends, and the other one is an autoregressive model that is using short memory Markovian processes (Emmanuel et al., 2012). The main disadvantage of the abovementioned model is that there is a limit to predictability of water demands of about sub-daily scale because the system is nonlinear. In this regard, this study aims to develop a nonlinear ensemble model for hourly water demand forecasting which allow us to estimate uncertainties across different model classes. The proposed model is consist of two parts. One is a multi-model scheme that is based on combination of independent prediction model. The other one is a cross validation scheme named Bagging approach introduced by Brieman (1996) to derive weighting factors corresponding to individual models. Individual forecasting models that used in this study are linear regression analysis model, polynomial regression, multivariate adaptive regression splines(MARS), SVM(support vector machine). The concepts are demonstrated through application to observed from water plant at several locations in the South Korea. Keywords: water demand, non-linear model, the ensemble forecasting model, uncertainty. Acknowledgements This subject is supported by Korea Ministry of Environment as "Projects for Developing Eco-Innovation Technologies (GT-11-G-02-001-6)

  15. On evaluation of ensemble precipitation forecasts with observation-based ensembles

    Directory of Open Access Journals (Sweden)

    S. Jaun

    2007-04-01

    Full Text Available Spatial interpolation of precipitation data is uncertain. How important is this uncertainty and how can it be considered in evaluation of high-resolution probabilistic precipitation forecasts? These questions are discussed by experimental evaluation of the COSMO consortium's limited-area ensemble prediction system COSMO-LEPS. The applied performance measure is the often used Brier skill score (BSS. The observational references in the evaluation are (a analyzed rain gauge data by ordinary Kriging and (b ensembles of interpolated rain gauge data by stochastic simulation. This permits the consideration of either a deterministic reference (the event is observed or not with 100% certainty or a probabilistic reference that makes allowance for uncertainties in spatial averaging. The evaluation experiments show that the evaluation uncertainties are substantial even for the large area (41 300 km2 of Switzerland with a mean rain gauge distance as good as 7 km: the one- to three-day precipitation forecasts have skill decreasing with forecast lead time but the one- and two-day forecast performances differ not significantly.

  16. Ensemble dispersion forecasting - Part 1. Concept, approach and indicators

    DEFF Research Database (Denmark)

    Galmarini, S.; Bianconi, R.; Klug, W.;

    2004-01-01

    The paper presents an approach to the treatment and analysis of long-range transport and dispersion model forecasts. Long-range is intended here as the space scale of the order of few thousands of kilometers known also as continental scale. The method is called multi-model ensemble dispersion...... proposed are particularly suited for long-range transport and dispersion models although they can also be applied to short-range dispersion and weather fields. (C) 2004 Elsevier Ltd. All rights reserved....

  17. Using rainfall thresholds and ensemble precipitation forecasts to issue and improve urban inundation alerts

    Science.gov (United States)

    Yang, Tsun-Hua; Hwang, Gong-Do; Tsai, Chin-Cheng; Ho, Jui-Yi

    2016-11-01

    Urban inundation forecasting with extended lead times is useful in saving lives and property. This study proposes the integration of rainfall thresholds and ensemble precipitation forecasts to provide probabilistic urban inundation forecasts. Utilization of ensemble precipitation forecasts can extend forecast lead times to 72 h, predicting peak flows and to allow response agencies to take necessary preparatory measures. However, ensemble precipitation forecasting is time- and resource-intensive. Using rainfall thresholds to estimate urban areas' inundation risk can decrease this complexity and save computation time. This study evaluated the performance of this system using 352 townships in Taiwan and seven typhoons during the period 2013-2015. The levels of forecast probability needed to issue inundation alerts were addressed because ensemble forecasts are probability based. This study applied six levels of forecast probability and evaluated their performance using five measures. The results showed that this forecasting system performed better before a typhoon made landfall. Geography had a strong impact at the start of the numerical weather modeling, resulting in the underestimation of rainfall forecasts. Regardless of this finding, the inundation forecast performance was highly contingent on the rainfall forecast skill. This study then tested a hybrid approach of on-site observations and rainfall forecasts to decrease the influence of numerical weather predictions and improve the forecast performance. The results of this combined system showed that forecasts with a 24 h lead time improved significantly. These findings and the hybrid approach can be applied to other hydrometeorological early warning systems to improve hazard-related forecasts.

  18. The very short-term rainfall forecasting for a mountainous watershed by means of an ensemble numerical weather prediction system in Taiwan

    Science.gov (United States)

    Wu, Ming-Chang; Lin, Gwo-Fong

    2017-03-01

    During typhoons, accurate forecasts of rainfall are always desired for various kinds of disaster warning systems to reduce the impact of rainfall-induced disasters. However, rainfall forecasting, especially the very short-term (hourly) rainfall, is one of the most difficult tasks in hydrology due to the high variability in space and time and the complex physical process. In this study, the purpose is to provide effective forecasts of very short-term rainfall by means of the ensemble numerical weather prediction system in Taiwan. To this end, the ensemble forecasts of hourly rainfall from this ensemble numerical weather prediction system are analyzed to evaluate the performance. Furthermore, a methodology, which is based on the principle of analogue prediction, is proposed to effectively process these ensemble forecasts for improving the performance on very short-term rainfall forecasting. To clearly demonstrate the advantage of the proposed methodology, actual application is conducted on a mountainous watershed to yield 1- to 6-h ahead forecasts during typhoon events. The results indicate that the proposed methodology is better performed and more flexible than the conventional one. Generally, the proposed methodology provides improved performance for very short-term rainfall forecasting, especially for 1- to 2-h ahead forecasting. The improved forecasts provided by the proposed methodology are expected to be useful to support disaster warning systems, such as flash-flood, landslide, and debris flow warning systems, during typhoons.

  19. Ensemble Kalman Filter Data Assimilation with the ParFlow Hydrologic Model

    Science.gov (United States)

    Williams, J. L., III

    2015-12-01

    Hydrometeorological research has shown that simulations of atmospheric processes benefit from sophisticated land surface formulations. Moisture and energy fluxes between the land surface and lower atmosphere are influenced strongly not only by atmospheric conditions, but by terrestrial hydrologic processes, soil moisture distribution in particular. By improving the representation of hydrologic processes, better predictive skill can be achieved in a fully-coupled weather forcasting model. Further improvements in the model can be realized by incorporating observed data values into the hydrologic model. This work applies the Ensemble Kalman Filter functionality included in the Data Assimilation Assimilation Research Testbed (DART), a collection of data assimilation tools maintained at the National Center for Atmospheric Research, to the ParFlow hydrologic model—the hydrologic component of the TerrSysMP fully coupled hydrologic - land surface - atmospheric model system. This generalized data assimilation tool allows observations of variables in the hydrologic component of the system to be incorporated into the overall error covariance matrix thus guiding the development of quantities that define the model state. Single dimension column tests, and a three-dimensional idealized catchment drainage and dry-out test were performed with the ParFlow-DART system to evaluate the effects of assimilating pressure head, soil moisture, and outflow observations on the development of the model through time. The data assimilation system was then applied to the hydrologic portion a fully-coupled (subsurface, land surface, and atmosphere) simulation over the North Rhine-Westphalia region in western Germany to demonstrate the utility of this system in a non-idealized and realistic forecasting situation. The success of these tests will allow the ParFlow-DART system to be developed into a complete data assimilation package for the TerrSysMP fully-coupled modeling system.

  20. Ensemble forecasting of sub-seasonal to seasonal streamflow by a Bayesian joint probability modelling approach

    Science.gov (United States)

    Zhao, Tongtiegang; Schepen, Andrew; Wang, Q. J.

    2016-10-01

    The Bayesian joint probability (BJP) modelling approach is used operationally to produce seasonal (three-month-total) ensemble streamflow forecasts in Australia. However, water resource managers are calling for more informative sub-seasonal forecasts. Taking advantage of BJP's capability of handling multiple predictands, ensemble forecasting of sub-seasonal to seasonal streamflows is investigated for 23 catchments around Australia. Using antecedent streamflow and climate indices as predictors, monthly forecasts are developed for the three-month period ahead. Forecast reliability and skill are evaluated for the period 1982-2011 using a rigorous leave-five-years-out cross validation strategy. BJP ensemble forecasts of monthly streamflow volumes are generally reliable in ensemble spread. Forecast skill, relative to climatology, is positive in 74% of cases in the first month, decreasing to 57% and 46% respectively for streamflow forecasts for the final two months of the season. As forecast skill diminishes with increasing lead time, the monthly forecasts approach climatology. Seasonal forecasts accumulated from monthly forecasts are found to be similarly skilful to forecasts from BJP models based on seasonal totals directly. The BJP modelling approach is demonstrated to be a viable option for producing ensemble time-series sub-seasonal to seasonal streamflow forecasts.

  1. Combining multi-objective optimization and bayesian model averaging to calibrate forecast ensembles of soil hydraulic models

    Energy Technology Data Exchange (ETDEWEB)

    Vrugt, Jasper A [Los Alamos National Laboratory; Wohling, Thomas [NON LANL

    2008-01-01

    Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multi-objective optimization and Bayesian Model Averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use observed tensiometric pressure head data at three different depths in a layered vadose zone of volcanic origin in New Zealand. A set of seven different soil hydraulic models is calibrated using a multi-objective formulation with three different objective functions that each measure the mismatch between observed and predicted soil water pressure head at one specific depth. The Pareto solution space corresponding to these three objectives is estimated with AMALGAM, and used to generate four different model ensembles. These ensembles are post-processed with BMA and used for predictive analysis and uncertainty estimation. Our most important conclusions for the vadose zone under consideration are: (1) the mean BMA forecast exhibits similar predictive capabilities as the best individual performing soil hydraulic model, (2) the size of the BMA uncertainty ranges increase with increasing depth and dryness in the soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) solution of the three-objective Pareto surface, and (4) the combined multi-objective optimization and BMA framework proposed in this paper is very useful to generate forecast ensembles of soil hydraulic models.

  2. Ovis: A framework for visual analysis of ocean forecast ensembles

    KAUST Repository

    Hollt, Thomas

    2014-08-01

    We present a novel integrated visualization system that enables interactive visual analysis of ensemble simulations of the sea surface height that is used in ocean forecasting. The position of eddies can be derived directly from the sea surface height and our visualization approach enables their interactive exploration and analysis.The behavior of eddies is important in different application settings of which we present two in this paper. First, we show an application for interactive planning of placement as well as operation of off-shore structures using real-world ensemble simulation data of the Gulf of Mexico. Off-shore structures, such as those used for oil exploration, are vulnerable to hazards caused by eddies, and the oil and gas industry relies on ocean forecasts for efficient operations. We enable analysis of the spatial domain, as well as the temporal evolution, for planning the placement and operation of structures.Eddies are also important for marine life. They transport water over large distances and with it also heat and other physical properties as well as biological organisms. In the second application we present the usefulness of our tool, which could be used for planning the paths of autonomous underwater vehicles, so called gliders, for marine scientists to study simulation data of the largely unexplored Red Sea. © 1995-2012 IEEE.

  3. Ovis: A Framework for Visual Analysis of Ocean Forecast Ensembles.

    Science.gov (United States)

    Höllt, Thomas; Magdy, Ahmed; Zhan, Peng; Chen, Guoning; Gopalakrishnan, Ganesh; Hoteit, Ibrahim; Hansen, Charles D; Hadwiger, Markus

    2014-08-01

    We present a novel integrated visualization system that enables interactive visual analysis of ensemble simulations of the sea surface height that is used in ocean forecasting. The position of eddies can be derived directly from the sea surface height and our visualization approach enables their interactive exploration and analysis.The behavior of eddies is important in different application settings of which we present two in this paper. First, we show an application for interactive planning of placement as well as operation of off-shore structures using real-world ensemble simulation data of the Gulf of Mexico. Off-shore structures, such as those used for oil exploration, are vulnerable to hazards caused by eddies, and the oil and gas industry relies on ocean forecasts for efficient operations. We enable analysis of the spatial domain, as well as the temporal evolution, for planning the placement and operation of structures.Eddies are also important for marine life. They transport water over large distances and with it also heat and other physical properties as well as biological organisms. In the second application we present the usefulness of our tool, which could be used for planning the paths of autonomous underwater vehicles, so called gliders, for marine scientists to study simulation data of the largely unexplored Red Sea.

  4. Comparison of three methods for the optimal allocation of hydrological model participation in an Ensemble Prediction System

    Science.gov (United States)

    Brochero, D.; Anctil, F.; Gagné, C.

    2012-04-01

    Today, the availability of the Meteorological Ensemble Prediction Systems (MEPS) and its subsequent coupling with multiple hydrological models offer the possibility of building Hydrological Ensemble Prediction Systems (HEPS) consisting of a large number of members. However, this task is complex both in terms of the coupling of information and of the computational time, which may create an operational barrier. The evaluation of the prominence of each hydrological members can be seen as a non-parametric post-processing stage that seeks finding the optimal participation of the hydrological models (in a fashion similar to the Bayesian model averaging technique), maintaining or improving the quality of a probabilistic forecasts based on only x members drawn from a super ensemble of d members, thus allowing the reduction of the task required to issue the probabilistic forecast. The main objective of the current work consists in assessing the degree of simplification (reduction of the number of hydrological members) that can be achieved with a HEPS configured using 16 lumped hydrological models driven by the 50 weather ensemble forecasts from the European Centre for Medium-range Weather Forecasts (ECMWF), i.e. an 800-member HEPS. In a previous work (Brochero et al., 2011a, b), we demonstrated that the proportion of members allocated to each hydrological model is a sufficient criterion to reduce the number of hydrological members while improving the balance of the scores, taking into account interchangeability of the ECMWF MEPS. Here, we compare the proportion of members allocated to each hydrological model derived from three non-parametric techniques: correlation analysis of hydrological members, Backward Greedy Selection (BGS) and Nondominated Sorting Genetic Algorithm (NSGA II). The last two techniques allude to techniques developed in machine learning, in a multicriteria framework exploiting the relationship between bias, reliability, and the number of members of the

  5. The Ensemble Framework for Flash Flood Forecasting: Global and CONUS Applications

    Science.gov (United States)

    Flamig, Z.; Vergara, H. J.; Clark, R. A.; Gourley, J. J.; Kirstetter, P. E.; Hong, Y.

    2015-12-01

    The Ensemble Framework for Flash Flood Forecasting (EF5) is a distributed hydrologic modeling framework combining water balance components such as the Variable Infiltration Curve (VIC) and Sacramento Soil Moisture Accounting (SAC-SMA) with kinematic wave channel routing. The Snow-17 snow pack model is included as an optional component in EF5 for basins where snow impacts are important. EF5 also contains the Differential Evolution Adaptive Metropolis (DREAM) parameter estimation scheme for model calibration. EF5 is made to be user friendly and as such training has been developed into a weeklong course. This course has been tested in modeling workshops held in Namibia and Mexico. EF5 has also been applied to specialized applications including the Flooded Locations and Simulated Hydrographs (FLASH) project. FLASH aims to provide flash flood monitoring and forecasting over the CONUS using Multi-Radar Multi-Sensor precipitation forcing. Using the extensive field measurements database from the 10,000 USGS measurement locations across the CONUS, parameters were developed for the kinematic wave routing in FLASH. This presentation will highlight FLASH performance over the CONUS on basins less than 1,000 km2 and discuss the development of simulated streamflow climatology over the CONUS for data mining applications. A global application of EF5 has also been developed using satellite based precipitation measurements combined with numerical weather prediction forecasts to produce flood and impact forecasts. The performance of this global system will be assessed and future plans detailed.

  6. A short-term ensemble wind speed forecasting system for wind power applications

    Science.gov (United States)

    Baidya Roy, S.; Traiteur, J. J.; Callicutt, D.; Smith, M.

    2011-12-01

    This study develops an adaptive, blended forecasting system to provide accurate wind speed forecasts 1 hour ahead of time for wind power applications. The system consists of an ensemble of 21 forecasts with different configurations of the Weather Research and Forecasting Single Column Model (WRFSCM) and a persistence model. The ensemble is calibrated against observations for a 2 month period (June-July, 2008) at a potential wind farm site in Illinois using the Bayesian Model Averaging (BMA) technique. The forecasting system is evaluated against observations for August 2008 at the same site. The calibrated ensemble forecasts significantly outperform the forecasts from the uncalibrated ensemble while significantly reducing forecast uncertainty under all environmental stability conditions. The system also generates significantly better forecasts than persistence, autoregressive (AR) and autoregressive moving average (ARMA) models during the morning transition and the diurnal convective regimes. This forecasting system is computationally more efficient than traditional numerical weather prediction models and can generate a calibrated forecast, including model runs and calibration, in approximately 1 minute. Currently, hour-ahead wind speed forecasts are almost exclusively produced using statistical models. However, numerical models have several distinct advantages over statistical models including the potential to provide turbulence forecasts. Hence, there is an urgent need to explore the role of numerical models in short-term wind speed forecasting. This work is a step in that direction and is likely to trigger a debate within the wind speed forecasting community.

  7. Ensemble forecasting of potential habitat for three invasive fishes

    Science.gov (United States)

    Poulos, Helen M.; Chernoff, Barry; Fuller, Pam L.; Butman, David

    2012-01-01

    Aquatic invasive species pose major ecological and economic threats to aquatic ecosystems worldwide via displacement, predation, or hybridization with native species and the alteration of aquatic habitats and hydrologic cycles. Modeling the habitat suitability of alien aquatic species through spatially explicit mapping is an increasingly important risk assessment tool. Habitat modeling also facilitates identification of key environmental variables influencing invasive species distributions. We compared four modeling methods to predict the potential continental United States distributions of northern snakehead Channa argus (Cantor, 1842), round goby Neogobius melanostomus (Pallas, 1814), and silver carp Hypophthalmichthys molitrix (Valenciennes, 1844) using maximum entropy (Maxent), the genetic algorithm for rule set production (GARP), DOMAIN, and support vector machines (SVM). We used inventory records from the USGS Nonindigenous Aquatic Species Database and a geographic information system of 20 climatic and environmental variables to generate individual and ensemble distribution maps for each species. The ensemble maps from our study performed as well as or better than all of the individual models except Maxent. The ensemble and Maxent models produced significantly higher accuracy individual maps than GARP, one-class SVMs, or DOMAIN. The key environmental predictor variables in the individual models were consistent with the tolerances of each species. Results from this study provide insights into which locations and environmental conditions may promote the future spread of invasive fish in the US.

  8. Comparing complementary NWP model performance for hydrologic forecasting for the river Rhine in an operational setting

    Science.gov (United States)

    Davids, Femke; den Toom, Matthijs

    2016-04-01

    This paper investigates the performance of complementary NWP models for hydrologic forecasting for the river Rhine, a large river catchment in Central Europe. An operational forecasting system, RWsOS-Rivieren, produces daily forecasts of discharges and water levels at the Water Management Centre Netherlands. A combination of HBV (rainfall-runoff) and SOBEK (hydrodynamic routing) models is used to produce simulations and forecasts for the catchment. Data assimilation is applied both to the model state of SOBEK and to model outputs. The primary function of the operational forecasting system is to provide reliable and accurate forecasts during periods of high water. The secondary main function is producing daily predictions for water management and water transport in The Netherlands. In addition, predicting water levels during drought periods is becoming increasingly important as well. At this moment several complementary deterministic and ensemble NWP models are used to provide the forecasters with predictions with varied initial conditions, such as ICON, ICON-EU Nest, ECMWF-DET, ECMWF-EPS, HiRLAM, COSMO-LEPS and GLAMEPS. ICON and ICON-EU have recently replaced DWD-GME and DWD COSMO-EU. These models provide weather forecasts with different lengths of lead times and also different periods of operational usage. A direct and quantitative comparison is therefore challenging. Nevertheless, it is important to investigate the suitability of the different NWP models for certain lead times and certain weather situations to help support the hydrological forecasters make an informed forecast during an operational crisis. A hindcast study will investigate the performance of these models in the operational system for different lead times and focusing on periods of both high and low water for Lobith, the location of entry of the river Rhine into The Netherlands.

  9. Hydrological drought forecasting and skill assessment for the Limpopo River basin, southern Africa

    Science.gov (United States)

    Trambauer, P.; Werner, M.; Winsemius, H. C.; Maskey, S.; Dutra, E.; Uhlenbrook, S.

    2015-04-01

    Ensemble hydrological predictions are normally obtained by forcing hydrological models with ensembles of atmospheric forecasts produced by numerical weather prediction models. To be of practical value to water users, such forecasts should not only be sufficiently skilful, they should also provide information that is relevant to the decisions end users make. The semi-arid Limpopo Basin in southern Africa has experienced severe droughts in the past, resulting in crop failure, economic losses and the need for humanitarian aid. In this paper we address the seasonal prediction of hydrological drought in the Limpopo River basin by testing three proposed forecasting systems (FS) that can provide operational guidance to reservoir operators and water managers at the seasonal timescale. All three FS include a distributed hydrological model of the basin, which is forced with either (i) a global atmospheric model forecast (ECMWF seasonal forecast system - S4), (ii) the commonly applied ensemble streamflow prediction approach (ESP) using resampled historical data, or (iii) a conditional ESP approach (ESPcond) that is conditional on the ENSO (El Niño-Southern Oscillation) signal. We determine the skill of the three systems in predicting streamflow and commonly used drought indices. We also assess the skill in predicting indicators that are meaningful to local end users in the basin. FS_S4 shows moderate skill for all lead times (3, 4, and 5 months) and aggregation periods. FS_ESP also performs better than climatology for the shorter lead times, but with lower skill than FS_S4. FS_ESPcond shows intermediate skill compared to the other two FS, though its skill is shown to be more robust. The skill of FS_ESP and FS_ESPcond is found to decrease rapidly with increasing lead time when compared to FS_S4. The results show that both FS_S4 and FS_ESPcond have good potential for seasonal hydrological drought forecasting in the Limpopo River basin, which is encouraging in the context of

  10. Ensemble-based data assimilation for operational flood forecasting - On the merits of state estimation for 1D hydrodynamic forecasting through the example of the ;Adour Maritime; river

    Science.gov (United States)

    Barthélémy, S.; Ricci, S.; Rochoux, M. C.; Le Pape, E.; Thual, O.

    2017-09-01

    This study presents the implementation and the merits of an Ensemble Kalman Filter (EnKF) algorithm with an inflation procedure on the 1D shallow water model MASCARET in the framework of operational flood forecasting on the ;Adour Maritime; river (South West France). In situ water level observations are sequentially assimilated to correct both water level and discharge. The stochastic estimation of the background error statistics is achieved over an ensemble of MASCARET integrations with perturbed hydrological boundary conditions. It is shown that the geometric characteristics of the network as well as the hydrological forcings and their temporal variability have a significant impact on the shape of the univariate (water level) and multivariate (water level and discharge) background error covariance functions and thus on the EnKF analysis. The performance of the EnKF algorithm is examined for observing system simulation experiments as well as for a set of eight real flood events (2009-2014). The quality of the ensemble is deemed satisfactory as long as the forecast lead time remains under the transfer time of the network, when perfect hydrological forcings are considered. Results demonstrate that the simulated hydraulic state variables can be improved over the entire network, even where no data are available, with a limited ensemble size and thus a computational cost compatible with operational constraints. The improvement in the water level Root-Mean-Square Error obtained with the EnKF reaches up to 88% at the analysis time and 40% at a 4-h forecast lead time compared to the standalone model.

  11. Ensemble prediction of floods – catchment non-linearity and forecast probabilities

    Directory of Open Access Journals (Sweden)

    C. Reszler

    2007-07-01

    Full Text Available Quantifying the uncertainty of flood forecasts by ensemble methods is becoming increasingly important for operational purposes. The aim of this paper is to examine how the ensemble distribution of precipitation forecasts propagates in the catchment system, and to interpret the flood forecast probabilities relative to the forecast errors. We use the 622 km2 Kamp catchment in Austria as an example where a comprehensive data set, including a 500 yr and a 1000 yr flood, is available. A spatially-distributed continuous rainfall-runoff model is used along with ensemble and deterministic precipitation forecasts that combine rain gauge data, radar data and the forecast fields of the ALADIN and ECMWF numerical weather prediction models. The analyses indicate that, for long lead times, the variability of the precipitation ensemble is amplified as it propagates through the catchment system as a result of non-linear catchment response. In contrast, for lead times shorter than the catchment lag time (e.g. 12 h and less, the variability of the precipitation ensemble is decreased as the forecasts are mainly controlled by observed upstream runoff and observed precipitation. Assuming that all ensemble members are equally likely, the statistical analyses for five flood events at the Kamp showed that the ensemble spread of the flood forecasts is always narrower than the distribution of the forecast errors. This is because the ensemble forecasts focus on the uncertainty in forecast precipitation as the dominant source of uncertainty, and other sources of uncertainty are not accounted for. However, a number of analyses, including Relative Operating Characteristic diagrams, indicate that the ensemble spread is a useful indicator to assess potential forecast errors for lead times larger than 12 h.

  12. THE ENSEMBLE FORECASTING OF TROPICAL CYCLONE MOTION I:USING A PRIMITIVE EQUATION BAROTROPIC MODEL

    Institute of Scientific and Technical Information of China (English)

    周霞琼; 端义宏; 朱永禔

    2003-01-01

    Ensemble forecasting of tropical cyclone (TC) motion was studied usinga primitive equation barotropic model by perturbing initial position and structure for 1979 - 1993 TC. The results show that TC initial position perturbation affects its track, but the ensemble mean is close to control forecast. Experiments was also performed by perturbing TC initial parameters which were used to generate TC initial field, and more improvement can be obtained by taking ensemble mean of selective member than selecting members randomly. The skill of 60 % - 70 % of all cases is improved in selective ensemble mean. When the ambient steeringcurrent is weak, more improvement can be obtained over the control forecast.

  13. Valuing hydrological forecasts for a pumped storage assisted hydro facility

    Science.gov (United States)

    Zhao, Guangzhi; Davison, Matt

    2009-07-01

    SummaryThis paper estimates the value of a perfectly accurate short-term hydrological forecast to the operator of a hydro electricity generating facility which can sell its power at time varying but predictable prices. The expected value of a less accurate forecast will be smaller. We assume a simple random model for water inflows and that the costs of operating the facility, including water charges, will be the same whether or not its operator has inflow forecasts. Thus, the improvement in value from better hydrological prediction results from the increased ability of the forecast using facility to sell its power at high prices. The value of the forecast is therefore the difference between the sales of a facility operated over some time horizon with a perfect forecast, and the sales of a similar facility operated over the same time horizon with similar water inflows which, though governed by the same random model, cannot be forecast. This paper shows that the value of the forecast is an increasing function of the inflow process variance and quantifies how much the value of this perfect forecast increases with the variance of the water inflow process. Because the lifetime of hydroelectric facilities is long, the small increase observed here can lead to an increase in the profitability of hydropower investments.

  14. Exploring the calibration of a wind forecast ensemble for energy applications

    Science.gov (United States)

    Heppelmann, Tobias; Ben Bouallegue, Zied; Theis, Susanne

    2015-04-01

    In the German research project EWeLiNE, Deutscher Wetterdienst (DWD) and Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) are collaborating with three German Transmission System Operators (TSO) in order to provide the TSOs with improved probabilistic power forecasts. Probabilistic power forecasts are derived from probabilistic weather forecasts, themselves derived from ensemble prediction systems (EPS). Since the considered raw ensemble wind forecasts suffer from underdispersiveness and bias, calibration methods are developed for the correction of the model bias and the ensemble spread bias. The overall aim is to improve the ensemble forecasts such that the uncertainty of the possible weather deployment is depicted by the ensemble spread from the first forecast hours. Additionally, the ensemble members after calibration should remain physically consistent scenarios. We focus on probabilistic hourly wind forecasts with horizon of 21 h delivered by the convection permitting high-resolution ensemble system COSMO-DE-EPS which has become operational in 2012 at DWD. The ensemble consists of 20 ensemble members driven by four different global models. The model area includes whole Germany and parts of Central Europe with a horizontal resolution of 2.8 km and a vertical resolution of 50 model levels. For verification we use wind mast measurements around 100 m height that corresponds to the hub height of wind energy plants that belong to wind farms within the model area. Calibration of the ensemble forecasts can be performed by different statistical methods applied to the raw ensemble output. Here, we explore local bivariate Ensemble Model Output Statistics at individual sites and quantile regression with different predictors. Applying different methods, we already show an improvement of ensemble wind forecasts from COSMO-DE-EPS for energy applications. In addition, an ensemble copula coupling approach transfers the time-dependencies of the raw

  15. GloFAS – global ensemble streamflow forecasting and flood early warning

    Directory of Open Access Journals (Sweden)

    L. Alfieri

    2013-03-01

    Full Text Available Anticipation and preparedness for large-scale flood events have a key role in mitigating their impact and optimizing the strategic planning of water resources. Although several developed countries have well-established systems for river monitoring and flood early warning, figures of populations affected every year by floods in developing countries are unsettling. This paper presents the Global Flood Awareness System (GloFAS, which has been set up to provide an overview on upcoming floods in large world river basins. GloFAS is based on distributed hydrological simulation of numerical ensemble weather predictions with global coverage. Streamflow forecasts are compared statistically to climatological simulations to detect probabilistic exceedance of warning thresholds. In this article, the system setup is described, together with an evaluation of its performance over a two-year test period and a qualitative analysis of a case study for the Pakistan flood, in summer 2010. It is shown that hazardous events in large river basins can be skilfully detected with a forecast horizon of up to 1 month. In addition, results suggest that an accurate simulation of initial model conditions and an improved parameterization of the hydrological model are key components to reproduce accurately the streamflow variability in the many different runoff regimes of the earth.

  16. Hydrologic ensembles based on convection-permitting precipitation nowcasts for flash flood warnings

    Science.gov (United States)

    Demargne, Julie; Javelle, Pierre; Organde, Didier; de Saint Aubin, Céline; Ramos, Maria-Helena

    2017-04-01

    In order to better anticipate flash flood events and provide timely warnings to communities at risk, the French national service in charge of flood forecasting (SCHAPI) is implementing a national flash flood warning system for small-to-medium ungauged basins. Based on a discharge-threshold flood warning method called AIGA (Javelle et al. 2014), the current version of the system runs a simplified hourly distributed hydrologic model with operational radar-gauge QPE grids from Météo-France at a 1-km2 resolution every 15 minutes. This produces real-time peak discharge estimates along the river network, which are subsequently compared to regionalized flood frequency estimates to provide warnings according to the AIGA-estimated return period of the ongoing event. To further extend the effective warning lead time while accounting for hydrometeorological uncertainties, the flash flood warning system is being enhanced to include Météo-France's AROME-NWC high-resolution precipitation nowcasts as time-lagged ensembles and multiple sets of hydrological regionalized parameters. The operational deterministic precipitation forecasts, from the nowcasting version of the AROME convection-permitting model (Auger et al. 2015), were provided at a 2.5-km resolution for a 6-hr forecast horizon for 9 significant rain events from September 2014 to June 2016. The time-lagged approach is a practical choice of accounting for the atmospheric forecast uncertainty when no extensive forecast archive is available for statistical modelling. The evaluation on 781 French basins showed significant improvements in terms of flash flood event detection and effective warning lead-time, compared to warnings from the current AIGA setup (without any future precipitation). We also discuss how to effectively communicate verification information to help determine decision-relevant warning thresholds for flood magnitude and probability. Javelle, P., Demargne, J., Defrance, D., Arnaud, P., 2014. Evaluating

  17. Improving the evaluation of hydrological multi-model forecast performance in the Upper Danube Catchment

    NARCIS (Netherlands)

    Bogner, K.; Cloke, H.; Pappenberger, F.; Roo, A.P.J. de; Thielen, J.

    2011-01-01

    Medium range flood forecasting activities, driven by various meteorological forecasts ranging from high resolution deterministic forecasts to low spatial resolution ensemble prediction systems, share a major challenge in the appropriateness and design of performance measures. In this paper

  18. Combination of different types of ensembles for the adaptive simulation of probabilistic flood forecasts: hindcasts for the Mulde 2002 extreme event

    Directory of Open Access Journals (Sweden)

    J. Dietrich

    2008-03-01

    Full Text Available Flood forecasts are essential to issue reliable flood warnings and to initiate flood control measures on time. The accuracy and the lead time of the predictions for head waters primarily depend on the meteorological forecasts. Ensemble forecasts are a means of framing the uncertainty of the potential future development of the hydro-meteorological situation.

    This contribution presents a flood management strategy based on probabilistic hydrological forecasts driven by operational meteorological ensemble prediction systems. The meteorological ensemble forecasts are transformed into discharge ensemble forecasts by a rainfall-runoff model. Exceedance probabilities for critical discharge values and probabilistic maps of inundation areas can be computed and presented to decision makers. These results can support decision makers in issuing flood alerts. The flood management system integrates ensemble forecasts with different spatial resolution and different lead times. The hydrological models are controlled in an adaptive way, mainly depending on the lead time of the forecast, the expected magnitude of the flood event and the availability of measured data.

    The aforementioned flood forecast techniques have been applied to a case study. The Mulde River Basin (South-Eastern Germany, Czech Republic has often been affected by severe flood events including local flash floods. Hindcasts for the large scale extreme flood in August 2002 have been computed using meteorological predictions from both the COSMO-LEPS ensemble prediction system and the deterministic COSMO-DE local model. The temporal evolution of a the meteorological forecast uncertainty and b the probability of exceeding flood alert levels is discussed. Results from the hindcast simulations demonstrate, that the systems would have predicted a high probability of an extreme flood event, if they would already have been operational in 2002. COSMO-LEPS showed a reasonably good

  19. Observation impact in short-range ensemble forecasts

    Science.gov (United States)

    Necker, Tobias; Weissmann, Martin; Sommer, Matthias

    2017-04-01

    Observation impact assessment offers a great potential for convective-scale data assimilation. It provides information on the contribution of various observations to the observing system and is crucial for the refinement of the observing network as well as the data assimilation system. In the framework of the Hans-Ertel Centre for Weather Research (HErZ), a method for an ensemble-based approximation of observation impact using an observation-based verification metric was developed over the past years. Instead of the subsequent analysis, the method uses subsequent observations for verification that are considerably more independent from the forecast. Recently, the method was adapted to use independent observation types for verification. Results of the impact assessment using radar-derived precipitation observations for verification are presented. Furthermore the impact time of different observation types is investigated. The study covers the high impact weather period in summer 2016 using the pre-operational convective-scale ensemble system of Deutscher Wetterdienst (KENDA/COSMO-DE).

