WorldWideScience

Sample records for hydrogeological structure model

  1. Hydrogeological structure model of the Olkiluoto Site. Update in 2010

    International Nuclear Information System (INIS)

    Vaittinen, T.; Ahokas, H.; Nummela, J.; Paulamaeki, S.

    2011-09-01

    As part of the programme for the final disposal of spent nuclear fuel, a hydrogeological structure model containing the hydraulically significant zones on Olkiluoto Island has been compiled. The structure model describes the deterministic site scale zones that dominate the groundwater flow. The main objective of the study is to provide the geometry and the hydrogeological properties related to the groundwater flow for the zones and the sparsely fractured bedrock to be used in the numerical modelling of groundwater flow and geochemical transport and thereby in the safety assessment. Also, these zones should be taken into account in the repository layout and in the construction of the disposal facility and they have a long-term impact on the evolution of the site and the safety of the disposal repository. The previous hydrogeological model was compiled in 2008 and this updated version is based on data available at the end of May 2010. The updating was based on new hydrogeological observations and a systematic approach covering all drillholes to assess measured fracture transmissivities typical of the site-scale hydrogeological zones. New data consisted of head observations and interpreted pressure and flow responses caused by field activities. Essential background data for the modelling included the ductile deformation model and the site scale brittle deformation zones modelled in the geological model version 2.0. The GSM combine both geological and geophysical investigation data on the site. As a result of the modelling campaign, hydrogeological zones HZ001, HZ008, HZ19A, HZ19B, HZ19C, HZ20A, HZ20B, HZ21, HZ21B, HZ039, HZ099, OL-BFZ100, and HZ146 were included in the structure model. Compared with the previous model, zone HZ004 was replaced with zone HZ146 and zone HZ039 was introduced for the first time. Alternative zone HZ21B was included in the basic model. For the modelled zones, both the zone intersections, describing the fractures with dominating groundwater

  2. Structural geology and geophysics as a support to build a hydrogeologic model of granite rock

    Science.gov (United States)

    Martinez-Landa, Lurdes; Carrera, Jesús; Pérez-Estaún, Andrés; Gómez, Paloma; Bajos, Carmen

    2016-06-01

    A method developed for low-permeability fractured media was applied to understand the hydrogeology of a mine excavated in a granitic pluton. This method includes (1) identifying the main groundwater-conducting features of the medium, such as the mine, dykes, and large fractures, (2) implementing this factors as discrete elements into a three-dimensional numerical model, and (3) calibrating these factors against hydraulic data . A key question is how to identify preferential flow paths in the first step. Here, we propose a combination of several techniques. Structural geology, together with borehole sampling, geophysics, hydrogeochemistry, and local hydraulic tests aided in locating all structures. Integration of these data yielded a conceptual model of the site. A preliminary calibration of the model was performed against short-term (Model validity was tested by blind prediction of a long-term (4 months) large-scale (1 km) pumping test from the mine, which yielded excellent agreement with the observations. Model results confirmed the sparsely fractured nature of the pluton, which has not been subjected to glacial loading-unloading cycles and whose waters are of Na-HCO3 type.

  3. HydroCube: an entity-relationship hydrogeological data model

    Science.gov (United States)

    Wojda, Piotr; Brouyère, Serge; Derouane, Johan; Dassargues, Alain

    2010-12-01

    Managing, handling and accessing hydrogeological information depends heavily on the applied hydrogeological data models, which differ between institutions and countries. The effective dissemination of hydrogeological information requires the convergence of such models to make hydrogeological information accessible to multiple users such as universities, water suppliers, and administration and research organisations. Furthermore, because hydrogeological studies are complex, they require a wide variety of high-quality hydrogeological data with appropriate metadata in clearly designed and coherent structures. A need exists, therefore, to develop and implement hydrogeological data models that cover, as much as possible, the full hydrogeological domain. A new data model, called HydroCube, was developed for the Walloon Region in Belgium in 2005. The HydroCube model presents an innovative holistic project-based approach which covers a full set of hydrogeological concepts and features, allowing for effective hydrogeological project management. The model stores data relating to the project locality, hydrogeological equipment, and related observations and measurements. In particular, it focuses on specialized hydrogeological field experiments such as pumping and tracer tests. This logical data model uses entity-relationship diagrams and it has been implemented in the Microsoft Access environment. It has been enriched with a fully functional user interface.

  4. Structural and geochemical techniques for the hydrogeological characterisation and stochastic modelling of fractured media

    International Nuclear Information System (INIS)

    Vela, A.; Elorza, F.J.; Florez, F.; Paredes, C.; Mazadiego, L.; Llamas, J.F.; Perez, E.; Vives, L.; Carrera, J.; Munoz, A.; De Vicente, G.; Casquet, C.

    1999-01-01

    Safety analysis of radioactive waste storage systems require fractured rock studies. The performance assessment studies of this type of problems include the development of radionuclide flow and transport models to predict the evolution of possible contaminants released from the repository to the biosphere. The methodology developed in the HIDROBAP project and some results obtained with its application in El Berrocal granite batholith are presented. It integrates modern tools belonging to different disciplines. A Discrete Fracture Network model (DFT) was selected to simulate the fractured medium and a 3D finite element flow and transport model that includes the inverse problem techniques has been coupled to the DFT model to simulate the water movement trough the fracture network system. Preliminary results show that this integrated methodology can be very useful for the hydrogeological characterisation of rock fractured media. (author)

  5. Regional hydrogeological conceptual model of candidate Beishan area for high level radioactive waste disposal repository

    International Nuclear Information System (INIS)

    Wang Hailong; Guo Yonghai

    2014-01-01

    The numerical modeling of groundwater flow is an important aspect of hydrogeological assessment in siting of a high level radioactive waste disposal repository. Hydrogeological conceptual model is the basic and premise of numerical modeling of groundwater flow. Based on the hydrogeological analysis of candidate Beishan area, surface water system was created by using DEM data and the modeling area is determined. Three-dimensional hydrogeological structure model was created through GMS software. On the basis of analysis and description of boundary condition, flow field, groundwater budget and hydrogeological parameters, hydrogeological conceptual model was set up for the Beishan area. (authors)

  6. Bedrock Hydrogeology - Groundwater flow modelling. Site investigation SFR

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan [Geosigma AB, Uppsala (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Oden, Magnus [SKB, Stockholm (Sweden)

    2013-05-15

    The hydrogeological model developed for the SFR extension project (PSU) consists of 40 geologically modelled deformation zones (DZ) and 8 sub-horizontal structural-hydraulic features, called SBAstructures, not defined in the geological model. However, some of the SBA-structures coincide with what is defined as unresolved possible deformation zones (Unresolved PDZ) in the geological modelling. In addition, the hydrogeological model consists of a stochastic discrete fracture network (DFN) model intended for the less fractured rock mass volumes (fracture domains) between the zones and the SBA-structures, and a stochastic fracture model intended to handle remaining Unresolved PDZs in the geological modelling not modelled as SBA-structures in the hydrogeological modelling. The four structural components of the bedrock in the hydrogeological model, i.e. DZ, SBA, Unresolved PDZ and DFN, are assigned hydraulic properties in the hydrogeological model based on the transmissivities interpreted from single-hole hydraulic tests. The main objective of the present work is to present the characteristics of the hydrogeological model with regard to the needs of the forthcoming safety assessment SR-PSU. In concrete words, simulated data are compared with measured data, i.e. hydraulic heads in boreholes and tunnel inflow to the existing repository (SFR). The calculations suggest that the available data for flow model calibration cannot be used to motivate a substantial adjustment of the initial hydraulic parameterisation (assignment of hydraulic properties) of the hydrogeological model. It is suggested that uncertainties in the hydrogeological model are studied in the safety assessment SR-PSU by means of a large number of calculation cases. These should address hydraulic heterogeneity of deterministic structures (DZ and SBA) and realisations of stochastic fractures/fracture networks (Unresolved PDZ and DFN) within the entire SFR Regional model domain.

  7. Bedrock Hydrogeology-Groundwater flow modelling. Site investigation SFR

    International Nuclear Information System (INIS)

    Oehman, Johan; Follin, Sven; Oden, Magnus

    2013-05-01

    The hydrogeological model developed for the SFR extension project (PSU) consists of 40 geologically modelled deformation zones (DZ) and 8 sub-horizontal structural-hydraulic features, called SBAstructures, not defined in the geological model. However, some of the SBA-structures coincide with what is defined as unresolved possible deformation zones (Unresolved PDZ) in the geological modelling. In addition, the hydrogeological model consists of a stochastic discrete fracture network (DFN) model intended for the less fractured rock mass volumes (fracture domains) between the zones and the SBA-structures, and a stochastic fracture model intended to handle remaining Unresolved PDZs in the geological modelling not modelled as SBA-structures in the hydrogeological modelling. The four structural components of the bedrock in the hydrogeological model, i.e. DZ, SBA, Unresolved PDZ and DFN, are assigned hydraulic properties in the hydrogeological model based on the transmissivities interpreted from single-hole hydraulic tests. The main objective of the present work is to present the characteristics of the hydrogeological model with regard to the needs of the forthcoming safety assessment SR-PSU. In concrete words, simulated data are compared with measured data, i.e. hydraulic heads in boreholes and tunnel inflow to the existing repository (SFR). The calculations suggest that the available data for flow model calibration cannot be used to motivate a substantial adjustment of the initial hydraulic parameterisation (assignment of hydraulic properties) of the hydrogeological model. It is suggested that uncertainties in the hydrogeological model are studied in the safety assessment SR-PSU by means of a large number of calculation cases. These should address hydraulic heterogeneity of deterministic structures (DZ and SBA) and realisations of stochastic fractures/fracture networks (Unresolved PDZ and DFN) within the entire SFR Regional model domain

  8. Hydrogeological DFN modelling using structural and hydraulic data from KLX04. Preliminary site description Laxemar subarea - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Stigsson, Martin [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Svensson, Urban [Computer-aided Fluid Engineering AB, Norrkoeping (Sweden)

    2006-04-15

    SKB is conducting site investigations for a high-level nuclear waste repository in fractured crystalline rocks at two coastal areas in Sweden. The two candidate areas are named Forsmark and Simpevarp. The site characterisation work is divided into two phases, an initial site investigation phase (ISI) and a complete site investigation phase (CSI). The results of the ISI phase are used as a basis for deciding on the subsequent CSI phase. On the basis of the CSI investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft). An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model which provides the geometrical context in terms of a model of deformation zones and the less fractured rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other disciplines (surface ecosystems, hydrogeology, hydrogeochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models. The main objective of this study is to support the development of a hydrogeological DFN model (Discrete Fracture Network) for the Preliminary Site Description of the Laxemar area on a regional-scale (SDM version L1.2). A more specific objective of this study is to assess the propagation of uncertainties in the geological DFN modelling reported for L1.2 into the groundwater flow modelling. An improved understanding is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. The latter will serve as a basis for describing the present

  9. Hydrogeological DFN modelling using structural and hydraulic data from KLX04. Preliminary site description Laxemar subarea - version 1.2

    International Nuclear Information System (INIS)

    Follin, Sven; Stigsson, Martin; Svensson, Urban

    2006-04-01

    SKB is conducting site investigations for a high-level nuclear waste repository in fractured crystalline rocks at two coastal areas in Sweden. The two candidate areas are named Forsmark and Simpevarp. The site characterisation work is divided into two phases, an initial site investigation phase (ISI) and a complete site investigation phase (CSI). The results of the ISI phase are used as a basis for deciding on the subsequent CSI phase. On the basis of the CSI investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft). An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model which provides the geometrical context in terms of a model of deformation zones and the less fractured rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other disciplines (surface ecosystems, hydrogeology, hydrogeochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models. The main objective of this study is to support the development of a hydrogeological DFN model (Discrete Fracture Network) for the Preliminary Site Description of the Laxemar area on a regional-scale (SDM version L1.2). A more specific objective of this study is to assess the propagation of uncertainties in the geological DFN modelling reported for L1.2 into the groundwater flow modelling. An improved understanding is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. The latter will serve as a basis for describing the present

  10. Use of stratigraphic, petrographic, hydrogeologic and geochemical information for hydrogeologic modelling based on geostatistical simulation

    International Nuclear Information System (INIS)

    Rohlig, K.J.; Fischer, H.; Poltl, B.

    2004-01-01

    This paper describes the stepwise utilization of geologic information from various sources for the construction of hydrogeological models of a sedimentary site by means of geostatistical simulation. It presents a practical application of aquifer characterisation by firstly simulating hydrogeological units and then the hydrogeological parameters. Due to the availability of a large amount of hydrogeological, geophysical and other data and information, the Gorleben site (Northern Germany) has been used for a case study in order to demonstrate the approach. The study, which has not yet been completed, tries to incorporate as much as possible of the available information and to characterise the remaining uncertainties. (author)

  11. Hydrogeological characterization of deep subsurface structures at the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Takeuchi, Shinji; Saegusa, Hiromitsu; Amano, Kenji; Takeuchi, Ryuji

    2013-01-01

    Several hydrogeological investigation techniques have been used at the Mizunami Underground Research Laboratory site to assess hydrogeological structures and their control on groundwater flow. For example, the properties of water-conducting features (WCFs) can be determined using high-resolution electrical conductivity measurements of fluids, and compared to measurements using conventional logging techniques. Connectivity of WCFs can be estimated from transmissivity changes over time, calculated from the pressure derivative of hydraulic pressure data obtained from hydraulic testing results. Hydraulic diffusivity, obtained from hydraulic interference testing by considering the flow dimension, could be a key indicator of the connectivity of WCFs between boreholes. A conceptual hydrogeological model of several hundred square meters to several square kilometers, bounded by flow barrier structures, has been developed from pressure response plots, based on interference hydraulic testing. The applicability of several methods for developing conceptual hydrogeological models has been confirmed on the basis of the hydrogeological investigation techniques mentioned above. (author)

  12. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won [Korea Atomic Energy Institue, Daejeon (Korea, Republic of)

    2012-09-15

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  13. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won

    2012-01-01

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  14. A discussion on validation of hydrogeological models

    International Nuclear Information System (INIS)

    Carrera, J.; Mousavi, S.F.; Usunoff, E.J.; Sanchez-Vila, X.; Galarza, G.

    1993-01-01

    Groundwater flow and solute transport are often driven by heterogeneities that elude easy identification. It is also difficult to select and describe the physico-chemical processes controlling solute behaviour. As a result, definition of a conceptual model involves numerous assumptions both on the selection of processes and on the representation of their spatial variability. Validating a numerical model by comparing its predictions with actual measurements may not be sufficient for evaluating whether or not it provides a good representation of 'reality'. Predictions will be close to measurements, regardless of model validity, if these are taken from experiments that stress well-calibrated model modes. On the other hand, predictions will be far from measurements when model parameters are very uncertain, even if the model is indeed a very good representation of the real system. Hence, we contend that 'classical' validation of hydrogeological models is not possible. Rather, models should be viewed as theories about the real system. We propose to follow a rigorous modeling approach in which different sources of uncertainty are explicitly recognized. The application of one such approach is illustrated by modeling a laboratory uranium tracer test performed on fresh granite, which was used as Test Case 1b in INTRAVAL. (author)

  15. Bedrock hydrogeology Forsmark. Site descriptive modelling, SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB, Taeby (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations at two different locations, the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a final repository for spent nuclear fuel according to the KBS-3 concept. Site characterisation should provide all data required for an integrated evaluation of the suitability of the investigated site and an important component in the characterisation work is the development of a hydrogeological model. The hydrogeological model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It also provides input to the safety assessment. Another important use of the hydrogeological model is in the environmental impact assessment. This report presents the understanding of the hydrogeological conditions of the bedrock at Forsmark reached following the completion of the surface-based investigations and provides a summary of the bedrock hydrogeological model and the underlying data supporting its development. It constitutes the main reference on bedrock hydrogeology for the site descriptive model concluding the surface-based investigations at Forsmark, SDM-site, and is intended to describe the hydraulic properties and hydrogeological conditions of the bedrock at the site and to give the information essential for demonstrating understanding

  16. Hydrogeological modelling for migration of radioactivity

    International Nuclear Information System (INIS)

    Sunny, Faby; Chopra, Manish; Oza, R.B.

    2016-01-01

    The hydrogeological modelling for migration of radionuclides basically involves modelling of groundwater flow and contaminant transport through the groundwater. The water that occurs below the land surface or within the lithosphere is called groundwater. The groundwater constitutes about 4 % of the total water on the earth and about 30 % of freshwater on the earth. Groundwater models describe groundwater flow and contaminant transport processes using mathematical equations that are based on certain simplifying assumptions. These assumptions typically involve the direction of flow, geometry of the aquifer, the heterogeneity or anisotropy of sediments or bedrock within the aquifer, the contaminant transport mechanisms and chemical reactions. Because of the simplifying assumptions and the many uncertainties in the values of data, a model must be viewed as an approximation and not an exact duplication of field conditions. However, these models are useful investigation tool for a number of applications such as prediction of the possible fate and migration of contaminants for risk evaluation; tracking the possible pathway of groundwater contamination; evaluation of design of hydraulic containment and pump-and-treat systems; design of groundwater monitoring networks; evaluation of regional groundwater resources and prediction of the effect of future groundwater withdrawals on groundwater levels

  17. Fault zone hydrogeology

    Science.gov (United States)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and address remaining challenges by co-locating study areas, sharing approaches and fusing data, developing conceptual models from hydrogeologic data, numerical modeling, and training interdisciplinary scientists.

  18. Manual on mathematical models in isotope hydrogeology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    Methodologies based on the use of naturally occurring isotopes are, at present, an integral part of studies being undertaken for water resources assessment and management. Quantitative evaluations based on the temporal and/or spatial distribution of different isotopic species in hydrological systems require conceptual mathematical formulations. Different types of model can be employed depending on the nature of the hydrological system under investigation, the amount and type of data available, and the required accuracy of the parameter to be estimated. This manual provides an overview of the basic concepts of existing modelling approaches, procedures for their application to different hydrological systems, their limitations and data requirements. Guidance in their practical applications, illustrative case studies and information on existing PC software are also included. While the subject matter of isotope transport modelling and improved quantitative evaluations through natural isotopes in water sciences is still at the development stage, this manual summarizes the methodologies available at present, to assist the practitioner in the proper use within the framework of ongoing isotope hydrological field studies. In view of the widespread use of isotope methods in groundwater hydrology, the methodologies covered in the manual are directed towards hydrogeological applications, although most of the conceptual formulations presented would generally be valid. Refs, figs, tabs.

  19. Manual on mathematical models in isotope hydrogeology

    International Nuclear Information System (INIS)

    1996-10-01

    Methodologies based on the use of naturally occurring isotopes are, at present, an integral part of studies being undertaken for water resources assessment and management. Quantitative evaluations based on the temporal and/or spatial distribution of different isotopic species in hydrological systems require conceptual mathematical formulations. Different types of model can be employed depending on the nature of the hydrological system under investigation, the amount and type of data available, and the required accuracy of the parameter to be estimated. This manual provides an overview of the basic concepts of existing modelling approaches, procedures for their application to different hydrological systems, their limitations and data requirements. Guidance in their practical applications, illustrative case studies and information on existing PC software are also included. While the subject matter of isotope transport modelling and improved quantitative evaluations through natural isotopes in water sciences is still at the development stage, this manual summarizes the methodologies available at present, to assist the practitioner in the proper use within the framework of ongoing isotope hydrological field studies. In view of the widespread use of isotope methods in groundwater hydrology, the methodologies covered in the manual are directed towards hydrogeological applications, although most of the conceptual formulations presented would generally be valid. Refs, figs, tabs

  20. Evaluation of Uncertainties in hydrogeological modeling and groundwater flow analyses. Model calibration

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Ono, Makoto; Sugihara, Yutaka; Shimo, Michito; Yamamoto, Hajime; Fumimura, Kenichi

    2003-03-01

    This study involves evaluation of uncertainty in hydrogeological modeling and groundwater flow analysis. Three-dimensional groundwater flow in Shobasama site in Tono was analyzed using two continuum models and one discontinuous model. The domain of this study covered area of four kilometers in east-west direction and six kilometers in north-south direction. Moreover, for the purpose of evaluating how uncertainties included in modeling of hydrogeological structure and results of groundwater simulation decreased with progress of investigation research, updating and calibration of the models about several modeling techniques of hydrogeological structure and groundwater flow analysis techniques were carried out, based on the information and knowledge which were newly acquired. The acquired knowledge is as follows. As a result of setting parameters and structures in renewal of the models following to the circumstances by last year, there is no big difference to handling between modeling methods. The model calibration is performed by the method of matching numerical simulation with observation, about the pressure response caused by opening and closing of a packer in MIU-2 borehole. Each analysis technique attains reducing of residual sum of squares of observations and results of numerical simulation by adjusting hydrogeological parameters. However, each model adjusts different parameters as water conductivity, effective porosity, specific storage, and anisotropy. When calibrating models, sometimes it is impossible to explain the phenomena only by adjusting parameters. In such case, another investigation may be required to clarify details of hydrogeological structure more. As a result of comparing research from beginning to this year, the following conclusions are obtained about investigation. (1) The transient hydraulic data are effective means in reducing the uncertainty of hydrogeological structure. (2) Effective porosity for calculating pore water velocity of

  1. Synthetic Study on the Geological and Hydrogeological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Su; Koh, Yong Kwon; Choi, Jong Won

    2011-01-01

    To characterize the site specific properties of a study area for high-level radioactive waste disposal research in KAERI, the several geological investigations such as surface geological surveys and borehole drillings were carried out since 1997. Especially, KURT (KAERI Underground Research Tunnel) was constructed to understand the further study of geological environments in 2006. As a result, the first geological model of a study area was constructed by using the results of geological investigation. The objective of this research is to construct a hydrogeological model around KURT area on the basis of the geological model. Hydrogeological data which were obtained from in-situ hydraulic tests in the 9 boreholes were estimated to accomplish the objective. And, the hydrogeological properties of the 4 geological elements in the geological model, which were the subsurface weathering zone, the log angle fracture zone, the fracture zones and the bedrock were suggested. The hydrogeological model suggested in this study will be used as input parameters to carry out the groundwater flow modeling as a next step of the site characterization around KURT area

  2. hydrogeological caracterization and modeling of the aquifer of oued ...

    African Journals Online (AJOL)

    K. Baba-Hamed

    1 janv. 2018 ... Journal of Fundamental and Applied Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0. International License. Libraries Resource Directory. We are listed under Research Associations category. HYDROGEOLOGICAL CARACTERIZATION AND MODELING OF THE AQUIFER.

  3. A computer hydrogeologic model of the Nevada Test Site and surrounding region

    International Nuclear Information System (INIS)

    Gillson, R.; Hand, J.; Adams, P.; Lawrence, S.

    1996-01-01

    A three-dimensional, hydrogeologic model of the Nevada Test Site and surrounding region was developed as an element for regional groundwater flow and radionuclide transport models. The hydrogeologic model shows the distribution, thickness, and structural relationships of major aquifers and confining units, as conceived by a team of experts organized by the U.S. Department of Energy Nevada Operations Office. The model was created using Intergraph Corporation's Geographical Information System based Environmental Resource Management Application software. The study area encompasses more than 28,000 square kilometers in southern Nevada and Inyo County, California. Fifty-three geologic cross sections were constructed throughout the study area to provide a framework for the model. The lithology was simplified to 16 hydrostratigraphic units, and the geologic structures with minimal effect on groundwater flow were removed. Digitized cross sections, surface geology, and surface elevation data were the primary sources for the hydrogeologic model and database. Elevation data for the hydrostratigraphic units were posted, contoured, and gridded. Intergraph Corporation's three-dimensional visualization software, VOXEL trademark, was used to view the results interactively. The hydrogeologic database will be used in future flow modeling activities

  4. Development of hydrogeological modelling tools based on NAMMU

    Energy Technology Data Exchange (ETDEWEB)

    Marsic, N. [Kemakta Konsult AB, Stockholm (Sweden); Hartley, L.; Jackson, P.; Poole, M. [AEA Technology, Harwell (United Kingdom); Morvik, A. [Bergen Software Services International AS, Bergen (Norway)

    2001-09-01

    A number of relatively sophisticated hydrogeological models were developed within the SR 97 project to handle issues such as nesting of scales and the effects of salinity. However, these issues and others are considered of significant importance and generality to warrant further development of the hydrogeological methodology. Several such developments based on the NAMMU package are reported here: - Embedded grid: nesting of the regional- and site-scale models within the same numerical model has given greater consistency in the structural model representation and in the flow between scales. Since there is a continuous representation of the regional- and site-scales the modelling of pathways from the repository no longer has to be contained wholly by the site-scale region. This allows greater choice in the size of the site-scale. - Implicit Fracture Zones (IFZ): this method of incorporating the structural model is very efficient and allows changes to either the mesh or fracture zones to be implemented quickly. It also supports great flexibility in the properties of the structures and rock mass. - Stochastic fractures: new functionality has been added to IFZ to allow arbitrary combinations of stochastic or deterministic fracture zones with the rock-mass. Whether a fracture zone is modelled deterministically or stochastically its statistical properties can be defined independently. - Stochastic modelling: efficient methods for Monte-Carlo simulation of stochastic permeability fields have been implemented and tested on SKB's computers. - Visualisation: the visualisation tool Avizier for NAMMU has been enhanced such that it is efficient for checking models and presentation. - PROPER interface: NAMMU outputs pathlines in PROPER format so that it can be included in PA workflow. The developed methods are illustrated by application to stochastic nested modelling of the Beberg site using data from SR 97. The model properties were in accordance with the regional- and site

  5. Development of hydrogeological modelling tools based on NAMMU

    International Nuclear Information System (INIS)

    Marsic, N.; Hartley, L.; Jackson, P.; Poole, M.; Morvik, A.

    2001-09-01

    A number of relatively sophisticated hydrogeological models were developed within the SR 97 project to handle issues such as nesting of scales and the effects of salinity. However, these issues and others are considered of significant importance and generality to warrant further development of the hydrogeological methodology. Several such developments based on the NAMMU package are reported here: - Embedded grid: nesting of the regional- and site-scale models within the same numerical model has given greater consistency in the structural model representation and in the flow between scales. Since there is a continuous representation of the regional- and site-scales the modelling of pathways from the repository no longer has to be contained wholly by the site-scale region. This allows greater choice in the size of the site-scale. - Implicit Fracture Zones (IFZ): this method of incorporating the structural model is very efficient and allows changes to either the mesh or fracture zones to be implemented quickly. It also supports great flexibility in the properties of the structures and rock mass. - Stochastic fractures: new functionality has been added to IFZ to allow arbitrary combinations of stochastic or deterministic fracture zones with the rock-mass. Whether a fracture zone is modelled deterministically or stochastically its statistical properties can be defined independently. - Stochastic modelling: efficient methods for Monte-Carlo simulation of stochastic permeability fields have been implemented and tested on SKB's computers. - Visualisation: the visualisation tool Avizier for NAMMU has been enhanced such that it is efficient for checking models and presentation. - PROPER interface: NAMMU outputs pathlines in PROPER format so that it can be included in PA workflow. The developed methods are illustrated by application to stochastic nested modelling of the Beberg site using data from SR 97. The model properties were in accordance with the regional- and site

  6. GIS-based hydrogeological databases and groundwater modelling

    Science.gov (United States)

    Gogu, Radu Constantin; Carabin, Guy; Hallet, Vincent; Peters, Valerie; Dassargues, Alain

    2001-12-01

    Reliability and validity of groundwater analysis strongly depend on the availability of large volumes of high-quality data. Putting all data into a coherent and logical structure supported by a computing environment helps ensure validity and availability and provides a powerful tool for hydrogeological studies. A hydrogeological geographic information system (GIS) database that offers facilities for groundwater-vulnerability analysis and hydrogeological modelling has been designed in Belgium for the Walloon region. Data from five river basins, chosen for their contrasting hydrogeological characteristics, have been included in the database, and a set of applications that have been developed now allow further advances. Interest is growing in the potential for integrating GIS technology and groundwater simulation models. A "loose-coupling" tool was created between the spatial-database scheme and the groundwater numerical model interface GMS (Groundwater Modelling System). Following time and spatial queries, the hydrogeological data stored in the database can be easily used within different groundwater numerical models. Résumé. La validité et la reproductibilité de l'analyse d'un aquifère dépend étroitement de la disponibilité de grandes quantités de données de très bonne qualité. Le fait de mettre toutes les données dans une structure cohérente et logique soutenue par les logiciels nécessaires aide à assurer la validité et la disponibilité et fournit un outil puissant pour les études hydrogéologiques. Une base de données pour un système d'information géographique (SIG) hydrogéologique qui offre toutes les facilités pour l'analyse de la vulnérabilité des eaux souterraines et la modélisation hydrogéologique a été établi en Belgique pour la région Wallonne. Les données de cinq bassins de rivières, choisis pour leurs caractéristiques hydrogéologiques différentes, ont été introduites dans la base de données, et un ensemble d

  7. Hydrogeologic model for the old Hanford townsite

    International Nuclear Information System (INIS)

    MacDonald, Q.; Csun, C.

    1994-01-01

    The Hanford Site in southeastern Washington state produced the country's first plutonium during WW II, and production continued through the end of the cold war. This plutonium production generated significant volumes of chemical and radioactive wastes, some of which were discharged directly to the local sediments as wastewater. Artifical recharge is still the dominating influence on the uppermost and unconfined aquifer over much of the Hanford site. Groundwater from a portion of this aquifer, which is in excess of drinking water standards for tritium, discharges to the Columbia River in the vicinity of the old Hanford townsite. The Hanford site lies within the Pasco basin, which is a structural basin in the Columbia Plateau. Columbia River basalt is overlain by the fluvial and lacustrian Ringold formation. The Ringold is unconformably overlain by the informal Hanford formation. Relatively impermeable basalt outcrops and subcrops along a northwest-southeast-trending anticline across the study area. Hanford sediments include both fluvial and glacial flood deposits lying on an irregular surface of basalt and sedimentary rocks. The coarser flood deposits have very high hydraulic conductivity and probably are the most important conduit for contaminant transport within the aquifer. A finite element model (CFEST-SC) is being used to study the effect of changing river stage on baseflow to the Columbia River near the old Hanford townsite. A steady-state version of the model produces calculated head within 1 m of observed values. Transient flow and solute transport results are expected to help further define the relationship between the contaminated aquifer and the Columbia River

  8. Modelling of future hydrogeological conditions at SFR

    International Nuclear Information System (INIS)

    Holmen, L.G.; Stigsson, M.

    2001-03-01

    The purpose is to estimate the future groundwater movements at the SFR repository and to produce input to the quantitative safety assessment of the SFR. The future flow pattern of the groundwater is of interest, since components of the waste emplaced in a closed and abandoned repository will dissolve in the groundwater and be transported by the groundwater to the ground surface. The study is based on a system analysis approach. Three-dimensional models were devised of the studied domain. The models include the repository tunnels and the surrounding rock mass with fracture zones. The formal models used for simulation of the groundwater flow are three-dimensional mathematical descriptions of the studied hydraulic system. The studied domain is represented on four scales - regional, local, semi local and detailed - forming four models with different resolutions: regional, local, semi local and detailed models. The local and detailed models include a detailed description of the tunnel system at SFR and of surrounding rock mass and fracture zones. In addition, the detailed model includes description of the different structures that take place inside the deposition tunnels. At the area studied, the shoreline will retreat due to the shore level displacement; this process is included in the models. The studied period starts at 2000 AD and continues until a steady state like situation is reached for the surroundings of the SFR at ca 6000 AD. The models predict that as long as the sea covers the ground above the SFR, the regional groundwater flow as well as the flow in the deposition tunnels are small. However, due to the shore level displacement the shoreline (the sea) will retreat. Because of the retreating shoreline, the general direction of the groundwater flow at SFR will change, from vertical upward to a more horizontal flow; the size of the groundwater flow will be increased as well. The present layout of the SFR includes five deposition tunnels: SILO, BMA, BLA, BTF1

  9. Numerical model for mapping of complex hydrogeological conditions: the Chmielnik area (South Poland) case study

    Science.gov (United States)

    Buszta, Kamila; Szklarczyk, Tadeusz; Malina, Grzegorz

    2017-04-01

    Detailed analysis of hydrogeological conditions at a study area is the basis for characterising adjacent groundwater circulation systems. It is also an essential element during executing hydrogeological documentations. The goal of this work was to reconstruct on a numerical model natural groundwater circulation systems of the studied area located within the municipality of Chmielnik in the region of Kielce (South Poland). The area is characterized by a complex geological structure, which along with the existing hydrographic network, makes the scheme of groundwater circulation complicated and difficult to map on a numerical model. The studied area is situated at the border of three geological units: on the North - the extended portion of the Palaeozoic Swietokrzyskie Mountains (mainly Devonian and Permian), in the center - the S-W part of the Mesozoic Margin of the Swietokrzyskie Mountains, and on the South - a marginal zone of the Carpathian Foredeep. The whole area belongs to the Vistula river basin, and it includes catchments of its left tributaries: the Nida and Czarna Staszowska rivers. Based on the collected field and archival hydrogeological, hydrological and sozological data a conceptual model was built, under which a numerical model of groundwater flow was developed using the specialized software - Visual MODFLOW. The numerical model maps the five-layer groundwater circulation system in conjunction with surface watercourses. Such division reflects appropriately the variability of hydrogeological parameters within the geological structures. Two principal and exploited aquifers comprise: a fractured-porous Neogene and fractured Upper Jurassic formations. The external model borders are based primarily on surface watercourses and locally on watersheds. The modelled area of 130 km2 was divided into square grids of 50 m. The model consists of 275 rows and 277 columns. Each of five layers was simulated with the same number of active blocks. In the construction of

  10. 3D geological and hydrogeological modeling as design tools for the Conawapa generating station

    Energy Technology Data Exchange (ETDEWEB)

    Mann, J.; Sharif, S.; Smith, B. [KGS Group, Winnipeg, MB (Canada); Cook, G.N.; Osiowy, B.J. [Manitoba Hydro, Winnipeg, MB (Canada)

    2008-07-01

    Following the project's suspension in the early 1990s, part of Manitoba Hydro's recommitment study involved digital modeling of geological and hydrogeological data for the foundation design and analysis of the proposed Conawapa generating station in northern Manitoba. Three-dimensional geological and hydrogeological models have been developed to consolidate and improve the designer's ability to understand all of the information, and to assist in developing engineering alternatives which will improve the overall confidence of the design. The tools are also being leveraged for use in environmental studies. This paper provided an overview of the Conawapa site and 3-dimensional modeling goals. It described the geology and hydrogeology of the Conawapa site as well as the bedrock structure and Karst development. The paper also presented the central concepts of 3-dimensional modeling studies, including the flow of information from database to modeling software platforms. The construction of the Conawapa geological model was also presented, with particular reference to an overview of the MVS software; mesh design; and model buildup logic. The construction of the Conawapa hydrogeological model was discussed in terms of the finite element code FEFLOW software; conceptual model design; and initial observations of Conawapa groundwater flow modeling. It was concluded that recent advancement and application of 3-dimensional geological visualization software to engineering and environmental projects, including at the future Conawapa site using MVS and FEFLOW, have shown that complicated geological data can be organized, displayed, and analysed in a systematic way, to improve site visualization, understanding, and data relationships. 19 refs., 9 figs.

  11. Numerical modeling of atoll island hydrogeology.

    Science.gov (United States)

    Bailey, R T; Jenson, J W; Olsen, A E

    2009-01-01

    We implemented Ayers and Vachers' (1986) inclusive conceptual model for atoll island aquifers in a comprehensive numerical modeling study to evaluate the response of the fresh water lens to selected controlling climatic and geologic variables. Climatic factors include both constant and time-varying recharge rates, with particular attention paid to the effects of El Niño and the associated drought it brings to the western Pacific. Geologic factors include island width; hydraulic conductivity of the uppermost Holocene-age aquifer, which contains the fresh water lens; the depth to the contact with the underlying, and much more conductive, Pleistocene karst aquifer, which transmits tidal signals to the base of the lens; and the presence or absence of a semiconfining reef flat plate on the ocean side. Sensitivity analyses of steady-steady simulations show that lens thickness is most strongly sensitive to the depth to the Holocene-Pleistocene contact and to the hydraulic conductivity of the Holocene aquifer, respectively. Comparisons between modeling results and published observations of atoll island lens thicknesses suggest a hydraulic conductivity of approximately 50 m/d for leeward islands and approximately 400 m/d for windward islands. Results of transient simulations show that lens thickness fluctuations during average seasonal conditions and El Niño events are quite sensitive to island width, recharge rate, and hydraulic conductivity of the Holocene aquifer. In general, the depletion of the lens during drought conditions is most drastic for small, windward islands. Simulation results suggest that recovery from a 6-month drought requires about 1.5 years.

  12. Numerical modeling of the hydrogeological effects of ONKALO in 2009

    International Nuclear Information System (INIS)

    Raemae, T.

    2011-10-01

    The underground rock characterization facility ONKALO is currently being excavated in the bedrock of the Olkiluoto Island. The construction work of the ONKALO begun in 2004 and the tunnel will remain open for the whole period of the operation of the planned repository for spent nuclear fuel. The open tunnels cause a disturbance on the local groundwater system. The leakage water flowing into the open tunnels withdraw water from the bedrock and locally alter the natural flow routes. One of the possible consequences of the convergent flow towards the ONKALO is that the highly saline deeper groundwater might be drawn towards the ONKALO, this process is called upconing. The purpose of this work is to estimate the possible upconing of the deep saline waters up to the repository level. A numerical flow and transport simulation is conducted with conservative approach to ensure overestimation of the effects of the ONKALO. In this study a 3D model of the hydrogeological system of the Olkiluoto is used as the basis for numerical flow and transport modeling of the saline groundwater movement in the bedrock of Olkiluoto. The numerical modelling is conducted using the commercial Comsol 3.5a code. The modelled geometry of the ONKALO includes the already excavated ONKALO and the extension according to the layout plan used in this work. The ONKALO and the hydrogeological zones are simplified for this study. In addition the used hydrogeological zones are modelled as 3D blocks with constant thickness of 50 meters. With the used boundary conditions upconing occurs even with the lowest leakage values. The influence of the leakage water is small on the maximum TDS-value at the depth near ONKALO. In this work this phenomenon is explained by the increase in the fresh water infiltration rate as the leakage water is increased, since the low density fresh water is transported more easily downwards than the high density saline water transported upwards towards the ONKALO. Further away from

  13. Hydrogeological modelling as a tool for understanding rockslides evolution

    Science.gov (United States)

    Crosta, Giovanni B.; De Caro, Mattia; Frattini, Paolo; Volpi, Giorgio

    2015-04-01

    construction of the models, in particular the partition of the slope in different sectors with different hydraulic conductivities, are coherent with the geological, structural, hydrological and hydrogeological field and laboratory data. The sensitivity analysis shows that the hydraulic conductivity of some slope sectors (e.g. morphostructures, compressed or relaxed slope-toe, basal shear band) strongly influence the water table position and evolution. In transient models, the values of specific storage coefficient play a major control on the amplitude of groundwater level fluctuations, deriving from snowmelt or induced reservoir level rise. The calibrated groundwater flow-models are consistent with groundwater levels measured in the proximity of the piezometers aligned along the sections. The two examples can be considered important for a more advanced understanding of the evolution of rockslides and suggest the required set of data and modelling approaches both for seasonal and long term slope stability analyses. The use of the results of such analyses is reported, for both the case studies, in a companion abstract in session 3.7 where elasto-visco-plastic rheologies have been adopted for the shear band materials to replicate the available displacement time-series.

  14. Hydrogeological model of the territory of Kowsar hydraulic project

    Directory of Open Access Journals (Sweden)

    Orekhov Vyacheslav Valentinovich

    2015-03-01

    Full Text Available Mathematical hydrogeology model of the territory of Kowsar Project was created with account for the results of the engineering surveys and hydro geological monitoring, which was conducted in the process of Kowsar Project construction. In order to create the model in the present work a universal computer system Ansys was used, which implements the finite element method and solid modeling technology, allowing to solve the filtration problem with the use of thermal analogy. The three-dimensional geometric model was built with use of the principle “hard body” modeling, which displays the main line of the territory relief, including the created water reservoir, geological structure (anticline Duk and the main lithological complexes developed within the territory. In the limestone mass As here is a zone characterized by water permeability on territory of Kowsar Project, and a layer characterized by seepage feeding, which occurs outside the considered territory. The water reservoir is a source of the change of hydro geological situation. The results of field observations witness, that the levels of underground waters within the area of the main structures reacts almost instantly on the water level change in the water reservoir; the delay period of levels change is not more than 1,5…2,0 weeks at maximum distance from the water reservoir. These particularities of the hydro geological regime allow using the steady-state scheme of the decision of forecast problems. The mass of limestone As, containing the structures of the Kowsar Project, is not homogeneous and anisotropy in its seepage characteristics. The heterogeneity is conditioned by exogenous influence on the mass up to the depth of 100…150 m. The seepage anisotropy of the mass is expressed by the difference of water permeability of the mass along and across the layers for almost one order. The structures of Kowsar Project is presented by a dam, grouting curtain on axis of the dam and

  15. Alligator Rivers Analogue project. Hydrogeological modelling. Final Report - Volume 6

    International Nuclear Information System (INIS)

    Townley, L.R.; Trefry, M.G.; Barr, A.D.; Braumiller, S.

    1992-01-01

    This volume describes hydrogeological modelling carried out as part of the Alligator Rivers Analogue Project. Hydrogeology has played a key integrating role in the Project, largely because water movement is believed to have controlled the evolution of the Koongarra uranium Orebody and therefore affects field observations of all types at all scales. Aquifer testing described uses the concept of transmissivity in its interpretation of aquifer response to pumping. The concept of an aquifer, a layer transmitting significant quantities of water in a mainly horizontal direction, seems hard to accept in an environment as heterogeneous as that at Koongarra. But modelling of aquifers both in one dimension and two dimensionally in plan has contributed significantly to our understanding of the site. A one-dimensional model with three layers (often described as a quasi two dimensional model) was applied to flow between the Fault and Koongarra Creek. Being a transient model, this model was able to show that reverse flows can indeed occur back towards the Fault, but only if there is distributed recharge over the orebody as well as a mechanism for the Fault, or a region near the Fault, to remove water from the simulated cross-section. The model also showed clearly that the response of the three-layered system, consisting of a highly weathered zone, a fractured transmissive zone and a less conductive lower schist zone, is governed mainly by the transmissivity and storage coefficient of the middle layer. The storage coefficient of the higher layer has little effect. A two-dimensional model in plan used a description of anisotropy to show that reverse flows can also occur even without a conducting Fault. Modelling of a three-dimensional region using discrete fractures showed that it is certainly possible to simulate systems like that observed at Koongarra, but that large amounts of data are probably needed to obtain realistic descriptions of the fracture networks. Inverse modelling

  16. Alligator Rivers Analogue project. Hydrogeological modelling. Final Report - Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    Townley, L R; Trefry, M G; Barr, A D [CSIRO Div of Water Resources, PO Wembley, WA (Australia); Braumiller, S [Univ of Arizona, Tucson, AZ (United States). Dept of Hydrology and Water Resources; Kawanishi, M [Central Research Institute of Electric Power Industry, Abiko-Shi, Chiba-Ken (Japan); and others

    1993-12-31

    This volume describes hydrogeological modelling carried out as part of the Alligator Rivers Analogue Project. Hydrogeology has played a key integrating role in the Project, largely because water movement is believed to have controlled the evolution of the Koongarra uranium Orebody and therefore affects field observations of all types at all scales. Aquifer testing described uses the concept of transmissivity in its interpretation of aquifer response to pumping. The concept of an aquifer, a layer transmitting significant quantities of water in a mainly horizontal direction, seems hard to accept in an environment as heterogeneous as that at Koongarra. But modelling of aquifers both in one dimension and two dimensionally in plan has contributed significantly to our understanding of the site. A one-dimensional model with three layers (often described as a quasi two dimensional model) was applied to flow between the Fault and Koongarra Creek. Being a transient model, this model was able to show that reverse flows can indeed occur back towards the Fault, but only if there is distributed recharge over the orebody as well as a mechanism for the Fault, or a region near the Fault, to remove water from the simulated cross-section. The model also showed clearly that the response of the three-layered system, consisting of a highly weathered zone, a fractured transmissive zone and a less conductive lower schist zone, is governed mainly by the transmissivity and storage coefficient of the middle layer. The storage coefficient of the higher layer has little effect. A two-dimensional model in plan used a description of anisotropy to show that reverse flows can also occur even without a conducting Fault. Modelling of a three-dimensional region using discrete fractures showed that it is certainly possible to simulate systems like that observed at Koongarra, but that large amounts of data are probably needed to obtain realistic descriptions of the fracture networks. Inverse modelling

  17. Study on the methodology for hydrogeological site descriptive modelling by discrete fracture networks

    International Nuclear Information System (INIS)

    Tanaka, Tatsuya; Ando, Kenichi; Hashimoto, Shuuji; Saegusa, Hiromitsu; Takeuchi, Shinji; Amano, Kenji

    2007-01-01

    This study aims to establish comprehensive techniques for site descriptive modelling considering the hydraulic heterogeneity due to the Water Conducting Features in fractured rocks. The WCFs was defined by the interpretation and integration of geological and hydrogeological data obtained from the deep borehole investigation campaign in the Mizunami URL project and Regional Hydrogeological Study. As a result of surface based investigation phase, the block-scale hydrogeological descriptive model was generated using hydraulic discrete fracture networks. Uncertainties and remaining issues associated with the assumption in interpreting the data and its modelling were addressed in a systematic way. (author)

  18. Hydrogeological Site Descriptive Model - a strategy for its development during Site Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Rhen, Ingvar [SWECO VIAK AB, Goeteborg (Sweden); Follin, Sven [SF GeoLogic AB, Stockholm (Sweden); Hermanson, Jan [Golder Associates, Stockholm (Sweden)

    2003-04-01

    The report is to present a strategy for the development of the Site Descriptive Hydrogeological Model within the SKB Site Investigation Programme. The report, and similar reports from the Geology, Rock Mechanics, Thermal properties, Hydrogeochemistry, Transport Properties and Surface Ecosystem disciplines are intended to guide SKB Site Descriptive Modelling but also to provide the authorities with an overview of how the modelling should be performed. Thus the objectives of this report are to: provide guidelines for the modelling of different sites resulting in consistent handling of modelling issues during the Site Investigations, provide a structure for the modelling sequence that is suitable for the establishment of a Site Descriptive model and provide some necessary details that should be considered in a Site Descriptive model.

  19. Hydrogeological Site Descriptive Model - a strategy for its development during Site Investigations

    International Nuclear Information System (INIS)

    Rhen, Ingvar; Follin, Sven; Hermanson, Jan

    2003-04-01

    The report is to present a strategy for the development of the Site Descriptive Hydrogeological Model within the SKB Site Investigation Programme. The report, and similar reports from the Geology, Rock Mechanics, Thermal properties, Hydrogeochemistry, Transport Properties and Surface Ecosystem disciplines are intended to guide SKB Site Descriptive Modelling but also to provide the authorities with an overview of how the modelling should be performed. Thus the objectives of this report are to: provide guidelines for the modelling of different sites resulting in consistent handling of modelling issues during the Site Investigations, provide a structure for the modelling sequence that is suitable for the establishment of a Site Descriptive model and provide some necessary details that should be considered in a Site Descriptive model

  20. A Bayesian Markov geostatistical model for estimation of hydrogeological properties

    International Nuclear Information System (INIS)

    Rosen, L.; Gustafson, G.

    1996-01-01

    A geostatistical methodology based on Markov-chain analysis and Bayesian statistics was developed for probability estimations of hydrogeological and geological properties in the siting process of a nuclear waste repository. The probability estimates have practical use in decision-making on issues such as siting, investigation programs, and construction design. The methodology is nonparametric which makes it possible to handle information that does not exhibit standard statistical distributions, as is often the case for classified information. Data do not need to meet the requirements on additivity and normality as with the geostatistical methods based on regionalized variable theory, e.g., kriging. The methodology also has a formal way for incorporating professional judgments through the use of Bayesian statistics, which allows for updating of prior estimates to posterior probabilities each time new information becomes available. A Bayesian Markov Geostatistical Model (BayMar) software was developed for implementation of the methodology in two and three dimensions. This paper gives (1) a theoretical description of the Bayesian Markov Geostatistical Model; (2) a short description of the BayMar software; and (3) an example of application of the model for estimating the suitability for repository establishment with respect to the three parameters of lithology, hydraulic conductivity, and rock quality designation index (RQD) at 400--500 meters below ground surface in an area around the Aespoe Hard Rock Laboratory in southeastern Sweden

  1. Hydrogeological characterisation and modelling of deformation zones and fracture domains, Forsmark modelling stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB, Taeby (SE)); Leven, Jakob (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE)); Hartley, Lee; Jackson, Peter; Joyce, Steve; Roberts, David; Swift, Ben (Serco Assurance, Harwell (GB))

    2007-09-15

    The work reported here collates the structural-hydraulic information gathered in 21 cored boreholes and 32 percussion-drilled boreholes belonging to Forsmark site description, modelling stage 2.2. The analyses carried out provide the hydrogeological input descriptions of the bedrock in Forsmark needed by the end users Repository Engineering, Safety Assessment and Environmental Impact Assessment; that is, hydraulic properties of deformation zones and fracture domains. The same information is also needed for constructing 3D groundwater flow models of the Forsmark site and surrounding area. The analyses carried out render the following conceptual model regarding the observed heterogeneity in deformation zone transmissivity: We find the geological division of the deterministically modelled deformation zones into eight categories (sets) useful from a hydrogeological point of view. Seven of the eight categories are steeply dipping, WNW, NW, NNW, NNE, NE, ENE and EW, and on is gently dipping, G. All deformation zones, regardless of orientation (strike and dip), are subjected to a substantial decrease in transmissivity with depth. The data gathered suggest a contrast of c. 20,000 times for the uppermost one kilometre of bedrock, i.e. more than four orders of magnitude. The hydraulic properties below this depth are not investigated. The lateral heterogeneity is also substantial but more irregular in its appearance. For instance, for a given elevation and deformation zone category (orientation), the spatial variability in transmissivity within a particular deformation zone appears to be as large as the variability between all deformation zones. This suggests that the lateral correlation length is shorter than the shortest distance between two adjacent observation points and shorter than the category spacing. The observation that the mean transmissivity of the gently-dipping deformation zones is c. one to two orders of magnitude greater than the mean transmissivities of all

  2. Evaluation of structural behavior, geological and hydrogeological characteristics

    International Nuclear Information System (INIS)

    Kim, Jhin Wung; Kim, Sun Hoon; Kim, Dae Hong; Choi, Kyu Sup

    1992-02-01

    In order to understand the behavior of an underground structure properly, this report includes the study on the structural behavior of rock masses surrounding underground openings considering the effect of excavation. Before analyzing the underground structure, the followings are studied: initial stress distribution before excavation, stress release and redistribution due to the sequential excavation, comparison of analysis methods, discussions on numerical simulation techniques for the sequential excavation and an numerical analysis modeling. The underground structure in then analyzed using the finite element and distinct element methods of analysis considering the effect of sequential excavation, Based on the results of the analysis, the followings are discussed: shape of the opening, distance between openings, method and sequence of excavation, and structural reinforcement. (Author)

  3. Hydrogeologic Modeling at the Sylvania Corning FUSRAP Site - 13419

    Energy Technology Data Exchange (ETDEWEB)

    Ewy, Ann [U.S. Army Corps of Engineers, Kansas City District (United States); Heim, Kenneth J. [U.S. Army Corps of Engineers, New England District (United States); McGonigal, Sean T.; Talimcioglu, Nazmi M. [The Louis Berger Group, Inc. (United States)

    2013-07-01

    A comparative groundwater hydrogeologic modeling analysis is presented herein to simulate potential contaminant migration pathways in a sole source aquifer in Nassau County, Long Island, New York. The source of contamination is related to historical operations at the Sylvania Corning Plant ('Site'), a 9.49- acre facility located at 70, 100 and 140 Cantiague Rock Road, Town of Oyster Bay in the westernmost portion of Hicksville, Long Island. The Site had historically been utilized as a nuclear materials manufacturing facility (e.g., cores, slug, and fuel elements) for reactors used in both research and electric power generation in early 1950's until late 1960's. The Site is contaminated with various volatile organic and inorganic compounds, as well as radionuclides. The major contaminants of concern at the Site are tetrachloroethene (PCE), trichloroethene (TCE), nickel, uranium, and thorium. These compounds are present in soil and groundwater underlying the Site and have migrated off-site. The Site is currently being investigated as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). The main objective of the current study is to simulate the complex hydrogeologic features in the region, such as numerous current and historic production well fields; large, localized recharge basins; and, multiple aquifers, and to assess potential contaminant migration pathways originating from the Site. For this purpose, the focus of attention was given to the underlying Magothy formation, which has been impacted by the contaminants of concern. This aquifer provides more than 90% of potable water supply in the region. Nassau and Suffolk Counties jointly developed a three-dimensional regional groundwater flow model to help understand the factors affecting groundwater flow regime in the region, to determine adequate water supply for public consumption, to investigate salt water intrusion in localized areas, to evaluate the impacts of regional

  4. Preparatory hydrogeological calculations for site scale models of Aberg, Beberg and Ceberg

    International Nuclear Information System (INIS)

    Gylling, B.; Lindgren, M.; Widen, H.

    1999-03-01

    The purpose of the study is to evaluate the basis for site scale models of the three sites Aberg, Beberg and Ceberg in terms of: extent and position of site scale model domains; numerical implementation of geologic structural model; systematic review of structural data and control of compatibility in data sets. Some of the hydrogeological features of each site are briefly described. A summary of the results from the regional modelling exercises for Aberg, Beberg and Ceberg is given. The results from the regional models may be used as a base for determining the location and size of the site scale models and provide such models with boundary conditions. Results from the regional models may also indicate suitable locations for repositories. The resulting locations and sizes for site scale models are presented in figures. There are also figures showing that the structural models interpreted by HYDRASTAR do not conflict with the repository tunnels. It has in addition been verified with TRAZON, a modified version of HYDRASTAR for checking starting positions, revealing conflicts between starting positions and fractures zones if present

  5. Site investigation SFR. Hydrogeological modelling of SFR. Model version 0.2

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan (Golder Associates AB (Sweden)); Follin, Sven (SF GeoLogic (Sweden))

    2010-01-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). A hydrogeological model is developed in three model versions, which will be used for safety assessment and design analyses. This report presents a data analysis of the currently available hydrogeological data from the ongoing Site Investigation SFR (KFR27, KFR101, KFR102A, KFR102B, KFR103, KFR104, and KFR105). The purpose of this work is to develop a preliminary hydrogeological Discrete Fracture Network model (hydro-DFN) parameterisation that can be applied in regional-scale modelling. During this work, the Geologic model had not yet been updated for the new data set. Therefore, all analyses were made to the rock mass outside Possible Deformation Zones, according to Single Hole Interpretation. Owing to this circumstance, it was decided not to perform a complete hydro-DFN calibration at this stage. Instead focus was re-directed to preparatory test cases and conceptual questions with the aim to provide a sound strategy for developing the hydrogeological model SFR v. 1.0. The presented preliminary hydro-DFN consists of five fracture sets and three depth domains. A statistical/geometrical approach (connectivity analysis /Follin et al. 2005/) was performed to estimate the size (i.e. fracture radius) distribution of fractures that are interpreted as Open in geologic mapping of core data. Transmissivity relations were established based on an assumption of a correlation between the size and evaluated specific capacity of geologic features coupled to inflows measured by the Posiva Flow Log device (PFL-f data). The preliminary hydro-DFN was applied in flow simulations in order to test its performance and to explore the role of PFL-f data. Several insights were gained and a few model technical issues were raised. These are summarised in Table 5-1

  6. Site investigation SFR. Hydrogeological modelling of SFR. Model version 0.2

    International Nuclear Information System (INIS)

    Oehman, Johan; Follin, Sven

    2010-01-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). A hydrogeological model is developed in three model versions, which will be used for safety assessment and design analyses. This report presents a data analysis of the currently available hydrogeological data from the ongoing Site Investigation SFR (KFR27, KFR101, KFR102A, KFR102B, KFR103, KFR104, and KFR105). The purpose of this work is to develop a preliminary hydrogeological Discrete Fracture Network model (hydro-DFN) parameterisation that can be applied in regional-scale modelling. During this work, the Geologic model had not yet been updated for the new data set. Therefore, all analyses were made to the rock mass outside Possible Deformation Zones, according to Single Hole Interpretation. Owing to this circumstance, it was decided not to perform a complete hydro-DFN calibration at this stage. Instead focus was re-directed to preparatory test cases and conceptual questions with the aim to provide a sound strategy for developing the hydrogeological model SFR v. 1.0. The presented preliminary hydro-DFN consists of five fracture sets and three depth domains. A statistical/geometrical approach (connectivity analysis /Follin et al. 2005/) was performed to estimate the size (i.e. fracture radius) distribution of fractures that are interpreted as Open in geologic mapping of core data. Transmissivity relations were established based on an assumption of a correlation between the size and evaluated specific capacity of geologic features coupled to inflows measured by the Posiva Flow Log device (PFL-f data). The preliminary hydro-DFN was applied in flow simulations in order to test its performance and to explore the role of PFL-f data. Several insights were gained and a few model technical issues were raised. These are summarised in Table 5-1

  7. Hydrogeologic Framework Model for the Saturated Zone Site Scale flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    T. Miller

    2004-11-15

    The purpose of this report is to document the 19-unit, hydrogeologic framework model (19-layer version, output of this report) (HFM-19) with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results in accordance with AP-SIII.10Q, Models. The HFM-19 is developed as a conceptual model of the geometric extent of the hydrogeologic units at Yucca Mountain and is intended specifically for use in the development of the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]). Primary inputs to this model report include the GFM 3.1 (DTN: MO9901MWDGFM31.000 [DIRS 103769]), borehole lithologic logs, geologic maps, geologic cross sections, water level data, topographic information, and geophysical data as discussed in Section 4.1. Figure 1-1 shows the information flow among all of the saturated zone (SZ) reports and the relationship of this conceptual model in that flow. The HFM-19 is a three-dimensional (3-D) representation of the hydrogeologic units surrounding the location of the Yucca Mountain geologic repository for spent nuclear fuel and high-level radioactive waste. The HFM-19 represents the hydrogeologic setting for the Yucca Mountain area that covers about 1,350 km2 and includes a saturated thickness of about 2.75 km. The boundaries of the conceptual model were primarily chosen to be coincident with grid cells in the Death Valley regional groundwater flow model (DTN: GS960808312144.003 [DIRS 105121]) such that the base of the site-scale SZ flow model is consistent with the base of the regional model (2,750 meters below a smoothed version of the potentiometric surface), encompasses the exploratory boreholes, and provides a framework over the area of interest for groundwater flow and radionuclide transport modeling. In depth, the model domain extends from land surface to the base of the regional groundwater flow model (D'Agnese et al. 1997 [DIRS 100131], p 2). For the site

  8. Hydrogeologic Framework Model for the Saturated Zone Site Scale flow and Transport Model

    International Nuclear Information System (INIS)

    Miller, T.

    2004-01-01

    The purpose of this report is to document the 19-unit, hydrogeologic framework model (19-layer version, output of this report) (HFM-19) with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results in accordance with AP-SIII.10Q, Models. The HFM-19 is developed as a conceptual model of the geometric extent of the hydrogeologic units at Yucca Mountain and is intended specifically for use in the development of the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]). Primary inputs to this model report include the GFM 3.1 (DTN: MO9901MWDGFM31.000 [DIRS 103769]), borehole lithologic logs, geologic maps, geologic cross sections, water level data, topographic information, and geophysical data as discussed in Section 4.1. Figure 1-1 shows the information flow among all of the saturated zone (SZ) reports and the relationship of this conceptual model in that flow. The HFM-19 is a three-dimensional (3-D) representation of the hydrogeologic units surrounding the location of the Yucca Mountain geologic repository for spent nuclear fuel and high-level radioactive waste. The HFM-19 represents the hydrogeologic setting for the Yucca Mountain area that covers about 1,350 km2 and includes a saturated thickness of about 2.75 km. The boundaries of the conceptual model were primarily chosen to be coincident with grid cells in the Death Valley regional groundwater flow model (DTN: GS960808312144.003 [DIRS 105121]) such that the base of the site-scale SZ flow model is consistent with the base of the regional model (2,750 meters below a smoothed version of the potentiometric surface), encompasses the exploratory boreholes, and provides a framework over the area of interest for groundwater flow and radionuclide transport modeling. In depth, the model domain extends from land surface to the base of the regional groundwater flow model (D'Agnese et al. 1997 [DIRS 100131], p 2). For the site-scale SZ flow model, the HFM

  9. Stepwise hydrogeological modeling and groundwater flow analysis on site scale (Step 0 and Step 1)

    International Nuclear Information System (INIS)

    Ohyama, Takuya; Saegusa, Hiromitsu; Onoe, Hironori

    2005-05-01

    One of the main goals of the Mizunami Underground Research Laboratory Project is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment. To achieve this goal, a variety of investigations, analysis, and evaluations have been conducted using an iterative approach. In this study, hydrogeological modeling and ground water flow analyses have been carried out using the data from surface-based investigations at Step 0 and Step 1, in order to synthesize the investigation results, to evaluate the uncertainty of the hydrogeological model, and to specify items for further investigation. The results of this study are summarized as follows: 1) As the investigation progresses Step 0 to Step 1, the understanding of groundwater flow was enhanced from Step 0 to Step 1, and the hydrogeological model could be revised, 2) The importance of faults as major groundwater flow pathways was demonstrated, 3) Geological and hydrogeological characteristics of faults with orientation of NNW and NE were shown to be especially significant. The main item specified for further investigations is summarized as follows: geological and hydrogeological characteristics of NNW and NE trending faults are important. (author)

  10. Hydrogeophysics and remote sensing for the design of hydrogeological conceptual models in hard rocks - Sardón catchment (Spain)

    OpenAIRE

    Francés, Alain; Lubczynski, Maciek W.; Roy, Jean; Santos, Fernando A. Monteiro; Ardekani, Mohammad R. Mahmoudzadeh

    2014-01-01

    Hard rock aquifers are highly heterogeneous and hydrogeologically complex. To contribute to the design of hydrogeological conceptual models of hard rock aquifers, we propose a multi-techniques methodology based on a downward approach that combines remote sensing (RS), non-invasive hydrogeophysics and hydrogeological field data acquisition. The proposed methodology is particularly suitable for data scarce areas. It was applied in the pilot research area of Sardón catchment (80 km2)...

  11. Three-dimensional hydrogeologic framework model of the Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, Mexico

    Science.gov (United States)

    Sweetkind, Donald S.

    2017-09-08

    As part of a U.S. Geological Survey study in cooperation with the Bureau of Reclamation, a digital three-dimensional hydrogeologic framework model was constructed for the Rio Grande transboundary region of New Mexico and Texas, USA, and northern Chihuahua, Mexico. This model was constructed to define the aquifer system geometry and subsurface lithologic characteristics and distribution for use in a regional numerical hydrologic model. The model includes five hydrostratigraphic units: river channel alluvium, three informal subdivisions of Santa Fe Group basin fill, and an undivided pre-Santa Fe Group bedrock unit. Model input data were compiled from published cross sections, well data, structure contour maps, selected geophysical data, and contiguous compilations of surficial geology and structural features in the study area. These data were used to construct faulted surfaces that represent the upper and lower subsurface hydrostratigraphic unit boundaries. The digital three-dimensional hydrogeologic framework model is constructed through combining faults, the elevation of the tops of each hydrostratigraphic unit, and boundary lines depicting the subsurface extent of each hydrostratigraphic unit. The framework also compiles a digital representation of the distribution of sedimentary facies within each hydrostratigraphic unit. The digital three-dimensional hydrogeologic model reproduces with reasonable accuracy the previously published subsurface hydrogeologic conceptualization of the aquifer system and represents the large-scale geometry of the subsurface aquifers. The model is at a scale and resolution appropriate for use as the foundation for a numerical hydrologic model of the study area.

