WorldWideScience

Sample records for hydrolase inhibition targeting

  1. A multi-target approach for pain treatment: dual inhibition of fatty acid amide hydrolase and TRPV1 in a rat model of osteoarthritis.

    Science.gov (United States)

    Malek, Natalia; Mrugala, Monika; Makuch, Wioletta; Kolosowska, Natalia; Przewlocka, Barbara; Binkowski, Marcin; Czaja, Martyna; Morera, Enrico; Di Marzo, Vincenzo; Starowicz, Katarzyna

    2015-05-01

    The pharmacological inhibition of anandamide (AEA) hydrolysis by fatty acid amide hydrolase (FAAH) attenuates pain in animal models of osteoarthritis (OA) but has failed in clinical trials. This may have occurred because AEA also activates transient receptor potential vanilloid type 1 (TRPV1), which contributes to pain development. Therefore, we investigated the effectiveness of the dual FAAH-TRPV1 blocker OMDM-198 in an MIA-model of osteoarthritic pain. We first investigated the MIA-induced model of OA by (1) characterizing the pain phenotype and degenerative changes within the joint using X-ray microtomography and (2) evaluating nerve injury and inflammation marker (ATF-3 and IL-6) expression in the lumbar dorsal root ganglia of osteoarthritic rats and differences in gene and protein expression of the cannabinoid CB1 receptors FAAH and TRPV1. Furthermore, we compared OMDM-198 with compounds acting exclusively on FAAH or TRPV1. Osteoarthritis was accompanied by the fragmentation of bone microstructure and destroyed cartilage. An increase of the mRNA levels of ATF3 and IL-6 and an upregulation of AEA receptors and FAAH in the dorsal root ganglia were observed. OMDM-198 showed antihyperalgesic effects in the OA model, which were comparable with those of a selective TRPV1 antagonist, SB-366,791, and a selective FAAH inhibitor, URB-597. The effect of OMDM-198 was attenuated by the CB1 receptor antagonist, AM-251, and by the nonpungent TRPV1 agonist, olvanil, suggesting its action as an "indirect" CB1 agonist and TRPV1 antagonist. These results suggest an innovative strategy for the treatment of OA, which may yield more satisfactory results than those obtained so far with selective FAAH inhibitors in human OA.

  2. N (6)-substituted AMPs inhibit mammalian deoxynucleotide N-hydrolase DNPH1.

    Science.gov (United States)

    Amiable, Claire; Pochet, Sylvie; Padilla, André; Labesse, Gilles; Kaminski, Pierre Alexandre

    2013-01-01

    The gene dnph1 (or rcl) encodes a hydrolase that cleaves the 2'-deoxyribonucleoside 5'-monophosphate (dNMP) N-glycosidic bond to yield a free nucleobase and 2-deoxyribose 5-phosphate. Recently, the crystal structure of rat DNPH1, a potential target for anti-cancer therapies, suggested that various analogs of AMP may inhibit this enzyme. From this result, we asked whether N (6)-substituted AMPs, and among them, cytotoxic cytokinin riboside 5'-monophosphates, may inhibit DNPH1. Here, we characterized the structural and thermodynamic aspects of the interactions of these various analogs with DNPH1. Our results indicate that DNPH1 is inhibited by cytotoxic cytokinins at concentrations that inhibit cell growth.

  3. Inhibition of Xenobiotic-Degrading Hydrolases by Organophosphinates

    Science.gov (United States)

    1986-07-01

    were measured by the biuret method when possible or, for dilute solutions, by a fluorescamine assay. Biuret measurements were made by adding 200 pL...loss of arylester hydrolase activity was overcome by combining this Ca requirement with the presence of 0.02% sodium azide. A method has also been...14 Diphenylphosphinate ................................. 14 2a.i. Introduction ............................ 14 2a.ii. Methods

  4. Dose-dependent regional brain acetylcholinesterase and acylpeptide hydrolase inhibition without cell death after chlorpyrifos administration.

    Science.gov (United States)

    Cardona, Diana; López-Granero, Caridad; Cañadas, Fernando; Llorens, Jordi; Flores, Pilar; Pancetti, Floria; Sánchez-Santed, Fernando

    2013-01-01

    Organophosphates (OPs) are important toxic compounds commonly used for a variety of purposes in agriculture, industry and household settings. It has been well established that the main mechanism of acute toxic action of OP is the inhibition of acetylcholinesterase (AChE). However, we observed long term deficit after acute subcutaneous exposure to Chlorpyrifos (CPF) even when AChE activity is restored. In fact, besides AChE inhibition, non-AChE targets have also been proposed as an alternative mechanism involved in the acute lethal action and side effects of short or long-term exposure. In this context, our main aim in this research was to establish a dose-response curve of Acylpeptide hydrolase (APH) and AChE regional brain activity after acute CPF administration that could explain these long term effects observed in the literature. Moreover, since available data suggest that long term effects of OPs exposure could involve neuronal cell death, our second aim was to evaluate, assessing by Fluoro-Jade B (FJB) staining, whether CPF produces induced cell death. Our results show that an acute exposure to 250 mg/kg CPF does not induce neuronal death as measured by FJB but produces highest AChE regional brain inhibition after administration. In addition, APH seems to be more sensitive than AChE to CPF exposure because after 31 days of exposure, complete recovery was seen only for APH activity at Frontal Cortex, Cerebellum and Brain Stem.

  5. Inhibiting Inosine Hydrolase and Alanine Racemase to Enhance the Germination of Bacillus anthracis Sterne Spores: Potential Spore Decontamination Strategies

    Science.gov (United States)

    2015-06-19

    2015): << Inhibiting inosine hydrolase and alanine racemase to enhance the germination of Bacillus anthracis Sterne spores: potential spore...display a currently valid OMB control number. 1. REPORT DATE 02 OCT 2015 2. REPORT TYPE N/A 3. DATES COVERED 4. TITLE AND SUBTITLE Inhibiting...inosine hydrolase and alanine racemase to enhance the germination of Bacillus anthracis Sterne spores potential spore decontamination strategies 5a

  6. Preservation of striatal cannabinoid CB1 receptor function correlates with the antianxiety effects of fatty acid amide hydrolase inhibition.

    Science.gov (United States)

    Rossi, Silvia; De Chiara, Valentina; Musella, Alessandra; Sacchetti, Lucia; Cantarella, Cristina; Castelli, Maura; Cavasinni, Francesca; Motta, Caterina; Studer, Valeria; Bernardi, Giorgio; Cravatt, Benjamin F; Maccarrone, Mauro; Usiello, Alessandro; Centonze, Diego

    2010-08-01

    The endocannabinoid anandamide (AEA) plays a crucial role in emotional control, and inhibition of its degradation by the fatty acid amide hydrolase (FAAH) has a potent antianxiety effect. The mechanism by which the magnification of AEA activity reduces anxiety is still largely undetermined. By using FAAH mutant mice and both intraperitoneal and intracerebroventricular administration of the FAAH inhibitor (3'-(aminocarbonyl)[1,1'-biphenyl]-3-yl)-cyclohexylcarbamate (URB597), we found that enhanced AEA signaling reversed, via central cannabinoid CB1 receptors (CB1Rs), the anxious phenotype of mice exposed to social defeat stress. This behavioral effect was associated with preserved activity of CB1Rs regulating GABA transmission in the striatum, whereas these receptors were dramatically down-regulated by stress in control animals. The hypothalamic-pituitary-adrenal (HPA) axis was not involved in the antistress effects of FAAH inhibition, although the HPA axis is a biological target of endogenous AEA. We also provided some physiological indications that striatal CB1Rs regulating GABA synapses are not the receptor targets of FAAH inhibition, which rather resulted in the stimulation of striatal CB1Rs regulating glutamate transmission. Collectively, our findings suggest that preservation of cannabinoid CB1 receptor function within the striatum is a possible synaptic correlate of the antianxiety effects of FAAH inhibition.

  7. Inhibition of soluble epoxide hydrolase attenuates high-fat-diet-induced hepatic steatosis by reduced systemic inflammatory status in mice.

    Directory of Open Access Journals (Sweden)

    Yan Liu

    Full Text Available Non-alcoholic fatty liver disease is associated with obesity and considered an inflammatory disease. Soluble epoxide hydrolase (sEH is a major enzyme hydrolyzing epoxyeicosatrienoic acids and attenuates their cardiovascular protective and anti-inflammatory effects. We examined whether sEH inhibition can protect against high-fat (HF-diet-induced fatty liver in mice and the underlying mechanism. Compared with wild-type littermates, sEH-null mice showed lower diet-induced lipid accumulation in liver, as seen by Oil-red O staining and triglycerides levels. We studied the effect of sEH inhibition on diet-induced fatty liver by feeding C57BL/6 mice an HF diet for 8 weeks (short-term or 16 weeks (long-term and administering t-AUCB, a selective sEH inhibitor. sEH inhibition had no effect on the HF-diet-increased body and adipose tissue weight or impaired glucose tolerance but alleviated the diet-induced hepatic steatosis. Adenovirus-mediated overexpression of sEH in liver increased the level of triglycerides in liver and the hepatic inflammatory response. Surprisingly, the induced expression of sEH in liver occurred only with the long-term but not short-term HF diet, which suggests a secondary effect of HF diet on regulating sEH expression. Furthermore, sEH inhibition attenuated the HF-diet-induced increase in plasma levels of proinflammatory cytokines and their mRNA upregulation in adipose tissue, which was accompanied by increased macrophage infiltration. Therefore, sEH inhibition could alleviate HF-diet-induced hepatic steatosis, which might involve its anti-inflammatory effect in adipose tissue and direct inhibition in liver. sEH may be a therapeutic target for HF-diet-induced hepatic steatosis in inhibiting systemic inflammation.

  8. Opposite effects of gene deficiency and pharmacological inhibition of soluble epoxide hydrolase on cardiac fibrosis.

    Directory of Open Access Journals (Sweden)

    Lijuan Li

    Full Text Available Arachidonic acid-derived epoxyeicosatrienoic acids (EETs are important regulators of cardiac remodeling; manipulation of their levels is a potentially useful pharmacological strategy. EETs are hydrolyzed by soluble epoxide hydrolase (sEH to form the corresponding diols, thus altering and reducing the activity of these oxylipins. To better understand the phenotypic impact of sEH disruption, we compared the effect of EPHX2 gene knockout (EPHX2-/- and sEH inhibition in mouse models. Measurement of plasma oxylipin profiles confirmed that the ratio of EETs/DHETs was increased in EPHX2-/- and sEH-inhibited mice. However, plasma concentrations of 9, 11, 15, 19-HETE were elevated in EPHX2-/- but not sEH-inhibited mice. Next, we investigated the role of this difference in cardiac dysfunction induced by Angiotensin II (AngII. Both EPHX2 gene deletion and inhibition protected against AngII-induced cardiac hypertrophy. Interestingly, cardiac dysfunction was attenuated by sEH inhibition rather than gene deletion. Histochemical staining revealed that compared with pharmacological inhibition, EPHX2 deletion aggravated AngII-induced myocardial fibrosis; the mRNA levels of fibrotic-related genes were increased. Furthermore, cardiac inflammatory response was greater in EPHX2-/- than sEH-inhibited mice with AngII treatment, as evidenced by increased macrophage infiltration and expression of MCP-1 and IL-6. In vitro, AngII-upregulated MCP-1 and IL-6 expression was significantly attenuated by sEH inhibition but promoted by EPHX2 deletion in cardiofibroblasts. Thus, compared with pharmacological inhibition of sEH, EPHX2 deletion caused the shift in arachidonic acid metabolism, which may led to pathological cardiac remodeling, especially cardiac fibrosis.

  9. Inhibition of soluble epoxide hydrolase limits niacin-induced vasodilation in mice

    Science.gov (United States)

    Inceoglu, A. B.; Clifton, H.L.; Yang, J.; Hegedus, C.; Hammock, B. D.; Schaefer, S.

    2012-01-01

    Background The use of niacin in the treatment of dyslipidemias is limited by the common side effect of cutaneous vasodilation, commonly termed flushing. Flushing is thought to be due to release of the vasodilatory prostanoids PGD2 and PGE2 from arachidonic acid metabolism through the cyclooxygenase (COX) pathway. Arachidonic acid is also metabolized by the cytochrome P450 system which is regulated, in part, by the enzyme soluble epoxide hydrolase (sEH). Methods: These experiments used an established murine model in which ear tissue perfusion was measured by laser Doppler to test the hypothesis that inhibition of sEH would limit niacin-induced flushing. Results: Niacin-induced flushing was reduced from 506 ± 126 to 213 ± 39 % in sEH knockout animals. Pharmacologic treatment with 3 structurally distinct sEH inhibitors similarly reduced flushing in a dose dependent manner, with maximal reduction to 143±15% of baseline flow using a concentration of 1 mg/kg TPAU (1-trifluoromethoxyphenyl-3-(1-acetylpiperidin-4-yl) urea). Systemically administered PGD2 caused ear vasodilation which was not changed by either pharmacologic sEH inhibition or by sEH gene deletion. Conclusions: Inhibition of sEH markedly reduces niacin-induced flushing in this model without an apparent effect on the response to PGD2. sEH inhibition may be a new therapeutic approach to limit flushing in humans. PMID:22526297

  10. Parabens inhibit fatty acid amide hydrolase: A potential role in paraben-enhanced 3T3-L1 adipocyte differentiation.

    Science.gov (United States)

    Kodani, Sean D; Overby, Haley B; Morisseau, Christophe; Chen, Jiangang; Zhao, Ling; Hammock, Bruce D

    2016-11-16

    Parabens are a class of small molecules that are regularly used as preservatives in a variety of personal care products. Several parabens, including butylparaben and benzylparaben, have been found to interfere with endocrine signaling and to stimulate adipocyte differentiation. We hypothesized these biological effects could be due to interference with the endocannabinoid system and identified fatty acid amide hydrolase (FAAH) as the direct molecular target of parabens. FAAH inhibition by parabens yields mixed-type and time-independent kinetics. Additionally, structure activity relationships indicate FAAH inhibition is selective for the paraben class of compounds and the more hydrophobic parabens have higher potency. Parabens enhanced 3T3-L1 adipocyte differentiation in a dose dependent fashion, different from two other FAAH inhibitors URB597 and PF622. Moreover, parabens, URB597 and PF622 all failed to enhance AEA-induced differentiation. Furthermore, rimonabant, a cannabinoid receptor 1 (CB1)-selective antagonist, did not attenuate paraben-induced adipocyte differentiation. Thus, adipogenesis mediated by parabens likely occurs through modulation of endocannabinoids, but cell differentiation is independent of direct activation of CB1 by endocannabinoids. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Polyglycine hydrolases secreted by Pleosporineae fungi that target the linker region of plant class IV chitinases.

    Science.gov (United States)

    Naumann, Todd A; Wicklow, Donald T; Price, Neil P J

    2014-06-01

    Cmps (chitinase-modifying proteins) are fungal proteases that truncate plant class IV chitinases by cleaving near their N-termini. We previously described Fv-cmp, a fungalysin protease that cleaves a conserved glycine-cysteine bond within the hevein domain. In the present paper we describe a new type of cmp, polyglycine hydrolases, as proteases that selectively cleave glycine-glycine peptide bonds within the polyglycine linker of plant class IV chitinases. Polyglycine hydrolases were purified from Cochliobolus carbonum (syn. Bipolaris zeicola; Bz-cmp) and Epicoccum sorghi (syn. Phoma sorghina; Es-cmp) and were shown to cleave three different maize class IV chitinase substrates. The proteolytic cleavage sites were assessed by SDS/PAGE and MALDI-TOF-MS and indicated the cleavage of multiple peptide bonds within the polyglycine linker regions. Site-directed mutagenesis was used to produce mutants of maize ChitB chitinase in which two serine residues in its linker were systematically modified to glycine. Serine to glycine changes in the ChitB linker resulted in higher susceptibility to truncation by Bz-cmp and altered substrate specificity for Bz-cmp and Es-cmp, such that different glycine-glycine peptide bonds were cleaved. Removal of the hevein domain led to loss of Es-cmp activity, indicating that interactions outside of the active site are important for recognition. Our findings demonstrate that plant class IV chitinases with polyglycine linkers are targeted for truncation by selective polyglycine hydrolases that are secreted by plant pathogenic fungi. This novel proteolysis of polyglycine motifs is previously unreported, but the specificity is similar to that of bacterial lysostaphin proteases, which cleave pentaglycine cross-links from peptidoglycan.

  12. Inhibition of soluble epoxide hydrolase reduces food intake and increases metabolic rate in obese mice

    Science.gov (United States)

    do Carmo, Jussara M.; da Silva, Alexandre A.; Morgan, Jarrett; Wang, Yi-Xin (Jim); Munusamy, Shankar; Hall, John E.

    2011-01-01

    Background and Aims This study evaluated the responses to soluble epoxide hydrolase (s-EH) inhibition, an essential enzyme in the metabolism of arachidonic acid, on food intake, body weight and metabolic parameters in mice fed a high fat-high fructose diet (HFD) for 10 weeks. Methods and Results After 5 weeks of HFD, mice were divided into two groups: 1) s-EH inhibitor (AR9281, 200 mg/kg/day by gavage twice daily), and 2) vehicle (0.3 ml per gavage). Food intake, body weight, oxygen consumption (VO2), carbon dioxide production (VCO2), respiratory quotient (RQ), and motor activity were measured weekly for more 5 weeks. HFD increased body weight (37±1 vs 26±1 g), and plasma of glucose (316±8 vs 188±27 mg/dl), insulin (62.1±8.1 vs 15.5±5.0 µU/ml), and leptin levels (39.4±3.6 vs 7.5±0.1 ng/ml) while reducing VO2, VCO2 and motor activity. s-EH inhibition for 5 weeks decreased caloric intake by ~32% and increased VO2 by ~17% (42.8±1.4 vs. 50.2±1.5 ml/kg/min) leading to significant weight loss. Inhibition of s-EHi also caused significant reductions in plasma leptin levels and visceral fat content. Uncoupling protein 1 (UCP1) content in brown adipose tissue was also elevated by ~50% during s-EH inhibition compared to vehicle treatment. Conclusion These results suggest that s-EH inhibition with AR9281 promotes weight loss by reducing appetite and increasing metabolic rate, and that increased UCP1 content may contribute to the increase in energy expenditure. PMID:21190818

  13. Targeted Discovery of Glycoside Hydrolases from a Switchgrass-Adapted Compost Community

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Amitha; Allgaier, Martin; Park, Joshua I.; Ivanoval, Natalia; Dhaeseleer, Patrik; Lowry, Steve; Sapra, Rajat; Hazen, Terry C.; Simmons, Blake A.; VanderGheynst, Jean S.; Hugenholtz, Philip

    2011-05-11

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Smallsubunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, ,10percent were putative cellulasesmostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50uC and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.

  14. Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community

    Energy Technology Data Exchange (ETDEWEB)

    Allgaier, M.; Reddy, A.; Park, J. I.; Ivanova, N.; D' haeseleer, P.; Lowry, S.; Sapra, R.; Hazen, T.C.; Simmons, B.A.; VanderGheynst, J. S.; Hugenholtz, P.

    2009-11-15

    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Small-subunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, {approx}10% were putative cellulases mostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50 C and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme.

  15. Inhibition of the soluble epoxide hydrolase promotes albuminuria in mice with progressive renal disease.

    Directory of Open Access Journals (Sweden)

    Oliver Jung

    2010-08-01

    Full Text Available Epoxyeicotrienoic acids (EETs are cytochrome P450-dependent anti-hypertensive and anti-inflammatory derivatives of arachidonic acid, which are highly abundant in the kidney and considered reno-protective. EETs are degraded by the enzyme soluble epoxide hydrolase (sEH and sEH inhibitors are considered treatment for chronic renal failure (CRF. We determined whether sEH inhibition attenuates the progression of CRF in the 5/6-nephrectomy model (5/6-Nx in mice. 5/6-Nx mice were treated with a placebo, an ACE-inhibitor (Ramipril, 40 mg/kg, the sEH-inhibitor cAUCB or the CYP-inhibitor fenbendazole for 8 weeks. 5/6-Nx induced hypertension, albuminuria, glomerulosclerosis and tubulo-interstitial damage and these effects were attenuated by Ramipril. In contrast, cAUCB failed to lower the blood pressure and albuminuria was more severe as compared to placebo. Plasma EET-levels were doubled in 5/6 Nx-mice as compared to sham mice receiving placebo. Renal sEH expression was attenuated in 5/6-Nx mice but cAUCB in these animals still further increased the EET-level. cAUCB also increased 5-HETE and 15-HETE, which derive from peroxidation or lipoxygenases. Similar to cAUCB, CYP450 inhibition increased HETEs and promoted albuminuria. Thus, sEH-inhibition failed to elicit protective effects in the 5/6-Nx model and showed a tendency to aggravate the disease. These effects might be consequence of a shift of arachidonic acid metabolism into the lipoxygenase pathway.

  16. Prediction of drug-drug interactions with carbamazepine-10,11-epoxide using a new in vitro assay for epoxide hydrolase inhibition.

    Science.gov (United States)

    Rosa, Maria; Bonnaillie, Pierre; Chanteux, Hugues

    2016-12-01

    1. Carbamazepine is an antiepileptic drug which is metabolized by CYP3A4 into carbamazepine-10,11-epoxide. This metabolite is then detoxified by epoxide hydrolase. As carbamazepine-10,11-epoxide has been associated with neurotoxicity, it is critical to identify whether a new antiepileptic drug has the potential to inhibit epoxide hydrolase and therefore increase carbamazepine-10,11-epoxide plasma levels. 2. In this study, an in vitro assay was developed to evaluate epoxide hydrolase activity by using carbamazepine-10,11-epoxide as probe substrate. The ability of this assay to predict drug-drug interactions (DDI) at the epoxide hydrolase level was also investigated. 3. To this aim, known inhibitors of epoxide hydrolase for which in vivo data are available were used. Firstly, carbamazepine-10,11-epoxide hydrolase activity was determined in liver microsomes, cytosol and hepatocytes. Thereafter, the IC50 of epoxide hydrolase inhibitors (progabide, valproic acid, valpromide and valnoctamide) was determined in liver microsomes and hepatocytes. Finally, prediction of AUC increase was performed using the in vitro data generated. 4. Interestingly, epoxide hydrolase activity was found to be much higher in human hepatocytes compared to liver microsomes/cytosol. Even though assessed on a limited number of compounds, this study demonstrated that the use of hepatocytes seems to be a more relevant model to assess and predict DDI at the epoxide hydrolase level.

  17. Antibiotic growth promoters enhance animal production by targeting intestinal bile salt hydrolase and its producers

    Directory of Open Access Journals (Sweden)

    Jun eLin

    2014-02-01

    Full Text Available The growth-promoting effect of antibiotic growth promoters (AGPs was correlated with the decreased activity of bile salt hydrolase (BSH, an intestinal bacteria-produced enzyme that exerts negative impact on host fat digestion and utilization. Consistent with this finding, independent chicken studies have demonstrated that AGP usage significantly reduced population of Lactobacillus species, the major BSH-producers in the intestine. Recent finding also demonstrated that some AGPs, such as tetracycline and roxarsone, display direct inhibitory effect on BSH activity. Therefore, BSH is a promising microbiome target for developing novel alternatives to AGPs. Specifically, dietary supplementation of BSH inhibitor may promote host lipid metabolism and energy harvest, consequently enhancing feed efficiency and body weight gain in food animals.

  18. Pharmacological Inhibition of Soluble Epoxide Hydrolase Ameliorates Diet-Induced Metabolic Syndrome in Rats

    Directory of Open Access Journals (Sweden)

    Abishek Iyer

    2012-01-01

    Full Text Available The signs of metabolic syndrome following chronic excessive macronutrient intake include body weight gain, excess visceral adipose deposition, hyperglycaemia, glucose and insulin intolerances, hypertension, dyslipidaemia, endothelial damage, cardiovascular hypertrophy, inflammation, ventricular contractile dysfunction, fibrosis, and fatty liver disease. Recent studies show increased activity of soluble epoxide hydrolase (sEH during obesity and metabolic dysfunction. We have tested whether sEH inhibition has therapeutic potential in a rat model of diet-induced metabolic syndrome. In these high-carbohydrate, high-fat-fed rats, chronic oral treatment with trans-4-[4-(3-adamantan-1-ylureido-cyclohexyloxy]-benzoic acid (t-AUCB, a potent sEH inhibitor, alleviated the signs of metabolic syndrome in vivo including glucose, insulin, and lipid abnormalities, changes in pancreatic structure, increased systolic blood pressure, cardiovascular structural and functional abnormalities, and structural and functional changes in the liver. The present study describes the pharmacological responses to this selective sEH inhibitor in rats with the signs of diet-induced metabolic syndrome.

  19. Inhibition of soluble epoxide hydrolase in mice promotes reverse cholesterol transport and regression of atherosclerosis.

    Science.gov (United States)

    Shen, Li; Peng, Hongchun; Peng, Ran; Fan, Qingsong; Zhao, Shuiping; Xu, Danyan; Morisseau, Christophe; Chiamvimonvat, Nipavan; Hammock, Bruce D

    2015-04-01

    Adipose tissue is the body largest free cholesterol reservoir and abundantly expresses ATP binding cassette transporter A1 (ABCA1), which maintains plasma high-density lipoprotein (HDL) levels. HDLs have a protective role in atherosclerosis by mediating reverse cholesterol transport (RCT). Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition has various beneficial effects on cardiovascular disease. The sEH is highly expressed in adipocytes, and it converts epoxyeicosatrienoic acids (EETs) into less bioactive dihydroxyeicosatrienoic acids. We previously showed that increasing EETs levels with a sEH inhibitor (sEHI) (t-AUCB) resulted in elevated ABCA1 expression and promoted ABCA1-mediated cholesterol efflux from 3T3-L1 adipocytes. The present study investigates the impacts of t-AUCB in mice deficient for the low density lipoprotein (LDL) receptor (Ldlr(-/-) mice) with established atherosclerotic plaques. The sEH inhibitor delivered in vivo for 4 weeks decreased the activity of sEH in adipose tissue, enhanced ABCA1 expression and cholesterol efflux from adipose depots, and consequently increased HDL levels. Furthermore, t-AUCB enhanced RCT to the plasma, liver, bile and feces. It also showed the reduction of plasma LDL-C levels. Consistently, t-AUCB-treated mice showed reductions in the size of atherosclerotic plaques. These studies establish that raising adipose ABCA1 expression, cholesterol efflux, and plasma HDL levels with t-AUCB treatment promotes RCT, decreasing LDL-C and atherosclerosis regression, suggesting that sEH inhibition may be a promising strategy to treat atherosclerotic vascular disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Soluble epoxide hydrolase contamination of specific catalase preparations inhibits epoxyeicosatrienoic acid vasodilation of rat renal arterioles

    Science.gov (United States)

    Olson, Lauren; Harder, Adam; Isbell, Marilyn; Imig, John D.; Gutterman, David D.; Falck, J. R.; Campbell, William B.

    2011-01-01

    Cytochrome P-450 metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs) and hydrogen peroxide (H2O2), are important signaling molecules in the kidney. In renal arteries, EETs cause vasodilation whereas H2O2 causes vasoconstriction. To determine the physiological contribution of H2O2, catalase is used to inactivate H2O2. However, the consequence of catalase action on EET vascular activity has not been determined. In rat renal afferent arterioles, 14,15-EET caused concentration-related dilations that were inhibited by Sigma bovine liver (SBL) catalase (1,000 U/ml) but not Calbiochem bovine liver (CBL) catalase (1,000 U/ml). SBL catalase inhibition was reversed by the soluble epoxide hydrolase (sEH) inhibitor tAUCB (1 μM). In 14,15-EET incubations, SBL catalase caused a concentration-related increase in a polar metabolite. Using mass spectrometry, the metabolite was identified as 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), the inactive sEH metabolite. 14,15-EET hydrolysis was not altered by the catalase inhibitor 3-amino-1,2,4-triazole (3-ATZ; 10–50 mM), but was abolished by the sEH inhibitor BIRD-0826 (1–10 μM). SBL catalase EET hydrolysis showed a regioisomer preference with greatest hydrolysis of 14,15-EET followed by 11,12-, 8,9- and 5,6-EET (Vmax = 0.54 ± 0.07, 0.23 ± 0.06, 0.18 ± 0.01 and 0.08 ± 0.02 ng DHET·U catalase−1·min−1, respectively). Of five different catalase preparations assayed, EET hydrolysis was observed with two Sigma liver catalases. These preparations had low specific catalase activity and positive sEH expression. Mass spectrometric analysis of the SBL catalase identified peptide fragments matching bovine sEH. Collectively, these data indicate that catalase does not affect EET-mediated dilation of renal arterioles. However, some commercial catalase preparations are contaminated with sEH, and these contaminated preparations diminish the biological activity of H2O2 and EETs. PMID:21753077

  1. Fatty acid amide hydrolase: a potential target for next generation therapeutics.

    Science.gov (United States)

    Maccarrone, Mauro

    2006-01-01

    Endocannabinoids are amides, esters and ethers of long chain polyunsaturated fatty acids, which act as new lipid mediators. Anandamide (N-arachidonoylethanolamine; AEA) and 2-arachidonoylglycerol are the main endogenous agonists of cannabinoid receptors, able to mimic several pharmacological effects of Delta(9)-tetrahydrocannabinol, the active principle of Cannabis sativa preparations like hashish and marijuana. The activity of AEA at its receptors is limited by cellular uptake through a specific membrane transporter, followed by intracellular degradation by a fatty acid amide hydrolase (FAAH). Growing evidence demonstrates that FAAH is the critical regulator of the endogenous levels of AEA, suggesting that it may serve as an attractive therapeutic target for the treatment of human disorders. In particular, FAAH inhibitors may be next generation therapeutic drugs of potential value for the treatment of pathologies in the central nervous system and in the periphery. Here, the potential applications of these inhibitors for human disease will be reviewed, with an emphasis on the properties of hydro(pero)xy-anandamides. In fact, these oxygenated derivatives of AEA are the most powerful inhibitors of FAAH of natural origin as yet discovered. In addition, new insights into the promoter region of FAAH gene will be presented, and the therapeutic potential of mimetics of transcription factors of this gene in the management of human infertility will be discussed.

  2. Construction of a rice glycoside hydrolase phylogenomic database and identification of targets for biofuel research

    Directory of Open Access Journals (Sweden)

    Rita eSharma

    2013-08-01

    Full Text Available Glycoside hydrolases (GH catalyze the hydrolysis of glycosidic bonds in cell wall polymers and can have major effects on cell wall architecture. Taking advantage of the massive datasets available in public databases, we have constructed a rice phylogenomic database of GHs (http://ricephylogenomics.ucdavis.edu/cellwalls/gh/. This database integrates multiple data types including the structural features, orthologous relationships, mutant availability and gene expression patterns for each GH family in a phylogenomic context. The rice genome encodes 437 GH genes classified into 34 families. Based on pairwise comparison with eight dicot and four monocot genomes, we identified 138 GH genes that are highly diverged between monocots and dicots, 57 of which have diverged further in rice as compared with four monocot genomes scanned in this study. Chromosomal localization and expression analysis suggest a role for both whole-genome and localized gene duplications in expansion and diversification of GH families in rice. We examined the meta-profiles of expression patterns of GH genes in twenty different anatomical tissues of rice. Transcripts of 51 genes exhibit tissue or developmental stage-preferential expression, whereas, seventeen other genes preferentially accumulate in actively growing tissues. When queried in RiceNet, a probabilistic functional gene network that facilitates functional gene predictions, nine out of seventeen genes form a regulatory network with the well-characterized genes involved in biosynthesis of cell wall polymers including cellulose synthase and cellulose synthase-like genes of rice. Two-thirds of the GH genes in rice are up regulated in response to biotic and abiotic stress treatments indicating a role in stress adaptation. Our analyses identify potential GH targets for cell wall modification.

  3. High-performance liquid chromatography-tandem mass spectrometry assay of fatty acid amide hydrolase (FAAH) in blood: FAAH inhibition as clinical biomarker.

    Science.gov (United States)

    Yapa, Udeni; Prusakiewicz, Jeffery J; Wrightstone, Ann D; Christine, Lori J; Palandra, Joe; Groeber, Elizabeth; Wittwer, Arthur J

    2012-02-15

    Fatty acid amide hydrolase (FAAH) is one of the main enzymes responsible for the degradation of the endocannabinoid anandamide (N-arachidonoylethanolamine, AEA). FAAH inhibitors may be useful in treating many disorders involving inflammation and pain. Although brain FAAH may be the relevant target for inhibition, rat studies show a correlation between blood and brain FAAH inhibition, allowing blood FAAH activity to be used as a target biomarker. Building on experience with a rat leukocyte FAAH activity assay using [³H]AEA, we have developed a human leukocyte assay using stably labeled [²H₄]AEA as substrate. The deuterium-labeled ethanolamine reaction product ([²H₄]EA) was analyzed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) in the positive electrospray ionization (ESI) mode. The response for [²H₄]EA was linear from 10 nM to 10 μM, and the analysis time was less than 6 min/sample. Results using the [²H₄]AEA and HPLC-MS/MS method agreed well with those obtained using the [³H]AEA radiometric assay. In addition to using a nonradioactive substrate, the HPLC-MS/MS method had increased sensitivity with lower background. Importantly, the assay preserved partial FAAH inhibition resulting from ex vivo treatment with a time-dependent irreversible inhibitor, suggesting its utility with clinical samples. The assay has been used to profile the successful inhibition of FAAH in recent clinical trials. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Effects of antimycin A and 2-deoxyglucose on secretion in human platelets. Differential inhibition of the secretion of acid hydrolases and adenine nucleotides.

    Science.gov (United States)

    Holmsen, H; Robkin, L; Day, H J

    1979-08-15

    1. Shape change, aggregation and secretion of dense-granule constituents in platelets differ in their dependence on cellular energy metabolism. The possibility that such a difference also exists between secretion of dense-granule constituents and acid hydrolases was investigated. 2. Human platelets were incubated with [(14)C]adenine in plasma, and then washed and resuspended in salt solutions. The effects of incubating the cells with antimycin A and 2-deoxyglucose on the concentrations of [(14)C]ATP, ADP, AMP, IMP and inosine plus hypoxanthine and on thrombin-induced secretion of ATP plus ADP and acid hydrolases were studied. The metabolic inhibitors only affected (14)C-labelled nucleotides, whereas thrombin only liberated unlabelled ATP and ADP. 3. The extent of secretion decreased progressively with time during incubation with the metabolic inhibitors. At any time the secretion of acid hydrolases, beta-N-acetylglucosaminidase, beta-glucuronidase and beta-galactosidase was inhibited to a greater extent than secretion of ATP plus ADP (dense-granule secretion). 4. Incubation with the metabolic inhibitors shifted the log (dose)-response relationship to higher thrombin concentrations, and with a greater shift for acid hydrolase secretion than for dense-granule secretion. 5. Antimycin, when present alone, caused a marked decrease in the rate of acid hydrolase secretion, but had no effect on dense-granule secretion. 6. These results further support the view that acid hydrolase secretion and dense-granule secretion are separate processes with different requirements for ATP energy. Acid hydrolase secretion, but not dense-granule secretion, appears to depend on a simultaneous rapid generation of ATP, which can be accomplished by oxidative, but not by glycolytic, ATP production.

  5. Role of haem oxygenase in the renoprotective effects of soluble epoxide hydrolase inhibition in diabetic spontaneously hypertensive rats.

    Science.gov (United States)

    Elmarakby, Ahmed A; Faulkner, Jessica; Pye, Chelsey; Rouch, Katelyn; Alhashim, Abdulmohsin; Maddipati, Krishna Rao; Baban, Babak

    2013-10-01

    We have shown previously that inhibition of sEH (soluble epoxide hydrolase) increased EETs (epoxyeicosatrienoic acids) levels and reduced renal injury in diabetic mice and these changes were associated with induction of HO (haem oxygenase)-1. The present study determines whether the inhibition of HO negates the renoprotective effect of sEH inhibition in diabetic SHR (spontaneously hypertensive rats). After 6 weeks of induction of diabetes with streptozotocin, SHR were divided into the following groups: untreated, treated with the sEH inhibitor t-AUCB {trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid}, treated with the HO inhibitor SnMP (stannous mesoporphyrin), and treated with both inhibitors for 4 more weeks; non-diabetic SHR served as a control group. Induction of diabetes significantly increased renal sEH expression and decreased the renal EETs/DHETEs (dihydroxyeicosatrienoic acid) ratio without affecting HO-1 activity or expression in SHR. Inhibition of sEH with t-AUCB increased the renal EETs/DHETEs ratio and HO-1 activity in diabetic SHR; however, it did not significantly alter systolic blood pressure. Treatment of diabetic SHR with t-AUCB significantly reduced the elevation in urinary albumin and nephrin excretion, whereas co-administration of the HO inhibitor SnMP with t-AUCB prevented these changes. Immunohistochemical analysis revealed elevations in renal fibrosis as indicated by increased renal TGF-β (transforming growth factor β) levels and fibronectin expression in diabetic SHR and these changes were reduced with sEH inhibition. Co-administration of SnMP with t-AUCB prevented its ability to reduce renal fibrosis in diabetic SHR. In addition, SnMP treatment also prevented t-AUCB-induced decreases in renal macrophage infiltration, IL-17 expression and MCP-1 levels in diabetic SHR. These findings suggest that HO-1 induction is involved in the protective effect of sEH inhibition against diabetic renal injury.

  6. Soluble epoxide hydrolase activity and pharmacologic inhibition in horses with chronic severe laminitis.

    Science.gov (United States)

    Guedes, A; Galuppo, L; Hood, D; Hwang, S H; Morisseau, C; Hammock, B D

    2017-05-01

    The roles of soluble epoxide hydrolase and lipid mediators in inflammatory and neuropathic pain could be relevant in laminitis pain management. To determine soluble epoxide hydrolase (sEH) activity in the digital laminae, sEH inhibitor potency in vitro, and efficacy of a sEH inhibitor as an adjunct analgesic therapy in chronic laminitic horses. In vitro experiments and clinical case series. sEH activity was measured in digital laminae from euthanised healthy and laminitic horses (n = 5-6/group). Potency of 7 synthetic sEH inhibitors was determined in vitro using equine liver cytosol. One of them (t-TUCB; 0.1 mg/kg bwt i.v. every 24 h) was selected based on potency and stability, and used as adjunct therapy in 10 horses with severe chronic laminitis (Obel grades 2, one horse; 3-4, nine horses). Daily assessments of forelimb lifts, pain scores, physiologic and laboratory examinations were performed before (baseline) and during t-TUCB treatment. Data are presented as mean ± s.d. and 95% confidence intervals (CI). sEH activity in the digital laminae from laminitic horses (0.9±0.6 nmol/min/mg; 95% CI 0.16-1.55 nmol/min/mg) was significantly greater (P = 0.01) than in healthy horses (0.17±0.09 nmol/min/mg; CI 0.07-0.26 nmol/min/mg). t-TUCB as an adjunct analgesic up to 10 days (4.3±3 days) in laminitic horses was associated with significant reduction in forelimb lifts (36±22%; 95% CI 9-64%) and in pain scores (18±23%; 95% CI 2-35%) compared with baseline (P = 0.04). One horse developed gas colic and another corneal vascularisation in a blind eye during treatment. No other significant changes were observed. Absence of control group and evaluator blinding in case series. sEH activity is significantly higher in the digital laminae of actively laminitic compared with healthy horses, and use of a potent inhibitor of equine sEH as adjunct analgesic therapy appears to decrease signs of pathologic pain in laminitic horses. © 2016 EVJ Ltd.

  7. Gene deficiency and pharmacological inhibition of soluble epoxide hydrolase confers resilience to repeated social defeat stress.

    Science.gov (United States)

    Ren, Qian; Ma, Min; Ishima, Tamaki; Morisseau, Christophe; Yang, Jun; Wagner, Karen M; Zhang, Ji-Chun; Yang, Chun; Yao, Wei; Dong, Chao; Han, Mei; Hammock, Bruce D; Hashimoto, Kenji

    2016-03-29

    Depression is a severe and chronic psychiatric disease, affecting 350 million subjects worldwide. Although multiple antidepressants have been used in the treatment of depressive symptoms, their beneficial effects are limited. The soluble epoxide hydrolase (sEH) plays a key role in the inflammation that is involved in depression. Thus, we examined here the role of sEH in depression. In both inflammation and social defeat stress models of depression, a potent sEH inhibitor, TPPU, displayed rapid antidepressant effects. Expression of sEH protein in the brain from chronically stressed (susceptible) mice was higher than of control mice. Furthermore, expression of sEH protein in postmortem brain samples of patients with psychiatric diseases, including depression, bipolar disorder, and schizophrenia, was higher than controls. This finding suggests that increased sEH levels might be involved in the pathogenesis of certain psychiatric diseases. In support of this hypothesis, pretreatment with TPPU prevented the onset of depression-like behaviors after inflammation or repeated social defeat stress. Moreover, sEH KO mice did not show depression-like behavior after repeated social defeat stress, suggesting stress resilience. The sEH KO mice showed increased brain-derived neurotrophic factor (BDNF) and phosphorylation of its receptor TrkB in the prefrontal cortex, hippocampus, but not nucleus accumbens, suggesting that increased BDNF-TrkB signaling in the prefrontal cortex and hippocampus confer stress resilience. All of these findings suggest that sEH plays a key role in the pathophysiology of depression, and that epoxy fatty acids, their mimics, as well as sEH inhibitors could be potential therapeutic or prophylactic drugs for depression.

  8. Post-exposure administration of diazepam combined with soluble epoxide hydrolase inhibition stops seizures and modulates neuroinflammation in a murine model of acute TETS intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Vito, Stephen T., E-mail: stvito@ucdavis.edu [Department of Entomology, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA 95616 (United States); Austin, Adam T., E-mail: aaustin@ucdavis.edu [Department of Pediatrics, School of Medicine, University of California-Davis Medical Center, Sacramento, CA 95817 (United States); Banks, Christopher N., E-mail: Christopher.Banks@oehha.ca.gov [Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616 (United States); Inceoglu, Bora, E-mail: abinceoglu@ucdavis.edu [Department of Entomology, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA 95616 (United States); Bruun, Donald A., E-mail: dabruun@ucdavis.edu [Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616 (United States); Zolkowska, Dorota, E-mail: dzolkowska@gmail.com [Department of Neurology, School of Medicine, University of California-Davis, Sacramento, CA 95817 (United States); Tancredi, Daniel J., E-mail: djtancredi@ucdavis.edu [Department of Pediatrics, School of Medicine, University of California-Davis Medical Center, Sacramento, CA 95817 (United States); Rogawski, Michael A., E-mail: rogawski@ucdavis.edu [Department of Neurology, School of Medicine, University of California-Davis, Sacramento, CA 95817 (United States); Hammock, Bruce D., E-mail: bdhammock@ucdavis.edu [Department of Entomology, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA 95616 (United States); Lein, Pamela J., E-mail: pjlein@ucdavis.edu [Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616 (United States)

    2014-12-01

    Tetramethylenedisulfotetramine (TETS) is a potent convulsant poison for which there is currently no approved antidote. The convulsant action of TETS is thought to be mediated by inhibition of type A gamma-aminobutyric acid receptor (GABA{sub A}R) function. We, therefore, investigated the effects of post-exposure administration of diazepam, a GABA{sub A}R positive allosteric modulator, on seizure activity, death and neuroinflammation in adult male Swiss mice injected with a lethal dose of TETS (0.15 mg/kg, ip). Administration of a high dose of diazepam (5 mg/kg, ip) immediately following the second clonic seizure (approximately 20 min post-TETS injection) effectively prevented progression to tonic seizures and death. However, this treatment did not prevent persistent reactive astrogliosis and microglial activation, as determined by GFAP and Iba-1 immunoreactivity and microglial cell morphology. Inhibition of soluble epoxide hydrolase (sEH) has been shown to exert potent anti-inflammatory effects and to increase survival in mice intoxicated with other GABA{sub A}R antagonists. The sEH inhibitor TUPS (1 mg/kg, ip) administered immediately after the second clonic seizure did not protect TETS-intoxicated animals from tonic seizures or death. Combined administration of diazepam (5 mg/kg, ip) and TUPS (1 mg/kg, ip, starting 1 h after diazepam and repeated every 24 h) prevented TETS-induced lethality and influenced signs of neuroinflammation in some brain regions. Significantly decreased microglial activation and enhanced reactive astrogliosis were observed in the hippocampus, with no changes in the cortex. Combining an agent that targets specific anti-inflammatory mechanisms with a traditional antiseizure drug may enhance treatment outcome in TETS intoxication. - Highlights: • Acute TETS intoxication causes delayed and persistent neuroinflammation. • Diazepam given post-TETS prevents lethal tonic seizures but not neuroinflammation. • A soluble epoxide hydrolase

  9. Epoxy fatty acids and inhibition of the soluble epoxide hydrolase selectively modulate GABA mediated neurotransmission to delay onset of seizures.

    Directory of Open Access Journals (Sweden)

    Bora Inceoglu

    Full Text Available In the brain, seizures lead to release of large amounts of polyunsaturated fatty acids including arachidonic acid (ARA. ARA is a substrate for three major enzymatic routes of metabolism by cyclooxygenase, lipoxygenase and cytochrome P450 enzymes. These enzymes convert ARA to potent lipid mediators including prostanoids, leukotrienes and epoxyeicosatrienoic acids (EETs. The prostanoids and leukotrienes are largely pro-inflammatory molecules that sensitize neurons whereas EETs are anti-inflammatory and reduce the excitability of neurons. Recent evidence suggests a GABA-related mode of action potentially mediated by neurosteroids. Here we tested this hypothesis using models of chemically induced seizures. The level of EETs in the brain was modulated by inhibiting the soluble epoxide hydrolase (sEH, the major enzyme that metabolizes EETs to inactive molecules, by genetic deletion of sEH and by direct administration of EETs into the brain. All three approaches delayed onset of seizures instigated by GABA antagonists but not seizures through other mechanisms. Inhibition of neurosteroid synthesis by finasteride partially blocked the anticonvulsant effects of sEH inhibitors while the efficacy of an inactive dose of neurosteroid allopregnanolone was enhanced by sEH inhibition. Consistent with earlier findings, levels of prostanoids in the brain were elevated. In contrast, levels of bioactive EpFAs were decreased following seizures. Overall these results demonstrate that EETs are natural molecules which suppress the tonic component of seizure related excitability through modulating the GABA activity and that exploration of the EET mediated signaling in the brain could yield alternative approaches to treat convulsive disorders.

  10. Inhibition of soluble epoxide hydrolase contributes to the anti-inflammatory effect of antimicrobial triclocarban in a murine model

    Science.gov (United States)

    Liu, Jun-Yan; Qiu, Hong; Morisseau, Christophe; Hwang, Sung Hee; Tsai, Hsing-Ju; Ulu, Arzu; Chiamvimonvat, Nipavan; Hammock, Bruce D

    2011-01-01

    The increasing use of the anti-microbial triclocarban (TCC) in personal care products (PCPs) has resulted in concern regarding environmental pollution. TCC is a potent inhibitor of soluble epoxide hydrolase (sEH). Inhibitors of sEH (sEHIs) are anti-inflammatory, anti-hypertensive and cardio-protective in multiple animal models. However, the in vivo effects anticipated from a sEHI have not been reported for TCC. Here we demonstrated the anti-inflammatory effects in vivo of TCC in a murine model. TCC was employed in a lipopolysaccharide (LPS)-challenged murine model. Systolic blood pressure, plasma levels of several inflammatory cytokines and chemokine, and metabolomic profile of plasma oxylipins were determined. TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. TCC significantly repressed the increased release of inflammatory cytokines and chemokine caused by LPS. Furthermore, TCC significantly shifted the oxylipin profile in vivo in a time-dependent manner towards resolution of inflammation as expected from a sEHI. These results demonstrated that at the doses used TCC is anti-inflammatory in the murine model. This study suggests that TCC may provide some benefits in humans in addition to its antimicrobial activities due to its potent inhibition of sEH. It may be a promising starting point for developing new low volume high value applications of TCC. However these biological effects also caution against the general over use of TCC in PCPs. PMID:21741984

  11. Glycoside Hydrolases from a targeted Compost Metagenome, activity-screening and functional characterization

    Directory of Open Access Journals (Sweden)

    Dougherty Michael J

    2012-07-01

    Full Text Available Abstract Background Metagenomics approaches provide access to environmental genetic diversity for biotechnology applications, enabling the discovery of new enzymes and pathways for numerous catalytic processes. Discovery of new glycoside hydrolases with improved biocatalytic properties for the efficient conversion of lignocellulosic material to biofuels is a critical challenge in the development of economically viable routes from biomass to fuels and chemicals. Results Twenty-two putative ORFs (open reading frames were identified from a switchgrass-adapted compost community based on sequence homology to related gene families. These ORFs were expressed in E. coli and assayed for predicted activities. Seven of the ORFs were demonstrated to encode active enzymes, encompassing five classes of hemicellulases. Four enzymes were over expressed in vivo, purified to homogeneity and subjected to detailed biochemical characterization. Their pH optima ranged between 5.5 - 7.5 and they exhibit moderate thermostability up to ~60-70°C. Conclusions Seven active enzymes were identified from this set of ORFs comprising five different hemicellulose activities. These enzymes have been shown to have useful properties, such as moderate thermal stability and broad pH optima, and may serve as the starting points for future protein engineering towards the goal of developing efficient enzyme cocktails for biomass degradation under diverse process conditions.

  12. Post-exposure administration of diazepam combined with soluble epoxide hydrolase inhibition stops seizures and modulates neuroinflammation in a murine model of acute TETS intoxication.

    Science.gov (United States)

    Vito, Stephen T; Austin, Adam T; Banks, Christopher N; Inceoglu, Bora; Bruun, Donald A; Zolkowska, Dorota; Tancredi, Daniel J; Rogawski, Michael A; Hammock, Bruce D; Lein, Pamela J

    2014-12-01

    Tetramethylenedisulfotetramine (TETS) is a potent convulsant poison for which there is currently no approved antidote. The convulsant action of TETS is thought to be mediated by inhibition of type A gamma-aminobutyric acid receptor (GABAAR) function. We, therefore, investigated the effects of post-exposure administration of diazepam, a GABAAR positive allosteric modulator, on seizure activity, death and neuroinflammation in adult male Swiss mice injected with a lethal dose of TETS (0.15mg/kg, ip). Administration of a high dose of diazepam (5mg/kg, ip) immediately following the second clonic seizure (approximately 20min post-TETS injection) effectively prevented progression to tonic seizures and death. However, this treatment did not prevent persistent reactive astrogliosis and microglial activation, as determined by GFAP and Iba-1 immunoreactivity and microglial cell morphology. Inhibition of soluble epoxide hydrolase (sEH) has been shown to exert potent anti-inflammatory effects and to increase survival in mice intoxicated with other GABAAR antagonists. The sEH inhibitor TUPS (1mg/kg, ip) administered immediately after the second clonic seizure did not protect TETS-intoxicated animals from tonic seizures or death. Combined administration of diazepam (5mg/kg, ip) and TUPS (1mg/kg, ip, starting 1h after diazepam and repeated every 24h) prevented TETS-induced lethality and influenced signs of neuroinflammation in some brain regions. Significantly decreased microglial activation and enhanced reactive astrogliosis were observed in the hippocampus, with no changes in the cortex. Combining an agent that targets specific anti-inflammatory mechanisms with a traditional antiseizure drug may enhance treatment outcome in TETS intoxication. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Targeted inhibition of cancer-inflammation

    NARCIS (Netherlands)

    Gomes Coimbra, M.J.

    2012-01-01

    The new paradigm in cancer treatment that aims to inhibit the smoldering inflammatory response in tumors is explored to develop new anticancer treatments. It appears that targeted drug delivery is essential in this concept as high local levels of anti-inflammatory agents are needed to observe the

  14. Inhibition of soluble epoxide hydrolase attenuates hepatic fibrosis and endoplasmic reticulum stress induced by carbon tetrachloride in mice

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Todd R. [Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616 (United States); Bettaieb, Ahmed [Department of Nutrition, University of California, Davis, CA 95616 (United States); Kodani, Sean; Dong, Hua [Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616 (United States); Myers, Richard; Chiamvimonvat, Nipavan [Department of Internal Medicine: Cardiovascular, University of California, Davis, CA 95616 (United States); Haj, Fawaz G. [Department of Nutrition, University of California, Davis, CA 95616 (United States); Department of Internal Medicine: Endocrinology, Diabetes and Metabolism, University of California, Davis, CA 95616 (United States); Hammock, Bruce D., E-mail: bdhammock@ucdavis.edu [Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616 (United States)

    2015-07-15

    Liver fibrosis is a pathological condition in which chronic inflammation and changes to the extracellular matrix lead to alterations in hepatic tissue architecture and functional degradation of the liver. Inhibitors of the enzyme soluble epoxide hydrolase (sEH) reduce fibrosis in the heart, pancreas and kidney in several disease models. In this study, we assess the effect of sEH inhibition on the development of fibrosis in a carbon tetrachloride (CCl{sub 4})-induced mouse model by monitoring changes in the inflammatory response, matrix remolding and endoplasmic reticulum stress. The sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) was administered in drinking water. Collagen deposition in the liver was increased five-fold in the CCl{sub 4}-treated group, and this was returned to control levels by TPPU treatment. Hepatic expression of Col1a2 and 3a1 mRNA was increased over fifteen-fold in the CCl{sub 4}-treated group relative to the Control group, and this increase was reduced by 50% by TPPU treatment. Endoplasmic reticulum (ER) stress observed in the livers of CCl{sub 4}-treated animals was attenuated by TPPU treatment. In order to support the hypothesis that TPPU is acting to reduce the hepatic fibrosis and ER stress through its action as a sEH inhibitor we used a second sEH inhibitor, trans-4-(4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy)-benzoic acid (t-TUCB), and sEH null mice. Taken together, these data indicate that the sEH may play an important role in the development of hepatic fibrosis induced by CCl{sub 4}, presumably by reducing endogenous fatty acid epoxide chemical mediators acting to reduce ER stress. - Highlights: • We administer an inhibitor of sEH in a CCl4 murine model. • sEH inhibition reduces liver collagen deposition and pro-fibrotic gene expression. • sEH inhibition induces MMP-1a activity.

  15. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors

    Science.gov (United States)

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  16. Targeting Sphingosine Kinase-1 To Inhibit Melanoma

    Science.gov (United States)

    Madhunapantula, SubbaRao V.; Hengst, Jeremy; Gowda, Raghavendra; Fox, Todd E.; Yun, Jong K; Robertson, Gavin P.

    2012-01-01

    SUMMARY Resistance to therapies develops rapidly for melanoma leading to more aggressive disease. Therefore, agents are needed that specifically inhibit proteins or pathways controlling the development of this disease, which can be combined, dependent on genes deregulated in a particular patient’s tumors. This study shows that elevated sphingosine-1-phosphate (S-1-P) levels resulting from increased activity of sphingosine kinase-1 (SPHK1) occur in advanced melanomas. Targeting SPHK1 using siRNA decreased anchorage dependent and independent growth as well as sensitized melanoma cells to apoptosis inducing agents. Pharmacological SPHK1 inhibitors SKI-I but not SKI-II decreased S-1-P content, elevated ceramide levels, caused a G2-M block and induced apoptotic cell death in melanomas. Targeting SPHK1 using siRNA or the pharmacological agent called SKI-I, decreased the levels of pAKT. Furthermore, SKI-I inhibited the expression of CYCLIN D1 protein and increased the activity of caspase-3/7, which in turn led to the degradation of PARP. In animals, SKI-I but not SKI-II retarded melanoma growth by 25-40%. Thus, targeting SPHK1 using siRNAs or SKI-I has therapeutic potential for melanoma treatment either alone or in combination with other targeted agents. PMID:22236408

  17. Parameters controlling the gene-targeting frequency at the Sphingomonas species rrn site and expression of the methyl parathion hydrolase gene.

    Science.gov (United States)

    Jiang, J; Zhang, R; Cui, Z; He, J; Gu, L; Li, S

    2007-06-01

    To investigate the key parameters controlling the exogenous methyl parathion hydrolase (MPH) gene mpd-targeting frequency at the ribosomal RNA operon (rrn) site of Sphingomonas species which has a wide range of biotechnological applications. Targeting vectors with different homology lengths and recipient target DNA with different homology identities were used to investigate the parameters controlling the targeting frequency at the Sphingomonas species rrn site. Targeting frequency decreased with the reduction of homology length, and the minimal size for normal homologous recombination was >100 bp. Homologous recombination could succeed even if there were 3-4% mismatches; however, targeting frequency decreased with increasing sequence divergence. The Red recombination system could increase the targeting frequency to some extent. Targeting of the mpd gene to the rrn site did not affect cell viability and resulted in an increase of MPH-specific activity in recombinants. Targeting frequency was affected by homology length, identity and the Red recombination system. The rrn site is a good target site for the expression of exogenous genes. This work is useful as a foundation for a better understanding of recombination events involving homologous sequences and for the improved manipulation of Sphingomonas genes in biotechnological applications.

  18. Adaptive immunity against Leishmania nucleoside hydrolase maps its c-terminal domain as the target of the CD4+ T cell-driven protective response.

    Science.gov (United States)

    Nico, Dirlei; Claser, Carla; Borja-Cabrera, Gulnara P; Travassos, Luiz R; Palatnik, Marcos; Soares, Irene da Silva; Rodrigues, Mauricio Martins; Palatnik-de-Sousa, Clarisa B

    2010-11-09

    Nucleoside hydrolases (NHs) show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36) responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL). Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199-314) and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73±12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-γ secretion, ratios of IFN-γ/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNFα/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5-88.23%; p = 0.011) that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-γ/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and for multivalent

  19. Adaptive immunity against Leishmania nucleoside hydrolase maps its c-terminal domain as the target of the CD4+ T cell-driven protective response.

    Directory of Open Access Journals (Sweden)

    Dirlei Nico

    Full Text Available Nucleoside hydrolases (NHs show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36 responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL. Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199-314 and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73±12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-γ secretion, ratios of IFN-γ/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNFα/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5-88.23%; p = 0.011 that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-γ/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and

  20. Meloxicam fails to augment the reno-protective effects of soluble epoxide hydrolase inhibition in streptozotocin-induced diabetic rats via increased 20-HETE levels.

    Science.gov (United States)

    Katary, Mohamed M; Pye, Chelsey; Elmarakby, Ahmed A

    2017-09-01

    The pro-inflammatory cyclooxygenase (COX)-derived prostaglandins and the anti-inflammatory cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids (EETs) play an important role in the regulation of renal injury. The current study examined whether COX inhibition augments the reno-protective effects of increased EETs levels via inhibiting EETs degradation by soluble epoxide hydrolase (sEH) in diabetic rats. Streptozotocin (50mg/kg, i.v) was used to induce diabetes in male Sprague Dawley rats. Rats were then divided into 5 groups (n=6-8); control non diabetic, diabetic, diabetic treated with the sEH inhibitor trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB), diabetic treated with the COX inhibitor meloxicam and diabetic treated with meloxicam plus t-AUCB for 2 months. Glomerular albumin permeability and urinary albumin and nephrin excretion levels were significantly elevated in diabetic rats together with decreased glomerular α3 integrin and nephrin expression levels. Inhibition of sEH reduced glomerular albumin permeability, albumin and nephrin excretion levels and restored the decrease in glomerular α3 integrin and nephrin expression in diabetic rats. Meloxicam failed to reduce renal injury or even to synergize the reno-protective effects of sEH inhibition in diabetic rats. Furthermore, inhibition of sEH reduced the elevation in renal collagen deposition and urinary MCP-1 excretion levels together with a reduction in the number of renal TUNEL positive cells in diabetic vs. control rats (PMeloxicam did not reduce renal inflammation or apoptosis in diabetic rats or even exacerbate the anti-inflammatory and anti-apoptotic effects of sEH inhibition. Renal 20-hydroxyeicosatetranoic acid (20-HETE) levels were elevated in diabetic rats and meloxicam further exacerbated this elevation. In conclusion, our study suggests that inhibition of COX failed to provide renal protection or to augment the reno-protective effects of sEH inhibition in

  1. Soluble epoxide hydrolase inhibitor AUDA decreases bleomycin-induced pulmonary toxicity in mice by inhibiting the p38/Smad3 pathways.

    Science.gov (United States)

    Dong, Xin-Wei; Jia, Yong-Liang; Ge, Ling-Tian; Jiang, Bo; Jiang, Jun-Xia; Shen, Jian; Jin, Ya-Chao; Guan, Yan; Sun, Yun; Xie, Qiang-Min

    2017-08-15

    Bleomycin (BLM) has potent tumor cell-killing properties that have given it an important place in cancer chemotherapy, but pulmonary toxicity is its major adverse effect. Soluble epoxide hydrolase (sEH) inhibitors have been reported to have protective effects in fibrosis models, but the effects of AUDA, an sEH inhibitor of BLM-induced pulmonary toxicity and fibrosis, remain to be researched. In this study, we assessed the effects of AUDA on the BLM-induced pulmonary fibrosis in a mouse model, and transforming growth factor (TGF)-β 1 -induced epithelial proliferation and epithelial-mesenchymal transition (EMT) in vitro by monitoring changes in pulmonary function, inflammatory response, fibrotic remodeling, and signaling pathways. AUDA was administered by intragastric administration (i.g) daily for three weeks, starting at seven days after intratracheal instillation of BLM. All examinations were performed 24h after the last i.g. In vivo, AUDA significantly improved BLM-induced decline in lung function and body weight, and inhibited inflammatory cell accumulation and the mRNA and protein expression of interleukin (IL)-1β, TGF-β 1 , and matrix metalloproteinase 9 (MMP-9) in lung tissue. Moreover, AUDA attenuated BLM-induced deposition of collagen fibers, destruction of alveolar structures, and pulmonary parenchyma. Additionally, AUDA regulated the expression of α-smooth muscle actin (α-SMA) and E-cadherin by inhibiting the Smad3/p38 signaling pathway. In vitro, AUDA significantly inhibited TGF-β 1 -induced epithelial cells and fibroblast proliferation, reduced sEH expression and α-SMA expression, and increased epoxyeicosatrienoic acid (EET) levels and E-cadherin expression in epithelial cells. These effects were blocked by AUDA by downregulating the Smad3 and p38 signaling pathways. Taken together, these data indicate that treatment with sEH inhibitors may improve BLM-induced pulmonary toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effects of AS2586114, a soluble epoxide hydrolase inhibitor, on hyperlocomotion and prepulse inhibition deficits in mice after administration of phencyclidine.

    Science.gov (United States)

    Ma, Min; Ren, Qian; Fujita, Yuko; Ishima, Tamaki; Zhang, Ji-Chun; Hashimoto, Kenji

    2013-09-01

    Accumulating evidence suggests that soluble epoxide hydrolase (sEH) plays a key role in controlling levels of lipid signaling molecules, and that the potent sEH inhibitors may be potential therapeutic drugs for a number of diseases associated with metabolism of epoxyeicosatrienoic acids (EETs). This study was undertaken to examine whether the potent sEH inhibitor AS2586114 could attenuate behavioral abnormalities (e.g., hyperlocomotion and prepulse inhibition (PPI) deficits) in male ddY mice after a single administration of the N-methyl-D-aspartate (NMDA) receptor antagonist phencyclidine (PCP). A single oral administration of AS2586114 (10, 30, or 100 mg/kg) attenuated the hyperlocomotion in mice after the administration of PCP (3.0 mg/kg, s.c.), in a dose dependent manner. Furthermore, a single oral administration of AS2586114 (10, 30, or 100 mg/kg) improved the PPI deficits in mice after the administration of PCP (3.0 mg/kg, s.c.), in a dose dependent manner. In addition, the atypical antipsychotic drug clozapine (10 mg/kg, p.o.) significantly attenuated hyperlocomotion and PPI deficits after the administration of PCP (3.0 mg/kg, s.c.). In conclusion, this study suggests that AS2586114 may have antipsychotic activity in PCP models of schizophrenia. Therefore, it is likely that the sEH inhibitors may be potential therapeutic drugs for neuropsychiatric diseases such as schizophrenia. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Comparison of pectin-degrading fungal communities in temperate forests using glycosyl hydrolase family 28 pectinase primers targeting Ascomycete fungi.

    Science.gov (United States)

    Gacura, Matthew D; Sprockett, Daniel D; Heidenreich, Bess; Blackwood, Christopher B

    2016-04-01

    Fungi have developed a wide assortment of enzymes to break down pectin, a prevalent polymer in plant cell walls that is important in plant defense and structure. One enzyme family used to degrade pectin is the glycosyl hydrolase family 28 (GH28). In this study we developed primers for the amplification of GH28 coding genes from a database of 293 GH28 sequences from 40 fungal genomes. The primers were used to successfully amplify GH28 pectinases from all Ascomycota cultures tested, but only three out of seven Basidiomycota cultures. In addition, we further tested the primers in PCRs on metagenomic DNA extracted from senesced tree leaves from different forest ecosystems, followed by cloning and sequencing. Taxonomic specificity for Ascomycota GH28 genes was tested by comparing GH28 composition in leaves to internal transcribed spacer (ITS) amplicon composition using pyrosequencing. All sequences obtained from GH28 primers were classified as Ascomycota; in contrast, ITS sequences indicated that fungal communities were up to 39% Basidiomycetes. Analysis of leaf samples indicated that both forest stand and ecosystem type were important in structuring fungal communities. However, site played the prominent role in explaining GH28 composition, whereas ecosystem type was more important for ITS composition, indicating possible genetic drift between populations of fungi. Overall, these primers will have utility in understanding relationships between fungal community composition and ecosystem processes, as well as detection of potentially pathogenic Ascomycetes. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Glycoside hydrolases having multiple hydrolase activities

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhiwei; Friedland, Gregory D.; Chhabra, Swapnil R.; Chivian, Dylan C.; Simmons, Blake A

    2017-08-08

    Glycoside hydrolases having at least two different hydrolytic activities are provided. In one embodiment, an isolated recombinant hydrolase having at least two activities selected from a group including asparagine derivatives, glutamine derivatives, and histidine derivatives is provided. Further, a method of generating free sugars from a mixture comprising asparagine derivatives, glutamine derivatives, and histidine derivatives is provided.

  5. A Personal Retrospective: Elevating Anandamide (AEA by Targeting Fatty Acid Amide Hydrolase (FAAH and the Fatty Acid Binding Proteins (FABPs

    Directory of Open Access Journals (Sweden)

    Dale Deutsch

    2016-10-01

    Full Text Available This perspective was adapted from a Career Achievement Award talk given at the International Cannabinoid Research Society Symposium in Bukovina, Poland on June 27, 2016. As a biochemist working in the neurosciences, I was always fascinated with neurotransmitter inactivation. In 1993 we identified an enzyme activity that breaks down anandamide. We called the enzyme anandamide amidase, now called FAAH. We and other laboratories developed FAAH inhibitors that were useful reagents that also proved to have beneficial physiological effects and, until recently, new generations of inhibitors were in clinical trials. Nearly all neurotransmitters are water soluble and, as such, require a transmembrane protein transporter to pass through the lipid membrane for inactivation inside the cell. However, using model systems, we and others have shown that this is unnecessary for anandamide, an uncharged hydrophobic molecule that readily diffuses across the cellular membrane. Interestingly, its uptake is driven by the concentration gradient resulting from its breakdown mainly by FAAH localized in the endoplasmic reticulum. We identified the FABPs as intracellular carriers that solubilize anandamide, transporting anandamide to FAAH. Compounds that bind to FABPs block AEA breakdown, raising its level. The cannabinoids (THC and CBD also were discovered to bind FABPs and this may be one of the mechanisms by which CBD works in childhood epilepsy, raising anandamide levels. Targeting FABPs may be advantageous since they have some tissue specificity and do not require reactive serine hydrolase inhibitors, as does FAAH, with potential for off-target reactions.

  6. Expression of fatty acid amide hydrolase (FAAH) in human, mouse, and rat urinary bladder and effects of FAAH inhibition on bladder function in awake rats.

    Science.gov (United States)

    Strittmatter, Frank; Gandaglia, Giorgio; Benigni, Fabio; Bettiga, Arianna; Rigatti, Patrizio; Montorsi, Francesco; Gratzke, Christian; Stief, Christian; Colciago, Giorgia; Hedlund, Petter

    2012-01-01

    Cannabinoid receptor (CB)-mediated functions may be involved in the regulation of bladder function, but information on endocannabinoid signals during micturition is scarce. Investigate the expression of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH) in human, rat, and mouse bladders and study the effects of inhibition of FAAH during urodynamics in awake rats. Bladder tissue from humans, mice, and rats was used for measurements. Female Sprague-Dawley rats were administered the FAAH inhibitor oleoyl ethyl amide (OEtA) or vehicle intravenously (IV) or intravesically (IVES) with or without rimonabant (CB1 antagonist) or SR144528 (CB2 antagonist). Real-time transcriptase-polymerase chain reaction, Western blot, immunohistochemistry, and cystometry in awake rats. Messenger RNA and protein for FAAH was expressed in the mucosa of human, mouse, and rat urinary bladders. Immunoreactivities for FAAH and CB2 were codistributed in rat and human urothelium. IV OEtA (0.3mg/kg) to rats increased intercontraction intervals (ICIs), micturition volume (MV), bladder capacity (BC), and threshold pressure (TP) by 17±1%, 16±1%, 17±1%, and 19±5%, respectively (all prats dose-dependently increased (pRat and human urothelium coexpressed FAAH and CB2. The FAAH inhibitor OEtA altered urodynamic parameters that reflect sensory functions of micturition in rats. Suggesting a role for the endocannabinoid system in bladder mechanoafferent functions of rats, effects of IVES OEtA were abolished by an IVES CB2 antagonist and partly counteracted by an IVES CB1 antagonist. Copyright © 2011 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  7. Single dendrite-targeting interneurons generate branch-specific inhibition.

    Directory of Open Access Journals (Sweden)

    Caleb eStokes

    2014-11-01

    Full Text Available Microcircuits composed of dendrite-targeting inhibitory interneurons and pyramidal cells are fundamental elements of cortical networks, however, the impact of individual interneurons on pyramidal dendrites is unclear. Here, we combine paired recordings and calcium imaging to determine the spatial domain over which single dendrite-targeting interneurons influence pyramidal cells in olfactory cortex. We show that a major action of individual interneurons is to inhibit dendrites in a branch-specific fashion.

  8. Differential distribution and biochemical characteristics of hydrolases among developmental stages of Schistosoma mansoni may offer new anti-parasite targets.

    Science.gov (United States)

    Fernández-Delgado, Milagro; Cortez, Jackeline; Sulbarán, Guiden; Matos, César; Incani, Renzo Nino; Ballén, Diana E; Cesari, Italo M

    2017-02-01

    Schistosoma mansoni enzymes play important roles in host-parasite interactions and are potential targets for immunological and/or pharmacological attack. The aim of this study was to comparatively assess the presence of hydrolytic activities (phosphatases, glycosidases, aminopeptidases) in soluble (SF) and membrane (MF) fractions from different S. mansoni developmental stages (schistosomula 0 and 3h, juveniles, and adult worms of 28 and 45days-old, respectively), by using simple enzyme-substrate microassays. Our results show and confirm the prominent presence of alkaline phosphatase (AlP) activity in the MF of all the above parasite stages, highlighting also the relevant presence of MF-associated α-mannosidase (α-MAN) activity in juveniles. A soluble AlP activity, together with β-N-D-acetylglucosaminidase (β-NAG), and α-MAN activities, was detected in SF of schistosomulum 0h. Soluble β-NAG, α-MAN, acid phosphatase (AcP), leucin (LAP) and alanine (AAP) aminopeptidase activities were also seen in the SF of the other different developmental stages. This work shows different soluble and membrane-associated hydrolytic capacities in each S. mansoni developmental stage from schistosomula to adults that might be exploitable as potential new targets for immune and/or chemoprophylactic strategies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Selective inhibition of retinal angiogenesis by targeting PI3 kinase.

    Directory of Open Access Journals (Sweden)

    Yolanda Alvarez

    Full Text Available Ocular neovascularisation is a pathological hallmark of some forms of debilitating blindness including diabetic retinopathy, age related macular degeneration and retinopathy of prematurity. Current therapies for delaying unwanted ocular angiogenesis include laser surgery or molecular inhibition of the pro-angiogenic factor VEGF. However, targeting of angiogenic pathways other than, or in combination to VEGF, may lead to more effective and safer inhibitors of intraocular angiogenesis. In a small chemical screen using zebrafish, we identify LY294002 as an effective and selective inhibitor of both developmental and ectopic hyaloid angiogenesis in the eye. LY294002, a PI3 kinase inhibitor, exerts its anti-angiogenic effect in a dose-dependent manner, without perturbing existing vessels. Significantly, LY294002 delivered by intraocular injection, significantly inhibits ocular angiogenesis without systemic side-effects and without diminishing visual function. Thus, targeting of PI3 kinase pathways has the potential to effectively and safely treat neovascularisation in eye disease.

  10. Inhibition of osteoclastogenesis by RNA interference targeting RANK

    Directory of Open Access Journals (Sweden)

    Ma Ruofan

    2012-08-01

    Full Text Available Abstract Background Osteoclasts and osteoblasts regulate bone resorption and formation to allow bone remodeling and homeostasis. The balance between bone resorption and formation is disturbed by abnormal recruitment of osteoclasts. Osteoclast differentiation is dependent on the receptor activator of nuclear factor NF-kappa B (RANK ligand (RANKL as well as the macrophage colony-stimulating factor (M-CSF. The RANKL/RANK system and RANK signaling induce osteoclast formation mediated by various cytokines. The RANK/RANKL pathway has been primarily implicated in metabolic, degenerative and neoplastic bone disorders or osteolysis. The central role of RANK/RANKL interaction in osteoclastogenesis makes RANK an attractive target for potential therapies in treatment of osteolysis. The purpose of this study was to assess the effect of inhibition of RANK expression in mouse bone marrow macrophages on osteoclast differentiation and bone resorption. Methods Three pairs of short hairpin RNAs (shRNA targeting RANK were designed and synthesized. The optimal shRNA was selected among three pairs of shRNAs by RANK expression analyzed by Western blot and Real-time PCR. We investigated suppression of osteoclastogenesis of mouse bone marrow macrophages (BMMs using the optimal shRNA by targeting RANK. Results Among the three shRANKs examined, shRANK-3 significantly suppressed [88.3%] the RANK expression (p Conclusions These findings suggest that retrovirus-mediated shRNA targeting RANK inhibits osteoclast differentiation and osteolysis. It may appear an attractive target for preventing osteolysis in humans with a potential clinical application.

  11. Adaptive Immunity against Leishmania Nucleoside Hydrolase Maps Its C-Terminal Domain as the Target of the CD4+ T Cell-Driven Protective Response

    OpenAIRE

    Dirlei Nico; Carla Claser; Borja-Cabrera, Gulnara P.; Travassos, Luiz R.; Marcos Palatnik; Irene da Silva Soares; Mauricio Martins Rodrigues; Palatnik-de-Sousa, Clarisa B.

    2010-01-01

    Nucleoside hydrolases (NHs) show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36) responsible for its immunogenicity and protective efficacy against murine visceral ...

  12. Molecule Targeting Glucosyltransferase Inhibits Streptococcus mutans Biofilm Formation and Virulence.

    Science.gov (United States)

    Ren, Zhi; Cui, Tao; Zeng, Jumei; Chen, Lulu; Zhang, Wenling; Xu, Xin; Cheng, Lei; Li, Mingyun; Li, Jiyao; Zhou, Xuedong; Li, Yuqing

    2015-10-19

    Dental plaque biofilms are responsible for numerous chronic oral infections and cause a severe health burden. Many of these infections cannot be eliminated, as the bacteria in the biofilms are resistant to the host's immune defenses and antibiotics. There is a critical need to develop new strategies to control biofilm-based infections. Biofilm formation in Streptococcus mutans is promoted by major virulence factors known as glucosyltransferases (Gtfs), which synthesize adhesive extracellular polysaccharides (EPS). The current study was designed to identify novel molecules that target Gtfs, thereby inhibiting S. mutans biofilm formation and having the potential to prevent dental caries. Structure-based virtual screening of approximately 150,000 commercially available compounds against the crystal structure of the glucosyltransferase domain of the GtfC protein from S. mutans resulted in the identification of a quinoxaline derivative, 2-(4-methoxyphenyl)-N-(3-{[2-(4-methoxyphenyl)ethyl]imino}-1,4-dihydro-2-quinoxalinylidene)ethanamine, as a potential Gtf inhibitor. In vitro assays showed that the compound was capable of inhibiting EPS synthesis and biofilm formation in S. mutans by selectively antagonizing Gtfs instead of by killing the bacteria directly. Moreover, the in vivo anti-caries efficacy of the compound was evaluated in a rat model. We found that the compound significantly reduced the incidence and severity of smooth and sulcal-surface caries in vivo with a concomitant reduction in the percentage of S. mutans in the animals' dental plaque (P < 0.05). Taken together, these results represent the first description of a compound that targets Gtfs and that has the capacity to inhibit biofilm formation and the cariogenicity of S. mutans. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Target inhibition networks: predicting selective combinations of druggable targets to block cancer survival pathways.

    Directory of Open Access Journals (Sweden)

    Jing Tang

    Full Text Available A recent trend in drug development is to identify drug combinations or multi-target agents that effectively modify multiple nodes of disease-associated networks. Such polypharmacological effects may reduce the risk of emerging drug resistance by means of attacking the disease networks through synergistic and synthetic lethal interactions. However, due to the exponentially increasing number of potential drug and target combinations, systematic approaches are needed for prioritizing the most potent multi-target alternatives on a global network level. We took a functional systems pharmacology approach toward the identification of selective target combinations for specific cancer cells by combining large-scale screening data on drug treatment efficacies and drug-target binding affinities. Our model-based prediction approach, named TIMMA, takes advantage of the polypharmacological effects of drugs and infers combinatorial drug efficacies through system-level target inhibition networks. Case studies in MCF-7 and MDA-MB-231 breast cancer and BxPC-3 pancreatic cancer cells demonstrated how the target inhibition modeling allows systematic exploration of functional interactions between drugs and their targets to maximally inhibit multiple survival pathways in a given cancer type. The TIMMA prediction results were experimentally validated by means of systematic siRNA-mediated silencing of the selected targets and their pairwise combinations, showing increased ability to identify not only such druggable kinase targets that are essential for cancer survival either individually or in combination, but also synergistic interactions indicative of non-additive drug efficacies. These system-level analyses were enabled by a novel model construction method utilizing maximization and minimization rules, as well as a model selection algorithm based on sequential forward floating search. Compared with an existing computational solution, TIMMA showed both enhanced

  14. Molecule Targeting Glucosyltransferase Inhibits Streptococcus mutans Biofilm Formation and Virulence

    Science.gov (United States)

    Ren, Zhi; Cui, Tao; Zeng, Jumei; Chen, Lulu; Zhang, Wenling; Xu, Xin; Cheng, Lei; Li, Mingyun; Li, Jiyao; Zhou, Xuedong

    2015-01-01

    Dental plaque biofilms are responsible for numerous chronic oral infections and cause a severe health burden. Many of these infections cannot be eliminated, as the bacteria in the biofilms are resistant to the host's immune defenses and antibiotics. There is a critical need to develop new strategies to control biofilm-based infections. Biofilm formation in Streptococcus mutans is promoted by major virulence factors known as glucosyltransferases (Gtfs), which synthesize adhesive extracellular polysaccharides (EPS). The current study was designed to identify novel molecules that target Gtfs, thereby inhibiting S. mutans biofilm formation and having the potential to prevent dental caries. Structure-based virtual screening of approximately 150,000 commercially available compounds against the crystal structure of the glucosyltransferase domain of the GtfC protein from S. mutans resulted in the identification of a quinoxaline derivative, 2-(4-methoxyphenyl)-N-(3-{[2-(4-methoxyphenyl)ethyl]imino}-1,4-dihydro-2-quinoxalinylidene)ethanamine, as a potential Gtf inhibitor. In vitro assays showed that the compound was capable of inhibiting EPS synthesis and biofilm formation in S. mutans by selectively antagonizing Gtfs instead of by killing the bacteria directly. Moreover, the in vivo anti-caries efficacy of the compound was evaluated in a rat model. We found that the compound significantly reduced the incidence and severity of smooth and sulcal-surface caries in vivo with a concomitant reduction in the percentage of S. mutans in the animals' dental plaque (P mutans. PMID:26482298

  15. Targeting lung cancer through inhibition of checkpoint kinases

    Directory of Open Access Journals (Sweden)

    Randi Gussgard Syljuåsen

    2015-02-01

    Full Text Available Inhibitors of checkpoint kinases ATR, Chk1 and Wee1 are currently being tested in preclinical and clinical trials. Here, we review the basic principles behind the use of such inhibitors as anticancer agents, and particularly discuss their potential for treatment of lung cancer. As lung cancer is one of the most deadly cancers, new treatment strategies are highly needed. We discuss how checkpoint kinase inhibition in principle can lead to selective killing of lung cancer cells while sparing the surrounding normal tissues. Several features of lung cancer may potentially be exploited for targeting through inhibition of checkpoint kinases, including mutated p53, low ERCC1 levels, amplified Myc, tumor hypoxia and presence of lung cancer stem cells. Synergistic effects have also been reported between inhibitors of ATR/Chk1/Wee1 and conventional lung cancer treatments, such as gemcitabine, cisplatin or radiation. Altogether, inhibitors of ATR, Chk1 and Wee1 are emerging as new cancer treatment agents, likely to be useful in lung cancer treatment. However, as lung tumors are very diverse, the inhibitors are unlikely to be effective in all patients, and more work is needed to determine how such inhibitors can be utilized in the most optimal ways.