  20. Developments in non-linear Kalman Ensemble and Particle Filtering techniques for hydrological data assimilation

    Science.gov (United States)

    Khaki, Mehdi; Forootan, Ehsan; Kuhn, Michael; Awange, Joseph; Pattiaratchi, Charitha

    2016-04-01

    Quantifying large-scale (basin/global) water storage changes is essential to understand the Earth's hydrological water cycle. Hydrological models have usually been used to simulate variations in storage compartments resulting from changes in water fluxes (i.e., precipitation, evapotranspiration and runoff) considering physical or conceptual frameworks. Models however represent limited skills in accurately simulating the storage compartments that could be the result of e.g., the uncertainty of forcing parameters, model structure, etc. In this regards, data assimilation provides a great chance to combine observational data with a prior forecast state to improve both the accuracy of model parameters and to improve the estimation of model states at the same time. Various methods exist that can be used to perform data assimilation into hydrological models. The one more frequently used particle-based algorithms suitable for non-linear systems high-dimensional systems is the Ensemble Kalman Filtering (EnKF). Despite efficiency and simplicity (especially in EnKF), this method indicate some drawbacks. To implement EnKF, one should use the sample covariance of observations and model state variables to update a priori estimates of the state variables. The sample covariance can be suboptimal as a result of small ensemble size, model errors, model nonlinearity, and other factors. Small ensemble can also lead to the development of correlations between state components that are at a significant distance from one another where there is no physical relation. To investigate the under-sampling issue raise by EnKF, covariance inflation technique in conjunction with localization was implemented. In this study, a comparison between latest methods used in the data assimilation framework, to overcome the mentioned problem, is performed. For this, in addition to implementing EnKF, we introduce and apply the Local Ensemble Kalman Filter (LEnKF) utilizing covariance localization to remove

  1. Statistical ensemble postprocessing for precipitation forecasting during the West African Monsoon

    Science.gov (United States)

    Vogel, Peter; Gneiting, Tilmann; Knippertz, Peter; Fink, Andreas H.; Schlüter, Andreas

    2017-04-01

    Precipitation forecasts for one up to several days are of high socioeconomic importance for agriculturally dominated societies in West Africa. In this contribution, we evaluate the performance of operational European Centre for Medium-Range Weather Forecasts (ECWMF) raw ensemble and statistically postprocessed against climatological precipitation forecasts for accumulation periods of 1 to 5 days for the monsoon periods (May to mid-October) from 2007 to 2014. We use Bayesian Model Averaging (BMA) and Ensemble Model Output Statistics (EMOS) as state-of-the-art postprocessing methods and verify against station and gridded Tropical Rainfall Measuring Mission (TRMM) observations. Based on a subset of past forecast—observation-pairs, statistical postprocessing corrects ensemble forecasts for biases and dispersion errors. For the midlatitudes, statistical postprocessing has demonstrated its added value for a wide range of meteorological quantities and this contribution is the first to apply it to precipitation forecasts over West Africa, where the high degree of convective organization at the mesoscale makes precipitation forecasts particularly challenging. The raw ECMWF ensemble predictions of accumulated precipitation are poor compared to climatological forecasts and exhibit strong dispersion errors and biases. For the Guinea Coast, we find a substantial wet bias of the ECMWF ensemble and more than every second ensemble forecast fails to capture the verifying observation within its forecast range. Postprocessed forecasts clearly outperform ECMWF raw ensemble forecasts by correcting for biases and dispersion errors, but disappointingly reveal only slight, if any, improvements compared to climatological forecasts. These results hold across verification regions and years, for 1 to 5-day accumulated precipitation forecasts, and for station and gridded observations. We investigate different spatial accumulation sizes from 0.25 x 0.25° to 5 x 2° longitude

  2. Dynamically downscaled multi-model ensemble seasonal forecasts over Ethiopia

    Science.gov (United States)

    Asharaf, Shakeel; Fröhlich, Kristina; Fernandez, Jesus; Cardoso, Rita; Nikulin, Grigory; Früh, Barbara

    2016-04-01

    Truthful and reliable seasonal rainfall predictions have an important social and economic value for the east African countries as their economy is highly dependent on rain-fed agriculture and pastoral systems. Only June to September (JJAS) seasonal rainfall accounts to more than 80% crop production in Ethiopia. Hence, seasonal foresting is a crucial concern for the region. The European Provision of Regional Impact Assessment on a seasonal to decadal timescale (EUPORIAS) project offers a common framework to understand hindcast uncertainties through the use of multi-model and multi-member simulations over east Africa. Under this program, the participating regional climate models (RCMs) were driven by the atmospheric-only version of the ECEARTH global climate model, which provides hindcasts of a five-months period (May to September) from 1991-2012. In this study the RCMs downscaled rainfall is evaluated with respect to the observed JJAS rainfall over Ethiopia. Both deterministic and probabilistic based forecast skills are assessed. Our preliminary results show the potential usefulness of multi-model ensemble simulations in forecasting the seasonal rainfall over the region.

  3. Why hydrological forecasts should be evaluated using information theory

    Directory of Open Access Journals (Sweden)

    S. V. Weijs

    2010-07-01

    Full Text Available Probabilistic forecasting is becoming increasingly popular in hydrology. Equally important are methods to evaluate such forecasts. There is still debate about which scores to use for this evaluation. In this paper we distinguish two scales for evaluation: information-uncertainty and utility-risk. We claim that the information-uncertainty scale is to be preferred for forecast evaluation. We propose a Kullback-Leibler divergence as the appropriate measure for forecast quality. Interpreting a decomposition of this measure into uncertainty, correct information and wrong information, it follows directly that deterministic forecasts, although they can still have value for decisions, increase uncertainty to infinity. We resolve this paradoxical result by proposing that deterministic forecasts are implicitly probabilistic or are implicitly assuming a decision problem. Although forecast value could be the final objective in engineering, we claim that for calibration of models representing a hydrological system, information should be the objective in calibration, because it allows to extract all information from the observations and avoids learning from information that is not there. Calibration based on maximizing value trains an implicit decision model, which inevitably results in a loss or distortion of information in the data and more risk of overfitting, possibly leading to less valuable and informative forecasts.

  4. Using an ensemble smoother to evaluate parameter uncertainty of an integrated hydrological model of Yanqi basin

    Science.gov (United States)

    Li, Ning; McLaughlin, Dennis; Kinzelbach, Wolfgang; Li, WenPeng; Dong, XinGuang

    2015-10-01

    Model uncertainty needs to be quantified to provide objective assessments of the reliability of model predictions and of the risk associated with management decisions that rely on these predictions. This is particularly true in water resource studies that depend on model-based assessments of alternative management strategies. In recent decades, Bayesian data assimilation methods have been widely used in hydrology to assess uncertain model parameters and predictions. In this case study, a particular data assimilation algorithm, the Ensemble Smoother with Multiple Data Assimilation (ESMDA) (Emerick and Reynolds, 2012), is used to derive posterior samples of uncertain model parameters and forecasts for a distributed hydrological model of Yanqi basin, China. This model is constructed using MIKESHE/MIKE11software, which provides for coupling between surface and subsurface processes (DHI, 2011a-d). The random samples in the posterior parameter ensemble are obtained by using measurements to update 50 prior parameter samples generated with a Latin Hypercube Sampling (LHS) procedure. The posterior forecast samples are obtained from model runs that use the corresponding posterior parameter samples. Two iterative sample update methods are considered: one based on an a perturbed observation Kalman filter update and one based on a square root Kalman filter update. These alternatives give nearly the same results and converge in only two iterations. The uncertain parameters considered include hydraulic conductivities, drainage and river leakage factors, van Genuchten soil property parameters, and dispersion coefficients. The results show that the uncertainty in many of the parameters is reduced during the smoother updating process, reflecting information obtained from the observations. Some of the parameters are insensitive and do not benefit from measurement information. The correlation coefficients among certain parameters increase in each iteration, although they generally

  5. Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities

    NARCIS (Netherlands)

    Liu, Y.; Weerts, A.; Clark, M.; Franssen, H.J.; Moradkhani, S.; Seo, D.J.; Schwanenberg, D.; Smith, P.; Dijk, van A.I.J.M.; Velzen, N.; He, M.; Lee, H.; Noh, S.J.; Rakovec, O.; Restrepo, P.

    2012-01-01

    Data assimilation (DA) holds considerable potential for improving hydrologic predictions as demonstrated in numerous research studies. However, advances in hydrologic DA research have not been adequately or timely implemented in operational forecast systems to improve the skill of forecasts for

  6. Comparison of extended medium-range forecast skill between KMA ensemble, ocean coupled ensemble, and GloSea5

    Science.gov (United States)

    Park, Sangwook; Kim, Dong-Joon; Lee, Seung-Woo; Lee, Kie-Woung; Kim, Jongkhun; Song, Eun-Ji; Seo, Kyong-Hwan

    2017-08-01

    This article describes a three way inter-comparison of forecast skill on an extended medium-range time scale using the Korea Meteorological Administration (KMA) operational ensemble numerical weather prediction (NWP) systems (i.e., atmosphere-only global ensemble prediction system (EPSG) and ocean-atmosphere coupledEPSG) and KMA operational seasonal prediction system, the Global Seasonal forecast system version 5 (GloSea5). The main motivation is to investigate whether the ensemble NWP system can provide advantage over the existing seasonal prediction system for the extended medium-range forecast (30 days) even with putting extra resources in extended integration or coupling with ocean with NWP system. Two types of evaluation statistics are examined: the basic verification statistics - the anomaly correlation and RMSE of 500-hPa geopotential height and 1.5-meter surface temperature for the global and East Asia area, and the other is the Real-time Multivariate Madden and Julian Oscillation (MJO) indices (RMM1 and RMM2) - which is used to examine the MJO prediction skill. The MJO is regarded as a main source of forecast skill in the tropics linked to the mid-latitude weather on monthly time scale. Under limited number of experiment cases, the coupled NWP extends the forecast skill of the NWP by a few more days, and thereafter such forecast skill is overtaken by that of the seasonal prediction system. At present stage, it seems there is little gain from the coupled NWP even though more resources are put into it. Considering this, the best combination of numerical product guidance for operational forecasters for an extended medium-range is extension of the forecast lead time of the current ensemble NWP (EPSG) up to 20 days and use of the seasonal prediction system (GloSea5) forecast thereafter, though there exists a matter of consistency between the two systems.

  7. Operational Ensemble River Forecasting in the United States and Australia: Practices and Challenges

    Science.gov (United States)

    Pagano, T. C.

    2012-04-01

    Operational river forecasts have been long produced to support water resources management in the United States and Australia. These forecasts cover a range of timescales from flash flooding (e.g. minutes to hours ahead) to seasonal (e.g. months ahead) and are generated by a range of statistical (e.g. regression-based) and dynamical (e.g. rainfall-runoff) model based techniques. Forecast uncertainty is commonly estimated operationally by using an ensemble of future precipitation scenarios and/or a measure of historical model error. Retrospective ensemble forecasting and the use of reforecasts for bias-adjustment and post-processing have become popular research topics and a few successful demonstration projects exist in both countries. Practical methods of post-processing, such as ensemble dressing, have been used to improve the probabilistic reliability of forecasts. The translation of predictions of probability distributions of streamflow into temporally and spatially consistent ensemble hydrographs remains an area for further development. However, probabilistic forecast communication and use remains a stumbling block for many. Furthermore, ensemble generation and post-processing typically require completely automated systems, making it difficult for humans to contribute their expertise to the forecasting process. This talk draws on ten years of experience as an operational forecaster with the US Department of Agriculture and as a developer of short-term flood forecasting systems to support the Australian Bureau of Meteorology.

  8. A two-model hydrologic ensemble prediction of hydrograph: case study from the upper Nysa Klodzka river basin (SW Poland)

    Science.gov (United States)

    Niedzielski, Tomasz; Mizinski, Bartlomiej

    2016-04-01

    The HydroProg system has been elaborated in frame of the research project no. 2011/01/D/ST10/04171 of the National Science Centre of Poland and is steadily producing multimodel ensemble predictions of hydrograph in real time. Although there are six ensemble members available at present, the longest record of predictions and their statistics is available for two data-based models (uni- and multivariate autoregressive models). Thus, we consider 3-hour predictions of water levels, with lead times ranging from 15 to 180 minutes, computed every 15 minutes since August 2013 for the Nysa Klodzka basin (SW Poland) using the two approaches and their two-model ensemble. Since the launch of the HydroProg system there have been 12 high flow episodes, and the objective of this work is to present the performance of the two-model ensemble in the process of forecasting these events. For a sake of brevity, we limit our investigation to a single gauge located at the Nysa Klodzka river in the town of Klodzko, which is centrally located in the studied basin. We identified certain regular scenarios of how the models perform in predicting the high flows in Klodzko. At the initial phase of the high flow, well before the rising limb of hydrograph, the two-model ensemble is found to provide the most skilful prognoses of water levels. However, while forecasting the rising limb of hydrograph, either the two-model solution or the vector autoregressive model offers the best predictive performance. In addition, it is hypothesized that along with the development of the rising limb phase, the vector autoregression becomes the most skilful approach amongst the scrutinized ones. Our simple two-model exercise confirms that multimodel hydrologic ensemble predictions cannot be treated as universal solutions suitable for forecasting the entire high flow event, but their superior performance may hold only for certain phases of a high flow.

  9. An operational hydrological ensemble prediction system for the city of Zurich (Switzerland: skill, case studies and scenarios

    Directory of Open Access Journals (Sweden)

    N. Addor

    2011-07-01

    Full Text Available The Sihl River flows through Zurich, Switzerland's most populated city, for which it represents the largest flood threat. To anticipate extreme discharge events and provide decision support in case of flood risk, a hydrometeorological ensemble prediction system (HEPS was launched operationally in 2008. This model chain relies on limited-area atmospheric forecasts provided by the deterministic model COSMO-7 and the probabilistic model COSMO-LEPS. These atmospheric forecasts are used to force a semi-distributed hydrological model (PREVAH, coupled to a hydraulic model (FLORIS. The resulting hydrological forecasts are eventually communicated to the stakeholders involved in the Sihl discharge management. This fully operational setting provides a real framework with which to compare the potential of deterministic and probabilistic discharge forecasts for flood mitigation.

    To study the suitability of HEPS for small-scale basins and to quantify the added-value conveyed by the probability information, a reforecast was made for the period June 2007 to December 2009 for the Sihl catchment (336 km2. Several metrics support the conclusion that the performance gain can be of up to 2 days lead time for the catchment considered. Brier skill scores show that overall COSMO-LEPS-based hydrological forecasts outperforms their COSMO-7-based counterparts for all the lead times and event intensities considered. The small size of the Sihl catchment does not prevent skillful discharge forecasts, but makes them particularly dependent on correct precipitation forecasts, as shown by comparisons with a reference run driven by observed meteorological parameters. Our evaluation stresses that the capacity of the model to provide confident and reliable mid-term probability forecasts for high discharges is limited. The two most intense events of the study period are investigated utilising a novel graphical representation of probability forecasts, and are used

  10. Application of a 3-D Super Ensemble to ocean forecast

    Science.gov (United States)

    Lenartz, F.; Barth, A.; Beckers, J.-M.; Vandenbulcke, L.; Rixen, M.

    2009-04-01

    Super Ensemble (SE) techniques have recently allowed improving the forecast of various important oceanographic parameters, such as the significant wave height, the speed of sound or the surface drift, by correcting the prediction at a single or multiple locations, where data were available during the whole training period. However, nowadays common observation systems, such as satellite imagery or drifters, do not always provide information at the exact same locations, hence it is necessary to generalize the approach in order to take benefit of every image or track available. In this study, we try and apply a SE, fed with remote sensing and gliders data, to 3-D hydrodynamic models. The basic idea on which rely the SE methods is that a certain combination of several model runs and possibly data could yield better results than just one single model, even if it has a higher temporal or spatial resolution. As the most efficient techniques are the ones using observations, they rapidly developed and increased in complexity by copying what had been done in the data assimilation community; getting from the simple ensemble mean of the model outputs to their linear combination based on a particle filter. In our present study, we have decided to use the Kalman filter (KF) as it alleviates the need of an a priori determination of the training period length, and does not require the run of a very large ensemble of members. In addition, we apply it in a 3-D framework in order to take benefit of the spatial information contained by each source of measurements. For example, satellite images of sea surface temperature (SST) are very useful to correct the value of this parameter, but depending on the structure of the water column, it can also give a precious guess of how warm or cold is the ocean at 20 m deep. In our experiment the domain of interest is the Ligurian Sea during the last week of September, when part of the set-up for the CalVal08 campaign (SiC Charles Trees) had

  11. California climate change, hydrologic response, and flood forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Norman L.

    2003-11-11

    needs to be done to further improve our ability to forecast weather events at longer time scales. Seasonal predictions have been statistical and only recently have studies begun to use ensemble simulations and historical observations to constrain such predictions. Understanding the mechanisms of large-scale atmospheric dynamics and its local impacts remain topics of intensive research. The ability to predict extreme events and provide policy makers with this information, along with climate change and hydrologic response information, will help to guide planning to form a more resilient infrastructure in the future.

  12. Uncertainty analysis of neural network based flood forecasting models: An ensemble based approach for constructing prediction interval

    Science.gov (United States)

    Kasiviswanathan, K.; Sudheer, K.

    2013-05-01

    Artificial neural network (ANN) based hydrologic models have gained lot of attention among water resources engineers and scientists, owing to their potential for accurate prediction of flood flows as compared to conceptual or physics based hydrologic models. The ANN approximates the non-linear functional relationship between the complex hydrologic variables in arriving at the river flow forecast values. Despite a large number of applications, there is still some criticism that ANN's point prediction lacks in reliability since the uncertainty of predictions are not quantified, and it limits its use in practical applications. A major concern in application of traditional uncertainty analysis techniques on neural network framework is its parallel computing architecture with large degrees of freedom, which makes the uncertainty assessment a challenging task. Very limited studies have considered assessment of predictive uncertainty of ANN based hydrologic models. In this study, a novel method is proposed that help construct the prediction interval of ANN flood forecasting model during calibration itself. The method is designed to have two stages of optimization during calibration: at stage 1, the ANN model is trained with genetic algorithm (GA) to obtain optimal set of weights and biases vector, and during stage 2, the optimal variability of ANN parameters (obtained in stage 1) is identified so as to create an ensemble of predictions. During the 2nd stage, the optimization is performed with multiple objectives, (i) minimum residual variance for the ensemble mean, (ii) maximum measured data points to fall within the estimated prediction interval and (iii) minimum width of prediction interval. The method is illustrated using a real world case study of an Indian basin. The method was able to produce an ensemble that has an average prediction interval width of 23.03 m3/s, with 97.17% of the total validation data points (measured) lying within the interval. The derived

  13. Sequential correction of ensemble regional weather predictions for forecasting reference evapotranspiration

    Science.gov (United States)

    Pelosi, Anna; Medina Gonzalez, Hanoi; Villani, Paolo; D'Urso, Guido; Battista Chirico, Giovanni

    2016-04-01

    This study explores the performance of an adaptive procedure for correcting the ensemble numerical weather outputs applied to the probabilistic forecast of reference evapotranspiration (ETo). This procedure is proposed as an effective forecast correction method when the available dataset is not large enough for the calibration of statistical batch procedures. The numerical weather prediction outputs are those provided by COSMO-LEPS, an ensemble-based Limited Area Model, with 16 members and 7.5 km spatial resolution, with forecast lead-time up to 5 days. ETo forecasts are computed according to the FAO Penman-Monteith (FAO-PM) equation, which requires data of five weather variables: air temperature, relative humidity, solar radiation and wind speed. The performance of the proposed procedure is evaluated at eighteen monitoring stations, located in Campania region (Southern Italy), with two alternative strategies: i) correction applied to the raw ensemble forecasts of the five weather variables prior applying the FAO-PM equation; ii) correction applied to the ensemble output of the ETo forecasts obtained with FAO-PM equation after using the raw ensemble weather forecasts as input. In both cases the suggested post-processing procedure was able to significantly increase the accuracy and reduce the uncertainty of the ETo forecasts.

  14. A gain-loss framework based on ensemble flow forecasts to switch the urban drainage-wastewater system management towards energy optimization during dry periods

    DEFF Research Database (Denmark)

    Courdent, V.; Grum, M.; Munk-Nielsen, T.

    2017-01-01

    extrapolation. However, forecasts are inevitably uncertain, and fine resolution is especially challenging for NWP. This uncertainty is commonly addressed in meteorology with ensemble prediction systems (EPSs). Handling uncertainty is challenging for decision makers and hence tools are necessary to provide...... insight on ensemble forecast usage and to support the rationality of decisions (i.e. forecasts are uncertain and therefore errors will be made; decision makers need tools to justify their choices, demonstrating that these choices are beneficial in the long run). This study presents an economic framework......Precipitation is the cause of major perturbation to the flow in urban drainage and wastewater systems. Flow forecasts, generated by coupling rainfall predictions with a hydrologic runoff model, can potentially be used to optimize the operation of integrated urban drainage-wastewater systems (IUDWSs...

  15. Climate Prediction Center(CPC)Ensemble Canonical Correlation Analysis Forecast of Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ensemble Canonical Correlation Analysis (ECCA) temperature forecast is a 90-day (seasonal) outlook of US surface temperature anomalies. The ECCA uses Canonical...

  16. Climate Prediction Center (CPC)Ensemble Canonical Correlation Analysis 90-Day Seasonal Forecast of Precipitation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ensemble Canonical Correlation Analysis (ECCA) precipitation forecast is a 90-day (seasonal) outlook of US surface precipitation anomalies. The ECCA uses...

  17. Improving statistical forecasts of seasonal streamflows using hydrological model output

    Directory of Open Access Journals (Sweden)

    D. E. Robertson

    2013-02-01

    Full Text Available Statistical methods traditionally applied for seasonal streamflow forecasting use predictors that represent the initial catchment condition and future climate influences on future streamflows. Observations of antecedent streamflows or rainfall commonly used to represent the initial catchment conditions are surrogates for the true source of predictability and can potentially have limitations. This study investigates a hybrid seasonal forecasting system that uses the simulations from a dynamic hydrological model as a predictor to represent the initial catchment condition in a statistical seasonal forecasting method. We compare the skill and reliability of forecasts made using the hybrid forecasting approach to those made using the existing operational practice of the Australian Bureau of Meteorology for 21 catchments in eastern Australia. We investigate the reasons for differences. In general, the hybrid forecasting system produces forecasts that are more skilful than the existing operational practice and as reliable. The greatest increases in forecast skill tend to be (1 when the catchment is wetting up but antecedent streamflows have not responded to antecedent rainfall, (2 when the catchment is drying and the dominant source of antecedent streamflow is in transition between surface runoff and base flow, and (3 when the initial catchment condition is near saturation intermittently throughout the historical record.

  18. Improving statistical forecasts of seasonal streamflows using hydrological model output

    Science.gov (United States)

    Robertson, D. E.; Pokhrel, P.; Wang, Q. J.

    2013-02-01

    Statistical methods traditionally applied for seasonal streamflow forecasting use predictors that represent the initial catchment condition and future climate influences on future streamflows. Observations of antecedent streamflows or rainfall commonly used to represent the initial catchment conditions are surrogates for the true source of predictability and can potentially have limitations. This study investigates a hybrid seasonal forecasting system that uses the simulations from a dynamic hydrological model as a predictor to represent the initial catchment condition in a statistical seasonal forecasting method. We compare the skill and reliability of forecasts made using the hybrid forecasting approach to those made using the existing operational practice of the Australian Bureau of Meteorology for 21 catchments in eastern Australia. We investigate the reasons for differences. In general, the hybrid forecasting system produces forecasts that are more skilful than the existing operational practice and as reliable. The greatest increases in forecast skill tend to be (1) when the catchment is wetting up but antecedent streamflows have not responded to antecedent rainfall, (2) when the catchment is drying and the dominant source of antecedent streamflow is in transition between surface runoff and base flow, and (3) when the initial catchment condition is near saturation intermittently throughout the historical record.

  19. Development of multimodel ensemble based district level medium range rainfall forecast system for Indian region

    Indian Academy of Sciences (India)

    S K Roy Bhowmik; V R Durai

    2012-04-01

    India Meteorological Department has implemented district level medium range rainfall forecast system applying multimodel ensemble technique, making use of model outputs of state-of-the-art global models from the five leading global NWP centres. The pre-assigned grid point weights on the basis of anomaly correlation coefficients (CC) between the observed values and forecast values are determined for each constituent model at the resolution of 0.25° × 0.25° utilizing two season datasets (1 June–30 September, 2007 and 2008) and the multimodel ensemble forecasts (day-1 to day-5 forecasts) are generated at the same resolution on a real-time basis. The ensemble forecast fields are then used to prepare forecasts for each district, taking the average value of all grid points falling in a particular district. In this paper, we describe the development strategy of the technique and performance skill of the system during summer monsoon 2009. The study demonstrates the potential of the system for improving rainfall forecasts at five days time scale over Indian region. Districtwise performance of the ensemble rainfall forecast reveals that the technique, in general, is capable of providing reasonably good forecast skill over most states of the country, particularly over the states where the monsoon systems are more dominant.

  20. Skill improvement of seasonal Arctic sea ice forecasts using bias-correction and ensemble calibration

    Science.gov (United States)

    Krikken, Folmer; Hazeleger, Wilco; Vlot, Willem; Schmeits, Maurice; Guemas, Virginie

    2016-04-01

    We explore the standard error and skill of dynamical seasonal sea ice forecasts of the Arctic using different bias-correction and ensemble calibration methods. The latter is often used in weather forecasting, but so far has not been applied to Arctic sea ice forecasts. We use seasonal predictions of Arctic sea ice of a 5-member ensemble forecast using the fully coupled GCM EC-Earth, with model initial states obtained by nudging towards ORAS4 and ERA-Interim. The raw model forecasts contain large biases in total sea ice area, especially during the summer months. This is mainly caused by a difference in average seasonal cycle between EC-Earth and observations, which translates directly into the forecasts yielding large biases. Further errors are introduced by the differences in long term trend between the observed sea ice, and the uninitialised EC-earth simulation. We find that extended logistic regression (ELR) and heteroscedastic extended logistic regression (HELR) both prove viable ensemble calibration methods, and improve the forecasts substantially compared to standard bias correction techniques. No clear distinction between ELR and HELR is found. Forecasts starting in May have higher skill (CRPSS > 0 up to 5 months lead time) than forecasts starting in August (2-3 months) and November (2-3 months), with trend-corrected climatology as reference. Analysis of regional skill in the Arctic shows distinct differences, where mainly the Arctic ocean and the Kara and Barents sea prove to be one of the more predictable regions with skilful forecasts starting in May up to 5-6 months lead time. Again, forecasts starting in August and November show much lower regional skill. Overall, it is still difficult to beat relative simple statistical forecasts, but by using ELR and HELR we are getting reasonably close to skilful seasonal forecasts up to 12 months lead time. These results show there is large potential, and need, for using ensemble calibration in seasonal forecasts of

  1. Towards the development of a multimodel hydrological ensemble prediction system for La Mojana, Colombia

    Science.gov (United States)

    Brochero, D.; Peña, J.; Anctil, F.; Boucher, M. A.; Nogales, J.; Reyes, N.

    2016-12-01

    The impacts of floods in Colombia during 2010 and 2011 as a result of ENSO in its cold phase (La Niña) marked a milestone in Colombian politics. In La Mojana region the balance was around 100,000 homeless and 3 km2 of flooded crops. We model the upstream basin of La Mojana (3600 km2 and a mean annual precipitation from 1000mm in valleys to 4500 mm in mountains). A forecasting system of at least three days in advance was judged prudent. This basin receives an streamflow highly regulated by multiple reservoirs that we model with a recurrent neural networks from 1 to 3-days ahead. For hydrological modeling purposes we use the GR4J, HBV, and SIMHYD models, records of daily precipitation, temperature, and streamflows, and 110 prediction scenarios of precipitation and temperature from Canada, USA, Brazil, and Europe extracted from the TIGGE database (MEPS). Calibration period is between January 2004 and August 2011. Validation from September to December 2011, taking as meteorological input the MEPS. We analised four alternative for the 3-day Hydrological Ensemble Prediction System (HEPS) Calibration: 1) only the GR4J model and observed values, 2). as 1 but HBV and SIMHYD are included, 3). Simultaneous optimization of the three hydrological models based on the reliability maximisation and the CRPS minimisation using the multiobjective calibration, observed and forecasted temperature and precipitation from the MEPS and, 4). as 3 but adding the daily streamflow data assimilation. Results show that the use of multiple hydrological models is clearly advantageous but even more performing the simultaneous optimization of hydrological models in the probabilistic context directly. The results evolution of the MAE on the reliability diagram (MAE-RD) are 43%, 27%, 17% and 15% respectively for the four alternatives. Regarding CRPS, MAE results show that the probabilistic prediction improves the deterministic estimate based on the daily mean HEPS scenario, despite the improvement in

  2. Practical implementation of a particle filter data assimilation approach to estimate initial hydrologic conditions and initialize medium-range streamflow forecasts

    Science.gov (United States)

    Clark, E.; Wood, A.; Nijssen, B.; Newman, A. J.; Mendoza, P. A.

    2016-12-01

    The System for Hydrometeorological Applications, Research and Prediction (SHARP), developed at the National Center for Atmospheric Research (NCAR), University of Washington, U.S. Army Corps of Engineers, and U.S. Bureau of Reclamation, is a fully automated ensemble prediction system for short-term to seasonal applications. It incorporates uncertainty in initial hydrologic conditions (IHCs) and in hydrometeorological predictions. In this implementation, IHC uncertainty is estimated by propagating an ensemble of 100 plausible temperature and precipitation time series through the Sacramento/Snow-17 model. The forcing ensemble explicitly accounts for measurement and interpolation uncertainties in the development of gridded meteorological forcing time series. The resulting ensemble of derived IHCs exhibits a broad range of possible soil moisture and snow water equivalent (SWE) states. To select the IHCs that are most consistent with the observations, we employ a particle filter (PF) that weights IHC ensemble members based on observations of streamflow and SWE. These particles are then used to initialize ensemble precipitation and temperature forecasts downscaled from the Global Ensemble Forecast System (GEFS), generating a streamflow forecast ensemble. We test this method in two basins in the Pacific Northwest that are important for water resources management: 1) the Green River upstream of Howard Hanson Dam, and 2) the South Fork Flathead River upstream of Hungry Horse Dam. The first of these is characterized by mixed snow and rain, while the second is snow-dominated. The PF-based forecasts are compared to forecasts based on a single IHC (corresponding to median streamflow) paired with the full GEFS ensemble, and 2) the full IHC ensemble, without filtering, paired with the full GEFS ensemble. In addition to assessing improvements in the spread of IHCs, we perform a hindcast experiment to evaluate the utility of PF-based data assimilation on streamflow forecasts at 1

  3. Performance comparison of meso-scale ensemble wave forecasting systems for Mediterranean sea states

    Science.gov (United States)

    Pezzutto, Paolo; Saulter, Andrew; Cavaleri, Luigi; Bunney, Christopher; Marcucci, Francesca; Torrisi, Lucio; Sebastianelli, Stefano

    2016-08-01

    This paper compares the performance of two wind and wave short range ensemble forecast systems for the Mediterranean Sea. In particular, it describes a six month verification experiment carried out by the U.K. Met Office and Italian Air Force Meteorological Service, based on their respective systems: the Met Office Global-Regional Ensemble Prediction System and the Nettuno Ensemble Prediction System. The latter is the ensemble version of the operational Nettuno forecast system. Attention is focused on the differences between the two implementations (e.g. grid resolution and initial ensemble members sampling) and their effects on the prediction skill. The cross-verification of the two ensemble systems shows that from a macroscopic point of view the differences cancel out, suggesting similar skill. More in-depth analysis indicates that the Nettuno wave forecast is better resolved but, on average, slightly less reliable than the Met Office product. Assessment of the added value of the ensemble techniques at short range in comparison with the deterministic forecast from Nettuno, reveals that adopting the ensemble approach has small, but substantive, advantages.

  4. On the difficulty to optimally implement the Ensemble Kalman filter: An experiment based on many hydrological models and catchments

    Science.gov (United States)

    Thiboult, A.; Anctil, F.

    2015-10-01

    Forecast reliability and accuracy is a prerequisite for successful hydrological applications. This aim may be attained by using data assimilation techniques such as the popular Ensemble Kalman filter (EnKF). Despite its recognized capacity to enhance forecasting by creating a new set of initial conditions, implementation tests have been mostly carried out with a single model and few catchments leading to case specific conclusions. This paper performs an extensive testing to assess ensemble bias and reliability on 20 conceptual lumped models and 38 catchments in the Province of Québec with perfect meteorological forecast forcing. The study confirms that EnKF is a powerful tool for short range forecasting but also that it requires a more subtle setting than it is frequently recommended. The success of the updating procedure depends to a great extent on the specification of the hyper-parameters. In the implementation of the EnKF, the identification of the hyper-parameters is very unintuitive if the model error is not explicitly accounted for and best estimates of forcing and observation error lead to overconfident forecasts. It is shown that performance are also related to the choice of updated state variables and that all states variables should not systematically be updated. Additionally, the improvement over the open loop scheme depends on the watershed and hydrological model structure, as some models exhibit a poor compatibility with EnKF updating. Thus, it is not possible to conclude in detail on a single ideal manner to identify an optimal implementation; conclusions drawn from a unique event, catchment, or model are likely to be misleading since transferring hyper-parameters from a case to another may be hazardous. Finally, achieving reliability and bias jointly is a daunting challenge as the optimization of one score is done at the cost of the other.

  5. Verification of ensemble forecasts of Mediterranean high-impact weather events against satellite observations

    Directory of Open Access Journals (Sweden)

    J.-P. Chaboureau

    2012-08-01

    Full Text Available Ensemble forecasts at kilometre scale of two severe storms over the Mediterranean region are verified against satellite observations. In complement to assessing the forecasts against ground-based measurements, brightness temperature (BT images are computed from forecast fields and directly compared to BTs observed from satellite. The so-called model-to-satellite approach is very effective in identifying systematic errors in the prediction of cloud cover for BTs in the infrared window and in verifying the forecasted convective activity with BTs in the microwave range. This approach is combined with the calculation of meteorological scores for an objective evaluation of ensemble forecasts. The application of the approach is shown in the context of two Mediterranean case studies, a tropical-like storm and a heavy precipitating event. Assessment of cloud cover and convective activity using satellite observations in the infrared (10.8 μm and microwave regions (183–191 GHz provides results consistent with other traditional methods using rainfall measurements. In addition, for the tropical-like storm, differences among forecasts occur much earlier in terms of cloud cover and deep convective activity than they do in terms of deepening and track. Further, the underdispersion of the ensemble forecasts of the two high-impact weather events is easily identified with satellite diagnostics. This suggests that such an approach could be a useful method for verifying ensemble forecasts, particularly in data-sparse regions.

  6. Application of dynamic linear regression to improve the skill of ensemble-based deterministic ozone forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Pagowski, M O; Grell, G A; Devenyi, D; Peckham, S E; McKeen, S A; Gong, W; Monache, L D; McHenry, J N; McQueen, J; Lee, P

    2006-02-02

    Forecasts from seven air quality models and surface ozone data collected over the eastern USA and southern Canada during July and August 2004 provide a unique opportunity to assess benefits of ensemble-based ozone forecasting and devise methods to improve ozone forecasts. In this investigation, past forecasts from the ensemble of models and hourly surface ozone measurements at over 350 sites are used to issue deterministic 24-h forecasts using a method based on dynamic linear regression. Forecasts of hourly ozone concentrations as well as maximum daily 8-h and 1-h averaged concentrations are considered. It is shown that the forecasts issued with the application of this method have reduced bias and root mean square error and better overall performance scores than any of the ensemble members and the ensemble average. Performance of the method is similar to another method based on linear regression described previously by Pagowski et al., but unlike the latter, the current method does not require measurements from multiple monitors since it operates on individual time series. Improvement in the forecasts can be easily implemented and requires minimal computational cost.