  12. Blueprint for a coupled model of sedimentology, hydrology, and hydrogeology in streambeds

    Science.gov (United States)

    Partington, Daniel; Therrien, Rene; Simmons, Craig T.; Brunner, Philip

    2017-06-01

    The streambed constitutes the physical interface between the surface and the subsurface of a stream. Across all spatial scales, the physical properties of the streambed control surface water-groundwater interactions. Continuous alteration of streambed properties such as topography or hydraulic conductivity occurs through erosion and sedimentation processes. Recent studies from the fields of ecology, hydrogeology, and sedimentology provide field evidence that sedimentological processes themselves can be heavily influenced by surface water-groundwater interactions, giving rise to complex feedback mechanisms between sedimentology, hydrology, and hydrogeology. More explicitly, surface water-groundwater exchanges play a significant role in the deposition of fine sediments, which in turn modify the hydraulic properties of the streambed. We explore these feedback mechanisms and critically review the extent of current interaction between the different disciplines. We identify opportunities to improve current modeling practices. For example, hydrogeological models treat the streambed as a static rather than a dynamic entity, while sedimentological models do not account for critical catchment processes such as surface water-groundwater exchange. We propose a blueprint for a new modeling framework that bridges the conceptual gaps between sedimentology, hydrogeology, and hydrology. Specifically, this blueprint (1) fully integrates surface-subsurface flows with erosion, transport, and deposition of sediments and (2) accounts for the dynamic changes in surface elevation and hydraulic conductivity of the streambed. Finally, we discuss the opportunities for new research within the coupled framework.

  13. Linking Physical and Numerical Modelling in Hydrogeology Using Sand Tank Experiments and Comsol Multiphysics

    Science.gov (United States)

    Singha, Kamini; Loheide, Steven P., II

    2011-01-01

    Visualising subsurface processes in hydrogeology and building intuition for how these processes are controlled by changes in forcing is hard for many undergraduate students. While numerical modelling is one way to help undergraduate students explore outcomes of multiple scenarios, many codes are not user-friendly with respect to defining domains,…

  14. Clustering and Bayesian hierarchical modeling for the definition of informative prior distributions in hydrogeology

    Science.gov (United States)

    Cucchi, K.; Kawa, N.; Hesse, F.; Rubin, Y.

    2017-12-01

    In order to reduce uncertainty in the prediction of subsurface flow and transport processes, practitioners should use all data available. However, classic inverse modeling frameworks typically only make use of information contained in in-situ field measurements to provide estimates of hydrogeological parameters. Such hydrogeological information about an aquifer is difficult and costly to acquire. In this data-scarce context, the transfer of ex-situ information coming from previously investigated sites can be critical for improving predictions by better constraining the estimation procedure. Bayesian inverse modeling provides a coherent framework to represent such ex-situ information by virtue of the prior distribution and combine them with in-situ information from the target site. In this study, we present an innovative data-driven approach for defining such informative priors for hydrogeological parameters at the target site. Our approach consists in two steps, both relying on statistical and machine learning methods. The first step is data selection; it consists in selecting sites similar to the target site. We use clustering methods for selecting similar sites based on observable hydrogeological features. The second step is data assimilation; it consists in assimilating data from the selected similar sites into the informative prior. We use a Bayesian hierarchical model to account for inter-site variability and to allow for the assimilation of multiple types of site-specific data. We present the application and validation of the presented methods on an established database of hydrogeological parameters. Data and methods are implemented in the form of an open-source R-package and therefore facilitate easy use by other practitioners.

  15. A conceptual hydrogeologic model for the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers in the Pecos County region, Texas

    Science.gov (United States)

    Thomas, Jonathan V.; Stanton, Gregory P.; Bumgarner, Johnathan R.; Pearson, Daniel K.; Teeple, Andrew; Houston, Natalie A.; Payne, Jason; Musgrove, MaryLynn

    2013-01-01

    The Edwards-Trinity aquifer is a vital groundwater resource for agricultural, industrial, and municipal uses in the Trans-Pecos region of west Texas. A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system in the 4,700 square-mile study area was developed by the U.S. Geological Survey (USGS) in cooperation with the Middle Pecos Groundwater Conservation District, Pecos County, City of Fort Stockton, Brewster County, and Pecos County Water Control and Improvement District No. 1. The model was developed to gain a better understanding of the groundwater system and to establish a scientific foundation for resource-management decisions. Data and information were collected or obtained from various sources to develop the model. Lithologic information obtained from well reports and geophysical data were used to describe the hydrostratigraphy and structural features of the groundwater system, and aquifer-test data were used to estimate aquifer hydraulic properties. Groundwater-quality data were used to evaluate groundwater-flow paths, water and rock interaction, aquifer interaction, and the mixing of water from different sources. Groundwater-level data also were used to evaluate aquifer interaction as well as to develop a potentiometric-surface map, delineate regional groundwater divides, and describe regional groundwater-flow paths.

  16. New insights into the structure of Om Ali-Thelepte basin, central Tunisia, inferred from gravity data: Hydrogeological implications

    Science.gov (United States)

    Harchi, Mongi; Gabtni, Hakim; El Mejri, Hatem; Dassi, Lassaad; Mammou, Abdallah Ben

    2016-08-01

    This work presents new results from gravity data analyses and interpretation within the Om Ali-Thelepte (OAT) basin, central Tunisia. It focuses on the hydrogeological implication, using several qualitative and quantitative techniques such as horizontal gradient, upward continuation and Euler deconvolution on boreholes log data, seismic reflection data and electrical conductivity measurements. The structures highlighted using the filtering techniques suggest that the Miocene aquifer of OAT basin is cut by four major fault systems that trend E-W, NE-SW, NW-SE and NNE-SSW. In addition, a NW-SE gravity model established shows the geometry of the Miocene sandstone reservoir and the Upper Cretaceous limestone rocks. Moreover, the superimposition of the electrical conductivity and the structural maps indicates that the low conductivity values of sampled water from boreholes are located around main faults.

  17. Hydrogeological modelling for assessment of radionuclide release scenarios for the repository system 2012

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, L.; Hoek, J.; Swan, D.; Appleyard, P.; Baxter, S.; Roberts, D.; Simpson, T. [AMEC (United Kingdom)

    2013-07-15

    Posiva Oy is responsible for implementing the programme for geological disposal of spent nuclear fuel produced by its owners Teollisuuden Voima Oyj (TVO) and Fortum Power and Heat Oy in Finland. Olkiluoto in Eurajoki has been selected as the primary site for the repository, subject to further detailed investigation which is currently focused on the construction of an underground rock characterisation and research facility (the ONKALO). An essential part of the assessment of long-term safety of a repository is the analysis of groundwater flow since it is the only means of transport of radionuclides to the biosphere (besides human intrusion). The analysis of long-term safety for a KBS-3 concept requires as input a description of details of the groundwater flow around and through components of the engineered barrier system as well as details of the groundwater pathway to the biosphere during the current temperate climate period, as well as indications of behaviour under future climate periods such as glacial conditions. This report describes the groundwater flow modelling study performed to provide some of the necessary inputs required by Safety Assessment (i.e. radionuclide transport analysis). Underlying this study is the understanding of the site developed during the site investigations as summarised in the site descriptive model (SDM), and in particular the description of Olkiluoto Hydrogeological DFN model (Hydro-DFN). The main focus of this study is the temperate climate period, i.e. the evolution over the next 10,000 years, but the hydrogeological situation under various glacial climate conditions is also evaluated. Primary outputs of the study are repository performance measures relating to: the distributions of groundwater flow around the deposition holes; deposition tunnels and through the EDZ; flow-related transport resistance along groundwater pathways from the repository to the surface; and their the exit locations. Other analyses consider the

  18. Hydrogeological modelling for assessment of radionuclide release scenarios for the repository system 2012

    International Nuclear Information System (INIS)

    Hartley, L.; Hoek, J.; Swan, D.; Appleyard, P.; Baxter, S.; Roberts, D.; Simpson, T.

    2013-07-01

    Posiva Oy is responsible for implementing the programme for geological disposal of spent nuclear fuel produced by its owners Teollisuuden Voima Oyj (TVO) and Fortum Power and Heat Oy in Finland. Olkiluoto in Eurajoki has been selected as the primary site for the repository, subject to further detailed investigation which is currently focused on the construction of an underground rock characterisation and research facility (the ONKALO). An essential part of the assessment of long-term safety of a repository is the analysis of groundwater flow since it is the only means of transport of radionuclides to the biosphere (besides human intrusion). The analysis of long-term safety for a KBS-3 concept requires as input a description of details of the groundwater flow around and through components of the engineered barrier system as well as details of the groundwater pathway to the biosphere during the current temperate climate period, as well as indications of behaviour under future climate periods such as glacial conditions. This report describes the groundwater flow modelling study performed to provide some of the necessary inputs required by Safety Assessment (i.e. radionuclide transport analysis). Underlying this study is the understanding of the site developed during the site investigations as summarised in the site descriptive model (SDM), and in particular the description of Olkiluoto Hydrogeological DFN model (Hydro-DFN). The main focus of this study is the temperate climate period, i.e. the evolution over the next 10,000 years, but the hydrogeological situation under various glacial climate conditions is also evaluated. Primary outputs of the study are repository performance measures relating to: the distributions of groundwater flow around the deposition holes; deposition tunnels and through the EDZ; flow-related transport resistance along groundwater pathways from the repository to the surface; and their the exit locations. Other analyses consider the

  19. Development of analytical and numerical models for the assessment and interpretation of hydrogeological field tests

    International Nuclear Information System (INIS)

    Mironenko, V.A.; Rumynin, V.G.; Konosavsky, P.K.; Pozdniakov, S.P.; Shestakov, V.M.; Roshal, A.A.

    1994-07-01

    Mathematical models of the flow and tracer tests in fractured aquifers are being developed for the further study of radioactive wastes migration in round water at the Lake Area, which is associated with one of the waste disposal site in Russia. The choice of testing methods, tracer types (chemical or thermal) and the appropriate models are determined by the nature of the ongoing ground-water pollution processes and the hydrogeological features of the site under consideration. Special importance is attached to the increased density of wastes as well as to the possible redistribution of solutes both in the liquid phase and in the absorbed state (largely, on fracture surfaces). This allows for studying physical-and-chemical (hydrogeochemical) interaction parameters which are hard to obtain (considering a fractured structure of the rock mass) in laboratory. Moreover, a theoretical substantiation is being given to the field methods of studying the properties of a fractured stratum aimed at the further construction of the drainage system or the subsurface flow barrier (cutoff wall), as well as the monitoring system that will evaluate the reliability of these ground-water protection measures. The proposed mathematical models are based on a tight combination of analytical and numerical methods, the former being preferred in solving the principal (2D axisymmetrical) class of the problems. The choice of appropriate problems is based on the close feedback with subsequent field tests in the Lake Area. 63 refs

  20. Development of analytical and numerical models for the assessment and interpretation of hydrogeological field tests

    Energy Technology Data Exchange (ETDEWEB)

    Mironenko, V.A.; Rumynin, V.G.; Konosavsky, P.K. [St. Petersburg Mining Inst. (Russian Federation); Pozdniakov, S.P.; Shestakov, V.M. [Moscow State Univ. (Russian Federation); Roshal, A.A. [Geosoft-Eastlink, Moscow (Russian Federation)

    1994-07-01

    Mathematical models of the flow and tracer tests in fractured aquifers are being developed for the further study of radioactive wastes migration in round water at the Lake Area, which is associated with one of the waste disposal site in Russia. The choice of testing methods, tracer types (chemical or thermal) and the appropriate models are determined by the nature of the ongoing ground-water pollution processes and the hydrogeological features of the site under consideration. Special importance is attached to the increased density of wastes as well as to the possible redistribution of solutes both in the liquid phase and in the absorbed state (largely, on fracture surfaces). This allows for studying physical-and-chemical (hydrogeochemical) interaction parameters which are hard to obtain (considering a fractured structure of the rock mass) in laboratory. Moreover, a theoretical substantiation is being given to the field methods of studying the properties of a fractured stratum aimed at the further construction of the drainage system or the subsurface flow barrier (cutoff wall), as well as the monitoring system that will evaluate the reliability of these ground-water protection measures. The proposed mathematical models are based on a tight combination of analytical and numerical methods, the former being preferred in solving the principal (2D axisymmetrical) class of the problems. The choice of appropriate problems is based on the close feedback with subsequent field tests in the Lake Area. 63 refs.

  1. Characterization and hydrogeological modelling of a site for disposal of medium- and low-level radioactive waste

    International Nuclear Information System (INIS)

    Lavie, J.; Peaudecerf, P.

    1993-01-01

    Characterization studies of the French low-and intermediate-level radwaste site in the Aube Department includes a significant hydrogeological appraisal element. These studies are based upon geological, hydrogeological, and hydrodynamic measurements. The data are compiled into a model of the ground water- body. Data collection is continuous. The hydrodynamic model and the transport model is regularly validated for ANDRA (French National Radioactive Waste Disposal Agency) with a reliable and up-dated tool

  2. Hydrogeological characterization, modelling and monitoring of the site of Canada's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Davison, C.C.; Guvanasen, V.

    1985-01-01

    Atomic Energy of Canada Limited (AECL) is constructing an Underground Research Laboratory (URL) to a depth of 250 m in a previously undisturbed granitic pluton located near Lac du Bonnet, Manitoba, as one of the major research projects within the Canadian Nuclear Fuel Waste Management Program. This paper discusses the hydrogeological characterization of the URL site, the modelling approach used to represent this information, the hydrogeological monitoring system installed to monitor the actual drawdown conditions that develop in response to the excavation, and the procedures employed to calibrate the numerical model. Comparisons between the drawdown predictions made by the model prior to any excavation and the actual drawdowns that have been measured since shaft excavation began in May 1984 are also discussed

  3. Coupled hydrogeological and reactive transport modelling of the Simpevarp area (Sweden)

    International Nuclear Information System (INIS)

    Molinero, Jorge; Raposo, Juan R.; Galindez, Juan M.; Arcos, David; Guimera, Jordi

    2008-01-01

    The Simpevarp area is one of the alternative sites being considered for the deep geological disposal of high level radioactive waste in Sweden. In this paper, a coupled regional groundwater flow and reactive solute transport model of the Simpevarp area is presented that integrates current hydrogeological and hydrochemical data of the area. The model simulates the current hydrochemical pattern of the groundwater system in the area. To that aim, a conceptual hydrochemical model was developed in order to represent the dominant chemical processes. Groundwater flow conditions were reproduced by taking into account fluid-density-dependent groundwater flow and regional hydrogeologic boundary conditions. Reactive solute transport calculations were performed on the basis of the velocity field so obtained. The model was calibrated and sensitivity analyses were carried out in order to investigate the effects of heterogeneities of hydraulic conductivity in the subsurface medium. Results provided by the reactive transport model are in good agreement with much of the measured hydrochemical data. This paper emphasizes the appropriateness of the use of reactive solute transport models when water-rock interaction reactions are involved, and demonstrates what powerful tools they are for the interpretation of hydrogeological and hydrochemical data from site geological repository characterization programs, by providing a qualitative framework for data analysis and testing of conceptual assumptions in a process-oriented approach

  4. Gravimetry contributions to the study of the complex western Haouz aquifer (Morocco): Structural and hydrogeological implications

    Science.gov (United States)

    Chouikri, Ibtissam; el Mandour, Abdennabi; Jaffal, Mohammed; Baudron, Paul; García-Aróstegui, José-Luis; Manar, Ahmed; Casas, Albert

    2016-03-01

    This study provides new elements that illustrate the benefits of combining gravity, structural, stratigraphic and piezometric data for hydrogeological purposes. A combined methodology was applied to the western Haouz aquifer (Morocco), one of the main sources of water for irrigation and human consumption in the Marrakech region. First, a residual anomaly map was calculated from the Bouguer anomaly data. The computed map provided information on the ground density variation, revealing a strong control by a regional gradient. We then used various filtering techniques to delineate the major geological structures such as faults and basins: vertical and horizontal derivatives and upward continuation. This technique highlighted news structures and provided information on their dip. The gravity anomalies perfectly delineated the basement uplifts and the sedimentary thickening in depressions and grabens. The interpretation of gravimetric filtering, geological and hydrogeological data then highlighted two types of groundwater reservoirs, an unconfined aquifer hosted in conglomeratic mio-pliocene and quaternary rocks, covering the entire western Haouz and a deep confined aquifer contained in cenomanian-turonian limestone and eocene dolomitic formations in the south. Combining piezometric and residual anomaly maps revealed that groundwater flow and storage was in perfect agreement with the structures showing a negative anomaly, while structures with positive anomalies corresponded to groundwater divides. The study of gravity gradient zones by contact analysis enhanced the existing structural pattern of the study area and highlighted new structures, mainly oriented N70 and N130. The results of this study present a common framework and provide a notable step forward in the knowledge of the geometry and the groundwater flow pattern of the western Haouz aquifer, and will serve as a solid basis for a better water resource management.

  5. Summary of discrete fracture network modelling as applied to hydrogeology of the Forsmark and Laxemar sites

    International Nuclear Information System (INIS)

    Hartley, Lee; Roberts, David

    2013-04-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is responsible for the development of a deep geological repository for spent nuclear fuel. The permitting of such a repository is informed by assessment studies to estimate the risks of the disposal method. One of the potential risks involves the transport of radionuclides in groundwater from defective canisters in the repository to the accessible environment. The Swedish programme for geological disposal of spent nuclear fuel has involved undertaking detailed surface-based site characterisation studies at two different sites, Forsmark and Laxemar-Simpevarp. A key component of the hydrogeological modelling of these two sites has been the development of Discrete Fracture Network (DFN) concepts of groundwater flow through the fractures in the crystalline rocks present. A discrete fracture network model represents some of the characteristics of fractures explicitly, such as their, orientation, intensity, size, spatial distribution, shape and transmissivity. This report summarises how the discrete fracture network methodology has been applied to model groundwater flow and transport at Forsmark and Laxemar. The account has involved summarising reports previously published by SKB between 2001 and 2011. The report describes the conceptual framework and assumptions used in interpreting site data, and in particular how data has been used to calibrate the various parameters that define the discrete fracture network representation of bedrock hydrogeology against borehole geologic and hydraulic data. Steps taken to confirm whether the developed discrete fracture network models provide a description of regional-scale groundwater flow and solute transport consistent with wider hydraulic tests hydrochemical data from Forsmark and Laxemar are discussed. It illustrates the use of derived hydrogeological DFN models in the simulations of the temperate period hydrogeology that provided input to radionuclide transport

  6. Summary of discrete fracture network modelling as applied to hydrogeology of the Forsmark and Laxemar sites

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Roberts, David

    2013-04-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is responsible for the development of a deep geological repository for spent nuclear fuel. The permitting of such a repository is informed by assessment studies to estimate the risks of the disposal method. One of the potential risks involves the transport of radionuclides in groundwater from defective canisters in the repository to the accessible environment. The Swedish programme for geological disposal of spent nuclear fuel has involved undertaking detailed surface-based site characterisation studies at two different sites, Forsmark and Laxemar-Simpevarp. A key component of the hydrogeological modelling of these two sites has been the development of Discrete Fracture Network (DFN) concepts of groundwater flow through the fractures in the crystalline rocks present. A discrete fracture network model represents some of the characteristics of fractures explicitly, such as their, orientation, intensity, size, spatial distribution, shape and transmissivity. This report summarises how the discrete fracture network methodology has been applied to model groundwater flow and transport at Forsmark and Laxemar. The account has involved summarising reports previously published by SKB between 2001 and 2011. The report describes the conceptual framework and assumptions used in interpreting site data, and in particular how data has been used to calibrate the various parameters that define the discrete fracture network representation of bedrock hydrogeology against borehole geologic and hydraulic data. Steps taken to confirm whether the developed discrete fracture network models provide a description of regional-scale groundwater flow and solute transport consistent with wider hydraulic tests hydrochemical data from Forsmark and Laxemar are discussed. It illustrates the use of derived hydrogeological DFN models in the simulations of the temperate period hydrogeology that provided input to radionuclide transport

  7. On the combination of isotope hydrogeology with regional flow and transport modelling

    International Nuclear Information System (INIS)

    Barmen, G.A.

    1992-01-01

    Many different methods and tools can be used when trying to improve the information basis on which decisions are made for maintaining a quantitatively and qualitatively safe, long-term use of groundwater resources. In this thesis, classical hydrogeological examinations, hydrochemical investigations, environmental isotope studies, computerized groundwater flow modelling and radioisotope transport modelling have been applied to the large system of reservoirs in the sedimentary deposits of southwestern Scania, Sweden. The stable isotopes 2 H, 18 O and 13 C and the radioactive 3 H and 14 C have been measured and the results obtained can improve the estimations of the periods of recharge and the average circulation times of the groundwater reservoirs studied. A groundwater flow model based on finite difference techniques and a continuum approach has been modified by data from traditional hydrogeological studies. The computer code, NEWSAM, has been used to simulate steady-state and transient isotope transport in the area studied, taking into account advective transport with radioactive decay. The interacting groundwater resevoirs studied have been represented by a three-dimensional system of grids in the numerical model. A major merit of this combination of isotope hydrogeology and regional flow and transport modelling is that the isotope transport simulations help to demonstrate where zones particularly vulnerable to pollution are situated. These locations are chiefly the results of the hydrogeological characteristics traditionally examined, but they are revealed by means of the transport model. Subsequent, more detailed investigations can then be focussed primarily on these vulnerable zones. High contents of radioisotopes in the main aquifer of southwestern Scania may indicate that groundwater withdrawals have stimulated recharge from shallow aquifers and surface waters and that the risk of pollution has increased. (196 refs.) (au)

  8. Scale problems in assessment of hydrogeological parameters of groundwater flow models

    Science.gov (United States)

    Nawalany, Marek; Sinicyn, Grzegorz

    2015-09-01

    An overview is presented of scale problems in groundwater flow, with emphasis on upscaling of hydraulic conductivity, being a brief summary of the conventional upscaling approach with some attention paid to recently emerged approaches. The focus is on essential aspects which may be an advantage in comparison to the occasionally extremely extensive summaries presented in the literature. In the present paper the concept of scale is introduced as an indispensable part of system analysis applied to hydrogeology. The concept is illustrated with a simple hydrogeological system for which definitions of four major ingredients of scale are presented: (i) spatial extent and geometry of hydrogeological system, (ii) spatial continuity and granularity of both natural and man-made objects within the system, (iii) duration of the system and (iv) continuity/granularity of natural and man-related variables of groundwater flow system. Scales used in hydrogeology are categorised into five classes: micro-scale - scale of pores, meso-scale - scale of laboratory sample, macro-scale - scale of typical blocks in numerical models of groundwater flow, local-scale - scale of an aquifer/aquitard and regional-scale - scale of series of aquifers and aquitards. Variables, parameters and groundwater flow equations for the three lowest scales, i.e., pore-scale, sample-scale and (numerical) block-scale, are discussed in detail, with the aim to justify physically deterministic procedures of upscaling from finer to coarser scales (stochastic issues of upscaling are not discussed here). Since the procedure of transition from sample-scale to block-scale is physically well based, it is a good candidate for upscaling block-scale models to local-scale models and likewise for upscaling local-scale models to regional-scale models. Also the latest results in downscaling from block-scale to sample scale are briefly referred to.

  9. Scale problems in assessment of hydrogeological parameters of groundwater flow models

    Directory of Open Access Journals (Sweden)

    Nawalany Marek

    2015-09-01

    Full Text Available An overview is presented of scale problems in groundwater flow, with emphasis on upscaling of hydraulic conductivity, being a brief summary of the conventional upscaling approach with some attention paid to recently emerged approaches. The focus is on essential aspects which may be an advantage in comparison to the occasionally extremely extensive summaries presented in the literature. In the present paper the concept of scale is introduced as an indispensable part of system analysis applied to hydrogeology. The concept is illustrated with a simple hydrogeological system for which definitions of four major ingredients of scale are presented: (i spatial extent and geometry of hydrogeological system, (ii spatial continuity and granularity of both natural and man-made objects within the system, (iii duration of the system and (iv continuity/granularity of natural and man-related variables of groundwater flow system. Scales used in hydrogeology are categorised into five classes: micro-scale – scale of pores, meso-scale – scale of laboratory sample, macro-scale – scale of typical blocks in numerical models of groundwater flow, local-scale – scale of an aquifer/aquitard and regional-scale – scale of series of aquifers and aquitards. Variables, parameters and groundwater flow equations for the three lowest scales, i.e., pore-scale, sample-scale and (numerical block-scale, are discussed in detail, with the aim to justify physically deterministic procedures of upscaling from finer to coarser scales (stochastic issues of upscaling are not discussed here. Since the procedure of transition from sample-scale to block-scale is physically well based, it is a good candidate for upscaling block-scale models to local-scale models and likewise for upscaling local-scale models to regional-scale models. Also the latest results in downscaling from block-scale to sample scale are briefly referred to.

  10. Stepwise hydrogeological modeling and groundwater flow analysis on site scale (step 2)

    International Nuclear Information System (INIS)

    Onoe, Hironori; Saegusa, Hiromitsu; Endo, Yoshinobu

    2005-02-01

    One of the main goals of the Mizunami Underground Research Laboratory Project is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment. To achieve this goal, a variety of investigations are being conducted using an iterative approach. In this study, hydrogeological modeling and groundwater flow analyses have been carried out using the data from surface-based investigations at Step 2, in order to synthesize the investigation results, to evaluate the uncertainty of the hydrogeological model, and to specify items for further investigation. The results of this study are summarized as follows: 1) The understanding of groundwater flow is enhanced, and the hydrogeological model has renewed; 2) The importance of faults as major groundwater flow pathways has been demonstrated; 3) The importance of iterative approach as progress of investigations has been demonstrated; 4) Geological and hydraulic characteristics of faults with orientation of NNW, NW and NE were shown to be especially significant; 5) the hydraulic properties of the Lower Sparsely Fractured Domain (LSFD) significantly influence the groundwater flow. The main items specified for further investigations are summarized as follows: 1) Geological and hydraulic characteristics of NNW, NW and NE trending faults; 2) Hydraulic properties of the LSFD; 3) More accuracy upper and lateral boundary conditions of the site scale model. (author)

  11. A hydrogeological conceptual model of the Suio hydrothermal area (central Italy)

    Science.gov (United States)

    Saroli, Michele; Lancia, Michele; Albano, Matteo; Casale, Anna; Giovinco, Gaspare; Petitta, Marco; Zarlenga, Francesco; dell'Isola, Marco

    2017-09-01

    A hydrogeological conceptual model has been developed that describes the hydrothermal system of Suio Terme (central Italy). The studied area is located along the peri-Tyrrhenian zone of the central Apennines, between the Mesozoic and Cenozoic carbonate platform sequences of the Aurunci Mountains and the volcanic sequences of the Roccamonfina. A multi-disciplinary approach was followed, using new hydrogeological surveys, the interpretation of stratigraphic logs of boreholes and water wells, and geophysical data—seismic sections, shear-wave velocity (Vs) crustal model and gravimetric model. The collected information allowed for construction of a conceptual hydrogeological model and characterization of the hydrothermal system. The Suio hydrothermal system is strongly influenced by the Eastern Aurunci hydrostructure. Along the southeastern side, the top of the hydrostructure sinks to -1,000 m relative to sea level via a series of normal faults which give origin to the Garigliano graben. Geological and hydrogeological data strongly suggest the propagation and mixing of hot fluids, with cold waters coming from the shallow karst circuit. The aquitard distribution, the normal tectonic displacements and the fracturing of the karst hydrostructure strongly influence the hydrothermal basin. Carbon dioxide and other gasses play a key role in the whole circuit, facilitating the development of the hydrothermal system. The current level of knowledge suggests that the origin of the Suio hydrothermalism is the result of interaction between the carbonate reservoir of the Eastern Aurunci Mountains and the hot and deep crust of this peri-Tyrrhenian sector, where the Roccamonfina volcano represents the shallowest expression.

  12. GIS-based model of groundwater occurrence using geological and hydrogeological data in Precambrian Oban Massif southeastern Nigeria

    Science.gov (United States)

    Sikakwe, Gregory Udie

    2018-06-01

    This research modeled geological and hydrogeological controls on groundwater occurrence in Oban Massif and environs southeastern Nigeria. Topographical, hydrogeological, and structural maps, including lithology samples from drilled bores, well completion, and pumping test data in the study area were procured. Collection of coordinates of rock sample locations and structural data on strike and dip of rock exposures was collected. Geological and structural information collected was overlaid on the topographical, hydrogeological and structural map and digitized to produce the geological map of the study area. Thematic map on geological groundwater prospect map of the study was prepared using multicriteria evaluation. Relative weights were assigned to various rock types based on their relative contribution to groundwater occurrence and the map was reclassified using geographic information system (ArcGIS10.1) analysis. Depth ranges of the various lithologic units from drilled boreholes were used to construct lithologic correlation section of the boreholes across the study area using RockWorks16 Program software. Hydrogeological parameters such as storativity, specific capacity, transmissivity, drawdown, pumping rate, static water level, total depth, and well yield were computed from well completion reports and aquifer test. Results shows that the geologic groundwater prospect map was categorized into very good (28.73 m2), good (9.66 m2), moderate (35.08 m2), fair (49.38 m2), and poor (77.63 m2) zones. Aquifer parameters showed ranges such as (specific capacity (1.81-31.16 m2/day/m), transmissivity (0.0033-12 m2/day), storativity (9.4 × 10-3-2.3), drawdown (2.2-17.65 m), pumping rate (0.75-3.57 l/s), static water level (0-20.5 m), and total depth (3.3-61 m). Borehole depths obtained in the basement are shallower than those in the sedimentary area. Aquifer test parameters obtained from boreholes across the study indicate better correspondence with zones identified as

  13. Hydrogeological conceptual model development and numerical modelling using CONNECTFLOW, Forsmark modelling stage 2.3

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB, Taeby (Sweden)); Hartley, Lee; Jackson, Peter; Roberts, David (Serco TAP (United Kingdom)); Marsic, Niko (Kemakta Konsult AB, Stockholm (Sweden))

    2008-05-15

    Three versions of a site descriptive model (SDM) have been completed for the Forsmark area. Version 0 established the state of knowledge prior to the start of the site investigation programme. Version 1.1 was essentially a training exercise and was completed during 2004. Version 1.2 was a preliminary site description and concluded the initial site investigation work (ISI) in June 2005. Three modelling stages are planned for the complete site investigation work (CSI). These are labelled stage 2.1, 2.2 and 2.3, respectively. An important component of each of these stages is to address and continuously try to resolve discipline-specific uncertainties of importance for repository engineering and safety assessment. Stage 2.1 included an updated geological model for Forsmark and aimed to provide a feedback from the modelling working group to the site investigation team to enable completion of the site investigation work. Stage 2.2 described the conceptual understanding and the numerical modelling of the bedrock hydrogeology in the Forsmark area based on data freeze 2.2. The present report describes the modelling based on data freeze 2.3, which is the final data freeze in Forsmark. In comparison, data freeze 2.3 is considerably smaller than data freeze 2.2. Therefore, stage 2.3 deals primarily with model confirmation and uncertainty analysis, e.g. verification of important hypotheses made in stage 2.2 and the role of parameter uncertainty in the numerical modelling. On the whole, the work reported here constitutes an addendum to the work reported in stage 2.2. Two changes were made to the CONNECTFLOW code in stage 2.3. These serve to: 1) improve the representation of the hydraulic properties of the regolith, and 2) improve the conditioning of transmissivity of the deformation zones against single-hole hydraulic tests. The changes to the modelling of the regolith were made to improve the consistency with models made with the MIKE SHE code, which involved the introduction

  14. Hydrogeologic structures in two Serbian spa towns - Sijarinska Banja and Selters Banja

    Directory of Open Access Journals (Sweden)

    Marinković Goran

    2016-01-01

    Full Text Available The objective of the paper is to identify the boundaries of hydrogeologic structures in which natural mineral waters occur, using two examples: old mineral water (Sijarinska Banja and young mineral water (Selters Banja. The research addresses the distance from recharge zones, depth of occurrence, and points of discharge. Apart from the three spatial dimensions, the study also includes the time dimension - water age. The following parameters are examined: geologichydrogeologic conditions in the places of occurrence of mineral water, connection between mineral water and permeable fault zones, distance of surface water divides, previously-defined maximum possible depths of occurrence, possible flow rates, and the determined age. If the flow followed a straight line, the maximum distance of the recharge zone would be up to 7 m for the young and up to 11 km for the old mineral water. However, it is obvious that this is never the case in fractured systems, given that water travels much longer distances from the point of entry to the point of drainage from aquifers. Assessment of geologic-hydrogeologic and hydrodynamic conditions, relative to the determined age of the mineral water, leads to the conclusion that the distance between the recharge and drainage zones can be less than 5 km. The paper shows that insight into the depth of infiltration into permeable fault zones can also be gained by studying the depth of circulation relative to known hydrodynamic zones. The inference is that the largest amount of groundwater is restored in the hydrodynamic zone of slow groundwater renewal, which is below a depth of 1.5 km at Sijarinska Banja and below 1.3 km at Selters Banja.

  15. Multiple-point statistical simulation for hydrogeological models: 3-D training image development and conditioning strategies

    Science.gov (United States)

    Høyer, Anne-Sophie; Vignoli, Giulio; Mejer Hansen, Thomas; Thanh Vu, Le; Keefer, Donald A.; Jørgensen, Flemming

    2017-12-01

    Most studies on the application of geostatistical simulations based on multiple-point statistics (MPS) to hydrogeological modelling focus on relatively fine-scale models and concentrate on the estimation of facies-level structural uncertainty. Much less attention is paid to the use of input data and optimal construction of training images. For instance, even though the training image should capture a set of spatial geological characteristics to guide the simulations, the majority of the research still relies on 2-D or quasi-3-D training images. In the present study, we demonstrate a novel strategy for 3-D MPS modelling characterized by (i) realistic 3-D training images and (ii) an effective workflow for incorporating a diverse group of geological and geophysical data sets. The study covers an area of 2810 km2 in the southern part of Denmark. MPS simulations are performed on a subset of the geological succession (the lower to middle Miocene sediments) which is characterized by relatively uniform structures and dominated by sand and clay. The simulated domain is large and each of the geostatistical realizations contains approximately 45 million voxels with size 100 m × 100 m × 5 m. Data used for the modelling include water well logs, high-resolution seismic data, and a previously published 3-D geological model. We apply a series of different strategies for the simulations based on data quality, and develop a novel method to effectively create observed spatial trends. The training image is constructed as a relatively small 3-D voxel model covering an area of 90 km2. We use an iterative training image development strategy and find that even slight modifications in the training image create significant changes in simulations. Thus, this study shows how to include both the geological environment and the type and quality of input information in order to achieve optimal results from MPS modelling. We present a practical workflow to build the training image and

  16. Development of hydrogeological modelling approaches for assessment of consequences of hazardous accidents at nuclear power plants

    International Nuclear Information System (INIS)

    Rumynin, V.G.; Mironenko, V.A.; Konosavsky, P.K.; Pereverzeva, S.A.

    1994-07-01

    This paper introduces some modeling approaches for predicting the influence of hazardous accidents at nuclear reactors on groundwater quality. Possible pathways for radioactive releases from nuclear power plants were considered to conceptualize boundary conditions for solving the subsurface radionuclides transport problems. Some approaches to incorporate physical-and-chemical interactions into transport simulators have been developed. The hydrogeological forecasts were based on numerical and semi-analytical scale-dependent models. They have been applied to assess the possible impact of the nuclear power plants designed in Russia on groundwater reservoirs

  17. Hydrogeologic Framework Model for the Saturated-Zone Site-Scale Flow

    Energy Technology Data Exchange (ETDEWEB)

    Z. Peterman

    2003-03-05

    Yucca Mountain is being evaluated as a potential site for development of a geologic repository for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Ground water is considered to be the principal means for transporting radionuclides that may be released from the potential repository to the accessible environment, thereby possibly affecting public health and safety. The ground-water hydrology of the region is a result of both the arid climatic conditions and the complex geology. Ground-water flow in the Yucca Mountain region generally can be described as consisting of two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick, generally deep-lying, Paleozoic carbonate rock sequence. Locally within the potential repository area, the flow is through a vertical sequence of welded and nonwelded tuffs that overlie the carbonate aquifer. Downgradient from the site, these tuffs terminate in basin fill deposits that are dominated by alluvium. Throughout the system, extensive and prevalent faults and fractures may control ground-water flow. The purpose of this Analysis/Modeling Report (AMR) is to document the three-dimensional (3D) hydrogeologic framework model (HFM) that has been constructed specifically to support development of a site-scale ground-water flow and transport model. Because the HFM provides the fundamental geometric framework for constructing the site-scale 3D ground-water flow model that will be used to evaluate potential radionuclide transport through the saturated zone (SZ) from beneath the potential repository to down-gradient compliance points, the HFM is important for assessing potential repository system performance. This AMR documents the progress of the understanding of the site-scale SZ ground-water flow system framework at Yucca Mountain based on data through July 1999. The

  18. Hydrogeological modelling of the Atlantis aquifer for management ...

    African Journals Online (AJOL)

    2017-01-01

    Jan 1, 2017 ... technology is viewed as promising to reduce water losses and recycle water, in particular in .... recharge basins (CRBs along the coast), production boreholes and a water ..... negligible groundwater reserve. Figure 7. Figure 7 ..... VAN BREUKELEN BM (2012) A post audit and inverse modeling in reactive ...

  19. Hydrogeological modelling of the Atlantis aquifer for management ...

    African Journals Online (AJOL)

    The Atlantis Water Supply Scheme (AWSS, Western Cape, South Africa) has been in operation for about 40 years as a means to supply and augment drinking water to the town of Atlantis via managed aquifer recharge (MAR). In this study, the numerical model MODFLOW for groundwater flow and contaminant transport was ...

  20. Modelling of the site scale hydrogeological situation at Beberg using NAMMU

    International Nuclear Information System (INIS)

    Marsic, N.; Gylling, B.; Grundfelt, B.; Hartley, L.

    2000-02-01

    The purpose of the present study is to perform modelling of the site scale hydrogeological situation at Beberg using the finite element code NAMMU and compare the results with those from HYDRASTAR reported in SR 97. NAMMU was used in the large scale regional hydrogeological modelling at Beberg. The hypothetical repository layout at Beberg is based on geological data from the Finnsjoen site. Four model variants were created in this study. Two variants were compared with the deterministic freshwater case in the HYDRASTAR modelling. The other two variants were created to study the effect of a regionally distributed permeability anisotropy and variable density groundwater on the groundwater flow pattern. These processes are not considered in HYDRASTAR. The NAMMU results, including the pathline patterns, agree with those from the HYDRASTAR modelling. The effect of anisotropy and saline groundwater is found significant for the pathlines. The difference in canister flux between the NAMMU and the HYDRASTAR models is small, while the difference in travel time is more significant. The discrepancies between the results from the NAMMU and the HYDRASTAR simulations can be ascribed to the different numerical discretisation, i.e. different representation of the permeability, and the different pathline algorithms used in the two models

  1. Hydrogeology of Virginia

    Science.gov (United States)

    Nelms, David L.; Harlow, George; Bruce, T. Scott; Bailey, Christopher M.; Sherwood, W. Cullen; Eaton, L. Scott; Powars, David S.

    2016-01-01

    The hydrogeology of Virginia documented herein is in two parts. Part 1 consists of an overview and description of the hydrogeology within each regional aquifer system in the Commonwealth. Part 2 includes discussions of hydrogeologic research topics of current relevance including: 1. the Chesapeake Bay impact structure, 2. subsidence/compaction in the Coastal Plain, 3. groundwater age and aquifer susceptibility, 4. the occurrence of groundwater at depth in fractured-rock and karst terrains, and 5. hydrologic response of wells to earthquakes around the world.

  2. Hydrogeologic Model for the Gable Gap Area, Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Bjornstad, Bruce N.; Thorne, Paul D.; Williams, Bruce A.; Last, George V.; Thomas, Gregory S.; Thompson, Michael D.; Ludwig, Jami L.; Lanigan, David C.

    2010-09-30

    Gable Gap is a structural and topographic depression between Gable Mountain and Gable Butte within the central Hanford Site. It has a long and complex geologic history, which includes tectonic uplift synchronous with erosional downcutting associated with the ancestral Columbia River during both Ringold and Cold Creek periods, and by the later Ice Age (mostly glacial Lake Missoula) floods. The gap was subsequently buried and partially backfilled by mostly coarse-grained, Ice Age flood deposits (Hanford formation). Erosional remnants of both the Ringold Formation and Cold Creek unit locally underlie the high-energy flood deposits. A large window exists in the gap where confined basalt aquifers are in contact with the unconfined suprabasalt aquifer. Several paleochannels, of both Hanford and Ringold Formation age, were eroded into the basalt bedrock across Gable Gap. Groundwater from the Central Plateau presently moves through Gable Gap via one or more of these shallow paleochannels. As groundwater levels continue to decline in the region, groundwater flow may eventually be cut off through Gable Gap.

  3. Applications of hydrogeological modelling methodology using NAMMU and CONNECTFLOW. Task 1, 2, 3 and 4

    International Nuclear Information System (INIS)

    Gylling, Bjoern; Marsic, Niko; Hartley, Lee; Holton, David

    2004-11-01

    It is planned to store spent nuclear fuel at depth in crystalline rock in Sweden. Site investigations are carried out to confirm if the suggested sites are appropriate. Modelling of groundwater flow and transport may be used to aid the site investigation and is also an important part of the safety assessment of a site. A good design of the repository will enhance the safety. To support the site investigation phase and the design of underground repositories four tasks have been performed. These tasks are all related to the CONNECTFLOW groundwater flow modelling concept. CONNECTFLOW is a suite of software that includes: the continuum porous medium (CPM) concept as implemented in NAMMU, the discrete fracture network (DFN) concept as implemented in NAPSAC, the ability to nest these two representations into a single combined model. As an integrated suite of hydrogeological modelling tools CONNECTFLOW offers several benefits: the ability to nest different scales of the model from the canister-scale to the regional scale to resolve detailed flow behaviour around the waste packages in the context of the overall hydrogeological situation at a site, nesting is flexible as embedded fine-scale CPM regions can be nested within coarser CPM models, multiple DFN regions can be nested inside CPM models, and CPM models can be nested within DFN models, nesting of regions is precise in that the system is solved in a single step with equations at the interface between nested regions that ensure both continuity of pressure and conservation of mass flux between the regions. This ensures a flux-balance between the two-scales, and hence offers greater consistency than two-step nesting or only implementing pressure continuity, the ability to upscale DFN models to obtain the equivalent CPM properties on a variety of scales ensures that the modeler can move between DFN and SC concepts easily in a self-consistent way. The aim of the current tasks is to demonstrate and test the CONNECTFLOW

  4. Hydrogeological framework and geometry modeling via joint gravity and borehole parameters, the Nadhour-Sisseb-El Alem basin (central-eastern Tunisia)

    Science.gov (United States)

    Souei, Ali; Atawa, Mohamed; Zouaghi, Taher

    2018-03-01

    The Nadhour-Sisseb-El Alem basin, in the central-eastern part of Tunisia, is characterized by the scarcity of surface and subsurface water resources. Although the aquifer systems of this basin are not well understood, the scarce water resources are subject to a high rate of exploitation leading to a significant drop in the level of the water table. This work presents correlation of gravity data with hydrogeological data in order to improve the knowledge of the deep structures and aquifer systems. Various geophysical filtering techniques (e.g., residual anomaly, upward continuation, horizontal gradient, and Euler deconvolution) applied to the complete Bouguer anomaly, deduce the deep structures and geometry of the basin and highlight gravity lineaments that correspond to the tectonic features. The structural framework of the Nadhour-Sisseb-El Alem hydrogeological basin shows N-S to NNE-SSW and E-W oriented structures that should be related to tectonic deformations. In addition to the faults, previously recognized, new lineaments are highlighted by the present work. They correspond to NE-, NW-, E- and N- trending faults that have controlled structuring and geometry of the basin. 2D gravity forward modeling, based on the interpretation of geophysical, geological and hydrogeological data, led to a better understanding of the basin geometry and spatial distribution of the Campanian-Maastrichtian and Cenozoic potential aquifers. Three hydrogeological sub-basins identified include the Nadhour sub-basin in the north, the El Alem sub-Basin in the South and the Etrabelsia sub-Basin in the East. These sub-basins are marked by a thickening of deposits, are separated by the Sisseb-Fadeloun raised structure of Neogene and Quaternary thinned series. The results allow the determination of limit conditions for the basin hydrodynamic evolution and explain some anomalies on the quantity and quality of the groundwater. They provide a management guide for water resources prospection in

  5. Index-based groundwater vulnerability mapping models using hydrogeological settings: A critical evaluation

    International Nuclear Information System (INIS)

    Kumar, Prashant; Bansod, Baban K.S.; Debnath, Sanjit K.; Thakur, Praveen Kumar; Ghanshyam, C.

    2015-01-01

    Groundwater vulnerability maps are useful for decision making in land use planning and water resource management. This paper reviews the various groundwater vulnerability assessment models developed across the world. Each model has been evaluated in terms of its pros and cons and the environmental conditions of its application. The paper further discusses the validation techniques used for the generated vulnerability maps by various models. Implicit challenges associated with the development of the groundwater vulnerability assessment models have also been identified with scientific considerations to the parameter relations and their selections. - Highlights: • Various index-based groundwater vulnerability assessment models have been discussed. • A comparative analysis of the models and its applicability in different hydrogeological settings has been discussed. • Research problems of underlying vulnerability assessment models are also reported in this review paper

  6. Index-based groundwater vulnerability mapping models using hydrogeological settings: A critical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Prashant, E-mail: prashantkumar@csio.res.in [CSIR-Central Scientific Instruments Organisation, Chandigarh 160030 (India); Academy of Scientific and Innovative Research—CSIO, Chandigarh 160030 (India); Bansod, Baban K.S.; Debnath, Sanjit K. [CSIR-Central Scientific Instruments Organisation, Chandigarh 160030 (India); Academy of Scientific and Innovative Research—CSIO, Chandigarh 160030 (India); Thakur, Praveen Kumar [Indian Institute of Remote Sensing (ISRO), Dehradun 248001 (India); Ghanshyam, C. [CSIR-Central Scientific Instruments Organisation, Chandigarh 160030 (India); Academy of Scientific and Innovative Research—CSIO, Chandigarh 160030 (India)

    2015-02-15

    Groundwater vulnerability maps are useful for decision making in land use planning and water resource management. This paper reviews the various groundwater vulnerability assessment models developed across the world. Each model has been evaluated in terms of its pros and cons and the environmental conditions of its application. The paper further discusses the validation techniques used for the generated vulnerability maps by various models. Implicit challenges associated with the development of the groundwater vulnerability assessment models have also been identified with scientific considerations to the parameter relations and their selections. - Highlights: • Various index-based groundwater vulnerability assessment models have been discussed. • A comparative analysis of the models and its applicability in different hydrogeological settings has been discussed. • Research problems of underlying vulnerability assessment models are also reported in this review paper.

  7. Stability analysis of rockmass using a hydrogeologic model of groundwater flow at an underground limestone mine in Korea

    Science.gov (United States)

    Baek, H.; Kim, D.; Kim, G.; Kim, D.; Cheong, S.

    2017-12-01

    The safety and environmental issues should be addressed for sustainable mining operations. One of the key factors is the groundwater flow into underground mine workings, which will affect the overall workability and efficiency of the mining operation. Prediction of the groundwater inflow requires a detailed knowledge of the geologic conditions, including the presence of major faults and other geologic structures at the mine site. The hydrologic boundaries and depth of the phreatic surface of the mine area, as well as other relevant properties of the rockmass, are also provided. The stability of underground structures, in terms of the maximum stresses and deformations within the rockmass, can be analyzed using either the total stress or the effective stress approaches. Both the dried and saturated conditions should be considered with appropriate safety factors, as the distribution of the water pressure within the rockmass resulted from the groundwater flow directly affects the stability. In some cases, the rockmass rating systems such as the RMR and Q-systems are also applied. Various numerical codes have been used to construct the hydrogeologic models of mine sites, and the MINEDW by Itasca is one of those groundwater flow model codes developed to simulate groundwater flow related to mining. In this study, with a 3D hydrogeologic model constructed using the MINEDW for an underground limestone mine, the rate of mine water inflow and the porewater pressure were estimated. The stability of mine pillars and adits was analyzed adopting the porewater pressure and effective stress developed in the rockmass. The results were also compared with those from other 2D stability analysis procedures.

  8. Hydrogeological study

    International Nuclear Information System (INIS)

    Massa, E.; Heinzen, W.; Santana, J.

    1987-01-01

    This work shows the hydrogeological study and well drilling carried out in the Teaching Formation Institute San Jose de Mayo Province Uruguay. It was developed a geological review in the National Directorate of Geology and Mining data base as well as field working, geology and hydrogeology recognition and area well drilling inventory.

  9. Development of a Hydrogeological Model of the Borrowdale Volcanics at Sellafield

    Science.gov (United States)

    Lunn, R. J.; Lunn, A. D.; Mackay, R.

    This work has arisen out of recent developments within the radioactive waste research programme managed by Her Majesty's Inspectorate of Pollution, UK (HMIP)*, to develop an integrated flow and transport model for the potential deep radioactive waste repository at Sellafield. One of the largest sources of uncertainty in model predictions, is the characterisation of the hydrogeological properties of the underlying strata, in particular, of the Borrowdale Volcanic Group (BVG) within which the repository is to be located. Analysis of the available borehole data (that released by the proponent company, Nirex, by December 1995) for the BVG formation has indicated a dual regime consisting of flow within faults and flow within the matrix (or an equivalent porous medium containing micro-fractures). Significant relationships between permeability, depth and the presence and orientation of faults have been identified; they account for a variation of up to 6 orders of magnitude in mean permeability measurements. This can be explained in part by the effect of the orientation of the current maximum principal stress directions within the BVG: however, it is likely that permeability is also dependent on the existence of fracture families, which cannot be effectively identified from the data currently available. These analyses have enabled considerable insight to be gained into the dominant features of flow within the BVG. The conceptual hydrogeological model derived here will have a significant effect on the outcome and reliability of future radionuclide transport predictions in the Sellafield area.

  10. Uncertainty in geological and hydrogeological data

    Directory of Open Access Journals (Sweden)

    B. Nilsson

    2007-09-01

    Full Text Available Uncertainty in conceptual model structure and in environmental data is of essential interest when dealing with uncertainty in water resources management. To make quantification of uncertainty possible is it necessary to identify and characterise the uncertainty in geological and hydrogeological data. This paper discusses a range of available techniques to describe the uncertainty related to geological model structure and scale of support. Literature examples on uncertainty in hydrogeological variables such as saturated hydraulic conductivity, specific yield, specific storage, effective porosity and dispersivity are given. Field data usually have a spatial and temporal scale of support that is different from the one on which numerical models for water resources management operate. Uncertainty in hydrogeological data variables is characterised and assessed within the methodological framework of the HarmoniRiB classification.

  11. Hydrogeophysics and remote sensing for the design of hydrogeological conceptual models in hard rocks - Sardón catchment (Spain)

    Science.gov (United States)

    Francés, Alain P.; Lubczynski, Maciek W.; Roy, Jean; Santos, Fernando A. M.; Mahmoudzadeh Ardekani, Mohammad R.

    2014-11-01

    Hard rock aquifers are highly heterogeneous and hydrogeologically complex. To contribute to the design of hydrogeological conceptual models of hard rock aquifers, we propose a multi-techniques methodology based on a downward approach that combines remote sensing (RS), non-invasive hydrogeophysics and hydrogeological field data acquisition. The proposed methodology is particularly suitable for data scarce areas. It was applied in the pilot research area of Sardón catchment (80 km2) located west of Salamanca (Spain). The area was selected because of hard-rock hydrogeology, semi-arid climate and scarcity of groundwater resources. The proposed methodology consisted of three main steps. First, we detected the main hydrogeological features at the catchment scale by processing: (i) a high resolution digital terrain model to map lineaments and to outline fault zones; and (ii) high-resolution, multispectral satellite QuickBird and WorldView-2 images to map the outcropping granite. Second, we characterized at the local scale the hydrogeological features identified at step one with: i) ground penetrating radar (GPR) to assess groundwater table depth complementing the available monitoring network data; ii) 2D electric resistivity tomography (ERT) and frequency domain electromagnetic (FDEM) to retrieve the hydrostratigraphy along selected survey transects; iii) magnetic resonance soundings (MRS) to retrieve the hydrostratigraphy and aquifer parameters at the selected survey sites. In the third step, we drilled 5 boreholes (25 to 48 m deep) and performed slug tests to verify the hydrogeophysical interpretation and to calibrate the MRS parameters. Finally, we compiled and integrated all acquired data to define the geometry and parameters of the Sardón aquifer at the catchment scale. In line with a general conceptual model of hard rock aquifers, we identified two main hydrostratigraphic layers: a saprolite layer and a fissured layer. Both layers were intersected and drained by

  12. Coupled geochemical/hydrogeological modelling to assess the origin of salinity at the Tono area (Japan)

    International Nuclear Information System (INIS)

    Guimera, Jordi; Ruiz, Eduardo; Luna, Miguel; Arcos, David; Jordana, Salvador; Saegusa, Hiromitsu

    2005-01-01

    Numerical models are powerful tools for the characterization of groundwater flow, especially when integrating geochemical and hydrogeological data. This paper describes modeling exercises performed in the area surrounding the Mizunami Underground Research Laboratory (MIU) Construction Site in central Japan. A particular issue being investigated at the MIU Site is the presence of saline water detected at depth in certain boreholes. The main objective of this study is to develop conceptual physical models for the origin of this salinity and to test these conceptual models using numerical modeling techniques. One scenario being investigated is that the saline fluids represent residual Miocene age seawater which has been slightly altered by water-rock interactions. It is likely that during Miocene times, seawater inundated the Tono area. This hypothesis is partially supported by carbon and oxygen isotopic data of the calcite fracture filling materials. (author)

  13. Efforts toward validation of a hydrogeological model of the Asse area

    International Nuclear Information System (INIS)

    Fein, E.; Klarr, K.; von Stempel, C.

    1995-01-01

    The Asse anticline (8 x 3 km) near Braunschweig (Germany) is part of the Subhercynian Basin and is characterized by a NW-SE orientation. In 1965, the GSF Research Center for Environment and Health acquired the former Asse salt mine on behalf of the FRG in order to carry out research and development work with a view of safe disposal of radioactive waste. To assess long term safety and predict groundwater flow nd radionuclide transport, an experimental program was carried out to validate hydrogeological models of the overburden of the Asse salt mine and to provide these with data. Five deep boreholes from 700 to 2250 m and 4 geological exploration shallow boreholes where drilled in the Asse area. Moreover, 19 piezometers and 27 exploration boreholes were sunk to perform pumping and tracer tests and yearly borehole loggings. In the end, about 50 boreholes and wells, 25 measuring weirs and about 70 creeks, drainage and springs were available to collect hydrological data and water samples. The different experiments and their evaluations as well as different hydrogeological models are presented and discussed. (J.S.). 9 refs., 7 figs

  14. On the significance of contaminant plume-scale and dose-response models in defining hydrogeological characterization needs

    Science.gov (United States)

    de Barros, F.; Rubin, Y.; Maxwell, R.; Bai, H.

    2007-12-01

    Defining rational and effective hydrogeological data acquisition strategies is of crucial importance since financial resources available for such efforts are always limited. Usually such strategies are developed with the goal of reducing uncertainty, but less often they are developed in the context of the impacts of uncertainty. This paper presents an approach for determining site characterization needs based on human health risk factors. The main challenge is in striking a balance between improved definition of hydrogeological, behavioral and physiological parameters. Striking this balance can provide clear guidance on setting priorities for data acquisition and for better estimating adverse health effects in humans. This paper addresses this challenge through theoretical developments and numerical testing. We will report on a wide range of factors that affect the site characterization needs including contaminant plume's dimensions, travel distances and other length scales that characterize the transport problem, as well as health risk models. We introduce a new graphical tool that allows one to investigate the relative impact of hydrogeological and physiological parameters in risk. Results show that the impact of uncertainty reduction in the risk-related parameters decreases with increasing distances from the contaminant source. Also, results indicate that human health risk becomes less sensitive to hydrogeological measurements when dealing with ergodic plumes. This indicates that under ergodic conditions, uncertainty reduction in human health risk may benefit from better understanding of the physiological component as opposed to a detailed hydrogeological characterization

  15. Hydrogeological bedrock inferred from electrical resistivity model in Taichung Basin, Taiwan

    Science.gov (United States)

    Chiang, C. W.; Chang, P. Y.; Chang, L. C.

    2015-12-01

    The four-year project of the study of groundwater hydrogeology and recharge model was indicated by Central Geological Survey, MOEA, Taiwan (R.O.C.) to evaluate recharge groundwater areas in Taiwan where included Taipei, Taichung Basins, Lanyang and Chianan Plains. The groundwater recharge models of Lanyang Plain and Taipei Basin have successfully been estimated in two years ago (2013-2014). The third year of the project integrates with geophysical, geochemistry, and hydrogeology models to estimate the groundwater recharge model in Taichung Basin region. Taichung Basin is mainly covered by Pre-Pleistocene of thick gravel, sandy and muddy sediment rocks within a joint alluvial fan, whereas the depth of the hydrological bedrock remains uncertain. Two electrical resistivity geophysical tools were carried out utilizing direct current resistivity and audio-magnetotelluric (AMT) explorations, which could ideally provide the depth resolutions from shallow to depth for evaluating the groundwater resources. The study has carried out 21 AMT stations in the southern Taichung Basin in order to delineate hydrological bedrock in the region. All the AMT stations were deployed about 24 hours and processed with remote reference technique to reduce culture noises. The quality of most stations shows acceptable in the area which two stations were excluded due to near-field source effect in the southwestern basin. The best depth resolution is identified in 500 meters for the model. The preliminary result shows that the depths of the bedrock gradually changes from southern ~20 m toward to ~400 m in central, and eastern ~20 m to 180 m in the western basin inferred from the AMT model. The investigation shows that AMT method could be a useful geophysical tool to enhance the groundwater recharge model estimation without dense loggings in the region.

  16. A conceptual hydrogeological model of ophiolitic aquifers (serpentinised peridotite): The test example of Mt. Prinzera (Northern Italy)

    NARCIS (Netherlands)

    Segadelli, Stefano; Vescovi, Paolo; Ogata, Kei; Chelli, Alessandro; Zanini, Andrea; Boschetti, Tiziano; Petrella, Emma; Toscani, Lorenzo; Gargini, Alessandro; Celico, Fulvio

    2017-01-01

    © 2016 John Wiley & Sons, Ltd.The main aim of this study is the experimental analysis of the hydrogeological behaviour of the Mt. Prinzera ultramafic massif in the northern Apennines, Italy. The analysed multidisciplinary database has been acquired through (a) geologic and structural survey; (b)

  17. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  18. Large scale hydrogeological modelling of a low-lying complex coastal aquifer system

    DEFF Research Database (Denmark)

    Meyer, Rena

    2018-01-01

    intrusion. In this thesis a new methodological approach was developed to combine 3D numerical groundwater modelling with a detailed geological description and hydrological, geochemical and geophysical data. It was applied to a regional scale saltwater intrusion in order to analyse and quantify...... the groundwater flow dynamics, identify the driving mechanisms that formed the saltwater intrusion to its present extent and to predict its progression in the future. The study area is located in the transboundary region between Southern Denmark and Northern Germany, adjacent to the Wadden Sea. Here, a large-scale...... parametrization schemes that accommodate hydrogeological heterogeneities. Subsequently, density-dependent flow and transport modelling of multiple salt sources was successfully applied to simulate the formation of the saltwater intrusion during the last 4200 years, accounting for historic changes in the hydraulic...

  19. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    Science.gov (United States)

    Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided

  20. Hydrogeological study

    International Nuclear Information System (INIS)

    Massa, E.; Carrion, R.

    1987-01-01

    This work refers to the hydrogeological study about underground water to domestic uses. It was required by Artigas intendence of Uruguay, in the rural school 10, located belongs to the Chiflero zone around the capital of the Artigas Province.

  1. Stepwise hydrogeological modeling and groundwater flow analysis on site scale (The former part of the step 3)

    International Nuclear Information System (INIS)

    Onoe, Hironori; Saegusa, Hiromitsu; Endo, Yoshinobu

    2005-07-01

    One of the main goals of the Mizunami Underground Research Laboratory Project is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment. To achieve this goal, a variety of investigations are being conducted using an iterative approach. In this study, hydrogeological modeling and groundwater flow analyses have been carried out using the data from surface-based investigations at the former part of Step 3 (deep borehole investigations without vertical seismic profiling investigations), in order to synthesize the investigation results, to evaluate the uncertainty of the hydrogeological model, and to specify items for further investigation. The results of this study are summarized as follows: 1) The uncertainty of hydrogeological model of the site scale is decreased as stepwise research; 2) Borehole investigations combined with hydraulic monitoring are useful for decreasing the uncertainty of hydrogeological model; The main items specified for further investigations are summarized as follows: 1) Trend, length, and hydraulic parameters of faults confirmed in the MIU construction site; 2) Shape of boundary of geological layer, and hydraulic parameters of rock; 3) Hydraulic head distribution of deep underground. (author)

  2. Integrating advanced 3D Mapping into Improved Hydrogeologic Frameworks, a Future path for Groundwater Modeling? Results from Western Nebraska

    Science.gov (United States)

    Cannia, J. C.; Abraham, J. D.; Peterson, S. M.; Sibray, S. S.

    2012-12-01

    The U.S. Geological Survey and its partners have collaborated to provide an innovative, advanced 3 dimensional hydrogeologic framework which was used in a groundwater model designed to test water management scenarios. Principal aquifers for the area mostly consist of Quaternary alluvium and Tertiary-age fluvial sediments which are heavily used for irrigation, municipal and environmental uses. This strategy used airborne electromagnetic (AEM) surveys, validated through sensitivity analysis of geophysical and geological ground truth to provide new geologic interpretation to characterize the hydrogeologic framework in the area. The base of aquifer created through this work leads to new interpretations of saturated thickness and groundwater connectivity to the surface water system. The current version of the groundwater model which uses the advanced hydrogeologic framework shows a distinct change in flow path orientation, timing and amount of base flow to the streams of the area. Ongoing efforts for development of the hydrogeologic framework development include subdivision of the aquifers into new hydrostratigraphic units based on analysis of geophysical and lithologic characteristics which will be incorporated into future groundwater models. The hydrostratigraphic units are further enhanced by Nuclear Magnetic Resonance (NMR) measurements to characterize aquifers. NMR measures the free water in the aquifer in situ allowing for a determination of hydraulic conductivity. NMR hydraulic conductivity values will be mapped to the hydrostratigraphic units, which in turn are incorporated into the latest versions of the groundwater model. The addition of innovative, advanced 3 dimensional hydrogeologic frameworks, which incorporates AEM and NMR, for groundwater modeling, has a definite advantage over traditional frameworks. These groundwater models represent the natural system at a level of reality not achievable by other methods, which lead to greater confidence in the

  3. Modeling of 3d Space-time Surface of Potential Fields and Hydrogeologic Modeling of Nuclear Waste Disposal Sites

    Science.gov (United States)

    Shestopalov, V.; Bondarenko, Y.; Zayonts, I.; Rudenko, Y.

    extension and consolidation are identified. These data correlate with results of seismic and mining works. Hydrogeological 3D Model. The hydrogeological 3D Model de- velopment starts from the upper hydrodynamic zone, for which the data are available on hydraulic parameters. After calibration of the upper model elements, the deep part of the model is developed using data about the permeability structure of the crystalline rock massif, obtained from the 3D STSM. The results of analysis and the discrepancy of hydrodynamic regime modeling are used to refine the 3D Model for the rocks per- meability structure. This iterative process of consecutive correlation and refinement of model may be repeated many times. As a result of this technique implementation, the areas of active and very slow water exchange are found, and the system is revealed of vertically alternating zones of enhanced filtration and weak permeability. Based on these data, the sites are pre-selected, which are prospective for subsequently more detailed works on grounding the possibility of nuclear wastes isolation in geological formations. The use of the methodology described above is expedient at the stage of more detailed works, if the corresponding complex is provided of geophysical, hydro- geological, field testing and modeling investigations. Summary Successful testing of 3D STSM technology was carried out starting from 1997 till 1999 by the Ministry of Emergency Situations and Nuclear Safety of Ukraine during the realization of the project "Choosing the favorable geological structures for safe isolation of dangerous nuclear wastes of Chernobyl NPP". The performed works enabled us to draw prelim- inary 3D Space-Time Surface Model, structural-kinematic and geodynamic map of 2 the region understudy. As a result, two regions were selected, which are characterized by existence of geodynamic processes of cooling, thermal shrinkage and structural substance compression of geospace medium. Such regions seem to be the

  4. Hydrogeological measurements and modelling of the Down Ampney Fault Research site

    International Nuclear Information System (INIS)

    Brightman, M.A.; Sen, M.A.; Abbott, M.A.W.