  16. Transcription Inhibition as a Therapeutic Target for Cancer

    Directory of Open Access Journals (Sweden)

    Christine M. Stellrecht

    2011-11-01

    Full Text Available During tumorigenesis the transformed cells lose their normal growth control mechanisms and become dependent on oncogenes’ products and pathways for survival. Treatments tailored to block the expression or function of transforming genes have shown efficacy in eliminating neoplastic cells. The mRNAs of many oncogenes, as well as regulators of other key processes such as cell proliferation, angiogenesis, and apoptosis, typically have shorter half-lives. Agents that impede mRNA synthesis are expected to selectively hinder the expression of these genes and, therefore, be detrimental to neoplastic cells that are physiologically dependent on them. In addition to exploiting the tumor cells’ dependency on short-lived transcripts, RNA-directed agents also take advantage of the differential sensitivity between transformed and non-transformed cells, as the cytotoxic effects of inhibiting RNA synthesis have not been seen in non-transformed cells. The abrogation of the formation of oncotranscripts provides a new concept in cancer therapeutics and numerous agents have been developed which are able to target transcription. The focus of this review is to give an overview of transcription and the different inhibitory strategies that target various aspects of the transcriptional process.

  17. Bioresponsive cancer-targeted polysaccharide nanosystem to inhibit angiogenesis.

    Science.gov (United States)

    Yang, Fang; Fang, Xueyang; Jiang, Wenting; Chen, Tianfeng

    2017-01-01

    With many desirable features, such as being more effective and having multiple effects, antiangiogenesis has become one of the promising cancer treatments. The aim of this study was to design and synthesize a new targeted bioresponsive nanosystem with antiangiogenesis properties. The mUPR@Ru(POP) nanosystem was constructed by the polymerization of Ulva lactuca polysaccharide and N-isopropyl acrylamide, decorated with methoxy polyethylene glycol and Arg-Gly-Asp peptide, and encapsulated with anticancer complex [Ru(phen)2p-MOPIP](PF6)2·2H2O. The nanosystem was both pH responsive and targeted. Therefore, the cellular uptake of the drug was greatly improved. Moreover, the mUPR@Ru(POP) had strong suppressive effects against vascular endothelial growth factor (VEGF)-induced angiogenesis through apoptosis. The mUPR@Ru(POP) significantly inhibited VEGF-induced human umbilical vein endothelial cell migration, invasion, and tube formation. These findings have presented new insights into the development of antiangiogenesis drugs.

  18. Inhibition of soluble epoxide hydrolase augments astrocyte release of vascular endothelial growth factor and neuronal recovery after oxygen-glucose deprivation.

    Science.gov (United States)

    Zhang, Yue; Hong, Gina; Lee, Kin Sing Stephen; Hammock, Bruce D; Gebremedhin, Debebe; Harder, David R; Koehler, Raymond C; Sapirstein, Adam

    2017-03-01

    Epoxyeicosatrienoic acids (EETs) are synthesized in astrocytes, and inhibitors of soluble epoxide hydrolase (sEH), which hydrolyzes EETs, reduce infarct volume in ischemic stroke. Astrocytes can release protective neurotrophic factors, such as vascular endothelial growth factor (VEGF). We found that addition of sEH inhibitors to rat cultured astrocytes immediately after oxygen-glucose deprivation (OGD) markedly increased VEGF concentration in the medium 48 h later and the effect was blocked by an EET antagonist. The sEH inhibitors increased EET concentrations to levels capable of increasing VEGF. When the sEH inhibitors were removed from the medium at 48 h, the increase in VEGF persisted for an additional 48 h. Neurons exposed to OGD and subsequently to astrocyte medium previously conditioned with OGD plus sEH inhibitors showed increased phosphorylation of their VEGF receptor-2, less TUNEL staining, and increased phosphorylation of Akt, which was blocked by a VEGF receptor-2 antagonist. Our findings indicate that sEH inhibitors, applied to cultured astrocytes after an ischemia-like insult, can increase VEGF secretion. The released VEGF then enhances Akt-enabled cell survival signaling in neurons through activation of VEGF receptor-2 leading to less neuronal cell death. These results suggest a new strategy by which astrocytes can be leveraged to support neuroprotection. © 2016 International Society for Neurochemistry.

  19. Variants of glycoside hydrolases

    Energy Technology Data Exchange (ETDEWEB)

    Teter, Sarah; Ward, Connie; Cherry, Joel; Jones, Aubrey; Harris, Paul; Yi, Jung

    2017-07-11

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  20. Targeting fatty acid amide hydrolase and transient receptor potential vanilloid-1 simultaneously to modulate colonic motility and visceral sensation in the mouse: A pharmacological intervention with N-arachidonoyl-serotonin (AA-5-HT).

    Science.gov (United States)

    Bashashati, M; Fichna, J; Piscitelli, F; Capasso, R; Izzo, A A; Sibaev, A; Timmermans, J-P; Cenac, N; Vergnolle, N; Di Marzo, V; Storr, M

    2017-12-01

    Endocannabinoid anandamide (AEA) inhibits intestinal motility and visceral pain, but it may also be proalgesic through transient receptor potential vanilloid-1 (TRPV1). AEA is degraded by fatty acid amide hydrolase (FAAH). This study explored whether dual inhibition of FAAH and TRPV1 reduces diarrhea and abdominal pain. Immunostaining was performed on myenteric plexus of the mouse colon. The effects of the dual FAAH/TRPV1 inhibitor AA-5-HT on electrically induced contractility, excitatory junction potential (EJP) and fast (f) and slow (s) inhibitory junction potentials (IJP) in the mouse colon, colonic propulsion and visceromotor response (VMR) to rectal distension were studied. The colonic levels of endocannabinoids and fatty acid amides were measured. CB1-positive neurons exhibited TRPV1; only some TRPV1 positive neurons did not express CB1. CB1 and FAAH did not colocalize. AA-5-HT (100 nM-10 μM) decreased colonic contractility by ~60%; this effect was abolished by TRPV1 antagonist 5'-IRTX, but not by CB1 antagonist, SR141716. AA-5-HT (1 μM-10 μM) inhibited EJP by ~30% and IJPs by ~50%. The effects of AA-5-HT on junction potentials were reversed by SR141716 and 5`-IRTX. AA-5-HT (20 mg/kg; i.p.) inhibited colonic propulsion by ~30%; SR141716 but not 5`-IRTX reversed this effect. AA-5-HT decreased VMR by ~50%-60%; these effects were not blocked by SR141716 or 5`-IRTX. AA-5-HT increased AEA in the colon. The effects of AA-5-HT on visceral sensation and colonic motility are differentially mediated by CB1, TRPV1 and non-CB1/TRPV1 mechanisms, possibly reflecting the distinct neuromodulatory roles of endocannabinoid and endovanilloid FAAH substrates in the mouse intestine. © 2017 John Wiley & Sons Ltd.

  1. 5,7-Dimethoxycoumarin inhibits neuronal apoptosis by targeting ...

    African Journals Online (AJOL)

    Stem Cells 2014; 32: 473‑486. 8. Yang B, Ye D, Wang Y. Caspase-3 as a therapeutic target for heart failure. Expert Opin Ther Targets 2013;. 17: 255‑263. 9. Zhang ZN, Li JY, Zhao Y, Wang JQ, Huang C, Fan GQ. Effects of Tongnao Huoluo acupuncture therapy on. Caspase-3 and Bcl‑2 of rats with acute cerebral infarction.

  2. Peptidoglycan Hydrolases of Escherichia coli

    Science.gov (United States)

    van Heijenoort, Jean

    2011-01-01

    Summary: The review summarizes the abundant information on the 35 identified peptidoglycan (PG) hydrolases of Escherichia coli classified into 12 distinct families, including mainly glycosidases, peptidases, and amidases. An attempt is also made to critically assess their functions in PG maturation, turnover, elongation, septation, and recycling as well as in cell autolysis. There is at least one hydrolytic activity for each bond linking PG components, and most hydrolase genes were identified. Few hydrolases appear to be individually essential. The crystal structures and reaction mechanisms of certain hydrolases having defined functions were investigated. However, our knowledge of the biochemical properties of most hydrolases still remains fragmentary, and that of their cellular functions remains elusive. Owing to redundancy, PG hydrolases far outnumber the enzymes of PG biosynthesis. The presence of the two sets of enzymes acting on the PG bonds raises the question of their functional correlations. It is difficult to understand why E. coli keeps such a large set of PG hydrolases. The subtle differences in substrate specificities between the isoenzymes of each family certainly reflect a variety of as-yet-unidentified physiological functions. Their study will be a far more difficult challenge than that of the steps of the PG biosynthesis pathway. PMID:22126997

  3. The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study.

    Science.gov (United States)

    Burslem, George M; Smith, Blake E; Lai, Ashton C; Jaime-Figueroa, Saul; McQuaid, Daniel C; Bondeson, Daniel P; Toure, Momar; Dong, Hanqing; Qian, Yimin; Wang, Jing; Crew, Andrew P; Hines, John; Crews, Craig M

    2017-10-25

    Proteolysis targeting chimera (PROTAC) technology has emerged over the last two decades as a powerful tool for targeted degradation of endogenous proteins. Herein we describe the development of PROTACs for receptor tyrosine kinases, a protein family yet to be targeted for induced protein degradation. The use of VHL-recruiting PROTACs against this protein family reveals several advantages of degradation over inhibition alone: direct comparisons of fully functional, target-degrading PROTACs with target-inhibiting variants that contain an inactivated E3 ligase-recruiting ligand show that degradation leads to more potent inhibition of cell proliferation and a more durable and sustained downstream signaling response, and thus addresses the kinome rewiring challenge seen with many receptor tyrosine kinase inhibitors. Combined, these findings demonstrate the ability to target receptor tyrosine kinases for degradation using the PROTAC technology and outline the advantages of this degradation-based approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Targeted inhibition of renal Rho kinase reduces macrophage infiltration and lymphangiogenesis in acute renal allograft rejection

    NARCIS (Netherlands)

    Poosti, Fariba; Yazdani, Saleh; Dolman, M. Emmy M.; Kok, Robbert Jan; Chen, Cheng; Ding, Guohua; Lacombe, Marie; Prakash, Jai; van den Born, Jacob; Hillebrands, Jan-Luuk; van Goor, Harry; de Borst, Martin H.

    2012-01-01

    The Rho kinase pathway plays an important role in epithelial dedifferentiation and inflammatory cell infiltration. Recent studies suggest that inflammation promotes lymphangiogenesis, which has been associated with renal allograft rejection. We investigated whether targeted inhibition of the Rho

  5. Targeting PDK1 with dichloroacetophenone to inhibit acute myeloid leukemia (AML) cell growth.

    Science.gov (United States)

    Qin, Lijun; Tian, Yun; Yu, Zhenlong; Shi, Dingbo; Wang, Jingshu; Zhang, Changlin; Peng, Ruoyu; Chen, Xuezhen; Liu, Congcong; Chen, Yiming; Huang, Wenlin; Deng, Wuguo

    2016-01-12

    Pyruvate dehydrogenase kinase-1 (PDK1), a key metabolic enzyme involved in aerobic glycolysis, is highly expressed in many solid tumors. Small molecule compound DAP (2,2-dichloroacetophenone) is a potent inhibitor of PDK1. Whether targeting PDK1 with DAP can inhibit acute myeloid leukemia (AML) and how it works remains unknown. In this study, we evaluated the effect of inhibition of PDK1 with DAP on cell growth, apoptosis and survival in AML cells and identified the underlying mechanisms. We found that treatment with DAP significantly inhibited cell proliferation, increased apoptosis induction and suppressed autophagy in AML cells in vitro, and inhibited tumor growth in an AML mouse model in vivo. We also showed that inhibition of PDK1 with DAP increased the cleavage of pro-apoptotic proteins (PARP and Caspase 3) and decreased the expression of the anti-apoptotic proteins (BCL-xL and BCL-2) and autophagy regulators (ULK1, Beclin-1 and Atg). In addition, we found that DAP inhibited the PI3K/Akt signaling pathway. Furthermore, we demonstrated that PDK1 interacted with ULK1, BCL-xL and E3 ligase CBL-b in AML cells, and DPA treatment could inhibit the interactions. Collectively, our results indicated that targeting PDK1 with DAP inhibited AML cell growth via multiple signaling pathways and suggest that targeting PDK1 may be a promising therapeutic strategy for AMLs.

  6. p62 as a therapeutic target for inhibition of autophagy in prostate cancer.

    Science.gov (United States)

    Wang, Lei; Kim, Donghern; Wise, James T F; Shi, Xianglin; Zhang, Zhuo; DiPaola, Robert S

    2018-01-25

    To test the hypothesis that p62 is an optimal target for autophagy inhibition and Verteporfin, a clinically available drug approved by FDA to treat macular degeneration that inhibits autophagy by targeting p62 protein, can be developed clinically to improve therapy for advanced prostate cancer. Forced expression of p62 in PC-3 cells and normal prostate epithelial cells, RWPE-1 and PZ-HPV7, were carried out by transfection of these cells with pcDNA3.1/p62 or p62 shRNA plasmid. Autophagosomes and autophagic flux were measured by transfection of tandem fluorescence protein mCherry-GFP-LC3 construct. Apoptosis was measured by Annexin V/PI staining. Tumorigenesis was measured by a xenograft tumor growth model. Verteporfin inhibited cell growth and colony formation in PC-3 cells. Verteporfin generated crosslinked p62 oligomers, resulting in inhibition of autophagy and constitutive activation of Nrf2 as well as its target genes, Bcl-2 and TNF-α. In normal prostate epithelial cells, forced expression of p62 caused constitutive Nrf2 activation, development of apoptosis resistance, and Verteporfin treatment exhibited inhibitory effects. Verteporfin treatment also inhibited starvation-induced autophagic flux of these cells. Verteporfin inhibited tumorigenesis of both normal prostate epithelial cells with p62 expression and prostate cancer cells and decreased p62, constitutive Nrf2, and Bcl-xL in xenograft tumor tissues, indicating that p62 can be developed as a drug target against prostate cancer. p62 has a high potential to be developed as a therapeutic target. Verteporfin represents a prototypical agent with therapeutic potential against prostate cancer through inhibition of autophagy by a novel mechanism of p62 inhibition. © 2018 Wiley Periodicals, Inc.

  7. Recognition of corn defense chitinases by fungal polyglycine hydrolases

    Science.gov (United States)

    Polyglycine hydrolases (PGH)s are secreted fungal endoproteases that cleave peptide bonds in the polyglycine interdomain linker of ChitA chitinase, an antifungal protein from domesticated corn (Zea mays ssp. mays). These target-specific endoproteases are unusual because they do not cut a specific pe...

  8. Synthesis of novel benzimidazole acrylonitriles for inhibition of Plasmodium falciparum growth by dual target inhibition.

    Science.gov (United States)

    Sharma, Kalicharan; Shrivastava, Apeksha; Mehra, Ram N; Deora, Girdhar S; Alam, Mohammad M; Zaman, Mohammad S; Akhter, Mymoona

    2017-12-11

    Antimalarial drug resistance has emerged as a threat for treating malaria, generating a need to design and develop newer, more efficient antimalarial agents. This research aimed to identify novel leads as antimalarials. Dual receptor mechanism could be a good strategy to combat developing drug resistance. A series of benzimidazole acrylonitriles containing 18 compounds were designed, synthesized and evaluated for cytotoxicity, heme binding, ferriprotoporphyrin IX biomineralisation inhibition, and falcipain-2 enzyme assay. Furthermore, in silico docking and MD simulation studies were also performed.The tests revealed quite encouraging results. Three compounds, viz. R-01 (0.69 μM), R-04 (1.60 μM), and R-08 (1.61 μM), were found to have high antimalarial activity. These compounds were found to be in bearable cytotoxicity limits and their biological assay suggested that they had inhibitory activity against falcipain-2 and hemozoin formation. The docking revealed the binding mode of benzimidazole acrylonitrile derivatives and MD simulation studies revealed that the protein-ligand complex was stable. The agents exhibit good hemozoin formation inhibition activity and, hence, may be utilized as leads to design a newer drug class to overcome the drug resistance of hemozoin formation inhibitors such as chloroquine. © 2017 Deutsche Pharmazeutische Gesellschaft.

  9. Telomerase inhibition effectively targets mouse and human AML stem cells and delays relapse following chemotherapy

    DEFF Research Database (Denmark)

    Bruedigam, Claudia; Bagger, Frederik Otzen; Heidel, Florian H.

    2014-01-01

    priority. Here, we show that targeting telomerase activity eradicates AML LSCs. Genetic deletion of the telomerase subunit Terc in a retroviral mouse AML model induces cell-cycle arrest and apoptosis of LSCs, and depletion of telomerase-deficient LSCs is partially rescued by p53 knockdown. Murine Terc......(-/-) LSCs express a specific gene expression signature that can be identified in human AML patient cohorts and is positively correlated with patient survival following chemotherapy. In xenografts of primary human AML, genetic or pharmacological inhibition of telomerase targets LSCs, impairs leukemia...... progression, and delays relapse following chemotherapy. Altogether, these results establish telomerase inhibition as an effective strategy for eliminating AML LSCs....

  10. Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies

    Science.gov (United States)

    Zarling, Joyce M.; Moran, Patricia A.; Haffar, Omar; Sias, Joan; Richman, Douglas D.; Spina, Celsa A.; Myers, Dorothea E.; Kuebelbeck, Virginia; Ledbetter, Jeffrey A.; Uckun, Fatih M.

    1990-09-01

    FUNCTIONAL impairment and selective depletion of CD4+ T cells, the hallmark of AIDS, are at least partly caused by human immunodeficiency virus (HIV-1) type 1 binding to the CD4 molecule and infecting CD4+ cells1,2. It may, therefore, be of therapeutic value to target an antiviral agent to CD4+ cells to prevent infection and to inhibit HIV-1 production in patients' CD4+ cells which contain proviral DNA3,4. We report here that HIV-1 replication in normal primary CD4+ T cells can be inhibited by pokeweed antiviral protein, a plant protein of relative molecular mass 30,000 (ref. 5), which inhibits replication of certain plant RNA viruses6-8, and of herpes simplex virus, poliovirus and influenza virus9-11. Targeting pokeweed antiviral protein to CD4+ T cells by conjugating it to monoclonal antibodies reactive with CDS, CD7 or CD4 expressed on CD4+ cells, increased its anti-HIV potency up to 1,000-fold. HIV-1 replication is inhibited at picomolar concentrations of conjugates of pokeweed antiviral protein and monoclonal antibodies, which do not inhibit proliferation of normal CD4+ T cells or CD4-dependent responses. These conjugates inhibit HIV-1 protein synthesis and also strongly inhibit HIV-1 production in activated CD4+ T cells from infected patients.

  11. Tumor suppressor miR-1 inhibits tumor growth and metastasis by simultaneously targeting multiple genes

    Science.gov (United States)

    Liu, Cuilian; Zhang, Song; Wang, Qizhi; Zhang, Xiaobo

    2017-01-01

    Cancer progression depends on tumor growth and metastasis, which are activated or suppressed by multiple genes. An individual microRNA may target multiple genes, suggesting that a miRNA may suppress tumor growth and metastasis via simultaneously targeting different genes. However, thus far, this issue has not been explored. In the present study, the findings showed that miR-1 could simultaneously inhibit tumor growth and metastasis of gastric and breast cancers by targeting multiple genes. The results indicated that miR-1 was significantly downregulated in cancer tissues compared with normal tissues. The miR-1 overexpression led to cell cycle arrest in the G1 phase in gastric and breast cancer cells but not in normal cells. Furthermore, the miR-1 overexpression significantly inhibited the metastasis of gastric and breast cancer cells. An analysis of the underlying mechanism revealed that the simultaneous inhibition of tumor growth and metastasis mediated by miR-1 was due to the synchronous targeting of 6 miR-1 target genes encoding cyclin dependent kinase 4, twinfilin actin binding protein 1, calponin 3, coronin 1C, WAS protein family member 2 and thymosin beta 4, X-linked. In vivo assays demonstrated that miR-1 efficiently inhibited tumor growth and metastasis of gastric and breast cancers in nude mice. Therefore, our study contributed novel insights into the miR-1′s roles in tumorigenesis of gastric and breast cancers. PMID:28159933

  12. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels

    Directory of Open Access Journals (Sweden)

    M. Ryan Smith

    2016-08-01

    Full Text Available Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP, decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231 breast adenocarcinoma cells up to 6 days after an initial 24 h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10 µM of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC protein levels, although other protein levels were

  13. RNAi-mediated inhibition of HIV-1 by targeting partially complementary viral sequences

    NARCIS (Netherlands)

    Liu, Y.P.; Gruber, J.; Haasnoot, J.; Konstantinova, P.; Berkhout, B.

    2009-01-01

    Potent antiviral RNAi can be induced by intracellular expression of short hairpin RNAs (shRNAs) and artificial microRNAs (miRNAs). Expression of shRNA and miRNA results in target mRNA degradation (perfect base pairing) or translational repression (partial base pairing). Although efficient inhibition

  14. Melanoma: the intersection of molecular targeted therapy and immune checkpoint inhibition.

    Science.gov (United States)

    Lau, Peter Kar Han; Ascierto, Paolo A; McArthur, Grant

    2016-04-01

    Melanoma is at the forefront of development of systemic therapeutics with both molecular targeted therapies and immune checkpoint inhibitors as cornerstones of treatment. Although responses to molecularly targeted therapy is largely from blockade of oncogenic pathways, evidence is emerging of the immunomodulatory effects from BRAF inhibition. Additionally programmed-death-1 (PD-1) inhibitors have revolutionized the treatment of melanoma and are set to pave future improvements in other solid tumors. Combinations of PD-1 inhibitors with novel immune checkpoints or with molecularly targeted therapies are under investigation and may improve on the considerable progress made. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Dicumarol inhibits PDK1 and targets multiple malignant behaviors of ovarian cancer cells.

    Directory of Open Access Journals (Sweden)

    Wenjia Zhang

    Full Text Available Pyruvate dehydrogenase kinase 1 (PDK1 is overexpressed in ovarian cancer and thus is a promising anticancer therapeutic target. Our previous work suggests that coumarin compounds are potential inhibitors of PDKs. In this study, we used the ovarian cancer cell line SKOV3 as the model system and examined whether dicumarol (DIC, a coumarin compound, could inhibit ovarian cancer through targeting PDK1. We showed that DIC potently inhibited the kinase activity of PDK1, shifted the glucose metabolism from aerobic glycolysis to oxidative phosphorylation, generated a higher level of reactive oxygen species (ROS, attenuated the mitochondrial membrane potential (MMP, induced apoptosis, and reduced cell viability in vitro. The same phenotypes induced by DIC also were translated in vivo, leading to significant suppression of xenograft growth. This study not only identifies a novel inhibitor for PDK1, but it also reveals novel anticancer mechanisms of DIC and provides a promising anticancer therapy that targets the Warburg effect.

  16. Telomerase Inhibition Effectively Targets Mouse and Human AML Stem Cells and Delays Relapse Following Chemotherapy

    Science.gov (United States)

    Bruedigam, Claudia; Bagger, Frederik O.; Heidel, Florian H.; Kuhn, Catherine Paine; Guignes, Solene; Song, Axia; Austin, Rebecca; Vu, Therese; Lee, Erwin; Riyat, Sarbjit; Moore, Andrew S.; Lock, Richard B.; Bullinger, Lars; Hill, Geoffrey R.; Armstrong, Scott A.; Williams, David A.; Lane, Steven W.

    2014-01-01

    SUMMARY Acute myeloid leukemia (AML) is an aggressive and lethal blood cancer maintained by rare populations of leukemia stem cells (LSCs). Selective targeting of LSCs is a promising approach for treating AML and preventing relapse following chemotherapy, and developing such therapeutic modalities is a key priority. Here, we show that targeting telomerase activity eradicates AML LSCs. Genetic deletion of the telomerase subunit Terc in a retroviral mouse AML model induces cell cycle arrest and apoptosis of LSCs, and depletion of telomerase-deficient LSCs is partially rescued by p53 knockdown. Murine Terc−/− LSCs express a specific gene expression signature that can be identified in human AML patient cohorts and is positively correlated with patient survival following chemotherapy. In xenografts of primary human AML, genetic or pharmacological inhibition of telomerase targets LSCs, impairs leukemia progression, and delays relapse following chemotherapy. Together, these results establish telomerase inhibition as an effective strategy for eliminating AML LSCs. PMID:25479751

  17. Tumor-targeted inhibition by a novel strategy - mimoretrovirus expressing siRNA targeting the Pokemon gene.

    Science.gov (United States)

    Tian, Zhiqiang; Wang, Huaizhi; Jia, Zhengcai; Shi, Jinglei; Tang, Jun; Mao, Liwei; Liu, Hongli; Deng, Yijing; He, Yangdong; Ruan, Zhihua; Li, Jintao; Wu, Yuzhang; Ni, Bing

    2010-12-01

    Pokemon gene has crucial but versatile functions in cell differentiation, proliferation and tumorigenesis. It is a master regulator of the ARF-HDM2-p53 and Rb-E2F pathways. The facts that the expression of Pokemon is essential for tumor formation and many kinds of tumors over-express the Pokemon gene make it an attractive target for therapeutic intervention for cancer treatment. In this study, we used an RNAi strategy to silence the Pokemon gene in a cervical cancer model. To address the issues involving tumor specific delivery and durable expression of siRNA, we applied the Arg-Gly-Asp (RGD) peptide ligand and polylysine (K(18)) fusion peptide to encapsulate a recombinant retrovirus plasmid expressing a siRNA targeting the Pokemon gene and produced the 'mimoretrovirus'. At charge ratio 2.0 of fusion peptide/plasmid, the mimoretrovirus formed stable and homogenous nanoparticles, and provided complete DNase I protection and complete gel retardation. This nanoparticle inhibited SiHa cell proliferation and invasion, while it promoted SiHa cell apoptosis. The binding of the nanoparticle to SiHa cells was mediated via the RGD-integrin α(v)β(3) interaction, as evidenced by the finding that unconjugated RGD peptide inhibited this binding significantly. This tumor-targeting mimoretrovirus exhibited excellent anti-tumor capacity in vivo in a nude mouse model. Moreover, the mimoretrovirus inhibited tumor growth with a much higher efficiency than recombinant retrovirus expressing siRNA or the K(18)/P4 nanoparticle lacking the RGD peptide. Results suggest that the RNAi/RGD-based mimoretrovirus developed in this study represents a novel anti-tumor strategy that may be applicable to most research involving cancer therapy and, thus, has promising potential as a cervical cancer treatment.

  18. Targeting autocrine HB-EGF signaling with specific ADAM12 inhibition using recombinant ADAM12 prodomain

    Science.gov (United States)

    Miller, Miles A.; Moss, Marcia L.; Powell, Gary; Petrovich, Robert; Edwards, Lori; Meyer, Aaron S.; Griffith, Linda G.; Lauffenburger, Douglas A.

    2015-01-01

    Dysregulation of ErbB-family signaling underlies numerous pathologies and has been therapeutically targeted through inhibiting ErbB-receptors themselves or their cognate ligands. For the latter, “decoy” antibodies have been developed to sequester ligands including heparin-binding epidermal growth factor (HB-EGF); however, demonstrating sufficient efficacy has been difficult. Here, we hypothesized that this strategy depends on properties such as ligand-receptor binding affinity, which varies widely across the known ErbB-family ligands. Guided by computational modeling, we found that high-affinity ligands such as HB-EGF are more difficult to target with decoy antibodies compared to low-affinity ligands such as amphiregulin (AREG). To address this issue, we developed an alternative method for inhibiting HB-EGF activity by targeting its cleavage from the cell surface. In a model of the invasive disease endometriosis, we identified A Disintegrin and Metalloproteinase 12 (ADAM12) as a protease implicated in HB-EGF shedding. We designed a specific inhibitor of ADAM12 based on its recombinant prodomain (PA12), which selectively inhibits ADAM12 but not ADAM10 or ADAM17. In endometriotic cells, PA12 significantly reduced HB-EGF shedding and resultant cellular migration. Overall, specific inhibition of ligand shedding represents a possible alternative to decoy antibodies, especially for ligands such as HB-EGF that exhibit high binding affinity and localized signaling. PMID:26477568

  19. Lithium inhibits tumorigenic potential of PDA cells through targeting hedgehog-GLI signaling pathway.

    Directory of Open Access Journals (Sweden)

    Zhonglu Peng

    Full Text Available Hedgehog signaling pathway plays a critical role in the initiation and development of pancreatic ductal adenocarcinoma (PDA and represents an attractive target for PDA treatment. Lithium, a clinical mood stabilizer for mental disorders, potently inhibits the activity of glycogen synthase kinase 3β (GSK3β that promotes the ubiquitin-dependent proteasome degradation of GLI1, an important downstream component of hedgehog signaling. Herein, we report that lithium inhibits cell proliferation, blocks G1/S cell-cycle progression, induces cell apoptosis and suppresses tumorigenic potential of PDA cells through down-regulation of the expression and activity of GLI1. Moreover, lithium synergistically enhances the anti-cancer effect of gemcitabine. These findings further our knowledge of mechanisms of action for lithium and provide a potentially new therapeutic strategy for PDA through targeting GLI1.

  20. Developing a Novel Therapeutic Strategy Targeting Kallikrein-4 to Inhibit Prostate Cancer Growth and Metastasis

    Science.gov (United States)

    2015-08-01

    targeting conjugates o Task 1: Determine effects of KLK4-inhibition on PCa cell behaviour and EMT (50% complete) 5 o Task 2: Study effects of KLK4-blockade... determine which of these polymers ie HBP- peptide, HPB-J591, HBP-GlutUrea, or HBP-control (no ligand) has the best PSMA-targeting efficiency, and be...binding and internalisation assays further confirmed that endocytosis of HBP-peptide is PSMA-mediated (see manuscript). This was demonstrated using five

  1. MiR-661 inhibits glioma cell proliferation, migration and invasion by targeting hTERT

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen, E-mail: lizhen7111@163.com [Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning Province, 110004 (China); Liu, Yun-hui; Diao, Hong-yu [Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning Province, 110004 (China); Ma, Jun [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, 110001 (China); Yao, Yi-long [Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning Province, 110004 (China)

    2015-12-25

    In this study, we analyzed the functional role of miR-661 in glioma cell proliferation, migration and invasion. We found that overexpression of miR-661 obviously suppressed the proliferation, migration and invasion of glioma cells. MiRNA target prediction algorithms implied that hTERT is a candidate target gene for miR-661. A fluorescent reporter assay confirmed that miR-661 could lead to hTERT gene silencing by recognizing and specifically binding to the predicted site of the hTERT mRNA 3′ untranslated region (3′UTR) specifically. Furthermore, hTERT knockdown significantly decreased the growth and viability of glioma cells. These results indicate that miR-661 can inhibit glioma cell proliferation, migration and invasion by targeting hTERT. - Highlights: • MiR-661 was downregulated in glioma tissues and functional as a tumor suppressor. • MiR-661 modulates cell proliferation, invasion and migration of glioma cells. • MiR-661 directly target hTERT in glioma cells. • MiR-661 inhibits glioma cell tumorgenesis by targeting hTERT.

  2. Resveratrol Inhibits Cancer Cell Metabolism by Down Regulating Pyruvate Kinase M2 via Inhibition of Mammalian Target of Rapamycin

    Science.gov (United States)

    Iqbal, Mohd Askandar; Bamezai, Rameshwar N. K.

    2012-01-01

    Metabolism of cancer cells with pyruvate kinase M2 (PKM2) at its centre stage has assumed a prime significance in cancer research in recent times. Cancer cell metabolism, characterized by enhanced glucose uptake, production of lactate and anabolism is considered an ideal target for therapeutic interventions. Expression of PKM2 switches metabolism in favor of cancer cells, therefore, the present study was designed to investigate the hitherto unknown effect of resveratrol, a phytoalexin, on PKM2 expression and resultant implications on cancer metabolism. We observed that resveratrol down-regulated PKM2 expression by inhibiting mTOR signaling and suppressed cancer metabolism, adjudged by decreased glucose uptake, lactate production (aerobic glycolysis) and reduced anabolism (macromolecule synthesis) in various cancer cell lines. A contingent decrease in intracellular levels of ribose-5-phosphate (R5P), a critical intermediate of pentose phosphate pathway, accounted for a reduced anabolism. Consequently, the state of suppressed cancer metabolism resulted in decreased cellular proliferation. Interestingly, shRNA-mediated silencing of PKM2 inhibited glucose uptake and lactate production, providing evidence for the critical role of PKM2 and its mediation in the observed effects of resveratrol on cancer metabolism. Further, an over-expression of PKM2 abolished the observed effects of resveratrol, signifying the role of PKM2 downregulation as a critical function of resveratrol. The study reports a novel PKM2-mediated effect of resveratrol on cancer metabolism and provides a new dimension to its therapeutic potential. PMID:22574221

  3. BH3 mimetics inhibit growth of chondrosarcoma--a novel targeted-therapy for candidate models.

    Science.gov (United States)

    Morii, Takeshi; Ohtsuka, Kouki; Ohnishi, Hiroaki; Mochizuki, Kazuo; Yoshiyama, Akira; Aoyagi, Takayuki; Hornicek, Francis J; Ichimura, Shoichi

    2014-11-01

    Chondrosarcoma is refractory to conventional chemotherapy. BH-3 mimetics ABT-737 and ABT-263 are synthetic small-molecule inhibitors of anti-apoptotic proteins B-cell lymphoma-2 (Bcl2) and Bcl-xL, which play a critical role in survival of chondrosarcoma cells. Chondrosarcoma cell lines SW-1353 and CS-1 were used as the disease model. We used immunoblotting to assess the expression of target molecules Bcl2 and Bcl-xL, and the apoptotic inducers Bcl2-associated X (Bax) and Bcl2-antagonist/killer (Bak). In vitro growth inhibition by BH-3 mimetics was confirmed by photomicroscopic cell counting and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. Apoptotic induction was confirmed by Enzyme-Linked ImmunoSorbent Assay (ELISA). In vivo growth inhibition was assessed in a non-obese diabetic/severe combined immunodeficient (NOD/SCID) mouse model. Expression of the target and effector molecules was confirmed in chondrosarcoma cell lines. BH3 mimetics significantly inhibited cell growth and induced apoptosis in vitro. Administration of ABT-263 inhibited chondrosarcoma growth and improved survival in a mouse model. BH3 mimetics represent a novel treatment modality for chondrosarcoma. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  4. Butenolide inhibits marine fouling by altering the primary metabolism of three target organisms

    KAUST Repository

    Zhang, Yifan

    2012-06-15

    Butenolide is a very promising antifouling compound that inhibits ship hull fouling by a variety of marine organisms, but its antifouling mechanism was previously unknown. Here we report the first study of butenolides molecular targets in three representative fouling organisms. In the barnacle Balanus (=Amphibalanus) amphitrite, butenolide bound to acetyl-CoA acetyltransferase 1 (ACAT1), which is involved in ketone body metabolism. Both the substrate and the product of ACAT1 increased larval settlement under butenolide treatment, suggesting its functional involvement. In the bryozoan Bugula neritina, butenolide bound to very long chain acyl-CoA dehydrogenase (ACADVL), actin, and glutathione S-transferases (GSTs). ACADVL is the first enzyme in the very long chain fatty acid β-oxidation pathway. The inhibition of this primary pathway for energy production in larvae by butenolide was supported by the finding that alternative energy sources (acetoacetate and pyruvate) increased larval attachment under butenolide treatment. In marine bacterium Vibrio sp. UST020129-010, butenolide bound to succinyl-CoA synthetase β subunit (SCSβ) and inhibited bacterial growth. ACAT1, ACADVL, and SCSβ are all involved in primary metabolism for energy production. These findings suggest that butenolide inhibits fouling by influencing the primary metabolism of target organisms. © 2012 American Chemical Society.

  5. Type IV traffic ATPase TrwD as molecular target to inhibit bacterial conjugation

    OpenAIRE

    Ripoll-Rozada, Jorge; Garc��a-Cazorla, Yolanda; Getino, Mar��a; Mach��n, Cristina; Sanabria-R��os, David; de la Cruz, Fernando; Cabez��n, Elena; Arechaga, Ignacio

    2016-01-01

    Bacterial conjugation is the main mechanism responsible for the dissemination of antibiotic resistance genes. Hence, the search for specific conjugation inhibitors is paramount in the fight against the spread of these genes. In this pursuit, unsaturated fatty acids have been found to specifically inhibit bacterial conjugation. Despite the growing interest on these compounds, their mode of action and their specific target remain unknown. Here, we identified TrwD, a Type IV secretion traffic AT...

  6. siRNAs targeting PB2 and NP genes potentially inhibit replication of ...

    Indian Academy of Sciences (India)

    In this study, we have designed three siRNAs (PB2-2235, PB2-479 and NP-865) targeting PB2 and NP genes of avian influenza virus and evaluated their potential, measured by hemagglutination (HA), plaque reduction and Real time RT-PCR assay, in inhibiting H5N1 virus (A/chicken/Navapur/7972/2006) replication in ...

  7. pH-Responsive Wormlike Micelles with Sequential Metastasis Targeting Inhibit Lung Metastasis of Breast Cancer.

    Science.gov (United States)

    He, Xinyu; Yu, Haijun; Bao, Xiaoyue; Cao, Haiqiang; Yin, Qi; Zhang, Zhiwen; Li, Yaping

    2016-02-18

    Cancer metastasis is the main cause for the high mortality in breast cancer patients. Herein, we first report succinobucol-loaded pH-responsive wormlike micelles (PWMs) with sequential targeting capability to inhibit lung metastasis of breast cancer. PWMs can in a first step be delivered specifically to the sites of metastases in the lungs and then enable the intracellular pH-stimulus responsive drug release in cancer cells to improve the anti-metastatic effect. PWMs are identified as nanofibrillar assemblies with a diameter of 19.9 ± 1.9 nm and a length within the 50-200 nm range, and exhibited pH-sensitive drug release behavior in response to acidic intracellular environments. Moreover, PWMs can obviously inhibit the migration and invasion abilities of metastatic 4T1 breast cancer cells, and reduce the expression of the metastasis-associated vascular cell adhesion molecule-1 (VCAM-1) at 400 ng mL(-1) of succinobucol. In particular, PWMs can induce a higher specific accumulation in lung and be specifically delivered to the sites of metastases in lung, thereby leading to an 86.6% inhibition on lung metastasis of breast cancer. Therefore, the use of sequentially targeting PWMs can become an encouraging strategy for specific targeting and effective treatment of cancer metastasis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Inhibition of mammalian target of rapamycin decreases intrarenal oxygen availability and alters glomerular permeability.

    Science.gov (United States)

    Sivertsson, Ebba; Friederich-Persson, Malou; Öberg, Carl M; Fasching, Angelica; Hansell, Peter; Rippe, Bengt; Palm, Fredrik

    2017-09-27

    Increased kidney oxygen consumption causing tissue hypoxia is suggested as a common pathway to chronic kidney disease. Mammalian target of rapamycin (mTOR) regulates cell proliferation and mitochondrial function. mTOR inhibitors, e.g. rapamycin, are used clinically to prevent graft rejection. mTOR has been identified as a key player in diabetes, which has stimulated the use of mTOR inhibitors to counter diabetic nephropathy. However, the effect of mTOR inhibition on kidney oxygen consumption is unknown. We therefore investigated the effects of mTOR inhibition on in vivo kidney function, oxygen homeostasis and glomerular permeability. Control and streptozotocin-induced diabetic rats were chronically treated with rapamycin and the functional consequences studied fourteen days thereafter. In both groups, mTOR inhibition induced mitochondrial uncoupling resulting in increased total kidney oxygen consumption and decreased intrarenal oxygen availability. Concomitantly, mTOR inhibition induced tubular injury, as estimated from urinary excretion of kidney injury molecule-1 (KIM-1), and reduced urinary protein excretion. The latter corresponded to reduced sieving coefficient for large molecules. In conclusion, mTOR inhibition induces mitochondrial dysfunction leading to decreased oxygen availability in normal and diabetic kidneys, which translates to increased KIM-1 in the urine. Reduced proteinuria after mTOR inhibition is an effect of reduced glomerular permeability for large molecules. Since hypoxia has been suggested as a common pathway to development of chronic kidney disease, mTOR inhibition to patients with pre-existing nephropathy should be used with caution since it may accelerate the progression of disease. Copyright © 2017, American Journal of Physiology-Renal Physiology.

  9. Factors influencing magnitude and duration of target inhibition following antibody therapy: implications in drug discovery and development.

    Science.gov (United States)

    Chimalakonda, Anjaneya P; Yadav, Rajbharan; Marathe, Punit

    2013-07-01

    Antibodies or antibody-related fusion proteins binding to soluble antigens in plasma form an important subclass of approved therapeutics. Pharmaceutical companies are constantly trying to accelerate the pace of drug discovery and development of these antibodies and identify superior candidates in face of significant attrition rates. Understanding the interplay between drug- and target-related factors on magnitude and duration of target inhibition is imperative for successful advancement of these therapeutics. Simulations using a target-mediated drug disposition model were performed to evaluate the influence of antibody-target binding affinity, baseline target concentration, and target turnover on magnitude and duration of soluble target inhibition. These simulations assumed intravenous dosing of the antibody and evaluated multiple parameters over a wide range. These simulations reveal that improvement in affinity reaches a point of diminishing returns following which further improvement in affinity does not alter the magnitude and more importantly the duration of target inhibition. Evaluation of unbound antibody and target kinetics indicated that point of diminishing returns in duration of inhibition was due to target-mediated binding and subsequent elimination of antibody at later time points. Similarly, influence of baseline target concentration and target turnover on magnitude and duration of target inhibition in plasma is shown. Additionally, the fraction of dose eliminated via target mediated elimination (Fel(™)) can be a useful tool to enable selection of strategies to increase duration of target inhibition. The implications of these simulations in drug discovery and development with regard to target identification, antibody optimization, and backup candidate selection are discussed.

  10. Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes.

    Science.gov (United States)

    Hijazi, Sarah; Visca, Paolo; Frangipani, Emanuela

    2017-01-01

    Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti-Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa. Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu, primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration.

  11. MicroRNA-375 inhibits colorectal cancer growth by targeting PIK3CA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yihui [Department of Colorectal Surgery, The Third Affiliated Hospital of Harbin Medical University, 150 Haping Road, 150081 Harbin (China); Tang, Qingchao [Cancer Center, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086 Harbin (China); Li, Mingqi; Jiang, Shixiong [Department of Colorectal Surgery, The Third Affiliated Hospital of Harbin Medical University, 150 Haping Road, 150081 Harbin (China); Wang, Xishan, E-mail: wxshan12081@163.com [Cancer Center, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, 150086 Harbin (China)

    2014-02-07

    Highlights: • miR-375 is downregulated in colorectal cancer cell lines and tissues. • miR-375 inhibits colorectal cancer cell growth by targeting PIK3CA. • miR-375 inhibits colorectal cancer cell growth in xenograft nude mice model. - Abstract: Colorectal cancer (CRC) is the second most common cause of death from cancer. MicroRNAs (miRNAs) represent a class of small non-coding RNAs that control gene expression by triggering RNA degradation or interfering with translation. Aberrant miRNA expression is involved in human disease including cancer. Herein, we showed that miR-375 was frequently down-regulated in human colorectal cancer cell lines and tissues when compared to normal human colon tissues. PIK3CA was identified as a potential miR-375 target by bioinformatics. Overexpression of miR-375 in SW480 and HCT15 cells reduced PIK3CA protein expression. Subsequently, using reporter constructs, we showed that the PIK3CA untranslated region (3′-UTR) carries the directly binding site of miR-375. Additionally, miR-375 suppressed CRC cell proliferation and colony formation and led to cell cycle arrest. Furthermore, miR-375 overexpression resulted in inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. SiRNA-mediated silencing of PIK3CA blocked the inhibitory effect of miR-375 on CRC cell growth. Lastly, we found overexpressed miR-375 effectively repressed tumor growth in xenograft animal experiments. Taken together, we propose that overexpression of miR-375 may provide a selective growth inhibition for CRC cells by targeting PI3K/Akt signaling pathway.

  12. Inhibition of CD47 Effectively Targets Pancreatic Cancer Stem Cells via Dual Mechanisms.

    Science.gov (United States)

    Cioffi, Michele; Trabulo, Sara; Hidalgo, Manuel; Costello, Eithne; Greenhalf, William; Erkan, Mert; Kleeff, Joerg; Sainz, Bruno; Heeschen, Christopher

    2015-05-15

    Pancreatic ductal adenocarcinoma (PDAC) is a cancer of the exocrine pancreas with unmet medical need and is strongly promoted by tumor-associated macrophages (TAM). The presence of TAMs is associated with poor clinical outcome, and their overall role, therefore, appears to be protumorigenic. The "don't eat me" signal CD47 on cancer cells communicates to the signal regulatory protein-α on macrophages and prevents their phagocytosis. Thus, inhibition of CD47 may offer a new opportunity to turn TAMs against PDAC cells, including cancer stem cells (CSC), as the exclusively tumorigenic population. We studied in vitro and in vivo the effects of CD47 inhibition on CSCs using a large set of primary pancreatic cancer (stem) cells as well as xenografts of primary human PDAC tissue. CD47 was highly expressed on CSCs, but not on other nonmalignant cells in the pancreas. Targeting CD47 efficiently enhanced phagocytosis of a representative set of primary human pancreatic cancer (stem) cells and, even more intriguingly, also directly induced their apoptosis in the absence of macrophages during long-term inhibition of CD47. In patient-derived xenograft models, CD47 targeting alone did not result in relevant slowing of tumor growth, but the addition of gemcitabine or Abraxane resulted in sustained tumor regression and prevention of disease relapse long after discontinuation of treatment. These data are consistent with efficient in vivo targeting of CSCs, and strongly suggest that CD47 inhibition could be a novel adjuvant treatment strategy for PDAC independent of underlying and highly variable driver mutations. ©2015 American Association for Cancer Research.

  13. MicroRNA-202 inhibits tumor progression by targeting LAMA1 in esophageal squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiangrui, E-mail: xiangruimengzz@163.com [Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450000, Henan Province (China); Chen, Xiaoqi [Department of Digestion and Oncology, The First Affiliated Hospital of Henan Uninversity of TCM, 19 Renmin Road, Zhengzhou 450000, Henan Province (China); Lu, Peng [Department of Gastrointestinal Surgery, The People' s Hospital of Zhengzhou, 33 Huanghe Road, Zhengzhou 450000, Henan Province (China); Ma, Wang; Yue, Dongli; Song, Lijie; Fan, Qingxia [Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450000, Henan Province (China)

    2016-05-13

    Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive malignancies in the gastrointestinal tract. Emerging studies have indicated that microRNAs (miRNAs) are strongly implicated in the development and progression of ESCC. Here, we focused on the function and the underlying molecular mechanism of miR-202 in ESCC. The results showed that miR-202 was significantly down-regulated in ESCC tissues and cell lines. Overexpression of miR-202 in ECa-109 and KYSE-510 cells markedly suppressed cell proliferation and cell migration, and induced cell apoptosis. Furthermore, laminin α1 (LAMA1) expression was frequently positive in ESCC tissues and inversely correlated with miR-202 expression. Then we demonstrated that miR-202 targeted 3'-untranslated region (UTR) of LAMA1 and inhibited its protein expression. Additionally, LAMA1 overexpression rescued the proliferation inhibition and cell apoptosis elevation induced by miR-202. MiR-202 also inhibited the protein expression of p-FAK and p-Akt, which were all reversed by LAMA1 overexpression. Taken together, these findings suggest that miR-202 may function as a novel tumor suppressor in ESCC by repressing cell proliferation and migration, and its biological effects may attribute the inhibition of LAMA1-mediated FAK-PI3K-Akt signaling. - Highlights: • Expression of miR-202 was decreased in ESCC tissues and cell lines. • MiR-202 overexpression inhibited ESCC cell growth and induced apoptosis. • MiR-202 directly targeted LAMA1 in ESCC. • The LAMA1-FAK-PI3K signaling mediated the suppressive role of miR-202.

  14. Type IV traffic ATPase TrwD as molecular target to inhibit bacterial conjugation.

    Science.gov (United States)

    Ripoll-Rozada, Jorge; García-Cazorla, Yolanda; Getino, María; Machón, Cristina; Sanabria-Ríos, David; de la Cruz, Fernando; Cabezón, Elena; Arechaga, Ignacio

    2016-06-01

    Bacterial conjugation is the main mechanism responsible for the dissemination of antibiotic resistance genes. Hence, the search for specific conjugation inhibitors is paramount in the fight against the spread of these genes. In this pursuit, unsaturated fatty acids have been found to specifically inhibit bacterial conjugation. Despite the growing interest on these compounds, their mode of action and their specific target remain unknown. Here, we identified TrwD, a Type IV secretion traffic ATPase, as the molecular target for fatty acid-mediated inhibition of conjugation. Moreover, 2-alkynoic fatty acids, which are also potent inhibitors of bacterial conjugation, are also powerful inhibitors of the ATPase activity of TrwD. Characterization of the kinetic parameters of ATPase inhibition has led us to identify the catalytic mechanism by which fatty acids exert their activity. These results open a new avenue for the rational design of inhibitors of bacterial conjugation in the fight against the dissemination of antibiotic resistance genes. © 2016 John Wiley & Sons Ltd.

  15. Predicting the dynamics of bacterial growth inhibition by ribosome-targeting antibiotics

    Science.gov (United States)

    Greulich, Philip; Doležal, Jakub; Scott, Matthew; Evans, Martin R.; Allen, Rosalind J.

    2017-12-01

    Understanding how antibiotics inhibit bacteria can help to reduce antibiotic use and hence avoid antimicrobial resistance—yet few theoretical models exist for bacterial growth inhibition by a clinically relevant antibiotic treatment regimen. In particular, in the clinic, antibiotic treatment is time-dependent. Here, we use a theoretical model, previously applied to steady-state bacterial growth, to predict the dynamical response of a bacterial cell to a time-dependent dose of ribosome-targeting antibiotic. Our results depend strongly on whether the antibiotic shows reversible transport and/or low-affinity ribosome binding (‘low-affinity antibiotic’) or, in contrast, irreversible transport and/or high affinity ribosome binding (‘high-affinity antibiotic’). For low-affinity antibiotics, our model predicts that growth inhibition depends on the duration of the antibiotic pulse, and can show a transient period of very fast growth following removal of the antibiotic. For high-affinity antibiotics, growth inhibition depends on peak dosage rather than dose duration, and the model predicts a pronounced post-antibiotic effect, due to hysteresis, in which growth can be suppressed for long times after the antibiotic dose has ended. These predictions are experimentally testable and may be of clinical significance.

  16. Phagocytic superoxide specifically damages an extracytoplasmic target to inhibit or kill Salmonella.

    Directory of Open Access Journals (Sweden)

    Maureen Craig

    Full Text Available The phagocytic oxidative burst is a primary effector of innate immunity that protects against bacterial infection. However, the mechanism by which reactive oxygen species (ROS kill or inhibit bacteria is not known. It is often assumed that DNA is a primary target of oxidative damage, consistent with known effects of endogenously produced ROS in the bacterial cytoplasm. But most studies fail to distinguish between effects of host derived ROS versus damage caused by endogenous bacterial sources. We took advantage of both the ability of Salmonella enterica serovar Typhimurium to survive in macrophages and the genetic tractability of the system to test the hypothesis that phagocytic superoxide damages cytoplasmic targets including DNA.SodCI is a periplasmic Cu-Zn superoxide dismutase (SOD that contributes to the survival of Salmonella Typhimurium in macrophages. Through competitive virulence assays, we asked if sodCI has a genetic interaction with various cytoplasmic systems. We found that SodCI acts independently of cytoplasmic SODs, SodA and SodB. In addition, SodCI acts independently of the base excision repair system and RuvAB, involved in DNA repair. Although sodCI did show genetic interaction with recA, this was apparently independent of recombination and is presumably due to the pleiotropic effects of a recA mutation.Taken together, these results suggest that bacterial inhibition by phagocytic superoxide is primarily the result of damage to an extracytoplasmic target.

  17. Targeting spare CC chemokine receptor 5 (CCR5) as a principle to inhibit HIV-1 entry.

    Science.gov (United States)

    Jin, Jun; Colin, Philippe; Staropoli, Isabelle; Lima-Fernandes, Evelyne; Ferret, Cécile; Demir, Arzu; Rogée, Sophie; Hartley, Oliver; Randriamampita, Clotilde; Scott, Mark G H; Marullo, Stefano; Sauvonnet, Nathalie; Arenzana-Seisdedos, Fernando; Lagane, Bernard; Brelot, Anne

    2014-07-04

    CCR5 binds the chemokines CCL3, CCL4, and CCL5 and is the major coreceptor for HIV-1 entry into target cells. Chemokines are supposed to form a natural barrier against human immunodeficiency virus, type 1 (HIV-1) infection. However, we showed that their antiviral activity is limited by CCR5 adopting low-chemokine affinity conformations at the cell surface. Here, we investigated whether a pool of CCR5 that is not stabilized by chemokines could represent a target for inhibiting HIV infection. We exploited the characteristics of the chemokine analog PSC-RANTES (N-α-(n-nonanoyl)-des-Ser(1)-[l-thioprolyl(2), l-cyclohexylglycyl(3)]-RANTES(4-68)), which displays potent anti-HIV-1 activity. We show that native chemokines fail to prevent high-affinity binding of PSC-RANTES, analog-mediated calcium release (in desensitization assays), and analog-mediated CCR5 internalization. These results indicate that a pool of spare CCR5 may bind PSC-RANTES but not native chemokines. Improved recognition of CCR5 by PSC-RANTES may explain why the analog promotes higher amounts of β-arrestin 2·CCR5 complexes, thereby increasing CCR5 down-regulation and HIV-1 inhibition. Together, these results highlight that spare CCR5, which might permit HIV-1 to escape from chemokines, should be targeted for efficient viral blockade. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Target neurons of floccular middle zone inhibition in medial vestibular nucleus.

    Science.gov (United States)

    Sato, Y; Kanda, K; Kawasaki, T

    1988-04-19

    Unitary activities of 288 neurons were recorded extracellularly in the medial vestibular nucleus (MV) in anesthetized cats. In 19 neurons, located in the rostral part of the MV adjacent to the stria acustica, floccular middle zone stimulation resulted in cessation of spontaneous discharges. Systematic microstimulation in the brainstem during recording of 16 of 19 target neurons of floccular middle zone inhibition revealed that the target neurons projected to the ipsilateral abducens nucleus (ABN), and not to the contralateral ABN nor the oculomotor nucleus. The conjugate ipsilateral horizontal eye movement elicited by middle zone stimulation may be mediated by this pathway to motoneurons and internuclear neurons in the ipsilateral ABN. In additional experiments, the MV neurons responding antidromically to ipsilateral ABN stimulation and orthodromically to ipsilateral 8 nerve stimulation were recorded extracellularly. In only 7 of 36 recorded neurons, middle zone stimulation depressed the orthodromic and spontaneous activities. Many neurons were free of floccular inhibition. As to the route of floccular inhibitory control over the vestibulo-ocular reflex (VOR) during visual-vestibular stimulation, we propose that the interaction of target and VOR relay neurons takes place at the ipsilateral ABN and modulates the VOR, in addition to well known Ito's proposal that the interaction of the floccular output and the VOR takes place at secondary vestibular neurons and modulates the VOR.

  19. Nuclear Membrane-Targeted Gold Nanoparticles Inhibit Cancer Cell Migration and Invasion.

    Science.gov (United States)

    Ali, Moustafa R K; Wu, Yue; Ghosh, Deepraj; Do, Brian H; Chen, Kuangcai; Dawson, Michelle R; Fang, Ning; Sulchek, Todd A; El-Sayed, Mostafa A

    2017-04-25

    Most cancer patients die from metastasis. Recent studies have shown that gold nanoparticles (AuNPs) can slow down the migration/invasion speed of cancer cells and suppress metastasis. Since nuclear stiffness of the cell largely decreases cell migration, our hypothesis is that targeting AuNPs to the cell nucleus region could enhance nuclear stiffness, and therefore inhibit cell migration and invasion. Our results showed that upon nuclear targeting of AuNPs, the ovarian cancer cell motilities decrease significantly, compared with nontargeted AuNPs. Furthermore, using atomic force microscopy, we observed an enhanced cell nuclear stiffness. In order to understand the mechanism of cancer cell migration/invasion inhibition, the exact locations of the targeted AuNPs were clearly imaged using a high-resolution three-dimensional imaging microscope, which showed that the AuNPs were trapped at the nuclear membrane. In addition, we observed a greatly increased expression level of lamin A/C protein, which is located in the inner nuclear membrane and functions as a structural component of the nuclear lamina to enhance nuclear stiffness. We propose that the AuNPs that are trapped at the nuclear membrane both (1) add to the mechanical stiffness of the nucleus and (2) stimulate the overexpression of lamin A/C located around the nuclear membrane, thus increasing nuclear stiffness and slowing cancer cell migration and invasion.

  20. Inhibition of influenza virus replication by targeting broad host cell pathways.

    Directory of Open Access Journals (Sweden)

    Isabelle Marois

    Full Text Available Antivirals that are currently used to treat influenza virus infections target components of the virus which can mutate rapidly. Consequently, there has been an increase in the number of resistant strains to one or many antivirals in recent years. Here we compared the antiviral effects of lysosomotropic alkalinizing agents (LAAs and calcium modulators (CMs, which interfere with crucial events in the influenza virus replication cycle, against avian, swine, and human viruses of different subtypes in MDCK cells. We observed that treatment with LAAs, CMs, or a combination of both, significantly inhibited viral replication. Moreover, the drugs were effective even when they were administered 8 h after infection. Finally, analysis of the expression of viral acidic polymerase (PA revealed that both drugs classes interfered with early events in the viral replication cycle. This study demonstrates that targeting broad host cellular pathways can be an efficient strategy to inhibit influenza replication. Furthermore, it provides an interesting avenue for drug development where resistance by the virus might be reduced since the virus is not targeted directly.

  1. Antibody mediated therapy targeting CD47 inhibits tumor progression of hepatocellular carcinoma.

    Science.gov (United States)

    Xiao, Zhenyu; Chung, Haniee; Banan, Babak; Manning, Pamela T; Ott, Katherine C; Lin, Shin; Capoccia, Benjamin J; Subramanian, Vijay; Hiebsch, Ronald R; Upadhya, Gundumi A; Mohanakumar, Thalachallour; Frazier, William A; Lin, Yiing; Chapman, William C

    2015-05-01

    Human hepatocellular carcinoma (HCC) has a high rate of tumor recurrence and metastasis, resulting in shortened survival times. The efficacy of current systemic therapies for HCC is limited. In this study, we used xenograft tumor models to investigate the use of antibodies that block CD47 and inhibit HCC tumor growth. Immunostaining of tumor tissue and HCC cell lines demonstrated CD47 over-expression in HCC as compared to normal hepatocytes. Macrophage phagocytosis of HCC cells was increased after treatment with CD47 antibodies (CD47mAbs) that block CD47 binding to SIRPα. Further, CD47 blockade inhibited tumor growth in both heterotopic and orthotopic models of HCC, and promoted the migration of macrophages into the tumor mass. Our results demonstrate that targeting CD47 by specific antibodies has potential immunotherapeutic efficacy in human HCC. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Inhibition of cell division induced by external guide sequences (EGS Technology) targeting ftsZ.

    Science.gov (United States)

    Sala, Carol Davies; Soler-Bistué, Alfonso J C; Korprapun, Leeann; Zorreguieta, Angeles; Tolmasky, Marcelo E

    2012-01-01

    EGS (external guide sequence) technology is a promising approach to designing new antibiotics. EGSs are short antisense oligoribonucleotides that induce RNase P-mediated cleavage of a target RNA by forming a precursor tRNA-like complex. The ftsZ mRNA secondary structure was modeled and EGSs complementary to two regions with high probability of being suitable targets were designed. In vitro reactions showed that EGSs targeting these regions bound ftsZ mRNA and elicited RNase P-mediated cleavage of ftsZ mRNA. A recombinant plasmid, pEGSb1, coding for an EGS that targets region "b" under the control of the T7 promoter was generated. Upon introduction of this plasmid into Escherichia coli BL21(DE3)(pLysS) the transformant strain formed filaments when expression of the EGS was induced. Concomitantly, E. coli harboring pEGSb1 showed a modest but significant inhibition of growth when synthesis of the EGSb1 was induced. Our results indicate that EGS technology could be a viable strategy to generate new antimicrobials targeting ftsZ.

  3. Inhibition of cell division induced by external guide sequences (EGS Technology targeting ftsZ.

    Directory of Open Access Journals (Sweden)

    Carol Davies Sala

    Full Text Available EGS (external guide sequence technology is a promising approach to designing new antibiotics. EGSs are short antisense oligoribonucleotides that induce RNase P-mediated cleavage of a target RNA by forming a precursor tRNA-like complex. The ftsZ mRNA secondary structure was modeled and EGSs complementary to two regions with high probability of being suitable targets were designed. In vitro reactions showed that EGSs targeting these regions bound ftsZ mRNA and elicited RNase P-mediated cleavage of ftsZ mRNA. A recombinant plasmid, pEGSb1, coding for an EGS that targets region "b" under the control of the T7 promoter was generated. Upon introduction of this plasmid into Escherichia coli BL21(DE3(pLysS the transformant strain formed filaments when expression of the EGS was induced. Concomitantly, E. coli harboring pEGSb1 showed a modest but significant inhibition of growth when synthesis of the EGSb1 was induced. Our results indicate that EGS technology could be a viable strategy to generate new antimicrobials targeting ftsZ.

  4. Targeting of the BLT2 in chronic myeloid leukemia inhibits leukemia stem/progenitor cell function

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Meifang; Ai, Hongmei; Li, Tao [Department of Laboratory Medicine, JingZhou Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Jingzhou (China); Rajoria, Pasupati; Shahu, Prakash [Department of Clinical Medicine, Medical School of Yangtze University, Jingzhou (China); Li, Xiansong, E-mail: lixiansongjz@hotmail.com [Department of Neurosurgery, JingZhou Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Jingzhou (China)

    2016-04-15

    Imatinib, a tyrosine kinase inhibitor (TKI) has significantly improved clinical outcome for chronic myeloid leukemia (CML) patients. However, patients develop resistance when the disease progresses to the blast phase (BP) and the mechanisms are not well understood. Here we show that BCR-ABL activates BLT2 in hematopoietic stem/progenitor cells to promote leukemogenesis and this involves the p53 signaling pathway. Compared to normal bone marrow (NBM), the mRNA and protein levels of BLT2 are significantly increased in BP-CML CD34{sup +} stem/progenitor cells. This is correlated with increasing BCR-ABL expression. In contrast, knockdown of BCR-ABL or inhibition of its tyrosine kinase activity decreases Blt2 protein level. BLT2 inhibition induces apoptosis, inhibits proliferation, colony formation and self-renewal capacity of CD34{sup +} cells from TKI-resistant BP-CML patients. Importantly, the inhibitory effects of BCR-ABL TKI on CML stem/progenitor cells are further enhanced upon combination with BLT2 inhibition. We further show that BLT2 activation selectively suppresses p53 but not Wnt or BMP-mediated luciferase activity and transcription. Our results demonstrate that BLT2 is a novel pathway activated by BCR-ABL and critically involved in the resistance of BP-CML CD34{sup +} stem/progenitors to TKIs treatment. Our findings suggest that BLT2 and p53 can serve as therapeutic targets for CML treatment. - Highlights: • BCR-ABL regulates BLT2 expression to promote leukemogenesis. • BLT2 is essential to maintain CML cell function. • Activation of BLT2 suppresses p53 signaling pathway in CML cells. • Inhibition of BLT2 and BCR-ABL synergize in eliminating CML CD34{sup +} stem/progenitors.

  5. The bisphosphonate zoledronic acid effectively targets lung cancer cells by inhibition of protein prenylation

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Fan [Department of Respiratory Medicine, Jingzhou Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Jingzhou (China); Li, Pengcheng [Department of Oncology, Wuhan Union Hospital Affiliated to Huazhong University of Science and Technology, Wuhan (China); Gong, Jianhua; Zhang, Jiahong [Department of Respiratory Medicine, Jingzhou Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Jingzhou (China); Ma, Jingping, E-mail: mjpjzhospital@hotmail.com [Department of Respiratory Medicine, Jingzhou Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Jingzhou (China)

    2015-11-27

    Aberrant activation of oncoproteins such as members of the Ras family is common in human lung cancers. The proper function of Ras largely depends on a post-translational modification termed prenylation. Bisphosphonates have been shown to inhibit prenylation in cancer cells. In this study, we show that zoledronic acid, a third generation bisphosphonate, is effective in targeting lung cancer cells. This is achieved by the induction of apoptosis and inhibition of proliferation, through suppressing the activation of downstream Ras and EGFR signalling by zoledronic acid. The combination of zoledronic acid and paclitaxel or cisplatin (commonly used chemotherapeutic drugs for lung cancer) augmented the activity of either drug alone in in vitro lung cancer cellular system and in vivo lung xenograft mouse model. Importantly, zoledronic acid inhibits protein prenylation as shown by the increased levels of unprenylated Ras and Rap1A. In addition, the effects of zoledronic acid were reversed in the presence of geranylgeraniol and farnesol, further confirming that mechanism of zoledroinc acid's action in lung cancer cells is through prenylation inhibition. Since zoledronic acid is already available for clinic use, these results suggest that it may be an effective addition to the armamentarium of drugs for the treatment of lung cancer. - Highlights: • Zoledronic acid (ZA) is effectively against lung cancer cells in vitro and in vivo. • ZA acts on lung cancer cells through inhibition of protein prenylation. • ZA suppresses global downstream phosphorylation of Ras signalling. • ZA enhances the effects of chemotherapeutic drugs in lung cancer cells.

  6. Sulfated Galactans from Red Seaweed Gracilaria fisheri Target EGFR and Inhibit Cholangiocarcinoma Cell Proliferation.

    Science.gov (United States)

    Sae-Lao, Thannicha; Tohtong, Rutaiwan; Bates, David O; Wongprasert, Kanokpan

    2017-01-01

    Cholangiocarcinoma (CCA) is increasing in incidence worldwide and is resistant to chemotherapeutic agents, making treatment of CCA a major challenge. Previous studies reported that natural sulfated polysaccharides (SPs) disrupted growth factor receptor activation in cancer cells. The present study, therefore, aimed at investigating the antiproliferation effect of sulfated galactans (SG) isolated from the red seaweed Gracilaria fisheri (G. fisheri) on CCA cell lines. Direct binding activity of SG to CCA cells, epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR) were determined. The effect of SG on proliferation of CCA cells was investigated. Cell cycle analyses and expression of signaling molecules associated with proliferation were also determined. The results demonstrated that SG bound directly to EGFR. SG inhibited proliferation of various CCA cell lines by inhibiting EGFR and extracellular signal-regulated kinases (ERK) phosphorylation, and inhibited EGF-induced increased cell proliferation. Cell cycle analyses showed that SG induced cell cycle arrest at the G0/G1 phase, down-regulated cell cycle genes and proteins (cyclin-D, cyclin-E, cdk-4, cdk-2), and up-regulated the tumor suppressor protein P53 and the cyclin-dependent kinase inhibitor P21. Taken together, these data demonstrate that SG from G. fisheri inhibited proliferation of CCA cells, and its mechanism of inhibition is mediated, to some extent, by inhibitory effects on EGFR activation and EGFR/ERK signaling pathway. SG presents a potential EGFR targeted molecule, which may be further clinically developed in a combination therapy for CCA treatment.

  7. Recognition of corn defense chitinases by fungal polyglycine hydrolases.

    Science.gov (United States)

    Naumann, Todd A; Bakota, Erica L; Price, Neil P J

    2017-06-01

    Polyglycine hydrolases (PGH)s are secreted fungal endoproteases that cleave peptide bonds in the polyglycine interdomain linker of ChitA chitinase, an antifungal protein from domesticated corn (Zea mays ssp. mays). These target-specific endoproteases are unusual because they do not cut a specific peptide bond but select one of many Gly-Gly bonds within the polyglycine region. Some Gly-Gly bonds are cleaved frequently while others are never cleaved. Moreover, we have previously shown that PGHs from different fungal pathogens prefer to cleave different Gly-Gly peptide bonds. It is not understood how PGHs selectively cleave the ChitA linker, especially because its polyglycine structure lacks peptide sidechains. To gain insights into this process we synthesized several peptide analogs of ChitA to evaluate them as potential substrates and inhibitors of Es-cmp, a PGH from the plant pathogenic fungus Epicoccum sorghi. Our results showed that part of the PGH recognition site for substrate chitinases is adjacent to the polyglycine linker on the carboxy side. More specifically, four amino acid residues were implicated, each spaced four residues apart on an alpha helix. Moreover, analogous peptides with selective Gly->sarcosine (N-methylglycine) mutations or a specific Ser->Thr mutation retained inhibitor activity but were no longer cleaved by PGH. Additonally, our findings suggest that peptide analogs of ChitA that inhibit PGH activity could be used to strengthen plant defenses. Published by Wiley-Blackwell. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  8. Targeted inhibition of WRN helicase by external guide sequence and RNase P RNA.

    Science.gov (United States)

    Hitrik, Anna; Abboud-Jarrous, Ghada; Orlovetskie, Natalie; Serruya, Raphael; Jarrous, Nayef

    2016-04-01

    Human WRN, a RecQ helicase encoded by the Werner syndrome gene, is implicated in genome maintenance, including replication, recombination, excision repair and DNA damage response. These genetic processes and expression of WRN are concomitantly upregulated in many types of cancers. Therefore, targeted destruction of this helicase could be useful for elimination of cancer cells. Here, we provide a proof of concept for applying the external guide sequence (EGS) approach in directing an RNase P RNA to efficiently cleave the WRN mRNA in cultured human cell lines, thus abolishing translation and activity of this distinctive 3'-5' DNA helicase-nuclease. Remarkably, EGS-directed knockdown of WRN leads to severe inhibition of cell viability. Hence, further assessment of this targeting system could be beneficial for selective cancer therapies, particularly in the light of the recent improvements introduced into EGSs. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. microRNA-150 inhibits the formation of macrophage foam cells through targeting adiponectin receptor 2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing [Department of Geratory, Linzi District People’s Hospital of Zibo City, Zibo, Shandong (China); Zhang, Suhua, E-mail: drsuhuangzhang@qq.com [Department of HealthCare, Qilu Hospital of Shandong University (Qingdao), Qingdao City, Qingdao (China)

    2016-08-05

    Transformation of macrophages into foam cells plays a critical role in the pathogenesis of atherosclerosis. The aim of this study was to determine the expression and biological roles of microRNA (miR)-150 in the formation of macrophage foam cells and to identify its functional target(s). Exposure to 50 μg/ml oxidized low-density lipoprotein (oxLDL) led to a significant upregulation of miR-150 in THP-1 macrophages. Overexpression of miR-150 inhibited oxLDL-induced lipid accumulation in THP-1 macrophages, while knockdown of miR-150 enhanced lipid accumulation. apoA-I- and HDL-mediated cholesterol efflux was increased by 66% and 43%, respectively, in miR-150-overexpressing macrophages relative to control cells. In contrast, downregulation of miR-150 significantly reduced cholesterol efflux from oxLDL-laden macrophages. Bioinformatic analysis and luciferase reporter assay revealed adiponectin receptor 2 (AdipoR2) as a direct target of miR-150. Small interfering RNA-mediated downregulation of AdipoR2 phenocopied the effects of miR-150 overexpression, reducing lipid accumulation and facilitating cholesterol efflux in oxLDL-treated THP-1 macrophages. Knockdown of AdipoR2 induced the expression of proliferator-activated receptor gamma (PPARγ), liver X receptor alpha (LXRα), ABCA1, and ABCG1. Moreover, pharmacological inhibition of PPARγ or LXRα impaired AdipoR2 silencing-induced upregulation of ABCA1 and ABCG1. Taken together, our results indicate that miR-150 can attenuate oxLDL-induced lipid accumulation in macrophages via promotion of cholesterol efflux. The suppressive effects of miR-150 on macrophage foam cell formation are mediated through targeting of AdipoR2. Delivery of miR-150 may represent a potential approach to prevent macrophage foam cell formation in atherosclerosis. -- Highlights: •miR-150 inhibits macrophage foam cell formation. •miR-150 accelerates cholesterol efflux from oxLDL-laden macrophages. •miR-150 suppresses macrophage foam cell

  10. MiR-218 inhibits the tumorgenesis and proliferation of glioma cells by targeting Robo1.

    Science.gov (United States)

    Gu, Jian-Jun; Gao, Guang-Zhong; Zhang, Shi-Ming

    2016-01-01

    Malignant glioma is the most common primary brain tumors directly correlated with the high mortality and poor prognosis in clinical practice. MicroRNAs (miRNAs or miRs) influence numerous cancer-relevant processes including cell proliferation, differentiation and metabolism. However, the role of microRNA in malignant glioma is largely unknown. This study aimed to study the role of miR-218, a tumor-suppressive microRNA, in glioma development both in vivo and in vitro. The expression level of miR-218, Slit2 and Robo1 was examined by either quantitative (polymerase chain reaction) or western-blotting from both human glioma tissue and glioma cell lines. U87 cells were transfected with miR-218 and then the expression levels of Slit2 and Robo1 were quantified. Cell proliferation was measured both by the in vitro proliferation assay and in vivo graft studies. The luciferase reporter assay was employed to validate the downstream target of miR-218. The expression of miR-218 was lower in glioma cell lines and glioma tissues from the patients with decreased Slit2 and increased Robo1 protein levels. The over-expression of miR-218 inhibited the tumorgenesis and proliferation of glioma cells remarkably. Furthermore, the over-expressing miR-218 in glioma cells results in the downregulation of Robo1 and upregulation of Slit2. Using luciferase reporter assays, we found that Robo1 was a direct downstream target of miR-218. Over-expression of miR-218 in glioma cells may inhibit the proliferation and tumorigenicity through targeting Robo1, suggesting that miR-218 could be a potential target for developing therapies in treating glioma.

  11. MicroRNA-133a Inhibits Osteosarcoma Cells Proliferation and Invasion via Targeting IGF-1R

    Directory of Open Access Journals (Sweden)

    Guangnan Chen

    2016-02-01

    Full Text Available Background/Aims: MicroRNAs (miRNAs are a class of small noncoding RNAs that regulate gene expression by repressing translation or cleaving RNA transcripts in a sequence-specific manner. Downregulated microRNAs and their roles in cancer development have attracted much attention. A growing body of evidence showed that microRNA-133a (miR-133a has inhibitory effects on cell proliferation, migration, invasion, and metastasis of osteosarcoma. Methods: MiR-133a expression in human osteosarcoma cell lines and human normal osteoblastic cell line hFOB was investigated by real-time PCR (RT-PCR. The role of miR-133a in human osteosarcoma growth and invasion was assessed in cell lines in vitro and in vivo. Then, luciferase reporter assay validated IGF-1R as a downstream and functional target of miR-133a, and functional studies revealed that the anti-tumor effect of miR-133a was probably due to targeting and repressing of IGF-1R expression. Results: MiR-133a was lower expressed in human osteosarcoma cell lines than human normal osteoblastic cell line hFOB and its effect on inhibiting proliferation, invasion and metastasis is mediated by its direct interaction with the IGF-1R. Furthermore, the tumour-suppressive function of miR-133a probably contributed to inhibiting the activation AKT and ERK signaling pathway. Conclusion: MiR-133a suppresses osteosarcoma progression and metastasis by targeting IGF-1R in human osteosarcoma cells, providing a novel candidate prognostic factor and a potential anti-metastasis therapeutic target in osteosarcoma.

  12. Prunus serotina Amygdalin Hydrolase and Prunasin Hydrolase 1

    Science.gov (United States)

    Li, Chun Ping; Swain, Elisabeth; Poulton, Jonathan E.

    1992-01-01

    In black cherry (Prunus serotina Ehrh.) seed homogenates, amygdalin hydrolase (AH) participates with prunasin hydrolase (PH) and mandelonitrile lyase in the sequential degradation of (R)-amygdalin to HCN, benzaldehyde, and glucose. Four isozymes of AH (designated AH I, I′, II, II′) were purified from mature cherry seeds by concanavalin A-Sepharose 4B chromatography, ion-exchange chromatography, and chromatofocusing. All isozymes were monomeric glycoproteins with native molecular masses of 52 kD. They showed similar kinetic properties (pH optima, Km, Vmax) but differed in their isoelectric points and N-terminal amino acid sequences. Analytical isoelectric focusing revealed the presence of subisozymes of each isozyme. The relative abundance of these isozymes and/or subisozymes varied from seed to seed. Three isozymes of PH (designated PH I, IIa, and IIb) were purified to apparent homogeneity by affinity, ion-exchange, and hydroxyapatite chromatography and by nondenaturing polyacrylamide gel electrophoresis. PH I and PH IIb are 68-kD monomeric glycoproteins, whereas PH IIa is dimeric (140 kD). The N-terminal sequences of all PH and AH isozymes showed considerable similarity. Polyclonal antisera raised in rabbits against deglycosylated AH I or a mixture of the three deglycosylated PH isozymes were not monospecific as judged by immunoblotting analysis, but also cross-reacted with the opposing glucosidase. Monospecific antisera deemed suitable for immunocytochemistry and screening of expression libraries were obtained by affinity chromatography. Each antiserum recognized all known isozymes of the specific glucosidase used as antigen. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 9 PMID:16652959

  13. miR-218 inhibited tumor angiogenesis by targeting ROBO1 in gastric cancer.

    Science.gov (United States)

    Zhang, Xiangyuan; Dong, Jiaqiang; He, Yan; Zhao, Ming; Liu, Zhen; Wang, Na; Jiang, Mingzuo; Zhang, Zhe; Liu, Gang; Liu, Haiming; Nie, Yongzhan; Fan, Daiming; Tie, Jun

    2017-06-05

    Aberrant expression of miRNAs is involved in several carcinogenic processes, including tumor growth, metastasis and angiogenesis. The aim of this study was to determine the role of miR-218 in gastric cancer angiogenesis. In situ hybridization was performed on a set of tissue microarray samples to assess the difference in miR-218 expression in vessels between tumor tissues and normal gastric mucosa. In vitro, ectopic expression of miR-218 disturbed the tubular structure and inhibited the migration of endothelial cells. Motility and tube formation were rescued when miR-218 was downregulated. Moreover, miR-218 suppressed endothelial cell sprouting in a fibrin bead sprouting assay. Subsequently, we identified ROBO1 as a target of miR-218 in endothelial cells and determined it was responsible for the effect of miR-218 on tumor angiogenesis. In vivo, local injection of mature miR-218 in xenografted tumors disrupted the vessel plexus and thus inhibited tumor growth. Taken together, our study demonstrated an anti-angiogenic role of miR-218 in gastric cancer and indicated that delivery of miR-218 may be a potential therapeutic strategy to inhibit tumor angiogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Inhibition of Coix seed extract on fatty acid synthase, a novel target for anticancer activity.

    Science.gov (United States)

    Yu, Fei; Gao, Jing; Zeng, Yong; Liu, Chang-Xiao

    2008-09-26

    Coix seed has been traditionally used to treat cancers in folk medicine. Study the anticancer action mechanism of Coix seed extract. After the treatment with Coix seed extract (10 microl/ml), the residual activity of fatty acid synthase (FAS) as overall reaction, beta-ketoacyl reduction, enoyl reduction, and acetyl acetyl coenzyme A (AcAcCoA) reduction was separately detected at 340 nm in the UV-190 spectrophotometer. After rats were administrated Coix seed extract (2.5, 5.0, and 10.0 ml/kg) intragastrically for 10 days consecutively, activities of FAS, malate dehydrogenase (MDH), lipid protein lipase (LPL), hepatic lipase (HL), triglyceride (TG), and glucose-6-phosphate dehydrogenase (G-6-PD) in the plasma, liver and fatty tissues were determined. Experiments in vitro showed that the inhibition of Coix seed extract on FAS activity was significant and dose dependent, and two active sites inhibited were beta-ketoacyl reductases (KR) and enoyl reductase (ER). Experiments in vivo showed that Coix seed extract inhibited FAS activity in the liver, and elevated LPL and HL activity in the plasma, and effected G-6-PD activity. The study supports that FAS is a novel target for anticancer activity, and provides a theoretical foundation for the wide application of Coix seed extract in traditional medicine.

  15. BRAF inhibitors suppress apoptosis through off-target inhibition of JNK signaling

    Science.gov (United States)

    Vin, Harina; Ojeda, Sandra S; Ching, Grace; Leung, Marco L; Chitsazzadeh, Vida; Dwyer, David W; Adelmann, Charles H; Restrepo, Monica; Richards, Kristen N; Stewart, Larissa R; Du, Lili; Ferguson, Scarlett B; Chakravarti, Deepavali; Ehrenreiter, Karin; Baccarini, Manuela; Ruggieri, Rosamaria; Curry, Jonathan L; Kim, Kevin B; Ciurea, Ana M; Duvic, Madeleine; Prieto, Victor G; Ullrich, Stephen E; Dalby, Kevin N; Flores, Elsa R; Tsai, Kenneth Y

    2013-01-01

    Vemurafenib and dabrafenib selectively inhibit the v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) kinase, resulting in high response rates and increased survival in melanoma. Approximately 22% of individuals treated with vemurafenib develop cutaneous squamous cell carcinoma (cSCC) during therapy. The prevailing explanation for this is drug-induced paradoxical ERK activation, resulting in hyperproliferation. Here we show an unexpected and novel effect of vemurafenib/PLX4720 in suppressing apoptosis through the inhibition of multiple off-target kinases upstream of c-Jun N-terminal kinase (JNK), principally ZAK. JNK signaling is suppressed in multiple contexts, including in cSCC of vemurafenib-treated patients, as well as in mice. Expression of a mutant ZAK that cannot be inhibited reverses the suppression of JNK activation and apoptosis. Our results implicate suppression of JNK-dependent apoptosis as a significant, independent mechanism that cooperates with paradoxical ERK activation to induce cSCC, suggesting broad implications for understanding toxicities associated with BRAF inhibitors and for their use in combination therapies. DOI: http://dx.doi.org/10.7554/eLife.00969.001 PMID:24192036

  16. An ERP study of inhibition of non-target languages in trilingual word production.

    Science.gov (United States)

    Guo, Taomei; Ma, Fengyang; Liu, Fengqin

    2013-10-01

    The present study examined the locus where inhibition of non-target languages is exerted during trilingual word production by analyzing the cue-locked and stimulus-locked ERPs respectively in the n-2 language repetition paradigm. During the experiment, Uighur-Chinese-English trilinguals overtly named Arabic digits in one of their three languages according to a visually presented cue while their behavioral and electrophysiological responses were recorded. The behavioral data revealed insignificant n-2 repetition costs. Cue-locked ERPs revealed also only tiny or marginally significant n-2 repetition effects over some midline electrodes. The stimulus-locked ERP data showed a more negative ERP component elicited by the n-2 repetition trials than the n-2 non-repetition trials around 250 ms after stimulus onset, but no significant difference in this ERP effect between different languages was found. The results indicate that inhibition of non-target languages occurs at the lemma selection phase rather than the language task schemas phase during trilingual language production. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Nanobiopolymer for direct targeting and inhibition of EGFR expression in triple negative breast cancer.