  7. A new deterministic Ensemble Kalman Filter with one-step-ahead smoothing for storm surge forecasting

    KAUST Repository

    Raboudi, Naila

    2016-11-01

    The Ensemble Kalman Filter (EnKF) is a popular data assimilation method for state-parameter estimation. Following a sequential assimilation strategy, it breaks the problem into alternating cycles of forecast and analysis steps. In the forecast step, the dynamical model is used to integrate a stochastic sample approximating the state analysis distribution (called analysis ensemble) to obtain a forecast ensemble. In the analysis step, the forecast ensemble is updated with the incoming observation using a Kalman-like correction, which is then used for the next forecast step. In realistic large-scale applications, EnKFs are implemented with limited ensembles, and often poorly known model errors statistics, leading to a crude approximation of the forecast covariance. This strongly limits the filter performance. Recently, a new EnKF was proposed in [1] following a one-step-ahead smoothing strategy (EnKF-OSA), which involves an OSA smoothing of the state between two successive analysis. At each time step, EnKF-OSA exploits the observation twice. The incoming observation is first used to smooth the ensemble at the previous time step. The resulting smoothed ensemble is then integrated forward to compute a "pseudo forecast" ensemble, which is again updated with the same observation. The idea of constraining the state with future observations is to add more information in the estimation process in order to mitigate for the sub-optimal character of EnKF-like methods. The second EnKF-OSA "forecast" is computed from the smoothed ensemble and should therefore provide an improved background. In this work, we propose a deterministic variant of the EnKF-OSA, based on the Singular Evolutive Interpolated Ensemble Kalman (SEIK) filter. The motivation behind this is to avoid the observations perturbations of the EnKF in order to improve the scheme\\'s behavior when assimilating big data sets with small ensembles. The new SEIK-OSA scheme is implemented and its efficiency is demonstrated

  8. Sand-Dust Storm Ensemble Forecast Model Based on Rough Set

    Institute of Scientific and Technical Information of China (English)

    LU Zhiying; YANG Le; LI Yanying; ZHAO Zhichao

    2007-01-01

    To improve the accuracy of sand-dust storm forecast system, a sand-dust storm ensemble forecast model based on rough set (RS) is proposed. The feature data are extracted from the historical data sets using the self-organization map (SOM) clustering network and single fields forecast to form the feature values with low dimensions. Then, the unwanted attributes are reduced according to RS to discretize the continuous feature values. Lastly, the minimum decision rules are constructed according to the remainder attributes, namely sand-dust storm ensemble forecast model based on RS is constructed. Results comparison between the proposed model and the back propagation neural network model show that the sand-storm forecast model based on RS has better stability, faster running speed, and its forecasting accuracy ratio is increased from 17.1% to 86.21%.

  9. Using a mesoscale ensemble to predict forecast error and perform targeted observation

    Institute of Scientific and Technical Information of China (English)

    DU Jun; YU Rucong; CUI Chunguang; LI Jun

    2014-01-01

    Using NCEP short range ensemble forecast (SREF) system, demonstrated two fundamental on-going evolu-tions in numerical weather prediction (NWP) are through ensemble methodology. One evolution is the shift from traditional single-value deterministic forecast to flow-dependent (not statistical) probabilistic forecast to address forecast uncertainty. Another is from a one-way observation-prediction system shifting to an in-teractive two-way observation-prediction system to increase predictability of a weather system. In the first part, how ensemble spread from NCEP SREF predicting ensemble-mean forecast error was evaluated over a period of about a month. The result shows that the current capability of predicting forecast error by the 21-member NCEP SREF has reached to a similar or even higher level than that of current state-of-the-art NWP models in predicting precipitation, e.g., the spatial correlation between ensemble spread and absolute fore-cast error has reached 0.5 or higher at 87 h (3.5 d) lead time on average for some meteorological variables. This demonstrates that the current operational ensemble system has already had preliminary capability of predicting the forecast error with usable skill, which is a remarkable achievement as of today. Given the good spread-skill relation, the probability derived from the ensemble was also statistically reliable, which is the most important feature a useful probabilistic forecast should have. The second part of this research tested an ensemble-based interactive targeting (E-BIT) method. Unlike other mathematically-calculated objec-tive approaches, this method is subjective or human interactive based on information from an ensemble of forecasts. A numerical simulation study was performed to eight real atmospheric cases with a 10-member, bred vector-based mesoscale ensemble using the NCEP regional spectral model (RSM, a sub-component of NCEP SREF) to prove the concept of this E-BIT method. The method seems to work most

  10. A seamless global hydrological monitoring and forecasting system for water resources assessment and hydrological hazard early warning

    Science.gov (United States)

    Sheffield, Justin; He, Xiaogang; Wood, Eric; Pan, Ming; Wanders, Niko; Zhan, Wang; Peng, Liqing

    2017-04-01

    surface model-flood inundation model to produce hydrological variables and indices at daily, 0.25-degree resolution, globally. The system is updated in near real-time (forecasts at short-term (out to 7 days) based on the Global Forecast System (GFS) and seasonal (up to 6 months) based on U.S. National Multi-Model Ensemble (NMME) seasonal forecasts. Climate change projections are based on bias-corrected and downscaled CMIP5 climate data that is used to force the hydrological model. Example products from the system include real-time and forecast drought indices for precipitation, soil moisture, and streamflow, and flood magnitude and extent indices. The model outputs are complemented by satellite based products and indices based on satellite data for vegetation health (MODIS NDVI) and soil moisture (SMAP). We show examples of the validation of the system at regional scales, including how local information can significantly improve predictions, and examples of how the system can be used to understand large-scale water resource issues, and in real-world contexts for early warning, decision making and planning.

  11. Comparison between genetic programming and an ensemble Kalman filter as data assimilation techniques for probabilistic flood forecasting

    Science.gov (United States)

    Mediero, L.; Garrote, L.; Requena, A.; Chávez, A.

    2012-04-01

    Flood events are among the natural disasters that cause most economic and social damages in Europe. Information and Communication Technology (ICT) developments in last years have enabled hydrometeorological observations available in real-time. High performance computing promises the improvement of real-time flood forecasting systems and makes the use of post processing techniques easier. This is the case of data assimilation techniques, which are used to develop an adaptive forecast model. In this paper, a real-time framework for probabilistic flood forecasting is presented and two data assimilation techniques are compared. The first data assimilation technique uses genetic programming to adapt the model to the observations as new information is available, updating the estimation of the probability distribution of the model parameters. The second data assimilation technique uses an ensemble Kalman filter to quantify errors in both hydrologic model and observations, updating estimates of system states. Both forecast models take the result of the hydrologic model calibration as a starting point and adapts the individuals of this first population to the new observations in each operation time step. Data assimilation techniques have great potential when are used in hydrological distributed models. The distributed RIBS (Real-time Interactive Basin Simulator) rainfall-runoff model was selected to simulate the hydrological process in the basin. The RIBS model is deterministic, but it is run in a probabilistic way through Monte Carlo simulations over the probability distribution functions that best characterise the most relevant model parameters, which were identified by a probabilistic multi-objective calibration developed in a previous work. The Manzanares River basin was selected as a case study. Data assimilation processes are computationally intensive. Therefore, they are well suited to test the applicability of the potential of the Grid technology to

  12. A centralized real-time controller for the reservoir's management on the Seine River using ensemble weather forecasting

    Science.gov (United States)

    Ficchi, Andrea; Raso, Luciano; Jay-Allemand, Maxime; Dorchies, David; Malaterre, Pierre-Olivier; Pianosi, Francesca; Van Overloop, Peter-Jules

    2013-04-01

    The reservoirs on the Seine River, upstream of Paris, are regulated with the objective of reducing floods and supporting low flows. The current management of these reservoirs is empirical, reactive, and decentralized, mainly based on filling curves, constructed from an analysis of historical floods and low flows. When inflows are significantly different from their seasonal average, this management strategy proves inefficient. Climate change is also a challenge, for the possible modification of future hydrologic conditions. To improve such management strategy, in this study we investigate the use of Tree-Based Model Predictive Control (TB-MPC), a proactive and centralized method that uses all the information available in real-time, including ensemble weather forecasting. In TB-MPC, a tree is generated from an ensemble of weather forecast. The tree structure summarizes the information contained in the ensemble, specifying the time, along the optimization horizon, when forecast trajectories diverge and thus uncertainty is expected to be resolved. This information is then used in the model predictive control framework. The TB-MPC controller is implemented in combination with the integrated model of the water system, including a semi-distributed hydrologic model of the watershed, a simplified hydraulic model of the river network, and the four reservoir models. Optimization takes into account the cost associated to floods and low-flows, and a penalty cost based on the final reservoir storages. The performances of the TB-MPC controller will be simulated and compared with those of deterministic MPC and with the actual management performances. This work is part of the Climaware European project (2010-2013) set up to develop and to assess measures for sustainable water resources management regarding adaptation to climate change.

  13. 1. The impact of weather forecast improvements on large scale hydrology: analysing a decade of forecasts of the European Flood Alert System

    Science.gov (United States)

    Pappenberger, Florian; Thielen, Jutta; Del Medico, Mauro

    2010-05-01

    The European Flood Alert System (EFAS) provides early flood alerts on a pre-operational basis to National hydrological services. EFAS river discharge forecasts are based on probabilistic techniques, using ensemble system and deterministic numerical weather prediction data. The performance of EFAS is regularly analysed with regard to individual flood events and case studies. Although this analysis provides important insight into the strengths and weaknesses of the forecast system, it lacks statistical and independent measures of its long-term performance. In this paper an assessment of EFAS results based on ECMWF weather forecasts over a period of 10 years is presented. EFAS river discharge forecasts have been rerun every week for a period of 10 years using the weather forecast available at the time. These are evaluated for a total of 500 river gauging stations distributed across Europe.. The selected stations are sufficiently separated in space to avoid autocorrelation of station time series. Also, analysis is performed with a gap of 3 days between each forecast which reduces the temporal correlation of the time series of the same station. The data are analysed with regard to skill, bias and quality of river discharge forecast. The 10 year simulations clearly show that the skill of the river discharge forecasts have undergone an evolution linked to the quality of the operational meteorological forecast. Overall, over the period of 10 years, the skill of the EFAS forecasts has steadily increased. Important hydrological extreme events cannot be clearly identified with the skill score analysis, highlighting the necessity for event based analysis in addition to statistical long-term assessments for a better understanding of the EFAS system and large scale river discharge predictions in general. he predictability is shown to depend on catchment size and geographical location.

  14. Dispersion of aerosol particles in the free atmosphere using ensemble forecasts

    Directory of Open Access Journals (Sweden)

    T. Haszpra

    2013-10-01

    Full Text Available The dispersion of aerosol particle pollutants is studied using 50 members of an ensemble forecast in the example of a hypothetical free atmospheric emission above Fukushima over a period of 2.5 days. Considerable differences are found among the dispersion predictions of the different ensemble members, as well as between the ensemble mean and the deterministic result at the end of the observation period. The variance is found to decrease with the particle size. The geographical area where a threshold concentration is exceeded in at least one ensemble member expands to a 5–10 times larger region than the area from the deterministic forecast, both for air column "concentration" and in the "deposition" field. We demonstrate that the root-mean-square distance of any particle from its own clones in the ensemble members can reach values on the order of one thousand kilometers. Even the centers of mass of the particle cloud of the ensemble members deviate considerably from that obtained by the deterministic forecast. All these indicate that an investigation of the dispersion of aerosol particles in the spirit of ensemble forecast contains useful hints for the improvement of risk assessment.

  15. Navigating a Path Toward Operational, Short-term, Ensemble Based, Probablistic Streamflow Forecasts

    Science.gov (United States)

    Hartman, R. K.; Schaake, J.

    2004-12-01

    The National Weather Service (NWS) has federal responsibility for issuing public flood warnings in the United States. Additionally, the NWS has been engaged in longer range water resources forecasts for many years, particularly in the Western U.S. In the past twenty years, longer range forecasts have increasingly incorporated ensemble techniques. Ensemble techniques are attractive because they allow a great deal of flexibility, both temporally and in content. This technique also provides for the influence of additional forcings (i.e. ENSO), through either pre or post processing techniques. More recently, attention has turned to the use of ensemble techniques in the short-term streamflow forecasting process. While considerably more difficult, the development of reliable short-term probabilistic streamflow forecasts has clear application and value for many NWS customers and partners. During flood episodes, expensive mitigation actions are initialed or withheld and critical reservoir management decisions are made in the absence of uncertainty and risk information. Limited emergency services resources and the optimal use of water resources facilities necessitates the development of a risk-based decision making process. The development of reliable short-term probabilistic streamflow forecasts are an essential ingredient in the decision making process. This paper addresses the utility of short-term ensemble streamflow forecasts and the considerations that must be addressed as techniques and operational capabilities are developed. Verification and validation information are discussed from both a scientific and customer perspective. Education and training related to the interpretation and use of ensemble products are also addressed.

  16. Ensemble forecasting for renewable energy applications - status and current challenges for their generation and verification

    Science.gov (United States)

    Pinson, Pierre

    2016-04-01

    The operational management of renewable energy generation in power systems and electricity markets requires forecasts in various forms, e.g., deterministic or probabilistic, continuous or categorical, depending upon the decision process at hand. Besides, such forecasts may also be necessary at various spatial and temporal scales, from high temporal resolutions (in the order of minutes) and very localized for an offshore wind farm, to coarser temporal resolutions (hours) and covering a whole country for day-ahead power scheduling problems. As of today, weather predictions are a common input to forecasting methodologies for renewable energy generation. Since for most decision processes, optimal decisions can only be made if accounting for forecast uncertainties, ensemble predictions and density forecasts are increasingly seen as the product of choice. After discussing some of the basic approaches to obtaining ensemble forecasts of renewable power generation, it will be argued that space-time trajectories of renewable power production may or may not be necessitate post-processing ensemble forecasts for relevant weather variables. Example approaches and test case applications will be covered, e.g., looking at the Horns Rev offshore wind farm in Denmark, or gridded forecasts for the whole continental Europe. Eventually, we will illustrate some of the limitations of current frameworks to forecast verification, which actually make it difficult to fully assess the quality of post-processing approaches to obtain renewable energy predictions.

  17. Multi-Model Long-Range Ensemble Forecast for Decision Support in Hydroelectric Operations

    Science.gov (United States)

    Kunkel, M. L.; Parkinson, S.; Blestrud, D.; Holbrook, V. P.

    2014-12-01

    Idaho Power Company (IPC) is a hydroelectric based utility serving over a million customers in southern Idaho and eastern Oregon. Hydropower makes up ~50% of our power generation and accurate predictions of streamflow and precipitation drive our long-term planning and decision support for operations. We investigate the use of a multi-model ensemble approach for mid and long-range streamflow and precipitation forecasts throughout the Snake River Basin. Forecast are prepared using an Idaho Power developed ensemble forecasting technique for 89 locations throughout the Snake River Basin for periods of 3 to 18 months in advance. A series of multivariable linear regression, multivariable non-linear regression and multivariable Kalman filter techniques are combined in an ensemble forecast based upon two data types, historical data (streamflow, precipitation, climate indices [i.e. PDO, ENSO, AO, etc…]) and single value decomposition derived values based upon atmospheric heights and sea surface temperatures.

  18. Hydrological model calibration for enhancing global flood forecast skill

    Science.gov (United States)

    Hirpa, Feyera A.; Beck, Hylke E.; Salamon, Peter; Thielen-del Pozo, Jutta

    2016-04-01

    Early warning systems play a key role in flood risk reduction, and their effectiveness is directly linked to streamflow forecast skill. The skill of a streamflow forecast is affected by several factors; among them are (i) model errors due to incomplete representation of physical processes and inaccurate parameterization, (ii) uncertainty in the model initial conditions, and (iii) errors in the meteorological forcing. In macro scale (continental or global) modeling, it is a common practice to use a priori parameter estimates over large river basins or wider regions, resulting in suboptimal streamflow estimations. The aim of this work is to improve flood forecast skill of the Global Flood Awareness System (GloFAS; www.globalfloods.eu), a grid-based forecasting system that produces flood forecast unto 30 days lead, through calibration of the distributed hydrological model parameters. We use a combination of in-situ and satellite-based streamflow data for automatic calibration using a multi-objective genetic algorithm. We will present the calibrated global parameter maps and report the forecast skill improvements achieved. Furthermore, we discuss current challenges and future opportunities with regard to global-scale early flood warning systems.

  19. A Long-Term Wind Speed Ensemble Forecasting System with Weather Adapted Correction

    Directory of Open Access Journals (Sweden)

    Yiqi Chu

    2016-10-01

    Full Text Available Wind forecasting is critical in the wind power industry, yet forecasting errors often exist. In order to effectively correct the forecasting error, this study develops a weather adapted bias correction scheme on the basis of an average bias-correction method, which considers the deviation of estimated biases associated with the difference in weather type within each unit of the statistical sample. This method is tested by an ensemble forecasting system based on the Weather Research and Forecasting (WRF model. This system provides high resolution wind speed deterministic forecasts using 40 members generated by initial perturbations and multi-physical schemes. The forecasting system outputs 28–52 h predictions with a temporal resolution of 15 min, and is evaluated against collocated anemometer towers observations at six wind fields located on the east coast of China. Results show that the information contained in weather types produces an improvement in the forecast bias correction.

  20. Correcting unintended perturbation biases in hydrologic data assimilation using Ensemble Kalman filter

    Science.gov (United States)

    Hydrologic data assimilation has become an important tool for improving hydrologic model predictions by utilizing observations from ground, aircraft, and satellite sensors. Among existing data assimilation methods, the ensemble Kalman filter (EnKF) provides a robust framework for optimally updating ...

  1. Wavelet based error correction and predictive uncertainty of a hydrological forecasting system

    Science.gov (United States)

    Bogner, Konrad; Pappenberger, Florian; Thielen, Jutta; de Roo, Ad

    2010-05-01

    River discharge predictions most often show errors with scaling properties of unknown source and statistical structure that degrade the quality of forecasts. This is especially true for lead-time ranges greater then a few days. Since the European Flood Alert System (EFAS) provides discharge forecasts up to ten days ahead, it is necessary to take these scaling properties into consideration. For example the range of scales for the error that occurs at the spring time will be caused by long lasting snowmelt processes, and is by far larger then the error, that appears during the summer period and is caused by convective rain fields of short duration. The wavelet decomposition is an excellent way to provide the detailed model error at different levels in order to estimate the (unobserved) state variables more precisely. A Vector-AutoRegressive model with eXogenous input (VARX) is fitted for the different levels of wavelet decomposition simultaneously and after predicting the next time steps ahead for each scale, a reconstruction formula is applied to transform the predictions in the wavelet domain back to the original time domain. The Bayesian Uncertainty Processor (BUP) developed by Krzysztofowicz is an efficient method to estimate the full predictive uncertainty, which is derived by integrating the hydrological model uncertainty and the meteorological input uncertainty. A hydrological uncertainty processor has been applied to the error corrected discharge series at first in order to derive the predictive conditional distribution under the hypothesis that there is no input uncertainty. The uncertainty of the forecasted meteorological input forcing the hydrological model is derived from the combination of deterministic weather forecasts and ensemble predictions systems (EPS) and the Input Processor maps this input uncertainty into the output uncertainty under the hypothesis that there is no hydrological uncertainty. The main objective of this Bayesian forecasting system

  2. Probabilistic flood forecasting for Rapid Response Catchments using a countrywide distributed hydrological model: experience from the UK

    Science.gov (United States)

    Cole, Steven J.; Moore, Robert J.; Robson, Alice J.; Mattingley, Paul S.

    2014-05-01

    Across Britain, floods in rapidly responding catchments are a major concern and regularly cause significant damage (e.g. Boscastle 2004, Morpeth 2008, Cornwall 2010 and Comrie 2012). Typically these catchments have a small area and are characterised by steep slopes and/or significant suburban/urban land-cover. The meteorological drivers can be of convective origin or frontal with locally intense features (e.g. embedded convection or orographic enhancement); saturated catchments can amplify the flood response. Both rainfall and flood forecasting for Rapid Response Catchments (RRCs)are very challenging due to the often small-scale nature of the intense rainfall which is of most concern, the small catchment areas, and the short catchment response times. Over the last 3 to 4 years, new countrywide Flood Forecasting Systems based on the Grid-to-Grid (G2G) distributed hydrological (rainfall-runoff and routing) model have been implemented across Britain for use by the Flood Forecasting Centre and Scottish Flood Forecasting Service. This has achieved a step-change in operational capability with forecasts of flooding several days ahead "everywhere" on a 1 km grid now possible. The modelling and forecasting approach underpins countrywide Flood Guidance Statements out to 5 days which are used by emergency response organisations for planning and preparedness. The initial focus of these systems has been to provide a countrywide overview of flood risk. However, recent research has explored the potential of the G2G approach to support more frequent and detailed alerts relevant to flood warning in RRCs. Integral to this activity is the use of emerging high-resolution (~1.5km) rainfall forecast products, in deterministic and ensemble form. High spatial resolutions are required to capture some of the small-scale processes and intense rainfall features such as orographic enhancement and convective storm evolution. Even though a deterministic high-resolution numerical weather

  3. Using ensemble weather forecast in a risk based real time optimization of urban drainage systems

    DEFF Research Database (Denmark)

    Courdent, Vianney Augustin Thomas; Vezzaro, Luca; Mikkelsen, Peter Steen

    2015-01-01

    on DORA's approach, this study investigated the implementation of long forecast horizon using an ensemble forecast from a Numerical Weather Prediction (NWP) model. The uncertainty of the prediction is characterized by an ensemble of 25 forecast scenarios. According to the status of the UDS......) strategy was developed to operate Urban Drainage Systems (UDS) in order to minimize the expected overflow risk by considering the water volume presently stored in the drainage network, the expected runoff volume based on a 2-hours radar forecast model and an estimated uncertainty of the runoff forecast....... However, such temporal horizon (1-2 hours) is relatively short when used for the operation of large storage facilities, which may require a few days to be emptied. This limits the performance of the optimization and control in reducing combined sewer overflow and in preparing for possible flooding. Based...

  4. Proper estimation of hydrological parameters from flood forecasting aspects

    Science.gov (United States)

    Miyamoto, Mamoru; Matsumoto, Kazuhiro; Tsuda, Morimasa; Yamakage, Yuzuru; Iwami, Yoichi; Yanami, Hitoshi; Anai, Hirokazu

    2016-04-01

    The hydrological parameters of a flood forecasting model are normally calibrated based on an entire hydrograph of past flood events by means of an error assessment function such as mean square error and relative error. However, the specific parts of a hydrograph, i.e., maximum discharge and rising parts, are particularly important for practical flood forecasting in the sense that underestimation may lead to a more dangerous situation due to delay in flood prevention and evacuation activities. We conducted numerical experiments to find the most proper parameter set for practical flood forecasting without underestimation in order to develop an error assessment method for calibration appropriate for flood forecasting. A distributed hydrological model developed in Public Works Research Institute (PWRI) in Japan was applied to fifteen past floods in the Gokase River basin of 1,820km2 in Japan. The model with gridded two-layer tanks for the entire target river basin included hydrological parameters, such as hydraulic conductivity, surface roughness and runoff coefficient, which were set according to land-use and soil-type distributions. Global data sets, e.g., Global Map and Digital Soil Map of the World (DSMW), were employed as input data for elevation, land use and soil type. The values of fourteen types of parameters were evenly sampled with 10,001 patterns of parameter sets determined by the Latin Hypercube Sampling within the search range of each parameter. Although the best reproduced case showed a high Nash-Sutcliffe Efficiency of 0.9 for all flood events, the maximum discharge was underestimated in many flood cases. Therefore, two conditions, which were non-underestimation in the maximum discharge and rising parts of a hydrograph, were added in calibration as the flood forecasting aptitudes. The cases with non-underestimation in the maximum discharge and rising parts of the hydrograph also showed a high Nash-Sutcliffe Efficiency of 0.9 except two flood cases

  5. Determining optimal clothing ensembles based on weather forecasts, with particular reference to outdoor winter military activities.

    Science.gov (United States)

    Morabito, Marco; Pavlinic, Daniela Z; Crisci, Alfonso; Capecchi, Valerio; Orlandini, Simone; Mekjavic, Igor B

    2011-07-01

    Military and civil defense personnel are often involved in complex activities in a variety of outdoor environments. The choice of appropriate clothing ensembles represents an important strategy to establish the success of a military mission. The main aim of this study was to compare the known clothing insulation of the garment ensembles worn by soldiers during two winter outdoor field trials (hike and guard duty) with the estimated optimal clothing thermal insulations recommended to maintain thermoneutrality, assessed by using two different biometeorological procedures. The overall aim was to assess the applicability of such biometeorological procedures to weather forecast systems, thereby developing a comprehensive biometeorological tool for military operational forecast purposes. Military trials were carried out during winter 2006 in Pokljuka (Slovenia) by Slovene Armed Forces personnel. Gastrointestinal temperature, heart rate and environmental parameters were measured with portable data acquisition systems. The thermal characteristics of the clothing ensembles worn by the soldiers, namely thermal resistance, were determined with a sweating thermal manikin. Results showed that the clothing ensemble worn by the military was appropriate during guard duty but generally inappropriate during the hike. A general under-estimation of the biometeorological forecast model in predicting the optimal clothing insulation value was observed and an additional post-processing calibration might further improve forecast accuracy. This study represents the first step in the development of a comprehensive personalized biometeorological forecast system aimed at improving recommendations regarding the optimal thermal insulation of military garment ensembles for winter activities.

  6. Rainfall downscaling of weekly ensemble forecasts using self-organising maps

    Directory of Open Access Journals (Sweden)

    Masamichi Ohba

    2016-03-01

    Full Text Available This study presents an application of self-organising maps (SOMs to downscaling medium-range ensemble forecasts and probabilistic prediction of local precipitation in Japan. SOM was applied to analyse and connect the relationship between atmospheric patterns over Japan and local high-resolution precipitation data. Multiple SOM was simultaneously employed on four variables derived from the JRA-55 reanalysis over the area of study (south-western Japan, and a two-dimensional lattice of weather patterns (WPs was obtained. Weekly ensemble forecasts can be downscaled to local precipitation using the obtained multiple SOM. The downscaled precipitation is derived by the five SOM lattices based on the WPs of the global model ensemble forecasts for a particular day in 2009–2011. Because this method effectively handles the stochastic uncertainties from the large number of ensemble members, a probabilistic local precipitation is easily and quickly obtained from the ensemble forecasts. This downscaling of ensemble forecasts provides results better than those from a 20-km global spectral model (i.e. capturing the relatively detailed precipitation distribution over the region. To capture the effect of the detailed pattern differences in each SOM node, a statistical model is additionally concreted for each SOM node. The predictability skill of the ensemble forecasts is significantly improved under the neural network-statistics hybrid-downscaling technique, which then brings a much better skill score than the traditional method. It is expected that the results of this study will provide better guidance to the user community and contribute to the future development of dam-management models.

  7. Spatial-temporal fractions verification for high-resolution ensemble forecasts

    Directory of Open Access Journals (Sweden)

    Le Duc

    2013-04-01

    Full Text Available Experiments with two ensemble systems of resolutions 10 km (MF10km and 2 km (MF2km were designed to examine the value of cloud-resolving ensemble forecast in predicting precipitation on small spatio-temporal scales. Since the verification was performed on short-term precipitation at high resolution, uncertainties from small-scale processes caused the traditional verification methods to be inconsistent with the subjective evaluation. An extended verification method based on the Fractions Skill Score (FSS was introduced to account for these uncertainties. The main idea is to extend the concept of spatial neighbourhood in FSS to the time and ensemble dimension. The extension was carried out by recognising that even if ensemble forecast is used, small-scale variability still exists in forecasts and influences verification results. In addition to FSS, the neighbourhood concept was also incorporated into reliability diagrams and relative operating characteristics to verify the reliability and resolution of two systems. The extension of FSS in time dimension demonstrates the important role of temporal scales in short-term precipitation verification at small spatial scales. The extension of FSS in ensemble space is called the ensemble FSS, which is a good representative of FSS for ensemble forecast in comparison with the FSS of ensemble mean. The verification results show that MF2km outperforms MF10km in heavy rain forecasts. In contrast, MF10km was slightly better than MF2km in predicting light rains, suggesting that the horizontal resolution of 2 km is not necessarily enough to completely resolve convective cells.

  8. Skill of a global forecasting system in seasonal ensemble streamflow prediction

    NARCIS (Netherlands)

    Candogan Yossef, Naze; Beek, Van Rens; Weerts, Albrecht; Winsemius, Hessel; Bierkens, Marc F.P.

    2017-01-01

    In this study we assess the skill of seasonal streamflow forecasts with the global hydrological forecasting system Flood Early Warning System (FEWS)-World, which has been set up within the European Commission 7th Framework Programme Project Global Water Scarcity Information Service (GLOWASIS).

  9. Verification of Global Radiation Forecasts from the Ensemble Prediction System at DMI

    DEFF Research Database (Denmark)

    Lundholm, Sisse Camilla

    consumption of the house and the amount of available solar energy. In order to make the most of this solar heating unit, accurate forecasts of the available solar radiation are esstential. However, because of its sensitivity to local meteorological conditions, the solar radiation received at the surface......To comply with an increasing demand for sustainable energy sources, a solar heating unit is being developed at the Technical University of Denmark. To make optimal use — environmentally and economically —, this heating unit is equipped with an intelligent control system using forecasts of the heat...... of the Earth can be highly fluctuating and challenging to forecast accurately. To comply with the accuracy requirements to forecasts of both global, direct, and diffuse radiation, the uncertainty of these forecasts is of interest. Forecast uncertainties can become accessible by running an ensemble of forecasts...

  10. Role-play games, experiments, workshops, blog posts: how community activities in HEPEX contribute to advance hydrologic ensemble prediction

    Science.gov (United States)

    Ramos, Maria-Helena; Wetterhall, Fredrik; Wood, Andy; Wang, Qj; Pappenberger, Florian; Verkade, Jan

    2017-04-01

    Since 2004, HEPEX (Hydrologic Ensemble Prediction Experiment) has been fostering a community of researchers and practitioners around the world. Through the years, it has contributed to establish a more integrative view of hydrological forecasting, where data assimilation, hydro-meteorological modelling chains, post-processing techniques, expert knowledge, and decision support systems are connected to enhance operational systems and water management applications. Here we present the community activities in HEPEX that have contributed to strengthening this unfunded/volunteer effort for more than a decade. It includes the organization of workshops, conference sessions, testbeds and inter-comparison experiments. More recently, HEPEX has also prompted the development of several publicly available role-play games and, since 2013, it has been running a blog portal (www.hepex.org), which is used as an intersection point for members. Through this website, members can continuously share their research, make announcements, report on workshops, projects and meetings, and hear about related research and operational challenges. It also creates a platform for early career scientists to become increasingly involved in hydrological forecasting science and applications.

  11. Global system for hydrological monitoring and forecasting in real time at high resolution

    Science.gov (United States)

    Ortiz, Enrique; De Michele, Carlo; Todini, Ezio; Cifres, Enrique

    2016-04-01

    This project presented at the EGU 2016 born of solidarity and the need to dignify the most disadvantaged people living in the poorest countries (Africa, South America and Asia, which are continually exposed to changes in the hydrologic cycle suffering events of large floods and/or long periods of droughts. It is also a special year this 2016, Year of Mercy, in which we must engage with the most disadvantaged of our Planet (Gaia) making available to them what we do professionally and scientifically. The project called "Global system for hydrological monitoring and forecasting in real time at high resolution" is Non-Profit and aims to provide at global high resolution (1km2) hydrological monitoring and forecasting in real time and continuously coupling Weather Forecast of Global Circulation Models, such us GFS-0.25° (Deterministic and Ensembles Run) forcing a physically based distributed hydrological model computationally efficient, such as the latest version extended of TOPKAPI model, named TOPKAPI-eXtended. Finally using the MCP approach for the proper use of ensembles for Predictive Uncertainty assessment essentially based on a multiple regression in the Normal space, can be easily extended to use ensembles to represent the local (in time) smaller or larger conditional predictive uncertainty, as a function of the ensemble spread. In this way, each prediction in time accounts for both the predictive uncertainty of the ensemble mean and that of the ensemble spread. To perform a continuous hydrological modeling with TOPKAPI-X model and have hot start of hydrological status of watersheds, the system assimilated products of rainfall and temperature derived from remote sensing, such as product 3B42RT of TRMM NASA and others.The system will be integrated into a Decision Support System (DSS) platform, based on geographical data. The DSS is a web application (For Pc, Tablet/Mobile phone): It does not need installation (all you need is a web browser and an internet

  12. The Experimental Regional Ensemble Forecast System (ExREF): Its Use in NWS Forecast Operations and Preliminary Verification

    Science.gov (United States)

    Reynolds, David; Rasch, William; Kozlowski, Daniel; Burks, Jason; Zavodsky, Bradley; Bernardet, Ligia; Jankov, Isidora; Albers, Steve

    2014-01-01

    The Experimental Regional Ensemble Forecast (ExREF) system is a tool for the development and testing of new Numerical Weather Prediction (NWP) methodologies. ExREF is run in near-realtime by the Global Systems Division (GSD) of the NOAA Earth System Research Laboratory (ESRL) and its products are made available through a website, an ftp site, and via the Unidata Local Data Manager (LDM). The ExREF domain covers most of North America and has 9-km horizontal grid spacing. The ensemble has eight members, all employing WRF-ARW. The ensemble uses a variety of initial conditions from LAPS and the Global Forecasting System (GFS) and multiple boundary conditions from the GFS ensemble. Additionally, a diversity of physical parameterizations is used to increase ensemble spread and to account for the uncertainty in forecasting extreme precipitation events. ExREF has been a component of the Hydrometeorology Testbed (HMT) NWP suite in the 2012-2013 and 2013-2014 winters. A smaller domain covering just the West Coast was created to minimize band-width consumption for the NWS. This smaller domain has and is being distributed to the National Weather Service (NWS) Weather Forecast Office and California Nevada River Forecast Center in Sacramento, California, where it is ingested into the Advanced Weather Interactive Processing System (AWIPS I and II) to provide guidance on the forecasting of extreme precipitation events. This paper will review the cooperative effort employed by NOAA ESRL, NASA SPoRT (Short-term Prediction Research and Transition Center), and the NWS to facilitate the ingest and display of ExREF data utilizing the AWIPS I and II D2D and GFE (Graphical Software Editor) software. Within GFE is a very useful verification software package called BoiVer that allows the NWS to utilize the River Forecast Center's 4 km gridded QPE to compare with all operational NWP models 6-hr QPF along with the ExREF mean 6-hr QPF so the forecasters can build confidence in the use of the

  13. Is the economic value of hydrological forecasts related to their quality? Case study of the hydropower sector.

    Science.gov (United States)

    Cassagnole, Manon; Ramos, Maria-Helena; Thirel, Guillaume; Gailhard, Joël; Garçon, Rémy

    2017-04-01

    The improvement of a forecasting system and the evaluation of the quality of its forecasts are recurrent steps in operational practice. However, the evaluation of forecast value or forecast usefulness for better decision-making is, to our knowledge, less frequent, even if it might be essential in many sectors such as hydropower and flood warning. In the hydropower sector, forecast value can be quantified by the economic gain obtained with the optimization of operations or reservoir management rules. Several hydropower operational systems use medium-range forecasts (up to 7-10 days ahead) and energy price predictions to optimize hydropower production. Hence, the operation of hydropower systems, including the management of water in reservoirs, is impacted by weather, climate and hydrologic variability as well as extreme events. In order to assess how the quality of hydrometeorological forecasts impact operations, it is essential to first understand if and how operations and management rules are sensitive to input predictions of different quality. This study investigates how 7-day ahead deterministic and ensemble streamflow forecasts of different quality might impact the economic gains of energy production. It is based on a research model developed by Irstea and EDF to investigate issues relevant to the links between quality and value of forecasts in the optimisation of energy production at the short range. Based on streamflow forecasts and pre-defined management constraints, the model defines the best hours (i.e., the hours with high energy prices) to produce electricity. To highlight the link between forecasts quality and their economic value, we built several synthetic ensemble forecasts based on observed streamflow time series. These inputs are generated in a controlled environment in order to obtain forecasts of different quality in terms of accuracy and reliability. These forecasts are used to assess the sensitivity of the decision model to forecast quality

  14. Ensemble-based air quality forecasts: A multimodel approach applied to ozone

    OpenAIRE

    Mallet, Vivien; Sportisse, Bruno

    2006-01-01

    International audience; The potential of ensemble techniques to improve ozone forecasts is investigated. Ensembles with up to 48 members (models) are generated using the modeling system Polyphemus. Members differ in their physical parameterizations, their numerical approximations, and their input data. Each model is evaluated during 4 months (summer 2001) over Europe with hundreds of stations from three ozone-monitoring networks. We found that several linear combinations of models have the po...