    1991-01-01

    The British Geological Survey, in cooperation with ISMES of Italy, is carrying out a research programme into the properties of faults cutting clay formations. The programme has two major aims; firstly, to develop geophysical techniques to locate and measure the geophysical properties of a fault in clay; secondly, to measure the hydrogeological properties of the fault and its effect on the groundwater flow pattern through a sequence of clays and aquifers. Analysis of pulse tests performed in the clays at the Down Ampney Research site gave values of hydraulic conductivity ranging from 5 x 10 -12 to 2 x 10 -8 ms -1 . Numerical modelling of the effects of groundwater abstraction from nearby wells on the site was performed using the finite element code FEMWATER. The results are discussed. (Author)

  5. SITE-94. Discrete-feature modelling of the Aespoe Site: 3. Predictions of hydrogeological parameters for performance assessment

    International Nuclear Information System (INIS)

    Geier, J.E.

    1996-12-01

    A 3-dimensional, discrete-feature hydrological model is developed. The model integrates structural and hydrologic data for the Aespoe site, on scales ranging from semi regional fracture zones to individual fractures in the vicinity of the nuclear waste canisters. Predicted parameters for the near field include fracture spacing, fracture aperture, and Darcy velocity at each of forty canister deposition holes. Parameters for the far field include discharge location, Darcy velocity, effective longitudinal dispersion coefficient and head gradient, flow porosity, and flow wetted surface, for each canister source that discharges to the biosphere. Results are presented in the form of statistical summaries for a total of 42 calculation cases, which treat a set of 25 model variants in various combinations. The variants for the SITE-94 Reference Case model address conceptual and parametric uncertainty related to the site-scale hydrogeologic model and its properties, the fracture network within the repository, effective semi regional boundary conditions for the model, and the disturbed-rock zone around the repository tunnels and shafts. Two calculation cases simulate hydrologic conditions that are predicted to occur during future glacial episodes. 30 refs

  6. Assessment of site-scale hydrogeological modelling possibilities in crystalline hard rock for safety appraisal

    Energy Technology Data Exchange (ETDEWEB)

    Geier, J. [Cleanwater Hardrock Consulting, Corvallis, OR (United States); Luukkonen, A.

    2012-09-15

    This review describes the state-of-the-art in hydrogeological modelling for safety-case studies related to spent-fuel repositories in crystalline hard rock, focusing on issues of relevance for the KBS-3 disposal concept in Nordic environments. The review includes a survey of model capabilities and assumptions regarding groundwater flow processes, geological and excavation-related features, and boundary conditions for temperate, periglacial, and glacial climates. Modelling approaches are compared for research sites including the Stripa mine (Sweden), the Grimsel Test Site (Switzerland), the Whiteshell Underground Research Laboratory (Canada), the Aspo Hard Rock Laboratory and Simpevarp-Laxemar site (Sweden), the Forsmark site (Sweden), the Waste Isolation Pilot Plant site (USA), and Olkiluoto (Finland). Current hydrogeological models allow realistic representations, but are limited by availability of data to constrain their properties. Examples of calibrations of stochastic representations of heterogeneity are still scarce. Integrated models that couple flow and non-reactive transport are now well established, particularly those based on continuum representations. Models that include reactive transport are still mainly in the realm of research tools. Thus far, no single software tool allows fully coupled treatment of all relevant thermal, hydraulic, mechanical, and chemical transport processes in the bedrock, together with climate-related physical processes at the ground surface, and with explicit treatment of bedrock heterogeneity. Hence practical applications require combinations of models based on different simplifications. Key improvements can be expected in treatment of the unsaturated zone, simulation of heterogeneous infiltration at the surface, and hydromechanical coupling. Significant advances have already been made in the amounts and types of data that can be used in site-scale models, including large datasets to define topography and other surface

  7. An integrated model for simulating nitrogen trading in an agricultural catchment with complex hydrogeology.

    Science.gov (United States)

    Cox, T J; Rutherford, J C; Kerr, S C; Smeaton, D C; Palliser, C C

    2013-09-30

    Nitrogen loads to several New Zealand lakes are dominated by nonpoint runoff from pastoral farmland which adversely affects lake water quality. A 'cap and trade' scheme is being considered to help meet targets set for nitrogen loads to Lake Rotorua, and a numerical model, NTRADER, has been developed to simulate and compare alternative schemes. NTRADER models both the geophysics of nitrogen generation and transport, including groundwater lag times, and the economics of 'cap and trade' schemes. It integrates the output from several existing models, including a farm-scale nitrogen leaching and abatement model, a farm-scale management economic model, and a catchment-scale nitrogen transport model. This paper details modeling methods and compares possible trading program design features for the Lake Rotorua catchment. Model simulations demonstrate how a cap and trade program could be used to effectively achieve challenging environmental goals in the targeted catchment. However, results also show that, due to complex hydrogeology, satisfactory environmental outcomes may be not achieved unless groundwater lag times are incorporated into the regulatory scheme. One way to do this, as demonstrated here, would be to explicitly include lag times in the cap and trade program. The utility of the model is further demonstrated by quantifying relative differences in abatement costs across potential regulatory schemes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Methodology for deriving hydrogeological input parameters for safety-analysis models - application to fractured crystalline rocks of Northern Switzerland

    International Nuclear Information System (INIS)

    Vomvoris, S.; Andrews, R.W.; Lanyon, G.W.; Voborny, O.; Wilson, W.

    1996-04-01

    Switzerland is one of many nations with nuclear power that is seeking to identify rock types and locations that would be suitable for the underground disposal of nuclear waste. A common challenge among these programs is to provide engineering designers and safety analysts with a reasonably representative hydrogeological input dataset that synthesizes the relevant information from direct field observations as well as inferences and model results derived from those observations. Needed are estimates of the volumetric flux through a volume of rock and the distribution of that flux into discrete pathways between the repository zones and the biosphere. These fluxes are not directly measurable but must be derived based on understandings of the range of plausible hydrogeologic conditions expected at the location investigated. The methodology described in this report utilizes conceptual and numerical models at various scales to derive the input dataset. The methodology incorporates an innovative approach, called the geometric approach, in which field observations and their associated uncertainty, together with a conceptual representation of those features that most significantly affect the groundwater flow regime, were rigorously applied to generate alternative possible realizations of hydrogeologic features in the geosphere. In this approach, the ranges in the output values directly reflect uncertainties in the input values. As a demonstration, the methodology is applied to the derivation of the hydrogeological dataset for the crystalline basement of Northern Switzerland. (author) figs., tabs., refs

  9. Quantification of the electrical anisotropy in the pro­cess of numerical modelling for hydrogeological characterization

    Science.gov (United States)

    Gernez, S.; Bouchedda, A.; Gloaguen, E.; Paradis, D.

    2017-12-01

    In order to understand groundwater flow and contaminant transport in the subsurface, it is important to characterize accurately its permeability. Hydrogeophysics, which involves the use of geophysical data to infer the hydraulic properties of the subsurface, is a relatively new geoscience field that is promising to improve hydrogeological characterization. Amongst existing geophysical methods, Electrical Resistivity Tomography (ERT), that can cover a large continuous underground surface or volume, has been widely applied. The inversed electrical resistivities obtained are related to the permeabilities by different means and the resistivity anisotropy should theoretically be a proxy to the permeability anisotropy. However, the existing hydrogeophysical inversion tools usually do not take into account anisotropy. In this paper, we present an anisotropic forward- and inverse-problem 2.5D finite-differences electrical study, which allows to produce improved anisotropic permeability characterization models. We first detail the theoretical basis of the anisotropic ERT, which introduces a resistivity tensor in place of a scalar, and its numerical implementation. After that, we build a synthetic case presenting a simple but representative geological structure in two horizontal homogeneous and anisotropic beds: the numerical forward modelling shows a difference of less than 1% with the analytical solution; the inverse modelling is able to reproduce the initial structure well, with resistivity values close to the initial synthetic model (see attached figure). We show that by using both surface and single-borehole arrays, we overcome the equivalence principle making sure that a unique solution arises. The latter cannot be obtained when considering the media isotropic as typically assumed with existing inversion tools. Finally, we discuss the consequences of the integration of anisotropy in the data-integrated characterization of the permeability. We show that it has a

  10. 3D hydrogeological model of the Lower Yarmouk Gorge, Jordan Rift Valley

    Science.gov (United States)

    Magri, Fabien; Inbar, Nimrod; Möller, Peter; Raggad, Marwan; Rödiger, Tino; Rosenthal, Eliahu; Shentsis, Izabela; Tzoufka, Kalliopi; Siebert, Christian

    2017-04-01

    The Lower Yarmouk Gorge (LYG) lies on the eastern margin of the lower Jordan Rift Valley (JRV), bounded to the south by the Ajlun and to the north by the Golan Heights. It allows the outflow of the Yarmouk drainage basin and flow into the Jordan River, a few kilometers south of Lake Tiberias. The main aquifer system of the LYG is built mostly of Cretaceous sandstones and carbonates confined by Maastrichtian aquiclude. Fissures allow hydraulic connections between the major water-bearing formations from Quaternary to Upper Cretaceous age. It is supposed that the gorge acts as the mixing zone of two crossing flow pathways: N-S from the Hermon Mountains and from the Ajlun Dome, and E-W from Jebel al Arab Mountain in Syria (also known as Huran Plateau or Yarmouk drainage basin). As a result, several springs can be found within the gorge. These are characterized by widespread temperatures (20 - 60 °C) which indicate that, beside the complex regional flow, also ascending thermal waters control the hydrologic behavior of the LYG. Previous simulations based on a conceptual simplified 3D model (Magri et al., 2016) showed that crossing flow paths result from the coexistence of convection, that can develop for example along NE-SW oriented faults within the gorge or in permeable aquifers below Maastrichtian aquiclude, and additional flow fields that are induced by the N-S topographic gradients. Here we present the first 3D hydrogeological model of the entire LYG that includes structural features based on actual logs and interpreted seismic lines from both Israeli and Jordanian territories. The model distinguishes seven units from upper Eocene to the Lower Triassic, accounting for major aquifers, aquicludes and deep-cutting faults. Recharges are implemented based on the numerical representation developed by Shentsis (1990) that considers relationships between mean annual rain and topographic elevation. The model reveals that topography-driven N-S and E-W flows strongly control

  11. A revised conceptual hydrogeologic model of a crystalline rock environment, Whiteshell research area, southeastern Manitoba, Canada

    International Nuclear Information System (INIS)

    Stevenson, D.R.; Brown, A.; Davison, C.C.; Gascoyne, M.; McGregor, R.G.; Ophori, D.U.; Scheier, N.W.; Stanchell, F.; Thorne, G.A.; Tomsons, D.K.

    1996-04-01

    A revised conceptual hydrogeologic model of regional groundwater flow in the crystalline rocks of the Whiteshell Research Area (WRA) has been developed by a team of AECL geoscientists. The revised model updates an earlier model developed in 1985, and has a much broader database. This database was compiled from Landsat and airborne radar images, geophysical surveys and surface mapping, and from analyses of fracture logs, hydraulic tests and water samples collected from a network of deep boreholes drilled across the WRA. The boundaries of the revised conceptual model were selected to coincide with the natural hydraulic boundaries assumed for the regional groundwater flow systems in the WRA. The upper and lower boundaries are the water table and a horizontal plane 4 km below ground surface. For modelling purposes the rocks below 4 km are considered to be impermeable. The rocks of the modelled region were divided on the basis of fracture characteristics into three categories: fractured zones (FZs); moderately fractured rock (MFR); and sparsely fractured rock (SFR). The FZs are regions of intensely fractured rock. Seventy-six FZs were selected to form the fault framework within the revised conceptual model. The physical rock/water properties of the FZs, MFR and SFR were selected by analysis of field data from hydraulic and tracer tests, laboratory test data and water quality data. These properties were used to define a mathematical groundwater flow model of the WRA using AECL's MOTIF finite element code (Ophori et al. 1995, 1996). (author). 29 refs., 4 tabs., 12 figs

  12. Inverse modeling for the determination of hydrogeological parameters of a two-phase system

    International Nuclear Information System (INIS)

    Finsterle, S.

    1993-02-01

    Investigations related to the disposal of radioactive wastes in Switzerland consider formations containing natural gas as potential rocks for a repository. Moreover, gas generation in the repository itself may lead to an unsaturated zone of significant extent and impact on the system's performance. The site characterization procedure requires the estimation of hydraulic properties being used as input parameters for a two-phase two-component numerical simulator. In this study, estimates of gas-related formation parameters are obtained by inverse modeling. Based on discrete observations of the system's state, model parameters can be estimated within the framework of a given conceptual model by means of optimization techniques. This study presents the theoretical background that related field data to the model parameters. A parameter estimation procedure is proposed and implemented in a computer code for automatic model calibration. This tool allows identification of key parameters affecting flow of water and gas in porous media. The inverse modeling approach is verified using data from a synthetic laboratory experiment. In addition, the Gas test performed at the Grimsel Test Site is analyzed in order to demonstrate the applicability of the proposed procedure when used with data from a real geologic environment. Estimation of hydrogeologic parameters by automatic model calibration improves the understanding of the two-phase flow processes and therefore increases the reliability of the subsequent simulation runs. (author) figs., tabs., refs

  13. Inverse modeling for the determination of hydrogeological parameters of a two-phase system

    International Nuclear Information System (INIS)

    Finsterle, S.

    1993-01-01

    Investigations related to the disposal of radioactive wastes in Switzerland are dealing with formations containing natural gas as potential host rock for a repository. Moreover, gas generation in the repository itself may lead to an unsaturated zone of significant extent and impact on the system's performance. The site characterization procedure requires the estimation of hydraulic properties being used as input parameters for a two-phase two-component numerical simulator. In this study, estimates of gas related formation parameters are obtained by inverse modeling. Based on discrete observations of the system's state, model parameters can be estimated within the framework of a given conceptual model by means of optimization techniques. This study presents the theoretical background that relates field data to the model parameters. A parameter estimation procedure is proposed and implemented in a computer code for automatic model calibration. This tool allows to identify key parameters affecting flow of water and gas in porous media. The inverse modeling approach is verified using data from a synthetic laboratory experiment. In addition, the Gastest performed at the Grimsel Test Site is analyzed in order to demonstrate the applicability of the proposed procedure when used with data from a real geologic environment. Estimation of hydrogeologic parameters by automatic model calibration improves the understanding of the two-phase flow processes and therefore increases the reliability of the subsequent simulation runs. (author) figs., tabs., 100 refs

  14. Preliminary simulation model to determine ground-water flow and ages within the Palo Duro Basin hydrogeologic province

    International Nuclear Information System (INIS)

    Atwood, H.; Picking, L.

    1986-01-01

    Ground-water flow through the Palo Duro and Tucumcari Basins is simulated by developing a hydrogeolgic profile and applying a cross-sectional, finite-element, numerical model to the profile. The profile is 350 miles long and 2 miles deep and extends from east-central New Mexico to the Texas-Oklahoma border. It is comprised of hydrogeologic units that are identified from geophysical well logs, sample logs, and core descriptions. A hydrogeologic unit as used in this profile is a physically continuous rock sequence with hydrologic properties that are relatively consistent throughout and distinct from surrounding units. The resulting hydrogeologic profile, with the exception of the Ogallala Formation and the Dockum Group, is discretized into a 6000-element mesh and a 22,000-element mesh. Permeability values assigned to hydrogeologic units were, in part, calculated from drill stem tests conducted throughout the Palo Duro Basin. Ground-water age and travel paths are determined by applying Darcy's equation to selected flow lines. The 170 million-year age determined from ground-water at points within the Wolfcamp Series compares favorably with the geochemical data for this region. An age of 188 million years is determined for the Pennsylvanian granite wash

  15. A comparison of results from groundwater flow modelling for two conceptual hydrogeological models for the Konrad site

    International Nuclear Information System (INIS)

    Arens, G.; Fein, E.; Storck, R.

    1991-01-01

    Radioactive wastes with negligible heat production are planned to be disposed of into a deep iron ore formation at the Konrad site. This repository will be bedded in a low permeable formation called Oxfordian in a depth of 800 - 1300 m below the surface. The host formation is largely covered with clay of a few hundred meters thickness. The hydrogeological model area has an extension of 14 km in the west-east and 47 km in the north-south direction. The geological formations within the model area are disturbed by several fractured zones with a vertical extension of several hundred meters intersecting different horizontal layers. Due to this fact two hydrogeological models have been developed: The first one handles the fractured zones by globally increased permeabilities of the geological formations. The second handles the fractured zones by locally increased permeabilities, leaving the permeabilities of undisturbed areas unchanged. For both models, groundwater flow calculations have been carried out including parameter variations of permeability values. The results of the calculations are presented as flow paths which are compared for both models. Computer code used: SWIFT. 1 fig., 3 tabs., 3 refs

  16. Numerical groundwater-flow model of the Minnelusa and Madison hydrogeologic units in the Rapid City area, South Dakota

    Science.gov (United States)

    Putnam, Larry D.; Long, Andrew J.

    2009-01-01

    The city of Rapid City and other water users in the Rapid City area obtain water supplies from the Minnelusa and Madison aquifers, which are contained in the Minnelusa and Madison hydrogeologic units. A numerical groundwater-flow model of the Minnelusa and Madison hydrogeologic units in the Rapid City area was developed to synthesize estimates of water-budget components and hydraulic properties, and to provide a tool to analyze the effect of additional stress on water-level altitudes within the aquifers and on discharge to springs. This report, prepared in cooperation with the city of Rapid City, documents a numerical groundwater-flow model of the Minnelusa and Madison hydrogeologic units for the 1,000-square-mile study area that includes Rapid City and the surrounding area. Water-table conditions generally exist in outcrop areas of the Minnelusa and Madison hydrogeologic units, which form generally concentric rings that surround the Precambrian core of the uplifted Black Hills. Confined conditions exist east of the water-table areas in the study area. The Minnelusa hydrogeologic unit is 375 to 800 feet (ft) thick in the study area with the more permeable upper part containing predominantly sandstone and the less permeable lower part containing more shale and limestone than the upper part. Shale units in the lower part generally impede flow between the Minnelusa hydrogeologic unit and the underlying Madison hydrogeologic unit; however, fracturing and weathering may result in hydraulic connections in some areas. The Madison hydrogeologic unit is composed of limestone and dolomite that is about 250 to 610 ft thick in the study area, and the upper part contains substantial secondary permeability from solution openings and fractures. Recharge to the Minnelusa and Madison hydrogeologic units is from streamflow loss where streams cross the outcrop and from infiltration of precipitation on the outcrops (areal recharge). MODFLOW-2000, a finite-difference groundwater

  17. Bedrock Hydrogeology - Site investigation SFR

    Energy Technology Data Exchange (ETDEWEB)

    Oehman, Johan [Geosigma AB, Stockholm (Sweden); Bockgaard, Niclas [Golder Assoes AB, Stockholm (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden)

    2012-06-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). This report presents an integrated analysis and interpretation of the historic data from the existing SFR (1980 - 1986), as well as, from the recent investigations for the planned extension of SFR (2008 - 2009). The primary objective is to establish a conceptual hydrogeological model of the bedrock for safety assessment and design analyses. Analyses and interpretations of all (old and new) hydraulic data are analysed with regard to the recently developed geological deformation zone model of the SFR model domain (Curtis et al. 2011). The methodology used by Curtis et al. (2011) has focussed on magnetic anomalies and deformation zone intercepts with ground surface greater than 300 m. In the hydrogeological modelling, however, it has been considered important to also explore the occurrence and characteristics of shallow horizontal to sub-horizontal structures (sheet joints) inside the SFR model domain. Such structures are of considerable importance for the hydrogeology in the uppermost c. 150 m of bedrock in SDM-Site Forsmark; hence the term Shallow Bedrock Aquifer was used to emphasise their hydraulic significance. In this study, the acronym SBA-structure is used for horizontal structures identified in the hydrogeological modelling. In addition to the predominantly steeply dipping geological deformation zones, eight so-called SBA-structures are modelled deterministically in the hydrogeological model. The SBA-structures are envisaged as hydraulically heterogeneous and composed of clusters of minor gently dipping to horizontal fractures rather than extensive single features. A type of structures that is partly included in the definition of the SBA-structures is the Unresolved Possible Deformations Zone (Unresolved PDZ) intercepts identified by Curtis et al. (2011). The Unresolved

  18. Numerical modelling of levee stability based on coupled mechanical, thermal and hydrogeological processes

    Directory of Open Access Journals (Sweden)

    Dwornik Maciej

    2016-01-01

    Full Text Available The numerical modelling of coupled mechanical, thermal and hydrogeological processes for a soil levee is presented in the paper. The modelling was performed for a real levee that was built in Poland as a part of the ISMOP project. Only four parameters were changed to build different flood waves: the water level, period of water increase, period of water decrease, and period of low water level after the experiment. Results of numerical modelling shows that it is possible and advisable to calculate simultaneously changes of thermal and hydro-mechanical fields. The presented results show that it is also possible to use thermal sensors in place of more expensive pore pressure sensors, with some limitations. The results of stability analysis show that the levee is less stable when the water level decreases, after which factor of safety decreases significantly. For all flooding wave parameters described in the paper, the levee is very stable and factor of safety variations for any particular stage were not very large.

  19. A spatial DB model to simulate the road network efficiency in hydrogeological emergency

    Science.gov (United States)

    Michele, Mangiameli; Giuseppe, Mussumeci

    2015-12-01

    We deal with the theme of the simulation of risk analysis using a technological approach based on the integration of exclusively free and open source tools: PostgreSQL as Database Management System (DBMS) and Quantum GIS-GRASS as Geographic Information System (GIS) platform. The case study is represented by a seismic land in Sicily characterized by steep slopes and frequent instability phenomena. This area includes a city of about 30.000 inhabitants (Enna) that lies on the top of a mountain at about 990 m a.s.l.. The access to the city is assured by few and very winding roads that are also highly vulnerable to seismic and hydrogeological hazards. When exceptional rainfall events occur, the loss of efficiency of these roads should compromise timeliness and effectiveness of rescue operations. The data of the sample area have been structured into the adopted DBMS, and the connection to the GIS functionalities allows simulating the exceptional events. We analyzed the hazard, vulnerability and exposure related to these events and calculated the final risk defining three classes for each scenario: low (L), medium (M) and high (H). This study can be a valuable tool to prioritize risk levels and set priorities for intervention to the main road networks..

  20. A spatial DB model to simulate the road network efficiency in hydrogeological emergency

    Energy Technology Data Exchange (ETDEWEB)

    Michele, Mangiameli, E-mail: michele.mangiameli@dica.unict.it; Giuseppe, Mussumeci [Dept. of Civil Engineering and Architecture, University of Catania, Catania (Italy)

    2015-12-31

    We deal with the theme of the simulation of risk analysis using a technological approach based on the integration of exclusively free and open source tools: PostgreSQL as Database Management System (DBMS) and Quantum GIS-GRASS as Geographic Information System (GIS) platform. The case study is represented by a seismic land in Sicily characterized by steep slopes and frequent instability phenomena. This area includes a city of about 30.000 inhabitants (Enna) that lies on the top of a mountain at about 990 m a.s.l.. The access to the city is assured by few and very winding roads that are also highly vulnerable to seismic and hydrogeological hazards. When exceptional rainfall events occur, the loss of efficiency of these roads should compromise timeliness and effectiveness of rescue operations. The data of the sample area have been structured into the adopted DBMS, and the connection to the GIS functionalities allows simulating the exceptional events. We analyzed the hazard, vulnerability and exposure related to these events and calculated the final risk defining three classes for each scenario: low (L), medium (M) and high (H). This study can be a valuable tool to prioritize risk levels and set priorities for intervention to the main road networks.

  1. A spatial DB model to simulate the road network efficiency in hydrogeological emergency

    International Nuclear Information System (INIS)

    Michele, Mangiameli; Giuseppe, Mussumeci

    2015-01-01

    We deal with the theme of the simulation of risk analysis using a technological approach based on the integration of exclusively free and open source tools: PostgreSQL as Database Management System (DBMS) and Quantum GIS-GRASS as Geographic Information System (GIS) platform. The case study is represented by a seismic land in Sicily characterized by steep slopes and frequent instability phenomena. This area includes a city of about 30.000 inhabitants (Enna) that lies on the top of a mountain at about 990 m a.s.l.. The access to the city is assured by few and very winding roads that are also highly vulnerable to seismic and hydrogeological hazards. When exceptional rainfall events occur, the loss of efficiency of these roads should compromise timeliness and effectiveness of rescue operations. The data of the sample area have been structured into the adopted DBMS, and the connection to the GIS functionalities allows simulating the exceptional events. We analyzed the hazard, vulnerability and exposure related to these events and calculated the final risk defining three classes for each scenario: low (L), medium (M) and high (H). This study can be a valuable tool to prioritize risk levels and set priorities for intervention to the main road networks.

  2. Large-Scale Transport Model Uncertainty and Sensitivity Analysis: Distributed Sources in Complex Hydrogeologic Systems

    International Nuclear Information System (INIS)

    Sig Drellack, Lance Prothro

    2007-01-01

    The Underground Test Area (UGTA) Project of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is in the process of assessing and developing regulatory decision options based on modeling predictions of contaminant transport from underground testing of nuclear weapons at the Nevada Test Site (NTS). The UGTA Project is attempting to develop an effective modeling strategy that addresses and quantifies multiple components of uncertainty including natural variability, parameter uncertainty, conceptual/model uncertainty, and decision uncertainty in translating model results into regulatory requirements. The modeling task presents multiple unique challenges to the hydrological sciences as a result of the complex fractured and faulted hydrostratigraphy, the distributed locations of sources, the suite of reactive and non-reactive radionuclides, and uncertainty in conceptual models. Characterization of the hydrogeologic system is difficult and expensive because of deep groundwater in the arid desert setting and the large spatial setting of the NTS. Therefore, conceptual model uncertainty is partially addressed through the development of multiple alternative conceptual models of the hydrostratigraphic framework and multiple alternative models of recharge and discharge. Uncertainty in boundary conditions is assessed through development of alternative groundwater fluxes through multiple simulations using the regional groundwater flow model. Calibration of alternative models to heads and measured or inferred fluxes has not proven to provide clear measures of model quality. Therefore, model screening by comparison to independently-derived natural geochemical mixing targets through cluster analysis has also been invoked to evaluate differences between alternative conceptual models. Advancing multiple alternative flow models, sensitivity of transport predictions to parameter uncertainty is assessed through Monte Carlo simulations. The

  3. Waste Disposal: Long-term Performance Studies for Radioactive Waste Disposal and Hydrogeological Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Marivoet, J

    2000-07-01

    The main objectives of SCK-CEN's R and D programme on long-term performance studies are: (1) to develop a methodology and associated tools for assessing the long-term safety of geological disposal of all types of radioactive waste in clay formations and of the shallow-land burial of low-level waste; (2) to assess the performance and to identify the most influential elements of integrated repository systems for the disposal of radioactive waste; (3) to collect geological, piezometric and hydraulic data required for studying the hydrogeological system in north-eastern Belgium; (4) to develop a regional aquifer model for north-easter Belgium and to apply it in the performance assessments for the Mol site; (5) to test, verify and improve computer codes used in the performance assessment calculations of waste disposal concepts and contaminated sites (the computer codes simulate water flow and transport of radionuclides in engineered barriers, aquifers and contaminated sites). The scientific programme and achievements in 1999 are described.

  4. Karst connections between unconfined aquifers and the Upper Floridan aquifer in south Georgia: geophysical evidence and hydrogeological models

    Science.gov (United States)

    Thieme, D. M.; Denizman, C.

    2011-12-01

    Buried karst features in sedimentary rocks of the south Georgia Coastal Plain present a challenge for hydrogeological models of recharge and confined flow within the underlying Upper Floridan aquifer. The Withlacoochee River, the trunk stream for the area, frequently disappears into subsurface caverns as it makes its way south to join the Suwannee River in northern Florida. The Withlacoochee also receives inputs from small ponds and bays which in turn receive spring and seep groundwater inputs. We have mapped karst topography at the "top of rock" using ground-penetrating radar (GPR). Up to seven meters of relief is indicated for the paleotopography on Miocene to Pliocene rocks, contrasting with the more subdued relief of the modern landscape. Current stratigraphic and hydrogeological reconstructions do not incorporate this amount of relief or lateral variation in the confining beds. One "pipe" which is approximately four meters in diameter is being mapped in detail. We have field evidence at this location for rapid movement of surficial pond and river water with a meteoric signature through several separate strata of sedimentary rock into an aquifer in the Hawthorn formation. We use our geophysical and hydrological field evidence to constrain quantitative hydrogeological models for the flow rates into and out of both this upper aquifer and the underlying Upper Floridan aquifer, which is generally considered to be confined by the clays of the Hawthorn.

  5. SR-Site Pre-modelling: Sensitivity studies of hydrogeological model variants for the Laxemar site using CONNECTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, Steven; Hoek, Jaap; Hartley, Lee (Serco (United Kingdom)); Marsic, Niko (Kemakta Konsult AB, Stockholm (Sweden))

    2010-12-15

    This study investigated a number of potential model variants of the SR-Can hydrogeological models of the temperate period and the sensitivity of the performance measures to the chosen parameters. This will help to guide the choice of potential variants for the SR-Site project and provide an input to design premises for the underground construction of the repository. It was found that variation of tunnel backfill properties in the tunnels had a significant effect on performance measures, but in the central area, ramps and shafts it had a lesser effect for those property values chosen. Variation of tunnel EDZ properties only had minor effects on performance measures. The presence of a crown space in the deposition tunnels had a significant effect on the tunnel performance measures and a lesser effect on the rock and EDZ performance measures. The presence of a deposition hole EDZ and spalling also had an effect on the performance measures.

  6. Final Technical Report - Integrated Hydrogeophysical and Hydrogeologic Driven Parameter Upscaling for Dual-Domain Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, John M

    2012-11-05

    The three major components of this research were: 1. Application of minimally invasive, cost effective hydrogeophysical techniques (surface and borehole), to generate fine scale (~1m or less) 3D estimates of subsurface heterogeneity. Heterogeneity is defined as spatial variability in hydraulic conductivity and/or hydrolithologic zones. 2. Integration of the fine scale characterization of hydrogeologic parameters with the hydrogeologic facies to upscale the finer scale assessment of heterogeneity to field scale. 3. Determination of the relationship between dual-domain parameters and practical characterization data.

  7. Coupling of hydrogeological models with hydrogeophysical data to characterize seawater intrusion and shallow geothermal systems

    Science.gov (United States)

    Beaujean, J.; Kemna, A.; Engesgaard, P. K.; Hermans, T.; Vandenbohede, A.; Nguyen, F.

    2013-12-01

    case are tested. They consist in a thermal injection and storage of water in a shallow sandy aquifer. The use of a physically-based constraint accounting for the difference in conductivity between the formation and the tap injected water and based on the hydrogeological model calibrated first on temperatures is necessary to improve the parameter estimation. Results suggest that time-lapse ERT data may be limited but useful information for estimating groundwater flow and transport parameters for both the convection and conduction phases.

  8. 3-D basin modelling of the Paris Basin: diagenetic and hydrogeologic implications

    International Nuclear Information System (INIS)

    Violette, S.; Goncalves, J.; Jost, A.; Marsily, G. de

    2004-01-01

    A 3-D basin model of the Paris basin is presented in order to simulate through geological times fluid, heat and solute fluxes. This study emphasizes: i) the contribution of basin models to the quantitative hydrodynamic understanding of behaviour of the basin over geological times; ii) the additional use of Atmospheric General Circulation model (AGCM) to provide palaeo-climatic boundaries for a coupled flow and mass transfer modelling, constrained by geochemical and isotopic tracers and; iii) the integration of different types of data (qualitative and quantitative) to better constrain the simulations. Firstly, in a genetic way, basin model is used to reproduce geological, physical and chemical processes occurring in the course of the 248 My evolution of the Paris basin that ought to explain the present-day hydraulic properties at the regional scale. As basin codes try to reproduce some of these phenomena, they should be able to give a plausible idea of the regional-scale permeability distribution of the multi-layered system, of the pre-industrial hydrodynamic conditions within the aquifers and of the diagenesis timing and type of hydrodynamic processes involved. Secondly, climate records archived in the Paris basin groundwater suggest that climate and morphological features have an impact on the hydrogeological processes, particularly during the last 5 My. An Atmospheric General Circulation model is used with a refined spatial resolution centred on the Paris basin to reproduce the climate for the present, the Last Glacial Maximum (21 ky) and the middle Pliocene (3 My). These climates will be prescribed, through forcing functions to the hydrological code with the main objective of understanding the way aquifers and aquitards react under different climate conditions, the period and the duration of these effects. Finally, the Paris basin has been studied for a number of years by different scientific communities, thus a large amount of data has been collected. By

  9. Hydrogeological boundary settings in SR 97. Uncertainties in regional boundary settings and transfer of boundary conditions to site-scale models

    International Nuclear Information System (INIS)

    Follin, S.

    1999-06-01

    The SR 97 project presents a performance assessment (PA) of the overall safety of a hypothetical deep repository at three sites in Sweden arbitrarily named Aberg, Beberg and Ceberg. One component of this PA assesses the uncertainties in the hydrogeological modelling. This study focuses on uncertainties in boundary settings (size of model domain and boundary conditions) in the regional and site-scale hydrogeological modelling of the three sites used to simulating the possible transport of radionuclides from the emplacement waste packages through the host rock to the accessible environment. Model uncertainties associated with, for instance, parameter heterogeneity and structural interpretations are addressed in other studies. This study concludes that the regional modelling of the SR 97 project addresses uncertainties in the choice of boundary conditions and size of model domain differently at each site, although the overall handling is acceptable and in accordance with common modelling practice. For example, the treatment of uncertainties with regard to the ongoing post-glacial flushing of the Baltic Shield is creditably addressed although not exhaustive from a modelling point of view. A significant contribution of the performed modelling is the study of nested numerical models, i.e., the numerical interplay between regional and site-scale numerical models. In the site-scale modelling great efforts are made to address problems associated with (i) the telescopic mesh refinement (TMR) technique with regard to the stochastic continuum approach, and (ii) the transfer of boundary conditions between variable-density flow systems and flow systems that are constrained to treat uniform density flow. This study concludes that the efforts made to handle these problems are acceptable with regards to the objectives of the SR 97 project

  10. Geological investigations contributing to the hydrogeological conceptual model in the Meuse/Haute-Marne area, Eastern France

    International Nuclear Information System (INIS)

    Rocher, M.; De Hoyos, A.; Hibsch, C.; Viennot, P.

    2010-01-01

    Callovian-Oxfordian (COX) indurated clay formation is currently studied by Andra in the 'Meuse/Haute-Marne' (MHM) area for hosting a potential repository of high level, long-lived radioactive waste. IRSN is conducting studies in support of the safety evaluation of the geological disposal programme developed by Andra. IRSN, in collaboration with the Paris School of Mines, develops conceptual and numerical models of the underground water flows throughout the Paris sedimentary basin. The calibrated numerical model correctly represents the hydraulic heads and water salinities collected throughout the basin. At the MHM scale however, several flow patterns can still reproduce the measured heads, some of them assuming specific flow pathways along regional tectonic trends. Considering or not such tectonic trends in the model has however an impact on the estimated radionuclide transfer times to the outlets. Even though most ANDRA and IRSN geochemical analyses suggest a dominant diffusive transport across the COX between the underlying Dogger and overlying Oxfordian aquifers, few data point out the possible existence of local vertical connections across major tectonic structures. In order to select the most plausible options for the numerical modelling, IRSN compiled published studies and carried out fieldwork analysis to provide new data for its hydrogeological conceptual model. Relevant geological data can be considered both at the kilometre scale and at the metre scale. At the kilometre scale, the litho-stratigraphic scheme both for Dogger and Oxfordian series had previously been documented in the MHM area. Regional sedimentologic and diagenetic models are available for the Oxfordian aquifer and partially for the Dogger aquifer. Our fieldwork analysis complete these models thanks to new correlations pointed out during detailed iso-hyps mapping performed by G2R laboratory, southeast from the MHM area. Unlike the Kimmeridgian and COX sedimentary piles, which are

  11. Regional hydrogeological simulations for Forsmark - numerical modelling using CONNECTFLOW. Preliminary site description Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Cox, Ian; Hunter, Fiona; Jackson, Peter; Joyce, Steve; Swift, Ben [Serco Assurance, Risley (United Kingdom); Gylling, Bjoern; Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden)

    2005-05-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) carries out site investigations in two different candidate areas in Sweden with the objective of describing the in-situ conditions for a bedrock repository for spent nuclear fuel. The site characterisation work is divided into two phases, an initial site investigation phase (IPLU) and a complete site investigation phase (KPLU). The results of IPLU are used as a basis for deciding on a subsequent KPLU phase. On the basis of the KPLU investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft). An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model, which provides the geometrical context in terms of a model of deformation zones and the rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other geo-disciplines (hydrogeology, hydro-geochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models. Here, a numerical model is developed on a regional-scale (hundreds of square kilometres) to understand the zone of influence for groundwater flow that affects the Forsmark area. Transport calculations are then performed by particle tracking from a local-scale release area (a few square kilometres) to identify potential discharge areas for the site and using greater grid resolution. The main objective of this study is to support the development of a preliminary Site Description of the Forsmark area on a regional-scale based on the available data of 30 June 2004 and the previous Site Description. A more specific

  12. Challenges and Solutions for the Integration of Structural and Hydrogeological Understanding of Fracture Systems - Insights from the Olkiluoto Site, Finland

    Science.gov (United States)

    Hartley, L. J.; Aaltonen, I.; Baxter, S. J.; Cottrell, M.; Fox, A. L.; Hoek, J.; Koskinen, L.; Mattila, J.; Mosley, K.; Selroos, J. O.; Suikkanen, J.; Vanhanarkaus, O.; Williams, T. R. N.

    2017-12-01

    A field site at Olkiluoto in SW Finland has undergone extensive investigations as a location for a deep geological repository for spent nuclear fuel, which is expected to become operational in the early 2020s. Characterisation data comes from 58 deep cored drillholes, a wide variety of geophysical investigations, many outcrops, kilometres of underground mapping and testing in the ONKALO research facility, and groundwater pressure monitoring and sampling in both deep and shallow holes. A primary focus is on the properties of natural fractures and brittle fault zones in the low permeability crystalline rocks at Olkiluoto; an understanding of the flow and transport processes in these features are an essential part of assessing long-term safety of the repository. This presentation will illustrate how different types of source data and cross-disciplinary interpretations are integrated to develop conceptual and numerical models of the fracture system. A model of the brittle fault zones developed from geological and geophysical data provides the hydrostructural backbone controlling the most intense fracturing and dynamic conduits for fluids. Models of ductile deformation and lithology form a tectonic framework for the description of fracture heterogeneity in the background rock, revealing correlations between the intensity and orientation of fractures with geological and spatial properties. The sizes of brittle features are found to be best defined on two scales relating to individual fractures and zones. Inferred fracture-specific from flow logging are correlated with fracture geometric and mechanical properties along with in situ stress measurements to create a hydromechanical description of fracture hydraulic properties. The insights and understandings gained from these efforts help define a discrete fracture network (DFN) model for the Olkiluoto site, with hydrogeological characteristics consistent with monitoring data of hydraulic heads and their disturbances to

  13. Multiple-point statistical simulation for hydrogeological models: 3-D training image development and conditioning strategies

    Directory of Open Access Journals (Sweden)

    A.-S. Høyer

    2017-12-01

    Full Text Available Most studies on the application of geostatistical simulations based on multiple-point statistics (MPS to hydrogeological modelling focus on relatively fine-scale models and concentrate on the estimation of facies-level structural uncertainty. Much less attention is paid to the use of input data and optimal construction of training images. For instance, even though the training image should capture a set of spatial geological characteristics to guide the simulations, the majority of the research still relies on 2-D or quasi-3-D training images. In the present study, we demonstrate a novel strategy for 3-D MPS modelling characterized by (i realistic 3-D training images and (ii an effective workflow for incorporating a diverse group of geological and geophysical data sets. The study covers an area of 2810 km2 in the southern part of Denmark. MPS simulations are performed on a subset of the geological succession (the lower to middle Miocene sediments which is characterized by relatively uniform structures and dominated by sand and clay. The simulated domain is large and each of the geostatistical realizations contains approximately 45 million voxels with size 100 m  ×  100 m  ×  5 m. Data used for the modelling include water well logs, high-resolution seismic data, and a previously published 3-D geological model. We apply a series of different strategies for the simulations based on data quality, and develop a novel method to effectively create observed spatial trends. The training image is constructed as a relatively small 3-D voxel model covering an area of 90 km2. We use an iterative training image development strategy and find that even slight modifications in the training image create significant changes in simulations. Thus, this study shows how to include both the geological environment and the type and quality of input information in order to achieve optimal results from MPS modelling. We present a practical

  14. Use of a risk-based hydrogeologic model to set remedial goals in a Puget Sound basin watershed

    International Nuclear Information System (INIS)

    Pascoe, G.; Gould, L.; Martin, J.; Riley, M.; Floyd, T.

    1995-01-01

    The Port of Seattle is redeveloping industrial land for a container terminal along the southwest Seattle waterfront. Concrete, asphalt, ballast, and a landfill geomembrane will cover the site and prevent direct contact with surface soils, so remedial goals focused on groundwater contamination from subsurface soils. Groundwater at the site flows along an old stormwater drain, in a filled estuary of a small creek, to Elliott Bay. Remedial goals for a variety of organic chemicals, metals, and TPH in subsurface soils were identified to protect marine receptors in the bay and their consumers. Washington State and federal marine water quality criteria were the starting points in the risk-based model, and corresponding concentrations of chemicals in groundwater were back-calculated through a hydrogeologic model. The hydrogeologic model included a mixing zone component in the bay and dilution/attenuation factors along the groundwater transport pathway that were determined from onsite groundwater and surface water chemical concentrations. A rearranged Summers equation was then applied in a second back-calculation to determine subsurface soil concentrations corresponding to the back calculated groundwater concentrations. The equation was based on calculated aquifer flow rates for the small creek watershed and rates of infiltration through surface materials calculated for each redevelopment soil cover type by the HELP model. Results of the risk-based hydrogeologic back-calculation model indicate that, depending on soil cover type at the site, concentrations in subsurface soils of PCBs from 2 to 1,000 mg/kg and of TPH up to free phase concentration would not result in risks to marine organisms or their consumers in Elliott Bay

  15. Tono regional hydrogeological study project. Annual report 2004

    International Nuclear Information System (INIS)

    Iwatsuki, Teruki; Ota, Kunio; Takeuchi, Shinji; Amano, Kenji; Takeuchi, Ryuji; Saegusa, Hiromitsu; Osawa, Hideaki

    2005-09-01

    Tono Geoscience Center, Japan Nuclear Cycle Development Institute has been conducting a wide range of geoscientific research in order to build firm scientific and technological basis for the research and development of geological disposal. One of the geoscientific research programme is a Regional Hydrogeological Study (RHS) project in the Tono region, central Japan. This report mainly summarizes the results of research in DH-14 and DH-15 boreholes at Toki city and Mizunami city in fiscal year 2004 which were carried out to support and improve the results in fiscal year 2003. The research in the regional scale area shows the reliability of conceptual hydrogeological model and numerical simulation for the evaluation of regional hydrogeology. On the other hand, the geological and geophysical investigation, and borehole investigation during the surface-based investigations in the local scale area provide the pragmatic distribution of hydrogeological structure that may control regional groundwater hydrology. Hydrogeological simulations regarding the geological structure such as fault and hydrogeological property demonstrate the priority of investigation of geological structure for the evaluation of hydrogeology. The fault perpendicular to groundwater flow direction crucially affects on regional hydrology. Such fault is necessary to be investigated by priority. Hydrochemical investigation shows that chemical evolution process in this groundwater illustrated is mixing between groundwaters with different salinities. Principal component analysis and mass balance calculation reveal reliable chemistry of end-member waters for mixing. Regarding methodology development, the strategy and procedure of investigations are summarized based on the results of surface-based investigation. Moreover the multi interval monitoring system for water pressure and temperature has developed and started to monitor the in-situ condition of groundwater. The geology, geological structure, hydraulic

  16. Development of a hydrogeological conceptual wetland model in the data-scarce north-eastern region of Kilombero Valley, Tanzania

    Science.gov (United States)

    Burghof, Sonja; Gabiri, Geofrey; Stumpp, Christine; Chesnaux, Romain; Reichert, Barbara

    2018-02-01

    Understanding groundwater/surface-water interactions in wetlands is crucial because wetlands provide not only a high potential for agricultural production, but also sensitive and valuable ecosystems. This is especially true for the Kilombero floodplain wetland in Tanzania, which represents a data-scarce region in terms of hydrological and hydrogeological data. A comprehensive approach combining hydrogeological with tracer-based assessments was conducted, in order to develop a conceptual hydrogeological wetland model of the area around the city of Ifakara in the north-eastern region of Kilombero catchment. Within the study site, a heterogeneous porous aquifer, with a range of hydraulic conductivities, is underlain by a fractured-rock aquifer. Groundwater chemistry is mainly influenced by silicate weathering and depends on groundwater residence times related to the hydraulic conductivities of the porous aquifer. Groundwater flows from the hillside to the river during most of the year. While floodwater close to the river is mainly derived from overbank flow of the river, floodwater at a greater distance from the river mainly originates from precipitation and groundwater discharge. Evaporation effects in floodwater increase with increasing distance from the river. In general, the contribution of flood and stream water to groundwater recharge is negligible. In terms of an intensification of agricultural activities in the wetland, several conclusions can be drawn from the conceptual model. Results of this study are valuable as a base for further research related to groundwater/surface-water interactions and the conceptual model can be used in the future to set up numerical flow and transport models.

  17. Three-dimensional hydrogeologic framework model for use with a steady-state numerical ground-water flow model of the Death Valley regional flow system, Nevada and California

    International Nuclear Information System (INIS)

    Belcher, W.R.; Faunt, C.C.; D'Agnese, F.A.

    2002-01-01

    sections; (3) borehole information, and (4) gridded surfaces from a previous three-dimensional geologic model. In addition, digital elevation model data were used in conjunction with these data to define ground-surface altitudes. These data, properly oriented in three dimensions by using geographic information systems, were combined and gridded to produce the upper surfaces of the hydrogeologic units used in the flow model. The final geometry of the framework model is constructed as a volumetric model by incorporating the intersections of these gridded surfaces and by applying fault truncation rules to structural features from the geologic map and cross sections. The cells defining the geometry of the hydrogeologic framework model can be assigned several attributes such as lithology, hydrogeologic unit, thickness, and top and bottom altitudes

  18. Observations on Faults and Associated Permeability Structures in Hydrogeologic Units at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Prothro, Lance B.; Drellack, Sigmund L.; Haugstad, Dawn N.; Huckins-Gang, Heather E.; Townsend, Margaret J.

    2009-03-30

    Observational data on Nevada Test Site (NTS) faults were gathered from a variety of sources, including surface and tunnel exposures, core samples, geophysical logs, and down-hole cameras. These data show that NTS fault characteristics and fault zone permeability structures are similar to those of faults studied in other regions. Faults at the NTS form complex and heterogeneous fault zones with flow properties that vary in both space and time. Flow property variability within fault zones can be broken down into four major components that allow for the development of a simplified, first approximation model of NTS fault zones. This conceptual model can be used as a general guide during development and evaluation of groundwater flow and contaminate transport models at the NTS.

  19. Hydrogeology of Rome

    Directory of Open Access Journals (Sweden)

    Roberto Mazza

    2015-12-01

    Full Text Available In this paper the hydrogeological setting of Rome is figured out. This setting has been strongly influenced by different factors as tectonic activity, volcanism and seal level variations. The conceptual model of the groundwater flow in the roman area is represented by four aquifers, three of which being overlappingones. These aquifers flow from peripheral sectors of the study area toward Tiber and Aniene Rivers and the Sea.

  20. Structural interpretation of the Ifal Basin in north-western Saudi Arabia from aeromagnetic data: hydrogeological and environmental implications

    Science.gov (United States)

    Elawadi, Eslam; Zaman, Haider; Batayneh, Awni; Mogren, Saad; Laboun, Abdalaziz; Ghrefat, Habes; Zumlot, Taisser

    2013-09-01

    The Ifal (Midyan) Basin is one of the well defined basins along the Red Sea coast, north-western Saudi Arabia. Location, geometry, thick sedimentary cover and structural framework qualify this basin for groundwater, oil and mineral occurrences. In spite of being studied by two airborne magnetic surveys during 1962 and 1983, structural interpretation of the area from a magnetic perspective, and its uses for hydrogeological and environmental investigations, has not been attempted. This work thus presents interpretation of the aeromagnetic data for basement depth estimation and tectonic framework delineation, which both have a role in controlling groundwater flow and accumulation in the Ifal Basin. A maximum depth of 3.5km is estimated for the basement surface by this study. In addition, several faulted and tilted blocks, perpendicularly dissected by NE-trending faults, are delineated within the structural framework of the study area. It is also observed that the studied basin is bounded by NW- and NE-trending faults. All these multi-directional faults/fracture systems in the Ifal Basin could be considered as conduits for groundwater accumulation, but with a possibility of environmental contamination from the surrounding soils and rock bodies.

  1. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Laxemar

    International Nuclear Information System (INIS)

    Aneljung, Maria; Sassner, Mona; Gustafsson, Lars-Goeran

    2007-11-01

    This report describes modelling where the hydrological modelling system MIKE SHE has been used to describe surface hydrology, near-surface hydrogeology, advective transport mechanisms, and the contact between groundwater and surface water within the SKB site investigation area at Laxemar. In the MIKE SHE system, surface water flow is described with the one-dimensional modelling tool MIKE 11, which is fully and dynamically integrated with the groundwater flow module in MIKE SHE. In early 2008, a supplementary data set will be available and a process of updating, rebuilding and calibrating the MIKE SHE model based on this data set will start. Before the calibration on the new data begins, it is important to gather as much knowledge as possible on calibration methods, and to identify critical calibration parameters and areas within the model that require special attention. In this project, the MIKE SHE model has been further developed. The model area has been extended, and the present model also includes an updated bedrock model and a more detailed description of the surface stream network. The numerical model has been updated and optimized, especially regarding the modelling of evapotranspiration and the unsaturated zone, and the coupling between the surface stream network in MIKE 11 and the overland flow in MIKE SHE. An initial calibration has been made and a base case has been defined and evaluated. In connection with the calibration, the most important changes made in the model were the following: The evapotranspiration was reduced. The infiltration capacity was reduced. The hydraulic conductivities of the Quaternary deposits in the water-saturated part of the subsurface were reduced. Data from one surface water level monitoring station, four surface water discharge monitoring stations and 43 groundwater level monitoring stations (SSM series boreholes) have been used to evaluate and calibrate the model. The base case simulations showed a reasonable agreement

  2. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Aneljung, Maria; Sassner, Mona; Gustafsson, Lars-Goeran (DHI Sverige AB, Lilla Bommen 1, SE-411 04 Goeteborg (Sweden))

    2007-11-15

    This report describes modelling where the hydrological modelling system MIKE SHE has been used to describe surface hydrology, near-surface hydrogeology, advective transport mechanisms, and the contact between groundwater and surface water within the SKB site investigation area at Laxemar. In the MIKE SHE system, surface water flow is described with the one-dimensional modelling tool MIKE 11, which is fully and dynamically integrated with the groundwater flow module in MIKE SHE. In early 2008, a supplementary data set will be available and a process of updating, rebuilding and calibrating the MIKE SHE model based on this data set will start. Before the calibration on the new data begins, it is important to gather as much knowledge as possible on calibration methods, and to identify critical calibration parameters and areas within the model that require special attention. In this project, the MIKE SHE model has been further developed. The model area has been extended, and the present model also includes an updated bedrock model and a more detailed description of the surface stream network. The numerical model has been updated and optimized, especially regarding the modelling of evapotranspiration and the unsaturated zone, and the coupling between the surface stream network in MIKE 11 and the overland flow in MIKE SHE. An initial calibration has been made and a base case has been defined and evaluated. In connection with the calibration, the most important changes made in the model were the following: The evapotranspiration was reduced. The infiltration capacity was reduced. The hydraulic conductivities of the Quaternary deposits in the water-saturated part of the subsurface were reduced. Data from one surface water level monitoring station, four surface water discharge monitoring stations and 43 groundwater level monitoring stations (SSM series boreholes) have been used to evaluate and calibrate the model. The base case simulations showed a reasonable agreement

  3. Near-surface hydrogeological model of Laxemar. Open repository - Laxemar 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Bosson, Emma

    2006-07-15

    This report presents the methodology and the results from the modelling of an open final repository for spent nuclear fuel in Laxemar. Thus, the present work analyses the hydrological effects of the planned repository during the construction and operational phases when it is open, i.e. air-filled, and hence may cause a disturbance of the hydrological conditions in the surroundings. The numerical modelling is based on the conceptual and descriptive model presented in the version 1.2 Site Descriptive Model (SDM) for Laxemar. The modelling was divided into three steps. The first step was to update the L1.2 version model for hydrology and near surface hydrogeology, the main updates were related to the hydraulic properties of the bedrock and the size of the model area. The next step was to describe the conditions for the introductory construction by implementing the access tunnel and shafts to the model. The third step aimed at describing the consequences on the surface hydrology caused by an open repository. A sensitivity analysis that aimed to investigate the sensitivity of the model to the properties of the upper bedrock and the properties in the interface between the Quaternary deposits and the bedrock was performed as a part of steps two and three. The model covers an area of 19 km{sup 2}. In the Quaternary deposits, the surface water divides are assumed to coincide with the groundwater divides, thus a no-flow boundary condition is used at the horizontal boundaries. The transient top boundary condition uses meteorological data gathered at a local SKB station at Aespoe during 2004. The bottom boundary condition and the horizontal boundary condition in the bedrock is a steady state head boundary condition taken from the open repository modelling of the bedrock performed as a parallel activity with the modelling tool DarcyTools. The vertical extent of the model is from the ground surface to 150 m below sea level. Since the repository will be built at 450 m below sea

  4. Regional hydrogeological simulations. Numerical modelling using ConnectFlow. Preliminary site description Simpevarp sub area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Hoch, Andrew; Hunter, Fiona; Jackson, Peter [Serco Assurance, Risley (United Kingdom); Marsic, Niko [Kemakta Konsult, Stockholm (Sweden)

    2005-02-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) carries out site investigations in two different candidate areas in Sweden with the objective of describing the in situ conditions for a bedrock repository for spent nuclear fuel. The two candidate areas are named Forsmark and Simpevarp. The site characterisation work is divided into two phases, an initial site investigation phase (IPLU) and a complete site investigation phase (KPLU). The results of IPLU are used as a basis for deciding on a subsequent KPLU phase. On the basis of the KPLU investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft).An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model which provides the geometrical context in terms of a model of deformation zones and the rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other geo-disciplines (hydrogeology, hydro-geochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models.Here, a numerical model is developed on a regional-scale (hundreds of square kilometres) to understand the zone of influence for groundwater flow that effects the Simpevarp area. Transport calculations are then performed by particle tracking from a local-scale release area (tens of square kilometres) to identify potential discharge areas for the site. The transport from the two site-scale release areas (a few square kilometres) at the Simpevarp site and the Laxemar site are also considered more specifically and using greater grid resolution.The main

  5. Regional hydrogeological study in the Tono area

    International Nuclear Information System (INIS)

    Ogata, Nobuhisa; Ota, Kunio; Hama, Katsuhiro; Tsubota, Kouji

    1998-01-01

    Regional hydrogeological studies have been carried out since fiscal 1992 to determine the regional groundwater flow in the Tono area of Japan. The following items have been investigated: 1) Understanding the geological structure, groundwater flow and groundwater chemistry of the deep geological environment in the Tono area. 2) Constructing conceptual models of the geological structure, groundwater flow and groundwater chemistry. 3) Developing appropriate techniques to investigate the geological structure, groundwater flow and groundwater chemistry of the deep geological environment. This report presents the results of the last six years of the study in the Tono area. (author)

  6. Modeling of water transfer to aquifers: application to the determination of groundwater recharge by inversion in a complex hydrogeological system

    International Nuclear Information System (INIS)

    Hassane-Mamadou-Maina, Fadji-Zaouna

    2016-01-01

    Groundwater is the main available water resource for many countries; they are mainly replenished by water from precipitation, called groundwater recharge. Due to its great importance, management of groundwater resources is more essential than ever, and is achieved through mathematical models which offer us a better understanding of physical phenomena as well as their prediction. Hydrogeological Systems are generally complex thus characterized by a highly variable dynamic over time and space. These complexities have attracted the attention of many hydro geologists and many sophisticated models that can handle these issues and describe these Systems accurately were developed. Unfortunately, modeling groundwater recharge is still a challenge in groundwater resource management. Generally, groundwater models are used to simulate aquifers flow without a good estimation of recharge and its spatial-temporal distribution. as groundwater recharge rates show spatial-temporal variability due to climatic conditions, land use, and hydrogeological heterogeneity, these methods have limitations in dealing with these characteristics. To overcome these limitations, a coupled model which simulates flow in the unsaturated zone and recharge as well as groundwater flow was developed. The flow in the unsaturated zone is solved either with resolution of Richards equation or with empirical models while the diffusivity equation governs flow in the saturated zone. Robust numerical methods were used to solve these equations: we apply nonconforming finite element to solve the diffusivity equation and we used an accurate and efficient method for solving the Richards equation. In the natural environments, parameters that control these hydrological mechanisms aren't accurately known or even unknowns, only variations of piezometric heads are commonly available. Hence, ail parameters related to unsaturated and saturated flows will be identified by using only these piezometric data

  7. Development of a geodatabase and conceptual model of the hydrogeologic units beneath air force plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas

    Science.gov (United States)

    Shah, Sachin D.

    2004-01-01

    Air Force Plant 4 and adjacent Naval Air Station-Joint Reserve Base Carswell Field at Fort Worth, Texas, constitute a government-owned, contractor-operated facility that has been in operation since 1942. Contaminants from AFP4, primarily volatile organic compounds and metals, have entered the ground-water-flow system through leakage from waste-disposal sites and from manufacturing processes. The U.S. Geological Survey developed a comprehensive geodatabase of temporal and spatial environmental information associated with the hydrogeologic units (alluvial aquifer, Goodland-Walnut confining unit, and Paluxy aquifer) beneath the facility and a three-dimensional conceptual model of the hydrogeologic units integrally linked to the geodatabase. The geodatabase design uses a thematic layer approach to create layers of feature data using a geographic information system. The various features are separated into relational tables in the geodatabase on the basis of how they interact and correspond to one another. Using the geodatabase, geographic data at the site are manipulated to produce maps, allow interactive queries, and perform spatial analyses. The conceptual model for the study area comprises computer-generated, three-dimensional block diagrams of the hydrogeologic units. The conceptual model provides a platform for visualization of hydrogeologic-unit sections and surfaces and for subsurface environmental analyses. The conceptual model is based on three structural surfaces and two thickness configurations of the study area. The three structural surfaces depict the altitudes of the tops of the three hydrogeologic units. The two thickness configurations are those of the alluvial aquifer and the Goodland-Walnut confining unit. The surface of the alluvial aquifer was created using a U.S. Geological Survey 10-meter digital elevation model. The 2,130 point altitudes of the top of the Goodland-Walnut unit were compiled from lithologic logs from existing wells, available soil

  8. INFLUENCE OF LEGRAD THRESHOLD STRUCTURE ON HYDROGEOLOGICAL CHARACTERISTICS IN KOPRIVNICA AREA

    Directory of Open Access Journals (Sweden)

    Željko Duić

    2007-12-01

    Full Text Available Koprivnička Podravina area in structural sense belongs to structural unit of Drava basin. Special role in research area has structure of Legrad which is formed along Ludbreg-Nagykanizsa fault, and together with Drava fault as dominant structure in formation of Drava basin, represent most important structure in area. This is specially important when observing hydraulic characteristics of main well field in Koprivnica area-Ivanščak and Lipovec. Both of them are formated in quternary deposits, but have very different hydraulic and spatial characteristics. Intensive movement along structures has also dominant influence on sedimantation conditions, and consequently to groundwater quality (the paper is published in Croatian.

  9. Hydrogeological modelling of the eastern region of Areco river locally detailed on Atucha I and II nuclear power plants area

    International Nuclear Information System (INIS)

    Grattone, Natalia I.; Fuentes, Nestor O.

    2009-01-01

    Water flow behaviour of Pampeano aquifer was modeled using Visual Mod-flow software Package 2.8.1 with the assumption of a free aquifer, within the region of the Areco river and extending to the rivers of 'Canada Honda' and 'de la Cruz'. Steady state regime was simulated and grid refinement allows obtaining locally detailed calculation in the area of Atucha I and II Nuclear power plants, in order to compute unsteady situations as the consequence of water flow variations from and to the aquifer, enabling the model to study the movement of possible contaminant particles in the hydrogeologic system. In this work the effects of rivers action, the recharge conditions and the flow lines are analyzed, taking always into account the range of reliability of obtained results, considering the incidence of uncertainties introduced by data input system, the estimates and interpolation of parameters used. (author)

  10. Impact of model complexity and multi-scale data integration on the estimation of hydrogeological parameters in a dual-porosity aquifer

    Science.gov (United States)

    Tamayo-Mas, Elena; Bianchi, Marco; Mansour, Majdi

    2018-03-01

    This study investigates the impact of model complexity and multi-scale prior hydrogeological data on the interpretation of pumping test data in a dual-porosity aquifer (the Chalk aquifer in England, UK). In order to characterize the hydrogeological properties, different approaches ranging from a traditional analytical solution (Theis approach) to more sophisticated numerical models with automatically calibrated input parameters are applied. Comparisons of results from the different approaches show that neither traditional analytical solutions nor a numerical model assuming a homogenous and isotropic aquifer can adequately explain the observed drawdowns. A better reproduction of the observed drawdowns in all seven monitoring locations is instead achieved when medium and local-scale prior information about the vertical hydraulic conductivity (K) distribution is used to constrain the model calibration process. In particular, the integration of medium-scale vertical K variations based on flowmeter measurements lead to an improvement in the goodness-of-fit of the simulated drawdowns of about 30%. Further improvements (up to 70%) were observed when a simple upscaling approach was used to integrate small-scale K data to constrain the automatic calibration process of the numerical model. Although the analysis focuses on a specific case study, these results provide insights about the representativeness of the estimates of hydrogeological properties based on different interpretations of pumping test data, and promote the integration of multi-scale data for the characterization of heterogeneous aquifers in complex hydrogeological settings.

  11. HYDROGEOLOGICAL RELATIONS ON KARSTIFIED ISLANDS - VIS ISLAND CASE STUDY

    Directory of Open Access Journals (Sweden)

    Josip Terzić

    2004-12-01

    Full Text Available An approach to the hydrogeological investigations on Adriatic islands is presented on the Island of Vis case study. Infiltration, accumulation and discharge of the groundwater occur in karstified rock mass. Hydrogeological relations are mostly a consequence of the geological setting, because of the complete hydrogeologic barrier in Komiža bay, and relative barrier in the area of karst poljes. Significant research was performed in the 1999 – 2000 period aimed of better understanding of hydrogeological relations. These investigations, as well as reinterpretation of some previously known data, included structural geology, hydrogeology, hydrology and hydrochemistry. Approximate rock mass hydraulic conductivity calculation is also shown, as well as level of its usability in such terrain. Based on all these methods, it is possible to conclude that on the Island of Vis there is no saline water present underneath the entire island. There is only a saline water wedge which is formed on the top of relatively impermeable base rock, some few tens of meters under recent sea level. With such a model, and taking in account the hydrological balance, it is possible to conclude that there is possibility of higher amount of groundwater exploitation then it is today (the paper is published in Croatian.

  12. Undergraduate Education in Hydrogeology.

    Science.gov (United States)

    Tinker, John Richard, Jr.

    1989-01-01

    Discusses a course at the University of Wisconsin-Eau Claire which improved instruction in physical hydrogeology, chemical hydrogeology, and water resources. Describes 14 laboratory activities including objectives, methods, and a list of equipment needed. (Author/MVL)

  13. Reconnaissance de la structure géologique du bassin de saïss occidental, Maroc, par sondages électriquesPreliminary survey of the structure and hydrogeology of the western Saiss Basin, Morocco, using electrical resistivity

    Science.gov (United States)

    Essahlaoui, A.; Sahbi, H.; Bahi, L.; El-Yamine, N.

    2001-05-01

    A geophysical study, based on 96 electrical resistivity measurements with a line length up to 4 km, was performed in the southern and southwestern parts of the Meknes Plateau, Morocco, which is a part of the Saiss Basin, located between the Rif Range to the north and the Middle Atlas Range to the south. This basin, whose maximum depth is ˜ 1.5 km in the north, is filled with Triassic to Quaternary deposits overlying the Palæozoic basement and includes two main aquifers. The interpretation of the resistivity measurements, calibrated from deep boreholes, made it possible to obtain a new hydrogeological model for the Saiss Basin. The understanding of the basin structure is of primary importance for the water supply of this area, which has been affected by severe droughts in recent years.