    Directory of Open Access Journals (Sweden)

    Satoshi Inoue

    Full Text Available Treatment options for triple negative breast cancer (TNBC are generally limited to cytotoxic chemotherapy. Recently, anti-epidermal growth factor receptor (EGFR therapy has been introduced for TNBC patients. We engineered a novel nanobioconjugate based on a poly(β-L-malic acid (PMLA nanoplatform for TNBC treatment. The nanobioconjugate carries anti-tumor nucleosome-specific monoclonal antibody (mAb 2C5 to target breast cancer cells, anti-mouse transferrin receptor (TfR antibody for drug delivery through the host endothelial system, and Morpholino antisense oligonucleotide (AON to inhibit EGFR synthesis. The nanobioconjugates variants were: (1 P (BioPolymer with AON, 2C5 and anti-TfR for tumor endothelial and cancer cell targeting, and EGFR suppression (P/AON/2C5/TfR, and (2 P with AON and 2C5 (P/AON/2C5. Controls included (3 P with 2C5 but without AON (P/2C5, (4 PBS, and (5 P with PEG and leucine ester (LOEt for endosomal escape (P/mPEG/LOEt. Drugs were injected intravenously to MDA-MB-468 TNBC bearing mice. Tissue accumulation of injected nanobioconjugates labeled with Alexa Fluor 680 was examined by Xenogen IVIS 200 (live imaging and confocal microscopy of tissue sections. Levels of EGFR, phosphorylated and total Akt in tumor samples were detected by western blotting. In vitro western blot showed that the leading nanobioconjugate P/AON/2C5/TfR inhibited EGFR synthesis significantly better than naked AON. In vivo imaging revealed that 2C5 increased drug-tumor accumulation. Significant tumor growth inhibition was observed in mice treated with the lead nanobioconjugate (1 [P = 0.03 vs. controls; P<0.05 vs. nanobioconjugate variant (2]. Lead nanobioconjugate (1 also showed stronger inhibition of EGFR expression and Akt phosphorylation than other treatments. Treatment of TNBC with the new nanobioconjugate results in tumor growth arrest by inhibiting EGFR and its downstream signaling intermediate, phosphorylated Akt. The nanobioconjugate

  18. Cholesterol Sulfate and Cholesterol Sulfotransferase Inhibit Gluconeogenesis by Targeting Hepatocyte Nuclear Factor 4α

    Science.gov (United States)

    Shi, Xiongjie; Cheng, Qiuqiong; Xu, Leyuan; Yan, Jiong; Jiang, Mengxi; He, Jinhan; Xu, Meishu; Stefanovic-Racic, Maja; Sipula, Ian; O'Doherty, Robert Martin; Ren, Shunlin

    2014-01-01

    Sulfotransferase (SULT)-mediated sulfation represents a critical mechanism in regulating the chemical and functional homeostasis of endogenous and exogenous molecules. The cholesterol sulfotransferase SULT2B1b catalyzes the sulfoconjugation of cholesterol to synthesize cholesterol sulfate (CS). In this study, we showed that the expression of SULT2B1b in the liver was induced in obese mice and during the transition from the fasted to the fed state, suggesting that the regulation of SULT2B1b is physiologically relevant. CS and SULT2B1b inhibited gluconeogenesis by targeting the gluconeogenic factor hepatocyte nuclear factor 4α (HNF4α) in both cell cultures and transgenic mice. Treatment of mice with CS or transgenic overexpression of the CS-generating enzyme SULT2B1b in the liver inhibited hepatic gluconeogenesis and alleviated metabolic abnormalities both in mice with diet-induced obesity (DIO) and in leptin-deficient (ob/ob) mice. Mechanistically, CS and SULT2B1b inhibited gluconeogenesis by suppressing the expression of acetyl coenzyme A (acetyl-CoA) synthetase (Acss), leading to decreased acetylation and nuclear exclusion of HNF4α. Our results also suggested that leptin is a potential effector of SULT2B1b in improving metabolic function. We conclude that SULT2B1b and its enzymatic by-product CS are important metabolic regulators that control glucose metabolism, suggesting CS as a potential therapeutic agent and SULT2B1b as a potential therapeutic target for metabolic disorders. PMID:24277929

  19. EZH2 inhibition: targeting the crossroad of tumor invasion and angiogenesis.

    Science.gov (United States)

    Crea, Francesco; Fornaro, Lorenzo; Bocci, Guido; Sun, Lei; Farrar, William L; Falcone, Alfredo; Danesi, Romano

    2012-12-01

    Tumor angiogenesis and metastatic spreading are two highly interconnected phenomena, which contribute to cancer-associated deaths. Thus, the identification of novel strategies to target angiogenesis and metastatic spreading is crucial. Polycomb genes are a set of epigenetic effectors, structured in multimeric repressive complexes. EZH2 is the catalytic subunit of Polycomb repressive complex 2 (PRC2), which methylates histone H3 lysine 27, thereby silencing several tumor-suppressor genes. EZH2 is essential for cancer stem cell self-renewal. Interestingly, cancer stem cells are thought to be the seeds of metastatic spreading and are able to differentiate into tumor-associated endothelial cells. Pre-clinical studies showed that EZH2 is able to silence several anti-metastatic genes (e.g., E-cadherin and tissue inhibitors of metalloproteinases), thereby favoring cell invasion and anchorage-independent growth. In addition, EZH2 seems to play a crucial role in the regulation of tumor angiogenesis. High EZH2 expression predicts poor prognosis, high grade, and high stage in several cancer types. Recently, a small molecule inhibitor of PRC2 (DZNeP) demonstrated promising anti-tumor activity, both in vitro and in vivo. Interestingly, DZNeP was able to inhibit cancer cell invasion and tumor angiogenesis in prostate and brain cancers, respectively. At tumor-inhibiting doses, DZNeP is not harmful for non-transformed cells. In the present manuscript, we review current evidence supporting a role of EZH2 in metastatic spreading and tumor angiogenesis. Using Oncomine datasets, we show that DZNeP targets are specifically silenced in some metastatic cancers, and some of them may inhibit angiogenesis. Based on this evidence, we propose the development of EZH2 inhibitors as anti-angiogenic and anti-metastatic therapy.

  20. MicroRNA-1254 inhibits the migration of colon adenocarcinoma cells by targeting PSMD10.

    Science.gov (United States)

    Chu, Yi Min; Peng, Hai Xia; Xu, Ying; Yang, Da Ming; Zhou, Feng Li; Li, Ji; Kuai, Rong; Lin, Yong

    2017-03-01

    MicroRNA-1254 (miR-1254) has not been studied in colorectal cancer (CRC) to date. This study aimed to investigate the inhibitory mechanism of miR-1254 in CRC tumorigenesis. MiR-1254 expression was examined using real-time polymerase chain reaction in CRC and adjacent non-tumorous tissues. The correlation between miR-1254 expressions and proliferation and migration of cancer cells was determined using the CCK-8 and transwell assays. RNA sequencing was used to identify differentially expressed genes downstream from miR-1254. A luciferase reporter assay was used to confirm the direct interaction between miR-1254 and its predicted target gene, PSMD10. Moreover, PSMD10 was either overexpressed or silenced in colon carcinoma cells overexpressing miR-1254 to determine whether their interaction contributed to CRC migration and epithelial-mesenchymal transition (EMT). Significantly lower miR-1254 expressions were observed in CRC tissues than in adjacent non-tumorous tissues. Exogenous miR-1254 expression suppressed the migration of colon carcinoma cell lines SW1116 and HCT116. RNA sequencing and luciferase assays revealed that miR-1254 directly binded to the 3'-untranslated region of PSMD10, an important regulator of EMT and cell migration. PSMD10 knockdown inhibited EMT and colon cancer cell migration, whereas PSMD10 overexpression reversed the inhibition of EMT and cell migration caused by miR-1254. MiR-1254 may act as a tumor suppressor in CRC and may inhibit CRC migration by directly targeting PSMD10 to suppress the EMT process. © 2017 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  1. Targeting cardiac beta-adrenergic signaling via GRK2 inhibition for heart failure therapy

    Directory of Open Access Journals (Sweden)

    Alessandro eCannavo

    2013-09-01

    Full Text Available Cardiac cells, like those of the other tissues, undergo regulation through membrane-bound proteins known as G protein-coupled receptors (GPCRs. β-adrenergic receptors (βARs are key GPCRs expressed on cardiomyocytes and their role is crucial in cardiac physiology since they regulate inotropic and chronotropic responses of the sympathetic nervous system (SNS. In compromised conditions such as heart failure (HF chronic βAR hyperstimulation occurs via SNS activation resulting in receptor dysregulation and down-regulation and consequently there is a marked reduction of myocardial inotropic reserve and continued loss of pump function. Data has accumulated over the last two decades that a primary culprit in initiating and maintain βAR dysfunction in the injured and stressed heart is GPCR kinase 2 (GRK2, which was originally known as βARK1 (for βAR kinase. GRK2 is up-regulated in the failing heart due to chronic SNS activity and targeting this kinase has emerged as a novel therapeutic strategy in HF. Indeed, its inhibition or genetic deletion in several disparate animal models of HF including a pre-clinical pig model has shown that GRK2 targeting improves functional and morphological parameters of the failing heart. Moreover, non-βAR properties of GRK2 appear to also contribute to its pathological effects and thus, its inhibition will likely complement existing therapies such as βAR blockade. This review will explore recent research regarding GRK2 inhibition, in particular it will focus on the GRK2 inhibitor peptide known as βARKct, which represents new hope in the treatment against HF progression. 

  2. Telomerase inhibition targets clonogenic multiple myeloma cells through telomere length-dependent and independent mechanisms.

    Directory of Open Access Journals (Sweden)

    Sarah K Brennan

    2010-09-01

    Full Text Available Plasma cells constitute the majority of tumor cells in multiple myeloma (MM but lack the potential for sustained clonogenic growth. In contrast, clonotypic B cells can engraft and recapitulate disease in immunodeficient mice suggesting they serve as the MM cancer stem cell (CSC. These tumor initiating B cells also share functional features with normal stem cells such as drug resistance and self-renewal potential. Therefore, the cellular processes that regulate normal stem cells may serve as therapeutic targets in MM. Telomerase activity is required for the maintenance of normal adult stem cells, and we examined the activity of the telomerase inhibitor imetelstat against MM CSC. Moreover, we carried out both long and short-term inhibition studies to examine telomere length-dependent and independent activities.Human MM CSC were isolated from cell lines and primary clinical specimens and treated with imetelstat, a specific inhibitor of the reverse transcriptase activity of telomerase. Two weeks of exposure to imetelstat resulted in a significant reduction in telomere length and the inhibition of clonogenic MM growth both in vitro and in vivo. In addition to these relatively long-term effects, 72 hours of imetelstat treatment inhibited clonogenic growth that was associated with MM CSC differentiation based on expression of the plasma cell antigen CD138 and the stem cell marker aldehyde dehydrogenase. Short-term treatment of MM CSC also decreased the expression of genes typically expressed by stem cells (OCT3/4, SOX2, NANOG, and BMI1 as revealed by quantitative real-time PCR.Telomerase activity regulates the clonogenic growth of MM CSC. Moreover, reductions in MM growth following both long and short-term telomerase inhibition suggest that it impacts CSC through telomere length-dependent and independent mechanisms.

  3. Soluble epoxide hydrolase: sex differences and role in endothelial cell survival.

    Science.gov (United States)

    Gupta, Nandita C; Davis, Catherine M; Nelson, Jonathan W; Young, Jennifer M; Alkayed, Nabil J

    2012-08-01

    Sex differences in cerebral ischemic injury are, in part, attributable to the differences in cerebrovascular perfusion. We determined whether the brain microvascular endothelial cells (ECs) isolated from the female brain are more resistant to ischemic injury compared with male ECs, and whether the difference is attributable to lower expression of soluble epoxide hydrolase and higher levels of vasoprotective epoxyeicosatrienoic acids (EETs). We also determined whether protection by EETs is linked to the inhibition of rho-kinase (ROCK). EC ischemic damage was measured after oxygen-glucose deprivation (OGD) using propidium iodide (PI) and cleaved caspase-3 labeling. Expression of soluble epoxide hydrolase was determined by quantitative polymerase chain reaction and immunocytochemistry, EETs levels by liquid chromatography-tandem mass spectrometry, and ROCK activity by ELISA. EC damage was higher in males compared with females, which correlated with higher soluble epoxide hydrolase mRNA, stronger immunoreactivity, and lower EETs compared with female ECs. Inhibition of soluble epoxide hydrolase abolished the sex difference in EC damage. ROCK activity was higher in male versus female ECs after OGD, and sex differences in EC damage and ROCK activity were abolished by 14,15-EET and ROCK inhibition. Sex differences in ischemic brain injury are, in part, attributable to differences in EET-mediated inhibition of EC ROCK activation after ischemia.

  4. Lentivirus-delivered short hairpin RNA targeting SNAIL inhibits HepG2 cell growth.

    Science.gov (United States)

    Liu, Jing; Jiang, Gang; Liu, Shihai; Liu, Zimin; Pan, Huazheng; Yao, Ruyong; Liang, Jun

    2013-09-01

    Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide, and the highest incidence rates are reported in East Asia. We previously showed that SNAIL is upregulated in HCC tissues. In the present study, we aimed to investigate RNA interference-mediated targeting of SNAIL on the growth of HepG2 cells. We constructed three RNA interference plasmids targeting the SNAIL gene and selected the most efficient shRNA expression cassette. After the lentivirus (LV)-SNAIL small interfering (si)RNA vector was transfected into the HepG2 cell line, cell proliferation was measured using the MTT assay. E-cadherin mRNA and protein expression levels were examined by quantitative PCR and western blotting, respectively. We successfully constructed an LV-SNAIL siRNA lentiviral vector and demonstrated that it suppressed the expression of the SNAIL gene in HepG2 cells. RNA interference of SNAIL by the LV-SNAIL siRNA construct significantly inhibited the growth of HepG2 cells, in addition to significantly increasing E-cadherin mRNA and protein expression. Our findings strongly suggest that SNAIL and E-cadherin play a significant role in HCC progression, and exhibit a negative correlation. Furthermore, the expression of E-cadherin may be responsible for the reduced proliferation and survival of HepG2 cells. Thus, the SNAIL signaling pathway may provide a novel therapeutic target for the treatment of HCC.

  5. Inhibition of Farnesyltransferase Potentiates NOTCH-Targeted Therapy against Glioblastoma Stem Cells

    Directory of Open Access Journals (Sweden)

    Yufang Ma

    2017-12-01

    Full Text Available Summary: Accumulating evidence suggests that cancer cells with stem cell-like phenotypes drive disease progression and therapeutic resistance in glioblastoma (GBM. NOTCH regulates self-renewal and resistance to chemoradiotherapy in GBM stem cells. However, NOTCH-targeted γ-secretase inhibitors (GSIs exhibited limited efficacy in GBM patients. We found that farnesyltransferase inhibitors (FTIs significantly improved sensitivity to GSIs. This combination showed significant antineoplastic and radiosensitizing activities in GBM stem cells, whereas non-stem GBM cells were resistant. These combinatorial effects were mediated, at least partially, through inhibition of AKT and cell-cycle progression. Using subcutaneous and orthotopic GBM models, we showed that the combination of FTIs and GSIs, but not either agent alone, significantly reduced tumor growth. With concurrent radiation, this combination induced a durable response in a subset of orthotopic tumors. These findings collectively suggest that the combination of FTIs and GSIs is a promising therapeutic strategy for GBM through selectively targeting the cancer stem cell subpopulation. : NOTCH-targeted agents may selectively compromise glioblastoma stem cells. In this article, Wang and colleagues demonstrate that farnesyltransferase inhibitors significantly augmented the sensitivity of glioblastoma stem cells to γ-secretase inhibitors and improved tumor growth control in xenograft models. This combination therapy also promoted radiosensitivity and resulted in a durable response in orthotopic glioblastoma models with concurrent radiation. Keywords: Notch, glioblastoma stem cells, γ-secretase inhibitors, farnesyltransferase inhibitors

  6. Phage inhibit pathogen dissemination by targeting bacterial migrants in a chronic infection model

    DEFF Research Database (Denmark)

    Darch, Sophie E.; Kragh, Kasper N.; Abbott, Evelyn A.

    2017-01-01

    the life history of P. aeruginosa and the mechanisms that this bacterium utilizes to tolerate antimicrobials, specifically, bacteriophage. In the early stages of growth in synthetic sputum, planktonic cells form aggregates that increase in size over time by expansion. In later growth, migrant cells...... production; however, seeding of new aggregates by dispersed migrants was inhibited. We propose a model in which aggregates provide a mechanism that allows P. aeruginosa to tolerate phage therapy during chronic infection without the need for genetic mutation. IMPORTANCE Bacteria in chronic infections often...... that release migrants to colonize new areas. We also show that aggregates allow P. aeruginosa to tolerate therapeutic bacteriophage addition, although this treatment limits P. aeruginosa dissemination by targeting migrants....

  7. Virtual Screening of Peptide and Peptidomimetic Fragments Targeted to Inhibit Bacterial Dithiol Oxidase DsbA.

    Directory of Open Access Journals (Sweden)

    Wilko Duprez

    Full Text Available Antibacterial drugs with novel scaffolds and new mechanisms of action are desperately needed to address the growing problem of antibiotic resistance. The periplasmic oxidative folding system in Gram-negative bacteria represents a possible target for anti-virulence antibacterials. By targeting virulence rather than viability, development of resistance and side effects (through killing host native microbiota might be minimized. Here, we undertook the design of peptidomimetic inhibitors targeting the interaction between the two key enzymes of oxidative folding, DsbA and DsbB, with the ultimate goal of preventing virulence factor assembly. Structures of DsbB--or peptides--complexed with DsbA revealed key interactions with the DsbA active site cysteine, and with a hydrophobic groove adjacent to the active site. The present work aimed to discover peptidomimetics that target the hydrophobic groove to generate non-covalent DsbA inhibitors. The previously reported structure of a Proteus mirabilis DsbA active site cysteine mutant, in a non-covalent complex with the heptapeptide PWATCDS, was used as an in silico template for virtual screening of a peptidomimetic fragment library. The highest scoring fragment compound and nine derivatives were synthesized and evaluated for DsbA binding and inhibition. These experiments discovered peptidomimetic fragments with inhibitory activity at millimolar concentrations. Although only weakly potent relative to larger covalent peptide inhibitors that interact through the active site cysteine, these fragments offer new opportunities as templates to build non-covalent inhibitors. The results suggest that non-covalent peptidomimetics may need to interact with sites beyond the hydrophobic groove in order to produce potent DsbA inhibitors.

  8. MicroRNA-133b inhibits hepatocellular carcinoma cell progression by targeting Sirt1

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zhijie [School of Biomedicine, Chengdu Medical College, Chengdu, Sichuan 610500 (China); Jiang, Hequn [The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610041 (China); Liu, Ying; Huang, Yong [School of Biomedicine, Chengdu Medical College, Chengdu, Sichuan 610500 (China); Xiong, Xin [Laboratory Research Center, First Affiliated Hospital, Chongqing Medical University, Chongqing 400016 (China); Wu, Hongwei, E-mail: hongweiwu2118@sina.com [The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610041 (China); Dai, Xiaozhen, E-mail: xiaozhendai2012@163.com [School of Biomedicine, Chengdu Medical College, Chengdu, Sichuan 610500 (China); Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing 400044 (China); Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY (United States)

    2016-05-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that function as critical gene regulators by targeting mRNAs for translational repression or degradation. In this study, we showed that the expression level of miR-133b was decreased, while Sirt1 mRNA expression levels were increased in hepatocellular carcinoma (HCC) and cell lines, and we identified Sirt1 as a novel direct target of miR-133b. The over-expression of miR-133b suppressed Sirt1 expression. In addition, miR-133b over-expression resulted in attenuating HCC cell proliferation and invasion together with apoptosis increase in vitro. HepG2 cell transplantation revealed that up-regulation of miR-133b could inhibit HCC tumor genesis in vivo. Forced expression of Sirt1 partly rescued the effect of miR-133b in vitro. Furthermore, our study showed that miR-133b over-expression or Sirt1 down-regulation elevated E-cadherin expression, and repressed glypican-3 (GPC3) and the anti-apoptotic proteins (Bcl-2, Bcl-xL, and Mcl-1) expression. The inhibition of GPC3 expression repressed Bcl-2, Bcl-xL, and Mcl-1 expression, and elevated E-cadherin expression. Moreover, the Sirt1 up-regulation resulted in increases in HCC cell proliferation and invasion together with decreases apoptosis, and increases in the cytosolic accumulation and nuclear translocation of the transcription factor β-catenin in vitro. But the effect of Sirt1 up-regulation was partly reversed by GPC3 down-regulation in vitro. Taken together, these findings provide insight into the role and mechanism of miR-133b in regulating HCC cell proliferation, invasion and apoptosis via the miR-133b/Sirt1/GPC3/Wnt β-catenin axis, and miR-133b may serve as a potential therapeutic target in HCC in the future. - Highlights: • Sirt1 is a direct target of miR-133b in HCC. • miR-133b over-expression suppresses HCC progression in vitro and in vivo. • Sirt1 restoration reverses the effect of miR-133b over-expression on HCC cells. • GPC3 down-regulation reverses

  9. Structure-activity relationships of amide-phosphonate derivatives as inhibitors of the human soluble epoxide hydrolase.

    Science.gov (United States)

    Kim, In-Hae; Park, Yong-Kyu; Nishiwaki, Hisashi; Hammock, Bruce D; Nishi, Kosuke

    2015-11-15

    Structure-activity relationships of amide-phosphonate derivatives as inhibitors of the human soluble epoxide hydrolase (sEH) were investigated. First, a series of alkyl or aryl groups were substituted on the carbon alpha to the phosphonate function in amide compounds to see whether substituted phosphonates can act as a secondary pharmacophore. A tert-butyl group (16) on the alpha carbon was found to yield most potent inhibition on the target enzyme. A 4-50-fold drop in inhibition was induced by other substituents such as aryls, substituted aryls, cycloalkyls, and alkyls. Then, the modification of the O-substituents on the phosphonate function revealed that diethyl groups (16 and 23) were preferable for inhibition to other longer alkyls or substituted alkyls. In amide compounds with the optimized diethylphosphonate moiety and an alkyl substitution such as adamantane (16), tetrahydronaphthalene (31), or adamantanemethane (36), highly potent inhibitions were gained. In addition, the resulting potent amide-phosphonate compounds had reasonable water solubility, suggesting that substituted phosphonates in amide inhibitors are effective for both inhibition potency on the human sEH and water solubility as a secondary pharmacophore. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Selective Inhibition of STAT3 Phosphorylation Using a Nuclear-Targeted Kinase Inhibitor.

    Science.gov (United States)

    Bartolowits, Matthew D; Brown, Wells; Ali, Remah; Pedley, Anthony M; Chen, Qingshou; Harvey, Kyle E; Wendt, Michael K; Davisson, Vincent Jo

    2017-09-15

    The discovery of compounds that selectively modulate signaling and effector proteins downstream of EGFR could have important implications for understanding specific roles for pathway activation. A complicating factor for receptor tyrosine kinases is their capacity to be translocated to the nucleus upon ligand engagement. Once localized in subcellular compartments like the nucleus, the roles for EGFR take on additional features, many of which are still being revealed. Additionally, nuclear localization of EGFR has been implicated in downstream events that have significance for therapy resistance and disease progression. The challenges to addressing the differential roles for EGFR in the nucleus motivated experimental approaches that can selectively modulate its subcellular function. By adding modifications to the established EGFR kinase inhibitor gefitinib, an approach to small molecule conjugates with a unique nuclear-targeting peptoid sequence was tested in both human and murine breast tumor cell models for their capacity to inhibit EGF-stimulated activation of ERK1/2 and STAT3. While gefitinib alone inhibits both of these downstream effectors, data acquired here indicate that compartmentalization of the gefitinib conjugates allows for pathway specific inhibition of STAT3 while not affecting ERK1/2 signaling. The inhibitor conjugates offered a more direct route to evaluate the role of EGF-stimulated epithelial-to-mesenchymal transition in these breast cancer cell models. These conjugates revealed that STAT3 activation is not involved in EGF-induced EMT, and instead utilization of the cytoplasmic MAP kinase signaling pathway is critical to this process. This is the first example of a conjugate kinase inhibitor capable of partitioning to the nucleus and offers a new approach to enhancing kinase inhibitor specificity.

  11. CXCR4-targeted Therapy Inhibits VEGF Expression and Chondrosarcoma Angiogenesis and Metastasis

    Science.gov (United States)

    Sun, Xiaojuan; Charbonneau, Cherie; Wei, Lei; Yang, Wentian; Chen, Qian; Terek, Richard M.

    2013-01-01

    Chondrosarcoma is notable for its lack of response to conventional cytotoxic chemotherapy, propensity for developing lung metastases, and poor survival. Therefore, a better understanding of angiogenic and metastatic pathways is needed. Multiple pathways regulate angiogenesis and metastasis, including chemokines and their receptors. In this study, we investigated CHEMOKINE (C-X-C MOTIF) RECEPTOR 4 (CXCR4) signaling in chondrosarcoma and tested the hypotheses that CXCR4 inhibition suppresses tumor angiogenesis and metastasis. CXCR4 expression, analyzed by real-time PCR and Western blot, was increased in human chondrosarcoma cell line JJ compared to normal chondrocytes, and was further increased in JJ by hypoxia (2% O2), VASCULAR ENDOTHELIAL GROWTH FACTOR A (VEGFA) (10ng/ml), and in xenograft tumors in nude mice. The CXCR4 ligand CHEMOKINE (C-X-C MOTIF) LIGAND 12 (CXCL12) (10 ng/ml) doubled secreted VEGFA, measured with ELISA, under hypoxic conditions and this conditioned media increased HUVEC tube formation. These effects were inhibited by CXCR4 siRNA or AMD3100 (5 μg/mL). In a xenograft mouse model, four weeks of AMD3100 treatment (1.25 mg/kg, ip, bid) inhibited tumor angiogenesis, tumor growth, and metastasis. VEGFA content in tumor extracts was decreased (7.19 ± 0.52 ng/mL control vs. 3.96 ± 0.66 treatment) and bioimaging of angiogenesis was decreased by 56%. Tumor volumes averaged 4.44 ± 0.68 cm3 in control compared to 2.48 ± 0.61 cm3 in the treatment group. The number of lung metastatic nodules was 23 ± 9 in control compared to 10 ± 6 in the treatment group (N=8/group). Therefore, CXCR4 targeted therapy may be a treatment strategy for chondrosarcoma. PMID:23686836

  12. CXCR4-targeted therapy inhibits VEGF expression and chondrosarcoma angiogenesis and metastasis.

    Science.gov (United States)

    Sun, Xiaojuan; Charbonneau, Cherie; Wei, Lei; Yang, Wentian; Chen, Qian; Terek, Richard M

    2013-07-01

    Chondrosarcoma is notable for its lack of response to conventional cytotoxic chemotherapy, propensity for developing lung metastases, and poor survival. Therefore, a better understanding of angiogenic and metastatic pathways is needed. Multiple pathways regulate angiogenesis and metastasis, including chemokines and their receptors. In this study, we investigated chemokine (C-X-C motif) receptor 4 (CXCR4) signaling in chondrosarcoma and tested the hypotheses that CXCR4 inhibition suppresses tumor angiogenesis and metastasis. CXCR4 expression, analyzed by real-time PCR and Western blot, was increased in human chondrosarcoma cell line JJ compared with normal chondrocytes and was further increased in JJ by hypoxia (2% O2), vascular endothelial growth factor A (VEGFA; 10 ng/mL), and in xenograft tumors in nude mice. The CXCR4 ligand CXCL12 (10 ng/mL) doubled secreted VEGFA, measured with ELISA, under hypoxic conditions and this conditioned media increased human umbilical vein endothelial cell tube formation. These effects were inhibited by CXCR4 siRNA or AMD3100 (5 μg/mL). In a xenograft mouse model, four weeks of AMD3100 treatment (1.25 mg/kg, intraperitoneally twice daily) inhibited tumor angiogenesis, tumor growth, and metastasis. VEGFA content in tumor extracts was decreased (7.19 ± 0.52 ng/mL control vs. 3.96 ± 0.66 treatment) and bioimaging of angiogenesis was decreased by 56%. Tumor volumes averaged 4.44 ± 0.68 cm(3) in control compared with 2.48 ± 0.61 cm(3) in the treatment group. The number of lung metastatic nodules was 23 ± 9 in control compared with 10 ± 6 in the treatment group (N = 8/group). Therefore, CXCR4-targeted therapy may be a treatment strategy for chondrosarcoma.

  13. Mammalian target of rapamycin inhibition in polycystic kidney disease: From bench to bedside

    Directory of Open Access Journals (Sweden)

    Hyun-Jung Kim

    2012-09-01

    Full Text Available Autosomal dominant polycystic kidney disease (ADPKD is the most common life-threatening hereditary disease in the USA resulting in chronic kidney disease and the need for dialysis and transplantation. Approximately 85% of cases of ADPKD are caused by a mutation in the Pkd1 gene that encodes polycystin-1, a large membrane receptor. The Pkd1 gene mutation results in abnormal proliferation in tubular epithelial cells, which plays a crucial role in cyst development and/or growth in PKD. Activation of the proliferative mammalian target of rapamycin (mTOR signaling pathway has been demonstrated in polycystic kidneys from rodents and humans. mTOR inhibition with sirolimus or everolimus decreases cysts in most animal models of PKD including Pkd1 and Pkd2 gene deficient orthologous models of human disease. On the basis of animal studies, human studies were undertaken. Two large randomized clinical trials published in the New England Journal of Medicine of everolimus or sirolimus in ADPKD patients were very unimpressive and associated with a high side-effect profile. Possible reasons for the unimpressive nature of the human studies include their short duration, the high drop-out rate, suboptimal dosing, lack of randomization of “fast” and “slow progressors” and the lack of correlation between kidney size and kidney function in ADPKD. The future of mTOR inhibition in ADPKD is discussed.

  14. Hispidulin inhibits proliferation and enhances chemosensitivity of gallbladder cancer cells by targeting HIF-1α

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hui; Xie, Jing [Medical College, Qingdao University, Qingdao, Shandong 266071 (China); Peng, Jianjun, E-mail: jianjunpeng@126.com [College of Life Sciences, Chongqing Normal University, Chongqing 401331 (China); Han, Yantao, E-mail: hanyt19@126.com [Medical College, Qingdao University, Qingdao, Shandong 266071 (China); Jiang, Qixiao; Han, Mei; Wang, Chunbo [Medical College, Qingdao University, Qingdao, Shandong 266071 (China)

    2015-03-15

    Gallbladder cancer (GBC) is an aggressive malignancy of the bile duct, which is associated with a low (5-year) survival and poor prognosis. The transcription factor HIF-1α is implicated in the angiogenesis, cell survival, epithelial mesenchymal transition (EMT) and invasiveness of GBC. In this study, we have investigated the role of HIF-1α in the pathobilogy of GBC and effect of hispidulin on the molecular events controlled by this transcription factor. We observed that hispidulin caused induction of apoptosis, blockade of growth and cell cycle progression in GBC cells. Our results have demonstrated for the first time that hispidulin-exerted anti-tumor effect involved the suppression of HIF-1α signaling. Hispidulin was found to repress the expression of HIF-1α protein dose-dependently without affecting the HIF-1α mRNA expression. In addition, the inhibition of HIF-1α protein synthesis was revealed to be mediated through the activation of AMPK signaling. Hispidulin also sensitized the tumor cells to Gemcitabine and 5-Fluoroucil by down-regulating HIF-1α/P-gp signaling. Given the low cost and exceedingly safe profile, hispidulin appears to be a promising and novel chemosensitizer for GBC treatment. - Highlights: • Hispidulin inhibits proliferation of gallbladder cancer cells by targeting HIF-1α. • Hispidulin regulates HIF-1α via activating AMPK signaling. • Hispidulin sensitized the GBC cells to chemotherapeutics by down-regulating P-gp.

  15. Redox Signaling as a Therapeutic Target to Inhibit Myofibroblast Activation in Degenerative Fibrotic Disease

    Directory of Open Access Journals (Sweden)

    Natalie Sampson

    2014-01-01

    Full Text Available Degenerative fibrotic diseases encompass numerous systemic and organ-specific disorders. Despite their associated significant morbidity and mortality, there is currently no effective antifibrotic treatment. Fibrosis is characterized by the development and persistence of myofibroblasts, whose unregulated deposition of extracellular matrix components disrupts signaling cascades and normal tissue architecture leading to organ failure and death. The profibrotic cytokine transforming growth factor beta (TGFβ is considered the foremost inducer of fibrosis, driving myofibroblast differentiation in diverse tissues. This review summarizes recent in vitro and in vivo data demonstrating that TGFβ-induced myofibroblast differentiation is driven by a prooxidant shift in redox homeostasis. Elevated NADPH oxidase 4 (NOX4-derived hydrogen peroxide (H2O2 supported by concomitant decreases in nitric oxide (NO signaling and reactive oxygen species scavengers are central factors in the molecular pathogenesis of fibrosis in numerous tissues and organs. Moreover, complex interplay between NOX4-derived H2O2 and NO signaling regulates myofibroblast differentiation. Restoring redox homeostasis via antioxidants or NOX4 inactivation as well as by enhancing NO signaling via activation of soluble guanylyl cyclases or inhibition of phosphodiesterases can inhibit and reverse myofibroblast differentiation. Thus, dysregulated redox signaling represents a potential therapeutic target for the treatment of wide variety of different degenerative fibrotic disorders.

  16. Chloroquine and hydroxychloroquine inhibit bladder cancer cell growth by targeting basal autophagy and enhancing apoptosis

    Directory of Open Access Journals (Sweden)

    Yi-Chia Lin

    2017-05-01

    Full Text Available Chloroquine (CQ and hydroxychloroquine (HCQ, two antimalarial drugs, are suggested to have potential anticancer properties. in the present study, we investigated the effects of CQ and HCQ on cell growth of bladder cancer with emphasis on autophagy inhibition and apoptosis induction in vitro. The results showed that CQ and HCQ inhibited the proliferation of multiple human bladder cell lines (including RT4, 5637, and T24 in a time- and dose-dependent fashion, especially in advanced bladder cancer cell lines (5637 and T24 compared to immortalized uroepithelial cells (SV-Huc-1 or other reference cancer cell lines (PC3 and MCF-7. We found that 24-hour treatment of CQ or HCQ significantly decreased the clonogenic formation in 5637 and T24 cells compared to SV-Huc-1. As human bladder cancer tumor exhibits high basal level of autophagic activities, we detected the autophagic flux in cells treated with CQ and HCQ, showing an alternation in LC3 flux in CQ- or HCQ-treated cells. Moreover, bladder cancer cells treated with CQ and HCQ underwent apoptosis, resulting in increased caspase 3/7 activities, increased level of cleaved poly(ADP-ribose polymerase (PARP, caspase 3, and DNA fragmentation. Given these results, targeting autophagy with CQ and HCQ represents an effective cancer therapeutic strategy against human bladder cancer.

  17. Chloroquine and hydroxychloroquine inhibit bladder cancer cell growth by targeting basal autophagy and enhancing apoptosis.

    Science.gov (United States)

    Lin, Yi-Chia; Lin, Ji-Fan; Wen, Sheng-I; Yang, Shan-Che; Tsai, Te-Fu; Chen, Hung-En; Chou, Kuang-Yu; Hwang, Thomas I-Sheng

    2017-05-01

    Chloroquine (CQ) and hydroxychloroquine (HCQ), two antimalarial drugs, are suggested to have potential anticancer properties. in the present study, we investigated the effects of CQ and HCQ on cell growth of bladder cancer with emphasis on autophagy inhibition and apoptosis induction in vitro. The results showed that CQ and HCQ inhibited the proliferation of multiple human bladder cell lines (including RT4, 5637, and T24) in a time- and dose-dependent fashion, especially in advanced bladder cancer cell lines (5637 and T24) compared to immortalized uroepithelial cells (SV-Huc-1) or other reference cancer cell lines (PC3 and MCF-7). We found that 24-hour treatment of CQ or HCQ significantly decreased the clonogenic formation in 5637 and T24 cells compared to SV-Huc-1. As human bladder cancer tumor exhibits high basal level of autophagic activities, we detected the autophagic flux in cells treated with CQ and HCQ, showing an alternation in LC3 flux in CQ- or HCQ-treated cells. Moreover, bladder cancer cells treated with CQ and HCQ underwent apoptosis, resulting in increased caspase 3/7 activities, increased level of cleaved poly(ADP-ribose) polymerase (PARP), caspase 3, and DNA fragmentation. Given these results, targeting autophagy with CQ and HCQ represents an effective cancer therapeutic strategy against human bladder cancer. Copyright © 2017. Published by Elsevier Taiwan.

  18. ROCK inhibition as a therapy for spinal muscular atrophy: understanding the repercussions on multiple cellular targets

    Science.gov (United States)

    Coque, Emmanuelle; Raoul, Cédric; Bowerman, Mélissa

    2014-01-01

    Spinal muscular atrophy (SMA) is the most common genetic disease causing infant death, due to an extended loss of motoneurons. This neuromuscular disorder results from deletions and/or mutations within the Survival Motor Neuron 1 (SMN1) gene, leading to a pathological decreased expression of functional full-length SMN protein. Emerging studies suggest that the small GTPase RhoA and its major downstream effector Rho kinase (ROCK), which both play an instrumental role in cytoskeleton organization, contribute to the pathology of motoneuron diseases. Indeed, an enhanced activation of RhoA and ROCK has been reported in the spinal cord of an SMA mouse model. Moreover, the treatment of SMA mice with ROCK inhibitors leads to an increased lifespan as well as improved skeletal muscle and neuromuscular junction pathology, without preventing motoneuron degeneration. Although motoneurons are the primary target in SMA, an increasing number of reports show that other cell types inside and outside the central nervous system contribute to SMA pathogenesis. As administration of ROCK inhibitors to SMA mice was systemic, the improvement in survival and phenotype could therefore be attributed to specific effects on motoneurons and/or on other non-neuronal cell types. In the present review, we will present the various roles of the RhoA/ROCK pathway in several SMA cellular targets including neurons, myoblasts, glial cells, cardiomyocytes and pancreatic cells as well as discuss how ROCK inhibition may ameliorate their health and function. It is most likely a concerted influence of ROCK modulation on all these cell types that ultimately lead to the observed benefits of pharmacological ROCK inhibition in SMA mice. PMID:25221469

  19. Let-7b inhibits human cancer phenotype by targeting cytochrome P450 epoxygenase 2J2.

    Directory of Open Access Journals (Sweden)

    Fuqiong Chen

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are small, noncoding RNA molecules of 20 to 22 nucleotides that regulate gene expression by binding to their 3' untranslated region (3'UTR. Increasing data implicate altered miRNA participation in the progress of cancer. We previously reported that CYP2J2 epoxygenase promotes human cancer phenotypes. But whether and how CYP2J2 is regulated by miRNA is not understood. METHODS AND RESULTS: Using bioinformatics analysis, we found potential target sites for miRNA let-7b in 3'UTR of human CYP2J2. Luciferase and western blot assays revealed that CYP2J2 was regulated by let-7b. In addition, let-7b decreased the enzymatic activity of endogenous CYP2J2. Furthermore, let-7b may diminish cell proliferation and promote cell apoptosis of tumor cells via posttranscriptional repression of CYP2J2. Tumor xenografts were induced in nude mice by subcutaneous injection of MDA-MB-435 cells. The let-7b expression vector, pSilencer-let-7b, was injected through tail vein every 3 weeks. Let-7b significantly inhibited the tumor phenotype by targeting CYP2J2. Moreover, quantitative real-time polymerase chain reaction and western blotting were used to determine the expression levels of let-7b and CYP2J2 protein from 18 matched lung squamous cell cancer and adjacent normal lung tissues; the expression level of CYP2J2 was inversely proportional to that of let-7b. CONCLUSIONS: Our results demonstrated that the decreased expression of let-7b could lead to the high expression of CYP2J2 protein in cancerous tissues. These findings suggest that miRNA let-7b reduces CYP2J2 expression, which may contribute to inhibiting tumor phenotypes.

  20. ROCK inhibition as a therapy for spinal muscular atrophy: understanding the repercussions on multiple cellular targets

    Directory of Open Access Journals (Sweden)

    Emmanuelle eCoque

    2014-08-01

    Full Text Available Spinal muscular atrophy (SMA is the most common genetic disease causing infant death, due to an extended loss of motoneurons. This neuromuscular disorder results from deletions and/or mutations within the surviving motor neuron 1 (SMN1 gene, leading to a pathological decreased expression of functional full-length SMN protein. Emerging studies suggest that the small GTPase RhoA and its major downstream effector Rho kinase (ROCK, which both play an instrumental role in cytoskeleton organization, contribute to the pathology of motoneuron diseases. Indeed, an enhanced activation of RhoA and ROCK has been reported in the spinal cord of an SMA mouse model. Moreover, the treatment of SMA mice with ROCK inhibitors leads to an increased lifespan as well as improved skeletal muscle and neuromuscular junction pathology, without preventing motoneuron degeneration. Although motoneurons are the primary target in SMA, an increasing number of reports show that other cell types inside and outside the central nervous system contribute to SMA pathogenesis. As administration of ROCK inhibitors to SMA mice was systemic, the improvement in survival and phenotype could therefore be attributed to specific effects on motoneurons and/or on other non-neuronal cell types. In the present review, we will present the various roles of the RhoA/ROCK pathway in several SMA cellular targets including neurons, myocytes, glial cells, cardiomyocytes and pancreatic cells as well as discuss how ROCK inhibition may ameliorate their health and function. It is most likely a concerted influence of ROCK modulation on all these cell types that ultimately lead to the observed benefits of pharmacological ROCK inhibition in SMA mice.

  1. miR‑485‑5p inhibits bladder cancer metastasis by targeting HMGA2.

    Science.gov (United States)

    Chen, Zhijun; Li, Qingwen; Wang, Sheng; Zhang, Jiajun

    2015-10-01

    MicroRNA (miRNA or miR)‑485 is a functional miRNA which has received much attention in recent years. However, little is known about the expression of miR‑485 or the role it plays in bladder cancer [namely in metastasis and epithelial‑mesenchymal transition (EMT)]. Thus, in the present study, we aimed to detect the expression of miR‑485 in human bladder cancer tissues and bladder cancer cell lines, and to examine the effects of miR‑485‑5p on bladder cancer cell metastasis and EMT. We found that the expression of miR‑485‑5p was downregulated in the human bladder cancer tissues and different bladder cancer cell lines compared with the normal tissues and cell lines, as demonstrated by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). We enforced the expression of miR‑485‑5p in T24 cells and inhibited the expression of miR‑485‑5p in SW780 cells by transfection with miR‑485‑5p mimic or miR‑485‑5p inhibitor, respectively. The ectopic expression of miR‑485‑5p was shown to inhibit cell metastasis and EMT, whereas the inhibition of miR‑485‑5p expression promoted cell metastasis and EMT, as shown by transwell‑matrigel assay, cell adhesion assay and western blot analysis. Furthermore, a luciferase reporter assay revealed that high mobility group AT‑hook 2 (HMGA2) was a direct target of miR‑485‑5p and that the overexpression of HMGA2 reversed the effects of miR‑485‑5p on cell metastasis and EMT. In conclusion and to the very best of our knowledge, the present study, for the first time, identified miR‑485‑5p as a suppressive miRNA in human bladder cancer, and demonstrated that miR‑485‑5p inhibits cell metastasis and EMT at least partly through the suppression of HMGA2 expression.

  2. Nucleosomes Selectively Inhibit Cas9 Off-target Activity at a Site Located at the Nucleosome Edge.

    Science.gov (United States)

    Hinz, John M; Laughery, Marian F; Wyrick, John J

    2016-11-25

    Nucleosomes affect Cas9 binding and activity at on-target sites, but their impact at off-target sites is unknown. To investigate how nucleosomes affect Cas9 cleavage at off-target sites in vitro, we used a single guide RNA (sgRNA) that has been previously shown to efficiently direct Cas9 cleavage at the edge of the strongly positioned 601 nucleosome. Our data indicate that single mismatches between the sgRNA and DNA target have relatively little effect on Cas9 cleavage of naked DNA substrates, but strongly inhibit cleavage of nucleosome substrates, particularly when the mismatch is in the sgRNA "seed" region. These findings indicate that nucleosomes may enhance Cas9 specificity by inhibiting cleavage of off-target sites at the nucleosome edge. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Small-molecule targeting of a diapophytoene desaturase inhibits S. aureus virulence.

    Science.gov (United States)

    Chen, Feifei; Di, Hongxia; Wang, Youxin; Cao, Qiao; Xu, Bin; Zhang, Xue; Yang, Nana; Liu, Guijie; Yang, Cai-Guang; Xu, Yong; Jiang, Hualiang; Lian, Fulin; Zhang, Naixia; Li, Jian; Lan, Lefu

    2016-03-01

    The surge of antibiotic resistance in Staphylococcus aureus has created a dire need for innovative anti-infective agents that attack new targets, to overcome resistance. In S. aureus, carotenoid pigment is an important virulence factor because it shields the bacterium from host oxidant killing. Here we show that naftifine, a US Food and Drug Administration (FDA)-approved antifungal drug, blocks biosynthesis of carotenoid pigment at nanomolar concentrations. This effect is mediated by competitive inhibition of S. aureus diapophytoene desaturase (CrtN), an essential enzyme for carotenoid pigment synthesis. We found that naftifine attenuated the virulence of a variety of clinical S. aureus isolates, including methicillin-resistant S. aureus (MRSA) strains, in mouse infection models. Specifically, we determined that naftifine is a lead compound for potent CrtN inhibitors. In sum, these findings reveal that naftifine could serve as a chemical probe to manipulate CrtN activity, providing proof of concept that CrtN is a druggable target against S. aureus infections.

  4. Inhibition of influenza A virus (H1N1 fusion by benzenesulfonamide derivatives targeting viral hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Lei Zhu

    Full Text Available Hemagglutinin (HA of the influenza virus plays a crucial role in the early stage of the viral life cycle by binding to sialic acid on the surface of host epithelial cells and mediating fusion between virus envelope and endosome membrane for the release of viral genomes into the cytoplasm. To initiate virus fusion, endosome pH is lowered by acidification causing an irreversible conformational change of HA, which in turn results in a fusogenic HA. In this study, we describe characterization of an HA inhibitor of influenza H1N1 viruses, RO5464466. One-cycle time course study in MDCK cells showed that this compound acted at an early step of influenza virus replication. Results from HA-mediated hemolysis of chicken red blood cells and trypsin sensitivity assay of isolated HA clearly showed that RO5464466 targeted HA. In cell-based assays involving multiple rounds of virus infection and replication, RO5464466 inhibited an established influenza infection. The overall production of progeny viruses, as a result of the compound's inhibitory effect on fusion, was dramatically reduced by 8 log units when compared with a negative control. Furthermore, RO5487624, a close analogue of RO5464466, with pharmacokinetic properties suitable for in vivo efficacy studies displayed a protective effect on mice that were lethally challenged with influenza H1N1 virus. These results might benefit further characterization and development of novel anti-influenza agents by targeting viral hemagglutinin.

  5. Targeting thioredoxin reductase 1 reduction in cancer cells inhibits self-sufficient growth and DNA replication.

    Directory of Open Access Journals (Sweden)

    Min-Hyuk Yoo

    2007-10-01

    Full Text Available Thioredoxin reductase 1 (TR1 is a major redox regulator in mammalian cells. As an important antioxidant selenoprotein, TR1 is thought to participate in cancer prevention, but is also known to be over-expressed in many cancer cells. Numerous cancer drugs inhibit TR1, and this protein has been proposed as a target for cancer therapy. We previously reported that reduction of TR1 levels in cancer cells reversed many malignant characteristics suggesting that deficiency in TR1 function is antitumorigenic. The molecular basis for TR1's role in cancer development, however, is not understood. Herein, we found that, among selenoproteins, TR1 is uniquely overexpressed in cancer cells and its knockdown in a mouse cancer cell line driven by oncogenic k-ras resulted in morphological changes characteristic of parental (normal cells, without significant effect on cell growth under normal growth conditions. When grown in serum-deficient medium, TR1 deficient cancer cells lose self-sufficiency of growth, manifest a defective progression in their S phase and a decreased expression of DNA polymerase alpha, an enzyme important in DNA replication. These observations provide evidence that TR1 is critical for self-sufficiency in growth signals of malignant cells, that TR1 acts largely as a pro-cancer protein and it is indeed a primary target in cancer therapy.

  6. Targeting Ras-Driven Cancer Cell Survival and Invasion through Selective Inhibition of DOCK1

    Directory of Open Access Journals (Sweden)

    Hirotada Tajiri

    2017-05-01

    Full Text Available Oncogenic Ras plays a key role in cancer initiation but also contributes to malignant phenotypes by stimulating nutrient uptake and promoting invasive migration. Because these latter cellular responses require Rac-mediated remodeling of the actin cytoskeleton, we hypothesized that molecules involved in Rac activation may be valuable targets for cancer therapy. We report that genetic inactivation of the Rac-specific guanine nucleotide exchange factor DOCK1 ablates both macropinocytosis-dependent nutrient uptake and cellular invasion in Ras-transformed cells. By screening chemical libraries, we have identified 1-(2-(3′-(trifluoromethyl-[1,1′-biphenyl]-4-yl-2-oxoethyl-5-pyrrolidinylsulfonyl-2(1H-pyridone (TBOPP as a selective inhibitor of DOCK1. TBOPP dampened DOCK1-mediated invasion, macropinocytosis, and survival under the condition of glutamine deprivation without impairing the biological functions of the closely related DOCK2 and DOCK5 proteins. Furthermore, TBOPP treatment suppressed cancer metastasis and growth in vivo in mice. Our results demonstrate that selective pharmacological inhibition of DOCK1 could be a therapeutic approach to target cancer cell survival and invasion.

  7. Targeting cancer cells through antibiotics-induced mitochondrial dysfunction requires autophagy inhibition.

    Science.gov (United States)

    Esner, Milan; Graifer, Dmitry; Lleonart, Matilde E; Lyakhovich, Alex

    2017-01-01

    A significant part of current research studies utilizes various cellular models which imply specific antibiotics-containing media as well as antibiotics used for clonal selection or promoter de/activation. With the great success of developing such tools, mitochondria, once originated from bacteria, can be effectively targeted by antibiotics. For that reason, some studies propose antibiotics-targeting of mitochondria as part of anticancer therapy. Here, we have focused on the effects of various classes of antibiotics on mitochondria in cancer and non-cancer cells and demonlow mitochondrial membrane potential, reduced ATP production, altered morphology and lowered respiration rate which altogether suggested mitochondrial dysfunction (MDF). This was in parallel with increased level of reactive oxygen species (ROS) and decreased activity of mitochondrial respiration complexes. However, both survival and repopulation capacity of cancer cells was not significantly affected by the antibiotics, perhaps due to a glycolytic shift or activated autophagy. In turn, simultaneous inhibition of autophagy and treatment with antibiotics largely reduced tumorigenic properties of cancer cells suggesting potential strategy for anticancer therapy. Copyright © 2016. Published by Elsevier Ireland Ltd.

  8. Study on Growth Inhibition of Implanted Tumor in Nude Mice by Antisense Oligodeoxynucleotide Targeting Telomerase RNA

    Directory of Open Access Journals (Sweden)

    Hongtao YU

    2008-04-01

    Full Text Available Background and Objective Many studies have proven that telomerase plays an important role during the occurrence and development of lung cancer, which has been an important target in gene therapy. The aim of this study is to explore the inhibitory effect of antisense oligodeoxynucleotides (ASODN targeting human telomerase RNA on implanted tumor growth in nude mice. Mothods Implanted tumor models were Constructed in nude mice using human lung adenocarcinoma cell line A549. Eighteen Balb/C nude mice with implanted tumors were divided into three groups randomly: antisense oligodeoxynucleotide group (group ASODN, sense oligodeoxynucleotide group (group SODN, normal saline group (group NS, with 6 mice respectively. ASODs or SODNs mixed with Lipofectamine-2000 was injected into tumor directly every 24 h for fourteen days. Results The inhibitory rates of tumor volume in Group ASODN and Group SODN were 43.94% and 6.91%, respectively. There was significant difference between the two groups (t=6.17, P<0.001. All the animals tolerated the drugs well and there was no nausea, vomiting and subcutaneous hemorrhage to occur during the therapy. The weight of the animals increased slightly at the end of experiment. Conclusion The results of this study suggest that intratumoral injection of human telomerase ribonucleic acid (hTR ASOND could effectively inhibit the growth of implanted tumor in nude mice.

  9. Inhibition of KLF7-Targeting MicroRNA 146b Promotes Sciatic Nerve Regeneration.

    Science.gov (United States)

    Li, Wen-Yuan; Zhang, Wei-Ting; Cheng, Yong-Xia; Liu, Yan-Cui; Zhai, Feng-Guo; Sun, Ping; Li, Hui-Ting; Deng, Ling-Xiao; Zhu, Xiao-Feng; Wang, Ying

    2018-01-22

    A previous study has indicated that Krüppel-like factor 7 (KLF7), a transcription factor that stimulates Schwann cell (SC) proliferation and axonal regeneration after peripheral nerve injury, is a promising therapeutic transcription factor in nerve injury. We aimed to identify whether inhibition of microRNA-146b (miR-146b) affected SC proliferation, migration, and myelinated axon regeneration following sciatic nerve injury by regulating its direct target KLF7. SCs were transfected with miRNA lentivirus, miRNA inhibitor lentivirus, or KLF7 siRNA lentivirus in vitro. The expression of miR146b and KLF7, as well as SC proliferation and migration, were subsequently evaluated. In vivo, an acellular nerve allograft (ANA) followed by injection of GFP control vector or a lentiviral vector encoding an miR-146b inhibitor was used to assess the repair potential in a model of sciatic nerve gap. miR-146b directly targeted KLF7 by binding to the 3'-UTR, suppressing KLF7. Up-regulation of miR-146b and KLF7 knockdown significantly reduced the proliferation and migration of SCs, whereas silencing miR-146b resulted in increased proliferation and migration. KLF7 protein was localized in SCs in which miR-146b was expressed in vivo. Similarly, 4 weeks after the ANA, anti-miR-146b increased KLF7 and its target gene nerve growth factor cascade, promoting axonal outgrowth. Closer analysis revealed improved nerve conduction and sciatic function index score, and enhanced expression of neurofilaments, P0 (anti-peripheral myelin), and myelinated axon regeneration. Our findings provide new insight into the regulation of KLF7 by miR-146b during peripheral nerve regeneration and suggest a potential therapeutic strategy for peripheral nerve injury.

  10. Inhibition of mesothelin as a novel strategy for targeting cancer cells.

    Directory of Open Access Journals (Sweden)

    Kun Wang

    Full Text Available Mesothelin, a differentiation antigen present in a series of malignancies such as mesothelioma, ovarian, lung and pancreatic cancer, has been studied as a marker for diagnosis and a target for immunotherapy. We, however, were interested in evaluating the effects of direct targeting of Mesothelin on the viability of cancer cells as the first step towards developing a novel therapeutic strategy. We report here that gene specific silencing for Mesothelin by distinct methods (siRNA and microRNA decreased viability of cancer cells from different origins such as mesothelioma (H2373, ovarian cancer (Skov3 and Ovcar-5 and pancreatic cancer (Miapaca2 and Panc-1. Additionally, the invasiveness of cancer cells was also significantly decreased upon such treatment. We then investigated pro-oncogenic signaling characteristics of cells upon mesothelin-silencing which revealed a significant decrease in phospho-ERK1 and PI3K/AKT activity. The molecular mechanism of reduced invasiveness was connected to the reduced expression of β-Catenin, an important marker of EMT (epithelial-mesenchymal transition. Ero1, a protein involved in clearing unfolded proteins and a member of the ER-Stress (endoplasmic reticulum-stress pathway was also markedly reduced. Furthermore, Mesothelin silencing caused a significant increase in fraction of cancer cells in S-phase. In next step, treatment of ovarian cancer cells (OVca429 with a lentivirus expressing anti-mesothelin microRNA resulted in significant loss of viability, invasiveness, and morphological alterations. Therefore, we propose the inhibition of Mesothelin as a potential novel strategy for targeting human malignancies.

  11. How to find soluble proteins: a comprehensive analysis of alpha/beta hydrolases for recombinant expression in E. coli

    Directory of Open Access Journals (Sweden)

    Barth Sandra

    2005-04-01

    to identify attractive target genes for expression using protein sequences published in databases. This analysis also directs the design of degenerate, family- specific primers to amplify new members from homologous families or superfamilies with a high probability of soluble alpha/beta hydrolases.

  12. Suppressor of cytokine Signaling-3 inhibits interleukin-1 signaling by targeting the TRAF-6/TAK1 complex

    DEFF Research Database (Denmark)

    Frobøse, Helle; Rønn, Sif Groth; Heding, Peter E

    2006-01-01

    -activated kinase 1, TNF receptor-associated factor (TRAF)6, and TGFbeta-activated kinase (TAK)1, but not when the MAP3K MAPK/ERK kinase kinase-1 is used instead of TAK1, indicating that the target for SOCS-3 is the TRAF6/TAK1 signaling complex. By coimmunoprecipitation, it was shown that SOCS-3 inhibited...... the association between TRAF6 and TAK1 and that SOCS-3 coimmunoprecipitated with TAK1 and TRAF6. Furthermore, SOCS-3 inhibited the IL-1-induced catalytic activity of TAK1. Because ubiquitination of TRAF6 is required for activation of TAK1, we analyzed the role of SOCS-3 on TRAF6 ubiquitination and found that SOCS......-3 inhibited ubiquitin modification of TRAF6. These results indicate that SOCS-3 inhibits IL-1 signal transduction by inhibiting ubiquitination of TRAF6, thus preventing association and activation of TAK1....

  13. Targeting Slit-Roundabout signaling inhibits tumor angiogenesis in chemical-induced squamous cell carcinogenesis.

    Science.gov (United States)

    Wang, Li-Jing; Zhao, Yuan; Han, Bing; Ma, Yu-Guang; Zhang, Jie; Yang, Ding-Ming; Mao, Jian-Wen; Tang, Fu-Tian; Li, Wei-Dong; Yang, Yang; Wang, Rui; Geng, Jian-Guo

    2008-03-01

    Slit is a secreted protein known to function through the Roundabout (Robo) receptor as a repellent for axon guidance and neuronal migration, and as an inhibitor in leukocyte chemotaxis. We have previously shown that Slit2 is also secreted by a variety of human cancer cells whereby it acts as a chemoattractant to vascular endothelial cells for tumor angiogenesis. We used a blocking antibody to investigate the role of Slit-Robo signaling in tumor angiogenesis during oral carcinogenesis. In this report we undertook a multistage model of 7,12-dimethyl-1,2-benzanthracene-induced squamous cell carcinoma in the hamster buccal pouch. R5, a monoclonal antibody against the first immunoglobulin domain of Robo1, was used to study whether R5 blocks the Slit-Robo interaction and furthermore inhibits tumor angiogenesis and growth in our model. In addition, the expression of Slit2, von Willebrand factor, and vascular endothelial growth factor were examined using human tissue of oral cheek mucosa with oral squamous cell carcinoma. Our data showed that Slit2 was expressed minimally in normal and hyperplastic mucosa, moderately in dysplastic mucosa, and highly in neoplastic mucosa obtained from hamster buccal pouch. We also found that increased Slit2 expression was associated with higher tumor angiogenesis, as reflected by increased vascular endothelial growth factor expression and microvessel density. A similar Slit2 expression profile was found in human tissue. Importantly, interruption of the Slit2-Robo interaction using R5 inhibited tumor angiogenesis and growth in our in vivo model, which indicates that Slit2-mediated tumor angiogenesis is a critical process underlying the carcinogenesis of chemical-induced squamous cell carcinoma. Therefore, targeting Slit-Robo signaling may offer a novel antiangiogenesis approach for oral cancer therapy.

  14. Cooperative Targets of Combined mTOR/HDAC Inhibition Promote MYC Degradation.

    Science.gov (United States)

    Simmons, John K; Michalowski, Aleksandra M; Gamache, Benjamin J; DuBois, Wendy; Patel, Jyoti; Zhang, Ke; Gary, Joy; Zhang, Shuling; Gaikwad, Snehal; Connors, Daniel; Watson, Nicholas; Leon, Elena; Chen, Jin-Qiu; Kuehl, W Michael; Lee, Maxwell P; Zingone, Adriana; Landgren, Ola; Ordentlich, Peter; Huang, Jing; Mock, Beverly A

    2017-09-01

    Cancer treatments often require combinations of molecularly targeted agents to be effective. mTORi (rapamycin) and HDACi (MS-275/entinostat) inhibitors have been shown to be effective in limiting tumor growth, and here we define part of the cooperative action of this drug combination. More than 60 human cancer cell lines responded synergistically (CI<1) when treated with this drug combination compared with single agents. In addition, a breast cancer patient-derived xenograft, and a BCL-XL plasmacytoma mouse model both showed enhanced responses to the combination compared with single agents. Mice bearing plasma cell tumors lived an average of 70 days longer on combination treatment compared with single agents. A set of 37 genes cooperatively affected (34 downregulated; 3 upregulated) by the combination responded pharmacodynamically in human myeloma cell lines, xenografts, and a P493 model, and were both enriched in tumors, and correlated with prognostic markers in myeloma patient datasets. Genes downregulated by the combination were overexpressed in several untreated cancers (breast, lung, colon, sarcoma, head and neck, myeloma) compared with normal tissues. The MYC/E2F axis, identified by upstream regulator analyses and validated by immunoblots, was significantly inhibited by the drug combination in several myeloma cell lines. Furthermore, 88% of the 34 genes downregulated have MYC-binding sites in their promoters, and the drug combination cooperatively reduced MYC half-life by 55% and increased degradation. Cells with MYC mutations were refractory to the combination. Thus, integrative approaches to understand drug synergy identified a clinically actionable strategy to inhibit MYC/E2F activity and tumor cell growth in vivoMol Cancer Ther; 16(9); 2008-21. ©2017 AACR. ©2017 American Association for Cancer Research.

  15. miR-455 inhibits neuronal cell death by targeting TRAF3 in cerebral ischemic stroke

    Directory of Open Access Journals (Sweden)

    Yao ST

    2016-12-01

    Full Text Available Shengtao Yao,* Bo Tang,* Gang Li, Ruiming Fan, Fang Cao Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical College, Zunyi, People’s Republic of China *These authors contributed equally to this work Abstract: Ischemic stroke is one of the leading causes of brain disease, with high morbidity, disability, and mortality. MicroRNAs (miRNAs have been identified as vital gene regulators in various types of human diseases. Accumulating evidence has suggested that aberrant expression of miRNAs play critical roles in the pathologies of ischemic stroke. Yet, the precise mechanism by which miRNAs control cerebral ischemic stroke remains unclear. In the present study, we explored whether miR-455 suppresses neuronal death by targeting TRAF3 in cerebral ischemic stroke. The expression levels of miR-455 and TRAF3 were detected by quantitative real-time polymerase chain reaction and Western blot. The role of miR-455 in cell death caused by oxygen–glucose deprivation (OGD was assessed using Cell Counting Kit-8 (CCK-8 assay. The influence of miR-455 on infarct volume was evaluated in mouse brain after middle cerebral artery occlusion (MCAO. Bioinformatics softwares and luciferase analysis were used to find and confirm the targets of miR-455. The results showed that the expression levels of miR-455 significantly decreased in primary neuronal cells subjected to OGD and mouse brain subjected to MCAO. In addition, forced expression of miR-455 inhibited neuronal death and weakened ischemic brain infarction in focal ischemia-stroked mice. Furthermore, TRAF3 was proved to be a direct target of miR-455, and miR-455 could negatively suppress TRAF3 expression. Biological function analysis showed that TRAF3 silencing displayed the neuroprotective effect in ischemic stroke and could enhance miR-455-induced positive impact on ischemic injury both in vitro and in vivo. Taken together, miR-455 played a vital role in protecting neuronal

  16. miR-145 Inhibits Lung Adenocarcinoma Stem Cells Proliferation by Targeting OCT4 Gene

    Directory of Open Access Journals (Sweden)

    Shuai ZHANG

    2011-04-01

    Full Text Available Background and objective MiR-145 functions as a protective miRNA identified in tumor tissues of lung adenocarcinoma patients. The aim of this study is to investigate the relationship between miR-145 and proliferation of lung cancer stem cells and involved molecular mechanisms in human lung adenocarcinaoma A549 cell line. Methods MicroRNA microarray technology was conducted to compare miRNA signature between tumor and adjacent normal tissue of lung adenocarcinaoma. The potential target gene of miR-145 was predicted by online bioinformatic softwares. Pre-miR-145 mimics and anti-miR-145 inhibitor were transfected into A549 cell line by lipofectamine 2000. miR-145 expression in each group was detected by real time PCR. The OCT4 protein level was analyzed by Western blot. The predicted miR-145 binding site in OCT4 3’-untranslated region (UTR was validated by dual-luciferase reporter gene assay. CCK-8 assay was employed to observe the proliferation activity of A549 cells. The ratio of CD133 positive cells in each group was analyzed by flow cytometry. Results miR-145 expression was significantly down-regulated in lung adenocarcinoma compared with ajacent normal tissue. OCT4 is a potential target gene of miR-145 predicted by miRanda. Compared with control group, miR-145 was significantly up-regulated and down-regulated in the pre-miR-145 mimics and anti-miR-145 inhibitor groups respectively. Overexpression of miR-145 inhibited the proliferation of A549 cells. Both the OCT4 protein level and CD133 positive ratio were remarkably decreased in the pre-miR-145 mimics group, whereas significantly increased in the anti-miR-145 inhibitor group. Dual-luciferase reporter gene assay validated the predicted miR-145 binding site of OCT4 3’UTR. Conclusion MiR-145 can inhibit the proliferation of lung cancer stem cells in A549 cell line via down-regulating OCT4 expression. MiR-145 is a potential protective miRNA of lung cancer.

  17. The influence of heavy metal ions, spermine and sodium nitroprusside on ATP-hydrolases of cell membranes of rat colon smooth muscle

    Directory of Open Access Journals (Sweden)

    A. A. Kaplia

    2016-08-01

    Full Text Available The specific features of functional lability of the rat colon smooth muscle (CSM АТР-hydrolases were studied. Na+,K+-AТРase activity is effectively inhibited by divalent ions of both transition (≥ 0,1 µM and nontransition (≥ 1 µM heavy metals in succession by efficiency: Cu2+ > Fe2+ ≥ Cd2+ (10 µM. Polyamine spermine (0,5-1,0 mM is a weak Na+,K+-AТРase inhibitor at saturation concentrations of ions and substrate. Sodium nitroprusside (1 mM as nitric oxide-generating compound exhibits weak Na+,K+-AТРase inhibition only after prolonged preincubation with membranes. Mg2+-АТР-hydrolase activity in all cases is much more resistant to studied agents. Considering the example of the CSM Na+,K+-AТРase it is assumed that enzyme has specific biochemical features that contribute to its role as a potential target and redox-sensor, mediating the pathological mechanisms of heavy metal intoxication and cell oxidative damage.

  18. MicroRNA-181 inhibits proliferation and promotes apoptosis of chondrocytes in osteoarthritis by targeting PTEN.

    Science.gov (United States)

    Wu, Xiao-Feng; Zhou, Zi-Hui; Zou, Jian

    2017-06-01

    To investigate the effects of microRNA-181 (miR-181) on the proliferation and apoptosis of chondrocytes in osteoarthritis (OA) by targeting PTEN. The chondrocytes in logarithmic growth phase were selected and divided into 6 test groups: the normal, blank, negative control, miR-181 mimic, miR-181 inhibitor, and miR-181 inhibitor + PTEN-siRNA groups. Reverse transcription qPCR was used to detect the expressions of miR-181 and PTEN mRNA. MTT assay and flow cytometry were performed to detect cell proliferation and apoptosis. The protein expressions of PARP and caspase-3 and the activity of MMP-2 and MMP-9 were detected by Western blotting and gelatin zymography assay. The miR-181 mimic group showed increased miR-181 expression and decreased PTEN expression compared with the other 5 groups. Also, by comparison with the other 5 groups, the cell proliferation rate declined and the rate of cell apoptosis was elevated in the miR-181 mimic group. The MiR-181 mimic group showed remarkably increased protein expression of caspase-3 and PARP compared with the other 5 groups. The activity of MMP-2 and MMP-9 was higher in the miR-181 mimic group than the other 5 groups. MiR-181 could up-regulate the expressions of caspase-3, PARP, MMP-2, and MMP-9, and thereby inhibit cell proliferation and promote apoptosis of chondrocytes in OA by targeting PTEN.

  19. Small molecules targeting histone demethylase genes (KDMs) inhibit growth of temozolomide-resistant glioblastoma cells.

    Science.gov (United States)

    Banelli, Barbara; Daga, Antonio; Forlani, Alessandra; Allemanni, Giorgio; Marubbi, Daniela; Pistillo, Maria Pia; Profumo, Aldo; Romani, Massimo

    2017-05-23

    In glioblastoma several histone demethylase genes (KDM) are overexpressed compared to normal brain tissue and the development of Temozolomide (TMZ) resistance is accompanied by the transient further increased expression of KDM5A and other KDMs following a mechanism that we defined as "epigenetic resilience". We hypothesized that targeting KDMs may kill the cells that survive the cytotoxic therapy.We determined the effect of JIB 04 and CPI-455, two KDM inhibitors, on glioblastoma cells and found that both molecules are more effective against TMZ-resistant rather than native cells.Because of its lower IC50, we focused on JIB 04 that targets KDM5A and other KDMs as well. We have shown that this molecule activates autophagic and apoptotic pathways, interferes with cell cycle progression, inhibits cell clonogenicity and dephosphorylates Akt thus inactivating a potent pro-survival pathway. We performed combination temozolomide/JIB 04 in vitro treatments showing that these two molecules, under certain conditions, have a strong synergic effect and we hypothesize that JIB 04 intercepts the cells that escape the G2 block exerted by TMZ. Finally we studied the permeability of JIB 04 across the blood-brain barrier and found that this molecule reaches bioactive concentration in the brain; furthermore a pilot in vivo experiment in an orthotopic GB xenograft model showed a trend toward longer survival in treated mice with an Hazard Ratio of 0.5.In conclusion we propose that the combination between cytotoxic drugs and molecules acting on the epigenetic landscape may offer the opportunity to develop new therapies for this invariably lethal disease.

  20. Inhibition of Mammalian Target of Rapamycin Signaling with Rapamycin Prevents Trauma-Induced Heterotopic Ossification.

    Science.gov (United States)

    Qureshi, Ammar T; Dey, Devaveena; Sanders, Erin M; Seavey, Jonathan G; Tomasino, Allison M; Moss, Kaitlyn; Wheatley, Benjamin; Cholok, David; Loder, Shawn; Li, John; Levi, Benjamin; Davis, Thomas A

    2017-11-01

    A pressing clinical need exists for 63% to 65% of combat-wounded service members and 11% to 20% of civilians who develop heterotopic ossification (HO) after blast-related extremity injury and traumatic injuries, respectively. The mammalian target of rapamycin pathway is a central cellular sensor of injury. We evaluated the prophylactic effects of rapamycin, a selective inhibitor of mammalian target of rapamycin signaling, on HO formation in a rat model of blast-related, polytraumatic extremity injury. Rapamycin was administered intraperitoneally daily for 14 days at 0.5 mg/kg or 2.5 mg/kg. Ectopic bone formation was monitored by micro-computed tomography and confirmed by histologic examination. Connective tissue progenitor cells, platelet-derived growth factor receptor-α-positive cells, and α-smooth muscle actin-positive blood vessels were assayed at postoperative day 7 by colony formation and immunofluorescence. Early gene expression changes were determined by low-density microarray. There was significant attenuation of 1) total new bone and soft tissue ectopic bone with 0.5 mg/kg (38.5% and 14.7%) and 2.5 mg/kg rapamycin (90.3% and 82.9%), respectively, 2) connective tissue progenitor cells, 3) platelet-derived growth factor receptor-α-positive cells, 4) α-smooth muscle actin-positive blood vessels, and 5) of key extracellular matrix remodeling (CD44, Col1a1, integrins), osteogenesis (Sp7, Runx2, Bmp2), inflammation (Cxcl5, 10, IL6, Ccl2), and angiogenesis (Angpt2) genes. No wound healing complications were noted. Our data demonstrate the efficacy of rapamycin in inhibiting blast trauma-induced HO by a multipronged mechanism. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Fungal lytic polysaccharide monooxygenases bind starch and β-cyclodextrin similarly to amylolytic hydrolases

    DEFF Research Database (Denmark)

    Nekiunaite, Laura; Isaksen, Trine; Vaaje-Kolstad, Gustav

    2016-01-01

    , the clustering of CBM20s from starch-targeting LPMOs and hydrolases was in accord with taxonomy and did not correlate to appended catalytic activity. Altogether, these results demonstrate that the CBM20-binding scaffold is retained in the evolution of hydrolytic and oxidative starch-degrading activities....

  2. Tryptanthrin inhibits angiogenesis by targeting the VEGFR2-mediated ERK1/2 signalling pathway.

    Directory of Open Access Journals (Sweden)

    Xuemei Liao

    Full Text Available Angiogenesis is a key step for tumour growth and metastasis, and anti-angiogenesis has been proposed as an important strategy for cancer therapy. Tryptanthrin is a weakly basic alkaloid isolated from the dried roots of medicinal indigo plants and has been shown to possess anti-tumour activities on various cancer cell types. This study aims to investigate the in vitro and in vivo anti-angiogenic activities of tryptanthrin and to unravel its underlying molecular action mechanisms. Our results show that tryptanthrin inhibited the in vitro proliferation, migration, and tube formation of the human microvascular endothelial cells (HMEC-1 in a concentration-dependent manner and significantly suppressed angiogenesis in Matrigel plugs in mice. Mechanistic studies indicated that tryptanthrin reduced the expression of several pro-angiogenic factors (Ang-1, PDGFB and MMP2. Tryptanthrin was also found to suppress the VEGFR2-mediated ERK1/2 signalling pathway in HMEC-1 cells and molecular docking simulation indicated that tryptanthrin could bound to the ATP-binding site of VEGFR2. Collectively, the present study demonstrated that tryptanthrin exhibited both in vitro and in vivo anti-angiogenic activities by targeting the VEGFR2-mediated ERK1/2 signalling pathway and might have therapeutic potential for the treatment of angiogenesis-related diseases.

  3. Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis.

    Science.gov (United States)

    Zhang, Chunhua; Brown, Michelle Q; van de Ven, Wilhelmina; Zhang, Zhi-Min; Wu, Bin; Young, Michael C; Synek, Lukáš; Borchardt, Dan; Harrison, Reed; Pan, Songqin; Luo, Nan; Huang, Yu-Ming M; Ghang, Yoo-Jin; Ung, Nolan; Li, Ruixi; Isley, Jonathan; Morikis, Dimitrios; Song, Jikui; Guo, Wei; Hooley, Richard J; Chang, Chia-En A; Yang, Zhenbiao; Zarsky, Viktor; Muday, Gloria K; Hicks, Glenn R; Raikhel, Natasha V

    2016-01-05

    The exocyst complex regulates the last steps of exocytosis, which is essential to organisms across kingdoms. In humans, its dysfunction is correlated with several significant diseases, such as diabetes and cancer progression. Investigation of the dynamic regulation of the evolutionarily conserved exocyst-related processes using mutants in genetically tractable organisms such as Arabidopsis thaliana is limited by the lethality or the severity of phenotypes. We discovered that the small molecule Endosidin2 (ES2) binds to the EXO70 (exocyst component of 70 kDa) subunit of the exocyst complex, resulting in inhibition of exocytosis and endosomal recycling in both plant and human cells and enhancement of plant vacuolar trafficking. An EXO70 protein with a C-terminal truncation results in dominant ES2 resistance, uncovering possible distinct regulatory roles for the N terminus of the protein. This study not only provides a valuable tool in studying exocytosis regulation but also offers a potentially new target for drugs aimed at addressing human disease.

  4. SPARC inhibits breast cancer bone metastasis and may be a clinical therapeutic target.

    Science.gov (United States)

    Ma, Jingjing; Gao, Sheng; Xie, Xiju; Sun, Erhu; Zhang, Min; Zhou, Qian; Lu, Cheng

    2017-11-01

    Breast cancer is one of the most common types of cancer in females worldwide, and metastasis to bone is an important characteristic of malignancy. The present study aimed to investigate the molecular mechanism of breast cancer to bone metastasis of secreted protein acidic and rich in cysteine (SPARC). Immunohistochemistry was performed to examine the expression of SPARC in primary breast tumors and bone metastatic foci. Western blotting and reverse transcription-quantitative polymerase chain reaction were performed to detect the expression level of SPARC in several types of breast cancer cell. A Transwell filter assay was used to assess the effect of SPARC on breast cancer cell invasion ability, and an osteoblast differentiation assay was employed to analyze the effect of SPARC on the differentiation ability of mesenchymal stem cells. Clinical data revealed that decreased stromal SPARC expression is associated with breast cancer to bone metastasis. Gain- and loss-of-function studies reveal that SPARC inhibits the migration and invasion of breast cancer cells, and suppresses osteoclast activation in the breast cancer microenvironment. SPARC serves an important role in breast cancer bone metastasis and may be a promising therapeutic target for the treatment of breast cancer bone metastasis.

  5. Inhibition of cisplatin-resistance by RNA interference targeting metallothionein using reducible oligo-peptoplex.

    Science.gov (United States)

    Lee, Jong-Hwan; Chae, Ji-Won; Kim, Jang Kyoung; Kim, Hyung Jin; Chung, Jee Young; Kim, Yong-Hee

    2015-10-10

    Effective intracellular level of a platinum anti-cancer drug, cisplatin, following repeated injections can be decreased either by the active efflux via ATP pump or by interactions with glutathione and metallothionein. Cisplatin in cytoplasm preferably binds to cysteine-rich proteins such as glutathione and metallothionein (MT). Detoxification of cisplatin by intracellular thiol-containing proteins has been considered to be major hurdles to overcome. The short hairpin RNA targeting MT (shMT) was tested to down-regulate MT and recover cisplatin resistance. A reducible polymer, poly(oligo-d-arginine) (rPOA), formed stable complex with shMT and demonstrated superior transfection efficiency. Efficient transfection of shMT/rPOA oligo-peptoplexes was found to significantly inhibit MT over-expression, resulting in 45% decrease of cell viability compared to the cisplatin alone group. This decrease was mediated by the synergistic effect of shMT/rPOA oligo-peptoplex and cisplatin. Co-administration of shMT/rPOA oligo-peptoplex and cisplatin in in vivo tumor model showed noticeable tumor-suppressing effect by inducing reversal of cisplatin resistance following effective intracellular delivery of shMT by rPOA. Combination therapy through co-administration of shMT/rPOA oligo-peptoplex and cisplatin was found to effectively reverse cisplatin resistance by RNA interference and consequently improve anti-cancer activity of cisplatin. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. miR-27b inhibits gastric cancer metastasis by targeting NR2F2

    Directory of Open Access Journals (Sweden)

    Qingzhao Feng

    2016-11-01

    Full Text Available ABSTRACT Increasing attention is focused on the down-regulation of miRNAs in cancer process. Nuclear receptor subfamily 2 (NR2F2, also known as COUP-TFII is involved in the development of many types of cancers, but its role in gastric cancer remains elusive. In this experiment, oncomine and Kaplan-meier database revealed that NR2F2 was up-regulated in gastric cancer and that the high NR2F2 expression contributed to poor survival. MicroRNA-27b was targeted and down-regulated by NR2F2 in human gastric cancer tissues and cells. The ectopic expression of miR-27b inhibited gastric cancer cell proliferation and tumor growth in vitro and in vivo. Assays suggested that the overexpression of miR-27b could promote MGC-803 cells’ migration and invasion and retard their metastasis to the liver. In addition, down-regulation of miR-27b enhanced GES-1 cells’ proliferation and metastasis in vitro. These findings reveal that miR-27b is a tumor suppressor in gastric cancer and a biomarker for improving patients’ survival.

  7. Targeted Disruption of the EZH2/EED Complex Inhibits EZH2-dependent Cancer

    Science.gov (United States)

    Kim, Woojin; Bird, Gregory H.; Neff, Tobias; Guo, Guoji; Kerenyi, Marc A.; Walensky, Loren D.; Orkin, Stuart H.

