WorldWideScience

Sample records for hydrogeochemistry forsmark site

  1. Bedrock hydrogeochemistry Forsmark. Site descriptive modelling SDM-Site Forsmark

    Laaksoharju, Marcus [Geopoint AB, Sollentuna (Sweden); Smellie, John [Conterra AB, Partille (Sweden); Tullborg, Eva-Lena [Terralogica, Graabo (Sweden); Gimeno, Maria [Univ. of Zaragoza, Zaragoza (Spain); Hallbeck, Lotta [Microbial Analytics, Goeteborg (Sweden); Molinero, Jorge [Amphos XXI Consulting S.L., Barcelona (Spain); Waber, Nick [Univ. of Bern, Bern (Switzerland)

    2008-12-15

    The overall objectives of the hydrogeochemical site description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site, and to use this understanding to develop models that address the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and porewater and their evolution with time. The specific aims of the hydrogeochemical work were: To document the hydrogeochemistry at the Forsmark site with focus on the development of conceptual models to describe and visualise the site. To provide relevant parameter values to be used for safety assessment calculations. To provide the hydrogeochemical basis for the modelling work by other teams, in particular hydrogeology. To take account of the feedback from the SR-Can safety assessment work that bears relevance to the hydrogeochemical modelling work. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. In this report, the groundwaters have been interpreted in relation to their origin, evolution and composition, which require close integration with geological, climatological and hydrogeological information. Past climate changes are one of the major driving forces for long-term hydrogeochemical changes (hundreds to thousands of years) and are, therefore, of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the Fennoscandian crystalline bedrock. In contrast, redox buffer capacity of the bedrock will minimise the effects on changes in alkalinity and redox at repository depths, therefore limiting the variations in pH and Eh significantly, regardless of major changes in groundwater composition. There is

  2. Bedrock hydrogeochemistry Forsmark. Site descriptive modelling SDM-Site Forsmark

    Laaksoharju, Marcus; Smellie, John; Tullborg, Eva-Lena; Gimeno, Maria; Hallbeck, Lotta; Molinero, Jorge; Waber, Nick

    2008-12-01

    The overall objectives of the hydrogeochemical site description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site, and to use this understanding to develop models that address the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and porewater and their evolution with time. The specific aims of the hydrogeochemical work were: To document the hydrogeochemistry at the Forsmark site with focus on the development of conceptual models to describe and visualise the site. To provide relevant parameter values to be used for safety assessment calculations. To provide the hydrogeochemical basis for the modelling work by other teams, in particular hydrogeology. To take account of the feedback from the SR-Can safety assessment work that bears relevance to the hydrogeochemical modelling work. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. In this report, the groundwaters have been interpreted in relation to their origin, evolution and composition, which require close integration with geological, climatological and hydrogeological information. Past climate changes are one of the major driving forces for long-term hydrogeochemical changes (hundreds to thousands of years) and are, therefore, of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the Fennoscandian crystalline bedrock. In contrast, redox buffer capacity of the bedrock will minimise the effects on changes in alkalinity and redox at repository depths, therefore limiting the variations in pH and Eh significantly, regardless of major changes in groundwater composition. There is

  3. SFR site investigation. Bedrock Hydrogeochemistry

    Nilsson, Ann-Chatrin; Tullborg, Eva-Lena; Smellie, John; Gimeno, Maria J.; Gomez, Javier B.; Auque, Luis F.; Sandstroem, Bjoern; Pedersen, Karsten

    2011-11-01

    There are plans that the final repository for low and intermediate level radioactive waste, SFR, located about 150 km north of Stockholm, will be extended. Geoscientific studies to define and characterise a suitable bedrock volume for the extended repository have been carried out from 2007 to 2011, and have included the drilling and evaluation of seven new core drilled and four percussion boreholes. These new data, together with existing data extending back to 1985, have been interpreted and modelled in order to provide the necessary information for safety assessment and repository design. This report presents the final hydrogeochemical site description for the SFR site, and will constitute a background report for the integrated site description (the SFR Site Descriptive Model version 1.0) together with corresponding reports from the geological and hydrogeological disciplines. Most of the hydrogeochemical data from the field investigations consist of major ions and isotopes together with sporadic gas, microbe and measured redox data. Despite the close proximity of the Forsmark site, few data from this source are of relevance because of the shallow nature of the SFR site, the fact that SFR is located beneath the Baltic Sea and also the drawdown/upconing impacts of its construction on the hydrogeochemistry. This artificially imposed dynamic flow system is naturally more prevalent along major deformation fracture zones of higher transmissivity, whilst lower transmissive fractures together with the less transmissive bedrock masses between major deformation zones, still retain some evidence of the natural groundwater mixing patterns established prior to the SFR construction. The groundwaters in the SFR dataset cover a depth down to -250 m.a.s.l. with single sampling locations at -300 and -400 m.a.s.l. and represent a relatively limited salinity range (1,500 to 5,500 mg/L chloride). However, the δ 18 O values show a wide variation (-15.5 to -7.5 per mille V

  4. SFR site investigation. Bedrock Hydrogeochemistry

    Nilsson, Ann-Chatrin [Geosigma AB, Uppsala (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden); Smellie, John [Conterra AB, Uppsala (Sweden); Gimeno, Maria J.; Gomez, Javier B.; Auque, Luis F. [Univ. of Zaragoza, Zaragoza (Spain); Sandstroem, Bjoern [WSP Sverige AB, Goeteborg (Sweden); Pedersen, Karsten [Micans AB, Moelnlycke (Sweden)

    2011-11-15

    There are plans that the final repository for low and intermediate level radioactive waste, SFR, located about 150 km north of Stockholm, will be extended. Geoscientific studies to define and characterise a suitable bedrock volume for the extended repository have been carried out from 2007 to 2011, and have included the drilling and evaluation of seven new core drilled and four percussion boreholes. These new data, together with existing data extending back to 1985, have been interpreted and modelled in order to provide the necessary information for safety assessment and repository design. This report presents the final hydrogeochemical site description for the SFR site, and will constitute a background report for the integrated site description (the SFR Site Descriptive Model version 1.0) together with corresponding reports from the geological and hydrogeological disciplines. Most of the hydrogeochemical data from the field investigations consist of major ions and isotopes together with sporadic gas, microbe and measured redox data. Despite the close proximity of the Forsmark site, few data from this source are of relevance because of the shallow nature of the SFR site, the fact that SFR is located beneath the Baltic Sea and also the drawdown/upconing impacts of its construction on the hydrogeochemistry. This artificially imposed dynamic flow system is naturally more prevalent along major deformation fracture zones of higher transmissivity, whilst lower transmissive fractures together with the less transmissive bedrock masses between major deformation zones, still retain some evidence of the natural groundwater mixing patterns established prior to the SFR construction. The groundwaters in the SFR dataset cover a depth down to -250 m.a.s.l. with single sampling locations at -300 and -400 m.a.s.l. and represent a relatively limited salinity range (1,500 to 5,500 mg/L chloride). However, the {delta}{sup 18}O values show a wide variation (-15.5 to -7.5 per mille V

  5. Forsmark - site descriptive model version 0

    2002-10-01

    biosphere, is sufficiently advanced for some initial modelling exercises. The available information on the geosphere in the Forsmark regional model area is quite extensive, at least locally (especially SFR). In order to develop and test the modelling procedures, this information has been collected and transformed into appropriate formats under four separate headings: Geology, Rock mechanics, Hydrogeology, and Hydrogeochemistry. In the areas of rock engineering, hydrogeology and hydrogeochemistry, modelling activities were mainly confined to parametrisation exercises, using presently available data from the Forsmark regional model area to put limits on, for instance, the in situ stress field, the mechanical properties of the rock mass, the hydraulic properties of the fracture zones and rock mass between them, and the hydrogeochemical evolution. The site descriptive model, version 0, is intended as the basic platform and natural starting point for all groups involved in the site investigations at Forsmark, especially for the regional model area. The main results of the present project were to focus attention on the strengths and weaknesses in the available data coverage and data storage and processing systems, and to provide a basis for developing and testing ways of transforming diverse types of geoscientific information into a form appropriate for modelling. At the same time, the project provided concrete guidelines for the planning of the initial site investigations at Forsmark

  6. Forsmark - site descriptive model version 0

    NONE

    2002-10-01

    During 2002, the Swedish Nuclear Fuel and Waste Management Company (SKB) is starting investigations at two potential sites for a deep repository in the Precambrian basement of the Fennoscandian Shield. The present report concerns one of those sites, Forsmark, which lies in the municipality of Oesthammar, on the east coast of Sweden, about 150 kilometres north of Stockholm. The site description should present all collected data and interpreted parameters of importance for the overall scientific understanding of the site, for the technical design and environmental impact assessment of the deep repository, and for the assessment of long-term safety. The site description will have two main components: a written synthesis of the site, summarising the current state of knowledge, as documented in the databases containing the primary data from the site investigations, and one or several site descriptive models, in which the collected information is interpreted and presented in a form which can be used in numerical models for rock engineering, environmental impact and long-term safety assessments. The site descriptive models are devised and stepwise updated as the site investigations proceed. The point of departure for this process is the regional site descriptive model, version 0, which is the subject of the present report. Version 0 is developed out of the information available at the start of the site investigation. This information, with the exception of data from tunnels and drill holes at the sites of the Forsmark nuclear reactors and the underground low-middle active radioactive waste storage facility, SFR, is mainly 2D in nature (surface data), and is general and regional, rather than site-specific, in content. For this reason, the Forsmark site descriptive model, version 0, as detailed in the present report, has been developed at a regional scale. It covers a rectangular area, 15 km in a southwest-northeast and 11 km in a northwest-southeast direction, around the

  7. Bedrock hydrogeology Forsmark. Site descriptive modelling, SDM-Site Forsmark

    Follin, Sven (SF GeoLogic AB, Taeby (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has conducted site investigations at two different locations, the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a final repository for spent nuclear fuel according to the KBS-3 concept. Site characterisation should provide all data required for an integrated evaluation of the suitability of the investigated site and an important component in the characterisation work is the development of a hydrogeological model. The hydrogeological model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It also provides input to the safety assessment. Another important use of the hydrogeological model is in the environmental impact assessment. This report presents the understanding of the hydrogeological conditions of the bedrock at Forsmark reached following the completion of the surface-based investigations and provides a summary of the bedrock hydrogeological model and the underlying data supporting its development. It constitutes the main reference on bedrock hydrogeology for the site descriptive model concluding the surface-based investigations at Forsmark, SDM-site, and is intended to describe the hydraulic properties and hydrogeological conditions of the bedrock at the site and to give the information essential for demonstrating understanding

  8. Site description of Forsmark at completion of the site investigation phase. SDM-Site Forsmark

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Co., SKB, has undertaken site characterisation in two different areas, Forsmark and Laxemar-Simpevarp, in order to identify a suitable location for a geological repository of spent nuclear fuel according to the KBS-3 method. The site investigations have been conducted in campaigns, punctuated by data freezes. After each data freeze, the site data have been analysed and modelling has been carried out with the overall purpose to develop a site descriptive model (SDM). The site descriptive model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It is also essential for safety assessment, since the model is the only source for site-specific input. Another important use of the site descriptive model is in the environmental impact assessment. An SDM is an integrated model for geology, thermal properties, rock mechanics, hydrogeology, hydrogeochemistry, bedrock transport properties and a description of the surface system. The site descriptive model compiled in the current report, SDM-Site, presents an integrated understanding of the Forsmark area at the completion of the surface-based investigations, which were conducted at Forsmark during the period 2002 to 2007. It also provides a summary of the abundant underlying data and the discipline-specific models that support the site understanding. The description relies heavily on background reports that address, in particular, details in data analyses and modelling in the different disciplines. The Forsmark area is located in northern Uppland within the municipality of Oesthammar, about 120 km north of Stockholm. The candidate area for site investigation is located along the shoreline of Oeregrundsgrepen, within the north-western part of a major tectonic lens that formed between 1.87 and 1.85 billion years ago during the Svecokarelian orogeny. The candidate area is approximately 6 km long and 2 km wide. The

  9. Site description of Forsmark at completion of the site investigation phase. SDM-Site Forsmark

    2008-12-01

    The Swedish Nuclear Fuel and Waste Management Co., SKB, has undertaken site characterisation in two different areas, Forsmark and Laxemar-Simpevarp, in order to identify a suitable location for a geological repository of spent nuclear fuel according to the KBS-3 method. The site investigations have been conducted in campaigns, punctuated by data freezes. After each data freeze, the site data have been analysed and modelling has been carried out with the overall purpose to develop a site descriptive model (SDM). The site descriptive model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It is also essential for safety assessment, since the model is the only source for site-specific input. Another important use of the site descriptive model is in the environmental impact assessment. An SDM is an integrated model for geology, thermal properties, rock mechanics, hydrogeology, hydrogeochemistry, bedrock transport properties and a description of the surface system. The site descriptive model compiled in the current report, SDM-Site, presents an integrated understanding of the Forsmark area at the completion of the surface-based investigations, which were conducted at Forsmark during the period 2002 to 2007. It also provides a summary of the abundant underlying data and the discipline-specific models that support the site understanding. The description relies heavily on background reports that address, in particular, details in data analyses and modelling in the different disciplines. The Forsmark area is located in northern Uppland within the municipality of Oesthammar, about 120 km north of Stockholm. The candidate area for site investigation is located along the shoreline of Oeregrundsgrepen, within the north-western part of a major tectonic lens that formed between 1.87 and 1.85 billion years ago during the Svecokarelian orogeny. The candidate area is approximately 6 km long and 2 km wide. The

  10. Surface system Forsmark. Site descriptive modelling SDM-Site Forsmark

    Lindborg, Tobias

    2008-12-01

    SKB has undertaken site characterization of two different areas, Forsmark and Laxemar-Simpevarp, in order to find a suitable location for a geological repository for spent nuclear fuel. This report focuses on the site descriptive modelling of the surface system at Forsmark. The characterization of the surface system at the site was primarily made by identifying and describing important properties in different parts of the surface system, properties concerning e.g. hydrology and climate, Quaternary deposits and soils, hydrochemistry, vegetation, ecosystem functions, but also current and historical land use. The report presents available input data, methodology for data evaluation and modelling, and resulting models for each of the different disciplines. Results from the modelling of the surface system are also integrated with results from modelling of the deep bedrock system. The Forsmark site is located within the municipality of Oesthammar, about 120 km north of Stockholm. The investigated area is located along the shoreline of Oeregrundsgrepen, a funnel-shaped bay of the Baltic Sea. The area is characterized by small-scale topographic variations and is almost entirely located at altitudes lower than 20 metres above sea level. The Quaternary deposits in the area are dominated by till, characterized by a rich content of calcite which was transported by the glacier ice to the area from the sedimentary bedrock of Gaevlebukten about 100 km north of Forsmark. As a result, the surface waters and shallow groundwater at Forsmark are characterized by high pH values and high concentrations of certain major constituents, especially calcium and bicarbonate. The annual precipitation and runoff are 560 and 150 mm, respectively. The lakes are small and shallow, with mean and maximum depths ranging from approximately 0.1 to 1 m and 0.4 to 2 m. Sea water flows into the most low-lying lakes during events giving rise to very high sea levels. Wetlands are frequent and cover 25 to 35

  11. Surface system Forsmark. Site descriptive modelling SDM-Site Forsmark

    Lindborg, Tobias [ed.

    2008-12-15

    SKB has undertaken site characterization of two different areas, Forsmark and Laxemar-Simpevarp, in order to find a suitable location for a geological repository for spent nuclear fuel. This report focuses on the site descriptive modelling of the surface system at Forsmark. The characterization of the surface system at the site was primarily made by identifying and describing important properties in different parts of the surface system, properties concerning e.g. hydrology and climate, Quaternary deposits and soils, hydrochemistry, vegetation, ecosystem functions, but also current and historical land use. The report presents available input data, methodology for data evaluation and modelling, and resulting models for each of the different disciplines. Results from the modelling of the surface system are also integrated with results from modelling of the deep bedrock system. The Forsmark site is located within the municipality of Oesthammar, about 120 km north of Stockholm. The investigated area is located along the shoreline of Oeregrundsgrepen, a funnel-shaped bay of the Baltic Sea. The area is characterized by small-scale topographic variations and is almost entirely located at altitudes lower than 20 metres above sea level. The Quaternary deposits in the area are dominated by till, characterized by a rich content of calcite which was transported by the glacier ice to the area from the sedimentary bedrock of Gaevlebukten about 100 km north of Forsmark. As a result, the surface waters and shallow groundwater at Forsmark are characterized by high pH values and high concentrations of certain major constituents, especially calcium and bicarbonate. The annual precipitation and runoff are 560 and 150 mm, respectively. The lakes are small and shallow, with mean and maximum depths ranging from approximately 0.1 to 1 m and 0.4 to 2 m. Sea water flows into the most low-lying lakes during events giving rise to very high sea levels. Wetlands are frequent and cover 25 to 35

  12. Fracture mineralogy of the Forsmark site. SDM-Site Forsmark

    Sandstroem, Bjoern (Dept. of Earth Sciences, Univ. of Goeteborg (Sweden)); Tullborg, Eva-Lena (Terralogica AB, Graabo (Sweden)); Smellie, John (Conterra AB, Luleaa (Sweden)); MacKenzie, Angus B. (SUERC, Scottish Enterprise Technology Park, East Kilbride (United Kingdom)); Suksi, Juhani (Dept. of Chemistry, Univ. of Helsinki, Helsinki (Finland))

    2008-08-15

    Detailed investigations of the fracture mineralogy and altered wall rock have been carried out as part of the site characterisation programme between 2003 and 2007 at Forsmark. The results have been published in a number of P-reports and in contributions to scientific journals. This report summarises and evaluates the data obtained during the detailed fracture mineralogical studies. The report includes descriptions of the identified fracture minerals and their chemical composition. A sequence of fracture mineralisations has been distinguished and provides information of the low to moderate temperature (brittle) geological and hydrogeological evolution at the site. Special focus has been paid to the chemical and stable isotopic composition of calcite to obtain palaeohydrogeological information. Chemical analyses of bulk fracture filling material have been carried out to identify possible sinks for certain elements and also to reveal the presence of minor phases rich in certain elements which have not been possible to detect by X-ray diffraction (XRD). Statistical analysis of the mineralogy in fractures outside deformation zones (i.e. within fracture domains FFM01, FFM02, FFM03 and FFM06) have been carried out concerning variation of fracture mineral distribution at depth and in different fracture domains. Uranium contents and uranium-series isotopes have been analysed on fracture coating material from hydraulically conductive fractures. Such analyses are also available from the groundwaters and the results are combined in order to reveal recent (< 1 Ma) removal/deposition of uranium in the fracture system. The redox conditions in the fracture system have been evaluated based on mineralogical and chemical indicators as well as Moessbauer analyses

  13. Preliminary site description Forsmark area - version 1.2

    Skagius, Kristina [ed.

    2005-06-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, the Forsmark and Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. An integrated component in the characterisation work is the development of a site descriptive model that constitutes a description of the site and its regional setting, covering the current state of the geosphere and the biosphere as well as those ongoing natural processes that affect their long-term evolution. The present report documents the site descriptive modelling activities (version 1.2) for the Forsmark area. The overall objectives of the version 1.2 site descriptive modelling are to produce and document an integrated description of the site and its regional environments based on the site-specific data available from the initial site investigations and to give recommendations on continued investigations. The modelling work is based on primary data, i.e. quality-assured, geoscientific and ecological field data available in the SKB databases SICADA and GIS, available July 31, 2004. The work has been conducted by a project group and associated discipline-specific working groups. The members of the project group represent the disciplines of geology, rock mechanics, thermal properties, hydrogeology, hydrogeochemistry, transport properties and surface ecosystems (including overburden, surface hydrogeochemistry and hydrology). In addition, some group members have specific qualifications of importance in this type of project e.g. expertise in RVS (Rock Visualisation System) modelling, GIS-modelling and in statistical data analysis. The overall strategy to achieve a site description is to develop discipline-specific models by interpretation and analyses of the primary data. The different discipline-specific models are then integrated into a site description. Methodologies for developing the discipline-specific models are documented in

  14. Preliminary site description Forsmark area - version 1.2

    Skagius, Kristina

    2005-06-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, the Forsmark and Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. An integrated component in the characterisation work is the development of a site descriptive model that constitutes a description of the site and its regional setting, covering the current state of the geosphere and the biosphere as well as those ongoing natural processes that affect their long-term evolution. The present report documents the site descriptive modelling activities (version 1.2) for the Forsmark area. The overall objectives of the version 1.2 site descriptive modelling are to produce and document an integrated description of the site and its regional environments based on the site-specific data available from the initial site investigations and to give recommendations on continued investigations. The modelling work is based on primary data, i.e. quality-assured, geoscientific and ecological field data available in the SKB databases SICADA and GIS, available July 31, 2004. The work has been conducted by a project group and associated discipline-specific working groups. The members of the project group represent the disciplines of geology, rock mechanics, thermal properties, hydrogeology, hydrogeochemistry, transport properties and surface ecosystems (including overburden, surface hydrogeochemistry and hydrology). In addition, some group members have specific qualifications of importance in this type of project e.g. expertise in RVS (Rock Visualisation System) modelling, GIS-modelling and in statistical data analysis. The overall strategy to achieve a site description is to develop discipline-specific models by interpretation and analyses of the primary data. The different discipline-specific models are then integrated into a site description. Methodologies for developing the discipline-specific models are documented in

  15. Rock Mechanics Forsmark. Site descriptive modelling Forsmark stage 2.2

    Glamheden, Rune; Fredriksson, Anders (Golder Associates AB (SE)); Roeshoff, Kennert; Karlsson, Johan (Berg Bygg Konsult AB (SE)); Hakami, Hossein (Itasca Geomekanik AB (SE)); Christiansson, Rolf (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE))

    2007-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, Forsmark and Laxemar/Simpevarp, with the objective of siting a geological repository for spent nuclear fuel. The characterisation of a site is an integrated work carried out by several disciplines including geology, rock mechanics, thermal properties, hydrogeology, hydrogeochemistry and surface systems. This report presents the rock mechanics model of the Forsmark site up to stage 2.2. The scope of work has included compilation and analysis of primary data of intact rock and fractures, estimation of the rock mass mechanical properties and estimation of the in situ state of stress at the Forsmark site. The laboratory results on intact rock and fractures in the target volume demonstrate a good quality rock mass that is strong, stiff and relatively homogeneous. The homogeneity is also supported by the lithological and the hydrogeological models. The properties of the rock mass have been initially estimated by two separate modelling approaches, one empirical and one theoretical. An overall final estimate of the rock mass properties were achieved by integrating the results from the two models via a process termed 'Harmonization'. Both the tensile tests, carried out perpendicular and parallel to the foliation, and the theoretical analyses of the rock mass properties in directions parallel and perpendicular to the major principal stress, result in parameter values almost independent of direction. This indicates that the rock mass in the target volume is isotropic. The rock mass quality in the target volume appears to be of high and uniform quality. Those portions with reduced rock mass quality that do exist are mainly related to sections with increased fracture frequency. Such sections are associated with deformation zones according to the geological description. The results of adjacent rock domains and fracture domains of the target

  16. Site description of the SFR area at Forsmark at completion of the site investigation phase. SDM-PSU Forsmark

    NONE

    2013-05-15

    The site descriptive model (SDM) presented in this report is an integrated model for bedrock geology, rock mechanics, bedrock hydrogeology and bedrock hydrogeochemistry of the site investigated in the SFR extension project (PSU). A description of the surface system is also included in the report. However, the surface system is not integrated with the other disciplines as new data regarding the surface system will not be available until after the completion of SDM-PSU. It is noted that SDM-PSU does not include all disciplines handled in SDM-Site Forsmark (SKB 2008b), the focus is to produce a site description that meets the needs of the SFR extension project. The overall objective of the SFR extension project is to have the application for the extension ready by 2013. This report presents an integrated site model incorporating the historic data acquired from the investigations for and construction of the existing SFR facility (1980-1986), as well as from the recent investigations for the planned extension of SFR (2008-2009). It also provides a summary of the abundant underlying data and the discipline-specific models that support the integrated site model. The description relies heavily on background reports concerning detailed data analyses and modelling in the different disciplines. It is noteworthy that the investigations conducted during the SFR extension project were guided by the choice of site prior to the investigations, which was based on the experience gained during the construction of the existing SFR facility.

  17. Site description of the SFR area at Forsmark at completion of the site investigation phase. SDM-PSU Forsmark

    2013-05-01

    The site descriptive model (SDM) presented in this report is an integrated model for bedrock geology, rock mechanics, bedrock hydrogeology and bedrock hydrogeochemistry of the site investigated in the SFR extension project (PSU). A description of the surface system is also included in the report. However, the surface system is not integrated with the other disciplines as new data regarding the surface system will not be available until after the completion of SDM-PSU. It is noted that SDM-PSU does not include all disciplines handled in SDM-Site Forsmark (SKB 2008b), the focus is to produce a site description that meets the needs of the SFR extension project. The overall objective of the SFR extension project is to have the application for the extension ready by 2013. This report presents an integrated site model incorporating the historic data acquired from the investigations for and construction of the existing SFR facility (1980-1986), as well as from the recent investigations for the planned extension of SFR (2008-2009). It also provides a summary of the abundant underlying data and the discipline-specific models that support the integrated site model. The description relies heavily on background reports concerning detailed data analyses and modelling in the different disciplines. It is noteworthy that the investigations conducted during the SFR extension project were guided by the choice of site prior to the investigations, which was based on the experience gained during the construction of the existing SFR facility

  18. Description of surface systems. Preliminary site description. Forsmark area Version 1.2

    Lindborg, Tobias [ed.

    2005-06-01

    Swedish Nuclear Fuel and Waste Management Co (SKB) started site investigations for a deep repository for spent nuclear fuel in 2002 at two different sites in Sweden, Forsmark and Oskarshamn. The investigations should provide necessary information for a license application aimed at starting underground exploration. For this reason, ecosystem data need to be interpreted and assessed into site descriptive models, which in turn are used for safety assessment studies and for environmental impact assessment. Descriptions of the surface system are also needed for further planning of the site investigations. This report describes the surface ecosystems of the Forsmark site (e.g. hydrology, Quaternary deposits, chemistry, vegetation, animals and the human land use). The ecosystem description is an integration of the site and its regional setting, covering the current state of the biosphere as well as the ongoing natural processes affecting the longterm development. Improving the descriptions is important during both the initial and the complete site investigation phase. Before starting of the initial phase in Forsmark, version 0 of the site descriptive model was developed. The results of the initial site investigation phase is compiled into a preliminary site description of Forsmark (version 1.2) in June 2005. This report provides the major input and background to the biosphere description, in the 1.2 version of the Forsmark site description. The basis for this interim version is quality-assured field data from the Forsmark sub area and regional area, available in the SKB SICADA, and GIS data bases as of July 31th 2004 as well as version 1.1 of the Site Descriptive Model. To achieve an ecosystem site description there is a need to develop discipline-specific models by interpreting and analysing primary data. The different discipline-specific models are then integrated into a system describing interactions and flows and stocks of matter between and within functional units in

  19. Description of surface systems. Preliminary site description. Forsmark area Version 1.2

    Lindborg, Tobias

    2005-06-01

    Swedish Nuclear Fuel and Waste Management Co (SKB) started site investigations for a deep repository for spent nuclear fuel in 2002 at two different sites in Sweden, Forsmark and Oskarshamn. The investigations should provide necessary information for a license application aimed at starting underground exploration. For this reason, ecosystem data need to be interpreted and assessed into site descriptive models, which in turn are used for safety assessment studies and for environmental impact assessment. Descriptions of the surface system are also needed for further planning of the site investigations. This report describes the surface ecosystems of the Forsmark site (e.g. hydrology, Quaternary deposits, chemistry, vegetation, animals and the human land use). The ecosystem description is an integration of the site and its regional setting, covering the current state of the biosphere as well as the ongoing natural processes affecting the longterm development. Improving the descriptions is important during both the initial and the complete site investigation phase. Before starting of the initial phase in Forsmark, version 0 of the site descriptive model was developed. The results of the initial site investigation phase is compiled into a preliminary site description of Forsmark (version 1.2) in June 2005. This report provides the major input and background to the biosphere description, in the 1.2 version of the Forsmark site description. The basis for this interim version is quality-assured field data from the Forsmark sub area and regional area, available in the SKB SICADA, and GIS data bases as of July 31th 2004 as well as version 1.1 of the Site Descriptive Model. To achieve an ecosystem site description there is a need to develop discipline-specific models by interpreting and analysing primary data. The different discipline-specific models are then integrated into a system describing interactions and flows and stocks of matter between and within functional units in

  20. Forsmark site investigation. Interpretation of topographic lineaments 2002

    Isaksson, Hans

    2003-04-01

    SKB performs site investigations for localization of a deep repository for high level radioactive waste. The site investigations are performed in two municipalities; Oesthammar and Oskarshamn. The Forsmark investigation area is situated in Oesthammar, close to the Forsmark nuclear power plant. The purpose of interpretation of lineaments from topographic data is to identify linear features (lineaments), which may correspond to deformation zones in the bedrock. The data will be combined with interpretations of lineaments from airborne geophysical data in order to produce an integrated lineament interpretation for the Forsmark area. This integrated interpretation will be combined with geological data in order to establish a bedrock geological map of the Forsmark area. The area for the lineament interpretation is the same as that selected for the bedrock mapping activities during 2002, i.e. the land area around Forsmark

  1. Human population and activities in Forsmark. Site description

    Miliander, Sofia; Punakivi, Mari; Kylaekorpi, Lasse; Rydgren, Bernt [SwedPower AB, Stockholm (Sweden)

    2004-12-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is in the process of selecting a safe and environmentally acceptable location for a deep repository of radioactive waste. Two alternative locations are under investigation. These are Forsmark, Oesthammars kommun (kommun = municipality) and Simpevarp/Laxemar, Oskarshamns kommun. SKB has expressed the importance of describing the humans and their activities in these areas and therefore has this synthesis concerning the human population in Forsmark been produced.The description is a statistical synthesis, mainly based upon statistical data from SCB (Statistics Sweden) that has been collected, processed and analysed. The statistical data has not been verified through site inspections and interviews. When using statistical data, it is advisable to note that the data becomes more unreliable if the areas are small, with small populations.The data in this description is essential for future evaluations of the impact on the environment and its human population (Environmental Impact Assessments). The data is also important when modelling the potential flows of radio nuclides and calculating the risk of exposure in future safety assessments.The actual area for the study is in this report called 'the Forsmark area', an area of 19.5 km{sup 2} near Forsmark nuclear power plant. The land use in the Forsmark area differs notably from the land use in Uppsala laen (laen = county). Only 0.04% of the total area is developed (built-up) compared to 4.9% in Uppsala laen and only 4% is agricultural land compared to 25% in the county. Furthermore, there are far more forest, wetlands and water areas in the Forsmark area. The forest area represents as much as 72.5% of the total area.The Forsmark area is uninhabited, and its surroundings are very sparsely populated. In 2002, the population density in Forsmark was 1.8 inhabitants per square kilometre, which was 24 times lower than in Uppsala laen. The population density in the

  2. Human population and activities in Forsmark. Site description

    Miliander, Sofia; Punakivi, Mari; Kylaekorpi, Lasse; Rydgren, Bernt

    2004-12-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is in the process of selecting a safe and environmentally acceptable location for a deep repository of radioactive waste. Two alternative locations are under investigation. These are Forsmark, Oesthammars kommun (kommun = municipality) and Simpevarp/Laxemar, Oskarshamns kommun. SKB has expressed the importance of describing the humans and their activities in these areas and therefore has this synthesis concerning the human population in Forsmark been produced.The description is a statistical synthesis, mainly based upon statistical data from SCB (Statistics Sweden) that has been collected, processed and analysed. The statistical data has not been verified through site inspections and interviews. When using statistical data, it is advisable to note that the data becomes more unreliable if the areas are small, with small populations.The data in this description is essential for future evaluations of the impact on the environment and its human population (Environmental Impact Assessments). The data is also important when modelling the potential flows of radio nuclides and calculating the risk of exposure in future safety assessments.The actual area for the study is in this report called 'the Forsmark area', an area of 19.5 km 2 near Forsmark nuclear power plant. The land use in the Forsmark area differs notably from the land use in Uppsala laen (laen = county). Only 0.04% of the total area is developed (built-up) compared to 4.9% in Uppsala laen and only 4% is agricultural land compared to 25% in the county. Furthermore, there are far more forest, wetlands and water areas in the Forsmark area. The forest area represents as much as 72.5% of the total area.The Forsmark area is uninhabited, and its surroundings are very sparsely populated. In 2002, the population density in Forsmark was 1.8 inhabitants per square kilometre, which was 24 times lower than in Uppsala laen. The population density in the parish has been

  3. Background complementary hydrogeochemical studies. SDM-Site Forsmark

    Kalinowski, Birgitta E. (ed.)

    2008-08-15

    in geochemistry, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on 2.2 data and complementary 2.3 data, was carried out during September 2006 to December 2007. Several groups within ChemNet were involved and the evaluation was conducted independently using different approaches ranging from expert knowledge to geochemical and mathematical modelling including transport modelling. During regular ChemNet meetings the results have been presented and discussed. This report is a compilation of different projects that have been finished independently of each other. Section 1: M3 modelling and 2D visualisation of the hydrochemical parameters by Ioana Gurban. The focus of this part is on updating the hydrochemical model, to make uncertainty tests and to present the final models that can be integrated better with the hydrodynamic models. M3 modelling helps to summarise and understand the measured data, by using the major elements and the isotopes delta18O and delta2H as variables. The visualisation of the mixing proportions along the boreholes helps to understand the distribution of the data in the domain and to check and compare the results of different models; and therefore to choose the model which best describes the measured data. Section 2: Coupled hydrogeological and solute transport, visualisation and supportive detailed reaction modelling by Jorge Molinero, David Arcos, Lara Duro. Reactive mixing and reactive solute transport models are used as quantitative tools in order to evaluate how much disturbance can be allowed for a given groundwater sample at repository depth and still meet the SKB suitability criteria. Spatial analysis and 3D visualisation of available representative samples in Forsmark was performed. The computed M3 mixing fractions show a spatial distribution qualitatively correlated with key hydrochemical signatures, such as strontium (for Deep Saline

  4. Regional hydrogeological simulations for Forsmark - numerical modelling using CONNECTFLOW. Preliminary site description Forsmark area - version 1.2

    Hartley, Lee; Cox, Ian; Hunter, Fiona; Jackson, Peter; Joyce, Steve; Swift, Ben [Serco Assurance, Risley (United Kingdom); Gylling, Bjoern; Marsic, Niko [Kemakta Konsult AB, Stockholm (Sweden)

    2005-05-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) carries out site investigations in two different candidate areas in Sweden with the objective of describing the in-situ conditions for a bedrock repository for spent nuclear fuel. The site characterisation work is divided into two phases, an initial site investigation phase (IPLU) and a complete site investigation phase (KPLU). The results of IPLU are used as a basis for deciding on a subsequent KPLU phase. On the basis of the KPLU investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft). An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model, which provides the geometrical context in terms of a model of deformation zones and the rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other geo-disciplines (hydrogeology, hydro-geochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models. Here, a numerical model is developed on a regional-scale (hundreds of square kilometres) to understand the zone of influence for groundwater flow that affects the Forsmark area. Transport calculations are then performed by particle tracking from a local-scale release area (a few square kilometres) to identify potential discharge areas for the site and using greater grid resolution. The main objective of this study is to support the development of a preliminary Site Description of the Forsmark area on a regional-scale based on the available data of 30 June 2004 and the previous Site Description. A more specific

  5. Comparison of site descriptive models for Olkiluoto, Finland and Forsmark, Sweden

    Geier, J.; Bath, A.; Stephansson, O.; Luukkonen, A.

    2012-08-15

    The proposed high-level radioactive waste repository sites at Olkiluoto and Forsmark share broadly similar geologic histories and regional settings. Despite differences in lithology, rock strength and patterns of brittle deformation, the sites show similarities in terms of hydrogeochemistry and hydrogeology. These similarities reflect a dominating influence of saline and brackish water intrusion during inundation by the postglacial Littorina Sea and Baltic Sea, followed by exposure to meteoric waters following postglacial uplift and transition to a Baltic coastal setting. Both sites also contain deep bedrock saline groundwater, though this is more evident at Olkiluoto than at Forsmark. A comparative study of site descriptive models for the two sites identifies the following key differences that could potentially impact safety of a repository: (1) Redox controls, buffering and biogeochemistry at proposed repository depths; (2) Salinity gradients at and below proposed repository depths; (3) Methane concentrations at and below proposed repository depths; (4) Depths to which glacial water and Littorina water penetrated; (5) Cation hydrogeochemistry and water-rock reaction; (6) Pore water compositions in rock matrix; (7) Rock fabric, secondary minerals and alteration with respect to radionuclide retention; (8) Brittle deformation fabric differences on multiple scales that affect vertical hydraulic conductivity; (9) Differences in apparent frequency of encountering water-conducting networks at proposed repository depths; (10) Shallow bedrock hydraulic properties; (11) Unique intrusive or dissolution features; (12) Connectivity of site-scale models to regional-scale features; (13) Mesoproterozoic rocks in vicinity and possibilities for human-intrusion scenarios; (14) Rock stresses and bedrock strength and deformability at proposed repository depths; (15) Thermal anisotropy. These differences are all potentially significant to safety functions, but none are so severe that

  6. Validation of coastal oceanographic models at Forsmark. Site descriptive modelling SDM-Site Forsmark

    Engqvist, Anders (A och I Engqvist Konsult HB, Vaxholm (SE)); Andrejev, Oleg (Finnish Inst. of Marine Research, Helsinki (FI))

    2008-01-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, the Forsmark and the Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterisation work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models employed to simulate the water exchange in the near-shore coastal zone in the Forsmark area, an encompassing measurement program entailing six stations has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR) model of the Forsmark study area at its interfacial boundary to the coarse resolution (CR) model of the entire Baltic was reproduced. In addition to this scrutiny it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain, since this corresponds to the most efficient mode of water exchange. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that several periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Lack of thorough absolute calibration of the salinity meters also necessitates dismissal of measurement data. Relative the assessed data that can be accepted as adequate, the outcome of the validation can be summarized in five points: (i) The surface-most salinity of the CR-model drifts downward a little less than one practical salinity unit (psu) per year, requiring that the ensuing correlation analysis be subdivided into periods of a

  7. Validation of coastal oceanographic models at Forsmark. Site descriptive modelling SDM-Site Forsmark

    Engqvist, Anders; Andrejev, Oleg

    2008-01-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, the Forsmark and the Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterisation work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models employed to simulate the water exchange in the near-shore coastal zone in the Forsmark area, an encompassing measurement program entailing six stations has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR) model of the Forsmark study area at its interfacial boundary to the coarse resolution (CR) model of the entire Baltic was reproduced. In addition to this scrutiny it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain, since this corresponds to the most efficient mode of water exchange. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that several periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Lack of thorough absolute calibration of the salinity meters also necessitates dismissal of measurement data. Relative the assessed data that can be accepted as adequate, the outcome of the validation can be summarized in five points: (i) The surface-most salinity of the CR-model drifts downward a little less than one practical salinity unit (psu) per year, requiring that the ensuing correlation analysis be subdivided into periods of a

  8. Execution programme for the initial site investigations at Forsmark

    2002-05-01

    In the feasibility studies that were completed in 2001, eight sites were identified as potentially suitable for hosting a repository. All the identified sites meet the safety requirements with respect to bedrock conditions that could be checked at that time. The feasibility studies have revealed good potential when it comes to the technical and environmental aspects as well. Based on an integrated evaluation SKB proposed to start site investigations with test drillings at three sites; Forsmark, Simpevarp and Tierp. Site investigations have started at Forsmark and Simpevarp. The municipal council of Tierp voted no to a site investigation in April 2002. The site investigations are divided into two main phases; initial and complete investigations. Initial site investigations are performed to identify the site within a specified area that is deemed to be most suitable for a deep repository and to determine whether the feasibility study's judgement of the suitability of the area holds up in the light of borehole data from repository depth. The initial site investigations are expected to take 1.5-2 years. If the assessment shows that the site has good potential to host a repository, complete site investigations will follow for an expected duration of 3.5-4 years. The purpose of the complete site investigations is to gather all information required to select one of the sites as the main alternative and to apply for a permit for construction of the deep repository at that site. A general programme in which the results from feasibility studies are summarized, the candidate sites presented and the framework of programme for the site investigation phase presented has been published. The general programme, and main references to the programme, specifies which data are required in order to design the repository and carry out a safety assessment, how the investigations should be carried out in order to provide these data, criteria with which the site must comply, as well as

  9. Execution programme for the initial site investigations at Forsmark

    NONE

    2002-05-01

    In the feasibility studies that were completed in 2001, eight sites were identified as potentially suitable for hosting a repository. All the identified sites meet the safety requirements with respect to bedrock conditions that could be checked at that time. The feasibility studies have revealed good potential when it comes to the technical and environmental aspects as well. Based on an integrated evaluation SKB proposed to start site investigations with test drillings at three sites; Forsmark, Simpevarp and Tierp. Site investigations have started at Forsmark and Simpevarp. The municipal council of Tierp voted no to a site investigation in April 2002. The site investigations are divided into two main phases; initial and complete investigations. Initial site investigations are performed to identify the site within a specified area that is deemed to be most suitable for a deep repository and to determine whether the feasibility study's judgement of the suitability of the area holds up in the light of borehole data from repository depth. The initial site investigations are expected to take 1.5-2 years. If the assessment shows that the site has good potential to host a repository, complete site investigations will follow for an expected duration of 3.5-4 years. The purpose of the complete site investigations is to gather all information required to select one of the sites as the main alternative and to apply for a permit for construction of the deep repository at that site. A general programme in which the results from feasibility studies are summarized, the candidate sites presented and the framework of programme for the site investigation phase presented has been published. The general programme, and main references to the programme, specifies which data are required in order to design the repository and carry out a safety assessment, how the investigations should be carried out in order to provide these data, criteria with which the site must comply, as well as

  10. Confidence assessment. Site descriptive modelling SDM-Site Forsmark

    2008-09-01

    The objective of this report is to assess the confidence that can be placed in the Forsmark site descriptive model, based on the information available at the conclusion of the surface-based investigations (SDM-Site Forsmark). In this exploration, an overriding question is whether remaining uncertainties are significant for repository engineering design or long-term safety assessment and could successfully be further reduced by more surface based investigations or more usefully by explorations underground made during construction of the repository. The confidence in the Forsmark site descriptive model, based on the data available at the conclusion of the surface-based site investigations, have been assessed by exploring: Confidence in the site characterisation data base; Key remaining issues and their handling; Handling of alternative models; Consistency between disciplines; and, Main reasons for confidence and lack of confidence in the model. It is generally found that the key aspects of importance for safety assessment and repository engineering of the Forsmark site descriptive model are associated with a high degree of confidence. Because of the robust geological model that describes the site, the overall confidence in Forsmark site descriptive model is judged to be high. While some aspects have lower confidence this lack of confidence is handled by providing wider uncertainty ranges, bounding estimates and/or alternative models. Most, but not all, of the low confidence aspects have little impact on repository engineering design or for long-term safety. Poor precision in the measured data are judged to have limited impact on uncertainties on the site descriptive model, with the exceptions of inaccuracy in determining the position of some boreholes at depth in 3-D space, as well as the poor precision of the orientation of BIPS images in some boreholes, and the poor precision of stress data determined by overcoring at the locations where the pre

  11. Forsmark site investigation. Bedrock geology - overview and excursion guide

    Stephens, Michael B. (Geological Survey of Sweden, Uppsala (Sweden))

    2010-09-15

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark (this guide) and Laxemar-Simpevarp areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel in Finland. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at ten representative outcrops or outcrop areas at the ground surface in the site investigation area at Forsmark. All localities are located within or immediately adjacent to the proposed repository volume selected by SKB

  12. Forsmark site investigation. Bedrock geology - overview and excursion guide

    Stephens, Michael B.

    2010-09-01

    Bearing in mind the significance of the bedrock data from the ground surface for the geological 3D modelling work, SKB decided to present excursion guides that serve in the demonstration of the bedrock geology at the ground surface in both the Forsmark (this guide) and Laxemar-Simpevarp areas. An excursion guide is also available for the Olkiluoto area in south-western Finland, which has been selected for the construction of a repository for the disposal of highly radioactive, spent nuclear fuel in Finland. The current excursion guide presents the bedrock geology and describes in detail the character of the bedrock at ten representative outcrops or outcrop areas at the ground surface in the site investigation area at Forsmark. All localities are located within or immediately adjacent to the proposed repository volume selected by SKB

  13. Explorative analysis of major components and isotopes. SDM-Site Forsmark

    Smellie, John (Conterra AB (Sweden)); Tullborg, Eva-Lena (Terralogica AB (Sweden)); Nilsson, Ann-Chatrin (Geosigma AB (Sweden)); Sandstroem, Bjoern (Goeteborg Univ. (Sweden)); Waber, Niklaus (Univ. of Bern (Switzerland)); Gimeno, Maria (Univ. of Zaragoza (Spain)); Gascoyne, Mel (GGP Inc. (United Kingdom))

    2008-09-15

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. Past climate events are the major driving force for hydrogeochemical changes and therefore are of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the crystalline bedrock of the Fennoscandian Shield. Understanding current undisturbed hydrochemical conditions at the proposed repository site is important when predicting future changes in groundwater chemistry. The causes behind copper corrosion and/or bentonite degradation are of particular interest as they may jeopardise the long-term integrity of the planned SKB repository system. Thus, the following variables are considered for the hydrogeochemical site descriptive modelling: pH, Eh, sulphur species, iron, manganese, carbonate, phosphate, nitrogen species, total dissolved solids (TDS), isotopes, colloids, fulvic and humic acids and microorganisms. In addition, dissolved gases (e.g. carbon dioxide, methane and hydrogen) are of interest because of their likely participation in microbial reactions. In this series of reports, the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and university researchers with expertise in

  14. Explorative analysis of major components and isotopes. SDM-Site Forsmark

    Smellie, John; Tullborg, Eva-Lena; Nilsson, Ann-Chatrin; Sandstroem, Bjoern; Waber, Niklaus; Gimeno, Maria; Gascoyne, Mel

    2008-09-01

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. The work has involved the development of descriptive and mathematical models for groundwaters in relation to rock domains, fracture domains and deformation zones. Past climate events are the major driving force for hydrogeochemical changes and therefore are of fundamental importance for understanding the palaeohydrogeological, palaeohydrogeochemical and present evolution of groundwater in the crystalline bedrock of the Fennoscandian Shield. Understanding current undisturbed hydrochemical conditions at the proposed repository site is important when predicting future changes in groundwater chemistry. The causes behind copper corrosion and/or bentonite degradation are of particular interest as they may jeopardise the long-term integrity of the planned SKB repository system. Thus, the following variables are considered for the hydrogeochemical site descriptive modelling: pH, Eh, sulphur species, iron, manganese, carbonate, phosphate, nitrogen species, total dissolved solids (TDS), isotopes, colloids, fulvic and humic acids and microorganisms. In addition, dissolved gases (e.g. carbon dioxide, methane and hydrogen) are of interest because of their likely participation in microbial reactions. In this series of reports, the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and university researchers with expertise in

  15. Forsmark site investigation. A deformation analysis of the Forsmark GPS monitoring network from 2005 to 2009

    Gustafson, Lars; Ljungberg, Annika (Caliterra AB (Sweden))

    2010-10-15

    The objective of the study is to identify possible movements in the bedrock within and outside the candidate area at Forsmark. Seven physically stable stations were built in the Forsmark area in the autumn of 2005. Stations were established within a ten-kilometer radius. The stations were placed in three different areas separated by regional deformation zones: NE of the Singoe zone, within the candidate area, and SW of the Forsmark zone. Data have been collected in eighteen campaigns, each with a duration of about five days, from November 2005 to December 2009. Stations consist of a stainless steel rod fixed in the bedrock on which the GPS antenna mounts. Each station has dedicated GPS equipment only used at the specific site. Sets consist of a GPS receiver collecting raw GPS data and a choke ring antenna linked to the receiver using a coaxial cable. The receivers and antennas are dual frequency high precision geodetic grade. During each campaign the GPS receiver saves a reading every second for the duration of the five days campaign. The antennas remain mounted on the stations during the entire project, whereas all other equipment is in place at the station only during the campaigns. The measurements were related to the SWEPOS network stations Lovoe, Uppsala and Maartsbo that are defined as stations with stable fundaments by the National Land Survey of Sweden (Lantmaeteriet). This report deals with altogether 18 campaigns. The first 13 campaigns were performed during the period November 2005 to August 2008. However, the number of campaigns has been extended by adding a fourth year to the project. Optimization of the data processing depends on the properties of the entire data set comprising a period of four years. We divided the data into periods of 24 hours with each period processed as a separate session in the Bernese post processing software, after which we analyzed the residuals to conclude that data are of the expected quality. The entire data set from four

  16. Safety-related site characteristics - a relative comparison of the Forsmark reference areas

    Winberg, Anders

    2010-12-01

    SKB has over the years from 2002 to 2008 conducted site investigations in Forsmark and Laxemar, with associated site modeling, design and safety analysis. In mid-2009 Forsmark was selected on the basis of analysis made as site for a future repository for spent nuclear fuel. Based on defined safety-related geoscientific location factors data from Forsmark are compared in relative terms with data from a number of locations in Sweden, previously studied by SKB. The factors compared include: the rock's composition and structures, future climate evolution, rock mechanical conditions, earthquakes, groundwater flow, groundwater composition, delay of solutes, and the ability to characterize and describe the location. Past comparisons of these properties for the selected sites show that none of these sites collectively show any significant benefit over Forsmark site for a repository. This does not preclude that there may be places on the basis of an overall assessment of geoscientific location factors could be equivalent to Forsmark

  17. Landscape Forsmark - data, methodology and results for SR-Site

    Lindborg, Tobias

    2010-12-01

    This report presents an integrated description of the landscape at the Forsmark site during the succession from present conditions to the far future. It was produced as a part of the biosphere modelling within the SR-Site safety assessment. The report gives a description of input data, methodology and resulting models used to support the current understanding of the landscape used in SR-Site. It is intended to describe the properties and conditions at the site and to give information essential for demonstrating understanding. The report relies heavily on a number of discipline-specific background reports concerning details of the data analyses and modelling. Long-term landscape development in the Forsmark area is dependent on two main and partly interdependent factors, i.e. climate variations and shoreline displacement. These two factors in combination strongly affect a number of processes, which in turn determine the development of ecosystems. Some examples of such processes are erosion and sedimentation, groundwater recharge and discharge, soil formation, primary production and decomposition of organic matter. The biosphere at the site during the next 1,000 years is assumed to be quite similar to the present situation. The most important changes are the natural infilling of lakes and a slight withdrawal of the sea with its effects on the near-shore areas and the shallow coastal basins. The climate during the rest of the temperate period may vary considerably, with both warmer and colder periods. The main effect of temperature changes will be on the vegetation period. Changed temperatures may give rise to drier or wetter climate and to changed snow cover and frost characteristics, and this can in turn affect the dominant vegetation and mire build-up. The description of the Forsmark ecosystem succession during a glacial cycle is one of the main features of the SR-Site biosphere modelling. The future areas potentially affected by deep groundwater discharge are

  18. Landscape Forsmark - data, methodology and results for SR-Site

    Lindborg, Tobias [ed.; Svensk Kaernbraenslehantering AB (Sweden)

    2010-12-15

    This report presents an integrated description of the landscape at the Forsmark site during the succession from present conditions to the far future. It was produced as a part of the biosphere modelling within the SR-Site safety assessment. The report gives a description of input data, methodology and resulting models used to support the current understanding of the landscape used in SR-Site. It is intended to describe the properties and conditions at the site and to give information essential for demonstrating understanding. The report relies heavily on a number of discipline-specific background reports concerning details of the data analyses and modelling. Long-term landscape development in the Forsmark area is dependent on two main and partly interdependent factors, i.e. climate variations and shoreline displacement. These two factors in combination strongly affect a number of processes, which in turn determine the development of ecosystems. Some examples of such processes are erosion and sedimentation, groundwater recharge and discharge, soil formation, primary production and decomposition of organic matter. The biosphere at the site during the next 1,000 years is assumed to be quite similar to the present situation. The most important changes are the natural infilling of lakes and a slight withdrawal of the sea with its effects on the near-shore areas and the shallow coastal basins. The climate during the rest of the temperate period may vary considerably, with both warmer and colder periods. The main effect of temperature changes will be on the vegetation period. Changed temperatures may give rise to drier or wetter climate and to changed snow cover and frost characteristics, and this can in turn affect the dominant vegetation and mire build-up. The description of the Forsmark ecosystem succession during a glacial cycle is one of the main features of the SR-Site biosphere modelling. The future areas potentially affected by deep groundwater discharge are

  19. Safety-related site characteristics - a relative comparison of the Forsmark reference areas; Saekerhetsrelaterade platsegenskaper - en relativ jaemfoerelse av Forsmark med referensomraaden

    Winberg, Anders (Conterra AB, Uppsala (Sweden))

    2010-12-15

    SKB has over the years from 2002 to 2008 conducted site investigations in Forsmark and Laxemar, with associated site modeling, design and safety analysis. In mid-2009 Forsmark was selected on the basis of analysis made as site for a future repository for spent nuclear fuel. Based on defined safety-related geoscientific location factors data from Forsmark are compared in relative terms with data from a number of locations in Sweden, previously studied by SKB. The factors compared include: the rock's composition and structures, future climate evolution, rock mechanical conditions, earthquakes, groundwater flow, groundwater composition, delay of solutes, and the ability to characterize and describe the location. Past comparisons of these properties for the selected sites show that none of these sites collectively show any significant benefit over Forsmark site for a repository. This does not preclude that there may be places on the basis of an overall assessment of geoscientific location factors could be equivalent to Forsmark

  20. Water-rock interaction modelling and uncertainties of mixing modelling. SDM-Site Forsmark

    Gimeno, Maria J.; Auque, Luis F.; Gomez, Javier B.; Acero, Patricia (Univ. of Zaragoza, Zaragoza (Spain))

    2008-08-15

    in geochemistry, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on 2.2 data and complementary 2.3 data, was carried out during September 2006 to December 2007. Several groups within ChemNet were involved and the evaluation was conducted independently using different approaches ranging from expert knowledge to geochemical and mathematical modelling including transport modelling. During regular ChemNet meetings the results have been presented and discussed. This report presents the modelling work performed by the University of Zaragoza group as part of the work planned for Forsmark during stages 2.2 and 2.3. The chemical characteristics of the groundwaters in the Forsmark and Laxemar areas are the result of a complex mixing process driven by the input of different recharge waters since the last glaciation. The successive penetration at different depths of dilute glacial melt-waters, Littorina Sea waters and dilute meteoric waters has triggered complex density and hydraulically driven flows that have mixed them with long residence time, highly saline waters present in the fractures and in the rock matrix. A general description of the main characteristics and processes controlling the hydrogeochemical evolution with depth in the Forsmark groundwater system is presented in this report: The hydrochemical characteristics and evolution of the Near surface waters (up to 20 m depth) is mainly determined by weathering reactions and especially affected by the presence of limestones. The biogenic CO{sub 2} input (derived from decay of organic matter and root respiration) and the associated weathering of carbonates control the pH and the concentrations of Ca and HCO{sub 3}- in the near-surface environment. Current seasonal variability of CO{sub 2} input produces variable but high calcium and bicarbonate contents in the Forsmark near-surface waters: up to 240 mg/L Ca and 150 to