  14. Compilation of data used for the analysis of the geological and hydrogeological DFN models. Site descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Hermanson, Jan; Fox, Aaron; Oehman, Johan; Rhen, Ingvar

    2008-08-01

    This report provides an overview and compilation of the various data that constitutes the basis for construction of the geological and hydrogeological discrete feature network (DFN) models as part of model version SDM-Site Laxemar. This includes a review of fracture data in boreholes and in outcrop. Furthermore, the basis for the construction of lineament maps is given as well as a review of the hydraulic test data from cored and percussion-drilled boreholes. An emphasis is put on graphical representation of borehole logs in the form of composites of geological, hydrogeological and even hydrogeochemical data in the case of cored boreholes. One major contribution is a compilation of characteristics of minor local deformation zones (MDZs) identified in cored boreholes. Basic orientation data and fracture intensity data are presented as a function of depth for individual boreholes. The coupling between hydrogeological data and geological data is further refined in plots of Posiva flow log (PFL) data vs. geological single hole interpretation data

  15. Regional hydrogeological simulations for Forsmark - numerical modelling using DarcyTools. Preliminary site description Forsmark area version 1.2

    International Nuclear Information System (INIS)

    Follin, Sven; Stigsson, Martin; Svensson, Urban

    2005-12-01

    A numerical model is developed on a regional-scale (hundreds of square kilometres) to study the zone of influence for variable-density groundwater flow that affects the Forsmark area. Transport calculations are performed by particle tracking from a local-scale release area (a few square kilometres) to test the sensitivity to different hydrogeological uncertainties and the need for far-field realism. The main objectives of the regional flow modelling were to achieve the following: I. Palaeo-hydrogeological understanding: An improved understanding of the palaeohydrogeological conditions is necessary in order to gain credibility for the site descriptive model in general and the hydrogeological description in particular. This requires modelling of the groundwater flow from the last glaciation up to present-day with comparisons against measured TDS and other hydro-geochemical measures. II. Simulation of flow paths: The simulation and visualisation of flow paths from a tentative repository area is a means for describing the role of the current understanding of the modelled hydrogeological conditions in the target volume, i.e. the conditions of primary interest for Safety Assessment. Of particular interest here is demonstration of the need for detailed far-field realism in the numerical simulations. The motivation for a particular model size (and resolution) and set of boundary conditions for a realistic description of the recharge and discharge connected to the flow at repository depth is an essential part of the groundwater flow path simulations. The numerical modelling was performed by two separate modelling teams, the ConnectFlow Team and the DarcyTools Team. The work presented in this report was based on the computer code DarcyTools developed by Computer-aided Fluid Engineering. DarcyTools is a kind of equivalent porous media (EPM) flow code specifically designed to treat flow and salt transport in sparsely fractured crystalline rock intersected by transmissive

  16. Regional hydrogeological simulations for Forsmark - numerical modelling using DarcyTools. Preliminary site description Forsmark area version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-12-15

    A numerical model is developed on a regional-scale (hundreds of square kilometres) to study the zone of influence for variable-density groundwater flow that affects the Forsmark area. Transport calculations are performed by particle tracking from a local-scale release area (a few square kilometres) to test the sensitivity to different hydrogeological uncertainties and the need for far-field realism. The main objectives of the regional flow modelling were to achieve the following: I. Palaeo-hydrogeological understanding: An improved understanding of the palaeohydrogeological conditions is necessary in order to gain credibility for the site descriptive model in general and the hydrogeological description in particular. This requires modelling of the groundwater flow from the last glaciation up to present-day with comparisons against measured TDS and other hydro-geochemical measures. II. Simulation of flow paths: The simulation and visualisation of flow paths from a tentative repository area is a means for describing the role of the current understanding of the modelled hydrogeological conditions in the target volume, i.e. the conditions of primary interest for Safety Assessment. Of particular interest here is demonstration of the need for detailed far-field realism in the numerical simulations. The motivation for a particular model size (and resolution) and set of boundary conditions for a realistic description of the recharge and discharge connected to the flow at repository depth is an essential part of the groundwater flow path simulations. The numerical modelling was performed by two separate modelling teams, the ConnectFlow Team and the DarcyTools Team. The work presented in this report was based on the computer code DarcyTools developed by Computer-aided Fluid Engineering. DarcyTools is a kind of equivalent porous media (EPM) flow code specifically designed to treat flow and salt transport in sparsely fractured crystalline rock intersected by transmissive

  17. Meteorological, hydrological and hydrogeological monitoring data and near-surface hydrogeological properties data from Laxemar-Simpevarp. Site descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Werner, Kent; Oehman, Johan; Holgersson, Bjoern; Roennback, Kristoffer; Marelius, Fredrick

    2008-12-01

    This report presents and analyses meteorological, hydrological and hydrogeological time-series data and near-surface hydrogeological properties data from the Laxemar-Simpevarp area, available in SKB's Sicada database at time of the Laxemar 2.3 data freeze (Aug. 31, 2007). The meteorological data set includes data from two local stations, located on the island of Aespoe and at Plittorp, located further inland. In addition, the data evaluation uses a longer-term data set from 7 surrounding stations, operated by SMHI. As part of this study, a time series is constructed of the water content of snow. According to the data evaluation, the site-average annual precipitation and potential evapotranspiration can be estimated to be on the order of 600 and 535 mm, respectively. In particular, precipitation demonstrates a near-coastal gradient, with less precipitation at the coast compared to areas further inland. The surface-water level data set includes data from 4 lake-level gauging stations and 3 sea-level gauging stations. All lakes are located above sea level, including the near-coastal Lake Soeraa. Hence, no intrusion of sea water to lakes takes place. There is a strong co-variation among the monitored lake-water levels, typically with maxima during spring and minima during late summer and early autumn. Concerning the sea as a hydraulic boundary, the maximum and minimum sea levels (daily averages) during the site-investigation period were -0.52 and 0.71 metres above sea level, respectively, whereas the average sea level was 0.03 metres above sea level (RHB 70). The data set on stream discharge, surface-water temperature and electrical conductivity includes data from 9 discharge-gauging stations in 7 streams. Based on the discharge data, the site-average specific discharge for the years 2005-2007 can be estimated to 165 mm/y, which is within the interval of the estimated long-term average. Overall, discharge-data errors are likely to be small. The hydrogeological time

  18. Volcanic aquifers of Hawai‘i—Hydrogeology, water budgets, and conceptual models

    Science.gov (United States)

    Izuka, Scot K.; Engott, John A.; Rotzoll, Kolja; Bassiouni, Maoya; Johnson, Adam G.; Miller, Lisa D.; Mair, Alan

    2016-06-13

    Hawai‘i’s aquifers have limited capacity to store fresh groundwater because each island is small and surrounded by saltwater. Saltwater also underlies much of the fresh groundwater. Fresh groundwater resources are, therefore, particularly vulnerable to human activity, short-term climate cycles, and long-term climate change. Availability of fresh groundwater for human use is constrained by the degree to which the impacts of withdrawal—such as lowering of the water table, saltwater intrusion, and reduction in the natural discharge to springs, streams, wetlands, and submarine seeps—are deemed acceptable. This report describes the hydrogeologic framework, groundwater budgets (inflows and outflows), conceptual models of groundwater occurrence and movement, and the factors limiting groundwater availability for the largest and most populated of the Hawaiian Islands—Kaua‘i, O‘ahu, Maui, and Hawai‘i Island.The bulk of each of Hawai‘i’s islands is built of many thin lava flows erupted from shield volcanoes; the great piles of lava flows form highly permeable aquifers. In some areas, low-permeability dikes cutting across the lava flows, or low-permeability ash and soil horizons interlayered with the lava flows, can substantially alter groundwater flow. On some islands, sedimentary rocks form thick semiconfining coastal-plain deposits, locally known as caprock, that impede natural groundwater discharge to the ocean. In some regions, thick lava flows that ponded in preexisting depressions form aquifers that are much less permeable than aquifers formed by thin lava flows.Fresh groundwater inflow to Hawai‘i’s aquifers comes from recharge. For predevelopment conditions (1870), estimates of groundwater recharge from this study are 871, 675, 1,279, and 5,291 million gallons per day (Mgal/d) for Kaua‘i, O‘ahu, Maui, and Hawai‘i Island, respectively. Estimates of recharge for recent conditions (2010 land cover and 1978–2007 rainfall for Kaua‘i, O

  19. Bedrock Hydrogeology-Site investigation SFR

    International Nuclear Information System (INIS)

    Oehman, Johan; Bockgaard, Niclas; Follin, Sven

    2012-06-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations for a planned extension of the existing final repository for short-lived radioactive waste (SFR). This report presents an integrated analysis and interpretation of the historic data from the existing SFR (1980 - 1986), as well as, from the recent investigations for the planned extension of SFR (2008 - 2009). The primary objective is to establish a conceptual hydrogeological model of the bedrock for safety assessment and design analyses. Analyses and interpretations of all (old and new) hydraulic data are analysed with regard to the recently developed geological deformation zone model of the SFR model domain (Curtis et al. 2011). The methodology used by Curtis et al. (2011) has focussed on magnetic anomalies and deformation zone intercepts with ground surface greater than 300 m. In the hydrogeological modelling, however, it has been considered important to also explore the occurrence and characteristics of shallow horizontal to sub-horizontal structures (sheet joints) inside the SFR model domain. Such structures are of considerable importance for the hydrogeology in the uppermost c. 150 m of bedrock in SDM-Site Forsmark; hence the term Shallow Bedrock Aquifer was used to emphasise their hydraulic significance. In this study, the acronym SBA-structure is used for horizontal structures identified in the hydrogeological modelling. In addition to the predominantly steeply dipping geological deformation zones, eight so-called SBA-structures are modelled deterministically in the hydrogeological model. The SBA-structures are envisaged as hydraulically heterogeneous and composed of clusters of minor gently dipping to horizontal fractures rather than extensive single features. A type of structures that is partly included in the definition of the SBA-structures is the Unresolved Possible Deformations Zone (Unresolved PDZ) intercepts identified by Curtis et al. (2011). The Unresolved

  20. Meteorological, hydrological and hydrogeological monitoring data and near-surface hydrogeological properties data from Laxemar-Simpevarp. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent (EmpTec, Taeby (Sweden)); Oehman, Johan (Golder Associates AB, Stockholm (Sweden)); Holgersson, Bjoern (SWECO VIAK, Stockholm (Sweden)); Roennback, Kristoffer (Aqualog AB, Goeteborg (Sweden)); Marelius, Fredrick (WSP Sverige, Stockholm (Sweden))

    2008-12-15

    This report presents and analyses meteorological, hydrological and hydrogeological time-series data and near-surface hydrogeological properties data from the Laxemar-Simpevarp area, available in SKB's Sicada database at time of the Laxemar 2.3 data freeze (Aug. 31, 2007). The meteorological data set includes data from two local stations, located on the island of Aespoe and at Plittorp, located further inland. In addition, the data evaluation uses a longer-term data set from 7 surrounding stations, operated by SMHI. As part of this study, a time series is constructed of the water content of snow. According to the data evaluation, the site-average annual precipitation and potential evapotranspiration can be estimated to be on the order of 600 and 535 mm, respectively. In particular, precipitation demonstrates a near-coastal gradient, with less precipitation at the coast compared to areas further inland. The surface-water level data set includes data from 4 lake-level gauging stations and 3 sea-level gauging stations. All lakes are located above sea level, including the near-coastal Lake Soeraa. Hence, no intrusion of sea water to lakes takes place. There is a strong co-variation among the monitored lake-water levels, typically with maxima during spring and minima during late summer and early autumn. Concerning the sea as a hydraulic boundary, the maximum and minimum sea levels (daily averages) during the site-investigation period were -0.52 and 0.71 metres above sea level, respectively, whereas the average sea level was 0.03 metres above sea level (RHB 70). The data set on stream discharge, surface-water temperature and electrical conductivity includes data from 9 discharge-gauging stations in 7 streams. Based on the discharge data, the site-average specific discharge for the years 2005-2007 can be estimated to 165 mm/y, which is within the interval of the estimated long-term average. Overall, discharge-data errors are likely to be small. The hydrogeological

  1. Resource modelling for control: how hydrogeological modelling can support a water quality monitoring infrastructure

    Science.gov (United States)

    Scozzari, Andrea; Doveri, Marco

    2015-04-01

    The knowledge of the physical/chemical processes implied with the exploitation of water bodies for human consumption is an essential tool for the optimisation of the monitoring infrastructure. Due to their increasing importance in the context of human consumption (at least in the EU), this work focuses on groundwater resources. In the framework of drinkable water networks, the physical and data-driven modelling of transport phenomena in groundwater can help optimising the sensor network and validating the acquired data. This work proposes the combined usage of physical and data-driven modelling as a support to the design and maximisation of results from a network of distributed sensors. In particular, the validation of physico-chemical measurements and the detection of eventual anomalies by a set of continuous measurements take benefit from the knowledge of the domain from which water is abstracted, and its expected characteristics. Change-detection techniques based on non-specific sensors (presented by quite a large literature during the last two decades) have to deal with the classical issues of maximising correct detections and minimising false alarms, the latter of the two being the most typical problem to be faced, in the view of designing truly applicable monitoring systems. In this context, the definition of "anomaly" in terms of distance from an expected value or feature characterising the quality of water implies the definition of a suitable metric and the knowledge of the physical and chemical peculiarities of the natural domain from which water is exploited, with its implications in terms of characteristics of the water resource.

  2. New structural, hydrogeological and hydrothermal insights on Cumbre Vieja (La Palma, Canary Islands, Spain)

    Science.gov (United States)

    Barde-Cabusson, S.; Finizola, A.; Torres, P.; Víctor Villasante-Marcos, V.; Abella, R.; Aragó, S.; Berthod, C.; Ibarra, P.; Geyer Traver, A.

    2013-12-01

    Determining the link between shallow structure and volcanism is a topic of interest in Volcanology. We carried out a geophysical study devoted to the characterization of the major structural limits influencing volcanic hydrothermal activity and underground meteoric circulations in La Palma (Canary Islands). Since 1 Ma volcanic activity concentrates at the southern half of the island, on the Cumbre Vieja volcanic rift-zone. During the 1949 eruption a N-S fault system, facing west, developed in the summit area of Cumbre Vieja. This was interpreted as the surface expression of an incipient deformation zone on the western flank. The distribution of the recent activity and faulting indicate that a discontinuity may be present beneath the western flank of Cumbre Vieja, along which a future collapse may occur. Our study, which combines the application of self-potential and soil temperature measurements, provides new information to characterize and locate the limits guiding upward or downward fluid circulation and possibly associated to future failures and potential landslides on the Cumbre Vieja rift-zone. We found a clear asymmetry of the self-potential signal between the eastern and the western flanks of Cumbre Vieja. Strong infiltration of meteoric water seems to affect most of the summit axis while we observe poor variation in the self-potential values on the western flank. This could be explained by a constant thickness of the vadose zone on this flank, i.e., the presence of an impermeable layer at constant depth. This layer could correspond to the landslide interface associated to the previous Cumbre Nueva edifice destruction, on which Cumbre Vieja is currently growing. This constant self-potential pattern is interrupted by at least one other main infiltration zone, near Tajuya volcano, at 1200 m a.s.l. on the western flank, where field observation allowed identifying a small horst-graben system. However it is not clear if this fault system results from local

  3. Hydrogeological and geophysical study for deeper groundwater ...

    Indian Academy of Sciences (India)

    lected using Syscal Pro Switch-10 channel system and covered a 2 km long profile in a tough terrain. The hydrogeological ... a rainwater harvesting structure to recharge the subsurface in ... southwest trend. The drainage pattern is dendritic.

  4. The transboundary non-renewable Nubian Aquifer System of Chad, Egypt, Libya and Sudan: classical groundwater questions and parsimonious hydrogeologic analysis and modeling

    Science.gov (United States)

    Voss, Clifford I.; Soliman, Safaa M.

    2014-03-01

    Parsimonious groundwater modeling provides insight into hydrogeologic functioning of the Nubian Aquifer System (NAS), the world's largest non-renewable groundwater system (belonging to Chad, Egypt, Libya, and Sudan). Classical groundwater-resource issues exist (magnitude and lateral extent of drawdown near pumping centers) with joint international management questions regarding transboundary drawdown. Much of NAS is thick, containing a large volume of high-quality groundwater, but receives insignificant recharge, so water-resource availability is time-limited. Informative aquifer data are lacking regarding large-scale response, providing only local-scale information near pumps. Proxy data provide primary underpinning for understanding regional response: Holocene water-table decline from the previous pluvial period, after thousands of years, results in current oasis/sabkha locations where the water table still intersects the ground. Depletion is found to be controlled by two regional parameters, hydraulic diffusivity and vertical anisotropy of permeability. Secondary data that provide insight are drawdowns near pumps and isotope-groundwater ages (million-year-old groundwaters in Egypt). The resultant strong simply structured three-dimensional model representation captures the essence of NAS regional groundwater-flow behavior. Model forecasts inform resource management that transboundary drawdown will likely be minimal—a nonissue—whereas drawdown within pumping centers may become excessive, requiring alternative extraction schemes; correspondingly, significant water-table drawdown may occur in pumping centers co-located with oases, causing oasis loss and environmental impacts.

  5. Hydrogeology of the Cliff House Sandstone in the San Juan structural basin, New Mexico, Colorado, Arizona and Utah

    Science.gov (United States)

    Thorn, Conde R.; Levings, G.W.; Craigg, S.D.; Dam, W.L.; Kernodle, J.M.

    1990-01-01

    This report is one in a series resulting from the U.S. Geological Survey's Regional Aquifer-System Analysis (RASA) study of the San Juan structural basin that began in October 1984. Previous reports in the series describe the hydrogeology of the Dakota Sandstone (Craigg and others, 1989), Point Lookout Sandstone (Craigg and others, 1990), Morrison Formation (Dam and others, 1990), Gallup Sandstone (Kernodle and others, 1989), and Menefee Formation (Levings and others, 1990) in the San Juan structural basin. The purposes of the RASA (Welder, 1986) are to: (1) Define and evaluate the aquifer system; (2) assess the effects of past, present, and potential ground-water use on aquifers and streams; and (3) determine the availability and quality of ground water. This report summarizes information on the geology and the occurrence and quality of water in the Cliff House Sandstone, one of the primary water-bearing units in the regional aquifer system. Data used in this report were collected during the study or were derived from existing records in the U.S. Geological Survey's computerized National Water Information System (NWIS) data base, the Petroleum Information Corporation's data base, and the Dwight's ENERGYDATA Inc. BRIN data base. Although all data available for the Cliff House Sandstone were considered in formulating the discussions in the text, not all those data could be plotted on the illustrations. The San Juan structural basin is in New Mexico, Colorado, Arizona, and Utah and has an area of about 21,600 square miles (fig. 1). The structural basin is about 140 miles wide and about 200 miles long. The study area is that part of the structural basin that contains rocks of Triassic or younger age and, therefore, is less extensive than the structural basin. Triassic through Tertiary sedimentary rocks are emphasized in this study because the major aquifers in the basin are present in these rocks. The study area is about 140 miles wide (about the same as the

  6. Hydrogeology of the Point Lookout Sandstone in the San Juan structural basin, New Mexico, Colorado, Arizona and Utah

    Science.gov (United States)

    Craigg, Steven D.; Dam, W.L.; Kernodle, J.M.; Thorn, C.R.; Levings, G.W.

    1990-01-01

    This report is one in a series resulting from the U.S. Geological Survey's Regional Aquifer-System Analysis (RASA) study of the San Juan structural basin that began in October 1984. Previous reports in the series describe the hydrogeology of the Dakota Sandstone (Craigg and others, 1989), Morrison Formation (Dam and others, 1990), Gallup Sandstone (Kernodle and others, 1989), Menefee Formation (Levings and others, 1990), and Cliff House Sandstone (Thorn and others, 1990), in the San Juan structural basin. The purposes of the RASA (Welder, 1986) are to: (1) Define and evaluate the aquifer system; (2) assess the effects of past, present, and potential ground-water use on aquifers and streams; and (3) determine the availability and quality of ground water. This report summarizes information on the geology and the occurrence and quality of water in the Point Lookout Sandstone, one of the primary water-bearing units in the regional aquifer system. Data used in this report were collected during the study or were derived from existing records in the U.S. Geological Survey's computerized National Water Information System (NWIS) data base, the Petroleum Information Corporation's database, and the Dwight's ENERGYDATA Inc. BRIN data base. Although all data available for the Point Lookout Sandstone were considered in formulating the discussions in the text, not all those data could be plotted on the illustrations. The San Juan structural basin is in New Mexico, Colorado, Arizona, and Utah and has an area of about 21,600 square miles (fig. 1). The structural basin is about 140 miles wide and about 200 miles long. The study area is that part of the structural basin that contains rocks of Triassic or younger age and, therefore, is less areally extensive than the structural basin. Triassic through Tertiary sedimentary rocks are emphasized in this study because the major aquifers in the basin are present in these rocks. The study area is about 140 miles wide (about the same as the

  7. Hydrogeology of the Pictured Cliffs Sandstone in the San Juan structural basin, New Mexico, Colorado, Arizona, and Utah

    Science.gov (United States)

    Dam, William L.; Kernodle, J.M.; Thorn, C.R.; Levings, G.W.; Craigg, S.D.

    1990-01-01

    This report is one in a series resulting from the U.S. Geological Survey's Regional Aquifer System Analysis (RASA) study of the San Juan structural basin that began in October 1984. The purposes of the study (Welder, 1986) are to: (1) Define and evaluate the aquifer system; (2) assess the effects of past, present, and potential ground-water use on aquifers and streams, and (3) determine the availability and quality of ground water. Previous reports in this series describe the hydrogeology of the Dakota Sandstone (Craigg and others, 1989), Gallup Sandstone (Kernodle and others, 1989), Morrison Formation (Dam and others, 1990), Point Lookout Sandstone (Craigg and others, 1990), Kirtland Shale and Fruitland Formation (Kernodle and others, 1990), Menefee Formation (Levings and others, 1990), Cliff House Sandstone (Thorn and others, 1990), and Ojo Alamo Sandstone (Thorn and others, 1990) in the San Juan structural basin. This report summarizes information on the geology and the occurrence and quality of water in the Pictured Cliffs Sandstone, one of the primary water-bearing units in the regional aquifer system. Data used in this report were collected during the RASA study or derived from existing records in the U.S. Geological Survey's computerized National Water Information System (NWIS) data base, the Petroleum Information Corporation's data base, and the Dwight's ENERGYDATA Inc. BRIN database. Although all data available for the Pictured Cliffs Sandstone were considered in formulating the discussions in the text, not all those data could be plotted on the illustrations. The San Juan structural basin in New Mexico, Colorado, Arizona, and Utah has an area of about 21,600 square miles (fig. 1). The structural basin is about 140 miles wide and about 200 miles long. The study area is that part of the structural basin that contains rocks of Triassic and younger age; therefore, the study area is less extensive than the structural basin. Triassic through Tertiary

  8. Hydrogeological modeling constraints provided by geophysical and geochemical mapping of a chlorinated ethenes plume in northern France

    Science.gov (United States)

    Razafindratsima, Stephen; Guérin, Roger; Bendjoudi, Hocine; de Marsily, Ghislain

    2014-09-01

    A methodological approach is described which combines geophysical and geochemical data to delineate the extent of a chlorinated ethenes plume in northern France; the methodology was used to calibrate a hydrogeological model of the contaminants' migration and degradation. The existence of strong reducing conditions in some parts of the aquifer is first determined by measuring in situ the redox potential and dissolved oxygen, dissolved ferrous iron and chloride concentrations. Electrical resistivity imaging and electromagnetic mapping, using the Slingram method, are then used to determine the shape of the pollutant plume. A decreasing empirical exponential relation between measured chloride concentrations in the water and aquifer electrical resistivity is observed; the resistivity formation factor calculated at a few points also shows a major contribution of chloride concentration in the resistivity of the saturated porous medium. MODFLOW software and MT3D99 first-order parent-daughter chain reaction and the RT3D aerobic-anaerobic model for tetrachloroethene (PCE)/trichloroethene (TCE) dechlorination are finally used for a first attempt at modeling the degradation of the chlorinated ethenes. After calibration, the distribution of the chlorinated ethenes and their degradation products simulated with the model approximately reflects the mean measured values in the observation wells, confirming the data-derived image of the plume.

  9. Hydrogeologic framework and geologic structure of the Floridan aquifer system and intermediate confining unit in the Lake Okeechobee area, Florida

    Science.gov (United States)

    Reese, Ronald S.

    2014-01-01

    The successful implementation of aquifer storage and recovery (ASR) as a water-management tool requires detailed information on the hydrologic and hydraulic properties of the potential water storage zones. This report presents stratigraphic and hydrogeologic sections of the upper part of the Floridan aquifer system and the overlying confining unit or aquifer system in the Lake Okeechobee area, and contour maps of the upper contacts of the Ocala Limestone and the Arcadia Formation, which are represented in the sections. The sections and maps illustrate hydrogeologic factors such as confinement of potential storage zones, the distribution of permeability within the zones, and geologic features that may control the efficiency of injection, storage, and recovery of water, and thus may influence decisions on ASR activities in areas of interest to the Comprehensive Everglades Restoration Plan.

  10. Geological investigations and hydrogeologic model development in support of DoD and DOE environmental programs on Kirtland Air Force Base, New Mexico, U.S.A

    International Nuclear Information System (INIS)

    Gibson, J.D.; Pratt, G.; Davidson, H.; DeWitt, C.; Hitchcock, C.; Kelson, K.; Noller, J.; Sawyer, T.; Thomas, E.

    1994-01-01

    This paper presents results of preliminary geologic site characterization and hydrogeologic conceptual model development for the 250-km 2 Kirtland Air Force Base (KAFB) and associated lands in central New Mexico. The research, development, and other operational activities of the Department of Defense (DoD) and Department of Energy (DOE) on KAFB over the last 50 years have resulted in diverse hazardous, radioactive, and mixed-waste environmental concerns. Because multiple federal, state, and local agencies are responsible for administrating the involved lands and because of the nature of many U.S. environmental regulations, individual contaminated and potentially contaminated DoD and DOE environmental restoration (ER) sites on KAFB are commonly handled as distinct entities with little consideration for the cumulative environmental and health risk from all sites. A site-wide characterization program has been undertaken at Sandia National Laboratories/New Mexico (SNL/NM), under the auspices of the DOE, to construct a conceptual hydrogeologic model for the base. This conceptual model serves as the basis for placing each ER site into a broader context for evaluating background (i.e., non-contaminated) conditions and for modeling of possible contaminant pathways and travel-times. Regional and local hydrogeologic investigations from KAFB can be used as models for characterizing and evaluating other sites around the world where combined civilian and military environmental programs must work together to resolve environmental problems that may present health risks to workers and the general public

  11. A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers in the Pecos County region, Texas

    Science.gov (United States)

    Bumgarner, Johnathan R.; Stanton, Gregory P.; Teeple, Andrew; Thomas, Jonathan V.; Houston, Natalie A.; Payne, Jason; Musgrove, MaryLynn

    2012-01-01

    A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers, which include the Pecos Valley, Igneous, Dockum, Rustler, and Capitan Reef aquifers, was developed as the second phase of a groundwater availability study in the Pecos County region in west Texas. The first phase of the study was to collect and compile groundwater, surface-water, water-quality, geophysical, and geologic data in the area. The third phase of the study involves a numerical groundwater-flow model of the Edwards-Trinity aquifer in order to simulate groundwater conditions based on various groundwater-withdrawal scenarios. Resource managers plan to use the results of the study to establish management strategies for the groundwater system. The hydrogeologic framework is composed of the hydrostratigraphy, structural features, and hydraulic properties of the groundwater system. Well and geophysical logs were interpreted to define the top and base surfaces of the Edwards-Trinity aquifer units. Elevations of the top and base of the Edwards-Trinity aquifer generally decrease from the southwestern part of the study area to the northeast. The thicknesses of the Edwards-Trinity aquifer units were calculated using the interpolated top and base surfaces of the hydrostratigraphic units. Some of the thinnest sections of the aquifer were in the eastern part of the study area and some of the thickest sections were in the Pecos, Monument Draw, and Belding-Coyanosa trough areas. Normal-fault zones, which formed as growth and collapse features as sediments were deposited along the margins of more resistant rocks and as overlying sediments collapsed into the voids created by the dissolution of Permian-age evaporite deposits, were delineated based on the interpretation of hydrostratigraphic cross sections. The lowest aquifer transmissivity values were measured in the eastern part of the study area; the highest transmissivity values were

  12. Geophysical Constraints on the Hydrogeologic and Structural Settings of the Gulf of Suez Rift-Related Basins: Case Study from the El Qaa Plain, Sinai, Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M; Sauck, William; Sultan, Mohamed; Yan, Eugene; Soliman, Farouk; Rashed, Mohamed

    2013-11-09

    Groundwater has been identified as one of the major freshwater sources that can potentially meet the growing demands of Egypt’s population. Gravity data (from 381 ground gravity stations) were collected, processed, and analyzed together with the available aeromagnetic (800 line-km) data to investigate the hydrogeologic and structural settings, areal distribution, geometry, and water storage of the aquifers in El Qaa coastal plain in the southwest Sinai Peninsula, and to assess their longevity given projected extraction rates. Findings include (1) complete Bouguer anomaly and total magnetic intensity maps show two connected sub-basins separated by a narrow saddle with an average basin length of 43 km and an average width of 12 km; (2) two-dimensional modeling of both gravity and magnetic data indicates basin fill with a maximum thickness of 3.5 km; (3) using anomalous residual gravity, the volume of water in storage was estimated at 40–56 km3; and (4) progressive increases in extraction rates over time will deplete up to 40 % of the aquifers’ volume in 200–230 years and will cause the water quality to deteriorate due to seawater intrusion in 45 years. Similar geophysical exploration campaigns, if conducted over the entire coastal plains of the Red Sea and the Gulfs of Suez and Aqaba, could assist in the development of sound and sustainable management schemes for the freshwater resources in these areas. The adopted techniques could pave the way toward the establishment of sustainable utilization schemes for a much larger suite of similar aquifers worldwide.

  13. Salinity sources of Kefar Uriya wells in the Judea Group aquifer of Israel. Part 1—conceptual hydrogeological model

    Science.gov (United States)

    Avisar, D.; Rosenthal, E.; Flexer, A.; Shulman, H.; Ben-Avraham, Z.; Guttman, J.

    2003-01-01

    In the Yarkon-Taninim groundwater basin, the karstic Judea Group aquifer contains groundwater of high quality. However, in the western wells of the Kefar Uriya area located in the foothills of the Judea Mountains, brackish groundwater was locally encountered. The salinity of this water is caused presumably by two end members designated as the 'Hazerim' and 'Lakhish' water types. The Hazerim type represents surface water percolating through a highly fractured thin chalky limestone formation overlying the Judea Group aquifer. The salinity of the water derives conjointly from several sources such as leachates from rendzina and grumosols, dissolution of caliche crusts which contain evaporites and of rock debris from the surrounding formations. This surface water percolates downwards into the aquifer through a funnel- or chimney-like mechanism. This local salinization mechanism supercedes another regional process caused by the Lakhish waters. These are essentially diluted brines originating from deep formations in the western parts of the Coastal Plain. The study results show that salinization is not caused by the thick chalky beds of the Senonian Mt Scopus Group overlying the Judea Group aquifer, as traditionally considered but prevalently by aqueous leachates from soils and rock debris. The conceptual qualitative hydrogeological model of the salinization as demonstrated in this study, is supported by a quantitative hydrological model presented in another paper in this volume.

  14. Study of the influence of hydrogeological conditions in the upper aquifer on radionuclide migration from a geological repository using a 2D groundwater flow model

    Energy Technology Data Exchange (ETDEWEB)

    Shestopalov, Vyacheslav; Bohuslavskyy, Alexander; Shybetskyi, Iurii [National Academy of Science of Ukaraine, Kyiv (Ukraine). Radioenvironmental Centre

    2015-07-01

    Results are presented of a case groundwater flow-transport modeling to predict the radionuclide migration from a deep geological repository (DGR) of radioactive waste. The influence of hydrogeological conditions in the upper aquifers of a storey water exchange system on the rate of contaminant migration from the DGR to its natural far-field groundwater discharges (a shallow well and a river) as a general DGR safety condition is considered.

  15. Hydrogeologic modelling in support of a proposed Deep Geologic Repository in Canada for low and intermediate level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Sykes, J.F.; Normani, S.D.; Yin, Y. [Waterloo Univ., ON (Canada). Dept. of Civil and Environmental Engineering; Sykes, E.A.; Jensen, M.R. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2009-07-01

    Ontario Power Generation (OPG) has proposed the construction of a Deep Geologic Repository (DGR) for low and intermediate level radioactive waste at the Bruce site on the shore of Lake Huron near Tiverton, Ontario. The DGR is to be excavated at a depth of about 680 m within argillaceous limestones of Ordovician age. A saturated regional-scale and site-scale numerical modelling study has been completed in order to evaluate the safety of storing radioactive waste at the site and to better understand the geochemistry and hydrogeology of the formations surrounding the proposed DGR. This paper reported on the regional-scale base-case modelling and analysis of the measured pressure profile in deep boreholes at the DGR site. The numerical modelling study provided a framework to investigate the groundwater flow system as it relates to, and potentially affects, the safety and long-term performance of the DGR. A saturated groundwater flow model was also developed using FRAC3DVS-OPG. The objective of regional-scale groundwater modelling of the Paleozoic sedimentary sequence underlying southwestern Ontario was to provide a basis for the assembly and integration of site-specific geoscientific data and to explain the influence of parameter and scenario uncertainty on predicted long-term geosphere barrier performance. The base-case analysis showed that solute transport in the Ordovician and lower Silurian is diffusion dominant. For the base-case parameters, the estimated mean life expectancy for the proposed DGR is more than 8 million years. The possible presence of a gas phase in the rock between the Cambrian and the Niagaran was not considered in the analyses of this paper. 9 refs., 2 tabs., 10 figs.

  16. Hydrogeology of Gypsum formations

    Directory of Open Access Journals (Sweden)

    Klimchouk A.

    1996-01-01

    Full Text Available Detailed explanation of hydrogeological characteristics of gypsum aquifers is given in various situations: deep-seated karst-confined conditions, subjacent, entrenched and denuded karst types-semi-confined, phreatic and vadose conditions. The hydrogeological evolution of barren exposed gypsum karst and flow velocities in gypsum karst aquifers is also discussed.

  17. Use of Multi-class Empirical Orthogonal Function for Identification of Hydrogeological Parameters and Spatiotemporal Pattern of Multiple Recharges in Groundwater Modeling

    Science.gov (United States)

    Huang, C. L.; Hsu, N. S.; Yeh, W. W. G.; Hsieh, I. H.

    2017-12-01

    This study develops an innovative calibration method for regional groundwater modeling by using multi-class empirical orthogonal functions (EOFs). The developed method is an iterative approach. Prior to carrying out the iterative procedures, the groundwater storage hydrographs associated with the observation wells are calculated. The combined multi-class EOF amplitudes and EOF expansion coefficients of the storage hydrographs are then used to compute the initial gauss of the temporal and spatial pattern of multiple recharges. The initial guess of the hydrogeological parameters are also assigned according to in-situ pumping experiment. The recharges include net rainfall recharge and boundary recharge, and the hydrogeological parameters are riverbed leakage conductivity, horizontal hydraulic conductivity, vertical hydraulic conductivity, storage coefficient, and specific yield. The first step of the iterative algorithm is to conduct the numerical model (i.e. MODFLOW) by the initial guess / adjusted values of the recharges and parameters. Second, in order to determine the best EOF combination of the error storage hydrographs for determining the correction vectors, the objective function is devised as minimizing the root mean square error (RMSE) of the simulated storage hydrographs. The error storage hydrograph are the differences between the storage hydrographs computed from observed and simulated groundwater level fluctuations. Third, adjust the values of recharges and parameters and repeat the iterative procedures until the stopping criterion is reached. The established methodology was applied to the groundwater system of Ming-Chu Basin, Taiwan. The study period is from January 1st to December 2ed in 2012. Results showed that the optimal EOF combination for the multiple recharges and hydrogeological parameters can decrease the RMSE of the simulated storage hydrographs dramatically within three calibration iterations. It represents that the iterative approach that

  18. Seismic-refraction field experiments on Galapagos Islands: A quantitative tool for hydrogeology

    Science.gov (United States)

    Adelinet, M.; Domínguez, C.; Fortin, J.; Violette, S.

    2018-01-01

    Due to their complex structure and the difficulty of collecting data, the hydrogeology of basaltic islands remains misunderstood, and the Galapagos islands are not an exception. Geophysics allows the possibility to describe the subsurface of these islands and to quantify the hydrodynamical properties of its ground layers, which can be useful to build robust hydrogeological models. In this paper, we present seismic refraction data acquired on Santa Cruz and San Cristobal, the two main inhabited islands of Galapagos. We investigated sites with several hydrogeological contexts, located at different altitudes and at different distances to the coast. At each site, a 2D P-wave velocity profile is built, highlighting unsaturated and saturated volcanic layers. At the coastal sites, seawater intrusion is identified and basal aquifer is characterized in terms of variations in compressional sound wave velocities, according to saturation state. At highlands sites, the limits between soils and lava flows are identified. On San Cristobal Island, the 2D velocity profile obtained on a mid-slope site (altitude 150 m), indicates the presence of a near surface freshwater aquifer, which is in agreement with previous geophysical studies and the hydrogeological conceptual model developed for this island. The originality of our paper is the use of velocity data to compute field porosity based on poroelasticity theory and the Biot-Gassmann equations. Given that porosity is a key parameter in quantitative hydrogeological models, it is a step forward to a better understanding of shallow fluid flows within a complex structure, such as Galapagos volcanoes.

  19. Hydrogeological modelling of the Atlantis aquifer for management support to the Atlantis water supply scheme

    CSIR Research Space (South Africa)

    Jovanovic, Nebo

    2017-01-01

    Full Text Available model MODFLOW for groundwater flow and contaminant transport was used in support of the management of the AWSS. The aims were: (i) to calibrate the MODFLOW model for the MAR site at Atlantis; (ii) to run realistic scenarios that cannot be replicated...

  20. Model Intercomparison Study to Investigate a Dense Contaminant Plume in a Complex Hydrogeologic System

    International Nuclear Information System (INIS)

    Williams, Mark D.; Cole, Charles R.; Foley, Michael G.; Zinina, Galina A.; Zinin, Alexander I.; Vasil'Kova, Nelly A.; Samsonova, Lilia M.

    2001-01-01

    A joint Russian and U.S. model intercomparison study was undertaken for developing more realistic contaminant transport models of the Mayak Site, Southern Urals. The test problems were developed by the Russian Team based on their experience modeling contaminant migration near Lake Karachai. The intercomparison problems were designed to address lake and contaminant plume interactions, as well as river interactions and plume density effects. Different numerical codes were used. Overall there is good agreement between the results of both models. Features shown by both models include (1) the sinking of the plume below the lake, (2) the raising of the water table in the fresh water adjacent to the lake in response to the increased pressure from the dense plume, and (3) the formation of a second sinking plume in an area where evapotranspiration exceeded infiltration, thus increasing the solute concentrations above the source (i.e., lake) values

  1. Macro- and micro- geodynamic of Terebliya-Riksk geodetic man-caused polygon of Ukrainian Carpathians influenced by specificities of structure-geological and hydro-geological conditions

    Science.gov (United States)

    Kulchyzkyy, A.; Serebryannyy, Y.; Tretyak, K.; Trevogo, I.; Zadoroznnyy, V.

    2009-04-01

    Terebliya-Riksk diversion power station is located on two levels ( with difference of 180m ) of south mountainside of Ukrainian Carpathians and separate parts of this power station lie inside rock. Therefore influential parameters of it's stability are geological, tectonic and hydrogeological conditions in complex. Monitoring of intensity and nature of displacements of flow ( pressure) pipe and other objects of power station with geoditic methods indicates that fluctuations of water-level in reservoir caused bouth by natural and artificial efects are of great influence on objects mentioned. Based on geodetical high-precision observations made by LeicaTPS 1201 robotic total station short-periodic components of fundamental vibrations which result in their destructive deformation were determined. Mathematical apparatus ( which uses function of Fourie series and theory of cinematic coefficients ) for displacements determinations of pressure pipe was disigned. Complex of engineering-geological surveys gave an opportunity to define the origin of macro- and micro- geodynamics movements of Terebliya-Riksk diversion power station region. Engineering-geological conditions which influence on power station structure most of all were determined as following : small foldings and cleavage areas appearances, also fluctuations of level of underground water (refered to hydrogeological conditions). Periodic micro-displacemets appearances ( which operate on reducing-stretching scheme) fixed on power station structure are turned to be in direct relation on to what exend reservoir is filled up. Permanent macro- displacements appearances ( which operates in north-west direction ) fixed on pressure pipe are the result sum of residual micro-displacements caused by return periodic movements and are determined by structure-geological, engineering-geological and tectonic conditions.

  2. Aespoe Hard Rock Laboratory. Analysis of fracture networks based on the integration of structural and hydrogeological observations on different scales

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, P. [Geotechnical Inst. Ltd., Bern (Switzerland); Hermanson, Jan [Golder Associates, Stockholm (Sweden); Mazurek, M. [Univ. of Bern (Switzerland)

    2001-05-01

    Fracture networks at Aespoe have been studied for several rock types exhibiting different degrees of ductile and brittle deformation, as well as on different scales. Mesoscopic fault systems have been characterised and classified in an earlier report, this report focuses mainly on fracture networks derived on smaller scales, but also includes mesoscopic and larger scales. The TRUE-1 block has been selected for detailed structural analysis on a small scale due to the high density of relevant information. In addition to the data obtained from core materials, structural maps, BIP data and the results of hydro tests were synthesised to derive a conceptual structural model. The approach used to derive this conceptual model is based on the integration of deterministic structural evidence, probabilistic information and both upscaling and downscaling of observations and concepts derived on different scales. Twelve fracture networks mapped at different sites and scales and exhibiting various styles of tectonic deformation were analysed for fractal properties and structural and hydraulic interconnectedness. It was shown that these analysed fracture networks are not self-similar. An important result is the structural and hydraulic interconnectedness of fracture networks on all scales in the Aespoe rocks, which is further corroborated by geochemical evidence. Due to the structural and hydraulic interconnectedness of fracture systems on all scales at Aespoe, contaminants from waste canisters placed in tectonically low deformation environments would be transported - after having passed through the engineered barriers -from low-permeability fractures towards higher permeability fractures and may thus eventually reach high-permeability features.

  3. Aespoe Hard Rock Laboratory. Analysis of fracture networks based on the integration of structural and hydrogeological observations on different scales

    International Nuclear Information System (INIS)

    Bossart, P.; Hermanson, Jan; Mazurek, M.

    2001-05-01

    Fracture networks at Aespoe have been studied for several rock types exhibiting different degrees of ductile and brittle deformation, as well as on different scales. Mesoscopic fault systems have been characterised and classified in an earlier report, this report focuses mainly on fracture networks derived on smaller scales, but also includes mesoscopic and larger scales. The TRUE-1 block has been selected for detailed structural analysis on a small scale due to the high density of relevant information. In addition to the data obtained from core materials, structural maps, BIP data and the results of hydro tests were synthesised to derive a conceptual structural model. The approach used to derive this conceptual model is based on the integration of deterministic structural evidence, probabilistic information and both upscaling and downscaling of observations and concepts derived on different scales. Twelve fracture networks mapped at different sites and scales and exhibiting various styles of tectonic deformation were analysed for fractal properties and structural and hydraulic interconnectedness. It was shown that these analysed fracture networks are not self-similar. An important result is the structural and hydraulic interconnectedness of fracture networks on all scales in the Aespoe rocks, which is further corroborated by geochemical evidence. Due to the structural and hydraulic interconnectedness of fracture systems on all scales at Aespoe, contaminants from waste canisters placed in tectonically low deformation environments would be transported - after having passed through the engineered barriers -from low-permeability fractures towards higher permeability fractures and may thus eventually reach high-permeability features

  4. Soft computing and hydrogeologic characterization of the Serra Geral-Guarani aquifer system, Parana state, Brazil

    Science.gov (United States)

    Iwashita, F.; Friedel, M. J.; Ferreira, F. J.; Fraser, S. J.

    2011-12-01

    The Self-organizing map (SOM) technique is used to estimate missing hydrogeologic (hydraulic and hydrochemical) properties and evaluate potential connectivity between the Serra Geral and Guarani aquifer system. K-means clustering of SOM neurons is useful for identifying hydrogeologic units (conceptual models) in which the Serra Geral waters are carbonate-calcium and carbonate-magnesium, and Guarani waters are sodium, chloride, fluoride and sulfate as characteristic elements. SOM predictions appear generally consistent with current connectivity models with vertical fluxes from Guarani aquifer strongly influenced by geological structures. Additionally, we identify other new hydrochemical facies in the Serra Geral aquifer indicating areas with potential connections between the two aquifers.

  5. HYDROGEOLOGIC CASE STUDIES

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  6. Impact of river stage prediction methods on stream-aquifer exchanges in a hydro(geo)logical model at the regional scale

    Science.gov (United States)

    Saleh, F.; Flipo, N.; de Fouquet, C.

    2012-04-01

    The main objective of this study is to provide a realistic simulation of river stage in regional river networks in order to improve the quantification of stream-aquifer exchanges and better assess the associated aquifer responses that are often impacted by the magnitude and the frequency of the river stage fluctuations. The study focuses on the Oise basin (17 000 km2, part of the 65 000 km2 Seine basin in Northern France) where stream-aquifer exchanges cannot be assessed directly by experimental methods. Nowadays numerical methods are the most appropriate approaches for assessing stream-aquifer exchanges at this scale. A regional distributed process-based hydro(geo)logical model, Eau-Dyssée, is used, which aims at the integrated modeling of the hydrosystem to manage the various elements involved in the quantitative and qualitative aspects of water resources. Eau-Dyssée simulates pseudo 3D flow in aquifer systems solving the diffusivity equation with a finite difference numerical scheme. River flow is simulated with a Muskingum model. In addition to the in-stream discharge, a river stage estimate is needed to calculate the water exchange at the stream-aquifer interface using the Darcy law. Three methods for assessing in-stream river stages are explored to determine the most appropriate representation at regional scale over 25 years (1980-2005). The first method consists in defining rating curves for each cell of a 1D Saint-Venant hydraulic model. The second method consists in interpolating observed rating curves (at gauging stations) onto the river cells of the hydro(geo)logical model. The interpolation technique is based on geostatistics. The last method assesses river stage using Manning equation with a simplified rectangular cross-section (water depth equals the hydraulic radius). Compared to observations, the geostatistical and the Manning methodologies lead to slightly less accurate (but still acceptable) results offering a low computational cost opportunity

  7. Hydrogeological assessment based on ground water flow modeling around Atbara town

    International Nuclear Information System (INIS)

    Ahmed, S. H. M.

    2010-10-01

    Study area lies in the River Nile state North Central of Sudan between latitudes 17 o 34 - 18 o 00 N and longitudes 33 o 55 - 34 o 43 E. The geological settings of the study area are composed of pre-Cambrian Basement Complex, upper Cretaceous Nubian sandstone formation, Oligocene Hudi Chert, and quaternary superficial deposits in ascending order. Generally there are two main aquifers: shallow or upper aquifer in the alluvial deposits (5 - 37 m thick) and deep or lower aquifer in cretaceous Nubian sand stone (17 - 60 m). The upper aquifer is semi confined, whereas, the lower aquifer is almost confined except in the area around Atbara Town. Hydraulic conductivities of the aquifer varies between 1.89 x 10 -1 to 8.95 x 10 -1 m/min. Most of the water quality in the study area is suitable for domestic, agriculture, and industrial used with the exception of small pockets at Atbara town and some village in West of study area where salinity and contaminations were detected. Generally most of water quality in the study area is fit for human consumption. The ground water flow model of the study area was constricted using 40 column, 50 rows and 3 layers, forming 6000 cells covering the model domain. The model was calibrated using 3D Finite difference visual MODFLOW. The model calibration criteria such as mean absolute error (MAE), root mean square error (RMS) and mass balance error of water into and of out of the system were adjusted to less 1.3, 1.6 m, and 2.5% respectively. The contour maps of the simulated heads produced by visual MODFLOW show fair similarity with the contour map drawn using initial heads which confirm the reliability of Visual MODFLOW application and acceptable model calibration for the problem. As the result of model prediction, the calibration seemed to be more acceptable with average (RMS) of 2.5 m and average absolute mean error (AM) of 1.38 m and average normalized root mean square (NRMS) of (2.02%). Prediction results reflect the increasing of

  8. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Forsmark

    International Nuclear Information System (INIS)

    Aneljung, Maria; Gustafsson, Lars-Goeran

    2007-04-01

    The hydrological modelling system MIKE SHE has been used to describe near-surface groundwater flow, transport mechanisms and the contact between ground- and surface water at the Forsmark site. The surface water system at Forsmark is described with the 1D modelling tool MIKE 11, which is fully and dynamically integrated with MIKE SHE. In spring 2007, a new data freeze will be available and a process of updating, rebuilding and calibrating the MIKE SHE model will start, based on the latest data set. Prior to this, it is important to gather as much knowledge as possible on calibration methods and to define critical calibration parameters and areas within the model. In this project, an optimization of the numerical description and an initial calibration of the MIKE SHE model has been made, and an updated base case has been defined. Data from 5 surface water level monitoring stations, 4 surface water discharge monitoring stations and 32 groundwater level monitoring stations (SFM soil boreholes) has been used for model calibration and evaluation. The base case simulations generally show a good agreement between calculated and measured water levels and discharges, indicating that the total runoff from the area is well described by the model. Moreover, with two exceptions (SFM0012 and SFM0022) the base case results show very good agreement between calculated and measured groundwater head elevations for boreholes installed below lakes. The model also shows a reasonably good agreement between calculated and measured groundwater head elevations or depths to phreatic surfaces in many other points. The following major types of calculation-measurement differences can be noted: Differences in groundwater level amplitudes due to transpiration processes. Differences in absolute mean groundwater head, due to differences between borehole casing levels and the interpolated DEM. Differences in absolute mean head elevations, due to local errors in hydraulic conductivity values

  9. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Aneljung, Maria; Gustafsson, Lars-Goeran [DHI Water and Environment AB, Goeteborg (Sweden)

    2007-04-15

    The hydrological modelling system MIKE SHE has been used to describe near-surface groundwater flow, transport mechanisms and the contact between ground- and surface water at the Forsmark site. The surface water system at Forsmark is described with the 1D modelling tool MIKE 11, which is fully and dynamically integrated with MIKE SHE. In spring 2007, a new data freeze will be available and a process of updating, rebuilding and calibrating the MIKE SHE model will start, based on the latest data set. Prior to this, it is important to gather as much knowledge as possible on calibration methods and to define critical calibration parameters and areas within the model. In this project, an optimization of the numerical description and an initial calibration of the MIKE SHE model has been made, and an updated base case has been defined. Data from 5 surface water level monitoring stations, 4 surface water discharge monitoring stations and 32 groundwater level monitoring stations (SFM soil boreholes) has been used for model calibration and evaluation. The base case simulations generally show a good agreement between calculated and measured water levels and discharges, indicating that the total runoff from the area is well described by the model. Moreover, with two exceptions (SFM0012 and SFM0022) the base case results show very good agreement between calculated and measured groundwater head elevations for boreholes installed below lakes. The model also shows a reasonably good agreement between calculated and measured groundwater head elevations or depths to phreatic surfaces in many other points. The following major types of calculation-measurement differences can be noted: Differences in groundwater level amplitudes due to transpiration processes. Differences in absolute mean groundwater head, due to differences between borehole casing levels and the interpolated DEM. Differences in absolute mean head elevations, due to local errors in hydraulic conductivity values

  10. Hydrogeology baseline study Aurora Mine

    International Nuclear Information System (INIS)

    1996-01-01

    A baseline hydrogeologic study was conducted in the area of Syncrude's proposed Aurora Mine in order to develop a conceptual regional hydrogeologic model for the area that could be used to understand groundwater flow conditions. Geologic information was obtained from over 2,000 coreholes and from data obtained between 1980 and 1996 regarding water level for the basal aquifer. A 3-D numerical groundwater flow model was developed to provide quantitative estimates of the potential environmental impacts of the proposed mining operations on the groundwater flow system. The information was presented in the context of a regional study area which encompassed much of the Athabasca Oil Sands Region, and a local study area which was defined by the lowlands of the Muskeg River Basin. Characteristics of the topography, hydrology, climate, geology, and hydrogeology of the region are described. The conclusion is that groundwater flow in the aquifer occurs mostly in a westerly direction beneath the Aurora Mine towards its inferred discharge location along the Athabasca River. Baseflow in the Muskeg River is mostly related to discharge from shallow surficial aquifers. Water in the river under baseflow conditions was fresh, of calcium-carbonate type, with very little indication of mineralization associated with deeper groundwater in the Aurora Mine area. 44 refs., 5 tabs., 31 figs

  11. SITE-94. Development of a geological and a structural model of Aespoe, southeastern Sweden

    International Nuclear Information System (INIS)

    Tiren, S.A.; Beckholmen, M.; Askling, P.; Voss, C.

    1996-12-01

    The objective of the present study is to construct three-dimensional geological and structural models to be used within the SKI SITE-94 project as a base for modelling hydrogeological, hydrochemical, and rock mechanical bedrock conditions, mass transport and layout of a hypothetical repository. The basic input data in the SITE-94 geological and structural models are restricted to geological and structural readings and geophysical measurements made prior to building the Hard Rock Laboratory. 114 refs, 82 figs, 28 tabs

  12. Joint inversion of seismic refraction and resistivity data using layered models - applications to hydrogeology

    Science.gov (United States)

    Juhojuntti, N. G.; Kamm, J.

    2010-12-01

    We present a layered-model approach to joint inversion of shallow seismic refraction and resistivity (DC) data, which we believe is a seldom tested method of addressing the problem. This method has been developed as we believe that for shallow sedimentary environments (roughly fairly simple 2D geometries, mainly for checking the validity of the calculations. The inversion generally converges towards the correct solution, although there could be stability problems if the starting model is too erroneous. We have also applied the code to field data from seismic refraction and multi-electrode resistivity measurements at typical sand-gravel groundwater reservoirs. The tests are promising, as the calculated depths agree fairly well with information from drilling and the velocity and resistivity values appear reasonable. Current work includes better regularization of the inversion as well as defining individual weight factors for the different datasets, as the present algorithm tends to constrain the depths mainly by using the seismic data. More complex synthetic examples will also be tested, including models addressing the seismic hidden-layer problem.

  13. Description of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    International Nuclear Information System (INIS)

    Johansson, Per-Olof

    2008-12-01

    This report describes the modelling of the surface hydrology and near-surface hydrogeology that was performed for the final site descriptive model of Forsmark produced in the site investigation stage, SDM-Site Forsmark. The comprehensive investigation and monitoring programme forms a strong basis for the developed conceptual and descriptive model of the hydrological and near-surface hydrological system of the site investigation area. However, there are some remaining uncertainties regarding the interaction of deep and near-surface groundwater and surface water of importance for the understanding of the system: The groundwaters in till below Lake Eckarfjaerden, Lake Gaellbotraesket, Lake Fiskarfjaerden and Lake Bolundsfjaerden have high salinities. The hydrological and hydrochemical interpretations indicate that these waters are relict waters of mainly marine origin. From the perspective of the overall water balance, the water below the central parts of the lakes can be considered as stagnant. However, according to the hydrochemical interpretation, these waters also contain weak signatures of deep saline water. Rough chloride budget calculations for the Gaellbotraesket depression also raise the question of a possible upward flow of deep groundwater. No absolute conclusion can be drawn from the existing data analyses regarding the key question of whether there is a small ongoing upward flow of deep saline water. However, Lake Bolundsfjaerden is an exception where the clear downward flow gradient from the till to the bedrock excludes the possibility of an active deep saline source. The available data indicate that there are no discharge areas for flow systems involving deep bedrock groundwater in the northern part of the tectonic lens, where the repository is planned to be located (the so-called 'target area'). However, it can not be excluded that such discharge areas exist. Data indicate that the prevailing downward vertical flow gradients from the QD to the bedrock

  14. Description of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof (Artesia Grundvattenkonsult AB, Taeby (Sweden))

    2008-12-15

    This report describes the modelling of the surface hydrology and near-surface hydrogeology that was performed for the final site descriptive model of Forsmark produced in the site investigation stage, SDM-Site Forsmark. The comprehensive investigation and monitoring programme forms a strong basis for the developed conceptual and descriptive model of the hydrological and near-surface hydrological system of the site investigation area. However, there are some remaining uncertainties regarding the interaction of deep and near-surface groundwater and surface water of importance for the understanding of the system: The groundwaters in till below Lake Eckarfjaerden, Lake Gaellbotraesket, Lake Fiskarfjaerden and Lake Bolundsfjaerden have high salinities. The hydrological and hydrochemical interpretations indicate that these waters are relict waters of mainly marine origin. From the perspective of the overall water balance, the water below the central parts of the lakes can be considered as stagnant. However, according to the hydrochemical interpretation, these waters also contain weak signatures of deep saline water. Rough chloride budget calculations for the Gaellbotraesket depression also raise the question of a possible upward flow of deep groundwater. No absolute conclusion can be drawn from the existing data analyses regarding the key question of whether there is a small ongoing upward flow of deep saline water. However, Lake Bolundsfjaerden is an exception where the clear downward flow gradient from the till to the bedrock excludes the possibility of an active deep saline source. The available data indicate that there are no discharge areas for flow systems involving deep bedrock groundwater in the northern part of the tectonic lens, where the repository is planned to be located (the so-called 'target area'). However, it can not be excluded that such discharge areas exist. Data indicate that the prevailing downward vertical flow gradients from the QD to

  15. Hydrogeological conditions in the Finnsjoen area. Compilation of data and conceptual model

    International Nuclear Information System (INIS)

    Andersson, J.E.; Nordqvist, R.; Nyberg, G.; Smellie, J.; Tiren, S.

    1991-02-01

    In the present report all available data gathered from the Finnsjoen area of potential use for numerical modelling are compiled and discussed. The data have been collected during different phases during the period 1977-1989. This inevitably means that the quality of the measured and interpreted data varies in accordance with the continuous developments of improved equipments and interpretation techniques. The present report is an updated version of the SKB progress report 89-24 with the same title and authors, see introduction. (au)

  16. Characterisation of karst hydrogeology in Western Ireland using geophysical and hydraulic modelling techniques

    Directory of Open Access Journals (Sweden)

    T. McCormack

    2017-04-01

    New hydrological insights for the region: Results suggest two primary pathways of northwards groundwater flow in the catchment, a fault which discharges offshore, and a ∼2 m diameter karst conduit running underneath the catchment lowlands against the prevailing geological dip. This conduit, whose existence was suspected but never confirmed, links a large ephemeral lake to the coast where it discharges intertidally. Hydraulic modelling indicates that the conduit network is a complex mixture of constrictions with multiple inlets and outlets. Two ephemeral lakes are shown to be hydraulically discontinuous, either drained separately or linked by a low pressure channel.

  17. Combined Estimation of Hydrogeologic Conceptual Model, Parameter, and Scenario Uncertainty with Application to Uranium Transport at the Hanford Site 300 Area

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Philip D.; Ye, Ming; Rockhold, Mark L.; Neuman, Shlomo P.; Cantrell, Kirk J.

    2007-07-30

    This report to the Nuclear Regulatory Commission (NRC) describes the development and application of a methodology to systematically and quantitatively assess predictive uncertainty in groundwater flow and transport modeling that considers the combined impact of hydrogeologic uncertainties associated with the conceptual-mathematical basis of a model, model parameters, and the scenario to which the model is applied. The methodology is based on a n extension of a Maximum Likelihood implementation of Bayesian Model Averaging. Model uncertainty is represented by postulating a discrete set of alternative conceptual models for a site with associated prior model probabilities that reflect a belief about the relative plausibility of each model based on its apparent consistency with available knowledge and data. Posterior model probabilities are computed and parameter uncertainty is estimated by calibrating each model to observed system behavior; prior parameter estimates are optionally included. Scenario uncertainty is represented as a discrete set of alternative future conditions affecting boundary conditions, source/sink terms, or other aspects of the models, with associated prior scenario probabilities. A joint assessment of uncertainty results from combining model predictions computed under each scenario using as weight the posterior model and prior scenario probabilities. The uncertainty methodology was applied to modeling of groundwater flow and uranium transport at the Hanford Site 300 Area. Eight alternative models representing uncertainty in the hydrogeologic and geochemical properties as well as the temporal variability were considered. Two scenarios represent alternative future behavior of the Columbia River adjacent to the site were considered. The scenario alternatives were implemented in the models through the boundary conditions. Results demonstrate the feasibility of applying a comprehensive uncertainty assessment to large-scale, detailed groundwater flow

  18. Representing Glaciations and Subglacial Processes in Hydrogeological Models: A Numerical Investigation

    Directory of Open Access Journals (Sweden)

    Arnaud Sterckx

    2017-01-01

    Full Text Available The specific impact of glacial processes on groundwater flow and solute transport under ice-sheets was determined by means of numerical simulations. Groundwater flow and the transport of δ18O, TDS, and groundwater age were simulated in a generic sedimentary basin during a single glacial event followed by a postglacial period. Results show that simulating subglacial recharge with a fixed flux boundary condition is relevant only for small fluxes, which could be the case under partially wet-based ice-sheets. Glacial loading decreases overpressures, which appear only in thick and low hydraulic diffusivity layers. If subglacial recharge is low, glacial loading can lead to underpressures after the retreat of the ice-sheet. Isostasy reduces considerably the infiltration of meltwater and the groundwater flow rates. Below permafrost, groundwater flow is reduced under the ice-sheet but is enhanced beyond the ice-sheet front. Accounting for salinity-dependent density reduces the infiltration of meltwater at depth. This study shows that each glacial process is potentially relevant in models of subglacial groundwater flow and solute transport. It provides a good basis for building and interpreting such models in the future.

  19. Testing and validation of numerical models of groundwater flow, solute transport and chemical reactions in fractured granites: A quantitative study of the hydrogeological and hydrochemical impact produced

    Energy Technology Data Exchange (ETDEWEB)

    Molinero Huguet, J

    2001-07-01

    This work deals with numerical modeling of groundwater flow, solute transport and chemical reactions through fractured media. These models have been developed within the framework of research activities founded by ENRESA , the Spanish Company for Nuclear Waste Management. This project is the result of a collaborative agreement between ENRESA and his equivalent Swedish Company (SKB) through the research project Task Force 5 of the Aspo Underground Laboratory. One of the objectives of this project is to assess quantitatively th hydrogeological and hydrochemical impact produced by the construction of a Deep Geological Repository in fractured granites. This is important because the new conditions altered construction impact will constitute the initial conditions for the repository closure stage. A second goo l of this work deals with testing the ability of current numerical tools to cope simultaneously with the complex hydrogeological and hydrochemical settlings, which are expected to take place in actual nuclear waste underground repositories constructed in crystalline fractured bed racks. This study has been undertaken through the performance of numerical models, which have subsequently been applied to simulate the hydrogeological and hydrochemical behavior of a granite massif, at a kilo metrical scale, during construction of the Aspo Hard Rock Underground Laboratory (Sweden). The Aspo Hard Rock Laboratory is a prototype, full-scale underground facility launched and operated by SKB. The main aim of the laboratory is to provide an opportunity for research, development and demonstration in a realistic rock environment down to the depth planned for the future deep repository. The framework of this underground facility provides a unique opportunity to attempt the objectives of the present dissertation. (Author)

  20. Testing and validation of numerical models of groundwater flow, solute transport and chemical reactions in fractured granites: A quantitative study of the hydrogeological and hydrochemical impact produced

    International Nuclear Information System (INIS)

    Molinero Huguet, J.

    2001-06-01

    This work deals with numerical modeling of groundwater flow, solute transport and chemical reactions through fractured media. These models have been developed within the framework of research activities founded by ENRESA , the Spanish Company for Nuclear Waste Management. This project is the result of a collaborative agreement between ENRESA and his equivalent Swedish Company (SKB) through the research project Task Force 5 of the Aspo Underground Laboratory. One of the objectives of this project is to assess quantitatively th hydrogeological and hydrochemical impact produced by the construction of a Deep Geological Repository in fractured granites. This is important because the new conditions altered construction impact will constitute the initial conditions for the repository closure stage. A second goo l of this work deals with testing the ability of current numerical tools to cope simultaneously with the complex hydrogeological and hydrochemical settlings, which are expected to take place in actual nuclear waste underground repositories constructed in crystalline fractured bed racks. This study has been undertaken through the performance of numerical models, which have subsequently been applied to simulate the hydrogeological and hydrochemical behavior of a granite massif, at a kilo metrical scale, during construction of the Aspo Hard Rock Underground Laboratory (Sweden). The Aspo Hard Rock Laboratory is a prototype, full-scale underground facility launched and operated by SKB. The main aim of the laboratory is to provide an opportunity for research, development and demonstration in a realistic rock environment down to the depth planned for the future deep repository. The framework of this underground facility provides a unique opportunity to attempt the objectives of the present dissertation. (Author)

  1. Hydrogeological conceptual model for Guarani Aquifer System: A tool for management; Modelo hidrogeologico conceptual del Sistema Acuifero Guarani (SAG): una herramienta para la gestion

    Energy Technology Data Exchange (ETDEWEB)

    Gastmans, D.; Veroslavsky, G.; Kiang Cahng, H.; Caetano-Chang, M. R.; Nogueira Pressinotti, M. M.