    2013-01-01

    Enhancer of zeste homolog2 (EZH2) is the histone lysine N-methyltransferase component of the Polycomb repressive complex 2 (PRC2), which in conjunction with embryonic ectoderm development (EED) and suppressor of zeste 12 homolog (SUZ12), regulates cell lineage determination and homeostasis. Enzymatic hyperactivity has been linked to aberrant repression of tumor suppressor genes in diverse cancers. Here, we report the development of stabilized alpha-helix of EZH2 (SAH-EZH2) peptides that selectively inhibit H3 Lys27 trimethylation by dose-responsively disrupting the EZH2/EED complex and reducing EZH2 protein levels, a mechanism distinct from that reported for small molecule EZH2 inhibitors targeting the enzyme catalytic domain. MLL-AF9 leukemia cells, which are dependent on PRC2, undergo growth arrest and monocyte/macrophage differentiation upon treatment with SAH-EZH2, consistent with observed changes in expression of PRC2-regulated, lineage-specific marker genes. Thus, by dissociating the EZH2/EED complex, we pharmacologically modulate an epigenetic “writer” and suppress PRC2-dependent cancer cell growth. PMID:23974116

  8. MicroRNA-181b inhibits glycolysis in gastric cancer cells via targeting hexokinase 2 gene.

    Science.gov (United States)

    Li, Liang-Qing; Yang, Yang; Chen, Hui; Zhang, Lin; Pan, Dun; Xie, Wen-Jun

    2016-06-07

    Cancer cells usually utilize glucose as a carbon source for aerobic glycolysis, which is named as ``Warburg effect''. Recent studies have shown that MicroRNAs (miRNAs), a class of short and non-coding RNAs, play a role in the regulation of metabolic reprograming in cancer cells. In the present study, we report that miR-181b negatively regulates glycolysis in gastric cancer cells. Over-expression of miR-181b mimics reduces the glucose uptake and lactate production, while increasing the cellular ATP levels in NCI-N87 and MGC80-3 cells. At the molecular level, miR-181b directly inhibits the expression level of hexokinase 2 (HK2), a key enzyme that catalyzes the first step of glycolysis, through targeting its 3'-untranslated region. In addition, miR-181b represses cell proliferation and migration and is dramatically down-regulated in human gastric cancers. Therefore, our data disclose a novel function of miR-181b in reprogramming the metabolic process in gastric cancer.

  9. Inhibiting the Mammalian target of rapamycin blocks the development of experimental cerebral malaria.

    Science.gov (United States)

    Gordon, Emile B; Hart, Geoffrey T; Tran, Tuan M; Waisberg, Michael; Akkaya, Munir; Skinner, Jeff; Zinöcker, Severin; Pena, Mirna; Yazew, Takele; Qi, Chen-Feng; Miller, Louis H; Pierce, Susan K

    2015-06-02

    Malaria is an infectious disease caused by parasites of several Plasmodium spp. Cerebral malaria (CM) is a common form of severe malaria resulting in nearly 700,000 deaths each year in Africa alone. At present, there is no adjunctive therapy for CM. Although the mechanisms underlying the pathogenesis of CM are incompletely understood, it is likely that both intrinsic features of the parasite and the human host's immune response contribute to disease. The kinase mammalian target of rapamycin (mTOR) is a central regulator of immune responses, and drugs that inhibit the mTOR pathway have been shown to be antiparasitic. In a mouse model of CM, experimental CM (ECM), we show that the mTOR inhibitor rapamycin protects against ECM when administered within the first 4 days of infection. Treatment with rapamycin increased survival, blocked breakdown of the blood-brain barrier and brain hemorrhaging, decreased the influx of both CD4(+) and CD8(+) T cells into the brain and the accumulation of parasitized red blood cells in the brain. Rapamycin induced marked transcriptional changes in the brains of infected mice, and analysis of transcription profiles predicted that rapamycin blocked leukocyte trafficking to and proliferation in the brain. Remarkably, animals were protected against ECM even though rapamycin treatment significantly increased the inflammatory response induced by infection in both the brain and spleen. These results open a new avenue for the development of highly selective adjunctive therapies for CM by targeting pathways that regulate host and parasite metabolism. Malaria is a highly prevalent infectious disease caused by parasites of several Plasmodium spp. Malaria is usually uncomplicated and resolves with time; however, in about 1% of cases, almost exclusively among young children, malaria becomes severe and life threatening, resulting in nearly 700,000 deaths each year in Africa alone. Among the most severe complications of Plasmodium falciparum infection

  10. MicroRNA-421 inhibits breast cancer metastasis by targeting metastasis associated 1.

    Science.gov (United States)

    Pan, Yongqin; Jiao, Genlong; Wang, Cunchuan; Yang, Jingge; Yang, Wah

    2016-10-01

    Dysregulation of microRNAs is involved in the initiation and progression of several human cancers, including breast cancer, as strong evidence of miRNAs acting as oncogenes or tumour suppressor genes has been found. This study was performed to investigate the biological functions of microRNA-421 (miR-421) in breast cancer and the underlying mechanisms. The expression level of miR-421 was detected in 50 pairs of surgical specimens and human breast cancer cell lines. The results showed that miR-421 is downregulated in breast cancer tissues and metastatic cell lines. In addition, the decrease in miR-421 levels was significantly associated with lymph node metastasis, recurrence/metastasis, or pTNM stage. Functions of miR-421 in cell migration and invasion were assessed through its silencing and overexpression. The results showed that miR-421 knockdown promotes invasion and metastasis in MCF-7 cells and its overexpression suppresses invasion and metastasis in MDA-MB-231 cells. The specific target genes of miR-421 were predicted by TargetScan algorithm and determined by dual luciferase reporter assay, quantitative reverse transcriptase PCR, and western blot analysis. miR-421 could suppress luciferase activity of the reporter containing 3'-untranslated region of metastasis associated 1 (MTA1), a potent oncogene. miR-421 overexpression or knockdown had no effect on the mRNA expression of MTA1, but it could modulate MTA1 protein level. Furthermore, MTA1 knockdown receded the effect of miR-421 inhibitor on invasion and metastasis of MCF-7 cells, and its overexpression receded the effect of miR-421 on invasion and metastasis of MDA-MB-231 cells. Our findings clearly demonstrate that miR-421 suppresses breast cancer metastasis by directly inhibiting MTA1 expression. The present study provides a new insight into the tumour suppressor roles of miR-421 and suggests that miR-421/MTA1 pathway is a putative therapeutic target in breast cancer. Copyright © 2016 Elsevier Masson SAS

  11. Effect of Bile Salt Hydrolase Inhibitors on a Bile Salt Hydrolase from Lactobacillus acidophilus

    Directory of Open Access Journals (Sweden)

    Jun Lin

    2014-12-01

    Full Text Available Bile salt hydrolase (BSH, a widely distributed function of the gut microbiota, has a profound impact on host lipid metabolism and energy harvest. Recent studies suggest that BSH inhibitors are promising alternatives to antibiotic growth promoters (AGP for enhanced animal growth performance and food safety. Using a high-purity BSH from Lactobacillus salivarius strain, we have identified a panel of BSH inhibitors. However, it is still unknown if these inhibitors also effectively inhibit the function of the BSH enzymes from other bacterial species with different sequence and substrate spectrum. In this study, we performed bioinformatics analysis and determined the inhibitory effect of identified BSH inhibitors on a BSH from L. acidophilus. Although the L. acidophilus BSH is phylogenetically distant from the L. salivarius BSH, sequence analysis and structure modeling indicated the two BSH enzymes contain conserved, catalytically important amino residues and domain. His-tagged recombinant BSH from L. acidophilus was further purified and used to determine inhibitory effect of specific compounds. Previously identified BSH inhibitors also exhibited potent inhibitory effects on the L. acidophilus BSH. In conclusion, this study demonstrated that the BSH from L. salivarius is an ideal candidate for screening BSH inhibitors, the promising alternatives to AGP for enhanced feed efficiency, growth performance and profitability of food animals.

  12. Inhibition of mammalian target of rapamycin reduces epileptogenesis and blood-brain barrier leakage but not microglia activation.

    NARCIS (Netherlands)

    van Vliet, E.A.; Forte, G.; Holtman, L.; den Burger, J.C.G.; Sinjewel, A.; de Vries, H.E.; Aronica, E.; Gorter, J.A.

    2012-01-01

    Purpose: Previous studies have shown that inhibition of the mammalian target of rapamycin (mTOR) pathway with rapamycin prevents epileptogenesis after pharmacologically induced status epilepticus (SE) in rat models of temporal lobe epilepsy. Because rapamycin is also known for its immunosuppressant

  13. Sustained ERK [corrected] inhibition by EGFR targeting therapies is a predictive factor for synergistic cytotoxicity with PDT as neoadjuvant therapy.

    Science.gov (United States)

    Weyergang, Anette; Selbo, Pål K; Berg, Kristian

    2013-03-01

    Tyrosin kinase inhibitors (TKIs) and monoclonal antibodies aimed to target epidermal growth factor receptor (EGFR) have shown limited effect as monotherapies and drug resistance is a major limitation for therapeutic success. Adjuvant therapies to EGFR targeting therapeutics are therefore of high clinical relevance. Three EGFR targeting drugs, Cetuximab, Erlotinib and Tyrphostin AG1478 were used in combination with photodynamic therapy (PDT) in two EGFR positive cell lines, A-431 epidermoid skin carcinoma and WiDr colorectal adenocarcinoma cells. The amphiphilic meso-tetraphenylporphine with 2 sulphonate groups on adjacent phenyl rings (TPPS(2a)) was utilized as a photosensitizer for PDT. The cytotoxic outcome of the combined treatments was evaluated by cell counting and MTT. Cellular signalling was explored by Western blotting. PDT as neoadjuvant to Tyrphostin in A-431 cells as well as to Tyrphostin or Erlotinib in WiDr cells revealed synergistic cytotoxicity. In contrast, Erlotinib or Cetuximab combined with neoadjuvant PDT induced an antagonistic effect on cell survival of A-431 cells. Neoadjuvant PDT and EGFR targeting therapies induced a synergistic inhibition of ERK as well as synergistic cytotoxicity only when the EGFR targeting monotherapies caused a prolonged ERK inhibition. There were no correlation between EGFR inhibition by the EGFR targeting monotherapies or the combined therapies and the cytotoxic outcome combination-therapies. The results suggest that sustained ERK inhibition by EGFR targeting monotherapies is a predictive factor for synergistic cytotoxicity when combined with neoadjuvant PDT. The present study provides a rationale for selecting anticancer drugs which may benefit from PDT as adjuvant therapy.

  14. A Novel Benzodiazepine Compound Inhibits Yellow Fever Virus Infection by Specifically Targeting NS4B Protein.

    Science.gov (United States)

    Guo, Fang; Wu, Shuo; Julander, Justin; Ma, Julia; Zhang, Xuexiang; Kulp, John; Cuconati, Andrea; Block, Timothy M; Du, Yanming; Guo, Ju-Tao; Chang, Jinhong

    2016-09-21

    -risk regions. It has been estimated that up to 1.7 million YFV infections occur in Africa each year, resulting in 29,000 to 60,000 death. Thus far, there is no specific antiviral treatment for yellow fever. To cope with this medical challenge, we identified a benzodiazepine compound that selectively inhibits YFV by targeting the viral NS4B protein. To our knowledge, this is the first report demonstrating in vivo safety and antiviral efficacy of an YFV NS4B inhibitor in an animal model. We have thus reached a critical milestone toward the development of specific antiviral therapeutics for clinical management of yellow fever. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Inhibition of hexokinase-2 with targeted liposomal 3-bromopyruvate in an ovarian tumor spheroid model of aerobic glycolysis.

    Science.gov (United States)

    Gandham, Srujan Kumar; Talekar, Meghna; Singh, Amit; Amiji, Mansoor M

    2015-01-01

    The objective of this study was to evaluate the expression levels of glycolytic markers, especially hexokinase-2 (HK2), using a three-dimensional multicellular spheroid model of human ovarian adenocarcinoma (SKOV-3) cells and to develop an epidermal growth factor receptor-targeted liposomal formulation for improving inhibition of HK2 and the cytotoxicity of 3-bromopyruvate (3-BPA). Multicellular SKOV-3 tumor spheroids were developed using the hanging drop method and expression levels of glycolytic markers were examined. Non-targeted and epidermal growth factor receptor-targeted liposomal formulations of 3-BPA were formulated and characterized. Permeability and cellular uptake of the liposomal formulations in three-dimensional SKOV-3 spheroids was evaluated using confocal microscopy. The cytotoxicity and HK2 inhibition potential of solution form of 3-BPA was compared to the corresponding liposomal formulation by using cell proliferation and HK2 enzymatic assays. SKOV-3 spheroids were reproducibly developed using the 96-well hanging drop method, with an average size of 900 µm by day 5. HK2 enzyme activity levels under hypoxic conditions were found to be higher than under normoxic conditions (PLiposomal formulations (both non-targeted and targeted) of 3-BPA showed a more potent inhibitory effect (Pliposomal formulations had an enhanced cytotoxic effect of 2-5-fold (Pcancer cells. Encapsulation of 3-BPA in a liposomal formulation improved permeability, HK2 inhibition, and cytotoxicity in the multicellular spheroid model.

  16. An In Vivo Chemical Genetic Screen Identifies Phosphodiesterase 4 as a Pharmacological Target for Hedgehog Signaling Inhibition

    Directory of Open Access Journals (Sweden)

    Charles H. Williams

    2015-04-01

    Full Text Available Hedgehog (Hh signaling plays an integral role in vertebrate development, and its dysregulation has been accepted widely as a driver of numerous malignancies. While a variety of small molecules target Smoothened (Smo as a strategy for Hh inhibition, Smo gain-of-function mutations have limited their clinical implementation. Modulation of targets downstream of Smo could define a paradigm for treatment of Hh-dependent cancers. Here, we describe eggmanone, a small molecule identified from a chemical genetic zebrafish screen, which induced an Hh-null phenotype. Eggmanone exerts its Hh-inhibitory effects through selective antagonism of phosphodiesterase 4 (PDE4, leading to protein kinase A activation and subsequent Hh blockade. Our study implicates PDE4 as a target for Hh inhibition, suggests an improved strategy for Hh-dependent cancer therapy, and identifies a unique probe of downstream-of-Smo Hh modulation.

  17. MicroRNA-184 inhibits cell proliferation and invasion, and specifically targets TNFAIP2 in Glioma.

    Science.gov (United States)

    Cheng, Zhe; Wang, Hang Zhou; Li, Xuetao; Wu, Zhiwu; Han, Yong; Li, Yanyan; Chen, Guilin; Xie, Xueshun; Huang, Yulun; Du, Ziwei; Zhou, Youxin

    2015-03-26

    miRNA-184 is an oncogene in human hepatocellular carcinoma but acts as a tumor suppressor in tongue squamous cell carcinoma. Studies have shown that miR-184 was down-regulated in glioma and TNFα-induced protein 2 (TNFAIP2) was closely related to tumorigenesis. This study aimed to determine the functions of miR-184 in glioma and the mechanisms of miRNA-184-TNFAIP2 mediated glioma progression. Real-time reverse-transcription PCR detected expression of miR-184 and TNFAIP2. U87 and U251 cells were transfected with miR-184 mimic, inhibitor, or negative control miRNA, and their invasion abilities were assayed. Cellular proliferation was measured by the cell counting kit-8 assay. miR-184 effects on glioma cell apoptosis and cell cycle were assessed by flow cytometer. Biological information software have predicted that miR-184 could target TNFα-induced protein 2 (TNFAIP2), Which was further validated by Western blot and qRT-PCR in glioma cells. In vivo, U87 cells transduced with either lentiviral over-expressed miR-184 or control lentivirus were injected into nude mice subcutaneously and intracranial respectively. Expression of miR-184 was significantly lower in glioma tissues and cell-lines compared to normal brain tissues. Protein and mRNA expression of TNFAIP2 were inversely correlated with miR-184 in glioma. In vitro, proliferation and invasion abilities were also decreased in U87 and U251 cells after transfection with miR-184 mimic. In vivo, the xenografted tumor size in the miR-184 overexpressing group were smaller than the miR-NC group. Concordantly, U87 and U251 cells transfected with miR-184 mimic had a higher apoptosis rate, triggering an accumulation of cells at the G0/G1 phase and decreased cells in S-phase. miR-184 could regulate TNFAIP2 expression and affected its translation in glioma. miR-184 could also inhibit glioma progression and might serve as a novel therapeutic target in glioma.

  18. Targeting HMGB1 inhibits ovarian cancer growth and metastasis by lentivirus-mediated RNA interference.

    Science.gov (United States)

    Chen, Jie; Liu, Xiaoyan; Zhang, Jie; Zhao, Yueran

    2012-11-01

    High-mobility group box 1 (HMGB1), a nuclear and extracellular protein, is implicated in the development and progression of some types of cancers. However, no information is available to date regarding the function of HMGB1 in ovarian cancer. In this study, we performed cDNA microarray analysis and identified HMGB1 as a gene dramatically elevated in the highly invasive subclone S1 compared with the low invasive subclone S21 derived from the same cell line SKOV3. Then lentivirus vector with HMGB1 shRNA was constructed and infected the highly invasive cell line S1, A1, and HO8910PM. Real-time RT-PCR, Western blot, and IHC results confirmed the down-regulation of HMGB1 expression by its shRNA was about 80-90% at both the mRNA and protein levels. Knockdown of HMGB1 significantly suppressed ovarian cancer cell proliferation and induced cell cycle arrest at the G1/G0 phase, which was accompanied by decreased expressions of cyclin D1 and PCNA. Furthermore, knockdown of HMGB1 induced ovarian cancer cell apoptosis, which was mediated by increased expression of Bax and decreased expression of Bcl-2. Finally, knockdown of HMGB1 significantly inhibited ovarian cancer cell invasion and metastasis, which was regulated by decreased expressions of MMP2 and MMP9. Serum HMGB1 levels in patients with epithelial ovarian cancer were significantly higher than that in patients with benign ovarian tumor and healthy controls. These results indicate that HMGB1 is a newly identified gene associated with ovarian cancer growth and metastasis. HMGB1 may serve as a new therapeutic target for the treatment of ovarian cancer in the future. Copyright © 2012 Wiley Periodicals, Inc.

  19. Targeting the tumour vasculature: exploitation of low oxygenation and sensitivity to NOS inhibition by treatment with a hypoxic cytotoxin.

    Directory of Open Access Journals (Sweden)

    Jennifer H E Baker

    Full Text Available Many cancer research efforts focus on exploiting genetic-level features that may be targeted for therapy. Tissue-level features of the tumour microenvironment also represent useful therapeutic targets. Here we investigate the presence of low oxygen tension and sensitivity to NOS inhibition of tumour vasculature as potential tumour-specific features that may be targeted by hypoxic cytotoxins, a class of therapeutics currently under investigation. We have previously demonstrated that tirapazamine (TPZ mediates central vascular dysfunction in tumours. TPZ is a hypoxic cytotoxin that is also a competitive inhibitor of NOS. Here we further investigated the vascular-targeting activity of TPZ by combining it with NOS inhibitor L-NNA, or with low oxygen content gas breathing. Tumours were analyzed via multiplex immunohistochemical staining that revealed irreversible loss of perfusion and enhanced tumour cell death when TPZ was combined with either low oxygen or a NOS inhibitor. Tumour growth rate was reduced by TPZ + NOS inhibition, and tumours previously resistant to TPZ-mediated vascular dysfunction were sensitized by low oxygen breathing. Additional mapping analysis suggests that tumours with reduced vascular-associated stroma may have greater sensitivity to these effects. These results indicate that poorly oxygenated tumour vessels, also being abnormally organized and with inadequate smooth muscle, may be successfully targeted for significant anti-cancer effects by inhibition of NOS and hypoxia-activated prodrug toxicity. This strategy illustrates a novel use of hypoxia-activated cytotoxic prodrugs as vascular targeting agents, and also represents a novel mechanism for targeting tumour vessels.

  20. Indirect targeting of IGF receptor signaling in vivo by substrate-selective inhibition of PAPP-A proteolytic activity

    Science.gov (United States)

    Kalra, Bhanu; Savjani, Gopal; Kumar, Ajay; Conover, Cheryl A.; Oxvig, Claus

    2014-01-01

    The insulin-like growth factor (IGF) signaling pathway is involved in certain human cancers, and the feasibility of directly targeting the IGF receptor has been actively investigated. However, recent evidence from clinical trials suggests that this approach can be problematic. We have developed an alternative strategy to indirectly inhibit the IGF signaling by targeting the metalloproteinase, pregnancy-associated plasma protein-A (PAPP-A). PAPP-A associated with the cell surface cleaves IGF binding protein-4 (IGFBP-4), when IGF is bound to IGFBP-4, and thereby increases IGF bioavailability for receptor activation in an autocrine/paracrine manner. We hypothesized that inhibition of PAPP-A would suppress excessive local IGF signaling in tissues where this is caused by increased PAPP-A proteolytic activity. To test this hypothesis, we developed an inhibitory monoclonal antibody, mAb 1/41, which targets a unique substrate-binding exosite of PAPP-A. This inhibitor selectively and specifically inhibits proteolytic cleavage of IGFBP-4 with an inhibitory constant (Ki) of 135 pM. In addition, it inhibited intracellular signaling of the IGF receptor (AKT phosphorylation) in monolayers of A549 cells, an IGF-responsive lung cancer-derived cell line found to express high levels of PAPP-A. We further showed that mAb 1/41 is effective towards PAPP-A bound to cell surfaces, and that it is capable of inhibiting PAPP-A activity in vivo. Using a murine xenograft model of A549 cells, we demonstrated that mAb 1/41 administered intraperitoneally significantly inhibited tumor growth. Analysis of xenograft tumor tissue recovered from treated mice showed penetration of mAb 1/41, reduced IGFBP-4 proteolysis, and reduced AKT phosphorylation. Our study provides proof of concept that IGF signaling can be selectively reduced by targeting a regulatory proteinase that functions extracellularly, upstream of the IGF receptor. PAPP-A targeting thus represents an alternative therapeutic strategy for

  1. THE ALPHA/BETA-HYDROLASE FOLD

    NARCIS (Netherlands)

    OLLIS, DL; CHEAH, E; CYGLER, M; FROLOW, F; FRANKEN, SM; HAREL, M; REMINGTON, SJ; SILMAN, [No Value; SCHRAG, J; SUSSMAN, JL; VERSCHUEREN, KHG; GOLDMAN, A

    We have identified a new protein fold-the alpha/beta-hydrolase fold-that is common to several hydrolytic enzymes of widely differing phylogenetic origin and catalytic function. The core of each enzyme is similar: an alpha/beta-sheet, not barrel, of eight beta-sheets connected by alpha-helices. These

  2. Targeted inhibition of NMYC by peptide nucleic acid in N-myc amplified human neuroblastoma cells: cell-cycle inhibition with induction of neuronal cell differentiation and apoptosis.

    Science.gov (United States)

    Pession, Andrea; Tonelli, Roberto; Fronza, Raffaele; Sciamanna, Elena; Corradini, Roberto; Sforza, Stefano; Tedeschi, Tullia; Marchelli, Rosangela; Montanaro, Lorenzo; Camerin, Consuelo; Franzoni, Monica; Paolucci, Guido

    2004-02-01

    We developed an antisense peptide nucleic acid (PNA) targeted against a unique sequence in the terminus of the 5'-UTR of N-myc, designed for selective inhibition of NMYC in neuroblastoma cells. Fluorescent microscopy showed carrier-free delivery of the PNA to two human neuro-blastoma cell lines: GI-LI-N (N-myc-amplified) and GI-CA-N (N-myc-unamplified). Only in the former, PNA treatment determined 70% cell-viability reduction (at 48 h). In N-myc-amplified GI-LI-N cells, the PNA determined NMYC-translation inhibition (Western blotting), accumulation of cells in G1, induction of differentiation and apoptosis. Selectivity of the PNA was demonstrated by altering three point mutations. These findings should encourage development of a PNA-based tumor-specific agent for neuroblastoma (or other neoplasms) with N-myc overexpression.

  3. Chemical Genomics Identifies the PERK-Mediated Unfolded Protein Stress Response as a Cellular Target for Influenza Virus Inhibition

    Directory of Open Access Journals (Sweden)

    Sara Landeras-Bueno

    2016-04-01

    Full Text Available Influenza A viruses generate annual epidemics and occasional pandemics of respiratory disease with important consequences for human health and the economy. Therefore, a large effort has been devoted to the development of new anti-influenza virus drugs directed to viral targets, as well as to the identification of cellular targets amenable to anti-influenza virus therapy. Here we have addressed the identification of such potential cellular targets by screening collections of drugs approved for human use. We reasoned that screening with a green fluorescent protein-based recombinant replicon system would identify cellular targets involved in virus transcription/replication and/or gene expression and hence address an early stage of virus infection. By using such a strategy, we identified Montelukast (MK as an inhibitor of virus multiplication. MK inhibited virus gene expression but did not alter viral RNA synthesis in vitro or viral RNA accumulation in vivo. The low selectivity index of MK prevented its use as an antiviral, but it was sufficient to identify a new cellular pathway suitable for anti-influenza virus intervention. By deep sequencing of RNA isolated from mock- and virus-infected human cells, treated with MK or left untreated, we showed that it stimulates the PERK-mediated unfolded protein stress response. The phosphorylation of PERK was partly inhibited in virus-infected cells but stimulated in MK-treated cells. Accordingly, pharmacological inhibition of PERK phosphorylation led to increased viral gene expression, while inhibition of PERK phosphatase reduced viral protein synthesis. These results suggest the PERK-mediated unfolded protein response as a potential cellular target to modulate influenza virus infection.

  4. Grape polyphenols inhibit Akt/mammalian target of rapamycin signaling and potentiate the effects of gefitinib in breast cancer.

    Science.gov (United States)

    Castillo-Pichardo, Linette; Dharmawardhane, Suranganie F

    2012-01-01

    We recently reported that a combination of dietary grape polyphenols resveratrol, quercetin, and catechin (RQC), at low concentrations, was effective at inhibiting metastatic cancer progression. Herein, we investigate the molecular mechanisms of RQC in breast cancer and explore the potential of RQC as a potentiation agent for the epidermal growth factor receptor (EGFR) therapeutic gefitinib. Our in vitro experiments showed RQC induced apoptosis in gefitinib-resistant breast cancer cells via regulation of a myriad of proapoptotic proteins. Because the Akt/mammalian target of rapamycin (mTOR) signaling pathway is often elevated during development of anti-EGFR therapy resistance, the effect of RQC on the mTOR upstream effector Akt and the negative regulator AMP kinase (AMPK) was investigated. RQC was found to reduce Akt activity, induce the activation of AMPK, and inhibit mTOR signaling in breast cancer cells. Combined RQC and gefitinib decreased gefitinib resistant breast cancer cell viability to a greater extent than RQC or gefitinib alone. Moreover, RQC inhibited Akt and mTOR and activated AMPK even in the presence of gefitinib. Our in vivo experiments showed combined RQC and gefitinib was more effective than the individual treatments at inhibiting mammary tumor growth and metastasis in nude mice. Therefore, RQC treatment inhibits breast cancer progression and may potentiate anti-EGFR therapy by inhibition of Akt/mTOR signaling.

  5. Characterization of human S-adenosyl-homocysteine hydrolase in vitro and identification of its potential inhibitors.

    Science.gov (United States)

    Hao, Weiwei; Li, Yanhua; Shan, Qiuli; Han, Tian; Li, Wencheng; He, Sheng; Zhu, Kongkai; Li, Yumei; Tan, Xiaojun; Gu, Jinsong

    2017-12-01

    Human S-adenosyl-homocysteine hydrolase (SAHH, E.C.3.3.1.1) has been considered to be an attractive target for the design of medicines to treat human disease, because of its important role in regulating biological methylation reactions to catalyse the reversible hydrolysis of S-adenosylhomocysteine (SAH) to adenosine (Ado) and l-homocysteine (Hcy). In this study, SAHH protein was successfully cloned and purified with optimized, Pichia pastoris (P. pastoris) expression system. The biological activity results revealed that, among the tested compounds screened by ChemMapper and SciFinder Scholar, 4-(3-hydroxyprop-1-en-1-yl)-2-methoxyphenol (coniferyl alcohol, CAS: 458-35-5, ZINC: 12359045) exhibited the highest inhibition against rSAHH (IC50= 34 nM). Molecular docking studies showed that coniferyl alcohol was well docked into the active cavity of SAHH. And several H-bonds formed between them, which stabilized coniferyl alcohol in the active site of rSAHH with a proper conformation.

  6. Recovering glycoside hydrolase genes from active tundra cellulolytic bacteria.

    Science.gov (United States)

    Pinnell, Lee J; Dunford, Eric; Ronan, Patrick; Hausner, Martina; Neufeld, Josh D

    2014-07-01

    Bacteria responsible for cellulose hydrolysis in situ are poorly understood, largely because of the relatively recent development of cultivation-independent methods for their detection and characterization. This study combined DNA stable-isotope probing (DNA-SIP) and metagenomics for identifying active bacterial communities that assimilated carbon from glucose and cellulose in Arctic tundra microcosms. Following DNA-SIP, bacterial fingerprint analysis of gradient fractions confirmed isotopic enrichment. Sequenced fingerprint bands and clone library analysis of 16S rRNA genes identified active bacterial taxa associated with cellulose-associated labelled DNA, including Bacteroidetes (Sphingobacteriales), Betaproteobacteria (Burkholderiales), Alphaproteobacteria (Caulobacteraceae), and Chloroflexi (Anaerolineaceae). We also compared glycoside hydrolase metagenomic profiles from bulk soil and heavy DNA recovered from DNA-SIP incubations. Active populations consuming [(13)C]glucose and [(13)C]cellulose were distinct, based on ordinations of light and heavy DNA. Metagenomic analysis demonstrated a ∼3-fold increase in the relative abundance of glycoside hydrolases in DNA-SIP libraries over bulk-soil libraries. The data also indicate that multiple displacement amplification introduced bias into the resulting metagenomic analysis. This research identified DNA-SIP incubation conditions for glucose and cellulose that were suitable for Arctic tundra soil and confirmed that DNA-SIP enrichment can increase target gene frequencies in metagenomic libraries.

  7. Impact of Soluble Epoxide Hydrolase and Epoxyeicosanoids on Human Health

    Science.gov (United States)

    Morisseau, Christophe; Hammock, Bruce D.

    2013-01-01

    The presence of epoxyeicosatrienoic acids (EETs) in tissues and their metabolism by soluble epoxide hydrolase (sEH) to 1,2-diols were first reported 30 years ago. However, appreciation of their importance in cell biology and physiology has greatly accelerated over the past decade with the discovery of metabolically stable inhibitors of sEH, the commercial availability of EETs, and the development of analytical methods for the quantification of EETs and their diols. Numerous roles of EETs in regulatory biology now are clear, and the value of sEH inhibition in various animal models of disease has been demonstrated. Here, we review these results and discuss how the pharmacological stabilization of EETs and other natural epoxy-fatty acids could lead to possible disease therapies. PMID:23020295

  8. Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2.

    Science.gov (United States)

    Xu, Dong; Jin, Junzhe; Yu, Hao; Zhao, Zheming; Ma, Dongyan; Zhang, Chundong; Jiang, Honglei

    2017-03-20

    Hexokinase-2(HK-2) plays dual roles in glucose metabolism and mediation of cell apoptosis, making it an attractive target for cancer therapy. Chrysin is a natural flavone found in plant extracts which are widely used as herb medicine in China. In the present study, we investigated the antitumor activity of chrysin against hepatocellular carcinoma (HCC) and the role of HK-2 played for chrysin to exert its function. The expression of HK-2 in HCC cell line and tumor tissue was examined by western blotting and immunohistochemistry staining. The activities of chrysin against HCC cell proliferation and tumor glycolysis were investigated. Chrysin-induced apoptosis was analyzed by flow cytometry. The effect of chrysin on HK-2 expression and the underlying mechanisms by which induced HCC cell apoptosis were studied. In HK-2 exogenous overexpression cell, the changes of chrysin-induced cell apoptosis and glycolysis suppression were investigated. HCC cell xenograft model was used to confirm the antitumor activity of chrysin in vivo and the effect on HK-2 was tested in chrysin-treated tumor tissue. In contrast with normal cell lines and tissue, HK-2 expression was substantially elevated in the majority of tested HCC cell lines and tumor tissue. Owing to the decrease of HK-2 expression, glucose uptake and lactate production in HCC cells were substantially inhibited after exposure to chrysin. After chrysin treatment, HK-2 which combined with VDAC-1 on mitochondria was significantly declined, resulting in the transfer of Bax from cytoplasm to mitochondria and induction of cell apoptosis. Chrysin-mediated cell apoptosis and glycolysis suppression were dramatically impaired in HK-2 exogenous overexpression cells. Tumor growth in HCC xenograft models was significantly restrained after chrysin treatment and significant decrease of HK-2 expression was observed in chrysin-treated tumor tissue. Through suppressing glycolysis and inducing apoptosis in HCC, chrysin, or its derivative has

  9. Purification and characterization of TrzF: biuret hydrolysis by allophanate hydrolase supports growth.

    Science.gov (United States)

    Shapir, Nir; Cheng, Gang; Sadowsky, Michael J; Wackett, Lawrence P

    2006-04-01

    TrzF, the allophanate hydrolase from Enterobacter cloacae strain 99, was cloned, overexpressed in the presence of a chaperone protein, and purified to homogeneity. Native TrzF had a subunit molecular weight of 65,401 and a subunit stoichiometry of alpha(2) and did not contain significant levels of metals. TrzF showed time-dependent inhibition by phenyl phosphorodiamidate and is a member of the amidase signature protein family. TrzF was highly active in the hydrolysis of allophanate but was not active with urea, despite having been previously considered a urea amidolyase. TrzF showed lower activity with malonamate, malonamide, and biuret. The allophanate hydrolase from Pseudomonas sp. strain ADP, AtzF, was also shown to hydrolyze biuret slowly. Since biuret and allophanate are consecutive metabolites in cyanuric acid metabolism, the low level of biuret hydrolase activity can have physiological significance. A recombinant Escherichia coli strain containing atzD, encoding cyanuric acid hydrolase that produces biuret, and atzF grew slowly on cyanuric acid as a source of nitrogen. The amount of growth produced was consistent with the liberation of 3 mol of ammonia from cyanuric acid. In vitro, TrzF was shown to hydrolyze biuret to liberate 3 mol of ammonia. The biuret hydrolyzing activity of TrzF might also be physiologically relevant in native strains. E. cloacae strain 99 grows on cyanuric acid with a significant accumulation of biuret.

  10. Characterization of human glucosylsphingosine glucosyl hydrolase and comparison with glucosylceramidase.

    Science.gov (United States)

    Vaccaro, A M; Muscillo, M; Suzuki, K

    1985-01-15

    Properties of glucosylsphingosine (gluco-psychosine) glucosyl hydrolase were studied in detail in cultured human fibroblasts and placenta and were compared with those of glucosylceramidase. The two activities, that are deficient in tissues of Gaucher patients, showed minor but consistent differences. The pH optima were 4.8 for psychosine hydrolysis and 5.3 for glucosylceramide hydrolysis. In the presence of oleic acid, taurocholate activated glucosylceramidase more than 10-fold, while it activated psychosine hydrolysis only by about 30%. Triton X-100 was stimulatory for glucosylceramidase but was strongly inhibitory for psychosine hydrolysis. Phospholipids, that increase many times glucosylceramidase activity, were moderately inhibitory to enzymatic hydrolysis of psychosine. The psychosine hydrolase activity was slightly more heat-stable than the glucosylceramidase activity. The Km values for the two substrates were similar; 1.7 X 10(-5) M for psychosine and 2.7 X 10(-5) M for glucosylceramide. The V for glucosylceramide was, however, 100-times that for psychosine hydrolysis. Psychosine acted as a potent non-competitive inhibitor (Ki = 1.8 X 10(-5) M), while glucosylceramide was a weak inhibitor against psychosine hydrolysis. Within the limit of glucosylceramide solubility, psychosine hydrolysis could not be inhibited by more than 50%. Furthermore, the Dixon plot of glucosylceramide inhibition showed an anomalous slope. The ratio of the two activities was similar in fibroblasts, in the placenta mitochondria-lysosomal fraction and in a partially purified placental preparation. These findings are best explained by the hypothesis that, although the two substrates are hydrolyzed by a single enzyme, they share an overlapping but not identical catalytic site while binding to hydrophobic sites unique for the respective substrates.

  11. Inhibition of miR-155, a therapeutic target for breast cancer, prevented in cancer stem cell formation.

    Science.gov (United States)

    Zuo, Jiangcheng; Yu, Yalan; Zhu, Man; Jing, Wei; Yu, Mingxia; Chai, Hongyan; Liang, Chunzi; Tu, Jiancheng

    2017-10-27

    Breast cancer is a common cancer in women of worldwide. Cancer cells with stem-like properties played important roles in breast cancer, such as relapse, metastasis and treatment resistance. Micro-RNA-155 (miR-155) is a well-known oncogenic miRNA overexpressed in many human cancers. The expression levels of miR-155 in 38 pairs of cancer tissues and adjacent normal tissues from breast cancer patients were detected using quantitative real-time PCR. The invasive cell line MDA-MB-231 was used to quantify the expression of miR-155 by tumor-sphere forming experiment. Soft agar colony formation assay and tumor xenografts was used to explore whether the inhibition of miR-155 could reduce proliferation of cancer cells in vivo and vitro. In the study, we found miR-155 was upregulated in BC. Soft agar colony formation assay and tumor xenografts showed inhibition of miR-155 could significantly reduce proliferation of cancer cells in vivo and vitro, which confirmed that miR-155 is an effective therapeutic target of breast cancer. Sphere-forming experiment showed that overexpression of miR-155 significantly correlated with stem-like properties. Expressions of ABCG2, CD44 and CD90 were repressed by inhibition of miR-155, but CD24 was promoted. Interestingly, inhibition of miR-155 rendered MDA-MB-231 cells more sensitive to Doxorubicinol, which resulted in an increase of inhibition rate from 20.23% to 68.72%. Expression of miR-155 not only was a therapeutic target but also was associated with cancer stem cell formation and Doxorubicinol sensitivity. Our results underscore the importance of miR-155 as a therapeutic target and combination of Doxorubicinol and miR-155-silencing would be a potential way to cure breast cancer.

  12. Inhibition of the UCI-107 human ovarian carcinoma cell line by a targeted cytotoxic analog of somatostatin, AN-238.

    Science.gov (United States)

    Plonowski, A; Schally, A V; Koppan, M; Nagy, A; Arencibia, J M; Csernus, B; Halmos, G

    2001-09-01

    Cytotoxic analogs of somatostatin (SST), such as AN-238, which consists of 2-pyrrolinodoxorubicin (AN-201) linked to the SST carrier RC-121, can be targeted to tumors that express SST receptors. Because SST receptors are present in ovarian carcinoma cells, the authors evaluated the effect of AN-238 on the UCI-107 ovarian carcinoma cell line. An analysis of microsatellite alleles in cocultured SST receptor positive and receptor negative cells was used for the demonstration of in vitro targeting. The toxicity and antitumor effects of AN-238 in nude mice bearing UCI-107 human ovarian tumors were investigated with or without pharmacologic inhibition of serum carboxylesterases (CE). The expression of SST receptor subtypes was determined by reverse transcriptase-polymerase chain reaction analysis, and the binding affinity of AN-238 to SST receptors was determined by radioligand assays. The proliferation of SST receptor positive UCI-107 cells in vitro was inhibited preferentially by AN-238. AN-238 showed high-affinity binding to UCI-107 tumor membranes at a 50% inhibition concentration of 3.39 nM +/- 0.74 nM. In vivo, the volume and weights of UCI-107 tumors treated with AN-238 were decreased by more than 60% (P < 0.05) compared with controls. Cytotoxic radical AN-201 or the unconjugated mixture of AN-201 with carrier RC-121 had no significant effects on tumors and were toxic. In mice with inhibited serum CE activity, AN-201 at 400 nmol/kg was lethal, whereas AN-238 at a total dose of 800 nmol/kg caused only 22% mortality and reduced tumor weight by 69% and volume by 70% (P < 0.05 vs. control). Targeted chemotherapy with the SST conjugate AN-238 inhibits SST receptor positive experimental ovarian tumors. AN-238 may provide a new treatment modality for patients with advanced ovarian carcinoma. Copyright 2001 American Cancer Society.

  13. Sonic hedgehog signaling inhibition provides opportunities for targeted therapy by sulforaphane in regulating pancreatic cancer stem cell self-renewal.

    Directory of Open Access Journals (Sweden)

    Mariana Rodova

    Full Text Available Dysregulation of the sonic hedgehog (Shh signaling pathway has been associated with cancer stem cells (CSC and implicated in the initiation of pancreatic cancer. Pancreatic CSCs are rare tumor cells characterized by their ability to self-renew, and are responsible for tumor recurrence accompanied by resistance to current therapies. The lethality of these incurable, aggressive and invasive pancreatic tumors remains a daunting clinical challenge. Thus, the objective of this study was to investigate the role of Shh pathway in pancreatic cancer and to examine the molecular mechanisms by which sulforaphane (SFN, an active compound in cruciferous vegetables, inhibits self-renewal capacity of human pancreatic CSCs. Interestingly, we demonstrate here that Shh pathway is highly activated in pancreatic CSCs and plays important role in maintaining stemness by regulating the expression of stemness genes. Given the requirement for Hedgehog in pancreatic cancer, we investigated whether hedgehog blockade by SFN could target the stem cell population in pancreatic cancer. In an in vitro model, human pancreatic CSCs derived spheres were significantly inhibited on treatment with SFN, suggesting the clonogenic depletion of the CSCs. Interestingly, SFN inhibited the components of Shh pathway and Gli transcriptional activity. Interference of Shh-Gli signaling significantly blocked SFN-induced inhibitory effects demonstrating the requirement of an active pathway for the growth of pancreatic CSCs. SFN also inhibited downstream targets of Gli transcription by suppressing the expression of pluripotency maintaining factors (Nanog and Oct-4 as well as PDGFRα and Cyclin D1. Furthermore, SFN induced apoptosis by inhibition of BCL-2 and activation of caspases. Our data reveal the essential role of Shh-Gli signaling in controlling the characteristics of pancreatic CSCs. We propose that pancreatic cancer preventative effects of SFN may result from inhibition of the Shh pathway

  14. Targeting mitochondrial STAT3 with the novel phospho-valproic acid (MDC-1112 inhibits pancreatic cancer growth in mice.

    Directory of Open Access Journals (Sweden)

    Gerardo G Mackenzie

    Full Text Available New agents are needed to treat pancreatic cancer, one of the most lethal human malignancies. We synthesized phospho-valproic acid, a novel valproic acid derivative, (P-V; MDC-1112 and evaluated its efficacy in the control of pancreatic cancer. P-V inhibited the growth of human pancreatic cancer xenografts in mice by 60%-97%, and 100% when combined with cimetidine. The dominant molecular target of P-V was STAT3. P-V inhibited the phosphorylation of JAK2 and Src, and the Hsp90-STAT3 association, suppressing the activating phosphorylation of STAT3, which in turn reduced the expression of STAT3-dependent proteins Bcl-xL, Mcl-1 and survivin. P-V also reduced STAT3 levels in the mitochondria by preventing its translocation from the cytosol, and enhanced the mitochondrial levels of reactive oxygen species, which triggered apoptosis. Inhibition of mitochondrial STAT3 by P-V was required for its anticancer effect; mitochondrial STAT3 overexpression rescued animals from the tumor growth inhibition by P-V. Our results indicate that P-V is a promising candidate drug against pancreatic cancer and establish mitochondrial STAT3 as its key molecular target.

  15. Inhibition of Estrogen-induced Growth of Breast Cancer by Targeting Mitochondrial Oxidants

    National Research Council Canada - National Science Library

    Roy, Deodutta; Felty, Quentin; Kunkle, Brian

    2008-01-01

    ...) Anchorage-independent cell growth, and (c) tumor spheroid formation using new 3D HuBiogel bioassay whether estrogen induced conversion of normal cells to transformed cells is inhibited by treatment with antioxidants, over expression of MnSOD...

  16. Targeting the Binding Interface on a Shared Receptor Subunit of a Cytokine Family Enables the Inhibition of Multiple Member Cytokines with Selectable Target Spectrum*

    Science.gov (United States)

    Nata, Toshie; Basheer, Asjad; Cocchi, Fiorenza; van Besien, Richard; Massoud, Raya; Jacobson, Steven; Azimi, Nazli; Tagaya, Yutaka

    2015-01-01

    The common γ molecule (γc) is a shared signaling receptor subunit used by six γc-cytokines. These cytokines play crucial roles in the differentiation of the mature immune system and are involved in many human diseases. Moreover, recent studies suggest that multiple γc-cytokines are pathogenically involved in a single disease, thus making the shared γc-molecule a logical target for therapeutic intervention. However, the current therapeutic strategies seem to lack options to treat such cases, partly because of the lack of appropriate neutralizing antibodies recognizing the γc and, more importantly, because of the inherent and practical limitations in the use of monoclonal antibodies. By targeting the binding interface of the γc and cytokines, we successfully designed peptides that not only inhibit multiple γc-cytokines but with a selectable target spectrum. Notably, the lead peptide inhibited three γc-cytokines without affecting the other three or non-γc-cytokines. Biological and mutational analyses of our peptide provide new insights to our current understanding on the structural aspect of the binding of γc-cytokines the γc-molecule. Furthermore, we provide evidence that our peptide, when conjugated to polyethylene glycol to gain stability in vivo, efficiently blocks the action of one of the target cytokines in animal models. Collectively, our technology can be expanded to target various combinations of γc-cytokines and thereby will provide a novel strategy to the current anti-cytokine therapies against immune, inflammatory, and malignant diseases. PMID:26183780

  17. Intravenous Delivery of siRNA Targeting CD47 Effectively Inhibits Melanoma Tumor Growth and Lung Metastasis

    Science.gov (United States)

    Wang, Yuhua; Xu, Zhenghong; Guo, Shutao; Zhang, Lu; Sharma, Arati; Robertson, Gavin P; Huang, Leaf

    2013-01-01

    CD47 is a “self marker” that is usually overexpressed on the surface of cancer cells to enable them to escape immunosurveillance. Recognition of CD47 by its receptor, signal regulatory protein α (SIRPα), which is expressed in the macrophages, inhibits phagocytic destruction of cancer cells by the macrophages. In this study, we have first shown that clinical isolates of human melanoma significantly upregulate CD47, possibly as a mechanism to defend themselves against the macrophages. We then exploited RNA interference (RNAi) technology to test the hypothesis that knocking down CD47 in the tumor cells will render them targets for macrophage destruction; hence, creating a novel anti-cancer therapy. Anti-CD47 siRNA was encapsulated in a liposome-protamine-hyaluronic acid (LPH) nanoparticle (NP) formulation to address the challenge of targeted delivery of siRNA-based therapeutics in vivo. Efficient silencing of CD47 in tumor tissues with systemic administration of LPH(CD47) also significantly inhibited the growth of melanoma tumors. In a lung metastasis model, LPH(CD47) efficiently inhibited lung metastasis to about 27% of the untreated control. Moreover, no hematopoietic toxicity was observed in the animals that received multiple doses of LPH(CD47). Our findings indicate CD47 as a potential prognostic marker for melanoma development as well as a target for therapeutic intervention with RNAi-based nanomedicines. PMID:23774794

  18. Arctigenin inhibits triple-negative breast cancers by targeting CIP2A to reactivate protein phosphatase 2A.

    Science.gov (United States)

    Huang, Qiuyue; Qin, Shanshan; Yuan, Xiaoning; Zhang, Liang; Ji, Juanli; Liu, Xuewen; Ma, Wenjing; Zhang, Yunfei; Liu, Pengfei; Sun, Zhiting; Zhang, Jingxuan; Liu, Ying

    2017-07-01

    We have shown that a novel STAT3 inhibitor arctigenin (Atn) induces significant cytotoxicity in triple-negative breast cancer (TNBC) cells. This study further delineated molecular mechanisms where by Atn triggered cytotoxicity in TNBC cells. We found Atn can also inhibit metastasis in TNBC cells through cancerous inhibitor of protein phosphatase 2A (CIP2A) pathway. CIP2A is an endogenous inhibitor of protein phosphatase 2A (PP2A), which can increase the migration and invasion of various cancer cells. PP2A is a tumor suppressor, which is functionally defective in various cancers. Atn-induced metastasis inhibition was associated with reactivation of PP2A, downregulation of CIP2A and Akt phosphorylation. Silencing CIP2A enhanced Atn-induced metastasis inhibition and apoptosis in TNBCs. Furthermore, ectopic expression of CIP2A or inhibition of PP2A in TNBC cells abolished the effects of Atn. In conclusion, we found that enhancement of PP2A activity by inhibition of CIP2A, at least in part, promotes the anti-metastasis effect induced by Atn. Our findings disclose the novel therapeutic mechanism of this targeted agent, and suggest the therapeutic potential and feasibility of developing PP2A enhancers as a novel anticancer strategy.

  19. Synthesis and structure-activity relationship of piperidine-derived non-urea soluble epoxide hydrolase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Pecic, Stevan; Pakhomova, Svetlana; Newcomer, Marcia E.; Morisseau, Christophe; Hammock, Bruce D.; Zhu, Zhengxiang; Rinderspacher, Alison; Deng, Shi-Xian [UCD; (LSU); (Columbia)

    2013-09-27

    A series of potent amide non-urea inhibitors of soluble epoxide hydrolase (sEH) is disclosed. The inhibition of soluble epoxide hydrolase leads to elevated levels of epoxyeicosatrienoic acids (EETs), and thus inhibitors of sEH represent one of a novel approach to the development of vasodilatory and anti-inflammatory drugs. Structure–activities studies guided optimization of a lead compound, identified through high-throughput screening, gave rise to sub-nanomolar inhibitors of human sEH with stability in human liver microsomal assay suitable for preclinical development.

  20. Targeted inhibition of RAGE in substantia nigra of rats blocks 6-OHDA-induced dopaminergic denervation.

    Science.gov (United States)

    Gasparotto, Juciano; Ribeiro, Camila Tiefensee; Bortolin, Rafael Calixto; Somensi, Nauana; Rabelo, Thallita Kelly; Kunzler, Alice; Souza, Natália Cabral; Pasquali, Matheus Augusto de Bittencourt; Moreira, José Claudio Fonseca; Gelain, Daniel Pens

    2017-08-18

    The receptor for advanced glycation endproducts (RAGE) is a pattern-recognition receptor associated with inflammation in most cell types. RAGE up-regulates the expression of proinflammatory mediators and its own expression via activation of NF-kB. Recent works have proposed a role for RAGE in Parkinson's disease (PD). In this study, we used the multimodal blocker of RAGE FPS-ZM1, which has become available recently, to selectively inhibit RAGE in the substantia nigra (SN) of rats intracranially injected with 6-hydroxydopamine (6-OHDA). FPS-ZM1 (40 μg per rat), injected concomitantly with 6-OHDA (10 μg per rat) into the SN, inhibited the increase in RAGE, activation of ERK1/2, Src and nuclear translocation of NF-kB p65 subunit in the SN. RAGE inhibition blocked glial fibrillary acidic protein and Iba-1 upregulation as well as associated astrocyte and microglia activation. Circulating cytokines in serum and CSF were also decreased by FPS-ZM1 injection. The loss of tyrosine hydroxylase and NeuN-positive neurons was significantly inhibited by RAGE blocking. Finally, FPS-ZM1 attenuated locomotory and exploratory deficits induced by 6-OHDA. Our results demonstrate that RAGE is an essential component in the neuroinflammation and dopaminergic denervation induced by 6-OHDA in the SN. Selective inhibition of RAGE may offer perspectives for therapeutic approaches.

  1. Targeted inhibition of disheveled PDZ domain via NSC668036 depresses fibrotic process

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cong, E-mail: wangcongweihai@126.com [Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing, Hankou Road 22, Jiangsu 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093 (China); State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210093 (China); Dai, Jinghong, E-mail: daijinghongnew@163.com [Department of Respiratory Medicine, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University (China); Sun, Zhaorui, E-mail: lanseyunduan@163.com [Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing, Hankou Road 22, Jiangsu 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093 (China); State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210093 (China); Department of Emergency, Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210093 (China); Shi, Chaowen, E-mail: willscw@live.cn [Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing, Hankou Road 22, Jiangsu 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093 (China); State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210093 (China); Cao, Honghui, E-mail: caohonghui92@gmail.com [Immunology and Reproduction Biology Laboratory, Medical School, Nanjing University, Nanjing, Hankou Road 22, Jiangsu 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093 (China); State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210093 (China); and others

    2015-02-01

    In this study, we determined the effects of transforming growth factor-beta (TGF-β) and Wnt/β-catenin signaling on myofibroblast differentiation of NIH/3T3 fibroblasts in vitro and evaluated the therapeutic efficacy of NSC668036 in bleomycin-induced pulmonary fibrosis murine model. In vitro study, NSC668036, a small organic inhibitor of the PDZ domain in Dvl, suppressed β-catenin-driven gene transcription and abolished TGF-β1-induced migration, expression of collagen I and α-smooth muscle actin (α-SMA) in fibroblasts. In vivo study, we found that NSC668036 significantly suppressed accumulation of collagen I, α-SMA, and TGF-β1 but increased the expression of CK19, Occludin and E-cadherin that can inhibit pulmonary fibrogenesis. Because fibrotic lung exhibit aberrant activation of Wnt/β-catenin signaling, these data collectively suggest that inhibition of Wnt/β-catenin signaling at the Dvl level may be an effective approach to the treatment of fibrotic lung diseases. - Highlights: • NSC668036 inhibited the proliferation and migration of NIH/3T3 fibroblasts. • NSC668036 suppressed the Wnt/β-catenin signaling pathway. • TGF-β-induced stimulation of profibrotic responses were inhibited by NSC668036. • NSC668036 can inhibit the development of bleomycin-induced pulmonary fibrosis.

  2. Targeting Dynamin 2 as a Novel Pathway to Inhibit Cardiomyocyte Apoptosis Following Oxidative Stress.

    Science.gov (United States)

    Gao, Danchen; Yang, Jian; Wu, Yutao; Wang, Qiwen; Wang, Qiaoling; Lai, En Yin; Zhu, Jianhua

    2016-01-01

    Inhibition of Drp-1-mediated mitochondrial fission limits reactive oxygen species (ROS) production and apoptosis in cardiomyocytes subjected to ischemia/reperfusion injury. It remains unknown if Dynamin 2 inhibition results in similar protective effects. Here we studied the role of Dynamin 2 in cardiomyocyte oxidative stress-induced apoptosis and ROS production. The effect of lentiviral shRNA (lv5-shRNA) mediated Dynamin 2 knockdown on apopotosis, mitochondria, and ROS production were studied in neonatal mouse cardiomycytes, which were further treated with either selective Drp1 inhibitor mdivi-1 or the Dynamin 2/Drp1 inhibitor Dynasore. Apoptosis was evaluated by flow cytometry. Mitochondrial morphology and transmembrane potential (ΔΨm) were studied by confocal microscopy, and ROS production was detected by dichlorofluorescein diacetate. Inhibition of Drp1 and Dynamin 2 protected against mitochondrial fragmentation, maintained ΔΨm, attenuated cellular ROS production and limited apoptosis. Moreover, Lv5-shRNA mediated knockdown of Dynamin 2 alleviated mitochondrial fragmentation, and reduced both ROS production and oxidative stress-induced apoptosis. The protective effects of Dynamin 2 knockdown were enhanced by Dynasore, indicating an added benefit. Oxidative stress-induced apoptosis and ROS production are attenuated by not only Drp1 inhibition but also Dynamin 2 inhibition, implicating Dynamin 2 as a mediator of oxidative stress in cardiomyocytes. © 2016 The Author(s) Published by S. Karger AG, Basel.

  3. Forkhead Box Q1 Is a Novel Target of Breast Cancer Stem Cell Inhibition by Diallyl Trisulfide.

    Science.gov (United States)

    Kim, Su-Hyeong; Kaschula, Catherine H; Priedigkeit, Nolan; Lee, Adrian V; Singh, Shivendra V

    2016-06-24

    Diallyl trisulfide (DATS), a metabolic byproduct of garlic, is known to inhibit the growth of breast cancer cells in vitro and in vivo This study demonstrates that DATS targets breast cancer stem cells (bCSC). Exposure of MCF-7 and SUM159 human breast cancer cells to pharmacological concentrations of DATS (2.5 and 5 μm) resulted in dose-dependent inhibition of bCSC, as evidenced by a mammosphere assay and flow cytometric analysis of aldehyde dehydrogenase 1 (ALDH1) activity and the CD44(high)/CD24(low)/epithelial specific antigen-positive fraction. DATS-mediated inhibition of bCSC was associated with a decrease in the protein level of FoxQ1. Overexpression of FoxQ1 in MCF-7 and SUM159 cells increased ALDH1 activity and the CD49f(+)/CD24(-) fraction. Inhibition of ALDH1 activity and/or mammosphere formation upon DATS treatment was significantly attenuated by overexpression of FoxQ1. In agreement with these results, stable knockdown of FoxQ1 using small hairpin RNA augmented bCSC inhibition by DATS. Expression profiling for cancer stem cell-related genes suggested that FoxQ1 may negatively regulate the expression of Dachshund homolog 1 (DACH1), whose expression is lost in invasive breast cancer. Chromatin immunoprecipitation confirmed recruitment of FoxQ1 at the DACH1 promoter. Moreover, inducible expression of DACH1 augmented DATS-mediated inhibition of bCSC. Expression of FoxQ1 protein was significantly higher in triple-negative breast cancer cases compared with normal mammary tissues. Moreover, an inverse association was observed between FoxQ1 and DACH1 gene expression in breast cancer cell lines and tumors. DATS administration inhibited ALDH1 activity in vivo in SUM159 xenografts. These results indicate that FoxQ1 is a novel target of bCSC inhibition by DATS. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Inhibition of glutathione synthesis eliminates the adaptive response of ascitic hepatoma 22 cells to nedaplatin that targets thioredoxin reductase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yijun [School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui (China); Lu, Hongjuan [Productivity Center of Jiangsu Province, Nanjing 210042, Jiangsu (China); Wang, Dongxu; Li, Shengrong; Sun, Kang; Wan, Xiaochun [School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui (China); Taylor, Ethan Will [Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27402 (United States); Zhang, Jinsong, E-mail: zjs@ahau.edu.cn [School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui (China)

    2012-12-15

    Thioredoxin reductase (TrxR) is a target for cancer therapy and the anticancer mechanism of cisplatin involves TrxR inhibition. We hypothesize that the anticancer drug nedaplatin (NDP), an analogue of cisplatin and a second-generation platinum complex, also targets TrxR. Furthermore, we investigate whether the therapeutic efficacy of NDP can be enhanced by simultaneous modulation of 1) TrxR, via NDP, and 2) glutathione (GSH), via the GSH synthesis inhibitor buthionine sulfoximine (BSO). Mice bearing ascitic hepatoma 22 (H22) cells were treated with NDP alone or NDP plus BSO. TrxR activity of H22 cells was inhibited by NDP in a dose-dependent manner. A high correlation between the inhibition of TrxR activity at 6 h and the inhibition of ascitic fluid volume at 72 h was established (r = 0.978, p < 0.01). As an adaptive response, the viable ascitic cancer cells after NDP treatment displayed an enlarged cell phenotype, assembled with several-fold more antioxidant enzymes and GSH-predominant non-protein free thiols. This adaptive response was largely eliminated when BSO was co-administered with NDP, leading to the decimation of the H22 cell population without enhancing renal toxicity, since at this dose, NDP did not inhibit renal TrxR activity. In conclusion, the pharmacological effect of NDP involves TrxR inhibition, and the adaptive response of NDP-treated ascitic H22 cells can be efficiently counteracted by BSO. Simultaneous modulation of TrxR and GSH on ascitic H22 cells using NDP plus BSO greatly enhances therapeutic efficacy as compared with the single modulation of TrxR using NDP alone. -- Highlights: ► Nedaplatin at a pharmacological dose inhibits TrxR in cancer cells but not in kidney. ► The nedaplatin-treated cancer cells exhibit adaptive response. ► Buthionine sulfoximine inhibits glutathione in both cancer cells and kidney. ► Buthionine sulfoximine counteracts the adaptive response to the nedaplatin treatment. ► Buthionine sulfoximine does not

  5. A CD13-targeting peptide integrated protein inhibits human liver cancer growth by killing cancer stem cells and suppressing angiogenesis.

    Science.gov (United States)

    Zheng, Yan-Bo; Gong, Jian-Hua; Liu, Xiu-Jun; Li, Yi; Zhen, Yong-Su

    2017-05-01

    CD13 is a marker of angiogenic endothelial cells, and recently it is proved to be a biomarker of human liver cancer stem cells (CSCs). Herein, the therapeutic effects of NGR-LDP-AE, a fusion protein composed of CD13-targeting peptide NGR and antitumor antibiotic lidamycin, on human liver cancer and its mechanism were studied. Western blot and immunofluorescence assay demonstrated that CD13 (WM15 epitope) was expressed in both human liver cancer cell lines and vascular endothelial cells, while absent in normal liver cells. MTT assay showed that NGR-LDP-AE displayed potent cytotoxicity to cultured tumor cell lines with IC50 values at low nanomolar level. NGR-LDP-AE inhibited tumorsphere formation of liver cancer cells, and the IC50 values were much lower than that in MTT assay, indicating selectively killing of CSCs. In endothelial tube formation assay, NGR-LDP-AE at low cytotoxic dose significantly inhibited the formation of intact tube networks. Animal experiment demonstrated that NGR-LDP-AE inhibited the growth of human liver cancer xenograft. Immunohistochemical analysis showed that NGR-LDP-AE induced the down-regulation of CD13. In vitro experiment using cultured tumor cells also confirmed this result. NGR-LDP-AE activated both apoptotic and autophagic pathways in cultured tumor cells, while the induced autophagy protected cells from death. Conclusively, NGR-LDP-AE exerts its antitumor activity via killing liver CSCs and inhibiting angiogenesis. With one targeting motif, NGR-LDP-AE acts on both liver CSCs and angiogenic endothelial cells. It is a promising dual targeting fusion protein for liver cancer therapy, especially for advanced or relapsed cancers. © 2017 Wiley Periodicals, Inc.

  6. Inhibiting cycloxygenase and ornithine decarboxylase by diclofenac and alpha-difluoromethylornithine blocks cutaneous SCCs by targeting Akt-ERK axis.

    Directory of Open Access Journals (Sweden)

    Aadithya Arumugam

    Full Text Available Non-melanoma skin cancer (NMSC is the most common type of skin cancer in Caucasian populations. Its increasing incidence has been a major public health concern. Elevated expressions of ODC and COX-2 are associated with both murine and human NMSCs. Inhibition of these molecular targets singly employing their respective small molecule inhibitors showed limited success. Here, we show that combined blockade of ODC and COX-2 using their potent inhibitors, DFMO and diclofenac respectively abrogates growth of A431 epidermal xenograft tumors in nu/nu mice by more than 90%. The tumor growth inhibition was associated with a diminution in the proliferation and enhancement in apoptosis. The proliferation markers such as PCNA and cyclin D1 were reduced. TUNEL-positive apoptotic cells and cleaved caspase-3 were increased in the residual tumors. These agents also manifested direct target-unrelated effects. Reduced expression of phosphorylated MAPKAP-2, ERK, and Akt (ser(473 & thr(308 were noticed. The mechanism by which combined inhibition of ODC/COX attenuated tumor growth and invasion involved reduction in EMT. Akt activation by ODC+COX-2 over-expression was the key player in this regard as Akt inhibition manifested effects similar to those observed by the combined inhibition of ODC+COX-2 whereas forced over-expression of Akt resisted against DFMO+diclofenac treatment. These data suggest that ODC+COX-2 over-expression together leads to pathogenesis of aggressive and invasive cutaneous carcinomas by activating Akt signaling pathway, which through augmenting EMT contributes to tumor invasion.

  7. Peripheral nerve soluble esterases are spontaneously reactivated after inhibition by paraoxon: implications for a new definition of neuropathy target esterase.

    Science.gov (United States)

    Barril, J; Estévez, J; Escudero, M A; Céspedes, M V; Níguez, N; Sogorb, M A; Monroy, A; Vilanova, E

    1999-05-14

    Soluble extracts of chicken peripheral nerve contain detectable amounts of phenyl valerate esterase (PVase) activity (about 2000 nmol/min per g of fresh tissue). More than 95% of this activity is inhibited in assays where substrate has been added to a preincubated mixture of tissue with the non-neuropathic organophosphorus compound (OP) paraoxon (O,O'-diethyl p-nitrophenyl phosphate): residual activity includes soluble neuropathy target esterase (S-NTE) which, by definition, is considered resistant to long-term progressive (covalent) inhibition by paraoxon. However we have previously shown that paraoxon strongly interacts with S-NTE so interfering with its sensitivity to other inhibitors. We now show that, surprisingly, removal of paraoxon by ultrafiltration ('P' tissue) in order to avoid such an interference results in the reappearance of about 65% of total original soluble PVase activity which is inhibited in the presence of this OP. Although a purely reversible non-progressive inhibition might be suspected, kinetic analysis data show a time-progressive inhibition which suggests that such PVase(s) covalently bind paraoxon. Also a time-dependent recovery due to spontaneous reactivation of the PVase activity was observed after dilution of the inhibitor. Gel filtration chromatography of 'P' tissue in Sephacryl S-300 shows that the reactivated activity is associated with proteins of about 100-kDa mass which include S-NTE and an, as yet, unknown number of other PVases. The implications of these findings in the definition of NTE in a target tissue for the so-called organophosphorus-induced delayed polyneuropathy (OPIDP) are discussed.

  8. Targeted in vivo inhibition of specific protein-protein interactions using recombinant antibodies.

    Directory of Open Access Journals (Sweden)

    Matej Zábrady

    Full Text Available With the growing availability of genomic sequence information, there is an increasing need for gene function analysis. Antibody-mediated "silencing" represents an intriguing alternative for the precise inhibition of a particular function of biomolecules. Here, we describe a method for selecting recombinant antibodies with a specific purpose in mind, which is to inhibit intrinsic protein-protein interactions in the cytosol of plant cells. Experimental procedures were designed for conveniently evaluating desired properties of recombinant antibodies in consecutive steps. Our selection method was successfully used to develop a recombinant antibody inhibiting the interaction of ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 3 with such of its upstream interaction partners as the receiver domain of CYTOKININ INDEPENDENT HISTIDINE KINASE 1. The specific down-regulation of the cytokinin signaling pathway in vivo demonstrates the validity of our approach. This selection method can serve as a prototype for developing unique recombinant antibodies able to interfere with virtually any biomolecule in the living cell.

  9. Targeting the Hsp90 C-terminal domain to induce allosteric inhibition and selective client downregulation.

    Science.gov (United States)

    Goode, Kourtney M; Petrov, Dino P; Vickman, Renee E; Crist, Scott A; Pascuzzi, Pete E; Ratliff, Tim L; Davisson, V Jo; Hazbun, Tony R

    2017-08-01

    Inhibition of Hsp90 is desirable due to potential downregulation of oncogenic clients. Early generation inhibitors bind to the N-terminal domain (NTD) but C-terminal domain (CTD) inhibitors are a promising class because they do not induce a heat shock response. Here we present a new structural class of CTD binding molecules with a unique allosteric inhibition mechanism. A hit molecule, NSC145366, and structurally similar probes were assessed for inhibition of Hsp90 activities. A ligand-binding model was proposed indicating a novel Hsp90 CTD binding site. Client protein downregulation was also determined. NSC145366 interacts with the Hsp90 CTD and has anti-proliferative activity in tumor cell lines (GI50=0.2-1.9μM). NSC145366 increases Hsp90 oligomerization resulting in allosteric inhibition of NTD ATPase activity (IC50=119μM) but does not compete with NTD or CTD-ATP binding. Treatment of LNCaP prostate tumor cells resulted in selective client protein downregulation including AR and BRCA1 but without a heat shock response. Analogs had similar potencies in ATPase and chaperone activity assays and variable effects on oligomerization. In silico modeling predicted a binding site at the CTD dimer interface distinct from the nucleotide-binding site. A set of symmetrical scaffold molecules with bisphenol A cores induced allosteric inhibition of Hsp90. Experimental evidence and molecular modeling suggest that the binding site is independent of the CTD-ATP site and consistent with unique induction of allosteric effects. Allosteric inhibition of Hsp90 via a mechanism used by the NSC145366-based probes is a promising avenue for selective oncogenic client downregulation. Copyright © 2017. Published by Elsevier B.V.

  10. Virtual and biophysical screening targeting the γ-tubulin complex--a new target for the inhibition of microtubule nucleation.

    Directory of Open Access Journals (Sweden)

    Olivier Cala

    Full Text Available Microtubules are the main constituents of mitotic spindles. They are nucleated in large amounts during spindle assembly, from multiprotein complexes containing γ-tubulin and associated γ-tubulin complex proteins (GCPs. With the aim of developing anti-cancer drugs targeting these nucleating complexes, we analyzed the interface between GCP4 and γ-tubulin proteins usually located in a multiprotein complex named γ-TuRC (γ-Tubulin Ring Complex. 10 ns molecular dynamics simulations were performed on the heterodimers to obtain a stable complex in silico and to analyze the residues involved in persistent protein-protein contacts, responsible for the stability of the complex. We demonstrated in silico the existence of a binding pocket at the interface between the two proteins upon complex formation. By combining virtual screening using a fragment-based approach and biophysical screening, we found several small molecules that bind specifically to this pocket. Sub-millimolar fragments have been experimentally characterized on recombinant proteins using differential scanning fluorimetry (DSF for validation of these compounds as inhibitors. These results open a new avenue for drug development against microtubule-nucleating γ-tubulin complexes.

  11. MicroRNA-503 represses epithelial-mesenchymal transition and inhibits metastasis of osteosarcoma by targeting c-myb.

    Science.gov (United States)

    Guo, Xinzhen; Zhang, Jie; Pang, Jianfeng; He, Sheng; Li, Guojun; Chong, Yang; Li, Chao; Jiao, Zhijian; Zhang, Shiqian; Shao, Ming

    2016-07-01

    Deregulated expression of miRNAs contributes to the development of osteosarcoma. Our previous study has showed that miR-503 was downregulated in osteosarcoma tissues. However, the mechanism of the miR-503 in osteosarcoma development still remains largely undefined. In our study, we found that miR-503 overexpression suppressed cell invasion and migration and inhibited epithelial-to-mesenchymal transition (EMT) of MG-63. Furthermore, we identified that c-myb, an oncogene, was a direct target of miR-503. Moreover, overexpression of c-myb could rescue miR-503-suppressed invasion and EMT. The expression of c-myb was upregulated in osteosarcoma cell lines. Therefore, we conclude that high miR-503 expression suppressed osteosarcoma cell mobility and EMT through targeting c-myb, and this may serve as a therapeutic target.

  12. Bacterial Cyanuric Acid Hydrolase for Water Treatment.

    Science.gov (United States)

    Yeom, Sujin; Mutlu, Baris R; Aksan, Alptekin; Wackett, Lawrence P

    2015-10-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Simultaneous inhibition of EGFR/VEGFR and cyclooxygenase-2 targets stemness-related pathways in colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Araceli Valverde

    Full Text Available Despite the demonstrated benefits of anti-EGFR/VEGF targeted therapies in metastatic colorectal cancer (mCRC, many patients initially respond, but then show evidence of disease progression. New therapeutic strategies are needed to make the action of available drugs more efficient. Our study aimed to explore whether simultaneous targeting of EGFR/VEGF and cyclooxygenase-2 (COX-2 may aid the treatment and management of mCRC patients. The dual tyrosine kinase inhibitor AEE788 and celecoxib were used to inhibit EGFR/VEGFR and COX-2, respectively, in colorectal cancer cells. COX-2 inhibition with celecoxib augmented the antitumoral and antiangiogenic efficacy of AEE788, as indicated by the inhibition of cell proliferation, induction of apoptosis and G1 cell cycle arrest, down-regulation of VEGF production by cancer cells and reduction of cell migration. These effects were related with a blockade in the EGFR/VEGFR signaling axis. Notably, the combined AEE788/celecoxib treatment prevented β-catenin nuclear accumulation in tumor cells. This effect was associated with a significant downregulation of FOXM1 protein levels and an impairment in the interaction of this transcription factor with β-catenin, which is required for its nuclear localization. Furthermore, the combined treatment also reduced the expression of the stem cell markers Oct 3/4, Nanog, Sox-2 and Snail in cancer cells, and contributed to the diminution of the CSC subpopulation, as indicated by colonosphere formation assays. In conclusion, the combined treatment of AEE788 and celecoxib not only demonstrated enhanced anti-tumoral efficacy in colorectal cancer cells, but also reduced colon CSCs subpopulation by targeting stemness-related pathways. Therefore, the simultaneous targeting of EGFR/VEGF and COX-2 may aid in blocking mCRC progression and improve the efficacy of existing therapies in colorectal cancer.

  14. Cryptotanshinone inhibition of mammalian target of rapamycin pathway is dependent on oestrogen receptor alpha in breast cancer.

    Science.gov (United States)

    Pan, Yanhong; Shi, Junfeng; Ni, Wenting; Liu, Yuping; Wang, Siliang; Wang, Xu; Wei, Zhonghong; Wang, Aiyun; Chen, Wenxing; Lu, Yin

    2017-09-01

    Cryptotanshinone (CPT) has been demonstrated to inhibit proliferation and mammalian target of rapamycin (mTOR) pathway in MCF-7 breast cancer cells. However, the same results are unable to be repeated in MDA-MB-231 cells. Given the main difference of oestrogen receptor α (ERα) between two types of breast cancer cells, It is possibly suggested that CPT inhibits mTOR pathway dependent on ERα in breast cancer. CPT could significantly inhibit cell proliferation of ERα-positive cancer cells, whereas ERα-negative cancer cells are insensitive to CPT. The molecular docking results indicated that CPT has a high affinity with ERα, and the oestrogen receptor element luciferase reporter verified CPT distinct anti-oestrogen effect. Furthermore, CPT inhibits mTOR signalling in MCF-7 cells, but not in MDA-MB-231 cells, which is independent on binding to the FKBP12 and disrupting the mTOR complex. Meanwhile, increased expression of phosphorylation AKT and insulin receptor substrate (IRS1) induced by insulin-like growth factor 1 (IGF-1) was antagonized by CPT, but other molecules of IGF-1/AKT/mTOR signalling pathway such as phosphatase and tensin homolog (PTEN) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) were negatively affected. Finally, the MCF-7 cells transfected with shERα for silencing ERα show resistant to CPT, and p-AKT, phosphorylation of p70 S6 kinase 1 (p-S6K1) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1) were partially recovered, suggesting ERα is required for CPT inhibition of mTOR signalling. Overall, CPT inhibition of mTOR is dependent on ERα in breast cancer and should be a potential anti-oestrogen agent and a natural adjuvant for application in endocrine resistance therapy. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  15. JAK2/IDH-mutant–driven myeloproliferative neoplasm is sensitive to combined targeted inhibition

    Science.gov (United States)

    McKenney, Anna Sophia; Somasundara, Amritha Varshini Hanasoge; Spitzer, Barbara; Intlekofer, Andrew M.; Ahn, Jihae; Shank, Kaitlyn; Rapaport, Franck T.; Patel, Minal A.; Papalexi, Efthymia; Shih, Alan H.; Chiu, April; Freinkman, Elizaveta; Akbay, Esra A.; Steadman, Mya; Nagaraja, Raj; Yen, Katharine; Teruya-Feldstein, Julie; Wong, Kwok-Kin; Rampal, Raajit; Thompson, Craig B.

    2018-01-01

    Patients with myeloproliferative neoplasms (MPNs) frequently progress to bone marrow failure or acute myeloid leukemia (AML), and mutations in epigenetic regulators such as the metabolic enzyme isocitrate dehydrogenase (IDH) are associated with poor outcomes. Here, we showed that combined expression of Jak2V617F and mutant IDH1R132H or Idh2R140Q induces MPN progression, alters stem/progenitor cell function, and impairs differentiation in mice. Jak2V617F Idh2R140Q–mutant MPNs were sensitive to small-molecule inhibition of IDH. Combined inhibition of JAK2 and IDH2 normalized the stem and progenitor cell compartments in the murine model and reduced disease burden to a greater extent than was seen with JAK inhibition alone. In addition, combined JAK2 and IDH2 inhibitor treatment also reversed aberrant gene expression in MPN stem cells and reversed the metabolite perturbations induced by concurrent JAK2 and IDH2 mutations. Combined JAK2 and IDH2 inhibitor therapy also showed cooperative efficacy in cells from MPN patients with both JAK2mut and IDH2mut mutations. Taken together, these data suggest that combined JAK and IDH inhibition may offer a therapeutic advantage in this high-risk MPN subtype. PMID:29355841

  16. Phosphoenolpyruvate carboxylase from C4 leaves is selectively targeted for inhibition by anionic phospholipids

    NARCIS (Netherlands)

    Monreal, J.A.; McLoughlin, F.; Echevarría, C.; García-Mauriño, S.; Testerink, C.

    2010-01-01

    Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is an enzyme playing a crucial role in photosynthesis of C4 plants. Here, we identify anionic phospholipids as novel regulators that inhibit C4 PEPC activity and provide evidence that the enzyme partially localizes to membranes.

  17. Targeting the Oncogenic Transcriptional Regulator MYB in Adenoid Cystic Carcinoma by Inhibition of IGF1R/AKT Signaling.

    Science.gov (United States)

    Andersson, Mattias K; Afshari, Maryam K; Andrén, Ywonne; Wick, Michael J; Stenman, Göran

    2017-09-01

    Adenoid cystic carcinoma (ACC) is an aggressive cancer with no curative treatment for patients with recurrent/metastatic disease. The MYB-NFIB gene fusion is the main genomic hallmark and a potential therapeutic target. Oncogenic signaling pathways were studied in cultured cells and/or tumors from 15 ACC patients. Phospho-receptor tyrosine kinase (RTK) arrays were used to study the activity of RTKs. Effects of RTK inhibition on cell proliferation were analyzed with AlamarBlue, sphere assays, and two ACC xenograft models (n = 4-9 mice per group). The molecular effects of MYB-NFIB knockdown and IGF1R inhibition were studied with quantitative polymerase chain reaction, immunoblot, and gene expression microarrays. All statistical tests were two-sided. The MYB-NFIB fusion drives proliferation of ACC cells and is crucial for spherogenesis. Intriguingly, the fusion is regulated through AKT-dependent signaling induced by IGF1R overexpression and is downregulated upon IGF1R-inhibition (% expression of control ± SD = 27.2 ± 1.3, P MYB-NFIB regulates genes involved in cell cycle control, DNA replication/repair, and RNA processing. The transcriptional program induced by MYB-NFIB affects critical oncogenic mediators normally controlled by MYC and is reversed by pharmacological inhibition of IGF1R. Co-activation of epidermal growth factor receptor (EGFR) and MET promoted proliferation of ACC cells, and combined targeting of IGFR1/EGFR/MET induced differentiation and synergistically inhibited the growth of patient-derived xenografted ACCs (ACCX5M1, % growth of control ± SD = 34.9 ± 20.3, P = .006; ACCX6, % growth of control ± SD = 24.1 ± 17.5, P = .04). MYB-NFIB is an oncogenic driver and a key therapeutic target in ACC that is regulated by AKT-dependent IGF1R signaling. Our studies uncover a new strategy to target an oncogenic transcriptional master regulator and provide new important insights into the biology and treatment of ACC.

  18. Hsp90 Is a Novel Target Molecule of CDDO-Me in Inhibiting Proliferation of Ovarian Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Dong-Jun Qin

    Full Text Available Synthetic triterpenoid methyl-2-cyano-3, 12-dioxooleana-1, 9(11-dien-28-oate (CDDO-Me has been shown as a promising agent against ovarian cancer. However, the underlying mechanism is not well understood. Here, we demonstrate that CDDO-Me directly interacts with Hsp90 in cells by cellular thermal shift assay. CDDO-Me treatment leads to upregulation of Hsp70 and degradation of Hsp90 clients (ErbB2 and Akt, indicating the inhibition of Hsp90 by CDDO-Me in cells. Knockdown of Hsp90 significantly inhibits cell proliferation and enhances the anti-proliferation effect of CDDO-Me in H08910 ovarian cancer cells. Dithiothreitol inhibits the interaction of CDDO-Me with Hsp90 in cells and abrogates CDDO-Me induced upregulation of Hsp70, degradation of Akt and cell proliferation inhibition. This suggests the anti-ovarian cancer effect of CDDO-Me is possibly mediated by the formation of Michael adducts between CDDO-Me and reactive nucleophiles on Hsp90. This study identifies Hsp90 as a novel target protein of CDDO-Me, and provides a novel insight into the mechanism of action of CDDO-Me in ovarian cancer cells.

  19. Lysosomal physiology in Tetrahymena. 3. Pharmacological studies on acid hydrolase release and the ingestion and egestion of dimethylbenzanthracene particles.

    Science.gov (United States)

    Rothstein, T L; Blum, J J

    1974-09-01

    The ingestion of (14)C-labeled 9,10-dimethyl-1,2-benzanthracene particles, the extracellular release of acid phosphatase, ribonuclease, and alpha-glucosidase, and the egestion of preingested dimethylbenzanthracene particles by Tetrahymena taken from logarithmically growing cultures and resuspended in a dilute salt solution were followed in the presence of several pharmacologic agents. Serotonin, caffeine, and, to a lesser extent, dibutyryl cyclic AMP increased the rate of particle ingestion, but did not alter the rate of release of the three acid hydrolases studied. Added catecholamines did not affect either particle ingestion or acid hydrolase release, but particle ingestion was inhibited by the catecholamine antagonists, dichloroisoproterenol, desmethylimipramine, reserpine, and phenoxybenzamine. These drugs also increased the release of acid phosphatase and ribonuclease in 5-h incubations. Desmethylimipramine acted within 1 h to increase acid hydrolase release, but the effect of dichloroisoproterenol developed more slowly and was secondary to a change in cellular content of the hydrolases. Desmethylimipramine increased the energy of activation for the release of acid phosphatase, while dichloroisoproterenol did not. Both of these drugs enhanced the egestion of preingested dimethylbenzanthracene particles, supporting the view that acid hydrolase release occurs through a cytoproct egestion mechanism. Particle ingestion was also inhibited by colchicine, vinblastine, and cytochalasin B, but these agents had no effect on acid hydrolase release, thus further differentiating the properties of the ingestion mechanism from those of the egestion mechanism. It appears that both microtubules and microfilaments play a role in the ingestion process and that this process may be controlled in part by a cyclic AMP-mediated serotoninergic and adrenergic system.