  15. Operational hydrological forecasting during the IPHEx-IOP campaign - Meet the challenge

    Science.gov (United States)

    Tao, Jing; Wu, Di; Gourley, Jonathan; Zhang, Sara Q.; Crow, Wade; Peters-Lidard, Christa; Barros, Ana P.

    2016-10-01

    An operational streamflow forecasting testbed was implemented during the Intense Observing Period (IOP) of the Integrated Precipitation and Hydrology Experiment (IPHEx-IOP) in May-June 2014 to characterize flood predictability in complex terrain. Specifically, hydrological forecasts were issued daily for 12 headwater catchments in the Southern Appalachians using the Duke Coupled surface-groundwater Hydrology Model (DCHM) forced by hourly atmospheric fields and QPFs (Quantitative Precipitation Forecasts) produced by the NASA-Unified Weather Research and Forecasting (NU-WRF) model. Previous day hindcasts forced by radar-based QPEs (Quantitative Precipitation Estimates) were used to provide initial conditions for present day forecasts. This manuscript first describes the operational testbed framework and workflow during the IPHEx-IOP including a synthesis of results. Second, various data assimilation approaches are explored a posteriori (post-IOP) to improve operational (flash) flood forecasting. Although all flood events during the IOP were predicted by the IPHEx operational testbed with lead times of up to 6 h, significant errors of over- and, or under-prediction were identified that could be traced back to the QPFs and subgrid-scale variability of radar QPEs. To improve operational flood prediction, three data-merging strategies were pursued post-IOP: (1) the spatial patterns of QPFs were improved through assimilation of satellite-based microwave radiances into NU-WRF; (2) QPEs were improved by merging raingauge observations with ground-based radar observations using bias-correction methods to produce streamflow hindcasts and associated uncertainty envelope capturing the streamflow observations, and (3) river discharge observations were assimilated into the DCHM to improve streamflow forecasts using the Ensemble Kalman Filter (EnKF), the fixed-lag Ensemble Kalman Smoother (EnKS), and the Asynchronous EnKF (i.e. AEnKF) methods. Both flood hindcasts and forecasts

  16. Operational Hydrological Forecasting During the Iphex-iop Campaign - Meet the Challenge

    Science.gov (United States)

    Tao, Jing; Wu, Di; Gourley, Jonathan; Zhang, Sara Q.; Crow, Wade; Peters-Lidard, Christa D.; Barros, Ana P.

    2016-01-01

    An operational streamflow forecasting testbed was implemented during the Intense Observing Period (IOP) of the Integrated Precipitation and Hydrology Experiment (IPHEx-IOP) in May-June 2014 to characterize flood predictability in complex terrain. Specifically, hydrological forecasts were issued daily for 12 headwater catchments in the Southern Appalachians using the Duke Coupled surface-groundwater Hydrology Model (DCHM) forced by hourly atmospheric fields and QPFs (Quantitative Precipitation Forecasts) produced by the NASA-Unified Weather Research and Forecasting (NU-WRF) model. Previous day hindcasts forced by radar-based QPEs (Quantitative Precipitation Estimates) were used to provide initial conditions for present day forecasts. This manuscript first describes the operational testbed framework and workflow during the IPHEx-IOP including a synthesis of results. Second, various data assimilation approaches are explored a posteriori (post-IOP) to improve operational (flash) flood forecasting. Although all flood events during the IOP were predicted by the IPHEx operational testbed with lead times of up to 6 h, significant errors of over- and, or under-prediction were identified that could be traced back to the QPFs and subgrid-scale variability of radar QPEs. To improve operational flood prediction, three data-merging strategies were pursued post-IOP: (1) the spatial patterns of QPFs were improved through assimilation of satellite-based microwave radiances into NU-WRF; (2) QPEs were improved by merging raingauge observations with ground-based radar observations using bias-correction methods to produce streamflow hindcasts and associated uncertainty envelope capturing the streamflow observations, and (3) river discharge observations were assimilated into the DCHM to improve streamflow forecasts using the Ensemble Kalman Filter (EnKF), the fixed-lag Ensemble Kalman Smoother (EnKS), and the Asynchronous EnKF (i.e. AEnKF) methods. Both flood hindcasts and forecasts

  17. The Advantage of Using International Multimodel Ensemble for Seasonal Precipitation Forecast over Israel

    Directory of Open Access Journals (Sweden)

    Amir Givati

    2017-01-01

    Full Text Available This study analyzes the results of monthly and seasonal precipitation forecasting from seven different global climate forecast models for major basins in Israel within October–April 1982–2010. The six National Multimodel Ensemble (NMME models and the ECMWF seasonal model were used to calculate an International Multimodel Ensemble (IMME. The study presents the performance of both monthly and seasonal predictions of precipitation accumulated over three months, with respect to different lead times for the ensemble mean values, one per individual model. Additionally, we analyzed the performance of different combinations of models. We present verification of seasonal forecasting using real forecasts, focusing on a small domain characterized by complex terrain, high annual precipitation variability, and a sharp precipitation gradient from west to east as well as from south to north. The results in this study show that, in general, the monthly analysis does not provide very accurate results, even when using the IMME for one-month lead time. We found that the IMME outperformed any single model prediction. Our analysis indicates that the optimal combinations with the high correlation values contain at least three models. Moreover, prediction with larger number of models in the ensemble produces more robust predictions. The results obtained in this study highlight the advantages of using an ensemble of global models over single models for small domain.

  18. SVR-Boosting ensemble model for electricity price forecasting in electric power market

    Institute of Scientific and Technical Information of China (English)

    ZHOU Dian-min; GAO Lin; GUAN Xiao-hong; GAO Feng

    2008-01-01

    A revised support vector regression (SVR) ensemble model based on boosting algorithm (SVR-Boos-ting) is presented in this paper for electricity price forecasting in electric power market. In the light of charac-the forecasting model to inhibit the learning from abnormal data in electricity price sequence. The results from actual data indicate that, compared with the single support vector regression model, the proposed SVR-Boosting ensemble model is able to enhance the stability of the model output remarkably, acquire higher predicting accu-racy, and possess comparatively satisfactory generalization capability.

  19. The assisted prediction modelling frame with hybridisation and ensemble for business risk forecasting and an implementation

    Science.gov (United States)

    Li, Hui; Hong, Lu-Yao; Zhou, Qing; Yu, Hai-Jie

    2015-08-01

    The business failure of numerous companies results in financial crises. The high social costs associated with such crises have made people to search for effective tools for business risk prediction, among which, support vector machine is very effective. Several modelling means, including single-technique modelling, hybrid modelling, and ensemble modelling, have been suggested in forecasting business risk with support vector machine. However, existing literature seldom focuses on the general modelling frame for business risk prediction, and seldom investigates performance differences among different modelling means. We reviewed researches on forecasting business risk with support vector machine, proposed the general assisted prediction modelling frame with hybridisation and ensemble (APMF-WHAE), and finally, investigated the use of principal components analysis, support vector machine, random sampling, and group decision, under the general frame in forecasting business risk. Under the APMF-WHAE frame with support vector machine as the base predictive model, four specific predictive models were produced, namely, pure support vector machine, a hybrid support vector machine involved with principal components analysis, a support vector machine ensemble involved with random sampling and group decision, and an ensemble of hybrid support vector machine using group decision to integrate various hybrid support vector machines on variables produced from principle components analysis and samples from random sampling. The experimental results indicate that hybrid support vector machine and ensemble of hybrid support vector machines were able to produce dominating performance than pure support vector machine and support vector machine ensemble.

  20. Development of web-based services for an ensemble flood forecasting and risk assessment system

    Science.gov (United States)

    Yaw Manful, Desmond; He, Yi; Cloke, Hannah; Pappenberger, Florian; Li, Zhijia; Wetterhall, Fredrik; Huang, Yingchun; Hu, Yuzhong

    2010-05-01

    Flooding is a wide spread and devastating natural disaster worldwide. Floods that took place in the last decade in China were ranked the worst amongst recorded floods worldwide in terms of the number of human fatalities and economic losses (Munich Re-Insurance). Rapid economic development and population expansion into low lying flood plains has worsened the situation. Current conventional flood prediction systems in China are neither suited to the perceptible climate variability nor the rapid pace of urbanization sweeping the country. Flood prediction, from short-term (a few hours) to medium-term (a few days), needs to be revisited and adapted to changing socio-economic and hydro-climatic realities. The latest technology requires implementation of multiple numerical weather prediction systems. The availability of twelve global ensemble weather prediction systems through the ‘THORPEX Interactive Grand Global Ensemble' (TIGGE) offers a good opportunity for an effective state-of-the-art early forecasting system. A prototype of a Novel Flood Early Warning System (NEWS) using the TIGGE database is tested in the Huai River basin in east-central China. It is the first early flood warning system in China that uses the massive TIGGE database cascaded with river catchment models, the Xinanjiang hydrologic model and a 1-D hydraulic model, to predict river discharge and flood inundation. The NEWS algorithm is also designed to provide web-based services to a broad spectrum of end-users. The latter presents challenges as both databases and proprietary codes reside in different locations and converge at dissimilar times. NEWS will thus make use of a ready-to-run grid system that makes distributed computing and data resources available in a seamless and secure way. An ability to run or function on different operating systems and provide an interface or front that is accessible to broad spectrum of end-users is additional requirement. The aim is to achieve robust interoperability

  1. Hydrologic Severity-based Forecast System for Road Infrastructure Monitoring

    Science.gov (United States)

    Hernandez, F.; Li, L.; Lochan, S.; Liang, X.; Liang, Y.; Teng, W. L.

    2013-12-01

    The state departments of transportation in the U.S. are responsible for responding to weather- and hydrology-related emergencies affecting the transportation infrastructure, such as heavy rain, flooding, scouring of bridge structures, icing, and fog. These emergency response actions often require significant amount of effort to identify, inspect, and manage, e.g., potentially compromised bridges due to scouring. An online Hydrologic Disaster Forecasting and Response (HDFR) system is being developed for the Pennsylvania Department of Transportation (PennDOT), to provide more accurate estimates on current road infrastructure conditions. The HDFR system can automatically access satellite data from NASA data centers, NOAA radar rainfall measurements, and meteorological and hydrometeorological station observations. The accessed data can be fused, using an extended multi-scale Kalman smoother-based (MKS-based) algorithm to provide enhanced data products. The fused information is then contrasted with historical data, to assess the severity of the weather and hydrological conditions and to provide more accurate estimates of those areas with a high likelihood of being affected by similar emergencies. The real- and near-real-time data, as well as weather forecasts, are input to a multi-scale hydrological simulator. The HDFR system will be able to generate stream flow predictions at road-level scales, allowing for the monitoring of a complex and distributed infrastructure, with less computational resources than those previously required. Preliminary results will be presented that show the advantages of the HDFR system over PennDOT's current methods for identifying bridges in need of inspection.

  2. Seasonal Drought Prediction in East Africa: Can National Multi-Model Ensemble Forecasts Help?

    Science.gov (United States)

    Shukla, Shraddhanand; Roberts, J. B.; Funk, Christopher; Robertson, F. R.; Hoell, Andrew

    2015-01-01

    The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. As recently as in 2011 part of this region underwent one of the worst famine events in its history. Timely and skillful drought forecasts at seasonal scale for this region can inform better water and agro-pastoral management decisions, support optimal allocation of the region's water resources, and mitigate socio-economic losses incurred by droughts. However seasonal drought prediction in this region faces several challenges. Lack of skillful seasonal rainfall forecasts; the focus of this presentation, is one of those major challenges. In the past few decades, major strides have been taken towards improvement of seasonal scale dynamical climate forecasts. The National Centers for Environmental Prediction's (NCEP) National Multi-model Ensemble (NMME) is one such state-of-the-art dynamical climate forecast system. The NMME incorporates climate forecasts from 6+ fully coupled dynamical models resulting in 100+ ensemble member forecasts. Recent studies have indicated that in general NMME offers improvement over forecasts from any single model. However thus far the skill of NMME for forecasting rainfall in a vulnerable region like the East Africa has been unexplored. In this presentation we report findings of a comprehensive analysis that examines the strength and weakness of NMME in forecasting rainfall at seasonal scale in East Africa for all three of the prominent seasons for the region. (i.e. March-April-May, July-August-September and October-November- December). Simultaneously we also describe hybrid approaches; that combine statistical approaches with NMME forecasts; to improve rainfall forecast skill in the region when raw NMME forecasts lack in skill.

  3. A component-resampling approach for estimating probability distributions from small forecast ensembles

    Science.gov (United States)

    Dettinger, M.

    2006-01-01

    In many meteorological and climatological modeling applications, the availability of ensembles of predictions containing very large numbers of members would substantially ease statistical analyses and validations. This study describes and demonstrates an objective approach for generating large ensembles of "additional" realizations from smaller ensembles, where the additional ensemble members share important first-and second-order statistical characteristics and some dynamic relations within the original ensemble. By decomposing the original ensemble members into assuredly independent time-series components (using a form of principal component decomposition) that can then be resampled randomly and recombined, the component-resampling procedure generates additional time series that follow the large and small scale structures in the original ensemble members, without requiring any tuning by the user. The method is demonstrated by applications to operational medium-range weather forecast ensembles from a single NCEP weather model and application to a multi-model, multi-emission-scenarios ensemble of 21st Century climate-change projections. ?? Springer 2006.

  4. Simplifying a hydrological ensemble prediction system with a backward greedy selection of members – Part 2: Generalization in time and space

    Directory of Open Access Journals (Sweden)

    D. Brochero

    2011-11-01

    Full Text Available An uncertainty cascade model applied to stream flow forecasting seeks to evaluate the different sources of uncertainty of the complex rainfall-runoff process. The current trend focuses on the combination of Meteorological Ensemble Prediction Systems (MEPS and hydrological model(s. However, the number of members of such a HEPS may rapidly increase to a level that may not be operationally sustainable. This paper evaluates the generalization ability of a simplification scheme of a 800-member HEPS formed by the combination of 16 lumped rainfall-runoff models with the 50 perturbed members from the European Centre for Medium-range Weather Forecasts (ECMWF EPS. Tests are made at two levels. At the local level, the transferability of the 9th day hydrological member selection for the other 8 forecast horizons exhibits an 82% success rate. The other evaluation is made at the regional or cluster level, the transferability from one catchment to another from within a cluster of watersheds also leads to a good performance (85% success rate, especially for forecast time horizons above 3 days and when the basins that formed the cluster presented themselves a good performance on an individual basis. Diversity, defined as hydrological model complementarity addressing different aspects of a forecast, was identified as the critical factor for proper selection applications.

  5. Ensemble forecasting shifts in climatically suitable areas for Tropidacris cristata (Orthoptera: Acridoidea: Romaleidae)

    DEFF Research Database (Denmark)

    Diniz, J.A.F.; Nabout, J.C.; Bini, L.M.;

    2010-01-01

    1. The effects of climate change on species' ranges have been usually inferred using niche-based models creating bioclimatic envelopes that are projected into geographical space. Here, we apply an ensemble forecasting approach for niche models in the Neotropical grasshopper Tropidacris cristata...

  6. Verification of the ECMWF ensemble forecasts of wind speed against analyses and observations

    DEFF Research Database (Denmark)

    Pinson, Pierre; Hagedorn, Renate

    2012-01-01

    A framework for the verification of ensemble forecasts of near-surface wind speed is described. It is based on existing scores and diagnostic tools, though considering observations from synoptic stations as reference instead of the analysis. This approach is motivated by the idea of having a user...

  7. Improving short-range ensemble Kalman storm surge forecasting using robust adaptive inflation

    NARCIS (Netherlands)

    Altaf, M.U.; Butler, T.; Luo, X.; Dawson, C.; Mayo, T.; Hoteit, I.

    2013-01-01

    This paper presents a robust ensemble filtering methodology for storm surge forecasting based on the singular evolutive interpolated Kalman (SEIK) filter, which has been implemented in the framework of the H∞ filter. By design, an H∞ filter is more robust than the common Kalman filter in the sense t

  8. Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change

    DEFF Research Database (Denmark)

    Diniz-Filho, José Alexandre F.; Bini, Luis Mauricio; Rangel, Thiago Fernando

    2009-01-01

    of uncertainty in ensembles of forecasts is presented. We model the distributions of 3837 New World birds and project them into 2080. We then quantify and map the relative contribution of different sources of uncertainty from alternative methods for niche modeling, general circulation models (AOGCM...

  9. Improving short-range ensemble Kalman storm surge forecasting using robust adaptive inflation

    NARCIS (Netherlands)

    Altaf, M.U.; Butler, T.; Luo, X.; Dawson, C.; Mayo, T.; Hoteit, I.

    2013-01-01

    This paper presents a robust ensemble filtering methodology for storm surge forecasting based on the singular evolutive interpolated Kalman (SEIK) filter, which has been implemented in the framework of the H∞ filter. By design, an H∞ filter is more robust than the common Kalman filter in the sense t

  10. Multi-objective calibration of forecast ensembles using Bayesian model averaging

    NARCIS (Netherlands)

    Vrugt, J.A.; Clark, M.P.; Diks, C.G.H.; Duan, Q.; Robinson, B.A.

    2006-01-01

    Bayesian Model Averaging (BMA) has recently been proposed as a method for statistical postprocessing of forecast ensembles from numerical weather prediction models. The BMA predictive probability density function (PDF) of any weather quantity of interest is a weighted average of PDFs centered on the

  11. SWIFT2: Software for continuous ensemble short-term streamflow forecasting for use in research and operations

    Science.gov (United States)

    Perraud, Jean-Michel; Bennett, James C.; Bridgart, Robert; Robertson, David E.

    2016-04-01

    Research undertaken through the Water Information Research and Development Alliance (WIRADA) has laid the foundations for continuous deterministic and ensemble short-term forecasting services. One output of this research is the software Short-term Water Information Forecasting Tools version 2 (SWIFT2). SWIFT2 is developed for use in research on short term streamflow forecasting techniques as well as operational forecasting services at the Australian Bureau of Meteorology. The variety of uses in research and operations requires a modular software system whose components can be arranged in applications that are fit for each particular purpose, without unnecessary software duplication. SWIFT2 modelling structures consist of sub-areas of hydrologic models, nodes and links with in-stream routing and reservoirs. While this modelling structure is customary, SWIFT2 is built from the ground up for computational and data intensive applications such as ensemble forecasts necessary for the estimation of the uncertainty in forecasts. Support for parallel computation on multiple processors or on a compute cluster is a primary use case. A convention is defined to store large multi-dimensional forecasting data and its metadata using the netCDF library. SWIFT2 is written in modern C++ with state of the art software engineering techniques and practices. A salient technical feature is a well-defined application programming interface (API) to facilitate access from different applications and technologies. SWIFT2 is already seamlessly accessible on Windows and Linux via packages in R, Python, Matlab and .NET languages such as C# and F#. Command line or graphical front-end applications are also feasible. This poster gives an overview of the technology stack, and illustrates the resulting features of SWIFT2 for users. Research and operational uses share the same common core C++ modelling shell for consistency, but augmented by different software modules suitable for each context. The

  12. Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities

    NARCIS (Netherlands)

    Liu, Y.; Weerts, A.H.; Clark, M.; Hendricks Franssen, H.J.; Kumar, S.; Moradkhani, H.; Seo, D.J.; Schwanenberg, D.; Smith, P.; Van Dijk, A.I.J.M.; Van Velzen, N.; He, M.; Lee, H.; Noh, S.J.; Rakovec, O.; Restrepo, P.

    2012-01-01

    Data assimilation (DA) holds considerable potential for improving hydrologic predictions as demonstrated in numerous research studies. However, advances in hydrologic DA research have not been adequately or timely implemented in operational forecast systems to improve the skill of forecasts for bett

  13. Intelligent Ensemble Forecasting System of Stock Market Fluctuations Based on Symetric and Asymetric Wavelet Functions

    Science.gov (United States)

    Lahmiri, Salim; Boukadoum, Mounir

    2015-08-01

    We present a new ensemble system for stock market returns prediction where continuous wavelet transform (CWT) is used to analyze return series and backpropagation neural networks (BPNNs) for processing CWT-based coefficients, determining the optimal ensemble weights, and providing final forecasts. Particle swarm optimization (PSO) is used for finding optimal weights and biases for each BPNN. To capture symmetry/asymmetry in the underlying data, three wavelet functions with different shapes are adopted. The proposed ensemble system was tested on three Asian stock markets: The Hang Seng, KOSPI, and Taiwan stock market data. Three statistical metrics were used to evaluate the forecasting accuracy; including, mean of absolute errors (MAE), root mean of squared errors (RMSE), and mean of absolute deviations (MADs). Experimental results showed that our proposed ensemble system outperformed the individual CWT-ANN models each with different wavelet function. In addition, the proposed ensemble system outperformed the conventional autoregressive moving average process. As a result, the proposed ensemble system is suitable to capture symmetry/asymmetry in financial data fluctuations for better prediction accuracy.

  14. Validation of time-lagged ensemble forecasts relevant for predicting aircraft wake vortices

    Energy Technology Data Exchange (ETDEWEB)

    Dengler, Klaus; Anger, Johanna [DLR, Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere; Keil, Christian [Ludwig-Maximilians-Univ. Muenchen (Germany). Meteorologisches Inst.

    2011-12-15

    Time-Lagged Ensemble (TLE) forecasts of the high-resolution model COSMO-FRA with a horizontal resolution of 2.8 km, an hourly update cycle and a lead time of six hours are validated against measurements of a Wind-Temperature Radar (WTR) for three cases representing different weather regimes: a frontal passage, a stormy situation and a high pressure system. Forecasts and measurements are available at high temporal resolution every 10 minutes. The present study focuses on parameters relevant for forecasting aircraft wake vortices, namely wind, virtual potential temperature and Turbulent Kinetic Energy (TKE) for altitudes below 1600 m. When compared with a deterministic run started once a day at 00 UTC with a lead time of 24 h a reduction of forecast error in the first two forecast hours is visible for all wind components. For wind speed at low levels around 400 m this reduction is of order 1.7 ms{sup -1} for the 1-hour forecast member and 0.9 ms{sup -1} for the equally weighted ensemble mean depending on weather situation. TLE forecasts of virtual potential temperature show an improvement of about 1 K except for the high pressure system while forecast errors of TKE are reduced in all cases below 900 m. Since no data assimilation is used presently in COSMO-FRA, the improvements of the forecasts are the result of the hourly update cycle which benefits from most recent initial conditions provided by the COSMO-EU analysis. The results of this study may contribute to improve the quality of wake vortex predictions and encourage the assimilation of temporal high resolution wind data into COSMO-FRA to further improve the very short range forecasts. (orig.)

  15. EXPERIMENTS OF ENSEMBLE FORECAST OF TYPHOON TRACK USING BDA PERTURBING METHOD

    Institute of Scientific and Technical Information of China (English)

    HUANG Yan-yan; WAN Qi-lin; YUAN Jin-nan; DING Wei-yu

    2006-01-01

    A new method, BDA perturbing, is used in ensemble forecasting of typhoon track. This method is based on the Bogus Data Assimilation scheme. It perturbs the initial position and intensity of typhoons and gets a series of bogus vortex. Then each bogus vortex is used in data assimilation to obtain initial conditions. Ensemble forecast members are constructed by conducting simulation with these initial conditions. Some cases of typhoon are chosen to test the validity of this new method and the results show that: using the BDA perturbing method to perturb initial position and intensity of typhoon for track forecast can improve accuracy, compared with the direct use of the BDA assimilation scheme. And it is concluded that a perturbing amplitude of intensity of 5 hPa is probably more appropriate than 10 hPa if the BDA perturbing method is used in combination with initial position perturbation.

  16. Advancing Data Assimilation in Operational Hydrologic Forecasting: Progresses, Challenges, and Emerging Opportunities

    Science.gov (United States)

    Liu, Yuqiong; Weerts, A.; Clark, M.; Hendricks Franssen, H.-J; Kumar, S.; Moradkhani, H.; Seo, D.-J.; Schwanenberg, D.; Smith, P.; van Dijk, A. I. J. M.; hide

    2012-01-01

    Data assimilation (DA) holds considerable potential for improving hydrologic predictions as demonstrated in numerous research studies. However, advances in hydrologic DA research have not been adequately or timely implemented in operational forecast systems to improve the skill of forecasts for better informed real-world decision making. This is due in part to a lack of mechanisms to properly quantify the uncertainty in observations and forecast models in real-time forecasting situations and to conduct the merging of data and models in a way that is adequately efficient and transparent to operational forecasters. The need for effective DA of useful hydrologic data into the forecast process has become increasingly recognized in recent years. This motivated a hydrologic DA workshop in Delft, the Netherlands in November 2010, which focused on advancing DA in operational hydrologic forecasting and water resources management. As an outcome of the workshop, this paper reviews, in relevant detail, the current status of DA applications in both hydrologic research and operational practices, and discusses the existing or potential hurdles and challenges in transitioning hydrologic DA research into cost-effective operational forecasting tools, as well as the potential pathways and newly emerging opportunities for overcoming these challenges. Several related aspects are discussed, including (1) theoretical or mathematical aspects in DA algorithms, (2) the estimation of different types of uncertainty, (3) new observations and their objective use in hydrologic DA, (4) the use of DA for real-time control of water resources systems, and (5) the development of community-based, generic DA tools for hydrologic applications. It is recommended that cost-effective transition of hydrologic DA from research to operations should be helped by developing community-based, generic modeling and DA tools or frameworks, and through fostering collaborative efforts among hydrologic modellers, DA

  17. Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2012-03-01

    Full Text Available Data assimilation (DA holds considerable potential for improving hydrologic predictions as demonstrated in numerous research studies. However, advances in hydrologic DA research have not been adequately or timely implemented into operational forecast systems to improve the skill of forecasts to better inform real-world decision making. This is due in part to a lack of mechanisms to properly quantify the uncertainty in observations and forecast models in real-time forecasting situations and to conduct the merging of data and models in a way that is adequately efficient and transparent to operational forecasters.

    The need for effective DA of useful hydrologic data into the forecast process has become increasingly recognized in recent years. This motivated a hydrologic DA workshop in Delft, The Netherlands in November 2010, which focused on advancing DA in operational hydrologic forecasting and water resources management. As an outcome of the workshop, this paper reviews, in relevant detail, the current status of DA applications in both hydrologic research and operational practices, and discusses the existing or potential hurdles and challenges in transitioning hydrologic DA research into cost-effective operational forecasting tools, as well as the potential pathways and newly emerging opportunities for overcoming these challenges. Several related aspects are discussed, including (1 theoretical or mathematical considerations in DA algorithms, (2 the estimation of different types of uncertainty, (3 new observations and their objective use in hydrologic DA, (4 the use of DA for real-time control of water resources systems, and (5 the development of community-based, generic DA tools for hydrologic applications. It is recommended that cost-effective transition of hydrologic DA from research to operations should be helped by developing community-based, generic modelling and DA tools or frameworks, and through fostering collaborative efforts

  18. Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2012-10-01

    Full Text Available Data assimilation (DA holds considerable potential for improving hydrologic predictions as demonstrated in numerous research studies. However, advances in hydrologic DA research have not been adequately or timely implemented in operational forecast systems to improve the skill of forecasts for better informed real-world decision making. This is due in part to a lack of mechanisms to properly quantify the uncertainty in observations and forecast models in real-time forecasting situations and to conduct the merging of data and models in a way that is adequately efficient and transparent to operational forecasters.

    The need for effective DA of useful hydrologic data into the forecast process has become increasingly recognized in recent years. This motivated a hydrologic DA workshop in Delft, the Netherlands in November 2010, which focused on advancing DA in operational hydrologic forecasting and water resources management. As an outcome of the workshop, this paper reviews, in relevant detail, the current status of DA applications in both hydrologic research and operational practices, and discusses the existing or potential hurdles and challenges in transitioning hydrologic DA research into cost-effective operational forecasting tools, as well as the potential pathways and newly emerging opportunities for overcoming these challenges. Several related aspects are discussed, including (1 theoretical or mathematical aspects in DA algorithms, (2 the estimation of different types of uncertainty, (3 new observations and their objective use in hydrologic DA, (4 the use of DA for real-time control of water resources systems, and (5 the development of community-based, generic DA tools for hydrologic applications. It is recommended that cost-effective transition of hydrologic DA from research to operations should be helped by developing community-based, generic modeling and DA tools or frameworks, and through fostering collaborative efforts among

  19. Ensemble approach to wheat yield forecasting in Ukraine

    Science.gov (United States)

    Kussul, Nataliia; Kolotii, Andrii; Skakun, Sergii; Shelestov, Andrii; Kussul, Olga; Kravchenko, Oleksii

    2014-05-01

    Crop yield forecasting is an extremely important component of the agriculture monitoring domain. In our previous study [1], we assessed relative efficiency and feasibility of using an NDVI-based empirical model for winter wheat yield forecasting at oblast level in Ukraine. Though the NDVI-based model provides minimum data requirements, it has some limitations since NDVI is indirectly related just to biomass but not meteorological conditions. Therefore, it is necessary to assess satellite-derived parameters that incorporate meteorology while maintaining the requirement of minimum data inputs. The objective of the proposed paper is several-fold: (i) to assess efficiency of using biophysical satellite-derived parameters for crop yield forecasting for Ukraine and select the optimal ones based on rigorous feature selection procedure; (ii) to assimilate predictions made by models built on various satellite-derived parameters. Two new parameters are considered in the paper: (i) vegetation health index (VHI) at 4 km spatial resolution derived from a series of NOAA satellites; (ii) Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) derived from SPOT-VEGETATION at 1 km spatial resolution. VHI data are provided as weekly composites and FAPAR data are provided as decadal composites. The particular advantage of using VHI is that it incorporates moisture and thermal conditions of vegetation canopy, while FAPAR is directly related to the primary productivity of photosynthesis It is required to find a day of the year for which a parameter is taken and used in the empirical model. For this purpose, a Random Forest feature selection procedure is applied. It is found that VHI and FAPAR values taken in April-May provided the minimum error value when comparing to the official statistics, thus enabling forecasts 2-3 months prior to harvest, and this corresponds to results derived from LOOCV procedure. The best timing for making reliable yield forecasts is nearly the same

  20. Addressing the Challenges of Distributed Hydrologic Modeling for Operational Forecasting

    Science.gov (United States)

    Butts, M. B.; Yamagata, K.; Kobor, J.; Fontenot, E.

    2008-05-01

    from flood modelling on the Odra River in Poland show that this model system can perform as well as traditional models and gives good predictions in mountainous catchments. By allowing different process representations to be applied within the same framework, it is possible to develop hydrological models in a phased manner. This phased approach was used for example in the Napa Valley, California where it is important to balance water demands for urban areas, agriculture, and ecosystem preservation while maintaining flood protection and water quality. A first regional model was developed with a detailed description of the surface process and a simple linear reservoir was used to simulate the groundwater component. Then a more detailed fully-distributed finite-difference groundwater model was constructed within the same framework while maintaining the surface water components. In the DMIP case study, Blue River, Oklahoma, this flexibility has been used to evaluate the performance of different model structures, and to determine the impact of grid resolution on model accuracy. The results show clear limits to the benefit attained by increasing model complexity and resolution. In contrast, detailed flood mapping using high resolution topography carried out with this tool in South Boulder Creek, Colorado show that very detailed description of the topography and flows paths are required for accurate flood mapping and determination of the flood risk. This framework is now being used to develop a flood forecasting system for the Big Cypress Basin in Florida.

  1. Improvement in Background Error Covariances Using Ensemble Forecasts for Assimilation of High-Resolution Satellite Data

    Institute of Scientific and Technical Information of China (English)

    Seung-Woo LEE; Dong-Kyou LEE

    2011-01-01

    Satellite data obtained over synoptic data-sparse regions such as an ocean contribute toward improving the quality of the initial state of limited-area models. Background error covariances are crucial to the proper distribution of satellite-observed information in variational data assimilation. In the NMC (National Meteorological Center) method, background error covariances are underestimated over data-sparse regions such as an ocean because of small differences between different forecast times. Thus, it is necessary to reconstruct and tune the background error covariances so as to maximize the usefulness of the satellite data for the initial state of limited-area models, especially over an ocean where there is a lack of conventional data.In this study, we attempted to estimate background error covariances so as to provide adequate error statistics for data-sparse regions by using ensemble forecasts of optimal perturbations using bred vectors.The background error covariances estimated by the ensemble method reduced the overestimation of error amplitude obtained by the NMC method. By employing an appropriate horizontal length scale to exclude spurious correlations, the ensemble method produced better results than the NMC method in the assimilation of retrieved satellite data. Because the ensemble method distributes observed information over a limited local area, it would be more useful in the analysis of high-resolution satellite data. Accordingly, the performance of forecast models can be improved over the area where the satellite data are assimilated.