  1. Water-rock interaction modelling and uncertainties of mixing modelling. SDM-Site Forsmark

    Gimeno, Maria J.; Auque, Luis F.; Gomez, Javier B.; Acero, Patricia

    2008-08-01

    geochemistry, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on 2.2 data and complementary 2.3 data, was carried out during September 2006 to December 2007. Several groups within ChemNet were involved and the evaluation was conducted independently using different approaches ranging from expert knowledge to geochemical and mathematical modelling including transport modelling. During regular ChemNet meetings the results have been presented and discussed. This report presents the modelling work performed by the University of Zaragoza group as part of the work planned for Forsmark during stages 2.2 and 2.3. The chemical characteristics of the groundwaters in the Forsmark and Laxemar areas are the result of a complex mixing process driven by the input of different recharge waters since the last glaciation. The successive penetration at different depths of dilute glacial melt-waters, Littorina Sea waters and dilute meteoric waters has triggered complex density and hydraulically driven flows that have mixed them with long residence time, highly saline waters present in the fractures and in the rock matrix. A general description of the main characteristics and processes controlling the hydrogeochemical evolution with depth in the Forsmark groundwater system is presented in this report: The hydrochemical characteristics and evolution of the Near surface waters (up to 20 m depth) is mainly determined by weathering reactions and especially affected by the presence of limestones. The biogenic CO 2 input (derived from decay of organic matter and root respiration) and the associated weathering of carbonates control the pH and the concentrations of Ca and HCO 3 - in the near-surface environment. Current seasonal variability of CO 2 input produces variable but high calcium and bicarbonate contents in the Forsmark near-surface waters: up to 240 mg/L Ca and 150 to 900 mg/L HCO 3 - . These

  2. SR-Site - hydrogeochemical evolution of the Forsmark site

    Salas, Joaquin; Molinero, Jorge; Juarez, Iker; Gimeno, Maria Jose; Auque, Luis; Gomez, Javier

    2010-12-01

    The present work has involved the development of a methodology in order to simulate the evolution of the groundwater composition within the candidate repository site of the Forsmark area. A series of climate periods is expected to be probable after the repository closure (temperate, periglacial and glacial) and, eventually, the area could be submerged under seawaters or under a lake of glacial melt waters. These environmental conditions will affect groundwater flow and composition around of the candidate repository volume. The present report summarizes the results obtained by the calculations which reproduce the hydrogeochemical evolution in the Forsmark area, and within the candidate repository volume. The hydrogeochemical evolution of groundwaters is one of the key factors affecting the chemical stability of the buffer and the canister. In this way, the main objective of the hydrogeochemical simulations is to assay the evolution of a series of safety assessment factors, such as salinity, redox potential, pH, and concentrations of iron, sulphide and potassium, among others. Using ConnectFlow, previous hydrological calculations have provided the transport of (1) the fractions of selected reference waters (Deep Saline, Old Meteoric, Glacial, Littorina and Altered Meteoric groundwaters), or (2) salinities, depending on the working team (Serco or Terrasolve). The results of the regional-scale groundwater flow modelling for each specific climate period are used as input of the geochemical models. Groundwater compositions have been modelled using PHREEQC, through mixing and chemical reactions between the waters obtained from the hydrogeological models and the reactive fracture-filling minerals. Both models (hydrological and geochemical) are not fully coupled, and it allows a description of the geochemical heterogeneity, which otherwise would be hard to attain. The stage of the open repository has been non-numerically analysed. Aspects as salinity, redox conditions

  3. SR-Site - hydrogeochemical evolution of the Forsmark site

    Salas, Joaquin; Molinero, Jorge; Juarez, Iker (Amphos 21 (Spain)); Gimeno, Maria Jose; Auque, Luis; Gomez, Javier (Univ. of Zaragoza (Spain))

    2010-12-15

    The present work has involved the development of a methodology in order to simulate the evolution of the groundwater composition within the candidate repository site of the Forsmark area. A series of climate periods is expected to be probable after the repository closure (temperate, periglacial and glacial) and, eventually, the area could be submerged under seawaters or under a lake of glacial melt waters. These environmental conditions will affect groundwater flow and composition around of the candidate repository volume. The present report summarizes the results obtained by the calculations which reproduce the hydrogeochemical evolution in the Forsmark area, and within the candidate repository volume. The hydrogeochemical evolution of groundwaters is one of the key factors affecting the chemical stability of the buffer and the canister. In this way, the main objective of the hydrogeochemical simulations is to assay the evolution of a series of safety assessment factors, such as salinity, redox potential, pH, and concentrations of iron, sulphide and potassium, among others. Using ConnectFlow, previous hydrological calculations have provided the transport of (1) the fractions of selected reference waters (Deep Saline, Old Meteoric, Glacial, Littorina and Altered Meteoric groundwaters), or (2) salinities, depending on the working team (Serco or Terrasolve). The results of the regional-scale groundwater flow modelling for each specific climate period are used as input of the geochemical models. Groundwater compositions have been modelled using PHREEQC, through mixing and chemical reactions between the waters obtained from the hydrogeological models and the reactive fracture-filling minerals. Both models (hydrological and geochemical) are not fully coupled, and it allows a description of the geochemical heterogeneity, which otherwise would be hard to attain. The stage of the open repository has been non-numerically analysed. Aspects as salinity, redox conditions

  4. Site investigation SFR. Vegetation in streams in the Forsmark area

    Andersson, Eva; Aquilonius, Karin; Sivars Becker, Lena; Borgiel, Mikael

    2011-09-01

    The streams in the model area of Forsmark have previously been thoroughly investigated regarding water chemistry, hydrology, bottom substrate, flooding, percentage coverage of macrophytes and fish migration. Retention of radionuclides in a stream ecosystem is assumed to occur by sorption to sediments or by uptake of radionuclides by macrophytes and it is therefore of interest to know the biomass and production of macrophytes in the streams included in a safety assessment. The general aim of this study was to examine the relation between biomass and the percentage cover of vegetation in streams in the Forsmark area. In this study streams within and nearby the candidate area in Forsmark was investigated. The somewhat larger streams Forsmarksaan and Olandsaan nearby the candidate area, are assumed to be more similar to future streams developing in Forsmark due to landrise, than the smaller streams present in the candidate area today. In total 22 vegetation samples were gathered in order to estimate the biomass at the sites. Percentage coverage of macrophytes, and dominating species were noted and the above ground macrophytes were sampled for biomass analysis. In the smaller streams, the biomass varied between 6 and almost 358 g dry weight per square metre. In the larger streams, the dry biomass varied between 0 and 247 g dry weight per square meter. There were no significant difference between macrophyte biomass in smaller and the larger stream. In total 13 macrophyte species were found. The biomass dry weight at 100% covering degree varied depending on macrophyte species. Although this was a rather small study, it is evident that the biomasses do vary a wide range between sampling squares in the area. However, although it may be difficult to use this data set to estimate the biomass in a specific square meter in the stream section, the relation between biomass weight and covering degree is sufficient to be used when fitting biomass to macrophyte coverage for entire

  5. Site investigation SFR. Vegetation in streams in the Forsmark area

    Andersson, Eva (Svensk Nuclear Fuel and Waste Management Co. (Sweden)); Aquilonius, Karin; Sivars Becker, Lena (Studsvik Nuclear AB (Sweden)); Borgiel, Mikael (Sveriges Vattenekologer AB (Sweden))

    2011-09-15

    The streams in the model area of Forsmark have previously been thoroughly investigated regarding water chemistry, hydrology, bottom substrate, flooding, percentage coverage of macrophytes and fish migration. Retention of radionuclides in a stream ecosystem is assumed to occur by sorption to sediments or by uptake of radionuclides by macrophytes and it is therefore of interest to know the biomass and production of macrophytes in the streams included in a safety assessment. The general aim of this study was to examine the relation between biomass and the percentage cover of vegetation in streams in the Forsmark area. In this study streams within and nearby the candidate area in Forsmark was investigated. The somewhat larger streams Forsmarksaan and Olandsaan nearby the candidate area, are assumed to be more similar to future streams developing in Forsmark due to landrise, than the smaller streams present in the candidate area today. In total 22 vegetation samples were gathered in order to estimate the biomass at the sites. Percentage coverage of macrophytes, and dominating species were noted and the above ground macrophytes were sampled for biomass analysis. In the smaller streams, the biomass varied between 6 and almost 358 g dry weight per square metre. In the larger streams, the dry biomass varied between 0 and 247 g dry weight per square meter. There were no significant difference between macrophyte biomass in smaller and the larger stream. In total 13 macrophyte species were found. The biomass dry weight at 100% covering degree varied depending on macrophyte species. Although this was a rather small study, it is evident that the biomasses do vary a wide range between sampling squares in the area. However, although it may be difficult to use this data set to estimate the biomass in a specific square meter in the stream section, the relation between biomass weight and covering degree is sufficient to be used when fitting biomass to macrophyte coverage for entire

  6. Evaluation of the state of stress at the Forsmark site. Preliminary site investigation Forsmark area - version 1.2

    Sjoeberg, Jonny; Lindfors, Ulf; Perman, Fredrik; Ask, Daniel [SwedPower AB, Stockholm (Sweden)

    2005-09-15

    This report presents an evaluation of the state of stress at the Forsmark site, based on all conducted stress measurements to date at the site, indirect stress estimates, geological and tectonic description of the site, and regional stress data from nearby locations. The work included (i) compilation of measurement results from Forsmark, as well as from nearby (regional) sites/locations, (ii) analysis of confidence intervals for each group of measurement, (iii) assessment of the stress state for the Forsmark site accounting for geological/tectonic evolution at the site, (iv) assessment of stress state for selected nearby (regional) sites/locations, and (v) comparison and combined interpretation of similarities and/or differences in stress state from a regional perspective. The combined assessment of the local (site-scale) and regional stress data for Forsmark showed that the major stress is orientated sub-horizontally and trending NW-SE; however, with significant local variation. A thrust faulting ({sigma}H > {sigma}h > {sigma}v) or possibly strike-slip faulting ({sigma}H > {sigma}v > {sigma}h) stress regime is evident at the Forsmark site. The maximum horizontal stress tends to be higher at the site compared to nearby sites and regional conditions. The site and regional data indicate that the vertical stress seems to be solely due to the overburden pressure. The lack of solid core discing for large portions of the boreholes at Forsmark was used to estimate an upper limit of the maximum horizontal stress magnitude. However, such an estimation is highly uncertain due to e.g. partly unknown mechanism for core discing failure, and unknown effects of the simplifying assumptions made in the analysis. The possible effects of shallow-dipping deformation zones on the stress state, could not be verified from the currently available data. However, the possibility of different stress regimes above and below deformation zones must be considered in future work. Slightly lower

  7. Evaluation of the state of stress at the Forsmark site. Preliminary site investigation Forsmark area - version 1.2

    Sjoeberg, Jonny; Lindfors, Ulf; Perman, Fredrik; Ask, Daniel

    2005-09-01

    This report presents an evaluation of the state of stress at the Forsmark site, based on all conducted stress measurements to date at the site, indirect stress estimates, geological and tectonic description of the site, and regional stress data from nearby locations. The work included (i) compilation of measurement results from Forsmark, as well as from nearby (regional) sites/locations, (ii) analysis of confidence intervals for each group of measurement, (iii) assessment of the stress state for the Forsmark site accounting for geological/tectonic evolution at the site, (iv) assessment of stress state for selected nearby (regional) sites/locations, and (v) comparison and combined interpretation of similarities and/or differences in stress state from a regional perspective. The combined assessment of the local (site-scale) and regional stress data for Forsmark showed that the major stress is orientated sub-horizontally and trending NW-SE; however, with significant local variation. A thrust faulting (σH > σh > σv) or possibly strike-slip faulting (σH > σv > σh) stress regime is evident at the Forsmark site. The maximum horizontal stress tends to be higher at the site compared to nearby sites and regional conditions. The site and regional data indicate that the vertical stress seems to be solely due to the overburden pressure. The lack of solid core discing for large portions of the boreholes at Forsmark was used to estimate an upper limit of the maximum horizontal stress magnitude. However, such an estimation is highly uncertain due to e.g. partly unknown mechanism for core discing failure, and unknown effects of the simplifying assumptions made in the analysis. The possible effects of shallow-dipping deformation zones on the stress state, could not be verified from the currently available data. However, the possibility of different stress regimes above and below deformation zones must be considered in future work. Slightly lower horizontal stress was found in

  8. Forsmark site investigation. Reflection seismic studies in the Forsmark area, 2004: Stage 2

    Juhlin, Christopher; Palm, Hans [Uppsala Univ. (Sweden). Dept. of Earth Sciences

    2005-06-15

    Reflection seismic data were acquired in the Fall of 2004 in the Forsmark area, located about 140 km north of Stockholm, Sweden. The Forsmark area has been targeted by SKB as a possible storage site for spent nuclear fuel. About 25 km of high resolution (nominal source and receiver spacing of maximum 10 m and a minimum of 160 active channels) seismic data were acquired along 10 profiles, varying in length from about 1 km to over 4 km. Three of these profiles are extensions of profiles that were acquired in 2002 (Stage 1). While the 2002 Stage 1 profiles were geared towards acquiring data from within the relatively undeformed lens, the current study focused on acquiring data from the boundaries of the lens. Data acquisition was also concentrated towards the western part of the candidate area. Data were acquired using a combination of the same explosive source as in Stage 1 (1575 g of explosives) and the VIBSIST mechanical source consisting of an industrial hammer mounted on a tractor. Earlier tests in Laxemar had shown that the VIBSIST source gives comparable data to the explosive source and is less expensive. It can also be used in areas where explosives are prohibited, such as close to the nuclear power plant. At present, the source cannot be used in the terrain, therefore an explosive component is still required. About 80% of the 2100 source points were activated using the VIBSIST system. Stacked sections from the new profiles are generally consistent with the Stage 1 results. Reflections from the prominent south dipping A1 reflector can be observed on most profiles, however, it is not clear if it can be traced all the way to the surface. Neither is it clearly observed below the power plant, suggesting its lateral extent is limited to the west. Instead, a gently east dipping reflector (B8) is interpreted below the power plant. Reflections consistent with the A2 reflector are also found on two profiles, but cannot be traced very far to the south, suggesting that

  9. Discrete-Feature Model Implementation of SDM-Site Forsmark

    Geier, Joel

    2010-03-01

    A discrete-feature model (DFM) was implemented for the Forsmark repository site based on the final site descriptive model from surface based investigations. The discrete-feature conceptual model represents deformation zones, individual fractures, and other water-conducting features around a repository as discrete conductors surrounded by a rock matrix which, in the present study, is treated as impermeable. This approximation is reasonable for sites in crystalline rock which has very low permeability, apart from that which results from macroscopic fracturing. Models are constructed based on the geological and hydrogeological description of the sites and engineering designs. Hydraulic heads and flows through the network of water-conducting features are calculated by the finite-element method, and are used in turn to simulate migration of non-reacting solute by a particle-tracking method, in order to estimate the properties of pathways by which radionuclides could be released to the biosphere. Stochastic simulation is used to evaluate portions of the model that can only be characterized in statistical terms, since many water-conducting features within the model volume cannot be characterized deterministically. Chapter 2 describes the methodology by which discrete features are derived to represent water-conducting features around the hypothetical repository at Forsmark (including both natural features and features that result from the disturbance of excavation), and then assembled to produce a discrete-feature network model for numerical simulation of flow and transport. Chapter 3 describes how site-specific data and repository design are adapted to produce the discrete-feature model. Chapter 4 presents results of the calculations. These include utilization factors for deposition tunnels based on the emplacement criteria that have been set forth by the implementers, flow distributions to the deposition holes, and calculated properties of discharge paths as well as

  10. Discrete-Feature Model Implementation of SDM-Site Forsmark

    Geier, Joel (Clearwater Hardrock Consulting, Corvallis, OR (United States))

    2010-03-15

    A discrete-feature model (DFM) was implemented for the Forsmark repository site based on the final site descriptive model from surface based investigations. The discrete-feature conceptual model represents deformation zones, individual fractures, and other water-conducting features around a repository as discrete conductors surrounded by a rock matrix which, in the present study, is treated as impermeable. This approximation is reasonable for sites in crystalline rock which has very low permeability, apart from that which results from macroscopic fracturing. Models are constructed based on the geological and hydrogeological description of the sites and engineering designs. Hydraulic heads and flows through the network of water-conducting features are calculated by the finite-element method, and are used in turn to simulate migration of non-reacting solute by a particle-tracking method, in order to estimate the properties of pathways by which radionuclides could be released to the biosphere. Stochastic simulation is used to evaluate portions of the model that can only be characterized in statistical terms, since many water-conducting features within the model volume cannot be characterized deterministically. Chapter 2 describes the methodology by which discrete features are derived to represent water-conducting features around the hypothetical repository at Forsmark (including both natural features and features that result from the disturbance of excavation), and then assembled to produce a discrete-feature network model for numerical simulation of flow and transport. Chapter 3 describes how site-specific data and repository design are adapted to produce the discrete-feature model. Chapter 4 presents results of the calculations. These include utilization factors for deposition tunnels based on the emplacement criteria that have been set forth by the implementers, flow distributions to the deposition holes, and calculated properties of discharge paths as well as

  11. Soils and site types in the Forsmark area

    Lundin, Lars; Lode, Elve; Stendahl, Johan; Melkerud, Per-Arne; Bjoerkvald, Louise; Thorstensson, Anna

    2004-01-01

    Investigations to give prerequisites for long-term storage of nuclear waste are made by the Swedish Nuclear Fuel and Waste Management Company (SKB AB). Ecosystem functions are crucial in this management. The range of the scope is wide including bedrock, regolith, hydrosphere and biosphere. The interface between deep geological formations and surface systems is then considered very important. This would be the top of the regolith, where soils are developed. Special attention has been paid to these layers with fairly comprehensive investigations. Field investigations were made for one of the candidate areas, the Forsmark area, in 2002 by the Department of Forest Soils, Swedish University of Agricultural Sciences. In these ecosystem functions, the upper part of the regolith is one crucial component and the focus in the investigations was on the upper metre of the soil. Variables determined include vegetation, hydrology, soil parent material, textural composition, soil type and physical and chemical properties of relevant soil layers. Methods used in the investigation coincide with those of the Swedish Forest Soil Inventory, which provide possibilities to compare properties in the Forsmark area with those of total Sweden and regions of the country. Soil properties were determined thoroughly on eight site types in two replicates to provide statistical significance. However, this meant that the investigation did not have a total spatial coverage. Instead, the spatial distribution of soils in the area was determined from a GIS based on the inventory made and information on vegetation types, distribution of Quaternary deposits and a hydrological index. From this GIS, distributions were compared with other parts of the country. The geographical location of the Forsmark area (N 60 deg 22 min; E 18 deg 13 min) is on the northeast coast of central Sweden bordering to the Bothnian Sea. The area is low-lying, reaching only up to 15 m above the sea, which means that the soils are

  12. Description of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    Johansson, Per-Olof

    2008-12-01

    This report describes the modelling of the surface hydrology and near-surface hydrogeology that was performed for the final site descriptive model of Forsmark produced in the site investigation stage, SDM-Site Forsmark. The comprehensive investigation and monitoring programme forms a strong basis for the developed conceptual and descriptive model of the hydrological and near-surface hydrological system of the site investigation area. However, there are some remaining uncertainties regarding the interaction of deep and near-surface groundwater and surface water of importance for the understanding of the system: The groundwaters in till below Lake Eckarfjaerden, Lake Gaellbotraesket, Lake Fiskarfjaerden and Lake Bolundsfjaerden have high salinities. The hydrological and hydrochemical interpretations indicate that these waters are relict waters of mainly marine origin. From the perspective of the overall water balance, the water below the central parts of the lakes can be considered as stagnant. However, according to the hydrochemical interpretation, these waters also contain weak signatures of deep saline water. Rough chloride budget calculations for the Gaellbotraesket depression also raise the question of a possible upward flow of deep groundwater. No absolute conclusion can be drawn from the existing data analyses regarding the key question of whether there is a small ongoing upward flow of deep saline water. However, Lake Bolundsfjaerden is an exception where the clear downward flow gradient from the till to the bedrock excludes the possibility of an active deep saline source. The available data indicate that there are no discharge areas for flow systems involving deep bedrock groundwater in the northern part of the tectonic lens, where the repository is planned to be located (the so-called 'target area'). However, it can not be excluded that such discharge areas exist. Data indicate that the prevailing downward vertical flow gradients from the QD to the bedrock

  13. Description of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    Johansson, Per-Olof (Artesia Grundvattenkonsult AB, Taeby (Sweden))

    2008-12-15

    This report describes the modelling of the surface hydrology and near-surface hydrogeology that was performed for the final site descriptive model of Forsmark produced in the site investigation stage, SDM-Site Forsmark. The comprehensive investigation and monitoring programme forms a strong basis for the developed conceptual and descriptive model of the hydrological and near-surface hydrological system of the site investigation area. However, there are some remaining uncertainties regarding the interaction of deep and near-surface groundwater and surface water of importance for the understanding of the system: The groundwaters in till below Lake Eckarfjaerden, Lake Gaellbotraesket, Lake Fiskarfjaerden and Lake Bolundsfjaerden have high salinities. The hydrological and hydrochemical interpretations indicate that these waters are relict waters of mainly marine origin. From the perspective of the overall water balance, the water below the central parts of the lakes can be considered as stagnant. However, according to the hydrochemical interpretation, these waters also contain weak signatures of deep saline water. Rough chloride budget calculations for the Gaellbotraesket depression also raise the question of a possible upward flow of deep groundwater. No absolute conclusion can be drawn from the existing data analyses regarding the key question of whether there is a small ongoing upward flow of deep saline water. However, Lake Bolundsfjaerden is an exception where the clear downward flow gradient from the till to the bedrock excludes the possibility of an active deep saline source. The available data indicate that there are no discharge areas for flow systems involving deep bedrock groundwater in the northern part of the tectonic lens, where the repository is planned to be located (the so-called 'target area'). However, it can not be excluded that such discharge areas exist. Data indicate that the prevailing downward vertical flow gradients from the QD to

  14. Numerical modelling of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Gustafsson, Lars-Goeran; Sassner, Mona (DHI Sverige AB, Stockholm (Sweden))

    2008-09-15

    SKB is currently performing site investigations at two potential sites for a final repository for spent nuclear fuel. This report presents results of water flow and solute transport modelling of the Forsmark site. The modelling reported in this document focused on the near-surface groundwater, i.e. groundwater in Quaternary deposits and shallow rock, and surface water systems, and was performed using the MIKE SHE tool. The most recent site data used in the modelling were delivered in the Forsmark 2.3 dataset, which had its 'data freeze' on March 31, 2007. The present modelling is performed in support of the final version of the Forsmark site description that is produced during the site investigation phase. In this work, the hydrological modelling system MIKE SHE has been used to describe near-surface groundwater flow and the contact between groundwater and surface water at the Forsmark site. The surface water system at Forsmark is described with the one-dimensional 'channel flow' modelling tool MIKE 11, which is fully and dynamically integrated with MIKE SHE. The MIKE SHE model was updated with data from the F2.3 data freeze. The main updates concerned the geological description of the saturated zone and the time series data on water levels and surface water discharges. The time series data used as input data and for calibration and validation was extended until the Forsmark 2.3 data freeze (March 31, 2007). The present work can be subdivided into the following four parts: 1. Update of the numerical flow model. 2. Sensitivity analysis and calibration of the model parameters. 3. Validation of the calibrated model, followed by evaluation and identification of discrepancies between measurements and model results. 4. Additional sensitivity analysis and calibration in order to resolve the problems identified in point three above. The main actions taken during the calibration can be summarised as follows: 1. The potential evapotranspiration was

  15. Preliminary site description Forsmark area - version 1.1

    2004-03-01

    This report presents the interim version (model version 1.1) of the preliminary Site Descriptive Model for Forsmark. The basis for this interim version is quality-assured, geoscientific and ecological field data from Forsmark that were available in the SKB databases SICADA and GIS at April 30, 2003 as well as version 0 of the Site Descriptive Model. The new data acquired during the initial site investigation phase to the date of data freeze 1.1 constitute the basis for the updating of version 0 to version 1.1. These data originate from surface investigations on the candidate area with its regional environment and from drilling and investigations in boreholes. The surface-based data sets were rather extensive whereas the data sets from boreholes were limited to information from one 1,000 m deep cored borehole (KFM01A) and eight 150 to 200 m deep percussion-drilled boreholes in the Forsmark candidate area. Discipline specific models are developed for a selected regional and local model volume and these are then integrated into a site description. The current methodologies for developing the discipline specific models and the integration of these are documented in methodology reports or strategy reports. In the present work, the guidelines given in those reports were followed to the extent possible with the data and information available at the time for data freeze for model version 1.1. Compared with version 0 there are considerable additional features in the version 1.1, especially in the geological description and in the description of the near surface. The geological models of lithology and deformation zones are based on borehole information and much higher resolution surface data. The existence of highly fractured sub-horizontal zones has been verified and these are now part of the model of the deformation zones. A discrete fracture network (DFN) model has also been developed. The rock mechanics model is based on strength information from SFR and an empirical

  16. Soils and site types in the Forsmark area

    Lundin, Lars; Lode, Elve; Stendahl, Johan; Melkerud, Per-Arne; Bjoerkvald, Louise; Thorstensson, Anna [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Soils

    2004-01-01

    Investigations to give prerequisites for long-term storage of nuclear waste are made by the Swedish Nuclear Fuel and Waste Management Company (SKB AB). Ecosystem functions are crucial in this management. The range of the scope is wide including bedrock, regolith, hydrosphere and biosphere. The interface between deep geological formations and surface systems is then considered very important. This would be the top of the regolith, where soils are developed. Special attention has been paid to these layers with fairly comprehensive investigations. Field investigations were made for one of the candidate areas, the Forsmark area, in 2002 by the Department of Forest Soils, Swedish University of Agricultural Sciences. In these ecosystem functions, the upper part of the regolith is one crucial component and the focus in the investigations was on the upper metre of the soil. Variables determined include vegetation, hydrology, soil parent material, textural composition, soil type and physical and chemical properties of relevant soil layers. Methods used in the investigation coincide with those of the Swedish Forest Soil Inventory, which provide possibilities to compare properties in the Forsmark area with those of total Sweden and regions of the country. Soil properties were determined thoroughly on eight site types in two replicates to provide statistical significance. However, this meant that the investigation did not have a total spatial coverage. Instead, the spatial distribution of soils in the area was determined from a GIS based on the inventory made and information on vegetation types, distribution of Quaternary deposits and a hydrological index. From this GIS, distributions were compared with other parts of the country. The geographical location of the Forsmark area (N 60 deg 22 min; E 18 deg 13 min) is on the northeast coast of central Sweden bordering to the Bothnian Sea. The area is low-lying, reaching only up to 15 m above the sea, which means that the soils are

  17. SR-Site - sulphide content in the groundwater at Forsmark

    Tullborg, E-L (Terralogica (Sweden)); Smellie, J (Conterra (Sweden)); Nilsson, A-Ch (Geosigma (Sweden)); Gimeno, M J; Auque, LF (Univ. of Zaragoza (Spain)); Bruchert, V (Stockholms Universitet (Sweden)); Molinero, J (Amphos21 (Spain))

    2010-12-15

    Sulphide concentrations in groundwater play a key role in the long-term reliability of the metal canisters containing the radioactive waste within a disposal facility for nuclear waste. This is because sulphide in the groundwaters circulating in the vicinity of the deposition tunnels can react with copper in the canisters causing corrosion and therefore reducing their expected lifetime; in a worst case scenario erosion of the bentonite buffer material will expose the canister more rapidly to the fracture groundwater.Sulphide in the groundwater is predominantly microbially produced and thereby controlled by the content of oxidised sulphur sources, organics (carbon sources), reductants (mainly Fe(II), DOC, H{sub 2} and CH{sub 4}), and also flow and mixing of different groundwater types. In addition, achieved saturation in respect to amorphous Fe-monosulphide will control the possible maximum values and will also limit the Fe2+ and S2- values in the groundwater. The aim of this report is to assess realistic, representative and reliable sulphide groundwater concentrations at present conditions in Forsmark and also to evaluate possible changes during different climatic conditions covering the repository operation period (some tens to hundreds of years), post closure conditions (some thousand of years) and the proceeding temperate period (some tens of thousands of years) which may be extended due to enhanced greenhouse effects etc. It is expected that this period will be followed by the onset of the next glaciation during which periglacial (permafrost), glacial and postglacial conditions may succeed each other. To achieve these aims, an evaluation is performed of all the sulphide-related data reported from the Forsmark site investigations /Laaksoharju et al. 2008/ and later monitoring campaigns, all of which are stored in the Sicada database. This evaluation shows that values from the Complete Chemical Characterisation (CCC) sampling are usually lower than those measured

  18. SR-Site - sulphide content in the groundwater at Forsmark

    Tullborg, E-L; Smellie, J; Nilsson, A-Ch; Gimeno, M J; Auque, LF; Bruchert, V; Molinero, J

    2010-12-01

    Sulphide concentrations in groundwater play a key role in the long-term reliability of the metal canisters containing the radioactive waste within a disposal facility for nuclear waste. This is because sulphide in the groundwaters circulating in the vicinity of the deposition tunnels can react with copper in the canisters causing corrosion and therefore reducing their expected lifetime; in a worst case scenario erosion of the bentonite buffer material will expose the canister more rapidly to the fracture groundwater.Sulphide in the groundwater is predominantly microbially produced and thereby controlled by the content of oxidised sulphur sources, organics (carbon sources), reductants (mainly Fe(II), DOC, H 2 and CH 4 ), and also flow and mixing of different groundwater types. In addition, achieved saturation in respect to amorphous Fe-monosulphide will control the possible maximum values and will also limit the Fe 2+ and S 2- values in the groundwater. The aim of this report is to assess realistic, representative and reliable sulphide groundwater concentrations at present conditions in Forsmark and also to evaluate possible changes during different climatic conditions covering the repository operation period (some tens to hundreds of years), post closure conditions (some thousand of years) and the proceeding temperate period (some tens of thousands of years) which may be extended due to enhanced greenhouse effects etc. It is expected that this period will be followed by the onset of the next glaciation during which periglacial (permafrost), glacial and postglacial conditions may succeed each other. To achieve these aims, an evaluation is performed of all the sulphide-related data reported from the Forsmark site investigations /Laaksoharju et al. 2008/ and later monitoring campaigns, all of which are stored in the Sicada database. This evaluation shows that values from the Complete Chemical Characterisation (CCC) sampling are usually lower than those measured during

  19. Preliminary site description Forsmark area - version 1.1

    NONE

    2004-03-01

    This report presents the interim version (model version 1.1) of the preliminary Site Descriptive Model for Forsmark. The basis for this interim version is quality-assured, geoscientific and ecological field data from Forsmark that were available in the SKB databases SICADA and GIS at April 30, 2003 as well as version 0 of the Site Descriptive Model. The new data acquired during the initial site investigation phase to the date of data freeze 1.1 constitute the basis for the updating of version 0 to version 1.1. These data originate from surface investigations on the candidate area with its regional environment and from drilling and investigations in boreholes. The surface-based data sets were rather extensive whereas the data sets from boreholes were limited to information from one 1,000 m deep cored borehole (KFM01A) and eight 150 to 200 m deep percussion-drilled boreholes in the Forsmark candidate area. Discipline specific models are developed for a selected regional and local model volume and these are then integrated into a site description. The current methodologies for developing the discipline specific models and the integration of these are documented in methodology reports or strategy reports. In the present work, the guidelines given in those reports were followed to the extent possible with the data and information available at the time for data freeze for model version 1.1. Compared with version 0 there are considerable additional features in the version 1.1, especially in the geological description and in the description of the near surface. The geological models of lithology and deformation zones are based on borehole information and much higher resolution surface data. The existence of highly fractured sub-horizontal zones has been verified and these are now part of the model of the deformation zones. A discrete fracture network (DFN) model has also been developed. The rock mechanics model is based on strength information from SFR and an empirical

  20. Validation of the marine vegetation model in Forsmark. SFR-Site Forsmark

    Aquilonius, Karin (Studsvik Nuclear AB (Sweden)); Qvarfordt, Susanne; Borgiel, Micke (Sveriges Vattenekologer AB (Sweden))

    2011-04-15

    A regression model implemented in GIS of the marine vegetation in Forsmark were developed by SKB /Aquilonius 2010/ based on field investigations and video surveys /Fredriksson 2005/ and from correlations of field data and physical properties /Carlen et al. 2007/. The marine vegetation model describes distribution and biomasses of the marine vegetation and is used as input data in the dose modeling within the safety assessments performed by the SKB. In this study the predictive performance of the vegetation model in the less examined parts of the marine area in Forsmark is evaluated. In general, the vegetation model works very well in predicting absence of biomass, except for Red algae. In total and for Fucus sp., the model also predicts the observed biomass fairly well. However, for phanerogams, Chara sp., filamentous algae and red algae the vegetation model works less well in predicting biomass

  1. Validation of the marine vegetation model in Forsmark. SFR-Site Forsmark

    Aquilonius, Karin; Qvarfordt, Susanne; Borgiel, Micke

    2011-04-01

    A regression model implemented in GIS of the marine vegetation in Forsmark were developed by SKB /Aquilonius 2010/ based on field investigations and video surveys /Fredriksson 2005/ and from correlations of field data and physical properties /Carlen et al. 2007/. The marine vegetation model describes distribution and biomasses of the marine vegetation and is used as input data in the dose modeling within the safety assessments performed by the SKB. In this study the predictive performance of the vegetation model in the less examined parts of the marine area in Forsmark is evaluated. In general, the vegetation model works very well in predicting absence of biomass, except for Red algae. In total and for Fucus sp., the model also predicts the observed biomass fairly well. However, for phanerogams, Chara sp., filamentous algae and red algae the vegetation model works less well in predicting biomass

  2. Advanced on-site conceptual simulator for Forsmark 3

    Johansson, G.; Sjoestrand, K.

    1984-01-01

    On-site conceptual simulators have been extensively used at Swedish nuclear power plants. Despite having access to identical replica simulators, both the Swedish State Power Board and the Swedish private power industry have ordered conceptual simulators during 1982. The motivation has been that a complete training programme requires access to both a replica and a conceptual simulator. The replica simulator is perfect for training in control room behaviour but less appropriate for ensuring deeper process understanding. On the other hand, the conceptual simulator is not well suited for getting the personnel acquainted with the control room but is perfect for extending their knowledge of the plant processes. In order to give a realistic description of these processes, the conceptual simulator model must be fairly advanced. The Forsmark 3 conceptual simulator simulates the entire primary system, including the details of the steam and feedwater systems. Considerable attention has also been devoted to the presentation of calculated variables. For example, all the variables in the data base (approx. 6600) can be presented on colour-graphic CRTs as functions of time. (author)

  3. Numerical modelling of solute transport at Forsmark with MIKE SHE. Site descriptive modelling SDM-Site Forsmark

    Gustafsson, Lars-Goeran; Sassner, Mona (DHI Sverige AB, Stockholm (Sweden)); Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site investigations at two different locations in Sweden, referred to as the Forsmark and Laxemar areas, with the objective of siting a final repository for high-level radioactive waste. Data from the site investigations are used in a variety of modelling activities. This report presents model development and results of numerical transport modelling based on the numerical flow modelling of surface water and near-surface groundwater at the Forsmark site. The numerical modelling was performed using the modelling tool MIKE SHE and is based on the site data and conceptual model of the Forsmark areas. This report presents solute transport applications based on both particle tracking simulations and advection-dispersion calculations. The MIKE SHE model is the basis for the transport modelling presented in this report. Simulation cases relevant for the transport from a deep geological repository have been studied, but also the pattern of near surface recharge and discharge areas. When the main part of the modelling work presented in this report was carried out, the flow modelling of the Forsmark site was not finalised. Thus, the focus of this work is to describe the sensitivity to different transport parameters, and not to point out specific areas as discharge areas from a future repository (this is to be done later, within the framework of the safety assessment). In the last chapter, however, results based on simulations with the re-calibrated MIKE SHE flow model are presented. The results from the MIKE SHE water movement calculations were used by cycling the calculated transient flow field for a selected one-year period as many times as needed to achieve the desired simulation period. The solute source was located either in the bedrock or on top of the model. In total, 15 different transport simulation cases were studied. Five of the simulations were particle tracking simulations, whereas the rest

  4. Numerical modelling of solute transport at Forsmark with MIKE SHE. Site descriptive modelling SDM-Site Forsmark

    Gustafsson, Lars-Goeran; Sassner, Mona; Bosson, Emma

    2008-12-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site investigations at two different locations in Sweden, referred to as the Forsmark and Laxemar areas, with the objective of siting a final repository for high-level radioactive waste. Data from the site investigations are used in a variety of modelling activities. This report presents model development and results of numerical transport modelling based on the numerical flow modelling of surface water and near-surface groundwater at the Forsmark site. The numerical modelling was performed using the modelling tool MIKE SHE and is based on the site data and conceptual model of the Forsmark areas. This report presents solute transport applications based on both particle tracking simulations and advection-dispersion calculations. The MIKE SHE model is the basis for the transport modelling presented in this report. Simulation cases relevant for the transport from a deep geological repository have been studied, but also the pattern of near surface recharge and discharge areas. When the main part of the modelling work presented in this report was carried out, the flow modelling of the Forsmark site was not finalised. Thus, the focus of this work is to describe the sensitivity to different transport parameters, and not to point out specific areas as discharge areas from a future repository (this is to be done later, within the framework of the safety assessment). In the last chapter, however, results based on simulations with the re-calibrated MIKE SHE flow model are presented. The results from the MIKE SHE water movement calculations were used by cycling the calculated transient flow field for a selected one-year period as many times as needed to achieve the desired simulation period. The solute source was located either in the bedrock or on top of the model. In total, 15 different transport simulation cases were studied. Five of the simulations were particle tracking simulations, whereas the rest

  5. Mapping of reed in shallow bays. SFR-Site Forsmark

    Stroemgren, Maarten; Lindgren, Fredrik (Umeaa Univ. (Sweden))

    2011-03-15

    The regolith-lake development model (RLDM) describes the development of shallow bays to lakes and the infilling of lakes in the Forsmark area during an interglacial. The sensitivity analysis has shown the need for an update of the infill procedure in the RLDM. Data from the mapping of reed in shallow bays in the Forsmark area will be used to improve the infill procedure of an updated RLDM. The field work was performed in August 26-31, 2010. The mapping of reed was done in 124 points. In these points, coordinates and water depth were mapped using an echo sounder and a DGPS. Quaternary deposits and the thickness of soft sediments were mapped using an earth probe. Measurement points were delivered in ESRI shape format with coordinates in RT90 2.5 gon W and altitudes in the RHB70 system for storage in SKB's GIS data base

  6. The marine ecosystems at Forsmark and Laxemar-Simpevarp. SR-Site Biosphere

    Aquilonius, Karin

    2010-12-01

    The overall objective of this report is to provide a thorough description of the marine ecosystems at the sites Forsmark and Laxemar-Simpevarp, to identify processes in these ecosystems of importance to transfer and accumulation of radionuclides and, finally based on this knowledge, develop parameters to be used for the marine ecosystem in the safety analysis SR-Site. The report includes a thorough description of the major components in the marine ecosystems in Forsmark and Laxemar-Simpevarp, and covers the following areas: chemical and physical characteristics, climate and meteorology, morphology and regolith, biota in the marine ecosystem, human impact, water exchange and historical evolution at the sites. The site specific characteristics are compared with marine data from the Baltic region. Marine ecosystem modeling and mass balances calculations for carbon and a number of other elements were carried out to further improve the understanding of the marine ecosystems. Important processes for the safety assessment are identified, described and evaluated according to a systematic method. The derivation of marine ecosystem parameters and the resulting parameters is presented. The last chapter of the report aims at summarizing the knowledge of the marine ecosystems at the two areas. In comparison with the Gulf of Bothnia and the Baltic Proper, salinity is somewhat lower in Forsmark and Laxemar-Simpevarp respectively. The nitrogen and phosphorus levels at the two sites are low to moderately high compared with environmental monitoring data for corresponding areas in the Baltic Sea. In Forsmark, nitrogen seems to be the limiting nutrient during the summer months. In Laxemar-Simpevarp, nitrogen seems to be the limiting nutrient in the outer areas and phosphorus in the inner bays. This coincides with the general conditions in the Bothnian Sea (Forsmark) and the Baltic Proper (Laxemar-Simpevarp). The annual mean water temperature in Forsmark is slightly higher than the

  7. The marine ecosystems at Forsmark and Laxemar-Simpevarp. SR-Site Biosphere

    Aquilonius, Karin [ed.; Studsvik Nuclear AB (Sweden)

    2010-12-15

    The overall objective of this report is to provide a thorough description of the marine ecosystems at the sites Forsmark and Laxemar-Simpevarp, to identify processes in these ecosystems of importance to transfer and accumulation of radionuclides and, finally based on this knowledge, develop parameters to be used for the marine ecosystem in the safety analysis SR-Site. The report includes a thorough description of the major components in the marine ecosystems in Forsmark and Laxemar-Simpevarp, and covers the following areas: chemical and physical characteristics, climate and meteorology, morphology and regolith, biota in the marine ecosystem, human impact, water exchange and historical evolution at the sites. The site specific characteristics are compared with marine data from the Baltic region. Marine ecosystem modeling and mass balances calculations for carbon and a number of other elements were carried out to further improve the understanding of the marine ecosystems. Important processes for the safety assessment are identified, described and evaluated according to a systematic method. The derivation of marine ecosystem parameters and the resulting parameters is presented. The last chapter of the report aims at summarizing the knowledge of the marine ecosystems at the two areas. In comparison with the Gulf of Bothnia and the Baltic Proper, salinity is somewhat lower in Forsmark and Laxemar-Simpevarp respectively. The nitrogen and phosphorus levels at the two sites are low to moderately high compared with environmental monitoring data for corresponding areas in the Baltic Sea. In Forsmark, nitrogen seems to be the limiting nutrient during the summer months. In Laxemar-Simpevarp, nitrogen seems to be the limiting nutrient in the outer areas and phosphorus in the inner bays. This coincides with the general conditions in the Bothnian Sea (Forsmark) and the Baltic Proper (Laxemar-Simpevarp). The annual mean water temperature in Forsmark is slightly higher than the

  8. Hydrochemistry in surface water and shallow groundwater. Site descriptive modelling SDM-Site Forsmark

    Troejbom, Mats (Mopelikan, Norrtaelje (SE)); Soederbaeck, Bjoern (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE)); Johansson, Per-Olof (Artesia Grundvattenkonsult AB, Taeby (SE))

    2007-10-15

    With a mathematical/statistical approach, a large number of visualisations and models reflect the hydrochemistry in the Forsmark area, with the intention to give an understanding of important processes and factors that affect the hydrochemistry in the surface systems. In order to widen the perspective, all data from the Forsmark 2.2 stage including observations from different levels of the bedrock, as well as hydrological measurements and characterisations of the Quaternary deposits, have been included in the analyses. The purpose of this report is to give a general understanding of the site and to explain observed overall patterns as well as anomalies, and, ultimately, to present a conceptual model that explains the present hydrochemistry in the surface system in the light of the past. The report may also function as a basis for further evaluation and testing of scenarios, and may be regarded as an intermediate step between raw data compilations from the vast SICADA database and specialised expert models. The flat topography and the recent withdrawal of the Baltic Sea due to the isostatic land-uplift are two important factors determining the hydrochemistry in the Forsmark area. Marine remnants in the Quaternary deposits, as well as modern sea water intrusions, are therefore strongly influencing the hydrochemistry, especially in areas at low altitude close to the coast. Large-scale marine gradients in the surface system are consistent with the conceptual model that describes the hydrochemical evolution in a paleo-hydrologic perspective. The Forsmark area is covered by glacial remnants, mostly in the form of a till layer, which was deposited during the Weichselian glaciation and deglaciation. When the ice cover retreated about 11,000 years ago, these deposits were exposed on the sea floor. This till layer is characterized by a rich content of calcite, originating from the sedimentary bedrock of Gaevlebukten about 100 km north of Forsmark. The dissolution of this

  9. Hydrochemistry in surface water and shallow groundwater. Site descriptive modelling SDM-Site Forsmark

    Troejbom, Mats; Soederbaeck, Bjoern; Johansson, Per-Olof

    2007-10-01

    With a mathematical/statistical approach, a large number of visualisations and models reflect the hydrochemistry in the Forsmark area, with the intention to give an understanding of important processes and factors that affect the hydrochemistry in the surface systems. In order to widen the perspective, all data from the Forsmark 2.2 stage including observations from different levels of the bedrock, as well as hydrological measurements and characterisations of the Quaternary deposits, have been included in the analyses. The purpose of this report is to give a general understanding of the site and to explain observed overall patterns as well as anomalies, and, ultimately, to present a conceptual model that explains the present hydrochemistry in the surface system in the light of the past. The report may also function as a basis for further evaluation and testing of scenarios, and may be regarded as an intermediate step between raw data compilations from the vast SICADA database and specialised expert models. The flat topography and the recent withdrawal of the Baltic Sea due to the isostatic land-uplift are two important factors determining the hydrochemistry in the Forsmark area. Marine remnants in the Quaternary deposits, as well as modern sea water intrusions, are therefore strongly influencing the hydrochemistry, especially in areas at low altitude close to the coast. Large-scale marine gradients in the surface system are consistent with the conceptual model that describes the hydrochemical evolution in a paleo-hydrologic perspective. The Forsmark area is covered by glacial remnants, mostly in the form of a till layer, which was deposited during the Weichselian glaciation and deglaciation. When the ice cover retreated about 11,000 years ago, these deposits were exposed on the sea floor. This till layer is characterized by a rich content of calcite, originating from the sedimentary bedrock of Gaevlebukten about 100 km north of Forsmark. The dissolution of this

  10. Summary of discrete fracture network modelling as applied to hydrogeology of the Forsmark and Laxemar sites

    Hartley, Lee; Roberts, David

    2013-04-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is responsible for the development of a deep geological repository for spent nuclear fuel. The permitting of such a repository is informed by assessment studies to estimate the risks of the disposal method. One of the potential risks involves the transport of radionuclides in groundwater from defective canisters in the repository to the accessible environment. The Swedish programme for geological disposal of spent nuclear fuel has involved undertaking detailed surface-based site characterisation studies at two different sites, Forsmark and Laxemar-Simpevarp. A key component of the hydrogeological modelling of these two sites has been the development of Discrete Fracture Network (DFN) concepts of groundwater flow through the fractures in the crystalline rocks present. A discrete fracture network model represents some of the characteristics of fractures explicitly, such as their, orientation, intensity, size, spatial distribution, shape and transmissivity. This report summarises how the discrete fracture network methodology has been applied to model groundwater flow and transport at Forsmark and Laxemar. The account has involved summarising reports previously published by SKB between 2001 and 2011. The report describes the conceptual framework and assumptions used in interpreting site data, and in particular how data has been used to calibrate the various parameters that define the discrete fracture network representation of bedrock hydrogeology against borehole geologic and hydraulic data. Steps taken to confirm whether the developed discrete fracture network models provide a description of regional-scale groundwater flow and solute transport consistent with wider hydraulic tests hydrochemical data from Forsmark and Laxemar are discussed. It illustrates the use of derived hydrogeological DFN models in the simulations of the temperate period hydrogeology that provided input to radionuclide transport

  11. Summary of discrete fracture network modelling as applied to hydrogeology of the Forsmark and Laxemar sites

    Hartley, Lee; Roberts, David

    2013-04-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is responsible for the development of a deep geological repository for spent nuclear fuel. The permitting of such a repository is informed by assessment studies to estimate the risks of the disposal method. One of the potential risks involves the transport of radionuclides in groundwater from defective canisters in the repository to the accessible environment. The Swedish programme for geological disposal of spent nuclear fuel has involved undertaking detailed surface-based site characterisation studies at two different sites, Forsmark and Laxemar-Simpevarp. A key component of the hydrogeological modelling of these two sites has been the development of Discrete Fracture Network (DFN) concepts of groundwater flow through the fractures in the crystalline rocks present. A discrete fracture network model represents some of the characteristics of fractures explicitly, such as their, orientation, intensity, size, spatial distribution, shape and transmissivity. This report summarises how the discrete fracture network methodology has been applied to model groundwater flow and transport at Forsmark and Laxemar. The account has involved summarising reports previously published by SKB between 2001 and 2011. The report describes the conceptual framework and assumptions used in interpreting site data, and in particular how data has been used to calibrate the various parameters that define the discrete fracture network representation of bedrock hydrogeology against borehole geologic and hydraulic data. Steps taken to confirm whether the developed discrete fracture network models provide a description of regional-scale groundwater flow and solute transport consistent with wider hydraulic tests hydrochemical data from Forsmark and Laxemar are discussed. It illustrates the use of derived hydrogeological DFN models in the simulations of the temperate period hydrogeology that provided input to radionuclide transport

  12. Forsmark site investigation. Detailed ground magnetic survey and lineament interpretation in the Forsmark area, 2006-2007

    Isaksson, Hans; Thunehed, Hans; Pitkaenen, Timo; Keisu, Mikael

    2007-12-01

    The report presents detailed ground magnetic measurements carried out on an 11.1 km 2 area in the Forsmark site investigation area. The main objective of this activity is to determine a detailed ground magnetic representation of the bedrock. The results from previous surveys were encouraging and have led to a broad geophysical programme for investigation of lineaments at Forsmark. This report comprises the results from the second and final phase of the extended survey programme and a compilation and summary of all phases in the programme. On ground and on lake ice, a grid with parallel lines was staked. Measurements of the magnetic total field were carried out along profiles, perpendicular to the staked lines, with a profile spacing of 10 m and a station spacing of 5 m. Measurements on the ice-covered sea bays were carried out by a two man crew. One crew member walked along the survey lines, carrying a RTK-GPS guiding the other crew member who measured the magnetic total field. No seaborne survey was carried out in the final phase. Previously, using a high accuracy RTK-GPS unit for boat navigation gave a seaborne survey grid of on average 10 m line spacing and 2-3 m station spacing. In total 427,238 magnetic survey stations have been measured and an area of 4.7 km 2 has been surveyed from boat. The magnetic pattern in the survey area can be divided into six main areas with different magnetic character. Along the southwest margin of the survey area the magnetic pattern is intensely banded with rapidly changing low and highly magnetic bands striking southeast-northwest, which to the northeast changes to a gentler, banded pattern of low to moderate magnetic intensity. To the northeast, at the SFR office and along the coastline to the southeast, the pattern is again intensely banded with, southeast-northwest trending, rapidly changing low and highly magnetic bands. These two banded structures probably forms fold limbs of a common fold with a northwest oriented fold

  13. Forsmark site investigation. Detailed ground magnetic survey and lineament interpretation in the Forsmark area, 2006-2007

    Isaksson, Hans; Thunehed, Hans; Pitkaenen, Timo; Keisu, Mikael (GeoVista AB, Luleaa (SE))

    2007-12-15

    The report presents detailed ground magnetic measurements carried out on an 11.1 km2 area in the Forsmark site investigation area. The main objective of this activity is to determine a detailed ground magnetic representation of the bedrock. The results from previous surveys were encouraging and have led to a broad geophysical programme for investigation of lineaments at Forsmark. This report comprises the results from the second and final phase of the extended survey programme and a compilation and summary of all phases in the programme. On ground and on lake ice, a grid with parallel lines was staked. Measurements of the magnetic total field were carried out along profiles, perpendicular to the staked lines, with a profile spacing of 10 m and a station spacing of 5 m. Measurements on the ice-covered sea bays were carried out by a two man crew. One crew member walked along the survey lines, carrying a RTK-GPS guiding the other crew member who measured the magnetic total field. No seaborne survey was carried out in the final phase. Previously, using a high accuracy RTK-GPS unit for boat navigation gave a seaborne survey grid of on average 10 m line spacing and 2-3 m station spacing. In total 427,238 magnetic survey stations have been measured and an area of 4.7 km2 has been surveyed from boat. The magnetic pattern in the survey area can be divided into six main areas with different magnetic character. Along the southwest margin of the survey area the magnetic pattern is intensely banded with rapidly changing low and highly magnetic bands striking southeast-northwest, which to the northeast changes to a gentler, banded pattern of low to moderate magnetic intensity. To the northeast, at the SFR office and along the coastline to the southeast, the pattern is again intensely banded with, southeast-northwest trending, rapidly changing low and highly magnetic bands. These two banded structures probably forms fold limbs of a common fold with a northwest oriented fold axis

  14. Displacement along extensive deformation zones at the two SKB sites: Forsmark and Laxemar

    Beckholmen, Monica; Tiren, Sven A.