    2012-11-01

    The Guarani aquifer system (GAS) extends beneath the territories of Argentina, Brazil, Paraguay and Uruguay and thus represents a typical example of a transboundary aquifer. The GAS is an important source of drinking water for the population living within its area. Because of differences in the legal norms concerning water resources in these four countries, an urgently required legal framework for the shared management of the groundwater is currently being drawn up. Within this context, the conceptual regional hydrogeological model should be used as an important tool to delineate shared actions, particularly in regions where the groundwater flow is transboundary. The GAS is considered to be a continuous aquifer made up of Mesozoic continental clastic sedimentary rocks that occur in the Parana and Chacoparanense sedimentary basins, and is bounded at its base by a Permo-Eotriassic regional unconformity and at the top by lower-Cretaceous basaltic lava. The groundwater flow shows a regional trend from N to S along the main axis of these basins. With regard to the major tectonic structures of these sedimentary basins, various main hydrodynamic domains can be distinguished, such as the Ponta Grossa arch and the Asuncion-Rio Grande dorsal. Regional recharge areas are primarily located in the eastern and northern outcrop areas, whilst the western end of the GAS, the Mato Grosso do Sul, contains zones of local recharge and regional discharge. Transboundary flow is observed in areas confined to the national borders of the four countries. Nevertheless, due to the groundwater residence times in the GAS special management actions are called for to prevent over-exploitation, particularly in the confined zones of the aquifer. (Author)

  2. Hydrogeological characterisation of groundwater over Brazil using remotely sensed and model products.

    Science.gov (United States)

    Hu, Kexiang; Awange, Joseph L; Khandu; Forootan, Ehsan; Goncalves, Rodrigo Mikosz; Fleming, Kevin

    2017-12-01

    For Brazil, a country frequented by droughts and whose rural inhabitants largely depend on groundwater, reliance on isotope for its monitoring, though accurate, is expensive and limited in spatial coverage. We exploit total water storage (TWS) derived from Gravity Recovery and Climate Experiment (GRACE) satellites to analyse spatial-temporal groundwater changes in relation to geological characteristics. Large-scale groundwater changes are estimated using GRACE-derived TWS and altimetry observations in addition to GLDAS and WGHM model outputs. Additionally, TRMM precipitation data are used to infer impacts of climate variability on groundwater fluctuations. The results indicate that climate variability mainly controls groundwater change trends while geological properties control change rates, spatial distribution, and storage capacity. Granular rocks in the Amazon and Guarani aquifers are found to influence larger storage capability, higher permeability (>10 -4 m/s) and faster response to rainfall (1 to 3months' lag) compared to fractured rocks (permeability 3months) found only in Bambui aquifer. Groundwater in the Amazon region is found to rely not only on precipitation but also on inflow from other regions. Areas beyond the northern and southern Amazon basin depict a 'dam-like' pattern, with high inflow and slow outflow rates (recharge slope > 0.75, discharge slope 30cm). Amazon's groundwater declined between 2002 and 2008 due to below normal precipitation (wet seasons lasted for about 36 to 47% of the time). The Guarani aquifer and adjacent coastline areas rank second in terms of storage capacity, while the northeast and southeast coastal regions indicate the smallest storage capacity due to lack of rainfall (annual average is rainfall <10cm). Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Bedrock geology of snyderville basin: Structural geology techniques applied to understanding the hydrogeology of a rapidly developing region, Summit County, Utah

    Science.gov (United States)

    Keighley, K.E.; Yonkee, W.A.; Ashland, F.X.; Evans, J.P.

    1997-01-01

    The availability of ground water is a problem for many communities throughout the west. As these communities continue to experience growth, the initial allocation of ground water supplies proves inadequate and may force restrictions on existing, and future, development plans. Much of this new growth relies on ground water supplies extracted from fractured bedrock aquifers. An example of a community faced with this problem is western Summit County, near Park City, Utah, This area has experienced significant water shortages coupled with a 50% growth rate in the past 10-15 years. Recent housing development rests directly on complexly deformed Triassic to Jurassic sedimentary rocks in the hanging wall of the Mount Raymond-Absaroka thrust system. The primary fractured bedrock aquifers are the Nugget Sandstone, and limestones in the Thaynes and Twin Creek Formations. Ground water production and management strategies can be improved if the geometry of the structures and the flow properties of the fractured and folded bedrock can be established. We characterize the structures that may influence ground water flow at two sites: the Pinebrook and Summit Park subdivisions, which demonstrate abrupt changes (less than 1 mi/1.6 km) within the hydrogeologic systems. Geologic mapping at scales of 1:4500 (Pinebrook) and 1:9600 (Summit Park), scanline fracture mapping at the outcrop scale, geologic cross sections, water well data, and structural analysis, provides a clearer picture of the hydrogeologic setting of the aquifers in this region, and has been used to successfully site wells. In the Pinebrook area, the dominate map-scale structures of the area is the Twomile Canyon anticline, a faulted box-like to conical anticline. Widely variable bedding orientations suggest that the fold is segmented and is non-cylindrical and conical on the western limb with a fold axis that plunges to the northwest and also to the southeast, and forms a box-type fold between the middle and eastern

  4. Structural control on the deep hydrogeological and geothermal aquifers related to the fractured Campanian-Miocene reservoirs of north-eastern Tunisia foreland constrained by subsurface data

    Science.gov (United States)

    Khomsi, Sami; Echihi, Oussema; Slimani, Naji

    2012-03-01

    A set of different data including high resolution seismic sections, petroleum wire-logging well data, borehole piezometry, structural cross-sections and outcrop analysis allowed us to characterise the tectonic framework, and its relationships with the deep aquifers seated in Cretaceous-Miocene deep reservoirs. The structural framework, based on major structures, controls the occurrence of deep aquifers and sub-basin aquifer distributions. Five structural domains can be defined, having different morphostructural characteristics. The northernmost domain lying on the north-south axis and Zaghouan thrust system is a domain of recharge by underflow of the different subsurface reservoirs and aquifers from outcrops of highly fractured reservoirs. On the other hand, the morphostructural configuration controls the piezometry of underground flows in the Plio-Quaternary unconfined aquifer. In the subsurface the Late Cretaceous-Miocene reservoirs are widespread with high thicknesses in many places and high porosities and connectivities especially along major fault corridors and on the crestal parts of major anticlines. Among all reservoirs, the Oligo-Miocene, detritic series are widespread and present high cumulative thicknesses. Subsurface and fieldwork outline the occurrence of 10 fractured sandy reservoirs for these series with packages having high hydrodynamic and petrophysical characteristics. These series show low salinities (maximum 5 g/l) in the northern part of the study area and will constitute an important source of drinkable water for the next generations. A regional structural cross-section is presented, compiled from all the different data sets, allowing us to define the major characteristics of the hydrogeological-hydrogeothermal sub-basins. Eight hydrogeological provinces are defined from north-west to south-east. A major thermal anomaly is clearly identified in the south-eastern part of the study area in Sfax-Sidi Il Itayem. This anomaly is possibly related to

  5. Numerical modelling of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Gustafsson, Lars-Goeran; Sassner, Mona (DHI Sverige AB, Stockholm (Sweden))

    2008-09-15

    solute sources in the rock these were located at 140 m.b.s.l. In the PT simulations particles were entered both all over the model area and only inside the area for the planned repository. The pattern of recharge and discharge areas at the surface were studied, but also the flow paths in the bedrock. The PT simulations were run for 300 years and 5,000 years. The AD simulations were run for 200 years. The particle tracking results indicated a relative slow transport from the bedrock up to the ground surface. The horizontal fractures/sheet joints short-circuited the upward transport paths of the particles released in the area where these structures were represented. The particles reaching ground surface when introducing particles all over the model area were concentrated to lake areas, the depressions around the streams, and the sea. When introducing particles inside the planned repository area only, all exit points were found in the sea; no particles discharged in the land part of the model area.

  6. Hydrogeology of Mors

    International Nuclear Information System (INIS)

    Joshi, A.V.

    1982-01-01

    The covering layers protect the salt in the dome. Ground water velocities are small and the chalk exhibits good retention properties for the radionuclides. As ground water velocities below 500 m are small, knowledge of hydrogeology over only a small area over the dome is necessary (1 km horizontal transport takes about 15 mill. years). Additionally if the retention properties of the chalk together with radioactive decay are taken into account, it becomes obvious that the nuclides can travel only a few metres into the chalk, before they have decayed to safe radioactive levels. Therefore it does not appear to be necessary to investigate the hydrogeology beyond a few metres from the disposal area. The hydrogeological investigations that have been carried out, although they cover only a limited area, thus give an excellent and sufficient basis for a safety evaluation for determining the suitability of the Mors salt dome for waste disposal. (EG)

  7. Characterization of Geologic Structures and Host Rock Properties Relevant to the Hydrogeology of the Standard Mine in Elk Basin, Gunnison County, Colorado

    Science.gov (United States)

    Caine, Jonathan S.; Manning, Andrew H.; Berger, Byron R.; Kremer, Yannick; Guzman, Mario A.; Eberl, Dennis D.; Schuller, Kathryn

    2010-01-01

    The Standard Mine Superfund Site is a source of mine drainage and associated heavy metal contamination of surface and groundwaters. The site contains Tertiary polymetallic quartz veins and fault zones that host precious and base metal sulfide mineralization common in Colorado. To assist the U.S. Environmental Protection Agency in its effort to remediate mine-related contamination, we characterized geologic structures, host rocks, and their potential hydraulic properties to better understand the sources of contaminants and the local hydrogeology. Real time kinematic and handheld global positioning systems were used to locate and map precisely the geometry of the surface traces of structures and mine-related features, such as portals. New reconnaissance geologic mapping, field and x-ray diffraction mineralogy, rock sample collection, thin-section analysis, and elemental geochemical analysis were completed to characterize hydrothermal alteration, mineralization, and subsequent leaching of metallic phases. Surface and subsurface observations, fault vein and fracture network characterization, borehole geophysical logging, and mercury injection capillary entry pressure data were used to document potential controls on the hydrologic system.

  8. Implementation and use of Gaussian process meta model for sensitivity analysis of numerical models: application to a hydrogeological transport computer code

    International Nuclear Information System (INIS)

    Marrel, A.

    2008-01-01

    In the studies of environmental transfer and risk assessment, numerical models are used to simulate, understand and predict the transfer of pollutant. These computer codes can depend on a high number of uncertain input parameters (geophysical variables, chemical parameters, etc.) and can be often too computer time expensive. To conduct uncertainty propagation studies and to measure the importance of each input on the response variability, the computer code has to be approximated by a meta model which is build on an acceptable number of simulations of the code and requires a negligible calculation time. We focused our research work on the use of Gaussian process meta model to make the sensitivity analysis of the code. We proposed a methodology with estimation and input selection procedures in order to build the meta model in the case of a high number of inputs and with few simulations available. Then, we compared two approaches to compute the sensitivity indices with the meta model and proposed an algorithm to build prediction intervals for these indices. Afterwards, we were interested in the choice of the code simulations. We studied the influence of different sampling strategies on the predictiveness of the Gaussian process meta model. Finally, we extended our statistical tools to a functional output of a computer code. We combined a decomposition on a wavelet basis with the Gaussian process modelling before computing the functional sensitivity indices. All the tools and statistical methodologies that we developed were applied to the real case of a complex hydrogeological computer code, simulating radionuclide transport in groundwater. (author) [fr

  9. Chemical analysis of water in hydrogeology

    International Nuclear Information System (INIS)

    Flakova, R.; Zenisova, Z.; Seman, M.

    2010-01-01

    The aim of the monograph is to give complete information on the chemical analysis of water hydrogeology not only for the students program of Geology study (Bachelor degree study), Engineering Geology and Hydrogeology (Master's degree study) and Engineering Geology (doctoral level study), but also for students from other colleges and universities schools in Slovakia, as well as in the Czech Republic, dealing with the chemical composition of water and its quality, from different perspectives. The benefit would be for professionals with hydrogeological, water and environmental practices, who can find there all the necessary information about proper water sampling, the units used in the chemical analysis of water, expressing the proper chemical composition of water in its various parameters through classification of chemical composition of the water up to the basic features of physical chemistry at thermodynamic calculations and hydrogeochemical modelling.

  10. An approach to hydrogeological modeling of a large system of groundwater-fed lakes and wetlands in the Nebraska Sand Hills, USA

    Science.gov (United States)

    Rossman, Nathan R.; Zlotnik, Vitaly A.; Rowe, Clinton M.

    2018-05-01

    The feasibility of a hydrogeological modeling approach to simulate several thousand shallow groundwater-fed lakes and wetlands without explicitly considering their connection with groundwater is investigated at the regional scale ( 40,000 km2) through an application in the semi-arid Nebraska Sand Hills (NSH), USA. Hydraulic heads are compared to local land-surface elevations from a digital elevation model (DEM) within a geographic information system to assess locations of lakes and wetlands. The water bodies are inferred where hydraulic heads exceed, or are above a certain depth below, the land surface. Numbers of lakes and/or wetlands are determined via image cluster analysis applied to the same 30-m grid as the DEM after interpolating both simulated and estimated heads. The regional water-table map was used for groundwater model calibration, considering MODIS-based net groundwater recharge data. Resulting values of simulated total baseflow to interior streams are within 1% of observed values. Locations, areas, and numbers of simulated lakes and wetlands are compared with Landsat 2005 survey data and with areas of lakes from a 1979-1980 Landsat survey and the National Hydrography Dataset. This simplified process-based modeling approach avoids the need for field-based morphology or water-budget data from individual lakes or wetlands, or determination of lake-groundwater exchanges, yet it reproduces observed lake-wetland characteristics at regional groundwater management scales. A better understanding of the NSH hydrogeology is attained, and the approach shows promise for use in simulations of groundwater-fed lake and wetland characteristics in other large groundwater systems.

  11. Hydrogeological and Hydrogeochemical Modelling of the Alicun de las Torres Termal System (Province of Granada). Isotope Hydrochemistry and Gases in Groundwaters

    International Nuclear Information System (INIS)

    Prado Perez, A. J.; Delgado, A.; Crespo, M. T.; Martin, A.; Vaselli, O.; Perez del Villar, L.

    2010-01-01

    In the framework of a Singular Strategic Project entitled: A dvanced Technologies of Carbon, Capture and Storage (CCS) , supported by the MICINN (Spain) and the FEDER founds (EU), specifically in the Carbon Storage Task, a comprehensive study on the CO 2 leakage as DIC (Dissolved Inorganic Carbon) in the Alicun de Las Torres (Prov. of Granada) natural analogue thermal system was envisaged. This analogous system is characterised by the presence of a very important travertine formation, which can be considered as a permanent and stable sink for CO 2 . In order to explain the formation of these travertine mass an hydrogeological and hydrogeochemical model of the area has been established by using the hydrochemical data, the stable and radioactive isotope characteristics, the dissolved inorganic carbon, as well as the chemical and isotopic composition of the free and dissolved gases of the above mentioned Thermal System. (Author) 11 refs.

  12. Hydrogeologic framework of the uppermost principal aquifer systems in the Williston and Powder River structural basins, United States and Canada

    Science.gov (United States)

    Thamke, Joanna N.; LeCain, Gary D.; Ryter, Derek W.; Sando, Roy; Long, Andrew J.

    2014-01-01

    The glacial, lower Tertiary, and Upper Cretaceous aquifer systems in the Williston and Powder River structural basins within the United States and Canada are the uppermost principal aquifer systems and most accessible sources of groundwater for these energy-producing basins. The glacial aquifer system covers the northeastern part of the Williston structural basin. The lower Tertiary and Upper Cretaceous aquifer systems are present in about 91,300 square miles (mi2) of the Williston structural basin and about 25,500 mi2 of the Powder River structural basin. Directly under these aquifer systems are 800 to more than 3,000 feet (ft) of relatively impermeable marine shale that serves as a basal confining unit. The aquifer systems in the Williston structural basin have a shallow (less than 2,900 ft deep), wide, and generally symmetrical bowl shape. The aquifer systems in the Powder River structural basin have a very deep (as much as 8,500 ft deep), narrow, and asymmetrical shape.

  13. Stochastic hydrogeologic units and hydrogeologic properties development for total-system performance assessments. Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Schenker, A.R.; Guerin, D.C.; Robey, T.H.; Rautman, C.A.; Barnard, R.W.

    1995-09-01

    A stochastic representation of the lithologic units and associated hydrogeologic parameters of the potential high-level nuclear waste repository are developed for use in performance-assessment calculations, including the Total-System Performance Assessment for Yucca Mountain-SNL Second Iteration (TSPA-1993). A simplified lithologic model has been developed based on the physical characteristics of the welded and nonwelded units at Yucca Mountain. Ten hydrogeologic units are developed from site-specific data (lithologic and geophysical logs and core photographs) obtained from the unsaturated and saturated zones. The three-dimensional geostatistical model of the ten hydrogeologic units is based on indicator-coding techniques and improves on the two-dimensional model developed for TSPA91. The hydrogeologic properties (statistics and probability distribution functions) are developed from the results of laboratory tests and in-situ aquifer tests or are derived through fundamental relationships. Hydrogeologic properties for matrix properties, bulk conductivities, and fractures are developed from existing site specific data. Extensive data are available for matrix porosity, bulk density, and matrix saturated conductivity. For other hydrogeologic properties, the data are minimal or nonexistent. Parameters for the properties are developed as beta probability distribution functions. For the model units without enough data for analysis, parameters are developed as analogs to existing units. A relational, analytic approach coupled with bulk conductivity parameters is used to develop fracture parameters based on the smooth-wall-parallel-plate theory. An analytic method is introduced for scaling small-core matrix properties to the hydrogeologic unit scales

  14. Dynamic term structure models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller; Meldrum, Andrew

    This paper studies whether dynamic term structure models for US nominal bond yields should enforce the zero lower bound by a quadratic policy rate or a shadow rate specification. We address the question by estimating quadratic term structure models (QTSMs) and shadow rate models with at most four...

  15. Hydrogeologic study of Cafam area. Melgar (Tolima)

    International Nuclear Information System (INIS)

    Angel M, Carlos E; Perez C, Rosalbina

    1989-06-01

    The hydrogeologic study covers an area of 50 km 2 with the objectives of to determine the possibility of use of the underground waters and to locate places to carry out exploratory perforations in lands of Cafam, equally the elaboration of a hydrogeologic map of the region; for the effect it was carried out cartography geologic scale 1:10.000, inventory and sampling of water point, geoelectric prospecting and some permeability tests. In the area the exploitation of underground water is incipient, alone there are 20 points of water, of which none produce more than 1L/seg. The water has in general good physical chemistry quality for the human consumption. Geologically was recognized the groups Guadalupe and Gualanday, also some quaternary deposits; the previous ones were subdivided in 11 geological units for its composition and morphology, which are framed structurally in the E flank of the synclinal of Carmen de Apicala and displaced by traverse faults with address E-W and N-W. From the point of hydrogeologic view the units were grouped in 8 aquifer systems, of which four are considered of hydrogeologic importance for the area; the sector with better possibilities to capture these aquifer systems is the W of the area (in the terraces area) that extends to the Sumapaz River. For the Cafam sector a place was selected to build an exploratory well of 200 mts. of depth that would capture an aquifer of low transmissivity, corresponding to the Unit T3

  16. Software verification, model validation, and hydrogeologic modelling aspects in nuclear waste disposal system simulations. A paradigm shift

    International Nuclear Information System (INIS)

    Sheng, G.M.

    1994-01-01

    This work reviewed the current concept of nuclear waste disposal in stable, terrestrial geologic media with a system of natural and man-made multi-barriers. Various aspects of this concept and supporting research were examined with the emphasis on the Canadian Nuclear Fuel Waste Management Program. Several of the crucial issues and challenges facing the current concept were discussed. These include: The difficulties inherent in a concept that centres around lithologic studies; the unsatisfactory state of software quality assurance in the present computer simulation programs; and the lack of a standardized, comprehensive, and systematic procedure to carry out a rigorous process of model validation and assessment of simulation studies. An outline of such an approach was presented and some of the principles, tools and techniques for software verification were introduced and described. A case study involving an evaluation of the Canadian performance assessment computer program is presented. A new paradigm to nuclear waste disposal was advocated to address the challenges facing the existing concept. The RRC (Regional Recharge Concept) was introduced and its many advantages were described and shown through a modelling exercise. (orig./HP)

  17. Hydrological and hydrogeological effects of an open repository in Forsmark. Final MIKE SHE flow modelling results for the Environmental Impact Assessment

    International Nuclear Information System (INIS)

    Maartensson, Erik; Gustafsson, Lars-Goeran

    2010-07-01

    This report presents methodology and modelling results concerning a deep-rock repository for spent nuclear fuel in Forsmark. Specifically, the modelling tools MIKE SHE, MIKE 11 and MOUSE are used to quantify the groundwater inflow to the repository and associated hydrological and hydrogeological effects during the construction and operation phases. The modelling results presented in the report provide input to the Environmental Impact Assessment (EIA) that will be part of a permit application according to the Environmental Code. Based on an existing MIKE SHE model for Forsmark, the first step of the modelling process was to implement an updated hydrogeological model of the bedrock and to increase the vertical and horizontal extents of the model domain. Other model updates involve the vegetation classification, and implementation of SFR (final repository for short-lived radioactive waste) and the subsurface drainage system at the nearby nuclear power plant. The updated model was calibrated using measured data on groundwater levels in the Quaternary deposits and the bedrock, water levels in lakes, and stream discharges. The calibrated model was then used for simulation of undisturbed conditions (i.e. without the repository) as a reference for modelling results obtained for disturbed conditions (with the repository). The modelling results for undisturbed conditions that are presented in the report closely resemble those of the final MIKE SHE site descriptive modelling (SDM-Site Forsmark). The repository layout was implemented as pipe links (segments) in the modelling tool MOUSE, and the implemented layout was used for the modelling of disturbed conditions. The study uses an updated and verified MIKE SHE-MOUSE coupling routine that is specifically adapted for calculation of groundwater inflow to grouted rock tunnels. The vertical shafts of the repository are implemented in the form of MIKE SHE grid cells with atmospheric pressure. Modelling results for disturbed

  18. Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model

    International Nuclear Information System (INIS)

    Deman, G.; Konakli, K.; Sudret, B.; Kerrou, J.; Perrochet, P.; Benabderrahmane, H.

    2016-01-01

    The study makes use of polynomial chaos expansions to compute Sobol' indices within the frame of a global sensitivity analysis of hydro-dispersive parameters in a simplified vertical cross-section of a segment of the subsurface of the Paris Basin. Applying conservative ranges, the uncertainty in 78 input variables is propagated upon the mean lifetime expectancy of water molecules departing from a specific location within a highly confining layer situated in the middle of the model domain. Lifetime expectancy is a hydrogeological performance measure pertinent to safety analysis with respect to subsurface contaminants, such as radionuclides. The sensitivity analysis indicates that the variability in the mean lifetime expectancy can be sufficiently explained by the uncertainty in the petrofacies, i.e. the sets of porosity and hydraulic conductivity, of only a few layers of the model. The obtained results provide guidance regarding the uncertainty modeling in future investigations employing detailed numerical models of the subsurface of the Paris Basin. Moreover, the study demonstrates the high efficiency of sparse polynomial chaos expansions in computing Sobol' indices for high-dimensional models. - Highlights: • Global sensitivity analysis of a 2D 15-layer groundwater flow model is conducted. • A high-dimensional random input comprising 78 parameters is considered. • The variability in the mean lifetime expectancy for the central layer is examined. • Sparse polynomial chaos expansions are used to compute Sobol' sensitivity indices. • The petrofacies of a few layers can sufficiently explain the response variance.

  19. Hydrological and hydrogeological effects of an open repository in Forsmark. Final MIKE SHE flow modelling results for the Environmental Impact Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, Erik; Gustafsson, Lars-Goeran (DHI Sverige AB (Sweden))

    2010-07-15

    This report presents methodology and modelling results concerning a deep-rock repository for spent nuclear fuel in Forsmark. Specifically, the modelling tools MIKE SHE, MIKE 11 and MOUSE are used to quantify the groundwater inflow to the repository and associated hydrological and hydrogeological effects during the construction and operation phases. The modelling results presented in the report provide input to the Environmental Impact Assessment (EIA) that will be part of a permit application according to the Environmental Code. Based on an existing MIKE SHE model for Forsmark, the first step of the modelling process was to implement an updated hydrogeological model of the bedrock and to increase the vertical and horizontal extents of the model domain. Other model updates involve the vegetation classification, and implementation of SFR (final repository for short-lived radioactive waste) and the subsurface drainage system at the nearby nuclear power plant. The updated model was calibrated using measured data on groundwater levels in the Quaternary deposits and the bedrock, water levels in lakes, and stream discharges. The calibrated model was then used for simulation of undisturbed conditions (i.e. without the repository) as a reference for modelling results obtained for disturbed conditions (with the repository). The modelling results for undisturbed conditions that are presented in the report closely resemble those of the final MIKE SHE site descriptive modelling (SDM-Site Forsmark). The repository layout was implemented as pipe links (segments) in the modelling tool MOUSE, and the implemented layout was used for the modelling of disturbed conditions. The study uses an updated and verified MIKE SHE-MOUSE coupling routine that is specifically adapted for calculation of groundwater inflow to grouted rock tunnels. The vertical shafts of the repository are implemented in the form of MIKE SHE grid cells with atmospheric pressure. Modelling results for disturbed

  20. Simulation of hydrodynamic effects of salt rejection due to permafrost. Hydrogeological numerical model of density-driven mixing, at a regional scale, due to a high salinity pulse

    International Nuclear Information System (INIS)

    Vidstrand, Patrik; Svensson, Urban; Follin, Sven

    2006-10-01

    The main objective of this study is to support the safety assessment of the investigated candidate sites concerning hydrogeological and hydrogeochemical issues related to permafrost. However, a more specific objective of the study is to improve the assessment of processes in relation to permafrost scenarios. The model is based on a mathematical model that includes Darcy velocities, mass conservation, matrix diffusion, and salinity distribution. Gravitational effects are thus fully accounted for. A regional groundwater flow model (POM v1.1, Simpevarp) was used as basis for the simulations. The main results of the model include salinity distributions in time. The general conclusion is that density-driven mixing processes are contained within more permeable deformation zones and that these processes are fast as compared with preliminary permafrost growth rates. The results of the simulation suggest that a repository volume in the rock mass in-between the deterministic deformation zones, approximately 150 m below the permafrost will not experience a high salinity situation due to the salt rejection process

  1. Education and Employment in Hydrogeology.

    Science.gov (United States)

    Pederson, Darryll T.

    1987-01-01

    Reports on a study of position descriptions in the field of hydrogeology appearing in want ads, published studies describing the working professional, and published descriptions of hydrogeology programs. Results indicate an increase in positions of ten times that of five years ago. Suggests basic training requirements for beginning…

  2. Nirex 97 an assessment of the post-closure performance of a deep waste repository at Sellafield. Volume 2; hydrogeological conceptual model development - effective parameters and calibration appendix

    International Nuclear Information System (INIS)

    Jackson, C.; Watson, S.

    1997-01-01

    repository zone beneath Longlands Farm. In style, scope and presentation, Nirex 97 is primarily aimed at the scientific community, other radioactive waste disposal agencies and regulators. The report is published as part of Nirex's commitment to open publication of its scientific findings. The main value of the report currently is as a demonstration of the generic capability which has been developed to assess the radiological safety performance of candidate repository sites. The safety assessment reported as Nirex 97 was carried out between April 1996 and August 1997. It updates a preliminary assessment of the groundwater pathway for a repository at Sellafield, 'Nirex 95' published in July 1995. Nirex 97 takes account of further data obtained from the Nirex waste inventory, design, site characterisation and research programmes. In addition, Nirex 97 extends the Nirex 95 evaluation to include consideration of the potential radiological and flammability hazards in the biosphere arising from the effects of gas generation within the repository and the extent of pressurisation within the repository vaults. The assessment also takes account of the latest guidance from the Environment Agencies on requirements for authorisation of disposal facilities on land. Volume 2: Hydrogeological Model Development - Effective Parameters and Calibration, explains the steps followed to interpret and process field data in order to build a variety of two- and three-dimensional numerical models of groundwater flow. It describes the process of upscaling used to derive effective hydrogeological parameters for the hydrogeological units represented in these numerical models. The calibration of these numerical models is discussed

  3. Nirex 97 an assessment of the post-closure performance of a deep waste repository at Sellafield. Volume 2; hydrogeological conceptual model development - effective parameters and calibration

    International Nuclear Information System (INIS)

    Jackson, C.; Watson, S.

    1997-01-01

    repository zone beneath Longlands Farm. In style, scope and presentation, Nirex 97 is primarily aimed at the scientific community, other radioactive waste disposal agencies and regulators. The report is published as part of Nirex's commitment to open publication of its scientific findings. The main value of the report currently is as a demonstration of the generic capability which has been developed to assess the radiological safety performance of candidate repository sites. The safety assessment reported as Nirex 97 was carried out between April 1996 and August 1997. It updates a preliminary assessment of the groundwater pathway for a repository at Sellafield, 'Nirex 95' published in July 1995. Nirex 97 takes account of further data obtained from the Nirex waste inventory, design, site characterisation and research programmes. In addition, Nirex 97 extends the Nirex 95 evaluation to include consideration of the potential radiological and flammability hazards in the biosphere arising from the effects of gas generation within the repository and the extent of pressurisation within the repository vaults. The assessment also takes account of the latest guidance from the Environment Agencies on requirements for authorisation of disposal facilities on land. Volume 2: Hydrogeological Model Development - Effective Parameters and Calibration, explains the steps followed to interpret and process field data in order to build a variety of two- and three-dimensional numerical models of groundwater flow. It describes the process of upscaling used to derive effective hydrogeological parameters for the hydrogeological units represented in these numerical models. The calibration of these numerical models is discussed

  4. Comparison of the results of different scale hydrogeological models on a terraced slope of Valtellina (Northern Italy)

    Science.gov (United States)

    Camera, C.; Apuani, T.; Masetti, M.; Mele, M.

    2012-04-01

    The aim of this work was to understand and reproduce the hydrological dynamics of a slope that is terraced by dry-stone retaining walls. At first, the processes of interest were analyzed with a classical 2D unsaturated-saturated finite elements analysis, reproducing the geometry of a single terrace. In a second moment, a raster analysis at the slope scale was performed. The studied slope is located in Valtellina (Northern Italy), near the village of Tresenda, and in the last 30 years it experienced several soil slip/debris flow events that in 1983 caused 18 victims. Direct observation of the events of 1983 permitted to recognize the principal triggering cause of these events in the formation of an overpressure at the base of a dry-stone wall, that caused its failure. Using field tests and monitoring activity as input and calibration data respectively, the 2D model is able to explain the mechanisms of rainfall infiltration that can lead to the formation and evolution of a perched groundwater table at the contact between the bedrock and the walls backfill soil. Once calibrated and validated the model has been used to investigate the influence of different parameters on the studied processes, such as walls height, bedrock slope angle, and changes of both isotropic and anisotropic saturated hydraulic conductivity of soil and wall. From this sensitivity analysis, one of the most interesting results is the ability of the model to well differentiate the behaviour of a well maintained wall with an higher hydraulic conductivity than soil, from a poorly maintained wall that has lost part of its drainage capacity. In fact, only in this latter circumstance significant pore-water pressures can form at the base of the retaining structure. Moving the problem to the slope scale, although the used raster-model takes into account both the unsaturated and saturated components of flux as the 2D model, it is less precise in the description of the processes involved in the formation of

  5. Metallic glasses: structural models

    International Nuclear Information System (INIS)

    Nassif, E.

    1984-01-01

    The aim of this work is to give a summary of the attempts made up to the present in order to discribe by structural models the atomic arrangement in metallic glasses, showing also why the structure factors and atomic distribution functions cannot be always experimentally determined with a reasonable accuracy. (M.W.O.) [pt

  6. Hydrogeologic framework of the middle San Pedro watershed, southeastern Arizona

    Science.gov (United States)

    Dickinson, Jesse; Kennedy, Jeffrey R.; Pool, D.R.; Cordova, Jeffrey T.; Parker, John T.; Macy, J.P.; Thomas, Blakemore

    2010-01-01

    Water managers in rural Arizona are under increasing pressure to provide sustainable supplies of water despite rapid population growth and demands for environmental protection. This report describes the results of a study of the hydrogeologic framework of the middle San Pedro watershed. The components of this report include: (1) a description of the geologic setting and depositional history of basin fill sediments that form the primary aquifer system, (2) updated bedrock altitudes underlying basin fill sediments calculated using a subsurface density model of gravity data, (3) delineation of hydrogeologic units in the basin fill using lithologic descriptions in driller's logs and models of airborne electrical resistivity data, (4) a digital three-dimensional (3D) hydrogeologic framework model (HFM) that represents spatial extents and thicknesses of the hydrogeologic units (HGUs), and (5) description of the hydrologic properties of the HGUs. The lithologic interpretations based on geophysical data and unit thickness and extent of the HGUs included in the HFM define potential configurations of hydraulic zones and parameters that can be incorporated in groundwater-flow models. The hydrogeologic framework comprises permeable and impermeable stratigraphic units: (1) bedrock, (2) sedimentary rocks predating basin-and-range deformation, (3) lower basin fill, (4) upper basin fill, and (5) stream alluvium. The bedrock unit includes Proterozoic to Cretaceous crystalline rocks, sedimentary rocks, and limestone that are relatively impermeable and poor aquifers, except for saturated portions of limestone. The pre-basin-and-range sediments underlie the lower basin fill but are relatively impermeable owing to cementation. However, they may be an important water-bearing unit where fractured. Alluvium of the lower basin fill, the main water-bearing unit, was deposited in the structural trough between the uplifted ridges of bedrock and (or) pre-basin-and-range sediments. Alluvium of

  7. Urban hydrogeology in Indonesia: A highlight from Jakarta

    Science.gov (United States)

    Lubis, R. F.

    2018-02-01

    In many cities in the developing countries, groundwater is an important source of public water supply. The interaction between groundwater systems and urban environments has become an urgent challenge for many developing cities in the world, Indonesia included. Contributing factors are, but not limited to, the continuous horizontal and vertical expansion of cities, population growth, climate change, water scarcity and groundwater quality degradation. Jakarta as the capital city of Indonesia becomes a good example to study and implement urban hydrogeology. Urban hydrogeology is a science for investigating groundwater at the hydrological cycle and its change, water regime and quality within the urbanized landscape and zones of its impact. The present paper provides a review of urban groundwater studies in Jakarta in the context of urban water management, advances in hydrogeological investigation, monitoring and modelling since the city was established. The whole study emphasizes the necessity of an integrated urban groundwater management and development supporting hydrogeological techniques for urban areas.

  8. Structural Equation Model Trees

    Science.gov (United States)

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  9. Hydrogeology of northern Sierra de Chiapas, Mexico: a conceptual model based on a geochemical characterization of sulfide-rich karst brackish springs

    Science.gov (United States)

    Rosales Lagarde, Laura; Boston, Penelope J.; Campbell, Andrew R.; Hose, Louise D.; Axen, Gary; Stafford, Kevin W.

    2014-09-01

    Conspicuous sulfide-rich karst springs flow from Cretaceous carbonates in northern Sierra de Chiapas, Mexico. This is a geologically complex, tropical karst area. The physical, geologic, hydrologic and chemical attributes of these springs were determined and integrated into a conceptual hydrogeologic model. A meteoric source and a recharge elevation below 1,500 m are estimated from the spring-water isotopic signature regardless of their chemical composition. Brackish spring water flows at a maximum depth of 2,000 m, as inferred from similar chemical attributes to the produced water from a nearby oil well. Oil reservoirs may be found at depths below 2,000 m. Three subsurface environments or aquifers are identified based on the B, Li+, K+ and SiO2 concentrations, spring water temperatures, and CO2 pressures. There is mixing between these aquifers. The aquifer designated Local is shallow and contains potable water vulnerable to pollution. The aquifer named Northern receives some brackish produced water. The composition of the Southern aquifer is influenced by halite dissolution enhanced at fault detachment surfaces. Epigenic speleogenesis is associated with the Local springs. In contrast, hypogenic speleogenesis is associated with the brackish sulfidic springs from the Northern and the Southern environments.

  10. On uncertainty quantification in hydrogeology and hydrogeophysics

    Science.gov (United States)

    Linde, Niklas; Ginsbourger, David; Irving, James; Nobile, Fabio; Doucet, Arnaud

    2017-12-01

    Recent advances in sensor technologies, field methodologies, numerical modeling, and inversion approaches have contributed to unprecedented imaging of hydrogeological properties and detailed predictions at multiple temporal and spatial scales. Nevertheless, imaging results and predictions will always remain imprecise, which calls for appropriate uncertainty quantification (UQ). In this paper, we outline selected methodological developments together with pioneering UQ applications in hydrogeology and hydrogeophysics. The applied mathematics and statistics literature is not easy to penetrate and this review aims at helping hydrogeologists and hydrogeophysicists to identify suitable approaches for UQ that can be applied and further developed to their specific needs. To bypass the tremendous computational costs associated with forward UQ based on full-physics simulations, we discuss proxy-modeling strategies and multi-resolution (Multi-level Monte Carlo) methods. We consider Bayesian inversion for non-linear and non-Gaussian state-space problems and discuss how Sequential Monte Carlo may become a practical alternative. We also describe strategies to account for forward modeling errors in Bayesian inversion. Finally, we consider hydrogeophysical inversion, where petrophysical uncertainty is often ignored leading to overconfident parameter estimation. The high parameter and data dimensions encountered in hydrogeological and geophysical problems make UQ a complicated and important challenge that has only been partially addressed to date.

  11. Hydrogeology of the West Siberian Basin

    International Nuclear Information System (INIS)

    Foley, M.G.; Bradley, D.J.; Cole, C.R.

    1996-01-01

    Nuclear fuel cycle activities of the former Soviet Union (FSU) have resulted in extensive radioactive contaminant releases to the environment in western Siberia. We are developing three-dimensional numerical models of the hydrogeology and potential contaminant migration in the West Siberian Basin. We have assumed that ground-water flow in the West Siberian Basin is topographically driven, with recharge to the basin occurring in the highlands on the west, east, and south, and internal discharge localized in numerous river valleys and lakes that ultimately discharge north to the ocean. We are modeling the regional hydrogeology as three-dimensional, steady-state, saturated flow that is recharged from above. We acquired topographic, geologic, hydrostratigraphic, hydrogeologic, and water-balance data for the West Siberian Basin and constructed a regional water table. We correlated and combined 70 different rock types derived from published descriptions of West Siberian Basin rocks into 17 rock types appropriate for assignment of hydrogeologic properties on the basis of spatial heterogeneity and constituent (i.e., sand, silt, and clay) diversity. Examination of resulting three-dimensional assemblages of rock types showed that they were consistent with published and inferred paleogeography and depositional processes. Calibrating the basin's moisture balance (i.e., recharge and discharge) to the derived water table determined plausible input parameter values for unknowns such as hydraulic conductivities. The general directions of calculated ground-water flow suggest that major rivers act as discharge areas, with upwelling below the rivers extending down into the basement rocks, and that ground-water divides that penetrate the entire thickness of the model are evident between major rivers

  12. Three-dimensional hydrogeological modeling to assess the elevated-water-table technique for controlling acid generation from an abandoned tailings site in Quebec, Canada

    Science.gov (United States)

    Ethier, Marie-Pier; Bussière, Bruno; Broda, Stefan; Aubertin, Michel

    2018-01-01

    The Manitou Mine sulphidic-tailings storage facility No. 2, near Val D'Or, Canada, was reclaimed in 2009 by elevating the water table and applying a monolayer cover made of tailings from nearby Goldex Mine. Previous studies showed that production of acid mine drainage can be controlled by lowering the oxygen flux through Manitou tailings with a water table maintained at the interface between the cover and reactive tailings. Simulations of different scenarios were performed using numerical hydrogeological modeling to evaluate the capacity of the reclamation works to maintain the phreatic surface at this interface. A large-scale numerical model was constructed and calibrated using 3 years of field measurements. This model reproduced the field measurements, including the existence of a western zone on the site where the phreatic level targeted is not always met during the summer. A sensitivity analysis was performed to assess the response of the model to varying saturated hydraulic conductivities, porosities, and grain-size distributions. Higher variations of the hydraulic heads, with respect to the calibrated scenario results, were observed when simulating a looser or coarser cover material. Long-term responses were simulated using: the normal climatic data, data for a normal climate with a 2-month dry spell, and a simplified climate-change case. Environmental quality targets were reached less frequently during summer for the dry spell simulation as well as for the simplified climate-change scenario. This study illustrates how numerical simulations can be used as a key tool to assess the eventual performance of various mine-site reclamation scenarios.

  13. Environmental assessment of a uranium experimental rock blasting in Portugal, using geophysical and hydrogeological methods

    International Nuclear Information System (INIS)

    Ramalho, E C; Midões, C; Costa, A; Lourenço, M C; Monteiro Santos, F A

    2012-01-01

    The Nisa uranium deposit, located in Central Portugal, has been known since the late 1960s. Some areas were explored at that time. Today, a few open pits and dumps remain in place and are a concern to local authorities. To assess the geoenvironmental problems caused by the main mining exploration composed of an experimental rock blasting, 3D electrical conductivity and resistivity models were made to develop a hydrogeological model to understand the possibility of contaminants transportation, such as uranium, from the dumps towards a dam located nearby. These 3D models were the support to show alteration layer thickness variations and fault zones at depths controlling groundwater circulation. Spectrometric surveys were also carried out and correlated with geology and geoelectrical structure. All this information was used in the construction of the 3D steady state hydrogeological model of the experimental rock blasting of Nisa. In this model, groundwater flow and the contaminant pathways were simulated. Some areas have very high radioactive values resulting from the geological formation characteristics and old dumps. However, results of the environmental assessment using geophysical and hydrogeological methods point to a critical situation restricted only to the area of the experimental rock blasting of the Nisa uranium deposit and its dumps. (paper)

  14. HYDROGEOLOGIC CASE STUDIES (DENVER PRESENTATION)

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  15. HYDROGEOLOGIC CASE STUDIES (CHICAGO, IL)

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  16. Hydrogeologic Case Studies (Seattle, WA)

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  17. Hydrogeologic modelling in support of a proposed deep geologic repository in Canada for low and intermediate level radioactive waste - 16264

    International Nuclear Information System (INIS)

    Sykes, Jonathan F.; Normani, Stefano D.; Yin, Yong; Sykes, Eric A.; Jensen, Mark R.

    2009-01-01

    A Deep Geologic Repository (DGR) for Low and Intermediate Level radioactive waste has been proposed by Ontario Power Generation for the Bruce Nuclear Power Development site in Ontario, Canada. The DGR is to be constructed at a depth of about 680 m below ground surface within the argillaceous Ordovician limestone of the Cobourg Formation. This paper describes a regional-scale geologic conceptual model for the DGR site and analyzes flow system evolution using the FRAC3DVSOPG flow and transport model. This provides a framework for the assembly and integration of site-specific geo-scientific data that explains and illustrates the factors that influence the predicted long-term performance of the geosphere barrier. In the geologic framework of the Province of Ontario, the Bruce DGR is located at the eastern edge of the Michigan Basin. Borehole logs covering Southern Ontario combined with site specific data have been used to define the structural contours at the regional and site scale of the 31 sedimentary strata that may be present above the Precambrian crystalline basement rock. The regional-scale domain encompasses an 18.500 km 2 region extending from Lake Huron to Georgian Bay. The groundwater zone below the Devonian is characterized by units containing stagnant water having high concentrations of total dissolved solids that can exceed 300 g/l. The computational sequence involves the calculation of steady-state density independent flow that is used as the initial condition for the determination of pseudo-equilibrium for a density dependent flow system that has an initial TDS distribution developed from observed data. Long-term simulations that consider future glaciation scenarios include the impact of ice thickness and permafrost. The selection of the performance measure used to evaluate a groundwater system is important. The traditional metric of average water particle travel time is inappropriate for geologic units such as the Ordovician where solute transport is

  18. Drilling technologies in hydrogeological survey

    OpenAIRE

    Vorlíček, Petr

    2014-01-01

    This work deals with the drilling technologies used in hydrogeology. The main aim of the work is to explore types of drilling technologies used at hydrogeological drilling wells and modern technologies that could potentially be used in the future. The work also summarizes a historical development of drilling techniques, a drilling process procedure, information obtained from boreholes and the most common types of drilling fluids.

  19. The physical hydrogeology of ore deposits

    Science.gov (United States)

    Ingebritsen, Steven E.; Appold, M.S.

    2012-01-01

    Hydrothermal ore deposits represent a convergence of fluid flow, thermal energy, and solute flux that is hydrogeologically unusual. From the hydrogeologic perspective, hydrothermal ore deposition represents a complex coupled-flow problem—sufficiently complex that physically rigorous description of the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes (THMC modeling) continues to challenge our computational ability. Though research into these coupled behaviors has found only a limited subset to be quantitatively tractable, it has yielded valuable insights into the workings of hydrothermal systems in a wide range of geologic environments including sedimentary, metamorphic, and magmatic. Examples of these insights include the quantification of likely driving mechanisms, rates and paths of fluid flow, ore-mineral precipitation mechanisms, longevity of hydrothermal systems, mechanisms by which hydrothermal fluids acquire their temperature and composition, and the controlling influence of permeability and other rock properties on hydrothermal fluid behavior. In this communication we review some of the fundamental theory needed to characterize the physical hydrogeology of hydrothermal systems and discuss how this theory has been applied in studies of Mississippi Valley-type, tabular uranium, porphyry, epithermal, and mid-ocean ridge ore-forming systems. A key limitation in the computational state-of-the-art is the inability to describe fluid flow and transport fully in the many ore systems that show evidence of repeated shear or tensional failure with associated dynamic variations in permeability. However, we discuss global-scale compilations that suggest some numerical constraints on both mean and dynamically enhanced crustal permeability. Principles of physical hydrogeology can be powerful tools for investigating hydrothermal ore formation and are becoming increasingly accessible with ongoing advances in modeling software.

  20. Recent hydrogeologic study of the Vis island

    Directory of Open Access Journals (Sweden)

    Janislav Kapelj

    2002-12-01

    Full Text Available The Vis Island belongs to the group of the Middle Dalmatian islands. It comprises an area of about 90.2 km2. Morphologically, three belts of highlands and two depressions with karst poljes are significant. The highest point on the island is Hum with 587 m a.s.l. theisland’s water supply is organized from the water-supply station “Korita”, situated in the central part of island, in tectonically formed depression. There are two additional capturedobjects: the well K-1 above the Komiža town and the spring “Pizdica”. The most important hydrogeological role on the island have two hydrogeological barriers, one in the KomižaBay, completely made of impermeable igneous and clastic rocks, and another one, the recently recognized relative barrier in the area of Dra~evo, Plisko and Velo polje. Since the island karst aquifer is in permanent dynamic relation with seawater, classical geologic,structural and hydrogeologic investigations have been performed with application of hydrogeochemical methods taking into account the natural chemical tracer content of groundwater and its variations in different hydrologic and vegetation conditions. Precipitationregime is very unfavorable with regard to the recharging of island’s aquifer, because dry periods are usually very long. During the summer tourist season, when the number of inhabitants and fresh water consumption considerably increase, amounts of island’sgroundwater suitable for water supply and irrigation rapidly decrease. Sometimes, insufficient quantity of fresh water on the Vis Island causes restrictions. Concerning the development of tourist potential and the present agricultural activities, summer lack ofwater is a serious restrictive factor. Some results of the performed hydrogeological study, important as a basis for island’s fresh water potential assessment, will be presented.

  1. Overview--Development of a geodatabase and conceptual model of the hydrogeologic units beneath Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas

    Science.gov (United States)

    Shah, Sachin D.

    2004-01-01

    Air Force Plant 4 (AFP4) and adjacent Naval Air Station-Joint Reserve Base Carswell Field (NAS–JRB) at Fort Worth, Tex., constitute a contractor-owned, government-operated facility that has been in operation since 1942. Contaminants from the 3,600-acre facility, primarily volatile organic compounds (VOCs) and metals, have entered the ground-water-flow system through leakage from waste-disposal sites and from manufacturing processes. Environmental data collected at AFP4 and NAS–JRB during 1993–2002 created the need for consolidation of the data into a comprehensive temporal and spatial geodatabase. The U.S. Geological Survey (USGS), in cooperation with the U.S. Air Force Aeronautical Systems Center Environmental Management Directorate, developed a comprehensive geodatabase of temporal and spatial environmental data associated with the hydrogeologic units beneath the facility. A three-dimensional conceptual model of the hydrogeologic units integrally linked to the geodatabase was designed concurrently. Three hydrogeologic units—from land surface downward, the alluvial aquifer, the GoodlandWalnut confining unit, and the Paluxy aquifer—compose the subsurface of interest at AFP4 and NAS–JRB. The alluvial aquifer consists primarily of clay and silt with sand and gravel channel deposits that might be interconnected or interfingered. The Goodland-Walnut confining unit directly underlies the alluvial aquifer and consists of limestone, marl, shale, and clay. The Paluxy aquifer is composed of dense mudstone and fine- to coarse-grained sandstone

  2. Hydrogeologic studies for CRNL's proposed shallow land burial site

    International Nuclear Information System (INIS)

    Killey, R.W.D.; Devgun, J.S.

    1986-09-01

    The first phase of conversion from storage to disposal of low- and intermediate-level radioactive wastes at CRNL is focussed on solids with hazardous lifetimes less than 500 years. In order to use a facility buried above the water table and to achieve maximum use of radionuclide migration information from studies of existing facilities, the proposed site is located in sands above an active groundwater flow system. The selection of a permeable and geologically-simple slow system has allowed application of a wide variety of techniques for hydrogeologic evaluation of the site. Ground-probing radar in conjunction with continuously cored boreholes have provided stratigraphic data and sediments for testing. Field hydrogeologic testing has included a detailed network of piezometers for hydraulic head mapping and a series of borehole dilution tests. Measurements of contaminant sorption behaviour are also being made in the field to reduce variations in uncontrolled parameters. Mathematical models successfully simulate the real system in terms of groundwater flow. Simulations of reactive contaminant transport are more difficult, but the application of data from field tests of radionuclide migration behaviour and from existing contaminant plumes will, we believe, provide acceptably reliable predictions of the impact of failures in the engineered disposal structure

  3. Nirex 97 an assessment of the post-closure performance of a deep waste repository at Sellafield. Volume 1: hydrogeological model development - conceptual basis and data

    International Nuclear Information System (INIS)

    Degnan, P.; Littleboy, A.

    1997-01-01

    repository zone beneath Longlands Farm. In style, scope and presentation, Nirex 97 is primarily aimed at the scientific community, other radioactive waste disposal agencies and regulators. The report is published as part of Nirex's commitment to open publication of its scientific findings. The main value of the report currently is as a demonstration of the generic capability which has been developed to assess the radiological safety performance of candidate repository sites. The safety assessment reported as Nirex 97 was carried out between April 1996 and August 1997. It updates a preliminary assessment of the groundwater pathway for a repository at Sellafield, 'Nirex 95' published in July 1995. Nirex 97 takes account of further data obtained from the Nirex waste inventory, design, site characterisation and research programmes. In addition, Nirex 97 extends the Nirex 95 evaluation to include consideration of the potential radiological and flammability hazards in the biosphere arising from the effects of gas generation within the repository and the extent of pressurisation within the repository vaults. The assessment also takes account of the latest guidance from the Environment Agencies on requirements for authorisation of disposal facilities on land. Volume 1: Hydrogeological Conceptual Model Development - Conceptual Basis and Data, presents the conceptual model of the hydrogeology of the Sellafield area which underpins the post-closure performance assessment. The volume summarises the conceptual model development process and outlines the extensive site characterisation data for Sellafield which have been used in Nirex 97

  4. Effects on surface hydrology and near-surface hydrogeology of an open repository in Laxemar Results of modelling with MIKE SHE

    International Nuclear Information System (INIS)

    Maartensson, Erik; Gustafsson, Lars-Goeran; Bosson, Emma

    2009-10-01

    This report presents the methodology and the results from the modelling of an open repository for spent nuclear fuel in Laxemar. Specifically, the present work analyses the hydrological effects of the planned repository during the construction and operational phases when it is open, i.e. air-filled, and hence may cause a disturbance of the hydrological conditions in the surroundings. The numerical modelling is based on the SDM-Site Laxemar MIKE SHE model. The modelling was divided into three steps. The first step was to update the SDM-Site Laxemar model with a new hydrogeological bedrock model. The other main updates were an increase of the depth of the MIKE SHE model domain, enhanced vertical computational resolution and that the drainage of the Aespoe Hard Rock Laboratory was included in the model. The resulting model was used to simulate undisturbed natural conditions. The next step was to describe the open repository conditions, using Laxemar layout D2, by implementing the access tunnel, the repository tunnels and shafts in the model, and to simulate the consequences for the surface hydrology caused by an open repository under different conditions. The final step was a sensitivity analysis that aimed to investigate the sensitivity of the modelled effects of the open repository to the hydrogeological properties of the bedrock and the Quaternary deposits, the sediments under the sea, and changes in boundary conditions. The model covers an area of 34 km 2 . The groundwater divides were assumed to coincide with the surface water divides; thus, a no-flow boundary condition was used at the horizontal boundaries, except in the Quaternary deposit layers towards the sea where a time-varying boundary condition describing the sea-level in the area was used. In the bedrock layers, however, a no-flow boundary condition was applied. Also the bottom boundary was described as a no-flow boundary. The transient top boundary condition was based on meteorological data gathered at

  5. Hydrogeological and Groundwater Flow Model for C, K, L, and P Reactor Areas, Savannah River Site, Aiken, South Carolina

    International Nuclear Information System (INIS)

    Flach, G.P.

    1999-01-01

    A regional groundwater flow model encompassing approximately 100 mi 2 surrounding the C, K. L. and P reactor areas has been developed. The Reactor flow model is designed to meet the planning objectives outlined in the General Groundwater Strategy for Reactor Area Projects by providing a common framework for analyzing groundwater flow, contaminant migration and remedial alternatives within the Reactor Projects team of the Environmental Restoration Department

  6. Hydrogeological and Groundwater Flow Model for C, K, L, and P Reactor Areas, Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G.P.

    1999-02-24

    A regional groundwater flow model encompassing approximately 100 mi{sup 2} surrounding the C, K. L. and P reactor areas has been developed. The Reactor flow model is designed to meet the planning objectives outlined in the General Groundwater Strategy for Reactor Area Projects by providing a common framework for analyzing groundwater flow, contaminant migration and remedial alternatives within the Reactor Projects team of the Environmental Restoration Department.

  7. Study of the Ouarzazate basin structure by seismic reflection: hydrogeological implications; Etude de la structure du bassin d'Ouarzazate par sismique reflexion: Implications hydrogeologiques

    Energy Technology Data Exchange (ETDEWEB)

    Boummane, Kh.; Jaffal, M.; Kchikach, A.

    2009-07-01

    A large number of seismic reflection lines have been carried out in the Ouarzazate basin by the oil industry. The present study is concerned with the interpretation of a part of these data in order to characterize the structure of the Eocene aquifer system. The reflector corresponding to the base of this system, made up of sandstone and limestone, was first identified then digitized on each time-migrated seismic section. An isochrone map of this reflector was realized. The analysis of this map shows that the area under study is subdivided into two structurally contrasted domains. The first, the northern one, is intensively deformed; while the second, the southern one, is slightly folded. The results of this study provide a better understanding of the deep geological structure of the Ouarzazate basin. This allows us to better comprehend the functioning of the Eocene aquifer system, and to rationalize the future potential underground water exploration in the Ouarzazate basin. (Author) 16 refs.

  8. ECONGAS - model structure

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This report documents a numerical simulation model of the natural gas market in Germany, France, the Netherlands and Belgium. It is a part of a project called ``Internationalization and structural change in the gas market`` aiming to enhance the understanding of the factors behind the current and upcoming changes in the European gas market, especially the downstream part of the gas chain. The model takes European border prices of gas as given, adds transmission and distribution cost and profit margins as well as gas taxes to calculate gas prices. The model includes demand sub-models for households, chemical industry, other industry, the commercial sector and electricity generation. Demand responses to price changes are assumed to take time, and the long run effects are significantly larger than the short run effects. For the household sector and the electricity sector, the dynamics are modeled by distinguishing between energy use in the old and new capital stock. In addition to prices and the activity level (GDP), the model includes the extension of the gas network as a potentially important variable in explaining the development of gas demand. The properties of numerical simulation models are often described by dynamic multipliers, which describe the behaviour of important variables when key explanatory variables are changed. At the end, the report shows the results of a model experiment where the costs in transmission and distribution were reduced. 6 refs., 9 figs., 1 tab.

  9. ECONGAS - model structure

    International Nuclear Information System (INIS)

    1997-01-01

    This report documents a numerical simulation model of the natural gas market in Germany, France, the Netherlands and Belgium. It is a part of a project called ''Internationalization and structural change in the gas market'' aiming to enhance the understanding of the factors behind the current and upcoming changes in the European gas market, especially the downstream part of the gas chain. The model takes European border prices of gas as given, adds transmission and distribution cost and profit margins as well as gas taxes to calculate gas prices. The model includes demand sub-models for households, chemical industry, other industry, the commercial sector and electricity generation. Demand responses to price changes are assumed to take time, and the long run effects are significantly larger than the short run effects. For the household sector and the electricity sector, the dynamics are modeled by distinguishing between energy use in the old and new capital stock. In addition to prices and the activity level (GDP), the model includes the extension of the gas network as a potentially important variable in explaining the development of gas demand. The properties of numerical simulation models are often described by dynamic multipliers, which describe the behaviour of important variables when key explanatory variables are changed. At the end, the report shows the results of a model experiment where the costs in transmission and distribution were reduced. 6 refs., 9 figs., 1 tab

  10. Role of Hydrogeology in Professional Environmental Projects

    Science.gov (United States)

    The purpose of this presentation is to acquaint hydrogeology students how hydrogeological principles are applied in environmental engineering projects. This presentation outlines EPA's Superfund processes of site characterization, feasibility studies, and remediation processes.

  11. On the flow of groundwater in closed tunnels. Generic hydrogeological modelling of nuclear waste repository, SFL 3-5

    International Nuclear Information System (INIS)

    Holmen, J.G.

    1997-06-01

    The purpose is to study the flow of groundwater in closed tunnels by use of mathematical models. The calculations were based on three dimensional models, presuming steady state conditions. The stochastic continuum approach was used for representation of a heterogeneous rock mass. The size of the calculated flow is given as a multiple of an unknown regional groundwater flow. The size of the flow in a tunnel has been studied, as regards: Direction of the regional groundwater flow, Tunnel length, width and conductivity; Heterogeneity of the surrounding rock mass; Flow barriers and encapsulation inside a tunnel. The study includes a model of the planned repository for nuclear waste (SFL 3-5). The flow through the tunnels is estimated for different scenarios. The stochastic continuum approach has been investigated, as regards the representation of a scale dependent heterogeneous conductivity. An analytical method is proposed for the scaling of measured conductivity values, the method is consistent with the stochastic continuum approach. Some general conclusions from the work are: The larger the amount of heterogeneity, the larger the expected flow; The effects of the heterogeneity will decrease with increased tunnel length; If the conductivity of the tunnel is smaller than a threshold value, the tunnel conductivity is the most important parameter; If the tunnel conductivity is large and the tunnel is long, the most important parameter is the direction of the regional flow; Given a heterogeneous rock mass, if the tunnel length is shorter than about 500 m, the heterogeneity will be an important parameter, for lengths shorter than about 250 m, probably the most important; The flow through an encapsulation surrounded by a flow barrier is mainly dependent on the conductivity of the barrier. 70 refs, 110 figs, 10 tabs

  12. On the flow of groundwater in closed tunnels. Generic hydrogeological modelling of nuclear waste repository, SFL 3-5

    Energy Technology Data Exchange (ETDEWEB)

    Holmen, J.G. [Uppsala Univ. (Sweden). Inst. of Earth Sciences]|[Golder Associates AB (Sweden)

    1997-06-01

    The purpose is to study the flow of groundwater in closed tunnels by use of mathematical models. The calculations were based on three dimensional models, presuming steady state conditions. The stochastic continuum approach was used for representation of a heterogeneous rock mass. The size of the calculated flow is given as a multiple of an unknown regional groundwater flow. The size of the flow in a tunnel has been studied, as regards: Direction of the regional groundwater flow, Tunnel length, width and conductivity; Heterogeneity of the surrounding rock mass; Flow barriers and encapsulation inside a tunnel. The study includes a model of the planned repository for nuclear waste (SFL 3-5). The flow through the tunnels is estimated for different scenarios. The stochastic continuum approach has been investigated, as regards the representation of a scale dependent heterogeneous conductivity. An analytical method is proposed for the scaling of measured conductivity values, the method is consistent with the stochastic continuum approach. Some general conclusions from the work are: The larger the amount of heterogeneity, the larger the expected flow; The effects of the heterogeneity will decrease with increased tunnel length; If the conductivity of the tunnel is smaller than a threshold value, the tunnel conductivity is the most important parameter; If the tunnel conductivity is large and the tunnel is long, the most important parameter is the direction of the regional flow; Given a heterogeneous rock mass, if the tunnel length is shorter than about 500 m, the heterogeneity will be an important parameter, for lengths shorter than about 250 m, probably the most important; The flow through an encapsulation surrounded by a flow barrier is mainly dependent on the conductivity of the barrier. 70 refs, 110 figs, 10 tabs.

  13. Structural system identification: Structural dynamics model validation

    Energy Technology Data Exchange (ETDEWEB)

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  14. Hydrogeological Investigation and Groundwater Potential ...

    African Journals Online (AJOL)

    The paper assesses groundwater quality and productivity in Haromaya watershed, eastern. Ethiopia. ... zones, quantity and quality of plant and animal life (Tamire H., 1981). Steep to very ... Present research work was proposed to conduct hydrogeological investigation and assess ...... Water Balance of Haromaya basin,.

  15. Forecasting the effects of EU policy measures on the nitrate pollution of groundwater based on a coupled agroeconomic - hydro(geo)logic model (Invited)

    Science.gov (United States)

    Wendland, F.

    2010-12-01

    The fundamental objectives of the European Union-Water Framework Directive and the EU Groundwater Directive are to attain a good status of water and groundwater resources in the member states of the EU by 2015. For river basins, whose good status cannot be guaranteed by 2015, catchment wide operational plans and measurement programs have to be drafted and implemented until 2009. In the river basin district Weser, Germany, which comprises a catchment area of ca. 49.000 km2, the achievement of the good status is unclear, or rather unlikely for 63% of the groundwater bodies. Inputs from diffuse sources and most of all nitrate losses from agriculturally used land have been identified as the main reasons for exceeding the groundwater threshold value for nitrate (50 mg/l) and for failing the good qualitative status of groundwater. The achievement of good qualitative status of groundwater bodies entails a particular challenge as the complex ecological, hydrological, hydrogeological and agro-economic relationships have to be considered simultaneously. We used an interdisciplinary model network to predict the nitrogen intakes into groundwater at the regional scale using an area differentiated approach. The model system combines the agro-economic model RAUMIS for estimating nitrogen surpluses from agriculture and the hydrological models GROWA/DENUZ/WEKU for describing the reactive nitrate transport in the soil-groundwater system. In a first step the model is used to analyze the present situation using N surpluses from agriculture for the year 2003. In many region of the Weser basin, particularly in the northwestern part which is characterized by high livestock densities, predicted nitrate concentrations in percolation water exceed the EU groundwater quality standard of 50 mg/L by far. In a second step the temporal and spatial impacts of the common agricultural policy (CAP) of the EU, already implemented agri-environmental measures of the Federal States and the expected

  16. Hydrogeological research at the site of the Asse salt mine

    International Nuclear Information System (INIS)

    Batsche, H.; Rauert, W.; Klarr, K.