  2. A Regional Ensemble Forecast System for Stratiform Precipitation Events in Northern China.Part Ⅰ: A Case Study

    Institute of Scientific and Technical Information of China (English)

    ZHU Jiangshan; Fanyou KONG; LEI Hengchi

    2012-01-01

    A single-model,short-range,ensemble forecasting system (Institute of Atmospheric Physics,Regional Ensemble Forecast System,IAP REFS) with 15-km grid spacing,configured with multiple initial conditions,multiple lateral boundary conditions,and multiple physics parameterizations with 11 ensemble members,was developed using the Weather and Research Forecasting Model Advanced Research modeling system for prediction of stratiform precipitation events in northern China.This is the first part of a broader research project to develop a novel cloud-seeding operational system in a probabilistic framework.The ensemble perturbations were extracted from selected members of the National Center for Environmental Prediction Global Ensemble Forecasting System (NCEP GEFS) forecasts,and an inflation factor of two was applied to compensate for the lack of spread in the GEFS forecasts over the research region.Experiments on an actual stratiform precipitation case that occurred on 5-7 June 2009 in northern China were conducted to validate the ensemble system.The IAP REFS system had reasonably good performance in predicting the observed stratiform precipitation system.The perturbation inflation enlarged the ensemble spread and alleviated the underdispersion caused by parent forecasts.Centering the extracted perturbations on higher-resolution NCEP Global Forecast System forecasts resulted in less ensemble mean root-mean-square error and better accuracy in probabilistic quantitative precipitation forecasts (PQPF).However,the perturbation inflation and recentering had less effect on near-surface-level variables compared to the mid-level variables,and its influence on PQPF resolution was limited as well.

  3. From ENSEMBLES to CORDEX: exploring the progress for hydrological impact research for the upper Danube basin

    Science.gov (United States)

    Stanzel, Philipp; Kling, Harald

    2017-04-01

    EURO-CORDEX Regional Climate Model (RCM) data are available as result of the latest initiative of the climate modelling community to provide ever improved simulations of past and future climate in Europe. The spatial resolution of the climate models increased from 25 x 25 km in the previous coordinated initiative, ENSEMBLES, to 12 x 12 km in the CORDEX EUR-11 simulations. This higher spatial resolution might yield improved representation of the historic climate, especially in complex mountainous terrain, improving applicability in impact studies. CORDEX scenario simulations are based on Representative Concentration Pathways, while ENSEMBLES applied the SRES greenhouse gas emission scenarios. The new emission scenarios might lead to different projections of future climate. In this contribution we explore these two dimensions of development from ENSEMBLES to CORDEX - representation of the past and projections for the future - in the context of a hydrological climate change impact study for the Danube River. We replicated previous hydrological simulations that used ENSEMBLES data of 21 RCM simulations under SRES A1B emission scenario as meteorological input data (Kling et al. 2012), and now applied CORDEX EUR-11 data of 16 RCM simulations under RCP4.5 and RCP8.5 emission scenarios. The climate variables precipitation and temperature were used to drive a monthly hydrological model of the upper Danube basin upstream of Vienna (100,000 km2). RCM data was bias corrected and downscaled to the scale of hydrological model units. Results with CORDEX data were compared with results with ENSEMBLES data, analysing both the driving meteorological input and the resulting discharge projections. Results with CORDEX data show no general improvement in the accuracy of representing historic climatic features, despite the increase in spatial model resolution. The tendency of ENSEMBLES scenario projections of increasing precipitation in winter and decreasing precipitation in summer is

  4. Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting.

    Science.gov (United States)

    Men, Zhongxian; Yee, Eugene; Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian

    2014-01-01

    Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an "optimal" weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds.

  5. Multimodel SuperEnsemble technique for quantitative precipitation forecasts in Piemonte region

    Directory of Open Access Journals (Sweden)

    D. Cane

    2010-02-01

    Full Text Available The Multimodel SuperEnsemble technique is a powerful post-processing method for the estimation of weather forecast parameters reducing direct model output errors. It has been applied to real time NWP, TRMM-SSM/I based multi-analysis, Seasonal Climate Forecasts and Hurricane Forecasts. The novelty of this approach lies in the methodology, which differs from ensemble analysis techniques used elsewhere.

    Several model outputs are put together with adequate weights to obtain a combined estimation of meteorological parameters. Weights are calculated by least-square minimization of the difference between the model and the observed field during a so-called training period. Although it can be applied successfully on the continuous parameters like temperature, humidity, wind speed and mean sea level pressure, the Multimodel SuperEnsemble gives good results also when applied on the precipitation, a parameter quite difficult to handle with standard post-processing methods. Here we present our methodology for the Multimodel precipitation forecasts, involving a new accurate statistical method for bias correction and a wide spectrum of results over Piemonte very dense non-GTS weather station network.

  6. Bivariate ensemble model output statistics approach for joint forecasting of wind speed and temperature

    Science.gov (United States)

    Baran, Sándor; Möller, Annette

    2017-02-01

    Forecast ensembles are typically employed to account for prediction uncertainties in numerical weather prediction models. However, ensembles often exhibit biases and dispersion errors, thus they require statistical post-processing to improve their predictive performance. Two popular univariate post-processing models are the Bayesian model averaging (BMA) and the ensemble model output statistics (EMOS). In the last few years, increased interest has emerged in developing multivariate post-processing models, incorporating dependencies between weather quantities, such as for example a bivariate distribution for wind vectors or even a more general setting allowing to combine any types of weather variables. In line with a recently proposed approach to model temperature and wind speed jointly by a bivariate BMA model, this paper introduces an EMOS model for these weather quantities based on a bivariate truncated normal distribution. The bivariate EMOS model is applied to temperature and wind speed forecasts of the 8-member University of Washington mesoscale ensemble and the 11-member ALADIN-HUNEPS ensemble of the Hungarian Meteorological Service and its predictive performance is compared to the performance of the bivariate BMA model and a multivariate Gaussian copula approach, post-processing the margins with univariate EMOS. While the predictive skills of the compared methods are similar, the bivariate EMOS model requires considerably lower computation times than the bivariate BMA method.

  7. Development of web-based services for a novel ensemble flood forecasting and risk assessment system

    Science.gov (United States)

    He, Y.; Manful, D. Y.; Cloke, H. L.; Wetterhall, F.; Li, Z.; Bao, H.; Pappenberger, F.; Wesner, S.; Schubert, L.; Yang, L.; Hu, Y.

    2009-12-01

    Flooding is a wide spread and devastating natural disaster worldwide. Floods that took place in the last decade in China were ranked the worst amongst recorded floods worldwide in terms of the number of human fatalities and economic losses (Munich Re-Insurance). Rapid economic development and population expansion into low lying flood plains has worsened the situation. Current conventional flood prediction systems in China are neither suited to the perceptible climate variability nor the rapid pace of urbanization sweeping the country. Flood prediction, from short-term (a few hours) to medium-term (a few days), needs to be revisited and adapted to changing socio-economic and hydro-climatic realities. The latest technology requires implementation of multiple numerical weather prediction systems. The availability of twelve global ensemble weather prediction systems through the ‘THORPEX Interactive Grand Global Ensemble’ (TIGGE) offers a good opportunity for an effective state-of-the-art early forecasting system. A prototype of a Novel Flood Early Warning System (NEWS) using the TIGGE database is tested in the Huai River basin in east-central China. It is the first early flood warning system in China that uses the massive TIGGE database cascaded with river catchment models, the Xinanjiang hydrologic model and a 1-D hydraulic model, to predict river discharge and flood inundation. The NEWS algorithm is also designed to provide web-based services to a broad spectrum of end-users. The latter presents challenges as both databases and proprietary codes reside in different locations and converge at dissimilar times. NEWS will thus make use of a ready-to-run grid system that makes distributed computing and data resources available in a seamless and secure way. An ability to run or function on different operating systems and provide an interface or front that is accessible to broad spectrum of end-users is additional requirement. The aim is to achieve robust

  8. Ensemble forecast of human West Nile virus cases and mosquito infection rates

    Science.gov (United States)

    Defelice, Nicholas B.; Little, Eliza; Campbell, Scott R.; Shaman, Jeffrey

    2017-02-01

    West Nile virus (WNV) is now endemic in the continental United States; however, our ability to predict spillover transmission risk and human WNV cases remains limited. Here we develop a model depicting WNV transmission dynamics, which we optimize using a data assimilation method and two observed data streams, mosquito infection rates and reported human WNV cases. The coupled model-inference framework is then used to generate retrospective ensemble forecasts of historical WNV outbreaks in Long Island, New York for 2001-2014. Accurate forecasts of mosquito infection rates are generated before peak infection, and >65% of forecasts accurately predict seasonal total human WNV cases up to 9 weeks before the past reported case. This work provides the foundation for implementation of a statistically rigorous system for real-time forecast of seasonal outbreaks of WNV.

  9. Design and experimentation of an empirical multistructure framework for accurate, sharp and reliable hydrological ensembles

    Science.gov (United States)

    Seiller, G.; Anctil, F.; Roy, R.

    2017-09-01

    This paper outlines the design and experimentation of an Empirical Multistructure Framework (EMF) for lumped conceptual hydrological modeling. This concept is inspired from modular frameworks, empirical model development, and multimodel applications, and encompasses the overproduce and select paradigm. The EMF concept aims to reduce subjectivity in conceptual hydrological modeling practice and includes model selection in the optimisation steps, reducing initial assumptions on the prior perception of the dominant rainfall-runoff transformation processes. EMF generates thousands of new modeling options from, for now, twelve parent models that share their functional components and parameters. Optimisation resorts to ensemble calibration, ranking and selection of individual child time series based on optimal bias and reliability trade-offs, as well as accuracy and sharpness improvement of the ensemble. Results on 37 snow-dominated Canadian catchments and 20 climatically-diversified American catchments reveal the excellent potential of the EMF in generating new individual model alternatives, with high respective performance values, that may be pooled efficiently into ensembles of seven to sixty constitutive members, with low bias and high accuracy, sharpness, and reliability. A group of 1446 new models is highlighted to offer good potential on other catchments or applications, based on their individual and collective interests. An analysis of the preferred functional components reveals the importance of the production and total flow elements. Overall, results from this research confirm the added value of ensemble and flexible approaches for hydrological applications, especially in uncertain contexts, and open up new modeling possibilities.

  10. The effects of land surface process perturbations in a global ensemble forecast system

    Science.gov (United States)

    Deng, Guo; Zhu, Yuejian; Gong, Jiandong; Chen, Dehui; Wobus, Richard; Zhang, Zhe

    2016-10-01

    Atmospheric variability is driven not only by internal dynamics, but also by external forcing, such as soil states, SST, snow, sea-ice cover, and so on. To investigate the forecast uncertainties and effects of land surface processes on numerical weather prediction, we added modules to perturb soil moisture and soil temperature into NCEP's Global Ensemble Forecast System (GEFS), and compared the results of a set of experiments involving different configurations of land surface and atmospheric perturbation. It was found that uncertainties in different soil layers varied due to the multiple timescales of interactions between land surface and atmospheric processes. Perturbations of the soil moisture and soil temperature at the land surface changed sensible and latent heat flux obviously, as compared to the less or indirect land surface perturbation experiment from the day-to-day forecasts. Soil state perturbations led to greater variation in surface heat fluxes that transferred to the upper troposphere, thus reflecting interactions and the response to atmospheric external forcing. Various verification scores were calculated in this study. The results indicated that taking the uncertainties of land surface processes into account in GEFS could contribute a slight improvement in forecast skill in terms of resolution and reliability, a noticeable reduction in forecast error, as well as an increase in ensemble spread in an under-dispersive system. This paper provides a preliminary evaluation of the effects of land surface processes on predictability. Further research using more complex and suitable methods is needed to fully explore our understanding in this area.

  11. Development and Evaluation of Storm Surge Ensemble Forecasting for the Philippines Using JMA Storm Surge Model

    Science.gov (United States)

    Lapidez, J. P. B.; Tablazon, J. P.; Lagmay, A. M. F. A.; Suarez, J. K. B.; Santiago, J. T.

    2014-12-01

    The Philippines is one of the countries most vulnerable to storm surge. It is located in the North-western Pacific basin which is the most active basin in the planet. An average of 20 tropical cyclones enters the Philippine area of responsibility (PAR) every year. The archipelagic nature of the country with regions having gently sloping coasts and shallow bays also contribute to the formation of extreme surges. Last November 2013, storm surge brought by super typhoon Haiyan severely damaged several coastal regions in the Visayan Islands. Haiyan left more than 6 300 casualties and damages amounting to more than $ 2 billion. Extreme storm surge events such as this highlight the need to establish a storm surge early warning system for the country. This study explores the development and evaluation of storm surge ensemble forecasting for the Philippines using the Japan Meteorological Agency (JMA) storm surge model. 36-hour, 24-hour, and 12-hour tropical cyclone forecasts are used to generate an ensemble storm surge forecast to give the most probable storm surge height at a specific point brought by an incoming tropical cyclone. The result of the storm surge forecast is compared to tide gauge record to evaluate the accuracy. The total time of computation and dissemination of forecast result is also examined to assess the feasibility of using the JMA storm surge model for operational purposes.

  12. Real-Time Analysis and Forecasting of Multisite River Flow Using a Distributed Hydrological Model

    Directory of Open Access Journals (Sweden)

    Mingdong Sun

    2014-01-01

    Full Text Available A spatial distributed hydrological forecasting system was developed to promote the analysis of river flow dynamic state in a large basin. The research presented the real-time analysis and forecasting of multisite river flow in the Nakdong River Basin using a distributed hydrological model with radar rainfall forecast data. A real-time calibration algorithm of hydrological distributed model was proposed to investigate the particular relationship between the water storage and basin discharge. Demonstrate the approach of simulating multisite river flow using a distributed hydrological model couple with real-time calibration and forecasting of multisite river flow with radar rainfall forecasts data. The hydrographs and results exhibit that calibrated flow simulations are very approximate to the flow observation at all sites and the accuracy of forecasting flow is gradually decreased with lead times extending from 1 hr to 3 hrs. The flow forecasts are lower than the flow observation which is likely caused by the low estimation of radar rainfall forecasts. The research has well demonstrated that the distributed hydrological model is readily applicable for multisite real-time river flow analysis and forecasting in a large basin.

  13. Real-time demonstration and evaluation of over-the-loop short to medium-range ensemble streamflow forecasting

    Science.gov (United States)

    Wood, A. W.; Clark, E.; Newman, A. J.; Nijssen, B.; Clark, M. P.; Gangopadhyay, S.; Arnold, J. R.

    2015-12-01

    The US National Weather Service River Forecasting Centers are beginning to operationalize short range to medium range ensemble predictions that have been in development for several years. This practice contrasts with the traditional single-value forecast practice at these lead times not only because the ensemble forecasts offer a basis for quantifying forecast uncertainty, but also because the use of ensembles requires a greater degree of automation in the forecast workflow than is currently used. For instance, individual ensemble member forcings cannot (practically) be manually adjusted, a step not uncommon with the current single-value paradigm, thus the forecaster is required to adopt a more 'over-the-loop' role than before. The relative lack of experience among operational forecasters and forecast users (eg, water managers) in the US with over-the-loop approaches motivates the creation of a real-time demonstration and evaluation platform for exploring the potential of over-the-loop workflows to produce usable ensemble short-to-medium range forecasts, as well as long range predictions. We describe the development and early results of such an effort by a collaboration between NCAR and the two water agencies, the US Army Corps of Engineers and the US Bureau of Reclamation. Focusing on small to medium sized headwater basins around the US, and using multi-decade series of ensemble streamflow hindcasts, we also describe early results, assessing the skill of daily-updating, over-the-loop forecasts driven by a set of ensemble atmospheric outputs from the NCEP GEFS for lead times from 1-15 days.

  14. Multi-model ensemble forecasting of North Atlantic tropical cyclone activity

    Science.gov (United States)

    Villarini, Gabriele; Luitel, Beda; Vecchi, Gabriel A.; Ghosh, Joyee

    2016-09-01

    North Atlantic tropical cyclones (TCs) and hurricanes are responsible for a large number of fatalities and economic damage. Skillful seasonal predictions of the North Atlantic TC activity can provide basic information critical to our improved preparedness. This study focuses on the development of statistical-dynamical seasonal forecasting systems for different quantities related to the frequency and intensity of North Atlantic TCs. These models use only tropical Atlantic and tropical mean sea surface temperatures (SSTs) to describe the variability exhibited by the observational records because they reflect the importance of both local and non-local effects on the genesis and development of TCs in the North Atlantic basin. A set of retrospective forecasts of SSTs by six experimental seasonal-to-interannual prediction systems from the North American Multi-Model Ensemble are used as covariates. The retrospective forecasts are performed over the period 1982-2015. The skill of these statistical-dynamical models is quantified for different quantities (basin-wide number of tropical storms and hurricanes, power dissipation index and accumulated cyclone energy) for forecasts initialized as early as November of the year prior to the season to forecast. The results of this work show that it is possible to obtain skillful retrospective forecasts of North Atlantic TC activity with a long lead time. Moreover, probabilistic forecasts of North Atlantic TC activity for the 2016 season are provided.

  15. Extending the square root method to account for additive forecast noise in ensemble methods

    CERN Document Server

    Raanes, Patrick N; Bertino, Laurent

    2015-01-01

    A square root approach is considered for the problem of accounting for model noise in the forecast step of the ensemble Kalman filter (EnKF) and related algorithms. The primary aim is to replace the method of simulated, pseudo-random, additive noise so as to eliminate the associated sampling errors. The core method is based on the analysis step of ensemble square root filters, and consists in the deterministic computation of a transform matrix. The theoretical advantages regarding dynamical consistency are surveyed, applying equally well to the square root method in the analysis step. A fundamental problem due to the limited size of the ensemble subspace is discussed, and novel solutions that complement the core method are suggested and studied. Benchmarks from twin experiments with simple, low-order dynamics indicate improved performance over standard approaches such as additive, simulated noise and multiplicative inflation.

  16. Forecasting of Severe Weather in Austria and Hungary Using High-Resolution Ensemble Prediction System

    Science.gov (United States)

    Szucs, Mihaly; Simon, Andre; Szintai, Balazs; Suklitsch, Martin; Wang, Yong; Wastl, Clemens; Boloni, Gergely

    2015-04-01

    The study presents and compares several approaches in EPS (ensemble prediction system) forecasting based on the non-hydrostatic, high resolution AROME model. The PEARP (global ARPEGE model EPS) was used for coupling. Besides, AROME-EPS was also generated upon hydrostatic ALADIN-EPS forecasts (LAEF), which were used as initial and lateral boundary conditions for each AROME-EPS run. The horizontal resolution of the AROME model is 2.5km and it uses 60 vertical levels for the vertical discretization. In most of the tests, the AROME-EPS run with 10+1 members in Hungarian and 16 members in Austrian implementation. The forecast length was usually set to 30-36 hours. The use of high-resolution EPS has advantages in almost all situations with severe convection (mostly in forecasting intense multicell thunderstorms or mesoscale convective systems of non-frontal origin). The possibility of severe thunderstorm was indicated by several EPS runs even if the deterministic (reference) AROME model failed to forecast the event. Similarly, it could be shown that the AROME-EPS can perform better than hydrostatic global or ALADIN-EPS models in situations with strong wind or heavy precipitation induced by large-scale circulation (mainly in mountain regions). Both EDA (Ensemble of Data Assimilation) and SPPT (Stochastically Perturbed Parameterized Tendencies) methods were tested as a potential perturbation generation method on limited area. The EDA method was able to improve the accuracy of single members through the reduction of the analysis error by applying local data assimilation. It was also able to increase the spread of the system in the early hours due to the additional analysis perturbations. The impact of the SPPT scheme was proven to be smaller in comparison to the impact of this method in global ensemble systems. Further possibilities of improving the assimilation methods and the setup of the AROME-EPS are also discussed.

  17. Perturbation of convection-permitting NWP forecasts for flash-flood ensemble forecasting

    National Research Council Canada - National Science Library

    Vincendon, B; Ducrocq, V; Nuissier, O; Vié, B

    2011-01-01

      Mediterranean intense weather events often lead to devastating flash-floods. Extending the forecasting lead times further than the watershed response times, implies the use of numerical weather prediction (NWP...

  18. Ensemble forecasting of short-term system scale irrigation demands using real-time flow data and numerical weather predictions

    Science.gov (United States)

    Perera, Kushan C.; Western, Andrew W.; Robertson, David E.; George, Biju; Nawarathna, Bandara

    2016-06-01

    Irrigation demands fluctuate in response to weather variations and a range of irrigation management decisions, which creates challenges for water supply system operators. This paper develops a method for real-time ensemble forecasting of irrigation demand and applies it to irrigation command areas of various sizes for lead times of 1 to 5 days. The ensemble forecasts are based on a deterministic time series model coupled with ensemble representations of the various inputs to that model. Forecast inputs include past flow, precipitation, and potential evapotranspiration. These inputs are variously derived from flow observations from a modernized irrigation delivery system; short-term weather forecasts derived from numerical weather prediction models and observed weather data available from automatic weather stations. The predictive performance for the ensemble spread of irrigation demand was quantified using rank histograms, the mean continuous rank probability score (CRPS), the mean CRPS reliability and the temporal mean of the ensemble root mean squared error (MRMSE). The mean forecast was evaluated using root mean squared error (RMSE), Nash-Sutcliffe model efficiency (NSE) and bias. The NSE values for evaluation periods ranged between 0.96 (1 day lead time, whole study area) and 0.42 (5 days lead time, smallest command area). Rank histograms and comparison of MRMSE, mean CRPS, mean CRPS reliability and RMSE indicated that the ensemble spread is generally a reliable representation of the forecast uncertainty for short lead times but underestimates the uncertainty for long lead times.

  19. Ensemble hydrological prediction of streamflow percentile at ungauged basins in Pakistan

    Science.gov (United States)

    Waseem, Muhammad; Ajmal, Muhammad; Kim, Tae-Woong

    2015-06-01

    Streamflow records with sufficient spatial and temporal coverage at the site of interest are usually scarce in Pakistan. As an alternative, various regional methods have been frequently adopted to derive hydrological information, which in essence attempt to transfer hydrological information from gauged to ungauged catchments. In this study, a new concept of ensemble hydrological prediction (EHP) was introduced which is an improved regional method for hydrological prediction at ungauged sites. It was mainly based on the performance weights (triple-connection weights (TCW)) derived from Nash Sutcliffe efficiency (NSE) and hydrological variable (here percentiles) calculated from three traditional regional transfer methods (RTMs) with suitable modification (i.e., three-step drainage area ratio (DAR) method, inverse distance weighting (IDW) method, and three-step regional regression analysis (RRA)). The overall results indicated that the proposed EHP method was robust for estimating hydrological percentiles at ungauged sites as compared to traditional individual RTMs. The comparative study based on NSE, percent bias (PBIAS) and the relative error (RE) as performance criteria resulted that the EHP is a constructive alternative for hydrological prediction of ungauged basins.

  20. Differential Hydrological Grey Model (DHGM) with self-memory function and its application to flood forecasting

    Institute of Scientific and Technical Information of China (English)

    CHEN XiangDong; XIA Jun; XU Qian

    2009-01-01

    This paper addresses a problem of flood forecasting with the self-memory function. Considering flood forecasting's uncertainty and updating demand, a hybrid hydrological model, namely Differential Hydrological Grey Model with self-memory function (DHGM-SM), is developed. The model has two fold features. One is to establish a self-memorization equation linked with DHGM, that could extract useful information from past data series and realize updating of hydrological dynamic process. The other is that this model has higher efficiency relative to original hydrological model without self-memory function. This approach was applied to river flow forecasting of two representative basins in Tunxi of South China and Daqinggou of North China. It is shown that this hybrid method has satisfactory forecasting accuracy by examination of both calibration and validation.

  1. Hydrological Analysis for Inflow Forecasting into Temengor Dam

    Science.gov (United States)

    Najid, MI; Sidek, LM; Hidayah, B.; Roseli, ZA

    2016-03-01

    These days, natural disaster such as flood is the main concern for hydrologists. One of solutions in understanding the reason of flood is by prediction of the event sooner than normal occurrence. One of the criteria is lead time or travel time that is important in the study of fresh waters and flood events. Therefore, estimation of lead or travel time for flood event can be beneficial primary information. The objective of this study is to estimate the lead time or travel time for outlet of Temengor dam in Malaysia. Tenaga Nasional Berhad (TNB) Sungai Perak dam operation has the main contribution on decision support for early water released and flood warning to authorities and locals resident for in the down streams area. For this study, hydrological analysis carried out will help to determine which years that give more rainfall contribution into the reservoir. Rainfall contribution of reservoir help to understanding rainfall distribution and peak discharge on that period. It also help for calibration of forecasting model system for better accuracy of flood hydrograph. There may be various methods to determine the rainfall contribution of catchment. The result has shown that, the rainfall contribution for Temengor catchment, is more on November in each year which is the monsoon season in Malaysia. TNB dam operational decision support systems can prepare and be more aware at this time for flood control and flood mitigation.

  2. Combined assimilation of streamflow and snow water equivalent for mid-term ensemble streamflow forecasts in snow-dominated regions

    Science.gov (United States)

    Bergeron, Jean M.; Trudel, Mélanie; Leconte, Robert

    2016-10-01

    The potential of data assimilation for hydrologic predictions has been demonstrated in many research studies. Watersheds over which multiple observation types are available can potentially further benefit from data assimilation by having multiple updated states from which hydrologic predictions can be generated. However, the magnitude and time span of the impact of the assimilation of an observation varies according not only to its type, but also to the variables included in the state vector. This study examines the impact of multivariate synthetic data assimilation using the ensemble Kalman filter (EnKF) into the spatially distributed hydrologic model CEQUEAU for the mountainous Nechako River located in British Columbia, Canada. Synthetic data include daily snow cover area (SCA), daily measurements of snow water equivalent (SWE) at three different locations and daily streamflow data at the watershed outlet. Results show a large variability of the continuous rank probability skill score over a wide range of prediction horizons (days to weeks) depending on the state vector configuration and the type of observations assimilated. Overall, the variables most closely linearly linked to the observations are the ones worth considering adding to the state vector due to the limitations imposed by the EnKF. The performance of the assimilation of basin-wide SCA, which does not have a decent proxy among potential state variables, does not surpass the open loop for any of the simulated variables. However, the assimilation of streamflow offers major improvements steadily throughout the year, but mainly over the short-term (up to 5 days) forecast horizons, while the impact of the assimilation of SWE gains more importance during the snowmelt period over the mid-term (up to 50 days) forecast horizon compared with open loop. The combined assimilation of streamflow and SWE performs better than their individual counterparts, offering improvements over all forecast horizons considered

  3. The Performance and Feasibility of Ensemble Forecast Sensitivity to Observations-based Proactive Quality Control Scheme

    Science.gov (United States)

    Chen, T. C.; Hotta, D.; Kalnay, E.

    2015-12-01

    Operational numerical weather prediction (NWP) systems occasionally exhibit "forecast skill dropouts" in which the forecast skill drops to an abnormally low level, due in part to the assimilation of flawed observational data. Recent studies have shown that a diagnostic technique called Ensemble Forecast Sensitivity to Observations (EFSO) can detect such observations (Kalnay et.al 2012; Ota et al. 2013, Tellus A). Based on this technique, a new Quality Control (QC) scheme called Proactive QC (PQC) has been proposed which detects "flawed" observations using EFSO after just 6 hours forecast, when the analysis at the next cycle becomes available for verification and then repeats the analysis and forecast without using the detected observations (Hotta 2014). In Hotta (2014), it was shown using the JCSDA S4 Testbed that the 6hr PQC reduces the 24-hour forecast errors from the detected skill dropout events. With such encouraging results we are performing preliminary experiments towards operational implementation. First, we show that offline PQC correction can significantly reduce forecast errors up to 5 days, and that the reduction and improved areal coverage can grow with synoptic weather disturbances for several days. Second, with online PQC cycle experiment the reduction of forecast error is shown to be even larger than in the offline version, since the effect could accumulate over each time we perform a PQC correction. Finally, the operational center imposes very tight schedule in order to deliver the products on time, thus the computational cost has to be minimized in order for PQC to be implemented. To avoid performing the analysis twice, which is the most expensive part of PQC, we test the accuracy of constant-K approximation, which assumes the Kalman gain K doesn't change much given the fact that only a small subset of observation is rejected. In this presentation, we will demonstrate the performance and feasibility of PQC implementation in real-time operational

  4. Predictor-weighting strategies for probabilistic wind power forecasting with an analog ensemble

    Directory of Open Access Journals (Sweden)

    Constantin Junk

    2015-04-01

    Full Text Available Unlike deterministic forecasts, probabilistic predictions provide estimates of uncertainty, which is an additional value for decision-making. Previous studies have proposed the analog ensemble (AnEn, which is a technique to generate uncertainty information from a purely deterministic forecast. The objective of this study is to improve the AnEn performance for wind power forecasts by developing static and dynamic weighting strategies, which optimize the predictor combination with a brute-force continuous ranked probability score (CRPS minimization and a principal component analysis (PCA of the predictors. Predictors are taken from the high-resolution deterministic forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF, including forecasts of wind at several heights, geopotential height, pressure, and temperature, among others. The weighting strategies are compared at five wind farms in Europe and the U.S. situated in regions with different terrain complexity, both on and offshore, and significantly improve the deterministic and probabilistic AnEn forecast performance compared to the AnEn with 10‑m wind speed and direction as predictors and compared to PCA-based approaches. The AnEn methodology also provides reliable estimation of the forecast uncertainty. The optimized predictor combinations are strongly dependent on terrain complexity, local wind regimes, and atmospheric stratification. Since the proposed predictor-weighting strategies can accomplish both the selection of relevant predictors as well as finding their optimal weights, the AnEn performance is improved by up to 20 % at on and offshore sites.

  5. Application of a GCM Ensemble Seasonal Climate Forecasts to Crop Yield Prediction in East Africa

    Science.gov (United States)

    Ogutu, G.; Franssen, W.; Supit, I.; Hutjes, R. W. A.

    2016-12-01

    We evaluated the potential use of ECMWF System-4 seasonal climate forecasts (S4) for impacts analysis over East Africa. Using the 15 member, 7 months ensemble forecasts initiated every month for 1981-2010, we tested precipitation (tp), air temperature (tas) and surface shortwave radiation (rsds) forecast skill against the WATCH forcing Data ERA-Interim (WFDEI) re-analysis and other data. We used these forecasts as input in the WOFOST crop model to predict maize yields. Forecast skill is assessed using anomaly correlation (ACC), Ranked Probability Skill Score (RPSS) and the Relative Operating Curve Skill Score (ROCSS) for MAM, JJA and OND growing seasons. Predicted maize yields (S4-yields) are verified against historical observed FAO and nationally reported (NAT) yield statistics, and yields from the same crop model forced by WFDEI (WFDEI-yields). Predictability of the climate forecasts vary with season, location and lead-time. The OND tp forecasts show skill over a larger area up to three months lead-time compared to MAM and JJA. Upper- and lower-tercile tp forecasts are 20-80% better than climatology. Good tas forecast skill is apparent with three months lead-time. The rsds is less skillful than tp and tas in all seasons when verified against WFDEI but higher against others. S4-forecasts captures ENSO related anomalous years with region dependent skill. Anomalous ENSO influence is also seen in simulated yields. Focussing on the main sowing dates in the northern (July), equatorial (March-April) and southern (December) regions, WFDEI-yields are lower than FAO and NAT but anomalies are comparable. Yield anomalies are predictable 3-months before sowing in most of the regions. Differences in interannual variability in the range of ±40% may be related to sensitivity of WOFOST to drought stress while the ACCs are largely positive ranging from 0.3 to 0.6. Above and below-normal yields are predictable with 2-months lead time. We evidenced a potential use of seasonal

  6. Hybrid models for hydrological forecasting: integration of data-driven and conceptual modelling techniques

    NARCIS (Netherlands)

    Corzo Perez, G.A.

    2009-01-01

    This book presents the investigation of different architectures of integrating hydrological knowledge and models with data-driven models for the purpose of hydrological flow forecasting. The models resulting from such integration are referred to as hybrid models. The book addresses the following top

  7. Hybrid models for hydrological forecasting: Integration of data-driven and conceptual modelling techniques

    NARCIS (Netherlands)

    Corzo Perez, G.A.

    2009-01-01

    This book presents the investigation of different architectures of integrating hydrological knowledge and models with data-driven models for the purpose of hydrological flow forecasting. The models resulting from such integration are referred to as hybrid models. The book addresses the following top

  8. Hybrid models for hydrological forecasting: integration of data-driven and conceptual modelling techniques

    NARCIS (Netherlands)

    Corzo Perez, G.A.

    2009-01-01

    This book presents the investigation of different architectures of integrating hydrological knowledge and models with data-driven models for the purpose of hydrological flow forecasting. The models resulting from such integration are referred to as hybrid models. The book addresses the following

  9. Hybrid models for hydrological forecasting: Integration of data-driven and conceptual modelling techniques

    NARCIS (Netherlands)

    Corzo Perez, G.A.

    2009-01-01

    This book presents the investigation of different architectures of integrating hydrological knowledge and models with data-driven models for the purpose of hydrological flow forecasting. The models resulting from such integration are referred to as hybrid models. The book addresses the following

  10. Transferability of hydrological models and ensemble averaging methods between contrasting climatic periods

    Science.gov (United States)

    Broderick, Ciaran; Matthews, Tom; Wilby, Robert L.; Bastola, Satish; Murphy, Conor

    2016-10-01

    Understanding hydrological model predictive capabilities under contrasting climate conditions enables more robust decision making. Using Differential Split Sample Testing (DSST), we analyze the performance of six hydrological models for 37 Irish catchments under climate conditions unlike those used for model training. Additionally, we consider four ensemble averaging techniques when examining interperiod transferability. DSST is conducted using 2/3 year noncontinuous blocks of (i) the wettest/driest years on record based on precipitation totals and (ii) years with a more/less pronounced seasonal precipitation regime. Model transferability between contrasting regimes was found to vary depending on the testing scenario, catchment, and evaluation criteria considered. As expected, the ensemble average outperformed most individual ensemble members. However, averaging techniques differed considerably in the number of times they surpassed the best individual model member. Bayesian Model Averaging (BMA) and the Granger-Ramanathan Averaging (GRA) method were found to outperform the simple arithmetic mean (SAM) and Akaike Information Criteria Averaging (AICA). Here GRA performed better than the best individual model in 51%-86% of cases (according to the Nash-Sutcliffe criterion). When assessing model predictive skill under climate change conditions we recommend (i) setting up DSST to select the best available analogues of expected annual mean and seasonal climate conditions; (ii) applying multiple performance criteria; (iii) testing transferability using a diverse set of catchments; and (iv) using a multimodel ensemble in conjunction with an appropriate averaging technique. Given the computational efficiency and performance of GRA relative to BMA, the former is recommended as the preferred ensemble averaging technique for climate assessment.