    2010-12-01

    The Fennoscandian shield, a part of the East European Craton, is distinguished by the exposed bedrock which is mainly composed of Precambrian metamorphic and igneous rocks. Large parts of the ground surface closely coincides with a late Precambrian denudation surface; the sub-Cambrian peneplain. Palaeozoic and younger sediments were deposited on the peneplain but these sediments have been removed from most areas that now form the mainland of Sweden and Finland and there are just a few remnants left. In the Baltic Sea, located in large-scale depressions on the boundary of in the Fennoscandian Shield/ in the East European Craton/, the Precambrian bedrock is still in large parts covered by Palaeozoic sediments. The Palaeozoic sedimentary rocks, as they are well bedded, may form a memory of the late Palaeozoic and younger tectonic events in the underlying basement rocks. Such data are used here to complement the structural observations made at sites located on the mainland, giving information on displacement along faults. Significant for the Baltic Sea are faults oriented in N-S that appear as segments, displaced relative to each other. Other structures are oriented in E-W, NE-SW and NW-SE. The SKB Forsmark site is located in a relatively flat coastal area within the sub-Cambrian peneplain. The sea area at the Forsmark site has a more accentuated relief than what is found on the mainland, for example, a furrow along the western side of the N-S oriented island Graesoe northeast of Forsmark (below 30m b.s.l. and locally more than 50m lower than Graesoe) and the deep between Aaland and Sweden (301m b.s.l.) about 100km east-southeast of Forsmark. In the Forsmark-site area two sets of structures interfere: a WNWESE trending set with relatively straight faults along the north coast of Uppland and a NNW-SSE to N-S trending set, slightly curved, along the (north)east coast of Uppland. The Forsmark site is located in an elevated WNW trending lath-shaped rock block outlined by

  15. Displacement along extensive deformation zones at the two SKB sites: Forsmark and Laxemar

    Beckholmen, Monica; Tiren, Sven A. (GEOSIGMA AB (Sweden))

    2010-12-15

    The Fennoscandian shield, a part of the East European Craton, is distinguished by the exposed bedrock which is mainly composed of Precambrian metamorphic and igneous rocks. Large parts of the ground surface closely coincides with a late Precambrian denudation surface; the sub-Cambrian peneplain. Palaeozoic and younger sediments were deposited on the peneplain but these sediments have been removed from most areas that now form the mainland of Sweden and Finland and there are just a few remnants left. In the Baltic Sea, located in large-scale depressions on the boundary of in the Fennoscandian Shield/ in the East European Craton/, the Precambrian bedrock is still in large parts covered by Palaeozoic sediments. The Palaeozoic sedimentary rocks, as they are well bedded, may form a memory of the late Palaeozoic and younger tectonic events in the underlying basement rocks. Such data are used here to complement the structural observations made at sites located on the mainland, giving information on displacement along faults. Significant for the Baltic Sea are faults oriented in N-S that appear as segments, displaced relative to each other. Other structures are oriented in E-W, NE-SW and NW-SE. The SKB Forsmark site is located in a relatively flat coastal area within the sub-Cambrian peneplain. The sea area at the Forsmark site has a more accentuated relief than what is found on the mainland, for example, a furrow along the western side of the N-S oriented island Graesoe northeast of Forsmark (below 30m b.s.l. and locally more than 50m lower than Graesoe) and the deep between Aaland and Sweden (301m b.s.l.) about 100km east-southeast of Forsmark. In the Forsmark-site area two sets of structures interfere: a WNWESE trending set with relatively straight faults along the north coast of Uppland and a NNW-SSE to N-S trending set, slightly curved, along the (north)east coast of Uppland. The Forsmark site is located in an elevated WNW trending lath-shaped rock block outlined by

  16. The terrestrial ecosystems at Forsmark and Laxemar-Simpevarp. SR-Site Biosphere

    Loefgren, Anders [ed.; EcoAnalytica, Haegersten (Sweden)

    2010-12-15

    The ecosystem is in most cases the link between radionuclides released from a repository and the exposure of humans and other biota to them. This report describes the terrestrial ecosystems in the Forsmark and Laxemar-Simpevarp areas by summarizing and performing cross-disciplinary analyses of data from a large number of reports produced during the site investigations, Figure 1-2. The report describes the terrestrial landscape, divided here into the three main categories: forests, wetlands and agriculture land, by identifying properties that are important for element accumulation and transport

  17. The terrestrial ecosystems at Forsmark and Laxemar-Simpevarp. SR-Site Biosphere

    Loefgren, Anders

    2010-12-01

    The ecosystem is in most cases the link between radionuclides released from a repository and the exposure of humans and other biota to them. This report describes the terrestrial ecosystems in the Forsmark and Laxemar-Simpevarp areas by summarizing and performing cross-disciplinary analyses of data from a large number of reports produced during the site investigations, Figure 1-2. The report describes the terrestrial landscape, divided here into the three main categories: forests, wetlands and agriculture land, by identifying properties that are important for element accumulation and transport

  18. Modelling of present and future hydrology and solute transport at Forsmark. SR-Site Biosphere

    Bosson, Emma; Sassner, Mona; Sabel, Ulrika; Gustafsson, Lars-Goeran

    2010-10-01

    Radioactive waste from nuclear power plants in Sweden is managed by the Swedish Nuclear Fuel and Waste Management Co, SKB. SKB has performed site investigations at two different locations in Sweden, referred to as the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a final repository for high-level radioactive waste. In 2009 a decision was made to focus on the Forsmark site. This decision was based on a large amount of empirical evidence suggesting Forsmark to be more suitable for a geological repository /SKB 2010b/. This report presents model results of numerical flow and transport modelling of surface water and near-surface groundwater at the Forsmark site for present and future conditions. Both temperate and periglacial climates have been simulated. Also different locations of the shoreline have been applied to the model, as well as different models of vegetation and Quaternary deposits. The modelling was performed using the modelling tool MIKE SHE and was based on the SDM-Site Forsmark MIKE SHE model (presented by Bosson et al. in SKB report R-08-09). The present work is a part of the biosphere modelling performed for the SR-Site safety assessment. The Forsmark area has a flat, small-scale topography. The study area is almost entirely below 20 m.a.s.l. (metres above sea level). There is a strong correlation between the topography of the ground surface and the ground water level in the Quaternary deposits (QD); thus, the surface water divides and the groundwater divides for the QD can be assumed to coincide. No major water courses flow through the catchment. Small brooks, which often dry out in the summer, connect the different sub-catchments with each other. The main lakes in the area, Lake Bolundsfjaerden, Lake Fiskarfjaerden, Lake Gaellsbotraesket and Lake Eckarfjaerden, all have sizes of less than one km2. The lakes are in general shallow. Approximately 70% of the catchment areas are covered by forest. Agricultural land is only present in

  19. Modelling of present and future hydrology and solute transport at Forsmark. SR-Site Biosphere

    Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stocholm (Sweden)); Sassner, Mona; Sabel, Ulrika; Gustafsson, Lars-Goeran (DHI Sverige AB (Sweden))

    2010-10-15

    Radioactive waste from nuclear power plants in Sweden is managed by the Swedish Nuclear Fuel and Waste Management Co, SKB. SKB has performed site investigations at two different locations in Sweden, referred to as the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a final repository for high-level radioactive waste. In 2009 a decision was made to focus on the Forsmark site. This decision was based on a large amount of empirical evidence suggesting Forsmark to be more suitable for a geological repository /SKB 2010b/. This report presents model results of numerical flow and transport modelling of surface water and near-surface groundwater at the Forsmark site for present and future conditions. Both temperate and periglacial climates have been simulated. Also different locations of the shoreline have been applied to the model, as well as different models of vegetation and Quaternary deposits. The modelling was performed using the modelling tool MIKE SHE and was based on the SDM-Site Forsmark MIKE SHE model (presented by Bosson et al. in SKB report R-08-09). The present work is a part of the biosphere modelling performed for the SR-Site safety assessment. The Forsmark area has a flat, small-scale topography. The study area is almost entirely below 20 m.a.s.l. (metres above sea level). There is a strong correlation between the topography of the ground surface and the ground water level in the Quaternary deposits (QD); thus, the surface water divides and the groundwater divides for the QD can be assumed to coincide. No major water courses flow through the catchment. Small brooks, which often dry out in the summer, connect the different sub-catchments with each other. The main lakes in the area, Lake Bolundsfjaerden, Lake Fiskarfjaerden, Lake Gaellsbotraesket and Lake Eckarfjaerden, all have sizes of less than one km2. The lakes are in general shallow. Approximately 70% of the catchment areas are covered by forest. Agricultural land is only present in

  20. Forsmark site investigation. Searching for evidence of late- or postglacial faulting in the Forsmark region. Results from 2002-2004

    Lagerbaeck, Robert; Sundh, Martin; Svedlund, Jan-Olov; Johansson, Helena [Geological Survey of Sweden, Uppsala (Sweden)

    2005-10-15

    The study was designed to determine whether any major late- or postglacial faulting occurred in the proposed repository area at Forsmark or in its vicinity. 'Major faulting' in this context is defined as dislocations in the order of several metres along faults several kilometres long. Faults of such dimensions may, if conditions are favourable, be detected by means of interpreting aerial photographs. Furthermore, they would have generated high magnitude earthquakes that could produce characteristic distortions in waterlogged sandy or silty sediments. Interpretation of aerial photographs was carried out in a relatively large area in northeast Uppland, with the purpose of looking for morphologically conspicuous lineaments, i.e. late- or postglacial fault candidates. A number of fairly prominent but short escarpments and crevasses were noted, but when later field-checked these candidates for young fault movement proved to be more or less strongly glacially eroded, i.e. formed prior to the last deglaciation. In order to search for seismically induced distortions, all gravel and sand pits being worked in the investigation area were visited and some fifty machine-dug trenches were excavated, mainly in sandy-silty glaciofluvial deposits along eskers. Contorted and folded sequences of glacial clay were encountered at many of the localities, but the disturbances were generally interpreted as caused by sliding. A seismic origin for the sliding cannot be excluded, but no conclusive evidence of this was found. As no distortions attributable to seismically induced liquefaction were noted in any of the trenches excavated along the Boerstil esker, to the southeast of Forsmark, it is concluded that no major (>M7) earthquakes occurred in the Forsmark area after the disappearance of the last inland ice sheet. An erosional unconformity accompanied by a laterally persistent layer of coarse-grained sediments was found in most of the investigated trenches and it is concluded

  1. Forsmark site investigation. Searching for evidence of late- or postglacial faulting in the Forsmark region. Results from 2002-2004

    Lagerbaeck, Robert; Sundh, Martin; Svedlund, Jan-Olov; Johansson, Helena

    2005-10-01

    The study was designed to determine whether any major late- or postglacial faulting occurred in the proposed repository area at Forsmark or in its vicinity. 'Major faulting' in this context is defined as dislocations in the order of several metres along faults several kilometres long. Faults of such dimensions may, if conditions are favourable, be detected by means of interpreting aerial photographs. Furthermore, they would have generated high magnitude earthquakes that could produce characteristic distortions in waterlogged sandy or silty sediments. Interpretation of aerial photographs was carried out in a relatively large area in northeast Uppland, with the purpose of looking for morphologically conspicuous lineaments, i.e. late- or postglacial fault candidates. A number of fairly prominent but short escarpments and crevasses were noted, but when later field-checked these candidates for young fault movement proved to be more or less strongly glacially eroded, i.e. formed prior to the last deglaciation. In order to search for seismically induced distortions, all gravel and sand pits being worked in the investigation area were visited and some fifty machine-dug trenches were excavated, mainly in sandy-silty glaciofluvial deposits along eskers. Contorted and folded sequences of glacial clay were encountered at many of the localities, but the disturbances were generally interpreted as caused by sliding. A seismic origin for the sliding cannot be excluded, but no conclusive evidence of this was found. As no distortions attributable to seismically induced liquefaction were noted in any of the trenches excavated along the Boerstil esker, to the southeast of Forsmark, it is concluded that no major (>M7) earthquakes occurred in the Forsmark area after the disappearance of the last inland ice sheet. An erosional unconformity accompanied by a laterally persistent layer of coarse-grained sediments was found in most of the investigated trenches and it is concluded that strong

  2. Hydraulic effects of unsealed boreholes. Numerical groundwater flow modelling of the Forsmark and Laxemar sites

    Bockgaard, Niclas

    2011-06-01

    The objective of the work was to investigate hydraulic effects of open and poorly sealed boreholes on groundwater flow conditions through simulations using a numerical groundwater model. Specifically, the boreholes KFM07A, KFM09A, and KFM09B in Forsmark and the boreholes KLX04, KLX06, and KLX10 in Laxemar were studied. The criteria for the selection of these boreholes were that the boreholes should represent typical conditions of the site, the borehole length should exceed 500 m, and that several major fractured zones should be intersected. The boreholes KFM07A and KLX06, respectively, were selected as reference boreholes for more detailed studies of different sealing schemes. The model setup of the Forsmark model followed the Forsmark 2.2 regional-scale conceptual hydrogeological model. The model domain was approximately 15 km (north-south) x 10 km (west- east) x 1.2 km (depth). The 131 deformation zones and three layers of superficial horizontal sheet joint were modelled deterministically. A stochastic discrete fracture network (DFN) representing fractures and minor deformation zones were also generated between the deterministic deformation zones inside central model volume. The side lengths of the square fractures were from 1,000 m down to 10 m. In order to resolve the details of flow in to and out from the borehole, a more detailed DFN was generated in a zone around the borehole KFM07A, where fractures down to a side length of 0.5 m were considered. The model setup of the Laxemar model followed the SDM-Site Laxemar (Laxemar 2.3) regional scale conceptual hydrogeological model. The model domain was approximately 12 km (north-south) x 20 km (west-east) x 2.1 km (depth). A number of 71 deformation zones were modelled deterministically, and one realization of a stochastic DFN, the so-called hydrogeological DFN model base case, was imported to the model. Similar to the Forsmark case, a more detailed DFN was also generated around the reference borehole KLX06. The

  3. Hydraulic effects of unsealed boreholes. Numerical groundwater flow modelling of the Forsmark and Laxemar sites

    Bockgaard, Niclas [Golder Associates AB, Stockholm (Sweden)

    2011-06-15

    The objective of the work was to investigate hydraulic effects of open and poorly sealed boreholes on groundwater flow conditions through simulations using a numerical groundwater model. Specifically, the boreholes KFM07A, KFM09A, and KFM09B in Forsmark and the boreholes KLX04, KLX06, and KLX10 in Laxemar were studied. The criteria for the selection of these boreholes were that the boreholes should represent typical conditions of the site, the borehole length should exceed 500 m, and that several major fractured zones should be intersected. The boreholes KFM07A and KLX06, respectively, were selected as reference boreholes for more detailed studies of different sealing schemes. The model setup of the Forsmark model followed the Forsmark 2.2 regional-scale conceptual hydrogeological model. The model domain was approximately 15 km (north-south) x 10 km (west- east) x 1.2 km (depth). The 131 deformation zones and three layers of superficial horizontal sheet joint were modelled deterministically. A stochastic discrete fracture network (DFN) representing fractures and minor deformation zones were also generated between the deterministic deformation zones inside central model volume. The side lengths of the square fractures were from 1,000 m down to 10 m. In order to resolve the details of flow in to and out from the borehole, a more detailed DFN was generated in a zone around the borehole KFM07A, where fractures down to a side length of 0.5 m were considered. The model setup of the Laxemar model followed the SDM-Site Laxemar (Laxemar 2.3) regional scale conceptual hydrogeological model. The model domain was approximately 12 km (north-south) x 20 km (west-east) x 2.1 km (depth). A number of 71 deformation zones were modelled deterministically, and one realization of a stochastic DFN, the so-called hydrogeological DFN model base case, was imported to the model. Similar to the Forsmark case, a more detailed DFN was also generated around the reference borehole KLX06. The

  4. Forsmark site investigation. Programme for long-term observations of geosphere and biosphere after completed site investigations

    NONE

    2007-06-15

    The site investigation at Forsmark was terminated the last of June, 2007. Hundreds of investigations have been conducted during a period of more than five years. Monitoring of a number of geoscientific parameters and biological objects has been one important part of the site investigation programme. Monitoring is defined as recurrent measurements of the same parameters/objects, so that time series are generated. Long-term monitoring of for example weather parameters, surface water discharge in brooks, and the groundwater head in a large number of boreholes has been conducted during the site investigations. Furthermore, repeated sampling of precipitation, surface water and groundwater in soil and rock for hydrochemical analyses has been carried out, and the groundwater flow in isolated borehole sections has been measured several times. Besides, some biological objects, for example rare bird species, have been invented each year of the site investigation. The measured parameters and the invented objects are characterized by a certain degree of time dependent variability, which is also site-specific. The aim of the monitoring is primarily to establish the 'undisturbed' conditions, the so called 'baseline'. If a deep repository is sited at Forsmark, many site-specific conditions will change, due to natural causes as well as to the construction works. Knowledge about the undisturbed conditions strengthens the ability to reveal and quantify such changes and to distinguish natural changes from those caused by the human activities. Another object of monitoring is to, by the study of the variability pattern of the monitored parameters, elevate the knowledge about the underlying, often complex causes governing the variations. In this way the description of site-specific conditions may be more precise and the prospects of modelling important processes are improved. After completion of the site investigations, a period of about two years will follow, when

  5. Forsmark site investigation. Programme for long-term observations of geosphere and biosphere after completed site investigations

    2007-06-01

    The site investigation at Forsmark was terminated the last of June, 2007. Hundreds of investigations have been conducted during a period of more than five years. Monitoring of a number of geoscientific parameters and biological objects has been one important part of the site investigation programme. Monitoring is defined as recurrent measurements of the same parameters/objects, so that time series are generated. Long-term monitoring of for example weather parameters, surface water discharge in brooks, and the groundwater head in a large number of boreholes has been conducted during the site investigations. Furthermore, repeated sampling of precipitation, surface water and groundwater in soil and rock for hydrochemical analyses has been carried out, and the groundwater flow in isolated borehole sections has been measured several times. Besides, some biological objects, for example rare bird species, have been invented each year of the site investigation. The measured parameters and the invented objects are characterized by a certain degree of time dependent variability, which is also site-specific. The aim of the monitoring is primarily to establish the 'undisturbed' conditions, the so called 'baseline'. If a deep repository is sited at Forsmark, many site-specific conditions will change, due to natural causes as well as to the construction works. Knowledge about the undisturbed conditions strengthens the ability to reveal and quantify such changes and to distinguish natural changes from those caused by the human activities. Another object of monitoring is to, by the study of the variability pattern of the monitored parameters, elevate the knowledge about the underlying, often complex causes governing the variations. In this way the description of site-specific conditions may be more precise and the prospects of modelling important processes are improved. After completion of the site investigations, a period of about two years will follow, when the investigation

  6. Geological evolution, palaeoclimate and historical development of the Forsmark and Laxemar-Simpevarp areas. Site descriptive modelling SDM-Site

    Soederbaeck, Bjoern [ed.

    2008-06-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterization at two different locations, the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The site investigations started in 2002 and were completed in 2007. The analysis and modelling of data from the site investigations, which have taken place during and after these investigations, provide a foundation for the development of an integrated, multidisciplinary site descriptive model (SDM) for each of the two sites. A site descriptive model constitutes a description of the site and its regional setting, covering the current state of the geosphere and the biosphere, as well as those natural processes that affect or have affected their long-term development. Hitherto, a number of reports presenting preliminary site descriptive models for Forsmark and Laxemar-Simpevarp have been published. In these reports, the evolutionary and historical aspects of the site were included in a separate chapter. The present report comprises a further elaboration of the evolutionary and historical information included in the preliminary SDM reports, but presented here in a separate, supplementary report to the final site description, SDM-Site. The report is common to the two investigated areas, and the overall objective is to describe the long-term geological evolution, the palaeoclimate, and the post-glacial development of ecosystems and of the human population at the two sites. The report largely consists of a synthesis of information derived from the scientific literature and other sources not related to the site investigations. However, considerable information from the site investigations that has contributed to our understanding of the past development at each site is also included. This unique synthesis of both published information in a regional perspective and new site-specific information breaks new ground in our understanding

  7. Geological evolution, palaeoclimate and historical development of the Forsmark and Laxemar-Simpevarp areas. Site descriptive modelling SDM-Site

    Soederbaeck, Bjoern

    2008-06-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterization at two different locations, the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The site investigations started in 2002 and were completed in 2007. The analysis and modelling of data from the site investigations, which have taken place during and after these investigations, provide a foundation for the development of an integrated, multidisciplinary site descriptive model (SDM) for each of the two sites. A site descriptive model constitutes a description of the site and its regional setting, covering the current state of the geosphere and the biosphere, as well as those natural processes that affect or have affected their long-term development. Hitherto, a number of reports presenting preliminary site descriptive models for Forsmark and Laxemar-Simpevarp have been published. In these reports, the evolutionary and historical aspects of the site were included in a separate chapter. The present report comprises a further elaboration of the evolutionary and historical information included in the preliminary SDM reports, but presented here in a separate, supplementary report to the final site description, SDM-Site. The report is common to the two investigated areas, and the overall objective is to describe the long-term geological evolution, the palaeoclimate, and the post-glacial development of ecosystems and of the human population at the two sites. The report largely consists of a synthesis of information derived from the scientific literature and other sources not related to the site investigations. However, considerable information from the site investigations that has contributed to our understanding of the past development at each site is also included. This unique synthesis of both published information in a regional perspective and new site-specific information breaks new ground in our understanding

  8. Hydrogeochemical evaluation. Preliminary site description Forsmark area - version 1.2

    Laaksoharju, Marcus

    2005-03-01

    Siting studies for SKB's programme of deep geological disposal of nuclear fuel waste currently involves the investigation of two locations, Forsmark and Laxemar-Simpevarp, on the eastern coast of Sweden to determine their geological, hydrogeochemical and hydrogeological characteristics. Present work completed has resulted in Model version 1.2 which represents the second evaluation of the available Forsmark groundwater analytical data collected up to June, 2004. The Hydrochemical Analytical Group (HAG) had access to data where a total of 1,131 water samples had been collected from the surface and sub-surface environment; 252 samples were collected from drilled boreholes. The deepest fracture groundwater samples with sufficient analytical data reflected depths down to 1 km. Most of the waters sampled (66%) lacked crucial analytical information that restricted the evaluation. Model version 1.2 focuses on geochemical and mixing processes affecting the groundwater composition in the uppermost part of the bedrock, down to repository levels, and eventually extending to 1,000 m depth. The complex groundwater evolution and patterns at Forsmark are a result of many factors such as: a) the present-day topography and proximity to the Baltic Sea, b) past changes in hydrogeology related to glaciation/deglaciation, land uplift and repeated marine/lake water regressions/ transgressions, and c) organic or inorganic alteration of the groundwater composition caused by microbial processes or water/rock interactions. The sampled groundwaters reflect to various degrees processes relating to modern or ancient water/rock interactions and mixing. The groundwater flow regimes at Forsmark are considered local and extend down to depths of around 600 m depending on hydraulic conditions. Close to the Baltic Sea coastline where topographical variation is even less, groundwater flow penetration to depth will subsequently be less marked and such areas will tend to be characterised by groundwater

  9. Hydrogeochemical evaluation. Preliminary site description Forsmark area - version 1.2

    Laaksoharju, Marcus (ed.) [Geopoint AB, Stockholm (Sweden)

    2005-03-15

    Siting studies for SKB's programme of deep geological disposal of nuclear fuel waste currently involves the investigation of two locations, Forsmark and Laxemar-Simpevarp, on the eastern coast of Sweden to determine their geological, hydrogeochemical and hydrogeological characteristics. Present work completed has resulted in Model version 1.2 which represents the second evaluation of the available Forsmark groundwater analytical data collected up to June, 2004. The Hydrochemical Analytical Group (HAG) had access to data where a total of 1,131 water samples had been collected from the surface and sub-surface environment; 252 samples were collected from drilled boreholes. The deepest fracture groundwater samples with sufficient analytical data reflected depths down to 1 km. Most of the waters sampled (66%) lacked crucial analytical information that restricted the evaluation. Model version 1.2 focuses on geochemical and mixing processes affecting the groundwater composition in the uppermost part of the bedrock, down to repository levels, and eventually extending to 1,000 m depth. The complex groundwater evolution and patterns at Forsmark are a result of many factors such as: a) the present-day topography and proximity to the Baltic Sea, b) past changes in hydrogeology related to glaciation/deglaciation, land uplift and repeated marine/lake water regressions/ transgressions, and c) organic or inorganic alteration of the groundwater composition caused by microbial processes or water/rock interactions. The sampled groundwaters reflect to various degrees processes relating to modern or ancient water/rock interactions and mixing. The groundwater flow regimes at Forsmark are considered local and extend down to depths of around 600 m depending on hydraulic conditions. Close to the Baltic Sea coastline where topographical variation is even less, groundwater flow penetration to depth will subsequently be less marked and such areas will tend to be characterised by

  10. Regional hydrogeological simulations for Forsmark - numerical modelling using DarcyTools. Preliminary site description Forsmark area version 1.2

    Follin, Sven; Stigsson, Martin; Svensson, Urban

    2005-12-01

    A numerical model is developed on a regional-scale (hundreds of square kilometres) to study the zone of influence for variable-density groundwater flow that affects the Forsmark area. Transport calculations are performed by particle tracking from a local-scale release area (a few square kilometres) to test the sensitivity to different hydrogeological uncertainties and the need for far-field realism. The main objectives of the regional flow modelling were to achieve the following: I. Palaeo-hydrogeological understanding: An improved understanding of the palaeohydrogeological conditions is necessary in order to gain credibility for the site descriptive model in general and the hydrogeological description in particular. This requires modelling of the groundwater flow from the last glaciation up to present-day with comparisons against measured TDS and other hydro-geochemical measures. II. Simulation of flow paths: The simulation and visualisation of flow paths from a tentative repository area is a means for describing the role of the current understanding of the modelled hydrogeological conditions in the target volume, i.e. the conditions of primary interest for Safety Assessment. Of particular interest here is demonstration of the need for detailed far-field realism in the numerical simulations. The motivation for a particular model size (and resolution) and set of boundary conditions for a realistic description of the recharge and discharge connected to the flow at repository depth is an essential part of the groundwater flow path simulations. The numerical modelling was performed by two separate modelling teams, the ConnectFlow Team and the DarcyTools Team. The work presented in this report was based on the computer code DarcyTools developed by Computer-aided Fluid Engineering. DarcyTools is a kind of equivalent porous media (EPM) flow code specifically designed to treat flow and salt transport in sparsely fractured crystalline rock intersected by transmissive

  11. Regional hydrogeological simulations for Forsmark - numerical modelling using DarcyTools. Preliminary site description Forsmark area version 1.2

    NONE

    2005-12-15

    A numerical model is developed on a regional-scale (hundreds of square kilometres) to study the zone of influence for variable-density groundwater flow that affects the Forsmark area. Transport calculations are performed by particle tracking from a local-scale release area (a few square kilometres) to test the sensitivity to different hydrogeological uncertainties and the need for far-field realism. The main objectives of the regional flow modelling were to achieve the following: I. Palaeo-hydrogeological understanding: An improved understanding of the palaeohydrogeological conditions is necessary in order to gain credibility for the site descriptive model in general and the hydrogeological description in particular. This requires modelling of the groundwater flow from the last glaciation up to present-day with comparisons against measured TDS and other hydro-geochemical measures. II. Simulation of flow paths: The simulation and visualisation of flow paths from a tentative repository area is a means for describing the role of the current understanding of the modelled hydrogeological conditions in the target volume, i.e. the conditions of primary interest for Safety Assessment. Of particular interest here is demonstration of the need for detailed far-field realism in the numerical simulations. The motivation for a particular model size (and resolution) and set of boundary conditions for a realistic description of the recharge and discharge connected to the flow at repository depth is an essential part of the groundwater flow path simulations. The numerical modelling was performed by two separate modelling teams, the ConnectFlow Team and the DarcyTools Team. The work presented in this report was based on the computer code DarcyTools developed by Computer-aided Fluid Engineering. DarcyTools is a kind of equivalent porous media (EPM) flow code specifically designed to treat flow and salt transport in sparsely fractured crystalline rock intersected by transmissive

  12. Forsmark site investigation. Hydrochemical investigations in four calciferous lakes in the Forsmark area. Results from the second year of a complementary investigation in the Forsmark area

    Qvarfordt, Susanne; Borgiel, Micke; Berg, Cecilia

    2011-12-01

    The present report documents the results from the second year of hydrochemical investigations in four small, calciferous lakes in the Forsmark area in order to study the lake water compositions. The construction of a permanent storage facility for used nuclear fuel may result in a lowering of the ground water level and also lake surface water levels. Restoration of habitats by adding water may be an option to reduce possible negative consequences induced by a lower water level on biodiversity and valuable species. Thus, knowledge of the water composition is needed. This report presents the results from six sampling occasions during January to December 2010. The results from the sampling of the four lakes includes field measurements of redox potential (ORP), pH, dissolved oxygen, electrical conductivity, salinity, depth, atmospheric pressure, turbidity, chlorophyll and water temperature, as well as chemical analyses of major constituents and nutrient salts. The four investigated small lakes are well buffered with high alkalinity, high pH and high calcium concentrations. This is in accordance with results from the ongoing monitoring programme of lakes and streams in the area and with the results from the previous sampling period (2008-2009). The results show both seasonal and inter-annual variation in the analysed parameters. This can be explained by seasonal changes and annual differences in temperature, ice-cover, precipitation etc and lake specific parameters such as lake size and drainage area. The variation highlights the importance of both year round sampling and continued sampling for several years when discussing the water composition

  13. Forsmark site investigation. Hydrochemical investigations in four calciferous lakes in the Forsmark area. Results from the second year of a complementary investigation in the Forsmark area

    Qvarfordt, Susanne; Borgiel, Micke [Sveriges Vattenekologer AB, Vingaaker (Sweden); Berg, Cecilia [Geosigma AB, Uppsala (Sweden)

    2011-12-15

    The present report documents the results from the second year of hydrochemical investigations in four small, calciferous lakes in the Forsmark area in order to study the lake water compositions. The construction of a permanent storage facility for used nuclear fuel may result in a lowering of the ground water level and also lake surface water levels. Restoration of habitats by adding water may be an option to reduce possible negative consequences induced by a lower water level on biodiversity and valuable species. Thus, knowledge of the water composition is needed. This report presents the results from six sampling occasions during January to December 2010. The results from the sampling of the four lakes includes field measurements of redox potential (ORP), pH, dissolved oxygen, electrical conductivity, salinity, depth, atmospheric pressure, turbidity, chlorophyll and water temperature, as well as chemical analyses of major constituents and nutrient salts. The four investigated small lakes are well buffered with high alkalinity, high pH and high calcium concentrations. This is in accordance with results from the ongoing monitoring programme of lakes and streams in the area and with the results from the previous sampling period (2008-2009). The results show both seasonal and inter-annual variation in the analysed parameters. This can be explained by seasonal changes and annual differences in temperature, ice-cover, precipitation etc and lake specific parameters such as lake size and drainage area. The variation highlights the importance of both year round sampling and continued sampling for several years when discussing the water composition.

  14. Statistics of modelled conductive fractures based on Laxemar and Forsmark. Site descriptive model data

    Stigsson, Martin

    2009-12-15

    The objectives of this report is to investigate the frequency of fractures assumed to be water conductive, i.e. open or partly open and directly or indirectly connected to a source. Also the distribution of total transmissivity in 100 m and 20 m horizontal sections and 8 m vertical sections is calculated. The report is only intended to serve as input to the SER, Site Engineering Report, at Laxemar and Forsmark. The input data for the analyses is taken, as is, from the Discrete Fracture Network sections in published reports. No evaluation that the model parameters are appropriate for the task or sensitivity analysis is performed. The tunnels and deposition holes are modelled as scanlines which is a very coarse approximation, but it may give some rough estimation of the frequency of the water bearing features, especially for the larger ones, and the total transmissivity in a section

  15. Statistics of modelled conductive fractures based on Laxemar and Forsmark. Site descriptive model data

    Stigsson, Martin

    2009-12-01

    The objectives of this report is to investigate the frequency of fractures assumed to be water conductive, i.e. open or partly open and directly or indirectly connected to a source. Also the distribution of total transmissivity in 100 m and 20 m horizontal sections and 8 m vertical sections is calculated. The report is only intended to serve as input to the SER, Site Engineering Report, at Laxemar and Forsmark. The input data for the analyses is taken, as is, from the Discrete Fracture Network sections in published reports. No evaluation that the model parameters are appropriate for the task or sensitivity analysis is performed. The tunnels and deposition holes are modelled as scanlines which is a very coarse approximation, but it may give some rough estimation of the frequency of the water bearing features, especially for the larger ones, and the total transmissivity in a section

  16. Hydrogeochemical evaluation of the Forsmark site, model version 1.1

    Laaksoharju, Marcus (ed.) [GeoPoint AB, Sollentuna (Sweden); Gimeno, Maria; Auque, Luis; Gomez, Javier [Univ. of Zaragoza (Spain). Dept. of Earth Sciences; Smellie, John [Conterra AB, Uppsala (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden); Gurban, Ioana [3D-Terra, Montreal (Canada)

    2004-01-01

    Siting studies for SKB's programme of deep geological disposal of nuclear fuel waste currently involves the investigation of two locations, Forsmark and Simpevarp, on the eastern coast of Sweden to determine their geological, geochemical and hydrogeological characteristics. Present work completed has resulted in model version 1.1 which represents the first evaluation of the available Forsmark groundwater analytical data collected up to May 1, 2003 (i.e. the first 'data freeze'). The HAG group had access to a total of 456 water samples collected mostly from the surface and sub-surface environment (e.g. soil pipes in the overburden, streams and lakes); only a few samples were collected from drilled boreholes. The deepest samples reflected depths down to 200 m. Furthermore, most of the waters sampled (74%) lacked crucial analytical information that restricted the evaluation. Consequently, model version 1.1 focussed on the processes taking place in the uppermost part of the bedrock rather than at repository levels. The complex groundwater evolution and patterns at Forsmark are a result of many factors such as: a) the flat topography and closeness to the Baltic Sea resulting in relative small hydrogeological driving forces which can preserve old water types from being flushed out, b) the changes in hydrogeology related to glaciation/deglaciation and land uplift, c) repeated marine/lake water regressions/transgressions, and d) organic or inorganic alteration of the groundwater caused by microbial processes or water/rock interactions. The sampled groundwaters reflect to various degrees modern or ancient water/rock interactions and mixing processes. Based on the general geochemical character and the apparent age two major water types occur in Forsmark: fresh-meteoric waters with a bicarbonate imprint and low residence times (tritium values above detection limit), and brackish-marine waters with Cl contents up to 6,000 mg/L and longer residence times (tritium

  17. Forsmark site investigation. Programme for further investigations of geosphere and biosphere

    NONE

    2005-01-01

    Since the beginning of 2002, SKB (the Swedish Nuclear Fuel and Waste Management Co) has been conducting a site investigation in Forsmark in the municipality of Oesthammar for siting of the deep repository for spent nuclear fuel. An equivalent investigation is also being conducted at Simpevarp and Laxemar in Oskarshamn Municipality. SKB's goal is to submit an application under the Environmental Code and the Nuclear Activities Act for siting of the deep repository at one of these sites by the end of 2008/beginning of 2009. When the application is submitted, everything of importance for the deep repository's safety, constructability and environmental impact shall have been investigated and analyzed. The investigations shall also provide data as a basis for selecting a site and configuring the facility to suit conditions on the site.SKB submitted a programme for the initial site investigation in Forsmark at the end of 2001. The investigations described there have now been completed. This report describes the programme that has now been prepared for the remainder of the site investigation. The points of departure are the general goals for the Deep Repository Project during the site investigation phase, the data needed for evaluation of the site, plus experience and results from the work to date. The programme has been prepared with the support of investigation data as of August 2004. The investigations described here will, as before, be conducted with great consideration given to residents, property owners and natural and cultural values so that they are not unnecessarily exposed to impact or disturbances. Just as before, the programme will be continuously adapted to the knowledge that is gradually accumulated on the site. All important changes will be reported to the authorities and other concerned parties. The investigations that have been conducted (as of August 2004) and their results can be summarized in the following points: The surface characterization

  18. Forsmark site investigation. Programme for further investigations of geosphere and biosphere

    2005-01-01

    Since the beginning of 2002, SKB (the Swedish Nuclear Fuel and Waste Management Co) has been conducting a site investigation in Forsmark in the municipality of Oesthammar for siting of the deep repository for spent nuclear fuel. An equivalent investigation is also being conducted at Simpevarp and Laxemar in Oskarshamn Municipality. SKB's goal is to submit an application under the Environmental Code and the Nuclear Activities Act for siting of the deep repository at one of these sites by the end of 2008/beginning of 2009. When the application is submitted, everything of importance for the deep repository's safety, constructability and environmental impact shall have been investigated and analyzed. The investigations shall also provide data as a basis for selecting a site and configuring the facility to suit conditions on the site.SKB submitted a programme for the initial site investigation in Forsmark at the end of 2001. The investigations described there have now been completed. This report describes the programme that has now been prepared for the remainder of the site investigation. The points of departure are the general goals for the Deep Repository Project during the site investigation phase, the data needed for evaluation of the site, plus experience and results from the work to date. The programme has been prepared with the support of investigation data as of August 2004. The investigations described here will, as before, be conducted with great consideration given to residents, property owners and natural and cultural values so that they are not unnecessarily exposed to impact or disturbances. Just as before, the programme will be continuously adapted to the knowledge that is gradually accumulated on the site. All important changes will be reported to the authorities and other concerned parties. The investigations that have been conducted (as of August 2004) and their results can be summarized in the following points: The surface characterization of the

  19. Thermal modelling. Preliminary site description. Forsmark area - version 1.2

    Sundberg, Jan; Back, Paer-Erik; Bengtsson, Anna; Laendell, Maerta [Geo Innova AB, Linkoeping (Sweden)

    2005-08-01

    This report presents the thermal site descriptive model for the Forsmark area, version 1.2. The main objective of this report is to present the thermal modelling work where data has been identified, quality controlled, evaluated and summarised in order to make an upscaling to lithological domain level possible. The thermal conductivity at canister scale has been modelled for two different lithological domains (RFM029 and RFM012, both dominated by granite to granodiorite (101057)). A main modelling approach has been used to determine the mean value of the thermal conductivity. Two alternative/complementary approaches have been used to evaluate the spatial variability of the thermal conductivity at domain level. The thermal modelling approaches are based on the lithological model for the Forsmark area, version 1.2 together with rock type models constituted from measured and calculated (from mineral composition) thermal conductivities. Results indicate that the mean of thermal conductivity is expected to exhibit a small variation between the different domains, 3.46 W/(mxK) for RFM012 to 3.55 W/(mxK) for RFM029. The spatial distribution of the thermal conductivity does not follow a simple model. Lower and upper 95% confidence limits are based on the modelling results, but have been rounded of to only two significant figures. Consequently, the lower limit is 2.9 W/(mxK), while the upper is 3.8 W/(mxK). This is applicable to both the investigated domains. The temperature dependence is rather small with a decrease in thermal conductivity of 10.0% per 100 deg C increase in temperature for the dominating rock type. There are a number of important uncertainties associated with these results. One of the uncertainties considers the representative scale for the canister. Another important uncertainty is the methodological uncertainties associated with the upscaling of thermal conductivity from cm-scale to canister scale. In addition, the representativeness of rock samples is

  20. Forsmark site characterisation - Borehole KFM22 and KFM23: Derivation of porewater data by diffusion experiments

    Waber, H. N. [Rock Water Interaction, University of Bern, Bern (Switzerland); Smellie, J. A. T. [Conterra AB, Partille (Sweden)

    2012-04-15

    Within the Detum Project (Detailed Investigations in Forsmark) a 'Methodology comparison for porewater extraction and characterisation techniques' was initiated. This has centred on two shallow boreholes drilled at Soederviken within the northern part of the Forsmark characterisation site. The comparison includes different methodologies to characterise the chemical and isotopic composition of porewater residing in the connected pore space of the rock matrix. The present report describes the chemical and isotopic information of the porewater obtained by out-diffusion experiments and the diffusive isotope equilibration technique applied to originally water saturated drillcore samples. In addition, petrophysical data and solute transport properties of the rock matrix, all necessary for porewater characterisation, have also been elaborated. Specially conditioned drillcore samples were obtained from depths of less than 100 m from boreholes KFM22 and KFM23. Porewater has been extracted successfully from seven samples by laboratory out-diffusion and diffusive isotope exchange methods. The methodology to extract and analyse the porewater is outlined and the analytical data are tabulated. The data are critically reviewed for potential experimental artefacts and their significance with respect to in situ conditions. The connected pore space in the core material representing borehole KFM22 and KFM23 was measured on different types of originally saturated drillcore samples using gravimetric and isotope mass balance methods. Out-diffusion experiments were performed on kg-sized drillcore samples to derive the in situ concentration of the chemically conservative compounds chloride and bromide. The attainment of equilibrium conditions in the out-diffusion experiments was monitored by the concentration change of chloride and bromide as a function of time. The water isotope composition of porewater was determined by the diffusive isotope equilibration technique and by

  1. Application of a parallel 3-dimensional hydrogeochemistry HPF code to a proposed waste disposal site at the Oak Ridge National Laboratory

    Gwo, Jin-Ping; Yeh, Gour-Tsyh

    1997-01-01

    The objectives of this study are (1) to parallelize a 3-dimensional hydrogeochemistry code and (2) to apply the parallel code to a proposed waste disposal site at the Oak Ridge National Laboratory (ORNL). The 2-dimensional hydrogeochemistry code HYDROGEOCHEM, developed at the Pennsylvania State University for coupled subsurface solute transport and chemical equilibrium processes, was first modified to accommodate 3-dimensional problem domains. A bi-conjugate gradient stabilized linear matrix solver was then incorporated to solve the matrix equation. We chose to parallelize the 3-dimensional code on the Intel Paragons at ORNL by using an HPF (high performance FORTRAN) compiler developed at PGI. The data- and task-parallel algorithms available in the HPF compiler proved to be highly efficient for the geochemistry calculation. This calculation can be easily implemented in HPF formats and is perfectly parallel because the chemical speciation on one finite-element node is virtually independent of those on the others. The parallel code was applied to a subwatershed of the Melton Branch at ORNL. Chemical heterogeneity, in addition to physical heterogeneities of the geological formations, has been identified as one of the major factors that affect the fate and transport of contaminants at ORNL. This study demonstrated an application of the 3-dimensional hydrogeochemistry code on the Melton Branch site. A uranium tailing problem that involved in aqueous complexation and precipitation-dissolution was tested. Performance statistics was collected on the Intel Paragons at ORNL. Implications of these results on the further optimization of the code were discussed

  2. Preliminary assessment of potential underground stability (wedge and spalling) at Forsmark, Simpevarp and Laxemar sites

    Martin, Derek [Univ. of Alberta, Edmonton (Canada). Geotechnical Engineering

    2005-12-15

    In SKB's Underground Design Premises the objective in the early design phase is to estimate if there is sufficient space for the repository at a site. One of the conditions that could limit the space available is stability of the underground openings, i.e., deposition tunnels and deposition boreholes. The purpose of this report is to provide a preliminary assessment of the potential for wedge instability and spalling that may be encountered at the Forsmark, Simpevarp and Laxemar sites based on information from the site investigations program up to July 30, 2004. The rock mass spalling strength was defined using the in-situ results from SKB's Aespoe Pillar Stability Experiment and AECL's Mine-by Experiment. These experiments suggest that the rock mass spalling strength for crystalline rocks can be estimated as 0.57 of the mean laboratory uniaxial compressive strength. A probability-based methodology utilizing this in-situ rock mass spalling strength has been developed for assessing the risk for spalling in a repository at the Forsmark, Simpevarp and Laxemar sites. The in-situ stresses and the uniaxial compressive strength data from these sites were used as the bases for the analyses. Preliminary findings from all sites suggest that, generally, the risk for spalling increases as the depth of the repository increases, simply because the stress magnitudes increase with depth. The depth at which the risk for spalling is significant, depends on the individual sites which are discussed below. The greatest uncertainty in the spalling analyses for Forsmark is related to the uncertainty in the horizontal stress magnitudes and associated stress gradients with depth. The confidence in these analyses can only be increased by increasing the confidence in the stress and geology model for the site. From the analyses completed it appears that spalling in the deposition tunnels can be controlled by orienting the tunnels approximately parallel to the maximum horizontal

  3. The terrestrial ecosystems at Forsmark and Laxemar-Simpevarp. Site descriptive modelling SDM site

    Loefgren, Anders [EcoAnalytica, Haegersten (Sweden); ed.

    2008-12-15

    This report describes the terrestrial ecosystems in the Forsmark and Laxemar-Simpevarp areas by summarizing ecological data and data from disciplines such as hydrology, quaternary geology and chemistry. The description therefore includes a number of different processes that drive element fluxes in the ecosystems, such as net primary production, heterotrophic respiration, transpiration, and horizontal transport from land to streams and lakes. Moreover, the human appropriation of the landscape is described with regard to land use and potential and actual utilization of food resources both today and in a historical perspective

  4. The limnic ecosystems at Forsmark and Laxemar-Simpevarp. Site descriptive modelling SDM-Site

    Norden, Sara; Soederbaeck, Bjoern [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Andersson, Eva [SWECO, Stockholm (Sweden)

    2008-11-15

    The overall objective of this report is to provide a thorough description of the limnic ecosystems at both Forsmark and Laxemar-Simpevarp. This information may be used in the Safety Assessment and as a basis for the Environmental Impact Assessment. Three aims were set up for the report: 1) to characterize and describe the limnic ecosystems today and in the past in the Forsmark and Laxemar-Simpevarp areas and compare these ecosystems with limnic ecosystems in other areas; 2) to evaluate and visualize major pools, fluxes and sinks of elements within the limnic ecosystems; and finally 3) to describe human impact on the limnic ecosystems. The report includes a thorough description of the lakes and streams in Forsmark and Laxemar-Simpevarp and covers the following areas: catchment area characteristics, hydrology, climate, sediment characteristics, physical characteristics of streams, habitat distribution in lakes, biotic components, water chemistry, comparisons with other lakes and streams in the region, and a historical description. Ecosystem models for carbon and mass balances for a number of elements have been calculated to further improve the understanding of the lake ecosystems. Important processes for the safety assessment are described and evaluated in the report. The Forsmark regional model area contains more than 20 permanent lakes and pools. All lakes are small and shallow, and are characterized as oligotrophic hardwater lakes. Calcareous soils in the area give rise to high calcium concentrations in the surface water, which in turn leads to high pH and low nutrient concentrations in water as phosphorus often co-precipitates with calcium. The shallow depths and moderate water colour permit photosynthesis in the entire benthic habitat of the lakes, and the bottoms are covered by dense stands of the macroalgae Chara sp. Moreover, many of the lakes also have a thick microbial mat (>10 cm), consisting of cyanobacteria and diatoms, in the benthic habitat. Fish in

  5. The limnic ecosystems at Forsmark and Laxemar-Simpevarp. Site descriptive modelling SDM-Site

    Norden, Sara; Soederbaeck, Bjoern; Andersson, Eva

    2008-11-01

    The overall objective of this report is to provide a thorough description of the limnic ecosystems at both Forsmark and Laxemar-Simpevarp. This information may be used in the Safety Assessment and as a basis for the Environmental Impact Assessment. Three aims were set up for the report: 1) to characterize and describe the limnic ecosystems today and in the past in the Forsmark and Laxemar-Simpevarp areas and compare these ecosystems with limnic ecosystems in other areas; 2) to evaluate and visualize major pools, fluxes and sinks of elements within the limnic ecosystems; and finally 3) to describe human impact on the limnic ecosystems. The report includes a thorough description of the lakes and streams in Forsmark and Laxemar-Simpevarp and covers the following areas: catchment area characteristics, hydrology, climate, sediment characteristics, physical characteristics of streams, habitat distribution in lakes, biotic components, water chemistry, comparisons with other lakes and streams in the region, and a historical description. Ecosystem models for carbon and mass balances for a number of elements have been calculated to further improve the understanding of the lake ecosystems. Important processes for the safety assessment are described and evaluated in the report. The Forsmark regional model area contains more than 20 permanent lakes and pools. All lakes are small and shallow, and are characterized as oligotrophic hardwater lakes. Calcareous soils in the area give rise to high calcium concentrations in the surface water, which in turn leads to high pH and low nutrient concentrations in water as phosphorus often co-precipitates with calcium. The shallow depths and moderate water colour permit photosynthesis in the entire benthic habitat of the lakes, and the bottoms are covered by dense stands of the macroalgae Chara sp. Moreover, many of the lakes also have a thick microbial mat (>10 cm), consisting of cyanobacteria and diatoms, in the benthic habitat. Fish in

  6. The terrestrial ecosystems at Forsmark and Laxemar-Simpevarp. Site descriptive modelling SDM site

    Loefgren, Anders

    2008-12-01

    This report describes the terrestrial ecosystems in the Forsmark and Laxemar-Simpevarp areas by summarizing ecological data and data from disciplines such as hydrology, quaternary geology and chemistry. The description therefore includes a number of different processes that drive element fluxes in the ecosystems, such as net primary production, heterotrophic respiration, transpiration, and horizontal transport from land to streams and lakes. Moreover, the human appropriation of the landscape is described with regard to land use and potential and actual utilization of food resources both today and in a historical perspective

  7. A coupled regolith-lake development model applied to the Forsmark site

    Brydsten, Lars; Stroemgren, Maarten (Umeaa Univ., Umeaa (Sweden))

    2010-11-15

    The Quaternary geology at the Forsmark site has been characterized using both a map of Quaternary deposits and a regolith depth model (RDM) that show the stratigraphy and thickness of different deposits. Regolith refers to all the unconsolidated deposits overlying the bedrock. The surface geology and regolith depth are important parameters for hydrogeological and geochemical modelling and for the overall understanding of the area. The safety assessment analysis should focus on processes involved during a period of 120,000 years, which includes a full glacial cycle; however, the investigations within the site description model do not cover the temporal change of the regolith, a limitation that does not fulfil the requirements for the safety assessment. To this end, this study constructs a model that can predict the surface geology, stratigraphy, and thickness of different strata at any time during a glacial cycle and applies this model to the Forsmark site. The Weichselian ice sheet covered the study area until around 9500 BC. The deglaciation revealed a marine landscape with bedrock, till and glacial clay. For the safety assessment, the most important unconsolidated strata are clay or silt: these small grains can bind nuclear elements more easily than coarser sediment particles. Thick layers of clay can be found where post-glacial clay settled on top of glacial clay, especially where the middle-aged erosion of postglacial clay is missing and where there is an uninterrupted sequence of accumulation of finegrained particles. Such areas could be found in deep marine basins that later become lakes when raised into a supra-marine position. The coupled regolith-lake development model (RLDM) predicts the course of events described above during an interglacial, especially the dynamics of the clay and silt particles. The RLDM is divided into two modules: a marine module that predicts the sediment dynamics caused by wind waves and a lake module that predicts the lake infill

  8. A coupled regolith-lake development model applied to the Forsmark site

    Brydsten, Lars; Stroemgren, Maarten

    2010-11-01

    The Quaternary geology at the Forsmark site has been characterized using both a map of Quaternary deposits and a regolith depth model (RDM) that show the stratigraphy and thickness of different deposits. Regolith refers to all the unconsolidated deposits overlying the bedrock. The surface geology and regolith depth are important parameters for hydrogeological and geochemical modelling and for the overall understanding of the area. The safety assessment analysis should focus on processes involved during a period of 120,000 years, which includes a full glacial cycle; however, the investigations within the site description model do not cover the temporal change of the regolith, a limitation that does not fulfil the requirements for the safety assessment. To this end, this study constructs a model that can predict the surface geology, stratigraphy, and thickness of different strata at any time during a glacial cycle and applies this model to the Forsmark site. The Weichselian ice sheet covered the study area until around 9500 BC. The deglaciation revealed a marine landscape with bedrock, till and glacial clay. For the safety assessment, the most important unconsolidated strata are clay or silt: these small grains can bind nuclear elements more easily than coarser sediment particles. Thick layers of clay can be found where post-glacial clay settled on top of glacial clay, especially where the middle-aged erosion of postglacial clay is missing and where there is an uninterrupted sequence of accumulation of finegrained particles. Such areas could be found in deep marine basins that later become lakes when raised into a supra-marine position. The coupled regolith-lake development model (RLDM) predicts the course of events described above during an interglacial, especially the dynamics of the clay and silt particles. The RLDM is divided into two modules: a marine module that predicts the sediment dynamics caused by wind waves and a lake module that predicts the lake infill

  9. Encapsulation plant at Forsmark

    Nystroem, Anders

    2007-08-01

    SKB has already carried out a preliminary study of an encapsulation plant detached from Clab (Central interim storage for spent fuels). This stand-alone encapsulation plant was named FRINK and its assumed siting was the above-ground portion of the final repository, irrespective of the repository's location. The report previously presented was produced in cooperation with BNFL Engineering Ltd in Manchester and the fuel reception technical solution was examined by Gesellschaft fuer Nuklear-Service mbH (GNS) in Hannover and by Societe Generale pour les Techniques Nouvelles (SGN) in Paris. This report is an update of the earlier preliminary study report and is based on the assumption that the encapsulation plant and also the final repository will be sited in the Forsmark area. SKB's main alternative for siting the encapsulation plant is next to Clab. Planning of this facility is ongoing and technical solutions from the planning work have been incorporated in this report. An encapsulation plant placed in proximity to any final repository in Forsmark forms part of the alternative presentation in the application for permission to construct and operate an installation at Clab. The main technical difference between the planned encapsulation plant at Clab and an encapsulation plant at a final repository at Forsmark is how the fuel is managed and prepared before actual encapsulation. Fuel reception at the encapsulation plant in Forsmark would be dry, i.e. there would be no water-filled pools at the facility. Clab is used for verificatory fuel measurements, sorting and drying of the fuel before transport to Forsmark. This means that Clab will require a measure of rebuilding and supplementary equipment. In purely technical terms, the prospects for building an encapsulation plant sited at Forsmark are good. A description of the advantages and drawbacks of siting the encapsulation plant at Clab as opposed to any final repository at Forsmark is presented in a separate report

  10. Encapsulation plant at Forsmark

    Nystroem, Anders

    2007-08-15

    SKB has already carried out a preliminary study of an encapsulation plant detached from Clab (Central interim storage for spent fuels). This stand-alone encapsulation plant was named FRINK and its assumed siting was the above-ground portion of the final repository, irrespective of the repository's location. The report previously presented was produced in cooperation with BNFL Engineering Ltd in Manchester and the fuel reception technical solution was examined by Gesellschaft fuer Nuklear-Service mbH (GNS) in Hannover and by Societe Generale pour les Techniques Nouvelles (SGN) in Paris. This report is an update of the earlier preliminary study report and is based on the assumption that the encapsulation plant and also the final repository will be sited in the Forsmark area. SKB's main alternative for siting the encapsulation plant is next to Clab. Planning of this facility is ongoing and technical solutions from the planning work have been incorporated in this report. An encapsulation plant placed in proximity to any final repository in Forsmark forms part of the alternative presentation in the application for permission to construct and operate an installation at Clab. The main technical difference between the planned encapsulation plant at Clab and an encapsulation plant at a final repository at Forsmark is how the fuel is managed and prepared before actual encapsulation. Fuel reception at the encapsulation plant in Forsmark would be dry, i.e. there would be no water-filled pools at the facility. Clab is used for verificatory fuel measurements, sorting and drying of the fuel before transport to Forsmark. This means that Clab will require a measure of rebuilding and supplementary equipment. In purely technical terms, the prospects for building an encapsulation plant sited at Forsmark are good. A description of the advantages and drawbacks of siting the encapsulation plant at Clab as opposed to any final repository at Forsmark is presented in a separate

  11. Chemical conditions in present and future ecosystems in Forsmark - implications for selected radionuclides in the safety assessment SR-Site

    Troejbom, Mats; Grolander, Sara

    2010-12-01

    This report is a background report for the biosphere analysis of the SR-Site Safety Assessment. This work aims to describe the future development of the chemical conditions at Forsmark, based on the present chemical conditions at landscape level taking landscape development and climate cases into consideration. The results presented contribute to the overall understanding of the present and future chemistry in the Forsmark area, and specifically, to the understanding of the behaviour of some selected radionuclides in the surface system. The future development of the chemistry at the site is qualitatively discussed with focus on the interglacial within the next 10,000 years. The effects on the chemical environment of future climate cases as Global Warming and cold permafrost climates are also briefly discussed. The work is presented in two independent parts describing background radionuclide activities in the Forsmark area and the distribution and behaviour of a large number of stable elements in the landscape. In a concluding section, implications of the future chemical environment of a selection of radionuclides important in the Safety Assessment are discussed based on the knowledge of stable elements. The broad range of elements studied show that there are general and expected patterns for the distribution and behaviour in the landscape of different groups of elements. Mass balances reveal major sources and sinks, pool estimations show where elements are accumulated in the landscape and estimations of time-scales give indications of the potential future development. This general knowledge is transferred to radionuclides not measured in order to estimate their behaviour and distribution in the landscape. It could be concluded that the future development of the chemical environment in the Forsmark area might affect element specific parameters used in de radionuclide model in different directions depending on element. The alternative climate cases, Global Warming

  12. Chemical conditions in present and future ecosystems in Forsmark - implications for selected radionuclides in the safety assessment SR-Site

    Troejbom, Mats (Mats Troejbom Konsult AB (Sweden)); Grolander, Sara (Facilia AB (Sweden))

    2010-12-15

    This report is a background report for the biosphere analysis of the SR-Site Safety Assessment. This work aims to describe the future development of the chemical conditions at Forsmark, based on the present chemical conditions at landscape level taking landscape development and climate cases into consideration. The results presented contribute to the overall understanding of the present and future chemistry in the Forsmark area, and specifically, to the understanding of the behaviour of some selected radionuclides in the surface system. The future development of the chemistry at the site is qualitatively discussed with focus on the interglacial within the next 10,000 years. The effects on the chemical environment of future climate cases as Global Warming and cold permafrost climates are also briefly discussed. The work is presented in two independent parts describing background radionuclide activities in the Forsmark area and the distribution and behaviour of a large number of stable elements in the landscape. In a concluding section, implications of the future chemical environment of a selection of radionuclides important in the Safety Assessment are discussed based on the knowledge of stable elements. The broad range of elements studied show that there are general and expected patterns for the distribution and behaviour in the landscape of different groups of elements. Mass balances reveal major sources and sinks, pool estimations show where elements are accumulated in the landscape and estimations of time-scales give indications of the potential future development. This general knowledge is transferred to radionuclides not measured in order to estimate their behaviour and distribution in the landscape. It could be concluded that the future development of the chemical environment in the Forsmark area might affect element specific parameters used in de radionuclide model in different directions depending on element. The alternative climate cases, Global Warming

  13. Forsmark site investigation. Investigation of marine and lacustrine sediment in lakes. Field data 2003

    Hedenstroem, Anna [SGU, Uppsala (Sweden)

    2003-04-01

    The aim of this activity is to describe the aerial and stratigraphical distribution of marine and lacustrine sediment i.e. sediment overlaying the glacial till and/or bedrock surface, in lakes in the Forsmark area. The investigation is carried out within areas where mapping of unconsolidated Quaternary deposits is presently carried out. Since small and shallow lakes cover a large part of the region, this work will give important information on the distribution and stratigraphy of sedimentary deposits not included in the regular mapping of unconsolidated Quaternary deposits within the site investigation programme. Samples were also collected for laboratory analyses of grain size distribution, mineralogical composition as well as the total content of C, N and S and calcium carbonate. The analyses will be carried out on selected samples of representative sedimentary units in order to characterise the chemical and physical properties of the unconsolidated deposits. The analytical data will be useful for the hydrogeological modelling and for models of the Quaternary evolution of the area. The mineralogical analyses of clay may provide information on the origin of the clay particles. One stratigraphic sequence from Lake Eckarfjaerden will be stored for later analyses, e.g. pollen analysis. This report includes field data from spring 2003. Together, the field data and the forthcoming results from the laboratory analyses will form the basis for construction of stratigraphical profiles to be presented in a following report in the fall 2003.