  20. STAT5b as Molecular Target in Pancreatic Cancer—Inhibition of Tumor Growth, Angiogenesis, and Metastases

    Directory of Open Access Journals (Sweden)

    Christian Moser

    2012-10-01

    Full Text Available The prognosis of patients suffering from pancreatic cancer is still poor and novel therapeutic options are urgently needed. Recently, the transcription factor signal transducer and activator of transcription 5b (STAT5b was associated with tumor progression in human solid cancer. Hence, we assessed whether STAT5b might serve as an anticancer target in ductal pancreatic adenocarcinoma (DPAC. We found that nuclear expression of STAT5b can be detected in approximately 50% of DPAC. Blockade of STAT5b by stable shRNA-mediated knockdown showed no effects on tumor cell growth in vitro. However, inhibition of tumor cell motility was found even in response to stimulation with epidermal growth factor or interleukin-6. These findings were paralleled by a reduction of prometastatic and proangiogenic factors in vitro. Subsequent in vivo experiments revealed a strong growth inhibition on STAT5b blockade in subcutaneous and orthotopic models. These findings were paralleled by impaired tumor angiogenesis in vivo. In contrast to the subcutaneous model, the orthotopic model revealed a strong reduction of tumor cell proliferation that emphasizes the meaning of assessing targets in an appropriate microenvironment. Taken together, our results suggest that STAT5b might be a potential novel target for human DPAC.

  1. MiR-219-5p Inhibits the Growth and Metastasis of Malignant Melanoma by Targeting BCL-2

    Directory of Open Access Journals (Sweden)

    Jianwen Long

    2017-01-01

    Full Text Available Malignant melanoma is a very dangerous tumor which is resistant to conventional therapy. MicroRNA exerts a vital function in promoting or inhibiting tumor development. The research has investigated the expression and function of miR-219-5p in melanoma. As a result, miR-219-5p expression was distinctly reduced in melanoma tissues and cell lines and was negatively correlated with Bcl-2 protein level in melanoma. Patients with low miR-219-5p level represented obviously a low overall survival in comparison with patients with high miR-219-5p level. The upregulation of miR-219-5p inhibited melanoma growth and metastasis and strengthened melanoma cells chemosensitivity by targeting Bcl-2. Therefore, the modulation of miR-219-5p expression may be a novel treatment strategy in melanoma.

  2. miR-30a can inhibit DNA replication by targeting RPA1 thus slowing cancer cell proliferation.

    Science.gov (United States)

    Zou, Zhenyou; Ni, Mengjie; Zhang, Jing; Chen, Yongfeng; Ma, Hongyu; Qian, Shihan; Tang, Longhua; Tang, Jiamei; Yao, Hailun; Zhao, Chengbin; Lu, Xiongwen; Sun, Hongyang; Qian, Jue; Mao, Xiaoting; Lu, Xulin; Liu, Qun; Zen, Juping; Wu, Hanbing; Bao, Zhaosheng; Lin, Shudan; Sheng, Hongyu; Li, Yunlong; Liang, Yong; Chen, Zhiqiang; Zong, Dan

    2016-07-15

    Cell proliferation was inhibited following forced over-expression of miR-30a in the ovary cancer cell line A2780DX5 and the gastric cancer cell line SGC7901R. Interestingly, miR-30a targets the DNA replication protein RPA1, hinders the replication of DNA and induces DNA fragmentation. Furthermore, ataxia telangiectasia mutated (ATM) and checkpoint kinase 2 (CHK2) were phosphorylated after DNA damage, which induced p53 expression, thus triggering the S-phase checkpoint, arresting cell cycle progression and ultimately initiating cancer cell apoptosis. Therefore, forced miR-30a over-expression in cancer cells can be a potential way to inhibit tumour development. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  3. Silencing β3 Integrin by Targeted ECO/siRNA Nanoparticles Inhibits EMT and Metastasis of Triple Negative Breast Cancer

    Science.gov (United States)

    Mack, Margaret A.; Schiemann, William P.; Lu, Zheng-Rong

    2015-01-01

    Metastatic breast cancer is the second leading cause of cancer-related deaths amongst women. Triple-negative breast cancer (TNBC) is a highly aggressive subcategory of breast cancer and currently lacks well-defined molecular targets for effective targeted therapies. Disease relapse, metastasis, and drug resistance render standard chemotherapy ineffective in the treatment of TNBC. Since previous studies coupled β3 integrin to epithelial-mesenchymal transition (EMT) and metastasis, we exploited β3 integrin as a therapeutic target to treat TNBC by delivering β3 integrin siRNA via lipid ECO-based nanoparticles (ECO/siβ3). Treatment of TNBC cells with ECO/siβ3 was sufficient to effectively silence β3 integrin expression, attenuate TGF-β-mediated EMT and invasion, restore TGF-β-mediated cytostasis, and inhibit 3-dimensional organoid growth. Modification of ECO/siβ3 nanoparticles with an RGD peptide via a PEG spacer enhanced siRNA uptake by post-EMT cells. Intravenous injections of RGD-targeted ECO/siβ3 nanoparticles in vivo alleviated primary tumor burden, and more importantly, significantly inhibited metastasis. Mice bearing orthotopic, TGF-β-pre-stimulated MDA-MB-231 tumors that were treated with RGD-targeted ECO/siβ3 nanoparticles were free of metastases and relapse after primary tumor resection and 4 weeks after release from the treatment, in comparison to untreated mice. Collectively, these results highlight ECO/siβ3 nanoparticles as a promising therapeutic regimen to combat TNBC. PMID:25858145

  4. Simvastatin and MBCD Inhibit Breast Cancer-Induced Osteoclast Activity by Targeting Osteoclastogenic Factors.

    Science.gov (United States)

    Chowdhury, Kaushik; Sharma, Ankit; Sharma, Tanu; Kumar, Suresh; Mandal, Chandi C

    2017-07-03

    Previous reports have documented that cholesterol-lowering simvastatin prevented osteolytic metastasis of breast cancer in animal model in which cancer cells were placed into blood circulation. Thus, simvastatin treatment might have a preventive effect in inhibiting osteoclast activity of metastatic bone microenvironment. This study documented that both simvastatin and MBCD (cholesterol depleting drug) blocked the breast cancer-induced TRAP and MMP activity, and expressions of various osteoclastogenic genes (TRAP, Cathepsin K, and NFATc1) in pre-osteoclast RAW264.7 cells, and osteoclastogenic CSF-1 and RANKL expressions in breast cancer MCF-7 cells. Thus, these findings unravel a molecular mechanism of simvastatin-/MBCD-mediated inhibition of breast cancer-driven osteoclast activity.

  5. Novel Pyrazole Derivatives Effectively Inhibit Osteoclastogenesis, a Potential Target for Treating Osteoporosis.

    Science.gov (United States)

    Kuo, Ting-Hao; Lin, Tzu-Hung; Yang, Rong-Sen; Kuo, Sheng-Chu; Fu, Wen-Mei; Hung, Hsin-Yi

    2015-06-25

    As human beings live longer, age-related diseases such as osteoporosis will become more prevalent. Intolerant side effects and poor responses to current treatments are observed. Therefore, novel effective therapeutic agents are greatly needed. Here, pyrazole derivatives were designed and synthesized, and their osteoclastogenesis inhibitory effects both in vitro and in vivo were evaluated. The most promising compound 13 with a 2-(dimethylamino)ethyl group inhibited markedly in vitro osteoclastogenesis as well as the bone resorption activity of osteoclasts. Compound 13 affected osteoclast's early proliferation and differentiation more than later fusion and maturation stages. In ovariectomized (OVX) mice, compound 13 can inhibit the loss of trabecular bone volume, trabecular bone number, and trabecular thickness. Moreover, compound 13 can antagonize OVX-induced reduction of serum bone resorption marker and then compensatory increase of the bone formation marker. To sum up, compound 13 has high potential to be developed into a novel therapeutic agent for treating osteoporosis in the future.

  6. Meclizine Inhibits Mitochondrial Respiration through Direct Targeting of Cytosolic Phosphoethanolamine Metabolism*

    Science.gov (United States)

    Gohil, Vishal M.; Zhu, Lin; Baker, Charli D.; Cracan, Valentin; Yaseen, Abbas; Jain, Mohit; Clish, Clary B.; Brookes, Paul S.; Bakovic, Marica; Mootha, Vamsi K.

    2013-01-01

    We recently identified meclizine, an over-the-counter drug, as an inhibitor of mitochondrial respiration. Curiously, meclizine blunted respiration in intact cells but not in isolated mitochondria, suggesting an unorthodox mechanism. Using a metabolic profiling approach, we now show that treatment with meclizine leads to a sharp elevation of cellular phosphoethanolamine, an intermediate in the ethanolamine branch of the Kennedy pathway of phosphatidylethanolamine biosynthesis. Metabolic labeling and in vitro enzyme assays confirmed direct inhibition of the cytosolic enzyme CTP:phosphoethanolamine cytidylyltransferase (PCYT2). Inhibition of PCYT2 by meclizine led to rapid accumulation of its substrate, phosphoethanolamine, which is itself an inhibitor of mitochondrial respiration. Our work identifies the first pharmacologic inhibitor of the Kennedy pathway, demonstrates that its biosynthetic intermediate is an endogenous inhibitor of respiration, and provides key mechanistic insights that may facilitate repurposing meclizine for disorders of energy metabolism. PMID:24142790

  7. Corosolic Acid Inhibits Hepatocellular Carcinoma Cell Migration by Targeting the VEGFR2/Src/FAK Pathway.

    Directory of Open Access Journals (Sweden)

    Chung-Yu Ku

    Full Text Available Inhibition of VEGFR2 activity has been proposed as an important strategy for the clinical treatment of hepatocellular carcinoma (HCC. In this study, we identified corosolic acid (CA, which exists in the root of Actinidia chinensis, as having a significant anti-cancer effect on HCC cells. We found that CA inhibits VEGFR2 kinase activity by directly interacting with the ATP binding pocket. CA down-regulates the VEGFR2/Src/FAK/cdc42 axis, subsequently decreasing F-actin formation and migratory activity in vitro. In an in vivo model, CA exhibited an effective dose (5 mg/kg/day on tumor growth. We further demonstrate that CA has a synergistic effect with sorafenib within a wide range of concentrations. In conclusion, this research elucidates the effects and molecular mechanism for CA on HCC cells and suggests that CA could be a therapeutic or adjuvant strategy for patients with aggressive HCC.

  8. Targeted in vitro and in vivo gene transfer into T Lymphocytes: potential of direct inhibition of allo-immune activation

    Directory of Open Access Journals (Sweden)

    Mehra Mandeep R

    2006-11-01

    Full Text Available Abstract Background Successful inhibition of alloimmune activation in organ transplantation remains one of the key events in achieving a long-term graft survival. Since T lymphocytes are largely responsible for alloimmune activation, targeted gene transfer of gene of cyclin kinase inhibitor p21 into T cells might inhibit their aberrant proliferation. A number of strategies using either adenoviral or lentiviral vectors linked to mono or bispecific antibodies directed against T cell surface markers/cytokines did not yield the desired results. Therefore, this study was designed to test if a CD3promoter-p21 chimeric construct would in vitro and in vivo transfer p21 gene to T lymphocytes and result in inhibition of proliferation. CD3 promoter-p21 chimeric constructs were prepared with p21 in the sense and antisense orientation. For in vitro studies EL4-IL-2 thyoma cells were used and for in vivo studies CD3p21 sense and antisense plasmid DNA was injected intramuscularly in mice. Lymphocyte proliferation was quantified by 3H-thymidine uptake assay; IL-2 mRNA expression was studied by RT-PCR and using Real Time PCR assay, we monitored the CD3, p21, TNF-α and IFN-γ mRNA expression. Results Transfection of CD3p21 sense and antisense in mouse thyoma cell line (EL4-IL-2 resulted in modulation of mitogen-induced proliferation. The intramuscular injection of CD3p21 sense and antisense plasmid DNA into mice also modulated lymphocyte proliferation and mRNA expression of pro-inflammatory cytokines. Conclusion These results demonstrate a novel strategy of in vitro and in vivo transfer of p21 gene to T cells using CD3-promoter to achieve targeted inhibition of lymphocyte proliferation and immune activation.

  9. Quercetin inhibits Cr(VI)-induced malignant cell transformation by targeting miR-21-PDCD4 signaling pathway.

    Science.gov (United States)

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Wang, Lei; Turcios, Lilia; Roy, Ram Vinod; Hitron, John Andrew; Kim, Donghern; Dai, Jin; Asha, Padmaja; Zhang, Zhuo; Shi, Xianglin

    2017-08-08

    Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Inhibition of Cr(VI)-induced carcinogenesis by a dietary antioxidant is a novel approach. Quercetin is one of the most abundant dietary flavonoids widely present in many fruits and vegetables, possesses potent antioxidant and anticancer properties. MicroRNA-21 (miR-21) is a key oncomiR significantly elevated in the majority of human cancers that exerts its oncogenic activity by targeting the tumor suppressor gene programmed cell death 4 (PDCD4). The present study examined the effect of quercetin on the inhibition of Cr(VI)-induced malignant cell transformation and the role of miR-21-PDCD4 signaling involved. Our results showed that quercetin decreased ROS generation induced by Cr(VI) exposure in BEAS-2B cells. Chronic Cr(VI) exposure induced malignant cell transformation, increased miR-21 expression and caused inhibition of PDCD4, which were significantly inhibited by the treatment of quercetin in a dose dependent manner. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of quercetin showed reduced tumor incidence compared to Cr(VI) alone treated group. Stable knockdown of miR-21 and overexpression of PDCD4 or catalase in BEAS-2B cells suppressed Cr(VI)-induced malignant transformation and tumorigenesis. Taken together, these results demonstrate that quercetin is able to protect BEAS-2B cells from Cr(VI)-induced carcinogenesis by targeting miR-21-PDCD4 signaling.

  10. Targeted Radiosensitization of ETS Fusion-Positive Prostate Cancer through PARP1 Inhibition

    Directory of Open Access Journals (Sweden)

    Sumin Han

    2013-10-01

    Full Text Available ETS gene fusions, which result in overexpression of an ETS transcription factor, are considered driving mutations in approximately half of all prostate cancers. Dysregulation of ETS transcription factors is also known to exist in Ewing's sarcoma, breast cancer, and acute lymphoblastic leukemia. We previously discovered that ERG, the predominant ETS family member in prostate cancer, interacts with the DNA damage response protein poly (ADP-ribose polymerase 1 (PARP1 in human prostate cancer specimens. Therefore, we hypothesized that the ERG-PARP1 interaction may confer radiation resistance by increasing DNA repair efficiency and that this radio-resistance could be reversed through PARP1 inhibition. Using lentiviral approaches, we established isogenic models of ERG overexpression in PC3 and DU145 prostate cancer cell lines. In both cell lines, ERG overexpression increased clonogenic survival following radiation by 1.25 (±0.07 fold (mean ± SEM and also resulted in increased PARP1 activity. PARP1 inhibition with olaparib preferentially radiosensitized ERG-positive cells by a factor of 1.52 (±0.03 relative to ERG-negative cells (P < .05. Neutral and alkaline COMET assays and immunofluorescence microscopy assessing γ-H2AX foci showed increased short- and long-term efficiencies of DNA repair, respectively, following radiation that was preferentially reversed by PARP1 inhibition. These findings were verified in an in vivo xenograft model. Our findings demonstrate that ERG overexpression confers radiation resistance through increased efficiency of DNA repair following radiation that can be reversed through inhibition of PARP1. These results motivate the use of PARP1 inhibitors as radiosensitizers in patients with localized ETS fusion-positive cancers.

  11. MiR-23a inhibited IL-17-mediated proinflammatory mediators expression via targeting IKKα in articular chondrocytes.

    Science.gov (United States)

    Hu, Junzheng; Zhai, Chenjun; Hu, Jiaojiao; Li, Zeng; Fei, Hao; Wang, Zhen; Fan, Weimin

    2017-02-01

    The inflammatory cytokine interleukin 17 (IL-17) is an important contributor of rheumatoid arthritis (RA) chronicity. Although several microRNAs (miRNAs) have been shown to regulate RA pathogenesis, the function of miRNAs in articular chondrocytes during rheumatoid arthritis pathogenesis is unclear. Here we showed that miR-23a was downregulated in articular cartilage tissues from rheumatoid arthritis patients. MiR-23a suppressed IL-17 inflammatory cytokine-induced NF-κB activation and several proinflammatory mediators expression, such as cytokine IL-6, chemokine MCP-1, and matrix metalloproteinase MMP-3 in articular chondrocytes. Furthermore, we found that the miR-23a expression was inversely correlated with IKKα expression in articular cartilage tissues from rheumatoid arthritis patients. We identified that IKKα was the direct target of miR-23a and miR-23a inhibited IL-17-mediated proinflammatory mediators expression via targeting the IKKα in primary articular chondrocytes. Together, our study provides the first evidence of a role for miR-23a regulated IL-17-mediated proinflammatory mediators expression in rheumatoid arthritis by directly targeting IKKα. Our findings provide novel evidence that may be useful for future studies exploring therapeutic approaches for rheumatoid arthritis by targeting miR-23a. Thus, miR-23a may be a common therapeutic target for rheumatoid arthritis. Copyright © 2016. Published by Elsevier B.V.

  12. Synergistic inhibition of autophagy and neddylation pathways as a novel therapeutic approach for targeting liver cancer.

    Science.gov (United States)

    Chen, Ping; Hu, Tao; Liang, Yupei; Jiang, Yanan; Pan, Yongfu; Li, Chunjie; Zhang, Ping; Wei, Dongping; Li, Pei; Jeong, Lak Shin; Chu, Yiwei; Qi, Hui; Yang, Meng; Hoffman, Robert M; Dong, Ziming; Jia, Lijun

    2015-04-20

    Liver cancer is the second-most frequent cause of cancer death in the world and is highly treatment resistant. We reported previously that inhibition of neddylation pathway with specific NAE inhibitor MLN4924, suppressed the malignant phenotypes of liver cancer. However, during the process, MLN4924 induces pro-survival autophagy as a mechanism of drug resistance. Here, we report that blockage of autophagy with clinically-available autophagy inhibitors (e.g. chloroquine) significantly enhanced the efficacy of MLN4924 on liver cancer cells by triggering apoptosis. Mechanistically, chloroquine enhanced MLN4924-induced up-regulation of pro-apoptotic proteins (e.g. NOXA) and down-regulation of anti-apoptotic proteins. Importantly, the down-regulation of NOXA expression via siRNA silencing substantially attenuated apoptosis of liver cancer cells. Further mechanistic studies revealed that blockage of autophagy augmented MLN4924-induced DNA damage and reactive oxygen species (ROS) generation. The elimination of DNA damage or blockage of ROS production significantly reduced the expression of NOXA, and thereby attenuated apoptosis and reduced growth inhibition of liver cancer cells. Moreover, blockage of autophagy enhanced the efficacy of MLN4924 in an orthotopic model of human liver cancer, with induction of NOXA and apoptosis in tumor tissues. These findings provide important preclinical evidence for clinical investigation of synergistic inhibition of neddylation and autophagy in liver cancer.

  13. Kaempferol inhibits cell proliferation and glycolysis in esophagus squamous cell carcinoma via targeting EGFR signaling pathway.

    Science.gov (United States)

    Yao, Shihua; Wang, Xiaowei; Li, Chunguang; Zhao, Tiejun; Jin, Hai; Fang, Wentao

    2016-08-01

    Antitumor activity of kaempferol has been studied in various tumor types, but its potency in esophagus squamous cell carcinoma is rarely known. Here, we reported the activity of kaempferol against esophagus squamous cell carcinoma as well as its antitumor mechanisms. Results of cell proliferation and colony formation assay showed that kaempferol substantially inhibited tumor cell proliferation and clone formation in vitro. Flow cytometric analysis demonstrated that tumor cells were induced G0/G1 phase arrest after kaempferol treatment, and the expression of protein involved in cell cycle regulation was dramatically changed. Except the potency on cell proliferation, we also discovered that kaempferol had a significant inhibitory effect against tumor glycolysis. With the downregulation of hexokinase-2, glucose uptake and lactate production in tumor cells were dramatically declined. Mechanism studies revealed kaempferol had a direct effect on epidermal growth factor receptor (EGFR) activity, and along with the inhibition of EGFR, its downstream signaling pathways were also markedly suppressed. Further investigations found that exogenous overexpression of EGFR in tumor cells substantially attenuated glycolysis suppression induced by kaempferol, which implied that EGFR also played an important role in kaempferol-mediated glycolysis inhibition. Finally, the antitumor activity of kaempferol was validated in xenograft model and kaempferol prominently restrained tumor growth in vivo. Meanwhile, dramatic decrease of EGFR activity and hexokinase-2 expression were observed in kaempferol-treated tumor tissue, which confirmed these findings in vitro. Briefly, these studies suggested that kaempferol, or its analogues, may serve as effective candidates for esophagus squamous cell carcinoma management.

  14. RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells.

    Science.gov (United States)

    He, Xuedan; Alves, Carla S; Oliveira, Nilsa; Rodrigues, João; Zhu, Jingyi; Bányai, István; Tomás, Helena; Shi, Xiangyang

    2015-01-01

    Development of multifunctional nanoscale drug-delivery systems for targeted cancer therapy still remains a great challenge. Here, we report the synthesis of cyclic arginine-glycine-aspartic acid (RGD) peptide-conjugated generation 5 (G5) poly(amidoamine) dendrimers for anticancer drug encapsulation and targeted therapy of cancer cells overexpressing αvβ3 integrins. In this study, amine-terminated G5 dendrimers were used as a platform to be sequentially modified with fluorescein isothiocyanate (FI) via a thiourea linkage and RGD peptide via a polyethylene glycol (PEG) spacer, followed by acetylation of the remaining dendrimer terminal amines. The developed multifunctional dendrimer platform (G5.NHAc-FI-PEG-RGD) was then used to encapsulate an anticancer drug doxorubicin (DOX). We show that approximately six DOX molecules are able to be encapsulated within each dendrimer platform. The formed complexes are water-soluble, stable, and able to release DOX in a sustained manner. One- and two-dimensional NMR techniques were applied to investigate the interaction between dendrimers and DOX, and the impact of the environmental pH on the release rate of DOX from the dendrimer/DOX complexes was also explored. Furthermore, cell biological studies demonstrate that the encapsulation of DOX within the G5.NHAc-FI-PEG-RGD dendrimers does not compromise the anticancer activity of DOX and that the therapeutic efficacy of the dendrimer/DOX complexes is solely related to the encapsulated DOX drug. Importantly, thanks to the role played by RGD-mediated targeting, the developed dendrimer/drug complexes are able to specifically target αvβ3 integrin-overexpressing cancer cells and display specific therapeutic efficacy to the target cells. The developed RGD peptide-targeted multifunctional dendrimers may thus be used as a versatile platform for targeted therapy of different types of αvβ3 integrin-overexpressing cancer cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Silibinin inhibits fibronectin induced motility, invasiveness and survival in human prostate carcinoma PC3 cells via targeting integrin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Deep, Gagan [Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States); University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO (United States); Kumar, Rahul; Jain, Anil K. [Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States); Agarwal, Chapla [Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States); University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO (United States); Agarwal, Rajesh, E-mail: Rajesh.agarwal@ucdenver.edu [Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States); University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO (United States)

    2014-10-15

    Highlights: • Silibinin inhibits fibronectin-induce motile morphology in PC3 cells. • Silibinin inhibits fibronectin-induced migration and invasion in PC3 cells. • Silibinin targets fibronectin-induced integrins and downstream signaling molecule. - Abstract: Prostate cancer (PCA) is the 2nd leading cause of cancer-related deaths among men in the United States. Preventing or inhibiting metastasis-related events through non-toxic agents could be a useful approach for lowering high mortality among PCA patients. We have earlier reported that natural flavonoid silibinin possesses strong anti-metastatic efficacy against PCA however, mechanism/s of its action still remains largely unknown. One of the major events during metastasis is the replacement of cell–cell interaction with integrins-based cell–matrix interaction that controls motility, invasiveness and survival of cancer cells. Accordingly, here we examined silibinin effect on advanced human PCA PC3 cells’ interaction with extracellular matrix component fibronectin. Silibinin (50–200 μM) treatment significantly decreased the fibronectin (5 μg/ml)-induced motile morphology via targeting actin cytoskeleton organization in PC3 cells. Silibinin also decreased the fibronectin-induced cell proliferation and motility but significantly increased cell death in PC3 cells. Silibinin also inhibited the PC3 cells invasiveness in Transwell invasion assays with fibronectin or cancer associated fibroblasts (CAFs) serving as chemoattractant. Importantly, PC3-luc cells cultured on fibronectin showed rapid dissemination and localized in lungs following tail vein injection in athymic male nude mice; however, in silibinin-treated PC3-luc cells, dissemination and lung localization was largely compromised. Molecular analyses revealed that silibinin treatment modulated the fibronectin-induced expression of integrins (α5, αV, β1 and β3), actin-remodeling (FAK, Src, GTPases, ARP2 and cortactin), apoptosis (cPARP and

  16. Small molecules targeted to a non-catalytic "RVxF" binding site of protein phosphatase-1 inhibit HIV-1.

    Directory of Open Access Journals (Sweden)

    Tatiana Ammosova

    Full Text Available HIV-1 Tat protein recruits host cell factors including CDK9/cyclin T1 to HIV-1 TAR RNA and thereby induces HIV-1 transcription. An interaction with host Ser/Thr protein phosphatase-1 (PP1 is critical for this function of Tat. PP1 binds to a Tat sequence, Q(35VCF(38, which resembles the PP1-binding "RVxF" motif present on PP1-binding regulatory subunits. We showed that expression of PP1 binding peptide, a central domain of Nuclear Inhibitor of PP1, disrupted the interaction of HIV-1 Tat with PP1 and inhibited HIV-1 transcription and replication. Here, we report small molecule compounds that target the "RVxF"-binding cavity of PP1 to disrupt the interaction of PP1 with Tat and inhibit HIV-1 replication. Using the crystal structure of PP1, we virtually screened 300,000 compounds and identified 262 small molecules that were predicted to bind the "RVxF"-accommodating cavity of PP1. These compounds were then assayed for inhibition of HIV-1 transcription in CEM T cells. One of the compounds, 1H4, inhibited HIV-1 transcription and replication at non-cytotoxic concentrations. 1H4 prevented PP1-mediated dephosphorylation of a substrate peptide containing an RVxF sequence in vitro. 1H4 also disrupted the association of PP1 with Tat in cultured cells without having an effect on the interaction of PP1 with the cellular regulators, NIPP1 and PNUTS, or on the cellular proteome. Finally, 1H4 prevented the translocation of PP1 to the nucleus. Taken together, our study shows that HIV- inhibition can be achieved through using small molecules to target a non-catalytic site of PP1. This proof-of-principle study can serve as a starting point for the development of novel antiviral drugs that target the interface of HIV-1 viral proteins with their host partners.

  17. MicroRNA-29a inhibits cell migration and invasion via targeting Roundabout homolog 1 in gastric cancer cells.

    Science.gov (United States)

    Liu, Xueting; Cai, Jun; Sun, Yanjun; Gong, Renhua; Sun, Dengqun; Zhong, Xingguo; Jiang, Shitao; He, Xinmiao; Bao, Enwu; Yang, Liusheng; Li, Yongxiang

    2015-09-01

    Deregulation of Roundabout homolog 1 (Robo1) has been demonstrated to be associated with several types of human cancer, including gastric cancer. However, the detailed role of Robo1 and its regulatory mechanism in gastric cancer remain largely unclear. In the current study, it was demonstrated that the expression of microRNA (miR)‑29a was frequently reduced in gastric cancer tissues, compared with their matched normal adjacent tissues. Similar results were additionally observed in AGS and SGC‑7901 human gastric cancer cells. Overexpression of miR‑29a led to reduced migration and invasion of AGS cells. To explore the targets of miR‑29a in gastric cancer, bioinformatics analysis was conducted and Robo1 was identified as a putative target of miR‑29a. Further western blotting and luciferase activity assay data confirmed that miR‑29a was able to negatively regulate the protein expression of Robo1, through directly binding to the 3'‑untranslated region of Robo1 mRNA in gastric cancer cells. In addition, it was demonstrated that Robo1 was frequently upregulated in gastric cancer tissues compared with their matched adjacent normal tissues, and a significant inverse correlation was identified between miR‑29a and Robo1 expression. In addition, knockdown of Robo1 by small interfering RNA markedly inhibited the migratory and invasive capabilities of AGS cells, which the results obtained with overexpression of miR‑29a. In conclusion, to the best of our knowledge the current study suggested for the first time, that miR‑29a inhibits migration and invasion in part via direct inhibition of Robo1 in gastric cancer cells. Therefore, Robo1 and miR‑29a may serve as diagnostic or therapeutic targets for gastric cancer.

  18. MiRNA-125a-5p inhibits glioblastoma cell proliferation and promotes cell differentiation by targeting TAZ

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jian; Xiao, Gelei [Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008 (China); Peng, Gang [Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Liu, Dingyang [Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008 (China); Wang, Zeyou [Cancer Research Institute, Central South University, Changsha, Hunan 410008 (China); Liao, Yiwei; Liu, Qing [Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008 (China); Wu, Minghua [The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008 (China); Cancer Research Institute, Central South University, Changsha, Hunan 410008 (China); Yuan, Xianrui, E-mail: xry69@163.com [Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008 (China)

    2015-02-06

    Highlights: • Expression of miR-125a-5p is inversely correlated with that of TAZ in glioma cells. • MiR-125a-5p represses TAZ expression in glioma cells. • MiR-125a-5p directly targets the 3′ UTR of TAZ mRNA and promotes its degradation. • MiR-125a-5p represses CTGF and survivin via TAZ, and inhibits glioma cell growth. • MiR-125a-5p inhibits the stem cell features of HFU-251 MG cells. - Abstract: Glioblastoma (GBM) is the most lethal brain tumor due to the resistance to conventional therapies, such as radiotherapy and chemotherapy. TAZ, an important mediator of the Hippo pathway, was found to be up-regulated in diverse cancers, including in GBM, and plays important roles in tumor initiation and progression. However, little is known about the regulation of TAZ expression in tumors. In this study, we found that miR-125a-5p is an important regulator of TAZ in glioma cells by directly targeting the TAZ 3′ UTR. MiR-125a-5p levels are inversely correlated with that of TAZ in normal astrocytes and a panel of glioma cell lines. MiR-125a-5p represses the expression of TAZ target genes, including CTGF and survivin, and inhibits cell proliferation and induces the differentiation of GBM cells; whereas over-expression of TAZ rescues the effects of miR-125a-5p. This study revealed a mechanism for TAZ deregulation in glioma cells, and also demonstrated a tumor suppressor role of miR-125a-5p in glioblastoma cells.

  19. Targeting Membrane-Bound Viral RNA Synthesis Reveals Potent Inhibition of Diverse Coronaviruses Including the Middle East Respiratory Syndrome Virus

    Science.gov (United States)

    Bergström, Tomas; Kann, Nina; Adamiak, Beata; Hannoun, Charles; Kindler, Eveline; Jónsdóttir, Hulda R.; Muth, Doreen; Kint, Joeri; Forlenza, Maria; Müller, Marcel A.; Drosten, Christian; Thiel, Volker; Trybala, Edward

    2014-01-01

    Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs), a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6), a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS–CoV), and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections. PMID:24874215

  20. Molecular characterization of aspartylglucosaminidase, a lysosomal hydrolase upregulated during strobilation in the moon jellyfish, Aurelia aurita.

    Science.gov (United States)

    Tsujita, Natsumi; Kuwahara, Hiroyuki; Koyama, Hiroki; Yanaka, Noriyuki; Arakawa, Kenji; Kuniyoshi, Hisato

    2017-05-01

    The life cycle of the moon jellyfish, Aurelia aurita, alternates between a benthic asexual polyp stage and a planktonic sexual medusa (jellyfish) stage. Transition from polyp to medusa is called strobilation. To investigate the molecular mechanisms of strobilation, we screened for genes that are upregulated during strobilation using the differential display method and we identified aspartylglucosaminidase (AGA), which encodes a lysosomal hydrolase. Similar to AGAs from other species, Aurelia AGA possessed an N-terminal signal peptide and potential N-glycosylation sites. The genomic region of Aurelia AGA was approximately 9.8 kb in length and contained 12 exons and 11 introns. Quantitative RT-PCR analysis revealed that AGA expression increased during strobilation, and was then decreased in medusae. To inhibit AGA function, we administered the lysosomal acidification inhibitors, chloroquine or bafilomycin A1, to animals during strobilation. Both inhibitors disturbed medusa morphogenesis at the oral end, suggesting involvement of lysosomal hydrolases in strobilation.

  1. CD45RB is a novel molecular therapeutic target to inhibit Abeta peptide-induced microglial MAPK activation.

    Directory of Open Access Journals (Sweden)

    Yuyan Zhu

    2008-05-01

    Full Text Available Microglial activation, characterized by p38 MAPK or p44/42 MAPK pathway signal transduction, occurs in Alzheimer's disease (AD. Our previous studies demonstrated CD45, a membrane-bound protein tyrosine phosphatase (PTP, opposed beta-amyloid (Abeta peptide-induced microglial activation via inhibition of p44/42 MAPK. Additionally we have shown agonism of the RB isoform of CD45 (CD45RB abrogates lipopolysaccharide (LPS-induced microglial activation.In this study, CD45RB modulation of Abeta peptide or LPS-activated primary cultured microglial cells was further investigated. Microglial cells were co-treated with "aged" FITC-Abeta(1-42 and multiple CD45 isoform agonist antibodies. Data revealed cross-linking of CD45, particularly the CD45RB isoform, enhances microglial phagocytosis of Abeta(1-42 peptide and inhibits LPS-induced activation of p44/42 and p38 pathways. Co-treatment of microglial cells with agonist CD45 antibodies results in significant inhibition of LPS-induced microglial TNF-alpha and IL-6 release through p44/42 and/or p38 pathways. Moreover, inhibition of either of these pathways augmented CD45RB cross-linking induced microglial phagocytosis of Abeta(1-42 peptide. To investigate the mechanism(s involved, microglial cells were co-treated with a PTP inhibitor (potassium bisperoxo [1,10-phenanthroline oxovanadate; Phen] and Abeta(1-42 peptides. Data showed synergistic induction of microglial activation as evidenced by TNF-alpha and IL-6 release; both of which are demonstrated to be dependent on increased p44/42 and/or p38 activation. Finally, it was observed that cross-linking of CD45RB in the presence of Abeta(1-42 peptide, inhibits co-localization of microglial MHC class II and Abeta peptide; suggesting CD45 activation inhibits the antigen presenting phenotype of microglial cells.In summary, p38 MAPK is another novel signaling pathway, besides p44/42, in which CD45RB cross-linking negatively regulates microglial Abeta phagocytosis while

  2. Inhibition of mammalian target of rapamycin by rapamycin increases the radiosensitivity of esophageal carcinoma Eca109 cells

    OpenAIRE

    ZHANG, DEJUN; XIANG, JIE; GU, YUMING; XU, WEI; XU, HAO; ZU, MAOHENG; PEI, DONGSHENG; ZHENG, JUNNIAN

    2014-01-01

    The aim of the present study was to investigate whether radiation induces the mammalian target of rapamycin (Rap) (mTOR) signaling pathway in esophageal carcinoma Eca109 cells, and whether mTOR inhibition by rapamycin increases Eca109 cell radiosensitivity. Changes in the levels of mTOR signaling pathway and DNA damage-repair proteins in Eca109 cells prior to and following radiation were determined. The Eca109 cells were treated with Rap (0, 100, 200 and 400 nmol/l) in combination with radiat...

  3. MiR-34a Promotes Apoptosis and Inhibits Autophagy by Targeting HMGB1 in Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Liru Liu

    2017-04-01

    Full Text Available Background: MiR-34a is identified as a tumor suppressor gene and involved in acute myeloid leukemia (AML development. However, the regulatory mechanism of miR-34a in AML is unclear. Methods: The expression of miR-34a and HMGB1 in HL-60, THP-1 and HS-5 cells were detected by qRT-PCR and western blot. Lipofectamine 2000 was used to transfect with miR-34a mimics, miR-34a inhibitor, si-HMGB1, pcDNA 3.1-HMGB1, and corresponding controls. The apoptosis and autophagy of transfected AML cells were assessed by flow cytometry and western blot, respectively. Bioinformatics software and dual luciferase reporter assay were applied to predict and verify the target of miR-34a. The effects of miR-34a mimics or si-HMGB1 on chemotherapy-induced autophagy were further explored in HL-60 cells treated with all-trans retinoic acid (ATRA along with lysosomal protease inhibitors E64d and pepstatin A. Results: MiR-34a was lower expressed and HMGB1 mRNA and proteins were both higher expressed in HL-60 and THP-1 cells compared with that in HS-5 cells. Higher expression levels of MiR-34 and lower expression levels of HMGB1 both significantly promoted apoptosis and inhibited autophagy in HL-60 and THP-1 cells. Dual luciferase reporter system confirmed that HMGB1 was a potential target of miR-34a. Moreover, overexpression of HMGB1 dramatically reversed the promotion of apoptosis and inhibition of autophagy mediated by higher expression level of miR-34a. Higher expression level of miR-34a and lower expression level of HMGB1 both inhibited chemotherapy-induced autophagy by stimulating the LC3 conversion. Conclusion: MiR-34a promoted cell apoptosis and inhibited autophagy by targeting HMGB1. Therefore, miR-34a may be a potential promising molecular target for AML therapy.

  4. Novel Therapeutic Targets to Inhibit Tumor Microenvironment-Induced Castration Resistant Prostate Cancer

    Science.gov (United States)

    2016-10-01

    MAPK4. We are also in the process of generating MAPK4-knockout LNCaP cells using the CRISPR / Cas9 system. Altogether, we hope that we can generate the...engineered LNCaP cells that are stable for either total loss of MAPK4 ( CRISPR / Cas9 knockout) or with inducible knockdown of MAPK4 (Dox-inducible...knockdown or CRISPR / Cas9 mediated knockout of MAPK4 (we are working on them). Major Task 2: Determine whether inhibition of MAPK4 (in PCa) and TGF-β

  5. Targeting the pseudorabies virus DNA polymerase processivity factor UL42 by RNA interference efficiently inhibits viral replication.

    Science.gov (United States)

    Wang, Yi-Ping; Huang, Li-Ping; Du, Wen-Juan; Wei, Yan-Wu; Wu, Hong-Li; Feng, Li; Liu, Chang-Ming

    2016-08-01

    RNA interference (RNAi) is a conserved gene-silencing mechanism in which small interfering RNAs (siRNAs) induce the sequence-specific degradation of homologous RNAs. It has been shown to be a novel and effective antiviral therapy against a wide range of viruses. The pseudorabies virus (PRV) processivity factor UL42 can enhance the catalytic activity of the DNA polymerase and is essential for viral replication, thus it may represent a potential drug target of antiviral therapy against PRV infection. Here, we synthesized three siRNAs (siR-386, siR-517, and siR-849) directed against UL42 and determined their antiviral activities in cell culture. We first examined the kinetics of UL42 expression and found it was expressed with early kinetics during PRV replication. We verified that siR-386, siR-517, and siR-849 efficiently inhibited UL42 expression in an in vitro transfection system, thereby validating their inhibitory effects. Furthermore, we confirmed that these three siRNAs induced potent inhibitory effects on UL42 expression after PRV infection, comparable to the positive control siRNA, siR-1046, directed against the PRV DNA polymerase, the UL30 gene product, which is essential for virus replication. In addition, PRV replication was markedly reduced upon downregulation of UL42 expression. These results indicate that UL42-targeted RNAi efficiently inhibits target gene expression and impairs viral replication. This study provides a new clue for the design of an intervention strategy against herpesviruses by targeting their processivity factors. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Inhibition of HIV Replication by Cyclic and Hairpin PNAs Targeting the HIV-1 TAR RNA Loop

    Directory of Open Access Journals (Sweden)

    Gregory Upert

    2012-01-01

    Full Text Available Human immunodeficiency virus-1 (HIV-1 replication and gene expression entails specific interaction of the viral protein Tat with its transactivation responsive element (TAR, to form a highly stable stem-bulge-loop structure. Previously, we described triphenylphosphonium (TPP cation-based vectors that efficiently deliver nucleotide analogs (PNAs into the cytoplasm of cells. In particular, we showed that the TPP conjugate of a linear 16-mer PNA targeting the apical stem-loop region of TAR impedes Tat-mediated transactivation of the HIV-1 LTR in vitro and also in cell culture systems. In this communication, we conjugated TPP to cyclic and hairpin PNAs targeting the loop region of HIV-1 TAR and evaluated their antiviral efficacy in a cell culture system. We found that TPP-cyclic PNAs containing only 8 residues, showed higher antiviral potency compared to hairpin PNAs of 12 or 16 residues. We further noted that the TPP-conjugates of the 8-mer cyclic PNA as well as the 16-mer linear PNA displayed similar antiviral efficacy. However, cyclic PNAs were shown to be highly specific to their target sequences. This communication emphasizes on the importance of small constrained cyclic PNAs over both linear and hairpin structures for targeting biologically relevant RNA hairpins.

  7. Antimicrobial peptide inhibition of fungalysin proteases that target plant type 19 Family IV defense chitinases

    Science.gov (United States)

    Cereal crops and other plants produce secreted seed chitinases that reduce pathogenic infection, most likely by targeting the fungal chitinous cell wall. We have shown that corn (Zea mays) produces three GH family 19, plant class IV chitinases, that help in protecting the plant against Fusarium and ...

  8. Targeting the MUC1-C oncoprotein inhibits self-renewal capacity of breast cancer cells

    National Research Council Canada - National Science Library

    Alam, Maroof; Rajabi, Hasan; Ahmad, Rehan; Jin, Caining; Kufe, Donald

    2014-01-01

    ...(CQCAQA) mutant. Moreover, treatment with the MUC1-C inhibitor GO-203, a cell penetrating peptide that binds to the MUC1-C cytoplasmic domain and blocks MUC1-C function, confirmed the importance of this target for self...

  9. MiR-145 inhibits metastasis by targeting fascin actin-bundling protein 1 in nasopharyngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Ying-Qin Li

    Full Text Available Based on our recent microarray analysis, we found that miR-145 was obviously downregulated in nasopharyngeal carcinoma (NPC tissues. However, little is known about its function and mechanism involving in NPC development and progression.Quantitative RT-PCR was used to detect miR-145 expression in NPC cell lines and clinical samples. Wound healing, Transwell migration and invasion, three-dimension spheroid invasion assays, and lung metastasis model were performed to test the migratory, invasive, and metastatic ability of NPC cells. Luciferase reporter assay, quantitative RT-PCR, and Western blotting were used to verify the target of miR-145.MiR-145 was obviously decreased in NPC cell lines and clinical samples (P<0.01. Ectopic overexpression of miR-145 significantly inhibited the migratory and invasive ability of SUNE-1 and CNE-2 cells. In addition, stably overexpressing of miR-145 in SUNE-1 cells could remarkably restrain the formation of metastatic nodes in the lungs of mice. Furthermore, fascin actin-bundling protein 1 (FSCN1 was verified as a target of miR-145, and silencing FSCN1 with small RNA interfering RNA could suppress NPC cell migration and invasion.Our findings demonstrated that miR-145 function as a tumor suppressor in NPC development and progression via targeting FSCN1, which could sever as a potential novel therapeutic target for patients with NPC.

  10. Inhibition of copper uptake in yeast reveals the copper transporter Ctr1p as a potential molecular target of saxitoxin.

    Science.gov (United States)

    Cusick, Kathleen D; Minkin, Steven C; Dodani, Sheel C; Chang, Christopher J; Wilhelm, Steven W; Sayler, Gary S

    2012-03-06

    Saxitoxin is a secondary metabolite produced by several species of dinoflagellates and cyanobacteria which targets voltage-gated sodium and potassium channels in higher vertebrates. However, its molecular target in planktonic aquatic community members that co-occur with the toxin producers remains unknown. Previous microarray analysis with yeast identified copper and iron-homeostasis genes as being differentially regulated in response to saxitoxin. This study sought to identify the molecular target in microbial cells by comparing the transcriptional profiles of key copper and iron homeostasis genes (CTR1, FRE1, FET3, CUP1, CRS5) in cells exposed to saxitoxin, excess copper, excess iron, an extracellular Cu(I) chelator, or an intracellular Cu(I) chelator. Protein expression and localization of Ctr1p (copper transporter), Fet3p (multicopper oxidase involved in high-affinity iron uptake), and Aft1p (iron regulator) were also compared among treatments. Combined transcript and protein profiles suggested saxitoxin inhibited copper uptake. This hypothesis was confirmed by intracellular Cu(I) imaging with a selective fluorescent probe for labile copper. On the basis of the combined molecular and physiological results, a model is presented in which the copper transporter Ctr1p serves as a molecular target of saxitoxin and these observations are couched in the context of the eco-evolutionary role this toxin may serve for species that produce it.

  11. CRISPR-Mediated Drug-Target Validation Reveals Selective Pharmacological Inhibition of the RNA Helicase, eIF4A

    Directory of Open Access Journals (Sweden)

    Jennifer Chu

    2016-06-01

    Full Text Available Targeting translation initiation is an emerging anti-neoplastic strategy that capitalizes on de-regulated upstream MAPK and PI3K-mTOR signaling pathways in cancers. A key regulator of translation that controls ribosome recruitment flux is eukaryotic initiation factor (eIF 4F, a hetero-trimeric complex composed of the cap binding protein eIF4E, the scaffolding protein eIF4G, and the RNA helicase eIF4A. Small molecule inhibitors targeting eIF4F display promising anti-neoplastic activity in preclinical settings. Among these are some rocaglate family members that are well tolerated in vivo, deplete eIF4F of its eIF4A helicase subunit, have shown activity as single agents in several xenograft models, and can reverse acquired resistance to MAPK and PI3K-mTOR targeted therapies. Herein, we highlight the power of using genetic complementation approaches and CRISPR/Cas9-mediated editing for drug-target validation ex vivo and in vivo, linking the anti-tumor properties of rocaglates to eIF4A inhibition.

  12. MicroRNA-184 inhibits cell proliferation and metastasis in human colorectal cancer by directly targeting IGF-1R.

    Science.gov (United States)

    Wu, Guannan; Liu, Jiayun; Wu, Zhenfeng; Wu, Xiaoyu; Yao, Xuequan

    2017-09-01

    Colorectal cancer is currently the third most common cancer in males and the second in females worldwide. In spite of marked progress having been achieved in surgical resection, radiotherapy and chemotherapy, the prognosis for patients with colorectal cancer remains poor. Previous studies have demonstrated that the abnormal expression of microRNAs contributed to human cancer carcinogenesis and progression, suggesting miRNAs as novel therapeutic targets in colorectal cancer. The aim of the present study was to investigate the expression, functions and underlying molecular mechanisms of microRNA-184 (miR-184) in colorectal cancer. The results identified that miR-184 was significantly downregulated in colorectal cancer tissues and cell lines. In vitro functional studies demonstrated that miR-184 significantly inhibited colorectal cancer cell proliferation, migration and invasion. Notably, insulin-like growth factor 1 receptor (IGF-1R) was identified as a direct target of miR-184 in colorectal cancer. Furthermore, the functions of IGF-1R small interfering RNA were similar to those induced by miR-184 in colorectal cancer, suggesting IGF-1R as a functional target of miR-184 in colorectal cancer. The results of the present study indicated that miR-184 may be a novel therapeutic strategy regimen of targeted therapy for colorectal cancer.

  13. A comprehensive look at phobic fear in inhibition of return: Phobia-related spiders as cues and targets.

    Science.gov (United States)

    Berdica, Elisa; Gerdes, Antje B M; Alpers, Georg W

    2017-03-01

    The so called inhibition of return (IOR) effect refers to a bias against returning attention to a location which was previously investigated. Because emotionally salient material has the capacity to capture and hold attention it has been suggested that this material may disrupt this otherwise impressively stable phenomenon. 40 students participated in the experiment. Black and white schematic drawings of a spider, a butterfly or a cross were used as cues. A black dot, a spider, a butterfly or a cross were used as targets. Participants were required to press a key whenever the target picture appeared. Subsequently, they rated the pictures on valence and arousal. Results showed that the IOR effect remained stable and did not diminish with either fear-related cues or fear-related targets. This data adds strong arguments for the stability of IOR. The spider fearful participants were not diagnosed patients. They still meet the criteria for spider fear but follow-up studies should pursue the same question with a specific focus on participants' levels of anxiety. This study is a contribution to the debate on how emotions affect or do not affect attentional processes such as the IOR. IOR appears to be a robust phenomenon and the emotional valence of neither the cue nor the emotional valence of the target can override it. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Active targeting docetaxel-PLA nanoparticles eradicate circulating lung cancer stem-like cells and inhibit liver metastasis.

    Science.gov (United States)

    Yang, Nan; Jiang, Yao; Zhang, Huifeng; Sun, Bo; Hou, Chunying; Zheng, Ji; Liu, Yanyong; Zuo, Pingping

    2015-01-05

    Lung cancer is the major cause of cancer related lethality worldwide, and metastasis to distant organs is the pivotal cause of death for the vast majority of lung cancer patients. Accumulated evidence indicates that lung cancer stem-like cells (CSLCs) play important roles in metastagenesis, and these circulating CSLCs may be important targets to inhibit the subsequent metastasis. The present study was aimed at establishing CSLC-targeting polylactic acid (PLA) encapsulated docetaxel nanoparticles for antimetastatic therapy. Cyclic binding peptides were screened on CSLCs in vitro and the peptide CVKTPAQSC exhibiting high specific binding ability to pulmonary adenocarcinoma tissue was subsequently conjugated to the nanoparticles loaded with docetaxel (NDTX). Antimetastatic effect of CSLC-targeting nanoparticles loaded with docetaxel (TNDTX) was evaluated in a nude mouse model of liver metastasis. Results showed that, in the absence of targeting peptide, NDTX hardly exhibited any antimetastatic effect. However, TNDTX treatment significantly decreased the metastatic tumor area in the nude mouse liver. Histopathological and serological results also confirmed the antimetastatic efficacy of TNDTX. To our knowledge, this is the first report on establishing a CSLC-based strategy for lung cancer metastatic treatment, and we hope this will offer a potential therapeutic approach for management of metastatic lung cancer.

  15. Functionalized magnetic nanochains with enhanced MR imaging: A novel nanosystem for targeting and inhibition of early glioma.

    Science.gov (United States)

    Zhang, Yi; Huang, Zhongbing; Wu, Zhi; Yin, Guangfu; Wang, Lei; Gao, Fabao

    2016-04-01

    Absence of efficient targeting limits the application of magnetic nanochains (NCs) in the diagnosis of early brain cancer. Herein, dextran-coated NCs (more than 100 nm length and ∼ 10 nm cores diameter), which were modified by cyclic pentapeptide c(RGDyC) or chlorotoxin (CTX) as the targeting molecules, were fabricated via carbodiimide chemistry and thiol technique. The analysis results revealed that the obtained slender NCs exhibited good biocompatibility, superparamagnetic property, high transverse relaxivity (R2) and longer blood circulation time. The test results of human umbilical vein endothelial cells and U251 human glioma cells indicated that the conjugation of c(RGDyC) could obviously increase the cyto-internalization of c(RGDyC)-NCs, however, CTX modification could significantly enhance accumulation of CTX-NCs in U251 cells, leading to cellular apoptosis. The results of in vivo biodistribution tests and in vivo magnetic resonance (MR) imaging indicated that, although the c(RGDyC)-NCs could target early glioma to some extent and obviously enhance the contrast of MR imaging, CTX-NCs possessed higher tumor-targeting ability and good inhibition effect than the c(RGDyC)-NCs, suggesting that CTX-NCs are promising candidates for the diagnosis and therapy of early glioma. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Hydrolase activity in Jerusalem artichoke and chicory

    Energy Technology Data Exchange (ETDEWEB)

    Klaushofer, H.; Abraham, B.; Leichtfried, G.

    1988-03-01

    Post-harvest storage of chicory and Jerusalem artichoke and overwintering of Jerusalem artichoke in the soil cause a more or less pronounced shortening of the fructan chain, depending on the variety. The proportion of fructose in the total fructan thus shifts towards glucose. This reduction on the fructose/glucose ratio is undesirable if the intention is to obtain a sweetener of high fructose content. In this work an attempt was made, via the quantity of fructose formed after a 4(3)-hour reaction of a tuber (root) extract with inulin, to assign a characteristic value to the depolymerization tendency of the material in question. However, since the plant extract not only contains enzymes (hydrolase A and B) that shorten the fructan chains but the activity of fructosyltransferase (SST, FFT) and enzymes of microbial origin (inulinase II, invertase) must also be considered, the concept of 'hydrolase activity' used by the authors is essentially an expression of 'total activity'. The activity unit (EU) is defined as the ability to split of 1 ..mu..mol of fructose from (chicory) inulin per minute under experimental conditions. Values of 0.25 to 0.77 EU/g dry solids were found in Jerusalem artichoke. Considerable differences may occur between varieties from the same cultivated area and the same harvest period. With one and the same variety, the activity appears to be subject to marked yearly fluctuations, so that at present, because of hydrolase activity, nothing certain can be said about the depolymerization tendency of a variety.

  17. Mechanism of Metformin-dependent Inhibition of Mammalian Target of Rapamycin (mTOR) and Ras Activity in Pancreatic Cancer

    Science.gov (United States)

    Nair, Vijayalekshmi; Sreevalsan, Sandeep; Basha, Riyaz; Abdelrahim, Maen; Abudayyeh, Ala; Rodrigues Hoffman, Aline; Safe, Stephen

    2014-01-01

    The antidiabetic drug metformin exhibits both chemopreventive and chemotherapeutic activity for multiple cancers including pancreatic cancer; however, the underlying mechanism of action of metformin is unclear. A recent study showed that metformin down-regulated specificity protein (Sp) transcription factors (TFs) Sp1, Sp3, and Sp4 in pancreatic cancer cells and tumors, and this was accompanied by down-regulation of several pro-oncogenic Sp-regulated genes. Treatment with metformin or down-regulation of Sp TFs by RNAi also inhibits two major pro-oncogenic pathways in pancreatic cancer cells, namely mammalian target of rapamycin (mTOR) signaling and epidermal growth factor (EGFR)-dependent activation of Ras. Metformin and Sp knockdown by RNAi decreased expression of the insulin-like growth factor-1 receptor (IGF-1R), resulting in inhibition of mTOR signaling. Ras activity was also decreased by metformin and Sp knockdown of EGFR, another Sp-regulated gene. Thus, the antineoplastic activities of metformin in pancreatic cancer are due, in part, to down-regulation of Sp TFs and Sp-regulated IGF-1R and EGFR, which in turn results in inhibition of mTOR and Ras signaling, respectively. PMID:25143389

  18. Expression of microRNA-133 inhibits epithelial-mesenchymal transition in lung cancer cells by directly targeting FOXQ1.

    Science.gov (United States)

    Xiao, Bo; Liu, Huazhen; Gu, Zeyun; Ji, Cheng

    2016-10-01

    MicroRNA (miR) was implicated in the tumorigenesis of many types of cancer, but no study was conducted on the exact role of miR-133 in lung cancer. We have identified miR-133 as a putative regulator of FOXQ1 expression, and investigated the potential involvement of miR-133 in the migration and invasion of lung cancer cells, as well as the underlying molecular mechanism. MiR-133 directly targeted and down-regulated FOXQ1 expression, which in turn reduced TGF-β level. MiR-133 was down-regulated in lung cancer cell lines A549 and HCC827, and its re-expression significantly inhibited the migration and invasion of the lung cancer cells. Further investigation revealed that this inhibition was caused by reversing the epithelial-mesenchymal transition, evidenced by miR-133 induced elevation of epithelial marker E-cadherin, and reduction of mesenchymal marker Vimentin. Our study is the first to identify miR-133 as a biomarker for lung cancer. It functions to down-regulate FOXQ1, and inhibit epithelial-mesenchymal transition, which antagonizes lung cancer tumorigenesis. Therefore our data support the role of miR-133 as a potential molecular therapeutic tool in treating lung cancer. Copyright © 2015 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. miR-150-5p inhibits hepatoma cell migration and invasion by targeting MMP14.

    Directory of Open Access Journals (Sweden)

    Tao Li

    Full Text Available Hepatocellular carcinoma (HCC is one of the leading causes of cancer-related mortality worldwide. Despite progress in diagnostics and treatment of HCC, its prognosis remains poor because the molecular mechanisms underlying hepatocarcinogenesis are not well understood. In the study, we focused on identifying the role of miRNAs in HCC progression. miRNA microarray was used to analyze the differentially expressed miRNAs, and the results were validated by qPCR. We found that the miR-150-5p expression is down-regulated in HCC tissues compared with pair non-tumor tissues. miR-150-5p expression is also decreased in metastatic cancer tissues compared with pair primary tissues, indicating that miR-150-5p may be involved in HCC metastasis. Functionally, miR-150-5p inhibition significantly promotes hepatoma cell migration and invasion, whereas miR-150-5p overexpression suppresses cancer cell migration and invasion in vitro. The matrix metalloproteinase 14 (MMP14 is identified as a new target gene of miR-150-5p. miR-150-5p markedly inhibits MMP14 expression in hepatoma cells, and miR-150-5p expression is negative correlation with MMP14 expression in vivo. More important, re-expression of MMP14 in hepatoma cells partially reverses the effect of miR-150-5p in inhibiting cell invasion.

  20. Proactive Selective Inhibition Targeted at the Neck Muscles: This Proximal Constraint Facilitates Learning and Regulates Global Control.

    Science.gov (United States)

    Loram, Ian D; Bate, Brian; Harding, Pete; Cunningham, Ryan; Loram, Alison

    2017-04-01

    While individual muscle function is known, the sensory and motor value of muscles within the whole-body sensorimotor network is complicated. Specifically, the relationship between neck muscle action and distal muscle synergies is unknown. This work demonstrates a causal relationship between regulation of the neck muscles and global motor control. Studying violinists performing unskilled and skilled manual tasks, we provided ultrasound feedback of the neck muscles with instruction to minimize neck muscle change during task performance and observed the indirect effect on whole-body movement. Analysis of ultrasound, kinematic, electromyographic and electrodermal recordings showed that proactive inhibition targeted at neck muscles had an indirect global effect reducing the cost of movement, reducing complex involuntary, task-irrelevant movement patterns and improving balance. This effect was distinct from the effect of gaze alignment which increased physiological cost and reduced laboratory-referenced movement. Neck muscle inhibition imposes a proximal constraint on the global motor plan, forcing a change in highly automated sensorimotor control. The proximal location ensures global influence. The criterion, inhibition of unnecessary action, ensures reduced cost while facilitating task-relevant variation. This mechanism regulates global motor function and facilitates reinforcement learning to change engrained, maladapted sensorimotor control associated with chronic pain, injury and performance limitation.

  1. Inhibition of Lapatinib-Induced Kinome Reprogramming in ERBB2-Positive Breast Cancer by Targeting BET Family Bromodomains

    Directory of Open Access Journals (Sweden)

    Timothy J. Stuhlmiller

    2015-04-01

    Full Text Available Therapeutics that target ERBB2, such as lapatinib, often provide initial clinical benefit, but resistance frequently develops. Adaptive responses leading to lapatinib resistance involve reprogramming of the kinome through reactivation of ERBB2/ERBB3 signaling and transcriptional upregulation and activation of multiple tyrosine kinases. The heterogeneity of induced kinases prevents their targeting by a single kinase inhibitor, underscoring the challenge of predicting effective kinase inhibitor combination therapies. We hypothesized that, to make the tumor response to single kinase inhibitors durable, the adaptive kinome response itself must be inhibited. Genetic and chemical inhibition of BET bromodomain chromatin readers suppresses transcription of many lapatinib-induced kinases involved in resistance, including ERBB3, IGF1R, DDR1, MET, and FGFRs, preventing downstream SRC/FAK signaling and AKT reactivation. Combining inhibitors of kinases and chromatin readers prevents kinome adaptation by blocking transcription, generating a durable response to lapatinib, and overcoming the dilemma of heterogeneity in the adaptive response.

  2. Eriocalyxin B Inhibits STAT3 Signaling by Covalently Targeting STAT3 and Blocking Phosphorylation and Activation of STAT3.

    Directory of Open Access Journals (Sweden)

    Xiaokui Yu

    Full Text Available Activated STAT3 plays an important role in oncogenesis by stimulating cell proliferation and resisting apoptosis. STAT3 therefore is an attractive target for cancer therapy. We have screened a traditional Chinese herb medicine compound library and found Eriocalyxin B (EB, a diterpenoid from Isodon eriocalyx, as a specific inhibitor of STAT3. EB selectively inhibited constitutive as well as IL-6-induced phosphorylation of STAT3 and induced apoptosis of STAT3-dependent tumor cells. EB did not affect the upstream protein tyrosine kinases or the phosphatase (PTPase of STAT3, but rather interacted directly with STAT3. The effects of EB could be abolished by DTT or GSH, suggesting a thiol-mediated covalent linkage between EB and STAT3. Site mutagenesis of cysteine in and near the SH2 domain of STAT3 identified Cys712 to be the critical amino acid for the EB-induced inactivation of STAT3. Furthermore, LC/MS/MS analyses demonstrated that an α, β-unsaturated carbonyl of EB covalently interacted with the Cys712 of STAT3. Computational modeling analyses also supported a direct interaction between EB and the Cys712 of STAT3. These data strongly suggest that EB directly targets STAT3 through a covalent linkage to inhibit the phosphorylation and activation of STAT3 and induces apoptosis of STAT3-dependent tumor cells.

  3. MicroRNA-142-3p Inhibits Chondrocyte Apoptosis and Inflammation in Osteoarthritis by Targeting HMGB1.

    Science.gov (United States)

    Wang, Xiuqin; Guo, Yanqing; Wang, Chunyan; Yu, Hong; Yu, Xiuxiang; Yu, Hongbo

    2016-10-01

    Osteoarthritis (OA) is a degenerative joint disease characterized by articular cartilage degradation and joint inflammation in which microRNAs are significantly involved. Previous studies have reported that miR-142-3p is a novel mediator of inflammatory signaling pathways, but whether miR-142-3p regulates OA remains unknown. In this study, we aimed to investigate the potential role of miR-142-3p in OA and the underlying molecular mechanism. We showed that miR-142-3p was significantly reduced in the articular cartilage tissues from experimental OA mice. The expression of miR-142-3p was also decreased in chondrocytes treated with lipopolysaccharide (LPS) in vitro. Moreover, the overexpression of miR-142-3p significantly inhibited cell apoptosis, nuclear factor (NF)-kB, and the production of proinflammatory cytokines, including interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF)-α induced by LPS. Interestingly, bioinformatics analysis demonstrated that high mobility group box 1 (HMGB1), an important inflammatory mediator of OA, was predicted as a target of miR-142-3p, which was validated by dual-luciferase reporter assay. The high expression of HMGB1 in chondrocytes induced by LPS was significantly inhibited by miR-142-3p overexpression. Furthermore, the restoration of HMGB1 markedly abrogated the effect of miR-142-3p. In OA mice, the overexpression of miR-142-3p by lentivirus-mediated gene transfer significantly inhibited HMGB1 expression, NF-kB signaling, and proinflammatory cytokines. Moreover, the overexpression of miR-142-3p significantly alleviated OA progression in OA mice in vivo. Taken together, our study suggests that miR-142-3p inhibits chondrocyte apoptosis and inflammation in OA by inhibiting the HMGB1-mediated NF-kB signaling pathway. The overexpression of miR-142-3p impedes the OA progression in mice in vivo indicating that miR-142-3p is a potential molecular target for OA treatment.

  4. Transmembrane Domain Targeting Peptide Antagonizing ErbB2/Neu Inhibits Breast Tumor Growth and Metastasis

    Directory of Open Access Journals (Sweden)

    Alexia Arpel

    2014-09-01

    Full Text Available Breast cancer is still a deadly disease despite major achievements in targeted therapies designed to block ligands or ligand-binding subunits of major tyrosine kinase receptors. Relapse is significant and metastases deleterious, which demands novel strategies for fighting this disease. Here, we report a proof-of-concept experiment demonstrating that small peptides interfering with the transmembrane domain of the tyrosine kinase epidermal growth factor receptor ErbB2 exhibit anticancer properties when used at micromolar dosages in a genetically engineered mouse model of breast cancer. Different assays demonstrate the specificity of the ErbB2-targeting peptide, which induces long-term reduction of ErbB2 phosphorylation and Akt signaling consistent with reduced tumor cell proliferation and increased survival. Microcomputed tomography analysis established the antimetastatic activity of the peptide and its impact on primary tumor growth. This reveals the interior of the cell membrane as an unexplored dimension for drug design.

  5. Evidences for Piperine inhibiting cancer by targeting human G-quadruplex DNA sequences

    OpenAIRE

    Arpita Tawani; Ayeman Amanullah; Amit Mishra; Amit Kumar

    2016-01-01

    Piperine, a naturally occurring alkaloid, is well known as anti-oxidant, anti-mutagenic, anti-tumor and anti-proliferative agent. Piperine exerts such pharmacological activities by binding or interacting with various cellular targets. Recently, the first report for Piperine interaction with duplex DNA has been published last year but its interaction with G-quadruplex structures has not been studied yet. Herein, we report for the first time the interaction of Piperine with various DNA G-quadru...

  6. Platelet-targeted microbubbles inhibit re-occlusion after thrombolysis with transcutaneous ultrasound and microbubbles.

    Science.gov (United States)

    Zhou, X B; Qin, H; Li, J; Wang, B; Wang, C B; Liu, Y M; Jia, X D; Shi, N

    2011-04-01

    Microbubbles (MBs) can augment the acoustic cavitation' (US), thereby facilitating the thrombolysis of external ultrasound. But we observed re-thrombosis after successful thrombolysis by MBs and transcutaneous ultrasound in an endothelium injury model. This study was designed to explore whether platelet-targeted MBs can prevent the reformation of thrombi. Arterial injury was induced in canine femoral arteries with balloon, and the arteries were completely thrombotically occluded. The arteries were treated with intra-arterial MBs or platelet-targeted MBs (TMB) and transcutaneous low frequency ultrasound (LFUS) to achieve complete thrombolysis. The arterial flow was monitored with angiogram for 4h following treatment. Results showed that both MBs and TMBs produced successful dissolution of clots in the presence of ultrasound. The re-occlusion began to occur 1h after thrombolysis in MB/LFUS treatment, and 7 of 8 arteries were re-occluded within 3h. Most of the arteries (7 of 8) in the TMB/LFUS group remained patent for 4h following treatment. The flow tended to decrease after thrombolysis in MB/LFUS treatment. These results indicated that platelet-targeted microbubbles were beneficial in preventing re-thrombosis in vivo and microbubbles served as good carrier of thrombolytic and anticoagulation drugs. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Enhanced Growth Inhibition of Osteosarcoma by Cytotoxic Polymerized Liposomal Nanoparticles Targeting the Alcam Cell Surface Receptor

    Directory of Open Access Journals (Sweden)

    Noah Federman

    2012-01-01

    Full Text Available Osteosarcoma is the most common primary malignancy of bone in children, adolescents, and adults. Despite extensive surgery and adjuvant aggressive high-dose systemic chemotherapy with potentially severe bystander side effects, cure is attainable in about 70% of patients with localized disease and only 20%–30% of those patients with metastatic disease. Targeted therapies clearly are warranted in improving our treatment of this adolescent killer. However, a lack of osteosarcoma-associated/specific markers has hindered development of targeted therapeutics. We describe a novel osteosarcoma-associated cell surface antigen, ALCAM. We, then, create an engineered anti-ALCAM-hybrid polymerized liposomal nanoparticle immunoconjugate (α-AL-HPLN to specifically target osteosarcoma cells and deliver a cytotoxic chemotherapeutic agent, doxorubicin. We have demonstrated that α-AL-HPLNs have significantly enhanced cytotoxicity over untargeted HPLNs and over a conventional liposomal doxorubicin formulation. In this way, α-AL-HPLNs are a promising new strategy to specifically deliver cytotoxic agents in osteosarcoma.

  8. Increased expression of (immuno)proteasome subunits during epileptogenesis is attenuated by inhibition of the mammalian target of rapamycin pathway.

    Science.gov (United States)

    Broekaart, Diede W M; van Scheppingen, Jackelien; Geijtenbeek, Karlijne W; Zuidberg, Mark R J; Anink, Jasper J; Baayen, Johannes C; Mühlebner, Angelika; Aronica, Eleonora; Gorter, Jan A; van Vliet, Erwin A

    2017-08-01

    Inhibition of the mammalian target of rapamycin (mTOR) pathway reduces epileptogenesis in various epilepsy models, possibly by inhibition of inflammatory processes, which may include the proteasome system. To study the role of mTOR inhibition in the regulation of the proteasome system, we investigated (immuno)proteasome expression during epileptogenesis, as well as the effects of the mTOR inhibitor rapamycin. The expression of constitutive (β1, β5) and immunoproteasome (β1i, β5i) subunits was investigated during epileptogenesis using immunohistochemistry in the electrical post-status epilepticus (SE) rat model for temporal lobe epilepsy (TLE). The effect of rapamycin was studied on (immuno)proteasome subunit expression in post-SE rats that were treated for 6 weeks. (Immuno)proteasome expression was validated in the brain tissue of patients who had SE or drug-resistant TLE and the effect of rapamycin was studied in primary human astrocyte cultures. In post-SE rats, increased (immuno)proteasome expression was detected throughout epileptogenesis in neurons and astrocytes within the hippocampus and piriform cortex and was most evident in rats that developed a progressive form of epilepsy. Rapamycin-treated post-SE rats had reduced (immuno)proteasome protein expression and a lower number of spontaneous seizures compared to vehicle-treated rats. (Immuno)proteasome expression was also increased in neurons and astrocytes within the human hippocampus after SE and in patients with drug-resistant TLE. In vitro studies using cultured human astrocytes showed that interleukin (IL)-1β-induced (immuno)proteasome gene expression could be attenuated by rapamycin. Because dysregulation of the (immuno)proteasome system is observed before the occurrence of spontaneous seizures in rats, is associated with progression of epilepsy, and can be modulated via the mTOR pathway, it may represent an interesting novel target for drug treatment in epilepsy. Wiley Periodicals, Inc. © 2017

  9. Selective inhibition of the human tie-1 promoter with triplex-forming oligonucleotides targeted to Ets binding sites.

    Science.gov (United States)

    Hewett, Peter W; Daft, Emma L; Laughton, Charles A; Ahmad, Shakil; Ahmed, Asif; Murray, J Clifford

    2006-01-01

    The Tie receptors (Tie-1 and Tie-2/Tek) are essential for angiogenesis and vascular remodeling/integrity. Tie receptors are up-regulated in tumor-associated endothelium, and their inhibition disrupts angiogenesis and can prevent tumor growth as a consequence. To investigate the potential of anti-gene approaches to inhibit tie gene expression for anti-angiogenic therapy, we have examined triple-helical (triplex) DNA formation at 2 tandem Ets transcription factor binding motifs (designated E-1 and E-2) in the human tie-1 promoter. Various tie-1 promoter deletion/mutation luciferase reporter constructs were generated and transfected into endothelial cells to examine the relative activities of E-1 and E-2. The binding of antiparallel and parallel (control) purine motif oligonucleotides (21-22 bp) targeted to E-1 and E-2 was assessed by plasmid DNA fragment binding and electrophoretic mobility shift assays. Triplex-forming oligonucleotides were incubated with tie-1 reporter constructs and transfected into endothelial cells to determine their activity. The Ets binding motifs in the E-1 sequence were essential for human tie-1 promoter activity in endothelial cells, whereas the deletion of E-2 had no effect. Antiparallel purine motif oligonucleotides targeted at E-1 or E-2 selectively formed strong triplex DNA (K(d) approximately 10(-7) M) at 37 degrees C. Transfection of tie-1 reporter constructs with triplex DNA at E-1, but not E-2, specifically inhibited tie-1 promoter activity by up to 75% compared with control oligonucleotides in endothelial cells. As similar multiple Ets binding sites are important for the regulation of several endothelial-restricted genes, this approach may have broad therapeutic potential for cancer and other pathologies involving endothelial proliferation/dysfunction.

  10. MicroRNA-340 inhibits the migration, invasion, and metastasis of breast cancer cells by targeting Wnt pathway.

    Science.gov (United States)

    Mohammadi-Yeganeh, Samira; Paryan, Mahdi; Arefian, Ehsan; Vasei, Mohammad; Ghanbarian, Hossein; Mahdian, Reza; Karimipoor, Morteza; Soleimani, Masoud

    2016-07-01

    MicroRNAs (miRNAs) play a key role in tumor metastasis based on their capacity to regulate the expression of tumor-related genes. Over-expression of key genes such as c-MYC and CTNNB1 (encoding β-catenin) in Wnt/β-catenin-dependent and ROCK1 in Wnt/β-catenin-independent signaling pathways (Rho/Rho-associated kinase (ROCK) signaling pathway) has already been identified as the hallmarks of many tumors, and their role in breast cancer has also been investigated and confirmed. miR-340 characterization as an onco-suppressor miRNA has been previously reported. However, the mechanism by which it inhibits metastasis has not been completely elucidated. Quantitative real-time PCR (qPCR), Western blot, and luciferase assays were used to confirm the effect of miR-340 on the 3'-untranslated region (UTR) of the target genes. Lentiviral particles containing miR-340 were also used to evaluate the effect of miR-340 restoration on cell proliferation, migration, and invasion in vitro in the invasive MDA-MB-231 cell line. By applying bioinformatic approaches for the prediction of miRNAs targeting 3'-UTRs of CTNNB1, c-MYC, and ROCK1, we found out that miR-340 could dramatically down-regulate metastasis by targeting Wnt signaling in breast cancer cells. In the current study, analyzing miR-340 by reverse transcription quantitative PCR (RT-qPCR) in MDA-MB-231 showed that it was remarkably down-regulated in the metastatic breast cancer cell line. We found that restoration of miR-340 in the invasive breast cancer cell line, MDA-MB-231, suppresses the expression of the target genes' messenger RNA (mRNA) and protein and, as a result, inhibits tumor cell invasion and metastasis. Our findings highlight the ability of bioinformatic approaches to find miRNAs targeting specific genes. By bioinformatic analysis, we confirmed the important role of miR-340 as a pivotal regulator of breast cancer metastasis in targeting previously validated (ROCK1) and potentially novel genes, i.e., (CTNNB1 and c-MYC).

  11. MiR-181b targets Six2 and inhibits the proliferation of metanephric mesenchymal cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Zhongshi; Mao, Zhaomin; Wang, Honglian; Fang, Yin; Chen, Tielin [The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); Wan, Qianya [The Undergraduates Class of 2011 entry, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); Wang, Ming; Wang, Nian; Xiao, Jiangming; Wei, Hongyuan; Li, Xun; Liu, Yi [The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); Zhou, Qin, E-mail: zhouqin@cqmu.edu.cn [The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China)

    2013-11-01

    Highlights: •We do bio-informatics websites to analysis of Six2 3′UTR. •MiR181b is a putative miRNA which can targets Six2 3′UTR. •MiR-181b binding site in the 3′UTR of Six2 is functional. •MiR-181b suppresses MK3 cells cell proliferation by targeting Six2. -- Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that down-regulate gene expression by binding to target mRNA for cleavage or translational repression, and play important regulatory roles in renal development. Despite increasing genes have been predicted to be miRNA targets by bioinformatic analysis during kidney development, few of them have been verified by experiment. The objective of our study is to identify the miRNAs targeting Six2, a critical transcription factor that maintains the mesenchymal progenitor pool via self-renewal (proliferation) during renal development. We initially analyzed the 3′UTR of Six2 and found 37 binding sites targeted by 50 putative miRNAs in the 3′UTR of Six2. Among the 50 miRNAs, miR-181b is the miRNAs predicted by the three used websites. In our study, the results of luciferase reporter assay, realtime-PCR and Western blot demonstrated that miR-181b directly targeted on the 3′UTR of Six2 and down-regulate the expression of Six2 at mRNA and protein levels. Furthermore, EdU proliferation assay along with the Six2 rescue strategy showed that miR-181b suppresses the proliferation of metanephric mesenchymal by targeting Six2 in part. In our research, we concluded that by targeting the transcription factor gene Six2, miR-181b inhibits the proliferation of metanephric mesenchymal cells in vitro and might play an important role in the formation of nephrons.

  12. The inhibition of phosphodiesterase type 5 as a novel target for antidepressant action

    DEFF Research Database (Denmark)

    Liebenberg, Nico

    2010-01-01

    therapy of depression. A recent study from our laboratory reported an antidepressant-like response in the rat forced swim test (FST) following chronic (11 day) co-administration of the phosphodiesterase type 5 (PDE5) inhibitor sildenafil and the muscarinic acetylcholine (mACh) receptor antagonist atropine...... rats were treated with vehicle/drug(s) for 14 days, whereafter immobility, swimming and climbing behaviours were measured in the FST, or time spent in social interaction in the social interaction test. Following decapitation, saturation binding studies were performed for the measurement of m...... not involve up-regulation of frontal cortical and hippocampal mACh receptors. In summary, this project emphasises the potential of PDE5 inhibition as a novel antidepressant and anxiolytic strategy, and provides important insight into the specific neuronal mechanism(s) that may be involved...

  13. Inhibition of prostate cancer by suicide gene targeting the FCY1 and HSV-TK genes.

    Science.gov (United States)

    Yue, Qiao-Hong; Hu, Xing-Bin; Yin, Ying; Su, Ming-Quan; Cheng, Xiao-Dong; Yang, Liu; Zhou, Tie-Cheng; Hao, Xiaoke

    2009-12-01

    Prostate cancer is one of the most prevalent tumors. The switch of androgen signal dependence makes therapy more complex. Although reports on introduction of a single suicide gene exist, double suicide gene therapy has not been reported yet. In the current study, two suicide genes were constructed in the pIRES plasmid driven by PSMA promoter. 5-FC and GCV combination in vitro led to a higher growth inhibition on prostate cancer compared to a single pro-drug. Retarded xenograft tumor growth was observed in castrated nude mice after double suicide gene activation. Furthermore, decreased metastasis was observed with double suicide gene treatment. These findings suggest that specific double suicide gene strategy could be a potential option for the therapy of prostate cancer.

  14. CHIP is a novel tumor suppressor in pancreatic cancer and inhibits tumor growth through targeting EGFR

    Science.gov (United States)

    Wang, Tianxiao; Yang, Jingxuan; Xu, Jianwei; Li, Jian; Cao, Zhe; Zhou, Li; You, Lei; Shu, Hong; Lu, Zhaohui; Li, Huihua; Li, Min; Zhang, Taiping; Zhao, Yupei

    2014-01-01

    Carboxyl terminus of heat shock protein 70-interacting protein (CHIP) is an E3 ubiquitin ligase that is involved in protein quality control and mediates several tumor-related proteins in many cancers, but the function of CHIP in pancreatic cancer is not known. Here we show that CHIP interacts and ubiquitinates epidermal growth factor receptor (EGFR) for proteasome-mediated degradation in pancreatic cancer cells, thereby inhibiting the activation of EGFR downstream pathways. CHIP suppressed cell proliferation, anchor-independent growth, invasion and migration, as well as enhanced apoptosis induced by erlotinib in vitro and in vivo. The expression of CHIP was decreased in pancreatic cancer tissues or sera. Low CHIP expression in tumor tissues was correlated with tumor differentiation and shorter overall survival. These observations indicate that CHIP serves as a novel tumor suppressor by down-regulating EGFR pathway in pancreatic cancer cells, decreased expression of CHIP was associated with poor prognosis in pancreatic cancer. PMID:24722501

  15. Targeting SPARC by lentivirus-mediated RNA interference inhibits cervical cancer cell growth and metastasis

    Directory of Open Access Journals (Sweden)

    Chen Jie

    2012-10-01

    Full Text Available Abstract Background Secreted protein acidic and rich in cysteine (SPARC, a calcium-binding matricellular glycoprotein, is implicated in the progressions of some cancers. However, no information has been available to date regarding the function of SPARC in cervical cancer cell growth and metastasis. Methods In this study, we isolated and established high invasive subclones and low invasive subclones from human cervical cancer cell lines HeLa and SiHa by the limited dilution method. Real-time q-RT-PCR, Western Blot and ICC were performed to investigate SPARC mRNA and protein expressions in high invasive subclones and low invasive subclones. Then lentivirus vector with SPARC shRNA was constructed and infected the highly invasive subclones. Real-time q-RT-PCR, Western Blot and ICC were also performed to investigate the changes of SPARC expression after viral infection. In functional assays, effects of SPARC knockdown on the biological behaviors of cervical cancer cells were investigated. The mechanisms of SPARC in cervical cancer proliferation, apoptosis and invasion were also researched. Results SPARC was over-expressed in the highly invasive subclones compared with the low invasive subclones. Knockdown of SPARC significantly suppressed cervical cancer cell proliferation, and induced cell cycle arrest at the G1/G0 phase through the p53/p21 pathway, also caused cell apoptosis accompanied by the decreased ratio of Bcl-2/Bax, and inhibited cell invasion and metastasis accompanied by down-regulated MMP2 and MMP9 expressions and up-regulated E-cadherin expression. Conclusion SPARC is related to the invasive phenotype of cervical cancer cells. Knockdown of SPARC significantly suppresses cervical cancer cell proliferation, induces cell apoptosis and inhibits cell invasion and metastasis. SPARC as a promoter improves cervical cancer cell growth and metastasis.