    1980-01-01

    In connection with the storage of radioactive wastes in the abandoned Asse salt mine near Brunswick (Federal Republic of Germany), the hydrogeology of the ridge of hills of Asse has been investigated. In order to obtain as detailed information as possible on the hydrogeological conditions, a long-term investigation programme has been set up and many methods of investigation have been used. Hydrogeological boring operations resulted in important scientific findings regarding, for example, the course of the salt table and the main anhydrite which towers up above the salt table into the overlying collapsed rocks. Hydrochemical data showed the hydraulic effect of transverse faults. Isotopic hydrological measurements permitted distinction between the flow behaviour of the groundwater in different aquifers. The origin of the salt springs at the northwest end of the structure can be explained. Some additional pumping and labelling tests are expected to yield quantitative results concerning hydraulic interrelationships recognized to date. The very complex hydrogeological structure of the ridge of hills of Asse is the result of the multiple succession of permeable and impermeable layers on the flanks of the structure, and, furthermore, is possibly due to the fact that in some individual faults groundwater may seep through normally impermeable layers as well as via waterways at the salt table. (author)

  17. Hydrogeology of an ancient arid closed basin: Implications for tabular sandstone-hosted uranium deposits

    International Nuclear Information System (INIS)

    Sanford, R.F.

    1990-01-01

    Hydrogeologic modeling shows that tabular-type uranium deposits in the grants uranium region of the San Juan basin, New Mexico, formed in zones of ascending and discharging regional ground-water flow. The association of either lacustrine mudstone or actively subsiding structures and uranium deposits can best be explained by the occurrence of lakes at topographic depressions where ground water having different sources and compositions is likely to converge, mix, and discharge. Ascending and discharging flow also explains the association of uranium deposits with underlying evaporites and suggests a brine interface. The simulations contradict previous suggestions that ground water moved downward in the mudflat

  18. PRODUCT STRUCTURE DIGITAL MODEL

    Directory of Open Access Journals (Sweden)

    V.M. Sineglazov

    2005-02-01

    Full Text Available  Research results of representation of product structure made by means of CADDS5 computer-aided design (CAD system, Product Data Management Optegra (PDM system and Product Life Cycle Management Wind-chill system (PLM, are examined in this work. Analysis of structure component development and its storage in various systems is carried out. Algorithms of structure transformation required for correct representation of the structure are considered. Management analysis of electronic mockup presentation of the product structure is carried out for Windchill system.

  19. Contaminant Hydrogeology, 2nd Edition

    Science.gov (United States)

    Smith, James E.

    Groundwater is a valuable resource that has received much attention over the last couple of decades. Extremely large sums of money have been and will be spent on groundwater contamination problems and the public has become increasingly sensitive to groundwater issues. Groundwater contamination has even become the subject of a major Hollywood movie with the recent release of A Civil Action starring John Travolta. The high profile of groundwater contaminant problems, the associated relatively strong job market over the last 20 years, and the general shift toward an environmental emphasis in science and engineering have resulted in a sustained high demand for senior undergraduate courses and graduate programs in hydrogeology Many voice the opinion that we have seen the peak demand for hydrogeologists pass, but the placement of graduates from hydrogeology programs into career-oriented positions has remained very high.

  20. THM large spatial-temporal model to simulate the past 2 Ma hydrogeological evolution of Paris Basin including natural tracer transport as part of site characterization for radwaste repository project Cigéo - France

    Science.gov (United States)

    Benabderrahmane, A., Sr.

    2017-12-01

    Hydrogeological site characterization for deep geological high level and intermediate level long lived radioactive waste repository cover a large time scale needed for safety analysis and calculation. Hydrogeological performance of a site relies also on the effects of geodynamic evolution as tectonic uplift, erosion/sedimentation and climate including glaciation on the groundwater flow and solute and heat transfer. Thermo-Hydro-Mechanical model of multilayered aquifer system of Paris Basin is developed to reproduce the present time flow and the natural tracer (Helium) concentration profiles based on the last 2 Ma of geodynamic evolution. Present time geological conceptual model consist of 27 layers at Paris Basin (Triassic-Tertiary) with refinement at project site scale (29 layers from Triassic to Portlandian). Target layers are the clay host formation of Callovo-Oxfrodian age (160 Ma) and the surrounding aquifer layers of Oxfordian and Dogger. Modelled processes are: groundwater flow, heat and solutes (natural tracers) transport, freezing and thawing of groundwater (expansion and retreat of permafrost), deformation of the multilayered aquifer system induced by differential tectonic uplift and the hydro-mechanical stress effect as caused by erosion of the outcropping layers. Numerical simulation considers a period from 2 Ma BP and up to the present. Transient boundary conditions are governed by geodynamic processes: (i) modification of the geometry of the basin and (ii) temperatures along the topography will change according to a series of 15 identical climate cycles with multiple permafrost (glaciation) periods. Numerical model contains 71 layers and 18 million cells. The solution procedure solves three coupled systems of equations, head, temperature and concentrations, by the use of a finite difference method, and by applying extensive parallel processing. The major modelling results related to the processes of importance for site characterization as hydraulic

  1. Current status of regional hydrogeological studies and numerical simulations on geological disposal

    International Nuclear Information System (INIS)

    Nakao, Shinsuke; Kikuchi, Tsuneo; Ishido, Tsuneo

    2004-01-01

    Current status of regional hydrogeological studies on geological disposal including hydrogeological modeling using numerical simulators is reviewed in this report. A regional scale and boundary conditions of numerical models are summarized mainly from the results of the RHS (regional hydrogeological study) project conducted by Japan Nuclear Cycle Development Institute (JNC) in the Tono area. We also refer to the current conceptual modes of hydrology and numerical models of unsaturated zone flow at Yucca Mountain, Nevada, which is the arid site proposed for consideration as the United States' first underground high-level radioactive waste repository. Understanding behavior of a freshwater-saltwater transition zone seems to play a key role in the hydrogeological modeling in a coastal region. Technical features of a numerical simulator as a tool for geothermal reservoir modeling is also briefly described. (author)

  2. Integrated materials–structural models

    DEFF Research Database (Denmark)

    Stang, Henrik; Geiker, Mette Rica

    2008-01-01

    , repair works and strengthening methods for structures. A very significant part of the infrastructure consists of reinforced concrete structures. Even though reinforced concrete structures typically are very competitive, certain concrete structures suffer from various types of degradation. A framework...... should define a framework in which materials research results eventually should fit in and on the other side the materials research should define needs and capabilities in structural modelling. Integrated materials-structural models of a general nature are almost non-existent in the field of cement based...

  3. Modeling Structural Brain Connectivity

    DEFF Research Database (Denmark)

    Ambrosen, Karen Marie Sandø

    The human brain consists of a gigantic complex network of interconnected neurons. Together all these connections determine who we are, how we react and how we interpret the world. Knowledge about how the brain is connected can further our understanding of the brain’s structural organization, help...... improve diagnosis, and potentially allow better treatment of a wide range of neurological disorders. Tractography based on diffusion magnetic resonance imaging is a unique tool to estimate this “structural connectivity” of the brain non-invasively and in vivo. During the last decade, brain connectivity...... has increasingly been analyzed using graph theoretic measures adopted from network science and this characterization of the brain’s structural connectivity has been shown to be useful for the classification of populations, such as healthy and diseased subjects. The structural connectivity of the brain...

  4. Hydrogeological map of Italy: the preliminary Sheet N. 348 Antrodoco (Central Italy

    Directory of Open Access Journals (Sweden)

    Marco Amanti

    2016-07-01

    Full Text Available The Geological Survey of Italy, Italian National Institute for Environmental Protection and Research is realizing the Sheet N.348 Antrodoco (Central Italy of the Hydrogeological map of Italy as a cartographical test of the Italian hydrogeological survey and mapping guidelines, in the frame of the Italian Geological Cartography Project. The study area is characterized by structural units deeply involved in the Apennine Orogeny (Latium and Abruzzi region territory, Rieti and L’Aquila provinces and including deposits of marine carbonate shelf, slope, basin and foredeep environments hosting relatively large amounts of groundwater resources. The map was realized to obtain the best possible representation of all hydrogeological elements deriving from field surveys, in order to characterize the hydrogeological asset. A control network for monthly measurement of surface and groundwater flow rates and hydrogeochemical parameters was performed. Data were uploaded in a geographic information system to perform the present preliminary hydrogeological cartography consisting in a main map showing the following hydrogeological complexes based on relative permeability degree (from bottom to top: i calcareous (Jurassic-Cretaceous; high permeability; ii calcareous-marly (Upper Cretaceous-Middle Eocene; intermediate permeability; iii marly-calcareous and marly (Upper Eocene- Upper Miocene; low permeability; iv flysch (Upper Miocene; low permeability; v conglomeratic-sandy and detritic (Upper Pliocene- Pleistocene; intermediate permeability; vi alluvial (Quaternary; low permeability. Among other elements shown in the main map there are hydrographical basin and sub-basin boundaries, stream gauging stations, meteo-climatic stations, streamwater-groundwater exchange processes, hydrostructure boundaries, point and linear spring flow rates, groundwater flow directions. Furthermore, complementary smaller-scale sketches at the margin of the main map were realized (e

  5. Oscillating water column structural model

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Guild [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jepsen, Richard Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.

  6. An integrated theoretical and practical approach for teaching hydrogeology

    Science.gov (United States)

    Bonomi, Tullia; Fumagalli, Letizia; Cavallin, Angelo

    2013-04-01

    Hydrogeology as an earth science intersects the broader disciplines of geology, engineering, and environmental studies but it does not overlap fully with any of them. It is focused on its own range of problems and over time has developed a rich variety of methods and approaches. The resolution of many hydrogeological problems requires knowledge of elements of geology, hydraulics, physics and chemistry; moreover in recent years the knowledge of modelling techniques has become a necessary ability. Successful transfer of all this knowledge to the students depends on the breadth of material taught in courses, the natural skills of the students and any practical experience the students can obtain. In the Department of Earth and Environmental Sciences of the University of Milano-Bicocca, the teaching of hydrogeology is developed in three inter-related courses: 1) general hydrogeology, 2) applied hydrogeology, 3) groundwater pollution and remediation. The sequence focuses on both groundwater flux and contaminant transport, supplemented by workshops involving case studies and computer labs, which provide the students with practical translation of the theoretical aspects of the science into the world of work. A second key aspect of the program utilizes the students' skill at learning through online approaches, and this is done through three approaches: A) by developing the courses on a University e-learning platform that allows the students to download lectures, articles, and teacher comments, and to participate in online forums; B) by carring out exercises through computer labs where the student analyze and process hydrogeological data by means of different numerical codes, that in turn enable them to manage databases and to perform aquifer test analysis, geostatistical analysis, and flux and transport modelling both in the unsaturated and saturated zone. These exercises are of course preceded by theoretical lectures on codes and software, highlighting their features and

  7. Hydrogeology of Montserrat review and new insights

    Directory of Open Access Journals (Sweden)

    Brioch Hemmings

    2015-03-01

    Full Text Available Study region: The tropical, active volcanic arc island of Montserrat, Lesser Antilles, Caribbean. Study focus: New insights into hydrological recharge distribution, measurements of aquifer permeability, and geological and hydrological field observations from Montserrat are combined with a review of the current understanding of volcanic island hydrology. The aim is to begin to develop a conceptual model for the hydrology of Montserrat, and to inform and stimulate further investigation into the hydrology of volcanic arc islands, by combining a review of the current understanding of essential components of the hydrological system with fresh analysis of existing data, and new observations, data collection and analysis. This study provides new insights into hydrological recharge distribution, measurements of aquifer permeability, and geological and hydrological field observations from Montserrat. New hydrological insights for the region: A new groundwater recharge model predicts whole island recharge of 266 mm/year, between 10% and 20% of annual rainfall. Core scale permeability tests reveal ranges from 10−14 to 10−12 m2 for volcaniclastic rocks with coarse matrix, to a minimum of 10−18 m2 for andesitic lavas and volcaniclastics with fine or altered matrix. Analysis of historical pumping tests on aquifers in reworked, channel and alluvial sediment indicate permeabilities ∼10−10 m2. Springs at elevations between 200 and 400 m above mean sea level on Centre Hills currently discharge over 45 L/s. High discharge require a reasonably laterally continuous low permeability body. Contrasting conceptual models are presented to illustrate two potential hydrogeological scenarios. New field observations also reveal systematic spatial variations in spring water temperature and specific electrical conductivity indicating that meteoric waters supplying the springs are mixed with a deeper groundwater source at some sites. Keywords: Volcanic island

  8. Reservoir engineering and hydrogeology

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Summaries are included which show advances in the following areas: fractured porous media, flow in single fractures or networks of fractures, hydrothermal flow, hydromechanical effects, hydrochemical processes, unsaturated-saturated systems, and multiphase multicomponent flows. The main thrust of these efforts is to understand the movement of mass and energy through rocks. This has involved treating fracture rock masses in which the flow phenomena within both the fractures and the matrix must be investigated. Studies also address the complex coupling between aspects of thermal, hydraulic, and mechanical processes associated with a nuclear waste repository in a fractured rock medium. In all these projects, both numerical modeling and simulation, as well as field studies, were employed. In the theoretical area, a basic understanding of multiphase flow, nonisothermal unsaturated behavior, and new numerical methods have been developed. The field work has involved reservoir testing, data analysis, and case histories at a number of geothermal projects

  9. Compilation and analysis of hydrogeological pressure responses to field activities in Olkiluoto during 2006-2009

    Energy Technology Data Exchange (ETDEWEB)

    Vaittinen, T.; Pentti, E. [Poeyry Finland Oy, Vantaa (Finland)

    2013-11-15

    corresponding to current hydrogeological structure model. The results support the hypothesis of the relation between ductile deformation model and hydrogeological structure model but it cannot be confirmed, because packed-off drillholes are still mostly located at the ONKALO area. (orig.)

  10. Compilation and analysis of hydrogeological pressure responses to field activities in Olkiluoto during 2006-2009

    International Nuclear Information System (INIS)

    Vaittinen, T.; Pentti, E.

    2013-11-01

    corresponding to current hydrogeological structure model. The results support the hypothesis of the relation between ductile deformation model and hydrogeological structure model but it cannot be confirmed, because packed-off drillholes are still mostly located at the ONKALO area. (orig.)

  11. SRS Geology/Hydrogeology Environmental Information Document

    Energy Technology Data Exchange (ETDEWEB)

    Denham, M.E.

    1999-08-31

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas.

  12. SRS Geology/Hydrogeology Environmental Information Document

    International Nuclear Information System (INIS)

    Denham, M.E.

    1999-01-01

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas

  13. West Siberian basin hydrogeology - regional framework for contaminant migration from injected wastes

    International Nuclear Information System (INIS)

    Foley, M.G.

    1994-05-01

    Nuclear fuel cycle activities of the former Soviet Union (FSU) have resulted in massive contamination of the environment in western Siberia. We are developing three-dimensional numerical models of the hydrogeology and potential contaminant migration in the West Siberian Basin. Our long-term goal at Pacific Northwest Laboratory is to help determine future environmental and human impacts given the releases that have occurred to date and the current waste management practices. In FY 1993, our objectives were to (1) refine and implement the hydrogeologic conceptual models of the regional hydrogeology of western Siberia developed in FY 1992 and develop the detailed, spatially registered digital geologic and hydrologic databases to test them, (2) calibrate the computer implementation of the conceptual models developed in FY 1992, and (3) develop general geologic and hydrologic information and preliminary hydrogeologic conceptual models relevant to the more detailed models of contaminated site hydrogeology. Calibration studies of the regional hydrogeologic computer model suggest that most precipitation entering the ground-water system moves in the near-surface part of the system and discharges to surface waters relatively near its point of infiltration. This means that wastes discharged to the surface and near-surface may not be isolated as well as previously thought, since the wastes may be carried to the surface by gradually rising ground waters

  14. Hydrogeological characterization of the Stripa site

    International Nuclear Information System (INIS)

    Gale, J.; Macleod, R.; Welhan, J.; Cole, C.; Vail, L.

    1987-06-01

    This study was initiated in January, 1986, to determine a) if the permeability of the rock mass in the immediate mine area was anisotropic, b) the effective and total fracture porosity distributions based on field and laboratory data and c) the three-dimensional configuration of the groundwater flow system at Stripa in order to properly interpret the hydrogeological, geochemical and isotopic data. The total and flow porosities of single fractures from Stripa were determined in the laboratory using a resin impregnation technique. The three-dimensional numerical model gave mine inflows that were consistent with the measured mine inflows with perturbations extending to at least 3,000 m of depth. (orig./DG)

  15. Hydrogeological reconnaissance study: Dyfi Valley, Wales

    International Nuclear Information System (INIS)

    Glendining, S.J.

    1981-10-01

    This report describes work carried out for the Department of the Environment as part of its research programme into radioactive waste management. It presents an account of a hydrogeological reconnaissance study in the Dyfi Valley area of Central Wales. Initially the purposes of such a study are given and the assumptions used in deriving parameters such as flow volume, path length and transit time in areas of massive fractured rocks are described. Using these assumptions with geological, topographic and hydrometeorological data the potential ranges in properties such as bulk hydraulic conductivity, path lengths, hydraulic gradients and volumes of groundwater flow have been determined. These ranges have been used to estimate solute transport model parameters. The limitations and usefulness of the reconnaissance study in planning research and siting exploratory boreholes in the Dyfi area are discussed. (author)

  16. Inverse problem in hydrogeology

    Science.gov (United States)

    Carrera, Jesús; Alcolea, Andrés; Medina, Agustín; Hidalgo, Juan; Slooten, Luit J.

    2005-03-01

    The state of the groundwater inverse problem is synthesized. Emphasis is placed on aquifer characterization, where modelers have to deal with conceptual model uncertainty (notably spatial and temporal variability), scale dependence, many types of unknown parameters (transmissivity, recharge, boundary conditions, etc.), nonlinearity, and often low sensitivity of state variables (typically heads and concentrations) to aquifer properties. Because of these difficulties, calibration cannot be separated from the modeling process, as it is sometimes done in other fields. Instead, it should be viewed as one step in the process of understanding aquifer behavior. In fact, it is shown that actual parameter estimation methods do not differ from each other in the essence, though they may differ in the computational details. It is argued that there is ample room for improvement in groundwater inversion: development of user-friendly codes, accommodation of variability through geostatistics, incorporation of geological information and different types of data (temperature, occurrence and concentration of isotopes, age, etc.), proper accounting of uncertainty, etc. Despite this, even with existing codes, automatic calibration facilitates enormously the task of modeling. Therefore, it is contended that its use should become standard practice. L'état du problème inverse des eaux souterraines est synthétisé. L'accent est placé sur la caractérisation de l'aquifère, où les modélisateurs doivent jouer avec l'incertitude des modèles conceptuels (notamment la variabilité spatiale et temporelle), les facteurs d'échelle, plusieurs inconnues sur différents paramètres (transmissivité, recharge, conditions aux limites, etc.), la non linéarité, et souvent la sensibilité de plusieurs variables d'état (charges hydrauliques, concentrations) des propriétés de l'aquifère. A cause de ces difficultés, le calibrage ne peut êtreséparé du processus de modélisation, comme c'est le

  17. Hydrogeologic characterization of a fractured granitic rock aquifer, Raymond, California

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Andrew J.B. [Univ. of California, Berkeley, CA (United States)

    1993-10-01

    The hydrogeologic properties of a shallow, fractured granitic rock aquifer in the foothills of the Sierra Nevada, California were investigated via the analysis of borehole geophysical logs and pumping tests. The drawdowns produced during these tests are not indicative of any simple conceptual aquifer model, and borehole logs show that the granite is intensely fractured. These observations are suggestive of a complex fracture-flow geometry which is extremely difficult to decipher. However, through the measurement of orientations of individual subsurface fractures from acoustic televiewer logs, and correlation between particular fractures and electrical resistivity and thermal-pulse flowmeter logs, it was found that the aquifer is, in general, comprised of two subhorizontal and nearly parallel zones of unloading fractures. Downhole flowmeter measurements taken in several wells provide further evidence for the inferred dual-layer structure of the aquifer, as well as yield quantitative measures of the contribution of flow from each zone. Analysis of drawdowns in pumped wells reveals that there are zones of relatively high transmissivity immediately around them. It was found that these properties, as well as a nearby zone of lower transmissivity, can account for their observed drawdowns. A numerical model was constructed to test whether these major heterogeneities could also account for the drawdowns in observation wells. This stepwise analysis of both the geophysical and hydrological data resulted in the formulation of a conceptual model of the aquifer which is consistent with observations, and which can account for its behavior when subjected to pumping.

  18. Hydrogeologic correlations for selected wells on Long Island, New York; a data base with retrieval program

    Science.gov (United States)

    Buxton, H.T.; Shernoff, P.K.; Smolensky, D.A.

    1989-01-01

    Accurate delineation of the internal hydrogeologic structure of Long Island, NY is integral to the understanding and management of the groundwater system. This report presents a computerized data base of hydrogeologic correlations for 3,146 wells on Long Island and adjacent parts of New York City. The data base includes the well identification number, the latitude-longitude of the well location, the altitude of land surface at the well and of the bottom of the drilled hole, and the altitude of the top of the major hydrogeologic units penetrated by the well. A computer program is included that allows retrieval of selected types of data for all of, or any local area of, Long Island. These data retrievals are a valuable aid to the construction of hydrogeologic surface maps. (USGS)

  19. Goal-oriented Site Characterization in Hydrogeological Applications: An Overview

    Science.gov (United States)

    Nowak, W.; de Barros, F.; Rubin, Y.

    2011-12-01

    In this study, we address the importance of goal-oriented site characterization. Given the multiple sources of uncertainty in hydrogeological applications, information needs of modeling, prediction and decision support should be satisfied with efficient and rational field campaigns. In this work, we provide an overview of an optimal sampling design framework based on Bayesian decision theory, statistical parameter inference and Bayesian model averaging. It optimizes the field sampling campaign around decisions on environmental performance metrics (e.g., risk, arrival times, etc.) while accounting for parametric and model uncertainty in the geostatistical characterization, in forcing terms, and measurement error. The appealing aspects of the framework lie on its goal-oriented character and that it is directly linked to the confidence in a specified decision. We illustrate how these concepts could be applied in a human health risk problem where uncertainty from both hydrogeological and health parameters are accounted.

  20. Analysis on paleo-hydrogeological conditions of uranium formation in Sawafuqi uranium deposit

    International Nuclear Information System (INIS)

    Lin Xiaobin; Hao Weilin; Wang Zhiming

    2013-01-01

    Sawafuqi uranium deposit is located in Kuergan intermontane basin of the South Tianshan (STS) fold belt. On the basis of regional tectonics, paleogeography, paleoclimate and related data, the evolution of intermontane basin could be divided into three hydrogeological cycles. The relationship of uranium mineralization to each cycle was analyzed from the perspective of the evolution of palaeo-hydrogeological conditions, and the uranium metallogenic model in palaeohydrogeology under strongly constructive background was established. (authors)

  1. Structural dynamic modifications via models

    Indian Academy of Sciences (India)

    The study shows that as many as half of the matrix ... the dynamicist's analytical modelling skill which would appear both in the numerator as. Figure 2. ..... Brandon J A 1990 Strategies for structural dynamic modification (New York: John Wiley).

  2. Structure-Based Turbulence Model

    National Research Council Canada - National Science Library

    Reynolds, W

    2000-01-01

    .... Maire carried out this work as part of his Phi) research. During the award period we began to explore ways to simplify the structure-based modeling so that it could be used in repetitive engineering calculations...

  3. Probabilistic modeling of timber structures

    DEFF Research Database (Denmark)

    Köhler, Jochen; Sørensen, John Dalsgaard; Faber, Michael Havbro

    2007-01-01

    The present paper contains a proposal for the probabilistic modeling of timber material properties. It is produced in the context of the Probabilistic Model Code (PMC) of the Joint Committee on Structural Safety (JCSS) [Joint Committee of Structural Safety. Probabilistic Model Code, Internet...... Publication: www.jcss.ethz.ch; 2001] and of the COST action E24 ‘Reliability of Timber Structures' [COST Action E 24, Reliability of timber structures. Several meetings and Publications, Internet Publication: http://www.km.fgg.uni-lj.si/coste24/coste24.htm; 2005]. The present proposal is based on discussions...... and comments from participants of the COST E24 action and the members of the JCSS. The paper contains a description of the basic reference properties for timber strength parameters and ultimate limit state equations for timber components. The recommended probabilistic model for these basic properties...

  4. Water-table and discharge changes associated with the 2016-2017 seismic sequence in central Italy: hydrogeological data and a conceptual model for fractured carbonate aquifers

    Science.gov (United States)

    Petitta, Marco; Mastrorillo, Lucia; Preziosi, Elisabetta; Banzato, Francesca; Barberio, Marino Domenico; Billi, Andrea; Cambi, Costanza; De Luca, Gaetano; Di Carlo, Giuseppe; Di Curzio, Diego; Di Salvo, Cristina; Nanni, Torquato; Palpacelli, Stefano; Rusi, Sergio; Saroli, Michele; Tallini, Marco; Tazioli, Alberto; Valigi, Daniela; Vivalda, Paola; Doglioni, Carlo

    2018-01-01

    A seismic sequence in central Italy from August 2016 to January 2017 affected groundwater dynamics in fractured carbonate aquifers. Changes in spring discharge, water-table position, and streamflow were recorded for several months following nine Mw 5.0-6.5 seismic events. Data from 22 measurement sites, located within 100 km of the epicentral zones, were analyzed. The intensity of the induced changes were correlated with seismic magnitude and distance to epicenters. The additional post-seismic discharge from rivers and springs was found to be higher than 9 m3/s, totaling more than 0.1 km3 of groundwater release over 6 months. This huge and unexpected contribution increased streamflow in narrow mountainous valleys to previously unmeasured peak values. Analogously to the L'Aquila 2009 post-earthquake phenomenon, these hydrogeological changes might reflect an increase of bulk hydraulic conductivity at the aquifer scale, which would increase hydraulic heads in the discharge zones and lower them in some recharge areas. The observed changes may also be partly due to other mechanisms, such as shaking and/or squeezing effects related to intense subsidence in the core of the affected area, where effects had maximum extent, or breaching of hydraulic barriers.

  5. HYDROGEOLOGY

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    of water resources,unbalanee disrriburion ofwater resourees,serious waste of water re-souree3,badly environmental eondition of wa-ter.At last gives out the eour一termeasures ofrational utilization of water resourees:En-haneing management,strerlgthening seieneeand teehnology in utilization of water re

  6. Temporal structures in shell models

    DEFF Research Database (Denmark)

    Okkels, F.

    2001-01-01

    The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely characterized by a single type of burstlike structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell...

  7. Structuring very large domain models

    DEFF Research Database (Denmark)

    Störrle, Harald

    2010-01-01

    View/Viewpoint approaches like IEEE 1471-2000, or Kruchten's 4+1-view model are used to structure software architectures at a high level of granularity. While research has focused on architectural languages and with consistency between multiple views, practical questions such as the structuring a...

  8. Fatgraph models of RNA structure

    Directory of Open Access Journals (Sweden)

    Huang Fenix

    2017-01-01

    Full Text Available In this review paper we discuss fatgraphs as a conceptual framework for RNA structures. We discuss various notions of coarse-grained RNA structures and relate them to fatgraphs.We motivate and discuss the main intuition behind the fatgraph model and showcase its applicability to canonical as well as noncanonical base pairs. Recent discoveries regarding novel recursions of pseudoknotted (pk configurations as well as their translation into context-free grammars for pk-structures are discussed. This is shown to allow for extending the concept of partition functions of sequences w.r.t. a fixed structure having non-crossing arcs to pk-structures. We discuss minimum free energy folding of pk-structures and combine these above results outlining how to obtain an inverse folding algorithm for PK structures.

  9. Stepwise hydrogeological characterisation utilising a geo-synthesis methodology - A case study from the Mizunami Underground Research Laboratory Project

    International Nuclear Information System (INIS)

    Saegusa, H.; Osawa, H.; Onoe, H.; Ohyama, T.; Takeuchi, R.; Takeuchi, S.

    2009-01-01

    of hydrogeological models and groundwater flow simulations, which can be used to identify and prioritize key issues for further investigations. Results show that such an approach, focusing hydrogeological characterizations by a structured geo-synthesis methodology, leads to an improved understanding of the deep hydrogeological environment and allows repository-relevant datasets to be produced in an efficient and traceable manner. (authors)

  10. Hydrogeological testing in the Sellafield area

    International Nuclear Information System (INIS)

    Sutton, J.S.

    1996-01-01

    A summary of the hydrogeological test methodologies employed in the Sellafield geological investigations is provided in order that an objective appraisal of the quality of the data can be formed. A brief presentation of some of these data illustrates the corroborative nature of different test and measurement methodologies and provides a preliminary view of the results obtained. The programme of hydrogeological testing is an evolving one and methodologies are developing as work proceeds and targets become more clearly defined. As the testing is focused on relatively low permeability rocks at depth, the approach to testing differs slightly from conventional hydrogeological well testing and makes extensive use of oilfield technology. (author)

  11. Characterization of hydrogeologic units using matrix properties, Yucca Mountain, Nevada

    Science.gov (United States)

    Flint, L.E.

    1998-01-01

    Determination of the suitability of Yucca Mountain, in southern Nevada, as a geologic repository for high-level radioactive waste requires the use of numerical flow and transport models. Input for these models includes parameters that describe hydrologic properties and the initial and boundary conditions for all rock materials within the unsaturated zone, as well as some of the upper rocks in the saturated zone. There are 30 hydrogeologic units in the unsaturated zone, and each unit is defined by limited ranges where a discrete volume of rock contains similar hydrogeologic properties. These hydrogeologic units can be easily located in space by using three-dimensional lithostratigraphic models based on relation- ships of the properties with the lithostratigraphy. Physical properties of bulk density, porosity, and particle density; flow properties of saturated hydraulic conductivity and moisture-retention characteristics; and the state variables (variables describing the current state of field conditions) of saturation and water potential were determined for each unit. Units were defined using (1) a data base developed from 4,892 rock samples collected from the coring of 23 shallow and 8 deep boreholes, (2) described lithostratigraphic boundaries and corresponding relations to porosity, (3) recognition of transition zones with pronounced changes in properties over short vertical distances, (4) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (5) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. This study describes the correlation of hydrologic properties to porosity, a property that is well related to the lithostratigraphy and depositional and cooling history of the volcanic deposits and can, therefore, be modeled to be distributed laterally. Parameters of the hydrogeologic units developed in this study and the

  12. Groundwater flow modeling in construction phase of the Mizunami Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Onoe, Hironori; Saegusa, Hiromitsu; Takeuchi, Ryuji

    2016-01-01

    This paper comprehensively describes the result of groundwater flow modeling using data of hydraulic responses due to construction of Mizunami Underground Research Laboratory (MIU) in Mizunami, Gifu, in order to update hydrogeological model based on stepwise approach for crystalline fractured rock in Japan. The results showed that large scale hydraulic compartment structures which has significant influence on change of groundwater flow characteristics are distributed around MIU. Furthermore, it is concluded that hydrogeological monitoring data and groundwater flow modeling during construction of deep underground facilities are effective for hydrogeological characterization of heterogeneous fractured rock. (author)

  13. Hydrogeological Conditions of a Crystalline Aquifer: Simulation of Optimal Abstraction Rates under Scenarios of Reduced Recharge

    Science.gov (United States)

    Fynn, Obed Fiifi; Chegbeleh, Larry Pax; Nude, Prosper M.; Asiedu, Daniel K.

    2013-01-01

    A steady state numerical groundwater flow model has been calibrated to characterize the spatial distribution of a key hydraulic parameter in a crystalline aquifer in southwestern Ghana. This was to provide an initial basis for characterizing the hydrogeology of the terrain with a view to assisting in the large scale development of groundwater resources for various uses. The results suggest that the structural entities that control groundwater occurrence in the area are quite heterogeneous in their nature and orientation, ascribing hydraulic conductivity values in the range of 4.5 m/d to over 70 m/d to the simulated aquifer. Aquifer heterogeneities, coupled possibly with topographical trends, have led to the development of five prominent groundwater flowpaths in the area. Estimated groundwater recharge at calibration ranges between 0.25% and 9.13% of the total annual rainfall and appears to hold significant promise for large-scale groundwater development to support irrigation schemes. However, the model suggests that with reduced recharge by up to 30% of the current rates, the system can only sustain increased groundwater abstraction by up to 150% of the current abstraction rates. Prudent management of the resource will require a much more detailed hydrogeological study that identifies all the aquifers in the basin for the assessment of sustainable basin yield. PMID:24453882

  14. Handbook of structural equation modeling

    CERN Document Server

    Hoyle, Rick H

    2012-01-01

    The first comprehensive structural equation modeling (SEM) handbook, this accessible volume presents both the mechanics of SEM and specific SEM strategies and applications. The editor, contributors, and editorial advisory board are leading methodologists who have organized the book to move from simpler material to more statistically complex modeling approaches. Sections cover the foundations of SEM; statistical underpinnings, from assumptions to model modifications; steps in implementation, from data preparation through writing the SEM report; and basic and advanced applications, inclu

  15. Hydrogeological Characteristics of Groundwater Yield in Shallow ...

    African Journals Online (AJOL)

    Hydrogeological Characteristics of Groundwater Yield in Shallow Wells of the ... of Water Resources and Lower Niger River Basin Development Authority in Ilorin. ... moment correlation, multiple and stepwise multiple regression analysis.

  16. Probabilistic Modeling of Timber Structures

    DEFF Research Database (Denmark)

    Köhler, J.D.; Sørensen, John Dalsgaard; Faber, Michael Havbro

    2005-01-01

    The present paper contains a proposal for the probabilistic modeling of timber material properties. It is produced in the context of the Probabilistic Model Code (PMC) of the Joint Committee on Structural Safety (JCSS) and of the COST action E24 'Reliability of Timber Structures'. The present...... proposal is based on discussions and comments from participants of the COST E24 action and the members of the JCSS. The paper contains a description of the basic reference properties for timber strength parameters and ultimate limit state equations for components and connections. The recommended...

  17. Developing Hydrogeological Site Characterization Strategies based on Human Health Risk

    Science.gov (United States)

    de Barros, F.; Rubin, Y.; Maxwell, R. M.

    2013-12-01

    In order to provide better sustainable groundwater quality management and minimize the impact of contamination in humans, improved understanding and quantification of the interaction between hydrogeological models, geological site information and human health are needed. Considering the joint influence of these components in the overall human health risk assessment and the corresponding sources of uncertainty aid decision makers to better allocate resources in data acquisition campaigns. This is important to (1) achieve remediation goals in a cost-effective manner, (2) protect human health and (3) keep water supplies clean in order to keep with quality standards. Such task is challenging since a full characterization of the subsurface is unfeasible due to financial and technological constraints. In addition, human exposure and physiological response to contamination are subject to uncertainty and variability. Normally, sampling strategies are developed with the goal of reducing uncertainty, but less often they are developed in the context of their impacts on the overall system uncertainty. Therefore, quantifying the impact from each of these components (hydrogeological, behavioral and physiological) in final human health risk prediction can provide guidance for decision makers to best allocate resources towards minimal prediction uncertainty. In this presentation, a multi-component human health risk-based framework is presented which allows decision makers to set priorities through an information entropy-based visualization tool. Results highlight the role of characteristic length-scales characterizing flow and transport in determining data needs within an integrated hydrogeological-health framework. Conditions where uncertainty reduction in human health risk predictions may benefit from better understanding of the health component, as opposed to a more detailed hydrogeological characterization, are also discussed. Finally, results illustrate how different dose

  18. Contribution to optimisation of Environmental Isotopes tracing in Hydrogeology. Case study of Madagascar

    International Nuclear Information System (INIS)

    RAJAOBELISON, J.

    2003-01-01

    The aim of this work is to suggest some improvements on the theory of interpretation and on the methodological approach for the optimum use of environmental isotopes tracing applied to hydrogeological investigation. A review of the theory of environmental isotopes used in hydrogeology has been made. The main constraints have been highlighted and led to some comments and proposals of improvement, in particular with regard to the continental effect on stable isotopes, to the seasonal variation of groundwater 1 4C content, and to the appropriate model for fractured crystalline aquifers. A literature survey on ten specific scientific papers, dealing with isotopic hydrology in miscellaneous types of aquifers and catchments, allowed to draw a synthesis of the hydrogeological, geochemical and isotopic constraints. A proposal of optimum methodological approach, taking into account the above mentioned constraints, have been inferred. The results of an on-going hydrogeological investigation carried out in the Southern crystalline basement and coastal sedimentary aquifers of Madagascar highlights an unusual methodological approach based on the lack of initial basic hydrogeological data. Besides, it shows to what extent the experience of the above mentioned research works can apply in the specific case of the complex aquifers of Madagascar. The lessons gained from this study contribute to enrich the synthesis of environmental isotopes constraints in hydrogeology and lead to a more realistic methodological approach proposal wich is likely to better make profitable the isotope hydrology technology

  19. Hydrological and hydro-geological effects on wetlands and forest areas from the repository at Forsmark. Results from modelling with MIKE SHE; Hydrologiska och hydrogeologiska effekter paa vaatmarker och skogsomraaden av slutfoervarsanlaeggningen i Forsmark. Resultat fraan modellering med MIKE SHE

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, Erik; Gustafsson, Lars-Goeran; Gustafsson, Ann-Marie; Aneljung, Maria; Sabel, Ulrika (DHI Sverige AB, Goeteborg (Sweden))

    2010-06-15

    This report provides background material for investigations and associated impact assessments concerning water operations in terms of withdrawal of groundwater from the final repository for spent nuclear fuel at Forsmark. The report presents detailed modelling results in the form of supplementary sensitivity analyses and detailed hydrological and hydrogeological analyses of specific nature objects in Forsmark. The sensitivity analyses aim to investigate the sensitivity of the modelling results to i) the meteorological conditions, ii) impervious surfaces and iii) the model description of the present SFR (final repository for short-lived radioactive waste). A number of simulation cases aim to study cumulative effects of groundwater withdrawal from an extended SFR. The simulations are evaluated with respect to the groundwater table drawdown and head changes in the bedrock. The report analyses the hydrogeological and hydrological conditions for a number of selected wetland objects and forest objects. The selection of objects aims to cover different types of valuable nature objects at different geographical locations in relation to the influence area of the groundwater table drawdown. The analysis comprises groundwater levels at all nature objects, whereas wetlands with particularly high nature values have been studied in detail with respect to surface water levels, the need for water supply and object-specific water balances. These studies have been performed for different meteorological conditions in the form of a type (2006) and a statistically normal, dry and wet year, respectively, with a return period of 100 years for the dry- and wet years. All simulations for disturbed conditions with a fully open repository are done with a hydraulic conductivity of K{sub inj} = 10-7 or 10-8 m/s in the grouted zone. The results show that time-dependent precipitation and snow melt have large influence on the temporal variations of the depth to the groundwater table for

  20. Editors' message--Hydrogeology Journal in 2003

    Science.gov (United States)

    Voss, Clifford; Olcott, Perry; Schneider, Robert

    2004-01-01

    Hydrogeology Journal appeared in six issues containing a total of 710 pages and 48 major articles, including 31 Papers and 14 Reports, as well as some Technical Notes and Book Reviews. The number of submitted manuscripts continues to increase. The final issue of 2003 also contained the annual volume index. Hydrogeology Journal (HJ) is an international forum for hydrogeology and related disciplines and authors in 2003 were from about 28 countries. Articles advanced hydrogeologic science and described hydrogeologic systems in many regions worldwide. These articles focused on a variety of general topics and on studies of hydrogeology in 24 countries: Afghanistan, Algeria, Argentina, Australia, Bangladesh, Belgium, Canada, Chile, China, Denmark, France, India, Italy, Mexico, Netherlands, New Zealand, Nigeria, Norway, Portugal, Russia, South Africa, Switzerland, Turkey, and U.S.A. The Guest Editor of the 2003 HJ theme issue on “Hydromechanics in Geology and Geotechnics”, Ove Stephansson, assembled a valuable collection of technical reviews and research papers from eminent authors on important aspects of the subject area.

  1. Hydrogeology in North America: past and future

    Science.gov (United States)

    Narasimhan, T. N.

    2005-03-01

    This paper is a retrospective on the evolution of hydrogeology in North America over the past two centuries, and a brief speculation of its future. The history of hydrogeology is marked by developments in many different fields such as groundwater hydrology, soil mechanics, soil science, economic geology, petroleum engineering, structural geology, geochemistry, geophysics, marine geology, and more recently, ecology. The field has been enriched by the contributions of distinguished researchers from all these fields. At present, hydrogeology is in transition from a state of discovering new resources and exploiting them efficiently for maximum benefit, to one of judicious management of finite, interconnected resources that are vital for the sustenance of humans and other living things. The future of hydrogeology is likely to be dictated by the subtle balance with which the hydrological, erosional, and nutritional cycles function, and the decision of a technological society to either adapt to the constraints imposed by the balance, or to continue to exploit hydrogeological systems for maximum benefit. Although there is now a trend towards ecological and environmental awareness, human attitudes could change should large parts of the populated world be subjected to the stresses of droughts that last for many decades. Cet article est une rétrospective de l'évolution de l'hydrogéologie en Amérique du Nord sur les deux derniers siècles, et une brève évaluation de son futur. L'histoire de l'hydrogéologie est marquée par le développement de plusieurs techniques de terrain telles, l'hydrologie des eaux souterraines, la mécanique des sols, les sciences du sol, la géologie économique, l' ingénierie pétrolière, la géologie structurale, la géochimie, la géophysique, la géologie marine et plus récemment l'écologie. La science a été enrichie par la contribution de plusieurs chercheurs distingués, provenant de toutes ces branches. A présent, l

  2. Compilation and analysis of hydrogeological pressure responses to field activities in Olkiluoto during 2010-2012

    Energy Technology Data Exchange (ETDEWEB)

    Pentti, E.; Penttinen, T.; Vaittinen, T. [Poeyry Finland Oy, Vantaa (Finland)

    2014-04-15

    drawdowns are partially caused indirectly by the hydraulic connection along packer section L1 of OL-KR7. Based on the head observations in packed-off drillholes, sub-horizontal hydraulic zones form a layered system at the ONKALO area corresponding to current hydrogeological structure model. The results support the hypothesis of the relation between ductile deformation model and hydrogeological structure model but it cannot be confirmed, because packed-off drillholes are still mostly located at the ONKALO area. (orig.)

  3. Geologic framework and hydrogeologic characteristics of the outcrops of the Edwards and Trinity aquifers, Medina Lake area, Texas

    Science.gov (United States)

    Small, Ted A.; Lambert, Rebecca B.

    1998-01-01

    The hydrogeologic subdivisions of the Edwards aquifer outcrop in the Medina Lake area in Medina and Bandera Counties generally are porous and permeable. The most porous and permeable appear to be hydrogeologic subdivision VI, the Kirschberg evaporite member of the Kainer Formation; and hydrogeologic subdivision III, the leached and collapsed members, undivided, of the Person Formation. The porosity of the rocks in the Edwards aquifer outcrop is related to depositional or diagenetic elements along specific stratigraphic horizons (fabric selective) and to dissolution and structural elements that can occur in any lithostratigraphic horizon (not fabric selective). Permeability depends on the physical properties of the rock such as size, shape, and distribution of pores.

  4. Modern and Unconventional Approaches to Karst Hydrogeology

    Science.gov (United States)

    Sukop, M. C.

    2017-12-01

    Karst hydrogeology is frequently approached from a hydrograph/statistical perspective where precipitation/recharge inputs are converted to output hydrographs and the conversion process reflects the hydrology of the system. Karst catchments show hydrological response to short-term meteorological events and to long-term variation of large-scale atmospheric circulation. Modern approaches to analysis of these data include, for example, multiresolution wavelet techniques applied to understand relations between karst discharge and climate fields. Much less effort has been directed towards direct simulation of flow fields and transport phenomena in karst settings. This is primarily due to the lack of information on the detailed physical geometry of most karst systems. New mapping, sampling, and modeling techniques are beginning to enable direct simulation of flow and transport. A Conduit Flow Process (CFP) add-on to the USGS ModFlow model became available in 2007. FEFLOW and similar models are able to represent flows in individual conduits. Lattice Boltzmann models have also been applied to flow modeling in karst systems. Regarding quantitative measurement of karst system geometry, at scales to 0.1 m, X-ray computed tomography enables good detection of detailed (sub-millimeter) pore space in karstic rocks. Three-dimensional printing allows reconstruction of fragile high porosity rocks, and surrogate samples generated this way can then be subjected to laboratory testing. Borehole scales can be accessed with high-resolution ( 0.001 m) Digital Optical Borehole Imaging technologies and can provide virtual samples more representative of the true nature of karst aquifers than can obtained from coring. Subsequent extrapolation of such samples can generate three-dimensional models suitable for direct modeling of flow and transport. Finally, new cave mapping techniques are beginning to provide information than can be applied to direct simulation of flow. Due to flow rates and cave

  5. Track structure in biological models.

    Science.gov (United States)

    Curtis, S B

    1986-01-01

    High-energy heavy ions in the galactic cosmic radiation (HZE particles) may pose a special risk during long term manned space flights outside the sheltering confines of the earth's geomagnetic field. These particles are highly ionizing, and they and their nuclear secondaries can penetrate many centimeters of body tissue. The three dimensional patterns of ionizations they create as they lose energy are referred to as their track structure. Several models of biological action on mammalian cells attempt to treat track structure or related quantities in their formulation. The methods by which they do this are reviewed. The proximity function is introduced in connection with the theory of Dual Radiation Action (DRA). The ion-gamma kill (IGK) model introduces the radial energy-density distribution, which is a smooth function characterizing both the magnitude and extension of a charged particle track. The lethal, potentially lethal (LPL) model introduces lambda, the mean distance between relevant ion clusters or biochemical species along the track. Since very localized energy depositions (within approximately 10 nm) are emphasized, the proximity function as defined in the DRA model is not of utility in characterizing track structure in the LPL formulation.

  6. Hydrogeological Modelling of Some Geothermal Waters of Ivrindi, Havran and Gönen in the Province Capital of Balikesir, Western Anatolia, Turkey

    Science.gov (United States)

    Özgür, Nevzat; Ugurlu, Zehra; Memis, Ümit; Aydemir, Eda

    2017-12-01

    In this study, hydrogeological, hydrogeochemical and isotope geochemical features of Havran, Gönen and Ivrindi within the province capital of Balıkesir, Turkey were investigated in detail. The Early Triassic Karakaya formation in the study area of Havran forms the oldest rocks consisting of spilitic basalts, diabases, gabbros, mudstones, cherts and radiolarites. There are limestone blocks in this formation with intercalations with sandstones and with feldspar contents, quartzite, conglomerates and siltstones. Oligocene to Miocene granodiorite intrusions were generated in association with intensively volcanic events in the area. Between Upper Oligocene and Early Miocene, andesitic and dacitic pyroclastic rocks cropped out due to intensively volcanism. Later, conglomerates, sandstones, claystones, marls and limestones as lacustrine sediments formed from Middle to Upper Miocene in the study area. In the study area of Gönen, the Lower Triassic Karakaya formation consists of basalts, diabases, gabbros, mudstones, cherts and radiolarites and forms the basement rocks overlain by Upper Jurassic to Lower Cretaceous sandy limestones. Upper and Middle Miocene volcanics which can be considered intensive Biga Peninsula volcanos outcrop in the area. These andesitic lava flows are of black, gray and red color with intensive fissures. Neogene lacustrine sediments consist of conglomerates, sandstones, marl, claystone and clayey limestones. Upper Miocene to Pliocene rhyolitic pyroclastics and dacitic lava flows are the volcanic rocks which are overlain by Pliocene conglomerates, sandstones and claystones. In the study area of Ivrindi, the Çaldağ limestones are the oldest formation in Permian age. Çavdartepe metamorphic rocks are of Lower Triassic in which can be observed marbles sporadically. The Kınık formation consisting of conglomerates, sandstones, siltstones and limestones are of Lower Triassic age and display a lateral Stratigraphic progress with volcanic rocks. Upper

  7. Hydrogeological Modelling of the Geothermal Waters of Alaşehir in the Continental Rift Zone of the Gediz, Western Anatolia, Turkey

    Science.gov (United States)

    Ӧzgür, Nevzat; Bostancı, Yesim; Anilır Yürük, Ezgi

    2017-12-01

    In western Anatolia, Turkey, the continental rift zones of the Büyük Menderes, Küçük Menderes and Gediz were formed by extensional tectonic features striking E-W generally and representing a great number of active geothermal systems, epithermal mineralizations and volcanic rocks from Middle Miocene to recent. The geothermal waters are associated with the faults which strike preferentially NW-SE and NE-SW and locate diagonal to general strike of the rift zones of the Menderes Massif. These NW-SE and NE-SW striking faults were probably generated by compressional tectonic regimes which leads to the deformation of uplift between two extensional rift zones in the Menderes Massif. The one of these rift zones is Gediz which is distinguished by a great number of geothermal waters such as Alaşehir, Kurşunlu, Çamurlu, Pamukkale and Urganlı. The geothermal waters of Alaşehir form the biggest potential in the rift zone of Gediz with a capacity of about 100 to 200 MWe. Geologically, the gneisses from the basement rocks in the study area which are overlain by an Paleozoic to Mesozoic intercalation of mica schists, quartzites and marbles, a Miocene intercalation of conglomerates, sandstones and clay stones and Plio-Quaternary intercalation of conglomerates, sandstones and clay stones discordantly. In the study area, Paleozoic to Mesozoic quartzites and marbles form the reservoir rocks hydrogeologically. The geothermal waters anions with Na+K>Ca>Mg dominant cations and HCO3>Cl> dominant anions are of Na-HCO3 type and can be considered as partial equilibrated waters. According to the results of geochemical thermometers, the reservoir temperatures area of about 185°C in accordance with measured reservoir temperatures. Stabile isotopes of δ18O versus δ2H of geothermal waters of Alaşehir deviate from the meteoric water line showing an intensive water-rock interaction under high temperature conditions. These data are well correlated with the results of the

  8. Structure and modeling of turbulence

    International Nuclear Information System (INIS)

    Novikov, E.A.

    1995-01-01

    The open-quotes vortex stringsclose quotes scale l s ∼ LRe -3/10 (L-external scale, Re - Reynolds number) is suggested as a grid scale for the large-eddy simulation. Various aspects of the structure of turbulence and subgrid modeling are described in terms of conditional averaging, Markov processes with dependent increments and infinitely divisible distributions. The major request from the energy, naval, aerospace and environmental engineering communities to the theory of turbulence is to reduce the enormous number of degrees of freedom in turbulent flows to a level manageable by computer simulations. The vast majority of these degrees of freedom is in the small-scale motion. The study of the structure of turbulence provides a basis for subgrid-scale (SGS) models, which are necessary for the large-eddy simulations (LES)

  9. A model for adatom structures

    Science.gov (United States)

    Kappus, W.

    1981-06-01

    A model concerning adatom structures is proposed. Attractive nearest neighbour interactions, which may be of electronic nature lead to 2-dimensional condensation. Every pair bond causes and elastic dipole. The elastic dipoles interact via substrate strains with an anisotropic s -3 power law. Different types of adatoms or sites are permitted and many-body effects result, from the assumptions. Electric dipole interactions of adatoms are included for comparison. The model is applied to the W(110) surface and compared with superstructures experimentally found in the W(110)-0 system. It is found that there is still lack for an additional next-nearest neighbour interaction.

  10. Teaching hydrogeology: a review of current practice

    Science.gov (United States)

    Gleeson, T.; Allen, D. M.; Ferguson, G.

    2012-07-01

    Hydrogeology is now taught in a broad spectrum of departments and institutions to students with diverse backgrounds. Successful instruction in hydrogeology thus requires a variety of pedagogical approaches depending on desired learning outcomes and the background of students. We review the pedagogical literature in hydrogeology to highlight recent advances and analyze a 2005 survey among 68 hydrogeology instructors. The literature and survey results suggest there are only ~ 15 topics that are considered crucial by most hydrogeologists and > 100 other topics that are considered crucial by some hydrogeologists. The crucial topics focus on properties of aquifers and fundamentals of groundwater flow, and should likely be part of all undergraduate hydrogeology courses. Other topics can supplement and support these crucial topics, depending on desired learning outcomes. Classroom settings continue to provide a venue for emphasizing fundamental knowledge. However, recent pedagogical advances are biased towards field and laboratory instruction with a goal of bolstering experiential learning. Field methods build on the fundamentals taught in the classroom and emphasize the collection of data, data uncertainty, and the development of vocational skills. Laboratory and computer-based exercises similarly build on theory, and offer an opportunity for data analysis and integration. The literature suggests curricula at all levels should ideally balance field, laboratory, and classroom pedagogy into an iterative and integrative whole. An integrated, iterative and balanced approach leads to greater student motivation and advancement of theoretical and vocational knowledge.

  11. Hydrogeological challenges through gender approaches

    Science.gov (United States)

    Di Lorenzo, Maria Rosaria; Saltari, Davide; Di Giacomo, Tullia Valeria

    2017-04-01

    Women and Men play a different role in the society, tied from the differences (physical, biological, somatic, etc…) typical of each one. In the last decades, more gender approach has been introduced in a number of fields including the hydrogeological risk. Experiences, needs and potential of each one, women and men, covers both the risk reduction before the occurrence of extreme events (vulnerability assessment and prediction of the expected risk), then in the next emergency and intervention in follow-up actions to the overcoming of the event for the return to everyday life. The response of the extreme hydrological events are also subordinated from gender participation and it is closely related from other aspects, as natural disasters (flood events), gender inequalities and urban floodings. These aspects are also scheduled by the different approaches: a woman focuses different primary and social aspects than a man. How women can help organizations offering new 'policies' and government is the main aspect to be considered and how a gender approach can mitigate disasters to hydrological risk. It depends on some factors: gender inequalities (gender perception and sensibility), importance of natural disasters and urban floodings. Gender inequalities can match both in the natural disasters and urban floodings in a relevant way. ICT solutions can also give a helpful framework to accelerate and focus the quicker condition to get the better approach and solution. Gender has a particular significant, explanatory variable in disaster research. Many studies, show how women have higher mortality and morbidity rates than men during natural disasters, especially in lower income countries. In the aftermath disasters, at the same time, specific responsibilities on women are imposed from the gendered division of labour. Furthermore gender differences are sometimes attributed to traditional women's roles, discrimination, lower physical strength, nutritional deficiencies, etc. as

  12. Proglacial Hydrogeology of the Cordillera Blanca (Peru): Integrating Field Observations with Hydrogeophysical Inversions to Inform Groundwater Flow Simulations and Conceptual Models

    Science.gov (United States)

    Glas, R. L.; Lautz, L.; McKenzie, J. M.; Moucha, R.; Mark, B. G.

    2017-12-01

    Geological and depositional conditions of the glaciated Cordillera Blanca in Peru have given way to proglacial aquifer systems that contribute substantially to regional streams and rivers, particularly during the dry season. As glacial retreat accelerates, the dry season water budget will be increasingly dominated by groundwater inputs, although predictions of future groundwater quantities require estimations of groundwater storage capacity, aquifer extents, and groundwater residence time. We present a characterization of the sediment structure in a prototypical proglacial valley in the central portion of the range, the Quilcayhuanca Valley. Northern and Central valleys of the Cordillera Blanca feature ubiquitous talus deposits that line the steep granite walls, and have become partially buried beneath lacustrine sediments deposited in proglacial lake beds. The portion of the talus still exposed near the valley walls provides recharge to deeper portions of the valley aquifers that underlie lacustrine clay, resulting in a confined aquifer system that is connected to the surface via perennial springs. Seismic refraction surveys reveal an interface separating relatively slow ( 400-800 m/s) and fast ( 2500 m/s) p-wave velocities. The depth of this refractor coincides with the depth to buried talus observed in drilling records. Electrical resistivity tomography profiles of the same transect show depths near the buried talus to be relatively conductive (10-100 Ωm). At these depths, we hypothesize that electrical conductance is elevated by saturated clay particles in the sediment matrix of the talus deposit. The resistivity models all show a more resistive ( 700 Ω m) region at depth, likely corresponding to a more hydraulically conductive material. The resistive zone is interpreted to be a deeper portion of a buried talus deposit that did not accumulate clay in the matrix. Other possibilities include a thick deposit of gravelly glacial outwash, or a relatively clay

  13. Crosshole investigations: Hydrogeological results and interpretations

    International Nuclear Information System (INIS)

    Black, J.H.; Holmes, D.C.; Brightman, M.A.

    1987-12-01

    The Crosshole Programme was an integrated geophysical and hydrogeological study of a limited volume of rock (known as the Crosshole Site) within the Stripa mine. Borehole radar, borehole seismic and hydraulic methods were developed for specific application to fractured crystalline rock. The hydrogeological investigations contained both single borehole and crosshole test techniques. A novel technique, using a sinusoidal variation of pressure, formed the main method of crosshole testing and was assessed during the programme. The strategy of crosshole testing was strongly influenced by the results from the geophysical measurements. The longer term, larger scale hydrogeological response of the region was asessed by examining the variation of heads over the region. These were responding to the presence of an old drift. A method of overall assessment involving minimising the divergence from a homogeneous response yielded credible values of hydraulic conductivity for the rock as a whole. (orig./DG)

  14. Activation analysis of indium used as tracer in hydrogeology

    International Nuclear Information System (INIS)

    Stanescu, S.P.; Farcasiu, O.M.; Gaspar, E.; Spiridon, S.; Nazarov, V.M.; Frontasieva, M.V.

    1985-01-01

    About 2500 samples of 18 hydro-karstic structures from Romania have been analyzed. The water flow rates were in the range of 0.05 to 2.7 m 3 /s and transit time values were from 30 h to 200 days. The quantity of indium used for a labelling was a calculated function of the emergency flow rate and the estimated transit time and varied from 1 to 100 g. The results prove that the activation analysis of indium in water samples combined with preconcentration by coprecipitation is an useful method in hydrogeological studies

  15. Characterization of hydrogeologic units using matrix properties, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Flint, L.E.

    1998-01-01

    Determination of the suitability of Yucca Mountain, in southern Nevada, as a geologic repository for high-level radioactive waste requires the use of numerical flow and transport models. Input for these models includes parameters that describe hydrologic properties and the initial and boundary conditions for all rock materials within the unsaturated zone, as well as some of the upper rocks in the saturated zone. There are 30 hydrogeologic units in the unsaturated zone, and each unit is defined by limited ranges where a discrete volume of rock contains similar hydrogeologic properties. These hydrogeologic units can be easily located in space by using three-dimensional lithostratigraphic models based on relationships of the properties with the lithostratigraphy. Physical properties of bulk density, porosity, and particle density; flow properties of saturated hydraulic conductivity and moisture-retention characteristics; and the state variables (variables describing the current state of field conditions) of saturation and water potential were determined for each unit. Units were defined using (1) a data base developed from 4,892 rock samples collected from the coring of 23 shallow and 8 deep boreholes, (2) described lithostratigraphic boundaries and corresponding relations to porosity, (3) recognition of transition zones with pronounced changes in properties over short vertical distances, (4) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (5) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. This study describes the correlation of hydrologic properties to porosity, a property that is well related to the lithostratigraphy and depositional and cooling history of the volcanic deposits and can, therefore, be modeled to be distributed laterally

  16. Effectiveness evaluation of remote data application in hydrogeologic explorations

    Energy Technology Data Exchange (ETDEWEB)

    Burleshin, M I; Koloskova, V N

    1981-01-01

    Use of the information approach to evaluate the effectiveness of remote data in hydrogeologic cartography of Ustyurt is discussed. Space image, interval and final diagrams of hydrogeologic interpretation are represented like a communication channel. Using the information approach, quantitative evaluation is carried out, and hydrogeologic maps are compared (that, have been compiled by earth surface methods and via interpretation of remote data.

  17. SRP Baseline Hydrogeologic Investigation, Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    Bledsoe, H.W.

    1988-08-01

    The SRP Baseline Hydrogeologic Investigation was implemented for the purpose of updating and improving the knowledge and understanding of the hydrogeologic systems underlying the SRP site. Phase III, which is discussed in this report, includes the drilling of 7 deep coreholes (sites P-24 through P-30) and the installation of 53 observation wells ranging in depth from approximately 50 ft to more than 970 ft below the ground surface. In addition to the collection of geologic cores for lithologic and stratigraphic study, samples were also collected for the determination of physical characteristics of the sediments and for the identification of microorganisms.

  18. SRP baseline hydrogeologic investigation: Aquifer characterization

    Energy Technology Data Exchange (ETDEWEB)

    Strom, R.N.; Kaback, D.S.

    1992-03-31

    An investigation of the mineralogy and chemistry of the principal hydrogeologic units and the geochemistry of the water in the principal aquifers at Savannah River Site (SRS) was undertaken as part of the Baseline Hydrogeologic Investigation. This investigation was conducted to provide background data for future site studies and reports and to provide a site-wide interpretation of the geology and geochemistry of the Coastal Plain Hydrostratigraphic province. Ground water samples were analyzed for major cations and anions, minor and trace elements, gross alpha and beta, tritium, stable isotopes of hydrogen, oxygen, and carbon, and carbon-14. Sediments from the well borings were analyzed for mineralogy and major and minor elements.

  19. Generalized latent variable modeling multilevel, longitudinal, and structural equation models

    CERN Document Server

    Skrondal, Anders; Rabe-Hesketh, Sophia

    2004-01-01

    This book unifies and extends latent variable models, including multilevel or generalized linear mixed models, longitudinal or panel models, item response or factor models, latent class or finite mixture models, and structural equation models.

  20. Kinematic models of extensional structures

    International Nuclear Information System (INIS)

    Groshong, R.H. Jr.

    1990-01-01

    This paper discusses kinematic models that can relate faults of different types and different positions within a single dynamic system and thereby offer the potential to explain the disparate seismic activity characteristic of extensional terrains. The major styles are full grabens, half grabens, domino blocks, and glide-block systems. Half grabens, the most likely models for Basin and Range structure, are formed above a master fault of decreasing dip with depth and a hangingwall that deforms as it passes over the curved fault. Second-order normal faults, typically domino style, accommodate the required hangingwall deformation. According to the author low-angle detachment faults are consistent with the evidence of seismicity only on high-angle faults if the hangingwall of the detachment is broken by multiple half-graben systems

  1. Recharge-area nuclear waste repository in southeastern Sweden. Demonstration of hydrogeologic siting concepts and techniques

    International Nuclear Information System (INIS)

    Provost, A.M.; Voss, C.I.

    2001-11-01

    Nuclear waste repositories located in regional ground-water recharge ('upstream') areas may provide the safety advantage that potentially released radionuclides would have long travel time and path length, and large path volume, within the bedrock before reaching the biosphere. Nuclear waste repositories located in ground-water discharge ('downstream') areas likely have much shorter travel time and path length and smaller path volume. Because most coastal areas are near the primary discharge areas for regional ground-water flow, coastal repositories may have a lower hydrogeologic safety margin than 'upstream' repositories located inland. Advantageous recharge-area sites may be located through careful use of regional three-dimensional, variable-density, ground-water modeling. Because of normal limitations of site-characterization programs in heterogeneous bedrock environments, the hydrogeologic structure and properties of the bedrock will generally remain unknown at the spatial scales required for the model analysis, and a number of alternative bedrock descriptions are equally likely. Model simulations need to be carried out for the full range of possible descriptions. The favorable sites are those that perform well for all of the modeled bedrock descriptions. Structural heterogeneities in the bedrock and local undulations in water-table topography, at a scale finer than considered by a given model, also may cause some locations in favored inland areas to have very short flow paths (of only hundreds of meters) and short travel times, compromising the long times and paths (of many kilometers) predicted by the analysis for these sites. However, in the absence of more detailed modeling, the favored upstream sites offer a greater chance of achieving long times and paths than do downstream discharge areas, where times and paths are expected to be short regardless of the level of detail included in the model. As an example of this siting approach, potential repository

  2. Regional hydrogeological simulations using CONECTFLOW. Preliminary site description. Laxemar sub area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Hunter, Fiona; Jackson, Peter; McCarthy, Rachel [Serco Assurance, Risley (United Kingdom); Gylling, Bjoern; Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden)

    2006-04-15

    The main objective of this study is to support the development of a preliminary Site Description of the Laxemar subarea on a regional-scale based on the available data of November 2004 (Data Freeze L1.2). A more specific objective of this study is to assess the role of both known and less quantified hydrogeological conditions in determining the present-day distribution of saline groundwater in the Laxemar subarea on a regional-scale. An improved understanding of the palaeo-hydrogeology is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. This is to serve as a basis for describing the present hydrogeological conditions on a local-scale, as well as predictions of future hydrogeological conditions. Another objective is to assess the flow-paths from the local-scale model domain, based on the present-day flow conditions, to assess the distribution of discharge and recharge areas connected to the flow at the approximate repository depth to inform the Preliminary Safety Evaluation. Significant new features incorporated in the modelling include: a depth variation in hydraulic properties within the deformation zones; a dependence on rock domain and depth in the rock mass properties in regional-scale models; a more detailed model of the overburden in terms of a layered system of spatially variable thickness made up of several different types of Quaternary deposits has been implemented; and several variants on the position of the watertable have been tried. The motivation for introducing a dependence on rock domain was guided by the hydrogeological interpretation with the aim of honouring the observed differences in hydraulic properties measured at the boreholes.