  14. Forsmark site investigation. Investigation of marine and lacustrine sediment in lakes. Field data 2003

    Hedenstroem, Anna

    2003-04-01

    The aim of this activity is to describe the aerial and stratigraphical distribution of marine and lacustrine sediment i.e. sediment overlaying the glacial till and/or bedrock surface, in lakes in the Forsmark area. The investigation is carried out within areas where mapping of unconsolidated Quaternary deposits is presently carried out. Since small and shallow lakes cover a large part of the region, this work will give important information on the distribution and stratigraphy of sedimentary deposits not included in the regular mapping of unconsolidated Quaternary deposits within the site investigation programme. Samples were also collected for laboratory analyses of grain size distribution, mineralogical composition as well as the total content of C, N and S and calcium carbonate. The analyses will be carried out on selected samples of representative sedimentary units in order to characterise the chemical and physical properties of the unconsolidated deposits. The analytical data will be useful for the hydrogeological modelling and for models of the Quaternary evolution of the area. The mineralogical analyses of clay may provide information on the origin of the clay particles. One stratigraphic sequence from Lake Eckarfjaerden will be stored for later analyses, e.g. pollen analysis. This report includes field data from spring 2003. Together, the field data and the forthcoming results from the laboratory analyses will form the basis for construction of stratigraphical profiles to be presented in a following report in the fall 2003

  15. Chemistry data from surface ecosystems in Forsmark and Laxemar-Simpevarp. Site specific data used for estimation of CR and Kd values in SR-Site

    Troejbom, Mats; Norden, Sara

    2010-11-01

    This report is a background report for the biosphere analysis of the SR-Site Safety Assessment. This work aims to compile information from the Forsmark and Laxemar-Simpevarp sites in order to select and provide relevant site data for parameter sed in the Radionuclide Dose Model. This report contains an overview of all available chemistry data from the surface ecosystems at Forsmark and Laxemar-Simpevarp areas, comprising hydrochemistry of shallow groundwater, porewater, lake water, stream water and sea water as well as the chemical composition of the regolith and biota of the terrestrial, limnic and marine ecosystems. Detailed references to data reports are tabulated and all sampling points are shown in a large number of maps in Chapter 2. An explorative analysis in Chapter 3 is the basis for the final selection of site data described in Chapter 4

  16. Site investigation SFR. Reprocessing of reflection seismic profiles 5b and 8, Forsmark

    Juhlin, Christopher; Zhang, Fengjiao (Uppsala Univ., Dept. of Earth Sciences (Sweden))

    2010-12-15

    Reflection seismic profiles 5b and 8 in the northern Forsmark area have been reprocessed with the aim of improving the images in the uppermost 500 metres in the SFR area. The main conclusion is that a new reflection (B10) has been identified that may extend below the SFR site. This reflection was not clearly observed in the previous processing. The reflection strikes approximately N25E and dips at about 35 degrees to the southeast. This orientation is similar to the set B group identified earlier /Juhlin and Palm 2005/. Note that the dip of the reflection is uncertain. On shot gathers it appears to dip at a slightly shallower angle while on the stacked sections it appears to dip at a greater angle. This discrepancy is probably due to the crooked nature of the profiles. However, reflections are clearly observed in shot gathers and its presence below SFR is highly probable. Two new reflections were also identified further north along profile 5b (A11 and A12). These dip to the south-southeast, but would be found at a depth of 1-2 km below SFR if they extend to below the site. There are also signs of a 3rd reflection with similar orientation to the set A group identified earlier, A13, but its existence is very speculative. This reflector would intersect the surface within the SFR area. South of the Singoe deformation zone on profile 5b, another new reflection has been found, N1. The orientation of this reflection is speculative since it is not clearly seen on profile 8. It has been modelled as dipping to the north at about 35 degrees and projects to the surface south of the main SFR area. In addition, the orientation of reflection B7 has been revised as has the lateral extent of A1. Most importantly, A1 is now interpreted not to extend to the surface and not cross the Singoe deformation zone

  17. Preliminary safety evaluation for the Forsmark area. Based on data and site descriptions after the initial site investigation stage

    Andersson, Johan

    2005-08-01

    The main objectives of this Preliminary Safety Evaluation (PSE) of the Forsmark area have been to determine, with limited efforts, whether the feasibility study's judgement of the suitability of the candidate area with respect to long-term safety holds up in the light of the actual site investigation data; to provide feedback to continued site investigations and site-specific repository design and to identify site-specific scenarios and geoscientific issues for further analyses. The PSE focuses on comparing the attained knowledge of the sites with the suitability criteria as set out by SKB. The PSE does not aim at comparing sites and does not assess compliance with safety and radiation protection criteria. The evaluation shows that, even considering remaining uncertainties, the Forsmark area meets all stated safety requirements and preferences. Consequently, from a safety point of view, there is no reason not to continue the Site Investigations of the Forsmark area. There are still uncertainties to resolve and the safety would eventually need to be verified through a full safety assessment. Nevertheless, this Preliminary Safety Evaluation demonstrates that it is likely that a safe repository for spent nuclear fuel of the KBS-3 type could be constructed at the site. The following feedback is provided to the site investigations and the associated site modelling: Reducing the uncertainty on the deformation zone geometry inside the target area would be needed to more firmly define locations of the suitable deposition volumes. There is substantial uncertainty in the Discrete Fracture Network model. Further reduction of the uncertainties, if needed, would probably only be possible from the underground, detailed investigation phase. Efforts need also be spent on improving the DFN-modelling. There are assumptions made in current models that could be challenged and there seems to be room for better use of the borehole information. It is particularly important to provide

  18. Preliminary safety evaluation for the Forsmark area. Based on data and site descriptions after the initial site investigation stage

    Andersson, Johan [JA Streamflow AB, Aelvsjoe (Sweden)

    2005-08-01

    The main objectives of this Preliminary Safety Evaluation (PSE) of the Forsmark area have been to determine, with limited efforts, whether the feasibility study's judgement of the suitability of the candidate area with respect to long-term safety holds up in the light of the actual site investigation data; to provide feedback to continued site investigations and site-specific repository design and to identify site-specific scenarios and geoscientific issues for further analyses. The PSE focuses on comparing the attained knowledge of the sites with the suitability criteria as set out by SKB. The PSE does not aim at comparing sites and does not assess compliance with safety and radiation protection criteria. The evaluation shows that, even considering remaining uncertainties, the Forsmark area meets all stated safety requirements and preferences. Consequently, from a safety point of view, there is no reason not to continue the Site Investigations of the Forsmark area. There are still uncertainties to resolve and the safety would eventually need to be verified through a full safety assessment. Nevertheless, this Preliminary Safety Evaluation demonstrates that it is likely that a safe repository for spent nuclear fuel of the KBS-3 type could be constructed at the site. The following feedback is provided to the site investigations and the associated site modelling: Reducing the uncertainty on the deformation zone geometry inside the target area would be needed to more firmly define locations of the suitable deposition volumes. There is substantial uncertainty in the Discrete Fracture Network model. Further reduction of the uncertainties, if needed, would probably only be possible from the underground, detailed investigation phase. Efforts need also be spent on improving the DFN-modelling. There are assumptions made in current models that could be challenged and there seems to be room for better use of the borehole information. It is particularly important to

  19. Mechanical modelling of the Singoe deformation zone. Site descriptive modelling Forsmark stage 2.1

    Glamheden, Rune; Maersk Hansen, Lars; Fredriksson, Anders; Bergkvist, Lars; Markstroem, Ingemar; Elfstroem, Mats [Golder Associates AB (Sweden)

    2007-02-15

    This project aims at demonstrating the theoretical approach developed by SKB for determination of mechanical properties of large deformation zones, in particular the Singoe deformation zone. Up to now, only bedrock and minor deformation zones have been characterized by means of this methodology, which has been modified for this project. The Singoe deformation zone is taken as a reference object to get a more comprehensive picture of the structure, which could be incorporated in a future version of the SDM of Forsmark. Furthermore, the Singoe Zone has been chosen because of available data from four tunnels. Scope of work has included compilation and analysis of geological information from site investigations and documentation of existing tunnels. Results have been analyzed and demonstrated by means of RVS-visualization. Numerical modelling has been used to obtain mechanical properties. Numerical modelling has also been carried out in order to verify the results by comparison of calculated and measured deformations. Compilation of various structures in the four tunnels coincides largely with a magnetic anomaly and also with the estimated width. Based on the study it is clear that the Singoe deformation zone has a heterogeneous nature. The number of fracture zones associated with the deformation zone varies on either side of the zone, as does the transition zone between host rock and the Singoe zone. The overall impression from the study is that the results demonstrate that the methodology used for simulating of equivalent mechanical properties is an applicable and adequate method, also in case of large deformation zones. Typical rock mechanical parameters of the Singoe deformations that can be used in the regional stress model considering the zone to be a single fracture are: 200 MPa/m in normal stiffness, 10-15 MPa/m in shear stiffness, 0.4 MPa in cohesion and 31.5 degrees in friction angle.

  20. Mechanical modelling of the Singoe deformation zone. Site descriptive modelling Forsmark stage 2.1

    Glamheden, Rune; Maersk Hansen, Lars; Fredriksson, Anders; Bergkvist, Lars; Markstroem, Ingemar; Elfstroem, Mats

    2007-02-01

    This project aims at demonstrating the theoretical approach developed by SKB for determination of mechanical properties of large deformation zones, in particular the Singoe deformation zone. Up to now, only bedrock and minor deformation zones have been characterized by means of this methodology, which has been modified for this project. The Singoe deformation zone is taken as a reference object to get a more comprehensive picture of the structure, which could be incorporated in a future version of the SDM of Forsmark. Furthermore, the Singoe Zone has been chosen because of available data from four tunnels. Scope of work has included compilation and analysis of geological information from site investigations and documentation of existing tunnels. Results have been analyzed and demonstrated by means of RVS-visualization. Numerical modelling has been used to obtain mechanical properties. Numerical modelling has also been carried out in order to verify the results by comparison of calculated and measured deformations. Compilation of various structures in the four tunnels coincides largely with a magnetic anomaly and also with the estimated width. Based on the study it is clear that the Singoe deformation zone has a heterogeneous nature. The number of fracture zones associated with the deformation zone varies on either side of the zone, as does the transition zone between host rock and the Singoe zone. The overall impression from the study is that the results demonstrate that the methodology used for simulating of equivalent mechanical properties is an applicable and adequate method, also in case of large deformation zones. Typical rock mechanical parameters of the Singoe deformations that can be used in the regional stress model considering the zone to be a single fracture are: 200 MPa/m in normal stiffness, 10-15 MPa/m in shear stiffness, 0.4 MPa in cohesion and 31.5 degrees in friction angle

  1. Statistical model of fractures and deformations zones for Forsmark. Preliminary site description Forsmark area - version 1.2

    La Pointe, Paul R. [Golder Associate Inc., Redmond, WA (United States); Olofsson, Isabelle; Hermanson, Jan [Golder Associates AB, Uppsala (Sweden)

    2005-04-01

    different high and low fracture intensity intervals in order to capture the variation of this parameter in the model volume. The fracture intensity P32 has been derived by means of simulations for each rock domain and each fracture type, and is expressed as a mean value, and if possible standard deviation and span. The uncertainty in the model has been quantified: for the different geometrical parameters by providing ranges of variations and studying relevant distribution models, by conducting sensitivity analysis on some input data: the effect of truncation of lineaments at the border of the regional model volume and the impact of truncation in outcrop mapping. An alternative conceptual model is under study which is based on the identified deterministic deformation zones, and not on lineaments. An important issue using this model is the bias of information and the limited amount of structures. The current DFN model still contains significant uncertainties which need to be resolved in order to be able to produce a final site DFN model. Three main issues are listed below: The definition of the subhorizontal fracture set in terms of geological processes and tectonics. The size distribution is a critical issue for the hydrogeology of the site. The variation of the fracture intensity by rock domain has been identified but the variation pattern and the spatial distribution within an individual domain are still sufficiently unpredictable that the fracture network permeability structure within a rock domain is uncertain from a conceptual perspective, not just a data uncertainty perspective. Moreover, many rock domains have not yet been sampled by boreholes or outcrops, and thus their fracture properties remain highly uncertain. Validation of the DFN models will require resolution of these two issues, and may also require the drilling of highly inclined or horizontal boreholes. Near-vertical boreholes and the mapping protocol to only map fracture traces in outcrop greater than 0

  2. Statistical model of fractures and deformations zones for Forsmark. Preliminary site description Forsmark area - version 1.2

    La Pointe, Paul R.; Olofsson, Isabelle; Hermanson, Jan

    2005-04-01

    different high and low fracture intensity intervals in order to capture the variation of this parameter in the model volume. The fracture intensity P32 has been derived by means of simulations for each rock domain and each fracture type, and is expressed as a mean value, and if possible standard deviation and span. The uncertainty in the model has been quantified: for the different geometrical parameters by providing ranges of variations and studying relevant distribution models, by conducting sensitivity analysis on some input data: the effect of truncation of lineaments at the border of the regional model volume and the impact of truncation in outcrop mapping. An alternative conceptual model is under study which is based on the identified deterministic deformation zones, and not on lineaments. An important issue using this model is the bias of information and the limited amount of structures. The current DFN model still contains significant uncertainties which need to be resolved in order to be able to produce a final site DFN model. Three main issues are listed below: The definition of the subhorizontal fracture set in terms of geological processes and tectonics. The size distribution is a critical issue for the hydrogeology of the site. The variation of the fracture intensity by rock domain has been identified but the variation pattern and the spatial distribution within an individual domain are still sufficiently unpredictable that the fracture network permeability structure within a rock domain is uncertain from a conceptual perspective, not just a data uncertainty perspective. Moreover, many rock domains have not yet been sampled by boreholes or outcrops, and thus their fracture properties remain highly uncertain. Validation of the DFN models will require resolution of these two issues, and may also require the drilling of highly inclined or horizontal boreholes. Near-vertical boreholes and the mapping protocol to only map fracture traces in outcrop greater than 0

  3. The hydrogeology and hydrogeochemistry of the Star Fire site, eastern Kentucky

    Wunsch, D.R.; Dinger, J.S.

    1994-01-01

    The Kentucky Geological Survey is directing an applied research program to determine the potential water supply for future property development at the Star Fire site. It is anticipated that an aquifer constructed in mine spoil could provide base flow to streams that could feed water-supply reservoirs. Dye tracing, water-level measurements, and chemical analyses of water samples indicate that ground water moves slowly in the spoil's interior, where it must flow into surrounding hollow fills before discharging out of the spoil. Two water tables have been established: one in the spoil's interior, and the second in the hollow fills below the main spoil body. Based on an average saturated thickness of 6.4 m, the saturated spoil stores an estimated 5.2 x 10 6 m 3 (1.37 billion gal.) of water. Hydraulic conductivity (K) values derived from slug tests range from 7.0 x E - 5 to > 9.0 x E - 4 cm/sec. All of the waters are a calcium-magnesium-sulfate type, differing mainly in the total concentration of these constituents. Saturation indices calculated using the geochemical model PHREEQE indicate that most of the ground water at the site is near equilibrium with gypsum. Nearly all of the samples had pH measurements in a favorable range between 6.0 and 7.0, indicating that the spoil at the site does not produce highly acidic water

  4. Chemical characteristics of surface waters in the Forsmark area. Evaluation of data from lakes, streams and coastal sites

    Sonesten, Lars

    2005-06-01

    This report is an evaluation of the chemical composition of surface water in lakes, streams, and at coastal sampling sites in the Forsmark area. The aim with this study is to characterise the surface water systems in the area, and the further aim with this characterisation is to be used as input material to the safety analyses and environmental impact assessments for the potential deep repository of used nuclear fuels. The data used consist of water chemical composition of lakes, streams and coastal sites from the period March 2002 - April 2004. The sampling has been performed predominantly on a monthly basis. The emphasis of the assessment has been on surface waters (0.5 m), as the water depth at all sampling locations is limited, and thereby the water systems are rarely stratified for prolonged periods. The characterisations have been restricted to the most commonly measured chemical parameters.The assessment has been divided into three parts: Comparisons within and between the lakes, streams, and coastal sites, respectively; Temporal and spatial variation, predominantly within lakes and stream sites; and Relationships between the various chemical parameters. Beside comparisons between the sampling sites within the Forsmark area, comparisons have also been made with regional and national data from the latest Swedish National Survey (2000). The analyses of temporal and spatial variation have been concentrated on the freshwater systems in the Norra Bassaengen catchment area. This catchment area is the most comprehensively investigated, and it also includes the Bolundsfjaerden sub-catchment, which is the area where the continued site investigations will be concentrated. The relationships among the sampling sites, the catchment areas, as well as the chemical parameters investigated, were examined by applying PCA analyses on the lake and stream data. In general, the freshwater systems in the Forsmark area are characterised by small and shallow oligotrophic hardwater

  5. Chemical characteristics of surface waters in the Forsmark area. Evaluation of data from lakes, streams and coastal sites

    Sonesten, Lars [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Environmental Assessment

    2005-06-01

    This report is an evaluation of the chemical composition of surface water in lakes, streams, and at coastal sampling sites in the Forsmark area. The aim with this study is to characterise the surface water systems in the area, and the further aim with this characterisation is to be used as input material to the safety analyses and environmental impact assessments for the potential deep repository of used nuclear fuels. The data used consist of water chemical composition of lakes, streams and coastal sites from the period March 2002 - April 2004. The sampling has been performed predominantly on a monthly basis. The emphasis of the assessment has been on surface waters (0.5 m), as the water depth at all sampling locations is limited, and thereby the water systems are rarely stratified for prolonged periods. The characterisations have been restricted to the most commonly measured chemical parameters.The assessment has been divided into three parts: Comparisons within and between the lakes, streams, and coastal sites, respectively; Temporal and spatial variation, predominantly within lakes and stream sites; and Relationships between the various chemical parameters. Beside comparisons between the sampling sites within the Forsmark area, comparisons have also been made with regional and national data from the latest Swedish National Survey (2000). The analyses of temporal and spatial variation have been concentrated on the freshwater systems in the Norra Bassaengen catchment area. This catchment area is the most comprehensively investigated, and it also includes the Bolundsfjaerden sub-catchment, which is the area where the continued site investigations will be concentrated. The relationships among the sampling sites, the catchment areas, as well as the chemical parameters investigated, were examined by applying PCA analyses on the lake and stream data. In general, the freshwater systems in the Forsmark area are characterised by small and shallow oligotrophic hardwater

  6. Rock mechanics site descriptive model-theoretical approach. Preliminary site description Forsmark area - version 1.2

    Fredriksson, Anders; Olofsson, Isabelle [Golder Associates AB, Uppsala (Sweden)

    2005-12-15

    The present report summarises the theoretical approach to estimate the mechanical properties of the rock mass in relation to the Preliminary Site Descriptive Modelling, version 1.2 Forsmark. The theoretical approach is based on a discrete fracture network (DFN) description of the fracture system in the rock mass and on the results of mechanical testing of intact rock and on rock fractures. To estimate the mechanical properties of the rock mass a load test on a rock block with fractures is simulated with the numerical code 3DEC. The location and size of the fractures are given by DFN-realisations. The rock block was loaded in plain strain condition. From the calculated relationship between stresses and deformations the mechanical properties of the rock mass were determined. The influence of the geometrical properties of the fracture system on the mechanical properties of the rock mass was analysed by loading 20 blocks based on different DFN-realisations. The material properties of the intact rock and the fractures were kept constant. The properties are set equal to the mean value of each measured material property. The influence of the variation of the properties of the intact rock and variation of the mechanical properties of the fractures are estimated by analysing numerical load tests on one specific block (one DFN-realisation) with combinations of properties for intact rock and fractures. Each parameter varies from its lowest values to its highest values while the rest of the parameters are held constant, equal to the mean value. The resulting distribution was expressed as a variation around the value determined with mean values on all parameters. To estimate the resulting distribution of the mechanical properties of the rock mass a Monte-Carlo simulation was performed by generating values from the two distributions independent of each other. The two values were added and the statistical properties of the resulting distribution were determined.

  7. Rock mechanics site descriptive model-theoretical approach. Preliminary site description Forsmark area - version 1.2

    Fredriksson, Anders; Olofsson, Isabelle

    2005-12-01

    The present report summarises the theoretical approach to estimate the mechanical properties of the rock mass in relation to the Preliminary Site Descriptive Modelling, version 1.2 Forsmark. The theoretical approach is based on a discrete fracture network (DFN) description of the fracture system in the rock mass and on the results of mechanical testing of intact rock and on rock fractures. To estimate the mechanical properties of the rock mass a load test on a rock block with fractures is simulated with the numerical code 3DEC. The location and size of the fractures are given by DFN-realisations. The rock block was loaded in plain strain condition. From the calculated relationship between stresses and deformations the mechanical properties of the rock mass were determined. The influence of the geometrical properties of the fracture system on the mechanical properties of the rock mass was analysed by loading 20 blocks based on different DFN-realisations. The material properties of the intact rock and the fractures were kept constant. The properties are set equal to the mean value of each measured material property. The influence of the variation of the properties of the intact rock and variation of the mechanical properties of the fractures are estimated by analysing numerical load tests on one specific block (one DFN-realisation) with combinations of properties for intact rock and fractures. Each parameter varies from its lowest values to its highest values while the rest of the parameters are held constant, equal to the mean value. The resulting distribution was expressed as a variation around the value determined with mean values on all parameters. To estimate the resulting distribution of the mechanical properties of the rock mass a Monte-Carlo simulation was performed by generating values from the two distributions independent of each other. The two values were added and the statistical properties of the resulting distribution were determined

  8. Description of climate, surface hydrology, and near-surface hydrogeology. Preliminary site description. Forsmark area - version 1.2

    Johansson, Per-Olof; Werner, Kent; Bosson, Emma; Berglund, Sten; Juston, John

    2005-06-01

    chloride content has been found below Lake Bolundsfjaerden, Lake Eckarfjaerden and Lake Gaellsbotraesket. The relations between the sea water level and the water levels in Lake Norra Bassaengen, Lake Bolundsfjaerden and Lake Lillfjaerden show that inflow of sea water can occur during periods of high sea water levels. The results from the hydrological GIS modelling support the assumptions and conclusions in the descriptive model. The flow model is highly sensitive to the topography, as this is the only parameter determining the flow pattern. Consequently, the simulated locations of recharge and discharge areas are strongly influenced by the local topography. In addition, the flat topography implies that small errors in the topographical model (the Digital Elevation Model, DEM) may have large effects on the modelled flow pattern. Ditches, diverted water courses and other human impacts on the system are important in some parts of the model area. These and other types of ''man-made structures'' are not fully considered in the DEM. The water balance for the Forsmark area, as calculated with the MIKE SHE modelling tool, agrees with the presented conceptual and descriptive models of the flow system. The transient model simulations for the selected reference year (1988) result in an annual total runoff of 226 mm and a total actual evapotranspiration of 441 mm. These values, which are average values for the considered model area, are considered to be reasonable for the Forsmark area. At present, however, they cannot be tested against site-specific measurements. The MIKE SHE model produces a shallow groundwater table, which approximately agrees with the groundwater level measurements within the area, and with the overall conceptualisation of the system. However, no detailed model calibration has been performed. The modelling results show that most of the groundwater flow occurs in the Quaternary deposits. The results also illustrate the importance of the fracture zones for the

  9. Description of climate, surface hydrology, and near-surface hydrogeology. Preliminary site description. Forsmark area - version 1.2

    Johansson, Per-Olof [Artesia Grundvattenkonsult AB, Stockholm (Sweden); Werner, Kent [SWECO VIAK AB/Golder Associates AB, Stockholm (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Juston, John [DBE Sweden, Uppsala (Sweden)

    2005-06-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is conducting site investigations at two different locations, the Forsmark and Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The results from the investigations at the sites are used as a basic input to the development of Site Descriptive Models (SDM). The SDM shall summarise the current state of knowledge of the site, and provide parameters and models to be used in further analyses within Safety Assessment, Repository Design and Environmental Impact Assessment. The present report is a background report describing the meteorological conditions and the modelling of surface hydrology and near-surface hydrogeology in support of the Forsmark version 1.2 SDM based on the data available in the Forsmark 1.2 'data freeze' (July 31, 2004). The groundwater is very shallow, with groundwater levels within one meter below ground as an annual mean for almost all groundwater monitoring wells. Also, the annual groundwater level amplitude is less than 1.5 m for most wells. The shallow groundwater levels mean that there is a strong interaction between evapotranspiration, soil moisture and groundwater. In the modelling, surface water and near-surface groundwater divides are assumed to coincide. The small-scale topography implies that many local, shallow groundwater flow systems are formed in the Quaternary deposits, overlaying more large-scale flow systems associated with groundwater flows at greater depths. Groundwater level time series from wells in till and bedrock within the same areas show a considerably higher groundwater level in the till than in the bedrock. The observed differences in levels are not fully consistent with the good hydraulic contact between overburden and bedrock indicated by the hydraulic tests in the Quaternary deposits. However, the relatively lower groundwater levels in the bedrock may be caused by the horizontal to sub-horizontal highly

  10. Rock thermal property measurements with the Posiva TERO56 drill hole device in the forsmark study site

    Kukkonen, I.; Suppala, I.; Korpisalo, A.

    2007-10-01

    Thermal properties were measured in situ in Forsmark at the SKB study site constructed for large-scale thermal conductivity investigations in an outcrop of anisotropic granite. The Posiva TERO56 drill hole tool was used for in situ measurements in four 20 m deep boreholes KFM90C, D, E and F located within very short distances of each other (less than 2.3 m). Measurements were done at depths of 10-18 m in water-filled holes. The bedrock is granite with thin amphibolite and pegmatite layers and thin felsic veins. The measurement principle of the TERO56 logging device is based on conduction of heat from a cylindrical source placed in a borehole and the thermal parameter values are calculated with a least squares inversion algorithm. Measurements in Forsmark consisted typically of 6 hours heating time followed by 10 hours cooling time, but in one measurement the heating time was reduced to of 2 h 45 min and the cooling time to 5 hours. Average thermal conductivity values range from 3.37 to 3.91 W m -1 K -1 with standard deviations between 0.01 and 0.04 W m -1 K -1 . The result is plausible considering the quite homogeneous target geology and short distances between different experiment stations. Diffusivity values, however, vary much more, and averages range from 0.68 to 2.08 A 10 -6 m 2 s -1 with standard deviations ranging from 0.04 to 0.09 A 10 -6 m 2 s -1 . Variations may be attributed to small flow effects or time-dependent temperature trends related to thermal equilibration of the probe. (orig.)

  11. Mineralogy, geochemistry, porosity and redox properties of rocks from Forsmark. Compilation of data from the regional model volume for SR-Site

    Sandstroem, Bjoern (WSP Sverige AB, Stockholm (Sweden)); Stephens, Michael B. (Geological Survey of Sweden, Uppsala (Sweden))

    2009-11-15

    This report is a compilation of the data acquired during the Forsmark site investigation programme on the mineralogy, geochemistry, redox properties and porosity of different rock types at Forsmark. The aim is to provide a final summary of the available data for use during the SR-Site modelling work. Data presented in this report represent the regional model volume and have previously been published in various SKB reports. The data have been extracted from the SKB database Sicada and are presented as calculated median values, data range and lower/upper quartile. The representativity of all samples used for the calculations have been evaluated and data from samples where there is insufficient control on the rock type have been omitted. Rock samples affected by alteration have been omitted from the unaltered samples and are presented separately based on type of alteration (e.g. oxidised or albitized rock)

  12. Forsmark 1

    Fredell, J.; Henriksson, T.

    1981-12-01

    ASEA-ATOM carried out an experiment in Forsmark 1 in 1978, in conjunction with discharge test, by means of the safety/relief valves. The tests have been carried out for the case of single valve actuation (SVA), multiple valve actuations (MVA) and consecutive valve actuations (CVA). During MVA tests, up to 12 valves have been used. One of the aims of the experiment was to confirm the operation of the new design of mitigator of the discharge pipes and another was to survey the pressure oscillations in the pool and the vibratory behaviour of the structures and components. The results of these measurements are presented in a number of reports. This report contains an abstract of the results of the measurements presented in these reports. This report also describes the theoretical background and comparisons between test and theoretical results. It is clear that very good agreement has been established between earlier steam discharge experiments, using a mitigator of the type fitted in Forsmark 1, and this experiment. This is based on the fact the amplitude, frequency and distribution of the pressure oscillations in the condensation pool are basically equal to the values predicted by calculations based on the earlier experiments. The low maximum acceleration amplitudes predicted by the beam type structural model have been confirmed, but the frequency content of the response is not very well represented by this type of model. The shell-beam finite element model of the structure gives better agreement with the measured frequency. (author)

  13. Conceptual and numerical modelling of radionuclide transport in near-surface systems at Forsmark. SR-Site Biosphere

    Pique, Angels; Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi

    2010-11-01

    In the framework of the SR-Site safety assessment, a conceptual and numerical modelling of radionuclide reactive transport in near-surface systems (including till and clay systems) at Forsmark has been carried out. The objective was to evaluate the retention capacity of the near-surface systems, composed of Quaternary deposits, which would be the last natural barrier for an eventual radionuclide release from the deep repository prior to reaching the biosphere. The studied radionuclides are 14 C, 129 I, 36 Cl, 94 Nb, 59 Ni, 93 Mo, 79 Se, 99 Tc, 230 Th, 90 Sr, 226 Ra, 135 Cs and U. Conceptual description and numerical simulations of radionuclide reactive transport show that cation exchange and surface complexation on illite are active processes for the retention of several radionuclides (U, Th, Ni, Cs, Sr, Ra). Surface complexation on iron hydroxide is an active process in the till system, able to effectively retain U and Ni. Another retention process of importance is the incorporation of the radionuclides into mineral phases, either by the precipitation of pure phases or solid solutions. Quantitative modelling has been useful to illustrate the incorporation of C and Sr in the carbonate solid solution in the considered model domains (till and clay), as well as the precipitation of uraninite in the clay sediments and the precipitation of native selenium and radiobarite in the till. Other mineral phases that could, a priori, retain U, Se, Nb and Tc do not precipitate in the simulations, either due to the pH-Eh conditions and/or because the dissolved concentration of the element is not high enough under the considered simulation conditions. It is important to keep in mind that changes in these parameters and in the boundary conditions could modify the predicted behaviour of these elements. The radionuclides that are most significantly retarded are Th, Ni and Cs, mainly through sorption onto illite. Therefore, if the amount of illite (or available sorption sites

  14. Conceptual and numerical modelling of radionuclide transport in near-surface systems at Forsmark. SR-Site Biosphere

    Pique, Angels; Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi (Amphos21 Consulting S.L., Barcelona (Spain))

    2010-11-15

    In the framework of the SR-Site safety assessment, a conceptual and numerical modelling of radionuclide reactive transport in near-surface systems (including till and clay systems) at Forsmark has been carried out. The objective was to evaluate the retention capacity of the near-surface systems, composed of Quaternary deposits, which would be the last natural barrier for an eventual radionuclide release from the deep repository prior to reaching the biosphere. The studied radionuclides are 14C, 129I, 36Cl, 94Nb, 59Ni, 93Mo, 79Se, 99Tc, 230Th, 90Sr, 226Ra, 135Cs and U. Conceptual description and numerical simulations of radionuclide reactive transport show that cation exchange and surface complexation on illite are active processes for the retention of several radionuclides (U, Th, Ni, Cs, Sr, Ra). Surface complexation on iron hydroxide is an active process in the till system, able to effectively retain U and Ni. Another retention process of importance is the incorporation of the radionuclides into mineral phases, either by the precipitation of pure phases or solid solutions. Quantitative modelling has been useful to illustrate the incorporation of C and Sr in the carbonate solid solution in the considered model domains (till and clay), as well as the precipitation of uraninite in the clay sediments and the precipitation of native selenium and radiobarite in the till. Other mineral phases that could, a priori, retain U, Se, Nb and Tc do not precipitate in the simulations, either due to the pH-Eh conditions and/or because the dissolved concentration of the element is not high enough under the considered simulation conditions. It is important to keep in mind that changes in these parameters and in the boundary conditions could modify the predicted behaviour of these elements. The radionuclides that are most significantly retarded are Th, Ni and Cs, mainly through sorption onto illite. Therefore, if the amount of illite (or available sorption sites) decreases, the

  15. Rock-block configuration in Uppland and the Aalands-hav basin, the regional surroundings of the SKB site in Forsmark, Sea and land areas, eastern Sweden

    Beckholmen, Monica; Tiren, Sven A. (GEOSIGMA AB (Sweden))

    2010-12-15

    The Forsmark SKB site lies at the west-northwest trending shoreline in northern Uppland, sheltered from the sea by one of the larger islands in the Uppland archipelago, Graesoe. To assess the structures around Forsmark also in the sea area, the bottom structures of the Aalands-hav basin were investigated by means of depth readings from sea charts. Two rock-block maps with rock blocks at different scales were constructed and analysed for their top surface elevation. The topography in Uppland is more broken in the sea area east and northeast of Forsmark than it is on land. The major structure in the Aalands-hav basin is a westnorth- westerly line that passes southwest of Aaland, with a very steep gradient from the Aaland archipelago down to an exceptionally low sea-floor valley. On its southern side it rises in steps to a low flat basin divided into a deeper western half and a somewhat shallower eastern half. The deep west-north-westerly zone can be traced on-land past Oeregrund and Forsmark. West of Oeregrund however, the main trough swings into a north-northwesterly direction, just west of Graesoe. The southern border south of Oeregrund and Forsmark, shows a major drop in elevation northern side down. Forsmark thus lies on a ribbon with lower ground on both its southern and northern boundaries. This west-north-westerly belt is cut in two by a major north-south lineament that cuts through the archipelago between Aaland and Graesoe with a very deep canyon. This structure was seismically active in June 2006. The southern part of this line constitutes the western border of the low basin and has a steep gradient on its western side up to the Uppland mainland. The deep basin is filled with Jotnian metasediments. South of this basin, the Uppland mainland continues under water towards the east. South of Aaland an east-north-easterly ridge separates the low basin to the north from an east-west trending trough which is the eastern continuation of a major onland structure

  16. Rock-block configuration in Uppland and the Aalands-hav basin, the regional surroundings of the SKB site in Forsmark, Sea and land areas, eastern Sweden

    Beckholmen, Monica; Tiren, Sven A.

    2010-12-01

    The Forsmark SKB site lies at the west-northwest trending shoreline in northern Uppland, sheltered from the sea by one of the larger islands in the Uppland archipelago, Graesoe. To assess the structures around Forsmark also in the sea area, the bottom structures of the Aalands-hav basin were investigated by means of depth readings from sea charts. Two rock-block maps with rock blocks at different scales were constructed and analysed for their top surface elevation. The topography in Uppland is more broken in the sea area east and northeast of Forsmark than it is on land. The major structure in the Aalands-hav basin is a westnorth- westerly line that passes southwest of Aaland, with a very steep gradient from the Aaland archipelago down to an exceptionally low sea-floor valley. On its southern side it rises in steps to a low flat basin divided into a deeper western half and a somewhat shallower eastern half. The deep west-north-westerly zone can be traced on-land past Oeregrund and Forsmark. West of Oeregrund however, the main trough swings into a north-northwesterly direction, just west of Graesoe. The southern border south of Oeregrund and Forsmark, shows a major drop in elevation northern side down. Forsmark thus lies on a ribbon with lower ground on both its southern and northern boundaries. This west-north-westerly belt is cut in two by a major north-south lineament that cuts through the archipelago between Aaland and Graesoe with a very deep canyon. This structure was seismically active in June 2006. The southern part of this line constitutes the western border of the low basin and has a steep gradient on its western side up to the Uppland mainland. The deep basin is filled with Jotnian metasediments. South of this basin, the Uppland mainland continues under water towards the east. South of Aaland an east-north-easterly ridge separates the low basin to the north from an east-west trending trough which is the eastern continuation of a major onland structure

  17. SR-Site: Oxygen ingress in the rock at Forsmark during a glacial cycle

    Sidborn, Magnus (Kemakta Konsult AB (Sweden)); Sandstroem, Bjoern (WSP Sverige AB (Sweden)); Tullborg, Eva-Lena (Terralogica AB (Sweden)); Salas, Joaquin; Maia, Flavia; Delos, Anne; Molinero, Jorge (Amphos21 (Spain)); Hallbeck, Lotta; Pedersen, Karsten (Microbial Analytics Sweden AB (Sweden))

    2010-11-15

    The aim of this report is to assess the possibility for oxygen to be transported by glacial melt-water to canister positions in a final repository for spent nuclear fuel at the proposed location in Forsmark. The approach for this assessment is to combine reactive transport modelling with geological observations of present and historical indications of oxygen ingress. For safety assessment purposes a cautious approach in the modelling is required when estimating the extent of oxygen ingress. In this report, a cautious approach has been applied both in the conceptualisation of the problem and in the choice of input parameters used in the models. Oxygen consuming processes are only neglected in the modelling if they are expected to further decrease the extent of oxygen ingress. Several oxygen consuming processes have been identified, each of which may play an important role in the scavenging of oxygen along recharge flow paths in the rock. These processes include biological pathways with degradation of organic material of ground surface origin, and biotically mediated reactions with reduced rock minerals and with various materials expected to be present in the backfilled repository volume. In the absence of microbes most of these reactions may also follow abiotic pathways. Present day observations show that degradation of organic material is the most powerful oxygen scavenging process. At Forsmark, oxygen is generally depleted within a few metres under present day temperate conditions. Although biological activity is likely to exist also during different phases of a glaciation, large uncertainties exist regarding e.g. the population growth dynamics, the biotic reaction rates and the availability of organic material under the highly varying conditions expected. Microbial activity and degradation of organic material is therefore pessimistically neglected in the calculations in this report. In the absence of organic material, ferrous iron present in minerals in the rock

  18. SR-Site: Oxygen ingress in the rock at Forsmark during a glacial cycle

    Sidborn, Magnus; Sandstroem, Bjoern; Tullborg, Eva-Lena; Salas, Joaquin; Maia, Flavia; Delos, Anne; Molinero, Jorge; Hallbeck, Lotta; Pedersen, Karsten

    2010-11-01

    The aim of this report is to assess the possibility for oxygen to be transported by glacial melt-water to canister positions in a final repository for spent nuclear fuel at the proposed location in Forsmark. The approach for this assessment is to combine reactive transport modelling with geological observations of present and historical indications of oxygen ingress. For safety assessment purposes a cautious approach in the modelling is required when estimating the extent of oxygen ingress. In this report, a cautious approach has been applied both in the conceptualisation of the problem and in the choice of input parameters used in the models. Oxygen consuming processes are only neglected in the modelling if they are expected to further decrease the extent of oxygen ingress. Several oxygen consuming processes have been identified, each of which may play an important role in the scavenging of oxygen along recharge flow paths in the rock. These processes include biological pathways with degradation of organic material of ground surface origin, and biotically mediated reactions with reduced rock minerals and with various materials expected to be present in the backfilled repository volume. In the absence of microbes most of these reactions may also follow abiotic pathways. Present day observations show that degradation of organic material is the most powerful oxygen scavenging process. At Forsmark, oxygen is generally depleted within a few metres under present day temperate conditions. Although biological activity is likely to exist also during different phases of a glaciation, large uncertainties exist regarding e.g. the population growth dynamics, the biotic reaction rates and the availability of organic material under the highly varying conditions expected. Microbial activity and degradation of organic material is therefore pessimistically neglected in the calculations in this report. In the absence of organic material, ferrous iron present in minerals in the rock

  19. Forsmark site investigation. Hydrochemical monitoring of groundwaters and surface waters. Results from water sampling in the Forsmark area, January-December 2009

    Nilsson, Ann-Chatrin (ed.); Berg, Cecilia; Harrstroem, Johan; Joensson, Stig; Thur, Pernilla (Geosigma AB (Sweden)); Borgiel, Micke; Qvarfordt, Susanne (Sveriges Vattenekologer AB (Sweden))

    2010-09-15

    The fifth year (2009) of hydrochemical monitoring of groundwaters, surface waters and precipitation in Forsmark is documented in the report. The hydrochemical monitoring programme 2009 included water sampling from: - percussion- and core boreholes equipped with installations for long-term pressure monitoring, tracer tests and water sampling in packed off borehole sections, sampling and analysis performed twice (spring and autumn), - near surface groundwaters (sampling four times a year), - private wells (once per year in October), - surface waters (eleven sampling occasions per year). Due to the somewhat different performance of the hydrogeochemical monitoring of the deep groundwaters during the autumn 2009 compared to previous years, some new findings and knowledge were obtained: 1) Removal of water volumes corresponding to three to five times the volume of the borehole section (the routine procedure) is seldom enough to obtain a complete exchange of the water present in the borehole section when the pumping starts. 2) It is likely that the elevated sulphide concentrations observed in the monitoring programme /1/ is due to contamination from initial water present in the borehole sections when the pumping starts. This water may have a very high sulphide concentration. Dirty water in tubes and in stand pipes may also contribute to the enhanced sulphide concentration. 3) Plug flow calculations will be introduced in the future as a new routine procedure to estimate the water volumes to be removed, in order to exchange the section water volume, prior to groundwater sampling in delimited borehole sections. During the autumn sampling, sample series of five samples per sampling location were collected during continuous pumping in thirteen selected borehole sections. Furthermore, special efforts were put on cleaning of stand pipes and exchange of water prior to sampling. The analytical protocol was rather extensive and included sulphide and uranium analyses for each sample

  20. Forsmark site investigation. Hydrochemical monitoring of groundwaters and surface waters. Results from water sampling in the Forsmark area, January-December 2009

    Nilsson, Ann-Chatrin; Borgiel, Micke; Qvarfordt, Susanne

    2010-09-01

    The fifth year (2009) of hydrochemical monitoring of groundwaters, surface waters and precipitation in Forsmark is documented in the report. The hydrochemical monitoring programme 2009 included water sampling from: - percussion- and core boreholes equipped with installations for long-term pressure monitoring, tracer tests and water sampling in packed off borehole sections, sampling and analysis performed twice (spring and autumn), - near surface groundwaters (sampling four times a year), - private wells (once per year in October), - surface waters (eleven sampling occasions per year). Due to the somewhat different performance of the hydrogeochemical monitoring of the deep groundwaters during the autumn 2009 compared to previous years, some new findings and knowledge were obtained: 1) Removal of water volumes corresponding to three to five times the volume of the borehole section (the routine procedure) is seldom enough to obtain a complete exchange of the water present in the borehole section when the pumping starts. 2) It is likely that the elevated sulphide concentrations observed in the monitoring programme /1/ is due to contamination from initial water present in the borehole sections when the pumping starts. This water may have a very high sulphide concentration. Dirty water in tubes and in stand pipes may also contribute to the enhanced sulphide concentration. 3) Plug flow calculations will be introduced in the future as a new routine procedure to estimate the water volumes to be removed, in order to exchange the section water volume, prior to groundwater sampling in delimited borehole sections. During the autumn sampling, sample series of five samples per sampling location were collected during continuous pumping in thirteen selected borehole sections. Furthermore, special efforts were put on cleaning of stand pipes and exchange of water prior to sampling. The analytical protocol was rather extensive and included sulphide and uranium analyses for each sample

  1. Chemistry data from surface ecosystems in Forsmark and Laxemar-Simpevarp. Site specific data used for estimation of CR and K{sub d} values in SR-Site

    Troejbom, Mats [Mats Troejbom Konsult AB (Sweden); Norden, Sara [Svensk Kaernbraenslehantering AB (Sweden)

    2010-11-15

    This report is a background report for the biosphere analysis of the SR-Site Safety Assessment. This work aims to compile information from the Forsmark and Laxemar-Simpevarp sites in order to select and provide relevant site data for parameter sed in the Radionuclide Dose Model. This report contains an overview of all available chemistry data from the surface ecosystems at Forsmark and Laxemar-Simpevarp areas, comprising hydrochemistry of shallow groundwater, porewater, lake water, stream water and sea water as well as the chemical composition of the regolith and biota of the terrestrial, limnic and marine ecosystems. Detailed references to data reports are tabulated and all sampling points are shown in a large number of maps in Chapter 2. An explorative analysis in Chapter 3 is the basis for the final selection of site data described in Chapter 4

  2. Monitoring Forsmark - Bird monitoring in Forsmark 2012

    Green, Martin [Dept of Biology, Lund Univ., Lund (Sweden)

    2013-03-15

    This report summarizes the monitoring of selected listed (Swedish Red List and/or the EU Birds directive) breeding birds in Forsmark 2002 - 2012. Monitoring of eleven listed species was conducted in the regional model area, including the candidate area in 2012 in the same way as in earlier years. The results from 2012 generally follow patterns recorded in earlier years. 2012 was in general a better bird year compared to 2010 and 2011 and most species (82%) showed increasing or stable numbers from 2011 to 2012. Only two species (18%) decreased in numbers between the last two years. All in all, six species (55 %, black-throated diver, honey buzzard, black grouse, ural owl, wryneck and red-backed shrike) show no significant trends since the start of the bird monitoring (2002/2003/2004 depending on species). During this period three species (27 %, white-tailed eagle, osprey and lesser spotted woodpecker) have increased in numbers while just two (18 %, capercaillie and hazelhen) have decreased. A new pair of black-throated divers was discovered in 2012 and seven resident pairs were registered. Breeding success was very good, the second best during the study period. Population development follows the national pattern, but breeding success seems to be better in Forsmark than in the country as a whole. Honey buzzards and ospreys occurred in good numbers, and breeding success for ospreys was good. No signs of successful breedings of honey buzzards were recorded, but this may mean little as no detailed monitoring of breeding success is made for this species. The white-tailed eagles had their best breeding year since the start of the SKB bird monitoring, meaning that during the last two years local breeding success has been back at the level recorded before the site investigations started. The three grouse species (black grouse, capercaillie and hazelhen) again showed somewhat varying patterns between the last two years as well as in the long run. The black grouse increased

  3. Growth dynamics of fine roots in a coniferous fern forest site close to Forsmark in the central part of Sweden

    Persson, Hans; Stadenberg, Ingela

    2007-12-01

    The seasonal growth dynamics of live and dead roots for trees and the field layer species (g/m 2 , varying diameter fractions) and live/dead ratios were analysed at a fresh/moist coniferous fern forest site close to the nuclear power plant at Forsmark in the central eastern parts of Sweden. The changes in depth distribution of fine roots were observed at depth intervals of the top humus horizon down to 40 cm in the mineral soil profile. The bulk of living fine roots of trees ( 2 . The total quantity of fine roots (live + dead) amounted to 543, 434, 314 and 546 g/m 2 . Considerable quantities of fine roots (< 1 mm in diameter) were attributed to field-layer species (about 18% of the total biomass during the whole period of investigation). The turnover rate (the rate of construction of new roots) for tree fine roots < 1 mm in diameter amounted to at least the size of the average fine-root biomass. Our methods of estimating fine-root production and mortality, involved periodic measurements of live and dead dry weight of the fine roots from sequential core samples of the forest soil. The collected data give a proper and instant measure of the spatial and temporal distribution of fine roots in the undisturbed soil-profile. Data from other fine-root investigations suggest turnover rates in agreement with our present findings. Differences between root growth and turnover should be expected between trees of different age, tree species and different forest sites, but also between different years. Substantial variations in fine-root biomass, necromass and live/dead ratios are found in different forest sites. Correct methods for estimating the amount of live and dead fine-roots in the soil at regular time intervals are essential for any calculation of fine-root turnover. Definition of root vitality differs in literature, making it difficult to compare results from different root investigators. Our investigation clarifies the importance of using distinct morphological criteria

  4. A comparison of two independent interpretations of lineaments from geophysical and topographic data at the Forsmark site

    Johansson, Rune

    2005-03-01

    In the development of site descriptions, uncertainties in the modelling work are given much attention. One aspect of this is the development of alternative models. Given the importance of the lineaments for the continued deformation zone modelling, it has been regarded important to carry out an alternative, independent lineament interpretation at the Forsmark site. The objective of the work presented in this report was to compare the primary and alternative interpretations, which have been provided by two independent groups of geoscientists. A primary interpretation has been carried out by GeoVista AB and an alternative interpretation (within the central part of the site investigation area) by the Geological Survey of Finland (GTK). Based on the results of this comparative study, further evaluation of the inferred lineaments and the need for supplementary information are discussed. When the two sets of inferred lineaments are compared, it must be remembered that the two groups have performed the interpretation work under different conditions. GeoVista AB has a profound knowledge of the geological setting, as opposed to GTK which has been provided only with some basic geological information. The different conditions might very well have affected some of the expert judgements involved in the interpretation process. However, the comparison of the two independent lineament interpretations has revealed that the results are, in principle, reproducible. Nevertheless, there are discrepancies that are judged to be significant and have to be considered during the further assessment of lineaments. The attributes assigned to the inferred lineaments provide an excellent tool for displaying the characteristics of an individual lineament. However, the use of a single attribute or a combination of attributes as a stand-alone criterion for the assessment can be seriously misleading. Whether a lineament represents a deformation zone or not must instead be concluded on the basis of

  5. Integration and consistency testing of groundwater flow models with hydro-geochemistry in site investigations in Finland

    Pitkaenen, P.; Loefman, J.; Korkealaakso, J.; Koskinen, L.; Ruotsalainen, P.; Hautojaervi, A.; Aeikaes, T.