  11. Maximization of seasonal forecasts performance combining Grand Multi-Model Ensembles

    Science.gov (United States)

    Alessandri, Andrea; De Felice, Matteo; Catalano, Franco; Lee, Doo Young; Yoo, Jin Ho; Lee, June-Yi; Wang, Bin

    2014-05-01

    Multi-Model Ensembles (MMEs) are powerful tools in dynamical climate prediction as they account for the overconfidence and the uncertainties related to single-model errors. Previous works suggested that the potential benefit that can be expected by using a MME amplify with the increase of the independence of the contributing Seasonal Prediction Systems. In this work we combine the two Multi Model Ensemble (MME) Seasonal Prediction Systems (SPSs) independently developed by the European (ENSEMBLES) and by the Asian-Pacific (CliPAS/APCC) communities. To this aim, all the possible multi-model combinations obtained by putting together the 5 models from ENSEMBLES and the 11 models from CliPAS/APCC have been evaluated. The grand ENSEMBLES-CliPAS/APCC Multi-Model enhances significantly the skill compared to previous estimates from the contributing MMEs. The combinations of SPSs maximizing the skill that is currently attainable for specific predictands/phenomena is evaluated. Our results show that, in general, the better combinations of SPSs are obtained by mixing ENSEMBLES and CliPAS/APCC models and that only a limited number of SPSs is required to obtain the maximum performance. The number and selection of models that perform better is usually different depending on the region/phenomenon under consideration. As an example for the tropical Pacific, the maximum performance is obtained with only the combination of 5-to-6 SPSs from the grand ENSEMBLES-CliPAS/APCC MME. With particular focus over Tropical Pacific, the relationship between performance and bias of the grand-MME combinations is evaluated. The skill of the grand-MME combinations over Euro-Mediterranean and East-Asia regions is further evaluated as a function of the capability of the selected contributing SPSs to forecast anomalies of the Polar/Siberian highs during winter and of the Asian summer monsoon precipitation during summer. Our results indicate that, combining SPSs from independent MME sources is a good

  12. Multi-model ensemble-based probabilistic prediction of tropical cyclogenesis using TIGGE model forecasts

    Science.gov (United States)

    Jaiswal, Neeru; Kishtawal, C. M.; Bhomia, Swati; Pal, P. K.

    2016-10-01

    An extended range tropical cyclogenesis forecast model has been developed using the forecasts of global models available from TIGGE portal. A scheme has been developed to detect the signatures of cyclogenesis in the global model forecast fields [i.e., the mean sea level pressure and surface winds (10 m horizontal winds)]. For this, a wind matching index was determined between the synthetic cyclonic wind fields and the forecast wind fields. The thresholds of 0.4 for wind matching index and 1005 hpa for pressure were determined to detect the cyclonic systems. These detected cyclonic systems in the study region are classified into different cyclone categories based on their intensity (maximum wind speed). The forecasts of up to 15 days from three global models viz., ECMWF, NCEP and UKMO have been used to predict cyclogenesis based on multi-model ensemble approach. The occurrence of cyclonic events of different categories in all the forecast steps in the grided region (10 × 10 km2) was used to estimate the probability of the formation of cyclogenesis. The probability of cyclogenesis was estimated by computing the grid score using the wind matching index by each model and at each forecast step and convolving it with Gaussian filter. The proposed method is used to predict the cyclogenesis of five named tropical cyclones formed during the year 2013 in the north Indian Ocean. The 6-8 days advance cyclogenesis of theses systems were predicted using the above approach. The mean lead prediction time for the cyclogenesis event of the proposed model has been found as 7 days.

  13. Using initial and boundary condition perturbations in medium-range regional ensemble forecasting with two nested domains

    Science.gov (United States)

    Jiang, J.; Koracin, D.; Vellore, R.; Xiao, M.; Lewis, J. M.

    2010-12-01

    Simulated evolution of climate and weather is sensitive to the specification of their initial state. Small errors in the initial state could lead the forecast into a different direction. It is essential to estimate the impact of the uncertainty in initial conditions on the forecast accuracy. For limited-area or regional forecasting, lateral boundary conditions also have considerable influence on the development of mesoscale or local-scale phenomena. Strong lateral boundary conditions derived from a larger scale environment could significantly alter or even remove local-scale components. This study investigates the impact of uncertainty in initial and lateral boundary conditions on medium-range regional forecasting using the Advanced Weather Research and Forecasting (WRF) model. The WRF model was configured with two nested domains: the parent domain has a 108 km horizontal resolution, and a nested domain with 36 km resolution covers the western U.S. The ensemble forecasting was conducted with 50 ensemble members using random perturbations in the initial conditions (ICs) and lateral boundary conditions (LBCs). A case period of 15 days in December 2008 is chosen, during which two intense frontal passages occurred in the western U.S. Results show that, applying only IC perturbations, the contribution from the IC perturbations to the ensemble spread decreases with time. Using both randomly perturbed LBCs and ICs from the coarser domain, the inner nested domain shows a wider ensemble spread. The resulting ensemble forecasting can be interpreted as a probabilistic prediction for wind energy, especially for wind gust and wind turbine operational cut-off. The analysis also includes an efficiency comparison of using coarser ensemble forecasting vs. a higher resolution single control run.

  14. eWaterCycle: Building an operational global Hydrological forecasting system based on standards and open source software

    Science.gov (United States)

    Drost, Niels; Bierkens, Marc; Donchyts, Gennadii; van de Giesen, Nick; Hummel, Stef; Hut, Rolf; Kockx, Arno; van Meersbergen, Maarten; Sutanudjaja, Edwin; Verlaan, Martin; Weerts, Albrecht; Winsemius, Hessel

    2015-04-01

    At EGU 2015, the eWaterCycle project (www.ewatercycle.org) will launch an operational high-resolution Hydrological global model, including 14 day ensemble forecasts. Within the eWaterCycle project we aim to use standards and open source software as much as possible. This ensures the sustainability of the software created, and the ability to swap out components as newer technologies and solutions become available. It also allows us to build the system much faster than would otherwise be the case. At the heart of the eWaterCycle system is the PCRGLOB-WB Global Hydrological model (www.globalhydrology.nl) developed at Utrecht University. Version 2.0 of this model is implemented in Python, and models a wide range of Hydrological processes at 10 x 10km (and potentially higher) resolution. To assimilate near-real time satellite data into the model, and run an ensemble forecast we use the OpenDA system (www.openda.org). This allows us to make use of different data assimilation techniques without the need to implement these from scratch. As a data assimilation technique we currently use (variant of) an Ensemble Kalman Filter, specifically optimized for High Performance Computing environments. Coupling of the model with the DA is done with the Basic Model Interface (BMI), developed in the framework of the Community Surface Dynamics Modeling System (CSDMS) (csdms.colorado.edu). We have added support for BMI to PCRGLOB-WB, and developed a BMI adapter for OpenDA, allowing OpenDA to use any BMI compatible model. We currently use multiple different BMI models with OpenDA, already showing the benefits of using this standard. Throughout the system, all file based input and output is done via NetCDF files. We use several standard tools to be used for pre- and post-processing data. Finally we use ncWMS, an NetCDF based implementation of the Web Map Service (WMS) protocol to serve the forecasting result. We have build a 3D web application based on Cesium.js to visualize the output. In

  15. Forecasting European cold waves based on subsampling strategies of CMIP5 and Euro-CORDEX ensembles

    Science.gov (United States)

    Cordero-Llana, Laura; Braconnot, Pascale; Vautard, Robert; Vrac, Mathieu; Jezequel, Aglae

    2016-04-01

    Forecasting future extreme events under the present changing climate represents a difficult task. Currently there are a large number of ensembles of simulations for climate projections that take in account different models and scenarios. However, there is a need for reducing the size of the ensemble to make the interpretation of these simulations more manageable for impact studies or climate risk assessment. This can be achieved by developing subsampling strategies to identify a limited number of simulations that best represent the ensemble. In this study, cold waves are chosen to test different approaches for subsampling available simulations. The definition of cold waves depends on the criteria used, but they are generally defined using a minimum temperature threshold, the duration of the cold spell as well as their geographical extend. These climate indicators are not universal, highlighting the difficulty of directly comparing different studies. As part of the of the CLIPC European project, we use daily surface temperature data obtained from CMIP5 outputs as well as Euro-CORDEX simulations to predict future cold waves events in Europe. From these simulations a clustering method is applied to minimise the number of ensembles required. Furthermore, we analyse the different uncertainties that arise from the different model characteristics and definitions of climate indicators. Finally, we will test if the same subsampling strategy can be used for different climate indicators. This will facilitate the use of the subsampling results for a wide number of impact assessment studies.

  16. A gain-loss framework based on ensemble flow forecasts to switch the urban drainage-wastewater system management towards energy optimization during dry periods

    Science.gov (United States)

    Courdent, Vianney; Grum, Morten; Munk-Nielsen, Thomas; Mikkelsen, Peter S.

    2017-05-01

    Precipitation is the cause of major perturbation to the flow in urban drainage and wastewater systems. Flow forecasts, generated by coupling rainfall predictions with a hydrologic runoff model, can potentially be used to optimize the operation of integrated urban drainage-wastewater systems (IUDWSs) during both wet and dry weather periods. Numerical weather prediction (NWP) models have significantly improved in recent years, having increased their spatial and temporal resolution. Finer resolution NWP are suitable for urban-catchment-scale applications, providing longer lead time than radar extrapolation. However, forecasts are inevitably uncertain, and fine resolution is especially challenging for NWP. This uncertainty is commonly addressed in meteorology with ensemble prediction systems (EPSs). Handling uncertainty is challenging for decision makers and hence tools are necessary to provide insight on ensemble forecast usage and to support the rationality of decisions (i.e. forecasts are uncertain and therefore errors will be made; decision makers need tools to justify their choices, demonstrating that these choices are beneficial in the long run). This study presents an economic framework to support the decision-making process by providing information on when acting on the forecast is beneficial and how to handle the EPS. The relative economic value (REV) approach associates economic values with the potential outcomes and determines the preferential use of the EPS forecast. The envelope curve of the REV diagram combines the results from each probability forecast to provide the highest relative economic value for a given gain-loss ratio. This approach is traditionally used at larger scales to assess mitigation measures for adverse events (i.e. the actions are taken when events are forecast). The specificity of this study is to optimize the energy consumption in IUDWS during low-flow periods by exploiting the electrical smart grid market (i.e. the actions are taken

  17. Ensemble Forecasting of Coronal Mass Ejections Using the WSA-ENLIL with CONED Model

    Science.gov (United States)

    Emmons, D.; Acebal, A.; Pulkkinen, A.; Taktakishvili, A.; MacNeice, P.; Odstricil, D.

    2013-01-01

    The combination of the Wang-Sheeley-Arge (WSA) coronal model, ENLIL heliospherical model version 2.7, and CONED Model version 1.3 (WSA-ENLIL with CONED Model) was employed to form ensemble forecasts for 15 halo coronal mass ejections (halo CMEs). The input parameter distributions were formed from 100 sets of CME cone parameters derived from the CONED Model. The CONED Model used image processing along with the bootstrap approach to automatically calculate cone parameter distributions from SOHO/LASCO imagery based on techniques described by Pulkkinen et al. (2010). The input parameter distributions were used as input to WSA-ENLIL to calculate the temporal evolution of the CMEs, which were analyzed to determine the propagation times to the L1 Lagrangian point and the maximum Kp indices due to the impact of the CMEs on the Earth's magnetosphere. The Newell et al. (2007) Kp index formula was employed to calculate the maximum Kp indices based on the predicted solar wind parameters near Earth assuming two magnetic field orientations: a completely southward magnetic field and a uniformly distributed clock-angle in the Newell et al. (2007) Kp index formula. The forecasts for 5 of the 15 events had accuracy such that the actual propagation time was within the ensemble average plus or minus one standard deviation. Using the completely southward magnetic field assumption, 10 of the 15 events contained the actual maximum Kp index within the range of the ensemble forecast, compared to 9 of the 15 events when using a uniformly distributed clock angle.

  18. Skill and predictability in multimodel ensemble forecasts for Northern Hemisphere regions with dominant winter precipitation

    Science.gov (United States)

    Ehsan, Muhammad Azhar; Tippett, Michael K.; Almazroui, Mansour; Ismail, Muhammad; Yousef, Ahmed; Kucharski, Fred; Omar, Mohamed; Hussein, Mahmoud; Alkhalaf, Abdulrahman A.

    2016-07-01

    Northern Hemisphere winter precipitation reforecasts from the European Centre for Medium Range Weather Forecast System-4 and six of the models in the North American Multi-Model Ensemble are evaluated, focusing on two regions (Region-A: 20°N-45°N, 10°E-65°E and Region-B: 20°N-55°N, 205°E-255°E) where winter precipitation is a dominant fraction of the annual total and where precipitation from mid-latitude storms is important. Predictability and skill (deterministic and probabilistic) are assessed for 1983-2013 by the multimodel composite (MME) of seven prediction models. The MME climatological mean and variability over the two regions is comparable to observation with some regional differences. The statistically significant decreasing trend observed in Region-B precipitation is captured well by the MME and most of the individual models. El Niño Southern Oscillation is a source of forecast skill, and the correlation coefficient between the Niño3.4 index and precipitation over region A and B is 0.46 and 0.35, statistically significant at the 95 % level. The MME reforecasts weakly reproduce the observed teleconnection. Signal, noise and signal to noise ratio analysis show that the signal variance over two regions is very small as compared to noise variance which tends to reduce the prediction skill. The MME ranked probability skill score is higher than that of individual models, showing the advantage of a multimodel ensemble. Observed Region-A rainfall anomalies are strongly associated with the North Atlantic Oscillation, but none of the models reproduce this relation, which may explain the low skill over Region-A. The superior quality of multimodel ensemble compared with individual models is mainly due to larger ensemble size.

  19. Skill and predictability in multimodel ensemble forecasts for Northern Hemisphere regions with dominant winter precipitation

    Science.gov (United States)

    Ehsan, Muhammad Azhar; Tippett, Michael K.; Almazroui, Mansour; Ismail, Muhammad; Yousef, Ahmed; Kucharski, Fred; Omar, Mohamed; Hussein, Mahmoud; Alkhalaf, Abdulrahman A.

    2017-05-01

    Northern Hemisphere winter precipitation reforecasts from the European Centre for Medium Range Weather Forecast System-4 and six of the models in the North American Multi-Model Ensemble are evaluated, focusing on two regions (Region-A: 20°N-45°N, 10°E-65°E and Region-B: 20°N-55°N, 205°E-255°E) where winter precipitation is a dominant fraction of the annual total and where precipitation from mid-latitude storms is important. Predictability and skill (deterministic and probabilistic) are assessed for 1983-2013 by the multimodel composite (MME) of seven prediction models. The MME climatological mean and variability over the two regions is comparable to observation with some regional differences. The statistically significant decreasing trend observed in Region-B precipitation is captured well by the MME and most of the individual models. El Niño Southern Oscillation is a source of forecast skill, and the correlation coefficient between the Niño3.4 index and precipitation over region A and B is 0.46 and 0.35, statistically significant at the 95 % level. The MME reforecasts weakly reproduce the observed teleconnection. Signal, noise and signal to noise ratio analysis show that the signal variance over two regions is very small as compared to noise variance which tends to reduce the prediction skill. The MME ranked probability skill score is higher than that of individual models, showing the advantage of a multimodel ensemble. Observed Region-A rainfall anomalies are strongly associated with the North Atlantic Oscillation, but none of the models reproduce this relation, which may explain the low skill over Region-A. The superior quality of multimodel ensemble compared with individual models is mainly due to larger ensemble size.

  20. Probabilistic maize yield simulation over East Africa using ensemble seasonal climate forecasts

    Science.gov (United States)

    Ogutu, Geoffrey; Supit, Iwan; Hutjes, Ronald

    2016-04-01

    Seasonal climate variability influences crop yields, especially in areas where rain fed agriculture is widely practiced such as in the East African region. Assuming that seasonal climate prediction skill would translate to similarly skillful prediction of impacts, an ensemble seasonal climate hindcast (ECMWF system4 EPS) for the period 1981 to 2010 at different initialization dates (lead months) before sowing is used to drive a crop simulation model: the World Food Studies (WOFOST) model, implemented for a single season Maize crop. The water-limited yield predictions were assessed against reference yields produced by the same crop model forced by the WATCH Forcing Data ERA-Interim (WFDEI) at grid point level. We focus on the main sowing dates of June/July (Northern region), March (Equatorial East Africa) and November (Southern region). Deviation of yields from the mean over the study period is used to indicate regions in which probabilistic yield forecasts would be useful while the Relative Operating Curve Skill Score (ROCSS) indicates prediction skill of above normal, near normal and below normal yield prediction. Equatorial regions of East Africa and coastal Kenya with sowing date in March show a mean deviation of ≥ 500 Kg/ha. Here probabilistic yield forecasts can potentially be useful as opposed to the northern and southern regions with less deviation. The high deviation in this region may also be due to the existence of more than one cropping season corresponding to the bi-modal rainfall regime since the model only simulates a single season. A positive ROCSS over a large extent of the equatorial region show predictability skill of all the tercile forecasts simulated by forecasts initialized at the start of sowing date (March i.e. lead 0 forecasts) and no predictability at longer lead months. Over Ethiopia in the northern region of East Africa, November harvests with a sowing date of June show predictability of the upper, lower and middle terciles at lead-0

  1. A Note on NCOM Temperature Forecast Error Calibration Using the Ensemble Transform

    Science.gov (United States)

    2009-01-01

    spatial distributions of the E Coelhn et a\\. ,’journal of Marine Systems 78 (2009) S272-S281 S27S t e IS ii 15 If ii .i s 51 s^ I! i| 1* 2 3...International Conference on Mathematics and Continuum Mechanics. Pub. Centro Internacional de Matematica (C1M). ISBN: 978-989-95011- 2-6, pp. 207-217. Porto...Hagerdorn. R., Palmer, T.N., 2005. The rationale behind the success of multi-model ensembles in seasonal forecasting - II . Calibration and combination

  2. Improving Short-Range Ensemble Kalman Storm Surge Forecasting Using Robust Adaptive Inflation

    KAUST Repository

    Altaf, Muhammad

    2013-08-01

    This paper presents a robust ensemble filtering methodology for storm surge forecasting based on the singular evolutive interpolated Kalman (SEIK) filter, which has been implemented in the framework of the H∞ filter. By design, an H∞ filter is more robust than the common Kalman filter in the sense that the estimation error in the H∞ filter has, in general, a finite growth rate with respect to the uncertainties in assimilation. The computational hydrodynamical model used in this study is the Advanced Circulation (ADCIRC) model. The authors assimilate data obtained from Hurricanes Katrina and Ike as test cases. The results clearly show that the H∞-based SEIK filter provides more accurate short-range forecasts of storm surge compared to recently reported data assimilation results resulting from the standard SEIK filter.

  3. Forecasting Computer Products Sales by Integrating Ensemble Empirical Mode Decomposition and Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Chi-Jie Lu

    2012-01-01

    Full Text Available A hybrid forecasting model that integrates ensemble empirical model decomposition (EEMD, and extreme learning machine (ELM for computer products sales is proposed. The EEMD is a new piece of signal processing technology. It is based on the local characteristic time scales of a signal and could decompose the complicated signal into intrinsic mode functions (IMFs. The ELM is a novel learning algorithm for single-hidden-layer feedforward networks. In our proposed approach, the initial task is to apply the EEMD method to decompose the original sales data into a number of IMFs. The hidden useful information of the original data could be discovered in those IMFs. The IMFs are then integrated with the ELM method to develop an effective forecasting model for computer products sales. Experimental results from three real computer products sales data, including hard disk, display card, and notebook, showed that the proposed hybrid sales forecasting method outperforms the four comparative models and is an effective alternative for forecasting sales of computer products.

  4. Forecasting the behaviour of complex landslides with a spatially distributed hydrological model

    Directory of Open Access Journals (Sweden)

    J.-P. Malet

    2005-01-01

    Full Text Available The relationships between rainfall, hydrology and landslide movement are often difficult to establish. In this context, ground-water flow analyses and dynamic modelling can help to clarify these complex relations, simulate the landslide hydrological behaviour in real or hypothetical situations, and help to forecast future scenarios based on environmental change. The primary objective of this study is to investigate the possibility of including more temporal and spatial information in landslide hydrology forecasting, by using a physically based spatially distributed model. Results of the hydrological and geomorphological investigation of the Super-Sauze earthflow, one of the persistently active landslide occurring in clay-rich material of the French Alps, are presented. Field surveys, continuous monitoring and interpretation of the data have shown that, in such material, the groundwater level fluctuates on a seasonal time scale, with a strong influence of the unsaturated zone. Therefore a coupled unsaturated/saturated model, incorporating Darcian saturated flow, fissure flow and meltwater flow is needed to adequately represent the landslide hydrology. The conceptual model is implemented in a 2.5-D spatially distributed hydrological model. The model is calibrated and validated on a multi-parameters database acquired on the site since 1997. The complex time-dependent and three-dimensional groundwater regime is well described, in both the short- and long-term. The hydrological model is used to forecast the future hydrological behaviour of the earthflow in response to potential environmental changes.

  5. Ensemble flood forecasting to support dam water release operation using 10 and 2 km-resolution JMA Nonhydrostatic Model ensemble rainfalls

    Directory of Open Access Journals (Sweden)

    K. Kobayashi

    2015-12-01

    Full Text Available This paper presents a study on short-term ensemble flood forecasting specifically for small dam catchments in Japan. Numerical ensemble simulations of rainfall from the Japan Meteorological Agency Nonhydrostatic Model are used as the input data to a rainfall–runoff model for predicting river discharge into a dam. The ensemble weather simulations use a conventional 10 km and a high-resolution 2 km spatial resolution. A distributed rainfall–runoff model is constructed for the Kasahori dam catchment (approx. 70 km2 and applied with the ensemble rainfalls. The results show that the hourly maximum and cumulative catchment-average rainfalls of the 2 km-resolution JMA-NHM ensemble simulation are more appropriate than the 10 km-resolution rainfalls. All the simulated inflows based on the 2 and 10 km rainfalls become larger than the flood discharge of 140 m3 s−1; a threshold value for flood control. The inflows with the 10 km-resolution ensemble rainfall are all considerably smaller than the observations, while, at least one simulated discharge out of 11 ensemble members with the 2 km-resolution rainfalls reproduces the first peak of the inflow at the Kasahori dam with similar amplitude to observations, although there are spatiotemporal lags between simulation and observation. To take positional lags into account of the ensemble discharge simulation, the rainfall distribution in each ensemble member is shifted so that the catchment-averaged cumulative rainfall of the Kasahori dam maximizes. The runoff simulation with the position-shifted rainfalls show much better results than the original ensemble discharge simulations.

  6. Operational data assimilation for improving hydrologic, hydrodynamic, and water quality forecasting using open tools

    Science.gov (United States)

    Weerts, Albrecht; Kockx, Arno; Sumihar, Julius; Verlaan, Martin; Hummel, Stef; Kramer, Werner; de Klaermaker, Simone

    2014-05-01

    Data assimilation holds considerable potential for improving water quantity (hydrologic/ hydraulic) and water quality predictions. However, advances in hydrologic DA research have not been adequately or timely implemented in operational forecast systems to improve the skill of forecasts for better informed real-world decision making. In contrast to most operational weather (related) forecast centers operational hydrologic forecast centers often are unable to support & maintain or lack the required computing support to implement such intensive DA calculations. Moreover, it remains difficult to achieve coupling of models, data, DA techniques and exploitation of high performance computing solutions in the operational forecasting process. Several potential components of a future solution have been or are being developed, one of those being the open source project OpenDA (www.openda.org). The objective of this poster is to highlight the development of OpenDA for operational forecasting and its integration with Delft-FEWS that is being used by more than 40 operational forecast centres around the world. Several applications of OpenDA using open source (and available) model codes from various fields will be highlighted.

  7. Application of BP Neural Network Algorithm in Traditional Hydrological Model for Flood Forecasting

    Directory of Open Access Journals (Sweden)

    Jianjin Wang

    2017-01-01

    Full Text Available Flooding contributes to tremendous hazards every year; more accurate forecasting may significantly mitigate the damages and loss caused by flood disasters. Current hydrological models are either purely knowledge-based or data-driven. A combination of data-driven method (artificial neural networks in this paper and knowledge-based method (traditional hydrological model may booster simulation accuracy. In this study, we proposed a new back-propagation (BP neural network algorithm and applied it in the semi-distributed Xinanjiang (XAJ model. The improved hydrological model is capable of updating the flow forecasting error without losing the leading time. The proposed method was tested in a real case study for both single period corrections and real-time corrections. The results reveal that the proposed method could significantly increase the accuracy of flood forecasting and indicate that the global correction effect is superior to the second-order autoregressive correction method in real-time correction.

  8. Differential Hydrological Grey Model (DHGM) with self-memory function and its application to flood forecasting

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper addresses a problem of flood forecasting with the self-memory function. Considering flood forecasting’s uncertainty and updating demand, a hybrid hydrological model, namely Differential Hy- drological Grey Model with self-memory function (DHGM-SM), is developed. The model has two fold features. One is to establish a self-memorization equation linked with DHGM, that could extract useful information from past data series and realize updating of hydrological dynamic process. The other is that this model has higher efficiency relative to original hydrological model without self-memory func- tion. This approach was applied to river flow forecasting of two representative basins in Tunxi of South China and Daqinggou of North China. It is shown that this hybrid method has satisfactory forecasting accuracy by examination of both calibration and validation.

  9. ENSO Forecasts in the North American Multi-Model Ensemble: Composite Analysis and Verification

    Science.gov (United States)

    Chen, L. C.

    2015-12-01

    In this study, we examine precipitation and temperature forecasts during El Nino/Southern Oscillation (ENSO) events in six models in the North American Multi-Model Ensemble (NMME), including the CFSv2, CanCM3, CanCM4, FLOR, GEOS5, and CCSM4 models, by comparing the model-based ENSO composites to the observed. The composite analysis is conducted using the 1982-2010 hindcasts for each of the six models with selected ENSO episodes based on the seasonal Ocean Nino Index (ONI) just prior to the date the forecasts were initiated. Two sets of composites are constructed over the North American continent: one based on precipitation and temperature anomalies, the other based on their probability of occurrence in a tercile-based system. The composites apply to monthly mean conditions in November, December, January, February, and March, respectively, as well as to the five-month aggregates representing the winter conditions. For the anomaly composites, we use the anomaly correlation coefficient and root-mean-square error against the observed composites for evaluation. For the probability composites, unlike conventional probabilistic forecast verification assuming binary outcomes to the observations, both model and observed composites are expressed in probability terms. Performance metrics for such validation are limited. Therefore, we develop a probability anomaly correlation measure and a probability score for assessment, so the results are comparable to the anomaly composite evaluation. We found that all NMME models predict ENSO precipitation patterns well during wintertime; however, some models have large discrepancies between the model temperature composites and the observed. The skill is higher for the multi-model ensemble, as well as the five-month aggregates. Comparing to the anomaly composites, the probability composites have superior skill in predicting ENSO temperature patterns and are less sensitive to the sample used to construct the composites, suggesting that

  10. Evaluation of a probabilistic hydrometeorological forecast system

    Directory of Open Access Journals (Sweden)

    B. Ahrens

    2009-07-01

    Full Text Available Medium range hydrological forecasts in mesoscale catchments are only possible with the use of hydrological models driven by meteorological forecasts, which in particular contribute quantitative precipitation forecasts (QPF. QPFs are accompanied by large uncertainties, especially for longer lead times, which are propagated within the hydrometeorological model system. To deal with this limitation of predictability, a probabilistic forecasting system is tested, which is based on a hydrological-meteorological ensemble prediction system. The meteorological component of the system is the operational limited-area ensemble prediction system COSMO-LEPS that downscales the global ECMWF ensemble to a horizontal resolution of 10 km, while the hydrological component is based on the semi-distributed hydrological model PREVAH with a spatial resolution of 500 m.

    Earlier studies have mostly addressed the potential benefits of hydrometeorological ensemble systems in short case studies. Here we present an analysis of hydrological ensemble hindcasts for two years (2005 and 2006. It is shown that the ensemble covers the uncertainty during different weather situations with appropriate spread. The ensemble also shows advantages over a corresponding deterministic forecast, even under consideration of an artificial spread.

  11. Evaluation of a probabilistic hydrometeorological forecast system

    Directory of Open Access Journals (Sweden)

    S. Jaun

    2009-03-01

    Full Text Available Medium range hydrological forecasts in mesoscale catchments are only possible with the use of hydrological models driven by meteorological forecasts, which in particular contribute quantitative precipitation forecasts (QPF. QPFs are accompanied by large uncertainties, especially for longer lead times, which are propagated within the hydrometeorological model system. To deal with this limitation of predictability, a probabilistic forecasting system is tested, which is based on a hydrological-meteorological ensemble prediction system. The meteorological component of the system is the operational limited-area ensemble prediction system COSMO-LEPS that downscales the global ECMWF ensemble to a horizontal resolution of 10 km, while the hydrological component is based on the semi-distributed hydrological model PREVAH with a spatial resolution of 500 m.

    Earlier studies have mostly addressed the potential benefits of hydrometeorological ensemble systems in short case studies. Here we present an analysis of hydrological ensemble hindcasts for two years (2005 and 2006. It is shown that the ensemble covers the uncertainty during different weather situations with an appropriate spread-skill relationship. The ensemble also shows advantages over a corresponding deterministic forecast, even under consideration of an artificial spread.

  12. Data assimilation in integrated hydrological modeling using ensemble Kalman filtering: evaluating the effect of ensemble size and localization on filter performance

    Directory of Open Access Journals (Sweden)

    J. Rasmussen

    2015-02-01

    Full Text Available Groundwater head and stream discharge is assimilated using the Ensemble Transform Kalman Filter in an integrated hydrological model with the aim of studying the relationship between the filter performance and the ensemble size. In an attempt to reduce the required number of ensemble members, an adaptive localization method is used. The performance of the adaptive localization method is compared to the more common local analysis localization. The relationship between filter performance in terms of hydraulic head and discharge error and the number of ensemble members is investigated for varying numbers and spatial distributions of groundwater head observations and with or without discharge assimilation and parameter estimation. The study shows that (1 more ensemble members are needed when fewer groundwater head observations are assimilated, and (2 assimilating discharge observations and estimating parameters requires a much larger ensemble size than just assimilating groundwater head observations. However, the required ensemble size can be greatly reduced with the use of adaptive localization, which by far outperforms local analysis localization.

  13. Multimodel hydrologic ensemble predictions of peak flows: lessons learned from the real-time experiment in the upper Nysa Klodzka basin (SW Poland)

    Science.gov (United States)

    Niedzielski, Tomasz; Mizinski, Bartlomiej

    2015-04-01

    The novel system for issuing the real-time warnings against hydrologic hazards, known as HydroProg (research project no. 2011/01/D/ST10/04171 of the National Science Centre of Poland), has been implemented in the upper Nysa Klodzka basin (SW Poland). The system itself works like a bridge between automatic hydrometeorological observational networks and numerous hydrologic models. Its main objective is to automatically produce and publish flood warnings on a basis of prognoses of river stages calculated from dissimilar models and - most importantly - their multimodel ensembles which are computed in real time within HydroProg. The implementation in question for the upper Nysa Klodzka basin is abbreviated as HydroProg-Klodzko, and is feasible due to the partnership with Klodzko County which maintains the Local System for Flood Monitoring (Lokalny System Oslony Przeciwpowodziowej - LSOP). The HydroProg-Klodzko prototype is continuously, i.e. with 15-minute update, calculating multimodel hydrologic ensemble predictions and publishing them along with prognoses corresponding to individual ensemble members (www.klodzko.hydroprog.uni.wroc.pl). The real-time HydroProg-Klodzko experiment provided us with a valuable database of predictions as well as their errors and performance characteristics. At present, six hydrologic models participate in the experiment, however two of them (multi- and univariate autoregressive time series models) work uninterruptedly since the launch of the system in August 2013. The present study focuses on the detailed characterization of the real-time performance of the two models in predicting a few significant peak flows that occurred over the entire year of the experiment. In particular, we show how the two models can be weighted to produce skilful multimodel ensemble prognoses of river stages during peak flows. We identify phases of a peak flow in which, in order to improve the predictive skills, one should switch between individual models and

  14. Improving precipitation forecast with hybrid 3DVar and time-lagged ensembles in a heavy rainfall event

    Science.gov (United States)

    Wang, Yuanbing; Min, Jinzhong; Chen, Yaodeng; Huang, Xiang-Yu; Zeng, Mingjian; Li, Xin

    2017-01-01

    This study evaluates the performance of three-dimensional variational (3DVar) and a hybrid data assimilation system using time-lagged ensembles in a heavy rainfall event. The time-lagged ensembles are constructed by sampling from a moving time window of 3 h along a model trajectory, which is economical and easy to implement. The proposed hybrid data assimilation system introduces flow-dependent error covariance derived from time-lagged ensemble into variational cost function without significantly increasing computational cost. Single observation tests are performed to document characteristic of the hybrid system. The sensitivity of precipitation forecasts to ensemble covariance weight and localization scale is investigated. Additionally, the TLEn-Var is evaluated and compared to the ETKF(ensemble transformed Kalman filter)-based hybrid assimilation within a continuously cycling framework, through which new hybrid analyses are produced every 3 h over 10 days. The 24 h accumulated precipitation, moisture, wind are analyzed between 3DVar and the hybrid assimilation using time-lagged ensembles. Results show that model states and precipitation forecast skill are improved by the hybrid assimilation using time-lagged ensembles compared with 3DVar. Simulation of the precipitable water and structure of the wind are also improved. Cyclonic wind increments are generated near the rainfall center, leading to an improved precipitation forecast. This study indicates that the hybrid data assimilation using time-lagged ensembles seems like a viable alternative or supplement in the complex models for some weather service agencies that have limited computing resources to conduct large size of ensembles.

  15. Ensemble Flow Forecasts for Risk Based Reservoir Operations of Lake Mendocino in Mendocino County, California

    Science.gov (United States)

    Delaney, C.; Hartman, R. K.; Mendoza, J.; Evans, K. M.; Evett, S.

    2016-12-01

    Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation or flow forecasts to inform the flood operations of reservoirs. Previous research and modeling for flood control reservoirs has shown that FIRO can reduce flood risk and increase water supply for many reservoirs. The risk-based method of FIRO presents a unique approach that incorporates flow forecasts made by NOAA's California-Nevada River Forecast Center (CNRFC) to model and assess risk of meeting or exceeding identified management targets or thresholds. Forecasted risk is evaluated against set risk tolerances to set reservoir flood releases. A water management model was developed for Lake Mendocino, a 116,500 acre-foot reservoir located near Ukiah, California. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United State Army Corps of Engineers and is operated by the Sonoma County Water Agency for water supply. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has been plagued with water supply reliability issues since 2007. FIRO is applied to Lake Mendocino by simulating daily hydrologic conditions from 1985 to 2010 in the Upper Russian River from Lake Mendocino to the City of Healdsburg approximately 50 miles downstream. The risk-based method is simulated using a 15-day, 61 member streamflow hindcast by the CNRFC. Model simulation results of risk-based flood operations demonstrate a 23% increase in average end of water year (September 30) storage levels over current operations. Model results show no increase in occurrence of flood damages for points downstream of Lake Mendocino. This investigation demonstrates that FIRO may be a viable flood control operations approach for Lake Mendocino and warrants further investigation through additional modeling and analysis.