  16. Dynamic hydrolase activities precede hypersensitive tissue collapse in tomato seedlings

    NARCIS (Netherlands)

    Sueldo, D.; Ali, A.; Misas-Villamil, J.; Colby, T.; Tameling, W.I.L.; Joosten, M.H.A.J.; Hoorn, van der R.

    2014-01-01

    Hydrolases such as subtilases, vacuolar processing enzymes (VPEs) and the proteasome play important roles during plant programmed cell death (PCD). We investigated hydrolase activities during PCD using activity-based protein profiling (ABPP), which displays the active proteome using probes that

  17. microRNA-328 inhibits cervical cancer cell proliferation and tumorigenesis by targeting TCF7L2

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuan [Department of Gynaecology, Qilu Hospital, Shandong University, Jinan (China); Department of Gynaecology, Yantai Yuhuangding Hospital, Qingdao University School of Medicine, Yantai (China); Xia, Ying, E-mail: YingXia2006@qq.com [Department of Gynecology, Huadong Hospital, Fudan University, Shanghai, 200040 (China)

    2016-06-24

    microRNAs (miRNAs) play a vital role in tumor development and progression. In this study, we aimed to determine the expression and biological roles of miR-328 in cervical cancer and identify its direct target gene. Our data showed that miR-328 was significantly downregulated in human cervical cancer tissues and cells. Re-expression of miR-328 inhibited cervical cancer cell proliferation and colony formation in vitro and suppressed the growth of xenograft tumors in vivo. Bioinformatic analysis predicted TCF7L2 (an essential effector of canonical Wnt signaling) as a target gene of miR-328, which was confirmed by luciferase reporter assays. Enforced expression of miR-328 led to a decline in the expression of endogenous TCF7L2 in cervical cancer cells. In cervical cancer tissues, TCF7L2 protein levels were negatively correlated with miR-328 expression levels (r = −0.462, P = 0.017). Small interfering RNA-mediated knockdown of TCF7L2 significantly impaired the proliferation and colony formation of cervical cancer cells. Ectopic expression of a miRNA-resistant form of TCF7L2 significantly reversed the growth suppressive effects of miR-328 on cervical cancer cells, which was accompanied by induction of cyclin D1 expression. Taken together, our results provide first evidence for the growth suppressive activity of miR-328 in cervical cancer, which is largely ascribed to downregulation of TCF7L2. Restoration of miR-328 may have therapeutic potential in cervical cancer. -- Highlights: •miR-328 inhibits cervical cancer cell growth and tumorigenesis. •TCF7L2 is a direct target gene of miR-328 in cervical cancer. •Knockdown of TCF7L2 impairs the proliferation and colony formation of cervical cancer cells.

  18. miR-613 inhibits the growth and invasiveness of human hepatocellular carcinoma via targeting DCLK1

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenyao, E-mail: wangwy117@163.com; Zhang, Hongfei; Wang, Lichao; Zhang, Shaojun; Tang, Miao

    2016-05-13

    microRNAs (miRNAs) play key regulatory roles in various biological processes. In this study, we aimed to determine the expression and biological roles of miR-613 in hepatocellular carcinoma (HCC). Compared with non-cancerous liver tissues, miR-613 was significantly downregulated in HCC tissues. Ectopic expression of miR-613 significantly suppressed the proliferation and invasion of Hep3B and SMMC-7721 HCC cells. Bioinformatic and luciferase reporter analysis identified doublecortin-like kinase 1 (DCLK1) as a direct target of miR-613. Overexpression of miR-613 inhibited the expression of DCLK1 in HCC cells. There was a significant inverse correlation between miR-613 and DCLK1 protein expression in HCC samples. Small interfering RNA-mediated silencing of DCLK1 phenocopied the suppressive effects of miR-613 in HCC cells. Rescue experiments demonstrated that co-transfection of DCLK1 lacking the 3′-untranslated region partially prevented miR-613-induced suppression of HCC cell proliferation and invasion. In vivo studies confirmed that miR-613 overexpression retarded the growth of Hep3B xenograft tumors in nude mice, coupled with a reduction in the percentage of Ki67-positive tumor cells and DCLK1 protein expression. In conclusion, we provide first evidence for the suppressive activity of miR-613 in HCC, which is causally linked to targeting of DCLK1. Restoration of miR-613 may provide a potential therapeutic strategy for HCC. - Highlights: • miR-613 inhibits the aggressive phenotypes of HCC cells. • DCLK1 is a direct target of miR-613 in HCC. • miR-613 impairs HCC tumorigenesis in vivo.

  19. Lentivirus mediated shRNA interference targeting MAT2B induces growth-inhibition and apoptosis in hepatocelluar carcinoma.

    Science.gov (United States)

    Wang, Qun; Liu, Quan-Yan; Liu, Zhi-Su; Qian, Qun; Sun, Quan; Pan, Ding-Yu

    2008-08-07

    To investigate the effects of lentivirus vector mediated short hairpin RNA interference targeting methionine adenosyltransferase 2beta gene (LV-shMAT2B) on hepatocelluar carcinoma (HCC) cells. We constructed four plasmids of RNA interference targeting the MAT2B gene. After LV-shMAT2B was transfected with L-02 cells and two kinds of HCC cells, cell viability and proliferation were measured with MTT and [3H]thymidine assays respectively. Flow cytometry was used to assess cell apoptosis. The level of S-adenosyl methionine (SAMe) in HepG2 cells was evaluated. The expressions of cyclin D1, cyclin D2, bcl-x(L) and bcl-x(S) were detected with western blot. We constructed LV-shMAT2B successfully. LV-shMAT2B was safe for human normal liver cells. LV-shMAT2B caused dramatic reduction in proliferation compared with controls in HCC cells Bel-7402 (P = 0.054) and HepG2 (P = 0.031). Flow cytometry analysis showed that cell apoptosis caused by LV-shMAT2B was greater in HCC cells Bel-7402 and HepG2 than in control induced by scrambled siRNA (P = 0.047), but apoptosis rates in L-02 induced by LV-shMAT2B and scrambled siRNA respectively had no significant difference. Moreover, LV-shMAT2B significantly suppressed expression of MAT2B leading to growth-inhibition effect on HCC cells by down-regulating cyclin D1. Apoptosis induced by LV-shMAT2B was involved in down-regulating bcl-x(L) and up- regulating bcl-x(S). LV-shMAT2B can induce cell apoptosis and growth-inhibition in HCC cells. MAT2B may be a therapy target in HCC in the future.

  20. Inhibition of Wnt/β-catenin pathway by niclosamide: a therapeutic target for ovarian cancer.

    Science.gov (United States)

    Arend, Rebecca C; Londoño-Joshi, Angelina I; Samant, Rajeev S; Li, Yonghe; Conner, Michael; Hidalgo, Bertha; Alvarez, Ronald D; Landen, Charles N; Straughn, J Michael; Buchsbaum, Donald J

    2014-07-01

    Objective. The Wnt/β-catenin pathway is known to regulate cellular proliferation and plays a role in chemoresistance. Niclosamide, an FDA approved salicyclamide derivative used for the treatment of tapeworm infections, targets the Wnt/β-catenin pathway. Therefore, the objective of this study was to investigate niclosamide as a potential therapeutic agent for ovarian cancer. Methods. Tumor cells isolated from 34 patients' ascites with primary ovarian cancer were treated with niclosamide (0.1 to 5 μM) ± carboplatin (5 to 150 μM). Cell viability was assessed using the ATP-lite assay. LRP6, Axin 2, Cyclin D1, survivin and cytosolic free β-catenin levels were determined using Western blot analysis. Tumorspheres were treated, and Wnt transcriptional activity was measured by the TOPflash reporter assay. ALDH and CD133 were analyzed by Flow cytometry and IHC. ALDH1A1 and LRP6 were analyzed by IHC in solid tumor and in ascites before and after treatment with niclosamide. Results. Combination treatment produced increased cytotoxicity compared to single agent treatment in 32/34 patient samples. Western blot analysis showed a decrease in Wnt/β-catenin pathway proteins and the expression of target genes. A significant reduction of Wnt/β-catenin signaling was confirmed by TOPflash assay. There was increased staining of ALDH1A1 and LRP6 in ascites compared to solid tumor which decreased after treatment. Conclusion. This study demonstrates that niclosamide is a potent Wnt/β-catenin inhibitor. Targeting the Wnt/β-catenin pathway led to decreased cellular proliferation and increased cell death. These findings warrant further research of this drug and other niclosamide analogs as a treatment option for ovarian cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Targeted proteasome inhibition by Velcade induces apoptosis in human mesothelioma and breast cancer cell lines

    Science.gov (United States)

    Wang, Ying; Puliyappadamba, Vineshkumar T.; Sharma, Sunita; Yang, Huanjie; Tarca, Adi; Dou, Q. Ping; Lonardo, Fulvio; Ruckdeschel, John C.; Pass, Harvey I.; Wali, Anil

    2013-01-01

    Introduction Thoracic malignancies and human breast cancer (HBC) continue to be aggressive solid tumors that are poor responders to the existing conventional standard chemotherapeutic approaches. Malignant pleural mesothelioma (MPM) is an asbestos-related tumor of the thoracic pleura that lacks effective treatment options. Altered ubiquitin proteasome pathway is frequently encountered in many malignancies including HBC and MPM and thus serves as an important target for therapeutic intervention strategies. Although proteasome inhibitor Velcade (Bort-ezomib) has been under clinical investigation for a number of cancers, limited preclinical studies with this agent have thus far been conducted in HBC and MPM malignancies. Purpose To study the biological and molecular responses of MPM and HBC cells to Velcade treatments, and to identify mechanisms involved in transducing growth inhibitory effects of this agent. Methods Flow-cytometric analyses coupled with western immunoblotting and gene-array methodologies were utilized to determine mechanisms of Velcade-dependent growth suppression of five MPM (H2595, H2373, H2452, H2461, and H2714) and two breast cancer (MDA MB-468, SKBR-3) cell lines. Results Our data revealed significant reduction in cell growth properties that were dose and time dependent. Velcade treatment resulted in G2M phase arrest, increased expression of cyclin-dependent kinase inhibitor p21 and pro-apoptotic protein Bax. Pretreatment of mesothelioma cells with Velcade showed synergistic effect with cisplatin combination regimens. High-throughput gene expression profiling among Velcade treated and untreated mesothelioma cell lines resulted in identification of novel transducers of apoptosis such as CARP-1, XAF1, and Troy proteins. Conclusions Velcade targets cell cycle and apoptosis signaling to suppress MPM and HBC growth in part by activating novel transducers of apoptosis. This pilot study has paved way for further in-depth analysis of the downstream

  2. Short-interval intracortical inhibition and facilitation targeting the tibialis anterior muscle

    DEFF Research Database (Denmark)

    Davodian, Danny; Stevenson, Andrew James Thomas; Ziemann, Ulf

    2017-01-01

    muscles, TMS activation of lower limbs tend to predominantly activate I1 waves given the histological differences (Terao et al., Brain Research, 2000). In the present study, we investigated the effects of stimulation intensities of S1 and S2 on motor cortex (M1) excitability targeting the tibialis...... (SICF) is thoroughly examined (Ilić et al., JPhysiol., 2002), while relatively little is known for lower limb muscles. SICI and SICF are thought to be caused by interaction of I3 waves (Hanajima et al., JPhysiol., 1998; Hanajima et al., JPhysiol., 2002) and while these can be elicited in upper limb...

  3. Potential targets of transforming growth factor-beta1 during inhibition of oocyte maturation in zebrafish

    Directory of Open Access Journals (Sweden)

    Clelland Eric

    2005-09-01

    Full Text Available Abstract Background TGF-beta is a multifunctional growth factor involved in regulating a variety of cellular activities. Unlike mammals, the function of TGF-beta in the reproduction of lower vertebrates, such as fish, is not clear. Recently, we showed that TGF-beta1 inhibits gonadotropin- and 17alpha, 20beta-dihydroxyprogesterone (DHP-induced maturation in zebrafish. The aim of the present study was to investigate the mechanisms underlying this action. Method To determine if the effect of TGF-beta1 on oocyte maturation involves transcription and/or translation, ovarian follicles were pre-treated with actinomycin D, a blocker of transcription, and cyclohexamide, an inhibitor of translation, and incubated with hCG or DHP, either alone or in combination with TGF-beta1 and oocyte maturation scored. To determine the effect of TGF-beta1 on mRNA levels of several key effectors of oocyte maturation, three sets of experiments were performed. First, follicles were treated with control medium or TGF-beta1 for 2, 6, 12, and 24 h. Second, follicles were treated with different concentrations of TGF-beta1 (0 to 10 ng/ml for 18 h. Third, follicles were incubated with hCG in the absence or presence of TGF-beta1 for 18 h. At the end of each experiment, total RNA was extracted and reverse transcribed. PCR using primers specific for 20beta-hydroxysteroid dehydrogenase (20beta-HSD which is involved in DHP production, follicle stimulating hormone receptor (FSHR, luteinizing hormone receptor (LHR, the two forms of membrane progestin receptor: mPR-alpha and mPR-beta, as well as GAPDH (control, were performed. Results Treatment with actinomycin D, a blocker of transcription, reduced the inhibitory effect of TGF-beta1 on DHP-induced oocyte maturation, indicating that the inhibitory action of TGF-beta1 is in part due to regulation of gene transcription. Treatment with TGF-beta1 caused a dose and time-dependent decrease in mRNA levels of 20beta-HSD, LHR and mPR-beta in

  4. DMXAA-pyranoxanthone hybrids enhance inhibition activities against human cancer cells with multi-target functions.

    Science.gov (United States)

    Liu, Jie; Zhou, Fan; Zhang, Lei; Wang, Huailing; Zhang, Jianrun; Zhang, Cao; Jiang, Zhenlei; Li, Yanbing; Liu, Zhijun; Chen, Heru

    2018-01-01

    Four 5,6-dimethylxanthone-4-acetic acid (D) and pyranoxanthone (P) hybrids (D-P-n) were design-synthesized based on multi-target-addressed strategy. D-P-4 was confirmed as the most active agent against HepG-2 cell line growth with an IC 50 of 0.216 ± 0.031 μM. Apoptosis analysis indicated different contributions of early/late apoptosis/necrosis to cell death for both monomers, the combination (D + P in 1:1 mol ratio) and D-P-4. They all arrested more cells on S phase. Western Blot implied that D-P-4 regulated p53/MDM2 to a better healthy state. Moreover, it improved Bax/Bcl-2 signaling pathway to increase cancer cell apoptosis. In all cases studied, D-P-4 showed the best activity and synergistic effect. All the evidences support that D-P-4 is a better anti-cancer therapy with multi-target functions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Aptamers targeting rabies virus-infected cells inhibit street rabies virus in vivo.

    Science.gov (United States)

    Liang, Hong-Ru; Hu, Gui-Qiu; Li, Ling; Gao, Yu-Wei; Yang, Song-Tao; Xia, Xian-Zhu

    2014-08-01

    Rabies is a viral infection of the CNS that is almost always fatal once symptoms occur. No effective treatment of the disease is available and novel antiviral strategies are urgently required. Street rabies viruses are field isolates known to be highly neurotropic. Aptamers are single-stranded oligonucleotides that bind their targets with high affinity and specificity and thus have potential for use in diagnostic and therapeutic applications. In this study, we demonstrate that the aptamers FO24 and FO21, which target RABV-infected cells, can significantly protect mice from a lethal dose of the street rabies virus FJ strain in vivo. Groups receiving preexposure prophylaxis had higher survival rates than the groups receiving postexposure prophylaxis. When mice were inoculated with aptamers (4 nmol) for 24h by intracranial or intramuscular injection prior to intramuscular inoculation with the FJ strain, approximately 60% of the mice survived. These results indicate that the FO21 and FO24 aptamers may be used to develop preventative antiviral therapy against rabies disease. Copyright © 2014. Published by Elsevier B.V.

  6. Antisense phosphorodiamidate morpholino oligomers targeted to an essential gene inhibit Burkholderia cepacia complex.

    Science.gov (United States)

    Greenberg, David E; Marshall-Batty, Kimberly R; Brinster, Lauren R; Zarember, Kol A; Shaw, Pamela A; Mellbye, Brett L; Iversen, Patrick L; Holland, Steven M; Geller, Bruce L

    2010-06-15

    Members of the Burkholderia cepacia complex (Bcc) cause considerable morbidity and mortality in patients with chronic granulomatous disease and cystic fibrosis. Many Bcc strains are antibiotic resistant, which requires the exploration of novel antimicrobial approaches, including antisense technologies such as phosphorodiamidate morpholino oligomers (PMOs). Peptide-conjugated PMOs (PPMOs) were developed to target acpP, which encodes an acyl carrier protein (AcpP) that is thought to be essential for growth. Their antimicrobial activities were tested against different strains of Bcc in vitro and in infection models. PPMOs targeting acpP were bactericidal against clinical isolates of Bcc (>4 log reduction), whereas a PPMO with a scrambled base sequence (scrambled PPMO) had no effect on growth. Human neutrophils were infected with Burkholderia multivorans and treated with AcpP PPMO. AcpP PPMO augmented killing, compared with neutrophils alone and compared with neutrophils alone plus scrambled PPMO. Mice with chronic granulomatous disease that were infected with B. multivorans were treated with AcpP PPMO, scrambled PPMO, or water at 0, 3, and 6 h after infection. Compared with water-treated control mice, the AcpP PPMO-treated mice showed an approximately 80% reduction in the risk of dying by day 30 of the experiment and relatively little pathology. AcpP PPMO is active against Bcc infections in vitro and in vivo.

  7. miR-137 inhibits glutamine catabolism and growth of malignant melanoma by targeting glutaminase.

    Science.gov (United States)

    Luan, Wenkang; Zhou, Zhou; Zhu, Yan; Xia, Yun; Wang, Jinlong; Xu, Bin

    2018-01-01

    Glutamine catabolism is considered to be an important metabolic pathway for cancer cells. Glutaminase (GLS) is the important rate-limiting enzyme of glutamine catabolism. miR-137 functions as a tumor suppressor in many human malignant tumors. However, the role and molecular mechanism of miR-137 and GLS in malignant melanoma has not been reported. In this study, we showed that miR-137 was decreased in melanoma tissue, and the low miR-137 level and high GLS expression are independent risk factor in melanoma. miR-137 suppressed the proliferation and glutamine catabolism of melanoma cells. GLS is crucial for glutamine catabolism and growth of malignant melanoma. We also demonstrated that miR-137 acts as a tumor suppressor in melanoma by targeting GLS. This result elucidates a new mechanism for miR-137 in melanoma development and provides a survival indicator and potential therapeutic target for melanoma patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Transmembrane domain targeting peptide antagonizing ErbB2/Neu inhibits breast tumor growth and metastasis.

    Science.gov (United States)

    Arpel, Alexia; Sawma, Paul; Spenlé, Caroline; Fritz, Justine; Meyer, Lionel; Garnier, Norbert; Velázquez-Quesada, Inés; Hussenet, Thomas; Aci-Sèche, Samia; Baumlin, Nadège; Genest, Monique; Brasse, David; Hubert, Pierre; Crémel, Gérard; Orend, Gertraud; Laquerrière, Patrice; Bagnard, Dominique

    2014-09-25

    Breast cancer is still a deadly disease despite major achievements in targeted therapies designed to block ligands or ligand-binding subunits of major tyrosine kinase receptors. Relapse is significant and metastases deleterious, which demands novel strategies for fighting this disease. Here, we report a proof-of-concept experiment demonstrating that small peptides interfering with the transmembrane domain of the tyrosine kinase epidermal growth factor receptor ErbB2 exhibit anticancer properties when used at micromolar dosages in a genetically engineered mouse model of breast cancer. Different assays demonstrate the specificity of the ErbB2-targeting peptide, which induces long-term reduction of ErbB2 phosphorylation and Akt signaling consistent with reduced tumor cell proliferation and increased survival. Microcomputed tomography analysis established the antimetastatic activity of the peptide and its impact on primary tumor growth. This reveals the interior of the cell membrane as an unexplored dimension for drug design. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Evidences for Piperine inhibiting cancer by targeting human G-quadruplex DNA sequences.

    Science.gov (United States)

    Tawani, Arpita; Amanullah, Ayeman; Mishra, Amit; Kumar, Amit

    2016-12-20

    Piperine, a naturally occurring alkaloid, is well known as anti-oxidant, anti-mutagenic, anti-tumor and anti-proliferative agent. Piperine exerts such pharmacological activities by binding or interacting with various cellular targets. Recently, the first report for Piperine interaction with duplex DNA has been published last year but its interaction with G-quadruplex structures has not been studied yet. Herein, we report for the first time the interaction of Piperine with various DNA G-quadruplex structures. Comprehensive biophysical techniques were employed to determine the basis of interaction for the complex formed between Piperine and G-quadruplex DNA sequences. Piperine showed specificity for G-quadruplex DNA over double stranded DNA, with highest affinity for G-quadruplex structure formed at c-myc promoter region. Further, in-vitro studies show that Piperine causes apoptosis-mediated cell death that further emphasizes the potential of this natural product, Piperine, as a promising candidate for targeting G-quadruplex structure and thus, acts as a potent anti-cancer agent.

  10. MicroRNA-198 inhibited tumorous behaviors of human osteosarcoma through directly targeting ROCK1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shilian, E-mail: shilian_zhang@126.com; Zhao, Yuehua; Wang, Lijie

    2016-04-08

    Osteosarcoma is an aggressive primary sarcoma of bone and occurs mainly in adolescents and young adults. The prognosis of OS remains poor, and most of them will die due to local relapse or metastases. The discovery of microRNAs provides a new possibility for the early diagnosis and treatment of OS. Thus, the aim of this study was to explore the expression and functions of microRNA-198 (miR-198) in osteosarcoma. The expression levels of miR-198 were determined by qRT-PCR in osteosarcoma tissues and cell lines. Cell proliferation assays, migration and invasion assays were adopted to investigate the effects of miR-198 on tumorous behaviors of osteosarcoma cells. The results showed that miR-198 expression levels were lower in osteosarcoma tissues and cell lines. In addition, low miR-198 expression levels were correlated with TNM stage and distant metastasis. After miR-198 mimics transfection, cell proliferation, migration and invasion were significantly suppressed in the osteosarcoma cells. Furthermore, ROCK1 was identified as a novel direct target of miR-198 in osteosarcoma. These findings suggested that miR-198 may act not only as a novel prognostic marker, but also as a potential target for molecular therapy of osteosarcoma.

  11. Natural Product Kuwanon-L Inhibits HIV-1 Replication through Multiple Target Binding.

    Science.gov (United States)

    Martini, Riccardo; Esposito, Francesca; Corona, Angela; Ferrarese, Roberto; Ceresola, Elisa Rita; Visconti, Laura; Tintori, Cristina; Barbieri, Alessandro; Calcaterra, Andrea; Iovine, Valentina; Canducci, Filippo; Tramontano, Enzo; Botta, Maurizio

    2017-02-16

    In recent years many advances have been made in the fight against HIV-1 infection. However, the lack of a vaccine, together with the increasing resistance to the highly active anti-retroviral therapy (HAART), make HIV-1 infection still a serious global emergency. Thus, new compounds with original modes of action are continuously required, and natural products have ever been a very interesting class of pharmacologically active molecules. Some of them have been used since ancient times against viral infections. Here we present a work in which we suggest that kuwanon-L, a natural product active as an HIV-1 integrase (IN) inhibitor, might exert its overall antiviral activity through binding to multiple viral targets. Specific enzymatic tests, together with a time-of-addition (TOA) experiment, support our hypothesis of binding both to IN and to reverse transcriptase (RT). Overall, this compound can be considered an attractive lead for the development of new classes of antiviral agents able to overcome the problem of resistance, due to its ability to exert its action by binding simultaneously to multiple viral targets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Nanomedicine targeting the tumor microenvironment: Therapeutic strategies to inhibit angiogenesis, remodel matrix, and modulate immune responses

    Directory of Open Access Journals (Sweden)

    Elizabeth L. Siegler

    2016-11-01

    Full Text Available Increasing attention has been given to the tumor microenvironment (TME, which includes cellular and structural components such as fibroblasts, immune cells, vasculature, and extracellular matrix (ECM that surround tumor sites. These components contribute to tumor growth and metastasis and are one reason why traditional chemotherapy often is insufficient to eradicate the tumor completely. Newer treatments that target aspects of the TME, such as antiangiogenic and immunostimulatory therapies, have seen limited clinical success despite promising preclinical results. This can be attributed to a number of reasons, including a lack of drug penetration deeper into the necrotic tumor core, nonspecific delivery, rapid clearance from serum, or toxic side effects at high doses. Nanoparticles offer a potential solution to all of these obstacles, and many recent studies have shown encouraging results using nanomedicine to target TME vasculature, ECM, and immune response. While few of these platforms have made it to clinical trials to date, these strategies are relatively new and may offer a way to improve the effects of anticancer therapies.

  13. Facilitation and inhibition arising from the exogenous orienting of covert attention depends on the temporal properties of spatial cues and targets.

    Science.gov (United States)

    Maruff, P; Yucel, M; Danckert, J; Stuart, G; Currie, J

    1999-06-01

    On the covert orienting of visual attention task (COVAT), responses to targets appearing at the location indicated by a non-predictive spatial cue are faster than responses to targets appearing at uncued locations when stimulus onset asynchrony (SOA) is less than approximately 200 ms. For longer SOAs, this pattern reverses and RTs to targets appearing at uncued locations become faster than RTs to targets appearing at the cued location. This facilitation followed by inhibition has been termed the biphasic effect of non-predictive peripheral spatial cues. Currently, there is debate about whether these two processes are independent. This issue was addressed in a series of experiments where the temporal overlap between the peripheral cue and target was manipulated at both short and long SOAs. Results showed that facilitation was present only when the SOA was short and there was temporal overlap between cue and target. Conversely, inhibition occurred only when the SOA was long and there was no temporal overlap between cue and target. The biphasic effect, with an early facilitation followed by a later inhibition, occurred only when the cue duration was fixed such that there was temporal overlap between the cue and target at short but not long SOAs. In a final experiment, the duration of targets the temporal overlap between cue and target and the SOA were manipulated factorially. The results showed that facilitation occurred only when the SOA was short, there was temporal overlap between cue and target and the target remained visible until the subject responded. These results suggest that the facilitation and inhibition found on COVATs which use non-informative peripheral cues are independent processes and their presence and magnitude is related to the temporal properties of cues and targets.

  14. Bufalin Inhibits hTERT Expression and Colorectal Cancer Cell Growth by Targeting CPSF4

    Directory of Open Access Journals (Sweden)

    Ningning Zhang

    2016-12-01

    Full Text Available Background/Aims: Bufalin can induce apoptosis in certain human cancer cell lines, but bufalin has not yet been thoroughly evaluated in colorectal cancer cells. Cleavage and polyadenylation specific factor 4 (CPSF4 and human telomerase reverse transcriptase (hTERT play important roles in colorectal cancer growth. The aim of this study was to investigate the roles and interactions of bufalin, CPSF4 and hTERT and the effects of bufalin in human colorectal cancer. Methods: We treated LoVo and SW620 cells with bufalin to investigate the effect of bufalin on proliferation, apoptosis and migration. We verified the relationship between CPSF4 and hTERT using pulldown assays, luciferase reporter assays and chromatin immunoprecipitation (ChIP assays. Results: Bufalin inhibited the proliferation and migration of and induced apoptosis in LoVo and SW620 cells. We identified CPSF4 as an hTERT promoter-binding protein in colorectal cancer cells. Conclusion: Our study identified bufalin as a potential small molecule inhibitor for cancer therapy.

  15. TBX3, a downstream target of TGF-β1, inhibits mesangial cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wensing, Lislaine A. [Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, Morumbi, 2SS/Bloco A., São Paulo, São Paulo CEP 05651-901 (Brazil); Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo (Brazil); Campos, Alexandre H., E-mail: alexandre.campos@einstein.br [Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, Morumbi, 2SS/Bloco A., São Paulo, São Paulo CEP 05651-901 (Brazil)

    2014-11-01

    Chronic kidney disease (CKD) is an increasingly common condition characterized by progressive loss of functional nephrons leading to renal failure. TGF-β1-induced mesangial cell (MC) phenotype alterations have been linked to the genesis of CKD. Here we show that TGF-β1 regulates TBX3 gene expression in MC. This gene encodes for two main isoforms, TBX3.1 and TBX3+2α. TBX3.1 has been implicated in cell immortalization, proliferation and apoptosis by inhibiting p14{sup ARF}-Mdm2-p53 pathway, while TBX3+2α role has not been defined. We demonstrated that TBX3 overexpression abrogated MC apoptosis induced by serum deprivation. Moreover, we observed an enhancement in TBX3 protein expression both in glomerular and tubular regions in the model of 5/6 nephrectomy, temporally related to increased expression of TGF-β1, type IV collagen and fibronectin. Our results indicate that TBX3 acts as an anti-apoptotic factor in MC in vitro and may be involved in the mechanism by which TGF-β1 induces glomerulosclerosis and tubular fibrosis during the progression of nephropathies. - Highlights: • TBX3 isoforms are upregulated by TGF-b1 in mesangial cells. • TBX3 isoforms have different subcellular distribution profile in mesangial cells. • TBX3 isoforms exhibit antiapoptotic action in mesangial cells. • TBX3 protein is overexpressed in a model of nephropathy (5/6 nephrectomy)

  16. Salinomycin inhibits canine mammary carcinoma in vitro by targeting cancer stem cells.

    Science.gov (United States)

    Du, Hongchao; Zhou, Bin; Zhang, Hong; Jin, Yipeng; Zhang, Di; Lin, Degui

    2017-07-01

    Salinomycin (SAL), a polyether ionophore antibiotic, has been demonstrated to selectively kill cancer stem cells (CSCs) in various types of human tumor. The aim of the present study was to investigate the effects of SAL on canine mammary CSCs. CSCs in canine mammary carcinoma cell lines (CMT7364 and CIPp) were identified using a sphere formation assay and flow cytometry. The chemoresistance, invasive potential and expression of stem cell-associated proteins of these spheres was then analyzed. This demonstrated that the spheres exhibited characteristics of CSCs, including a cluster of differentiation (CD)44+/CD24-/low phenotype, upregulation of Wnt/β-catenin signaling pathway-associated proteins and chemoresistance. The viability of the spheres was decreased in a concentration- and time-dependent manner following treatment with SAL, and the spheres did not exhibit increased resistance to SAL compared with their parental cells. In addition, exposure to SAL inhibited sphere-formation and invasive potential in canine mammary CSCs in a dose-dependent manner. Furthermore, SAL decreased the CD44+/CD24-/low population and downregulated the expression of Wnt/β-catenin signaling-associated proteins (β-catenin, Cyclin D1 and octamer-binding transcription factor 4) in the spheres. In conclusion, the present study demonstrated that SAL is an effective inhibitor of canine mammary CSCs in vitro, indicating that SAL is a promising chemotherapeutic agent for the treatment of canine mammary carcinoma.

  17. Betulin inhibits cariogenic properties of Streptococcus mutans by targeting vicRK and gtf genes.

    Science.gov (United States)

    Viszwapriya, Dharmaprakash; Subramenium, Ganapathy Ashwinkumar; Radhika, Solai; Pandian, Shunmugiah Karutha

    2017-01-01

    Streptococcus mutans, a multivirulent pathogen is considered the primary etiological agent in dental caries. Development of antibiotic resistance in the pathogen has created a need for novel antagonistic agents which can control the virulence of the organism and reduce resistance development. The present study demonstrates the in vitro anti-virulence potential of betulin (lup-20(29)-ene-3β,28-diol), an abundantly available plant triterpenoid against S. mutans UA159. Betulin exhibited significant dose dependent antibiofilm activity without affecting bacterial viability. At 240 µg/ml (biofilm inhibitory concentration), betulin inhibited biofilm formation and adherence to smooth glass surfaces by 93 and 71 % respectively. It reduced water insoluble glucan synthesis by 89 %, in conjunction with down regulation of gtfBC genes. Microscopic analysis confirmed the disruption in biofilm architecture and decreased exopolysaccharide production. Acidogenicity and aciduricity, key virulence factors responsible for carious lesions, were also notably affected. The induced auto-aggregation of cells upon treatment could be due to the down regulation of vicK. Results of gene expression analysis demonstrated significant down-regulation of virulence genes upon betulin treatment. Furthermore, the nontoxic effect of betulin on peripheral blood mononuclear cells even after 72 h treatment makes it a strong candidate for assessing its suitability to be used as a therapeutic agent.

  18. Targeted inhibition of oncogenic miR-21 maturation with designed RNA-binding proteins.

    Science.gov (United States)

    Chen, Yu; Yang, Fan; Zubovic, Lorena; Pavelitz, Tom; Yang, Wen; Godin, Katherine; Walker, Matthew; Zheng, Suxin; Macchi, Paolo; Varani, Gabriele

    2016-09-01

    The RNA recognition motif (RRM) is the largest family of eukaryotic RNA-binding proteins. Engineered RRMs with well-defined specificity would provide valuable tools and an exacting test of the current understanding of specificity. We have redesigned the specificity of an RRM using rational methods and demonstrated retargeting of its activity in cells. We engineered the conserved RRM of human Rbfox proteins to specifically bind to the terminal loop of a microRNA precursor (pre-miR-21) with high affinity and inhibit its processing by Drosha and Dicer. We further engineered Giardia Dicer by replacing its PAZ domain with the designed RRM. The reprogrammed enzyme degrades pre-miR-21 specifically in vitro and suppresses mature miR-21 levels in cells, which results in increased expression of the tumor suppressor PDCD4 and significantly decreased viability for cancer cells. The results demonstrate the feasibility of rationally engineering the sequence-specificity of RRMs and of using this ubiquitous platform for diverse biological applications.

  19. The intestinal nematode inhibits T-cell reactivity by targeting P-GP activity.

    Science.gov (United States)

    Donskow-Łysoniewska, K; Krawczak, K; Kozłowska, E; Doligalska, M

    2017-12-01

    Host immunosuppression occurs during chronic nematode infection, partly due to effector T-cell hyporesponsiveness. The role of P-glycoprotein (P-gp), a member of the ABC transporter family, has been assessed in T-cell activity. This study assesses the possible role of P-gp in T-cell activity during nematode infection. Our findings indicate that blockade of P-gp in vivo increased protection against Heligmosomoides polygyrus nematode infection and was associated with the enhanced T-cell activity. Three P-gp-inhibitors, verapamil (VRP), cyclosporine (CsA) and tariquidar (XR9576), were used to determine the influence of nematode infection on the P-gp function of T cells. The influence of the nematode on the uptake, efflux and kinetics of extrusion in T-cell subsets CD4+ and CD8+ was assessed by the accumulation of Rho123 dye. The results indicate that H. polygyrus infection contributes to the inhibition of T-cell function by elevating P-gp activity. The blockade of P-gp in the T cells of infected mice led to an impressive increase in T-cell proliferation and IL-4 cytokine release through the upregulation of NF-κB activation. These results provide the first evidence that the P-gp function of T cells is altered during nematode infection to open the way for further studies aiming to explore the role of P-gp in host-parasite interactions. © 2017 John Wiley & Sons Ltd.

  20. A Novel Class of Small Molecule Compounds that Inhibit Hepatitis C Virus Infection by Targeting the Prohibitin-CRaf Pathway

    Directory of Open Access Journals (Sweden)

    Shufeng Liu

    2015-11-01

    Full Text Available Identification of novel drug targets and affordable therapeutic agents remains a high priority in the fight against chronic hepatitis C virus (HCV infection. Here, we report that the cellular proteins prohibitin 1 (PHB1 and 2 (PHB2 are pan-genotypic HCV entry factors functioning at a post-binding step. While predominantly found in mitochondria, PHBs localize to the plasma membrane of hepatocytes through their transmembrane domains and interact with both EGFR and CRaf. Targeting PHB by rocaglamide (Roc-A, a natural product that binds PHB1 and 2, reduced cell surface PHB1 and 2, disrupted PHB-CRaf interaction, and inhibited HCV entry at low nanomolar concentrations. A structure-activity analysis of 32 synthetic Roc-A analogs indicated that the chiral, racemic version of aglaroxin C, a natural product biosynthetically related to Roc-A, displayed improved potency and therapeutic index against HCV infection. This study reveals a new class of HCV entry inhibitors that target the PHB1/2-CRaf pathway.

  1. miR-142-3p inhibits aerobic glycolysis and cell proliferation in hepatocellular carcinoma via targeting LDHA.

    Science.gov (United States)

    Hua, Shengni; Liu, Chengdong; Liu, Li; Wu, Dehua

    2018-02-12

    Cancer cells are addictively dependent on glycolysis even in an oxygen-rich condition. However, the mechanism underlying micro (mi)RNA regulation of aerobic glycolysis in cancer cells has not been fully understood. Here, we demonstrated that the expression of miR-142-3p was lower in hepatocellular carcinoma (HCC) as compared to adjacent non-tumor samples, which was confirmed in The Cancer Genome Atlas (TCGA) HCC cohorts and Gene Expression Omnibus (GEO) datasets. Function and pathway analysis showed that miR-142-3p was most relevent with metabolism. As predicted, the overexpression of miR-142-3p inhibited aerobic glycolysis and thus proliferation of HCC cells. Mechanistically, we identified lactate dehydrogenase A (LDHA), one of the important catalyticase for aerobic glycolysis, as the target of miR-142-3p. Exogenous expression of miR-142-3p reduced the protein levels of LDHA in both SK-Hep-1 and Huh7 cells. Dual luciferase report assays showed the expression of LDHA was directly modulated by miR-142-3p. miR-142-3p-induced deduction of aerobic glycolysis and proliferation were reversed by LDHA overexpression. Taken together, these results indicate that miR-142-3p could act as a tumor suppressor in HCC by targeting LDHA, suggesting new therapeutic targets for HCC treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Targeted inhibition of hedgehog signaling by cyclopamine prodrugs for advanced prostate cancer

    Science.gov (United States)

    Kumar, Srinivas K.; Roy, Indrajit; Anchoori, Ravi K.; Fazli, Sarah; Maitra, Anirban; Beachy, Philip A.; Khan, Saeed R.

    2009-01-01

    A promising agent for use in prostate cancer therapy is the Hedgehog (Hh) signaling pathway inhibitor, cyclopamine. This compound, however, has the potential for causing serious side effects in non-tumor tissues. To minimize these bystander toxicities, we have designed and synthesized two novel peptide-cyclopamine conjugates as prostate-specific antigen (PSA)-activated prodrugs for use against prostate cancer. These prodrugs were composed of cyclopamine coupled to one of two peptides (either HSSKLQ or SSKYQ) that can be selectively cleaved by PSA, converting the mature prodrug into an active Hedgehog inhibitor within the malignant cells. Of the two prodrugs, Mu-SSKYQ-Cyclopamine was rapidly hydrolyzed, with a half-life of 3.2 h, upon incubation with the PSA enzyme. Thus, modulating cyclopamine at the secondary amine with PSA-cleavable peptides is a promising strategy for developing prodrugs to target prostate cancer. PMID:18249125

  3. Direct renin inhibition — a new way of targeting the renin system

    Directory of Open Access Journals (Sweden)

    Morris J Brown

    2006-06-01

    Full Text Available The renin system plays a key role in the pathology of hypertension and is influenced, both directly and indirectly, by most antihypertensive agents. The system is the target of several established classes of antihypertensive agents including angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and beta-blockers. Of currently available drugs, only the beta-blockers suppress renin secretion, but these also reduce heart rate and cardiac output. Calcium channel blockers and diuretics cause a modest activation of the renin system secondary to the fall in renal afferent arteriolar pressure and reduction in filtered sodium load. Aliskiren is the first orally available direct inhibitor that blocks the renin system at its rate limiting step and is shown to reduce angiotensin I and II and plasma renin activity.

  4. Chloroquine targets pancreatic cancer stem cells via inhibition of CXCR4 and hedgehog signaling

    DEFF Research Database (Denmark)

    Balic, Anamaria; Sørensen, Morten Dræby; Trabulo, Sara Maria

    2014-01-01

    Pancreatic ductal adenocarcinoma is one of the deadliest carcinomas and is characterized by highly tumorigenic and metastatic cancer stem cells (CSC). CSCs evade available therapies, which preferentially target highly proliferative and more differentiated progenies, leaving behind CSCs...... as a putative source for disease relapse. Thus, to identify potentially more effective treatment regimens, we screened established and new compounds for their ability to eliminate CSCs in primary pancreatic cancer (stem) cells in vitro and corresponding patient-derived pancreatic cancer tissue xenografts...... in vivo. Intriguingly, we found that in vitro treatment with the antimalarial agent chloroquine significantly decreased CSCs, translating into diminished in vivo tumorigenicity and invasiveness in a large panel of pancreatic cancers. In vivo treatment in combination with gemcitabine was capable of more...

  5. Lipopolysaccharide-induced pulmonary inflammation is not accompanied by a release of anandamide into the lavage fluid or a down-regulation of the activity of fatty acid amide hydrolase

    DEFF Research Database (Denmark)

    Holt, S.; J. Fowler, C.; Rocksén, D.

    2004-01-01

    The effect of lipopolysaccharide inhalation upon lung anandamide levels, anandamide synthetic enzymes and fatty acid amide hydrolase has been investigated. Lipopolysaccharide exposure produced a dramatic extravasation of neutrophils and release of tumour necrosis factor a into the bronchoalveolar......-acyltransferase and N-acylphosphatidylethanolamine phospholipase D and the activity of fatty acid amide hydrolase in lung membrane fractions did not change significantly following the exposure to lipopolysaccharide. The non-selective fatty acid amide hydrolase inhibitor phenylmethylsulfonyl fluoride was a less potent...... inhibitor of lung fatty acid amide hydrolase than expected from the literature, and a dose of 30 mg/kg i.p. of this compound, which produced a complete inhibition of brain anandamide metabolism, only partially inhibited the lung metabolic activity....

  6. Targeting histone-acetyltransferase Tat-interactive protein 60 inhibits intestinal allergy.

    Science.gov (United States)

    Yang, G; Cheng, B-H; Yang, S-B; Liu, Z-Q; Qiu, S-Q; Yang, L-T; Xie, R-D; Geng, X-R; Li, M-G; Gao, L; Liu, Z-G; Yang, P-C

    2018-02-01

    The overproduction of IgE plays a critical role in the pathogenesis of allergy; the mechanism is unclear. Histone-acetyltransferase (HAT) activities are required in gene transcription of a large number of molecules in the immune system of the body. This study tests a hypothesis that HAT Tat-interactive protein 60 (Tip60) plays an important role in the initiation of IgE-mediated allergy. The effects of Tip60 on regulating IgE expression were assessed with B cells. An intestinal allergy mouse model was developed to assess the role of Tip60 in the induction of IgE-mediated allergic inflammation. High levels of Tip60 were observed in the peripheral B cells of patients with FA. Tat-interactive protein 60 (Tip60) was required in the expression of IgE and IgG1 in B cells by inducing the chromatin remolding at the gene locus, in which histone acetylation, signal transducer and activator of transcription 6 (STAT6), and nuclear factor-κB at the locus of Iε promoter were markedly increased. Blocking Tip60 significantly attenuated the allergic inflammation in the mouse intestinal mucosa. Tat-interactive protein 60 (Tip60) plays an important role in the induction of IgE in B cells. Blocking Tip60 inhibits the allergic inflammation in the intestine, suggesting Tip60 inhibitor may be a potential anti-allergy drug. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  7. CYP24 inhibition as a therapeutic target in FGF23-mediated renal phosphate wasting disorders

    Science.gov (United States)

    Bai, Xiuying; Miao, Dengshun; Xiao, Sophia; Qiu, Dinghong; St-Arnaud, René; Petkovich, Martin; Gupta, Ajay; Goltzman, David; Karaplis, Andrew C.

    2016-01-01

    CYP24A1 (hereafter referred to as CYP24) enzymatic activity is pivotal in the inactivation of vitamin D metabolites. Basal renal and extrarenal CYP24 is usually low but is highly induced by its substrate 1,25-dihydroxyvitamin D. Unbalanced high and/or long-lasting CYP24 expression has been proposed to underlie diseases like chronic kidney disease, cancers, and psoriasis that otherwise should favorably respond to supplemental vitamin D. Using genetically modified mice, we have shown that renal phosphate wasting hypophosphatemic states arising from high levels of fibroblast growth factor 23 (FGF23) are also associated with increased renal Cyp24 expression, suggesting that elevated CYP24 activity is pivotal to the pathophysiology of these disorders. We therefore crossed 2 mouse strains, each with distinct etiology for high levels of circulating FGF23, onto a Cyp24-null background. Specifically, we evaluated Cyp24 deficiency in Hyp mice, the murine homolog of X-linked dominant hypophosphatemic rickets, and transgenic mice that overexpress a mutant FGF23 (FGF23R176Q) that is associated with the autosomal dominant form of hypophosphatemic rickets. Loss of Cyp24 in these murine models of human disease resulted in near-complete recovery of rachitic/osteomalacic bony abnormalities in the absence of any improvement in the serum biochemical profile. Moreover, treatment of Hyp and FGF23R1760-transgenic mice with the CYP24 inhibitor CTA102 also ameliorated their rachitic bones. Our results link CYP24 activity to the pathophysiology of FGF23-dependent renal phosphate wasting states and implicate pharmacologic CYP24 inhibition as a therapeutic adjunct for their treatment. PMID:26784541

  8. Target Inhibition of IL-1 Receptor Prevents Ifosfamide Induced Hemorrhagic Cystitis in Mice.

    Science.gov (United States)

    Leite, Caio A V G; Alencar, Viviane T L; Melo, Davi L R; Mota, José M S C; Melo, Paulo H; Mourão, Lívia T C; Wong, Deysi V T; Magalhães, Pedro J C; Santos, Armênio A; Brito, Gerly A C; Lima-Júnior, Roberto C P; Cunha, Fernando Q; Ribeiro, Ronaldo A

    2015-12-01

    Hemorrhagic cystitis is an important dose limiting side effect of ifosfamide based cancer chemotherapy. Despite chemoprophylaxis inflammation can still be found in cystoscopy guided biopsies. Previous studies confirmed the role of TNF-α and IL-1β. We evaluated the protective effect of the IL-1R antagonist anakinra and the anti-TNF-α antibody infliximab in experimental ifosfamide induced hemorrhagic cystitis. Hemorrhagic cystitis was induced by an injection of ifosfamide (400 mg/kg intraperitoneally) in Swiss wild-type C57Bl/6, IL-1R-/-, TNFR1-/- or TNFR1/R2-/- mice. Mice were treated 30 minutes before ifosfamide with anakinra (100 mg/kg intraperitoneally), infliximab (5 mg/kg intraperitoneally) or vehicle. Visceral nociception was evaluated after hemorrhagic cystitis induction. At 12 hours the animals were sacrificed. Bladders were harvested to assess bladder wet weight, vascular permeability, macroscopic and microscopic findings, muscle contractility, and for cystometrography. Inflammatory cell infiltration was assessed by myeloperoxidase assay and flow cytometry. Anakinra attenuated hemorrhage, edema, neutrophil infiltration, visceral hyperalgesia and bladder dysfunction. IL-1R-/- mice also showed milder hemorrhagic cystitis. Infliximab inhibited bladder edema and visceral hyperalgesia without preventing hemorrhage, bladder dysfunction, neutrophils or accumulation. Additionally, the lack of TNFR1 decreased bladder edema but not cell infiltration whereas concomitant deficiency of TNFR1 and TNFR2 resulted in worse hemorrhagic cystitis. Anakinra is effective for preventing experimentally ifosfamide induced hemorrhagic cystitis. It seems that neutrophil and macrophage infiltration in this circumstance depends on IL-1 signaling through IL1R. Possibly TNFR2 has a protective role in hemorrhagic cystitis. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  9. Discovery of a Novel Microsomal Epoxide Hydrolase-Catalyzed Hydration of a Spiro Oxetane.

    Science.gov (United States)

    Li, Xue-Qing; Hayes, Martin A; Grönberg, Gunnar; Berggren, Kristina; Castagnoli, Neal; Weidolf, Lars

    2016-08-01

    Oxetane moieties are increasingly being used by the pharmaceutical industry as building blocks in drug candidates because of their pronounced ability to improve physicochemical parameters and metabolic stability of drug candidates. The enzymes that catalyze the biotransformation of the oxetane moiety are, however, not well studied. The in vitro metabolism of a spiro oxetane-containing compound AZD1979 [(3-(4-(2-oxa-6-azaspiro[3.3]heptan-6-ylmethyl)phenoxy)azetidin-1-yl)(5-(4-ethoxyphenyl)-1,3,4-oxadiazol-2-yl)methanone] was studied and one of its metabolites, M1, attracted our interest because its formation was NAD(P)H independent. The focus of this work was to elucidate the structure of M1 and to understand the mechanism(s) of its formation. We established that M1 was formed via hydration and ring opening of the oxetanyl moiety of AZD1979. Incubations of AZD1979 using various human liver subcellular fractions revealed that the hydration reaction leading to M1 occurred mainly in the microsomal fraction. The underlying mechanism as a hydration, rather than an oxidation reaction, was supported by the incorporation of (18)O from H2 (18)O into M1. Enzyme kinetics were performed probing the formation of M1 in human liver microsomes. The formation of M1 was substantially inhibited by progabide, a microsomal epoxide hydrolase inhibitor, but not by trans-4-[4-(1-adamantylcarbamoylamino)cyclohexyloxy]benzoic acid, a soluble epoxide hydrolase inhibitor. On the basis of these results, we propose that microsomal epoxide hydrolase catalyzes the formation of M1. The substrate specificity of microsomal epoxide hydrolase should therefore be expanded to include not only epoxides but also the oxetanyl ring system present in AZD1979. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  10. miR-1182 inhibits growth and mediates the chemosensitivity of bladder cancer by targeting hTERT

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jun [Department of Urology, Huadong Hospital Affiliated to Fudan University, 221 Yan An Road(w), Shanghai 200040 (China); Dai, Wenbin, E-mail: daiwenbin271@163.com [Department of Urology, Huadong Hospital Affiliated to Fudan University, 221 Yan An Road(w), Shanghai 200040 (China); Song, Jianming [School of Medicine, Oregon Health & Science University, No.3181 S.W. Sam Jackson Park Road, Portland 97239-3098, OR (United States)

    2016-02-05

    microRNAs (miRNAs) have been demonstrated to contribute to tumor progression and metastasis and proposed to be key regulators of diverse biological processes. In this study, we report that miR-1182 is deregulated in bladder cancer tissues and cell lines. To characterize the role of miR-1182 in bladder cancer cells, we performed functional assays. The overexpression of miR-1182 significantly inhibits bladder cancer cell proliferation, colony formation, and invasion. Moreover, its up-regulation induced cell cycle arrest and apoptosis and mediated chemosensitivity to cisplatin in bladder cancer. Furthermore, a luciferase reporter assay and a rescue experiment indicated that miR-1182 directly targets hTERT by binding its 3′UTR. In conclusion, these results demonstrate that miR-1182 acts as a tumor suppressor and may be a potential biomarker for bladder cancer diagnosis and treatment.

  11. MiR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robo1 receptor.

    Science.gov (United States)

    Tie, Jun; Pan, Yanglin; Zhao, Lina; Wu, Kaichun; Liu, Jie; Sun, Shiren; Guo, Xuegang; Wang, Biaoluo; Gang, Yi; Zhang, Yongguo; Li, Quanjiang; Qiao, Taidong; Zhao, Qingchuan; Nie, Yongzhan; Fan, Daiming

    2010-03-12

    MicroRNAs play key roles in tumor metastasis. Here, we describe the regulation and function of miR-218 in gastric cancer (GC) metastasis. miR-218 expression is decreased along with the expression of one of its host genes, Slit3 in metastatic GC. However, Robo1, one of several Slit receptors, is negatively regulated by miR-218, thus establishing a negative feedback loop. Decreased miR-218 levels eliminate Robo1 repression, which activates the Slit-Robo1 pathway through the interaction between Robo1 and Slit2, thus triggering tumor metastasis. The restoration of miR-218 suppresses Robo1 expression and inhibits tumor cell invasion and metastasis in vitro and in vivo. Taken together, our results describe a Slit-miR-218-Robo1 regulatory circuit whose disruption may contribute to GC metastasis. Targeting miR-218 may provide a strategy for blocking tumor metastasis.

  12. MiR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robo1 receptor.

    Directory of Open Access Journals (Sweden)

    Jun Tie

    2010-03-01

    Full Text Available MicroRNAs play key roles in tumor metastasis. Here, we describe the regulation and function of miR-218 in gastric cancer (GC metastasis. miR-218 expression is decreased along with the expression of one of its host genes, Slit3 in metastatic GC. However, Robo1, one of several Slit receptors, is negatively regulated by miR-218, thus establishing a negative feedback loop. Decreased miR-218 levels eliminate Robo1 repression, which activates the Slit-Robo1 pathway through the interaction between Robo1 and Slit2, thus triggering tumor metastasis. The restoration of miR-218 suppresses Robo1 expression and inhibits tumor cell invasion and metastasis in vitro and in vivo. Taken together, our results describe a Slit-miR-218-Robo1 regulatory circuit whose disruption may contribute to GC metastasis. Targeting miR-218 may provide a strategy for blocking tumor metastasis.

  13. Inhibition of JCPyV infection mediated by targeted viral genome editing using CRISPR/Cas9.

    Science.gov (United States)

    Chou, Yi-Ying; Krupp, Annabel; Kaynor, Campbell; Gaudin, Raphaël; Ma, Minghe; Cahir-McFarland, Ellen; Kirchhausen, Tom

    2016-11-14

    Progressive multifocal leukoencephalopathy (PML) is a debilitating disease resulting from infection of oligodendrocytes by the JC polyomavirus (JCPyV). Currently, there is no anti-viral therapeutic available against JCPyV infection. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system (CRISPR/Cas9) is a genome editing tool capable of introducing sequence specific breaks in double stranded DNA. Here we show that the CRISPR/Cas9 system can restrict the JCPyV life cycle in cultured cells. We utilized CRISPR/Cas9 to target the noncoding control region and the late gene open reading frame of the JCPyV genome. We found significant inhibition of virus replication and viral protein expression in cells recipient of Cas9 together with JCPyV-specific single-guide RNA delivered prior to or after JCPyV infection.

  14. miR-300 inhibits epithelial to mesenchymal transition and metastasis by targeting Twist in human epithelial cancer.

    Science.gov (United States)

    Yu, Jingshuang; Xie, Furong; Bao, Xin; Chen, Wantao; Xu, Qin

    2014-05-24

    Epithelial-to-mesenchymal transition (EMT) is a key step of the progression of tumor cell metastasis. Recent work has demonstrated some miRNAs play critical roles in EMT. In this study, we focused on the roles of miR-300 in regulating EMT. The expression levels of miR-300 were examined in epithelial carcinoma cells that underwent an EMT using quantitative reverse transcription-PCR. The role of miR-300 in EMT was investigated by transfection of the miR-300 mimic or inhibitor in natural epithelial-mesenchymal phenotype cell line pairs and in transforming growth factor (TGF) beta-induced EMT cell models. A luciferase reporter assay and a rescue experiment were conducted to confirm the target gene of miR-300. The efficacy of miR-300 against tumor invasion and metastasis was evaluated both in vitro and in vivo. Correlation analysis between miR-300 expression and the expression levels of its target gene, as well as tumor metastasis was performed in specimens from patients with head and neck squamous cell carcinoma (HNSCC). MiR-300 was found down-regulated in the HNSCC cells and breast cancer cells that underwent EMT. Ectopic expression of miR-300 effectively blocked TGF-beta-induced EMT and reversed the phenotype of EMT in HN-12 and MDA-MB-231 cells, but inhibition of miR-300 in the epithelial phenotype cells, HN-4 and MCF-7 cells, could induce EMT. The luciferase reporter assay and the rescue assay results showed that miR-300 directly targets the 3'UTR of Twist. Enforced miR-300 expression suppressed cell invasion in vitro and experimental metastasis in vivo. Clinically, miR-300 expression was found inversely correlated with Twist expression and reduced miR-300 was associated with metastasis in patient specimens. Down-regulation of miR-300 is required for EMT initiation and maintenance. MiR-300 may negatively regulate EMT by direct targeting Twist and therefore inhibit cancer cell invasion and metastasis, which implicates miR-300 as an attractive candidate for cancer

  15. MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2.

    Science.gov (United States)

    Foley, Niamh H; Bray, Isabella M; Tivnan, Amanda; Bryan, Kenneth; Murphy, Derek M; Buckley, Patrick G; Ryan, Jacqueline; O'Meara, Anne; O'Sullivan, Maureen; Stallings, Raymond L

    2010-04-21

    Neuroblastoma is a paediatric cancer of the sympathetic nervous system. The single most important genetic indicator of poor clinical outcome is amplification of the MYCN transcription factor. One of many down-stream MYCN targets is miR-184, which is either directly or indirectly repressed by this transcription factor, possibly due to its pro-apoptotic effects when ectopically over-expressed in neuroblastoma cells. The purpose of this study was to elucidate the molecular mechanism by which miR-184 conveys pro-apoptotic effects. We demonstrate that the knock-down of endogenous miR-184 has the opposite effect of ectopic up-regulation, leading to enhanced neuroblastoma cell numbers. As a mechanism of how miR-184 causes apoptosis when over-expressed, and increased cell numbers when inhibited, we demonstrate direct targeting and degradation of AKT2, a major downstream effector of the phosphatidylinositol 3-kinase (PI3K) pathway, one of the most potent pro-survival pathways in cancer. The pro-apoptotic effects of miR-184 ectopic over-expression in neuroblastoma cell lines is reproduced by siRNA inhibition of AKT2, while a positive effect on cell numbers similar to that obtained by the knock-down of endogenous miR-184 can be achieved by ectopic up-regulation of AKT2. Moreover, co-transfection of miR-184 with an AKT2 expression vector lacking the miR-184 target site in the 3'UTR rescues cells from the pro-apoptotic effects of miR-184. MYCN contributes to tumorigenesis, in part, by repressing miR-184, leading to increased levels of AKT2, a direct target of miR-184. Thus, two important genes with positive effects on cell growth and survival, MYCN and AKT2, can be linked into a common genetic pathway through the actions of miR-184. As an inhibitor of AKT2, miR-184 could be of potential benefit in miRNA mediated therapeutics of MYCN amplified neuroblastoma and other forms of cancer.

  16. MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2

    Directory of Open Access Journals (Sweden)

    Murphy Derek M

    2010-04-01

    Full Text Available Abstract Background Neuroblastoma is a paediatric cancer of the sympathetic nervous system. The single most important genetic indicator of poor clinical outcome is amplification of the MYCN transcription factor. One of many down-stream MYCN targets is miR-184, which is either directly or indirectly repressed by this transcription factor, possibly due to its pro-apoptotic effects when ectopically over-expressed in neuroblastoma cells. The purpose of this study was to elucidate the molecular mechanism by which miR-184 conveys pro-apoptotic effects. Results We demonstrate that the knock-down of endogenous miR-184 has the opposite effect of ectopic up-regulation, leading to enhanced neuroblastoma cell numbers. As a mechanism of how miR-184 causes apoptosis when over-expressed, and increased cell numbers when inhibited, we demonstrate direct targeting and degradation of AKT2, a major downstream effector of the phosphatidylinositol 3-kinase (PI3K pathway, one of the most potent pro-survival pathways in cancer. The pro-apoptotic effects of miR-184 ectopic over-expression in neuroblastoma cell lines is reproduced by siRNA inhibition of AKT2, while a positive effect on cell numbers similar to that obtained by the knock-down of endogenous miR-184 can be achieved by ectopic up-regulation of AKT2. Moreover, co-transfection of miR-184 with an AKT2 expression vector lacking the miR-184 target site in the 3'UTR rescues cells from the pro-apoptotic effects of miR-184. Conclusions MYCN contributes to tumorigenesis, in part, by repressing miR-184, leading to increased levels of AKT2, a direct target of miR-184. Thus, two important genes with positive effects on cell growth and survival, MYCN and AKT2, can be linked into a common genetic pathway through the actions of miR-184. As an inhibitor of AKT2, miR-184 could be of potential benefit in miRNA mediated therapeutics of MYCN amplified neuroblastoma and other forms of cancer.

  17. The enteropathogenic E. coli (EPEC Tir effector inhibits NF-κB activity by targeting TNFα receptor-associated factors.

    Directory of Open Access Journals (Sweden)

    Marie-Hélène Ruchaud-Sparagano

    2011-12-01

    Full Text Available Enteropathogenic Escherichia coli (EPEC disease depends on the transfer of effector proteins into epithelia lining the human small intestine. EPEC E2348/69 has at least 20 effector genes of which six are located with the effector-delivery system genes on the Locus of Enterocyte Effacement (LEE Pathogenicity Island. Our previous work implied that non-LEE-encoded (Nle effectors possess functions that inhibit epithelial anti-microbial and inflammation-inducing responses by blocking NF-κB transcription factor activity. Indeed, screens by us and others have identified novel inhibitory mechanisms for NleC and NleH, with key co-operative functions for NleB1 and NleE1. Here, we demonstrate that the LEE-encoded Translocated-intimin receptor (Tir effector has a potent and specific ability to inhibit NF-κB activation. Indeed, biochemical, imaging and immunoprecipitation studies reveal a novel inhibitory mechanism whereby Tir interaction with cytoplasm-located TNFα receptor-associated factor (TRAF adaptor proteins induces their proteasomal-independent degradation. Infection studies support this Tir-TRAF relationship but reveal that Tir, like NleC and NleH, has a non-essential contribution in EPEC's NF-κB inhibitory capacity linked to Tir's activity being suppressed by undefined EPEC factors. Infections in a disease-relevant intestinal model confirm key NF-κB inhibitory roles for the NleB1/NleE1 effectors, with other studies providing insights on host targets. The work not only reveals a second Intimin-independent property for Tir and a novel EPEC effector-mediated NF-κB inhibitory mechanism but also lends itself to speculations on the evolution of EPEC's capacity to inhibit NF-κB function.

  18. MicroRNA-27a-3p Inhibits Melanogenesis in Mouse Skin Melanocytes by Targeting Wnt3a

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhao

    2015-05-01

    Full Text Available MicroRNAs (miRNAs play an essential role in the regulation of almost all the biological processes, including melanogenesis. MiR-27a-3p is nearly six times higher in white alpaca skin compared to brown skin, which indicates that miR-27a-3p may be a candidate regulator for melanogenesis. Wnt3a plays an important role in promoting melanoblasts to differentiate into melanocytes and melanogenesis. To confirm the function of miR-27a-3p to melanogenesis in mammals, miR-27a-3p mimic, inhibitor and their negative control were transfected into mouse melanocytes. As a result, miR-27a-3p inhibits melanogenesis by repressing Wnt3a at post-transcriptional level. A significant decrease in Wnt3a luciferase activity was observed in 293T cells co-transfected with the matched luciferase reporter vector and pre-miR-27a. Furthermore, the presence of exogenous miR-27a-3p significantly decreased Wnt3a protein expression rather than mRNA and reduced β-catenin mRNA levels in melanocytes. The over-expression of miR-27a-3p significantly increased the melanin content of melanocytes. However, miR-27a-3p inhibitor performs an opposite effect on melanogenesis. Wnt3a is one target of miR-27a-3p. MiR-27a-3p could inhibit Wnt3a protein amount by post-transcriptional regulation and melanogenesis in mouse melanocytes. Previous studies reported that Wnt3a promoted melanogenensis in mouse melanocytes. Thus, miR-27-3p inhibits melanogenesis by repressing Wnt3a protein expression.

  19. Disrupting Dimerization Translocates Soluble Epoxide Hydrolase to Peroxisomes.

    Directory of Open Access Journals (Sweden)

    Jonathan W Nelson

    Full Text Available The epoxyeicosatrienoic acid (EET neutralizing enzyme soluble epoxide hydrolase (sEH is a neuronal enzyme, which has been localized in both the cytosol and peroxisomes. The molecular basis for its dual localization remains unclear as sEH contains a functional peroxisomal targeting sequence (PTS. Recently, a missense polymorphism was identified in human sEH (R287Q that enhances its peroxisomal localization. This same polymorphism has also been shown to generate weaker sEH homo-dimers. Taken together, these observations suggest that dimerization may mask the sEH PTS and prevent peroxisome translocation. In the current study, we test the hypothesis that dimerization is a key regulator of sEH subcellular localization. Specifically, we altered the dimerization state of sEH by introducing substitutions in amino acids responsible for the dimer-stabilizing salt-bridge. Green Fluorescent Protein (GFP fusions of each of mutants were co-transfected into mouse primary cultured cortical neurons together with a PTS-linked red fluorescent protein to constitutively label peroxisomes. Labeled neurons were analyzed using confocal microscopy and co-localization of sEH with peroxisomes was quantified using Pearson's correlation coefficient. We find that dimer-competent sEH constructs preferentially localize to the cytosol, whereas constructs with weakened or disrupted dimerization were preferentially targeted to peroxisomes. We conclude that the sEH dimerization status is a key regulator of its peroxisomal localization.

  20. Disrupting Dimerization Translocates Soluble Epoxide Hydrolase to Peroxisomes.

    Science.gov (United States)

    Nelson, Jonathan W; Das, Anjali J; Barnes, Anthony P; Alkayed, Nabil J

    2016-01-01

    The epoxyeicosatrienoic acid (EET) neutralizing enzyme soluble epoxide hydrolase (sEH) is a neuronal enzyme, which has been localized in both the cytosol and peroxisomes. The molecular basis for its dual localization remains unclear as sEH contains a functional peroxisomal targeting sequence (PTS). Recently, a missense polymorphism was identified in human sEH (R287Q) that enhances its peroxisomal localization. This same polymorphism has also been shown to generate weaker sEH homo-dimers. Taken together, these observations suggest that dimerization may mask the sEH PTS and prevent peroxisome translocation. In the current study, we test the hypothesis that dimerization is a key regulator of sEH subcellular localization. Specifically, we altered the dimerization state of sEH by introducing substitutions in amino acids responsible for the dimer-stabilizing salt-bridge. Green Fluorescent Protein (GFP) fusions of each of mutants were co-transfected into mouse primary cultured cortical neurons together with a PTS-linked red fluorescent protein to constitutively label peroxisomes. Labeled neurons were analyzed using confocal microscopy and co-localization of sEH with peroxisomes was quantified using Pearson's correlation coefficient. We find that dimer-competent sEH constructs preferentially localize to the cytosol, whereas constructs with weakened or disrupted dimerization were preferentially targeted to peroxisomes. We conclude that the sEH dimerization status is a key regulator of its peroxisomal localization.

  1. Inhibition of Non-ATG Translational Events in Cells via Covalent Small Molecules Targeting RNA.

    Science.gov (United States)

    Yang, Wang-Yong; Wilson, Henry D; Velagapudi, Sai Pradeep; Disney, Matthew D

    2015-04-29

    One major class of disease-causing RNAs is expanded repeating transcripts. These RNAs cause diseases via multiple mechanisms, including: (i) gain-of-function, in which repeating RNAs bind and sequester proteins involved in RNA biogenesis and (ii) repeat associated non-ATG (RAN) translation, in which repeating transcripts are translated into toxic proteins without use of a canonical, AUG, start codon. Herein, we develop and study chemical probes that bind and react with an expanded r(CGG) repeat (r(CGG)(exp)) present in a 5' untranslated region that causes fragile X-associated tremor/ataxia syndrome (FXTAS). Reactive compounds bind to r(CGG)(exp) in cellulo as shown with Chem-CLIP-Map, an approach to map small molecule binding sites within RNAs in cells. Compounds also potently improve FXTAS-associated pre-mRNA splicing and RAN translational defects, while not affecting translation of the downstream open reading frame. In contrast, oligonucleotides affect both RAN and canonical translation when they bind to r(CGG)(exp), which is mechanistically traced to a decrease in polysome loading. Thus, designer small molecules that react with RNA targets can be used to profile the RNAs to which they bind in cells, including identification of binding sites, and can modulate several aspects of RNA-mediated disease pathology in a manner that may be more beneficial than oligonucleotides.

  2. The pseudophosphatase STYX targets the F-box of FBXW7 and inhibits SCFFBXW7 function.

    Science.gov (United States)

    Reiterer, Veronika; Figueras-Puig, Cristina; Le Guerroue, Francois; Confalonieri, Stefano; Vecchi, Manuela; Jalapothu, Dasaradha; Kanse, Sandip M; Deshaies, Raymond J; Di Fiore, Pier Paolo; Behrends, Christian; Farhan, Hesso

    2017-02-01

    The F-box protein FBXW7 is the substrate-recruiting subunit of an SCF ubiquitin ligase and a major tumor-suppressor protein that is altered in several human malignancies. Loss of function of FBXW7 results in the stabilization of numerous proteins that orchestrate cell proliferation and survival. Little is known about proteins that directly regulate the function of this protein. In the current work, we have mapped the interactome of the enigmatic pseudophosphatase STYX We reasoned that a catalytically inactive phosphatase might have adopted novel mechanisms of action. The STYX interactome contained several F-box proteins, including FBXW7. We show that STYX binds to the F-box domain of FBXW7 and disables its recruitment into the SCF complex. Therefore, STYX acts as a direct inhibitor of FBXW7, affecting the cellular levels of its substrates. Furthermore, we find that levels of STYX and FBXW7 are anti-correlated in breast cancer patients, which affects disease prognosis. We propose the STYX-FBXW7 interaction as a promising drug target for future investigations. © 2016 The Authors.

  3. Overcoming bacterial resistance by dual target inhibition: the case of streptogramins.

    Science.gov (United States)

    Canu, A; Leclercq, R

    2001-08-01

    Streptogramins A and B are chemically unrelated antimicrobials which act synergistically. This synergy is responsible for enhanced activity of the combination compared to each of the components and allows to overcome certain mechanisms of resistance to streptogramins B.. Although not completely elucidated, the mechanism of synergy is unique and based on a stable ribosome conformational change provoked by the binding of streptogramins A which unmasks a high affinity binding site for streptogramins B. A variety of resistance mechanisms to the A or B components by drug inactivation, target site modification, and active efflux have been reported. Acquired resistance to streptogramins A partially alters the synergy between the streptogramins A and B confirming the role of this component in the synergy. Full resistance in clinical isolates is due to combinations of genes for resistance to both components often associated on a single plasmid. Recently, a mutation in the L22 ribosomal protein of Staphylococcus aureus was found to confer resistance to streptogramins B and to abolish the synergy between A and B, probably by perturbing the association of this protein with 23S rRNA.

  4. Targeting placental growth factor/neuropilin 1 pathway inhibits growth and spread of medulloblastoma

    Science.gov (United States)

    Snuderl, Matija; Batista, Ana; Kirkpatrick, Nathaniel D.; de Almodovar, Carmen Ruiz; Riedemann, Lars; Walsh, Elisa C.; Anolik, Rachel; Huang, Yuhui; Martin, John D.; Kamoun, Walid; Knevels, Ellen; Schmidt, Thomas; Farrar, Christian T.; Vakoc, Benjamin J.; Mohan, Nishant; Chung, Euiheon; Roberge, Sylvie; Peterson, Teresa; Bais, Carlos; Zhelyazkova, Boryana H.; Yip, Stephen; Hasselblatt, Martin; Rossig, Claudia; Niemeyer, Elisabeth; Ferrara, Napoleone; Klagsbrun, Michael; Duda, Dan G.; Fukumura, Dai; Xu, Lei; Carmeliet, Peter; Jain, Rakesh K.

    2013-01-01

    SUMMARY Medulloblastoma is the most common pediatric malignant brain tumor. Although current therapies improve survival, these regimens are highly toxic and associated with significant morbidity. Here, we report that placental growth factor (PlGF) is expressed in the majority of medulloblastomas independent of their subtype. Moreover, high expression of PlGF receptor neuropilin 1 (Nrp1) correlates with poor overall survival in patients. We demonstrate that PlGF and Nrp1 are required for the growth and spread of medulloblastoma: PlGF/Nrp1 blockade results in direct antitumor effects in vivo, resulting in medulloblastoma regression, decreased metastases, and increased mouse survival. We reveal that PlGF is produced in the cerebellar stroma via tumor-derived Sonic hedgehog (Shh) and show that PlGF acts through Nrp1—and not vascular endothelial growth factor receptor 1 (VEGFR1)—to promote tumor cell survival. This critical tumor-stroma interaction—mediated by Shh, PlGF, and Nrp1 across medulloblastoma subtypes—supports the development of therapies targeting PlGF/Nrp1 pathway. PMID:23452854

  5. A Heparan Sulfate-Binding Cell Penetrating Peptide for Tumor Targeting and Migration Inhibition

    Directory of Open Access Journals (Sweden)

    Chien-Jung Chen

    2015-01-01

    Full Text Available As heparan sulfate proteoglycans (HSPGs are known as co-receptors to interact with numerous growth factors and then modulate downstream biological activities, overexpression of HS/HSPG on cell surface acts as an increasingly reliable prognostic factor in tumor progression. Cell penetrating peptides (CPPs are short-chain peptides developed as functionalized vectors for delivery approaches of impermeable agents. On cell surface negatively charged HS provides the initial attachment of basic CPPs by electrostatic interaction, leading to multiple cellular effects. Here a functional peptide (CPPecp has been identified from critical HS binding region in hRNase3, a unique RNase family member with in vitro antitumor activity. In this study we analyze a set of HS-binding CPPs derived from natural proteins including CPPecp. In addition to cellular binding and internalization, CPPecp demonstrated multiple functions including strong binding activity to tumor cell surface with higher HS expression, significant inhibitory effects on cancer cell migration, and suppression of angiogenesis in vitro and in vivo. Moreover, different from conventional highly basic CPPs, CPPecp facilitated magnetic nanoparticle to selectively target tumor site in vivo. Therefore, CPPecp could engage its capacity to be developed as biomaterials for diagnostic imaging agent, therapeutic supplement, or functionalized vector for drug delivery.

  6. Targeting the β-clamp in Helicobacter pylori with FDA-approved drugs reveals micromolar inhibition by diflunisal.

    Science.gov (United States)

    Pandey, Preeti; Verma, Vijay; Gautam, Gunjan; Kumari, Nilima; Dhar, Suman Kumar; Gourinath, Samudrala

    2017-08-01

    The β-clamp is the processivity-promoting factor for most of the enzymes in prokaryotic DNA replication; hence, it is a crucial drug target. In the present study, we investigated the β-clamp from Helicobacter pylori, aiming to seek potential drug molecules against this gastric-cancer-causing bacterium. An in silico screening of Food and Drug Administration (FDA) approved drugs against the H. pylori β-clamp, followed by its in vitro inhibition using a surface competition approach, yielded the drug diflunisal as a positive initial hit. Diflunisal inhibits the growth of H. pylori in the micromolar range. We determined the structure of diflunisal in complex with the β-clamp to show that the drug binds at subsite I, which is a protein-protein interaction site. Successful identification of FDA-approved molecules against H. pylori may lead to better and faster drug development. © 2017 Federation of European Biochemical Societies.

  7. Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting β-catenin signaling pathway.

    Science.gov (United States)

    Li, Hongzhong; Yang, Bing; Huang, Jing; Xiang, Tingxiu; Yin, Xuedong; Wan, Jingyuan; Luo, Fuling; Zhang, Li; Li, Hongyuan; Ren, Guosheng

    2013-07-18

    Triple-negative (ER-/PR-/HER2-) breast cancer (TNBC) is a severe clinical problem because of its relatively poorer prognosis, aggressive behavior and lack of targeted therapies. Naringin, a major flavonoid extracted from citrus fruits, has been reported to exert promising anticancer activities. However, the detailed antitumor mechanism of naringin still remains enigmatic. In this study, TNBC cell lines-based in vitro and in vivo models were used to explore the anticancer effect and mechanism of naringin. Our data demonstrated that naringin inhibited cell proliferation, and promoted cell apoptosis and G1 cycle arrest, accompanied by increased p21 and decreased survivin. Meanwhile, β-catenin signaling pathway was found to be suppressed by naringin. In contrast, over-expressing β-catenin by adenoviral vector system in TNBC cells reversed the antitumor activity of naringin, and regulated p21 and survivin. Correspondingly, the antitumor potential of naringin was also observed in naringin-treated MDA-MB-231 xenograft mice, while immunohistochemical analysis of tumors from naringin-treated mice showed higher expression of p21 and lower expression of survivin and active β-catenin. Taken together, these results indicate that naringin could inhibit growth potential of TNBC cells by modulating β-catenin pathway, which suggests naringin might be used as a potential supplement for the prevention and treatment of breast cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Mammalian Target of Rapamycin Inhibitors Induce Tumor Cell Apoptosis In Vivo Primarily by Inhibiting VEGF Expression and Angiogenesis

    Directory of Open Access Journals (Sweden)

    Patrick Frost

    2013-01-01

    Full Text Available We found that rapalog mTOR inhibitors induce G1 arrest in the PTEN-null HS Sultan B-cell lymphoma line in vitro, but that administration of rapalogs in a HS Sultan xenograft model resulted in significant apoptosis, and that this correlated with induction of hypoxia and inhibition of neoangiogenesis and VEGF expression. Mechanistically, rapalogs prevent cap-dependent translation, but studies have shown that cap-independent, internal ribosome entry site (IRES-mediated translation of genes, such as c-myc and cyclin D, can provide a fail-safe mechanism that regulates tumor survival. Therefore, we tested if IRES-dependent expression of VEGF could likewise regulate sensitivity of tumor cells in vivo. To achieve this, we developed isogenic HS Sultan cell lines that ectopically express the VEGF ORF fused to the p27 IRES, an IRES sequence that is insensitive to AKT-mediated inhibition of IRES activity and effective in PTEN-null tumors. Mice challenged with p27-VEGF transfected tumor cells were more resistant to the antiangiogenic and apoptotic effects of the rapalog, temsirolimus, and active site mTOR inhibitor, pp242. Our results confirm the critical role of VEGF expression in tumors during treatment with mTOR inhibitors and underscore the importance of IRES activity as a resistance mechanism to such targeted therapy.

  9. Resveratrol inhibits Hexokinases II mediated glycolysis in non-small cell lung cancer via targeting Akt signaling pathway.

    Science.gov (United States)

    Li, Wei; Ma, Xiaoqian; Li, Na; Liu, Huasheng; Dong, Qiong; Zhang, Juan; Yang, Cejun; Liu, Yin; Liang, Qi; Zhang, Shengwang; Xu, Chang; Song, Wei; Tan, Shiming; Rong, Pengfei; Wang, Wei

    2016-12-10

    Deregulation of glycolysis was often observed in human cancer cells. In the present study, we reported resveratrol, a small polyphenol, which has been intensively studied in various tumor models, has a profound anti-tumor effect on human non-small cell lung cancer (NSCLC) via regulation of glycolysis. Resveratrol impaired hexokinase II (HK2)-mediated glycolysis, and markedly inhibited anchorage-dependent and -independent growth of NSCLC cells. Exposure to resveratrol decreased EGFR and downstream kinases Akt and ERK1/2 activation. Moreover, we revealed that resveratrol impaired glucose metabolism by mainly inhibiting expression of HK2 mediated by the Akt signaling pathway, and exogenous overexpression of constitutively activated Akt1 in NSCLC cells substantially rescued resveratrol-induced glycolysis suppression. The in vivo data indicated that resveratrol obviously suppressed tumor growth in a xenograft mouse model. Our results suggest targeting HK2 or metabolic enzymes appears to be a new approach for clinical NSCLC prevention or treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Cold Atmospheric Plasma Inhibits HIV-1 Replication in Macrophages by Targeting Both the Virus and the Cells.

    Directory of Open Access Journals (Sweden)

    Olga Volotskova

    Full Text Available Cold atmospheric plasma (CAP is a specific type of partially ionized gas that is less than 104°F at the point of application. It was recently shown that CAP can be used for decontamination and sterilization, as well as anti-cancer treatment. Here, we investigated the effects of CAP on HIV-1 replication in monocyte-derived macrophages (MDM. We demonstrate that pre-treatment of MDM with CAP reduced levels of CD4 and CCR5, inhibiting virus-cell fusion, viral reverse transcription and integration. In addition, CAP pre-treatment affected cellular factors required for post-entry events, as replication of VSV-G-pseudotyped HIV-1, which by-passes HIV receptor-mediated fusion at the plasma membrane during entry, was also inhibited. Interestingly, virus particles produced by CAP-treated cells had reduced infectivity, suggesting that the inhibitory effect of CAP extended to the second cycle of infection. These results demonstrate that anti-HIV activity of CAP involves the effects on target cells and the virus, and suggest that CAP may be considered for potential application as an anti-HIV treatment.

  11. LPE-1, an orally active pyrimidine derivative, inhibits growth and mobility of human esophageal cancers by targeting LSD1.