    1999-01-01

    In the assessment of the suitability and safety of a geological repository for radioactive waste the understanding of the fluid flow at a site is essential. In order to build confidence in the assessment of the hydrogeological performance of a site in various conditions, integration of hydrological and hydrogeochemical methods and studies provides the primary method for investigating the evolution that has taken place in the past, and for predicting future conditions at the potential disposal site. A systematic geochemical sampling campaign was started since the beginning of 1990's in the Finnish site investigation programme. This enabled the initiating of integration and evaluation of site scale hydrogeochemical and groundwater flow models. Hydrogeochemical information has been used to screen relevant external processes and variables for definition of the initial and boundary conditions in hydrological simulations. The results obtained from interpretation and modelling hydrogeochemical evolution have been employed in testing the hydrogeochemical consistency of conceptual flow models. Integration and testing of flow models with hydrogeochemical information are considered to improve significantly the hydrogeological understanding of a site and increases confidence in conceptual hydrogeological models. (author)

  6. Modelling of soil depth and lake sediments. An application of the GeoEditor at the Forsmark site

    Vikstroem, Maria

    2005-02-01

    This report aims at describing the modelled soil depth according to three layers with different hydrogeological properties at the Forsmark site, based on available data from boreholes, observation points, seismic data and radar profiles. For the lakes in the area, the sediment has been modelled according to six layers of the most common deposits in the area. The peat layer at Stenroesmossen has also been visualized. The program used in the modelling of soil depths is the GeoEditor, which is an ArcView3.3-extension. The input data used in the model consist of 1,532 points based on seismic measurements, 31 profiles of interpreted ground penetrating radar data, 119 boreholes and 472 observation points. The western and south eastern part of the area has a low data density. In the southern parts the data density with respect to estimated bedrock elevation is low. Observation points in this area are generally not very deep and do not describe the actual bedrock elevation. They do, however, describe the minimum soil depth at each location. A detailed topographical DEM, bathymetry and map of Quaternary deposits were also used. The model is based on a three-layer-principle where each layer is assumed to have similar hydrological characteristics. The uppermost layer, Z1, is characterized by the impact from surface processes, roots and biological activity. The bottom layer, Z3, is characterized by contact with the bedrock. The middle layer, Z2, is assumed to have different hydraulic qualities than Z1 and Z3. The lake sediments have been modelled according to six classes of typical deposits. The modelled soil depths show a relatively high bedrock elevation and thus small total soil depth in the major part of the area. The median soil depth has been calculated to 1.9 m, based on model results in areas with higher data density. The maximum modelled soil depth is about 13 m, just north of Lake Stocksjoen. Generally, the sediment layers in the lakes of the area consists of a

  7. Statistical analysis of results from the quantitative mapping of fracture minerals in Forsmark. Site descriptive modelling - complementary studies

    Loefgren, Martin (Niressa AB, Norsborg (Sweden)); Sidborn, Magnus (Kemakta Konsult AB, Stockholm (Sweden))

    2010-12-15

    Within the Forsmark site investigation campaign, quantitative mapping of different fracture minerals has been performed. This has been done by studying fracture surfaces of drill core sections from many different boreholes at the Forsmark site /Eklund and Mattsson 2009/. The drill core mapping was focused on the rock in the vicinity of flow anomalies detected by the Posiva Flow Log (PFL). The quantitative mapping was performed only on open fractures. The fracture minerals that were mapped are calcite, chlorite, clay minerals (as a group), hematite, and pyrite. In this present report, data from the quantitative mineral mapping campaign are refined, sorted into different data subsets, and analysed by parametric and non-parametric statistical methods. The data subsets are associated with 21 different rock volumes, representing different elevations, rock domains, fracture domains, and groups of deformation zones. In total 2,071 fractures were mapped at the site, and the most frequent mineral was calcite. Its amount could be quantitatively estimated in 32% of the mapped fractures. Of the other minerals, chlorite was quantitatively estimated in 24%, clay minerals in 11%, pyrite in 10%, and hematite in 0.4% of the mapped fractures. For fractures where the averaged fracture mineral thickness, d{sub mean} [mm], and visible coverage, C{sub vis} [%], could be quantitatively estimated, the following arithmetic means were found: calcite = 0.11 mm and 18%, chlorite = 0.22 mm and 38%, clay minerals = 0.14 mm and 40%, pyrite = 2.3 mum and 0.5%, hematite = 19 mum and 14%. These quantities are based on visual inspection of fracture surfaces and do not include the contribution from non-consolidated fracture fillings. It is shown that there is significant spatial variability of d{sub mean} and C{sub vis} within the examined rock volumes. Furthermore, the non-parametric analyses indicate that there are differences in d{sub mean} and C{sub vis} between the different rock volumes. Even

  8. District heating from Forsmark

    1980-11-01

    The district heating system of Greater Stockholm must be based on other energy sources than oil. Two alternatives are assessed, namely heat from Forsmark or a coal fueled plant in the region of Stockholm. Forsmark 3 can produce both electricity and heat from the year 1988 on. The capacity can be increased by coal fueled blocks. For low electricity use, 115 TWh in the year 1990, the Forsmark alternative will be profitable. The alternative will be profitable. The alternative with a fossile fuelled plant will be profitable when planning for high consumption of electricity, 125 TWh. The Forsmark alternative means high investments and the introduction of new techniques. (G.B.)

  9. Updated strategy and test of new concepts for groundwater flow modelling in Forsmark in preparation of site descriptive modelling stage 2.2

    Follin, Sven [SF GeoLogic AB (Sweden); Johansson, Per-Olof [Artesia Grundvattenkonsult AB (Sweden); Leven, Jakob [Geosigma AB (Sweden); Hartley, Lee; Holton, David; McCarthy, Rachel; Roberts, David [Serco Assurance (United Kingdom)

    2007-01-15

    As part of the preliminary Site Descriptive Modelling (SDM version 1.2) for the Initial Site Investigation (ISI) stage at Forsmark, Simpevarp and Laxemar, a methodology was developed for constructing hydrogeological models of the crystalline bedrock. The methodology achieved reasonable success given the restricted amounts and types of data available at the time. Notwithstanding, several issues of concern have surfaced following the reviews of the preliminary site descriptions of the three sites. Possible solutions to parts of the problems have been discussed internally for a longer time and an integrated view and strategy forward has been formulated. The 'new strategy' is not a complete shift in methodology, however, but a refocusing on and clarification of the key aspects that the hydrogeological SDM needs to accomplish. In broad terms the basic principle of the 'new strategy' suggested is to develop an overall conceptual model that first establishes the major flowing deformation zones, and then gradually approaches determination of the hydraulic properties of the bedrock outside these zones in the potential repository volume. On each scale, the focus of the description should be on features/structures of significance on that scale. Clearly, a detailed (although statistical) description of the repository and canister deposition hole scale is the end goal, but this approach (which also is more the traditional approach in hydrogeology) is judged to provide a much better motivated overall geometrical description. Furthermore, the 'new strategy' puts more emphasis on field testing (e.g. interference tests) and data analyses and less on numerical simulation and calibration. That is, before extensive (and costly) simulations and model calibrations are made it needs to be clearly understood what could be the potential gains of carrying them out. This report presents the conceptual model development for Forsmark in preparation of the site

  10. Site descriptive modelling Forsmark, stage 2.2. A fracture domain concept as a basis for the statistical modelling of fractures and minor deformation zones, and interdisciplinary coordination

    Olofsson, Isabelle; Simeonov, Assen [Swedish Nuclear Fuel and Waste Manageme nt Co., Stockholm (Sweden); Stephens, Michael [Geological Survey of Sweden (SGU), U ppsala (Sweden); Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Nilsson, Ann-Chatrin [G eosigma AB, Uppsala (Sweden); Roeshoff, Kennert; Lindberg, Ulrika; Lanaro, Flavio [Bergbygg konsult AB, Haesselby (Sweden); Fredriksson, Anders; Persson, Lars [Golder Associat es AB (Sweden)

    2007-04-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterization at two different locations, Forsmark and Simpevarp/Laxemar, with the objective of siting a final waste repository at depth for spent nuclear fuel. The programme is built upon the development of site descriptive models after each data freeze. This report describes the first attempt to define fracture domains for the Forsmark site modelling in stage 2.2. Already during model version 1.2 at Forsmark, significant spatial variability in the fracture pattern was observed. The variability appeared to be so significant that it provoked the need for a subdivision of the model volume for the treatment of geological and hydrogeological data into sub-volumes. Subsequent analyses of data collected up to data freeze 2.1 led to a better understanding of the site and a concept for the definition of fracture domains based on geological characteristics matured. The main objectives of this report are to identify and describe fracture domains at the site on the basis of geological data and to compile hydrogeological, hydrogeochemical and rock mechanics data within each fracture domain and address the implications of this integration activity. On the basis of borehole data, six fracture domains (FFM01-FFM06) have been recognized inside and immediately around the candidate volume. Three of these domains (FFM01, FFM02 and FFM06) lie inside the target volume for a potential repository in the northwestern part of the candidate area, and need to be addressed in the geological DFN modelling work. The hydrogeological data support the subdivision of the bedrock into fracture domains FFM01, FFM02 and FFM03. Few or no data are available for the other three domains. The hydrogeochemical data also support the subdivision into fracture domains FFM01 and FFM02. Since few data are available from the bedrock between deformation zones inside FFM03, there is little information on the hydrogeochemical

  11. Forsmark site investigation. Monitoring of brook water levels, electrical conductivities, temperatures and discharges January-December 2009

    Johansson, Per-Olof (Artesia Grundvattenkonsult (Sweden)); Juston, John (Juston Konsult (Sweden))

    2011-03-15

    This document reports the monitoring of water levels, electrical conductivities, temperatures and discharges at four brook discharge gauging stations, and the monitoring of water electrical conductivity at the outlet of Lake Bolundsfjaerden in the Forsmark area. The report presents data from 1 January through 31 December 2009 and is a continuation of reporting from Johansson and Juston (2007, 2009), which covered the periods from 1 April 2004 through 31 March 2007 and 1 April 2007 through 31 December 2008, respectively. Long-throated flumes equipped with automatically recording devices were used for the discharge measurements. Every c. 14 days the water depths at the upstream edge of the flumes were measured manually by a ruler as a check. Electrical conductivity and temperature were automatically recorded and these parameters were also measured manually every c. 14 days with the site investigation field devices. SKB's Hydro Monitoring System (HMS) was used to collect and store all data. From HMS quality assured data were transferred to SKB's primary database Sicada. Measurements of levels, electrical conductivities and temperatures were made every 10 minutes (every 30 minutes for electrical conductivity at the outlet of Lake Bolundsfjaerden). For the calculation of discharge, quality assured water level data from the flumes were used. The calculation procedure included consolidation of the time series to hourly averages, screening of data for removal of short-term spikes, noise and other data that were judged erroneous. After the calculations were performed, the results were delivered to Sicada. The amplitudes of water level variations during this reporting period were 0.26-0.33 m at the four stations. The mean electrical conductivities varied between 26 and 41 mS/m at the four discharge stations. The electrical conductivity at the outlet of Lake Bolundsfjaerden varied between 53 and 188 mS/m during the period with the higher values at the end of the

  12. Forsmark site investigation. Monitoring of brook water levels, electrical conductivities, temperatures and discharges January-December 2010

    Johansson, Per-Olof (Artesia Grundvattenkonsult (Sweden)); Juston, John (Juston Konsult (Sweden))

    2011-06-15

    This document reports the monitoring of water levels, electrical conductivities, temperatures and discharges at four brook discharge gauging stations, and the monitoring of water electrical conductivity at the outlet of Lake Bolundsfjaerden in the Forsmark area. The report presents data from 1 January through 31 December 2010 and is a continuation of reporting from Johansson and Juston (2007, 2009, 2011), which covered the periods from 1 April 2004 through 31 March 2007, 1 April 2007 through 31 December 2008, and 1 January through 31 December 2009, respectively. Long-throated flumes equipped with automatically recording devices were used for the discharge measurements. Every c. 14 days the water depths at the upstream edge of the flumes were measured manually by a ruler as a check. Electrical conductivity and temperature were automatically recorded and these parameters were also measured manually every c. 14 days with the site investigation field devices. SKB's Hydro Monitoring System (HMS) was used to collect and store all data. From HMS quality assured data were transferred to SKB's primary database Sicada. Measurements of levels, electrical conductivities and temperatures were made every 10 minutes (every 30 minutes for electrical conductivity at the outlet of Lake Bolundsfjaerden). For the calculation of discharge, quality assured water level data from the flumes were used. The calculation procedure included consolidation of the time series to hourly averages, screening of data for removal of short-term spikes, noise and other data that were judged erroneous. After the calculations were performed, the results were delivered to Sicada. The amplitudes of water level variations during this reporting period were 0.41-0.55 m and the mean electrical conductivities varied between 23 and 39 mS/m at the four discharge stations. However, due to mal-function of measuring devices for electrical conductivity, data were missing for relatively long time periods. Due

  13. Present status and an appreciation of the consequences for recreation and outdoor leisure activities from siting a nuclear waste repository at Forsmark; Nulaegesanalys samt bedoemning av konsekvenser foer rekreation och friluftsliv av ett slutfoervar i Forsmark

    Ottosson, Pia [Atrax Energi AB, Stockholm (Sweden)

    2007-07-15

    This report describes how the area around Forsmark is used with respect to recreation and outdoor life. It also describes the impact of the final repository on recreation and outdoor life if it is located in Forsmark. The studied area is situated in the parish of Forsmark in the municipality of Oesthammar. Forsmark nuclear power plant and the final repository for radioactive operational waste, SFR, are situated within the area and there are both houses and holiday houses. The area is used for leisure pursuit by inhabitants and employees at FKA and SKB, but also by a number of different associations and by tourists. Statistical data shows that the parish of Forsmark is sparsely populated. The area was previously dominated by one big landowner and the land surrounding the nuclear power plant was inaccessible to the general public during that period. The outdoor life is therefore less widespread here than along other parts of the east coast. The value of the area does not lie in paths and trails, bike tracks and bathing places, but in the unspoiled countryside, the wildlife and the bird life. Recreation such as hunting and fishing is very popular in the area. The construction of a final repository will increase traffic and hence increase noise and motion in the area. This will mainly impact the enjoyment value for the people spending time in the area. No other significant consequences are expected as the final repository will be mainly situated within the existing industrial complex and hence the character of the area should remain unchanged.

  14. Growth dynamics of fine roots in a coniferous fern forest site close to Forsmark in the central part of Sweden

    Persson, Hans; Stadenberg, Ingela (SLU, Dept. of Ecology and Environmental Research, Uppsala (Sweden))

    2007-12-15

    The seasonal growth dynamics of live and dead roots for trees and the field layer species (g/m2, varying diameter fractions) and live/dead ratios were analysed at a fresh/moist coniferous fern forest site close to the nuclear power plant at Forsmark in the central eastern parts of Sweden. The changes in depth distribution of fine roots were observed at depth intervals of the top humus horizon down to 40 cm in the mineral soil profile. The bulk of living fine roots of trees (< 1 mm in diameter) were found in the mineral soil horizon the total profile down to 40 cm of the mineral soil, where 89, 82, 83 and 89% of the total amount in the whole profile were found. The upper 2.5 cm part of the humus layer contained 83, 81, 100 and 100% of all roots of the humus layer on the four different sampling occasions. High amounts of living fine roots were found in the upper 10 cm of the mineral soil horizon viz. 84, 76, 91 and 69% of the total mineral soil layer. Consequently, both the top soil horizons of the humus and the mineral soil layers were heavily penetrated by living fine roots. The highest proportion of living fine roots was found in the top 2.5 cm of the humus layer. Accordingly, the live/dead ratio of fine roots (< 1 mm in diameter) decreased from the top of the humus layer to the lower part of mineral soil horizon from 8.0-0.3, 0.8-0.2, 4.4-0.4 and 3.3-0.7 (g g-1) for the four sampling occasions, respectively. We concluded that the decrease in the live/ dead ratio was related to decreased vitality with depth of the fine roots in the soil profile. The highest live/dead ratio was found in the upper 2.5 cm of the humus layer for both the tree and field-layer species. This distribution pattern was most evident for tree fine roots < 1 mm in diameter. The mean fine-root biomass (live tissue < 1 mm in diameter) of tree species for the total profile varied on the four sampling occasions between 317, 113, 139 and 248 g m-2. The related fine root necromass (dead tissue

  15. Large-Scale Groundwater Flow with Free Water Surface Based on Data from SKB's Site Investigation in the Forsmark Area

    Woerman, Anders; Sjoegren, Bjoern; Marklund, Lars

    2004-12-01

    This report describes a data-base that covers entire Sweden with regard to various geographical parameters with implications to simulation of groundwater circulation on a regional and continental scale. The data-base include topography, stream network properties, and-use and water chemistry for limited areas. Furthermore, the report describes a computational (finite difference) code that solves the continuum equation for laminar, stationary and isotropic groundwater flow. The formulation accounts for a free groundwater surface except where the groundwater recharge into the stream network and lake bottoms. The theoretical background of the model is provided and the codes are described. The report also contain a simple user manual in a Matlab environment and provides and example calculation for the Forsmark area, Uppland, Sweden.

  16. Long-term safety for the final repository for spent nuclear fuel at Forsmark. Main report of the SR-Site project

    2011-03-15

    The central conclusion of the safety assessment SR-Site is that a KBS-3 repository that fulfils long-term safety requirements can be built at the Forsmark site. This conclusion is reached because the favourable properties of the Forsmark site ensure the required long-term durability of the barriers of the KBS-3 repository. In particular, the copper canisters with their cast iron inserts have been demonstrated to provide a sufficient resistance to the mechanical and chemical loads to which they may be subjected in the repository environment. The conclusion is underpinned by: - The reliance of the KBS-3 repository on i) a geological environment that exhibits long-term stability with respect to properties of importance for long-term safety, i.e. mechanical stability, low groundwater flow rates at repository depth and the absence of high concentrations of detrimental components in the groundwater, and ii) the choice of naturally occurring materials (copper and bentonite clay) for the engineered barriers that are sufficiently durable in the repository environment to provide the barrier longevity required for safety. - The understanding, through decades of research at SKB and in international collaboration, of the phenomena that affect long-term safety, resulting in a mature knowledge base for the safety assessment. - The understanding of the characteristics of the site through several years of surface-based investigations of the conditions at depth and of scientific interpretation of the data emerging from the investigations, resulting in a mature model of the site, adequate for use in the safety assessment. - The detailed specifications of the engineered parts of the repository and the demonstration of how components fulfilling the specifications are to be produced in a quality assured manner, thereby providing a quality assured initial state for the safety assessment. The detailed analyses demonstrate that canister failures in a one million year perspective are rare

  17. Long-term safety for the final repository for spent nuclear fuel at Forsmark. Main report of the SR-Site project

    2011-03-01

    The central conclusion of the safety assessment SR-Site is that a KBS-3 repository that fulfils long-term safety requirements can be built at the Forsmark site. This conclusion is reached because the favourable properties of the Forsmark site ensure the required long-term durability of the barriers of the KBS-3 repository. In particular, the copper canisters with their cast iron inserts have been demonstrated to provide a sufficient resistance to the mechanical and chemical loads to which they may be subjected in the repository environment. The conclusion is underpinned by: - The reliance of the KBS-3 repository on i) a geological environment that exhibits long-term stability with respect to properties of importance for long-term safety, i.e. mechanical stability, low groundwater flow rates at repository depth and the absence of high concentrations of detrimental components in the groundwater, and ii) the choice of naturally occurring materials (copper and bentonite clay) for the engineered barriers that are sufficiently durable in the repository environment to provide the barrier longevity required for safety. - The understanding, through decades of research at SKB and in international collaboration, of the phenomena that affect long-term safety, resulting in a mature knowledge base for the safety assessment. - The understanding of the characteristics of the site through several years of surface-based investigations of the conditions at depth and of scientific interpretation of the data emerging from the investigations, resulting in a mature model of the site, adequate for use in the safety assessment. - The detailed specifications of the engineered parts of the repository and the demonstration of how components fulfilling the specifications are to be produced in a quality assured manner, thereby providing a quality assured initial state for the safety assessment. The detailed analyses demonstrate that canister failures in a one million year perspective are rare

  18. Monitoring Forsmark. Meteorological monitoring at Forsmark, January-December 2010

    Andersson, Cari; Jones, Joergen (Swedish Meteorological and Hydrological Institute (SMHI), Norrkoeping (Sweden))

    2011-01-15

    In the Forsmark area, SKB's meteorological monitoring started in 2003 at the sites Storskaeret and Hoegmasten. However, since July 1, 2007 measurements are only performed at Hoegmasten. Measured and calculated parameters at Hoegmasten are precipitation and corrected precipitation, air temperature, barometric pressure, wind speed and direction, air humidity, global radiation and potential evapotranspiration. The Swedish Meteorological and Hydrological Institute, SMHI, has been responsible for planning and design, as well as for the operation of the stations used for meteorological monitoring. In general, the quality of the meteorological measurements during the period concerned, starting January 1, 2010, and ending December 31, 2010, has shown to be good

  19. Rock-block characterization on regional to local scales for two SKB sites in Forsmark - Uppland and Laxemar - eastern Smaaland, south-eastern Sweden

    Beckholmen, Monica; Tiren, Sven A.

    2010-11-01

    Digital elevation data in 500m, 50m and 10m grids were used for rock-block interpretations at regional, semi-regional and local scales of areas around the two SKB sites, Forsmark and Laxemar, objects for the site-investigation programme. Both areas are interpreted to be close to the surface of the sub- Cambrian peneplain and varying altitude and attitude may testify to blockfaulting in the distorted peneplain. Topographic breaks and changes in the gradient also reveal possible zones of weakness that may conduct water. Rock blocks were constructed for Uppland at 1:750 000, northern Uppland at 1:450 000 and the local Forsmark area at 1:150 000, three sets were constructed for eastern Smaaland at 1:500 000, and one for the semi-regional area at 1:250 000 and one for the local Laxemar area at 1:75 000. The orientation of rock-block boundaries and the size of the rock blocks were treated statistically. The rock blocks/polygons were analysed for their mean, minimum and maximum elevation and the range. The values were displayed by maps. The topography in especially eastern Smaaland is dominated by a clear gradient, the land rising from the sea in the east. Efforts were therefore made to remove an estimated gradient to assess the residual features and the same analyses were then made for mean, maximum, minimum and range values. In many cases the results were enhanced and the two types of presentations are complementary to each other. The rock-block interpretations were compared to bedrock and general correlation between major structures where identified. However, the distribution of rocks on a regional map often demonstrates the plastic deformation in a wider zone. Earthquake epicentres were combined with the rock-block maps and assuming that interpreted rock-block boundaries are fairly steep, there is good agreement between the location of epicentres and rock-block boundaries. In some cases it can be seen how seismic disturbance migrated along a structure. Many

  20. Rock-block characterization on regional to local scales for two SKB sites in Forsmark - Uppland and Laxemar - eastern Smaaland, south-eastern Sweden

    Beckholmen, Monica; Tiren, Sven A. (GEOSIGMA AB (Sweden))

    2010-11-15

    Digital elevation data in 500m, 50m and 10m grids were used for rock-block interpretations at regional, semi-regional and local scales of areas around the two SKB sites, Forsmark and Laxemar, objects for the site-investigation programme. Both areas are interpreted to be close to the surface of the sub- Cambrian peneplain and varying altitude and attitude may testify to blockfaulting in the distorted peneplain. Topographic breaks and changes in the gradient also reveal possible zones of weakness that may conduct water. Rock blocks were constructed for Uppland at 1:750 000, northern Uppland at 1:450 000 and the local Forsmark area at 1:150 000, three sets were constructed for eastern Smaaland at 1:500 000, and one for the semi-regional area at 1:250 000 and one for the local Laxemar area at 1:75 000. The orientation of rock-block boundaries and the size of the rock blocks were treated statistically. The rock blocks/polygons were analysed for their mean, minimum and maximum elevation and the range. The values were displayed by maps. The topography in especially eastern Smaaland is dominated by a clear gradient, the land rising from the sea in the east. Efforts were therefore made to remove an estimated gradient to assess the residual features and the same analyses were then made for mean, maximum, minimum and range values. In many cases the results were enhanced and the two types of presentations are complementary to each other. The rock-block interpretations were compared to bedrock and general correlation between major structures where identified. However, the distribution of rocks on a regional map often demonstrates the plastic deformation in a wider zone. Earthquake epicentres were combined with the rock-block maps and assuming that interpreted rock-block boundaries are fairly steep, there is good agreement between the location of epicentres and rock-block boundaries. In some cases it can be seen how seismic disturbance migrated along a structure. Many

  1. THM-issues in repository rock. Thermal, mechanical, thermo-mechanical and hydro-mechanical evolution of the rock at the Forsmark and Laxemar sites

    Hoekmark, Harald; Loennqvist, Margareta; Faelth, Billy (Clay Technology AB, Lund (Sweden))

    2010-05-15

    The present report addresses aspects of the Thermo-Hydro-Mechanical (THM) evolution of the repository host rock that are of potential importance to the SR-Site safety assessment of a KBS-3 type spent nuclear fuel repository. The report covers the evolution of rock temperatures, rock stresses, pore pressures and fracture transmissivities during the excavation and operational phase, the temperate phase and a glacial cycle on different scales. The glacial cycle is assumed to include a period of pre-glacial permafrost with lowered temperatures and with increased pore pressures in the rock beneath the impermeable permafrost layer. The report also addresses the question of the peak temperature reached during the early temperate phase in the bentonite buffer surrounding the spent fuel canisters. The main text is devoted exclusively to the projected THM evolution of the rock at the Forsmark site in central Sweden. The focus is on the potential for stress-induced failures, i.e. spalling, in the walls of the deposition holes and on changes in the transmissivity of fractures and deformation zones. All analyses are conducted by a combination of numerical tools (3DEC) and analytical solutions. All phases are treated separately and independently of each other, although in reality construction will overlap with heat generation because of the step-by-step excavation/deposition approach with some 50 years between deposition of the first and last canisters. It is demonstrated here that the thermal and thermo-mechanical evolution of the near-field will be independent of heat generated by canisters that were deposited in the past, provided that deposition is made in an orderly fashion, deposition area by deposition area. Peak temperatures and near-field stresses can, consequently, be calculated as if all canisters were deposited simultaneously. The canister and tunnel spacing is specified such that the peak buffer temperature will not exceed 100 deg C in any deposition hole, i.e. not

  2. Forsmark site investigation. Assessment of the validity of the rock domain model, version 1.2, based on the modelling of gravity and petrophysical data

    Isaksson, Hans; Stephens, Michael B.

    2007-11-01

    This document reports the results gained by the geophysical modelling of rock domains based on gravity and petrophysical data, which is one of the activities performed within the site investigation work at Forsmark. The main objective with this activity is to assess the validity of the geological rock domain model version 1.2, and to identify discrepancies in the model that may indicate a need for revision of the model or a need for additional investigations. The verification is carried out by comparing the calculated gravity model response, which takes account of the geological model, with a local gravity anomaly that represents the measured data. The model response is obtained from the three-dimensional geometry and the petrophysical data provided for each rock domain in the geological model. Due to model boundary conditions, the study is carried out in a smaller area within the regional model area. Gravity model responses are calculated in three stages; an initial model, a base model and a refined base model. The refined base model is preferred and is used for comparison purposes. In general, there is a good agreement between the refined base model that makes use of the rock domain model, version 1.2 and the measured gravity data, not least where it concerns the depth extension of the critical rock domain RFM029. The most significant discrepancy occurs in the area extending from the SFR office to the SFR underground facility and further to the northwest. It is speculated that this discrepancy is caused by a combination of an overestimation of the volume of gabbro (RFM016) that plunges towards the southeast in the rock domain model, and an underestimation of the volume of occurrence of pegmatite and pegmatitic granite that are known to be present and occur as larger bodies around SFR. Other discrepancies are noted in rock domain RFM022, which is considered to be overestimated in the rock domain model, version 1.2, and in rock domain RFM017, where the gravity

  3. Present status and an appreciation of the consequences for recreation and outdoor leisure activities from siting a nuclear waste repository at Forsmark

    Ottosson, Pia

    2007-07-01

    This report describes how the area around Forsmark is used with respect to recreation and outdoor life. It also describes the impact of the final repository on recreation and outdoor life if it is located in Forsmark. The studied area is situated in the parish of Forsmark in the municipality of Oesthammar. Forsmark nuclear power plant and the final repository for radioactive operational waste, SFR, are situated within the area and there are both houses and holiday houses. The area is used for leisure pursuit by inhabitants and employees at FKA and SKB, but also by a number of different associations and by tourists. Statistical data shows that the parish of Forsmark is sparsely populated. The area was previously dominated by one big landowner and the land surrounding the nuclear power plant was inaccessible to the general public during that period. The outdoor life is therefore less widespread here than along other parts of the east coast. The value of the area does not lie in paths and trails, bike tracks and bathing places, but in the unspoiled countryside, the wildlife and the bird life. Recreation such as hunting and fishing is very popular in the area. The construction of a final repository will increase traffic and hence increase noise and motion in the area. This will mainly impact the enjoyment value for the people spending time in the area. No other significant consequences are expected as the final repository will be mainly situated within the existing industrial complex and hence the character of the area should remain unchanged

  4. Hydrochemical patterns of a small lake and a stream in an uplifting area proposed as a repository site for spent nuclear fuel, Forsmark, Sweden

    Rönnback, Pernilla; Åström, Mats

    2007-10-01

    SummaryThe overall aim of this study was to increase the understanding of the chemical dynamics of small catchments. The focus was on a small oligotropic lake and its major inflow stream in an uplifting area in eastern Sweden (Forsmark) proposed as a repository site for spent nuclear fuel. The hydrochemical sampling campaign lasted for nearly 4 years with sample collection monthly to semi-monthly, and continuous flow measurements carried out over the last 20 months. All this was done as part of the Swedish Nuclear Fuel and Waste Management Company's (SKBs) Site Investigation Programme. The major findings were: (1) as a result of the calcareous overburden caused by redistributed Paleozoic deposits, pH and the Ca and HCO3- concentrations were relatively high in both the stream and lake throughout the period, (2) limnic primary production resulted in decreased concentrations of Ca, HCO3-, NH4+, NO3- and Si, and increased pH and concentrations of chlorophyll a, O 2, DON, POC, PON and POP in the lake in summer, while in other seasons (in winter in particular) when the production was minimal or non-existent the concentrations in the lake and the inflow stream were similar, (3) intrusion of brackish-water resulted in moderately to strongly increased concentrations of Cl -, Na, Mg, Br -, SO42-, K and Sr in the lake: the ratio versus Cl - were for Na and Br - always similar to those in sea water, for Mg and SO42- similar to those in sea water at elevated Cl - concentrations (>3 mM), while K and Sr always occurred in relative excess as compared to sea water, (4) high U concentrations in both the stream and the lake was derived most likely from reduced U-minerals in the overburden and was predicted to be carried to >90% in the form of calcium uranyl carbonate, in a model in which colloidal Fe and Al oxyhydroxides were not considered, (5) the rare earth elements (REEs) had similar concentrations and fractionation patterns in the stream and lake, unlike those found in the

  5. Monitoring Forsmark-Bird monitoring in Forsmark 2012

    Green, Martin

    2013-03-01

    This report summarizes the monitoring of selected listed (Swedish Red List and/or the EU Birds directive) breeding birds in Forsmark 2002 - 2012. Monitoring of eleven listed species was conducted in the regional model area, including the candidate area in 2012 in the same way as in earlier years. The results from 2012 generally follow patterns recorded in earlier years. 2012 was in general a better bird year compared to 2010 and 2011 and most species (82%) showed increasing or stable numbers from 2011 to 2012. Only two species (18%) decreased in numbers between the last two years. All in all, six species (55 %, black-throated diver, honey buzzard, black grouse, ural owl, wryneck and red-backed shrike) show no significant trends since the start of the bird monitoring (2002/2003/2004 depending on species). During this period three species (27 %, white-tailed eagle, osprey and lesser spotted woodpecker) have increased in numbers while just two (18 %, capercaillie and hazelhen) have decreased. A new pair of black-throated divers was discovered in 2012 and seven resident pairs were registered. Breeding success was very good, the second best during the study period. Population development follows the national pattern, but breeding success seems to be better in Forsmark than in the country as a whole. Honey buzzards and ospreys occurred in good numbers, and breeding success for ospreys was good. No signs of successful breedings of honey buzzards were recorded, but this may mean little as no detailed monitoring of breeding success is made for this species. The white-tailed eagles had their best breeding year since the start of the SKB bird monitoring, meaning that during the last two years local breeding success has been back at the level recorded before the site investigations started. The three grouse species (black grouse, capercaillie and hazelhen) again showed somewhat varying patterns between the last two years as well as in the long run. The black grouse increased

  6. Monitoring Forsmark. Bird monitoring in Forsmark 2010

    Green, Martin (Dept. of Animal Ecology, Lund Univ. (Sweden))

    2010-12-15

    This report summarizes the monitoring of selected listed (Swedish Red List and/or the EU Birds Directive) breeding birds in Forsmark 2002-2010. Monitoring of eleven listed species was conducted in the regional model area, including the candidate area in 2010 in the same way as in earlier years. The results from the monitoring in 2010 differed somewhat from results gathered in earlier years. Most monitored species have increased in local numbers during the study years, and from most years continued increases have been reported. Between 2009 and 2010 most species (seven, 64% of the monitored ones) instead decreased in numbers. Only one species (honey buzzard) increased in numbers between the years and in this case this was probably more a result of small moves by certain pairs so that they this year had parts reaching into the regional model area, while in 2009 their territories were outside of this. No dramatic changes in bird numbers were however recorded and all the studied species show stable or increasing local populations over the study period. Number of Black-throated diver pairs was normal and breeding success was good this year. The breeding success of divers has improved considerably over the studied period and the patterns recorded in Forsmark closely follow recorded patterns at the national level. Honey buzzards and ospreys occurred in good numbers, above the average for the whole period, and breeding success was better than in 2009. Even if breeding success of honey buzzards is not monitored in any detail, there were still signs of at least a few successful breedings in the area this year. Breeding success of ospreys was below average, but still within the normal variation for most years. The local white-tailed eagles had a poor breeding season and no young at all were produced within the study area. All three grouse species (black grouse, capercaillie and hazelhen) decreased in numbers between 2009 and 2010. Note however that the large amounts of snow

  7. Monitoring Forsmark. Bird monitoring in Forsmark 2010

    Green, Martin

    2010-12-01

    This report summarizes the monitoring of selected listed (Swedish Red List and/or the EU Birds Directive) breeding birds in Forsmark 2002-2010. Monitoring of eleven listed species was conducted in the regional model area, including the candidate area in 2010 in the same way as in earlier years. The results from the monitoring in 2010 differed somewhat from results gathered in earlier years. Most monitored species have increased in local numbers during the study years, and from most years continued increases have been reported. Between 2009 and 2010 most species (seven, 64% of the monitored ones) instead decreased in numbers. Only one species (honey buzzard) increased in numbers between the years and in this case this was probably more a result of small moves by certain pairs so that they this year had parts reaching into the regional model area, while in 2009 their territories were outside of this. No dramatic changes in bird numbers were however recorded and all the studied species show stable or increasing local populations over the study period. Number of Black-throated diver pairs was normal and breeding success was good this year. The breeding success of divers has improved considerably over the studied period and the patterns recorded in Forsmark closely follow recorded patterns at the national level. Honey buzzards and ospreys occurred in good numbers, above the average for the whole period, and breeding success was better than in 2009. Even if breeding success of honey buzzards is not monitored in any detail, there were still signs of at least a few successful breedings in the area this year. Breeding success of ospreys was below average, but still within the normal variation for most years. The local white-tailed eagles had a poor breeding season and no young at all were produced within the study area. All three grouse species (black grouse, capercaillie and hazelhen) decreased in numbers between 2009 and 2010. Note however that the large amounts of snow

  8. Work at Forsmark since ASSET 1996

    Loewenhielm, G; Andersson, O [Forsmark Kraftgrupp AB, Oesthammar (Sweden)

    1997-10-01

    The following directions of work at Forsmark since ASSET 1996 are briefly described: peer review follow-up; work related to peer review, Forsmark 2 mini-ASSET; MTO(man-technology-organization)-analysis method, concept development, combination of MTO and ASSET methods; Forsmark INES manual.

  9. Organizational development at Forsmark NPP

    Metzen, H.

    2001-01-01

    Forsmark is a three unit BWR site with a total capacity of 3200 MW. Units 1 and two are identical and went into commercial operation in 1980 and 1981. Unit 3 is of a later design with an output of 1200 MW and has been operating since 1985. The average availability for the site has been over 90% for the last 10 years, and the total busbar cost has been competitive. A consistent management strategy has been used to achieve the good results. Several organizational modifications have been made during the years to adapt the organization to changing internal and external conditions. An overall goal regarding staffing has been to keep the number of employees at the same level as in 1985 when Unit 3 went into commercial operation. During the time period from 1975, when the operational organization was formed, until today, the focus for the organization has changed several times. During the commissioning period the focus was on training and establishing routines and procedures. During the first years of operation development of maintenance programs and taking over activities from the supplier dominated. Next area in focus was increasing availability and making the outages more efficient. Several minor modifications to the plant were made to support maintenance activities. More focus on cost reduction and increasing the production through technical modifications were next. After 15 years of operation the need for replacement of components to ensure reliable operation was evident. A program for major modifications was developed, aiming at 40 years lifetime. Deregulation of the Nordic Electricity Market now calls for further reductions in production costs. (author)

  10. Geology - Background complementary studies. Forsmark modelling stage 2.2

    Stephens, Michael B. [Geological Survey of Sweden, Uppsala (Sweden); Skagius, Kristina [Kemakta Konsult AB, Stockholm (Sweden)] (eds.)

    2007-09-15

    During Forsmark model stage 2.2, seven complementary geophysical and geological studies were initiated by the geological modelling team, in direct connection with and as a background support to the deterministic modelling of deformation zones. One of these studies involved a field control on the character of two low magnetic lineaments with NNE and NE trends inside the target volume. The interpretation of these lineaments formed one of the late deliveries to SKB that took place after the data freeze for model stage 2.2 and during the initial stage of the modelling work. Six studies involved a revised processing and analysis of reflection seismic, refraction seismic and selected oriented borehole radar data, all of which had been presented earlier in connection with the site investigation programme. A prime aim of all these studies was to provide a better understanding of the geological significance of indirect geophysical data to the geological modelling team. Such essential interpretative work was lacking in the material acquired in connection with the site investigation programme. The results of these background complementary studies are published together in this report. The titles and authors of the seven background complementary studies are presented below. Summaries of the results of each study, with a focus on the implications for the geological modelling of deformation zones, are presented in the master geological report, SKB-R--07-45. The sections in the master report, where reference is made to each background complementary study and where the summaries are placed, are also provided. The individual reports are listed in the order that they are referred to in the master geological report and as they appear in this report. 1. Scan line fracture mapping and magnetic susceptibility measurements across two low magnetic lineaments with NNE and NE trend, Forsmark. Jesper Petersson, Ulf B. Andersson and Johan Berglund. 2. Integrated interpretation of surface and

  11. Geology - Background complementary studies. Forsmark modelling stage 2.2

    Stephens, Michael B.; Skagius, Kristina

    2007-09-01

    During Forsmark model stage 2.2, seven complementary geophysical and geological studies were initiated by the geological modelling team, in direct connection with and as a background support to the deterministic modelling of deformation zones. One of these studies involved a field control on the character of two low magnetic lineaments with NNE and NE trends inside the target volume. The interpretation of these lineaments formed one of the late deliveries to SKB that took place after the data freeze for model stage 2.2 and during the initial stage of the modelling work. Six studies involved a revised processing and analysis of reflection seismic, refraction seismic and selected oriented borehole radar data, all of which had been presented earlier in connection with the site investigation programme. A prime aim of all these studies was to provide a better understanding of the geological significance of indirect geophysical data to the geological modelling team. Such essential interpretative work was lacking in the material acquired in connection with the site investigation programme. The results of these background complementary studies are published together in this report. The titles and authors of the seven background complementary studies are presented below. Summaries of the results of each study, with a focus on the implications for the geological modelling of deformation zones, are presented in the master geological report, SKB-R--07-45. The sections in the master report, where reference is made to each background complementary study and where the summaries are placed, are also provided. The individual reports are listed in the order that they are referred to in the master geological report and as they appear in this report. 1. Scan line fracture mapping and magnetic susceptibility measurements across two low magnetic lineaments with NNE and NE trend, Forsmark. Jesper Petersson, Ulf B. Andersson and Johan Berglund. 2. Integrated interpretation of surface and

  12. Bioturbation in different ecosystems at Forsmark and Oskarshamn

    Persson, Tryggve; Lenoir, Lisette; Taylor, Astrid [Dept. of Ecology and Environmental Research, Swedish University or Agricultural Sciences, Uppsala (Sweden)

    2007-01-15

    The Swedish Nuclear Fuel and Waste Management Co (SKB) carries out extensive investigations on factors that can affect long-term storage of nuclear waste. Earthworms consume organic soil materials and when doing so they transport and mix mineral soil particles as well as litter and humus materials. Ants do not consume soil materials, but they collect and mix mineral soil particles and litter materials to construct their nests. This process of material displacement by earthworms and ants is called bioturbation and can be a mechanism for the redistribution (vertical and horizontal) of radionuclides within the soil profile. The aim of the present study was to determine the quantitative impact of earthworms and ants on bioturbation of soil in different ecosystems at Forsmark and Oskarshamn. Earthworms were sampled at four 20x20 cm{sup 2} sub-plots at each site and were determined, dried and weighed in the laboratory. Gut passage time and faeces production were determined in a laboratory experiment at constant temperature. Temperature dependence of earthworm growth was studied at 3, 6, 10 and 20 deg C, and it was assumed that defecation mirrored growth as regards temperature dependence. Ant species composition, ant nest density and nest volume were investigated in the field by using pitfall traps and a transect method to enumerate ant nests. Dry weights of ant nests were determined after weighing in the laboratory. Earthworm abundances and biomasses were high in moist/wet alder forests and deciduous woodlands and low in pine and pine/spruce forests at both Forsmark and Oskarshamn. In mesic spruce forests, high estimates of abundance/biomass of earthworms were found at Forsmark but low at Oskarshamn, whereas grazed pastures had high estimates at Oskarshamn and ungrazed abandoned fields had relatively low estimates at Forsmark. High pH at Forsmark and low pH at Oskarshamn as well as high groundwater tables at some of the Forsmark sites can explain the difference between

  13. Bioturbation in different ecosystems at Forsmark and Oskarshamn

    Persson, Tryggve; Lenoir, Lisette; Taylor, Astrid

    2007-01-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) carries out extensive investigations on factors that can affect long-term storage of nuclear waste. Earthworms consume organic soil materials and when doing so they transport and mix mineral soil particles as well as litter and humus materials. Ants do not consume soil materials, but they collect and mix mineral soil particles and litter materials to construct their nests. This process of material displacement by earthworms and ants is called bioturbation and can be a mechanism for the redistribution (vertical and horizontal) of radionuclides within the soil profile. The aim of the present study was to determine the quantitative impact of earthworms and ants on bioturbation of soil in different ecosystems at Forsmark and Oskarshamn. Earthworms were sampled at four 20x20 cm 2 sub-plots at each site and were determined, dried and weighed in the laboratory. Gut passage time and faeces production were determined in a laboratory experiment at constant temperature. Temperature dependence of earthworm growth was studied at 3, 6, 10 and 20 deg C, and it was assumed that defecation mirrored growth as regards temperature dependence. Ant species composition, ant nest density and nest volume were investigated in the field by using pitfall traps and a transect method to enumerate ant nests. Dry weights of ant nests were determined after weighing in the laboratory. Earthworm abundances and biomasses were high in moist/wet alder forests and deciduous woodlands and low in pine and pine/spruce forests at both Forsmark and Oskarshamn. In mesic spruce forests, high estimates of abundance/biomass of earthworms were found at Forsmark but low at Oskarshamn, whereas grazed pastures had high estimates at Oskarshamn and ungrazed abandoned fields had relatively low estimates at Forsmark. High pH at Forsmark and low pH at Oskarshamn as well as high groundwater tables at some of the Forsmark sites can explain the difference between

  14. Geology Forsmark. Site descriptive modelling Forsmark - stage 2.2

    Stephens, Michael B. [Geological Survey of Sweden, Uppsala (Sweden); Fox, Aaron; La Pointe, Paul [Golder Associates Inc (United States); Simeonov, Assen [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Isaksson, Hans [GeoVista AB, Luleaa (Sweden); Hermanson, Jan; Oehman, Johan [Golder Associates AB, Stockholm (Sweden)

    2007-10-15

    The geological work during stage 2.2 has involved the development of deterministic models for rock domains (RFM) and deformation zones (ZFM), the identification and deterministic modelling of fracture domains (FFM) inside the candidate volume, i.e. the parts of rock domains that are not affected by deformation zones, and the development of statistical models for fractures and minor deformation zones (geological discrete fracture network modelling or geological DFN modelling). The geological DFN model addresses brittle structures at a scale of less than 1 km, which is the lower cut-off in the deterministic modelling of deformation zones. In order to take account of variability in data resolution, deterministic models for rock domains and deformation zones are presented in both regional and local model volumes, while the geological DFN model is valid within specific fracture domains inside the north-western part of the candidate volume, including the target volume. The geological modelling work has evaluated and made use of: A revised bedrock geological map at the ground surface. Geological and geophysical data from 21 cored boreholes and 33 percussion boreholes. Detailed mapping of fractures and rock units along nine excavations or large surface outcrops. Data bearing on the characterisation (including kinematics) of deformation zones. Complementary geochronological and other rock and fracture analytical data. Lineaments identified on the basis of airborne and high-resolution ground magnetic data. A reprocessing of both surface and borehole reflection seismic data. Seismic refraction data. The outputs of the deterministic modelling work are geometric models in RVS format and detailed property tables for rock domains and deformation zones, and a description of fracture domains. The outputs of the geological DFN modelling process are recommended parameters or statistical distributions that describe fracture set orientations, radius sizes, volumetric intensities, spatial correlations and models, and other parameters (lithology and scaling corrections, termination matrices) that are necessary to build stochastic models. Primarily due to the establishment of additional fixed point intersections for rock domain boundaries at depth, adjustments have been made to earlier regional and local rock domain models. These adjustments are only minor in character. Compared with the earlier stage 2.1 model, adjustments in the regional deformation zone model are also, in general, highly limited in character. More important differences, which also affect the local model for deformation zones, concern zones ZFMA2, ZFMF1 and ZFMA8 in the gently dipping set. Significant changes in the modelling of deformation zones also concern the steeply dipping zones with surface trace lengths between 1 and 3 km in the local model volume. A totally revised geological DFN model is presented compared with the latest model (version 1.2). In particular, conceptually distinct alternatives are presented for fracture size modelling.

  15. Geology Forsmark. Site descriptive modelling Forsmark - stage 2.2

    Stephens, Michael B.; Fox, Aaron; La Pointe, Paul; Simeonov, Assen; Isaksson, Hans; Hermanson, Jan; Oehman, Johan

    2007-10-01

    The geological work during stage 2.2 has involved the development of deterministic models for rock domains (RFM) and deformation zones (ZFM), the identification and deterministic modelling of fracture domains (FFM) inside the candidate volume, i.e. the parts of rock domains that are not affected by deformation zones, and the development of statistical models for fractures and minor deformation zones (geological discrete fracture network modelling or geological DFN modelling). The geological DFN model addresses brittle structures at a scale of less than 1 km, which is the lower cut-off in the deterministic modelling of deformation zones. In order to take account of variability in data resolution, deterministic models for rock domains and deformation zones are presented in both regional and local model volumes, while the geological DFN model is valid within specific fracture domains inside the north-western part of the candidate volume, including the target volume. The geological modelling work has evaluated and made use of: A revised bedrock geological map at the ground surface. Geological and geophysical data from 21 cored boreholes and 33 percussion boreholes. Detailed mapping of fractures and rock units along nine excavations or large surface outcrops. Data bearing on the characterisation (including kinematics) of deformation zones. Complementary geochronological and other rock and fracture analytical data. Lineaments identified on the basis of airborne and high-resolution ground magnetic data. A reprocessing of both surface and borehole reflection seismic data. Seismic refraction data. The outputs of the deterministic modelling work are geometric models in RVS format and detailed property tables for rock domains and deformation zones, and a description of fracture domains. The outputs of the geological DFN modelling process are recommended parameters or statistical distributions that describe fracture set orientations, radius sizes, volumetric intensities, spatial correlations and models, and other parameters (lithology and scaling corrections, termination matrices) that are necessary to build stochastic models. Primarily due to the establishment of additional fixed point intersections for rock domain boundaries at depth, adjustments have been made to earlier regional and local rock domain models. These adjustments are only minor in character. Compared with the earlier stage 2.1 model, adjustments in the regional deformation zone model are also, in general, highly limited in character. More important differences, which also affect the local model for deformation zones, concern zones ZFMA2, ZFMF1 and ZFMA8 in the gently dipping set. Significant changes in the modelling of deformation zones also concern the steeply dipping zones with surface trace lengths between 1 and 3 km in the local model volume. A totally revised geological DFN model is presented compared with the latest model (version 1.2). In particular, conceptually distinct alternatives are presented for fracture size modelling

  16. Inventory of mammals at Forsmark and Haallnaes

    Truve, Johan

    2012-08-01

    A selection of terrestrial mammals was surveyed in the SKB site investigation areas near Forsmark and Haallnaes between January and April 2012. The methods that were used include snow tracking along line transects, snow tracking along water, aerial survey and fecal pellet counts. The same species were found in 2012 as in previous surveys performed in 2002, 2003 and 2007. Some species show a large variation in density between years and it is difficult to draw any conclusions about their long term development. Several carnivores, i.e. lynx, fox and otter show a positive growth rate in both areas. The wild boar population is also growing whilst moose density remains fairly stable and roe deer are becoming less numerous

  17. Reactor safety study applied to the Forsmark 3 Power Plant

    Ericsson, G.; Tiren, L.I.

    1978-01-01

    A reactor safety study of the Forsmark 3 BWR power plant has been carried out for the purpose of calculating core melt probabilities using WASH-1400 methods. A sensitivity analysis shows that the calculated core melt probability is changed by approximately a factor of 10 depending on assumptions made with respect to the probability of human error. The importance of the availability of off-site power and the influence of common cause failure is also discussed. (author)

  18. Monitoring Forsmark. Moose age composition, reproduction and antler development in Forsmark; Monitoring Forsmark. Aelgstammens aalderssammansaettning reproduktion och hornutveckling i Forsmark

    Cederlund, Goeran; Broman, Emil (Svensk Naturfoervaltning AB (Sweden))

    2011-05-15

    The moose (Alces alces) is an important game species in Forsmark, as well as in Sweden in general. Hunting on moose is subject to strict local regulations and restrictions within a management program. Such restrictions will have considerable effects on demography. This has led to a moose population in Forsmark with biased sex ratio with fewer adult males than females and a generally low average age. High hunting pressure on males has caused a low survival rate and the chance to survive more than five years is just a few percent. Restrictions in hunting pressure on females have caused a generally higher survival rate and a higher average age compared to males. Sex differences in body mass are normal compared to other populations in southern Sweden. Mean body mass of culled calves is an important measure of quality of the population, since it reflects the available food resources in the management area. Body mass among calves in Forsmark is generally low, indicating a deteriorated food resource due to either ambient population density and/or hampered food production in the forest. The average reproduction rate is normal compared to other populations in this part of Sweden. However, one year old females (yearlings) have a fairly low production of eggs per female (ovulation rate). As the yearlings constitute a considerable part of the population in Forsmark, their lowered ovulation rate will affect the rate of recruitment of calves to the local population. The moose population seems to have been subject to considerable variation in density during the last decade, which is probably a joint effect of changes in demography (hunting), changes in food resources due to forestry management and by food competition from other browsers in the area. Local managers believe that the population has reached such a low level (although not verified by surveys) that the number of moose has to be increased. It is vital to stress the importance of keeping up collection of data from the

  19. Advances in the hydrogeochemistry and microbiology of acid mine waters

    Nordstrom, D. Kirk

    2000-01-01

    The last decade has witnessed a plethora of research related to the hydrogeochemistry and microbiology of acid mine waters and associated tailings and waste-rock waters. Numerous books, reviews, technical papers, and proceedings have been published that examine the complex bio-geochemical process of sulfide mineral oxidation, develop and apply geochemical models to site characterization, and characterize the microbial ecology of these environments. This review summarizes many of these recent works, and provides references for those investigating this field. Comparisons of measured versus calculated Eh and measured versus calculated pH for water samples from several field sites demonstrate the reliability of some current geochemical models for aqueous speciation and mass balances. Geochemical models are not, however, used to predict accurately time-dependent processes but to improve our understanding of these systems and to constrain possible processes that contribute to actual or potential water quality issues. Microbiological studies are demonstrating that there is much we have yet to learn about the types of different microorganisms and their function and ecology in mine-waste environments. A broad diversity of green algae, bacteria, archaea, yeasts, and fungi are encountered in acid mine waters, and a better understanding of their ecology and function may potentially enhance remediation possibilities as well as our understanding of the evolution of life.

  20. Site descriptive modeling as a part of site characterization in Sweden - Concluding the surface based investigations

    Andersson, Johan; Winberg, Anders; Skagius, Kristina; Stroem, Anders; Lindborg, Tobias

    2007-01-01

    The Swedish Nuclear Fuel and Waste Management Co., SKB, is currently finalizing its surface based site investigations for the final repository for spent nuclear fuel in the municipalities of Oestharmnar (the Forsmark area) and Oskarshamn (the Simpevar/Laxemar area). The investigation data are assessed into a Site Descriptive Model, constituting a synthesis of geology, rock mechanics, thermal properties, hydrogeology, hydro-geochemistry, transport properties and a surface system description. Site data constitute a wide range of different measurement results. These data both need to be checked for consistency and to be interpreted into a format more amenable for three-dimensional modeling. The three-dimensional modeling (i.e. estimating the distribution of parameter values in space) is made in a sequence where the geometrical framework is taken from the geological models and in turn used by the rock mechanics, thermal and hydrogeological modeling. These disciplines in turn are partly interrelated, and also provide feedback to the geological modeling, especially if the geological description appears unreasonable when assessed together with the other data. Procedures for assessing the uncertainties and the confidence in the modeling have been developed during the course of the site modeling. These assessments also provide key input to the completion of the site investigation program. (authors)

  1. Rock types and ductile structures on a rock domain basis, and fracture orientation and mineralogy on a deformation zone basis. Preliminary site description. Forsmark area - version 1.2

    Stephens, Michael [Geological Survey of Sweden, Uppsala (Sweden); Forssberg, Ola [Golder Associates AB, Uppsala (Sweden)

    2006-09-15

    This report presents the results of the analysis of base geological data in order to establish the dominant rock type, the subordinate rock types and the orientation of ductile mineral fabrics within each rock domain included in the regional geological model, version 1.2. An assessment of the degree of homogeneity of each domain is also provided. The analytical work has utilised the presentation of data in the form of histograms and stereographic projections. Fisher means and K values or best-fit great circles and corresponding pole values have been calculated for the ductile structural data. These values have been used in the geometric modelling of rock domains in the regional model, version 1.2. Furthermore, all analytical results have been used in the assignment of properties to rock domains in this model. A second analytical component reported here addresses the orientation and mineralogy of fractures in the deterministic deformation zones that are included in the regional geological model, version 1.2. The analytical work has once again utilised the presentation of data in the form of histograms and stereographic projections. Fisher means and K values are presented for the orientation of fracture sets in the deterministic deformation zones that have been identified with the help of new borehole data. The frequencies of occurrence of different minerals along the fractures in these deformation zones as well as the orientation of fractures in the zones, along which different minerals occur, are also presented. The results of the analyses have been used in the establishment of a conceptual structural model for the Forsmark site and in the assignment of properties to deterministic deformation zones in model version 1.2.