  16. PREFACE: XXIVth Conference of the Danubian Countries on the Hydrological Forecasting and Hydrological Bases of Water Management

    Science.gov (United States)

    Brilly, Mitja; Bonacci, Ognjen; Nachtnebel, Peter Hans; Szolgay, Ján; Balint, Gabor

    2008-10-01

    This volume of IOP Conference Series: Earth and Environmental Science presents a selection of papers that were given at the 24th Conference of the Danube Countries. Within the framework of the International Hydrological Program IHP of UNESCO. Since 1961 the Danube countries have successfully co-operated in organizing conferences on Hydrological Forecasting and Hydrological Water Management Issues. The 24th Conference of the Danube Countries took place between 2-4 June 2008 in Bled, Slovenia and was organized by the National Committee of Slovenia for the International Hydrological Program of UNESCO, under the auspices of the President of Republic of Slovenia. It was organized jointly by the Slovenian National Commission for UNESCO and the Environmental Agency of the Republic of Slovenia, under the support of UNESCO, WMO, and IAHS. Support for the attendance of some participants was provided by UNESCO. Additional support for the symposium was provided by the Slovene Commission for UNESCO, Environmental Agency of Slovenia, Karst Research Institute, Hydropower plants on the lower Sava River and Chair of Hydraulics Engineering FGG University of Ljubljana. All participants expressed great interest and enthusiasm in presenting the latest research results and sharing practical experiences in the Hydrology of the Danube River basin. The Editorial Board, who were nominated at the Conference, initially selected 80 full papers for publication from 210 submitted extended abstracts and papers provided by authors from twenty countries. Altogether 51 revised papers were accepted for publishing in this volume. Papers are divided by conference topics: Hydrological forecasting Hydro-meteorological extremes, floods and droughts Global climate change and antropogenic impacts on hydrological processes Water management Floods, morphological processes, erosion, sediment transport and sedimentation Developments in hydrology Mitja Brilly, Ognjen Bonacci, Peter Hans Nachtnebel, Ján Szolgay

  17. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models

    Directory of Open Access Journals (Sweden)

    A. F. Van Loon

    2012-11-01

    Full Text Available Hydrological drought is increasingly studied using large-scale models. It is, however, not sure whether large-scale models reproduce the development of hydrological drought correctly. The pressing question is how well do large-scale models simulate the propagation from meteorological to hydrological drought? To answer this question, we evaluated the simulation of drought propagation in an ensemble mean of ten large-scale models, both land-surface models and global hydrological models, that participated in the model intercomparison project of WATCH (WaterMIP. For a selection of case study areas, we studied drought characteristics (number of droughts, duration, severity, drought propagation features (pooling, attenuation, lag, lengthening, and hydrological drought typology (classical rainfall deficit drought, rain-to-snow-season drought, wet-to-dry-season drought, cold snow season drought, warm snow season drought, composite drought.

    Drought characteristics simulated by large-scale models clearly reflected drought propagation; i.e. drought events became fewer and longer when moving through the hydrological cycle. However, more differentiation was expected between fast and slowly responding systems, with slowly responding systems having fewer and longer droughts in runoff than fast responding systems. This was not found using large-scale models. Drought propagation features were poorly reproduced by the large-scale models, because runoff reacted immediately to precipitation, in all case study areas. This fast reaction to precipitation, even in cold climates in winter and in semi-arid climates in summer, also greatly influenced the hydrological drought typology as identified by the large-scale models. In general, the large-scale models had the correct representation of drought types, but the percentages of occurrence had some important mismatches, e.g. an overestimation of classical rainfall deficit droughts, and an

  18. Using GEFS ensemble forecasts for decision making in reservoir management in California

    Science.gov (United States)

    Scheuerer, M.; Hamill, T.; Webb, R. S.

    2015-12-01

    Reservoirs such as Lake Mendocino in California's Russian River Basin provide flood control, water supply, recreation, and environmental stream flow regulation. Many of these reservoirs are operated by the U.S. Army Corps of Engineers (Corps) according to water control manuals that specify elevations for an upper volume of reservoir storage that must be kept available for capturing storm runoff and reducing flood risk, and a lower volume of storage that may be used for water supply. During extreme rainfall events, runoff is captured by these reservoirs and released as quickly as possible to create flood storage space for another potential storm. These flood control manuals are based on typical historical weather patterns - wet during the winter, dry otherwise - but are not informed directly by weather prediction. Alternative reservoir management approaches such as Forecast-Informed Reservoir Operations (FIRO), which seek to incorporate advances in weather prediction, are currently being explored as means to improve water supply availability while maintaining flood risk reduction and providing additional ecosystem benefits.We present results from a FIRO proof-of-concept study investigating the reliability of post-processed GEFS ensemble forecasts to predict the probability that day 6-to-10 precipitation accumulations in certain areas in California exceed a high threshold. Our results suggest that reliable forecast guidance can be provided, and the resulting probabilities could be used to inform decisions to release or hold water in the reservoirs. We illustrate the potential of these forecasts in a case study of extreme event probabilities for the Russian River Basin in California.

  19. On selection of the optimal data time interval for real-time hydrological forecasting

    Directory of Open Access Journals (Sweden)

    J. Liu

    2013-09-01

    Full Text Available With the advancement in modern telemetry and communication technologies, hydrological data can be collected with an increasingly higher sampling rate. An important issue deserving attention from the hydrological community is which suitable time interval of the model input data should be chosen in hydrological forecasting. Such a problem has long been recognised in the control engineering community but is a largely ignored topic in operational applications of hydrological forecasting. In this study, the intrinsic properties of rainfall–runoff data with different time intervals are first investigated from the perspectives of the sampling theorem and the information loss using the discrete wavelet transform tool. It is found that rainfall signals with very high sampling rates may not always improve the accuracy of rainfall–runoff modelling due to the catchment low-pass-filtering effect. To further investigate the impact of a data time interval in real-time forecasting, a real-time forecasting system is constructed by incorporating the probability distributed model (PDM with a real-time updating scheme, the autoregressive moving-average (ARMA model. Case studies are then carried out on four UK catchments with different concentration times for real-time flow forecasting using data with different time intervals of 15, 30, 45, 60, 90 and 120 min. A positive relation is found between the forecast lead time and the optimal choice of the data time interval, which is also highly dependent on the catchment concentration time. Finally, based on the conclusions from the case studies, a hypothetical pattern is proposed in three-dimensional coordinates to describe the general impact of the data time interval and to provide implications of the selection of the optimal time interval in real-time hydrological forecasting. Although nowadays most operational hydrological systems still have low data sampling rates (daily or hourly, the future is that higher

  20. On selection of the optimal data time interval for real-time hydrological forecasting

    Directory of Open Access Journals (Sweden)

    J. Liu

    2012-09-01

    Full Text Available With the advancement in modern telemetry and communication technologies, hydrological data can be collected with an increasingly higher sampling rate. An important issue deserving attention from the hydrological community is what suitable time interval of the model input data should be chosen in hydrological forecasting. Such a problem has long been recognised in the control engineering community but is a largely ignored topic in operational applications of hydrological forecasting. In this study, the intrinsic properties of rainfall-runoff data with different time intervals are first investigated from the perspectives of the sampling theorem and the information loss using the discrete wavelet decomposition tool. It is found that rainfall signals with very high sampling rates may not always improve the accuracy of rainfall-runoff modelling due to the catchment low-pass filtering effect. To further investigate the impact of data time interval in real-time forecasting, a real-time forecasting system is constructed by incorporating the Probability Distributed Model (PDM with a real-time updating scheme, the autoregressive-moving average (ARMA model. Case studies are then carried out on four UK catchments with different concentration times for real-time flow forecasting using data with different time intervals of 15 min, 30 min, 45 min, 60 min, 90 min and 120 min. A positive relation is found between the forecast lead time and the optimal choice of the data time interval, which is also highly dependent on the catchment concentration time. Finally, based on the conclusions from the case studies, a hypothetical pattern is proposed in three-dimensional coordinates to describe the general impact of the data time interval and to provide implications on the selection of the optimal time interval in real-time hydrological forecasting. Although nowadays most operational hydrological systems still have low data sampling rates (daily or hourly, the trend in

  1. The Application of a Grey Markov Model to Forecasting Annual Maximum Water Levels at Hydrological Stations

    Institute of Scientific and Technical Information of China (English)

    DONG Sheng; CHI Kun; ZHANG Qiyi; ZHANG Xiangdong

    2012-01-01

    Compared with traditional real-time forecasting,this paper proposes a Grey Markov Model (GMM) to forecast the maximum water levels at hydrological stations in the estuary area.The GMM combines the Grey System and Markov theory into a higher precision model.The GMM takes advantage of the Grey System to predict the trend values and uses the Markov theory to forecast fluctuation values,and thus gives forecast results involving two aspects of information.The procedure for forecasting annul maximum water levels with the GMM contains five main steps:1) establish the GM (1,1) model based on the data series; 2) estimate the trend values; 3) establish a Markov Model based on relative error series; 4) modify the relative errors caused in step 2,and then obtain the relative errors of the second order estimation; 5) compare the results with measured data and estimate the accuracy.The historical water level records (from 1960 to 1992) at Yuqiao Hydrological Station in the estuary area of the Haihe River near Tianjin,China are utilized to calibrate and verify the proposed model according to the above steps.Every 25 years' data are regarded as a hydro-sequence.Eight groups of simulated results show reasonable agreement between the predicted values and the measured data.The GMM is also applied to the 10 other hydrological stations in the same estuary.The forecast results for all of the hydrological stations are good or acceptable.The feasibility and effectiveness of this new forecasting model have been proved in this paper.

  2. An application and verification of ensemble forecasting on wind power to assess operational risk indicators in power grids

    Energy Technology Data Exchange (ETDEWEB)

    Alessandrini, S.; Ciapessoni, E.; Cirio, D.; Pitto, A.; Sperati, S. [Ricerca sul Sistema Energetico RSE S.p.A., Milan (Italy). Power System Development Dept. and Environment and Sustainable Development Dept.; Pinson, P. [Technical University of Denmark, Lyngby (Denmark). DTU Informatics

    2012-07-01

    Wind energy is part of the so-called not schedulable renewable sources, i.e. it must be exploited when it is available, otherwise it is lost. In European regulation it has priority of dispatch over conventional generation, to maximize green energy production. However, being variable and uncertain, wind (and solar) generation raises several issues for the security of the power grids operation. In particular, Transmission System Operators (TSOs) need as accurate as possible forecasts. Nowadays a deterministic approach in wind power forecasting (WPF) could easily be considered insufficient to face the uncertainty associated to wind energy. In order to obtain information about the accuracy of a forecast and a reliable estimation of its uncertainty, probabilistic forecasting is becoming increasingly widespread. In this paper we investigate the performances of the COnsortium for Small-scale MOdelling Limited area Ensemble Prediction System (COSMO-LEPS). First the ensemble application is followed by assessment of its properties (i.e. consistency, reliability) using different verification indices and diagrams calculated on wind power. Then we provide examples of how EPS based wind power forecast can be used in power system security analyses. Quantifying the forecast uncertainty allows to determine more accurately the regulation reserve requirements, hence improving security of operation and reducing system costs. In particular, the paper also presents a probabilistic power flow (PPF) technique developed at RSE and aimed to evaluate the impact of wind power forecast accuracy on the probability of security violations in power systems. (orig.)

  3. Evaluation of drought propagation in an ensemble mean of large-scale hydrological models

    Directory of Open Access Journals (Sweden)

    A. F. Van Loon

    2012-07-01

    Full Text Available Hydrological drought is increasingly studied using large-scale models. It is, however, not sure whether large-scale models reproduce the development of hydrological drought correctly. The pressing question is: how well do large-scale models simulate the propagation from meteorological to hydrological drought? To answer this question, we evaluated the simulation of drought propagation in an ensemble mean of ten large-scale models, both land-surface models and global hydrological models, that were part of the model intercomparison project of WATCH (WaterMIP. For a selection of case study areas, we studied drought characteristics (number of droughts, duration, severity, drought propagation features (pooling, attenuation, lag, lengthening, and hydrological drought typology (classical rainfall deficit drought, rain-to-snow-season drought, wet-to-dry-season drought, cold snow season drought, warm snow season drought, composite drought.

    Drought characteristics simulated by large-scale models clearly reflected drought propagation, i.e. drought events became less and longer when moving through the hydrological cycle. However, more differentiation was expected between fast and slowly responding systems, with slowly responding systems having less and longer droughts in runoff than fast responding systems. This was not found using large-scale models. Drought propagation features were poorly reproduced by the large-scale models, because runoff reacted immediately to precipitation, in all case study areas. This fast reaction to precipitation, even in cold climates in winter and in semi-arid climates in summer, also greatly influenced the hydrological drought typology as identified by the large-scale models. In general, the large-scale models had the correct representation of drought types, but the percentages of occurrence had some important mismatches, e.g. an overestimation of classical rainfall deficit droughts, and an

  4. Wind and Wave Extremes over the World Oceans From Very Large Forecast Ensembles

    CERN Document Server

    Breivik, Øyvind; Abdalla, Saleh; Bidlot, Jean-Raymond

    2013-01-01

    Global return value estimates of significant wave height and 10-m neutral wind speed are estimated from very large aggregations of archived ECMWF ensemble forecasts at +240-h lead time from the period 2003-2012. The upper percentiles are found to match ENVISAT wind speed better than ERA-Interim (ERA-I), which tends to be biased low. The return estimates are significantly higher for both wind speed and wave height in the extratropics and the subtropics than what is found from ERA-I, but lower than what is reported by Caires and Sterl (2005) and Vinoth and Young (2011). The highest discrepancies between ERA-I and ENS240 are found in the hurricane-prone areas, suggesting that the ensemble comes closer than ERA-I in capturing the intensity of tropical cyclones. The width of the confidence intervals are typically reduced by 70% due to the size of the data sets. Finally, non-parametric estimates of return values were computed from the tail of the distribution. These direct return estimates compare very well with Ge...

  5. Operational hydrological forecasting during the 2 IPHEx-IOP campaign – meet the challenge

    Science.gov (United States)

    An operational streamflow forecasting testbed was implemented during the Intense Observing Period (IOP) of the Integrated Precipitation and Hydrology Experiment (IPHEx-IOP) in May-June 2014 to characterize flood predictability skill in complex terrain and to investigate the propagation of uncertaint...

  6. Comparison of point forecast accuracy of model averaging methods in hydrologic applications

    NARCIS (Netherlands)

    Diks, C.G.H.; Vrugt, J.A.

    2010-01-01

    Multi-model averaging is currently receiving a surge of attention in the atmospheric, hydrologic, and statistical literature to explicitly handle conceptual model uncertainty in the analysis of environmental systems and derive predictive distributions of model output. Such density forecasts are nece

  7. Ozone predictabilities due to meteorological uncertainties in the Mexico City basin using ensemble forecasts

    Directory of Open Access Journals (Sweden)

    N. Bei

    2010-07-01

    Full Text Available The purpose of the present study is to investigate the sensitivity of ozone (O3 predictions in the Mexico City Metropolitan Area (MCMA to meteorological initial uncertainties and planetary boundary layer (PBL parameterization schemes using state-of-the-art meteorological and photochemical prediction models through ensemble forecasts. The simulated periods (3, 9, 15 and 29 March 2006 represent four typical meteorological episodes ("South-Venting", "O3-North", "O3-South" and "Convection-North", respectively in the Mexico City basin during the MCMA-2006/MILAGRO campaign. Our results demonstrate that the uncertainties in meteorological initial conditions have significant impacts on O3 predictions, including peak time O3 concentrations ([O3], horizontal and vertical O3 distributions, and temporal variations. The ensemble spread of the simulated peak [O3] averaged over the city's ambient monitoring sites can reach up to 10 ppb. The increasing uncertainties in meteorological fields during peak O3 period contribute to the largest unpredictability in O3 simulations, while the impacts of wind speeds and PBL height on [O3] are more straightforward and important. The magnitude of the ensemble spreads varies with different PBL schemes and meteorological episodes. The uncertainties in O3 predictions caused by PBL schemes mainly come from their ability to represent the mixing layer height; but overall, these uncertainties are smaller than those from the uncertainties in meteorological initial conditions.

  8. Visualizing uncertainties in a storm surge ensemble data assimilation and forecasting system

    KAUST Repository

    Hollt, Thomas

    2015-01-15

    We present a novel integrated visualization system that enables the interactive visual analysis of ensemble simulations and estimates of the sea surface height and other model variables that are used for storm surge prediction. Coastal inundation, caused by hurricanes and tropical storms, poses large risks for today\\'s societies. High-fidelity numerical models of water levels driven by hurricane-force winds are required to predict these events, posing a challenging computational problem, and even though computational models continue to improve, uncertainties in storm surge forecasts are inevitable. Today, this uncertainty is often exposed to the user by running the simulation many times with different parameters or inputs following a Monte-Carlo framework in which uncertainties are represented as stochastic quantities. This results in multidimensional, multivariate and multivalued data, so-called ensemble data. While the resulting datasets are very comprehensive, they are also huge in size and thus hard to visualize and interpret. In this paper, we tackle this problem by means of an interactive and integrated visual analysis system. By harnessing the power of modern graphics processing units for visualization as well as computation, our system allows the user to browse through the simulation ensembles in real time, view specific parameter settings or simulation models and move between different spatial and temporal regions without delay. In addition, our system provides advanced visualizations to highlight the uncertainty or show the complete distribution of the simulations at user-defined positions over the complete time series of the prediction. We highlight the benefits of our system by presenting its application in a real-world scenario using a simulation of Hurricane Ike.

  9. Insights into the early Eocene hydrological cycle from an ensemble of atmosphere–ocean GCM simulations

    Directory of Open Access Journals (Sweden)

    M. J. Carmichael

    2015-07-01

    Full Text Available Recent studies, utilising a range of proxies, indicate that a significant perturbation to global hydrology occurred at the Paleocene–Eocene Thermal Maximum (PETM; ~56 Ma. An enhanced hydrological cycle for the warm early Eocene is also suggested to have played a key role in maintaining high-latitude warmth during this interval. However, comparisons of proxy data to General Circulation Model (GCM simulated hydrology are limited and inter-model variability remains poorly characterised, despite significant differences in simulated surface temperatures. In this work, we undertake an intercomparison of GCM-derived precipitation and P-E distributions within the EoMIP ensemble (Lunt et al., 2012, which includes previously-published early Eocene simulations performed using five GCMs differing in boundary conditions, model structure and precipitation relevant parameterisation schemes. We show that an intensified hydrological cycle, manifested in enhanced global precipitation and evaporation rates, is simulated for all Eocene simulations relative to preindustrial. This is primarily due to elevated atmospheric paleo-CO2, although the effects of differences in paleogeography/ice sheets are also of importance in some models. For a given CO2 level, globally-averaged precipitation rates vary widely between models, largely arising from different simulated surface air temperatures. Models with a similar global sensitivity of precipitation rate to temperature (dP/dT display different regional precipitation responses for a given temperature change. Regions that are particularly sensitive to model choice include the South Pacific, tropical Africa and the Peri-Tethys, which may represent targets for future proxy acquisition. A comparison of early and middle Eocene leaf-fossil-derived precipitation estimates with the GCM output illustrates that a number of GCMs underestimate precipitation rates at high latitudes. Models which warm these regions, either via elevated

  10. Predictive Skill of Meteorological Drought Based on Multi-Model Ensemble Forecasts: A Real-Time Assessment

    Science.gov (United States)

    Chen, L. C.; Mo, K. C.; Zhang, Q.; Huang, J.

    2014-12-01

    Drought prediction from monthly to seasonal time scales is of critical importance to disaster mitigation, agricultural planning, and multi-purpose reservoir management. Starting in December 2012, NOAA Climate Prediction Center (CPC) has been providing operational Standardized Precipitation Index (SPI) Outlooks using the North American Multi-Model Ensemble (NMME) forecasts, to support CPC's monthly drought outlooks and briefing activities. The current NMME system consists of six model forecasts from U.S. and Canada modeling centers, including the CFSv2, CM2.1, GEOS-5, CCSM3.0, CanCM3, and CanCM4 models. In this study, we conduct an assessment of the predictive skill of meteorological drought using real-time NMME forecasts for the period from May 2012 to May 2014. The ensemble SPI forecasts are the equally weighted mean of the six model forecasts. Two performance measures, the anomaly correlation coefficient and root-mean-square errors against the observations, are used to evaluate forecast skill.Similar to the assessment based on NMME retrospective forecasts, predictive skill of monthly-mean precipitation (P) forecasts is generally low after the second month and errors vary among models. Although P forecast skill is not large, SPI predictive skill is high and the differences among models are small. The skill mainly comes from the P observations appended to the model forecasts. This factor also contributes to the similarity of SPI prediction among the six models. Still, NMME SPI ensemble forecasts have higher skill than those based on individual models or persistence, and the 6-month SPI forecasts are skillful out to four months. The three major drought events occurred during the 2012-2014 period, the 2012 Central Great Plains drought, the 2013 Upper Midwest flash drought, and 2013-2014 California drought, are used as examples to illustrate the system's strength and limitations. For precipitation-driven drought events, such as the 2012 Central Great Plains drought

  11. Assessment of the potential forecasting skill of a global hydrological model in reproducing the occurrence of monthly flow extremes

    NARCIS (Netherlands)

    Candogan Yossef, N.A.N.N.; Beek, L.P.H. van; Kwadijk, J.C.J.; Bierkens, M.F.P.

    2012-01-01

    As an initial step in assessing the prospect of using global hydrological models (GHMs) for hydrological forecasting, this study investigates the skill of the GHM PCRGLOBWB in reproducing the occurrence of past extremes in monthly discharge on a global scale. Global terrestrial hydrology from 1958

  12. Advanced inflow forecasting for a hydropower plant in an Alpine hydropower regulated catchment - coupling of operational and hydrological forecasts

    Science.gov (United States)

    Tilg, Anna-Maria; Schöber, Johannes; Huttenlau, Matthias; Messner, Jakob; Achleitner, Stefan

    2017-04-01

    Hydropower is a renewable energy source which can help to stabilize fluctuations in the volatile energy market. Especially pumped-storage infrastructures in the European Alps play an important role within the European energy grid system. Today, the runoff of rivers in the Alps is often influenced by cascades of hydropower infrastructures where the operational procedures are triggered by energy market demands, water deliveries and flood control aspects rather than by hydro-meteorological variables. An example for such a highly hydropower regulated river is the catchment of the river Inn in the Eastern European Alps, originating in the Engadin (Switzerland). A new hydropower plant is going to be built as transboundary project at the boarder of Switzerland and Austria using the water of the Inn River. For the operation, a runoff forecast to the plant is required. The challenge in this case is that a high proportion of runoff is turbine water from an upstream situated hydropower cascade. The newly developed physically based hydrological forecasting system is mainly capable to cover natural hydrological runoff processes caused by storms and snow melt but can model only a small degree of human impact. These discontinuous parts of the runoff downstream of the pumped storage are described by means of an additional statistical model which has been developed. The main goal of the statistical model is to forecast the turbine water up to five days in advance. The lead time of the data driven model exceeds the lead time of the used energy production forecast. Additionally, the amount of turbine water is linked to the need of electricity production and the electricity price. It has been shown that especially the parameters day-ahead prognosis of the energy production and turbine inflow of the previous week are good predictors and are therefore used as input parameters for the model. As the data is restricted due to technical conditions, so-called Tobit models have been used to

  13. Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting.

    Science.gov (United States)

    Owens, M J; Horbury, T S; Wicks, R T; McGregor, S L; Savani, N P; Xiong, M

    2014-06-01

    Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind "noise," which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical "downscaling" of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme.

  14. Assessing the add value of ensemble forecast in a drought early warning

    Science.gov (United States)

    Calmanti, Sandro; Bosi, Lorenzo; Fernandez, Jesus; De Felice, Matteo

    2015-04-01

    The EU-FP7 project EUPORIAS is developing a prototype climate service to enhance the existing food security drought early warning system in Ethiopia. The Livelihoods, Early Assessment and Protection (LEAP) system is the Government of Ethiopia's national food security early warning system, established with the support of WFP and the World Bank in 2008. LEAP was designed to increase the predictability and timeliness of response to drought-related food crises in Ethiopia. It combines early warning with contingency planning and contingency funding, to allow the government, WFP and other partners to provide early assistance in anticipation of an impending catastrophes. Currently, LEAP uses satellite based rainfall estimates to monitor drought conditions and to compute needs. The main aim of the prototype is to use seasonal hindcast data to assess the added value of using ensemble climate rainfall forecasts to estimate the cost of assistance of population hit by major droughts. We outline the decision making process that is informed by the prototype climate service, and we discuss the analysis of the expected and skill of the available rainfall forecast data over Ethiopia. One critical outcome of this analysis is the strong dependence of the expected skill on the observational estimate assumed as reference. A preliminary evaluation of the full prototype products (drought indices and needs estimated) using hindcasts data will also be presented.

  15. High resolution WRF ensemble forecasting for irrigation: Multi-variable evaluation

    Science.gov (United States)

    Kioutsioukis, Ioannis; de Meij, Alexander; Jakobs, Hermann; Katragkou, Eleni; Vinuesa, Jean-Francois; Kazantzidis, Andreas

    2016-01-01

    An ensemble of meteorological simulations with the WRF model at convection-allowing resolution (2 km) is analysed in a multi-variable evaluation framework over Europe. Besides temperature and precipitation, utilized variables are relative humidity, boundary layer height, shortwave radiation, wind speed, convective and large-scale precipitation in view of explaining some of the biases. Furthermore, the forecast skill of evapotranspiration and irrigation water need is ultimately assessed. It is found that the modelled temperature exhibits a small but significant negative bias during the cold period in the snow-covered northeast regions. Total precipitation exhibits positive bias during all seasons but autumn, peaking in the spring months. The varying physics configurations resulted in significant differences for the simulated minimum temperature, summer rainfall, relative humidity, solar radiation and planetary boundary layer height. The interaction of the temperature and moisture profiles with the different microphysics schemes, results in excess convective precipitation using MYJ/WSM6 compared to YSU/Thompson. With respect to evapotranspiration and irrigation need, the errors using the MYJ configuration were in opposite directions and eventually cancel out, producing overall smaller biases. WRF was able to dynamically downscale global forecast data into finer resolutions in space and time for hydro-meteorological applications such as the irrigation management. Its skill was sensitive to the geographical location and physical configuration, driven by the variable relative importance of evapotranspiration and rainfall.

  16. Ensemble-based algorithm for error reduction in hydraulics in the context of flood forecasting

    Directory of Open Access Journals (Sweden)

    Barthélémy Sébastien

    2016-01-01

    Full Text Available Over the last few years, a collaborative work between CERFACS, LNHE (EDF R&D, SCHAPI and CE-REMA resulted in the implementation of a Data Assimilation (DA method on top of MASCARET in the framework of real-time forecasting. This prototype was based on a simplified Kalman filter where the description of the background error covariances is prescribed based on off-line climatology constant over time. This approach showed promising results on the Adour and Marne catchments as it improves the forecast skills of the hydraulic model using water level and discharge in-situ observations. An ensemble-based DA algorithm has recently been implemented to improve the modelling of the background error covariance matrix used to distribute the correction to the water level and discharge states when observations are assimilated from observation points to the entire state. It was demonstrated that the flow dependent description of the background error covariances with the EnKF algorithm leads to a more realistic correction of the hydraulic state with significant impact of the hydraulic network characteristics

  17. DEWEPS - Development and Evaluation of new Wind forecasting tools with an Ensemble Prediction System

    Energy Technology Data Exchange (ETDEWEB)

    Moehrlen, C.; Joergensen, Jess

    2012-02-15

    There is an ongoing trend of increased privatization in the handling of renewable energy. This trend is required to ensure an efficient energy system, where improvements that make economic sense are prioritised. The reason why centralized forecasting can be a challenge in that matter is that the TSOs tend to optimize on physical error rather than cost. Consequently, the market is likely to speculate against the TSO, which in turn increases the cost of balancing. A privatized pool of wind and/or solar power is more difficult to speculate against, because the optimization criteria is unpredictable due to subjective risk considerations that may be taken into account at any time. Although there is and additional level of costs for the trading of the private volume, it can be argued that competition will accelerate efficiency from an economic perspective. The amount of power put into the market will become less predictable, when the wind power spot market bid takes place on the basis of a risk consideration in addition to the forecast information itself. The scope of this project is to contribute to more efficient wind power integration targeted both to centralised and decentralised cost efficient IT solutions, which will complement each other in market based energy systems. The DEWEPS project resulted in an extension of the number of Ensemble forecasts, an incremental trade strategy for balancing unpredictable power production, and an IT platform for efficient handling of power generation units. Together, these three elements contribute to less need for reserves, more capacity in the market, and thus more competition. (LN)

  18. Assessing the impact of land use change on hydrology by ensemble modelling (LUCHEM) II: Ensemble combinations and predictions

    Science.gov (United States)

    Viney, N.R.; Bormann, H.; Breuer, L.; Bronstert, A.; Croke, B.F.W.; Frede, H.; Graff, T.; Hubrechts, L.; Huisman, J.A.; Jakeman, A.J.; Kite, G.W.; Lanini, J.; Leavesley, G.; Lettenmaier, D.P.; Lindstrom, G.; Seibert, J.; Sivapalan, M.; Willems, P.

    2009-01-01

    This paper reports on a project to compare predictions from a range of catchment models applied to a mesoscale river basin in central Germany and to assess various ensemble predictions of catchment streamflow. The models encompass a large range in inherent complexity and input requirements. In approximate order of decreasing complexity, they are DHSVM, MIKE-SHE, TOPLATS, WASIM-ETH, SWAT, PRMS, SLURP, HBV, LASCAM and IHACRES. The models are calibrated twice using different sets of input data. The two predictions from each model are then combined by simple averaging to produce a single-model ensemble. The 10 resulting single-model ensembles are combined in various ways to produce multi-model ensemble predictions. Both the single-model ensembles and the multi-model ensembles are shown to give predictions that are generally superior to those of their respective constituent models, both during a 7-year calibration period and a 9-year validation period. This occurs despite a considerable disparity in performance of the individual models. Even the weakest of models is shown to contribute useful information to the ensembles they are part of. The best model combination methods are a trimmed mean (constructed using the central four or six predictions each day) and a weighted mean ensemble (with weights calculated from calibration performance) that places relatively large weights on the better performing models. Conditional ensembles, in which separate model weights are used in different system states (e.g. summer and winter, high and low flows) generally yield little improvement over the weighted mean ensemble. However a conditional ensemble that discriminates between rising and receding flows shows moderate improvement. An analysis of ensemble predictions shows that the best ensembles are not necessarily those containing the best individual models. Conversely, it appears that some models that predict well individually do not necessarily combine well with other models in

  19. A Bayesian Consistent Dual Ensemble Kalman Filter for State-Parameter Estimation in Subsurface Hydrology

    CERN Document Server

    Ait-El-Fquih, Boujemaa; Hoteit, Ibrahim

    2015-01-01

    Ensemble Kalman filtering (EnKF) is an efficient approach to addressing uncertainties in subsurface groundwater models. The EnKF sequentially integrates field data into simulation models to obtain a better characterization of the model's state and parameters. These are generally estimated following joint and dual filtering strategies, in which, at each assimilation cycle, a forecast step by the model is followed by an update step with incoming observations. The Joint-EnKF directly updates the augmented state-parameter vector while the Dual-EnKF employs two separate filters, first estimating the parameters and then estimating the state based on the updated parameters. In this paper, we reverse the order of the forecast-update steps following the one-step-ahead (OSA) smoothing formulation of the Bayesian filtering problem, based on which we propose a new dual EnKF scheme, the Dual-EnKF$_{\\rm OSA}$. Compared to the Dual-EnKF, this introduces a new update step to the state in a fully consistent Bayesian framework...

  20. Residual uncertainty estimation using instance-based learning with applications to hydrologic forecasting

    Science.gov (United States)

    Wani, Omar; Beckers, Joost V. L.; Weerts, Albrecht H.; Solomatine, Dimitri P.

    2017-08-01

    A non-parametric method is applied to quantify residual uncertainty in hydrologic streamflow forecasting. This method acts as a post-processor on deterministic model forecasts and generates a residual uncertainty distribution. Based on instance-based learning, it uses a k nearest-neighbour search for similar historical hydrometeorological conditions to determine uncertainty intervals from a set of historical errors, i.e. discrepancies between past forecast and observation. The performance of this method is assessed using test cases of hydrologic forecasting in two UK rivers: the Severn and Brue. Forecasts in retrospect were made and their uncertainties were estimated using kNN resampling and two alternative uncertainty estimators: quantile regression (QR) and uncertainty estimation based on local errors and clustering (UNEEC). Results show that kNN uncertainty estimation produces accurate and narrow uncertainty intervals with good probability coverage. Analysis also shows that the performance of this technique depends on the choice of search space. Nevertheless, the accuracy and reliability of uncertainty intervals generated using kNN resampling are at least comparable to those produced by QR and UNEEC. It is concluded that kNN uncertainty estimation is an interesting alternative to other post-processors, like QR and UNEEC, for estimating forecast uncertainty. Apart from its concept being simple and well understood, an advantage of this method is that it is relatively easy to implement.

  1. A Hybrid Model Based on Ensemble Empirical Mode Decomposition and Fruit Fly Optimization Algorithm for Wind Speed Forecasting

    Directory of Open Access Journals (Sweden)

    Zongxi Qu

    2016-01-01

    Full Text Available As a type of clean and renewable energy, the superiority of wind power has increasingly captured the world’s attention. Reliable and precise wind speed prediction is vital for wind power generation systems. Thus, a more effective and precise prediction model is essentially needed in the field of wind speed forecasting. Most previous forecasting models could adapt to various wind speed series data; however, these models ignored the importance of the data preprocessing and model parameter optimization. In view of its importance, a novel hybrid ensemble learning paradigm is proposed. In this model, the original wind speed data is firstly divided into a finite set of signal components by ensemble empirical mode decomposition, and then each signal is predicted by several artificial intelligence models with optimized parameters by using the fruit fly optimization algorithm and the final prediction values were obtained by reconstructing the refined series. To estimate the forecasting ability of the proposed model, 15 min wind speed data for wind farms in the coastal areas of China was performed to forecast as a case study. The empirical results show that the proposed hybrid model is superior to some existing traditional forecasting models regarding forecast performance.

  2. Application of Ensemble Sensitivity Analysis to Observation Targeting for Short-term Wind Speed Forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Zack, J; Natenberg, E; Young, S; Manobianco, J; Kamath, C

    2010-02-21

    measure in order to get the maximum positive impact on forecast performance for a particular site and short-term look-ahead period. Both tools rely on the use of NWP models to assess the sensitivity of a forecast for a particular location to measurements made at a prior time (i.e. the look-ahead period) at points surrounding the target location. The fundamental hypothesis is that points and variables with high sensitivity are good candidates for measurements since information at those points are likely to have the most impact on the forecast for the desired parameter, location and look-ahead period. One approach is called the adjoint method (Errico and Vukicevic, 1992; Errico, 1997) and the other newer approach is known as Ensemble Sensitivity Analysis (ESA; Ancell and Hakim 2007; Torn and Hakim 2008). Both approaches have been tested on large-scale atmospheric prediction problems (e.g. forecasting pressure or precipitation over a relatively large region 24 hours ahead) but neither has been applied to mesoscale space-time scales of winds or any other variables near the surface of the earth. A number of factors suggest that ESA is better suited for short-term wind forecasting applications. One of the most significant advantages of this approach is that it is not necessary to linearize the mathematical representation of the processes in the underlying atmospheric model as required by the adjoint approach. Such a linearization may be especially problematic for the application of short-term forecasting of boundary layer winds in complex terrain since non-linear shifts in the structure of boundary layer due to atmospheric stability changes are a critical part of the wind power production forecast problem. The specific objective of work described in this paper is to test the ESA as a tool to identify measurement locations and variables that have the greatest positive impact on the accuracy of wind forecasts in the 0- to 6-hour look-ahead periods for the wind generation area of

  3. Error discrimination of an operational hydrological forecasting system at a national scale

    Science.gov (United States)

    Jordan, F.; Brauchli, T.