  3. Regional hydrogeological simulations using CONECTFLOW. Preliminary site description. Laxemar sub area - version 1.2

    International Nuclear Information System (INIS)

    Hartley, Lee; Hunter, Fiona; Jackson, Peter; McCarthy, Rachel; Gylling, Bjoern; Marsic, Niko

    2006-04-01

    The main objective of this study is to support the development of a preliminary Site Description of the Laxemar subarea on a regional-scale based on the available data of November 2004 (Data Freeze L1.2). A more specific objective of this study is to assess the role of both known and less quantified hydrogeological conditions in determining the present-day distribution of saline groundwater in the Laxemar subarea on a regional-scale. An improved understanding of the palaeo-hydrogeology is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. This is to serve as a basis for describing the present hydrogeological conditions on a local-scale, as well as predictions of future hydrogeological conditions. Another objective is to assess the flow-paths from the local-scale model domain, based on the present-day flow conditions, to assess the distribution of discharge and recharge areas connected to the flow at the approximate repository depth to inform the Preliminary Safety Evaluation. Significant new features incorporated in the modelling include: a depth variation in hydraulic properties within the deformation zones; a dependence on rock domain and depth in the rock mass properties in regional-scale models; a more detailed model of the overburden in terms of a layered system of spatially variable thickness made up of several different types of Quaternary deposits has been implemented; and several variants on the position of the watertable have been tried. The motivation for introducing a dependence on rock domain was guided by the hydrogeological interpretation with the aim of honouring the observed differences in hydraulic properties measured at the boreholes

  4. Summary of hydrogeologic conditions at Aberg, Beberg and Ceberg

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.; Gurban, I. [INTERA KB, Sollentuna (Sweden); Rhen, I. [VBB Viak AB (Sweden)

    1997-10-01

    This report is a compilation of existing data and descriptions for use in the hydrogeologic modelling of three hypothetical sites for a nuclear waste repository in Sweden. It provides modelling teams with preliminary conceptual models, parameter values and uncertainties for inputs to numerical flow and transport models on the regional and site scales. Its primary objective is to provide consistent data sets and conceptual models so that the results of performance assessment modelling will be as comparable as possible. Where possible, this report also provides alternative conceptual models that should be evaluated as part of the modelers` sensitivity analysis. The information contained in this report is taken from several key sources, including the SKB SICADA database, the Swedish Geological Survey well database, the SKB Geographic Information System, the Swedish Land Survey databases, and published SKB reports. 148 refs, 25 tabs, 60 figs.

  5. Summary of hydrogeologic conditions at Aberg, Beberg and Ceberg

    International Nuclear Information System (INIS)

    Walker, D.; Gurban, I.; Rhen, I.

    1997-10-01

    This report is a compilation of existing data and descriptions for use in the hydrogeologic modelling of three hypothetical sites for a nuclear waste repository in Sweden. It provides modelling teams with preliminary conceptual models, parameter values and uncertainties for inputs to numerical flow and transport models on the regional and site scales. Its primary objective is to provide consistent data sets and conceptual models so that the results of performance assessment modelling will be as comparable as possible. Where possible, this report also provides alternative conceptual models that should be evaluated as part of the modelers' sensitivity analysis. The information contained in this report is taken from several key sources, including the SKB SICADA database, the Swedish Geological Survey well database, the SKB Geographic Information System, the Swedish Land Survey databases, and published SKB reports

  6. Soil Retaining Structures : Development of models for structural analysis

    NARCIS (Netherlands)

    Bakker, K.J.

    2000-01-01

    The topic of this thesis is the development of models for the structural analysis of soil retaining structures. The soil retaining structures being looked at are; block revetments, flexible retaining walls and bored tunnels in soft soil. Within this context typical structural behavior of these

  7. Small Scale Multisource Site – Hydrogeology Investigation

    Science.gov (United States)

    A site impacted by brackish water was evaluated using traditional hydrogeologic and geochemical site characterization techniques. No single, specific source of the brine impacted ground water was identified. However, the extent of the brine impacted ground water was found to be...

  8. Hydrogeological And Geotechnical Investigations Of Gully Erosion ...

    African Journals Online (AJOL)

    Consequently, hydrogeological and geotechnical studies of gully erosion sites were carried out in order to provide information on the genesis and continual expansion of gullies in the area. The results indicate that gullies are located in the upper aquifer of the Benin Formation (Coastal Plain Sands). The estimated hydraulic ...

  9. Hydrogeological evaluation of geological formations in Ashanti ...

    African Journals Online (AJOL)

    This study, therefore, employed Geographical Information System to assess some of these hydrogeological parameters in the Ashanti Region using the ordinary kriging interpolation method. Data on 2,788 drilled boreholes in the region were used and the assessment focused on the various geological formations in the ...

  10. An approach for classification of hydrogeological systems at the regional scale based on groundwater hydrographs

    Science.gov (United States)

    Haaf, Ezra; Barthel, Roland

    2016-04-01

    When assessing hydrogeological conditions at the regional scale, the analyst is often confronted with uncertainty of structures, inputs and processes while having to base inference on scarce and patchy data. Haaf and Barthel (2015) proposed a concept for handling this predicament by developing a groundwater systems classification framework, where information is transferred from similar, but well-explored and better understood to poorly described systems. The concept is based on the central hypothesis that similar systems react similarly to the same inputs and vice versa. It is conceptually related to PUB (Prediction in ungauged basins) where organization of systems and processes by quantitative methods is intended and used to improve understanding and prediction. Furthermore, using the framework it is expected that regional conceptual and numerical models can be checked or enriched by ensemble generated data from neighborhood-based estimators. In a first step, groundwater hydrographs from a large dataset in Southern Germany are compared in an effort to identify structural similarity in groundwater dynamics. A number of approaches to group hydrographs, mostly based on a similarity measure - which have previously only been used in local-scale studies, can be found in the literature. These are tested alongside different global feature extraction techniques. The resulting classifications are then compared to a visual "expert assessment"-based classification which serves as a reference. A ranking of the classification methods is carried out and differences shown. Selected groups from the classifications are related to geological descriptors. Here we present the most promising results from a comparison of classifications based on series correlation, different series distances and series features, such as the coefficients of the discrete Fourier transform and the intrinsic mode functions of empirical mode decomposition. Additionally, we show examples of classes

  11. Hydrogeological investigation of Melendiz basin (Aksaray)

    International Nuclear Information System (INIS)

    Dogdu, M.S.

    1995-01-01

    Within the scope of this M.Sc, study entitled Hydrogeologic Investigation of Melendiz basin, the geological, hydrological, hydrogeological and hydrochemical features of a 600 km2 area have been studied and, 1/100.000 scale geological and hydrogeological maps have been prepared. Tetriary-Guaternary aged young volkanic rocks occupy nearly 80% (480 km2 ) of the area. The major aquifers are alluvium and andesite and basalt which are extensively fractured and jointed. Aquitard units comprise of ignimbirite, some of the andesites-basalts and formations that composes of limestone-sandstone-marl intercalations. The youngest geologic unit of the area, Hasandag volcanic ash formation, and also the tuffs have been indentified as aquiclude units. Mean areal precipitation, potential and real evapotranspiration rates and mean annual streamflow have been calculated on the basis of available data and, a hydrologic budget of the basin has been established. Hydrogeologic units have been classified as aquifer, aquitard and aquiclude with respect to their geohydrologic properties, field observations and the results of the pumping tests. On the other hand, hydrodynamic mechanism of the groundwater flow reaching major cold and thermal water discharges have also been explained. A hydrogeologic budget for the area covering Ciftlik township and its vicinity where extensively joint and fractured andesite-basalt and alluvial aquifers outcrop has been established. Major water points as thermal and cold springs, wells and streams have been sampled for major ion analysis. Beyond this, some water points have also been sampled for organic, trace,metal ald environmental isotropic analyses. Environmental isotope data of thermal springs point out a long-deep groundwater flow path

  12. Models and structures: mathematical physics

    International Nuclear Information System (INIS)

    2003-01-01

    This document gathers research activities along 5 main directions. 1) Quantum chaos and dynamical systems. Recent results concern the extension of the exact WKB method that has led to a host of new results on the spectrum and wave functions. Progress have also been made in the description of the wave functions of chaotic quantum systems. Renormalization has been applied to the analysis of dynamical systems. 2) Combinatorial statistical physics. We see the emergence of new techniques applied to various such combinatorial problems, from random walks to random lattices. 3) Integrability: from structures to applications. Techniques of conformal field theory and integrable model systems have been developed. Progress is still made in particular for open systems with boundary conditions, in connection to strings and branes physics. Noticeable links between integrability and exact WKB quantization to 2-dimensional disordered systems have been highlighted. New correlations of eigenvalues and better connections to integrability have been formulated for random matrices. 4) Gravities and string theories. We have developed aspects of 2-dimensional string theory with a particular emphasis on its connection to matrix models as well as non-perturbative properties of M-theory. We have also followed an alternative path known as loop quantum gravity. 5) Quantum field theory. The results obtained lately concern its foundations, in flat or curved spaces, but also applications to second-order phase transitions in statistical systems

  13. Predictability of solute transport in diffusion-controlled hydrogeologic regimes

    International Nuclear Information System (INIS)

    Gillham, R.W.; Cherry, J.A.

    1983-01-01

    Hydrogeologic regimes that are favourable for the subsurface management of low-level radioactive wastes must have transport properties that will limit the migration velocity of contaminants to some acceptably low value. Of equal importance, for the purpose of impact assessment and licensing, is the need to be able to predict, with a reasonable degree of certainty and over long time periods, what the migration velocity of the various contaminants of interest will be. This paper presents arguments to show that in addition to having favourable velocity characteristics, transport in saturated, diffusion-controlled hydrogeologic regimes is considerably more predictable than in the most common alternatives. The classical transport models for unsaturated, saturated-advection-controlled and saturated-diffusion-controlled environments are compared, with particular consideration being given to the difficulties associated with the characterization of the respective transport parameters. Results are presented which show that the diffusion of non-reactive solutes and solutes that react according to a constant partitioning ratio (K/sub d/) are highly predictable under laboratory conditions and that the diffusion coefficients for the reactive solutes can be determined with a reasonable degree of accuracy from independent measurements of bulk density, porosity, distribution coefficient and tortuosity. Field evidence is presented which shows that the distribution of environmental isotopes and chloride in thick clayey deposits is consistent with a diffusion-type transport process in these media. These results are particularly important in that they not only demonstrate the occurrence of diffusion-controlled hydrogeologic regimes, but they also demonstrate the predictability of the migration characteristics over very long time periods

  14. Hybrid modelling of soil-structure interaction for embedded structures

    International Nuclear Information System (INIS)

    Gupta, S.; Penzien, J.

    1981-01-01

    The basic methods currently being used for the analysis of soil-structure interaction fail to properly model three-dimensional embedded structures with flexible foundations. A hybrid model for the analysis of soil-structure interaction is developed in this investigation which takes advantage of the desirable features of both the finite element and substructure methods and which minimizes their undesirable features. The hybrid model is obtained by partitioning the total soil-structure system into a nearfield and a far-field with a smooth hemispherical interface. The near-field consists of the structure and a finite region of soil immediately surrounding its base. The entire near-field may be modelled in three-dimensional form using the finite element method; thus, taking advantage of its ability to model irregular geometries, and the non-linear soil behavior in the immediate vicinity of the structure. (orig./WL)

  15. Preliminary stratigraphic and hydrogeologic cross sections and seismic profile of the Floridan aquifer system of Broward County, Florida

    Science.gov (United States)

    Reese, Ronald S.; Cunningham, Kevin J.

    2013-01-01

    To help water-resource managers evaluate the Floridan aquifer system (FAS) as an alternative water supply, the U.S. Geological Survey initiated a study, in cooperation with the Broward County Environmental Protection and Growth Management Department, to refine the hydrogeologic framework of the FAS in the eastern part of Broward County. This report presents three preliminary cross sections illustrating stratigraphy and hydrogeology in eastern Broward County as well as an interpreted seismic profile along one of the cross sections. Marker horizons were identified using borehole geophysical data and were initially used to perform well-to-well correlation. Core sample data were integrated with the borehole geophysical data to support stratigraphic and hydrogeologic interpretations of marker horizons. Stratigraphic and hydrogeologic units were correlated across the county using borehole geophysical data from multiple wells. Seismic-reflection data were collected along the Hillsboro Canal. Borehole geophysical data were used to identify and correlate hydrogeologic units in the seismic-reflection profile. Faults and collapse structures that intersect hydrogeologic units were also identified in the seismic profile. The information provided in the cross sections and the seismic profile is preliminary and subject to revision.

  16. Study on the methodology of hydrogeological character in preselected site for high-level waste repository in Beishan area, Gansu province

    International Nuclear Information System (INIS)

    Guo Yonghai; Liu Shufen; Su Rui; Yang Tianxiao

    2003-01-01

    The results of regional hydrogeological investigations conducted during 1996-2000 were summarized. The study was started with the surface hydrogeological, hydrogeochemical, and groundwater isotopic and humic acid investigations. The key-points are focused on the characteristics of water-bearing formation, hydrogeochemistry, groundwater isotopes as well as humic acid. On the bases of a large quantity of hydrogeological data, the hydrogeological conditions of each groundwater unit, groundwater circulation characteristics, groundwater hydrodynamics and hydrgeochemistry are described. In addition, the modeling about groundwater flow state, groundwater chemical balance, interaction among water-rock-nuclear waste is carried out, then the suitability of the Beishan site for the high-level radioactive waste disposal is evaluated. The report comprehensively and deeply shows the hydrogeological characteristics of weak water bearing, low permeability and slow moving as well as the hydrogeochemical features of mild alkalinity and high mineralization in Beishan area. The results will provide an important basis for the evaluation of the site. (authors)

  17. Hydrogeological and groundwater modeling studies to estimate the groundwater inflows into the coal Mines at different mine development stages using MODFLOW, Andhra Pradesh, India

    Directory of Open Access Journals (Sweden)

    L. Surinaidu

    2014-09-01

    Full Text Available The Singareni Collieries Company Ltd (SCCL is exploiting coal in the Godavari valley coal fields spread over 5.33 km2 in Andhra Pradesh, India. In the area, six workable coal seams have been identified in Barakar formation by the analysis of the geologic logs of 183 bore wells. A finite difference based numerical groundwater flow model is developed with twenty conceptual layers and with a total thickness of 320 m. The flow model was calibrated under steady state conditions and predicted groundwater inflows into the mine pits at different mine development stages. The groundwater budget results revealed that the mining area would receive net groundwater inflows of 5877 m3 day−1, 12,818 m3 day−1, 12,910 m3 day−1, 20,428 m3 day−1, 22,617 m3 day−1 and 14,504 m3 day−1 at six mine development stages of +124 m (amsl, +93 m (amsl, +64 m (amsl, +41 m (amsl, +0 m (amsl and −41 m (amsl, respectively. The results of the study can be used to plan optimal groundwater pumping and the possible locations to dewater the groundwater for safe mining at different mine development stages.

  18. Hydrogeologic Investigation, Water Chemistry Analysis, and Model Delineation of contributing Areas for City of Tallahassee Public-Supply Wells, Tallahassee, Florida

    Science.gov (United States)

    Davis, J. Hal; Katz, Brian G.

    2007-01-01

    Ground water from the Upper Floridan aquifer is the sole source of water supply for Tallahassee, Florida, and the surrounding area. The City of Tallahassee (the City) currently operates 28 water-supply wells; 26 wells are distributed throughout the City and 2 are located in Woodville, Florida. Most of these wells yield an ample supply of potable water; however, water from several wells has low levels of tetrachloroethylene (PCE). The City removes the PCE from the water by passing it through granular-activated carbon units before distribution. To ensure that water-supply wells presently free of contamination remain clean, it is necessary to understand the ground-water flow system in sufficient detail to protect the contributing areas. Ground-water samples collected from four public-supply wells were analyzed for tritium (3H), chlorofluorocarbons (CFCs), and sulfur hexafluoride (SF6). Using data for the CFC compounds, apparent ground-water ages ranged from 7 to 31 years. For SF6, the apparent ages tended to be about 5 to 10 years younger than those from CFCs. Apparent ages based on the tritium/tritiogenic helium-3 (3H/3Hetrit) method ranged from 26 to 33 years. The three dating methods indicate that the apparent age of ground water generally decreases from northern to southern Leon County. This southward trend of decreasing ages is consistent with increasing amounts of recharge that occur as ground water moves from north to south. The ground-water age data derived by geochemical and tracer analyses were used in combination with the flow model and particle tracking to determine an effective porosity for the Hawthorn clays and Upper Floridan aquifer. The effective porosities for the Upper Floridan aquifer that resulted in best model matches were averaged to produce an effective porosity of 7 percent, and the effective porosities for the Hawthorn clays that resulted in a match were averaged to produce an effective porosity of 22 percent. Probabilistic contributing areas

  19. Parametric structural modeling of insect wings

    International Nuclear Information System (INIS)

    Mengesha, T E; Vallance, R R; Barraja, M; Mittal, R

    2009-01-01

    Insects produce thrust and lift forces via coupled fluid-structure interactions that bend and twist their compliant wings during flapping cycles. Insight into this fluid-structure interaction is achieved with numerical modeling techniques such as coupled finite element analysis and computational fluid dynamics, but these methods require accurate and validated structural models of insect wings. Structural models of insect wings depend principally on the shape, dimensions and material properties of the veins and membrane cells. This paper describes a method for parametric modeling of wing geometry using digital images and demonstrates the use of the geometric models in constructing three-dimensional finite element (FE) models and simple reduced-order models. The FE models are more complete and accurate than previously reported models since they accurately represent the topology of the vein network, as well as the shape and dimensions of the veins and membrane cells. The methods are demonstrated by developing a parametric structural model of a cicada forewing.

  20. Structure functions from chiral soliton models

    International Nuclear Information System (INIS)

    Weigel, H.; Reinhardt, H.; Gamberg, L.

    1997-01-01

    We study nucleon structure functions within the bosonized Nambu-Jona-Lasinio (NJL) model where the nucleon emerges as a chiral soliton. We discuss the model predictions on the Gottfried sum rule for electron-nucleon scattering. A comparison with a low-scale parametrization shows that the model reproduces the gross features of the empirical structure functions. We also compute the leading twist contributions of the polarized structure functions g 1 and g 2 in this model. We compare the model predictions on these structure functions with data from the E143 experiment by GLAP evolving them from the scale characteristic for the NJL-model to the scale of the data

  1. Hydrogeology and water quality of the Leetown area, West Virginia

    Science.gov (United States)

    Kozar, Mark D.; McCoy, Kurt J.; Weary, David J.; Field, Malcolm S.; Pierce, Herbert A.; Schill, William Bane; Young, John A.

    2008-01-01

    The U.S. Geological Survey’s Leetown Science Center and the co-located U.S. Department of Agriculture’s National Center for Cool and Cold Water Aquaculture both depend on large volumes of cold clean ground water to support research operations at their facilities. Currently, ground-water demands are provided by three springs and two standby production wells used to augment supplies during periods of low spring flow. Future expansion of research operations at the Leetown Science Center is dependent on assessing the availability and quality of water to the facilities and in locating prospective sites for additional wells to augment existing water supplies. The hydrogeology of the Leetown area, West Virginia, is a structurally complex karst aquifer. Although the aquifer is a karst system, it is not typical of most highly cavernous karst systems, but is dominated by broad areas of fractured rock drained by a relatively small number of solution conduits. Characterization of the aquifer by use of fluorometric tracer tests, a common approach in most karst terranes, therefore only partly defines the hydrogeologic setting of the area. In order to fully assess the hydrogeology and water quality in the vicinity of Leetown, a multi-disciplinary approach that included both fractured rock and karst research components was needed. The U.S. Geological Survey developed this multi-disciplinary research effort to include geologic, hydrologic, geophysical, geographic, water-quality, and microbiological investigations in order to fully characterize the hydrogeology and water quality of the Leetown area, West Virginia. Detailed geologic and karst mapping provided the framework on which hydrologic investigations were based. Fracture trace and lineament analysis helped locate potential water-bearing fractures and guided installation of monitoring wells. Monitoring wells were drilled for borehole geophysical surveys, water-quality sampling, water-level measurements, and aquifer tests to

  2. Software for hydrogeologic time series analysis, interfacing data with physical insight

    NARCIS (Netherlands)

    Asmuth, Jos R. von; Maas, K.; Knotters, M.; Bierkens, M.F.P.; Bakker, M.; Olsthoorn, T.; Cirkel, D.; Leunk, I.; Schaars, F.; Asmuth, Daniel C. von

    2012-01-01

    The program Menyanthes combines a variety of functions for managing, editing, visualizing, analyzing and modeling hydrogeologic time series. Menyanthes was initially developed within the scope of the PhD research of the first author, whose primary aimwas the integration of data and

  3. Multi-objective optimization for conjunctive water use using coupled hydrogeological and agronomic models: a case study in Heihe mid-reach (China)

    Science.gov (United States)

    LI, Y.; Kinzelbach, W.; Pedrazzini, G.

    2017-12-01

    Groundwater is a vital water resource to buffer unexpected drought risk in agricultural production, which is however apt to unsustainable exploitation due to its open access characteristic and a much underestimated marginal cost. Being a wicked problem of general water resource management, groundwater staying hidden from surface terrain further amplifies difficulties of management. China has been facing this challenge in last decades, particularly in the northern part where irrigated agriculture resides despite of scarce surface water available compared to the south. Farmers therefore have been increasingly exploiting groundwater as an alternative in order to reach Chinese food self-sufficiency requirements and feed fast socio-economic development. In this work, we studied Heihe mid-reach located in northern China, which represents one of a few regions suffering from symptoms of unsustainable groundwater use, such as a large drawdown of the groundwater table in some irrigation districts, or soil salinization due to phreatic evaporation in others. In addition, we focus on solving a multi-objective optimization problem of conjunctive water use in order to find an alternative management scheme that fits decision makers' preference. The methodology starts with a global sensitivity analysis to determine the most influential decision variables. Then a state-of-the-art multi-objective evolutionary algorithm (MOEA) is employed to search a hyper-dimensional Pareto Front. The aquifer system is simulated with a distributed Modflow model, which is able to capture the main phenomenon of interest. Results show that the current water allocation scheme seems to exploit the water resources in an inefficient way, where areas with depression cones and areas with salinization or groundwater table rise can both be mitigated with an alternative management scheme. When assuming uncertain boundary conditions according to future climate change, the optimal solutions can yield better

  4. Hydrogeology, waste disposal, science and politics: Proceedings

    International Nuclear Information System (INIS)

    Link, P.K.

    1994-01-01

    A total of 48 papers were presented at the Engineering Geology and Geotechnical Engineering 30th Symposium. These papers are presented in this proceedings under the following headings: site characterization--Pocatello area; site characterization--Boise Area; site assessment; Idaho National Engineering Laboratory; geophysical methods; remediation; geotechnical engineering; and hydrogeology, northern and western Idaho. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database

  5. HYDROGEOLOGICAL AND HYDROCHEMICAL FEATURES OF KALNIK MASSIF

    Directory of Open Access Journals (Sweden)

    Vinko Mraz

    2008-12-01

    Full Text Available Kalničko gorje consists of Cretaceous – Holocene sediments, which can be in hydrogeological sense classified in three hydrogeological units: (1 northern area from central massive of Kalnik, consists of Cretaceous and low Miocene impermeable and low permeable sediments which are hydrogeological barrier and low permeable Cretaceous eruptive sediments ; (2 Kalnik massive consists of Paleogen and Baden permeable carbonate – clastic sediments, which are aquifer; (3 southern Kalnik area consists of Neogene low permeable sediments and Quaternary medium permeable unconsolidated deposits. In the hydrogelogical units are several aquifers types: (i Paleogen carbonate aquifer consists of limestone – dolomite breccia and this is the most important aquifer in the Kalnik area; (ii Baden carbonate aquifer consists of lithothamnium, lithothamnium limestone, sandstone and breccia-conglomerate and it has high permeability, especially through the karst morphological features; (iii Quaternary alluvial aquifers – the most important is in the valley of the Kamešnica river and it’s permeability varies from poor to good depending on granulometric properties; (iv Cretaceous eruptive aquifer from which in the Apatovac area is abstraction of mineral water. The aquifers of the Kalnik area are very vulnerable considering the hydrogeological properties of the area. Nevertheless, physical, physicalchemical, and chemical properties of groundwater in the Kalnik area are showing that waters are of very good quality. The reasons of good quality of waters are that the area is poorly populated and there is no potential pollutant. The area is very valuable and important natural resource for water supply of whole region. In the future it is necessary to provide good protection and sustainable water management to obtain today’s good quality and quantity of groundwater (the paper is published in Croatian.

  6. A compilation of subsurface hydrogeologic data

    International Nuclear Information System (INIS)

    1986-03-01

    This report presents a compilation of both fracture properties and hydrogeological parameters relevant to the flow of groundwater in fractured rock systems. Methods of data acquisition as well as the scale of and conditions during the measurement are recorded. Measurements and analytical techniques for each of the parameters under consideration have been reviewed with respect to their methodology, assumptions and accuracy. Both the rock type and geologic setting associated with these measurements have also been recorded. 373 refs

  7. Hydrogeology, waste disposal, science and politics: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Link, P.K. [ed.

    1994-07-01

    A total of 48 papers were presented at the Engineering Geology and Geotechnical Engineering 30th Symposium. These papers are presented in this proceedings under the following headings: site characterization--Pocatello area; site characterization--Boise Area; site assessment; Idaho National Engineering Laboratory; geophysical methods; remediation; geotechnical engineering; and hydrogeology, northern and western Idaho. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  8. Integrative structure modeling with the Integrative Modeling Platform.

    Science.gov (United States)

    Webb, Benjamin; Viswanath, Shruthi; Bonomi, Massimiliano; Pellarin, Riccardo; Greenberg, Charles H; Saltzberg, Daniel; Sali, Andrej

    2018-01-01

    Building models of a biological system that are consistent with the myriad data available is one of the key challenges in biology. Modeling the structure and dynamics of macromolecular assemblies, for example, can give insights into how biological systems work, evolved, might be controlled, and even designed. Integrative structure modeling casts the building of structural models as a computational optimization problem, for which information about the assembly is encoded into a scoring function that evaluates candidate models. Here, we describe our open source software suite for integrative structure modeling, Integrative Modeling Platform (https://integrativemodeling.org), and demonstrate its use. © 2017 The Protein Society.

  9. Hydrogeology of the Judith River Formation in southwestern Saskatchewan, Canada

    Science.gov (United States)

    Ferris, David; Lypka, Morgan; Ferguson, Grant

    2017-11-01

    The Judith River Formation forms an important regional aquifer in southwestern Saskatchewan, Canada. This aquifer is used for domestic and agricultural purposes in some areas and supports oil and gas production in other areas. As a result, the available data come from a range of sources and integration is required to provide an overview of aquifer characteristics. Here, data from oil and gas databases are combined with data from groundwater resource assessments. Analysis of cores, drill-stem tests and pumping tests provide a good overview of the physical hydrogeology of the Judith River Aquifer. Water chemistry data from oil and gas databases were less helpful in understanding the chemical hydrogeology due contamination of samples and unreliable laboratory analyses. Analytical modeling of past pumping in the aquifer indicates that decreases in hydraulic head exceeding 2 m are possible over distances of 10s of kilometers. Similar decreases in head should be expected for additional large withdrawals of groundwater from the Judith River Aquifer. Long-term groundwater abstraction should be limited by low pumping rates. Higher pumping rates appear to be possible for short-term uses, such as those required by the oil and gas industry.

  10. Stochastic hydrogeology: what professionals really need?

    Science.gov (United States)

    Renard, Philippe

    2007-01-01

    Quantitative hydrogeology celebrated its 150th anniversary in 2006. Geostatistics is younger but has had a very large impact in hydrogeology. Today, geostatistics is used routinely to interpolate deterministically most of the parameters that are required to analyze a problem or make a quantitative analysis. In a small number of cases, geostatistics is combined with deterministic approaches to forecast uncertainty. At a more academic level, geostatistics is used extensively to study physical processes in heterogeneous aquifers. Yet, there is an important gap between the academic use and the routine applications of geostatistics. The reasons for this gap are diverse. These include aspects related to the hydrogeology consulting market, technical reasons such as the lack of widely available software, but also a number of misconceptions. A change in this situation requires acting at different levels. First, regulators must be convinced of the benefit of using geostatistics. Second, the economic potential of the approach must be emphasized to customers. Third, the relevance of the theories needs to be increased. Last, but not least, software, data sets, and computing infrastructure such as grid computing need to be widely available.

  11. Relating structure and dynamics in organisation models

    NARCIS (Netherlands)

    Jonkers, C.M.; Treur, J.

    2002-01-01

    To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems,

  12. Materials of conference: Hydrogeological Problems of South-West Poland

    International Nuclear Information System (INIS)

    1996-01-01

    Hydrogeological problems of South-west Poland is the collection of conference papers held in Szklarska Poreba on 20-22 June 1996. The materials have been gathered in three topical groups: water quality problems in hydrological cycle, regional hydrogeology of South-west Poland, theoretical problems and research methods in hydrogeology. More of performed articles have a interdisciplinary character taking into account the precipitation and surface water quality and their influence on ground water features

  13. Modeling and identification in structural dynamics

    OpenAIRE

    Jayakumar, Paramsothy

    1987-01-01

    Analytical modeling of structures subjected to ground motions is an important aspect of fully dynamic earthquake-resistant design. In general, linear models are only sufficient to represent structural responses resulting from earthquake motions of small amplitudes. However, the response of structures during strong ground motions is highly nonlinear and hysteretic. System identification is an effective tool for developing analytical models from experimental data. Testing of full-scale prot...

  14. Hydrogeologic study of Cafam area. Melgar (Tolima); Estudio hidrogeologico del area Cafam - Melgar (Tolima)

    Energy Technology Data Exchange (ETDEWEB)

    Angel M, Carlos E; Perez C, Rosalbina

    1989-06-01

    The hydrogeologic study covers an area of 50 km{sup 2} with the objectives of to determine the possibility of use of the underground waters and to locate places to carry out exploratory perforations in lands of Cafam, equally the elaboration of a hydrogeologic map of the region; for the effect it was carried out cartography geologic scale 1:10.000, inventory and sampling of water point, geoelectric prospecting and some permeability tests. In the area the exploitation of underground water is incipient, alone there are 20 points of water, of which none produce more than 1L/seg. The water has in general good physical chemistry quality for the human consumption. Geologically was recognized the groups Guadalupe and Gualanday, also some quaternary deposits; the previous ones were subdivided in 11 geological units for its composition and morphology, which are framed structurally in the E flank of the synclinal of Carmen de Apicala and displaced by traverse faults with address E-W and N-W. From the point of hydrogeologic view the units were grouped in 8 aquifer systems, of which four are considered of hydrogeologic importance for the area; the sector with better possibilities to capture these aquifer systems is the W of the area (in the terraces area) that extends to the Sumapaz River. For the Cafam sector a place was selected to build an exploratory well of 200 mts. of depth that would capture an aquifer of low transmissivity, corresponding to the Unit T3.

  15. Hydrogeological characteristics and hydraulic discharge forecast of Uranium Deposit No.320

    International Nuclear Information System (INIS)

    Hao Fulin.

    1987-01-01

    The water and heat sources of Uranium Deposit No.320 have been discussed according to the water-controlling specific features of the regional strata and geological structures(including water transmitting and bearing structures), which provide evidence for the forecasting of hydraulic discharge. On the basis of the hydrogeological study of the deposit, the author draws up a plan for combining the mine drainage with the urban water supply and making comprehensively use of the thermal water resource

  16. Modeling, Analysis, and Optimization Issues for Large Space Structures

    Science.gov (United States)

    Pinson, L. D. (Compiler); Amos, A. K. (Compiler); Venkayya, V. B. (Compiler)

    1983-01-01

    Topics concerning the modeling, analysis, and optimization of large space structures are discussed including structure-control interaction, structural and structural dynamics modeling, thermal analysis, testing, and design.

  17. Antibody structural modeling with prediction of immunoglobulin structure (PIGS)

    KAUST Repository

    Marcatili, Paolo; Olimpieri, Pier Paolo; Chailyan, Anna; Tramontano, Anna

    2014-01-01

    of antibodies with a very satisfactory accuracy. The strategy is completely automated and extremely fast, requiring only a few minutes (~10 min on average) to build a structural model of an antibody. It is based on the concept of canonical structures of antibody

  18. Mathematical Modeling: A Structured Process

    Science.gov (United States)

    Anhalt, Cynthia Oropesa; Cortez, Ricardo

    2015-01-01

    Mathematical modeling, in which students use mathematics to explain or interpret physical, social, or scientific phenomena, is an essential component of the high school curriculum. The Common Core State Standards for Mathematics (CCSSM) classify modeling as a K-12 standard for mathematical practice and as a conceptual category for high school…

  19. Hydrogeology of the Mogollon Highlands, central Arizona

    Science.gov (United States)

    Parker, John T.C.; Steinkampf, William C.; Flynn, Marilyn E.

    2005-01-01

    The Mogollon Highlands, 4,855 square miles of rugged, mountainous terrain at the southern edge of the Colorado Plateau in central Arizona, is characterized by a bedrock-dominated hydrologic system that results in an incompletely integrated regional ground-water system, flashy streamflow, and various local water-bearing zones that are sensitive to drought. Increased demand on the water resources of the area as a result of recreational activities and population growth have made necessary an increased understanding of the hydrogeology of the region. The U.S. Geological Survey conducted a study of the geology and hydrology of the region in cooperation with the Arizona Department of Water Resources under the auspices of the Arizona Rural Watershed Initiative, a program launched in 1998 to assist rural areas in dealing with water-resources issues. The study involved the analysis of geologic maps, surface-water and ground-water flow, and water and rock chemical data and spatial relationships to characterize the hydrogeologic framework. The study area includes the southwestern corner of the Colorado Plateau and the Mogollon Rim, which is the eroded edge of the plateau. A 3,000- to 4,000-foot sequence of early to late Paleozoic sedimentary rocks forms the generally south-facing scarp of the Mogollon Rim. The area adjacent to the edge of the Mogollon Rim is an erosional landscape of rolling, step-like terrain exposing Proterozoic metamorphic and granitic rocks. Farther south, the Sierra Ancha and Mazatzal Mountain ranges, which are composed of various Proterozoic rocks, flank an alluvial basin filled with late Cenozoic sediments and volcanic flows. Eight streams with perennial to intermittent to ephemeral flow drain upland regions of the Mogollon Rim and flow into the Salt River on the southern boundary or the Verde River on the western boundary. Ground-water flow paths generally are controlled by large-scale fracture systems or by karst features in carbonate rocks. Stream

  20. Hydrogeology of the Besparmak (Pentadactilos) Mountains (TRNC) Karstic Aquifer

    International Nuclear Information System (INIS)

    Erduran, B.; Goekmenoglu, O.; Keskin, E.

    2002-01-01

    The Besparmak Mountains are located on the Nothern part of North Cyprus and lay paralel to the sea, 160 km 2 in length 10 km in width. Karstification, potential constituent and the hydro-dynamic structure of the Mesosoic aged carbonate rocks, located at high altitudes of the Besparmak Mountains have been investigated in this study. The Mesosoic aged carbonate rocks; dolomite, dolomitic limestones and recrytallized limestones are yhe units suitable for karstification in the exploration area. Surface area of the carbonate rocks is 84 km 2 . Chemical and isotopic samples have been collected, groundwater fluctuations have been observed and investigation wells have been openned for the definition of the karst aquifer. As the result of the geological, hydrogeological, drilling and geophysical investigations it was found that the Besparmak Mountains Karst Aquifer was formed of independent karstic systems and a total dynamic groundwater potential of aproximately 9 x 10 6 m 3 /year for these systems has been determined

  1. Relativistic models of nuclear structure

    International Nuclear Information System (INIS)

    Gillet, V.; Kim, E.J.; Cauvin, M.; Kohmura, T.; Ohnaka, S.

    1991-01-01

    The introduction of the relativistic field formalism for the description of nuclear structure has improved our understanding of fundamental nuclear mechanisms such as saturation or many body forces. We discuss some of these progresses, both in the semi-classical mean field approximation and in a quantized meson field approach. (author)

  2. Probabilistic models for structured sparsity

    DEFF Research Database (Denmark)

    Andersen, Michael Riis

    sparse solutions to linear inverse problems. In this part, the sparsity promoting prior known as the spike-and-slab prior (Mitchell and Beauchamp, 1988) is generalized to the structured sparsity setting. An expectation propagation algorithm is derived for approximate posterior inference. The proposed...

  3. Modelling the harmonized tertiary Institutions Salary Structure ...

    African Journals Online (AJOL)

    This paper analyses the Harmonized Tertiary Institution Salary Structure (HATISS IV) used in Nigeria. The irregularities in the structure are highlighted. A model that assumes a polynomial trend for the zero step salary, and exponential trend for the incremental rates, is suggested for the regularization of the structure.

  4. Structural Equation Modeling of Multivariate Time Series

    Science.gov (United States)

    du Toit, Stephen H. C.; Browne, Michael W.

    2007-01-01

    The covariance structure of a vector autoregressive process with moving average residuals (VARMA) is derived. It differs from other available expressions for the covariance function of a stationary VARMA process and is compatible with current structural equation methodology. Structural equation modeling programs, such as LISREL, may therefore be…

  5. Inventory and review of existing PRISM hydrogeologic data for the Islamic Republic of Mauritania, Africa

    Science.gov (United States)

    Friedel, Michael J.

    2008-01-01

    The USGS entered into an agreement with the Mauritania Ministry of Mines and Industry to inventory and review the quality of information collected as part of the Project for Strengthening of the Institutions in the Mining Sector (PRISM). Whereas the PRISM program collected geophysical, geochemical, geological, satellite, and hydrogeologic information, this report focuses on an inventory and review of available hydrogeologic data provided to the USGS in multiple folders, files, and formats. Most of the information pertained to the hydrogeologic setting and the water budget of evaporation, evapotranspiration, and precipitation in the Choum-Zouerate area in northwestern Mauritania, and the country of Mauritania itself. Other information about the quantity and quality of groundwater was found in the relational Access database. In its present form, the limited hydrogeologic information was not amenable to conducting water balance, geostatistical, and localized numerical modeling studies in support of mineral exploration and development. Suggestions are provided to remedy many of the data's shortcomings, such as performing quality assurance on all SIPPE2 data tables and sending questionnaires to appropriate agencies, mining and other companies to populate the database with additional meteorology, hydrology, and groundwater data.

  6. Hydrogeological controls of variable microbial water quality in a complex subtropical karst system in Northern Vietnam

    Science.gov (United States)

    Ender, Anna; Goeppert, Nadine; Goldscheider, Nico

    2018-05-01

    Karst aquifers are particularly vulnerable to bacterial contamination. Especially in developing countries, poor microbial water quality poses a threat to human health. In order to develop effective groundwater protection strategies, a profound understanding of the hydrogeological setting is crucial. The goal of this study was to elucidate the relationships between high spatio-temporal variability in microbial contamination and the hydrogeological conditions. Based on extensive field studies, including mapping, tracer tests and hydrochemical analyses, a conceptual hydrogeological model was developed for a remote and geologically complex karst area in Northern Vietnam called Dong Van. Four different physicochemical water types were identified; the most important ones correspond to the karstified Bac Son and the fractured Na Quan aquifer. Alongside comprehensive investigation of the local hydrogeology, water quality was evaluated by analysis for three types of fecal indicator bacteria (FIB): Escherichia coli, enterococci and thermotolerant coliforms. The major findings are: (1) Springs from the Bac Son formation displayed the highest microbial contamination, while (2) springs that are involved in a polje series with connections to sinking streams were distinctly more contaminated than springs with a catchment area characterized by a more diffuse infiltration. (3) FIB concentrations are dependent on the season, with higher values under wet season conditions. Furthermore, (4) the type of spring capture also affects the water quality. Nevertheless, all studied springs were faecally impacted, along with several shallow wells within the confined karst aquifer. Based on these findings, effective protection strategies can be developed to improve groundwater quality.

  7. Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina

    Science.gov (United States)

    Williams, Lester J.; Dixon, Joann F.

    2015-01-01

    Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part of the U.S. Geological Survey Groundwater Resources Program. The dataset contains structural surfaces depicting the top and base of the aquifer system, its major and minor hydrogeologic units and zones, geophysical marker horizons, and the altitude of the 10,000-milligram-per-liter total dissolved solids boundary that defines the approximate fresh and saline parts of the aquifer system. The thicknesses of selected major and minor units or zones were determined by interpolating points of known thickness or from raster surface subtraction of the structural surfaces. Additional data contained include clipping polygons; regional polygon features that represent geologic or hydrogeologic aspects of the aquifers and the minor units or zones; data points used in the interpolation; and polygon and line features that represent faults, boundaries, and other features in the aquifer system.

  8. Structural modeling techniques by finite element method

    International Nuclear Information System (INIS)

    Kang, Yeong Jin; Kim, Geung Hwan; Ju, Gwan Jeong

    1991-01-01

    This book includes introduction table of contents chapter 1 finite element idealization introduction summary of the finite element method equilibrium and compatibility in the finite element solution degrees of freedom symmetry and anti symmetry modeling guidelines local analysis example references chapter 2 static analysis structural geometry finite element models analysis procedure modeling guidelines references chapter 3 dynamic analysis models for dynamic analysis dynamic analysis procedures modeling guidelines and modeling guidelines.

  9. Residual Structures in Latent Growth Curve Modeling

    Science.gov (United States)

    Grimm, Kevin J.; Widaman, Keith F.

    2010-01-01

    Several alternatives are available for specifying the residual structure in latent growth curve modeling. Two specifications involve uncorrelated residuals and represent the most commonly used residual structures. The first, building on repeated measures analysis of variance and common specifications in multilevel models, forces residual variances…

  10. A Teaching Model for Truss Structures

    Science.gov (United States)

    Bigoni, Davide; Dal Corso, Francesco; Misseroni, Diego; Tommasini, Mirko

    2012-01-01

    A classroom demonstration model has been designed, machined and successfully tested in different learning environments to facilitate understanding of the mechanics of truss structures, in which struts are subject to purely axial load and deformation. Gaining confidence with these structures is crucial for the development of lattice models, which…

  11. Exploring RNA structure by integrative molecular modelling

    DEFF Research Database (Denmark)

    Masquida, Benoît; Beckert, Bertrand; Jossinet, Fabrice

    2010-01-01

    RNA molecular modelling is adequate to rapidly tackle the structure of RNA molecules. With new structured RNAs constituting a central class of cellular regulators discovered every year, the need for swift and reliable modelling methods is more crucial than ever. The pragmatic method based...... on interactive all-atom molecular modelling relies on the observation that specific structural motifs are recurrently found in RNA sequences. Once identified by a combination of comparative sequence analysis and biochemical data, the motifs composing the secondary structure of a given RNA can be extruded...

  12. Study on geology and geological structure based on literature studies

    International Nuclear Information System (INIS)

    Funaki, Hironori; Ishii, Eiichi; Yasue, Ken-ichi; Takahashi, Kazuharu

    2005-03-01

    Japan Nuclear Cycle Development Institute (JNC) is proceeding with underground research laboratory (URL) project for the sedimentary rock in Horonobe, Hokkaido. This project is an investigation project which is planned over 20 years. Surface-based investigations (Phase 1) have been conducted for the present. The purposes of the Phase 1 are to construct the geological environment model (geological-structural, hydrogeological, and hydrochemical models) and to confirm the applicability of investigation technologies for the geological environment. The geological-structural model comprises the base for the hydrogeological and hydrochemical models. We constructed the geological-structural model by mainly using data obtained from literature studies. Particulars regarding which data the model is based on and who has performed the interpretation are also saved for traceability. As a result, we explain the understanding of degree and the need of information on stratigraphy and discontinuous structure. (author)

  13. Hydrogeological characterization on surface-based investigation phase in the Mizunami underground research laboratory project, in Japan

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Onoe, Hironori; Takeuchi, Shinji; Takeuchi, Ryuji; Ohyama, Takuya

    2007-01-01

    The Mizunami Underground Research Laboratory (MIU) project is being carried out by Japan Atomic Energy Agency in the Cretaceous Toki granite in the Tono area, central Japan. The MIU project is a purpose-built generic underground research laboratory project that is planned for a broad scientific study of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. One of the main goals of the MIU project is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment. The MIU project has three overlapping phases: Surface-based Investigation (Phase I), Construction (Phase II) and Operation (Phase III). Hydrogeological investigations using a stepwise process in Phase I have been carried out in order to obtain information on important properties such as, location of water conducting features, hydraulic conductivity and so on. Hydrogeological modeling and groundwater flow simulations in Phase I have been carried out in order to synthesize these investigation results, to evaluate the uncertainty of the hydrogeological model and to identify the main issues for further investigations. Using the stepwise hydrogeological characterization approach and combining the investigation with modeling and simulation, understanding of the hydrogeological environment has been progressively improved. (authors)

  14. Subsurface flow pathway dynamics in the active layer of coupled permafrost-hydrogeological systems under seasonal and annual temperature variability.

    Science.gov (United States)

    Frampton, Andrew

    2017-04-01

    There is a need for improved understanding of the mechanisms controlling subsurface solute transport in the active layer in order to better understand permafrost-hydrological-carbon feedbacks, in particular with regards to how dissolved carbon is transported in coupled surface and subsurface terrestrial arctic water systems under climate change. Studying solute transport in arctic systems is also relevant in the context of anthropogenic pollution which may increase due to increased activity in cold region environments. In this contribution subsurface solute transport subject to ground surface warming causing permafrost thaw and active layer change is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The timing of the start of increase in travel time depends on heterogeneity structure, combined with the rate of permafrost degradation that also depends on material thermal and hydrogeological properties. These travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport velocities due to a shift from horizontal saturated groundwater flow near the surface to vertical water percolation deeper into the subsurface, and pathway length increase and temporary immobilization caused by cryosuction-induced seasonal freeze cycles. The impact these change mechanisms have on solute and dissolved substance transport is further analysed by integrating pathway analysis with a Lagrangian approach, incorporating considerations for both dissolved organic and inorganic

  15. Comparison of the SKI, SKB, and SKN geological and structural models of the Aespoe area

    International Nuclear Information System (INIS)

    Tiren, S.A.

    1996-06-01

    Three sets of geological and structural models produced by three different groups are compared. The same set of basic data has been available to each of the groups. The models, all of which are 2 by 2 km by 1 km deep - or smaller, are based entirely on surface-based investigations. The modelled area is centered on the island of Aespoe, where SKB has built the Hard Rock Laboratory (HRL) in plutonic bedrock at a depth of 500 m. SKB (Swedish Nuclear Fuel and Waste Management Co) has recorded the basic data during the period 1986 to 1991, before starting the underground work. One of the main tasks in the SKB characterization of the HRL rock mass was to predict which of the geological structures will have the greatest rock-mechanical and hydraulic significance. The National Board for Spent Nuclear Fuel (SKN) constructed alternative models in 1992 to verify the SKB model. However, the SKN models were subsequently modified and converted into a hydrogeological model. The Swedish Nuclear Inspectorate (SKI) chose Aespoe as a hypothetical site for storage of nuclear waste in their SITE 94 project. The objective of the project is to assist SKI in their future review of SKB's application for a license to dispose of spent nuclear fuel underground. The agreement of the three models is found to be best where the density of information is greatest. The main difference between the two geological models is related to the inferred effects of block faulting on the rock type distribution. The correlation of moderately to gently inclined zones between the models is relatively poor at depth

  16. Comparison of the SKI, SKB, and SKN geological and structural models of the Aespoe area

    Energy Technology Data Exchange (ETDEWEB)

    Tiren, S.A. [Geosigma AB, Uppsala (Sweden)

    1996-06-01

    Three sets of geological and structural models produced by three different groups are compared. The same set of basic data has been available to each of the groups. The models, all of which are 2 by 2 km by 1 km deep - or smaller, are based entirely on surface-based investigations. The modelled area is centered on the island of Aespoe, where SKB has built the Hard Rock Laboratory (HRL) in plutonic bedrock at a depth of 500 m. SKB (Swedish Nuclear Fuel and Waste Management Co) has recorded the basic data during the period 1986 to 1991, before starting the underground work. One of the main tasks in the SKB characterization of the HRL rock mass was to predict which of the geological structures will have the greatest rock-mechanical and hydraulic significance. The National Board for Spent Nuclear Fuel (SKN) constructed alternative models in 1992 to verify the SKB model. However, the SKN models were subsequently modified and converted into a hydrogeological model. The Swedish Nuclear Inspectorate (SKI) chose Aespoe as a hypothetical site for storage of nuclear waste in their SITE 94 project. The objective of the project is to assist SKI in their future review of SKB`s application for a license to dispose of spent nuclear fuel underground. The agreement of the three models is found to be best where the density of information is greatest. The main difference between the two geological models is related to the inferred effects of block faulting on the rock type distribution. The correlation of moderately to gently inclined zones between the models is relatively poor at depth. 46 refs, 30 figs, 18 tabs.

  17. Structural equation modeling methods and applications

    CERN Document Server

    Wang, Jichuan

    2012-01-01

    A reference guide for applications of SEM using Mplus Structural Equation Modeling: Applications Using Mplus is intended as both a teaching resource and a reference guide. Written in non-mathematical terms, this book focuses on the conceptual and practical aspects of Structural Equation Modeling (SEM). Basic concepts and examples of various SEM models are demonstrated along with recently developed advanced methods, such as mixture modeling and model-based power analysis and sample size estimate for SEM. The statistical modeling program, Mplus, is also featured and provides researchers with a

  18. An evolving network model with community structure

    International Nuclear Information System (INIS)

    Li Chunguang; Maini, Philip K

    2005-01-01

    Many social and biological networks consist of communities-groups of nodes within which connections are dense, but between which connections are sparser. Recently, there has been considerable interest in designing algorithms for detecting community structures in real-world complex networks. In this paper, we propose an evolving network model which exhibits community structure. The network model is based on the inner-community preferential attachment and inter-community preferential attachment mechanisms. The degree distributions of this network model are analysed based on a mean-field method. Theoretical results and numerical simulations indicate that this network model has community structure and scale-free properties

  19. Storage of low-level radioactive wastes in the ground hydrogeologic and hydrochemical factors (with an appendix on the Maxey Flats, Kentucky, radioactive waste storage site: current knowledge and data needs for a quantitative hydrogeologic evaluation)

    International Nuclear Information System (INIS)

    Papadopulos, S.S.; Winograd, I.J.

    1974-01-01

    Hydrogeologic criteria presented by Cherry and others (1973) are adopted as a guideline to define the hydrogeologic and hydrochemical data needs for the evaluation of the suitability of proposed or existing low-level radioactive waste burial sites. Evaluation of the suitability of a site requires the prediction of flow patterns and of rates of nuclide transport in the regional hydrogeologic system. Such predictions can be made through mathematical simulation of flow and solute transport in porous media. The status of mathematical simulation techniques, as they apply to radioactive waste burial sites, is briefly reviewed, and hydrogeologic and hydrochemical data needs are listed in order of increasing difficulty and cost of acquisition. Predictive modeling, monitoring, and management of radionuclides dissolved and transported by ground water can best be done for sites in relatively simple hydrogeologic settings; namely, in unfaulted relatively flat-lying strata of intermediate permeability such as silt, siltstone and silty sandstone. In contrast, dense fractured or soluble media and poorly permeable porous media (aquitards) are not suitable for use as burial sites, first, because of media heterogeneity and difficulties of sampling, and consequently of predictive modeling, and, second, because in humid zones burial trenches in aquitards may overflow. A buffer zone several thousands of feet to perhaps several miles around existing or proposed sites is a mandatory consequence of the site selection criteria. As a specific example, the Maxey Flats, Kentucky low-level waste disposal site is examined. (U.S.)

  20. Network structure exploration via Bayesian nonparametric models

    International Nuclear Information System (INIS)

    Chen, Y; Wang, X L; Xiang, X; Tang, B Z; Bu, J Z

    2015-01-01

    Complex networks provide a powerful mathematical representation of complex systems in nature and society. To understand complex networks, it is crucial to explore their internal structures, also called structural regularities. The task of network structure exploration is to determine how many groups there are in a complex network and how to group the nodes of the network. Most existing structure exploration methods need to specify either a group number or a certain type of structure when they are applied to a network. In the real world, however, the group number and also the certain type of structure that a network has are usually unknown in advance. To explore structural regularities in complex networks automatically, without any prior knowledge of the group number or the certain type of structure, we extend a probabilistic mixture model that can handle networks with any type of structure but needs to specify a group number using Bayesian nonparametric theory. We also propose a novel Bayesian nonparametric model, called the Bayesian nonparametric mixture (BNPM) model. Experiments conducted on a large number of networks with different structures show that the BNPM model is able to explore structural regularities in networks automatically with a stable, state-of-the-art performance. (paper)

  1. Structural Modeling Using "Scanning and Mapping" Technique

    Science.gov (United States)

    Amos, Courtney L.; Dash, Gerald S.; Shen, J. Y.; Ferguson, Frederick; Noga, Donald F. (Technical Monitor)

    2000-01-01

    Supported by NASA Glenn Center, we are in the process developing a structural damage diagnostic and monitoring system for rocket engines, which consists of five modules: Structural Modeling, Measurement Data Pre-Processor, Structural System Identification, Damage Detection Criterion, and Computer Visualization. The function of the system is to detect damage as it is incurred by the engine structures. The scientific principle to identify damage is to utilize the changes in the vibrational properties between the pre-damaged and post-damaged structures. The vibrational properties of the pre-damaged structure can be obtained based on an analytic computer model of the structure. Thus, as the first stage of the whole research plan, we currently focus on the first module - Structural Modeling. Three computer software packages are selected, and will be integrated for this purpose. They are PhotoModeler-Pro, AutoCAD-R14, and MSC/NASTRAN. AutoCAD is the most popular PC-CAD system currently available in the market. For our purpose, it plays like an interface to generate structural models of any particular engine parts or assembly, which is then passed to MSC/NASTRAN for extracting structural dynamic properties. Although AutoCAD is a powerful structural modeling tool, the complexity of engine components requires a further improvement in structural modeling techniques. We are working on a so-called "scanning and mapping" technique, which is a relatively new technique. The basic idea is to producing a full and accurate 3D structural model by tracing on multiple overlapping photographs taken from different angles. There is no need to input point positions, angles, distances or axes. Photographs can be taken by any types of cameras with different lenses. With the integration of such a modeling technique, the capability of structural modeling will be enhanced. The prototypes of any complex structural components will be produced by PhotoModeler first based on existing similar

  2. A compilation of subsurface hydrogeologic data

    International Nuclear Information System (INIS)

    1986-03-01

    This volume contains the permeability data for the research sites discussed in Volume 1 which have been studied in sufficient detail to allow for analysis. These sites are the following: Stripa Mine, Sweden; Finnsjon, Kamlunge, Fjallveden, Gidea, Svartboberget, Sweden; Olkiluoto, Loviisa, Lavia, Finland; Climax Granite Nevada Test Site; OCRD Room, Colorado School of Mines; Savannah River Plant, Aiken, South Carolina; Oracle, Arizona; Basalt Waste Isolation Project (BWIP), Hanford, Washington; Underground Research Laboratory, AECL, Canada; Atikokan Research Area, AECL; Chalk River Research Area, AECL; Whiteshell Research Area, AECL. Other sources of information have been included where sufficient site specific geologic and hydrogeologic information is provided

  3. A compilation of subsurface hydrogeologic data

    International Nuclear Information System (INIS)

    1986-03-01

    This volume contains a continuation of the fracture data for the research sites discussed in Volume 1 which have been studied in sufficient detail to allow for analysis. The sites discussed in this volume are the following: Climax Granite Nevada Test Site; OCRD Room, Colorado School of Mines; Savannah River Plant, Aiken, South Carolina; Oracle, Arizona; Basalt Waste Isolation Project (BWIP), Hanford, Washington Underground Research Laboratory, AECL, Canada; Atikokan Research Area, AECL; Chalk River Research Area, AECL; Whiteshell Research Area, AECL. Other sources of information have been included where sufficient site specific geologic and hydrogeologic information is provided

  4. Quantitative structure - mesothelioma potency model ...

    Science.gov (United States)

    Cancer potencies of mineral and synthetic elongated particle (EP) mixtures, including asbestos fibers, are influenced by changes in fiber dose composition, bioavailability, and biodurability in combination with relevant cytotoxic dose-response relationships. A unique and comprehensive rat intra-pleural (IP) dose characterization data set with a wide variety of EP size, shape, crystallographic, chemical, and bio-durability properties facilitated extensive statistical analyses of 50 rat IP exposure test results for evaluation of alternative dose pleural mesothelioma response models. Utilizing logistic regression, maximum likelihood evaluations of thousands of alternative dose metrics based on hundreds of individual EP dimensional variations within each test sample, four major findings emerged: (1) data for simulations of short-term EP dose changes in vivo (mild acid leaching) provide superior predictions of tumor incidence compared to non-acid leached data; (2) sum of the EP surface areas (ÓSA) from these mildly acid-leached samples provides the optimum holistic dose response model; (3) progressive removal of dose associated with very short and/or thin EPs significantly degrades resultant ÓEP or ÓSA dose-based predictive model fits, as judged by Akaike’s Information Criterion (AIC); and (4) alternative, biologically plausible model adjustments provide evidence for reduced potency of EPs with length/width (aspect) ratios 80 µm. Regar

  5. Hydrogeology of the basalts in the Uruguayan NW

    International Nuclear Information System (INIS)

    Hausman, A.; Fernandez, A.

    1967-01-01

    This work is about the hydrogeological aspects in the NW Uruguayan basaltic area. The results of this research are the main geological, morphological and hydrogeological aspects of the area as well as the characteristics and the color of the basalt and sandstones

  6. Hydrogeological Properties of the Rocks in Adansi Mining Area ...

    African Journals Online (AJOL)

    The hydrogeological properties of an aquifer coupled with climatic conditions and geomorphology determines how much groundwater exists in that location. A hydrogeological study of the rocks in the Adansi area was carried out to obtain the aquifer hydraulic properties. Drilling and pumping test analysis information were ...

  7. Industrial--hydrogeological characteristics of water in the Orenburg Field

    Energy Technology Data Exchange (ETDEWEB)

    Kortsenshtein, V N; Zhabrev, I P; Uchastkin, Yu V; Alekseeva, I V

    1977-06-01

    An examination is made of the industrial hydrogeological conditions of the Orenburg Field in connection with the beginning of its development. Features of pay dirt water manifestation are demonstrated, genetic types of water brought out by gas flow are described, and methods are suggested for processing hydrogeological information. 3 references, 2 figures, 1 table.

  8. Tree-Structured Digital Organisms Model

    Science.gov (United States)

    Suzuki, Teruhiko; Nobesawa, Shiho; Tahara, Ikuo

    Tierra and Avida are well-known models of digital organisms. They describe a life process as a sequence of computation codes. A linear sequence model may not be the only way to describe a digital organism, though it is very simple for a computer-based model. Thus we propose a new digital organism model based on a tree structure, which is rather similar to the generic programming. With our model, a life process is a combination of various functions, as if life in the real world is. This implies that our model can easily describe the hierarchical structure of life, and it can simulate evolutionary computation through mutual interaction of functions. We verified our model by simulations that our model can be regarded as a digital organism model according to its definitions. Our model even succeeded in creating species such as viruses and parasites.

  9. A comparison of helicopter-borne electromagnetic systems for hydrogeologic studies

    Science.gov (United States)

    Bedrosian, Paul A.; Schamper, Cyril; Auken, Esben

    2016-01-01

    The increased application of airborne electromagnetic surveys to hydrogeological studies is driving a demand for data that can consistently be inverted for accurate subsurface resistivity structure from the near surface to depths of several hundred metres. We present an evaluation of three commercial airborne electromagnetic systems over two test blocks in western Nebraska, USA. The selected test blocks are representative of shallow and deep alluvial aquifer systems with low groundwater salinity and an electrically conductive base of aquifer. The aquifer units show significant lithologic heterogeneity and include both modern and ancient river systems. We compared the various data sets to one another and inverted resistivity models to borehole lithology and to ground geophysical models. We find distinct differences among the airborne electromagnetic systems as regards the spatial resolution of models, the depth of investigation, and the ability to recover near-surface resistivity variations. We further identify systematic biases in some data sets, which we attribute to incomplete or inexact calibration or compensation procedures.

  10. Structured statistical models of inductive reasoning.

    Science.gov (United States)

    Kemp, Charles; Tenenbaum, Joshua B

    2009-01-01

    Everyday inductive inferences are often guided by rich background knowledge. Formal models of induction should aim to incorporate this knowledge and should explain how different kinds of knowledge lead to the distinctive patterns of reasoning found in different inductive contexts. This article presents a Bayesian framework that attempts to meet both goals and describes [corrected] 4 applications of the framework: a taxonomic model, a spatial model, a threshold model, and a causal model. Each model makes probabilistic inferences about the extensions of novel properties, but the priors for the 4 models are defined over different kinds of structures that capture different relationships between the categories in a domain. The framework therefore shows how statistical inference can operate over structured background knowledge, and the authors argue that this interaction between structure and statistics is critical for explaining the power and flexibility of human reasoning.

  11. Modeling protein structures: construction and their applications.

    Science.gov (United States)

    Ring, C S; Cohen, F E

    1993-06-01

    Although no general solution to the protein folding problem exists, the three-dimensional structures of proteins are being successfully predicted when experimentally derived constraints are used in conjunction with heuristic methods. In the case of interleukin-4, mutagenesis data and CD spectroscopy were instrumental in the accurate assignment of secondary structure. In addition, the tertiary structure was highly constrained by six cysteines separated by many residues that formed three disulfide bridges. Although the correct structure was a member of a short list of plausible structures, the "best" structure was the topological enantiomer of the experimentally determined conformation. For many proteases, other experimentally derived structures can be used as templates to identify the secondary structure elements. In a procedure called modeling by homology, the structure of a known protein is used as a scaffold to predict the structure of another related protein. This method has been used to model a serine and a cysteine protease that are important in the schistosome and malarial life cycles, respectively. The model structures were then used to identify putative small molecule enzyme inhibitors computationally. Experiments confirm that some of these nonpeptidic compounds are active at concentrations of less than 10 microM.

  12. The hydrogeological well database TANGRAM©: a tool for data processing to support groundwater assessment

    Directory of Open Access Journals (Sweden)

    Tullia Bonomi

    2014-06-01

    Full Text Available At the Department of Earth and Environmental Sciences of the University of Milano-Bicocca (DISAT-UNIMIB, a hydrogeological well database, called TANGRAM©, has been developed and published on line at www.TANGRAM.samit.unimib.it, developing an earlier 1989 DOS version. This package can be used to store, display, and process all data related to water wells, including administrative information, well characteristics, stratigraphic logs, water levels, pumping rates, and other hydrogeological information. Currently, the database contains more than 39.200 wells located in the Italian region of Lombardy (90%, Piedmont (9% and Valle d’Aosta (1%. TANGRAM© has been created both as a tool for researches and for public administration’s administrators who have projects in common with DISAT-UNIMIB. Indeed, transferring wells data from paper into TANGRAM© offers both an easier and more robust way to correlate hydrogeological data and a more organized management of the administrative information. Some Administrations use TANGRAM© regularly as a tool for wells data management (Brescia Province, ARPA Valle Aosta. An innovative aspect of the database is the quantitative extraction of stratigraphic data. In the part of the software intended for research purposes, all well logs are translated into 8-digit alphanumeric codes and the user composes the code interpreting the description at each stratigraphic level. So the stratigraphic well data can be coded, then quantified and processed. This is made possible by attributing a weight to the digits of the code for textures. The program calculates the weighted percentage of the chosen lithology, as related to each individual layer. These extractions are the starting point for subsequent hydrogeological studies: well head protection area, reconstruction of the dynamics of flow, realization of the quarry plans and flux and transport hydrogeological models. The results of a two-dimensional distribution of coarse

  13. A first course in structural equation modeling

    CERN Document Server

    Raykov, Tenko

    2012-01-01

    In this book, authors Tenko Raykov and George A. Marcoulides introduce students to the basics of structural equation modeling (SEM) through a conceptual, nonmathematical approach. For ease of understanding, the few mathematical formulas presented are used in a conceptual or illustrative nature, rather than a computational one.Featuring examples from EQS, LISREL, and Mplus, A First Course in Structural Equation Modeling is an excellent beginner's guide to learning how to set up input files to fit the most commonly used types of structural equation models with these programs. The basic ideas and methods for conducting SEM are independent of any particular software.Highlights of the Second Edition include: Review of latent change (growth) analysis models at an introductory level Coverage of the popular Mplus program Updated examples of LISREL and EQS A CD that contains all of the text's LISREL, EQS, and Mplus examples.A First Course in Structural Equation Modeling is intended as an introductory book for students...