  2. Quantifying in situ stress magnitudes and orientations for Forsmark. Forsmark stage 2.2

    Martin, C. Derek

    2007-11-01

    Stephansson et al. concluded that in the Fennoscandia shield: (1) there is a large horizontal stress component in the uppermost 1,000 m of bedrock, and (2) the maximum and minimum horizontal stresses exceed the vertical stress assuming the vertical stress is estimated from the weight of the overburden. Several stress campaigns involving both overcoring and hydraulic fracturing, including the hydraulic testing of pre-existing fractures (HTPF), have been carried out at Forsmark to establish the in situ stress state. The results from the initial campaigns were summarised by Sjoeberg et al. which formed the bases for the stresses provided in the Site Descriptive Model version 1.2. Since then additional stress measurement campaigns have been completed. The results from these stress measurement campaigns support the conclusions from Stephansson et al. In addition to these in situ stress measurements the following additional studies were undertaken to aid in assessing the stress state at Forsmark. 1. A detailed televiewer survey of approximately 6,900 m of borehole walls to depths of 1,000 m was carried out to assess borehole wall damage, i.e. borehole breakouts. 2. Evaluation of nonlinear strains in laboratory samples to depths of approximately 800 m to assess if stress magnitudes were sufficient to create stress-induced microcracking. 3. Assessment of the magnitudes required to cause core disking and survey of core disking observed at Forsmark. The magnitudes and orientations from the stress measurement campaigns were analysed to establish the most likely stress magnitudes and orientations for Design Step D2 within the Target Area of the Complete Site Investigations. The maximum and minimum horizontal stress components are essentially the same as the maximum and intermediate principal stresses, σ1 and σ2, respectively. The minimum principal stress (σ3) is synonymous with the vertical stress. The most likely range in values to be used in the design is also shown. The

  3. Quantifying in situ stress magnitudes and orientations for Forsmark. Forsmark stage 2.2

    Martin, C. Derek (Univ. of Alberta (Canada))

    2007-11-15

    Stephansson et al. concluded that in the Fennoscandia shield: (1) there is a large horizontal stress component in the uppermost 1,000 m of bedrock, and (2) the maximum and minimum horizontal stresses exceed the vertical stress assuming the vertical stress is estimated from the weight of the overburden. Several stress campaigns involving both overcoring and hydraulic fracturing, including the hydraulic testing of pre-existing fractures (HTPF), have been carried out at Forsmark to establish the in situ stress state. The results from the initial campaigns were summarised by Sjoeberg et al. which formed the bases for the stresses provided in the Site Descriptive Model version 1.2. Since then additional stress measurement campaigns have been completed. The results from these stress measurement campaigns support the conclusions from Stephansson et al. In addition to these in situ stress measurements the following additional studies were undertaken to aid in assessing the stress state at Forsmark. 1. A detailed televiewer survey of approximately 6,900 m of borehole walls to depths of 1,000 m was carried out to assess borehole wall damage, i.e. borehole breakouts. 2. Evaluation of nonlinear strains in laboratory samples to depths of approximately 800 m to assess if stress magnitudes were sufficient to create stress-induced microcracking. 3. Assessment of the magnitudes required to cause core disking and survey of core disking observed at Forsmark. The magnitudes and orientations from the stress measurement campaigns were analysed to establish the most likely stress magnitudes and orientations for Design Step D2 within the Target Area of the Complete Site Investigations. The maximum and minimum horizontal stress components are essentially the same as the maximum and intermediate principal stresses, sigma1 and sigma2, respectively. The minimum principal stress (sigma3) is synonymous with the vertical stress. The most likely range in values to be used in the design is also

  4. Inventory of mammals at Forsmark and Haallnaes; Inventering av daeggdjur i Forsmark och Haallnaes

    Truve, Johan [Svensk Naturfoervaltning AB, Goeteborg (Sweden)

    2012-08-15

    A selection of terrestrial mammals was surveyed in the SKB site investigation areas near Forsmark and Haallnaes between January and April 2012. The methods that were used include snow tracking along line transects, snow tracking along water, aerial survey and fecal pellet counts. The same species were found in 2012 as in previous surveys performed in 2002, 2003 and 2007. Some species show a large variation in density between years and it is difficult to draw any conclusions about their long term development. Several carnivores, i.e. lynx, fox and otter show a positive growth rate in both areas. The wild boar population is also growing whilst moose density remains fairly stable and roe deer are becoming less numerous.

  5. Forsmark NPP I and C modernization strategy

    Hallen, J.; Rydahl, I.; Kloow, L.

    2003-01-01

    By the year 2000, the Forsmark NPP was halfway through the planned plant life. As early as 1995, Forsmark realized that the old analog I and C equipment would need to be replaced before 2005. At the Forsmark NPP they had strength of a vision of an integrated modernization and a strategy to reach the vision. Without vision and strategy, the plant could end up with a fragmented plant I and C-architecture that is not cost-effective or operable. This paper will address several questions that led to the current modernization program in Forsmark, the more important questions are: What would happen if the modernization would be postponed? Which main requirements were to be achieved by means of the modernization strategy? The goal of a completed plant modernization program is a totally integrated system solution and what factors were considered during the modernization? How to gain acceptance from the operational staff in designing Control Room and Soft Control Displays? What are the important roles for the staff and organization to reach the end goal? What has been the experience to date and what are the lessons learned? Thanks to the long term co-operation between Forsmark and Westinghouse the modernization has been very successful for both parties. (orig.)

  6. Spatial modelling of marine organisms in Forsmark and Oskarshamn. Including calculation of physical predictor variables

    Carlen, Ida; Nikolopoulos, Anna; Isaeus, Martin (AquaBiota Water Research, Stockholm (SE))

    2007-06-15

    GIS grids (maps) of marine parameters were created using point data from previous site investigations in the Forsmark and Oskarshamn areas. The proportion of global radiation reaching the sea bottom in Forsmark and Oskarshamn was calculated in ArcView, using Secchi depth measurements and the digital elevation models for the respective area. The number of days per year when the incoming light exceeds 5 MJ/m2 at the bottom was then calculated using the result of the previous calculations together with measured global radiation. Existing modelled grid-point data on bottom and pelagic temperature for Forsmark were interpolated to create surface covering grids. Bottom and pelagic temperature grids for Oskarshamn were calculated using point measurements to achieve yearly averages for a few points and then using regressions with existing grids to create new maps. Phytoplankton primary production in Forsmark was calculated using point measurements of chlorophyll and irradiance, and a regression with a modelled grid of Secchi depth. Distribution of biomass of macrophyte communities in Forsmark and Oskarshamn was calculated using spatial modelling in GRASP, based on field data from previous surveys. Physical parameters such as those described above were used as predictor variables. Distribution of biomass of different functional groups of fish in Forsmark was calculated using spatial modelling based on previous surveys and with predictor variables such as physical parameters and results from macrophyte modelling. All results are presented as maps in the report. The quality of the modelled predictions varies as a consequence of the quality and amount of the input data, the ecology and knowledge of the predicted phenomena, and by the modelling technique used. A substantial part of the variation is not described by the models, which should be expected for biological modelling. Therefore, the resulting grids should be used with caution and with this uncertainty kept in mind. All

  7. Spatial modelling of marine organisms in Forsmark and Oskarshamn. Including calculation of physical predictor variables

    Carlen, Ida; Nikolopoulos, Anna; Isaeus, Martin

    2007-06-01

    GIS grids (maps) of marine parameters were created using point data from previous site investigations in the Forsmark and Oskarshamn areas. The proportion of global radiation reaching the sea bottom in Forsmark and Oskarshamn was calculated in ArcView, using Secchi depth measurements and the digital elevation models for the respective area. The number of days per year when the incoming light exceeds 5 MJ/m2 at the bottom was then calculated using the result of the previous calculations together with measured global radiation. Existing modelled grid-point data on bottom and pelagic temperature for Forsmark were interpolated to create surface covering grids. Bottom and pelagic temperature grids for Oskarshamn were calculated using point measurements to achieve yearly averages for a few points and then using regressions with existing grids to create new maps. Phytoplankton primary production in Forsmark was calculated using point measurements of chlorophyll and irradiance, and a regression with a modelled grid of Secchi depth. Distribution of biomass of macrophyte communities in Forsmark and Oskarshamn was calculated using spatial modelling in GRASP, based on field data from previous surveys. Physical parameters such as those described above were used as predictor variables. Distribution of biomass of different functional groups of fish in Forsmark was calculated using spatial modelling based on previous surveys and with predictor variables such as physical parameters and results from macrophyte modelling. All results are presented as maps in the report. The quality of the modelled predictions varies as a consequence of the quality and amount of the input data, the ecology and knowledge of the predicted phenomena, and by the modelling technique used. A substantial part of the variation is not described by the models, which should be expected for biological modelling. Therefore, the resulting grids should be used with caution and with this uncertainty kept in mind. All

  8. Decommissioning study of Forsmark NPP

    Anunti, Aake; Larsson, Helena; Edelborg, Mathias

    2013-06-01

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for the Forsmark NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding

  9. Decommissioning study of Forsmark NPP

    Anunti, Aake; Larsson, Helena; Edelborg, Mathias [Westinghouse Electric Sweden AB, Vaesteraas (Sweden)

    2013-06-15

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for the Forsmark NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding.

  10. Reflection seismic studies in the Forsmark area - stage 1

    Juhlin, Christopher; Bergman Bjoern; Palm, Hans [Uppsala Univ. (Sweden). Dept. of Earth Sciences

    2002-10-01

    Reflection seismic data were acquired in the Spring of 2002 in the Forsmark area, located about 70 km northeast of Uppsala, Sweden. The Forsmark area has been targeted by SKB as a possible storage site for high level radioactive waste. About 16 km of high resolution seismic data were acquired along five separate profiles varying in length from 2 to 5 km. Non-final source and receiver spacing was 10 m with 100 active channels when recording data from a dynamite source (15-75 g). The profiles were located within a relatively undeformed lens of bedrock that trends in the NW-SE direction. The lens is surrounded by highly deformed rock on all sides. In conjunction with the reflection component of the study, all shots were also recorded on up to eleven 3-component fixed Orion seismographs. These recordings provided long offset data from which a velocity model of the uppermost 400 m of bedrock could be derived. Results from the study show that the bedrock has been well imaged down to depths of at least 3 km. The upper 1000 m of bedrock is much more reflective in the southeastern portion of the lens compared to the northwestern part close to the Forsmark reactors. This is interpreted as the bedrock being more homogeneous in the northwest. However, a major reflective zone (the A1 reflector) is interpreted to dip to the S-SE below this homogeneous bedrock. In the southeastern portion of the lens the orientation of the reflectors is well determined where the profiles cross one another. The general strike of the major reflectors is NE-SW with dips of 20-35 degrees to the southeast.

  11. Discrete fracture network for the Forsmark site

    Darcel, C. [Itasca Consultants, Ecully (France); Davy, P.; Bour, O.; Dreuzy, J.R. de [Geosciences, Rennes (France)

    2006-08-15

    In this report, we aim at defining a self-consistent method for analyzing the fracture patterns from boreholes, outcrops and lineaments. The objective was both to point out some variations in the fracture network parameters, and to define the global scaling fracture models that can encompass all the constraints brought by the different datasets. Although a full description of the DFN model variability is obviously fundamental for the future, we have put emphasis on the determination of mean parameters. The main parameters of the disc-shaped DFN model are the fracture size, orientations and spatial density distribution. The scaling model is defined as an extrapolation of existing i) observations at specific scales and ii) local fitting models to the whole range of scales. The range of possible models is restricted to the power-law scaling models. During the project we have put emphasize on the definition of the theory and methodology necessary to assess a sound comparison between data taken at different scales, with different techniques. Both 'local' and 'global' models have been investigated. Local models are linked exactly to the dataset they represent. Then, the global DFN models arise from the association of local models, different scales and different sample support shapes. Discrepancies between local and global model illustrate the variability associated to the DFN models. We define two possible Global Scaling Models (GSM). The first one is consistent with the scaling measured in the outcrops (Model A). Its scaling exponent is a{sub 3d}=3.5 (eq. to k{sub r}=2.5); it overestimates the fracture densities observed in the lineament maps. The second one assumes that both lineaments and outcrops belong to the same distribution model (Model B), which entails a scaling exponent a{sub 3d}=3.9 (eq. to k{sub r}=2.9). Both models have been tested by looking for the best consistency in the fracture density-dip relationships, between boreholes data at depth (based on boreholes KFM02A, KFM05A, HFM04 and HFM05) and outcrop DFN models. The main conclusions drawn from the consistency analysis are the following: There exists an important sub horizontal fracturing that occurs close to surface, which makes outcrop fracturing different, in term of density, from the fracturing observed in deep geological units from boreholes. The difference between surface and deep units does not exist for fractures dipping more than 30-40 deg. The rock units are remarkably consistent with outcrops for dips larger than 30-40 deg, and for Model A (a{sub 3d}=3.5). Model B tends to predict larger fracture densities in outcrops than in rock units defined in boreholes (in the dip range of 30-40 deg). There is no equivalence, in the outcrops, of the Deformation Zones, identified at depth. The best-fitting model is defined for l{sub min} (the smallest fracture diameter consistent with the power law model; l{sub min}=2r{sub 0} with r{sub 0} the location parameter) smaller than the borehole diameter. With this method, it is not possible to say more about l{sub min}. Models that consider larger values of l{sub min} do not ensure the consistency between outcrops and boreholes. The shear zones, as well as the lineaments, may belong to a different global scaling model than rock units. Further investigations and more data are necessary to characterize this additional GSM. Along the project, the issue of DFN model and of the fracture definition consistency across scales is often raised. It should be further investigated, together with a more complete description of the model variability.

  12. Discrete fracture network for the Forsmark site

    Darcel, C.; Davy, P.; Bour, O.; Dreuzy, J.R. de

    2006-08-01

    In this report, we aim at defining a self-consistent method for analyzing the fracture patterns from boreholes, outcrops and lineaments. The objective was both to point out some variations in the fracture network parameters, and to define the global scaling fracture models that can encompass all the constraints brought by the different datasets. Although a full description of the DFN model variability is obviously fundamental for the future, we have put emphasis on the determination of mean parameters. The main parameters of the disc-shaped DFN model are the fracture size, orientations and spatial density distribution. The scaling model is defined as an extrapolation of existing i) observations at specific scales and ii) local fitting models to the whole range of scales. The range of possible models is restricted to the power-law scaling models. During the project we have put emphasize on the definition of the theory and methodology necessary to assess a sound comparison between data taken at different scales, with different techniques. Both 'local' and 'global' models have been investigated. Local models are linked exactly to the dataset they represent. Then, the global DFN models arise from the association of local models, different scales and different sample support shapes. Discrepancies between local and global model illustrate the variability associated to the DFN models. We define two possible Global Scaling Models (GSM). The first one is consistent with the scaling measured in the outcrops (Model A). Its scaling exponent is a 3d =3.5 (eq. to k r =2.5); it overestimates the fracture densities observed in the lineament maps. The second one assumes that both lineaments and outcrops belong to the same distribution model (Model B), which entails a scaling exponent a 3d =3.9 (eq. to k r =2.9). Both models have been tested by looking for the best consistency in the fracture density-dip relationships, between boreholes data at depth (based on boreholes KFM02A, KFM05A, HFM04 and HFM05) and outcrop DFN models. The main conclusions drawn from the consistency analysis are the following: There exists an important sub horizontal fracturing that occurs close to surface, which makes outcrop fracturing different, in term of density, from the fracturing observed in deep geological units from boreholes. The difference between surface and deep units does not exist for fractures dipping more than 30-40 deg. The rock units are remarkably consistent with outcrops for dips larger than 30-40 deg, and for Model A (a 3d =3.5). Model B tends to predict larger fracture densities in outcrops than in rock units defined in boreholes (in the dip range of 30-40 deg). There is no equivalence, in the outcrops, of the Deformation Zones, identified at depth. The best-fitting model is defined for l min (the smallest fracture diameter consistent with the power law model; l min =2r 0 with r 0 the location parameter) smaller than the borehole diameter. With this method, it is not possible to say more about l min . Models that consider larger values of l min do not ensure the consistency between outcrops and boreholes. The shear zones, as well as the lineaments, may belong to a different global scaling model than rock units. Further investigations and more data are necessary to characterize this additional GSM. Along the project, the issue of DFN model and of the fracture definition consistency across scales is often raised. It should be further investigated, together with a more complete description of the model variability

  13. Uncertainty aspects of the digital elevation model for the Forsmark area

    Stroemgren, Maarten; Brydsten, Lars (Umeaa Univ., Umeaa (Sweden))

    2009-10-15

    A digital elevation model (DEM) describes the terrain relief. A proper DEM is an important data source for many of the different site description models conducted in the Forsmark region. Input data for the Forsmark DEM is elevation data for both land and sea areas of different origin and quality. No statistical analysis of the error in the Forsmark DEM is so far carried out. However, the Forsmark DEM is part of the quality assessment of the regolith depth model for the Forsmark area since it represents the upper surface of the regolith depth model. The aim of this project was to calculate the errors in different areas in the Forsmark DEM and present them in terms of general descriptive statistics. Measurements have confirmed the knowledge that the 0.25-metre DEM produced from the laser scanning measurements in the Laxemar-Simpevarp area is of very high quality. The 0.25-metre DEM was used to calculate the errors of the 10 and 50-metre DEMs, and the errors for different sea shoreline sources. These error distributions were placed randomly among points for the same data sources in the Forsmark area and used for correction of the original elevation levels. Using the corrected input data for the 10 and 50-metre DEMs and for the sea shoreline, a new DEM was produced. All other input data remained unchanged. The error for the Forsmark DEM was calculated for areas within the data sources corrected from the 0.25-metre DEM. The 0.25-metre DEM from the Laxemar-Simpevarp area was also used for a calculation of how density of input data points used in interpolation affects quality in a 20-metre DEM. Part of the input data was removed in the sea area, new DEMs were produced and compared to the existing Forsmark DEM within the areas of the removed data, to get a measure of the error in these areas of the DEM. In areas of input data for the sea shoreline, the quality of the Forsmark DEM is high. The errors within the SKB 10-metre DEM are slightly less than within the extension

  14. Uncertainty aspects of the digital elevation model for the Forsmark area

    Stroemgren, Maarten; Brydsten, Lars

    2009-10-01

    A digital elevation model (DEM) describes the terrain relief. A proper DEM is an important data source for many of the different site description models conducted in the Forsmark region. Input data for the Forsmark DEM is elevation data for both land and sea areas of different origin and quality. No statistical analysis of the error in the Forsmark DEM is so far carried out. However, the Forsmark DEM is part of the quality assessment of the regolith depth model for the Forsmark area since it represents the upper surface of the regolith depth model. The aim of this project was to calculate the errors in different areas in the Forsmark DEM and present them in terms of general descriptive statistics. Measurements have confirmed the knowledge that the 0.25-metre DEM produced from the laser scanning measurements in the Laxemar-Simpevarp area is of very high quality. The 0.25-metre DEM was used to calculate the errors of the 10 and 50-metre DEMs, and the errors for different sea shoreline sources. These error distributions were placed randomly among points for the same data sources in the Forsmark area and used for correction of the original elevation levels. Using the corrected input data for the 10 and 50-metre DEMs and for the sea shoreline, a new DEM was produced. All other input data remained unchanged. The error for the Forsmark DEM was calculated for areas within the data sources corrected from the 0.25-metre DEM. The 0.25-metre DEM from the Laxemar-Simpevarp area was also used for a calculation of how density of input data points used in interpolation affects quality in a 20-metre DEM. Part of the input data was removed in the sea area, new DEMs were produced and compared to the existing Forsmark DEM within the areas of the removed data, to get a measure of the error in these areas of the DEM. In areas of input data for the sea shoreline, the quality of the Forsmark DEM is high. The errors within the SKB 10-metre DEM are slightly less than within the extension

  15. Man-machine communication at Forsmark 3

    Hultquist, Goeran; Norberg, Soeren

    1984-01-01

    The design of Forsmark 3 began in 1976 and the control room layout and equipment were discussed right from the start. Susequent evolution and events in other nuclear power plants have, however, radically changed the direction of the development of the man-machine functions. (author)

  16. Epilithic algal assemblages in the Forsmark Biotest basin

    Snoeijs, P.

    1987-04-01

    The Forsmark Biotest Basin is an artificial offshore brackish lake, through which the cooling water is led from the Forsmark Nuclear Power Station on the Swedish east coast. The Biotest Basin differs from the Bothnian Sea surrounding it by a temperature elevation of up to 10 degrees C, no ice cover in winter, and an artificial, fast current. At 11 sites in- and outside the basin, benthic algal assemblages on stones in the hydrolittoral belt were sampled every third week during one year. Cover abundances were estimated for all algae occurring on the stones, but for diatoms only when they formed blooms. The results of the vegetation analyses are given. Diversity indices and dominance-diversity curves were computed for each site on the basis of pooled data for the cold season and for the rest of the year. The algae included both unicellular and multicellular forms. In total 88 taxa were distinguished in the species lists: 29 Cyanophyta, 7 Rhodophyta, 1 Chrysophyceae, 9 Fucophyceae, 17 Diatomophyceae and 25 Chlorophyta. In terms of percentage cover-abundance, blue-green and green algae increased with temperature, while red and brown algae and diatoms decreased with temperature in the interval between the minimum (0 degrees C) and the maximum (25.7 degrees C) water temperatures that were measured during the investigation period. Melosira spp. and Nitzschia filiformis proved to be the diatoms most favoured by the cooling water discharge. Lower diversity and greater dominance of one or a few species over the other was caused by thermal discharge at sites with fast-flowing water, but the opposite occurred at sites with quiescent water, mainly due to a greater number and higher abundances of blue-green algal species and thread-like green algae at the latter sites. This report also gives some notes on taxonomy of the encountered species.

  17. The Greenland Analogue Project (GAP). Literature review of hydrogeology/ hydrogeochemistry

    Wallroth, Thomas; Lokrantz, Hanna; Rimsa, Andrius

    2010-09-01

    This report is produced as part of the Greenland Analogue Project (GAP), carried out as a collaboration project with the Canadian Nuclear Waste Management Organization (NWMO), Posiva Oy and the Swedish Nuclear Fuel and Waste Management Co (SKB). The overall aim of the project is to improve the current understanding of hydrogeological and hydrogeochemical processes associated with continental-scale glacial periods including with the presence of permafrost and the advance/retreat of ice sheets. The project will focus on studying how an ice sheet affects groundwater flow and water chemistry around a deep geological repository in crystalline bedrock. The Greenland Analogue Project consists of three active sub-projects (A-C) with individual objectives. Field studies are conducted in the Kangerlussuaq region, in central Western Greenland. Sub-projects A and B collectively aim at improving the understanding of ice sheet hydrology by combining investigations on surface water processes with ice sheet drilling and instrumentation. In sub-project C, the penetration of glacial melt water into the bedrock, groundwater flow and the chemical composition of water will be studied. Main planned activities in sub-project C include drilling of a deep borehole in front of the ice sheet, in which different downhole surveys, sampling and monitoring will be carried out. The primary aim of this report is to review available information about hydrogeology and hydrogeochemistry in central Western Greenland, with special emphasis on the area around Kangerlussuaq. The relevant information about this area is however very limited, and it was decided to extend the review to briefly include studies made in other regions with similar conditions in terms of geology, climate and glaciology. The number of published studies made in other areas with glaciers, ice sheets or permafrost is very large, and the review and list of references in this report is far from complete. It is also obvious that both

  18. The Greenland Analogue Project (GAP). Literature review of hydrogeology/ hydrogeochemistry

    Wallroth, Thomas; Lokrantz, Hanna; Rimsa, Andrius (Bergab Consulting Geologists, Goeteborg (Sweden))

    2010-09-15

    This report is produced as part of the Greenland Analogue Project (GAP), carried out as a collaboration project with the Canadian Nuclear Waste Management Organization (NWMO), Posiva Oy and the Swedish Nuclear Fuel and Waste Management Co (SKB). The overall aim of the project is to improve the current understanding of hydrogeological and hydrogeochemical processes associated with continental-scale glacial periods including with the presence of permafrost and the advance/retreat of ice sheets. The project will focus on studying how an ice sheet affects groundwater flow and water chemistry around a deep geological repository in crystalline bedrock. The Greenland Analogue Project consists of three active sub-projects (A-C) with individual objectives. Field studies are conducted in the Kangerlussuaq region, in central Western Greenland. Sub-projects A and B collectively aim at improving the understanding of ice sheet hydrology by combining investigations on surface water processes with ice sheet drilling and instrumentation. In sub-project C, the penetration of glacial melt water into the bedrock, groundwater flow and the chemical composition of water will be studied. Main planned activities in sub-project C include drilling of a deep borehole in front of the ice sheet, in which different downhole surveys, sampling and monitoring will be carried out. The primary aim of this report is to review available information about hydrogeology and hydrogeochemistry in central Western Greenland, with special emphasis on the area around Kangerlussuaq. The relevant information about this area is however very limited, and it was decided to extend the review to briefly include studies made in other regions with similar conditions in terms of geology, climate and glaciology. The number of published studies made in other areas with glaciers, ice sheets or permafrost is very large, and the review and list of references in this report is far from complete. It is also obvious that both

  19. Water activities in Forsmark. Ecological field inventory and classification of biodiversity values and description of forest production land; Vattenverksamhet i Forsmark. Ekologisk faeltinventering och naturvaerdesklassificering samt beskrivning av skogsproduktionsmark

    Hamren, Ulrika; Collinder, Per [Ekologigruppen AB (Sweden)

    2010-12-15

    In 2009, the Swedish Nuclear Fuel and Waste Management Co (SKB) chose Forsmark in the Municipality of Oesthammar as site for the final repository for spent nuclear fuel. This report describes nature values and forestry areas in Forsmark, and provides part of the background material for description of consequences due to groundwater diversion during construction and operation of the repository. The report describes results of map studies and comprehensive field investigations, in terms of geographical delineations, descriptions of characteristics and classifications of nature values for groundwater dependent or groundwater favoured nature objects in Forsmark. The nature objects are located in an investigation area, which contains the area that according to numerical flow modelling could be affected by groundwater-table drawdown due to groundwater diversion

  20. The limnic ecosystems at Forsmark and Laxemar-Simpevarp

    Andersson, Eva

    2010-12-01

    The overall objective of this report is to describe the limnic ecosystems at Forsmark and Laxemar- Simpevarp, identify important processes in a radionuclide perspective and provide a description of the radionuclide model for the biosphere used in SR-Site. The report includes a thorough description of the lakes and streams in Forsmark and Laxemar- Simpevarp and covers the following areas: catchment area characteristics, hydrology, climate, sediment characteristics, physical characteristics of streams, habitat distribution in lakes, biotic components (biomass as well as production), water chemistry, and comparison with other lakes and streams in the region, and a historical description. Ecosystem models for carbon and mass balances for a number of elements have been calculated to further improve the understanding of the lake ecosystems. Important processes for the safety assessment are described and evaluated in the report. A separate chapter is included to specifically describe how and where these processes are included in the radionuclide model. The radionuclide model is described and parameterisation and guidance to parameter calculation is provided. The last chapter of the report provides a summary of the knowledge of the limnic systems at the two areas. The Forsmark regional model area contains more than 25 permanent lakes and pools. All lakes are small and shallow, and are characterized as oligotrophic hardwater lakes. Calcareous soils in the area give rise to high calcium concentrations in the surface water, which in turn leads to high pH and low nutrient concentrations in water as phosphorus often co-precipitates with calcium. The shallow depths and moderate water colour permit photosynthesis in the entire benthic habitat of the lakes, and the bottoms are covered by dense stands of the macroalgae Chara sp. Moreover, many of the lakes also have a thick microbial mat (>10 cm), consisting of cyanobacteria and diatoms, in the benthic habitat. Fish in the lakes

  1. The limnic ecosystems at Forsmark and Laxemar-Simpevarp

    Andersson, Eva

    2010-12-15

    The overall objective of this report is to describe the limnic ecosystems at Forsmark and Laxemar- Simpevarp, identify important processes in a radionuclide perspective and provide a description of the radionuclide model for the biosphere used in SR-Site. The report includes a thorough description of the lakes and streams in Forsmark and Laxemar- Simpevarp and covers the following areas: catchment area characteristics, hydrology, climate, sediment characteristics, physical characteristics of streams, habitat distribution in lakes, biotic components (biomass as well as production), water chemistry, and comparison with other lakes and streams in the region, and a historical description. Ecosystem models for carbon and mass balances for a number of elements have been calculated to further improve the understanding of the lake ecosystems. Important processes for the safety assessment are described and evaluated in the report. A separate chapter is included to specifically describe how and where these processes are included in the radionuclide model. The radionuclide model is described and parameterisation and guidance to parameter calculation is provided. The last chapter of the report provides a summary of the knowledge of the limnic systems at the two areas. The Forsmark regional model area contains more than 25 permanent lakes and pools. All lakes are small and shallow, and are characterized as oligotrophic hardwater lakes. Calcareous soils in the area give rise to high calcium concentrations in the surface water, which in turn leads to high pH and low nutrient concentrations in water as phosphorus often co-precipitates with calcium. The shallow depths and moderate water colour permit photosynthesis in the entire benthic habitat of the lakes, and the bottoms are covered by dense stands of the macroalgae Chara sp. Moreover, many of the lakes also have a thick microbial mat (>10 cm), consisting of cyanobacteria and diatoms, in the benthic habitat. Fish in the lakes

  2. Water activities in Forsmark. Ecological field inventory and classification of biodiversity values and description of forest production land

    Hamren, Ulrika; Collinder, Per

    2010-12-01

    In 2009, the Swedish Nuclear Fuel and Waste Management Co (SKB) chose Forsmark in the Municipality of Oesthammar as site for the final repository for spent nuclear fuel. This report describes nature values and forestry areas in Forsmark, and provides part of the background material for description of consequences due to groundwater diversion during construction and operation of the repository. The report describes results of map studies and comprehensive field investigations, in terms of geographical delineations, descriptions of characteristics and classifications of nature values for groundwater dependent or groundwater favoured nature objects in Forsmark. The nature objects are located in an investigation area, which contains the area that according to numerical flow modelling could be affected by groundwater-table drawdown due to groundwater diversion

  3. Groundwater flow modelling of periods with temperate climate conditions - Forsmark

    Joyce, Steven; Simpson, Trevor; Hartley, Lee; Applegate, David; Hoek, Jaap; Jackson, Peter; Swan, David (Serco Technical Consulting Services (United Kingdom)); Marsic, Niko (Kemakta Konsult AB (Sweden)); Follin, Sven (SF GeoLogic AB (Sweden))

    2010-11-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different climate conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. This report concerns the modelling of a repository at the Forsmark site during temperate conditions; i.e. from post-closure and throughout the temperate period up until the receding shoreline leaves the modelling domain at around 12,000 AD. The collation and implementation of onsite hydrogeological and hydrogeochemical data from previous reports are used in the construction of a hydrogeological base case (reference case conceptualisation) and then in an examination of various areas of uncertainty within the current understanding by a series of model variants. The hydrogeological base case models at three different scales, 'repository', 'site' and 'regional', make use of continuous porous medium (CPM), equivalent continuous porous medium (ECPM) and discrete fracture network (DFN) models. The use of hydrogeological models allow for the investigation of the groundwater flow from a deep disposal facility to the biosphere and for the calculation of performance measures that will provide an input to the site performance assessment. The focus of the study described in this report has been to perform numerical simulations of the hydrogeological system from post-closure and throughout the temperate period. Besides providing quantitative results for the immediate temperate period following post-closure, these results are also intended to give a qualitative indication of the evolution of the groundwater system during future temperate periods within an ongoing cycle of glacial/inter-glacial events

  4. Market led: Forsmark looks to 2000

    Anon.

    1994-01-01

    The Forsmark nuclear power plant in Sweden includes three BWR reactors totalling 3200 MWe. From a design level of 70% the average capability factor has been increased to 90%. This has been achieved by a market-orientated approach with efficient outages and a total production cost identified with each unit in order to show how each stands in relation to the market price level and to outside competition. Forsmark's performance, as indicated by capacity factors, refuelling outage length and electricity production costs is better than most. Strategic planning is important and a refurbishment programme up to 2000 is planned to renew the electricity generators, replace the process computers and upgrade the preheater systems. (UK)

  5. Macrofauna on rocky substrates in the Forsmark biotest basin. March 1984 - March 1985

    Snoeijs, P.; Mo, K.

    1987-09-01

    The Forsmark biotest basin, situated on the Swedish east coast, is an artificial offshore brackish lake, through which the cooling water is channelled from the Forsmark nuclear power plant to the Bothnian Sea. The biotest basin is up to 10 0 C warmer than the sea surrounding it, and has no ice cover in winter. There is an artificial, fast current in a large part of the basin. Macrofauna on stones in the hydrolittoral belt was sampled at 11 sites in- and outside the basin every third week during one year. The numbers of individuals per m 2 for each taxon were counted. Diversity indices and dominance-diversity curves were computed for each site on the basis of pooled data for the cold season, and for the rest of the year. In total 66 taxa were distinguished in the species lists, of which 3 are sessile, the rest free-living. (orig./DG)

  6. Radon as a groundwater tracer in Forsmark and Laxemar

    Grolander, Sara

    2009-10-01

    Radon concentrations were measured in different water types in Forsmark and Laxemar during the site investigation and within this study. From these measurements it can be concluded that large differences between surface water, near surface groundwater and deep groundwater can be found in both Laxemar and Forsmark. The differences in radon concentrations between different water types are used in this study to detect interactions between surface water, near surface water and deep groundwater. From the radon measurements it can also be concluded that radon concentration in deep groundwater varies largely with depth. These variations with depth are probably caused by groundwater flow in conductive fracture zones in the bedrock. The focus of this study has been the radon concentration of near surface groundwater and the interaction between near surface groundwater and deep groundwater. Radon measurements have been done using the RAD-7 radon detector within this study. It could be concluded that RAD-7 is a good technique for radon measurements and also easy to use in field. The radon concentrations measured in near surface groundwater in Laxemar within this study were low and homogenous. The variation in radon concentration has been analyses and compared to other parameters. Since the hypothesis of this study has been that there are differences in radon concentrations between recharging and discharging groundwater, the most important parameter to consider is the recharge/discharge field classification of the wells. No correlation between the recharge/discharge classifications of wells and the radon concentrations were found. The lack of correlation between groundwater flow patterns and radon concentration means that it is not possible to detect flow patterns in near surface groundwater using radon as a tracer in the Laxemar area. The lack of correlation can be caused by the fact that there are just a few wells located in areas classified as recharge area. It can also be

  7. Permanent scatterer InSAR processing: Forsmark

    Dehls, John F.

    2006-04-01

    It has been speculated that slow, aseismic movement may be occurring along some of the fracture zones crosscutting the Forsmark area. The purpose of this study is to determine if it is possible to measure such movement using dInSAR. Differential SAR Interferometry (DInSAR) is a technique that compares the phases of multiple radar images of an area to measure surface change. The method has the potential to detect millimetric surface deformation along the sensor - target line-of-sight. Differences in phase between two images are easily viewed by combining, or interfering, the two phase-images. In the resulting image, the waves will either reinforce or cancel one another, depending upon the relative phases. The resulting image is called an interferogram and contains concentric bands of colour, or fringes, that are related to topography and/or surface deformation. New algorithms use many images acquired over a long time period to determine the movement history of individual objects, referred to as permanent scatterers. In the current project, standard PSInSAR processing was performed on 40 ERS-1 and ERS-2 scenes. The total area processed is approximately 1,500 km 2 . Slightly less than 20,000 permanent scatterers were identified.The highest densities were obtained along the coast and on the islands, where natural outcrops are more abundant. Two main classes of objects act as permanent scatterers in this area. The first are natural reflectors, such as rocks. The second are man-made reflectors, such as parts of buildings. Numerous local movements were found in the study area, relating to building subsidence, or compaction of anthropogenic fill. The dataset was divided into three groups for analysis, based upon the location of regional lineaments provided by SKB. Both statistical and geostatistical techniques were used. The median velocity of the three blocks did not differ by more than 0.2 mm/yr. This is not considered significant, given the possible magnitude of errors

  8. Permanent scatterer InSAR processing: Forsmark

    Dehls, John F [Geological Survey of Norway, Trondheim (Norway)

    2006-04-15

    It has been speculated that slow, aseismic movement may be occurring along some of the fracture zones crosscutting the Forsmark area. The purpose of this study is to determine if it is possible to measure such movement using dInSAR. Differential SAR Interferometry (DInSAR) is a technique that compares the phases of multiple radar images of an area to measure surface change. The method has the potential to detect millimetric surface deformation along the sensor - target line-of-sight. Differences in phase between two images are easily viewed by combining, or interfering, the two phase-images. In the resulting image, the waves will either reinforce or cancel one another, depending upon the relative phases. The resulting image is called an interferogram and contains concentric bands of colour, or fringes, that are related to topography and/or surface deformation. New algorithms use many images acquired over a long time period to determine the movement history of individual objects, referred to as permanent scatterers. In the current project, standard PSInSAR processing was performed on 40 ERS-1 and ERS-2 scenes. The total area processed is approximately 1,500 km{sup 2}. Slightly less than 20,000 permanent scatterers were identified.The highest densities were obtained along the coast and on the islands, where natural outcrops are more abundant. Two main classes of objects act as permanent scatterers in this area. The first are natural reflectors, such as rocks. The second are man-made reflectors, such as parts of buildings. Numerous local movements were found in the study area, relating to building subsidence, or compaction of anthropogenic fill. The dataset was divided into three groups for analysis, based upon the location of regional lineaments provided by SKB. Both statistical and geostatistical techniques were used. The median velocity of the three blocks did not differ by more than 0.2 mm/yr. This is not considered significant, given the possible magnitude of

  9. Application of the Drilling Impact Study (DIS) to Forsmark groundwaters

    Gascoyne, Mel; Gurban, Ioana

    2008-01-01

    Characterisation of a geological formation as a repository for nuclear fuel waste requires deep drilling into the bedrock to gain an understanding of the geological structure, rock types, groundwater flow and the chemical composition of groundwater and the adjacent rock. The methods of characterisation from a hydrogeochemical point of view, might be affected by the various drilling activities and techniques for determining groundwater composition have been employed so that the composition can be corrected for these activities. SKB has developed and supported the Drilling Impact Study (DIS) project in which a tracer is used as an indicator of contamination to attempt to correct the groundwater composition for dilution or contamination by surface waters. The project began about five years ago with the intention of developing a routine method for determining the extent of contamination of borehole groundwater by drilling water. The main objectives of this work were: 1. Determine the extent of drilling water contamination in permeable zones in a test borehole on the Forsmark site. 2. Correct measured chemical compositions of the groundwaters based on contamination results. 3. Provide a workable methodology for routine correction of groundwater composition. 4. Apply the modified DIS model to suitable borehole zones at the Forsmark site in a systematic fashion 5. Determine uncertainties in DIS modelling. A memorandum was prepared by describing the characteristics of borehole KFM06 and its drilling history. Estimates were made of the amount of drilling water in permeable zones in the borehole and the various approaches to applying results of DIS were described and recommendations made, with an example calculation

  10. Subsidence analysis Forsmark nuclear power plant - unit 1; Saettningsanalys Forsmarks kaernkraftverk - aggregat 1

    Bono, Nancy; Fredriksson, Anders; Maersk Hansen, Lars (Golder Associates AB (Sweden))

    2010-12-15

    On behalf of SKB, Golder Associates Ltd carried out a risk analysis of subsidence during Forsmark nuclear power plant in the construction of the final repository for spent nuclear fuel near and below existing reactors. Specifically, the effect of horizontal cracks have been studied.

  11. Modelling of Fracture Initiation, Propagation and Creep of a KBS-3V and KBS-3H Repository in Sparsely Fractured Rock with Application to the Design at Forsmark Candidate Site

    Backers, Tobias; Stephansson, Ove

    2008-01-01

    The stability issues of deposition holes of a repository layout according to the KBS-3 concept in the sparsely fractured Forsmark granites are analysed with the emphasis on fracture mechanics. At the start of the project the rock mass is viewed as a continuum. In a second step explicit fracture networks are introduced and included in the numerical rock fracture models. The software Fracod2D was used for the rock fracture mechanics analysis. Assuming deposition holes located in a continuous, homogeneous elastic rock mass and The presented stress state of the rock mass the following results were obtained: For single KBS-3H deposition holes oriented in the direction of the minimum horizontal stress, Sh, bore hole breakouts are introduced for all depth levels. For KBS-3H holes which are oriented in direction of SH, no significant fracturing can be expected. In case of vertical deposition holes according to KBS-3V an increased risk of fracturing at greater depth levels (> 500m) is evident. At shallow depth levels ( 5MPa gives a favourable situation about spalling for the KBS-3H and KBS-3V layouts. To prevent spalling, it is important to build up a swelling pressure soon after excavation, so that the enhanced stresses in the surrounding of the deposition ii holes are reduced. This has a positive impact on other excavation activities and also on time-dependent fracturing. After excavation and filling of the deposition holes with subsequent increase of swelling pressure, the temperature will increase in the vicinity of the excavation. For the range of swelling pressures predicted for the KBS-3 concept, i.e. 5.5MPa to 7.2MPa, no significant fracturing for the KBS-3H concept with the axis parallel SH at depths below about 600m was discovered. The results from other layouts bare the risk of partly significant fracturing. About 60ka from closing the repository an ice cover of approximately 3km is expected over Forsmark. This dead load increases the in-situ stresses and

  12. Radon as a groundwater tracer in Forsmark and Laxemar

    Grolander, Sara

    2009-10-15

    Radon concentrations were measured in different water types in Forsmark and Laxemar during the site investigation and within this study. From these measurements it can be concluded that large differences between surface water, near surface groundwater and deep groundwater can be found in both Laxemar and Forsmark. The differences in radon concentrations between different water types are used in this study to detect interactions between surface water, near surface water and deep groundwater. From the radon measurements it can also be concluded that radon concentration in deep groundwater varies largely with depth. These variations with depth are probably caused by groundwater flow in conductive fracture zones in the bedrock. The focus of this study has been the radon concentration of near surface groundwater and the interaction between near surface groundwater and deep groundwater. Radon measurements have been done using the RAD-7 radon detector within this study. It could be concluded that RAD-7 is a good technique for radon measurements and also easy to use in field. The radon concentrations measured in near surface groundwater in Laxemar within this study were low and homogenous. The variation in radon concentration has been analyses and compared to other parameters. Since the hypothesis of this study has been that there are differences in radon concentrations between recharging and discharging groundwater, the most important parameter to consider is the recharge/discharge field classification of the wells. No correlation between the recharge/discharge classifications of wells and the radon concentrations were found. The lack of correlation between groundwater flow patterns and radon concentration means that it is not possible to detect flow patterns in near surface groundwater using radon as a tracer in the Laxemar area. The lack of correlation can be caused by the fact that there are just a few wells located in areas classified as recharge area. It can also be

  13. Operative meteorological data base in Forsmark

    Appelgren, A.; Hallberg, B.; Nordlinder, S.

    1990-01-01

    This report describes how data collected during a field measurement campaign were analysed and compiled to create a data base for operative use. The data base gives information about the wind and the atmospheric stability at five locations around the Forsmark nuclear power plant. In the measurement campaign, sodar systems and a 100 m high tower at Forsmark were used. Temperature, wind speed and wind direction were measured by sensors on the tower, while wind speed and direction, and the standard deviation of the vertical wind, were monitored by the sodar systems. This gave meteorological data from several heights. At Forsmark, the temperature difference and the wind speed from the tower were used to determine the atmospheric stability. At the sodar locations, the stability was deduced by employing a scheme which considered the season, the time of day, the wind direction and the wind speed. To create the operative data base, the wind speeds and wind directions, respectively, from two locations at the time were correlated. A code for graphical and numerical presentation of the data from the data base was developed. A special system of warnings was included, featuring notification about phenomena such as sea breeze, warnings about large variation in the wind conditions within the area, and warnings for situations in which the meteorological conditions make the results from the atmospheric dispersion calculations uncertain. This feature was implemented to alert the user to the fact that ordinary dispersion and dose calculations, using meteorological data from a single point, might give erroneous results. The operative data base and the presentation code were integrated with the dispersion and dose calculation code AIRPAC/EMMA, which is to be used in case of increased releases from nuclear power plants. The possibility to use the data from the operative data base in the dispersion calculations was investigated. It was found that a modification of AIRPAC/EMMA, in such a

  14. Investigation of BWR stability in Forsmark 2

    Oguma, R.; Reisch, F.; Bergdahl, B.G.; Lorenzen, J.; Aakerhielm, F.; Kellner, S.

    1988-01-01

    A series of noise measurements have been conducted at the Forsmark-2 reactor during its start-up operation after the revision in 1987. The main purpose was to investigate the BWR stability problem based on noise analysis, i.e. the problem of resonant power oscillation with frequency of about 0.5 Hz, which tends to arise at high power and low core flow condition. The noise analysis was performed to estimate the noise source which gives rise to the power oscillation, to evaluate the stability condition of the Forsmark-2 reactor in terms of the decay ratio (DR), as well as to investigate a safety related problem in connection with the BWR stability. The results indicate that the power oscillation is due to dynamic coupling between the neutron kinetics and thermal-hydraulics via void reactivity feedback. The DR reached as high as ≅ 0.7 at 63% of the rated power and 4100 kg/s of the total core flow. An investigation was made for the noise recording which represents a strong pressure oscillation with a peak frequency at 0.33 Hz. The result suggests that such pressure oscillation, if the peak frequency coincided with that of the resonant power oscillation, might become a cause of scram. The present noise analysis indicates the importance of a BWR on-line surveillance system with functions like stability condition monitoring and control system diagnosis. (orig.)

  15. Forsmark site investigation. Microorganisms in groundwater from boreholes KFM10A, KFM11A and KFM08D - numbers, viability, and metabolic diversity. Results from five sections 298.0-305.1 m and 478.0-487.5 m in KFM10A, 447.5-454.6 m in KFM11A, and 669.7-676.8 m and 828.4-835.5 m in KFM08D

    Pedersen, Karsten (Microbial Analytics Sweden AB, Goeteborg (SE))

    2007-09-15

    Microorganisms and their characteristic features were investigated while geochemically characterizing the groundwater, as part of the site investigation programme at Forsmark. The investigation consists of determining the total numbers of microorganisms, the concentration of adenosine-tri-phosphate (ATP), and the number of culturable heterotrophic aerobic bacteria (CHAB); also included is a method for determining the numbers of organisms belonging to different physiological groups, the most probable number (MPN) method. This investigation covered eight different groups, namely, nitrate-, iron-, manganese-, and sulphate-reducing bacteria, auto- and heterotrophic acetogens, and auto- and heterotrophic methanogens. The reproducibility of the MPN method was tested using groundwater from a depth of 450 m at the Aspo Hard Rock Laboratory and was found to be excellent. Samples were taken from boreholes KFM10A at 298.305 m and 478.487 m, KFM11A at 447.454 m, and KFM08D at 669.676 m and 828.835 m; the sampling dates were 2006-11-28, 2006-10-31, 2007-03-13, 2007-06-19, and 2007-05-02, respectively. The total number of cells (TNC) found in KFM10A groundwater was the highest so far found in a total of 19 analysed sections in the Forsmark area. In contrast, KFM08D-828 m and KFM11A-447 m had among the lowest numbers of cells found thus far. A large amount of ATP per cell indicates large, active cells. The average of all previous ATP/TNC ratios (n approx = 100) in deep groundwater was determined to be 0.43. The analysed groundwater samples from KFM10A-478 m and KFM08D-669 m had ATP/TNC ratios exceeding the overall average of 0.43 for deep groundwater. This suggests that the microorganisms in these groundwaters possessed viability and activity levels above the average for deep groundwater microorganisms. The ratios between the CHAB and NRB numbers found here suggest that there was no surface water contamination. The percentages of TNC culturable using the MPN method were in the 1

  16. Forsmark site investigation. Microorganisms in groundwater from boreholes KFM10A, KFM11A and KFM08D - numbers, viability, and metabolic diversity. Results from five sections 298.0-305.1 m and 478.0-487.5 m in KFM10A, 447.5-454.6 m in KFM11A, and 669.7-676.8 m and 828.4-835.5 m in KFM08D

    Pedersen, Karsten

    2007-09-01

    Microorganisms and their characteristic features were investigated while geochemically characterizing the groundwater, as part of the site investigation programme at Forsmark. The investigation consists of determining the total numbers of microorganisms, the concentration of adenosine-tri-phosphate (ATP), and the number of culturable heterotrophic aerobic bacteria (CHAB); also included is a method for determining the numbers of organisms belonging to different physiological groups, the most probable number (MPN) method. This investigation covered eight different groups, namely, nitrate-, iron-, manganese-, and sulphate-reducing bacteria, auto- and heterotrophic acetogens, and auto- and heterotrophic methanogens. The reproducibility of the MPN method was tested using groundwater from a depth of 450 m at the Aspo Hard Rock Laboratory and was found to be excellent. Samples were taken from boreholes KFM10A at 298.305 m and 478.487 m, KFM11A at 447.454 m, and KFM08D at 669.676 m and 828.835 m; the sampling dates were 2006-11-28, 2006-10-31, 2007-03-13, 2007-06-19, and 2007-05-02, respectively. The total number of cells (TNC) found in KFM10A groundwater was the highest so far found in a total of 19 analysed sections in the Forsmark area. In contrast, KFM08D-828 m and KFM11A-447 m had among the lowest numbers of cells found thus far. A large amount of ATP per cell indicates large, active cells. The average of all previous ATP/TNC ratios (n ≅ 100) in deep groundwater was determined to be 0.43. The analysed groundwater samples from KFM10A-478 m and KFM08D-669 m had ATP/TNC ratios exceeding the overall average of 0.43 for deep groundwater. This suggests that the microorganisms in these groundwaters possessed viability and activity levels above the average for deep groundwater microorganisms. The ratios between the CHAB and NRB numbers found here suggest that there was no surface water contamination. The percentages of TNC culturable using the MPN method were in the 1

  17. Monitoring Forsmark. Moose age composition, reproduction and antler development in Forsmark

    Cederlund, Goeran; Broman, Emil

    2011-05-01

    The moose (Alces alces) is an important game species in Forsmark, as well as in Sweden in general. Hunting on moose is subject to strict local regulations and restrictions within a management program. Such restrictions will have considerable effects on demography. This has led to a moose population in Forsmark with biased sex ratio with fewer adult males than females and a generally low average age. High hunting pressure on males has caused a low survival rate and the chance to survive more than five years is just a few percent. Restrictions in hunting pressure on females have caused a generally higher survival rate and a higher average age compared to males. Sex differences in body mass are normal compared to other populations in southern Sweden. Mean body mass of culled calves is an important measure of quality of the population, since it reflects the available food resources in the management area. Body mass among calves in Forsmark is generally low, indicating a deteriorated food resource due to either ambient population density and/or hampered food production in the forest. The average reproduction rate is normal compared to other populations in this part of Sweden. However, one year old females (yearlings) have a fairly low production of eggs per female (ovulation rate). As the yearlings constitute a considerable part of the population in Forsmark, their lowered ovulation rate will affect the rate of recruitment of calves to the local population. The moose population seems to have been subject to considerable variation in density during the last decade, which is probably a joint effect of changes in demography (hunting), changes in food resources due to forestry management and by food competition from other browsers in the area. Local managers believe that the population has reached such a low level (although not verified by surveys) that the number of moose has to be increased. It is vital to stress the importance of keeping up collection of data from the

  18. The potential for ore and industrial minerals in the Forsmark area

    Lindroos, Hardy [MIRAB Mineral Resurser AB, Uppsala (Sweden); Isaksson, Hans; Thunehed, Hans [GeoVista AB, Luleaa (Sweden)

    2004-03-01

    A survey has been made of existing information concerning the potential for ore and industrial minerals in and near the candidate area for a deep repository in Forsmark. A deep repository for spent nuclear fuel should not be located in a rock type or an area where mineral extraction might be considered in the future, since this would make it impossible to exploit this natural resource. Avoiding such areas reduces the risk that people in the future will come into contact with the deep repository through mineral prospecting or mining activities. The survey has made use of all the geoscientific information that was compiled in the more regional investigations in Oesthammar Municipality in 1996-97. In cooperation with the Geological Survey of Sweden (SGU), a new, more detailed mineral resources map has been prepared. The map shows areas with an ore potential that may be unsuitable or unfavourable for siting of a deep repository. The results of the recently completed geophysical helicopter surveys of the Forsmark area are presented in a special chapter. The judgement of the area's ore potential is in part based on the geophysical evaluation of these measurements. Furthermore, the survey obtained information from ongoing deep drillings from the site investigation in Forsmark. In order to better be able to judge the ore potential, the survey has initiated a geochemical investigation of activated soil samples, plus an ore geology sampling of a section in the deep borehole KFM02A, where a hydrothermally altered zone was detected in 2003.The first results from these samplings are presented in the report, which also discusses prospecting efforts in the area as well as relevant Swedish mining legislation. Some suggestions are made for further ore geology investigations. The mineral resources map shows that there is an elongate northwest-southeast zone south and southwest of the candidate area which has a potential for skarn iron ore, and possibly for copper and zinc

  19. The potential for ore and industrial minerals in the Forsmark area

    Lindroos, Hardy; Isaksson, Hans; Thunehed, Hans

    2004-03-01

    A survey has been made of existing information concerning the potential for ore and industrial minerals in and near the candidate area for a deep repository in Forsmark. A deep repository for spent nuclear fuel should not be located in a rock type or an area where mineral extraction might be considered in the future, since this would make it impossible to exploit this natural resource. Avoiding such areas reduces the risk that people in the future will come into contact with the deep repository through mineral prospecting or mining activities. The survey has made use of all the geoscientific information that was compiled in the more regional investigations in Oesthammar Municipality in 1996-97. In cooperation with the Geological Survey of Sweden (SGU), a new, more detailed mineral resources map has been prepared. The map shows areas with an ore potential that may be unsuitable or unfavourable for siting of a deep repository. The results of the recently completed geophysical helicopter surveys of the Forsmark area are presented in a special chapter. The judgement of the area's ore potential is in part based on the geophysical evaluation of these measurements. Furthermore, the survey obtained information from ongoing deep drillings from the site investigation in Forsmark. In order to better be able to judge the ore potential, the survey has initiated a geochemical investigation of activated soil samples, plus an ore geology sampling of a section in the deep borehole KFM02A, where a hydrothermally altered zone was detected in 2003.The first results from these samplings are presented in the report, which also discusses prospecting efforts in the area as well as relevant Swedish mining legislation. Some suggestions are made for further ore geology investigations. The mineral resources map shows that there is an elongate northwest-southeast zone south and southwest of the candidate area which has a potential for skarn iron ore, and possibly for copper and zinc, although

  20. Results from Marine geological investigations outside Forsmark

    Nyberg, Johan; Elhammer, Anders; Sohlenius, Gustav; Kjellin, Bernt; Nordgren, Paer (Geological Survey of Sweden (Sweden))

    2011-08-15

    A detailed marine geological survey was conducted in a 10 km2 large area outside Forsmark comprising hydro acoustic, 100 m spacing between survey lines, and groundtruthing. These data, together with reanalyzed survey data retrieved in 2002 from the same area, were used to produce maps of seabed and underlying bedrock surface morphology as well as horizontal and vertical extension of sediments. An esker is discovered running approximately in a north northwesterly-south southeasterly direction in the area, which may be causing submarine groundwater discharge. Pockmarks, which are caused by sediment gas of thermogenic and/or microbial origin, are detected in the area. In addition to the original commissioned survey, bedrock surface and seabed morphology as well as horizontal and vertical extension of sediments in a larger adjacent area were reanalyzed and produced from survey lines retrieved during a commission by SKB in 2002 and during SGUs regular mapping program in 2002, 2008 and 2009

  1. Results from Marine geological investigations outside Forsmark

    Nyberg, Johan; Elhammer, Anders; Sohlenius, Gustav; Kjellin, Bernt; Nordgren, Paer

    2011-08-01

    A detailed marine geological survey was conducted in a 10 km 2 large area outside Forsmark comprising hydro acoustic, 100 m spacing between survey lines, and groundtruthing. These data, together with reanalyzed survey data retrieved in 2002 from the same area, were used to produce maps of seabed and underlying bedrock surface morphology as well as horizontal and vertical extension of sediments. An esker is discovered running approximately in a north northwesterly-south southeasterly direction in the area, which may be causing submarine groundwater discharge. Pockmarks, which are caused by sediment gas of thermogenic and/or microbial origin, are detected in the area. In addition to the original commissioned survey, bedrock surface and seabed morphology as well as horizontal and vertical extension of sediments in a larger adjacent area were reanalyzed and produced from survey lines retrieved during a commission by SKB in 2002 and during SGUs regular mapping program in 2002, 2008 and 2009

  2. Removal of groundwater from final repository in Forsmark. Description of consequences for nature values and forest production; Bortledande av grundvatten fraan slutfoervarsanlaeggningen i Forsmark. Beskrivning av konsekvenser foer naturvaerden och skogsproduktion

    Hamren, Ulrika; Collinder, Per; Allmer, Johan (Ekologigruppen AB (Sweden))

    2010-11-15

    The Swedish Nuclear Fuel and Waste Management Co (SKB) has chosen Forsmark in the Municipality of Oesthammar as site for the final repository for spent nuclear fuel. This report describes consequences for nature values and forestry due to groundwater diversion during construction and operation of the repository. The report concerns nature values that depend on, or are favoured by, a groundwater table close to or above the ground surface

  3. Electrical Dynamic Simulation Activities in Forsmark NPP

    Lamell, Per

    2015-01-01

    The original power system analysis was done in the seventies in former ASEA AB software. For approximate twenty years no major new studies was done because of limited numbers of renewal projects. In the end of the nineties the plant started to update the selectivity planning and study of the loading of the safety bus-bars. The simulation and start of the development of simulation models was done in a tool named Simpow. Simpow was also an ASEA/ABB AB software developed from the program used in the seventies. To continue to work with Simpow was a decision made after doing an extensive review of on the marked available commercially software. Also at that time we start to do our first attempt building electrical simulation models of unit 1 and 2 according to the original documentation. The development of models for the unit 1, 2 and 3 became more intensive some years after the millennium. Partly because of event July 25, 2006 and also because of the renewal of unit 1 and 2 and had subsequently been initiated for unit 3 also. Today we have initiated a conversion of our models to a new program called PowerFactory. That due to the withdrawal of support and development on SIMPOW a couple of years ago. To development relevance, accuracy and detail, models are an important issue for FKA (Forsmark Kraftgrupp AB). The model is initially created according to the plant documentation and also including requested information from the original supplier. Continued development and updates of the model is done according to the data received from the contractors via the demands according to requirements in our technical documents on different electrical components in renewal projects. The development of the model is driven by known weaknesses, depending of the type of studies and necessary data related to events. An important part that will be described is to have a verified simulation tool and validated models. An example is that the models have been validated by making start and

  4. Construction experiences from underground works at Forsmark. Compilation Report

    Carlsson, Anders [Vattenfall Power Consultant AB, Stockholm (Sweden); Christiansson, Rolf [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2007-02-15

    The main objective with this report, the Construction Experience Compilation Report (CECR), is to compile experiences from the underground works carried out at Forsmark, primarily construction experiences from the tunnelling of the two cooling water tunnels of the Forsmark nuclear power units 1, 2 and 3, and from the underground excavations of the undersea repository for low and intermediate reactor waste, SFR. In addition, a brief account is given of the operational experience of the SFR on primarily rock support solutions. The authors of this report have separately participated throughout the entire construction periods of the Forsmark units and the SFR in the capacity of engineering geologists performing geotechnical mapping of the underground excavations and acted as advisors on tunnel support; Anders Carlsson participated in the construction works of the cooling water tunnels and the open cut excavations for Forsmark 1, 2 and 3 (geotechnical mapping) and the Forsmark 3 tunnel (advise on tunnel support). Rolf Christiansson participated in the underground works for the SFR (geotechnical mapping, principal investigator for various measurements and advise on tunnel support and grouting). The report is to a great extent based on earlier published material as presented in the list of references. But it stands to reason that, during the course of the work with this report, unpublished notes, diaries, drawings, photos and personal recollections of the two authors have been utilised in order to obtain such a complete compilation of the construction experiences as possible.