    2010-09-01

    The use of operational hydrological forecasting systems is recommended for hydropower production as well as flood management. However, the forecast uncertainties can be important and lead to bad decisions such as false alarms and inappropriate reservoir management of hydropower plants. In order to improve the forecasting systems, it is important to discriminate the different sources of uncertainties. To achieve this task, reanalysis of past predictions can be realized and provide information about the structure of the global uncertainty. In order to discriminate between uncertainty due to the weather numerical model and uncertainty due to the rainfall-runoff model, simulations assuming perfect weather forecast must be realized. This contribution presents the spatial analysis of the weather uncertainties and their influence on the river discharge prediction of a few different river basins where an operational forecasting system exists. The forecast is based on the RS 3.0 system [1], [2], which is also running the open Internet platform www.swissrivers.ch [3]. The uncertainty related to the hydrological model is compared to the uncertainty related to the weather prediction. A comparison between numerous weather prediction models [4] at different lead times is also presented. The results highlight an important improving potential of both forecasting components: the hydrological rainfall-runoff model and the numerical weather prediction models. The hydrological processes must be accurately represented during the model calibration procedure, while weather prediction models suffer from a systematic spatial bias. REFERENCES [1] Garcia, J., Jordan, F., Dubois, J. & Boillat, J.-L. 2007. "Routing System II, Modélisation d'écoulements dans des systèmes hydrauliques", Communication LCH n° 32, Ed. Prof. A. Schleiss, Lausanne [2] Jordan, F. 2007. Modèle de prévision et de gestion des crues - optimisation des opérations des aménagements hydroélectriques à accumulation

  4. Lessons learned from four years of actively using River Forecast Center Ensemble Streamflow Predictions to inform reservoir management

    Science.gov (United States)

    Polebitski, A.; Palmer, R.; Meaker, B.

    2012-12-01

    The National Weather Service's River Forecast Centers (RFCs), located throughout the US, produce operational streamflow forecasts for short term application and long-term lead forecasts at selected locations. These forecasts are targeted for a variety of users, including water supply management, flood control, hydropower production, navigation, and recreation. This presentation highlights the challenges and successes associated with the use of RFC produced ensemble streamflow predictions (ESP) in generating system operations forecasts over the past four years for Snohomish County Public Utility District #1's (SnoPUD) Henry Jackson hydropower system. This research documents a multiyear collaboration between SnoPUD and academic researchers. The collaboration began with a proof of concept study in 2007 and evolved into a weekly decision support activity that has been ongoing since 2008 ( documented in Alemu et al. 2010). The Alemu et al. paper demonstrates the usefulness of ESP forecasts in hydropower operations decision making. This paper focuses on the value of forecasts and a decision support system (DSS) in improving skills in operating reservoir systems. During the application period, the model provided weekly guidance on meeting operational objectives and a probabilistic approach to quantifying system vulnerability during critical periods such as floods and drought. The ESP forecasts and the DSS were heavily used during periods of uncertainty and less so during periods of high system constraint or low system risk.

  5. An ensemble approach to assess hydrological models' contribution to uncertainties in the analysis of climate change impact on water resources

    Directory of Open Access Journals (Sweden)

    J. A. Velázquez

    2013-02-01

    Full Text Available Over the recent years, several research efforts investigated the impact of climate change on water resources for different regions of the world. The projection of future river flows is affected by different sources of uncertainty in the hydro-climatic modelling chain. One of the aims of the QBic3 project (Québec-Bavarian International Collaboration on Climate Change is to assess the contribution to uncertainty of hydrological models by using an ensemble of hydrological models presenting a diversity of structural complexity (i.e., lumped, semi distributed and distributed models. The study investigates two humid, mid-latitude catchments with natural flow conditions; one located in Southern Québec (Canada and one in Southern Bavaria (Germany. Daily flow is simulated with four different hydrological models, forced by outputs from regional climate models driven by global climate models over a reference (1971–2000 and a future (2041–2070 period. The results show that, for our hydrological model ensemble, the choice of model strongly affects the climate change response of selected hydrological indicators, especially those related to low flows. Indicators related to high flows seem less sensitive on the choice of the hydrological model.

  6. Analysis of Technology and Hydrological Regime Changes Induced Errors of Forecasts

    Science.gov (United States)

    Balint, G.; Rozsa, K.; Bartha, P.

    Real time hydrological forecasting results inevitable contain some errors. The source of the difference between calculated and observed values can be most diverse. In- put data of forecasting models are themselves not the true estimates of the ongoing processes U it can be followed by comparing operationally computed water levels with those checked and corrected on annual basis as they appear in hydrological year- books. Modelling errors are the most common ones and systematic or regular parts of those are often compensated by appropriate updating procedures. ARMA techniques are frequently used, but in most cases for major part of this error component can be compensated by n-step autoregressive procedure where n is a sufficiently low number. Basic statements are illustrated by the history of short term water level forecasting on the Hungarian section of the Danube. No strict calculation algorithm or defined tech- nique was used in the 1950s the forecast was the product of subjective judgement by an (usually) experienced forecaster. A simple linear regression expression was used in the 60s, early 70s often combined with results of an empirical flood routing tech- nique and/or during floods with results of graphical correlation technique used for flood crest forecasting. Most of the 70s and till mid-1980s the empirical flood routing technique developed by Szesztay remained in use, combined with flood crests fore- casting. The age of micro-computes changed the approaches in use. A flood routing model based on DLCM later combined with rainfall-runoff models (GAPI) took over as tool for daily forecasting. The graphical flood crests forecasting was replaced by a multivariate linear or polynomial regression technique. The change of techniques and more advanced technology was not followed by clear improvement represented by decreasing errors. This is mostly due to changes in hydrological regime for low flow periods often having the impact of the peak regime of hydro power

  7. Comparison between stochastic and machine learning methods for hydrological multi-step ahead forecasting: All forecasts are wrong!

    Science.gov (United States)

    Papacharalampous, Georgia; Tyralis, Hristos; Koutsoyiannis, Demetris

    2017-04-01

    Machine learning (ML) is considered to be a promising approach to hydrological processes forecasting. We conduct a comparison between several stochastic and ML point estimation methods by performing large-scale computational experiments based on simulations. The purpose is to provide generalized results, while the respective comparisons in the literature are usually based on case studies. The stochastic methods used include simple methods, models from the frequently used families of Autoregressive Moving Average (ARMA), Autoregressive Fractionally Integrated Moving Average (ARFIMA) and Exponential Smoothing models. The ML methods used are Random Forests (RF), Support Vector Machines (SVM) and Neural Networks (NN). The comparison refers to the multi-step ahead forecasting properties of the methods. A total of 20 methods are used, among which 9 are the ML methods. 12 simulation experiments are performed, while each of them uses 2 000 simulated time series of 310 observations. The time series are simulated using stochastic processes from the families of ARMA and ARFIMA models. Each time series is split into a fitting (first 300 observations) and a testing set (last 10 observations). The comparative assessment of the methods is based on 18 metrics, that quantify the methods' performance according to several criteria related to the accurate forecasting of the testing set, the capturing of its variation and the correlation between the testing and forecasted values. The most important outcome of this study is that there is not a uniformly better or worse method. However, there are methods that are regularly better or worse than others with respect to specific metrics. It appears that, although a general ranking of the methods is not possible, their classification based on their similar or contrasting performance in the various metrics is possible to some extent. Another important conclusion is that more sophisticated methods do not necessarily provide better forecasts

  8. Snowmelt Forecasting - Further Cold Regions Development of Operationa Hydrological Forecasting. Volume 1,

    Science.gov (United States)

    1994-03-01

    models. Author Process Roberge & Plamondon (1987) Pipe-flow de Quervain (1972) Intergranular melt Powers etLalL (1985) Thermal convection in snow...London. de Quervain , M.R. (1972). Snow structure, heat and mass flux through snow, In: The Role of Snow and Ice in Hydrology (Proc. Banff Symp., Sept. 1972

  9. Streamflow hindcasting in European river basins via multi-parametric ensemble of the mesoscale hydrologic model (mHM)

    Science.gov (United States)

    Noh, Seong Jin; Rakovec, Oldrich; Kumar, Rohini; Samaniego, Luis

    2016-04-01

    There have been tremendous improvements in distributed hydrologic modeling (DHM) which made a process-based simulation with a high spatiotemporal resolution applicable on a large spatial scale. Despite of increasing information on heterogeneous property of a catchment, DHM is still subject to uncertainties inherently coming from model structure, parameters and input forcing. Sequential data assimilation (DA) may facilitate improved streamflow prediction via DHM using real-time observations to correct internal model states. In conventional DA methods such as state updating, parametric uncertainty is, however, often ignored mainly due to practical limitations of methodology to specify modeling uncertainty with limited ensemble members. If parametric uncertainty related with routing and runoff components is not incorporated properly, predictive uncertainty by DHM may be insufficient to capture dynamics of observations, which may deteriorate predictability. Recently, a multi-scale parameter regionalization (MPR) method was proposed to make hydrologic predictions at different scales using a same set of model parameters without losing much of the model performance. The MPR method incorporated within the mesoscale hydrologic model (mHM, http://www.ufz.de/mhm) could effectively represent and control uncertainty of high-dimensional parameters in a distributed model using global parameters. In this study, we present a global multi-parametric ensemble approach to incorporate parametric uncertainty of DHM in DA to improve streamflow predictions. To effectively represent and control uncertainty of high-dimensional parameters with limited number of ensemble, MPR method is incorporated with DA. Lagged particle filtering is utilized to consider the response times and non-Gaussian characteristics of internal hydrologic processes. The hindcasting experiments are implemented to evaluate impacts of the proposed DA method on streamflow predictions in multiple European river basins

  10. Statistical-dynamical long-range seasonal forecasting of streamflow with the North-American Multi Model Ensemble (NMME)

    Science.gov (United States)

    Slater, Louise; Villarini, Gabriele

    2017-04-01

    There are two main approaches to long-range (monthly to seasonal) streamflow forecasting: statistical approaches that typically relate climate precursors directly to streamflow, and dynamical physically-based approaches in which spatially distributed models are forced with downscaled meteorological forecasts. While the former approach is potentially limited by a lack of physical causality, the latter tends to be complex and time-consuming to implement. In contrast, hybrid statistical-dynamical techniques that use global climate model (GCM) ensemble forecasts as inputs to statistical models are both physically-based and rapid to run, but are a relatively new field of research. Here, we conduct the first systematic multimodel statistical-dynamical forecasting of streamflow using NMME climate forecasts from eight GCMs (CCSM3, CCSM4, CanCM3, CanCM4, GFDL2.1, FLORb01, GEOS5, and CFSv2) across a broad region. At several hundred U.S. Midwest stream gauges with long (50+ continuous years) streamflow records, we fit probabilistic statistical models for seasonal streamflow percentiles ranging from minimum to maximum flows. As predictors, we use basin-averaged values of precipitation, antecedent wetness, temperature, agricultural row crop acreage, and population density. Using the observed data, we select the best-fitting probabilistic model for every site, season, and streamflow percentile (ranging from low to high flows). The best-fitting models are then used to obtain streamflow predictions by incorporating the NMME climate forecasts and the extrapolated agricultural and population time series as predictors. The forecasting skill of our models is assessed using both deterministic and probabilistic verification measures. The influence of the different predictors is evaluated for all streamflow percentiles and across the full range of lead times. Our findings reveal that statistical-dynamical streamflow forecasting produces promising results, which may enable water managers

  11. Web-based hydrological modeling system for flood forecasting and risk mapping

    Science.gov (United States)

    Wang, Lei; Cheng, Qiuming

    2008-10-01

    Mechanism of flood forecasting is a complex system, which involves precipitation, drainage characterizes, land use/cover types, ground water and runoff discharge. The application of flood forecasting model require the efficient management of large spatial and temporal datasets, which involves data acquisition, storage, pre-processing and manipulation, analysis and display of model results. The extensive datasets usually involve multiple organizations, but no single organization can collect and maintain all the multidisciplinary data. The possible usage of the available datasets remains limited primarily because of the difficulty associated with combining data from diverse and distributed data sources. Difficulty in linking data, analysis tools and model is one of the barriers to be overcome in developing real-time flood forecasting and risk prediction system. The current revolution in technology and online availability of spatial data, particularly, with the construction of Canadian Geospatial Data Infrastructure (CGDI), a lot of spatial data and information can be accessed in real-time from distributed sources over the Internet to facilitate Canadians' need for information sharing in support of decision-making. This has resulted in research studies demonstrating the suitability of the web as a medium for implementation of flood forecasting and flood risk prediction. Web-based hydrological modeling system can provide the framework within which spatially distributed real-time data accessed remotely to prepare model input files, model calculation and evaluate model results for flood forecasting and flood risk prediction. This paper will develop a prototype web-base hydrological modeling system for on-line flood forecasting and risk mapping in the Oak Ridges Moraine (ORM) area, southern Ontario, Canada, integrating information retrieval, analysis and model analysis for near real time river runoff prediction, flood frequency prediction, flood risk and flood inundation

  12. Seasonal forecasting of hydrological drought in the Limpopo Basin: a comparison of statistical methods

    Science.gov (United States)

    Seibert, Mathias; Merz, Bruno; Apel, Heiko

    2017-03-01

    The Limpopo Basin in southern Africa is prone to droughts which affect the livelihood of millions of people in South Africa, Botswana, Zimbabwe and Mozambique. Seasonal drought early warning is thus vital for the whole region. In this study, the predictability of hydrological droughts during the main runoff period from December to May is assessed using statistical approaches. Three methods (multiple linear models, artificial neural networks, random forest regression trees) are compared in terms of their ability to forecast streamflow with up to 12 months of lead time. The following four main findings result from the study. 1. There are stations in the basin at which standardised streamflow is predictable with lead times up to 12 months. The results show high inter-station differences of forecast skill but reach a coefficient of determination as high as 0.73 (cross validated). 2. A large range of potential predictors is considered in this study, comprising well-established climate indices, customised teleconnection indices derived from sea surface temperatures and antecedent streamflow as a proxy of catchment conditions. El Niño and customised indices, representing sea surface temperature in the Atlantic and Indian oceans, prove to be important teleconnection predictors for the region. Antecedent streamflow is a strong predictor in small catchments (with median 42 % explained variance), whereas teleconnections exert a stronger influence in large catchments. 3. Multiple linear models show the best forecast skill in this study and the greatest robustness compared to artificial neural networks and random forest regression trees, despite their capabilities to represent nonlinear relationships. 4. Employed in early warning, the models can be used to forecast a specific drought level. Even if the coefficient of determination is low, the forecast models have a skill better than a climatological forecast, which is shown by analysis of receiver operating characteristics

  13. Valuing year-to-go hydrologic forecast improvements for a peaking hydropower system in the Sierra Nevada

    Science.gov (United States)

    Rheinheimer, David E.; Bales, Roger C.; Oroza, Carlos A.; Lund, Jay R.; Viers, Joshua H.

    2016-05-01

    We assessed the potential value of hydrologic forecasting improvements for a snow-dominated high-elevation hydropower system in the Sierra Nevada of California, using a hydropower optimization model. To mimic different forecasting skill levels for inflow time series, rest-of-year inflows from regression-based forecasts were blended in different proportions with representative inflows from a spatially distributed hydrologic model. The statistical approach mimics the simpler, historical forecasting approach that is still widely used. Revenue was calculated using historical electricity prices, with perfect price foresight assumed. With current infrastructure and operations, perfect hydrologic forecasts increased annual hydropower revenue by 0.14 to 1.6 million, with lower values in dry years and higher values in wet years, or about $0.8 million (1.2%) on average, representing overall willingness-to-pay for perfect information. A second sensitivity analysis found a wider range of annual revenue gain or loss using different skill levels in snow measurement in the regression-based forecast, mimicking expected declines in skill as the climate warms and historical snow measurements no longer represent current conditions. The value of perfect forecasts was insensitive to storage capacity for small and large reservoirs, relative to average inflow, and modestly sensitive to storage capacity with medium (current) reservoir storage. The value of forecasts was highly sensitive to powerhouse capacity, particularly for the range of capacities in the northern Sierra Nevada. The approach can be extended to multireservoir, multipurpose systems to help guide investments in forecasting.

  14. Short-term wind speed forecasting by an adaptive network-based fuzzy inference system (ANFIS: an attempt towards an ensemble forecasting method

    Directory of Open Access Journals (Sweden)

    Moslem Yousefi

    2015-12-01

    Full Text Available Accurate Wind speed forecasting has a vital role in efficient utilization of wind farms. Wind forecasting could be performed for long or short time horizons. Given the volatile nature of wind and its dependent on many geographical parameters, it is difficult for traditional methods to provide a reliable forecast of wind speed time series. In this study, an attempt is made to establish an efficient adaptive network-based fuzzy interference (ANFIS for short-term wind speed forecasting. Using the available data sets in the literature, the ANFIS network is constructed, tested and the results are compared with that of a regular neural network, which has been forecasted the same set of dataset in previous studies. To avoid trial-and-error process for selection of the ANFIS input data, the results of autocorrelation factor (ACF and partial auto correlation factor (PACF on the historical wind speed data are employed. The available data set is divided into two parts. 50% for training and 50% for testing and validation. The testing part of data set will be merely used for assessing the performance of the neural network which guarantees that only unseen data is used to evaluate the forecasting performance of the network. On the other hand, validation data could be used for parameter-setting of the network if required. The results indicate that ANFIS could not outperform ANN in short-term wind speed forecasting though its results are competitive. The two methods are hybridized, though simply by weightage, and the hybrid methods shows slight improvement comparing to both ANN and ANFIS results. Therefore, the goal of future studies could be implementing ANFIS and ANNs in a more comprehensive ensemble method which could be ultimately more robust and accurate

  15. An ensemble approach to assess hydrological models' contribution to uncertainties in the analysis of climate change impact on water resources

    Directory of Open Access Journals (Sweden)

    J. A. Velázquez

    2012-06-01

    Full Text Available Over the recent years, several research efforts investigated the impact of climate change on water resources for different regions of the world. The projection of future river flows is affected by different sources of uncertainty in the hydro-climatic modelling chain. One of the aims of the QBic3 project (Québec-Bavarian International Collaboration on Climate Change is to assess the contribution to uncertainty of hydrological models by using an ensemble of hydrological models presenting a diversity of structural complexity (i.e. lumped, semi distributed and distributed models. The study investigates two humid, mid-latitude catchments with natural flow conditions; one located in Southern Québec (Canada and one in Southern Bavaria (Germany. Daily flow is simulated with four different hydrological models, forced by outputs from regional climate models driven by a given number of GCMs' members over a reference (1971–2000 and a future (2041–2070 periods. The results show that the choice of the hydrological model does strongly affect the climate change response of selected hydrological indicators, especially those related to low flows. Indicators related to high flows seem less sensitive on the choice of the hydrological model. Therefore, the computationally less demanding models (usually simple, lumped and conceptual give a significant level of trust for high and overall mean flows.

  16. Error covariance calculation for forecast bias estimation in hydrologic data assimilation

    Science.gov (United States)

    Pauwels, Valentijn R. N.; De Lannoy, Gabriëlle J. M.

    2015-12-01

    To date, an outstanding issue in hydrologic data assimilation is a proper way of dealing with forecast bias. A frequently used method to bypass this problem is to rescale the observations to the model climatology. While this approach improves the variability in the modeled soil wetness and discharge, it is not designed to correct the results for any bias. Alternatively, attempts have been made towards incorporating dynamic bias estimates into the assimilation algorithm. Persistent bias models are most often used to propagate the bias estimate, where the a priori forecast bias error covariance is calculated as a constant fraction of the unbiased a priori state error covariance. The latter approach is a simplification to the explicit propagation of the bias error covariance. The objective of this paper is to examine to which extent the choice for the propagation of the bias estimate and its error covariance influence the filter performance. An Observation System Simulation Experiment (OSSE) has been performed, in which ground water storage observations are assimilated into a biased conceptual hydrologic model. The magnitudes of the forecast bias and state error covariances are calibrated by optimizing the innovation statistics of groundwater storage. The obtained bias propagation models are found to be identical to persistent bias models. After calibration, both approaches for the estimation of the forecast bias error covariance lead to similar results, with a realistic attribution of error variances to the bias and state estimate, and significant reductions of the bias in both the estimates of groundwater storage and discharge. Overall, the results in this paper justify the use of the traditional approach for online bias estimation with a persistent bias model and a simplified forecast bias error covariance estimation.

  17. A Bayesian consistent dual ensemble Kalman filter for state-parameter estimation in subsurface hydrology

    Science.gov (United States)

    Ait-El-Fquih, Boujemaa; El Gharamti, Mohamad; Hoteit, Ibrahim

    2016-08-01

    Ensemble Kalman filtering (EnKF) is an efficient approach to addressing uncertainties in subsurface groundwater models. The EnKF sequentially integrates field data into simulation models to obtain a better characterization of the model's state and parameters. These are generally estimated following joint and dual filtering strategies, in which, at each assimilation cycle, a forecast step by the model is followed by an update step with incoming observations. The joint EnKF directly updates the augmented state-parameter vector, whereas the dual EnKF empirically employs two separate filters, first estimating the parameters and then estimating the state based on the updated parameters. To develop a Bayesian consistent dual approach and improve the state-parameter estimates and their consistency, we propose in this paper a one-step-ahead (OSA) smoothing formulation of the state-parameter Bayesian filtering problem from which we derive a new dual-type EnKF, the dual EnKFOSA. Compared with the standard dual EnKF, it imposes a new update step to the state, which is shown to enhance the performance of the dual approach with almost no increase in the computational cost. Numerical experiments are conducted with a two-dimensional (2-D) synthetic groundwater aquifer model to investigate the performance and robustness of the proposed dual EnKFOSA, and to evaluate its results against those of the joint and dual EnKFs. The proposed scheme is able to successfully recover both the hydraulic head and the aquifer conductivity, providing further reliable estimates of their uncertainties. Furthermore, it is found to be more robust to different assimilation settings, such as the spatial and temporal distribution of the observations, and the level of noise in the data. Based on our experimental setups, it yields up to 25 % more accurate state and parameter estimations than the joint and dual approaches.

  18. A Bayesian consistent dual ensemble Kalman filter for state-parameter estimation in subsurface hydrology

    KAUST Repository

    Ait-El-Fquih, Boujemaa

    2016-08-12

    Ensemble Kalman filtering (EnKF) is an efficient approach to addressing uncertainties in subsurface ground-water models. The EnKF sequentially integrates field data into simulation models to obtain a better characterization of the model\\'s state and parameters. These are generally estimated following joint and dual filtering strategies, in which, at each assimilation cycle, a forecast step by the model is followed by an update step with incoming observations. The joint EnKF directly updates the augmented state-parameter vector, whereas the dual EnKF empirically employs two separate filters, first estimating the parameters and then estimating the state based on the updated parameters. To develop a Bayesian consistent dual approach and improve the state-parameter estimates and their consistency, we propose in this paper a one-step-ahead (OSA) smoothing formulation of the state-parameter Bayesian filtering problem from which we derive a new dual-type EnKF, the dual EnKF(OSA). Compared with the standard dual EnKF, it imposes a new update step to the state, which is shown to enhance the performance of the dual approach with almost no increase in the computational cost. Numerical experiments are conducted with a two-dimensional (2-D) synthetic groundwater aquifer model to investigate the performance and robustness of the proposed dual EnKFOSA, and to evaluate its results against those of the joint and dual EnKFs. The proposed scheme is able to successfully recover both the hydraulic head and the aquifer conductivity, providing further reliable estimates of their uncertainties. Furthermore, it is found to be more robust to different assimilation settings, such as the spatial and temporal distribution of the observations, and the level of noise in the data. Based on our experimental setups, it yields up to 25% more accurate state and parameter estimations than the joint and dual approaches.

  19. An Ensemble Ocean Wave Forecast System and Preliminary Experiment%一个集合海浪预报系统及其初步试验

    Institute of Scientific and Technical Information of China (English)

    孙明华

    2011-01-01

    The basic methods of ensemble wave prediction at home and abroad and an ensemble wave numerical forecast system are introduced. The system is established by running the operational wave model WAV-EWATCH H using wind data from the 15 members' ensemble weather forecast system, which is based on the T213L31 model and operational running in China National Meteorological Center. The ensemble model calculates 15 members wave field, including one control forecast and 14 perturbation members forecast. The model computes the waves over all the oceans up to 10 days at 12; 00 with 1° by 1° resolution. Based on hot initialization, the model uses the 12 h wave hindcast as its initial field. Through the information extraction and processing from the 15 member's wave fields, the system produces the ensemble wave products such as ensemble mean and spread, spaghetti charts and probability charts. Forecast experiment for the period from 1 Sep to 31 Oct in 2007 is done using the system and buoys data in the Pacific and Atlantic at the same period. The main verifying indexes are bias and root mean square error. For the mean monthly bias of 10 m wind speed and significant wave height, the performance of the ensemble mean is better than the control forecast, however both of them have a relatively low system deviation and one cause is that the spin up time of the system may not be long enough. For the monthly root mean square error, the ensemble mean of 10 m wind speed is lower than the control forecast by 3-12 percentage for the different forecast periods, meanwhile the ensemble mean of significant wave height is lower than the control forecast by 3- 17 percentage with consistent variation trend. Comparing 15 ensemble members' forecast to the Buoy_ 46006 data, it shows that the ensemble members can follow the changes of the observation well and cover the variation range of the observation other than the deterministic forecast. In summary, the verification results show that the

  20. Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting

    KAUST Repository

    Zhang, Xuesong

    2011-11-01

    Estimating uncertainty of hydrologic forecasting is valuable to water resources and other relevant decision making processes. Recently, Bayesian Neural Networks (BNNs) have been proved powerful tools for quantifying uncertainty of streamflow forecasting. In this study, we propose a Markov Chain Monte Carlo (MCMC) framework (BNN-PIS) to incorporate the uncertainties associated with parameters, inputs, and structures into BNNs. This framework allows the structure of the neural networks to change by removing or adding connections between neurons and enables scaling of input data by using rainfall multipliers. The results show that the new BNNs outperform BNNs that only consider uncertainties associated with parameters and model structures. Critical evaluation of posterior distribution of neural network weights, number of effective connections, rainfall multipliers, and hyper-parameters shows that the assumptions held in our BNNs are not well supported. Further understanding of characteristics of and interactions among different uncertainty sources is expected to enhance the application of neural networks for uncertainty analysis of hydrologic forecasting. © 2011 Elsevier B.V.

  1. A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset

    Directory of Open Access Journals (Sweden)

    J. Schellekens

    2017-07-01

    Full Text Available The dataset presented here consists of an ensemble of 10 global hydrological and land surface models for the period 1979–2012 using a reanalysis-based meteorological forcing dataset (0.5° resolution. The current dataset serves as a state of the art in current global hydrological modelling and as a benchmark for further improvements in the coming years. A signal-to-noise ratio analysis revealed low inter-model agreement over (i snow-dominated regions and (ii tropical rainforest and monsoon areas. The large uncertainty of precipitation in the tropics is not reflected in the ensemble runoff. Verification of the results against benchmark datasets for evapotranspiration, snow cover, snow water equivalent, soil moisture anomaly and total water storage anomaly using the tools from The International Land Model Benchmarking Project (ILAMB showed overall useful model performance, while the ensemble mean generally outperformed the single model estimates. The results also show that there is currently no single best model for all variables and that model performance is spatially variable. In our unconstrained model runs the ensemble mean of total runoff into the ocean was 46 268 km3 yr−1 (334 kg m−2 yr−1, while the ensemble mean of total evaporation was 537 kg m−2 yr−1. All data are made available openly through a Water Cycle Integrator portal (WCI, wci.earth2observe.eu, and via a direct http and ftp download. The portal follows the protocols of the open geospatial consortium such as OPeNDAP, WCS and WMS. The DOI for the data is https://doi.org/10.1016/10.5281/zenodo.167070.

  2. A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset

    Science.gov (United States)

    Schellekens, Jaap; Dutra, Emanuel; Martínez-de la Torre, Alberto; Balsamo, Gianpaolo; van Dijk, Albert; Sperna Weiland, Frederiek; Minvielle, Marie; Calvet, Jean-Christophe; Decharme, Bertrand; Eisner, Stephanie; Fink, Gabriel; Flörke, Martina; Peßenteiner, Stefanie; van Beek, Rens; Polcher, Jan; Beck, Hylke; Orth, René; Calton, Ben; Burke, Sophia; Dorigo, Wouter; Weedon, Graham P.

    2017-07-01

    The dataset presented here consists of an ensemble of 10 global hydrological and land surface models for the period 1979-2012 using a reanalysis-based meteorological forcing dataset (0.5° resolution). The current dataset serves as a state of the art in current global hydrological modelling and as a benchmark for further improvements in the coming years. A signal-to-noise ratio analysis revealed low inter-model agreement over (i) snow-dominated regions and (ii) tropical rainforest and monsoon areas. The large uncertainty of precipitation in the tropics is not reflected in the ensemble runoff. Verification of the results against benchmark datasets for evapotranspiration, snow cover, snow water equivalent, soil moisture anomaly and total water storage anomaly using the tools from The International Land Model Benchmarking Project (ILAMB) showed overall useful model performance, while the ensemble mean generally outperformed the single model estimates. The results also show that there is currently no single best model for all variables and that model performance is spatially variable. In our unconstrained model runs the ensemble mean of total runoff into the ocean was 46 268 km3 yr-1 (334 kg m-2 yr-1), while the ensemble mean of total evaporation was 537 kg m-2 yr-1. All data are made available openly through a Water Cycle Integrator portal (WCI, wci.earth2observe.eu), and via a direct http and ftp download. The portal follows the protocols of the open geospatial consortium such as OPeNDAP, WCS and WMS. The DOI for the data is https://doi.org/10.1016/10.5281/zenodo.167070.

  3. Developing Multi-model Ensemble for Precipitation and Temperature Seasonal Forecasts: Implications for Karkheh River Basin in Iran

    Science.gov (United States)

    Najafi, Husain; Massah Bavani, Ali Reza; Wanders, Niko; Wood, Eric; Irannejad, Parviz; Robertson, Andrew

    2017-04-01

    Water resource managers can utilize reliable seasonal forecasts for allocating water between different users within a water year. In the west of Iran where a decline of renewable water resources has been observed, basin-wide water management has been the subject of many inter-provincial conflicts in recent years. The problem is exacerbated when the environmental water requirements is not provided leaving the Hoor-al-Azim marshland in the downstream dry. It has been argued that information on total seasonal rainfall can support the Iranian Ministry of Energy within the water year. This study explores the skill of the North America Multi Model Ensemble for Karkheh River Basin in the of west Iran. NMME seasonal precipitation and temperature forecasts from eight models are evaluated against PERSIANN-CDR and Climate Research Unit (CRU) datasets. Analysis suggests that anomaly correlation for both precipitation and temperature is greater than 0.4 for all individual models. Lead time-dependent seasonal forecasts are improved when a multi-model ensemble is developed for the river basin using stepwise linear regression model. MME R-squared exceeds 0.6 for temperature for almost all initializations suggesting high skill of NMME in Karkheh river basin. The skill of MME for rainfall forecasts is high for 1-month lead time for October, February, March and October initializations. However, for months when the amount of rainfall accounts for a significant proportion of total annual rainfall, the skill of NMME is limited a month in advance. It is proposed that operational regional water companies incorporate NMME seasonal forecasts into water resource planning and management, especially during growing seasons that are essential for agricultural risk management.

  4. Multi-initial-conditions and Multi-physics Ensembles in the Weather Research and Forecasting Model to Improve Coastal Stratocumulus Forecasts for Solar Power Integration

    Science.gov (United States)

    Yang, H.

    2015-12-01

    used to create a multi-parameter and multi-physics ensemble. The ensemble forecast system is implemented operationally for San Diego Gas & Electric Company to improve system operations.

  5. An experimental seasonal hydrological forecasting system over the Yellow River basin – Part 2: The added value from climate forecast models

    Directory of Open Access Journals (Sweden)

    X. Yuan

    2016-06-01

    error (RMSE from the post-processed ESP/VIC by 5–15 %. And the reduction occurs mostly during the transition from wet to dry seasons. With the consideration of the uncertainty in the hydrological models, the added value from climate forecast models is decreased especially at short leads, suggesting the necessity of improving the large-scale hydrological models in human-intervened river basins.

  6. Future Flows Hydrology: an ensemble of daily river flow and monthly groundwater levels for use for climate change impact assessment across Great Britain

    Directory of Open Access Journals (Sweden)

    C. Prudhomme

    2012-12-01

    Full Text Available The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels" to provide a consistent set of transient daily river flow and monthly groundwater levels projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future.

    Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology.

    Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided.

    Because of potential biases in the climate-hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961–1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for

  7. Future Flows Hydrology: an ensemble of daily river flow and monthly groundwater levels for use for climate change impact assessment across Great Britain

    Directory of Open Access Journals (Sweden)

    C. Prudhomme

    2013-03-01

    Full Text Available The dataset Future Flows Hydrology was developed as part of the project "Future Flows and Groundwater Levels'' to provide a consistent set of transient daily river flow and monthly groundwater level projections across England, Wales and Scotland to enable the investigation of the role of climate variability on river flow and groundwater levels nationally and how this may change in the future. Future Flows Hydrology is derived from Future Flows Climate, a national ensemble projection derived from the Hadley Centre's ensemble projection HadRM3-PPE to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications. Three hydrological models and one groundwater level model were used to derive Future Flows Hydrology, with 30 river sites simulated by two hydrological models to enable assessment of hydrological modelling uncertainty in studying the impact of climate change on the hydrology. Future Flows Hydrology contains an 11-member ensemble of transient projections from January 1951 to December 2098, each associated with a single realisation from a different variant of HadRM3 and a single hydrological model. Daily river flows are provided for 281 river catchments and monthly groundwater levels at 24 boreholes as .csv files containing all 11 ensemble members. When separate simulations are done with two hydrological models, two separate .csv files are provided. Because of potential biases in the climate–hydrology modelling chain, catchment fact sheets are associated with each ensemble. These contain information on the uncertainty associated with the hydrological modelling when driven using observed climate and Future Flows Climate for a period representative of the reference time slice 1961–1990 as described by key hydrological statistics. Graphs of projected changes for selected hydrological indicators are also provided for the 2050s time slice

  8. Assessing North American multimodel ensemble (NMME) seasonal forecast skill to assist in the early warning of anomalous hydrometeorological events over East Africa

    Science.gov (United States)

    Shukla, Shraddhanand; Roberts, Jason; Hoell, Andrew; Funk, Christopher C.; Robertson, Franklin; Kirtman, Ben

    2016-07-01

    The skill of North American multimodel ensemble (NMME) seasonal forecasts in East Africa (EA), which encompasses one of the most food an