    Science.gov (United States)

    Wang, Bo; Zhao, Bing; Pang, Lu-Ping; Zhao, Yuan-Di; Guo, Qian; Wang, Jun-Wei; Zheng, Yi-Chao; Zhang, Xin-Hui; Liu, Ying; Liu, Guang-Yao; Guo, Wen-Ge; Wang, Chao; Li, Zhong-Hua; Mao, Xue-Jing; Yu, Bin; Ma, Li-Ying; Liu, Hong-Min

    2017-08-01

    Histone lysine specific demethylase 1 (LSD1) plays an important role in epigenetic modifications, and aberrant expression of LSD1 predicts tumor progression and poor prognosis in human esophageal cancers. In this study, a series of LSD1 inhibitors were synthesized and proved to be highly potent against human esophageal squamous cell carcinoma (ESCC). Our data showed that these LSD1 inhibitors selectively suppressed the viability of esophageal cancer cell line (EC-109) bearing overexpressed LSD1. Among these, compound LPE-1 (LSD1 IC50=0.336±0.003μM) significantly suppressed proliferation, induced apoptosis, arrested cell cycle of EC109 cells at G2/M phase, and caused changes of the associated protein markers correspondingly. We also found that compound LPE-1 potently inhibited the migration and invasion of EC-109 cells. Docking studies showed that the cyano group formed hydrogen bonds with Val811 and Thr810. Additionally, the thiophene moiety formed arene-H interaction with Trp761 residue. In vivo studies showed that compound LPE-1 inhibited tumor growth of xenograft models bearing EC-109 without obvious toxicity. Collectively, our findings indicate that LSD1 may be a potential therapeutic target in ESCC, and compound LPE-1 could serve as a lead compound for further development for anti-ESCC drug discovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Targeting PPM1D by lentivirus-mediated RNA interference inhibits the tumorigenicity of bladder cancer cells

    Directory of Open Access Journals (Sweden)

    W. Wang

    2014-12-01

    Full Text Available Protein phosphatase magnesium/manganese-dependent 1D (PPM1D is a p53-induced phosphatase that functions as a negative regulator of stress response pathways and has oncogenic properties. However, the functional role of PPM1D in bladder cancer (BC remains largely unknown. In the present study, lentivirus vectors carrying small hairpin RNA (shRNA targeting PPM1D were used to explore the effects of PPM1D knockdown on BC cell proliferation and tumorigenesis. shRNA-mediated knockdown of PPM1D significantly inhibited cell growth and colony forming ability in the BC cell lines 5637 and T24. Flow cytometric analysis showed that PPM1D silencing increased the proportion of cells in the G0/G1 phase. Downregulation of PPM1D also inhibited 5637 cell tumorigenicity in nude mice. The results of the present study suggest that PPM1D plays a potentially important role in BC tumorigenicity, and lentivirus-mediated delivery of shRNA against PPM1D might be a promising therapeutic strategy for the treatment of BC.

  13. MicroRNA-185 targets SOCS3 to inhibit beta-cell dysfunction in diabetes.

    Directory of Open Access Journals (Sweden)

    Lidao Bao

    Full Text Available Diabetes is the most common and complex metabolic disorder, and one of the most important health threats now. MicroRNAs (miRNAs are a group of small non-coding RNAs that have been suggested to play a vital role in a variety of physiological processes, including glucose homeostasis. In this study, we investigated the role of miR-185 in diabetes. MiR-185 was significantly downregulated in diabetic patients and mice, and the low level was correlated to blood glucose concentration. Overexpression of miR-185 enhanced insulin secretion of pancreatic β-cells, promoted cell proliferation and protected cells from apoptosis. Further experiments using in silico prediction, luciferase reporter assay and western blot assay demonstrated that miR-185 directly targeted SOCS3 by binding to its 3'-UTR. On the contrary to miR-185's protective effects, SOCS3 significantly suppressed functions of β-cell and inactivated Stat3 pathway. When treating cells with miR-185 mimics in combination with SOCS3 overexpression plasmid, the inhibitory effects of SOCS3 were reversed. While combined treatment of miR-185 mimics and SOCS3 siRNA induced synergistically promotive effects compared to either miR-185 mimics or SOCS3 siRNA treatment alone. Moreover, we observed that miR-185 level was inversely correlated with SOCS3 expression in diabetes patients. In conclusion, this study revealed a functional and mechanistic link between miR-185 and SOCS3 in the pathogenesis of diabetes. MiR-185 plays an important role in the regulation of insulin secretion and β-cell growth in diabetes. Restoration of miR-185 expression may serve a potentially promising and efficient therapeutic approach for diabetes.

  14. Soluble epoxide hydrolase inhibitory activity of anthraquinone components from Aloe.

    Science.gov (United States)

    Sun, Ya Nan; Kim, Jang Hoon; Li, Wei; Jo, A Reum; Yan, Xi Tao; Yang, Seo Young; Kim, Young Ho

    2015-10-15

    Aloe is a short-stemmed succulent herb widely used in traditional medicine to treat various diseases and as raw material in cosmetics and heath foods. In this study, we isolated and identified two new anthraquinone derivatives, aloinoside C (6) and aloinoside D (7), together with six known compounds from an aqueous dissolved Aloe exudate. Their structures were identified by spectroscopic analysis. The inhibitory effects of the isolated compounds on soluble epoxide hydrolase (sEH) were evaluated. Compounds 1-8 inhibited sEH activity potently, with IC50 values ranging from 4.1±0.6 to 41.1±4.2 μM. A kinetic analysis of compounds 1-8 revealed that the inhibitory actions of compounds 1, 6 and 8 were non-competitive, whereas those of compounds 2-5 and 7 were the mixed-type. Molecular docking increases our understanding of receptor-ligand binding of all compounds. These results demonstrate that compounds 1-8 from Aloe are potential sEH inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Targeted Inhibition of Pregnancy-Associated Plasma Protein-A Activity Reduces Atherosclerotic Plaque Burden in Mice.

    Science.gov (United States)

    Conover, Cheryl A; Bale, Laurie K; Oxvig, Claus

    2016-02-01

    The metalloproteinase, pregnancy-associated plasma protein-A (PAPP-A), has been implicated in the development of cardiovascular disease in humans and mouse models. In the latter, genetic deletion or overexpression of PAPP-A confirmed a major role for PAPP-A in atherosclerosis. In this study, we tested the hypothesis that targeting PAPP-A proteolytic activity by an inhibitory monoclonal antibody (mAb-PA) reduces atherosclerotic plaque progression. Apolipoprotein E knock-out mice on high-fat diet were treated with mAb-PA or isotype control. Control mice had a 10-fold increase in aortic plaque after 10 weeks. Aortic plaque burden was reduced by ∼ 70% in mice treated with mAb-PA (P = 0.0002). Treatment was efficacious even in the face of elevated cholesterol and triglycerides. This study demonstrates proof-of-principle and provides feasibility for a novel therapeutic strategy to inhibit atherosclerotic plaque burden by selective targeting of PAPP-A.

  16. Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy.

    Science.gov (United States)

    Priceman, Saul J; Sung, James L; Shaposhnik, Zory; Burton, Jeremy B; Torres-Collado, Antoni X; Moughon, Diana L; Johnson, Mai; Lusis, Aldons J; Cohen, Donald A; Iruela-Arispe, M Luisa; Wu, Lily

    2010-02-18

    Tumor-infiltrating myeloid cells (TIMs) support tumor growth by promoting angiogenesis and suppressing antitumor immune responses. CSF-1 receptor (CSF1R) signaling is important for the recruitment of CD11b(+)F4/80(+) tumor-associated macrophages (TAMs) and contributes to myeloid cell-mediated angiogenesis. However, the impact of the CSF1R signaling pathway on other TIM subsets, including CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSCs), is unknown. Tumor-infiltrating MDSCs have also been shown to contribute to tumor angiogenesis and have recently been implicated in tumor resistance to antiangiogenic therapy, yet their precise involvement in these processes is not well understood. Here, we use the selective pharmacologic inhibitor of CSF1R signaling, GW2580, to demonstrate that CSF-1 regulates the tumor recruitment of CD11b(+)Gr-1(lo)Ly6C(hi) mononuclear MDSCs. Targeting these TIM subsets inhibits tumor angiogenesis associated with reduced expression of proangiogenic and immunosuppressive genes. Combination therapy using GW2580 with an anti-VEGFR-2 antibody synergistically suppresses tumor growth and severely impairs tumor angiogenesis along with reverting at least one TIM-mediated antiangiogenic compensatory mechanism involving MMP-9. These data highlight the importance of CSF1R signaling in the recruitment and function of distinct TIM subsets, including MDSCs, and validate the benefits of targeting CSF1R signaling in combination with antiangiogenic drugs for the treatment of solid cancers.

  17. miR-194 Inhibits Innate Antiviral Immunity by Targeting FGF2 in Influenza H1N1 Virus Infection

    Directory of Open Access Journals (Sweden)

    Keyu Wang

    2017-11-01

    Full Text Available Fibroblast growth factor 2 (FGF2 or basic FGF regulates a wide range of cell biological functions including proliferation, angiogenesis, migration, differentiation, and injury repair. However, the roles of FGF2 and the underlying mechanisms of action in influenza A virus (IAV-induced lung injury remain largely unexplored. In this study, we report that microRNA-194-5p (miR-194 expression is significantly decreased in A549 alveolar epithelial cells (AECs following infection with IAV/Beijing/501/2009 (BJ501. We found that miR-194 can directly target FGF2, a novel antiviral regulator, to suppress FGF2 expression at the mRNA and protein levels. Overexpression of miR-194 facilitated IAV replication by negatively regulating type I interferon (IFN production, whereas reintroduction of FGF2 abrogated the miR-194-induced effects on IAV replication. Conversely, inhibition of miR-194 alleviated IAV-induced lung injury by promoting type I IFN antiviral activities in vivo. Importantly, FGF2 activated the retinoic acid-inducible gene I signaling pathway, whereas miR-194 suppressed the phosphorylation of tank binding kinase 1 and IFN regulatory factor 3. Our findings suggest that the miR-194-FGF2 axis plays a vital role in IAV-induced lung injury, and miR-194 antagonism might be a potential therapeutic target during IAV infection.

  18. Inhibition of Cellular Adhesion by Immunological Targeting of Osteopontin Neoepitopes Generated through Matrix Metalloproteinase and Thrombin Cleavage.

    Directory of Open Access Journals (Sweden)

    Alexander Jürets

    Full Text Available Osteopontin (OPN, a secreted protein involved in inflammatory processes and cancer, induces cell adhesion, migration, and activation of inflammatory pathways in various cell types. Cells bind OPN via integrins at a canonical RGD region in the full length form as well as to a contiguous cryptic site that some have shown is unmasked upon thrombin or matrix metalloproteinase cleavage. Thus, the adhesive capacity of osteopontin is enhanced by proteolytic cleavage that may occur in inflammatory conditions such as obesity, atherosclerosis, rheumatoid arthritis, tumor growth and metastasis. Our aim was to inhibit cellular adhesion to recombinant truncated proteins that correspond to the N-terminal cleavage products of thrombin- or matrix metalloproteinase-cleaved OPN in vitro. We specifically targeted the cryptic integrin binding site with monoclonal antibodies and antisera induced by peptide immunization of mice. HEK 293 cells adhered markedly stronger to truncated OPN proteins than to full length OPN. Without affecting cell binding to the full length form, the raised monoclonal antibodies specifically impeded cellular adhesion to the OPN fragments. Moreover, we show that the peptides used for immunization were able to induce antisera, which impeded adhesion either to all OPN forms, including the full-length form, or selectively to the corresponding truncated recombinant proteins. In conclusion, we developed immunological tools to selectively target functional properties of protease-cleaved OPN forms, which could find applications in treatment and prevention of various inflammatory diseases and cancers.

  19. RGD-conjugated Nanoparticles for Targeted Inhibition of Metastasis of Integrin alphavbeta3-overexpressing Breast Cancer Cells

    Science.gov (United States)

    Shan, Dan

    The use of actively targeted nanoparticles as a delivery system for both the diagnosis and treatment of cancer has been explored extensively. However, selective tumor accumulation is not guaranteed. The objectives of this thesis were 1) to optimize the nanoparticle surface content of cyclic arginyl-glycyl-aspartic acid (cRGD) decorated solid lipid nanoparticles (RGD-SLN) in targeting alphavbeta3 integrin receptor, and 2) to evaluate the potential of RGD-SLN in inhibition of metastasis. Nanoparticles of cRGD content ranging from 0 - 10% mol were synthesized. They showed enhanced binding for alphavbeta3 integrin receptors and increased cellular uptake in the breast cancer cells. In vitro treatment with RGD-SLNs reduced tumor cell adhesion and invasion. Maximum tumor accumulation was demonstrated in 1% mol of RGD on the nanoparticle surface among all formulations tested in vivo. This work has laid a foundation for further development of anticancer drug-loaded cRGD-nanoparticle formulations useful for the treatment of breast cancer metastasis.

  20. Delivery of siRNAs to Dendritic Cells Using DEC205-Targeted Lipid Nanoparticles to Inhibit Immune Responses.

    Science.gov (United States)

    Katakowski, Joseph A; Mukherjee, Gayatri; Wilner, Samantha E; Maier, Keith E; Harrison, Michael Travis; DiLorenzo, Teresa P; Levy, Matthew; Palliser, Deborah

    2016-02-01

    Due to their ability to knock down the expression of any gene, siRNAs have been heralded as ideal candidates for treating a wide variety of diseases, including those involving "undruggable" targets. However, the therapeutic potential of siRNAs remains severely limited by a lack of effective delivery vehicles. Recently, lipid nanoparticles (LNPs) containing ionizable cationic lipids have been developed for hepatic siRNA delivery. However, their suitability for delivery to other cell types has not been determined. We have modified LNPs for preferential targeting to dendritic cells (DCs), central regulators of immune responses. To achieve directed delivery, we coated LNPs with a single-chain antibody (scFv; DEC-LNPs), specific to murine DEC205, which is highly expressed on distinct DC subsets. Here we show that injection of siRNAs encapsulated in DEC-LNPs are preferentially delivered to DEC205(+) DCs. Gene knockdown following uptake of DEC-LNPs containing siRNAs specific for the costimulatory molecules CD40, CD80, and CD86 dramatically decreases gene expression levels. We demonstrate the functionality of this knockdown with a mixed lymphocyte response (MLR). Overall, we report that injection of LNPs modified to restrict their uptake to a distinct cell population can confer profound gene knockdown, sufficient to inhibit powerful immune responses like the MLR.

  1. Orally delivered thioketal nanoparticles loaded with TNF-α-siRNA target inflammation and inhibit gene expression in the intestines

    Science.gov (United States)

    Wilson, D. Scott; Dalmasso, Guillaume; Wang, Lixin; Sitaraman, Shanthi V.; Merlin, Didier; Murthy, Niren

    2010-11-01

    Small interfering RNAs (siRNAs) directed against proinflammatory cytokines have the potential to treat numerous diseases associated with intestinal inflammation; however, the side-effects caused by the systemic depletion of cytokines demands that the delivery of cytokine-targeted siRNAs be localized to diseased intestinal tissues. Although various delivery vehicles have been developed to orally deliver therapeutics to intestinal tissue, none of these strategies has demonstrated the ability to protect siRNA from the harsh environment of the gastrointestinal tract and target its delivery to inflamed intestinal tissue. Here, we present a delivery vehicle for siRNA, termed thioketal nanoparticles (TKNs), that can localize orally delivered siRNA to sites of intestinal inflammation, and thus inhibit gene expression in inflamed intestinal tissue. TKNs are formulated from a polymer, poly-(1,4-phenyleneacetone dimethylene thioketal), that degrades selectively in response to reactive oxygen species (ROS). Therefore, when delivered orally, TKNs release siRNA in response to the abnormally high levels of ROS specific to sites of intestinal inflammation. Using a murine model of ulcerative colitis, we demonstrate that orally administered TKNs loaded with siRNA against the proinflammatory cytokine tumour necrosis factor-alpha (TNF-α) diminish TNF-α messenger RNA levels in the colon and protect mice from ulcerative colitis.

  2. The viral capping enzyme nsP1: a novel target for the inhibition of chikungunya virus infection.

    Science.gov (United States)

    Delang, L; Li, C; Tas, A; Quérat, G; Albulescu, I C; De Burghgraeve, T; Guerrero, N A Segura; Gigante, A; Piorkowski, G; Decroly, E; Jochmans, D; Canard, B; Snijder, E J; Pérez-Pérez, M J; van Hemert, M J; Coutard, B; Leyssen, P; Neyts, J

    2016-08-22

    The chikungunya virus (CHIKV) has become a substantial global health threat due to its massive re-emergence, the considerable disease burden and the lack of vaccines or therapeutics. We discovered a novel class of small molecules ([1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones) with potent in vitro activity against CHIKV isolates from different geographical regions. Drug-resistant variants were selected and these carried a P34S substitution in non-structural protein 1 (nsP1), the main enzyme involved in alphavirus RNA capping. Biochemical assays using nsP1 of the related Venezuelan equine encephalitis virus revealed that the compounds specifically inhibit the guanylylation of nsP1. This is, to the best of our knowledge, the first report demonstrating that the alphavirus capping machinery is an excellent antiviral drug target. Considering the lack of options to treat CHIKV infections, this series of compounds with their unique (alphavirus-specific) target offers promise for the development of therapy for CHIKV infections.

  3. The influence of ferric (III citrate on ATP-hydrolases of Desulfuromonas acetoxidans ІМV В-7384

    Directory of Open Access Journals (Sweden)

    O. Maslovska

    2013-02-01

    peroxidation products in bacterial cells confirms free radical mechanism of oxidation of polyunsaturated fatty acids. Thus, for fulfiling complete analyses of cell response against oxidative stress it was reasonable to investigate the influence of ferric (III citrate on specific ATP-hydrolase activity, Na+, K+-ATP-hydrolase activity and Mg2+-ATP-hydrolase activity of D. acetoxidans ІМV В-7384. Bacteria were cultivated in the modified Postgaite C medium during four days under the anaerobic conditions and temperature +27°С with addition from 10 to 20 mM of ferric (III citrate into the growth medium. Control samples didn’t contain investigated metal salt. Chosen concentrations of metal salt caused inhibition of bacterial growth by 20–50%. Activities of ATP-hydrolases were investigated as described. It was shown, that specific ATP-hydrolase activity of D. acetoxidans ІМV В-7384 is changing in dependance on duration of ferric (III citrate exposure and concentration of the metal salt. Addition of the ferric (III citrate in relatively low concentrations (10–12 mM causes increasing of specific ATP-hydrolase activity of D. acetoxidans IMV B-7384 in comparison with control. Activity of investigated enzymes was inhibited under the increasing of metal salt concentration in bacterial growth medium. Increase of duration of D. acetoxidans IMV B-7384 cultivation causes decrease of ATP-hydrolase activity. Addition of ferric (III citrate causes simultaneous increasing of Na+, K+-ATP-hydrolase activity and inhibition of Mg2+-ATP-hydrolase activity during four days of bacterial cultivation.

  4. Chemical constituents from the root of Polygonum multiflorum and their soluble epoxide hydrolase inhibitory activity.

    Science.gov (United States)

    Sun, Ya Nan; Li, Wei; Kim, Jang Hoon; Yan, Xi Tao; Kim, Ji Eun; Yang, Seo Young; Kim, Young Ho

    2015-06-01

    Fourteen compounds were isolated from a methanol extract of Polygonum multiflorum roots, and their structures were elucidated by comparing spectroscopic data to published spectra. The inhibitory effects of the isolated compounds on soluble epoxide hydrolase (sEH) were then evaluated. Compounds 1-7 inhibited sEH activity potently, with IC50 values ranging from 6.2 ± 0.5 to 48.6 ± 3.1 μM. Moreover, a kinetic analysis of compounds 1-7 revealed that the inhibitory actions of compounds 1, 3 and 4 were non-competitive, whereas those of compounds 2 and 5-7 were mixed-type.

  5. MicroRNA-196b Inhibits Cell Growth and Metastasis of Lung Cancer Cells by Targeting Runx2.

    Science.gov (United States)

    Bai, Xiaoxue; Meng, Lin; Sun, Huijie; Li, Zhuo; Zhang, Xiufang; Hua, Shucheng

    2017-01-01

    Lung cancer is one of the most common causes of cancer related deaths worldwide. The role of several microRNAs (miRNAs) including miR-196b in different cancers has already been established. The study was aimed to explore the role of miR-196b in lung cancer and its possible underlying mechanism. Human lung cancer cell line A549 was transfected with miR-196b mimic, miR-196b inhibitor and corresponding controls. Then cell viability, migration, invasion, and apoptosis of A549 lung cancer cells either with overexpression or with suppression of miR-196b were estimated sequentially. Next, dual luciferase activity assay was performed to clarify whether Runx2 was a direct target of miR-196b. Finally, the expressions of main factors associated with epithelial mesenchymal transition (EMT), PI3K/AKT/GSK3β, Smad, and JNK pathways were detected by western blot. MiR-196b expression was significantly decreased in A549, H1650 and H1299 cell lines compared with in WI-38 and HEL-1 cell lines. Overexpression of miR-196b suppressed cell viability, migration, invasion, and induced apoptosis as well as inhibited TGF-β induced EMT process in A549 cells. In addition, Runx2 was a putative target of miR-196b, and Runx2 silence remarkably increased cell apoptosis and abolished the promotive effects of miR-196b suppression on cell viability, migration and invasion. Finally, miR-196b also mediated its action by inactivation of PI3K/AKT/GSK3β, Smad, and JNK pathways by down-regulation of Runx2. MiR-196b functions as a tumor suppressor that inhibited cell growth and metastasis of lung cancer cells by targeting Runx2. These findings provided further evidences for treatment of lung cancer. The Author(s). Published by S. Karger AG, Basel.

  6. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies: peripheral glycosylation of HIV envelope glycoprotein gp120 may be a target for virus neutralization

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C

    1990-01-01

    Carbohydrate structures are often involved in the initial adhesion of pathogens to target cells. In the present study, a panel of anticarbohydrate monoclonal antibodies (MAbs) was tested for their ability to inhibit in vitro human immunodeficiency virus infectivity. MAbs against three different N......- and O-linked carbohydrate epitopes (LeY, A1, and sialyl-Tn) were able to block infection by cell-free virus as well as inhibit syncytium formation. Inhibition of virus infectivity was independent of virus strain (HTLVIIIB or patient isolate SSI-002), the cell line used for virus propagation (H9 or MT4......), and the cell type used as the infection target (MT4, PMC, or selected T4 lymphocytes). Inhibition was observed when viruses were preincubated with MAbs but not when cells were preincubated with MAbs before inoculation, and the MAbs were shown to precipitate 125I-labeled gp120. The MAbs therefore define...

  7. Targeting MACC1 by RNA interference inhibits proliferation and invasion of bladder urothelial carcinoma in T24 cells.

    Science.gov (United States)

    Xu, Song-Tao; Ding, Xiang; Ni, Qing-Feng; Jin, Shao-Ju

    2015-01-01

    The purpose of this article is to research on whether MACC1 can serve as a potential target for gene therapy of human bladder urothelial carcinoma (BUC). In this study, the expression of MACC1 gene was knocked down by RNA interference (RNAi) in the T24 cell (human BUC cell). The transcription level of MACC1 was detected by RT-PCR. Activities of MACC1, caspase-3, caspase-8, Bax and Met (mesenchymal-epithelial transition factor) protein were measured by Western blot. The cell proliferation and apoptosis were detected by MTT and flow cytometry. The cell's invasion ability was performed on Matrigel transwell assay. We also detect MMP2 (metalloproteinase-2) proteins by ELISA. The results showed that the level of MACC1 mRNA and protein was significantly reduced after RNAi. MTT assay showed that the proliferation of T24 cell was decreased due to RNA interference. Apoptosis studies also showed that MACC1 gene interference in T24 loses its anti-apoptotic effects. The expression of apoptosis proteins (Caspase-3, Caspase-8 and Bax) increased significantly due to the MACC1 RNAi. The level of Met protein was down-regulated obviously due to RNAi. Transwell assay showed that invasion abilities of T24 cells were reduced obviously due to MACC1 RNAi. Further studies showed that the secretion of MMP-2 was reduced by RNAi. It can conclude that the ability of proliferation and invasion in T24 cells can be inhibited by RNAi-targeting MACC1. As a result, MACC1 can serve as a potential target for gene therapy of human bladder urothelial carcinoma.

  8. Targeting of Both the c-Met and EGFR Pathways Results in Additive Inhibition of Lung Tumorigenesis in Transgenic Mice

    Energy Technology Data Exchange (ETDEWEB)

    Stabile, Laura P. [Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Lung and Thoracic Malignancy Program, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Rothstein, Mary E. [Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Keohavong, Phouthone [Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Lung and Thoracic Malignancy Program, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Lenzner, Diana [Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Land, Stephanie R. [Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Lung and Thoracic Malignancy Program, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Gaither-Davis, Autumn L. [Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Lung and Thoracic Malignancy Program, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Kim, K. Jin [Galaxy Biotech, LLC, Sunnyvale, CA 94089 (United States); Kaminski, Naftali [Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Lung and Thoracic Malignancy Program, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Siegfried, Jill M., E-mail: siegfriedjm@upmc.edu [Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Lung and Thoracic Malignancy Program, University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2010-12-22

    EGFR and c-Met are both overexpressed in lung cancer and initiate similar downstream signaling, which may be redundant. To determine how frequently ligands that initiate signaling of both pathways are found in lung cancer, we analyzed serum for hepatocyte growth factor (HGF), transforming growth factor-alpha, and amphiregulin (AREG) in lung cancer cases and tobacco-exposed controls. HGF and AREG were both significantly elevated in cases compared to controls, suggesting that both HGF/c-Met and AREG/EGFR pathways are frequently active. When both HGF and AREG are present in vitro, downstream signaling to MAPK and Akt in non-small cell lung cancer (NSCLC) cells can only be completely inhibited by targeting both pathways. To test if dual blockade of the pathways could better suppress lung tumorigenesis in an animal model than single blockade, mice transgenic for airway expression of human HGF were treated with inhibitors of both pathways alone and in combination after exposure to a tobacco carcinogen. Mean tumor number in the group using both the HGF neutralizing antibody L2G7 and the EGFR inhibitor gefitinib was significantly lower than with single agents. A higher tumor K-ras mutation rate was observed with L2G7 alone compared to controls, suggesting that agents targeting HGF may be less effective against mutated K-ras lung tumors. This was not observed with combination treatment. A small molecule c-Met inhibitor decreased formation of both K-ras wild-type and mutant tumors and showed additive anti-tumor effects when combined with gefitinib. Dual targeting of c-Met/EGFR may have clinical benefit for lung cancer.

  9. Genetic and pharmacologic evidence that mTOR targeting outweighs mTORC1 inhibition as an antimyeloma strategy.

    Science.gov (United States)

    Chen, Xi; Díaz-Rodríguez, Elena; Ocio, Enrique M; Paiva, Bruno; Mortensen, Deborah S; Lopez-Girona, Antonia; Chopra, Rajesh; Miguel, Jesús San; Pandiella, Atanasio

    2014-02-01

    The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that regulates cell growth, proliferation, metabolism, and cell survival, and plays those roles by forming two functionally distinct multiprotein complexes: mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Deregulation of the mTOR pathway has been found in different cancers, including multiple myeloma. Agents acting on mTORC1, such as rapamycin and derivatives, are being explored as antitumoral strategies. However, whether targeting mTOR would be a more effective antimyeloma strategy than exclusively acting on the mTORC1 branch remains to be established. In this report, we explored the activation status of mTOR routes in malignant plasma cells, and analyzed the contribution of mTOR and its two signaling branches to the proliferation of myeloma cells. Gene expression profiling demonstrated deregulation of mTOR pathway-related genes in myeloma plasma cells from patients. Activation of the mTOR pathway in myelomatous plasma cells was corroborated by flow cytometric analyses. RNA interference (RNAi) experiments indicated that mTORC1 predominated over mTORC2 in the control of myeloma cell proliferation. However, mTOR knockdown had a superior antiproliferative effect than acting only on mTORC1 or mTORC2. Pharmacologic studies corroborated that the neutralization of mTOR has a stronger antimyeloma effect than the individual inhibition of mTORC1 or mTORC2. Together, our data support the clinical development of agents that widely target mTOR, instead of agents, such as rapamycin or its derivatives, that solely act on mTORC1.

  10. miR-411-5p inhibits proliferation and metastasis of breast cancer cell via targeting GRB2

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yunda [Department of Gastrointestinal Surgery, First Affiliated Hospital of Xiamen University, Xiamen 361003 (China); State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102 (China); Xu, Guoxing [Department of Gastrointestinal Surgery, First Affiliated Hospital of Xiamen University, Xiamen 361003 (China); Department of Gastrointestinal Surgery, First Clinical Medical College of Fujian Medical University, Fuzhou 350005 (China); Liu, Gang; Ye, Yongzhi [Department of Gastrointestinal Surgery, First Affiliated Hospital of Xiamen University, Xiamen 361003 (China); Zhang, Chuankai [Department of Gastrointestinal Surgery, First Affiliated Hospital of Xiamen University, Xiamen 361003 (China); State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102 (China); Fan, Chuannan [State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102 (China); Wang, Haibin; Cai, Huali; Xiao, Rui [Department of Gastrointestinal Surgery, First Affiliated Hospital of Xiamen University, Xiamen 361003 (China); Department of Gastrointestinal Surgery, First Clinical Medical College of Fujian Medical University, Fuzhou 350005 (China); Huang, Zhengjie, E-mail: huangzhengjie@xmu.edu.cn [Department of Gastrointestinal Surgery, First Affiliated Hospital of Xiamen University, Xiamen 361003 (China); Department of Gastrointestinal Surgery, First Clinical Medical College of Fujian Medical University, Fuzhou 350005 (China); Luo, Qi, E-mail: luoqixmzsh@126.com [Department of Gastrointestinal Surgery, First Affiliated Hospital of Xiamen University, Xiamen 361003 (China); Department of Gastrointestinal Surgery, First Clinical Medical College of Fujian Medical University, Fuzhou 350005 (China)

    2016-08-05

    miR-411-5p (previously called miR-411) is severely involved in human diseases, however, the relationship between miR-411-5p and breast cancer has not been investigated thoroughly. Here, we found that the expression of miR-411-5p was downregulated in breast cancer tissues compared with their matched adjacent non-neoplastic tissues. In addition, the expression of miR-411-5p was also lower in breast cancer cell lines in contrast with MCF-10A. Moreover, we investigated the target and mechanism of miR-411-5p in breast cancer using mimic and inhibitor, and demonstrated the involvement of GRB2 and Ras activation. Ectopic expression of miR-411-5p suppressed the breast cancer cell proliferation, migration and invasion while low expression of miR-411-5p exhibited the opposite effect. Furthermore, GRB2 was demonstrated to be significantly overexpressed in breast cancer tissues compared with normal tissues, and low expression of GRB2 had a longer overall survival compared with high expression of GRB2 in breast cancer. In general, our study shed light on the miR-411-5p related mechanism in the progression of breast cancer and, miR-411-5p/GRB2/Ras axis is potential to be molecular target for breast cancer therapy. - Highlights: • miR-411-5p is downregulated in breast cancer tissues and cell lines. • miR-411-5p inhibits breast cancer cells growth, migration and invasion in vitro. • GRB2 is a direct target of miR-411-5p in breast cancer. • GRB2 is overexpressed in breast cancer and associates with disease outcome. • miR-411-5p suppresses breast cancer progression though GRB2-SOS-Ras pathway.

  11. MicroRNA-218 inhibits the proliferation and metastasis of esophageal squamous cell carcinoma cells by targeting BMI1

    Science.gov (United States)

    WANG, TING; CHEN, TENGFEI; NIU, HUA; LI, CHANG; XU, CHUN; LI, YUANYUAN; HUANG, RUI; ZHAO, JUN; WU, SHUYAN

    2015-01-01

    MicroRNAs (miRNAs or miRs) play a pivotal role in esophageal carcinogenesis either as oncogenes or as tumor suppressor genes. In the present study, we found that the expression level of miR-218 was significantly reduced in esophageal squamous cell carcinoma (ESCC) tissues and ESCC cell lines. Moreover, its expression was found to correlate with the clinicopathological stage of ESCC; miR-218 expression was lower in the stage III tissue samples than in the stage I and II tissue samples. Furthermore, the decreased expression of miR-218 was found to be associated with an enhanced ESCC cell proliferation and metastasis. Western blot analysis and luciferase reporter assay revealed that miR-218 decreased BMI1 expression by binding to the putative binding sites in its 3′-untranslated region (3′-UTR). The BMI1 mRNA expression levels were markedly increased and negatively correlated with the miR-218 expression level in the ESCC tissues. Functional analyses revealed that the restoration of miR-218 expression inhibited ESCC cell proliferation, migration and invasion and promoted apoptosis. The knockdown of BMI1 by siRNA showed the same phenocopy as the effect of miR-218 on ESCC cells, indicating that BMI1 was a major target of miR-218. In the present study, our findings confirm miR-218 as a tumor suppressor and identify BMI1 as a novel target of miR-218 in ESCC. Therefore, miR-218 may prove to be a useful biomarker for monitoring the initiation and development of ESCC, and may thus be an effective therapeutic target in ESCC. PMID:25999024

  12. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies: peripheral glycosylation of HIV envelope glycoprotein gp120 may be a target for virus neutralization

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C

    1990-01-01

    Carbohydrate structures are often involved in the initial adhesion of pathogens to target cells. In the present study, a panel of anticarbohydrate monoclonal antibodies (MAbs) was tested for their ability to inhibit in vitro human immunodeficiency virus infectivity. MAbs against three different N......- and O-linked carbohydrate epitopes (LeY, A1, and sialyl-Tn) were able to block infection by cell-free virus as well as inhibit syncytium formation. Inhibition of virus infectivity was independent of virus strain (HTLVIIIB or patient isolate SSI-002), the cell line used for virus propagation (H9 or MT4...

  13. Anticancer bioactive peptide-3 inhibits human gastric cancer growth by targeting miR-338-5p.

    Science.gov (United States)

    Xing, Zhiwei; Yu, Lan; Li, Xian; Su, Xiulan

    2016-01-01

    Cancer incidence and mortality have been increasing in China, making cancer the leading cause of death since 2010 and a major public health concern in the country. Cancer stem cells have been studied in relation to the treatment of different malignancies, including gastric cancer. Anticancer bioactive peptide-3 (ACBP-3) can induce the apoptosis of gastric cancer stem cells (GCSCs) and reduce their tumorigenicity. In the present study, for the first time, we used a miRNA microarray and bioinformatics analysis to identify differentially expressed miRNAs in ACBP-3-treated GCSCs and GCSC-derived tumors in a xenograft model and functionally verified the identified miRNAs. miR-338-5p was selected based on its significant upregulation by ACBP-3 both in cultured GCSCs and in tumor tissues. miR-338-5p was downregulated in GCSCs compared with normal gastric epithelial cells, and the ectopic restoration of miR-338-5p expression in GCSCs inhibited cell proliferation and induced apoptosis, which correlated with the upregulation of the pro-apoptotic Bcl-2 proteins BAK and BIM. We also found that ACBP-3-treated GCSCs could respond to lower effective doses of cisplatin (DDP) or 5-fluorouracil (5-FU), possibly because ACBP-3 induced the expression of miR-338-5p and the BAK and BIM proteins and promoted GCSC apoptosis. Our data indicate that miR-338-5p is part of an important pathway for the inhibition of human gastric cancer stem cell proliferation by ACBP-3 combined with chemotherapeutics. ACBP-3 could suppress GCSC proliferation and lower the required effective dose of cisplatin or 5-fluorouracil. Therefore, this study provides not only further evidence for the remarkable anti-tumor effect of ACBP-3 but also a possible new approach for the development of GCSC-targeting therapies.

  14. Functional amyloids in Streptococcus mutans, their use as targets of biofilm inhibition and initial characterization of SMU_63c

    Science.gov (United States)

    Besingi, Richard N; Wenderska, Iwona B; Senadheera, Dilani B; Cvitkovitch, Dennis G; Long, Joanna R; Wen, Zezhang T

    2017-01-01

    Amyloids have been identified as functional components of the extracellular matrix of bacterial biofilms. Streptococcus mutans is an established aetiologic agent of dental caries and a biofilm dweller. In addition to the previously identified amyloidogenic adhesin P1 (also known as AgI/II, PAc), we show that the naturally occurring antigen A derivative of S. mutans wall-associated protein A (WapA) and the secreted protein SMU_63c can also form amyloid fibrils. P1, WapA and SMU_63c were found to significantly influence biofilm development and architecture, and all three proteins were shown by immunogold electron microscopy to reside within the fibrillar extracellular matrix of the biofilms. We also showed that SMU_63c functions as a negative regulator of biofilm cell density and genetic competence. In addition, the naturally occurring C-terminal cleavage product of P1, C123 (also known as AgII), was shown to represent the amyloidogenic moiety of this protein. Thus, P1 and WapA both represent sortase substrates that are processed to amyloidogenic truncation derivatives. Our current results suggest a novel mechanism by which certain cell surface adhesins are processed and contribute to the amyloidogenic capability of S. mutans. We further demonstrate that the polyphenolic small molecules tannic acid and epigallocatechin-3-gallate, and the benzoquinone derivative AA-861, which all inhibit amyloid fibrillization of C123 and antigen A in vitro, also inhibit S. mutans biofilm formation via P1- and WapA-dependent mechanisms, indicating that these proteins serve as therapeutic targets of anti-amyloid compounds. PMID:28141493

  15. Proton shuttles and phosphatase activity in soluble epoxide hydrolase.

    Science.gov (United States)

    De Vivo, Marco; Ensing, Bernd; Dal Peraro, Matteo; Gomez, German A; Christianson, David W; Klein, Michael L

    2007-01-17

    Recently, a novel metal Mg2+-dependent phosphatase activity has been discovered in the N-terminal domain of the soluble epoxide hydrolase (sEH), opening a new branch of fatty acid metabolism and providing an additional site for drug targeting. Importantly, the sEH N-terminal fold belongs to the haloacid dehalogenase (HAD) superfamily, which comprises a vast majority of phosphotransferases. Herein, we present the results of a computational study of the sEH phosphatase activity, which includes classical molecular dynamics (MD) simulations and mixed quantum mechanical/molecular mechanics (QM/MM) calculations. On the basis of experimental results, a two-step mechanism has been proposed and herein investigated: (1) phosphoenzyme intermediate formation and (2) phosphoenzyme intermediate hydrolysis. Building on our earlier work, we now provide a detailed description of the reaction mechanism for the whole catalytic cycle along with its free energy profile. The present computations suggest metaphosphate-like transition states for these phosphoryl transfers. They also reveal that the enzyme promotes water deprotonation and facilitates shuttling of protons via a metal-ligand connecting water bridge (WB). These WB-mediated proton shuttles are crucial for the activation of the solvent nucleophile and for the stabilization of the leaving group. Moreover, due to the conservation of structural features in the N-terminal catalytic site of sEH and other members of the HAD superfamily, we suggest a generalization of our findings to these other metal-dependent phosphatases.

  16. Efficient Calculation of Enzyme Reaction Free Energy Profiles Using a Hybrid Differential Relaxation Algorithm: Application to Mycobacterial Zinc Hydrolases.

    Science.gov (United States)

    Romero, Juan Manuel; Martin, Mariano; Ramirez, Claudia Lilián; Dumas, Victoria Gisel; Marti, Marcelo Adrián

    2015-01-01

    Determination of the free energy profile for an enzyme reaction mechanism is of primordial relevance, paving the way for our understanding of the enzyme's catalytic power at the molecular level. Although hybrid, mostly DFT-based, QM/MM methods have been extensively applied to this type of studies, achieving accurate and statistically converged results at a moderate computational cost is still an open challenge. Recently, we have shown that accurate results can be achieved in less computational time, combining Jarzynski's relationship with a hybrid differential relaxation algorithm (HyDRA), which allows partial relaxation of the solvent during the nonequilibrium steering of the reaction. In this work, we have applied this strategy to study two mycobacterial zinc hydrolases. Mycobacterium tuberculosis infections are still a worldwide problem and thus characterization and validation of new drug targets is an intense field of research. Among possible drug targets, recently two essential zinc hydrolases, MshB (Rv1170) and MA-amidase (Rv3717), have been proposed and structurally characterized. Although possible mechanisms have been proposed by analogy to the widely studied human Zn hydrolases, several key issues, particularly those related to Zn coordination sphere and its role in catalysis, remained unanswered. Our results show that mycobacterial Zn hydrolases share a basic two-step mechanism. First, the attacking water becomes deprotonated by the conserved base and establishes the new C-O bond leading to a tetrahedral intermediate. The intermediate requires moderate reorganization to allow for proton transfer to the amide N and C-N bond breaking to occur in the second step. Zn ion plays a key role in stabilizing the tetrahedral intermediate and balancing the negative charge of the substrate during hydroxide ion attack. Finally, comparative analysis of other Zn hydrolases points to a convergent mechanistic evolution. © 2015 Elsevier Inc. All rights reserved.

  17. MicroRNA-365 inhibits growth, invasion and metastasis of malignant melanoma by targeting NRP1 expression.

    Science.gov (United States)

    Bai, Juanjuan; Zhang, Zhongling; Li, Xing; Liu, Huifan

    2015-01-01

    The role of miR-365 in cancer cells seemed controversial in previous studies. We thereby in this article aimed to define the role of miR-365 in malignant melanoma (MM) pathogenesis. We detected miR-365 expression in malignant melanoma cell lines and then investigated the effects of miR-365 on the metastasis and malignancy of melanoma cells. The correlation between miR-365 level and NRP1 (neuropilin1) was further investigated in clinical malignant melanoma specimens. MiR-365 was strongly down-regulated in malignant melanoma (MM) tissues and cell lines, and its expression levels were associated with lymph node metastasis and clinical stage, as well as overall survival and replase-free survival of MM. We also found that ectopic expression of miR-365 inhibited MM cell proliferation and MM metastasis in vitro and in vivo. We further identified a novel mechanism of miR-365 to suppress MM growth and metastasis. NRP1 was proved to be a direct target of miR-365, using luciferase assay and western blot. NRP1 over-expression in miR-365 expressing cells could rescue invasion and growth defects of miR-365. In addition, miR-365 expression inversely correlated with NRP1 protein levels in MM. Our data suggest that miR-365 functions as a tumor suppressor in MM development and progression, and holds promise as a prognostic biomarker and potential therapeutic target for MM.

  18. Mammalian Target of Rapamycin Inhibition With Rapamycin Mitigates Radiation-Induced Pulmonary Fibrosis in a Murine Model

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eun Joo [Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland (United States); Sowers, Anastasia; Thetford, Angela [Radiation Biology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland (United States); McKay-Corkum, Grace; Chung, Su I. [Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland (United States); Mitchell, James B. [Radiation Biology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland (United States); Citrin, Deborah E., E-mail: citrind@mail.nih.gov [Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland (United States)

    2016-11-15

    Purpose: Radiation-induced pulmonary fibrosis (RIPF) is a late toxicity of therapeutic radiation. Signaling of the mammalian target of rapamycin drives several processes implicated in RIPF, including inflammatory cytokine production, fibroblast proliferation, and epithelial senescence. We sought to determine if mammalian target of rapamycin inhibition with rapamycin would mitigate RIPF. Methods and Materials: C57BL/6NCr mice received a diet formulated with rapamycin (14 mg/kg food) or a control diet 2 days before and continuing for 16 weeks after exposure to 5 daily fractions of 6 Gy of thoracic irradiation. Fibrosis was assessed with Masson trichrome staining and hydroxyproline assay. Cytokine expression was evaluated by quantitative real-time polymerase chain reaction. Senescence was assessed by staining for β-galactosidase activity. Results: Administration of rapamycin extended the median survival of irradiated mice compared with the control diet from 116 days to 156 days (P=.006, log-rank test). Treatment with rapamycin reduced hydroxyproline content compared with the control diet (irradiation plus vehicle, 45.9 ± 11.8 μg per lung; irradiation plus rapamycin, 21.4 ± 6.0 μg per lung; P=.001) and reduced visible fibrotic foci. Rapamycin treatment attenuated interleukin 1β and transforming growth factor β induction in irradiated lungs compared with the control diet. Type II pneumocyte senescence after irradiation was reduced with rapamycin treatment at 16 weeks (3-fold reduction at 16 weeks, P<.001). Conclusions: Rapamycin protected against RIPF in a murine model. Rapamycin treatment reduced inflammatory cytokine expression, extracellular matrix production, and senescence in type II pneumocytes.

  19. MicroRNA-584 inhibits cell proliferation and invasion in non-small cell lung cancer by directly targeting MTDH.

    Science.gov (United States)

    Zhang, Yixiang; Wang, Yanjun; Wang, Jinguang

    2018-02-01

    Lung cancer is the third most frequent human malignant tumour and the leading cause of cancer-associated mortality worldwide. Emerging lines of evidence have demonstrated that microRNAs (miRNAs) are upregulated or downregulated in non-small cell lung cancer (NSCLC), and this phenomenon is involved in the regulation of various processes during tumorigenesis and progression, including tumour groWTh, apoptosis, cell invasion, and tumour metastasis. Therefore, understanding the molecular mechanism that associates abnormally expressed miRNAs with NSCLC formation and development may lead to the identification of novel diagnostic, and therapeutic targets for patients with NSCLC. miRNA-584 (miR-584) functions as a tumour suppressor in several types of cancer. However, the expression pattern, detailed biological function and underlying molecular mechanism of miR-584 in NSCLC remain unclear. Therefore, the present study detected the expression of miR-584 in NSCLC, investigated its role in NSCLC cells and determined its underlying molecular mechanism. In the current study, it was demonstrated that miR-584 was downregulated in NSCLC tissues and cell lines. Low miR-584 expression was correlated with tumour size, tumour node metastasis stage and distant metastasis. Overexpression of miR-584 inhibited cell proliferation and invasion in NSCLC. Additionally, metadherin was identified as a direct target gene of miR-584 in NSCLC as confirmed by a series of experiments. Moreover, upregulation of miR-584 was involved in the regulation of the phosphatase and tensin homolog/Akt serine/threonine kinase signalling pathway in NSCLC. Thus, miR-584 may serve as a tumor-suppressor, and the results of the present study provide a reference for future research into the potential mechanisms underlying NSCLC progression.

  20. Systematic Survey of Serine Hydrolase Activity in Mycobacterium tuberculosis Defines Changes Associated with Persistence

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Corrie; Anderson, Lindsey N.; Frando, Andrew; Sadler, Natalie C.; Brown, Robert W.; Smith, Richard D.; Wright, Aaron T.; Grundner, Christoph

    2016-02-01

    The transition between replication and non-replication underlies much of Mycobacterium tuberculosis (Mtb) pathogenicity, as non- or slowly replicating Mtb are responsible for persistence and poor treatment outcomes. Therapeutic targeting of non-replicating, persistent populations is a priority for tuberculosis treatment, but only few drug targets in non-replicating Mtb are currently known. Here, we directly measure the activity of the highly diverse and druggable serine hydrolases (SHs) during active replication and non-replication by activity-based proteomics. We predict serine hydrolase activity for 78 proteins, including 27 proteins with previously unknown function, and identify 37 SHs that remain active even in the absence of replication, providing a set of candidate persistence targets. Non-replication was associated with large shifts in the activity of the majority of SHs. These activity changes were largely independent of SH abundance, indicating extensive post-translational regulation. By probing a large cross-section of druggable Mtb enzyme space during replication and non-replication, we identify new SHs and suggest new persistence targets.

  1. Targeting Glioma Stem Cells by Functional Inhibition of a Prosurvival OncomiR-138 in Malignant Gliomas

    Directory of Open Access Journals (Sweden)

    Xin Hui Derryn Chan

    2012-09-01

    Full Text Available Malignant gliomas are the most aggressive forms of brain tumors, associated with high rates of morbidity and mortality. Recurrence and tumorigenesis are attributed to a subpopulation of tumor-initiating glioma stem cells (GSCs that are intrinsically resistant to therapy. Initiation and progression of gliomas have been linked to alterations in microRNA expression. Here, we report the identification of microRNA-138 (miR-138 as a molecular signature of GSCs and demonstrate a vital role for miR-138 in promoting growth and survival of bona fide tumor-initiating cells with self-renewal potential. Sequence-specific functional inhibition of miR-138 prevents tumorsphere formation in vitro and impedes tumorigenesis in vivo. We delineate the components of the miR-138 regulatory network by loss-of-function analysis to identify specific regulators of apoptosis. Finally, the higher expression of miR-138 in GSCs compared to non-neoplastic tissue and association with tumor recurrence and survival highlights the clinical significance of miR-138 as a prognostic biomarker and a therapeutic target for treatment of malignant gliomas.

  2. Targeting the Pro-Survival Protein MET with Tivantinib (ARQ 197) Inhibits Growth of Multiple Myeloma Cells12

    Science.gov (United States)

    Zaman, Shadia; Shentu, Shujun; Yang, Jing; He, Jin; Orlowski, Robert Z.; Stellrecht, Christine M.; Gandhi, Varsha

    2015-01-01

    The hepatocyte growth factor (HGF)/MNNG HOS transforming gene (MET) pathway regulates cell growth, survival, and migration. MET is mutated or amplified in several malignancies. In myeloma, MET is not mutated, but patients have high plasma concentrations of HGF, high levels of MET expression, and gene copy number, which are associated with poor prognosis and advanced disease. Our previous studies demonstrated that MET is critical for myeloma cell survival and its knockdown induces apoptosis. In our current study, we tested tivantinib (ARQ 197), a small-molecule pharmacological MET inhibitor. At clinically achievable concentrations, tivantinib induced apoptosis by > 50% in all 12 human myeloma cell lines tested. This biologic response was associated with down-regulation of MET signaling and inhibition of the mitogen-activated protein kinase and phosphoinositide 3-kinase pathways, which are downstream of the HGF/MET axis. Tivantinib was equally effective in inducing apoptosis in myeloma cell lines resistant to standard chemotherapy (melphalan, dexamethasone, bortezomib, and lenalidomide) as well as in cells that were co-cultured with a protective bone marrow microenvironment or with exogenous cytokines. Tivantinib induced apoptosis in CD138 + plasma cells from patients and demonstrated efficacy in a myeloma xenograft mouse model. On the basis of these data, we initiated a clinical trial for relapsed/refractory multiple myeloma (MM). In conclusion, MET inhibitors may be an attractive target-based strategy for the treatment of MM. PMID:25810013

  3. Targeting the pro-survival protein MET with tivantinib (ARQ 197) inhibits growth of multiple myeloma cells.

    Science.gov (United States)

    Zaman, Shadia; Shentu, Shujun; Yang, Jing; He, Jin; Orlowski, Robert Z; Stellrecht, Christine M; Gandhi, Varsha

    2015-03-01

    The hepatocyte growth factor (HGF)/MNNG HOS transforming gene (MET) pathway regulates cell growth, survival, and migration. MET is mutated or amplified in several malignancies. In myeloma, MET is not mutated, but patients have high plasma concentrations of HGF, high levels of MET expression, and gene copy number, which are associated with poor prognosis and advanced disease. Our previous studies demonstrated that MET is critical for myeloma cell survival and its knockdown induces apoptosis. In our current study, we tested tivantinib (ARQ 197), a small-molecule pharmacological MET inhibitor. At clinically achievable concentrations, tivantinib induced apoptosis by >50% in all 12 human myeloma cell lines tested. This biologic response was associated with down-regulation of MET signaling and inhibition of the mitogen-activated protein kinase and phosphoinositide 3-kinase pathways, which are downstream of the HGF/MET axis. Tivantinib was equally effective in inducing apoptosis in myeloma cell lines resistant to standard chemotherapy (melphalan, dexamethasone, bortezomib, and lenalidomide) as well as in cells that were co-cultured with a protective bone marrow microenvironment or with exogenous cytokines. Tivantinib induced apoptosis in CD138+ plasma cells from patients and demonstrated efficacy in a myeloma xenograft mouse model. On the basis of these data, we initiated a clinical trial for relapsed/refractory multiple myeloma (MM). In conclusion, MET inhibitors may be an attractive target-based strategy for the treatment of MM. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Linker-extended native cyanovirin-N facilitates PEGylation and potently inhibits HIV-1 by targeting the glycan ligand.

    Directory of Open Access Journals (Sweden)

    Jia Chen

    Full Text Available Cyanovirin-N (CVN potently inhibits human immunodeficiency virus type 1 (HIV-1 infection, but both cytotoxicity and immunogenicity have hindered the translation of this protein into a viable therapeutic. A molecular docking analysis suggested that up to 12 residues were involved in the interaction of the reverse parallel CVN dimer with the oligosaccharide targets, among which Leu-1 was the most prominent hot spot residue. This finding provided a possible explanation for the lack of anti-HIV-1 activity observed with N-terminal PEGylated CVN. Therefore, linker-CVN (LCVN was designed as a CVN derivative with a flexible and hydrophilic linker (Gly4Ser3 at the N-terminus. The N-terminal α-amine of LCVN was PEGylated to create 10 K PEG-aldehyde (ALD-LCVN. LCVN and 10 K PEG-ALD-LCVN retained the specificity and affinity of CVN for high mannose N-glycans. Moreover, LCVN exhibited significant anti-HIV-1 activity with attenuated cytotoxicity in the HaCaT keratinocyte cell line and MT-4 T lymphocyte cell lines. 10 K PEG-ALD-LCVN also efficiently inactivated HIV-1 with remarkably decreased cytotoxicity and pronounced cell-to-cell fusion inhibitory activity in vitro. The linker-extended CVN and the mono-PEGylated derivative were determined to be promising candidates for the development of an anti-HIV-1 agent. This derivatization approach provided a model for the PEGylation of biologic candidates without introducing point mutations.

  5. Sneaking-ligand fusion proteins attenuate serum transfer arthritis by endothelium-targeted NF-κB inhibition.

    Science.gov (United States)

    Sehnert, Bettina; Burkhardt, Harald; May, Michael J; Zwerina, Jochen; Voll, Reinhard E

    2015-01-01

    The nuclear transcription factor κB (NF-κB) is a crucial mediator of the inflammatory and immune response. The contribution of dysregulated NF-κB is established in the pathogenesis of arthritis. Accordingly, NF-κB represents an attractive molecular target for the development of therapeutic interventions in inflammatory diseases. However, ubiquitous pharmacologic suppression of NF-κB activity is limited by the hazards of toxic side effects and profound immunosuppression. Cell type-specific NF-κB inhibition with the "sneaking-ligand" approach could identify disease-relevant cell types and improve risk-benefit ratios of therapeutic interventions. Vascular endothelial cells act as a gatekeeper and are crucial for leukocyte recruitment into sites of inflammation. The endothelium-specific NF-κB inhibitor SLC1 ameliorates serum transfer arthritis in mice and protects against inflammation and cartilage destruction. In this chapter, we describe the SLC1 treatment schedule in the K/BxN serum transfer arthritis and present the evaluation system to analyze arthritis severity and histopathological alterations.

  6. Olean-18-ene triterpenoids from Celastraceae species inhibit HIV replication targeting NF-kB and Sp1 dependent transcription.

    Science.gov (United States)

    Osorio, Alex A; Muñóz, Alejandro; Torres-Romero, David; Bedoya, Luis M; Perestelo, Nayra R; Jiménez, Ignacio A; Alcamí, José; Bazzocchi, Isabel L

    2012-06-01

    In the present study we report the isolation of nine new olean-18-ene triterpenes (1-9), along with three known ones (10-12), from Cassine xylocarpa and Maytenus jelskii. Their stereostructures have been elucidated on the basis of spectroscopic analysis, including 1D and 2D NMR techniques (COSY, ROESY, HSQC and HMBC), and spectrometric methods. The natural compounds and derivatives 13-15 have been tested for their potential as inhibitors of human immunodeficiency virus type 1 replication. Five compounds from this series displayed potent antiviral activity with IC(50)s in the micromolar range (1, 3, 4, 7 and 8) being 1 and 8 the most active compounds. The target of these compounds was different from antiretroviral drugs currently licensed as they act as inhibitors of enhancer-dependent transcription. The structure-activity relationships were established based on the regiosubstitution and oxidation degree of the triterpene scaffold, revealing that these aspects were able to modulate the selectivity and intensity of HIV inhibition. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  7. miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis in osteosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi [Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Jilin University (China); Li, Youjun, E-mail: liyoujunn@126.com [Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Jilin University (China); Wang, Nan; Yang, Lifeng; Zhao, Wei; Zeng, Xiandong [Central Hospital Affiliated to Shenyang Medical College (China)

    2016-03-18

    miR-130b was significantly up-regulated in osteosarcoma (OS) cells. Naked cuticle homolog 2 (NKD2) inhibited tumor growth and metastasis in OS by suppressing Wnt signaling. We used three miRNA target analysis tools to identify potential targets of miR-130b, and found that NKD2 is a potential target of miR-130b. Based on these findings, we hypothesize that miR-130b might target NKD2 and regulate the Wnt signaling to promote OS growth. We detected the expression of miR-130b and NKD2 mRNA and protein by quantitative Real-Time PCR (qRT-PCR) and western blot assays, respectively, and found up-regulation of miR-130b and down-regulation of NKD2 mRNA and protein exist in OS cell lines. MTT and flow cytometry assays showed that miR-130b inhibitors inhibit proliferation and promote apoptosis in OS cells. Furthermore, we showed that NKD2 is a direct target of miR-130b, and miR-130b regulated proliferation and apoptosis of OS cells by targeting NKD2. We further investigated whether miR-130b and NKD2 regulate OS cell proliferation and apoptosis by inhibiting Wnt signaling, and the results confirmed our speculation that miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis of OS cells. These findings will offer new clues for OS development and progression, and novel potential therapeutic targets for OS. - Highlights: • miR-130b is up-regulated and NKD2 is down-regulated in osteosarcoma cell lines. • Down-regulation of miR-130b inhibits proliferation of osteosarcoma cells. • Down-regulation of miR-130b promotes apoptosis of osteosarcoma cells. • miR-130b directly targets NKD2. • NKD2 regulates OS cell proliferation and apoptosis by inhibiting the Wnt signaling.

  8. MiR-183 overexpression inhibits tumorigenesis and enhances DDP-induced cytotoxicity by targeting MTA1 in nasopharyngeal carcinoma.

    Science.gov (United States)

    Wang, Guanghui; Wang, Shujing; Li, Congying

    2017-06-01

    in vivo. MiR-183 overexpression inhibited tumorigenesis and enhanced DDP-induced cytotoxicity by targeting metastasis-associated protein 1 in nasopharyngeal carcinoma, contributing to the development of novel therapeutic approaches for the treatment of clinical nasopharyngeal carcinoma patients.

  9. Human valacyclovir hydrolase/biphenyl hydrolase-like protein is a highly efficient homocysteine thiolactonase.

    Directory of Open Access Journals (Sweden)

    Judit Marsillach

    Full Text Available Homocysteinylation of lysine residues by homocysteine thiolactone (HCTL, a reactive homocysteine metabolite, results in protein aggregation and malfunction, and is a well-known risk factor for cardiovascular, autoimmune and neurological diseases. Human plasma paraoxonase-1 (PON1 and bleomycin hydrolase (Blmh have been reported as the physiological HCTL detoxifying enzymes. However, the catalytic efficiency of HCTL hydrolysis by Blmh is low and not saturated at 20 mM HCTL. The catalytic efficiency of PON1 for HCTL hydrolysis is 100-fold lower than that of Blmh. A homocysteine thiolactonase (HCTLase was purified from human liver and identified by mass spectrometry (MS as the previously described human biphenyl hydrolase-like protein (BPHL. To further characterize this newly described HCTLase activity, BPHL was expressed in Escherichia coli and purified. The sequence of the recombinant BPHL (rBPHL and hydrolytic products of the substrates HCTL and valacyclovir were verified by MS. We found that the catalytic efficiency (kcat/Km of rBPHL for HCTL hydrolysis was 7.7 × 10(4 M(-1s(-1, orders of magnitude higher than that of PON1 or Blmh, indicating a more significant physiological role for BPHL in detoxifying HCTL.

  10. Purification and Properties of a Glycerol Ester Hydrolase (Lipase) from Propionibacterium shermanii

    Science.gov (United States)

    Oterholm, Anders; Ordal, Z. John; Witter, Lloyd D.

    1970-01-01

    An intracellular glycerol ester hydrolase (lipase) from Propionibacterium shermanii was recovered from cell-free extracts and purified by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography on diethylaminoethylcellulose. Maximum enzyme activity was observed at pH 7.2 and 47 C when an emulsion of tributyrin was used as substrate. The enzyme was stable between pH 5.5 and 8. Heating the enzyme solution at 45 C for 10 min resulted in a 75% decrease in activity. Maximum rate of hydrolysis of triglycerides was observed on tripropionin, followed in order by tributyrin, tricaproin, and tricaprylin. The lipase was strongly inhibited by mercury and arsenicals, but specific sulfhydryl reagents had little or no inhibiting effect on the enzyme activity. The enzyme also showed some esterase activity, but the hydrolysis of substrates in solution was small as compared to the hydrolysis of substrates in emulsion. PMID:5456938

  11. Targeting CCl4 -induced liver fibrosis by RNA interference-mediated inhibition of cyclin E1 in mice.

    Science.gov (United States)

    Bangen, Jörg-Martin; Hammerich, Linda; Sonntag, Roland; Baues, Maike; Haas, Ute; Lambertz, Daniela; Longerich, Thomas; Lammers, Twan; Tacke, Frank; Trautwein, Christian; Liedtke, Christian

    2017-10-01

    Initiation and progression of liver fibrosis requires proliferation and activation of resting hepatic stellate cells (HSCs). Cyclin E1 (CcnE1) is the regulatory subunit of the cyclin-dependent kinase 2 (Cdk2) and controls cell cycle re-entry. We have recently shown that genetic inactivation of CcnE1 prevents activation, proliferation, and survival of HSCs and protects from liver fibrogenesis. The aim of the present study was to translate these findings into preclinical applications using an RNA interference (RNAi)-based approach. CcnE1-siRNA (small interfering RNA) efficiently inhibited CcnE1 gene expression in murine and human HSC cell lines and in primary HSCs, resulting in diminished proliferation and increased cell death. In C57BL/6 wild-type (WT) mice, delivery of stabilized siRNA using a liposome-based carrier targeted approximately 95% of HSCs, 70% of hepatocytes, and 40% of CD45+ cells after single injection. Acute CCl4 -mediated liver injury in WT mice induced endogenous CcnE1 expression and proliferation of surviving hepatocytes and nonparenchymal cells, including CD45+ leukocytes. Pretreatment with CcnE1-siRNA reverted CcnE1 induction to baseline levels of healthy mice, which was associated with reduced liver injury, diminished proliferation of hepatocytes and leukocytes, and attenuated overall inflammatory response. For induction of liver fibrosis, WT mice were challenged with CCl4 for 4-6 weeks. Co-treatment with CcnE1-siRNA once a week was sufficient to continuously block CcnE1 expression and cell-cycle activity of hepatocytes and nonparenchymal cells, resulting in significantly ameliorated liver fibrosis and inflammation. Importantly, CcnE1-siRNA also prevented progression of liver fibrosis if applied after onset of chronic liver injury. Therapeutic targeting of CcnE1 in vivo using RNAi is feasible and has high antifibrotic activity. (Hepatology 2017;66:1242-1257). © 2017 by the American Association for the Study of Liver Diseases.

  12. Inhibition of the mammalian target of rapamycin (mTOR in advanced pancreatic cancer: results of two phase II studies

    Directory of Open Access Journals (Sweden)

    Zhang Yujian

    2010-07-01

    & rash (n = 2. Four patients were hospitalized. Progressive disease occurred in 15 and 1 was non-evaluable. Pretreatment biopsies revealed a higher pAkt/Akt ratio in tumor specimens that in nonmalignant pancreatic tissue. No such trends were noted for the other biomarkers. Conclusions Neither study with mTOR inhibitors demonstrated objective responses or disease stability. The negative feedback loop resulting from mTOR inhibition may account for the disease progression and toxicity noted in these studies. Future strategies should aim for a broader targeting of the PI3K pathway in pancreatic cancer. Trial Registration Trial registration: Study A: NCT 0075647. Study B: NCT00640978

  13. [Targeted inhibition of Rabies virus gene expression by a chimeric multidomain protein mediated shRNA delivery].

    Science.gov (United States)

    Yang, Ruimei; Wang, Hualei; Shan, Hu; Yang, Songtao; Xia, Xianzhu

    2016-01-04

    In this study, a new chimeric protein SEG expressed in previous work was applied to evaluate its translocating efficiency of shRNA to rabies virus infected cells in mice, meanwhile, the capability of anti-rabies virus was investigated. Rabies virus strain CVS-24 was inoculated into the hind leg to establish a mouse model of rabies in a dose of 50 LD₅₀; 12 h thereafter the mice were injected intravenously with shRNA-producing plasmid mixed with SEG. To test shRNA delivery, single-cell suspensions from brain, spleen and liver were examined by flow cytometry. Rabies virus in brain tissue of mice was detected by qRT-PCR, RT-PCR, western blot and directed immunofluorescence assay. Mice were monitored for survival and serum samples were tested for IFN-α levels. No green fluorescent protein (GFP) was seen in the spleen or liver, suggesting that SEG allows specific targeting of RV-infected cells. RT-PCR and western blot showed that mice treated with SEG-shRNA had lower rabies virus RNA and protein levels than the controls. Real-time PCR showed that rabies virus was reduced 4.88 fold compared to the mock cells. Survival of RV-infected mouse showed a significant protection from rabies virus infection by SEG-shRNA treatment. The survival was up to 50% whereas the control group all died. IFN was not induced in SEG-shRNA treated animals. shRNA-producing plasmid was specifically delivered into rabies virus infected cells using the SEG protein, and effectively inhibited rabies virus geneexpression and replication in vivo. SEG-shRNA can be used for adjuvant treatment for rabies.

  14. Dimethyl fumarate restores apoptosis sensitivity and inhibits tumor growth and metastasis in CTCL by targeting NF-κB

    Science.gov (United States)

    Müller-Decker, Karin; Schroeder, Anne; Brechmann, Markus; Möbs, Markus; Géraud, Cyrill; Assaf, Chalid; Goerdt, Sergij; Krammer, Peter H.; Gülow, Karsten

    2016-01-01

    Despite intensive efforts in recent years, a curative therapy for cutaneous T-cell lymphoma (CTCL) has not yet been developed. Therefore, the establishment of new therapeutic approaches with higher efficacy rates and milder side effects is strongly desired. A characteristic feature of the malignant T-cell population in CTCL is resistance toward cell death resulting from constitutive NF-κB activation. Therefore, NF-κB–dependent cell death resistance represents an interesting therapeutic target in CTCL because an NF-κB–directed therapy would leave bystander T cells widely unaffected. We investigated the effects of dimethyl fumarate (DMF) on CTCL cells in vitro and in vivo. DMF induced cell death in primary patient-derived CD4+ cells and CTCL cell lines, but hardly in T cells from healthy donors. DMF-induced cell death was linked specifically to NF-κB inhibition. To study the impact of DMF in vivo, we developed 2 CTCL xenograft mouse models with different cutaneous localizations of the T-cell infiltrate. DMF treatment delayed the growth of CTCL tumors and prevented formation of distant metastases. In addition, DMF induced increased cell death in primary CTCL tumors and in liver metastases. In summary, DMF treatment represents a remarkable therapeutic option in CTCL because it restores CTCL apoptosis in vitro and in preclinical models in vivo and prevents spreading of the disease to distant sites. DMF treatment is of particular promise in CTCL because DMF is already in successful clinical use in the treatment of psoriasis and multiple sclerosis allowing fast translation into clinical studies in CTCL. PMID:27268084

  15. Bcl-xL inhibition by molecular-targeting drugs sensitizes human pancreatic cancer cells to TRAIL

    Science.gov (United States)

    Hari, Yoko; Harashima, Nanae; Tajima, Yoshitsugu; Harada, Mamoru

    2015-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various types of cancer cells without damaging normal cells. However, in terms of pancreatic cancer, not all cancer cells are sensitive to TRAIL. In this study, we examined a panel of human pancreatic cancer cell lines for TRAIL sensitivity and investigated the effects of Bcl-2 family inhibitors on their response to TRAIL. Both ABT-263 and ABT-737 inhibited the function of Bcl-2, Bcl-xL, and Bcl-w. Of the nine pancreatic cancer cell lines tested, six showed no or low sensitivity to TRAIL, which correlated with protein expression of Bcl-xL. ABT-263 significantly sensitized four cell lines (AsPC-1, Panc-1, CFPAC-1, and Panc10.05) to TRAIL, with reduced cell viability and increased apoptosis. Knockdown of Bcl-xL, but not Bcl-2, by siRNA transfection increased the sensitivity of AsPC-1 and Panc-1 cells to TRAIL. ABT-263 treatment had no effect on protein expression of Bcl-2, Bcl-xL, or c-FLIPs. In Panc-1 cells, ABT-263 increased the surface expression of death receptor (DR) 5; the NF-κB pathway, but not endoplasmic reticulum stress, participated in the increase. In xenograft mouse models, the combination of TRAIL and ATB-737 suppressed the in vivo tumor growth of AsPC-1 and Panc-1 cells. These results indicate that Bcl-xL is responsible for TRAIL resistance in human pancreatic cancer cells, and that Bcl-2 family inhibitors could represent promising reagents to sensitize human pancreatic cancers in DR-targeting therapy. PMID:26506422

  16. VIRsiRNApred: a web server for predicting inhibition efficacy of siRNAs targeting human viruses.

    Science.gov (United States)

    Qureshi, Abid; Thakur, Nishant; Kumar, Manoj

    2013-12-11

    Selection of effective viral siRNA is an indispensable step in the development of siRNA based antiviral therapeutics. Despite immense potential, a viral siRNA efficacy prediction algorithm is still not available. Moreover, performances of the existing general mammalian siRNA efficacy predictors are not satisfactory for viral siRNAs. Therefore, we have developed "VIRsiRNApred" a support vector machine (SVM) based method for predicting the efficacy of viral siRNA. In the present study, we have employed a new dataset of 1725 viral siRNAs with experimentally verified quantitative efficacies tested under heterogeneous experimental conditions and targeting as many as 37 important human viruses including HIV, Influenza, HCV, HBV, SARS etc. These siRNAs were divided into training (T1380) and validation (V345) datasets. Important siRNA sequence features including mono to penta nucleotide frequencies, binary pattern, thermodynamic properties and secondary structure were employed for model development. During 10-fold cross validation on T1380 using hybrid approach, we achieved a maximum Pearson Correlation Coefficient (PCC) of 0.55 between predicted and actual efficacy of viral siRNAs. On V345 independent dataset, our best model achieved a maximum correlation of 0.50 while existing general siRNA prediction methods showed PCC from 0.05 to 0.18. However, using leave one out cross validation PCC was improved to 0.58 and 0.55 on training and validation datasets respectively. SVM performed better than other machine learning techniques used like ANN, KNN and REP Tree. VIRsiRNApred is the first algorithm for predicting inhibition efficacy of viral siRNAs which is developed using experimentally verified viral siRNAs. We hope this algorithm would be useful in predicting highly potent viral siRNA to aid siRNA based antiviral therapeutics development. The web server is freely available at http://crdd.osdd.net/servers/virsirnapred/.

  17. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR- 2 regulated AKT/mTOR/P70S6K signaling pathways.

    Directory of Open Access Journals (Sweden)

    Poyil Pratheeshkumar

    Full Text Available Angiogenesis is a crucial step in the growth and metastasis of cancers, since it enables the growing tumor to receive oxygen and nutrients. Cancer prevention using natural products has become an integral part of cancer control. We studied the antiangiogenic activity of quercetin using ex vivo, in vivo and in vitro models. Rat aortic ring assay showed that quercetin at non-toxic concentrations significantly inhibited microvessel sprouting and exhibited a significant inhibition in the proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Most importantly, quercetin treatment inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM and matrigel plug assay. Western blot analysis showed that quercetin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, mTOR, and ribosomal protein S6 kinase in HUVECs. Quercetin (20 mg/kg/d significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that quercetin inhibited tumorigenesis by targeting angiogenesis. Furthermore, quercetin reduced the cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, mTOR and P70S6K expressions. Collectively the findings in the present study suggest that quercetin inhibits tumor growth and angiogenesis by targeting VEGF-R2 regulated AKT/mTOR/P70S6K signaling pathway, and could be used as a potential drug candidate for cancer therapy.

  18. Dynamic hydrolase activities precede hypersensitive tissue collapse in tomato seedlings.

    Science.gov (United States)

    Sueldo, Daniela; Ahmed, Ali; Misas-Villamil, Johana; Colby, Tom; Tameling, Wladimir; Joosten, Matthieu H A J; van der Hoorn, Renier A L

    2014-08-01

    Hydrolases such as subtilases, vacuolar processing enzymes (VPEs) and the proteasome play important roles during plant programmed cell death (PCD). We investigated hydrolase activities during PCD using activity-based protein profiling (ABPP), which displays the active proteome using probes that react covalently with the active site of proteins. We employed tomato (Solanum lycopersicum) seedlings undergoing synchronized hypersensitive cell death by co-expressing the avirulence protein Avr4 from Cladosporium fulvum and the tomato resistance protein Cf-4. Cell death is blocked in seedlings grown at high temperature and humidity, and is synchronously induced by decreasing temperature and humidity. ABPP revealed that VPEs and the proteasome are not differentially active, but that activities of papain-like cysteine proteases and serine hydrolases, including Hsr203 and P69B, increase before hypersensitive tissue collapse, whereas the activity of a carboxypeptidase-like enzyme is reduced. Similar dynamics were observed for these enzymes in the apoplast of tomato challenged with C. fulvum. Unexpectedly, these challenged plants also displayed novel isoforms of secreted putative VPEs. In the absence of tissue collapse at high humidity, the hydrolase activity profile is already altered completely, demonstrating that changes in hydrolase activities precede hypersensitive tissue collapse. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.

  19. The ubiquitin C-terminal hydrolase UCH-L1 promotes bacterial invasion by altering the dynamics of the actin cytoskeleton

    DEFF Research Database (Denmark)

    Basseres, Eugene; Coppotelli, Giuseppe; Pfirrmann, Thorsten

    2010-01-01

    Invasion of eukaryotic target cells by pathogenic bacteria requires extensive remodelling of the membrane and actin cytoskeleton. Here we show that the remodelling process is regulated by the ubiquitin C-terminal hydrolase UCH-L1 that promotes the invasion of epithelial cells by Listeria...

  20. Nanobody based immunoassay for human soluble epoxide hydrolase detection using polyHRP for signal enhancement—the rediscovery of polyHRP

    Science.gov (United States)

    Soluble epoxide hydrolase (sEH) is a potential pharmacological target for treating hypertension, vascular inflammation, cancer, pain and multiple cardiovascular related diseases. A variable domain of a heavy chain only antibody (termed sdAb, nanobody or VHH) possesses advantages of small size, high ...

  1. Low Molecular Weight Heparin Inhibits Plasma Thrombin Generation via Direct Targeting of Factor IXa: Contribution of the Serpin-independent Mechanism

    Science.gov (United States)

    Buyue, Yang; Misenheimer, Tina M.; Sheehan, John P.

    2012-01-01

    Background While heparin possesses multiple mechanisms of action, enhanced factor Xa inhibition by antithrombin is accepted as the predominant therapeutic mechanism. The contribution of factor IXa inhibition to heparin activity in human plasma remains incompletely defined. Objectives To determine the relevance of factor IXa as a therapeutic target for heparins, particularly serpin-independent inhibition of intrinsic tenase (factor IXa-factor VIIIa) activity. Patient/Methods Thrombin generation was detected by fluorogenic substrate cleavage. Inhibitory potency (EC50) of low molecular weight heparin (LMWH), super-sulfated LMWH (ssLMWH), Fondaparinux, and unfractionated heparin (UFH) was determined by plotting concentration versus relative velocity index (ratio +/− heparin). Inhibition was compared under factor IX-dependent and independent conditions (0.2 or 4 pM TF, respectively) in normal plasma, and in mock- or antithrombin/factor IX-depleted plasma supplemented with recombinant factor IX. Results UFH and Fondaparinux demonstrated similar potency under factor IX-dependent and independent conditions, whereas LMWH (2.9-fold) and ssLMWH (5.1-fold) demonstrated increased potency with limiting TF. UFH (62-fold) and Fondaparinux (42-fold) demonstrated markedly increased EC50 values in antithrombin-depleted plasma, whereas LMWH (9.4-fold) and ssLMWH (2-fold) were less affected, with an EC50 within the therapeutic range for LMWH. The molecular target for LMWH/ssLMWH was confirmed by supplementing factor IX/antithrombin-depleted plasma with 90 nM recombinant factor IX possessing mutations in the heparin-binding exosite. Mutated factor IX demonstrated resistance to inhibition of thrombin generation by LMWH and ssLMWH that paralleled the effect of these mutations on intrinsic tenase inhibition. Conclusions Therapeutic LMWH concentrations inhibit plasma thrombin generation via antithrombin-independent interaction with the factor IXa heparin-binding exosite. PMID:22905983

  2. MicroRNA-15a inhibition protects against hypoxia/reoxygenation-induced apoptosis of cardiomyocytes by targeting mothers against decapentaplegic homolog 7.

    Science.gov (United States)

    Yang, Yang; Ding, Shiao; Xu, Gaojun; Chen, Fei; Ding, Fangbao

    2017-06-01

    Myocardial ischemia/reperfusion (I/R) injury is a major pathological process in coronary heart disease and cardiac surgery, and is associated with aberrant microRNA (miR) expression. Previous studies have demonstrated that inhibition of miR-15a expression may ameliorate I/R‑induced myocardial injury. In the present study, the potential role and underlying mechanism of miR‑15a in hypoxia/reoxygenation‑induced apoptosis of cardiomyocytes was investigated. Myocardial I/R was simulated in cultured H9c2 cells by 24 h hypoxia followed by 24 h reoxygenation. Using recombinant lentivirus vectors, the inhibition of miR‑15a was indicated to significantly reduce cardiomyocyte apoptosis and release of lactate dehydrogenase and malondialdehyde. Conversely, upregulated miR‑15a expression was pro‑apoptotic. Mothers against decapentaplegic homolog 7 (SMAD7) was identified by bioinformatics analysis as a potential target of miR‑15a. Luciferase reporter assays and western blotting for endogenous SMAD7 protein indicated that miR‑15a inhibited SMAD7 expression via its 3'‑untranslated region. Nuclear levels of nuclear factor‑κB (NF‑κB) p65 were increased by miR‑15a expression and decreased by miR‑15a inhibition, which is consistent with the possibility that the inhibition of SMAD7 by miR-15a results in NF‑κB activation. These findings suggested that the therapeutic effects of miR‑15a inhibition on I/R injury may potentially be explained by its ability to release SMAD‑7‑dependent NF‑κB inhibition. This may provide evidence for miR‑15a as a potential therapeutic target for the treatment of cardiac I/R injury.

  3. Inhibition of recombinant human carboxylesterase 1 and 2 and monoacylglycerol lipase by chlorpyrifos oxon, paraoxon and methyl paraoxon

    Energy Technology Data Exchange (ETDEWEB)

    Crow, J. Allen; Bittles, Victoria; Herring, Katye L.; Borazjani, Abdolsamad [Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762 (United States); Potter, Philip M. [Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, 332 N. Lauderdale, Memphis, TN 38105 (United States); Ross, Matthew K., E-mail: mross@cvm.msstate.edu [Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762 (United States)

    2012-01-01

    Oxons are the bioactivated metabolites of organophosphorus insecticides formed via cytochrome P450 monooxygenase-catalyzed desulfuration of the parent compound. Oxons react covalently with the active site serine residue of serine hydrolases, thereby inactivating the enzyme. A number of serine hydrolases other than acetylcholinesterase, the canonical target of oxons, have been reported to react with and be inhibited by oxons. These off-target serine hydrolases include carboxylesterase 1 (CES1), CES2, and monoacylglycerol lipase. Carboxylesterases (CES, EC 3.1.1.1) metabolize a number of xenobiotic and endobiotic compounds containing ester, amide, and thioester bonds and are important in the metabolism of many pharmaceuticals. Monoglyceride lipase (MGL, EC 3.1.1.23) hydrolyzes monoglycerides including the endocannabinoid, 2-arachidonoylglycerol (2-AG). The physiological consequences and toxicity related to the inhibition of off-target serine hydrolases by oxons due to chronic, low level environmental exposures are poorly understood. Here, we determined the potency of inhibition (IC{sub 50} values; 15 min preincubation, enzyme and inhibitor) of recombinant CES1, CES2, and MGL by chlorpyrifos oxon, paraoxon and methyl paraoxon. The order of potency for these three oxons with CES1, CES2, and MGL was chlorpyrifos oxon > paraoxon > methyl paraoxon, although the difference in potency for chlorpyrifos oxon with CES1 and CES2 did not reach statistical significance. We also determined the bimolecular rate constants (k{sub inact}/K{sub I}) for the covalent reaction of chlorpyrifos oxon, paraoxon and methyl paraoxon with CES1 and CES2. Consistent with the results for the IC{sub 50} values, the order of reactivity for each of the three oxons with CES1 and CES2 was chlorpyrifos oxon > paraoxon > methyl paraoxon. The bimolecular rate constant for the reaction of chlorpyrifos oxon with MGL was also determined and was less than the values determined for chlorpyrifos oxon with CES1

  4. X‐ray structure of potato epoxide hydrolase sheds light on substrate specificity in plant enzymes

    National Research Council Canada - National Science Library

    Mowbray, Sherry L; Elfström, Lisa T; Ahlgren, Kerstin M; Andersson, C. Evalena; Widersten, Mikael

    2006-01-01

    .... In plants, epoxide hydrolases are thought to participate in general defense systems. In the present study, we report the first structure of a plant epoxide hydrolase, one of the four homologous enzymes found in potato...

  5. Epigenetic regulation of fatty acid amide hydrolase in Alzheimer disease.

    Directory of Open Access Journals (Sweden)

    Claudio D'Addario

    Full Text Available OBJECTIVE: Alzheimer disease (AD is a progressive, degenerative and irreversible neurological disorder with few therapies available. In search for new potential targets, increasing evidence suggests a role for the endocannabinoid system (ECS in the regulation of neurodegenerative processes. METHODS: We have studied the gene expression status and the epigenetic regulation of ECS components in peripheral blood mononuclear cells (PBMCs of subjects with late-onset AD (LOAD and age-matched controls (CT. RESULTS: We found an increase in fatty acid amide hydrolase (faah gene expression in LOAD subjects (2.30 ± 0.48 when compared to CT (1.00 ± 0.14; *p<0.05 and no changes in the mRNA levels of any other gene of ECS elements. Consistently, we also observed in LOAD subjects an increase in FAAH protein levels (CT: 0.75 ± 0.04; LOAD: 1.11 ± 0.15; *p<0.05 and activity (pmol/min per mg protein CT: 103.80 ± 8.73; LOAD: 125.10 ± 4.00; *p<0.05, as well as a reduction in DNA methylation at faah gene promoter (CT: 55.90 ± 4.60%; LOAD: 41.20 ± 4.90%; *p<0.05. CONCLUSIONS: Present findings suggest the involvement of FAAH in the pathogenesis of AD, highlighting the importance of epigenetic mechanisms in enzyme regulation; they also point to FAAH as a new potential biomarker for AD in easily accessible peripheral cells.