  5. Construction experiences from underground works at Forsmark. Compilation Report

    Carlsson, Anders; Christiansson, Rolf

    2007-02-01

    The main objective with this report, the Construction Experience Compilation Report (CECR), is to compile experiences from the underground works carried out at Forsmark, primarily construction experiences from the tunnelling of the two cooling water tunnels of the Forsmark nuclear power units 1, 2 and 3, and from the underground excavations of the undersea repository for low and intermediate reactor waste, SFR. In addition, a brief account is given of the operational experience of the SFR on primarily rock support solutions. The authors of this report have separately participated throughout the entire construction periods of the Forsmark units and the SFR in the capacity of engineering geologists performing geotechnical mapping of the underground excavations and acted as advisors on tunnel support; Anders Carlsson participated in the construction works of the cooling water tunnels and the open cut excavations for Forsmark 1, 2 and 3 (geotechnical mapping) and the Forsmark 3 tunnel (advise on tunnel support). Rolf Christiansson participated in the underground works for the SFR (geotechnical mapping, principal investigator for various measurements and advise on tunnel support and grouting). The report is to a great extent based on earlier published material as presented in the list of references. But it stands to reason that, during the course of the work with this report, unpublished notes, diaries, drawings, photos and personal recollections of the two authors have been utilised in order to obtain such a complete compilation of the construction experiences as possible

  6. Modelling of temperature in deep boreholes and evaluation of geothermal heat flow at Forsmark and Laxemar

    Sundberg, Jan; Back, Paer-Erik; Laendell, Maerta; Sundberg, Anders (GEO INNOVA AB, Linkoeping (Sweden))

    2009-06-15

    This report presents modelling of temperature and temperature gradients in boreholes in Laxemar and Forsmark and fitting to measured temperature data. The modelling is performed with an analytical expression including thermal conductivity, thermal diffusivity, heat flow, internal heat generation and climate events in the past. As a result of the fitting procedure it is also possible to evaluate local heat flow values for the two sites. However, since there is no independent evaluation of the heat flow, uncertainties in for example thermal conductivity, diffusivity and the palaeoclimate temperature curve are transferred into uncertainties in the heat flow. Both for Forsmark and Laxemar, reasonably good fits were achieved between models and data on borehole temperatures. However, none of the general models achieved a fit within the 95% confidence intervals of the measurements. This was achieved in some cases for the additional optimised models. Several of the model parameters are uncertain. A good model fit does not automatically imply that 'correct' values have been used for these parameters. Similar model fits can be expected with different sets of parameter values. The palaeoclimatically corrected surface mean heat flow at Forsmark and Laxemar is suggested to be 61 and 56 mW/m2 respectively. If all uncertainties are combined, including data uncertainties, the total uncertainty in the heat flow determination is judged to be within +12% to -14% for both sites. The corrections for palaeoclimate are quite large and verify the need of site-specific climate descriptions. Estimations of the current ground surface temperature have been made by extrapolations from measured temperature logging. The mean extrapolated ground surface temperature in Forsmark and Laxemar is estimated to 6.5 deg and 7.3 deg C respectively. This is approximately 1.7 deg C higher for Forsmark, and 1.6 deg C higher for Laxemar compared to data in the report SKB-TR-06-23. Comparison with

  7. Modelling of temperature in deep boreholes and evaluation of geothermal heat flow at Forsmark and Laxemar

    Sundberg, Jan; Back, Paer-Erik; Laendell, Maerta; Sundberg, Anders

    2009-05-01

    This report presents modelling of temperature and temperature gradients in boreholes in Laxemar and Forsmark and fitting to measured temperature data. The modelling is performed with an analytical expression including thermal conductivity, thermal diffusivity, heat flow, internal heat generation and climate events in the past. As a result of the fitting procedure it is also possible to evaluate local heat flow values for the two sites. However, since there is no independent evaluation of the heat flow, uncertainties in for example thermal conductivity, diffusivity and the palaeoclimate temperature curve are transferred into uncertainties in the heat flow. Both for Forsmark and Laxemar, reasonably good fits were achieved between models and data on borehole temperatures. However, none of the general models achieved a fit within the 95% confidence intervals of the measurements. This was achieved in some cases for the additional optimised models. Several of the model parameters are uncertain. A good model fit does not automatically imply that 'correct' values have been used for these parameters. Similar model fits can be expected with different sets of parameter values. The palaeoclimatically corrected surface mean heat flow at Forsmark and Laxemar is suggested to be 61 and 56 mW/m 2 respectively. If all uncertainties are combined, including data uncertainties, the total uncertainty in the heat flow determination is judged to be within +12% to -14% for both sites. The corrections for palaeoclimate are quite large and verify the need of site-specific climate descriptions. Estimations of the current ground surface temperature have been made by extrapolations from measured temperature logging. The mean extrapolated ground surface temperature in Forsmark and Laxemar is estimated to 6.5 deg and 7.3 deg C respectively. This is approximately 1.7 deg C higher for Forsmark, and 1.6 deg C higher for Laxemar compared to data in the report SKB-TR-06-23. Comparison with air

  8. Safety improvement plant modifications at Forsmark 3, 1986-1995

    Kjellander, M. [Kaernkraftsaekerhet och utbildning, Nykoeping (Sweden)

    1998-10-01

    All important plant modifications implemented in safety-related equipment or software at Forsmark 3 are compiled in this report. The report covers the period from the start of commercial operation in 1985 up to and including 1995. The plant modifications, which were carried out by different suppliers during the guarantee period, are not included in the report since they have not been administered by the Forsmark organisation. The report contains references to relevant modification notices and to files and file divider numbers. These data refer to the Safety Department central archives. The report is based on Forsmark 3 Technical Specifications (STF) which means that Chapter 3 is divided into the same sections as in the STF. Modifications, which cannot be directly attributed to any specific STF chapter, and major modifications are described separately

  9. BWR-stability investigation at Forsmark 1

    Bergdahl, B.G.; Reisch, F.; Oguma, R.; Lorenzen, J.; Aakerhielm, F.

    1988-01-01

    A series of noise measurements have been conducted at Forsmark 1 during start-up operation after the revision summer '87. The main purpose was to investigate BWR-stability problems, i.e. resonant power oscillations of 0.5 Hz around 65% power and 4100 kg/s core flow, which tend to arise at high power and low core flow conditions. The analysis was performed to estimate the noise source which gives rise to the oscillation, to evaluate the measure of stability, i.e. the Decay Ratio (Dr) as well as to investigate other safety related problems. The result indicates that the oscillation is due to the dynamic coupling between the neutron kinetics and thermal hydraulics via void reactivity feedback. The Dr ranged between values of 0.7 and > 0.9, instead of expected 0.6 (Dr=1 is defined as instability). These high values imply that the core cannot suppress oscillations fast enough and a small perturbation can cause scram. Further it was found that the entire core is oscillating in phase (LPRM's) with varying strength where any connection to the consequences of different fuel (8x8, 9x9) being present simultaneously cannot be excluded. This report elucidates the importance of an on-line BWR-stability surveillance system with functions like stability condition monitoring and control system diagnosis. (orig.)

  10. Elemental composition of a deep sediment core from Lake Stocksjoen in the Forsmark area

    Stroemgren, Maarten [Umeaa Univ. (Sweden). Dept. of Ecology and Environmental Sciences; Brunberg, Anna-Kristina [Uppsala Univ. (Sweden). Dept. of Ecology and Evolution/Limnology

    2006-10-15

    A deep sediment core was taken from Lake Stocksjoen, situated within the Forsmark site investigation area. The 55 cm long sediment core, representing the entire history of the lake (approx 430 years) was sliced in 5 cm portions and analysed for various chemical elements, using ICP-MS technique. In total, 54 different elements - classified as main elements, heavy metals and trace elements - were analysed. In general terms, three different patterns of stratigraphy were derived from all the analysed elements. Calcium, manganese, lead and mercury occurred in highest concentrations in the upper sediments (<30 cm depth). Phosphorus, zinc, cadmium, antimony, tin and strontium occurred in more even proportions throughout the sediment core. All the other elements were substantially reduced in the upper parts (<30 cm) compared to the deeper parts of the sediment core. Metals that are considered as airborne pollutants were found in low or moderate concentrations. This is in concert with other investigations of pollutants that have been performed in the Forsmark area. The sediment of Lake Stocksjoen is highly organic, and has been so during the entire history of the lake. Much of the organic Material seems to be refractory and less susceptible for mineralisation and respiration during the prevailing environmental conditions. This corresponds well with the characteristic gelatinous cyanophycee gyttja found in the lower parts of the sediment core. Although speculative, the pronounced changes in elemental composition of the sediment at 30 cm depth may correspond to the final isolation of the lake from the Baltic Sea, which occurred approximately 230 years ago. The deeper parts (below 30 cm depth) thus may represent the time period with regular intrusions of brackish water into the lake basin. One important factor governing the environmental conditions and the resulting elemental composition of the sediment is the unusually thick 'microbial mat', which is characteristic

  11. A safety assessment approach using coupled NEAR3D and CHAN3D - Forsmark

    Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars (Dept. of Chemical Engineering and Technology, Royal Inst. of Technology, Stockholm (Sweden)); Gylling, Bjoern (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2010-12-15

    Safety assessment calculations for the Forsmark site were performed using a new code, which couples the far-field code CHAN3D and the near-field code NEAR3D. In addition, the package has a Graphical User Interface (GUI) and a code that governs the simulations (Coupling). The simulations were performed for 90 different canister locations, which were randomly chosen. Deterministic data were used for tunnels, deposition holes, and shafts. The background fractures were stochastically generated in two HRD realizations. The F-ratio and the water travel time distributions were used to study the performance of the simulations. Near-field calculations were not performed for the Forsmark site using the new coded presented in the prevailing report. However, the obtained results in this study are compared with the results from the Task 2 model of the ConnectFlow report /Joyce et al. 2010/. Although the results cannot be compared directly, a reasonably good agreement is obtained for the F-ratio

  12. Complementary modelling of radionuclide retention in the near-surface system at Forsmark. Development of a reactive transport model using Forsmark 1.2 data

    Sena, Clara; Grandia, Fidel; Arcos, David; Molinero, Jorge; Duro, Lara (Amphos XXI Consulting S.L., Barcelona (Spain))

    2008-10-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is conducting a comprehensive geoscientific characterization of two alternative sites to allocate a deep geological repository of high level nuclear waste. The Site Characterization Program also includes the near-surface systems, which are expected to constitute the last geological barrier between the repository system and the earth's surface. The evaluation of the retention capacity of the near surface systems is, therefore, very relevant for the site characterization program. From the geological point of view, near-surface systems in the Forsmark area consist of Quaternary deposits that overlay a granitic bedrock. Glacial till is the most abundant outcropping Quaternary deposit (approx75% of surface extension) and the remainder is made up of clayey materials (glacial and post-glacial clays). These types of near-surface sediments show distinctive hydraulic and geochemical features. The main reactive mineral in the till deposits, for the time scale considered in this work, is calcium carbonate (calcite). This mineral is found along with clay minerals (e.g. illite) and Fe(III) hydroxides. In contrast, glacial and post-glacial clays are basically composed of illite with minor amounts of calcium carbonate, and containing organic matter-rich levels (gyttja) which can promote reducing conditions in the system. The assessment of the migration behaviour of selected long-lived radionuclides through the near-surface system of Forsmark was developed in an earlier work, that focused on the evaluation of the capacity of the Quaternary deposits for radionuclide retention. The work reported here is an improvement of the geochemical conceptual and numerical model already presented, based on data available in the Site Descriptive Model v 1.2 (Forsmark). Regarding the geochemical variability of the Quaternary deposits present at Forsmark and its implications on radionuclide mobility through the near-surface systems, a

  13. Indirect estimations and spatial variation in leaf area index of coniferous, deciduous and mixed forest stands in Forsmark and Laxemar

    Tagesson, Torbern

    2006-12-01

    Two sites in Sweden are investigated for a potential deep repository of the nuclear waste, the Laxemar investigation area (57 deg 5 min N, 16 deg 7 min E) and the Forsmark investigation area (60 deg 4 min N, 18 deg 2 min E). In the characterisation of these sites, development of site descriptive models is an important part. Leaves are the main surface were an exchange of matter and energy between the atmosphere and the biosphere takes place, and leaf area index (LAI) of the vegetation cover is an important variable correlated to a number of ecophysiological parameters and hereby an important parameter in ecosystem models. In the investigation areas, LAI of boreal and temperate ecosystems were therefore estimated indirectly through optical measurements using the LAI-2000 (LI-COR, Cambridge UK) and TRAC (Tracing Radiation and Architecture of Canopies). On average, measured maximum LAI was 3.40 in Laxemar and 3.43 in Forsmark; minimum LAI was 1.65 in Laxemar and 1.97 in Forsmark. Forest inventory data showed that LAI is positively correlated with basal area, stand height, stand volume and breast height tree diameter. For the coniferous stands, there was also a linearly negative relationship with age. In the Laxemar investigation area, there were no significant relationships for LAI with a satellite derived kNN (kNearest Neighbor) data set with stand height, stand volume and stand age. The kNN data set can therefore not be used to extrapolate measured LAI over the Laxemar investigation area. There were significant relationships between LAI and the normalized difference vegetation index (NDVI) for coniferous, deciduous and mixed forest stands in the Laxemar investigation area. A NDVI image could be used to extrapolate LAI over the entire investigation area. For the Forsmark investigation area, effective LAI for all stands were correlated to NDVI and this relationship could then be used for extrapolation. The effective LAI image was afterwards corrected for average

  14. Indirect estimations and spatial variation in leaf area index of coniferous, deciduous and mixed forest stands in Forsmark and Laxemar

    Tagesson, Torbern [Dept. of Physical Geography and Ecosystem Analysis, Lund Univ., Lund (Sweden)

    2006-12-15

    Two sites in Sweden are investigated for a potential deep repository of the nuclear waste, the Laxemar investigation area (57 deg 5 min N, 16 deg 7 min E) and the Forsmark investigation area (60 deg 4 min N, 18 deg 2 min E). In the characterisation of these sites, development of site descriptive models is an important part. Leaves are the main surface were an exchange of matter and energy between the atmosphere and the biosphere takes place, and leaf area index (LAI) of the vegetation cover is an important variable correlated to a number of ecophysiological parameters and hereby an important parameter in ecosystem models. In the investigation areas, LAI of boreal and temperate ecosystems were therefore estimated indirectly through optical measurements using the LAI-2000 (LI-COR, Cambridge UK) and TRAC (Tracing Radiation and Architecture of Canopies). On average, measured maximum LAI was 3.40 in Laxemar and 3.43 in Forsmark; minimum LAI was 1.65 in Laxemar and 1.97 in Forsmark. Forest inventory data showed that LAI is positively correlated with basal area, stand height, stand volume and breast height tree diameter. For the coniferous stands, there was also a linearly negative relationship with age. In the Laxemar investigation area, there were no significant relationships for LAI with a satellite derived kNN (kNearest Neighbor) data set with stand height, stand volume and stand age. The kNN data set can therefore not be used to extrapolate measured LAI over the Laxemar investigation area. There were significant relationships between LAI and the normalized difference vegetation index (NDVI) for coniferous, deciduous and mixed forest stands in the Laxemar investigation area. A NDVI image could be used to extrapolate LAI over the entire investigation area. For the Forsmark investigation area, effective LAI for all stands were correlated to NDVI and this relationship could then be used for extrapolation. The effective LAI image was afterwards corrected for average

  15. Radionuclide transport report for the safety assessment SR-Site

    2010-12-15

    This document compiles radionuclide transport calculations of a KBS-3 repository for the safety assessment SR-Site. The SR-Site assessment supports the licence application for a final repository at Forsmark, Sweden

  16. Statistical geological discrete fracture network model. Forsmark modelling stage 2.2

    Fox, Aaron; La Pointe, Paul; Simeonov, Assen; Hermanson, Jan; Oehman, Johan

    2007-11-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site characterization at two different locations, Forsmark and Laxemar, in order to locate a site for a final geologic repository for spent nuclear fuel. The program is built upon the development of Site Descriptive Models (SDMs) at specific timed data freezes. Each SDM is formed from discipline-specific reports from across the scientific spectrum. This report describes the methods, analyses, and conclusions of the geological modeling team with respect to a geological and statistical model of fractures and minor deformation zones (henceforth referred to as the geological DFN), version 2.2, at the Forsmark site. The geological DFN builds upon the work of other geological modelers, including the deformation zone (DZ), rock domain (RD), and fracture domain (FD) models. The geological DFN is a statistical model for stochastically simulating rock fractures and minor deformation zones as a scale of less than 1,000 m (the lower cut-off of the DZ models). The geological DFN is valid within four specific fracture domains inside the local model region, and encompassing the candidate volume at Forsmark: FFM01, FFM02, FFM03, and FFM06. The models are build using data from detailed surface outcrop maps and the cored borehole record at Forsmark. The conceptual model for the Forsmark 2.2 geological revolves around the concept of orientation sets; for each fracture domain, other model parameters such as size and intensity are tied to the orientation sets. Two classes of orientation sets were described; Global sets, which are encountered everywhere in the model region, and Local sets, which represent highly localized stress environments. Orientation sets were described in terms of their general cardinal direction (NE, NW, etc). Two alternatives are presented for fracture size modeling: - the tectonic continuum approach (TCM, TCMF) described by coupled size-intensity scaling following power law distributions

  17. Statistical geological discrete fracture network model. Forsmark modelling stage 2.2

    Fox, Aaron; La Pointe, Paul [Golder Associates Inc (United States); Simeonov, Assen [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Hermanson, Jan; Oehman, Johan [Golder Associates AB, Stockholm (Sweden)

    2007-11-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site characterization at two different locations, Forsmark and Laxemar, in order to locate a site for a final geologic repository for spent nuclear fuel. The program is built upon the development of Site Descriptive Models (SDMs) at specific timed data freezes. Each SDM is formed from discipline-specific reports from across the scientific spectrum. This report describes the methods, analyses, and conclusions of the geological modeling team with respect to a geological and statistical model of fractures and minor deformation zones (henceforth referred to as the geological DFN), version 2.2, at the Forsmark site. The geological DFN builds upon the work of other geological modelers, including the deformation zone (DZ), rock domain (RD), and fracture domain (FD) models. The geological DFN is a statistical model for stochastically simulating rock fractures and minor deformation zones as a scale of less than 1,000 m (the lower cut-off of the DZ models). The geological DFN is valid within four specific fracture domains inside the local model region, and encompassing the candidate volume at Forsmark: FFM01, FFM02, FFM03, and FFM06. The models are build using data from detailed surface outcrop maps and the cored borehole record at Forsmark. The conceptual model for the Forsmark 2.2 geological revolves around the concept of orientation sets; for each fracture domain, other model parameters such as size and intensity are tied to the orientation sets. Two classes of orientation sets were described; Global sets, which are encountered everywhere in the model region, and Local sets, which represent highly localized stress environments. Orientation sets were described in terms of their general cardinal direction (NE, NW, etc). Two alternatives are presented for fracture size modeling: - the tectonic continuum approach (TCM, TCMF) described by coupled size-intensity scaling following power law distributions

  18. The World's Reactors no. 70 - Forsmark 3, BWR-75

    Anon.

    1976-01-01

    A large pull-out wall chart is presented showing a coloured cut-away diagram of the Forsmark 3 station. It is accompanied by 2 small sketches one showing the layout of station buildings and the other the inside of the reactor vessel. Parameters are listed. (U.K.)

  19. Subsidence analysis Forsmark nuclear power plant - unit 1

    Bono, Nancy; Fredriksson, Anders; Maersk Hansen, Lars

    2010-12-01

    On behalf of SKB, Golder Associates Ltd carried out a risk analysis of subsidence during Forsmark nuclear power plant in the construction of the final repository for spent nuclear fuel near and below existing reactors. Specifically, the effect of horizontal cracks have been studied

  20. Long Term Sorption Diffusion Experiment (LTDE-SD). Supporting laboratory program - Sorption diffusion experiments and rock material characterisation. With supplement of adsorption studies on intact rock samples from the Forsmark and Laxemar site investigations

    Widestrand, Henrik; Byegaard, Johan; Selnert, Eva; Skaalberg, Mats; Hoeglund, Susanne; Gustafsson, Erik (Geosigma AB, Uppsala (Sweden))

    2010-12-15

    The LTDE-SD experiment, (Long Term Sorption Diffusion Experiment) aims at increasing the scientific knowledge of sorption and diffusion under in situ conditions and to provide data for performance and safety assessment calculations. In this report, performance and results of laboratory sorption and diffusion experiments and porosity investigations using site-specific crushed and intact rock materials are presented, including a geological and mineralogical characterization of the samples. A synthetic groundwater and a part of the radionuclide tracer cocktail that was used for the in situ experiment were used also in the laboratory experiments. 13 radionuclide tracers were analysed in the laboratory experiments. The method descriptions from SKB Site Investigations were applied in order to enable comparisons with Site Investigations data. The water saturation porosity of 10 unaltered matrix rock samples from KA3065A02 and A03 is 0.26 +- 0.08% and two fracture material samples show porosities of 2.4% and 5.2% respectively. 14C-methylmethacrylate impregnation (the PMMA-method) show that the unaltered rock matrix porosity is relatively homogeneous with grain boundary porosity, while the porosity of fracture samples is heterogeneous and have increased porosity up to more than 10% in some parts. Through-diffusion experiments using tritiated water (H3HO) give a matrix diffusivity in the range from 2.7centre dot10-14 to 6.5centre dot10-14 m2/s in four samples from KA3065A02 and A03. The results of the porosity and diffusion measurements are coherent in ranges with earlier LTDE-SD measurements and are also in line with the SKB Site Investigations results. In the batch sorption experiments using crushed rock material, two matrix rock samples of Aevroe granodiorite, one red-stained altered Aevroe granodiorite sample and two chlorite-calcite dominated fracture samples were analysed for three different size fractions as a function of time up to 186 days contact time. The

  1. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J.P.; Ritter, Daniel J.; McIntosh, Jennifer C.; Clark, Arthur C.; Ruppert, Leslie F.; Cunningham, Alfred B.; Vinson, David S.; Orem, William H.; Fields, Matthew W.

    2016-01-01

    Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulic conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112 to 120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ13C values (−67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO3−, or SO42−. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situbacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down

  2. Input and turnover of forest tree litter in the Forsmark and Oskarshamn areas

    Mjoefors, Kristina; Johansson, Maj-Britt; Nilsson, Aake [Dept. of Forest Soi ls, Swedish Univ. of Agricultural Sciences (Sweden); Hyvoenen, Riitta [Dept. of Eco logy, Swedish Univ. of Agricultural Sciences (Sweden)

    2007-04-15

    The site investigations reported here were conducted to provide data for the comprehensive descriptive ecosystem model that is being constructed. This report provides estimates of annual inputs of aboveground litter from trees (dry mass and amounts of C and N), litter decomposition rates and changes in organic and inorganic components in litter during decomposition. The study in the Forsmark area comprised two Norway spruce (Picea abies (L.) Karst) stands (sites F1 and F3), and a mixed stand of Norway spruce and alder (Alnus glutinosa (L.) Gaertn.) (site F2). The study in the Oskarshamn area comprised one common oak stand (Quercus robur L.) (site O1), one Scots pine stand (Pinus silvestris L.) (site O2) and one Norway spruce stand (site O3). In the Forsmark area, the aboveground litterfall from trees was of similar magnitude at sites F1 and F2, but considerably lower at site F3. At the former sites the average annual litterfall amounted to 195 and 231 gdw/m{sup 2} respectively, whereas the latter site received only 136 gdw/m{sup 2}. There was also a large variation in annual litterfall between stands in the Oskarshamn area. The spruce stand at site O3 exhibited the highest litterfall (almost 400 gdw/m{sup 2}), followed by the oak stand at site O1 (with almost 300 gdw/m{sup 2}), whereas the pine stand at site O2 had the lowest (less than 150 gdw/m{sup 2}). The proportion of needles/leaves in the total litterfall varied between 65% and 75% for the stands. The amount of carbon (C) returned in aboveground litterfall amounted to between 60 and 110 gdw/m{sup 2}/yr at the forest sites within the Forsmark area. The corresponding range for the sites in the Oskarshamn area was 70 to 190 gdw/m{sup 2}/yr. At sites O1 and O2 in Oskarshamn, about 3.6 gdw/m{sup 2}/yr of nitrogen (N) were returned annually to the forest floor by the aboveground litterfall. This was over four times the N amount deposited in the Scots pine stand in the same area (about 0.8 gdw/m{sup 2}/yr). At the

  3. Input and turnover of forest tree litter in the Forsmark and Oskarshamn areas

    Mjoefors, Kristina; Johansson, Maj-Britt; Nilsson, Aake; Hyvoenen, Riitta

    2007-04-01

    The site investigations reported here were conducted to provide data for the comprehensive descriptive ecosystem model that is being constructed. This report provides estimates of annual inputs of aboveground litter from trees (dry mass and amounts of C and N), litter decomposition rates and changes in organic and inorganic components in litter during decomposition. The study in the Forsmark area comprised two Norway spruce (Picea abies (L.) Karst) stands (sites F1 and F3), and a mixed stand of Norway spruce and alder (Alnus glutinosa (L.) Gaertn.) (site F2). The study in the Oskarshamn area comprised one common oak stand (Quercus robur L.) (site O1), one Scots pine stand (Pinus silvestris L.) (site O2) and one Norway spruce stand (site O3). In the Forsmark area, the aboveground litterfall from trees was of similar magnitude at sites F1 and F2, but considerably lower at site F3. At the former sites the average annual litterfall amounted to 195 and 231 gdw/m 2 respectively, whereas the latter site received only 136 gdw/m 2 . There was also a large variation in annual litterfall between stands in the Oskarshamn area. The spruce stand at site O3 exhibited the highest litterfall (almost 400 gdw/m 2 ), followed by the oak stand at site O1 (with almost 300 gdw/m 2 ), whereas the pine stand at site O2 had the lowest (less than 150 gdw/m 2 ). The proportion of needles/leaves in the total litterfall varied between 65% and 75% for the stands. The amount of carbon (C) returned in aboveground litterfall amounted to between 60 and 110 gdw/m 2 /yr at the forest sites within the Forsmark area. The corresponding range for the sites in the Oskarshamn area was 70 to 190 gdw/m 2 /yr. At sites O1 and O2 in Oskarshamn, about 3.6 gdw/m 2 /yr of nitrogen (N) were returned annually to the forest floor by the aboveground litterfall. This was over four times the N amount deposited in the Scots pine stand in the same area (about 0.8 gdw/m 2 /yr). At the Forsmark sites, the N return in

  4. Olkiluoto hydrogeochemistry. A 3-D modelling approach for sparce data set

    Luukkonen, A.; Partamies, S.; Pitkaenen, P.

    2003-07-01

    Olkiluoto at Eurajoki has been selected as a candidate site for final disposal repository for the used nuclear waste produced in Finland. In the long term safety assessment, one of the principal evaluation tools of safe disposal is hydrogeochemistry. For assessment purposes Posiva Oy excavates in the Olkiluoto bedrock an underground research laboratory (ONKALO). The complexity of the groundwater chemistry is characteristic to the Olkiluoto site and causes a demand to examine and visualise these hydrogeochemical features in 3-D together with the structural model. The need to study the hydrogeochemical features is not inevitable only in the stable undisturbed (pre-excavational) conditions but also in the disturbed system caused by the construction activities and open-tunnel conditions of the ONKALO. The present 3-D approach is based on integrating the independently and separately developed structural model and the results from the geochemical mixing calculations of the groundwater samples. For spatial geochemical regression purposes the study area is divided into four primary sectors on the basis of the occurrence of the samples. The geochemical information within the four primary sector are summed up in the four sector centroids that sum-up the depth distributions of the different water types within each primary sector area. The geographic locations of the centroids are used for secondary division of the study area into secondary sectors. With the aid of secondary sectors spatial regressions between the centroids can be calculated and interpolation of water type fractions within the centroid volume becomes possible. Similarly, extrapolations outside the centroid volume are possible as well. The mixing proportions of the five detected water types in an arbitrary point in the modelling volume can be estimated by applying the four centroids and by using lateral linear regression. This study utilises two separate data sets: the older data set and the newer data set. The

  5. Hydrogeochemistry of karst underground waters at shallow depth in Guiyang City, Guizhou Province

    DONG Zhifen; ZHU Lijun; WU Pan; SHEN Zheng; FENG Zhiyong

    2005-01-01

    The aim of this study is to shed light on the hydrogeochemical characteristics of karst underground waters at shallow depth in Guiyang City, Guizhou Province with an emphasis on the geochemistry of major elements. Guiyang City bears abundant underground waters and it is also an important representative of the karst areas throughout the world. Ca 2+ and Mg 2+ are the dominant cations, accounting for 81%- 99.7% of the total, and HCO -3 and SO 2- 4 are the dominant anions. Weathering of limestones and dolostones is the most important factor controlling the hydrogeochemistry of underground waters, and weathering of sulfate and evaporite rocks is less important. Moreover, the precipitation and human activities also have a definite influence on the hydrogeochemistry of underground waters in the region studied.

  6. Thermal properties. Site descriptive modelling Forsmark - stage 2.2

    Back, Paer-Erik; Wrafter, John; Sundberg, Jan; Rosen, L ars

    2007-09-01

    The lithological data acquired from boreholes and mapping of the rock surface need to be reclassified into thermal rock classes, TRCs. The main reason is to simplify the simulations. The lithological data are used to construct models of the transition between different TRCs, thus describing the spatial statistical structure of each TRC. The result is a set of transition probability models that are used in the simulation of TRCs. The intermediate result of this first stochastic simulation is a number of realisations of the geology, each one equally probable. Based on the thermal data, a spatial statistical thermal model is constructed for each TRC. It consists of a statistical distribution and a variogram for each TRC. These are used in the stochastic simulation of thermal conductivity and the result is a number of equally probable realisations of thermal conductivity for the domain. In the next step, the realisations of TRCs (lithology) and thermal conductivity are merged, i.e. each realisation of geology is filled with simulated thermal conductivity values. The result is a set of realisations of thermal conductivity that considers both the difference in thermal properties between different TRCs, and the variability within each TRC. If the result is desired in a scale different from the simulation scale, i.e. the canister scale, upscaling of the realisations can be performed. The result is a set of equally probable realisations of thermal properties. The presented methodology was applied to rock domain RFM029 and RFM045. The main results are sets of realisations of thermal properties that can be used for further processing, most importantly for statistical analysis and numerical temperature simulations for the design of repository layout (distances between deposition holes). The main conclusions of the thermal modelling are: The choice of scale has a profound influence on the distribution of thermal conductivity values. The variance decreases and the lower tail percentiles increase significantly as the scale of observation increases from 1 m to 5 m. Best estimates of the 0.1 percentile of thermal conductivity are: Domain RFM029: 2.30 W/(m*K) for the 1 m scale and 2.87 W/(m*K) for the 5 m scale. omain RFM045: 2.25 W/(m*K) for the 1 m scale and 2.33 W/(m*K) for the 5 m scale. The discretisation error of amphibolite is believed to be the largest uncertainty for the 1 m scale for domain RFM029. This error results in conservative estimates (believed to be too low) of the lower percentiles. For other cases, the uncertainties associated with the spatial structure of TRCs (lithology) and the spatial statistical thermal models of each TRC are believed to be the most important ones. Low-conductive rocks, mainly amphibolite and the tonalitic varieties of granodiorite to tonalite are decisive for the lower tail of the thermal conductivity distribution of a domain. The shape of the tail is therefore mainly determined by how these rock types are modelled. One of the most important uncertainties for the result for domain RFM045 is how amphibolite was modelled. Based on relatively limited data, the typical lengths of amphibolite rock bodies are modelled as being significantly longer than in domain RFM029. This may have resulted in a too heavy lower tail of the distribution of thermal conductivity for domain RFM045. In conclusion, the resulting thermal models are judged to represent the modelled rock domains, but may overemphasise the importance of the low-conductive amphibolite

  7. Thermal properties. Site descriptive modelling Forsmark - stage 2.2

    Back, Paer-Erik; Wrafter, John; Sundberg, Jan [Geo Innova AB (Sweden); Rosen, L ars [Sweco Viak AB (Sweden)

    2007-09-15

    The lithological data acquired from boreholes and mapping of the rock surface need to be reclassified into thermal rock classes, TRCs. The main reason is to simplify the simulations. The lithological data are used to construct models of the transition between different TRCs, thus describing the spatial statistical structure of each TRC. The result is a set of transition probability models that are used in the simulation of TRCs. The intermediate result of this first stochastic simulation is a number of realisations of the geology, each one equally probable. Based on the thermal data, a spatial statistical thermal model is constructed for each TRC. It consists of a statistical distribution and a variogram for each TRC. These are used in the stochastic simulation of thermal conductivity and the result is a number of equally probable realisations of thermal conductivity for the domain. In the next step, the realisations of TRCs (lithology) and thermal conductivity are merged, i.e. each realisation of geology is filled with simulated thermal conductivity values. The result is a set of realisations of thermal conductivity that considers both the difference in thermal properties between different TRCs, and the variability within each TRC. If the result is desired in a scale different from the simulation scale, i.e. the canister scale, upscaling of the realisations can be performed. The result is a set of equally probable realisations of thermal properties. The presented methodology was applied to rock domain RFM029 and RFM045. The main results are sets of realisations of thermal properties that can be used for further processing, most importantly for statistical analysis and numerical temperature simulations for the design of repository layout (distances between deposition holes). The main conclusions of the thermal modelling are: The choice of scale has a profound influence on the distribution of thermal conductivity values. The variance decreases and the lower tail percentiles increase significantly as the scale of observation increases from 1 m to 5 m. Best estimates of the 0.1 percentile of thermal conductivity are: Domain RFM029: 2.30 W/(m*K) for the 1 m scale and 2.87 W/(m*K) for the 5 m scale. omain RFM045: 2.25 W/(m*K) for the 1 m scale and 2.33 W/(m*K) for the 5 m scale. The discretisation error of amphibolite is believed to be the largest uncertainty for the 1 m scale for domain RFM029. This error results in conservative estimates (believed to be too low) of the lower percentiles. For other cases, the uncertainties associated with the spatial structure of TRCs (lithology) and the spatial statistical thermal models of each TRC are believed to be the most important ones. Low-conductive rocks, mainly amphibolite and the tonalitic varieties of granodiorite to tonalite are decisive for the lower tail of the thermal conductivity distribution of a domain. The shape of the tail is therefore mainly determined by how these rock types are modelled. One of the most important uncertainties for the result for domain RFM045 is how amphibolite was modelled. Based on relatively limited data, the typical lengths of amphibolite rock bodies are modelled as being significantly longer than in domain RFM029. This may have resulted in a too heavy lower tail of the distribution of thermal conductivity for domain RFM045. In conclusion, the resulting thermal models are judged to represent the modelled rock domains, but may overemphasise the importance of the low-conductive amphibolite.

  8. Lessons from the Forsmark 1 event in Sweden

    Jorle, A.

    2007-01-01

    A short circuit at a switchyard broke some of the safety chains in the reactor safety system and created a difficult situation in the control room at the Forsmark 1 power plant in Sweden. After a scram two of four diesel generators failed to deliver power but the reactor could safely be controlled through remaining two systems and power could be distributed from external grid after 22 minutes. Surveillance systems in the control room also failed and the situation at the reactor was unclear. Analysis shows that there was never a risk to the public and no damage on the core. The incident exposed unknown weakness in the power supply systems of the reactor. Also it was found that maintenance had failed and some components were not properly installed. The regulator identified the problem as a serious failure but did not at once realize the public impact. The licensee was late in its decision making and did only publish local press releases that did not fully expose the nature of the incident. After some days an independent expert claimed that a core melt was a close possibility. He was widely quoted and created a media impact many European countries. In the light of the incident problems with safety culture was identified at the plant and additional findings showed problems in the management system of Forsmark. Growing media interest culminated in January when a critical internal report from staff members in Forsmark was made public. Some lessons learnt: - Media activity followed well-known patterns. - The regulator was an important source for media. - Regulator not fired upon until January, after a long autumn filled with negative reporting on Forsmark. - The plant was not proactive in its communication which created a problem for the regulator. (author)

  9. Groundwater flow modelling of the excavation and operational phases - Forsmark

    Svensson, Urban; Follin, Sven

    2010-07-01

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different climate conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study reported here presents calculated inflow rates, drawdown of the groundwater table and upconing of deep saline water for different levels of grouting efficiency during the excavation and operational phases of a final repository at Forsmark. The inflow calculations are accompanied by a sensitivity study, which among other matters handles the impact of parameter heterogeneity, different deposition hole rejection criteria, and the SFR facility (the repository for short-lived radioactive waste located approximately 1 km to the north of the investigated candidate area for a final repository at Forsmark). The report also presents tentative modelling results for the duration of the saturation phase, which starts once the used parts of the repository are being backfilled

  10. Environmental monitoring at the Forsmark nuclear power plant

    Sandstroem, O.

    1991-01-01

    The use of cooling water at such large power plants as Forsmark creates a considerable hazard for fish in the intake area, as they may be transported into the plant and killed. Several millions of Baltic herring and three-spined stickleback are lost each year at the intake screens. A release of cooling water to an open sea area is generally considered as a minor environmental problem, a presumption so far not contradicated by the results from the monitoring studies at Forsmark. In the Biotest basin, however, where the exposure to heat is maximal, a long series of effects ultimately changing populations of plants, benthic animals and fish have been documented. One important conclusion after ten years of studies in a heated Biotest basin, is that ecosystem stability seems to need very long time to be established, if it ever will. The monitoring of radioactivity controls the quality of the fish as food but is also directed to select special species accumulating these elements, bladder wrack etc. At Forsmark only small amounts of radionuclides from the plant so far have been detected in the marine environment. (KAE)

  11. Groundwater flow modelling of the excavation and operational phases - Forsmark

    Svensson, Urban (Computer-aided Fluid Engineering AB, Lyckeby (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden))

    2010-07-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different climate conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The modelling study reported here presents calculated inflow rates, drawdown of the groundwater table and upconing of deep saline water for different levels of grouting efficiency during the excavation and operational phases of a final repository at Forsmark. The inflow calculations are accompanied by a sensitivity study, which among other matters handles the impact of parameter heterogeneity, different deposition hole rejection criteria, and the SFR facility (the repository for short-lived radioactive waste located approximately 1 km to the north of the investigated candidate area for a final repository at Forsmark). The report also presents tentative modelling results for the duration of the saturation phase, which starts once the used parts of the repository are being backfilled.

  12. Repository for spent nuclear fuel. Plant description layout D - Forsmark

    2010-07-01

    This document describes the final repository for spent nuclear fuel, SFK, which is located at Forsmark, in Oesthammar. The bedrock at the site is part of a so-called tectonic lens, in which the rock composition is relatively homogeneous and less deformed than outside the lens. The bedrock consists mainly of granite with high quartz content and good thermal conductivity. The central parts above ground are grouped in an operations area, located at the Soederviken on the south side of the intake duct for cooling water for nuclear power plant. Operating area is divided into an internal, secured portion, where the canisters of fuel are handled and there are links to the underground part, and a outer part, where the buffer, backfill and sealing used in the repository's barriers are produced. The above-ground part of the plant and also include storage of excavated rock, ventilation stations, and supplies of bentonite. The underground portion consists of a central area and a storage area. Caverns of the central area contain features for the underground operation. It communicates with the internal operating range above ground via a spiral ramp and several shafts. The ramp used to transport capsules of spent fuel and other heavy or bulky transport. The shafts are used to transport rock, buffer, backfill and staff, as well as for ventilation. The largest part of the space below ground is the repository where the canisters with the spent fuel are disposed. The capsules are deposited in vertical holes in the tunnels. When the deposit in a tunnel is complete, the tunnel is re-filled. The two main activities underground is rock work and disposal work, which are conducted separately from each other. Rock works covers all steps required to excavate tunnels and drill deposition holes, as well as to make temporary installations in the tunnels. To the landfill works count, besides the deposit of the capsule, the placement of the bentonite buffer in the deposition hole and backfilling

  13. Investigation of discrete-fracture network conceptual model uncertainty at Forsmark

    Geier, Joel

    2011-04-01

    In the present work a discrete fracture model has been further developed and implemented using the latest SKB site investigation data. The model can be used for analysing the fracture network and to model flow through the rock in Forsmark. The aim has been to study uncertainties in the hydrological discrete fracture network (DFN) for the repository model. More specifically the objective has been to study to which extent available data limits uncertainties in the DFN model and how data that can be obtained in future underground work can further limit these uncertainties. Moreover, the effects on deposition hole utilisation and placement have been investigated as well as the effects on the flow to deposition holes

  14. Mineralogy and geochemistry of rocks and fracture fillings from Forsmark and Oskarshamn: Compilation of data for SR-Can

    Drake, Henrik; Sandstroem, Bjoern [Isochron GeoConsulting HB, Goeteborg (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden)

    2006-11-15

    This report is a compilation of the so far available data for the safety assessment SR-Can carried out by SKB. The data consists of mineralogy, geochemistry, porosity, density and redox properties for both dominating rock types and fracture fillings at the Forsmark and Oskarshamn candidate areas. In addition to the compilation of existing information, the aim has been to identify missing data and to clarify some conception of e.g. deformation zones. The objective of the report is to present the available data requested for the modelling of the chemical stability of the two sites. The report includes no interpretation of the data.

  15. Presentation of safety after closure of the repository for spent nuclear fuel. Main report of the project SR-Site. Part I; Redovisning av saekerhet efter foerslutning av slutfoervaret foer anvaent kaernbraensle. Huvudrapport fraan projekt SR-Site. Del I

    2011-07-01

    The purpose of the safety assessment SR-Site is to investigate whether a safe repository for spent nuclear fuel by KBS-3 type can be constructed at Forsmark in Oesthammar in Sweden. The location of the Forsmark has been selected based on results of several surveys from surface conditions at depth in Forsmark and in Laxemar in Oskarshamn. The choice of location is not justified in SR-Site Report, but in other attachments to SKB's permit applications. SR-Site Report is an important part of SKB's permit applications to construct and operate a repository for spent nuclear fuel at Forsmark in Oesthammar. The purpose of the report in the applications is to show that a repository at Forsmark is safe after closure

  16. Presentation of safety after closure of the repository for spent nuclear fuel. Main report of the project SR-Site. Part II; Redovisning av saekerhet efter foerslutning av slutfoervaret foer anvaent kaernbraensle. Huvudrapport fraan projekt SR-Site. Del II

    2011-07-01

    The purpose of the safety assessment SR-Site is to investigate whether a safe repository for spent nuclear fuel by KBS-3 type can be constructed at Forsmark in Oesthammar in Sweden. The location of the Forsmark has been selected based on results of several surveys from surface conditions at depth in Forsmark and in Laxemar in Oskarshamn. The choice of location is not justified in SR-Site Report, but in other attachments to SKB's permit applications. SR-Site Report is an important part of SKB's permit applications to construct and operate a repository for spent nuclear fuel at Forsmark in Oesthammar. The purpose of the report in the applications is to show that a repository at Forsmark is safe after closure

  17. Presentation of safety after closure of the repository for spent nuclear fuel. Main report of the project SR-Site. Part III; Redovisning av saekerhet efter foerslutning av slutfoervaret foer anvaent kaernbraensle. Huvudrapport fraan projekt SR-Site. Del III

    2011-07-01

    The purpose of the safety assessment SR-Site is to investigate whether a safe repository for spent nuclear fuel by KBS-3 type can be constructed at Forsmark in Oesthammar in Sweden. The location of the Forsmark has been selected based on results of several surveys from surface conditions at depth in Forsmark and in Laxemar in Oskarshamn. The choice of location is not justified in SR-Site Report, but in other attachments to SKB's permit applications. SR-Site Report is an important part of SKB's permit applications to construct and operate a repository for spent nuclear fuel at Forsmark in Oesthammar. The purpose of the report in the applications is to show that a repository at Forsmark is safe after closure

  18. Repository for spent nuclear fuel. Plant description layout D - Forsmark; Slutfoervarsanlaeggning foer anvaent kaernbraensle. Anlaeggningsbeskrivning layout D - Forsmark

    2010-07-15

    This document describes the final repository for spent nuclear fuel, SFK, which is located at Forsmark, in Oesthammar. The bedrock at the site is part of a so-called tectonic lens, in which the rock composition is relatively homogeneous and less deformed than outside the lens. The bedrock consists mainly of granite with high quartz content and good thermal conductivity. The central parts above ground are grouped in an operations area, located at the Soederviken on the south side of the intake duct for cooling water for nuclear power plant. Operating area is divided into an internal, secured portion, where the canisters of fuel are handled and there are links to the underground part, and a outer part, where the buffer, backfill and sealing used in the repository's barriers are produced. The above-ground part of the plant and also include storage of excavated rock, ventilation stations, and supplies of bentonite. The underground portion consists of a central area and a storage area. Caverns of the central area contain features for the underground operation. It communicates with the internal operating range above ground via a spiral ramp and several shafts. The ramp used to transport capsules of spent fuel and other heavy or bulky transport. The shafts are used to transport rock, buffer, backfill and staff, as well as for ventilation. The largest part of the space below ground is the repository where the canisters with the spent fuel are disposed. The capsules are deposited in vertical holes in the tunnels. When the deposit in a tunnel is complete, the tunnel is re-filled. The two main activities underground is rock work and disposal work, which are conducted separately from each other. Rock works covers all steps required to excavate tunnels and drill deposition holes, as well as to make temporary installations in the tunnels. To the landfill works count, besides the deposit of the capsule, the placement of the bentonite buffer in the deposition hole and

  19. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    Stephens, Michael B.; Bergman, Torbjoern (Geological Survey of Sweden, Uppsala (Sweden)); Isaksson, Hans (GeoVista AB, Luleaa (Sweden)); Petersson, Jesper (SwedPower AB, Stockholm (Sweden))

    2008-12-15

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  20. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    Stephens, Michael B.; Bergman, Torbjoern; Isaksson, Hans; Petersson, Jesper

    2008-12-01

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  1. Olkiluoto site description 2011

    2012-12-01

    This fourth version of the Olkiluoto Site Report, produced by the OMTF (Olkiluoto Modelling Task Force), updates the Olkiluoto Site Report 2008 with the data and knowledge obtained up to December 2010. A descriptive model of the site (the Site Descriptive Model, SDM), i.e. a model describing the geological and hydrogeological structure of the site, properties of the bedrock and the groundwater and its flow, and the associated interacting processes and mechanisms. The SDM is divided into six parts: surface system, geology, rock mechanics, hydrogeology, hydrogeochemistry and transport properties

  2. Olkiluoto site description 2011

    NONE

    2012-12-15

    This fourth version of the Olkiluoto Site Report, produced by the OMTF (Olkiluoto Modelling Task Force), updates the Olkiluoto Site Report 2008 with the data and knowledge obtained up to December 2010. A descriptive model of the site (the Site Descriptive Model, SDM), i.e. a model describing the geological and hydrogeological structure of the site, properties of the bedrock and the groundwater and its flow, and the associated interacting processes and mechanisms. The SDM is divided into six parts: surface system, geology, rock mechanics, hydrogeology, hydrogeochemistry and transport properties.