  14. Capital Structure: Target Adjustment Model and a Mediation Moderation Model with Capital Structure as Mediator

    OpenAIRE

    Abedmajid, Mohammed

    2015-01-01

    This study consists of two models. Model one is conducted to check if there is a target adjustment toward optimal capital structure, in the context of Turkish firm listed on the stock market, over the period 2003-2014. Model 2 captures the interaction between firm size, profitability, market value and capital structure using the moderation mediation model. The results of model 1 have shown that there is a partial adjustment of the capital structure to reach target levels. The results of...

  15. Modeling of soil-water-structure interaction

    DEFF Research Database (Denmark)

    Tang, Tian

    as the developed nonlinear soil displacements and stresses under monotonic and cyclic loading. With the FVM nonlinear coupled soil models as a basis, multiphysics modeling of wave-seabed-structure interaction is carried out. The computations are done in an open source code environment, OpenFOAM, where FVM models...

  16. Multiplicity Control in Structural Equation Modeling

    Science.gov (United States)

    Cribbie, Robert A.

    2007-01-01

    Researchers conducting structural equation modeling analyses rarely, if ever, control for the inflated probability of Type I errors when evaluating the statistical significance of multiple parameters in a model. In this study, the Type I error control, power and true model rates of famsilywise and false discovery rate controlling procedures were…

  17. Model techniques for testing heated concrete structures

    International Nuclear Information System (INIS)

    Stefanou, G.D.

    1983-01-01

    Experimental techniques are described which may be used in the laboratory to measure strains of model concrete structures representing to scale actual structures of any shape or geometry, operating at elevated temperatures, for which time-dependent creep and shrinkage strains are dominant. These strains could be used to assess the distribution of stress in the scaled structure and hence to predict the actual behaviour of concrete structures used in nuclear power stations. Similar techniques have been employed in an investigation to measure elastic, thermal, creep and shrinkage strains in heated concrete models representing to scale parts of prestressed concrete pressure vessels for nuclear reactors. (author)

  18. Intelligent-based Structural Damage Detection Model

    International Nuclear Information System (INIS)

    Lee, Eric Wai Ming; Yu, K.F.

    2010-01-01

    This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.

  19. Intelligent-based Structural Damage Detection Model

    Science.gov (United States)

    Lee, Eric Wai Ming; Yu, Kin Fung

    2010-05-01

    This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.

  20. Structure functions in the chiral bag model

    International Nuclear Information System (INIS)

    Sanjose, V.; Vento, V.; Centro Mixto CSIC/Valencia Univ., Valencia

    1989-01-01

    We calculate the structure functions of an isoscalar nuclear target for the deep inelastic scattering by leptons in an extended version of the chiral bag model which incorporates the qanti q structure of the pions in the cloud. Bjorken scaling and Regge behavior are satisfied. The model calculation reproduces the low-x behavior of the data but fails to explain the medium- to large-x behavior. Evolution of the quark structure functions seem inevitable to attempt a connection between the low-energy models and the high-energy behavior of quantum chromodynamics. (orig.)

  1. Structure functions in the chiral bag model

    Energy Technology Data Exchange (ETDEWEB)

    Sanjose, V.; Vento, V.

    1989-07-13

    We calculate the structure functions of an isoscalar nuclear target for the deep inelastic scattering by leptons in an extended version of the chiral bag model which incorporates the qanti q structure of the pions in the cloud. Bjorken scaling and Regge behavior are satisfied. The model calculation reproduces the low-x behavior of the data but fails to explain the medium- to large-x behavior. Evolution of the quark structure functions seem inevitable to attempt a connection between the low-energy models and the high-energy behavior of quantum chromodynamics. (orig.).

  2. Structural classification and a binary structure model for superconductors

    Institute of Scientific and Technical Information of China (English)

    Dong Cheng

    2006-01-01

    Based on structural and bonding features, a new classification scheme of superconductors is proposed to classify conductors can be partitioned into two parts, a superconducting active component and a supplementary component.Partially metallic covalent bonding is found to be a common feature in all superconducting active components, and the electron states of the atoms in the active components usually make a dominant contribution to the energy band near the Fermi surface. Possible directions to explore new superconductors are discussed based on the structural classification and the binary structure model.

  3. Automated Protein Structure Modeling with SWISS-MODEL Workspace and the Protein Model Portal

    OpenAIRE

    Bordoli, Lorenza; Schwede, Torsten

    2012-01-01

    Comparative protein structure modeling is a computational approach to build three-dimensional structural models for proteins using experimental structures of related protein family members as templates. Regular blind assessments of modeling accuracy have demonstrated that comparative protein structure modeling is currently the most reliable technique to model protein structures. Homology models are often sufficiently accurate to substitute for experimental structures in a wide variety of appl...

  4. MMM: A toolbox for integrative structure modeling.

    Science.gov (United States)

    Jeschke, Gunnar

    2018-01-01

    Structural characterization of proteins and their complexes may require integration of restraints from various experimental techniques. MMM (Multiscale Modeling of Macromolecules) is a Matlab-based open-source modeling toolbox for this purpose with a particular emphasis on distance distribution restraints obtained from electron paramagnetic resonance experiments on spin-labelled proteins and nucleic acids and their combination with atomistic structures of domains or whole protomers, small-angle scattering data, secondary structure information, homology information, and elastic network models. MMM does not only integrate various types of restraints, but also various existing modeling tools by providing a common graphical user interface to them. The types of restraints that can support such modeling and the available model types are illustrated by recent application examples. © 2017 The Protein Society.

  5. Groundwater pathway sensitivity analysis and hydrogeologic parameters identification for waste disposal in porous media

    International Nuclear Information System (INIS)

    Yu, C.

    1986-01-01

    The migration of radionuclides in a geologic medium is controlled by the hydrogeologic parameters of the medium such as dispersion coefficient, pore water velocity, retardation factor, degradation rate, mass transfer coefficient, water content, and fraction of dead-end pores. These hydrogeologic parameters are often used to predict the migration of buried wastes in nuclide transport models such as the conventional advection-dispersion model, the mobile-immobile pores model, the nonequilibrium adsorption-desorption model, and the general group transfer concentration model. One of the most important factors determining the accuracy of predicting waste migration is the accuracy of the parameter values used in the model. More sensitive parameters have a greater influence on the results and hence should determined (measured or estimated) more accurately than less sensitive parameters. A formal parameter sensitivity analysis is carried out in this paper. Parameter identification techniques to determine the hydrogeologic parameters of the flow system are discussed. The dependence of the accuracy of the estimated parameters upon the parameter sensitivity is also discussed

  6. Structural modeling for multicell composite rotor blades

    Science.gov (United States)

    Rehfield, Lawrence W.; Atilgan, Ali R.

    1987-01-01

    Composite material systems are currently good candidates for aerospace structures, primarily for the design flexibility they offer, i.e., it is possible to tailor the material and manufacturing approach to the application. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics, and which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to present a new multicell beam model for composite rotor blades and to validate predictions based on the new model by comparison with a finite element simulation in three benchmark static load cases.

  7. Hydrogeological pre-modelling exercises. Assessment of impact of the Aespoe Hard Rock Laboratory. Sensitivities of palaeo-hydrogeology. Development of a local near-surface Hydro-DFN for KLX09B-F. Site descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Hartley, Lee; Jackson, Peter; Joyce, Steve; Roberts, David; Shevelan, John; Swift, Ben; Gylling, Bjoern; Marsic, Niko; Hermanson, Jan; Oehman, Johan

    2007-12-01

    Numerical modelling has been used to investigate the potential impact of the Aespoe HRL on regional groundwater flow and hydro-geochemistry in the Laxemar study area. The numerical models have been adapted for this application from the ones use in the site-descriptive modelling (SDM) and SR-Can assessment modelling based on Laxemar version 1.2. In order to test the robustness of the simulation results, sensitivities were studied with respect to different flow boundary conditions and the hydraulic properties of the Quaternary deposits, particularly those beneath the sea around the Aespoe island. The simulations show that the Aespoe HRL has a local effect on the groundwater situation. Typically, in the simulations, the rock under the Aespoe island, the bays around it and the Aevroe area (mainly western part of the islands of Aevroe, Mjaelen and Haaloe) are influenced. In the sensitivity study, visualisations of the drawdown caused by the HRL tunnel system show small differences in the results for head versus flux top boundary conditions, little sensitivity to a change in the surface infiltration rate, but most sensitivity to the contact between the sea and the bedrock beneath the seabed sediments. For all simulation cases considered, results suggest that the Aespoe HRL has not been in operation sufficiently long to have affected the chemistry of samples collected at Laxemar and Simpevarp, though there is some possibility that Aevroe samples have been altered, at least for boreholes in the western part of Aevroe, Mjaelen and Haaloe. The distribution of flow and discharge areas around the bay at Aespoe is clearly affected by the HRL for all cases. Using the drawdown in percussion drilled boreholes around Aespoe as an interference test suggests that there is a partial reduction in the hydraulic contact between the sea and the groundwater system in the bedrock beneath. It is recommended that the conclusions about appropriate hydraulic properties for Quaternary sediments

  8. Hydrogeological pre-modelling exercises. Assessment of impact of the Aespoe Hard Rock Laboratory. Sensitivities of palaeo-hydrogeology. Development of a local near-surface Hydro-DFN for KLX09B-F. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Lee; Jackson, Peter; Joyce, Steve; Roberts, David; Shevelan, John; Swift, Ben (Serco Assurance, Harwell (GB)); Gylling, Bjoern; Marsic, Niko (Kemakta Konsult AB, Stockholm (SE)); Hermanson, Jan; Oehman, Johan (Golders Associates (SE))

    2007-12-15

    Numerical modelling has been used to investigate the potential impact of the Aespoe HRL on regional groundwater flow and hydro-geochemistry in the Laxemar study area. The numerical models have been adapted for this application from the ones use in the site-descriptive modelling (SDM) and SR-Can assessment modelling based on Laxemar version 1.2. In order to test the robustness of the simulation results, sensitivities were studied with respect to different flow boundary conditions and the hydraulic properties of the Quaternary deposits, particularly those beneath the sea around the Aespoe island. The simulations show that the Aespoe HRL has a local effect on the groundwater situation. Typically, in the simulations, the rock under the Aespoe island, the bays around it and the Aevroe area (mainly western part of the islands of Aevroe, Mjaelen and Haaloe) are influenced. In the sensitivity study, visualisations of the drawdown caused by the HRL tunnel system show small differences in the results for head versus flux top boundary conditions, little sensitivity to a change in the surface infiltration rate, but most sensitivity to the contact between the sea and the bedrock beneath the seabed sediments. For all simulation cases considered, results suggest that the Aespoe HRL has not been in operation sufficiently long to have affected the chemistry of samples collected at Laxemar and Simpevarp, though there is some possibility that Aevroe samples have been altered, at least for boreholes in the western part of Aevroe, Mjaelen and Haaloe. The distribution of flow and discharge areas around the bay at Aespoe is clearly affected by the HRL for all cases. Using the drawdown in percussion drilled boreholes around Aespoe as an interference test suggests that there is a partial reduction in the hydraulic contact between the sea and the groundwater system in the bedrock beneath. It is recommended that the conclusions about appropriate hydraulic properties for Quaternary sediments

  9. Observations and Modeling of Atmospheric Radiance Structure

    National Research Council Canada - National Science Library

    Wintersteiner, Peter

    2001-01-01

    The overall purpose of the work that we have undertaken is to provide new capabilities for observing and modeling structured radiance in the atmosphere, particularly the non-LTE regions of the atmosphere...

  10. VISCOELASTIC STRUCTURAL MODEL OF ASPHALT CONCRETE

    Directory of Open Access Journals (Sweden)

    V. Bogomolov

    2016-06-01

    Full Text Available The viscoelastic rheological model of asphalt concrete based on the generalized Kelvin model is offered. The mathematical model of asphalt concrete viscoelastic behavior that can be used for calculation of asphalt concrete upper layers of non-rigid pavements for strength and rutting has been developed. It has been proved that the structural model of Burgers does not fully meet all the requirements of the asphalt-concrete.

  11. Global model structures for ∗-modules

    DEFF Research Database (Denmark)

    Böhme, Benjamin

    2018-01-01

    We extend Schwede's work on the unstable global homotopy theory of orthogonal spaces and L-spaces to the category of ∗-modules (i.e., unstable S-modules). We prove a theorem which transports model structures and their properties from L-spaces to ∗-modules and show that the resulting global model...... structure for ∗-modules is monoidally Quillen equivalent to that of orthogonal spaces. As a consequence, there are induced Quillen equivalences between the associated model categories of monoids, which identify equivalent models for the global homotopy theory of A∞-spaces....

  12. Linear causal modeling with structural equations

    CERN Document Server

    Mulaik, Stanley A

    2009-01-01

    Emphasizing causation as a functional relationship between variables that describe objects, Linear Causal Modeling with Structural Equations integrates a general philosophical theory of causation with structural equation modeling (SEM) that concerns the special case of linear causal relations. In addition to describing how the functional relation concept may be generalized to treat probabilistic causation, the book reviews historical treatments of causation and explores recent developments in experimental psychology on studies of the perception of causation. It looks at how to perceive causal

  13. Relating structure and dynamics in organisation models

    NARCIS (Netherlands)

    Jonker, C.M.; Treur, J.

    2003-01-01

    To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems, on

  14. Modelling point patterns with linear structures

    DEFF Research Database (Denmark)

    Møller, Jesper; Rasmussen, Jakob Gulddahl

    2009-01-01

    processes whose realizations contain such linear structures. Such a point process is constructed sequentially by placing one point at a time. The points are placed in such a way that new points are often placed close to previously placed points, and the points form roughly line shaped structures. We...... consider simulations of this model and compare with real data....

  15. Modelling point patterns with linear structures

    DEFF Research Database (Denmark)

    Møller, Jesper; Rasmussen, Jakob Gulddahl

    processes whose realizations contain such linear structures. Such a point process is constructed sequentially by placing one point at a time. The points are placed in such a way that new points are often placed close to previously placed points, and the points form roughly line shaped structures. We...... consider simulations of this model and compare with real data....

  16. Hydrogeology of the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Montazer, P.; Wilson, W.E.

    1985-01-01

    The unsaturated volcanic tuff beneath Yucca Mountain, Nevada, is being evaluated by the US Department of Energy as a host rock for a potential mined geologic repository for high-level radioactive waste. Assessment of site suitability needs an efficient and focused investigative program. A conceptual hydrogeologic model that simulates the flow of fluids through the unsaturated zone at Yucca Mountain was developed to guide the program and to provide a basis for preliminary assessment of site suitability. The study was made as part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy. Thickness of the unsaturated zone is about 1640 to 2460 feet (500 to 750 meters). Based on physical properties, the rocks in the unsaturated zone are grouped for the purpose of this paper into five informal hydrogeologic units. From top to bottom these units are: Tiva Canyon welded unit, Paintbrush nonwelded unit. Topopah Spring welded unit, Calico Hills nonwelded unit, and Crater Flat unit. Welded units have a mean fracture density of 8 to 40 fractures per unit cubic meter, mean matrix porosities of 12 to 23%, matrix hydraulic conductivities with geometric means ranging from 6.5 x 10 -6 to 9.8 x 10 -6 foot per day (2 x 10 -6 to 3 x 10 -6 meter per day), and bulk hydraulic conductivities of 0.33 to 33 feet per day (0.1 to 10 meters per day). The nonwelded units have a mean fracture density of 1 to 3 fractures per unit cubic meter, mean matrix porosities of 31 to 46%, and saturated hydraulic conductivities with geometric means ranging from 2.6 x 10 -5 to 2.9 x 10 -2 foot per day (8 x 10 -6 to 9 x 10 -3 meter per day). 15 refs., 4 figs., 1 tab

  17. SITE-94. The SKN conceptual model of Aespoe. Based on pre-investigations 1986-1990

    International Nuclear Information System (INIS)

    Sundquist, U.; Torssander, P.

    1996-12-01

    The present report describes the SKN (National Board for Spent Nuclear Fuel) conceptual model, which is a combined structural, hydrogeological and geochemical model. The development of the model has been carried out by stages with commencement in 1990. This report summarizes the main parts of the work performed. Initially, the development of the model was part of the program of SKN regarding review of SKB R and D work at Aespoe Hard Rock Laboratory. At a later stage, the SKN model was further developed and integrated into SITE-94. This development comprised evaluation of additional hydrogeological and geochemical data in order to strengthen the model. This report summarizes two earlier reports by SKN written in Swedish. Furthermore, a comprehensive description of the hydrogeological and geochemical evaluation is presented. 58 refs

  18. SITE-94. The SKN conceptual model of Aespoe. Based on pre-investigations 1986-1990

    Energy Technology Data Exchange (ETDEWEB)

    Sundquist, U.; Torssander, P. [Bergab, Goeteborg (Sweden)

    1996-12-01

    The present report describes the SKN (National Board for Spent Nuclear Fuel) conceptual model, which is a combined structural, hydrogeological and geochemical model. The development of the model has been carried out by stages with commencement in 1990. This report summarizes the main parts of the work performed. Initially, the development of the model was part of the program of SKN regarding review of SKB R and D work at Aespoe Hard Rock Laboratory. At a later stage, the SKN model was further developed and integrated into SITE-94. This development comprised evaluation of additional hydrogeological and geochemical data in order to strengthen the model. This report summarizes two earlier reports by SKN written in Swedish. Furthermore, a comprehensive description of the hydrogeological and geochemical evaluation is presented. 58 refs.

  19. Structured population models in biology and epidemiology

    CERN Document Server

    Ruan, Shigui

    2008-01-01

    This book consists of six chapters written by leading researchers in mathematical biology. These chapters present recent and important developments in the study of structured population models in biology and epidemiology. Topics include population models structured by age, size, and spatial position; size-structured models for metapopulations, macroparasitc diseases, and prion proliferation; models for transmission of microparasites between host populations living on non-coincident spatial domains; spatiotemporal patterns of disease spread; method of aggregation of variables in population dynamics; and biofilm models. It is suitable as a textbook for a mathematical biology course or a summer school at the advanced undergraduate and graduate level. It can also serve as a reference book for researchers looking for either interesting and specific problems to work on or useful techniques and discussions of some particular problems.

  20. Structural Identifiability of Dynamic Systems Biology Models.

    Science.gov (United States)

    Villaverde, Alejandro F; Barreiro, Antonio; Papachristodoulou, Antonis

    2016-10-01

    A powerful way of gaining insight into biological systems is by creating a nonlinear differential equation model, which usually contains many unknown parameters. Such a model is called structurally identifiable if it is possible to determine the values of its parameters from measurements of the model outputs. Structural identifiability is a prerequisite for parameter estimation, and should be assessed before exploiting a model. However, this analysis is seldom performed due to the high computational cost involved in the necessary symbolic calculations, which quickly becomes prohibitive as the problem size increases. In this paper we show how to analyse the structural identifiability of a very general class of nonlinear models by extending methods originally developed for studying observability. We present results about models whose identifiability had not been previously determined, report unidentifiabilities that had not been found before, and show how to modify those unidentifiable models to make them identifiable. This method helps prevent problems caused by lack of identifiability analysis, which can compromise the success of tasks such as experiment design, parameter estimation, and model-based optimization. The procedure is called STRIKE-GOLDD (STRuctural Identifiability taKen as Extended-Generalized Observability with Lie Derivatives and Decomposition), and it is implemented in a MATLAB toolbox which is available as open source software. The broad applicability of this approach facilitates the analysis of the increasingly complex models used in systems biology and other areas.

  1. Evaluating the importance of characterizing soil structure and horizons in parameterizing a hydrologic process model

    Science.gov (United States)

    Mirus, Benjamin B.

    2015-01-01

    Incorporating the influence of soil structure and horizons into parameterizations of distributed surface water/groundwater models remains a challenge. Often, only a single soil unit is employed, and soil-hydraulic properties are assigned based on textural classification, without evaluating the potential impact of these simplifications. This study uses a distributed physics-based model to assess the influence of soil horizons and structure on effective parameterization. This paper tests the viability of two established and widely used hydrogeologic methods for simulating runoff and variably saturated flow through layered soils: (1) accounting for vertical heterogeneity by combining hydrostratigraphic units with contrasting hydraulic properties into homogeneous, anisotropic units and (2) use of established pedotransfer functions based on soil texture alone to estimate water retention and conductivity, without accounting for the influence of pedon structures and hysteresis. The viability of this latter method for capturing the seasonal transition from runoff-dominated to evapotranspiration-dominated regimes is also tested here. For cases tested here, event-based simulations using simplified vertical heterogeneity did not capture the state-dependent anisotropy and complex combinations of runoff generation mechanisms resulting from permeability contrasts in layered hillslopes with complex topography. Continuous simulations using pedotransfer functions that do not account for the influence of soil structure and hysteresis generally over-predicted runoff, leading to propagation of substantial water balance errors. Analysis suggests that identifying a dominant hydropedological unit provides the most acceptable simplification of subsurface layering and that modified pedotransfer functions with steeper soil-water retention curves might adequately capture the influence of soil structure and hysteresis on hydrologic response in headwater catchments.

  2. Numerical Modelling of Structures with Uncertainties

    Directory of Open Access Journals (Sweden)

    Kahsin Maciej

    2017-04-01

    Full Text Available The nature of environmental interactions, as well as large dimensions and complex structure of marine offshore objects, make designing, building and operation of these objects a great challenge. This is the reason why a vast majority of investment cases of this type include structural analysis, performed using scaled laboratory models and complemented by extended computer simulations. The present paper focuses on FEM modelling of the offshore wind turbine supporting structure. Then problem is studied using the modal analysis, sensitivity analysis, as well as the design of experiment (DOE and response surface model (RSM methods. The results of modal analysis based simulations were used for assessing the quality of the FEM model against the data measured during the experimental modal analysis of the scaled laboratory model for different support conditions. The sensitivity analysis, in turn, has provided opportunities for assessing the effect of individual FEM model parameters on the dynamic response of the examined supporting structure. The DOE and RSM methods allowed to determine the effect of model parameter changes on the supporting structure response.

  3. Hydrogeologic framework, hydrology, and refined conceptual model of groundwater flow for Coastal Plain aquifers at the Standard Chlorine of Delaware, Inc. Superfund Site, New Castle County, Delaware, 2005-12

    Science.gov (United States)

    Brayton, Michael J.; Cruz, Roberto M.; Myers, Luke; Degnan, James R.; Raffensperger, Jeff P.

    2015-01-01

    From 1966 to 2002, activities at the Standard Chlorine of Delaware chemical facility in New Castle County, Delaware resulted in the contamination of groundwater, soils, and wetland sediment. In 2005, the U.S. Geological Survey (USGS), in partnership with the U.S. Environmental Protection Agency, Region 3, and the Delaware Department of Natural Resources and Environmental Control began a multi-year investigation of the hydrogeologic framework and hydrology of the confined aquifer system. The goals of the ongoing study at the site (the Potomac Aquifer Study) are to determine the hydraulic connection between the Columbia and Potomac aquifers, determine the direction of groundwater flow in the Potomac aquifer, and identify factors affecting the fate of contaminated groundwater. This report describes progress made towards these goals based on available data collected through September 2012.

  4. Antibody structural modeling with prediction of immunoglobulin structure (PIGS)

    DEFF Research Database (Denmark)

    Marcatili, Paolo; Olimpieri, Pier Paolo; Chailyan, Anna

    2014-01-01

    Antibodies (or immunoglobulins) are crucial for defending organisms from pathogens, but they are also key players in many medical, diagnostic and biotechnological applications. The ability to predict their structure and the specific residues involved in antigen recognition has several useful...... applications in all of these areas. Over the years, we have developed or collaborated in developing a strategy that enables researchers to predict the 3D structure of antibodies with a very satisfactory accuracy. The strategy is completely automated and extremely fast, requiring only a few minutes (∼10 min...... on average) to build a structural model of an antibody. It is based on the concept of canonical structures of antibody loops and on our understanding of the way light and heavy chains pack together....

  5. Antibody structural modeling with prediction of immunoglobulin structure (PIGS)

    KAUST Repository

    Marcatili, Paolo

    2014-11-06

    © 2014 Nature America, Inc. All rights reserved. Antibodies (or immunoglobulins) are crucial for defending organisms from pathogens, but they are also key players in many medical, diagnostic and biotechnological applications. The ability to predict their structure and the specific residues involved in antigen recognition has several useful applications in all of these areas. Over the years, we have developed or collaborated in developing a strategy that enables researchers to predict the 3D structure of antibodies with a very satisfactory accuracy. The strategy is completely automated and extremely fast, requiring only a few minutes (~10 min on average) to build a structural model of an antibody. It is based on the concept of canonical structures of antibody loops and on our understanding of the way light and heavy chains pack together.

  6. Hydrogeologic framework and salinity distribution of the Floridan aquifer system of Broward County, Florida

    Science.gov (United States)

    Reese, Ronald S.; Cunningham, Kevin J.

    2014-01-01

    Concerns about water-level decline and seawater intrusion in the surficial Biscayne aquifer, currently the principal source of water supply to Broward County, prompted a study to refine the hydrogeologic framework of the underlying Floridan aquifer system to evaluate its potential as an alternative source of supply. This report presents cross sections that illustrate the stratigraphy and hydrogeology in eastern Broward County; maps of the upper surfaces and thicknesses of several geologic formations or units within the Floridan aquifer system; and maps of two of the potentially productive water-bearing zones within the system, the Upper Floridan aquifer and the Avon Park permeable zone. An analysis of data on rock depositional textures, associated pore networks, and flow zones in the Floridan aquifer system shows that groundwater moves through the system in two ways. These data support a conceptual, dual-porosity model of the system wherein groundwater moves either as concentrated flow in discrete, thin bedding-plane vugs or zones of vuggy megaporosity, or as diffuse flow through rocks with primarily interparticle and moldic-particle porosity. Because considerable exchange of groundwater may occur between the zones of vuggy and matrix-dominated porosity, understanding the distribution of that porosity and flow zone types is important to evaluating the suitability of the several units within the Floridan aquifer system for managing the water through practices such as aquifer storage and recovery (ASR). The salinity of the water in the Floridan aquifer system is highest in the central part of the study area, and lower toward the north and south. Although salinity generally increases with depth, in the western part of the study area a zone of relatively high saline water is perched above water of lower salinity in the underlying Avon Park permeable zone. Overall, the areas of highest salinity in the aquifer system coincide with those with the lowest estimated

  7. Intelligent structural optimization: Concept, Model and Methods

    International Nuclear Information System (INIS)

    Lu, Dagang; Wang, Guangyuan; Peng, Zhang

    2002-01-01

    Structural optimization has many characteristics of Soft Design, and so, it is necessary to apply the experience of human experts to solving the uncertain and multidisciplinary optimization problems in large-scale and complex engineering systems. With the development of artificial intelligence (AI) and computational intelligence (CI), the theory of structural optimization is now developing into the direction of intelligent optimization. In this paper, a concept of Intelligent Structural Optimization (ISO) is proposed. And then, a design process model of ISO is put forward in which each design sub-process model are discussed. Finally, the design methods of ISO are presented

  8. Hydrogeology and hydrologic conditions of the Ozark Plateaus aquifer system

    Science.gov (United States)

    Hays, Phillip D.; Knierim, Katherine J.; Breaker, Brian K.; Westerman, Drew A.; Clark, Brian R.

    2016-11-23

    The hydrogeology and hydrologic characteristics of the Ozark Plateaus aquifer system were characterized as part of ongoing U.S. Geological Survey efforts to assess groundwater availability across the Nation. The need for such a study in the Ozark Plateaus physiographic province (Ozark Plateaus) is highlighted by increasing demand on groundwater resources by the 5.3 million people of the Ozark Plateaus, water-level declines in some areas, and potential impacts of climate change on groundwater availability. The subject study integrates knowledge gained through local investigation within a regional perspective to develop a regional conceptual model of groundwater flow in the Ozark Plateaus aquifer system (Ozark system), a key phase of groundwater availability assessment. The Ozark system extends across much of southern Missouri and northwestern and north-central Arkansas and smaller areas of southeastern Kansas and northeastern Oklahoma. The region is one of the major karst landscapes in the United States, and karst aquifers are predominant in the Ozark system. Groundwater flow is ultimately controlled by aquifer and confining unit lithologies and stratigraphic relations, geologic structure, karst development, and the character of surficial lithologies and regolith mantle. The regolith mantle is a defining element of Ozark Plateaus karst, affecting recharge, karst development, and vulnerability to surface-derived contaminants. Karst development is more advanced—as evidenced by larger springs, hydraulic characteristics, and higher well yields—in the Salem Plateau and in the northern part of the Springfield Plateau (generally north of the Arkansas-Missouri border) as compared with the southern part of the Springfield Plateau in Arkansas, largely due to thinner, less extensive regolith and purer carbonate lithology.Precipitation is the ultimate source of all water to the Ozark system, and the hydrologic budget for the Ozark system includes inputs from recharge

  9. Remote sensing approach to structural modelling

    International Nuclear Information System (INIS)

    El Ghawaby, M.A.

    1989-01-01

    Remote sensing techniques are quite dependable tools in investigating geologic problems, specially those related to structural aspects. The Landsat imagery provides discrimination between rock units, detection of large scale structures as folds and faults, as well as small scale fabric elements such as foliation and banding. In order to fulfill the aim of geologic application of remote sensing, some essential surveying maps might be done from images prior to the structural interpretation: land-use, land-form drainage pattern, lithological unit and structural lineament maps. Afterwards, the field verification should lead to interpretation of a comprehensive structural model of the study area to apply for the target problem. To deduce such a model, there are two ways of analysis the interpreter may go through: the direct and the indirect methods. The direct one is needed in cases where the resources or the targets are controlled by an obvious or exposed structural element or pattern. The indirect way is necessary for areas where the target is governed by a complicated structural pattern. Some case histories of structural modelling methods applied successfully for exploration of radioactive minerals, iron deposits and groundwater aquifers in Egypt are presented. The progress in imagery, enhancement and integration of remote sensing data with the other geophysical and geochemical data allow a geologic interpretation to be carried out which become better than that achieved with either of the individual data sets. 9 refs

  10. Impact damages modeling in laminated composite structures

    Directory of Open Access Journals (Sweden)

    Kreculj Dragan D.

    2014-01-01

    Full Text Available Laminated composites have an important application in modern engineering structures. They are characterized by extraordinary properties, such as: high strength and stiffness and lightweight. Nevertheless, a serious obstacle to more widespread use of those materials is their sensitivity to the impact loads. Impacts cause initiation and development of certain types of damages. Failures that occur in laminated composite structures can be intralaminar and interlaminar. To date it was developed a lot of simulation models for impact damages analysis in laminates. Those models can replace real and expensive testing in laminated structures with a certain accuracy. By using specialized software the damage parameters and distributions can be determined (at certain conditions on laminate structures. With performing numerical simulation of impact on composite laminates there are corresponding results valid for the analysis of these structures.

  11. On the Use of Structural Equation Models in Marketing Modeling

    NARCIS (Netherlands)

    Steenkamp, J.E.B.M.; Baumgartner, H.

    2000-01-01

    We reflect on the role of structural equation modeling (SEM) in marketing modeling and managerial decision making. We discuss some benefits provided by SEM and alert marketing modelers to several recent developments in SEM in three areas: measurement analysis, analysis of cross-sectional data, and

  12. Summary of field operations Technical Area I well PGS-1. Site-Wide Hydrogeologic Characterization Project

    International Nuclear Information System (INIS)

    Fritts, J.E.; McCord, J.P.

    1995-02-01

    The Environmental Restoration (ER) Project at Sandia National Laboratories, New Mexico is managing the project to assess and, when necessary, to remediate sites contaminated by the lab operations. Within the ER project, the site-wide hydrogeologic characterization task is responsible for the area-wide hydrogeologic investigation. The purpose of this task is to reduce the uncertainty about the rate and direction of groundwater flow beneath the area and across its boundaries. This specific report deals with the installation of PGS-1 monitoring well which provides information on the lithology and hydrology of the aquifer in the northern area of the Kirtland Air Force Base. The report provides information on the well design; surface geology; stratigraphy; structure; drilling, completion, and development techniques; and borehole geophysics information

  13. Emulating a flexible space structure: Modeling

    Science.gov (United States)

    Waites, H. B.; Rice, S. C.; Jones, V. L.

    1988-01-01

    Control Dynamics, in conjunction with Marshall Space Flight Center, has participated in the modeling and testing of Flexible Space Structures. Through the series of configurations tested and the many techniques used for collecting, analyzing, and modeling the data, many valuable insights have been gained and important lessons learned. This paper discusses the background of the Large Space Structure program, Control Dynamics' involvement in testing and modeling of the configurations (especially the Active Control Technique Evaluation for Spacecraft (ACES) configuration), the results from these two processes, and insights gained from this work.

  14. Power mos devices: structures and modelling procedures

    Energy Technology Data Exchange (ETDEWEB)

    Rossel, P.; Charitat, G.; Tranduc, H.; Morancho, F.; Moncoqut

    1997-05-01

    In this survey, the historical evolution of power MOS transistor structures is presented and currently used devices are described. General considerations on current and voltage capabilities are discussed and configurations of popular structures are given. A synthesis of different modelling approaches proposed last three years is then presented, including analytical solutions, for basic electrical parameters such as threshold voltage, on-resistance, saturation and quasi-saturation effects, temperature influence and voltage handling capability. The numerical solutions of basic semiconductor devices is then briefly reviewed along with some typical problems which can be solved this way. A compact circuit modelling method is finally explained with emphasis on dynamic behavior modelling

  15. Structured building model reduction toward parallel simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, Justin R. [Cornell University; Hencey, Brondon M. [Cornell University

    2013-08-26

    Building energy model reduction exchanges accuracy for improved simulation speed by reducing the number of dynamical equations. Parallel computing aims to improve simulation times without loss of accuracy but is poorly utilized by contemporary simulators and is inherently limited by inter-processor communication. This paper bridges these disparate techniques to implement efficient parallel building thermal simulation. We begin with a survey of three structured reduction approaches that compares their performance to a leading unstructured method. We then use structured model reduction to find thermal clusters in the building energy model and allocate processing resources. Experimental results demonstrate faster simulation and low error without any interprocessor communication.

  16. Time series modelling of overflow structures

    DEFF Research Database (Denmark)

    Carstensen, J.; Harremoës, P.

    1997-01-01

    The dynamics of a storage pipe is examined using a grey-box model based on on-line measured data. The grey-box modelling approach uses a combination of physically-based and empirical terms in the model formulation. The model provides an on-line state estimate of the overflows, pumping capacities...... and available storage capacity in the pipe as well as predictions of future states. A linear overflow relation is found, differing significantly from the traditional modelling approach. This is due to complicated overflow structures in a hydraulic sense where the overflow is governed by inertia from the inflow...... to the overflow structures. The capacity of a pump draining the storage pipe has been estimated for two rain events, revealing that the pump was malfunctioning during the first rain event. The grey-box modelling approach is applicable for automated on-line surveillance and control. (C) 1997 IAWQ. Published...

  17. Modeling and control of flexible space structures

    Science.gov (United States)

    Wie, B.; Bryson, A. E., Jr.

    1981-01-01

    The effects of actuator and sensor locations on transfer function zeros are investigated, using uniform bars and beams as generic models of flexible space structures. It is shown how finite element codes may be used directly to calculate transfer function zeros. The impulse response predicted by finite-dimensional models is compared with the exact impulse response predicted by the infinite dimensional models. It is shown that some flexible structures behave as if there were a direct transmission between actuator and sensor (equal numbers of zeros and poles in the transfer function). Finally, natural damping models for a vibrating beam are investigated since natural damping has a strong influence on the appropriate active control logic for a flexible structure.

  18. Hydrogeologic factors to be addressed in disposal guidelines

    International Nuclear Information System (INIS)

    Lafleur, D.W.; Raven, K.G.

    1986-12-01

    This report identifies the physical hydrogeologic factors that should be addressed for performance assessment of a radioactive waste disposal facility in plutonic rock. The hydrogeologic factors include theoretical methods, groundwater flow factors and solute transport parameters. Theoretical methods, including different deterministic and stochastic approaches for evaluating physical hydrogeolgic conditions, are evaluated with respect to data requirements, applications and limitations. Preferred methods for measurement and determination of the identified groundwater flow factors and solute transport parameters are discussed. A recommended set of procedures for reliable hydrogeologic characterization of a plutonic rock mass at both regional and site scales is also presented

  19. Hydrogeology of exogenic epigenic uranium deposits (sedimentary type) in Uzbekistan

    International Nuclear Information System (INIS)

    Irgashev, Yu.I.; Gavrilov, V.A.; Muslimov, B.A.

    1996-01-01

    Common problems of hydrogeology and geotechnology for uranium deposits (sedimentary type) in the Republic of Uzbekistan are discussed in the paper. Hydrogeology includes studies of texture of water-bearing horizons, occurrences of ore bodies in horizons, hydrochemical survey, hydrodynamics and engineering geology. Features of deposits workable by underground leaching are presented. Such terms as 'water-bearing horizon', 'efficiency', 'water-bearing bed' are explained accounting the results of 30 year investigations conducted during prospecting, designing and exploitation of uranium deposits. Stages of hydrogeological survey are listed and features of each of them are described. Importance of geotechnology for a deposit characterization is shown. (author). 6 refs.; 1 fig.; 1 tab

  20. Studies on hydrogeological conditions for mineralization of some sandstone type uranium deposit

    International Nuclear Information System (INIS)

    Wang Zhiming; Li Sen; Xiao Feng; Qi Daneng; Yin Jinshuang

    1996-11-01

    Based on the analysis for regional geology, structural and hydrogeological conditions of Erennaoer Depression, Erlian Basin, the hydrogeological hydraulic zoning was carried out for groundwater in the study area, structural-palaeo-hydrogeological stages and the feature of deep-seated groundwater were studied, and, two important U-mineralization periods were determined. The conditions of recharge, runoff and discharge of groundwater in ore bearing aquifers and the hydraulic mechanism were revealed by isotope hydrology and single-well tracing technique. By study of hydrogeochemistry, it is indicated that both Subeng and Nuheting U-deposit are located at the parts where groundwater characteristics intensely variate, and the ore indicators are determined. Oil and gas transportation and the relationships between groundwater and U-metallogenetic process were discussed by using of organic geochemistry method. It shows that the bleeding of oil and gas is very important for the forming of U-deposits. It is suggested that the interlayered oxidation zone type sandstone U-deposit which is suitable for in-situ leaching could be existed in the Tenggeer formation, Bayanhua group of Lower Cretaceous, accordingly, two prospecting areas are delimited. (4 refs., 3 figs., 2 tabs.)

  1. Hydrogeological and Hydrogeochemical Modelling of the Alicun de las Torres Termal System (Province of Granada). Isotope Hydrochemistry and Gases in Groundwaters; Modelizacion Hidrogeologica e Hidrogeoquimica del Sistema Termal de Alicun de Las Torres (Provincia de Granada). Hidroquimica Isotopica y Gases en Aguas

    Energy Technology Data Exchange (ETDEWEB)

    Prado Perez, A. J.; Delgado, A.; Crespo, M. T.; Martin, A.; Vaselli, O.; Perez del Villar, L.

    2010-11-17

    In the framework of a Singular Strategic Project entitled: {sup A}dvanced Technologies of Carbon, Capture and Storage (CCS){sup ,} supported by the MICINN (Spain) and the FEDER founds (EU), specifically in the Carbon Storage Task, a comprehensive study on the CO{sub 2} leakage as DIC (Dissolved Inorganic Carbon) in the Alicun de Las Torres (Prov. of Granada) natural analogue thermal system was envisaged. This analogous system is characterised by the presence of a very important travertine formation, which can be considered as a permanent and stable sink for CO{sub 2}. In order to explain the formation of these travertine mass an hydrogeological and hydrogeochemical model of the area has been established by using the hydrochemical data, the stable and radioactive isotope characteristics, the dissolved inorganic carbon, as well as the chemical and isotopic composition of the free and dissolved gases of the above mentioned Thermal System. (Author) 11 refs.

  2. Contribution to hydrogeological investigations related to the disposal of radioactive wastes in a deep argillaceous formation

    International Nuclear Information System (INIS)

    Patijn, J.

    1987-01-01

    The study deals with the development of a methodology in order to evaluate the capability of an aquifer system to be used for the disposal of radioactive wastes in deep argillaceous formations. The first part is concerned with hydrogeological investigations of a sedimentary basin. The second part is concerned with flow simulation using NEWMAN model. The limited influence of some possible geological events on radionuclide transfer is emphasized [fr

  3. Quadratic Term Structure Models in Discrete Time

    OpenAIRE

    Marco Realdon

    2006-01-01

    This paper extends the results on quadratic term structure models in continuos time to the discrete time setting. The continuos time setting can be seen as a special case of the discrete time one. Recursive closed form solutions for zero coupon bonds are provided even in the presence of multiple correlated underlying factors. Pricing bond options requires simple integration. Model parameters may well be time dependent without scuppering such tractability. Model estimation does not require a r...

  4. Feature Extraction for Structural Dynamics Model Validation

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Charles [Los Alamos National Laboratory; Nishio, Mayuko [Yokohama University; Hemez, Francois [Los Alamos National Laboratory; Stull, Chris [Los Alamos National Laboratory; Park, Gyuhae [Chonnam Univesity; Cornwell, Phil [Rose-Hulman Institute of Technology; Figueiredo, Eloi [Universidade Lusófona; Luscher, D. J. [Los Alamos National Laboratory; Worden, Keith [University of Sheffield

    2016-01-13

    As structural dynamics becomes increasingly non-modal, stochastic and nonlinear, finite element model-updating technology must adopt the broader notions of model validation and uncertainty quantification. For example, particular re-sampling procedures must be implemented to propagate uncertainty through a forward calculation, and non-modal features must be defined to analyze nonlinear data sets. The latter topic is the focus of this report, but first, some more general comments regarding the concept of model validation will be discussed.

  5. A compilation of subsurface hydrogeologic data

    International Nuclear Information System (INIS)

    1986-03-01

    This volume contains the storage coefficient, porosity, compressibility and fracture data for the research sites discussed in Volume 1 which have been studied in sufficient detail to allow for analysis. These sites are the following: Stripa Mine, Sweden; Finnsjon, Kamlunge, Fjallveden, Gidea, Svartboberget, Sweden; Olkiluoto, Loviisa, Lavia, Finland; Climax Granite Nevada Test Site; OCRD Room, Colorado School of Mines; Savannah River Plant, Aiken, South Carolina; Oracle, Arizona; Basalt Waste Isolation Project (BWIP), Hanford, Washington; Underground Research Laboratory, AECL, Canada; Atikokan Research Area, AECL; Chalk River Research Area, AECL; Whiteshell Research Area, AECL. Other sources of information have been included where sufficient site specific geologic and hydrogeologic information is provided. The fracture data for the first three of the sites listed above are contained in this volume. The fracture data for the remaining research research sites are discussed in Volume 4

  6. Automated protein structure modeling with SWISS-MODEL Workspace and the Protein Model Portal.

    Science.gov (United States)

    Bordoli, Lorenza; Schwede, Torsten

    2012-01-01

    Comparative protein structure modeling is a computational approach to build three-dimensional structural models for proteins using experimental structures of related protein family members as templates. Regular blind assessments of modeling accuracy have demonstrated that comparative protein structure modeling is currently the most reliable technique to model protein structures. Homology models are often sufficiently accurate to substitute for experimental structures in a wide variety of applications. Since the usefulness of a model for specific application is determined by its accuracy, model quality estimation is an essential component of protein structure prediction. Comparative protein modeling has become a routine approach in many areas of life science research since fully automated modeling systems allow also nonexperts to build reliable models. In this chapter, we describe practical approaches for automated protein structure modeling with SWISS-MODEL Workspace and the Protein Model Portal.

  7. Application of unconventional geoelectrical methods to the hydrogeological examination of the Mt. S. Croce rock formations (Umbria, Italy involved in a railway tunnel project

    Directory of Open Access Journals (Sweden)

    D. Patella

    1994-06-01

    Full Text Available he project of doubling and developing of the railway line Orte-Falconara, committed by the Italian State Railway Company to the COMAVI Consortium (Rome, Italy, envisaged building the Mt. S. Croce tunnel, about 3200 m long between the stations of Narni and Nera Montoro (Umbria, ltaly. During the last phase of the feasibility project, a geophysical research based on geoelectrical prospecting methods was carried out to complement other geognostic investigations with the following goals: a to outline the complex geotectonic model of the rock system, which will be affected by the new railway layout; b to gain information on the hydrogeologic features of the survey area, in relation to the existing geologic situation and the consequent effects on the digging conditions of the tunnel and on the operation conditions of the railway layout. The geophysical work was thus organized according to the following scheme: a execution of dipole electrical sounding pro-files, to depict a series of significant tomographic pseudosections, both across and along the new railway layout; b execution of self-potential measurements, to draw an anomaly map over the whole hydrogeological network system in the survey area. The research provided information which has helped to improve the geological-structural model of the area and disclosed the hydrogelogic network, conforming to the classified field surface manifestations. At present, further detailed field investigations are being carried out, which confirm all the results obtained by the geoelectrical survey.

  8. Hydrogeological characterization of peculiar Apenninic springs

    Science.gov (United States)

    Cervi, F.; Marcaccio, M.; Petronici, F.; Borgatti, L.

    2014-09-01

    In the northern Apennines of Italy, springs are quite widespread over the slopes. Due to the outcropping of low-permeability geologic units, they are generally characterized by low-yield capacities and high discharge variability during the hydrologic year. In addition, low-flow periods (discharge lower than 1 Ls-1) reflect rainfall and snowmelt distribution and generally occur in summer seasons. These features strongly condition the management for water-supply purposes, making it particularly complex. The "Mulino delle Vene" springs (420 m a.s.l., Reggio Emilia Province, Italy) are one of the largest in the Apennines for mean annual discharge and dynamic storage and are considered as the main water resource in the area. They flow out from several joints and fractures at the bottom of an arenite rock mass outcrop in the vicinity of the Tresinaro River. To date, these springs have not yet been exploited, as the knowledge about the hydrogeological characteristics of the aquifer and their hydrological behaviour is not fully achieved. This study aims to describe the recharge processes and to define the hydrogeological boundaries of the aquifer. It is based on river and spring discharge monitoring and groundwater balance assessment carried out during the period 2012-2013. Results confirm the effectiveness of the approach, as it allowed the total aliquot of discharge of the springs to be assessed. Moreover, by comparing the observed discharge volume with the one calculated with the groundwater balance, the aquifer has been identified with the arenite slab (mean altitude of 580 m a.s.l.), extended about 5.5 km2 and located 1 km west of the monitored springs.

  9. Case studies in organic contaminant hydrogeology

    International Nuclear Information System (INIS)

    Baker, J.A.

    1989-01-01

    The effective management of domestic solid waste and hazardous, toxic, and radioactive waste is a major problem in the area of environmental geology and water sciences throughout the world. A series of case studies is presented of organic contaminants from both solid and hazardous waste disposal facilities to provide examples of these problems. The facilities were investigated to determine risks and liabilities before acquisition, to determine the site hydrogeologic conditions for design of appropriate groundwater monitoring plans, and/or to determine the potential for groundwater contamination. The case studies are of disposal facilities located in glacial tills, carbonaceous weathered clay soils, weathered shale, limestone bedrock, dolomite bedrock, and alluvial and sedimentary deposits. The results of these studies and investigations show certain relationships in the distribution of organic pollutants to the different geologic and hydrogeologic characteristics of each facility. In each of the four case studies, all 129 priority pollutants were analyzed in private wells and/or monitoring wells. The 31 volatile organic compounds (VOCs) of the priority pollutant list were the majority of organic compounds detected. When VOCs are found in groundwater impacted by disposal facilities, they are present in groups and tend to be distributed in patterns based on their relative concentrations. It is rare to find only one or two VOCs from facilities where leakage has been detected. The ethylenes and ethanes appear to be more prevalent and mobile than aromatic VOCs. The aromatics are restricted primarily to leachates and wastes and in monitoring wells located adjacent to facilities. 2 refs., 15 figs

  10. Marine hydrogeology: recent accomplishments and future opportunities

    Science.gov (United States)

    Fisher, A. T.

    2005-03-01

    Marine hydrogeology is a broad-ranging scientific discipline involving the exploration of fluid-rock interactions below the seafloor. Studies have been conducted at seafloor spreading centers, mid-plate locations, and in plate- and continental-margin environments. Although many seafloor locations are remote, there are aspects of marine systems that make them uniquely suited for hydrologic analysis. Newly developed tools and techniques, and the establishment of several multidisciplinary programs for oceanographic exploration, have helped to push marine hydrogeology forward over the last several decades. Most marine hydrogeologic work has focused on measurement or estimation of hydrogeologic properties within the shallow subsurface, but additional work has emphasized measurements of local and global fluxes, fluid source and sink terms, and quantitative links between hydrogeologic, chemical, tectonic, biological, and geophysical processes. In addition to summarizing selected results from a small number of case studies, this paper includes a description of several new experiments and programs that will provide outstanding opportunities to address fundamental hydrogeologic questions within the seafloor during the next 20-30 years. L'hydrogéologie marine est une large discipline scientifique impliquant l' exploration des interactions entre les fluides et les roches sous les fonds marins. Des études ont été menées dans les différents environnements sous-marins (zone abyssale, plaque océanique, marges continentales). Bien que de nombreux fonds marins soient connus, il existe des aspects des systèmes marins qui les rendent inadaptés à l'analyse hydrologique. De nouveaux outils et techniques, et la mise en oeuvre de nombreux programmes multidisciplinaires d'exploration océanographique, ont aidé à pousser en avant l'hydrogéologie marine ces dix dernières années. La plus part des études hydrogéologiques se sont concentrées jusqu'à présent sur la mesure ou

  11. On modeling of structured multiphase mixtures

    International Nuclear Information System (INIS)

    Dobran, F.

    1987-01-01

    The usual modeling of multiphase mixtures involves a set of conservation and balance equations of mass, momentum, energy and entropy (the basic set) constructed by an averaging procedure or postulated. The averaged models are constructed by averaging, over space or time segments, the local macroscopic field equations of each phase, whereas the postulated models are usually motivated by the single phase multicomponent mixture models. In both situations, the resulting equations yield superimposed continua models and are closed by the constitutive equations which place restrictions on the possible material response during the motion and phase change. In modeling the structured multiphase mixtures, the modeling of intrinsic motion of grains or particles is accomplished by adjoining to the basic set of field equations the additional balance equations, thereby placing restrictions on the motion of phases only within the imposed extrinsic and intrinsic sources. The use of the additional balance equations has been primarily advocated in the postulatory theories of multiphase mixtures and are usually derived through very special assumptions of the material deformation. Nevertheless, the resulting mixture models can predict a wide variety of complex phenomena such as the Mohr-Coulomb yield criterion in granular media, Rayleigh bubble equation, wave dispersion and dilatancy. Fundamental to the construction of structured models of multiphase mixtures are the problems pertaining to the existence and number of additional balance equations to model the structural characteristics of a mixture. Utilizing a volume averaging procedure it is possible not only to derive the basic set of field equation discussed above, but also a very general set of additional balance equations for modeling of structural properties of the mixture

  12. Direct Push supported geotechnical and hydrogeological characterisation of an active sinkhole area

    Science.gov (United States)

    Tippelt, Thomas; Vienken, Thomas; Kirsch, Reinhard; Dietrich, Peter; Werban, Ulrike

    2017-04-01

    Sinkholes represent a natural geologic hazard in areas where soluble layers are present in the subsurface. A detailed knowledge of the composition of the subsurface and its hydrogeological and geotechnical properties is essential for the understanding of sinkhole formation and propagation. This serves as base for risk evaluation and the development of an early warning system. However, site models often depend on data from drillings and surface geophysical surveys that in many cases cannot resolve the spatial distribution of relevant hydrogeological and geotechnical parameters sufficiently. Therefore, an active sinkhole area in Münsterdorf, Northern Germany, was investigated in detail using Direct Push technology, a minimally invasive sounding method. The obtained vertical high-resolution profiles of geotechnical and hydrogeological characteristics, in combination with Direct Push based sampling and surface geophysical measurements lead to a strong improvement of the geologic site model. The conceptual site model regarding sinkhole formation and propagation will then be tested based on the gathered data and, if necessary, adapted accordingly.

  13. Hydrogeological Study of Mangrove Areas Around Guanabara Bay, Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Gerson Cardoso da Silva Júnior;

    2003-01-01

    Full Text Available The study area covers part of the mangrove belt located around Guanabara Bay, Rio de Janeiro, Brazil. Representing a continental-marine transition, the mangrove ecosystem is very susceptible to environmental variations and impacts. The vegetation cover plays an important role in prevention of erosion and contamination processes in those areas. An ongoing extensive research effort in the Petrochemical Complex of Duque de Caxias, Rio de Janeiro State, Brazil, focuses on the man-induced changes in the physical environment (soils, groundwater flow system, type and volumes of contaminants, geochemical aspects and the consequences on the neighboring mangrove ecosystem. This article describes the importance of hydrogeological studies in mangrove areas as part of an appropriate environmental assessment, taking as an example an industrial dumping area located in that Petrochemical Complex. Field work included extensive drilling and sampling to obtain basic geological and hydrogeological parameters and data in the pilot area, such as hydraulic conductivity and piezometric heads; emphasizing the tracking of possible contamination by industrial effluents and the marine influence; validation of the conceptual model with mathematical models (numerical and analytical models was carried out. Results show the great importance of well conducted and detailed hydrogeological studies to properly address environmental problems caused by industrial plants in mangrove areas.

  14. Design and Modeling of Structural Joints in Precast Concrete Structures

    DEFF Research Database (Denmark)

    Sørensen, Jesper Harrild

    and in the onsite construction speed. The challenges appear in the on-site assembly phase, where structural integrity has to be ensured by in-situ cast connections in narrow zones. These connections are essential for the overall structural behavior and for this reason, strong and ductile connections...... is the orientation of the U-bar loops and the use of a double T-headed rebar in the overlapping area of the Ubars. The investigation covers several independent research topics, which in combination provides a broad knowledge of the behavior of keyed shear connections. As the first topic, the structural behavior...... the loop connection in such a way, that the tensile capacity is governed by yielding of the U-bars and not by a brittle failure of the grout. This is important in order to obtain a ductile response when the connection is loaded in shear. The main focus of the thesis is test and modeling of keyed shear...

  15. The WITCH Model. Structure, Baseline, Solutions.

    Energy Technology Data Exchange (ETDEWEB)

    Bosetti, V.; Massetti, E.; Tavoni, M.

    2007-07-01

    WITCH - World Induced Technical Change Hybrid - is a regionally disaggregated hard link hybrid global model with a neoclassical optimal growth structure (top down) and an energy input detail (bottom up). The model endogenously accounts for technological change, both through learning curves affecting prices of new vintages of capital and through R and D investments. The model features the main economic and environmental policies in each world region as the outcome of a dynamic game. WITCH belongs to the class of Integrated Assessment Models as it possesses a climate module that feeds climate changes back into the economy. In this paper we provide a thorough discussion of the model structure and baseline projections. We report detailed information on the evolution of energy demand, technology and CO2 emissions. Finally, we explicitly quantifiy the role of free riding in determining the emissions scenarios. (auth)

  16. Modeling Fission Product Sorption in Graphite Structures

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-01-01

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high-temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products

  17. Morphometric analysis with open source software to explore shallow hydrogeological features in Senegal and Guinea

    Science.gov (United States)

    Fussi, Fabio; Di Leo, Margherita; Bonomi, Tullia; Di Mauro, Biagio; Fava, Francesco; Fumagalli, Letizia; Hamidou Kane, Cheikh; Faye, Gayane; Niang, Magatte; Wade, Souleye; Hamidou, Barry; Colombo, Roberto

    2015-04-01

    Water represents a vital resource for everyone on this Planet, but, for some populations, the access to potable water is not given for granted. Recently, the interest in low cost technical solutions to improve access to ground water in developing countries, especially for people located in remote areas, has increased. Manual drilling (techniques to drill boreholes for water using human or animal power) is well known and practiced for centuries in many countries and represents a valid alternative to increase water access. Lately, this practice has raised the attention of national governments and international organizations. This technique is applicable only where hydrogeological conditions are suitable, namely in presence of thick layers of unconsolidated sediments and a shallow water table Aim of this study is exploring the potential of morphometric analysis to improve the methodology to identify areas with suitable hydrogeological conditions for manual drilling, supporting the implementation of water supply programs that can have great impact on living condition of the population. The characteristics of shallow geological layers are strongly dependent from geomorphological processes and are usually reflected in the morphological characteristics of landforms. Under these hypotheses, we have been investigating the geo-statistical correlation between several morphometric variables and a set of hydrogeological variables used in the estimation of suitability for manual drilling: thickness of unconsolidated sediments, texture, hydraulic conductivity of shallow aquifer, depth of water table. The morphology of two study areas with different landscape characteristics in Guinea and Senegal has been investigated coupling the Free and Open Source Software GRASS GIS and R. Several morphometric parameters have been extracted from ASTER GDEM digital elevation model, and have been compared with a set of hydrogeological characteristics obtained from semi-automatic analysis of

  18. Galactic models with variable spiral structure

    International Nuclear Information System (INIS)

    James, R.A.; Sellwood, J.A.

    1978-01-01

    A series of three-dimensional computer simulations of disc galaxies has been run in which the self-consistent potential of the disc stars is supplemented by that arising from a small uniform Population II sphere. The models show variable spiral structure, which is more pronounced for thin discs. In addition, the thin discs form weak bars. In one case variable spiral structure associated with this bar has been seen. The relaxed discs are cool outside resonance regions. (author)

  19. Outlier Detection in Structural Time Series Models

    DEFF Research Database (Denmark)

    Marczak, Martyna; Proietti, Tommaso

    investigate via Monte Carlo simulations how this approach performs for detecting additive outliers and level shifts in the analysis of nonstationary seasonal time series. The reference model is the basic structural model, featuring a local linear trend, possibly integrated of order two, stochastic seasonality......Structural change affects the estimation of economic signals, like the underlying growth rate or the seasonally adjusted series. An important issue, which has attracted a great deal of attention also in the seasonal adjustment literature, is its detection by an expert procedure. The general......–to–specific approach to the detection of structural change, currently implemented in Autometrics via indicator saturation, has proven to be both practical and effective in the context of stationary dynamic regression models and unit–root autoregressions. By focusing on impulse– and step–indicator saturation, we...

  20. Statistical Analysis and Modelling of Olkiluoto Structures

    International Nuclear Information System (INIS)

    Hellae, P.; Vaittinen, T.; Saksa, P.; Nummela, J.

    2004-11-01

    Posiva Oy is carrying out investigations for the disposal of the spent nuclear fuel at the Olkiluoto site in SW Finland. The investigations have focused on the central part of the island. The layout design of the entire repository requires characterization of notably larger areas and must rely at least at the current stage on borehole information from a rather sparse network and on the geophysical soundings providing information outside and between the holes. In this work, the structural data according to the current version of the Olkiluoto bedrock model is analyzed. The bedrock model relies much on the borehole data although results of the seismic surveys and, for example, pumping tests are used in determining the orientation and continuation of the structures. Especially in the analysis, questions related to the frequency of structures and size of the structures are discussed. The structures observed in the boreholes are mainly dipping gently to the southeast. About 9 % of the sample length belongs to structures. The proportion is higher in the upper parts of the rock. The number of fracture and crushed zones seems not to depend greatly on the depth, whereas the hydraulic features concentrate on the depth range above -100 m. Below level -300 m, the hydraulic conductivity occurs in connection of fractured zones. Especially the hydraulic features, but also fracture and crushed zones often occur in groups. The frequency of the structure (area of structures per total volume) is estimated to be of the order of 1/100m. The size of the local structures was estimated by calculating the intersection of the zone to the nearest borehole where the zone has not been detected. Stochastic models using the Fracman software by Golder Associates were generated based on the bedrock model data complemented with the magnetic ground survey data. The seismic surveys (from boreholes KR5, KR13, KR14, and KR19) were used as alternative input data. The generated models were tested by

  1. Litho-stratigraphic and Hydrogeological Evaluation of Groundwater ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2015-10-30

    ://www.ajol.info/index.php/jasem http://www.bioline.org.br/ja. Litho-stratigraphic and Hydrogeological Evaluation of Groundwater System in Parts of. Benin Metropolis, Benin City Nigeria: The Key to Groundwater Sustainability.

  2. Surficial geology and hydrogeology of the Town Londonderry, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG08-2 De Simone, D., and Gale, M., 2008,�Surficial geology and hydrogeology of the Town Londonderry, Vermont: Vermont Geological Survey Open-File...

  3. Study of hydrogeological and engineering-geological conditions of deposits

    International Nuclear Information System (INIS)

    1985-01-01

    Methods for hydrogeological and engineering-geological studies are considered as a part of the complex works dUring eXploration of hydrogenic uranium deposits to develop them by Underground ieaching (UL). Problems are enumerated and peculiarities Of hydrogeologic and engipeering-geological works at different stages are outlined (prospeccing - evaluating works, preliminary and detailed survey). Attention is paid to boring and equipment for hydrogeological and engineering - geological boreholes. Testing-filtering works are described, the latter includes: evacuations, fulnesses ( forcings), and tests of fulness-evacuation. The problem on steady-state observations in boreholes and laboratory studies of rocks and underground waters is discussed. Geological and geophysical methods for evaluation of rock and ore filtering properties are presented. Necessity of hydrogeological zonation of deposits as applied to UL is marked

  4. HYDROGEOLOGIC CASE STUDIE(PRESENTATION FOR MNA WORKSHOP)

    Science.gov (United States)

    Hydrogeology is the foundation of subsurface site characterization for evaluations of monitored natural attenuation (MNA). Three case studies are presented. Examples of the potentially detrimental effects of drilling additives on ground-water samples from monitoring wells are d...

  5. Geology and hydrogeology of the Town of Calais, Vermont

    Data.gov (United States)

    Vermont Center for Geographic Information — Digital data from VG2016-1 Springston, G., Kim, J., Gale. M. and Thomas, E., 2016, Geology and hydrogeology of the Town of Calais, Vermont: Vermont Geological Survey...

  6. Hydrogeologic testing strategy for the Basalt Waste Isolation Project site

    International Nuclear Information System (INIS)

    Logsdon, M.J.; Verma, T.R.

    1984-01-01

    At the time of licensing for a proposed deep geologic repository for high-level nuclear waste, the Department of Energy (DOE) has the responsibility to present and defend a complete licensing/performance assessment of the geologic repository system. As part of its responsibilities, the Nuclear Regulatory Commission (NRC) staff will be required to perform an independent assessment of the groundwater flow system with respect to the technical criteria of 10 Code of Federal Regulations (CFR) Part 60. Specifically, the staff expects to use mathematical models to predict pre-emplacement and post-emplacement groundwater flow paths and travel times. These predictive assessments will be used to reach findings on compliance with the proposed EPA Standards (10 CFR 60.112), which apply to post-emplacement groundwater travel time along the path of likely radionuclide travel (10 CFR 60.113(2)). Predictive modeling of groundwater flow will require defensible conceptual models of the flow system, defensible boundary conditions, and defensible values of hydraulic parameters. The purpose fo this technical position is to provide guidance to DOE on an approach that the NRC staff considers acceptable in determining what hydrogeologic testing (including types of tests, scale of tests, and number of tests) at the Hanford site will be required to produce the hydraulic data necessary and sufficient to perform rigorous, quantitative modeling to support predictions of repository performance. 2 figures

  7. Exploring Social Structures in Extended Team Model

    DEFF Research Database (Denmark)

    Zahedi, Mansooreh; Ali Babar, Muhammad

    2013-01-01

    Extended Team Model (ETM) as a type of offshore outsourcing is increasingly becoming popular mode of Global Software Development (GSD). There is little knowledge about the social structures in ETM and their impact on collaboration. Within a large interdisciplinary project to develop the next...... generation of GSD technologies, we are exploring the role of social structures to support collaboration. This paper reports some details of our research design and initial findings about the mechanisms to support social structures and their impact on collaboration in an ETM....

  8. Evolving the structure of hidden Markov Models

    DEFF Research Database (Denmark)

    won, K. J.; Prugel-Bennett, A.; Krogh, A.

    2006-01-01

    A genetic algorithm (GA) is proposed for finding the structure of hidden Markov Models (HMMs) used for biological sequence analysis. The GA is designed to preserve biologically meaningfu