  6. Molecular Dynamics Simulations of Acylpeptide Hydrolase Bound to Chlorpyrifosmethyl Oxon and Dichlorvos

    Directory of Open Access Journals (Sweden)

    Hanyong Jin

    2015-03-01

    Full Text Available Acylpeptide hydrolases (APHs catalyze the removal of N-acylated amino acids from blocked peptides. Like other prolyloligopeptidase (POP family members, APHs are believed to be important targets for drug design. To date, the binding pose of organophosphorus (OP compounds of APH, as well as the different OP compounds binding and inducing conformational changes in two domains, namely, α/β hydrolase and β-propeller, remain poorly understood. We report a computational study of APH bound to chlorpyrifosmethyl oxon and dichlorvos. In our docking study, Val471 and Gly368 are important residues for chlorpyrifosmethyl oxon and dichlorvos binding. Molecular dynamics simulations were also performed to explore the conformational changes between the chlorpyrifosmethyl oxon and dichlorvos bound to APH, which indicated that the structural feature of chlorpyrifosmethyl oxon binding in APH permitted partial opening of the β-propeller fold and allowed the chlorpyrifosmethyl oxon to easily enter the catalytic site. These results may facilitate the design of APH-targeting drugs with improved efficacy.

  7. Prunus serotina Amygdalin Hydrolase and Prunasin Hydrolase : Purification, N-Terminal Sequencing, and Antibody Production.

    Science.gov (United States)

    Li, C P; Swain, E; Poulton, J E

    1992-09-01

    In black cherry (Prunus serotina Ehrh.) seed homogenates, amygdalin hydrolase (AH) participates with prunasin hydrolase (PH) and mandelonitrile lyase in the sequential degradation of (R)-amygdalin to HCN, benzaldehyde, and glucose. Four isozymes of AH (designated AH I, I', II, II') were purified from mature cherry seeds by concanavalin A-Sepharose 4B chromatography, ion-exchange chromatography, and chromatofocusing. All isozymes were monomeric glycoproteins with native molecular masses of 52 kD. They showed similar kinetic properties (pH optima, K(m), V(max)) but differed in their isoelectric points and N-terminal amino acid sequences. Analytical isoelectric focusing revealed the presence of subisozymes of each isozyme. The relative abundance of these isozymes and/or subisozymes varied from seed to seed. Three isozymes of PH (designated PH I, IIa, and IIb) were purified to apparent homogeneity by affinity, ion-exchange, and hydroxyapatite chromatography and by nondenaturing polyacrylamide gel electrophoresis. PH I and PH IIb are 68-kD monomeric glycoproteins, whereas PH IIa is dimeric (140 kD). The N-terminal sequences of all PH and AH isozymes showed considerable similarity. Polyclonal antisera raised in rabbits against deglycosylated AH I or a mixture of the three deglycosylated PH isozymes were not monospecific as judged by immunoblotting analysis, but also cross-reacted with the opposing glucosidase. Monospecific antisera deemed suitable for immunocytochemistry and screening of expression libraries were obtained by affinity chromatography. Each antiserum recognized all known isozymes of the specific glucosidase used as antigen.

  8. Synthesis and evaluation of hetero- and homodimers of ribosome-targeting antibiotics: antimicrobial activity, in vitro inhibition of translation, and drug resistance.

    Science.gov (United States)

    Berkov-Zrihen, Yifat; Green, Keith D; Labby, Kristin J; Feldman, Mark; Garneau-Tsodikova, Sylvie; Fridman, Micha

    2013-07-11

    In this study, we describe the synthesis of a full set of homo- and heterodimers of three intact structures of different ribosome-targeting antibiotics: tobramycin, clindamycin, and chloramphenicol. Several aspects of the biological activity of the dimeric structures were evaluated including antimicrobial activity, inhibition of in vitro bacterial protein translation, and the effect of dimerization on the action of several bacterial resistance mechanisms that deactivate tobramycin and chloramphenicol. This study demonstrates that covalently linking two identical or different ribosome-targeting antibiotics may lead to (i) a broader spectrum of antimicrobial activity, (ii) improved inhibition of bacterial translation properties compared to that of the parent antibiotics, and (iii) reduction in the efficacy of some drug-modifying enzymes that confer high levels of resistance to the parent antibiotics from which the dimers were derived.

  9. Molecular cloning, expression and characterization of acylpeptide hydrolase in the silkworm, Bombyx mori.

    Science.gov (United States)

    Fu, Ping; Sun, Wei; Zhang, Ze

    2016-04-10

    Acylpeptide hydrolase (APH) can catalyze the release of the N-terminal amino acid from acetylated peptides. There were many documented examples of this enzyme in various prokaryotic and eukaryotic organisms. However, knowledge about APH in insects still remains unknown. In this study, we cloned and sequenced a putative silkworm Bombyx mori APH (BmAPH) gene. The BmAPH gene encodes a protein of 710 amino acids with a predicted molecular mass of 78.5kDa. The putative BmAPH and mammal APHs share about 36% amino acid sequence identity, yet key catalytic residues are conserved (Ser566, Asp654, and His686). Expression and purification of the recombinant BmAPH in Escherichia coli showed that it has acylpeptide hydrolase activity toward the traditional substrate, Ac-Ala-pNA. Furthermore, organophosphorus (OP) insecticides, chlorpyrifos, phoxim, and malathion, significantly inhibited the activity of the APH both in vitro and in vivo. In addition, BmAPH was expressed in all tested tissues and developmental stages of the silkworm. Finally, immunohistochemistry analysis showed that BmAPH protein was localized in the basement membranes. These results suggested that BmAPH may be involved in enhancing silkworm tolerance to the OP insecticides. In a word, our results provide evidence for understanding of the biological function of APH in insects. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Mefloquine effectively targets gastric cancer cells through phosphatase-dependent inhibition of PI3K/Akt/mTOR signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanwei [Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province (China); Chen, Sen [Department of Academic Affairs, Hubei University of Medicine, Shiyan, Hubei Province (China); Xue, Rui [Department of Anesthesiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province (China); Zhao, Juan [Department of Oncology, Xiangyang Central Hospital, Shiyan, Hubei Province (China); Di, Maojun, E-mail: maoojun_di@163.com [Department of General Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province (China)

    2016-02-05

    Deregulation of PI3K/Akt/mTOR pathway has been recently identified to play a crucial role in the progress of human gastric cancer. In this study, we show that mefloquine, a FDA-approved anti-malarial drug, effectively targets human gastric cancer cells. Mefloquine potently inhibits proliferation and induces apoptosis of a panel of human gastric cancer cell lines, with EC{sub 50} ∼0.5–0.7 μM. In two independent gastric cancer xenograft mouse models, mefloquine significantly inhibits growth of both tumors. The combination of mefloquine with paclitaxel enhances the activity of either drug alone in in vitro and in vivo. In addition, mefloquine potently decreased phosphorylation of PI3K, Akt, mTOR and rS6. Overexpression of constitutively active Akt significantly restored mefloquine-mediated inhibition of mTOR phosphorylation and growth, and induction of apoptosis, suggesting that mefloquine acts on gastric cancer cells via suppressing PI3K/Akt/mTOR pathway. We further show that mefloquine-mediated inhibition of Akt/mTOR singaling is phosphatase-dependent as pretreatment with calyculin A does-dependently reversed mefloquine-mediated inhibition of Akt/mTOR phosphorylation. Since mefloquine is already available for clinic use, these results suggest that it is a useful addition to the treatment armamentarium for gastric cancer. - Highlights: • Mefloquine targets a panel of gastric cancer cell lines in vitro and in vivo. • Combination of mefloquine and paclitaxel is synergistic. • Mefloquine acts on gastric cancer via inhibition of PI3K/Akt/mTOR pathway. • Mefloquine can be repurposed for gastric cancer treatment.

  11. A proton wire and water channel revealed in the crystal structure of isatin hydrolase

    DEFF Research Database (Denmark)

    Bjerregaard-Andersen, Kaare; Sommer, Theis; Jensen, Jan Kristian

    2014-01-01

    The high resolution crystal structures of isatin hydrolase from Labrenzia aggregata in the apo and the product state, are described. These are the first structures of a functionally characterized metal-dependent hydrolase of this fold. Isatin hydrolase converts isatin to isatinate and belongs to ...

  12. Evidence That P-glycoprotein Inhibitor (Elacridar)-Loaded Nanocarriers Improve Epidermal Targeting of an Anticancer Drug via Absorptive Cutaneous Transporters Inhibition.

    Science.gov (United States)

    Giacone, Daniela V; Carvalho, Vanessa F M; Costa, Soraia K P; Lopes, Luciana B

    2017-09-19

    Because P-glycoprotein (P-gp) plays an absorptive role in the skin, its pharmacological inhibition represents a strategy to promote cutaneous localization of anticancer agents that serve as its substrates, improving local efficacy while reducing systemic exposure. Here, we evaluated the ability of a nanoemulsion (NE) coencapsulating a P-gp inhibitor (elacridar) with the antitumor drug paclitaxel to promote epidermal targeting. Loaded NE displayed a nanometric size (45.2 ± 4.0 nm) and negative zeta potential (-4.2 ± 0.8 mV). Elacridar improved NE ability to inhibit verapamil-induced ATPase activity of P-gp; unloaded NE-inhibited P-gp when used at a concentration of 1500 μM, while elacridar encapsulation decreased this concentration by 3-fold (p p p P-gp inhibition and enabled epidermal targeting of paclitaxel, which in turn, can potentially reduce adverse effects associated with systemic exposure to anticancer therapy. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Curcumin combined with FAP?c vaccine elicits effective antitumor response by targeting indolamine-2,3-dioxygenase and inhibiting EMT induced by TNF-? in melanoma

    OpenAIRE

    Jiang, Guan-Min; Xie, Wan-Ying; Wang, Hong-Sheng; Du, Jun; Wu, Bai-Ping; Xu, Wei; Liu, Hui-Fang; XIAO, PING; LIU, ZHI-GANG; Li, Hong-Yan; Liu, Shuang-Quan; Yin, Wen-Jun; Zhang, Qiu-Gui; Liang, Jian-Ping; Huang, Hong-Jun

    2015-01-01

    Fibroblast activation protein ? (FAP?) is a potential target for cancer therapy. However, elimination of FAP?+ fibroblasts activates secretion of IFN-? and TNF-?. IFN-? can in turn induce expression indolamine-2,3-dioxygenase (IDO), thereby contributing to immunosuppression, while TNF-? can induce EMT. These two reactive effects would limit the efficacy of a tumor vaccine. We found that curcumin can inhibit IDO expression and TNF-?-induced EMT. Moreover, FAP?c vaccine and CpG combined with cu...

  14. Targeting the MAP kinase pathway in astrocytoma cells using a recombinant anthrax lethal toxin as a way to inhibit cell motility and invasion.

    Science.gov (United States)

    Al-Dimassi, Saleh; Salloum, Gilbert; Saykali, Bechara; Khoury, Oula; Liu, Shihui; Leppla, Stephen H; Abi-Habib, Ralph; El-Sibai, Mirvat

    2016-05-01

    Malignant astrocytomas are highly invasive into adjacent and distant regions of the normal brain. Understanding and targeting cancer cell invasion is an important therapeutic approach. Cell invasion is a complex process that replies on many signaling pathways including the mitogen-activated protein (MAP) kinase (MAPK). In many cell lines, the use of MAPK-targeted drugs proved to be a potential method to inhibit cancer cell motility. In the present study, we use a recombinant anthrax lethal toxin (LeTx), which selectively inhibits the MAPK pathway, in order to target invasion. LeTx proved ineffective on cell survival in astrocytoma (as well as normal cells). However, astrocytoma cells that were treated with LeTx showed a significant decrease in cell motility as seen by wound healing as well as random 2D motility in serum. The cells also showed a decrease in invasion across a collagen matrix. The effect of LeTx on cell migration was mediated though the deregulation of Rho GTPases, which play a role in cell motility. Finally, the effect of LeTx on cell migration and Rho GTPases was mimicked by the inhibition of the MAPK pathway. In this study, we describe for the first time the effect of the LeTx on cancer cell motility and invasion not cell survival making it a potentially selective brain tumor invasion inhibitor.

  15. MicroRNA 128a Increases Intracellular ROS Level by Targeting Bmi-1 and Inhibits Medulloblastoma Cancer Cell Growth by Promoting Senescence

    Science.gov (United States)

    Venkataraman, Sujatha; Alimova, Irina; Fan, Rong; Harris, Peter; Foreman, Nicholas; Vibhakar, Rajeev

    2010-01-01

    Background MicroRNAs (miRNAs) are a class of short non-coding RNAs that regulate cell homeostasis by inhibiting translation or degrading mRNA of target genes, and thereby can act as tumor suppressor genes or oncogenes. The role of microRNAs in medulloblastoma has only recently been addressed. We hypothesized that microRNAs differentially expressed during normal CNS development might be abnormally regulated in medulloblastoma and are functionally important for medulloblastoma cell growth. Methodology and Principal Findings We examined the expression of microRNAs in medulloblastoma and then investigated the functional role of one specific one, miR-128a, in regulating medulloblastoma cell growth. We found that many microRNAs associated with normal neuronal differentiation are significantly down regulated in medulloblastoma. One of these, miR-128a, inhibits growth of medulloblastoma cells by targeting the Bmi-1 oncogene. In addition, miR-128a alters the intracellular redox state of the tumor cells and promotes cellular senescence. Conclusions and Significance Here we report the novel regulation of reactive oxygen species (ROS) by microRNA 128a via the specific inhibition of the Bmi-1 oncogene. We demonstrate that miR-128a has growth suppressive activity in medulloblastoma and that this activity is partially mediated by targeting Bmi-1. This data has implications for the modulation of redox states in cancer stem cells, which are thought to be resistant to therapy due to their low ROS states. PMID:20574517

  16. Broad resistance to ACCase inhibiting herbicides in a ryegrass population is due only to a cysteine to arginine mutation in the target enzyme.

    Science.gov (United States)

    Kaundun, Shiv Shankhar; Hutchings, Sarah-Jane; Dale, Richard Paul; McIndoe, Eddie

    2012-01-01

    The design of sustainable weed management strategies requires a good understanding of the mechanisms by which weeds evolve resistance to herbicides. Here we have conducted a study on the mechanism of resistance to ACCase inhibiting herbicides in a Lolium multiflorum population (RG3) from the UK. Analysis of plant phenotypes and genotypes showed that all the RG3 plants (72%) that contained the cysteine to arginine mutation at ACCase codon position 2088 were resistant to ACCase inhibiting herbicides. Whole plant dose response tests on predetermined wild and mutant 2088 genotypes from RG3 and a standard sensitive population indicated that the C2088R mutation is the only factor conferring resistance to all ten ACCase herbicides tested. The associated resistance indices ranged from 13 for clethodim to over 358 for diclofop-methyl. Clethodim, the most potent herbicide was significantly affected even when applied on small mutant plants at the peri-emergence and one leaf stages. This study establishes the clear and unambiguous importance of the C2088R target site mutation in conferring broad resistance to ten commonly used ACCase inhibiting herbicides. It also demonstrates that low levels "creeping", multigenic, non target site resistance, is not always selected before single gene target site resistance appears in grass weed populations subjected to herbicide selection pressure.

  17. Broad resistance to ACCase inhibiting herbicides in a ryegrass population is due only to a cysteine to arginine mutation in the target enzyme.

    Directory of Open Access Journals (Sweden)

    Shiv Shankhar Kaundun

    Full Text Available BACKGROUND: The design of sustainable weed management strategies requires a good understanding of the mechanisms by which weeds evolve resistance to herbicides. Here we have conducted a study on the mechanism of resistance to ACCase inhibiting herbicides in a Lolium multiflorum population (RG3 from the UK. METHODOLOGY/PRINCIPAL FINDINGS: Analysis of plant phenotypes and genotypes showed that all the RG3 plants (72% that contained the cysteine to arginine mutation at ACCase codon position 2088 were resistant to ACCase inhibiting herbicides. Whole plant dose response tests on predetermined wild and mutant 2088 genotypes from RG3 and a standard sensitive population indicated that the C2088R mutation is the only factor conferring resistance to all ten ACCase herbicides tested. The associated resistance indices ranged from 13 for clethodim to over 358 for diclofop-methyl. Clethodim, the most potent herbicide was significantly affected even when applied on small mutant plants at the peri-emergence and one leaf stages. CONCLUSION/SIGNIFICANCE: This study establishes the clear and unambiguous importance of the C2088R target site mutation in conferring broad resistance to ten commonly used ACCase inhibiting herbicides. It also demonstrates that low levels "creeping", multigenic, non target site resistance, is not always selected before single gene target site resistance appears in grass weed populations subjected to herbicide selection pressure.

  18. Enhanced Anti-Tumor Efficacy through a Combination of Integrin αvβ6-Targeted Photodynamic Therapy and Immune Checkpoint Inhibition.

    Science.gov (United States)

    Gao, Liquan; Zhang, Chenran; Gao, Duo; Liu, Hao; Yu, Xinhe; Lai, Jianhao; Wang, Fan; Lin, Jian; Liu, Zhaofei

    2016-01-01

    "Training" the host immune system to recognize and systemically eliminate residual tumor lesions and micrometastases is a promising strategy for cancer therapy. In this study, we investigated whether integrin αvβ6-targeted photodynamic therapy (PDT) of tumors using a phthalocyanine dye-labeled probe (termed DSAB-HK) could trigger the host immune response, and whether PDT in combination with anti-PD-1 immune checkpoint inhibition could be used for the effective therapy of primary tumors and metastases. By near-infrared fluorescence imaging, DSAB-HK was demonstrated to specifically target either subcutaneous tumors in a 4T1 mouse breast cancer model or firefly luciferase stably transfected 4T1 (4T1-fLuc) lung metastatic tumors. Upon light irradiation, PDT by DSAB-HK significantly inhibited the growth of subcutaneous 4T1 tumors, and in addition promoted the maturation of dendritic cells and their production of cytokines, which subsequently stimulated the tumor recruitment of CD8(+) cytotoxic T lymphocytes. Furthermore, DSAB-HK PDT of the first tumor followed by PD-1 blockade markedly suppressed the growth of a second subcutaneous tumor, and also slowed the growth of 4T1-fLuc lung metastasis as demonstrated by serial bioluminescence imaging. Together, our results demonstrated the synergistic effect of tumor-targeted PDT and immune checkpoint inhibition for improving anti-tumor immunity and suppressing tumor growth/metastasis.

  19. Synergistic function of four novel thermostable glycoside hydrolases from a long-term enriched thermophilic methanogenic digester

    Science.gov (United States)

    Wang, Meng; Lai, Guo-Li; Nie, Yong; Geng, Shuang; Liu, Liming; Zhu, Baoli; Shi, Zhongping; Wu, Xiao-Lei

    2015-01-01

    In biofuel production from lignocellulose, low thermostability and product inhibition strongly restrict the enzyme activities and production process. Application of multiple thermostable glycoside hydrolases, forming an enzyme “cocktail”, can result in a synergistic action and therefore improve production efficiency and reduce operational costs. Therefore, increasing enzyme thermostabilities and compatibility are important for the biofuel industry. In this study, we reported the screening, cloning and biochemical characterization of four novel thermostable lignocellulose hydrolases from a metagenomic library of a long-term dry thermophilic methanogenic digester community, which were highly compatible with optimal conditions and specific activities. The optimal temperatures of the four enzymes, β-xylosidase, xylanase, β-glucosidase, and cellulase ranged from 60 to 75°C, and over 80% residual activities were observed after 2 h incubation at 50°C. Mixtures of these hydrolases retained high residual synergistic activities after incubation with cellulose, xylan, and steam-exploded corncob at 50°C for 72 h. In addition, about 55% dry weight of steam-exploded corncob was hydrolyzed to glucose and xylose by the synergistic action of the four enzymes at 50°C for 48 h. This work suggested that since different enzymes from a same ecosystem could be more compatible, screening enzymes from a long-term enriching community could be a favorable strategy. PMID:26052323

  20. Synergistic function of four novel thermostable glycoside hydrolases from a long-term enriched thermophilic methanogenic digester

    Directory of Open Access Journals (Sweden)

    Meng eWang

    2015-05-01

    Full Text Available In biofuel production from lignocellulose, low thermostability and product inhibition strongly restrict the enzyme activities and production process. Application of multiple thermostable glycoside hydrolases, forming an enzyme cocktail, can result in a synergistic action and therefore improve production efficiency and reduce operational costs. Therefore, increasing enzyme thermostabilities and compatibility are important for the biofuel industry. In this study, we reported the screening, cloning and biochemical characterization of four novel thermostable lignocellulose hydrolases from a metagenomic library of a long-term dry thermophilic methanogenic digester community, which were highly compatible with optimal conditions and specific activities. The optimal temperatures of the four enzymes, β-xylosidase, xylanase, β-glucosidase, and cellulase ranged from 60°C to 75°C, and over 80% residual activities were observed after 2 h incubation at 50°C. Mixtures of these hydrolases retained high residual synergistic activities after incubation with cellulose, xylan, and steam-exploded corncob at 50°C for 72 h. In addition, about 55% dry weight of steam-exploded corncob was hydrolyzed to glucose and xylose by the synergistic action of the four enzymes at 50°C for 48 h. This work suggested that since different enzymes from a same ecosystem could be more compatible, screening enzymes from a long-term enriching community could be a favorable strategy.

  1. Targeted inhibition of p57 and p15 blocks transforming growth factor beta-inhibited proliferation of primary cultured human limbal epithelial cells.

    Science.gov (United States)

    Chen, Zhuo; Li, De-quan; Tong, Louis; Stewart, Paul; Chu, Claire; Pflugfelder, Stephen C

    2006-08-23

    To evaluate the role of cyclin-dependent kinase inhibitors p57 and p15 in transforming growth factor (TGF)-beta1 or TGF-beta2 inhibited proliferation of primary cultured human limbal epithelial cells using short interfering RNA (siRNA). Primary cultured human limbal epithelial cells were treated with TGF-beta1 or TGF-beta2 for 6 and 24 h, and total RNA extracted for RT-PCR and real-time PCR using primers for p21, p27, and p57 (CipP/Kip family) and p15 and p19 (INK4 family). Proteins were extracted for western blot analysis of p57 and p15. For RNA interference, primary cultured human limbal epithelial cells were transfected with annealed double-stranded siRNA (67 nM) specific for p57, p15, or siRNA-Fluorescein (siRNA-F; as a negative control) followed by treatment with TGF-beta1 or TGF-beta2 at 1 ng/ml. P57 and p15 were quantitatively detected by real-time PCR and western blot; and immunolocalized by immunofluorescent staining. The effects of TGF-beta1 or TGF-beta2 on cell proliferation were evaluated by BrdU incorporation and MTT assay. TGF-beta1 or TGF-beta2 significantly inhibited primary cultured human limbal epithelial cell proliferation measured by BrdU incorporation and MTT assay. TGF-beta1 or TGF-beta2 upregulated the expression of p57 and p15 mRNA and protein, but did not effect the expression of p19, p21, or p27. The siRNA transfection efficiency of these cells was 75% and no cellular toxicity was observed by 24 h. The TGF-beta1 or TGF-beta2 stimulated expression of p57 and p15 mRNA were markedly blocked by siRNA-p57 or siRNA-p15, respectively, but not by siRNA-F. The TGF-beta1 or TGF-beta2 suppression of epithelial proliferation measured by BrdU incorporation and MTT generation was increased to near normal levels by siRNA-p57 or siRNA-p15. Western blot and immunofluorescent staining showed that levels of p57 and p15 proteins were equally reduced in the cytoplasm and nucleus. These findings demonstrate that TGF-beta1 and/or TGF-beta2 inhibit proliferation

  2. Targeting Natural Killer cells to Acute Myeloid Leukemia in vitro with a CD16x33 bispecific killer cell engager (BiKE) and ADAM17 inhibition

    Science.gov (United States)

    Wiernik, Andres; Foley, Bree; Zhang, Bin; Verneris, Michael R.; Warlick, Erica; Gleason, Michelle K.; Ross, Julie A.; Luo, Xianghua; Weisdorf, Daniel J.; Walcheck, Bruce; Vallera, Daniel A; Miller, Jeffrey S.

    2013-01-01

    Purpose The graft versus leukemia (GVL) effect by Natural Killer (NK) cells prevents relapse following hematopoietic stem cell transplantation. We determined whether a novel bi-specific killer cell engager (BiKE) signaling through CD16 and targeting CD33 could activate NK cells at high potency against AML targets. Experimental Design We investigated the ability of our fully humanized CD16x33 BiKE to trigger in vitro NK cell activation against HL60 (CD33+), RAJI (CD33−), and primary AML targets (de novo, refractory and post transplant) to determine whether treatment with CD16x33 BiKE in combination with an ADAM17 inhibitor could prevent CD16 shedding (a novel inhibitory mechanism induced by NK cell activation) and overcome inhibition of class I MHC recognizing inhibitory receptors. Results NK cell cytotoxicity and cytokine release were specifically triggered by the CD16x33 BiKE when cells were cultured with HL60 targets, CD33+ de novo and refractory AML targets. Combination treatment with CD16x33 BiKE and ADAM17 inhibitor resulted in inhibition of CD16 shedding in NK cells, and enhanced NK cell activation. Treatment of NK cells from double umbilical cord blood transplant (UCBT) recipients with the CD16x33 BiKE resulted in activation, especially in those recipients with CMV reactivation. Conclusion CD16x33 BiKE can overcome self inhibitory signals and effectively elicit NK cell effector activity against AML. These in vitro studies highlight the potential of CD16x33 BiKE ± ADAM17 inhibition to enhance NK cell activation and specificity against CD33+ AML, which optimally could be applied in patients with relapsed AML or for adjuvant anti-leukemic therapy post-transplantation. PMID:23690482

  3. Targeting non-small cell lung cancer cells by dual inhibition of the insulin receptor and the insulin-like growth factor-1 receptor.

    Directory of Open Access Journals (Sweden)

    Emma E Vincent

    Full Text Available Phase III trials of the anti-insulin-like growth factor-1 receptor (IGF1R antibody figitumumab in non-small cell lung cancer (NSCLC patients have been discontinued owing to lack of survival benefit. We investigated whether inhibition of the highly homologous insulin receptor (IR in addition to the IGF1R would be more effective than inhibition of the IGF1R alone at preventing the proliferation of NSCLC cells. Signalling through IGF1R and IR in the NSCLC cell lines A549 and Hcc193 was stimulated by a combination of IGF1, IGF2 and insulin. It was inhibited by antibodies that block ligand binding, αIR3 (IGF1R and IR47-9 (IR, and by the ATP-competitive small molecule tyrosine kinase inhibitors AZ12253801 and NVPAWD742 which inhibit both IGF1R and IR tyrosine kinases. The effect of inhibitors was determined by an anchorage-independent proliferation assay and by analysis of Akt phosphorylation. In Hcc193 cells the reduction in cell proliferation and Akt phosphorylation due to anti-IGF1R antibody was enhanced by antibody-mediated inhibition of the IR whereas in A549 cells, with a relatively low IR:IGF1R expression ratio, it was not. In each cell line proliferation and Akt phosphorylation were more effectively inhibited by AZ12253801 and NVPAWD742 than by combined αIR3 and IR47-9. When the IGF1R alone is inhibited, unencumbered signalling through the IR can contribute to continued NSCLC cell proliferation. We conclude that small molecule inhibitors targeting both the IR and IGF1R more effectively reduce NSCLC cell proliferation in a manner independent of the IR:IGF1R expression ratio, providing a therapeutic rationale for the treatment of this disease.

  4. Shoot-supplied ammonium targets the root auxin influx carrier AUX1 and inhibits lateral root emergence in Arabidopsis

    KAUST Repository

    Li, Baohai

    2011-03-24

    Deposition of ammonium (NH4 +) from the atmosphere is a substantial environmental problem. While toxicity resulting from root exposure to NH4 + is well studied, little is known about how shoot-supplied ammonium (SSA) affects root growth. In this study, we show that SSA significantly affects lateral root (LR) development. We show that SSA inhibits lateral root primordium (LRP) emergence, but not LRP initiation, resulting in significantly impaired LR number. We show that the inhibition is independent of abscisic acid (ABA) signalling and sucrose uptake in shoots but relates to the auxin response in roots. Expression analyses of an auxin-responsive reporter, DR5:GUS, and direct assays of auxin transport demonstrated that SSA inhibits root acropetal (rootward) auxin transport while not affecting basipetal (shootward) transport or auxin sensitivity of root cells. Mutant analyses indicated that the auxin influx carrier AUX1, but not the auxin efflux carriers PIN-FORMED (PIN)1 or PIN2, is required for this inhibition of LRP emergence and the observed auxin response. We found that AUX1 expression was modulated by SSA in vascular tissues rather than LR cap cells in roots. Taken together, our results suggest that SSA inhibits LRP emergence in Arabidopsis by interfering with AUX1-dependent auxin transport from shoot to root. © 2011 Blackwell Publishing Ltd.

  5. α/β Hydrolase fold enzymes: the family keeps growing

    NARCIS (Netherlands)

    Nardini, Marco; Dijkstra, B W

    1999-01-01

    The alpha/beta hydrolase fold is a typical example of a tertiary fold adopted by proteins that have no obvious sequence similarity, but nevertheless, in the course of evolution, diverged from a common ancestor. Recently solved structures demonstrate a considerably increased variability in fold

  6. Monoclonal Antibodies Specific for Hippurate Hydrolase of Campylobacter jejuni

    OpenAIRE

    Steele, Marina; Gyles, Carlton; Chan, Voon Loong; Odumeru, Joseph

    2002-01-01

    Eleven monoclonal antibodies raised against recombinant Campylobacter jejuni hippurate hydrolase were tested for binding to lysates from 19 C. jejuni strains, 12 other Campylobacter strains, and 21 non-Campylobacter strains. Several monoclonal antibodies bound to C. jejuni but not to other Campylobacter species and may be useful in a species-specific immunoassay.

  7. Carboxylic ester hydrolases in mitochondria from rat skeletal muscle

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Zelander, T

    1990-01-01

    A mitochondrial pellet, prepared from rat skeletal muscle, contained a number of carboxylic ester hydrolase isoenzymes. The esterases which split alpha-naphthyl acetate were organophosphate sensitive, whereas two out of three indoxyl acetate hydrolysing enzymes were resistant to both organophosph...

  8. Enantioselectivity of a recombinant epoxide hydrolase from Agrobacterium radiobacter

    NARCIS (Netherlands)

    Lutje Spelberg, Jeffrey H.; Rink, Rick; Kellogg, Richard M.; Janssen, Dick B.

    1998-01-01

    The recombinant epoxide hydrolase from Agrobacterium radiobacter AD1 was used to obtain enantiomerically pure epoxides by means of a kinetic resolution. Epoxides such as styrene oxide and various derivatives thereof and phenyl glycidyl ether were obtained in high enantiomeric excess and in

  9. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2017-12-26

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacyl-ethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings.

  10. ENGINEERING OF PEPTIDOGLYCAN HYDROLASES FOR CONTROL OF PATHOGENIC BACTERIA

    Science.gov (United States)

    Bacteriophages are viruses exclusively infecting bacteria and therefore offer suitable tools for their detection and control. At the end of their multiplication cycle, most phages lyse their hosts from within by means of an endolysin (peptidoglycan hydrolase), thereby enabling release of the phage p...

  11. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    Science.gov (United States)

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2016-10-25

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacylethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings. The subject matter disclosed herein relates to enhancers of amidohydrolase activity.

  12. Bile salt hydrolase of Bifidobacterium longum - Biochemical and genetic characterization

    NARCIS (Netherlands)

    Tanaka, H; Hashiba, Honoo; Kok, Jan; Mierau, Igor

    A bile salt hydrolase (BSH) was isolated from Bifidobacterium longum SBT2928, purified, and characterized, Furthermore, we describe for the first time cloning and analysis of the gene encoding BSII (bsh) in a member of the genus Bifidobacterium. The enzyme has a native molecular weight of 125,000 to

  13. Tannin Acyl Hydrolase Production by Citrobacter sp. isolated from ...

    African Journals Online (AJOL)

    MICHAEL

    Environ. Manage. December, 2009. Vol. 13(4) 95 - 97. Full-text Available Online at www.bioline.org.br/ja. Tannin Acyl Hydrolase Production by Citrobacter sp. isolated from Tannin rich. Environment, using Tamarindus indica seed powder. 1WILSON PETER A.; 2ROJAN P. JOHN;1PRAVEEN KUMAR; 1*SABU THOMAS.

  14. A human NK cell activation/inhibition threshold allows small changes in the target cell surface phenotype to dramatically alter susceptibility to NK cells.

    Science.gov (United States)

    Holmes, Tim D; El-Sherbiny, Yasser M; Davison, Adam; Clough, Sally L; Blair, G Eric; Cook, Graham P

    2011-02-01

    NK cell activation is negatively regulated by the expression of target cell MHC class I molecules. We show that this relationship is nonlinear due to an NK cell activation/inhibition threshold. Ewing's sarcoma family tumor cell monolayers, which were highly susceptible to NK cells in vitro, developed a highly resistant phenotype when cultured as three-dimensional multicellular tumor spheroid structures. This suggested that tumor architecture is likely to influence the susceptibility to NK cells in vivo. Resistance of the multicellular tumor spheroid was associated with the increased expression of MHC class I molecules and greatly reduced NK cell activation, implying that a threshold of NK cell activation/inhibition had been crossed. Reducing MHC class I expression on Ewing's sarcoma family tumor monolayers did not alter their susceptibility to NK cells, whereas increased expression of MHC class I rendered them resistant and allowed the threshold point to be identified. This threshold, as defined by MHC class I expression, was predictive of the number of NK-resistant target cells within a population. A threshold permits modest changes in the target cell surface phenotype to profoundly alter the susceptibility to NK cells. Whereas this allows for the efficient detection of target cells, it also provides a route for pathogens and tumors to evade NK cell attack.

  15. Targeting CXCR1/2 Significantly Reduces Breast Cancer Stem Cell Activity and Increases the Efficacy of Inhibiting HER2 via HER2-dependent and -independent Mechanisms

    Science.gov (United States)

    Singh, Jagdeep K.; Farnie, Gillian; Bundred, Nigel J.; Simões, Bruno M; Shergill, Amrita; Landberg, Göran; Howell, Sacha; Clarke, Robert B.

    2012-01-01

    Purpose Breast cancer stem-like cells (CSCs) are an important therapeutic target as they are predicted to be responsible for tumour initiation, maintenance and metastases. Interleukin-8 (IL-8) is upregulated in breast cancer and associated with poor prognosis. Breast cancer cell line studies indicate that IL-8 via its cognate receptors, CXCR1 and CXCR2, is important in regulating breast CSC activity. We investigated the role of IL-8 in the regulation of CSC activity using patient-derived breast cancers and determined the potential benefit of combining CXCR1/2 inhibition with HER2-targeted therapy. Experimental design CSC activity of metastatic and invasive human breast cancers (n=19) was assessed ex vivo using the mammosphere colony forming assay. Results Metastatic fluid IL-8 level correlated directly with mammosphere formation (r=0.652; Pbreast cancers (n=17). IL-8 induced activation of EGFR/HER2 and downstream signalling pathways and effects were abrogated by inhibition of SRC, EGFR/HER2, PI3K or MEK. Furthermore, lapatinib inhibited the mammosphere-promoting effect of IL-8 in both HER2-positive and negative patient-derived cancers. CXCR1/2 inhibition also blocked the effect of IL-8 on mammosphere formation and added to the efficacy of lapatinib in HER2-positive cancers. Conclusions These studies establish a role for IL-8 in the regulation of patient-derived breast CSC activity and demonstrate that IL-8/CXCR1/2 signalling is partly mediated via a novel SRC and EGFR/HER2-dependent pathway. Combining CXCR1/2 inhibitors with current HER2-targeted therapies has potential as an effective therapeutic strategy to reduce CSC activity in breast cancer and improve the survival of HER2-positive patients. PMID:23149820

  16. Allosteric inhibition enhances the efficacy of ABL kinase inhibitors to target unmutated BCR-ABL and BCR-ABL-T315I

    Directory of Open Access Journals (Sweden)

    Mian Afsar

    2012-09-01

    Full Text Available Abstract Background Chronic myelogenous leukemia (CML and Philadelphia chromosome-positive (Ph+ acute lymphatic leukemia (Ph + ALL are caused by the t(9;22, which fuses BCR to ABL resulting in deregulated ABL-tyrosine kinase activity. The constitutively activated BCR/ABL-kinase “escapes” the auto-inhibition mechanisms of c-ABL, such as allosteric inhibition. The ABL-kinase inhibitors (AKIs Imatinib, Nilotinib or Dasatinib, which target the ATP-binding site, are effective in Ph + leukemia. Another molecular therapy approach targeting BCR/ABL restores allosteric inhibition. Given the fact that all AKIs fail to inhibit BCR/ABL harboring the ‘gatekeeper’ mutation T315I, we investigated the effects of AKIs in combination with the allosteric inhibitor GNF2 in Ph + leukemia. Methods The efficacy of this approach on the leukemogenic potential of BCR/ABL was studied in Ba/F3 cells, primary murine bone marrow cells, and untransformed Rat-1 fibroblasts expressing BCR/ABL or BCR/ABL-T315I as well as in patient-derived long-term cultures (PDLTC from Ph + ALL-patients. Results Here, we show that GNF-2 increased the effects of AKIs on unmutated BCR/ABL. Interestingly, the combination of Dasatinib and GNF-2 overcame resistance of BCR/ABL-T315I in all models used in a synergistic manner. Conclusions Our observations establish a new approach for the molecular targeting of BCR/ABL and its resistant mutants using a combination of AKIs and allosteric inhibitors.

  17. CDK9 inhibitors selectively target estrogen receptor-positive breast cancer cells through combined inhibition of MYB and MCL-1 expression.

    Science.gov (United States)

    Mitra, Partha; Yang, Ren-Ming; Sutton, James; Ramsay, Robert G; Gonda, Thomas J

    2016-02-23

    Our previous studies showed that MYB is required for proliferation of, and confers protection against apoptosis on, estrogen receptor-positive (ER(+ve)) breast cancer cells, which are almost invariably also MYB(+ve). We have also shown that MYB expression in ER(+ve) breast cancer cells is regulated at the level of transcriptional elongation and as such, is suppressed by CDK9i. Here we examined the effects of CDK9i on breast cancer cells and the involvement of MYB in these effects. ER(+ve) breast cancer cell lines including MCF-7 were much more sensitive (> 10 times) to killing by CDK9i than ER(-ve)/MYB(-ve) cells. Moreover, surviving cells showed a block at the G2/M phase of the cell cycle. Importantly, ectopic MYB expression conferred resistance to apoptosis induction, cell killing and G2/M accumulation. Expression of relevant MYB target genes including BCL2 and CCNB1 was suppressed by CDK9 inhibition, and this too was reversed by ectopic MYB expression. Nevertheless, inhibition of BCL2 alone either by MYB knockdown or by ABT-199 treatment was insufficient for significant induction of apoptosis. Further studies implied that suppression of MCL-1, a well-documented target of CDK9 inhibition, was additionally required for apoptosis induction, while maximal levels of apoptosis induced by CDK9i are likely to also involve inhibition of BCL2L1 expression. Taken together these data suggest that MYB regulation of BCL2 underlies the heightened sensitivity of ER(+ve) compared to ER(-ve) breast cancer cells to CDK9 inhibition, and that these compounds represent a potential therapeutic for ER(+ve) breast cancers and possibly other MYB-dependent cancers.

  18. Targeted inhibition of p57 and p15 blocks transforming growth factor β-inhibited proliferation of primary cultured human limbal epithelial cells

    Science.gov (United States)

    Chen, Zhuo; Li, De-quan; Tong, Louis; Stewart, Paul; Chu, Claire; Pflugfelder, Stephen C.

    2010-01-01

    Purpose To evaluate the role of cyclin-dependent kinase inhibitors p57 and p15 in transforming growth factor (TGF)-β1 or TGF-β2 inhibited proliferation of primary cultured human limbal epithelial cells using short interfering RNA (siRNA). Methods Primary cultured human limbal epithelial cells were treated with TGF-β1 or TGF-β2 for 6 and 24 h, and total RNA extracted for RT-PCR and real-time PCR using primers for p21, p27, and p57 (CipP/Kip family) and p15 and p19 (INK4 family). Proteins were extracted for western blot analysis of p57 and p15. For RNA interference, primary cultured human limbal epithelial cells were transfected with annealed double-stranded siRNA (67 nM) specific for p57, p15, or siRNA-Fluorescein (siRNA-F; as a negative control) followed by treatment with TGF-β1 or TGF-β2 at 1 ng/ml. P57 and p15 were quantitatively detected by real-time PCR and western blot; and immunolocalized by immunofluorescent staining. The effects of TGF-β1 or TGF-β2 on cell proliferation were evaluated by BrdU incorporation and MTT assay. Results TGF-β1 or TGF-β2 significantly inhibited primary cultured human limbal epithelial cell proliferation measured by BrdU incorporation and MTT assay. TGF-β1 or TGF-β2 upregulated the expression of p57 and p15 mRNA and protein, but did not effect the expression of p19, p21, or p27. The siRNA transfection efficiency of these cells was 75% and no cellular toxicity was observed by 24 h. The TGF-β1 or TGF-β2 stimulated expression of p57 and p15 mRNA were markedly blocked by siRNA-p57 or siRNA-p15, respectively, but not by siRNA-F. The TGF-β1 or TGF-β2 suppression of epithelial proliferation measured by BrdU incorporation and MTT generation was increased to near normal levels by siRNA-p57 or siRNA-p15. Western blot and immunofluorescent staining showed that levels of p57 and p15 proteins were equally reduced in the cytoplasm and nucleus. Conclusions These findings demonstrate that TGF-β1 and/or TGF-β2 inhibit proliferation

  19. Evaluation of single and dual siRNAs targeting rabies virus glycoprotein and nucleoprotein genes for inhibition of virus multiplication in vitro.

    Science.gov (United States)

    Meshram, Chetan D; Singh, Niraj K; Sonwane, Arvind A; Pawar, Sachin S; Mishra, B P; Chaturvedi, V K; Saini, Mohini; Singh, R P; Gupta, Praveen K

    2013-11-01

    Small interfering RNAs (siRNAs) targeting rabies virus (RV) glycoprotein (G) and nucleoprotein (N) genes were evaluated as antiviral agents against rabies virus in vitro in BHK-21 cells. To select effective siRNAs targeting RV-G, a plasmid-based transient co-transfection approach was used. In this, siRNAs were expressed as short hairpin RNAs (shRNAs), and their ability to inhibit RV-G gene expression was evaluated in cells transfected with a plasmid expressing RV-G. The nine different siRNAs designed to target RV-G exhibited varying degrees of knockdown of RV-G gene expression. One siRNA (si-G7) with considerable effect in knockdown of RV-G expression also demonstrated significant inhibition of RV multiplication in BHK-21 cells after in vitro challenge with the RV Pasteur virus-11 (PV-11) strain. A decrease in the number of fluorescent foci in siRNA-treated cells and a reduction (86.8 %) in the release of RV into infected cell culture supernatant indicated the anti-rabies potential of siRNA. Similarly, treatment with one siRNA targeting RV-N resulted in a decrease in the number of fluorescent foci and a reduction (85.9 %) in the release of RV. As a dual gene silencing approach where siRNAs targeting RV-G and RV-N genes were expressed from single construct, the anti-rabies-virus effect was observed as an 87.4 % reduction in the release of RV. These results demonstrate that siRNAs targeting RV-G and N, both in single and dual form, have potential as antiviral agent against rabies.

  20. α/β-Hydrolase Domain 6 in the Ventromedial Hypothalamus Controls Energy Metabolism Flexibility

    Directory of Open Access Journals (Sweden)

    Alexandre Fisette

    2016-10-01

    Full Text Available α/β-Hydrolase domain 6 (ABHD6 is a monoacylglycerol hydrolase that degrades the endocannabinoid 2-arachidonoylglycerol (2-AG. Although complete or peripheral ABHD6 loss of function is protective against diet-induced obesity and insulin resistance, the role of ABHD6 in the central control of energy balance is unknown. Using a viral-mediated knockout approach, targeted endocannabinoid measures, and pharmacology, we discovered that mice lacking ABHD6 from neurons of the ventromedial hypothalamus (VMHKO have higher VMH 2-AG levels in conditions of endocannabinoid recruitment and fail to physiologically adapt to key metabolic challenges. VMHKO mice exhibited blunted fasting-induced feeding and reduced food intake, energy expenditure, and adaptive thermogenesis in response to cold exposure, high-fat feeding, and dieting (transition to a low-fat diet. Our findings identify ABHD6 as a regulator of the counter-regulatory responses to major metabolic shifts, including fasting, nutrient excess, cold, and dieting, thereby highlighting the importance of ABHD6 in the VMH in mediating energy metabolism flexibility.

  1. The Serine Hydrolase ABHD6 Is a Critical Regulator of the Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Gwynneth Thomas

    2013-10-01

    Full Text Available The serine hydrolase α/β hydrolase domain 6 (ABHD6 has recently been implicated as a key lipase for the endocannabinoid 2-arachidonylglycerol (2-AG in the brain. However, the biochemical and physiological function for ABHD6 outside of the central nervous system has not been established. To address this, we utilized targeted antisense oligonucleotides (ASOs to selectively knock down ABHD6 in peripheral tissues in order to identify in vivo substrates and understand ABHD6’s role in energy metabolism. Here, we show that selective knockdown of ABHD6 in metabolic tissues protects mice from high-fat-diet-induced obesity, hepatic steatosis, and systemic insulin resistance. Using combined in vivo lipidomic identification and in vitro enzymology approaches, we show that ABHD6 can hydrolyze several lipid substrates, positioning ABHD6 at the interface of glycerophospholipid metabolism and lipid signal transduction. Collectively, these data suggest that ABHD6 inhibitors may serve as therapeutics for obesity, nonalcoholic fatty liver disease, and type II diabetes.

  2. Engineering of an epoxide hydrolase for efficient bioresolution of bulky pharmaco substrates.

    Science.gov (United States)

    Kong, Xu-Dong; Yuan, Shuguang; Li, Lin; Chen, She; Xu, Jian-He; Zhou, Jiahai

    2014-11-04

    Optically pure epoxides are essential chiral precursors for the production of (S)-propranolol, (S)-alprenolol, and other β-adrenergic receptor blocking drugs. Although the enzymatic production of these bulky epoxides has proven difficult, here we report a method to effectively improve the activity of BmEH, an epoxide hydrolase from Bacillus megaterium ECU1001 toward α-naphthyl glycidyl ether, the precursor of (S)-propranolol, by eliminating the steric hindrance near the potential product-release site. Using X-ray crystallography, mass spectrum, and molecular dynamics calculations, we have identified an active tunnel for substrate access and product release of this enzyme. The crystal structures revealed that there is an independent product-release site in BmEH that was not included in other reported epoxide hydrolase structures. By alanine scanning, two mutants, F128A and M145A, targeted to expand the potential product-release site displayed 42 and 25 times higher activities toward α-naphthyl glycidyl ether than the wild-type enzyme, respectively. These results show great promise for structure-based rational design in improving the catalytic efficiency of industrial enzymes for bulky substrates.

  3. Consolidation of glycosyl hydrolase family 30 : a dual domain 4/7 hydrolase family consisting of two structurally distinct groups

    Science.gov (United States)

    Franz J. St John; Javier M. Gonzalez; Edwin Pozharski

    2010-01-01

    In this work glycosyl hydrolase (GH) family 30 (GH30) is analyzed and shown to consist of its currently classified member sequences as well as several homologous sequence groups currently assigned within family GH5. A large scale amino acid sequence alignment and a phylogenetic tree were generated and GH30 groups and subgroups were designated. A partial rearrangement...

  4. Mechanisms of Aging of Phosphylated Serine Hydrolases

    Science.gov (United States)

    2009-08-25

    molecular weight standards that were added to the MS chip ). Thus, MIP-inhibited AChE ages by loss of both isopropylamine groups, as depicted in Fig. 1...patatin17 (pat17), a lipase found in potatoes and other plants whose crystal structure had been determined (Rydel et al., 2003). Using the structure of...are displayed as sticks. Colors were assigned to atoms as follows: C, gray; H, green; N, blue; O, red; P, purple; and S, yellow. Only the catalytic

  5. A DNA enzyme targeting Egr-1 inhibits rat vascular smooth muscle cell proliferation by down-regulation of cyclin D1 and TGF-β1

    Directory of Open Access Journals (Sweden)

    Y. Wu

    2010-01-01

    Full Text Available We have demonstrated that a synthetic DNA enzyme targeting early growth response factor-1 (Egr-1 can inhibit neointimal hyperplasia following vascular injury. However, the detailed mechanism of this inhibition is not known. Thus, the objective of the present study was to further investigate potential inhibitory mechanisms. Catalytic DNA (ED5 and scrambled control DNA enzyme (ED5SCR were synthesized and transfected into primary cultures of rat vascular smooth muscle cells (VSMCs. VSMC proliferation and DNA synthesis were analyzed by the MTT method and BrdU staining, respectively. Egr-1, TGF-β1, p53, p21, Bax, and cyclin D1 expression was detected by RT-PCR and Western blot. Apoptosis and cell cycle assays were performed by FACS. Green fluorescence could be seen localized in the cytoplasm of 70.6 ± 1.52 and 72 ± 2.73% VSMCs 24 h after transfection of FITC-labeled ED5 and ED5SCR, respectively. We found that transfection with ED5 significantly inhibited cultured VSMC proliferation in vitro after 24, 48, and 72 h of serum stimulation, and also effectively decreased the uptake of BrdU by VSMC. ED5 specifically reduced serum-induced Egr-1 expression in VSMCs, further down-regulated the expression of cyclin D1 and TGF-β1, and arrested the cells at G0/G1, inhibiting entry into the S phase. FACS analysis indicated that there was no significant difference in the rate of apoptosis between ED5- and ED5SCR-transfected cells. Thus, ED5 can specifically inhibit Egr-1 expression, and probably inhibits VSMC proliferation by down-regulating the expressions of cyclin D1 and TGF-β1. However, ED5 has no effect on VSMC apoptosis.

  6. Inhibition effects of Vernonia cinerea active compounds against cytochrome P450 2A6 and human monoamine oxidases, possible targets for reduction of tobacco dependence.

    Science.gov (United States)

    Prasopthum, Aruna; Pouyfung, Phisit; Sarapusit, Songklod; Srisook, Ekaruth; Rongnoparut, Pornpimol

    2015-04-01

    The human cytochrome P450 2A6 (CYP2A6) and monoamine oxidases (MAO-A and MAO-B), catalyzing nicotine and dopamine metabolisms, respectively, are two therapeutic targets of nicotine dependence. Vernonia cinerea, a medicinal plant commonly used for treatment of diseases such as asthma and bronchitis, has been shown reducing tobacco dependence effect among tobacco users. In the present study, we found eight active compounds isolated from V. cinerea that comprise inhibitory activity toward CYP2A6 and MAO-A and MAO-B enzymes using activity-guided assays, with coumarin as substrate of CYP2A6 and kynuramine of MAOs. These compounds were three flavones (apigenin, chrysoeriol, luteolin), one flavonol (quercetin), and four hirsutinolide-type sesquiterpene lactones (8α-(2-methylacryloyloxy)-hirsutinolide-13-O-acetate, 8α-(4-hydroxymethacryloyloxy)-hirsutinolide-13-O-acetate, 8α-tigloyloxyhirsutinolide-13-O-acetate, and 8α-(4-hydroxytigloyloxy)-hirsutinolide-13-O-acetate). Modes and kinetics of inhibition against the three enzymes were determined. Flavonoids possessed strong inhibitory effect on CYP2A6 in reversible mode, while inhibition by hirsutinolides was mechanism-based (NADPH-, concentration-, and time-dependence) and irreversible. Inhibition by hirsutinolides could not be reversed by dialysis and by addition of trapping agents or potassium ferricyanide. Flavonoids inhibited MAOs with variable degrees and were more prominent in inhibition toward MAO-A than hirsutinolides, while two of hirsutinolides inhibited MAO-B approximately comparable to two flavonoids. These results could have implications in combination of drug therapy for smoking cessation. Copyright © 2014 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  7. Targeting cancer-related inflammation: Chinese herbal medicine inhibits epithelial-to-mesenchymal transition in pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Juan Zhang

    Full Text Available Pancreatic cancer is an almost universally fatal disease resulting from early invasion of adjacent structures and metastasis and the lack of an effective treatment modality. Our previous studies have shown that Qingyihuaji Formula (QYHJ, a seven-herb Chinese medicine formula, had significant anti-cancer effects in pancreatic cancer. Here, we examined the effects of QYHJ on pancreatic cancer cell invasion and metastasis and the potential associated mechanism(s. We found that QYHJ inhibited both tumor growth and metastasis in nude mice with human pancreatic cancer cell xenografts. Further study indicated that QYHJ inhibited epithelial-to-mesenchymal transition (EMT, which is characterized by increased E-cadherin expression and decreased vimentin, N-cadherin and Slug expression. Interleukin 6 (IL-6, a pro-inflammatory cytokine produced mainly by macrophages, could promote cancer cell EMT and invasion. In contrast, treatment with QYHJ inhibited cancer-related inflammation in tumors by decreasing infiltration of tumor-associated macrophages and IL-6 production, thus preventing cell invasion and metastasis. These results suggested that the Chinese herbal medicine QYHJ could inhibit pancreatic cancer cell invasion and metastasis in part by reversing tumor-supporting inflammation.

  8. Inhibition of hepatitis B virus by the CRISPR/Cas9 system via targeting the conserved regions of the viral genome.

    Science.gov (United States)

    Liu, Xing; Hao, Ruidong; Chen, Shuliang; Guo, Deyin; Chen, Yu

    2015-08-01

    Hepatitis B virus (HBV) remains a global health threat as chronic HBV infection may lead to liver cirrhosis or cancer. Current antiviral therapies with nucleoside analogues can inhibit the replication of HBV, but do not disrupt the already existing HBV covalently closed circular DNA. The newly developed CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated 9) system is a powerful tool to target cellular genome DNA for gene editing. In order to investigate the possibility of using the CRISPR/Cas9 system to disrupt the HBV DNA templates, we designed eight guide RNAs (gRNAs) that targeted the conserved regions of different HBV genotypes, which could significantly inhibit HBV replication both in vitro and in vivo. Moreover, the HBV-specific gRNA/Cas9 system could inhibit the replication of HBV of different genotypes in cells, and the viral DNA was significantly reduced by a single gRNA/Cas9 system and cleared by a combination of different gRNA/Cas9 systems.

  9. Inhibition of CRM1-mediated nuclear export of influenza A nucleoprotein and nuclear export protein as a novel target for antiviral drug development.

    Science.gov (United States)

    Chutiwitoonchai, Nopporn; Mano, Takafumi; Kakisaka, Michinori; Sato, Hirotaka; Kondoh, Yasumitsu; Osada, Hiroyuki; Kotani, Osamu; Yokoyama, Masaru; Sato, Hironori; Aida, Yoko

    2017-07-01

    An anti-influenza compound, DP2392-E10 based on inhibition of the nuclear export function of the viral nucleoprotein-nuclear export signal 3 (NP-NES3) domain was successfully identified by our previous high-throughput screening system. Here, we demonstrated that DP2392-E10 exerts its antiviral effect by inhibiting replication of a broad range of influenza A subtypes. In regard to the molecular mechanism, we revealed that DP2392-E10 inhibits nuclear export of both viral NP and nuclear export protein (NEP). More specifically, in vitro pull-down assays revealed that DP2392-E10 directly binds cellular CRM1, which mediates nuclear export of NP and NEP. In silico docking suggested that DP2392-E10 binds at a region close to the HEAT9 and HEAT10 domains of CRM1. Together, these results indicate that the CRM1-mediated nuclear export function of influenza virus represents a new potential target for antiviral drug development, and also provide a core structure for a novel class of inhibitors that target this function. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Metformin inhibits epithelial–mesenchymal transition in prostate cancer cells: Involvement of the tumor suppressor miR30a and its target gene SOX4

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Shen, Chengwu [Department of Pharmacy, Shandong Provincial Hospital, Shandong University, Jinan 250021 (China); Wang, Lin [Department of Pathology, School of Medicine, Shandong University, Jinan 250012 (China); Research Center for Medicinal Biotechnology, Shandong Academy of Medicinal Sciences, Jinan 250012 (China); Ma, Quanping [Department of Clinical Laboratory, The Fourth People’s Hospital of Jinan, Jinan 250031 (China); Xia, Pingtian; Qi, Mei; Yang, Muyi [Department of Pathology, School of Medicine, Shandong University, Jinan 250012 (China); Han, Bo, E-mail: boh@sdu.edu.cn [Department of Pathology, School of Medicine, Shandong University, Jinan 250012 (China); Department of Pathology, Qilu Hospital, Shandong University, Jinan 250012 (China)

    2014-09-26

    Highlights: • Metformin inhibits TGF-β-induced EMT in prostate cancer (PCa) cells. • Metformin upregulates tumor suppressor miR30a and downregulates SOX4 in PCa cells. • SOX4 is a target gene of miR30a. - Abstract: Tumor metastasis is the leading cause of mortality and morbidity of prostate cancer (PCa) patients. Epithelial–mesenchymal transition (EMT) plays a critical role in cancer progression and metastasis. Recent evidence suggested that diabetic patients treated with metformin have lower PCa risk and better prognosis. This study was aimed to investigate the effects of metformin on EMT in PCa cells and the possible microRNA (miRNA)-based mechanisms. MiRNAs have been shown to regulate various processes of cancer metastasis. We herein showed that metformin significantly inhibits proliferation of Vcap and PC-3 cells, induces G0/G1 cell cycle arrest and inhibits invasiveness and motility capacity of Vcap cells. Metformin could inhibit TGF-β-induced EMT in Vcap cells, as manifested by inhibition of the increase of N-cadherin (p = 0.013), Vimentin (p = 0.002) and the decrease of E-cadherin (p = 0.0023) and β-catenin (p = 0.034) at mRNA and protein levels. Notably, we demonstrated significant upregulation of miR30a levels by metformin (P < 0.05) and further experiments indicated that miR30a significantly inhibits proliferation and EMT process of Vcap cells. Interestingly, we identified that SOX4, a previously reported oncogenic transcriptional factor and modulator of EMT, is a direct target gene of miR30a. Finally, we screened the expression of miR30a and SOX4 in 84 PCa cases with radical prostatectomy. Of note, SOX4 overexpression is significantly associated with decreased levels of miR30a in PCa cases. In all, our study suggested that inhibition of EMT by metformin in PCa cells may involve upregulation of miR30a and downregulation of SOX4.

  11. Noncholinesterase effects induced by organophosphate pesticides and their relationship to cognitive processes: implication for the action of acylpeptide hydrolase.

    Science.gov (United States)

    Pancetti, Floria; Olmos, Cristina; Dagnino-Subiabre, Alexies; Rozas, Carlos; Morales, Bernardo

    2007-12-01

    Organophosphate pesticides have been classically described as inhibitors of acetylcholinesterase (AChE) activity in insects and invertebrates. However, there is now more evidence supporting the hypothesis that these compounds also act through noncholinergic pathways, especially those related to cognitive processes. The enzyme acylpeptide hydrolase was identified as a new target for organophosphate pesticides. This enzyme is more sensitive than AChE to some organophosphates (OP), including dichlorvos, which is the parent compound for metrifonate, a therapeutic agent used in the treatment of cognitive impairment associated to Alzheimer's disease. Therefore, there is some doubt as to whether the mechanism of action of this drug is mediated by a potentiation of cholinergic transmission. However, the direct action of acylpeptide hydrolase in cognitive processes and the physiological and molecular mechanisms underlying subacute exposure to OP have yet to be demonstrated. This review deals with evidence demonstrating the existence of mechanisms of actions of OP, which are independent of cholinergic pathway potentiation and which have an effect on cognitive processes. In addition, the possible participation of the enzyme acylpeptide hydrolase in these processes is also discussed. Finally, the possibility of using this enzyme activity as a new biomarker for exposure to OP is considered.

  12. Evaluation of carbonic anhydrase IX as a therapeutic target for inhibition of breast cancer invasion and metastasis using a series of in vitro breast cancer models.

    Science.gov (United States)

    Ward, Carol; Meehan, James; Mullen, Peter; Supuran, Claudiu; Dixon, J Michael; Thomas, Jeremy S; Winum, Jean-Yves; Lambin, Philippe; Dubois, Ludwig; Pavathaneni, Nanda-Kumar; Jarman, Edward J; Renshaw, Lorna; Um, In Hwa; Kay, Charlene; Harrison, David J; Kunkler, Ian H; Langdon, Simon P

    2015-09-22

    Triple negative, resistant or metastatic disease are major factors in breast cancer mortality, warranting novel approaches. Carbonic anhydrase IX (CAIX) is implicated in survival, migration and invasion of breast cancer cells and inhibition provides an innovative therapeutic strategy. The efficacy of 5 novel ureido-substituted sulfamate CAIX inhibitors were assessed in increasingly complex breast cancer models, including cell lines in normoxia and hypoxia, 3D spheroids and an ex-vivo explant model utilizing fresh biopsy tissue from different breast cancer subtypes. CAIX expression was evaluated in a tissue microarray (TMA) of 92 paired lymph node and primary breast cancers and 2 inhibitors were appraised in vivo using MDA-MB-231 xenografts. FC11409B, FC9398A, FC9403, FC9396A and S4 decreased cell proliferation and migration and inhibited 3D spheroid invasion. S4, FC9398A and FC9403A inhibited or prevented invasion into collagen. FC9403A significantly reversed established invasion whilst FC9398A and DTP348 reduced xenograft growth. TMA analysis showed increased CAIX expression in triple negative cancers. These data establish CAIX inhibition as a relevant therapeutic goal in breast cancer, targeting the migratory, invasive, and metastatic potential of this disease. The use of biopsy tissue suggests efficacy against breast cancer subtypes, and should provide a useful tool in drug testing against invasive cancers.

  13. siRNAs targeting PB2 and NP genes potentially inhibit replication of Highly Pathogenic H5N1 Avian Influenza Virus.

    Science.gov (United States)

    Behera, Padmanava; Nagarajan, Shanmugasundaram; Murugkar, Harshad V; Kalaiyarasu, Semmannan; Prakash, Anil; Gothalwal, Ragini; Dubey, Shiv Chandra; Kulkarni, Diwakar D; Tosh, Chakradhar

    2015-06-01

    Highly Pathogenic Avian Influenza (HPAI) H5N1 virus is a threat to animal and public health worldwide. Till date, the H5N1 virus has claimed 402 human lives, with a mortality rate of 58 percent and has caused the death or culling of millions of poultry since 2003. In this study, we have designed three siRNAs (PB2-2235, PB2-479 and NP-865) targeting PB2 and NP genes of avian influenza virus and evaluated their potential, measured by hemagglutination (HA), plaque reduction and Real time RT-PCR assay, in inhibiting H5N1 virus (A/chicken/Navapur/7972/2006) replication in MDCK cells. The siRNAs caused 8- to 16-fold reduction in virus HA titers at 24 h after challenged with 100TCID50 of virus. Among these siRNAs, PB2-2235 offered the highest inhibition of virus replication with 16-fold reduction in virus HA titer, 80 percent reduction in viral plaque counts and 94 percent inhibition in expression of specific RNA at 24 h. The other two siRNAs had 68-73 percent and 87-88 percent reduction in viral plaque counts and RNA copy number, respectively. The effect of siRNA on H5N1 virus replication continued till 48h (maximum observation period). These findings suggest that PB2-2235 could efficiently inhibit HPAI H5N1 virus replication.

  14. Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy.

    Science.gov (United States)

    Miller, Bryan W; Morton, Jennifer P; Pinese, Mark; Saturno, Grazia; Jamieson, Nigel B; McGhee, Ewan; Timpson, Paul; Leach, Joshua; McGarry, Lynn; Shanks, Emma; Bailey, Peter; Chang, David; Oien, Karin; Karim, Saadia; Au, Amy; Steele, Colin; Carter, Christopher Ross; McKay, Colin; Anderson, Kurt; Evans, Thomas R Jeffry; Marais, Richard; Springer, Caroline; Biankin, Andrew; Erler, Janine T; Sansom, Owen J

    2015-08-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related mortality. Despite significant advances made in the treatment of other cancers, current chemotherapies offer little survival benefit in this disease. Pancreaticoduodenectomy offers patients the possibility of a cure, but most will die of recurrent or metastatic disease. Hence, preventing metastatic disease in these patients would be of significant benefit. Using principal component analysis (PCA), we identified a LOX/hypoxia signature associated with poor patient survival in resectable patients. We found that LOX expression is upregulated in metastatic tumors from Pdx1-Cre Kras(G12D/+) Trp53(R172H/+) (KPC) mice and that inhibition of LOX in these mice suppressed metastasis. Mechanistically, LOX inhibition suppressed both migration and invasion of KPC cells. LOX inhibition also synergized with gemcitabine to kill tumors and significantly prolonged tumor-free survival in KPC mice with early-stage tumors. This was associated with stromal alterations, including increased vasculature and decreased fibrillar collagen, and increased infiltration of macrophages and neutrophils into tumors. Therefore, LOX inhibition is able to reverse many of the features that make PDAC inherently refractory to conventional therapies and targeting LOX could improve outcome in surgically resectable disease. © 2015 Cancer Research UK Beatson Institute. Published under the terms of the CC BY 4.0 license.

  15. Construction of a disulfide‐stabilized diabody against fibroblast growth factor‐2 and the inhibition activity in targeting breast cancer

    National Research Council Canada - National Science Library

    Cai, Yaxiong; Zhang, Jinxia; Lao, Xuejun; Jiang, Haowu; Yu, Yunfei; Deng, Yanrui; Zhong, Jiangchuan; Liang, Yiye; Xiong, Likuan; Deng, Ning

    2016-01-01

    .... In this study, a disulfide‐stabilized diabody (ds‐Diabody) that specifically targets FGF ‐2 was designed. Compared to its parent antibody, the introduction of disulphide bonds in the diabody could significantly increase the stability of ds...

  16. 5-Thio-D-glycopyranosylamines and their amidinium salts as potential transition-state mimics of glycosyl hydrolases: synthesis, enzyme inhibitory activities, X-ray crystallography, and molecular modeling

    DEFF Research Database (Denmark)

    Kavlekar, Lizie M.; Kuntz, Douglas A.; Wen, Xin

    2005-01-01

    of glucoamylase G2, derived by molecular modeling. Compounds 3 and 4 were found to be inhibitors with K-i values of 0.015 and 0.098 mM, respectively. The results led to conclusions about the nature of the transition state and strategy for the inhibition of glycosyl hydrolases in general. (C) 2005 Elsevier Ltd...

  17. Discoveries, target identifications, and biological applications of natural products that inhibit splicing factor 3B subunit 1.

    Science.gov (United States)

    Pham, Dianne; Koide, Kazunori

    2016-05-04

    Covering: 1992 to 2015The natural products FR901464, pladienolide, and herboxidiene were discovered as activators of reporter gene systems. Unexpectedly, these compounds target neither transcription nor translation; rather, they target splicing factor 3B subunit 1 of the spliceosome, causing changes in splicing patterns. All of them showed anticancer activity in a low nanomolar range. Since their discovery, these molecules have been used in a variety of biological applications.

  18. miR-2478 inhibits TGFβ1 expression by targeting the transcriptional activation region downstream of the TGFβ1 promoter in dairy goats.

    Science.gov (United States)

    Li, Zhuanjian; Lan, Xianyong; Han, Ruili; Wang, Jing; Huang, Yongzhen; Sun, Jiajie; Guo, Wenjiao; Chen, Hong

    2017-02-15

    In a previous study, miR-2478 was demonstrated to be up-regulated in dairy goat mammary glands during peak lactation compared with the dry period. However, the detailed mechanisms by which miR-2478 regulates physiological lactation and mammary gland development in dairy goats remain unclear. In this study, we used bioinformatics analysis and homologous cloning to predict the target genes of miR-2478 and selected INSR, FBXO11, TGFβ1 and ING4 as candidate target genes of miR-2478. Subsequently, by targeting the 5'UTR of the TGFβ1 gene, we verified that miR-2478 significantly inhibited TGFβ1 transcription and the Pearson's correlation coefficient between miR-2478 expression and TGFβ1 expression was -0.98. Furthermore, we identified the potential promoter and transcription factor binding regions of TGFβ1 and analyzed the potential mechanisms of interaction between miR-2478 and TGFβ1. Dual-luciferase reporter assays revealed that two regions, spanning from -904 to -690 bp and from -79 to +197 bp, were transcription factor binding regions of TGFβ1. Interesting, the miR-2478 binding sequence was determined to span from +123 to +142 bp in the TGFβ1 gene promoter. Thus, our results have demonstrated that miR-2478 binds to the core region of the TGFβ1 promoter and that it affects goat mammary gland development by inhibiting TGFβ1 transcription.

  19. [Inhibition of proliferation in MCF-7 breast cancer cells by plasmid-based siRNA targeting to oncogene c-myc].

    Science.gov (United States)

    Zhou, Chang-Hua; Peng, Xiao-Dong; Wu, Jing; Zhang, Ping; Zhao, Zong-Rong; Wei, Da-Peng; Zhang, Chong-Jie

    2008-05-01

    To investigate the effects of plasmid-based siRNA targeting to oncogene c-myc on c-myc/ c-Myc expressions and cells proliferation in MCF-7 breast cancer cells. siRNA eukaryotic expression plasmid p-Mat01-1 targeting to the sequence 589-609 of oncogene c-myc and its mismatch plasmid p-Mis09-1 were constructed, and transiently transfected MCF-7 cells using Lipo2000. Semi-quantitative RT-PCR and Western blot were used to analyze the expressions of c-myc/c-Myc in MCF-7 cells, and cells proliferation was detected by MTT assay. p-Mat01-1 inhibited the expressions of c-myc mRNA (24 h: P < 0.01) and c-Myc protein (5 d. P < 0.01) in MCF-7 cells as compared with pEGFP-C1 and p-Mis09-1 controls, and suppressed the proliferation of MCF-7 cells significantly (3 d: P < 0.05, 5, 7 d: P < 0. 01). Plasmid-based siRNA targeting to oncogene c-myc could inhibit the expressions of c-myc/c-Myc in MCF-7 breast cancer cells efficiently, suggesting that the downregulation of c-myc/c-Myc could suppress the proliferation of MCF-7 cells in vitro.

  20. Curcumin combined with FAPαc vaccine elicits effective antitumor response by targeting indolamine-2,3-dioxygenase and inhibiting EMT induced by TNF-α in melanoma.

    Science.gov (United States)

    Jiang, Guan-Min; Xie, Wan-Ying; Wang, Hong-Sheng; Du, Jun; Wu, Bai-Ping; Xu, Wei; Liu, Hui-Fang; Xiao, Ping; Liu, Zhi-Gang; Li, Hong-Yan; Liu, Shuang-Quan; Yin, Wen-Jun; Zhang, Qiu-Gui; Liang, Jian-Ping; Huang, Hong-Jun

    2015-09-22

    Fibroblast activation protein α (FAPα) is a potential target for cancer therapy. However, elimination of FAPα+ fibroblasts activates secretion of IFN-γ and TNF-α. IFN-γ can in turn induce expression indolamine-2,3-dioxygenase (IDO), thereby contributing to immunosuppression, while TNF-α can induce EMT. These two reactive effects would limit the efficacy of a tumor vaccine. We found that curcumin can inhibit IDO expression and TNF-α-induced EMT. Moreover, FAPαc vaccine and CpG combined with curcumin lavage inhibited tumor growth and prolonged the survival of mice implanted with melanoma cells. The combination of FAPαc vaccine, CpG and curcumin stimulated FAPα antibody production and CD8+ T cell-mediated killing of FAPα-expressing stromal cells without adverse reactive effects. We suggest a combination of curcumin and FAPαc vaccine for melanoma therapy.

  1. Cellular targets of the myeloperoxidase-derived oxidant hypothiocyanous acid (HOSCN) and its role in the inhibition of glycolysis in macrophages

    DEFF Research Database (Denmark)

    Love, D; Barrett, T.J.; White, M.Y.

    2016-01-01

    the cellular targets of HOSCN in macrophages (J774A.1). We report that multiple thiol-containing proteins involved in metabolism and glycolysis; fructose bisphosphate aldolase, triosephosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and creatine kinase, together with a number of chaperone......, antioxidant and structural proteins, were modified in a reversible manner in macrophages treated with HOSCN. The modification of the metabolic enzymes was associated with a decrease in basal glycolysis, glycolytic reserve, glycolytic capacity and lactate release, which was only partly reversible on further...... incubation in the absence of HOSCN. Inhibition of glycolysis preceded cell death and was seen in cells exposed to low concentrations (r25 mM) of HOSCN. The ability of HOSCN to inhibit glycolysis and perturb energy production is likely to contribute to the cell death seen in macrophages on further incubation...

  2. Silencing β3 Integrin by Targeted ECO/siRNA Nanoparticles Inhibits EMT and Metastasis of Triple-Negative Breast Cancer.

    Science.gov (United States)

    Parvani, Jenny G; Gujrati, Maneesh D; Mack, Margaret A; Schiemann, William P; Lu, Zheng-Rong

    2015-06-01

    Metastatic breast cancer is the second leading cause of cancer-related deaths among women. Triple-negative breast cancer (TNBC) is a highly aggressive subcategory of breast cancer and currently lacks well-defined molecular targets for effective targeted therapies. Disease relapse, metastasis, and drug resistance render standard chemotherapy ineffective in the treatment of TNBC. Because previous studies coupled β3 integrin (ITGB3) to epithelial-mesenchymal transition (EMT) and metastasis, we exploited β3 integrin as a therapeutic target to treat TNBC by delivering β3 integrin siRNA via lipid ECO-based nanoparticles (ECO/siβ3). Treatment of TNBC cells with ECO/siβ3 was sufficient to effectively silence β3 integrin expression, attenuate TGFβ-mediated EMT and invasion, restore TGFβ-mediated cytostasis, and inhibit three-dimensional organoid growth. Modification of ECO/siβ3 nanoparticles with an RGD peptide via a PEG spacer enhanced siRNA uptake by post-EMT cells. Intravenous injections of RGD-targeted ECO/siβ3 nanoparticles in vivo alleviated primary tumor burden and, more importantly, significantly inhibited metastasis. In the span of 16 weeks of the experiments and observations, including primary tumor resection at week 9 and release from the treatment for 4 weeks, the mice bearing orthotopic, TGFβ-prestimulated MDA-MB-231 tumors that were treated with RGD-targeted ECO/siβ3 nanoparticles were free of metastases and relapse, in comparison with untreated mice. Collectively, these results highlight ECO/siβ3 nanoparticles as a promising therapeutic regimen to combat TNBC. ©2015 American Association for Cancer Research.

  3. Targeted gene delivery in tumor xenografts by the combination of ultrasound-targeted microbubble destruction and polyethylenimine to inhibit survivin gene expression and induce apoptosis

    Directory of Open Access Journals (Sweden)

    Qiu Ri-Xiang

    2010-11-01

    Full Text Available Abstract Background Noninvasive and tissue-specific technologies of gene transfection would be valuable in clinical gene therapy. This present study was designed to determine whether it could enhance gene transfection in vivo by the combination of ultrasound-targeted microbubble destruction (UTMD with polyethylenimine (PEI in tumor xenografts, and illuminate the effects of gene silencing and apoptosis induction with short hairpin RNA (shRNA interference therapy targeting human survivin by this novel technique. Methods Two different expression vectors (pCMV-LUC and pSIREN were incubated with PEI to prepare cationic complexes (PEI/DNA and confirmed by the gel retardation assay. Human cervical carcinoma (Hela tumors were planted subcutaneously in both flanks of nude mice. Tumor-bearing mice were administered by tail vein with PBS, plasmid, plasmid and SonoVue microbubble, PEI/DNA and SonoVue microbubble. One tumor was exposed to ultrasound irradiation, while the other served as control. The feasibility of targeted delivery and tissue specificity facilitated by UTMD and PEI were investigated. Moreover, immunohistochemistry analyses about gene silencing and apoptosis induction were detected. Results Electrophoresis experiment revealed that PEI could condense DNA efficiently. The application of UTMD significantly increases the tissue transfection. Both expression vectors showed that gene expressions were present in all sections of tumors that received ultrasound exposure but not in control tumors. More importantly, the increases in transgene expression were related to UTMD with the presence of PEI significantly. Silencing of the survivin gene could induce apoptosis effectively by downregulating survivin and bcl-2 expression, also cause up-regulation of bax and caspase-3 expression. Conclusions This noninvasive, novel combination of UTMD with PEI could enhance targeted gene delivery and gene expression in tumor xenografts at intravenous administration

  4. MicroRNA-409-5p is upregulated in breast cancer and its downregulation inhibits cancer development through downstream target of RSU1.

    Science.gov (United States)

    Yu, Hong; Xing, Hua; Han, Wei; Wang, Yali; Qi, Tianyang; Song, Changlong; Xu, Zheli; Li, Hongjun; Huang, Yinghui

    2017-05-01

    We investigated the expression and function of miR-409-5p in human breast cancer. Quantitative real-time polymerase chain reaction was conducted to evaluate endogenous miR-409-5p expression in breast cancer tumors and breast cancer cell lines. Lentiviral transduction was performed to stably downregulate miR-409-5p in breast cancer cell lines MDA-MB-231 and MCF-7 and cells. The effects of miR-409-5p downregulation on breast cancer proliferation, migration, and xenograft development were then evaluated. Downstream target gene of miR-409-5p, Ras suppressor protein 1, was examined by dual-luciferase activity assay, quantitative real-time polymerase chain reaction, and western blot in lentiviral-transduced breast cancer cells. Ras suppressor protein 1 was also inhibited in miR-409-5p-downregulated breast cancer cells to examine its functional effect on breast cancer proliferation and migration. MiR-409-5p was aberrantly upregulated in both breast cancer tumors and cell lines. Lentiviral transduction successfully downregulated endogenous miR-409-5p expression as well as suppressed proliferation, migration, and xenograft development in MDA-MB-231 and MCF-7 cells. Ras suppressor protein 1 was confirmed to be directly targeted by miR-409-5p in breast cancer cells. Small interfering RNA-mediated Ras suppressor protein 1 inhibition reversely promoted cancer proliferation and migration in miR-409-5p-downregualted breast cancer cells. MiR-409-5p is downregulated in breast cancer and its inhibition has anti-cancer effect on breast cancer development both in vitro and in vivo. The regulatory effect of miR-409-5p inhibition is likely through the inverse upregulation of Ras suppressor protein 1 in breast cancer.

  5. Targeted radiosensitization with PARP1 inhibition: optimization of therapy and identification of biomarkers of response in breast cancer.

    Science.gov (United States)

    Feng, Felix Y; Speers, Corey; Liu, Meilan; Jackson, William C; Moon, Dominic; Rinkinen, Jacob; Wilder-Romans, Kari; Jagsi, Reshma; Pierce, Lori J

    2014-08-01

    Sustained locoregional control of breast cancer is a significant issue for certain patients. Inhibition of PARP1 is a promising strategy for radiosensitization (RS). We sought to optimize therapy with PARP1 inhibition and radiation (RT) by establishing the most effective treatment schedule, degree of PARP1-mediated RS, and identify early biomarkers predictive of efficacy in breast cancer models. Using clonogenic survival assays, we assessed intrinsic radiosensitivity and RS induced by PARP1 inhibition in breast cancer cell lines. Potential biomarkers of response were evaluated using western blotting, flow cytometry, and immunofluorescence with validation in vivo using tumor xenograft experiments. Across a panel of BC and normal breast epithelial cell lines, the PARP1 inhibitor ABT-888 preferentially radiosensitizes breast cancer (vs. normal) cells with enhancement ratios (EnhR) up to 2.3 independent of intrinsic BC subtype or BRCA mutational status. Concurrent and adjuvant therapy resulted in the highest EnhR of all schedules tested. The degree of RS did not correlate with pretreatment markers of PARP1 activity, DNA damage/repair, or cell cycle distribution. Increases in PARP1 activity 24 h after RT were associated with sensitivity after combination treatment. Findings were confirmed in breast cancer xenograft models. Our study demonstrates that PARP1 inhibition improves the therapeutic index of RT independent of BC subtype or BRCA1 mutational status and that PARP1 activity may serve as a clinically relevant biomarker of response. These studies have led to a clinical trial (TBCRC024) incorporating intratreatment biomarker analyses of PARP1 inhibitors and RT in breast cancer patients.

  6. Selective therapeutic targeting of the anaplastic lymphoma kinase with liposomal siRNA induces apoptosis and inhibits angiogenesis in neuroblastoma.

    OpenAIRE

    Di Paolo, Daniela; Ambrogio, Chiara; Pastorino, Fabio; Brignole, Chiara; Martinengo, Cinzia; Carosio, Roberta; Loi, Monica; Pagnan, Gabriella; Emionite, Laura; Cilli, Michele; Ribatti, Domenico; Allen, Theresa M.; Chiarle, Roberto; Ponzoni, Mirco; Perri, Patrizia

    2011-01-01

    The anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor that is involved in the pathogenesis of different types of human cancers, including neuroblastoma (NB). In NB, ALK overexpression, or point mutations, are associated with poor prognosis and advanced stage disease. Inhibition of ALK kinase activity by small-molecule inhibitors in lung cancers carrying ALK translocations has shown therapeutic potential. However, secondary mutations may occur that, generate tumor resistance to AL...

  7. Inhibition of HIV-1 Maturation via Small-Molecule Targeting