  3. Final repository for spent nuclear fuel. Underground design Forsmark, Layout D1

    Brantberger, Martin; Zetterqvist, Anders; Arnbjerg-Nielsen, Torben; Olsson, Tommy; Outters, Nils; Syrjaenen, Pauli

    2006-04-01

    This report comprises the design step D1 related to the underground design for a deep repository located at the Forsmark site. The design is based on the Site Descriptive Model Forsmark v1.2. All studies have been focussed at an area southeast of the Forsmark nuclear plant, which has been considered to be the most promising area for hosting the repository. SKB has developed guidelines for the design of the repository, which further describes the methodology applied for the studies. From these guidelines the following basic objectives for the design step D1 are summarized: to determine whether the final repository can be accommodated within the studied site; to identify site-specific facility critical issues; to test and evaluate the design methodology; to provide feedback to: the design organisation regarding additional studies that needs to be done; the site investigation and modelling organization regarding further investigations required; and the safety assessment team. The possible locations for a tentative deep repository are analysed in Chapter 3 of the report. The most promising area for the repository (denoted 'priority site') has been defined by SKB to be located southeast of the Forsmark nuclear plant and northwest of the gently dipping deformation zone ZFMNE00A2. Regarding the repository depth, present knowledge acquired from the site investigations indicates that it is possible to locate the repository at all stipulated depths according to SKB, that is between 400 m and 700 m depth. The preliminary assessment made in Chapter 3 clearly demonstrates that the repository can be accommodated within the 'priority site'. The potential to accommodate the repository is essentially the same for both 400 m and 500 m depths. The design of the deposition areas is reported in Chapter 4, which includes the design of layout features for all tunnels and deposition holes, orientation of tunnels, calculation of anticipated loss of deposition holes due to the applied

  4. Final repository for spent nuclear fuel. Underground design Forsmark, Layout D1

    Brantberger, Martin; Zetterqvist, Anders [Ramboell Sweden AB, Stockholm (Sweden); Arnbjerg-Nielsen, Torben [Ramboell Denmark A/S, Virum (Denmark); Olsson, Tommy [IandT Olsson AB, Uppsala (Sweden); Outters, Nils [Golder Associates AB, Uppsala (Sweden); Syrjaenen, Pauli [Gridpoint Oy, Helsinki (Sweden)

    2006-04-15

    This report comprises the design step D1 related to the underground design for a deep repository located at the Forsmark site. The design is based on the Site Descriptive Model Forsmark v1.2. All studies have been focussed at an area southeast of the Forsmark nuclear plant, which has been considered to be the most promising area for hosting the repository. SKB has developed guidelines for the design of the repository, which further describes the methodology applied for the studies. From these guidelines the following basic objectives for the design step D1 are summarized: to determine whether the final repository can be accommodated within the studied site; to identify site-specific facility critical issues; to test and evaluate the design methodology; to provide feedback to: the design organisation regarding additional studies that needs to be done; the site investigation and modelling organization regarding further investigations required; and the safety assessment team. The possible locations for a tentative deep repository are analysed in Chapter 3 of the report. The most promising area for the repository (denoted 'priority site') has been defined by SKB to be located southeast of the Forsmark nuclear plant and northwest of the gently dipping deformation zone ZFMNE00A2. Regarding the repository depth, present knowledge acquired from the site investigations indicates that it is possible to locate the repository at all stipulated depths according to SKB, that is between 400 m and 700 m depth. The preliminary assessment made in Chapter 3 clearly demonstrates that the repository can be accommodated within the 'priority site'. The potential to accommodate the repository is essentially the same for both 400 m and 500 m depths. The design of the deposition areas is reported in Chapter 4, which includes the design of layout features for all tunnels and deposition holes, orientation of tunnels, calculation of anticipated loss of deposition holes due

  5. Quantitative assessment of radionuclide retention in the near-surface system at Forsmark. Development of a reactive transport model using Forsmark 1.2 data

    Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi

    2007-12-01

    The main objective of this work is to assess the migration behaviour of selected long-lived radionuclides through the near-surface system of Forsmark, with special focus on the evaluation of the capacity of the Quaternary deposits and sediments for radionuclide retention. The work reported here is based on data and information from Forsmark Site Descriptive Model version 1.2. From the geological point of view, the near-surface systems in the Forsmark area consist of Quaternary deposits and sediments that overlay the granitic bedrock. Glacial till is the more abundant outcropping Quaternary deposit and the remainder is made of clayey deposits. These types of near-surface sediments show distinctive hydraulic and geochemical features. The main reactive mineral in the till deposits, for the time horizons considered in this work, is calcium carbonate together with minor amounts of clay minerals (e.g. illite). The till deposits forms aquifers with relatively high hydraulic conductivities. In contrast, glacial and post-glacial clays are basically composed of illite with low to very low amounts of calcium carbonate, and containing organic matter-rich layers (gyttja), which can promote reducing conditions in the porewaters. All these clays exhibits relatively low hydraulic conductivity values. Five radionuclides have been selected for conceptualization and qualitative evaluation of retention process: U as an actinide, Se as a redox-sensitive radionuclide, Cs as a monovalent cation, Sr as a divalent cation, and I as an anion radionuclide. Overall, radionuclide retention capacity in the surface systems at Forsmark can be provided by sorption on charged surfaces of clays and oxyhydroxides, co-precipitation with sulphates, sulphides, oxyhydroxides and carbonates, and sorption on organic matter. Two-dimensional coupled hydrogeological and reactive solute transport models have been developed to simulate the geochemical behaviour of U, Cs and Sr. These three radionuclides have

  6. Hydrogeological conceptual model development and numerical modelling using CONNECTFLOW, Forsmark modelling stage 2.3

    Follin, Sven (SF GeoLogic AB, Taeby (Sweden)); Hartley, Lee; Jackson, Peter; Roberts, David (Serco TAP (United Kingdom)); Marsic, Niko (Kemakta Konsult AB, Stockholm (Sweden))

    2008-05-15

    Three versions of a site descriptive model (SDM) have been completed for the Forsmark area. Version 0 established the state of knowledge prior to the start of the site investigation programme. Version 1.1 was essentially a training exercise and was completed during 2004. Version 1.2 was a preliminary site description and concluded the initial site investigation work (ISI) in June 2005. Three modelling stages are planned for the complete site investigation work (CSI). These are labelled stage 2.1, 2.2 and 2.3, respectively. An important component of each of these stages is to address and continuously try to resolve discipline-specific uncertainties of importance for repository engineering and safety assessment. Stage 2.1 included an updated geological model for Forsmark and aimed to provide a feedback from the modelling working group to the site investigation team to enable completion of the site investigation work. Stage 2.2 described the conceptual understanding and the numerical modelling of the bedrock hydrogeology in the Forsmark area based on data freeze 2.2. The present report describes the modelling based on data freeze 2.3, which is the final data freeze in Forsmark. In comparison, data freeze 2.3 is considerably smaller than data freeze 2.2. Therefore, stage 2.3 deals primarily with model confirmation and uncertainty analysis, e.g. verification of important hypotheses made in stage 2.2 and the role of parameter uncertainty in the numerical modelling. On the whole, the work reported here constitutes an addendum to the work reported in stage 2.2. Two changes were made to the CONNECTFLOW code in stage 2.3. These serve to: 1) improve the representation of the hydraulic properties of the regolith, and 2) improve the conditioning of transmissivity of the deformation zones against single-hole hydraulic tests. The changes to the modelling of the regolith were made to improve the consistency with models made with the MIKE SHE code, which involved the introduction

  7. Soil carbon effluxes in ecosystems of Forsmark and Laxemar

    Tagesson, Torbern (Dept. of Physical Geography and Ecosystem Analysis, Lund Univ. (Sweden))

    2007-12-15

    Soil carbon effluxes were estimated in a number of ecosystems in Laxemar and Forsmark investigations areas. It was done in a young Scots pine (Pinus sylvestris) stand, a wet deciduous stand, a poor fen and an agricultural field in the Laxemar investigation area in south-eastern Sweden (57 deg 5 min N, 16 deg 7 min E) and in a pasture, two Norway spruce (Picea abies) stands, a deciduous forest, a mire, a wet deciduous forest and a clear-cut in the Forsmark investigation area (60 deg 4 min N, 18 deg 2 min E). It was measured with the closed chamber technique in 2005 and 2006. Soil temperature at 10 cm depth, air temperature and photosynthetically active radiation (PAR) were also measured. Exponential regressions with soil respiration against air and soil temperature were used to estimate annual soil respiration. A hyperbolic curve with Gross Primary Production (GPP) against PAR was used for modelling GPP for the growing season in the poor fen and the agricultural area of Laxemar. The exponential regressions with soil respiration against air and soil temperature explained on average 33.6% and 44.0% of the variation, respectively. GPP of the ground vegetation were reducing soil carbon effluxes, in all stands but one of the spruce stands, the deciduous forest, the mire and the wet deciduous forest of Forsmark. The significant (all but spruce 2 in Forsmark) curves with GPP against PAR explained on average 22.7% of the variation in GPP. The cubic regressions with GPP against air temperature were only significant for the poor fen and the agricultural field in Laxemar and it explained on average 34.8% of the variation in GPP for these ecosystems. The exponential regressions with air and soil temperature against soil respiration could be used to temporally extrapolate the occasional field measurements. The hyperbolic curve with GPP against PAR could also be used for temporal extrapolation of GPP for the ecosystems without a tree layer, i.e. the poor fen and the agricultural

  8. Soil carbon effluxes in ecosystems of Forsmark and Laxemar

    Tagesson, Torbern

    2007-12-01

    Soil carbon effluxes were estimated in a number of ecosystems in Laxemar and Forsmark investigations areas. It was done in a young Scots pine (Pinus sylvestris) stand, a wet deciduous stand, a poor fen and an agricultural field in the Laxemar investigation area in south-eastern Sweden (57 deg 5 min N, 16 deg 7 min E) and in a pasture, two Norway spruce (Picea abies) stands, a deciduous forest, a mire, a wet deciduous forest and a clear-cut in the Forsmark investigation area (60 deg 4 min N, 18 deg 2 min E). It was measured with the closed chamber technique in 2005 and 2006. Soil temperature at 10 cm depth, air temperature and photosynthetically active radiation (PAR) were also measured. Exponential regressions with soil respiration against air and soil temperature were used to estimate annual soil respiration. A hyperbolic curve with Gross Primary Production (GPP) against PAR was used for modelling GPP for the growing season in the poor fen and the agricultural area of Laxemar. The exponential regressions with soil respiration against air and soil temperature explained on average 33.6% and 44.0% of the variation, respectively. GPP of the ground vegetation were reducing soil carbon effluxes, in all stands but one of the spruce stands, the deciduous forest, the mire and the wet deciduous forest of Forsmark. The significant (all but spruce 2 in Forsmark) curves with GPP against PAR explained on average 22.7% of the variation in GPP. The cubic regressions with GPP against air temperature were only significant for the poor fen and the agricultural field in Laxemar and it explained on average 34.8% of the variation in GPP for these ecosystems. The exponential regressions with air and soil temperature against soil respiration could be used to temporally extrapolate the occasional field measurements. The hyperbolic curve with GPP against PAR could also be used for temporal extrapolation of GPP for the ecosystems without a tree layer, i.e. the poor fen and the agricultural

  9. Presentation of safety after closure of the repository for spent nuclear fuel. Main report of the project SR-Site. Part III

    2011-01-01

    The purpose of the safety assessment SR-Site is to investigate whether a safe repository for spent nuclear fuel by KBS-3 type can be constructed at Forsmark in Oesthammar in Sweden. The location of the Forsmark has been selected based on results of several surveys from surface conditions at depth in Forsmark and in Laxemar in Oskarshamn. The choice of location is not justified in SR-Site Report, but in other attachments to SKB's permit applications. SR-Site Report is an important part of SKB's permit applications to construct and operate a repository for spent nuclear fuel at Forsmark in Oesthammar. The purpose of the report in the applications is to show that a repository at Forsmark is safe after closure

  10. Presentation of safety after closure of the repository for spent nuclear fuel. Main report of the project SR-Site. Part I

    2011-01-01

    The purpose of the safety assessment SR-Site is to investigate whether a safe repository for spent nuclear fuel by KBS-3 type can be constructed at Forsmark in Oesthammar in Sweden. The location of the Forsmark has been selected based on results of several surveys from surface conditions at depth in Forsmark and in Laxemar in Oskarshamn. The choice of location is not justified in SR-Site Report, but in other attachments to SKB's permit applications. SR-Site Report is an important part of SKB's permit applications to construct and operate a repository for spent nuclear fuel at Forsmark in Oesthammar. The purpose of the report in the applications is to show that a repository at Forsmark is safe after closure

  11. Inventory of vegetation and benthos in newly laid and natural ponds in Forsmark 2012; Inventering av vegetation och bottenfauna i nyanlagda och naturliga goelar i Forsmark 2012

    Qvarfordt, Susanne; Wallin, Anders; Borgiel, Micke [Sveriges Vattenekologer AB, Vingaaker (Sweden)

    2013-01-15

    SKB plans to build a repository for the spent nuclear fuel. The repository is planned to be built in Forsmark and constitutes installations above and below ground. The building and operation of the construction will involve activities that might affect the nature in the area. The impact means, among other things, that a small water body, which today is a reproduction site for the red listed pool frog (Rana lessonae), will disappear. The lost locality for the pool frog has been compensated by creating four new ponds in the Forsmark area. This study is part of the follow-up of these new habitats. The aim is to describe the plant and animal communities in the ponds, and follow the succession, i.e. the development of the habitats. The study also includes two natural ponds that will serve as reference objects. The survey of vegetation and invertebrate fauna in the ponds was conducted in October 2012. The results show that the new ponds had low coverage of submersed vegetation and the species composition in the plant communities differed between the ponds. The reference ponds also had different plant communities, both in terms of species composition and coverage. This indicates that the species composition of the plant communities in the new ponds will likely depend on physical factors specific to the respective pond, but that higher vegetation coverage can be expected over time in all new ponds. The reference ponds had similar animal communities that differed from the animal communities in the new ponds. The similar species composition in the reference ponds, despite the variety of plant communities, suggests that similar animal communities are likely to develop in the new ponds, even if the plant communities continues to be different. Water chemical sampling has also been conducted in the ponds during 2012. A comparison of the inorganic environment (with regard to analysed ions) showed that the reference ponds had relatively similar ion compositions with little

  12. Assessment of site-scale hydrogeological modelling possibilities in crystalline hard rock for safety appraisal

    Geier, J. [Cleanwater Hardrock Consulting, Corvallis, OR (United States); Luukkonen, A.

    2012-09-15

    This review describes the state-of-the-art in hydrogeological modelling for safety-case studies related to spent-fuel repositories in crystalline hard rock, focusing on issues of relevance for the KBS-3 disposal concept in Nordic environments. The review includes a survey of model capabilities and assumptions regarding groundwater flow processes, geological and excavation-related features, and boundary conditions for temperate, periglacial, and glacial climates. Modelling approaches are compared for research sites including the Stripa mine (Sweden), the Grimsel Test Site (Switzerland), the Whiteshell Underground Research Laboratory (Canada), the Aspo Hard Rock Laboratory and Simpevarp-Laxemar site (Sweden), the Forsmark site (Sweden), the Waste Isolation Pilot Plant site (USA), and Olkiluoto (Finland). Current hydrogeological models allow realistic representations, but are limited by availability of data to constrain their properties. Examples of calibrations of stochastic representations of heterogeneity are still scarce. Integrated models that couple flow and non-reactive transport are now well established, particularly those based on continuum representations. Models that include reactive transport are still mainly in the realm of research tools. Thus far, no single software tool allows fully coupled treatment of all relevant thermal, hydraulic, mechanical, and chemical transport processes in the bedrock, together with climate-related physical processes at the ground surface, and with explicit treatment of bedrock heterogeneity. Hence practical applications require combinations of models based on different simplifications. Key improvements can be expected in treatment of the unsaturated zone, simulation of heterogeneous infiltration at the surface, and hydromechanical coupling. Significant advances have already been made in the amounts and types of data that can be used in site-scale models, including large datasets to define topography and other surface

  13. Hydrogeological DFN modelling using structural and hydraulic data from KLX04. Preliminary site description Laxemar subarea - version 1.2

    Follin, Sven [SF GeoLogic AB, Taeby (Sweden); Stigsson, Martin [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Svensson, Urban [Computer-aided Fluid Engineering AB, Norrkoeping (Sweden)

    2006-04-15

    SKB is conducting site investigations for a high-level nuclear waste repository in fractured crystalline rocks at two coastal areas in Sweden. The two candidate areas are named Forsmark and Simpevarp. The site characterisation work is divided into two phases, an initial site investigation phase (ISI) and a complete site investigation phase (CSI). The results of the ISI phase are used as a basis for deciding on the subsequent CSI phase. On the basis of the CSI investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft). An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model which provides the geometrical context in terms of a model of deformation zones and the less fractured rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other disciplines (surface ecosystems, hydrogeology, hydrogeochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models. The main objective of this study is to support the development of a hydrogeological DFN model (Discrete Fracture Network) for the Preliminary Site Description of the Laxemar area on a regional-scale (SDM version L1.2). A more specific objective of this study is to assess the propagation of uncertainties in the geological DFN modelling reported for L1.2 into the groundwater flow modelling. An improved understanding is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. The latter will serve as a basis for describing the present

  14. Hydrogeological DFN modelling using structural and hydraulic data from KLX04. Preliminary site description Laxemar subarea - version 1.2

    Follin, Sven; Stigsson, Martin; Svensson, Urban

    2006-04-01

    SKB is conducting site investigations for a high-level nuclear waste repository in fractured crystalline rocks at two coastal areas in Sweden. The two candidate areas are named Forsmark and Simpevarp. The site characterisation work is divided into two phases, an initial site investigation phase (ISI) and a complete site investigation phase (CSI). The results of the ISI phase are used as a basis for deciding on the subsequent CSI phase. On the basis of the CSI investigations a decision is made as to whether detailed characterisation will be performed (including sinking of a shaft). An integrated component in the site characterisation work is the development of site descriptive models. These comprise basic models in three dimensions with an accompanying text description. Central in the modelling work is the geological model which provides the geometrical context in terms of a model of deformation zones and the less fractured rock mass between the zones. Using the geological and geometrical description models as a basis, descriptive models for other disciplines (surface ecosystems, hydrogeology, hydrogeochemistry, rock mechanics, thermal properties and transport properties) will be developed. Great care is taken to arrive at a general consistency in the description of the various models and assessment of uncertainty and possible needs of alternative models. The main objective of this study is to support the development of a hydrogeological DFN model (Discrete Fracture Network) for the Preliminary Site Description of the Laxemar area on a regional-scale (SDM version L1.2). A more specific objective of this study is to assess the propagation of uncertainties in the geological DFN modelling reported for L1.2 into the groundwater flow modelling. An improved understanding is necessary in order to gain credibility for the Site Description in general and the hydrogeological description in particular. The latter will serve as a basis for describing the present

  15. Greenland Analogue Project - Hydraulic properties of deformation zones and fracture domains at Forsmark, Laxemar and Olkiluoto for usage together with Geomodel version 1

    Follin, Sven; Stigsson, Martin; Rhen, Ingvar; Engstroem, Jon; Klint, Knut Erik

    2011-05-01

    The database of the GAP site is under development. In order to meet the data needs of the different modelling teams working with groundwater flow modelling it has been decided to compile trial data sets comprising structural-hydraulic properties suitable for flow modelling on different scales. The properties provided in this report are based on data and groundwater flow modelling studies conducted for three sites located in the Fennoscandian Shield, two of which are studied by SKB, Forsmark and Laxemar, and one by Posiva, Olkiluoto. The provided hydraulic properties provided here are simplified to facilitate a readily usage together with the GAP Geomodel version 1

  16. Greenland Analogue Project - Hydraulic properties of deformation zones and fracture domains at Forsmark, Laxemar and Olkiluoto for usage together with Geomodel version 1

    Follin, Sven (SF GeoLogic AB (Sweden)); Stigsson, Martin (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Rhen, Ingvar (Sweco Environment AB (Sweden)); Engstroem, Jon (Geologian tutkimuskeskus (Finland)); Klint, Knut Erik (De Nationale Geologiske Undersoegelser for Danmark og Groenland (Denmark))

    2011-05-15

    The database of the GAP site is under development. In order to meet the data needs of the different modelling teams working with groundwater flow modelling it has been decided to compile trial data sets comprising structural-hydraulic properties suitable for flow modelling on different scales. The properties provided in this report are based on data and groundwater flow modelling studies conducted for three sites located in the Fennoscandian Shield, two of which are studied by SKB, Forsmark and Laxemar, and one by Posiva, Olkiluoto. The provided hydraulic properties provided here are simplified to facilitate a readily usage together with the GAP Geomodel version 1.

  17. Groundwater chemical changes at SFR in Forsmark

    Laaksoharju, Marcus [GeoPoint AB, Sollentuna (Sweden); Gurban, Ioana [3DTerra (Sweden)

    2003-01-01

    The examination of the groundwater sampled at the SFR tunnel system indicated that the groundwater consist mainly of a Na-Cl to Na-Ca-Cl type of water. Most of the samples fall within the Cl range of 2500-5500 mg/l having a neutral pH (6.6-7.7 units). The water is reducing and despite the fact that the tunnel acts like a hydraulic sink constantly withdrawing water out from the rock into the tunnel the groundwater changes are moderate with time. Most of the sampling points in the SFR tunnel system are located under the Sea and M3 calculations indicated that most of the sampling points have a change of water types from an older marine water type affected by glacial melt water to an more modern marine water type such as Baltic Sea water which has been modified by possibly microbial sulphate reduction and ion exchange. Mass balance calculations indicated that the waters seem to be in equilibrium with the fracture filling mineral such as calcite. The quality of the aluminium data made the modelling with the major rock forming aluminium silicates such as feldspars and clay minerals uncertain and was therefore not reported. The conclusion is that the groundwater evolution and patterns at SFR are a result of many factors such as: 1. the changes in hydrogeology related to glaciation/deglaciation and land uplift, 2. repeated Sea/lake water regressions/transgressions 3. the closeness to Baltic Sea resulting in relative small hydrogeological driving forces which could preserve old water types from being flushed out, 4. organic or inorganic alteration of the groundwater caused by microbial processes or in situ water/rock interactions 5. tunnel construction which changed the flow system The modelled present-day groundwater conditions of the SFR site consist of a mixture in varying degrees of different water types. The data indicate that all the groundwater at SFR is strongly affected by Sea water of different origin and ages. The meteoric (0- 1000 B.P) portion is located close

  18. Quantitative assessment of radionuclide retention in the near-surface system at Forsmark. Development of a reactive transport model using Forsmark 1.2 data

    Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi (Amphos XXI Consulting S.L., Barcelona (Spain))

    2007-12-15

    The main objective of this work is to assess the migration behaviour of selected long-lived radionuclides through the near-surface system of Forsmark, with special focus on the evaluation of the capacity of the Quaternary deposits and sediments for radionuclide retention. The work reported here is based on data and information from Forsmark Site Descriptive Model version 1.2. From the geological point of view, the near-surface systems in the Forsmark area consist of Quaternary deposits and sediments that overlay the granitic bedrock. Glacial till is the more abundant outcropping Quaternary deposit and the remainder is made of clayey deposits. These types of near-surface sediments show distinctive hydraulic and geochemical features. The main reactive mineral in the till deposits, for the time horizons considered in this work, is calcium carbonate together with minor amounts of clay minerals (e.g. illite). The till deposits forms aquifers with relatively high hydraulic conductivities. In contrast, glacial and post-glacial clays are basically composed of illite with low to very low amounts of calcium carbonate, and containing organic matter-rich layers (gyttja), which can promote reducing conditions in the porewaters. All these clays exhibits relatively low hydraulic conductivity values. Five radionuclides have been selected for conceptualization and qualitative evaluation of retention process: U as an actinide, Se as a redox-sensitive radionuclide, Cs as a monovalent cation, Sr as a divalent cation, and I as an anion radionuclide. Overall, radionuclide retention capacity in the surface systems at Forsmark can be provided by sorption on charged surfaces of clays and oxyhydroxides, co-precipitation with sulphates, sulphides, oxyhydroxides and carbonates, and sorption on organic matter. Two-dimensional coupled hydrogeological and reactive solute transport models have been developed to simulate the geochemical behaviour of U, Cs and Sr. These three radionuclides have

  19. Preventive maintenance at the Forsmark Nuclear Power Plant

    Danielsson, H.

    1985-01-01

    The maintenance system at the Forsmark Nuclear Power Plant began in 1975, and was drawn up in co-operation with other power stations within the control of the Swedish State Power Board. Preventive maintenance (PM) is part of the system and has been in operation since 1978. Great efforts have been made to build up the system and to gather input data. Since 1981, the system has been in continuous use; follow-ups and system and quality improvements in database contents have been carried out. Great effort has also been devoted to maintaining a high quality of database contents and to the interplay between the different PM measures. We believe that PM plays an important role in the safety and economic operation of the power station and that it is essential that interest in PM should exist at all levels of the power company. (author)

  20. Far field hydrogeochemistry in the Oklo reactor area (Gabon)

    Toulhoat, P.; Gallien, J.P.; L'Henoret, P.

    1993-01-01

    In the frame of a general study of the Oklo natural reactor, which takes into account the natural analogue aspect, a complete hydrogeological and hydrogeochemical study is undertaken. The partners of this study are the following: - Section de geochimie, CEA (France): P. Toulhoat, J.P. Gallien, P. L'Henoret, V. Moulin (groundwater chemistry and colloids). - Ecole des Mines de Paris (CIG, Fontainebleau) E. Ledoux, I. Gurban (hydrogeology and modelling) - SKB and Conterra AB (Sweden) J.A.T. Smellie, A. Winberg (hydrogeology, isotope geochemistry). The aim of this study is to try to understand and to characterize the possible mobilization of elements or isotopes when groundwaters come in contact with nuclear reaction zones. The first step of the study is presented here, which comprises a general geochemical and hydrodynamical characterization of the site. In this presentation, the site of Bagombe is also mentioned as it has been confirmed as sector in which nuclear fission reactions occurred as in Oklo. (author). 10 refs., 6 figs., 6 tabs

  1. Comparative A/B testing a mobile data acquisition app for hydrogeochemistry

    Klump, Jens; Golodoniuc, Pavel; Reid, Nathan; Gray, David; Ross, Shawn

    2015-04-01

    In the context of a larger study on the Capricorn Orogen of Western Australia, the CSIRO Mineral Discovery Program is conducting a regional study of the hydrogeochemistry on water from agricultural and other bores. Over time, the sampling process was standardised and a form for capturing metadata and data from initial measurements was developed. In 2014 an extensive technology review was conducted with an aim to automate field data acquisition process. A prototype hydrogeochemistry data capture form was implemented as a mobile application for Windows Mobile devices. This version of the software was a standalone application with an interface to export data as CSV files. A second candidate version of the hydrogeochemistry data capture form was implemented as an Android mobile application in the FAIMS framework. FAIMS is a framework for mobile field data capture, originally developed by at the University of New South Wales for archaeological field data collection. A benefit of the FAIMS application was the ability to associate photographs taken with the device's embedded camera with the captured data. FAIMS also allows networked collaboration within a field team, using the mobile applications as asynchronous rich clients. The network infrastructure can be installed in the field ("FAIMS in a Box") to supply data synchronisation, backup and transfer. This aspect will be tested in the next field season. A benefit of the FAIMS application was the ability to associate photographs taken with the device's embedded camera with the captured data. Having two data capture applications available allowed us to conduct an A/B test, comparing two different implementations for the same task. Both applications were trialled in the field by different field crews and user feedback will be used to improve the usability of the app for the next field season. A key learning was that the ergonomics of the app is at paramount importance to gain the user acceptance. This extends from general

  2. Inventory of vegetation and benthos in newly laid and natural ponds in Forsmark 2012

    Qvarfordt, Susanne; Wallin, Anders; Borgiel, Micke

    2013-01-01

    SKB plans to build a repository for the spent nuclear fuel. The repository is planned to be built in Forsmark and constitutes installations above and below ground. The building and operation of the construction will involve activities that might affect the nature in the area. The impact means, among other things, that a small water body, which today is a reproduction site for the red listed pool frog (Rana lessonae), will disappear. The lost locality for the pool frog has been compensated by creating four new ponds in the Forsmark area. This study is part of the follow-up of these new habitats. The aim is to describe the plant and animal communities in the ponds, and follow the succession, i.e. the development of the habitats. The study also includes two natural ponds that will serve as reference objects. The survey of vegetation and invertebrate fauna in the ponds was conducted in October 2012. The results show that the new ponds had low coverage of submersed vegetation and the species composition in the plant communities differed between the ponds. The reference ponds also had different plant communities, both in terms of species composition and coverage. This indicates that the species composition of the plant communities in the new ponds will likely depend on physical factors specific to the respective pond, but that higher vegetation coverage can be expected over time in all new ponds. The reference ponds had similar animal communities that differed from the animal communities in the new ponds. The similar species composition in the reference ponds, despite the variety of plant communities, suggests that similar animal communities are likely to develop in the new ponds, even if the plant communities continues to be different. Water chemical sampling has also been conducted in the ponds during 2012. A comparison of the inorganic environment (with regard to analysed ions) showed that the reference ponds had relatively similar ion compositions with little

  3. Stress variations during a glacial cycle at 500 m depth in Forsmark and Oskarshamn: Earth model effects

    Lund, Bjoern [Uppsala Univ. (Sweden). Dept. of Earth Sciences

    2006-06-15

    This study has considered the response to a glaciation of Earth models of increasingly complex structure in elastic parameters and viscosity. The models are one-dimensional in the sense that they vary only in the depth direction, i.e. there are only uniform, horizontal layers in the models. I find that as the complexity of the models increase, and the properties of the uppermost kilometer of the Earth become less affected by average properties from deeper down, the flexural stresses at 500 m depth decrease, as expected. A lower Young's modulus, lower compressibility and lower density in the uppermost layer all act to lower the stresses. However, the three properties act differently on the resulting response. Introducing layering in Young's modulus generally decreases the stresses all along a profile through the ice model. Going from incompressible to compressible models affect the stresses outside the ice edge significantly more than the stresses under the ice sheet. Introducing layering in density conversely affect the stresses under the ice sheet more than those outside the ice edge. The combined effects of the most complex models tested here show that the glacially induced horizontal stresses at 500 m depth decrease to levels very similar in magnitude to the loading stress. There are, however, temporal variations in these horizontal stresses that do not follow the loading stress and which induce tensional or compressional horizontal stresses that persist when no ice is present.As is well known, changes in viscosity structure has a very large effect on the Earth response. Viscosity affect both the magnitudes of the induced stresses and the temporal behavior of the stress evolution. This is confirmed in the current study.The glacially induced stresses for some of the models have been used in combination with the current background stress field at Forsmark and Oskarshamn, as estimated in SKB's site models, to evaluate fault stability throughout a

  4. Stress variations during a glacial cycle at 500 m depth in Forsmark and Oskarshamn: Earth model effects

    Lund, Bjoern

    2006-06-01

    This study has considered the response to a glaciation of Earth models of increasingly complex structure in elastic parameters and viscosity. The models are one-dimensional in the sense that they vary only in the depth direction, i.e. there are only uniform, horizontal layers in the models. I find that as the complexity of the models increase, and the properties of the uppermost kilometer of the Earth become less affected by average properties from deeper down, the flexural stresses at 500 m depth decrease, as expected. A lower Young's modulus, lower compressibility and lower density in the uppermost layer all act to lower the stresses. However, the three properties act differently on the resulting response. Introducing layering in Young's modulus generally decreases the stresses all along a profile through the ice model. Going from incompressible to compressible models affect the stresses outside the ice edge significantly more than the stresses under the ice sheet. Introducing layering in density conversely affect the stresses under the ice sheet more than those outside the ice edge. The combined effects of the most complex models tested here show that the glacially induced horizontal stresses at 500 m depth decrease to levels very similar in magnitude to the loading stress. There are, however, temporal variations in these horizontal stresses that do not follow the loading stress and which induce tensional or compressional horizontal stresses that persist when no ice is present.As is well known, changes in viscosity structure has a very large effect on the Earth response. Viscosity affect both the magnitudes of the induced stresses and the temporal behavior of the stress evolution. This is confirmed in the current study.The glacially induced stresses for some of the models have been used in combination with the current background stress field at Forsmark and Oskarshamn, as estimated in SKB's site models, to evaluate fault stability throughout a glacial cycle. The

  5. Hydrogeochemistry in a relatively unmodified subtropical catchment: Insights regarding the health and aesthetic risks of manganese

    Adam K. Rose

    2017-10-01

    New hydrological insights for region: Results show that the hydrogeochemistry of Baffle Creek was predominantly driven by rain events, with differing responses to varying magnitudes of rain and discharge. Following a flushing event, dissolved aluminium and nitrate increased in the surface and drinking water, whereas manganese and ammonia were undetectable in the drinking water and occurred only in small concentrations in the surface waters. In contrast, when rainfall events occurred without an associated flush, manganese, iron and ammonia concentrations increased in the drinking water. The hydrochemistry of manganese and iron in the supply chain infrastructure was strongly positively correlated with ammonia, and aluminium correlated with nitrate concentrations. Currently the drinking water supply does not pose a threat to chronic manganese exposure for humans, however elevated concentrations are experienced periodically; and may become more problematic under climate change scenarios.

  6. Sediment dynamics in the coastal areas of Forsmark and Laxemar during an interglacial

    Brydsten, Lars

    2009-06-01

    been evaluated within the project. It is based on a digital elevation model (DEM) covering the Baltic Sea and its surroundings (negative values for the sea and positive values for the land) that have also been evaluated within the project. The DEM is based on elevation data from many different sources that is merged into a common coordinate system and a common height system. These irregularly spaced data have been used to interpolate a regular DEM. For each time step, this DEM has been corrected to those circumstances prevalent at that date using shore displacement equations for about 80 places around the Baltic Sea. This correction accounts for the special conditions that existed during periods when the Baltic Sea was a lake. The bathymetry of the high-resolution model domains at Forsmark and Laxemar are based on existing 20 m resolution DEMs. The change in bathymetry over time for these areas is calculated using the shore displacement equations for three sites close to each model site, a strategy that makes it possible to investigate the tilt of the landscape. This factor has some significance early and late in the modelled period. It is impossible to run the model for all combinations of wind directions and wind speeds at each time step due to time reason, so only wind directions from long fetches and two critical wind speeds are simulated. The two critical wind speeds are expected to show changes in the extensions of three sea bottom types: 1) erosion bottoms where the resuspension frequency is so high that a particle is settled for maximum of one month, 2) accumulation bottoms where resuspension is not occurring, and 3) transport bottoms where a particle can be settled for one month to 500 years. The higher wind speed is chosen so that it possibly occurs at least at one occasion each 500 years with a wind direction approximately parallel with the longest fetch and with duration enough to make the fetch the only limiting factor for the wave generation. The lower

  7. Results of Monitoring at Olkiluoto in 2007. Hydrogeochemistry

    Pitkaenen, P.; Partamies, S. (VTT, Espoo (Finland)); Lahdenperae, A.-M.; Ahokas, T.; Penttinen, T. (Poeyry Environment Oy, Vantaa (Finland)); Lehtinen, A. (Posiva Oy, Helsinki (Finland)); Pedersen, K. (Microbial Analytics Sweden AB (Sweden)); Lamminmaeki, T. (Teollisuuden Voima Oy, Olkiluoto (Finland)); Hatanpaeae, E. (Ramboll Analytics Oy, Lahti (Finland))

    2008-07-15

    The construction of underground research facility ONKALO will inevitably affect the rock mass and the groundwater flow system. It will also affect the chemical environment both at the surface and at depth. In order to determine the magnitude and extent of such effects it was necessary to set up a monitoring system that is capable of measuring the resulting cases to the necessary accuracy and extent and due to monitoring programme was established. In 2007 groundwater samples were taken from both the overburden and deep bedrock by different methods. Samples were taken from the surface and from ONKALO. Shallow groundwater has been monitored both in shallow drillholes and in groundwater observation tubes located in the overburden. A total of 40 shallow groundwater samples were taken in 2007. The main reasons for shallow groundwater quality changes are probably changes in precipitation and the fluctuation of the groundwater table. Construction work in ONKALO and in its surrounding does not seem to have affected groundwater quality in the shallow groundwater tubes and drillholes. Natural factors, e.g. site geology, closeness of sea, local climate are more important, as well as human impact, mainly relatively heavy infrastructural works and road salting. According to the 2007 results, deep groundwater compositions are very similar to the baseline data. The observed changes in the time series data seem to be caused by the hydraulic zones and the periods when the drillholes have been open. However, the length of the monitoring period of the time series samples is still insufficient for making any estimation about the potential influences on the groundwater chemistry caused by the construction of ONKALO. Certain volumes of bedrock, e.g. the area in the vicinity of OL-KR8, seem to be exceptionally stable despite the location next to ONKALO. Two sampling sections near ONKALO (OL-KR22-T390 and OL-KR23-T424, both HZ20 intersections) show a clear increase in dissolved sulphide

  8. Results of Monitoring at Olkiluoto in 2009. Hydrogeochemistry

    Penttinen, T.; Lahdenperae, A.-M.; Ahokas, T.; Partamies, S.; Kasa, S.; Pitkaenen, P.

    2011-01-01

    The construction work of underground research facility ONKALO started in the autumn 2004. Possible changes caused by the construction of the disposal facility in the chemical environment in shallow and deep groundwaters are monitored on a regular basis. This report presents the hydrogeochemical monitoring measurements and observations made in 2009. A total of 31 shallow groundwater samples were taken in monitoring programme and 49 shallow groundwater samples in the Infiltration experiment area in 2009. The sampling points of shallow groundwaters were divided into groups on a basis of their typical geological and geographic features. The seasonal variation in concentration levels was now clearly observed in OL-PVP3A, OL-PVP13, OL-PVP14, OL-PVP17, OL-PVP18A, OL-PVP20, OL-PP39 and OL-PP56. This behaviour is related to high naturally fluctuating concentrations in these sampling sites. The effect of Korvensuo on the groundwater of OL-PVP30 appeared. No straight connection can be made with the ONKALO construction work and the observed changes in shallow groundwater concentrations. 47 deep groundwater samplings were carried out during the year 2009 from 19 different drillholes and 30 groundwater samples were taken from ONKALO. 10 gas samples have been analysed and collected from 6 open drillholes during the year 2009 and 5 are from sampling points of ONKALO. The results from ground surface based monitoring campaign in 2009 show indications of changes in groundwater compositions, which are most probably caused by high hydraulic gradient of ONKALO. The 2009 results show slight but clear systematic dilution (in all species) in two monitoring points (OL-KR4 T 76 and OL-KR37 T 165, both intersections of HZ19) relative to the previous samplings. Of the monitored intersections of hydraulic zone HZ20B the OL-KR10 T 326 have continued dilution trend (after packering) and OL-KR9 T 468 and OL-KR23 T 424 h ave become more saline. Particularly the start of salinity increase in OL-KR9

  9. Solid/liquid partition coefficients (Kd) for selected soils and sediments at Forsmark and Laxemar-Simpevarp

    Sheppard, Steve; Long, Jeff; Sanipelli, Barb [ECOMatters Inc., Pinawa (Canada); Sohlenius, Gustav [Geological Survey of Sweden (SGU), Uppsala (Sweden)

    2009-03-15

    Soil and sediment solid/liquid partition coefficients (Kd) are used to indicate the relative mobility of radionuclides and elements of concern from nuclear fuel waste, as well as from other sources. The Kd data are inherently extremely variable, but also vary systematically with key environmental attributes. For soil Kd, the key variables are pH, clay content and organic carbon content. For sediment Kd, water type (freshwater versus marine) and sediment type (benthic versus suspended) are important. This report summarized Kd data for soils and sediments computed from indigenous stable element concentrations measured at the Forsmark and Laxemar-Simpevarp sites. These were then compared to several literature sources of Kd data for Ce, Cl, Co, Cr, Cs, Fe, Ho, I, La, Mn, Mo, Nb, Nd, Ni, Np, Pa, Pb, Pu, Ra, Sb, Se, Sm, Sn, Sr, Tc, Th, Tm, U and Yb. The Kd data computed from indigenous stable element concentrations may be especially relevant for assessment of long-lived radionuclides from deep disposal of waste, because the long time frame for the potential releases is more consistent with the steady state measured using indigenous stable elements. For almost every one of these elements in soils, a statistically meaningful regression equation was developed to allow estimation of Kd for any soil given a modest amount of information about the soil. Nonetheless, the median residual geometric standard deviation (GSD) was 4.3-fold, implying confidence bounds of about 18-fold above and below the best estimate Kd. For sediment, the values are categorised simply by water type and sediment type. The median GSD for sediment Kd as measured at the Forsmark and Laxemar-Simpevarp sites was 2.5-fold, but the median GSD among literature values was as high as 8.6-fold. Clearly, there remains considerable uncertainty in Kd values, and it is important to account for this in assessment applications

  10. Solid/liquid partition coefficients (Kd) for selected soils and sediments at Forsmark and Laxemar-Simpevarp

    Sheppard, Steve; Long, Jeff; Sanipelli, Barb; Sohlenius, Gustav

    2009-03-01

    Soil and sediment solid/liquid partition coefficients (Kd) are used to indicate the relative mobility of radionuclides and elements of concern from nuclear fuel waste, as well as from other sources. The Kd data are inherently extremely variable, but also vary systematically with key environmental attributes. For soil Kd, the key variables are pH, clay content and organic carbon content. For sediment Kd, water type (freshwater versus marine) and sediment type (benthic versus suspended) are important. This report summarized Kd data for soils and sediments computed from indigenous stable element concentrations measured at the Forsmark and Laxemar-Simpevarp sites. These were then compared to several literature sources of Kd data for Ce, Cl, Co, Cr, Cs, Fe, Ho, I, La, Mn, Mo, Nb, Nd, Ni, Np, Pa, Pb, Pu, Ra, Sb, Se, Sm, Sn, Sr, Tc, Th, Tm, U and Yb. The Kd data computed from indigenous stable element concentrations may be especially relevant for assessment of long-lived radionuclides from deep disposal of waste, because the long time frame for the potential releases is more consistent with the steady state measured using indigenous stable elements. For almost every one of these elements in soils, a statistically meaningful regression equation was developed to allow estimation of Kd for any soil given a modest amount of information about the soil. Nonetheless, the median residual geometric standard deviation (GSD) was 4.3-fold, implying confidence bounds of about 18-fold above and below the best estimate Kd. For sediment, the values are categorised simply by water type and sediment type. The median GSD for sediment Kd as measured at the Forsmark and Laxemar-Simpevarp sites was 2.5-fold, but the median GSD among literature values was as high as 8.6-fold. Clearly, there remains considerable uncertainty in Kd values, and it is important to account for this in assessment applications

  11. Revising the security organisation at Forsmark NPP - A case study from the point of view of the operator and the regulatory and supervisory authority

    Roeden, B.; Strandberg, L.; Isaksson, S.

    2001-01-01

    Forsmark Nuclear Power Plant consists of three reactor-units. Each unit has separate shift crews and separate control rooms for operation of the plant. During 1996, Forsmarks Kraftgrupp AB (FKA) decided to change the organisation of Security at the site in Forsmark, Sweden. Reasons for changing the Organisation Experiences pointed out that it was necessary to have a Security supervisor present at site 24 hours per day. Experiences were basically gained from occasions when malfunctions in the technical security systems occurred. Another experience was that the procedures describing counter measures to different malfunctions in the technical security systems, did not meet the same high requirements, that would be expected in comparison with the Standard Operational and Emergency Operational Procedures, which are used for operation of the Nuclear Power Plant. It was decided to integrate the Security guards in the shift crew, one guard for each reactor unit and shift. Some of the regular Field Operators in the shift-crews for operating the plant were educated to competent Security Guards. The Shift Supervisor on each reactor unit became in charge for one Security Guard. One of the units also became in charge of the Security Central and the Security Guard operating the technical security systems. During incidents the supervisor from the fire brigade takes the responsibility for the security. He also has additionally two Security Guards at disposal from the fire brigade. In case of a major incident, this arrangement let the Shift Supervisors proceed taking the necessary counter measures concerning the process in the power plant. The attitude to new duties among the regular Field Operators educated to Security Guards were not positive, this problem affected also the attitude among the Shift supervisors. It was difficult to bring the different reactor units to work in the same direction and at the same time, generally speaking. The procedures and standards at each unit

  12. Hydrogeological characterisation and modelling of deformation zones and fracture domains, Forsmark modelling stage 2.2

    Follin, Sven (SF GeoLogic AB, Taeby (SE)); Leven, Jakob (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE)); Hartley, Lee; Jackson, Peter; Joyce, Steve; Roberts, David; Swift, Ben (Serco Assurance, Harwell (GB))

    2007-09-15

    The work reported here collates the structural-hydraulic information gathered in 21 cored boreholes and 32 percussion-drilled boreholes belonging to Forsmark site description, modelling stage 2.2. The analyses carried out provide the hydrogeological input descriptions of the bedrock in Forsmark needed by the end users Repository Engineering, Safety Assessment and Environmental Impact Assessment; that is, hydraulic properties of deformation zones and fracture domains. The same information is also needed for constructing 3D groundwater flow models of the Forsmark site and surrounding area. The analyses carried out render the following conceptual model regarding the observed heterogeneity in deformation zone transmissivity: We find the geological division of the deterministically modelled deformation zones into eight categories (sets) useful from a hydrogeological point of view. Seven of the eight categories are steeply dipping, WNW, NW, NNW, NNE, NE, ENE and EW, and on is gently dipping, G. All deformation zones, regardless of orientation (strike and dip), are subjected to a substantial decrease in transmissivity with depth. The data gathered suggest a contrast of c. 20,000 times for the uppermost one kilometre of bedrock, i.e. more than four orders of magnitude. The hydraulic properties below this depth are not investigated. The lateral heterogeneity is also substantial but more irregular in its appearance. For instance, for a given elevation and deformation zone category (orientation), the spatial variability in transmissivity within a particular deformation zone appears to be as large as the variability between all deformation zones. This suggests that the lateral correlation length is shorter than the shortest distance between two adjacent observation points and shorter than the category spacing. The observation that the mean transmissivity of the gently-dipping deformation zones is c. one to two orders of magnitude greater than the mean transmissivities of all

  13. Site investigation SFR. Bedrock geology

    Curtis, Philip; Markstroem, Ingemar; Petersson, Jesper; Triumf, Carl-Axel; Isaksson, Hans; Mattsson, Haakan

    2011-12-01

    SKB is currently carrying out an assessment of the future extension of the final repository for low and middle level radioactive operational waste, SFR. The planned SFR extension lies at a relatively shallow depth (-50 to -200 masl) compared with the planned Forsmark facility for spent nuclear fuel (-400 to -500 masl). The main aim of the multidisciplinary modelling project involving geology, hydrogeology, hydrogeochemistry and rock mechanical modelling is to describe the rock volume for the planned extension of SFR that was presented in /SKB 2008a/. The results of the modelling project in the form of a forthcoming site descriptive model will supply the basis for site-adapted design including engineering characteristics, in addition to a general assessment of the site suitability. The current report presents the results of the geological work with the deterministic rock domain and deformation zone models (version 1.0) and forms a basis for the three other disciplines in the modelling work. The shallow depth of SFR and its proposed extension means that the facility lies partly within the rock volume affected by the effects of stress release processes during loading and unloading cycles, with an associated increased frequency of open sub-horizontal fractures in the near-surface realm (above -150 masl) compared with that observed at greater depths. The main report describes the data input to the modelling work, the applied modelling methodology and the overall results. More detailed descriptions of the individual modelled deformation zones and rock domains are included in the appendices. The geological modelling work during version 1.0 follows SKB's established methodology using the Rock Visualisation System (RVS). The deformation zone model version 1.0 is a further development of the previous version 0.1 /Curtis et al. 2009/. While the main input to deformation zone model version 0.1 was older geological data from the construction of SFR, including drawings of the

  14. Site investigation SFR. Bedrock geology

    Curtis, Philip; Markstroem, Ingemar (Golder Associates AB (Sweden)); Petersson, Jesper (Vattenfall Power Consultant AB (Sweden)); Triumf, Carl-Axel; Isaksson, Hans; Mattsson, Haakan (GeoVista AB (Sweden))

    2011-12-15

    SKB is currently carrying out an assessment of the future extension of the final repository for low and middle level radioactive operational waste, SFR. The planned SFR extension lies at a relatively shallow depth (-50 to -200 masl) compared with the planned Forsmark facility for spent nuclear fuel (-400 to -500 masl). The main aim of the multidisciplinary modelling project involving geology, hydrogeology, hydrogeochemistry and rock mechanical modelling is to describe the rock volume for the planned extension of SFR that was presented in /SKB 2008a/. The results of the modelling project in the form of a forthcoming site descriptive model will supply the basis for site-adapted design including engineering characteristics, in addition to a general assessment of the site suitability. The current report presents the results of the geological work with the deterministic rock domain and deformation zone models (version 1.0) and forms a basis for the three other disciplines in the modelling work. The shallow depth of SFR and its proposed extension means that the facility lies partly within the rock volume affected by the effects of stress release processes during loading and unloading cycles, with an associated increased frequency of open sub-horizontal fractures in the near-surface realm (above -150 masl) compared with that observed at greater depths. The main report describes the data input to the modelling work, the applied modelling methodology and the overall results. More detailed descriptions of the individual modelled deformation zones and rock domains are included in the appendices. The geological modelling work during version 1.0 follows SKB's established methodology using the Rock Visualisation System (RVS). The deformation zone model version 1.0 is a further development of the previous version 0.1 /Curtis et al. 2009/. While the main input to deformation zone model version 0.1 was older geological data from the construction of SFR, including drawings of

  15. Site description of Laxemar at completion of the site investigation phase. SDM-Site Laxemar

    2009-12-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken site characterisation in two different areas, Forsmark and Laxemar-Simpevarp, in order to identify a suitable location for a geological repository of spent nuclear fuel according to the KBS-3 method. The site investigations have been conducted in campaigns, punctuated by data freezes. After each data freeze, the site data have been analysed and modelling has been carried out with the overall purpose to develop a site descriptive model (SDM). The site descriptive model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It is also essential for safety assessment, since the SDM is the only source for site-specific input. Another important use of the site descriptive model is in the environmental impact assessment. An SDM is an integrated model of geology, thermal properties, rock mechanics, hydrogeology, hydrogeochemistry, bedrock transport properties and a description of the surface system. The site descriptive model compiled in the current report, SDM-Site Laxemar, presents an integrated understanding of the Laxemar-Simpevarp area (with special emphasis on the Laxemar subarea) at the completion of the surface-based investigations, which were conducted during the period 2002 to 2007. A summary is also provided of the abundant underlying data and the discipline specific models that support the site understanding. The description relies heavily on background reports that address, in particular, details of the data analyses and modelling of the different disciplines. The Laxemar-Simpevarp area is located in the province of Smaaland within the municipality of Oskarshamn, about 230 km south of Stockholm. The candidate area for site investigation is located along the shoreline of the strait of Kalmarsund, within a 1.8 billion year old suite of well preserved bedrock belonging to the Transscandinavian Igneous Belt formed during

  16. Site description of Laxemar at completion of the site investigation phase. SDM-Site Laxemar

    2009-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken site characterisation in two different areas, Forsmark and Laxemar-Simpevarp, in order to identify a suitable location for a geological repository of spent nuclear fuel according to the KBS-3 method. The site investigations have been conducted in campaigns, punctuated by data freezes. After each data freeze, the site data have been analysed and modelling has been carried out with the overall purpose to develop a site descriptive model (SDM). The site descriptive model is used by repository engineering to design the underground facility and to develop a repository layout adapted to the site. It is also essential for safety assessment, since the SDM is the only source for site-specific input. Another important use of the site descriptive model is in the environmental impact assessment. An SDM is an integrated model of geology, thermal properties, rock mechanics, hydrogeology, hydrogeochemistry, bedrock transport properties and a description of the surface system. The site descriptive model compiled in the current report, SDM-Site Laxemar, presents an integrated understanding of the Laxemar-Simpevarp area (with special emphasis on the Laxemar subarea) at the completion of the surface-based investigations, which were conducted during the period 2002 to 2007. A summary is also provided of the abundant underlying data and the discipline specific models that support the site understanding. The description relies heavily on background reports that address, in particular, details of the data analyses and modelling of the different disciplines. The Laxemar-Simpevarp area is located in the province of Smaaland within the municipality of Oskarshamn, about 230 km south of Stockholm. The candidate area for site investigation is located along the shoreline of the strait of Kalmarsund, within a 1.8 billion year old suite of well preserved bedrock belonging to the Transscandinavian Igneous Belt formed during

  17. Uptake of elements by fungi in the Forsmark area

    Johanson, Karl J.; Nikolova, Ivanka; Taylor, Andy F.S. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology; Vinichuk, Mykhaylo M. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil Sciences

    2004-10-01

    Samples were collected in a forest ecosystem close to the Nuclear Power Plant at Forsmark, Sweden. The soil was fractioned in bulk soil, rhizosphere, soil-root interface and fungal mycelium. At the same sampling sites, fruit bodies of fungi were also collected. The concentration (mg/kg dw of soil) of K, Rb, Cs, P, Ca, Cr, Mn, Co, Ni, Cu, Zn, As, Sr, Cd, I, Hg, Pb, Ra, Th and U, were analysed in the various fractions using microspectrometry. The concentration of the stable potassium, rubidium and cesium in forest soil as well as in fungal compartment is discussed first and than the other 17 elements is discussed. Compared to bulk soil, rhizosphere was enriched with K, Rb and Cs by a factor 1.3, 1.7 and 1.5, and soil-root interface by factor 5.4, 2.6 and 1.0. Concentration of K, Rb and Cs was much higher in mycelium compared to bulk soil, indicating accumulation of these elements within fungi. The concentration ratios (CR) defined as mg/kg dw in mycelium divided by mg/kg dw in soil were found to be 4.5, 5.1 and 2.4 for K, Rb and Cs respectively. For fruit bodies of fungi, these ratios were about one order of magnitude higher than that for mycelium: 65, 3. 75.8 and 18.6 for K, Rb and Cs, respectively. In mycelium, only weak correlations were found between K and Rb uptake (r=0.33) and between K and Cs uptake (r=0.48). The concentrations of the elements in fruit bodies of fungi were species-dependent. Generally, fungi seemed to take up Rb more efficiently than K. Highest Cs concentrations were found in fruit bodies of Sarcodon imbricatus (25.1 mg/kg). Sarcodon imbricatus was found to accumulate K, Cs and especially Rb to greatest extent, followed by Cortinarius sp., and Suillus variegatus. Litter decomposing fungi Hypholoma capnoides and Collybia peronata showed relatively weak ability to accumulate K, Rb as well as Cs, compared to the mycorrhizal species. No correlation was found between concentration of K, Rb and Cs in fruit bodies of fungi and soil pH as well as

  18. Uptake of elements by fungi in the Forsmark area

    Johanson, Karl J.; Nikolova, Ivanka; Taylor, Andy F.S.; Vinichuk, Mykhaylo M.

    2004-10-01

    Samples were collected in a forest ecosystem close to the Nuclear Power Plant at Forsmark, Sweden. The soil was fractioned in bulk soil, rhizosphere, soil-root interface and fungal mycelium. At the same sampling sites, fruit bodies of fungi were also collected. The concentration (mg/kg dw of soil) of K, Rb, Cs, P, Ca, Cr, Mn, Co, Ni, Cu, Zn, As, Sr, Cd, I, Hg, Pb, Ra, Th and U, were analysed in the various fractions using microspectrometry. The concentration of the stable potassium, rubidium and cesium in forest soil as well as in fungal compartment is discussed first and than the other 17 elements is discussed. Compared to bulk soil, rhizosphere was enriched with K, Rb and Cs by a factor 1.3, 1.7 and 1.5, and soil-root interface by factor 5.4, 2.6 and 1.0. Concentration of K, Rb and Cs was much higher in mycelium compared to bulk soil, indicating accumulation of these elements within fungi. The concentration ratios (CR) defined as mg/kg dw in mycelium divided by mg/kg dw in soil were found to be 4.5, 5.1 and 2.4 for K, Rb and Cs respectively. For fruit bodies of fungi, these ratios were about one order of magnitude higher than that for mycelium: 65, 3. 75.8 and 18.6 for K, Rb and Cs, respectively. In mycelium, only weak correlations were found between K and Rb uptake (r=0.33) and between K and Cs uptake (r=0.48). The concentrations of the elements in fruit bodies of fungi were species-dependent. Generally, fungi seemed to take up Rb more efficiently than K. Highest Cs concentrations were found in fruit bodies of Sarcodon imbricatus (25.1 mg/kg). Sarcodon imbricatus was found to accumulate K, Cs and especially Rb to greatest extent, followed by Cortinarius sp., and Suillus variegatus. Litter decomposing fungi Hypholoma capnoides and Collybia peronata showed relatively weak ability to accumulate K, Rb as well as Cs, compared to the mycorrhizal species. No correlation was found between concentration of K, Rb and Cs in fruit bodies of fungi and soil pH as well as

  19. The Forsmark biotest basin. An instrument for environmental research. Experiences of large cooling water discharges in Sweden (1969-1993) and research perspectives for the future

    Snoeijs, P.

    1994-01-01

    This report presents the Biotest basin at Forsmark (Sweden) as an instrument for experimental environmental research, and indicates possibilities for its future use. the basin consists of a 1 km 2 artificial enclosure in the Baltic Sea that receives cooling water discharge from the Forsmark nuclear power plant. Cooling water discharge was initiated in 1980, and since then the basin has been serving as the main Swedish instrument for field studies on the effects of enhanced temperature and low-dose radioactivity on aquatic ecosystems. Environmental effects of large cooling water discharges from power plants to the sea have been studied at other sites in Sweden too, and for the sake of completeness of background information this report provides a survey and an extensive bibliography of all previous research on cooling water discharges in Sweden during the last 25 years. The aim of scientific research in the Biotest basin is to provide an independent academically-based assessment of the effects of the discharges of heat to the aquatic environment and of the pathways of pollutants through the ecosystems. Until now the research has mainly been describing the ecological effects of the cooling water flow through the basin under normal operation of the power plant. In the future it will be possible to manipulate the basin for large field experiments. An important perspective for the future is that of climatic change; the Forsmark Biotest basin provides excellent conditions for field studies on possible biological effects. This includes e.g. temperature effects on basic biological processes (growth, metabolism, reproduction etc.), population genetics, and combination effects of heat and toxic substances. 60 refs, 3 figs, 6 tabs

  20. Mammals in the areas adjacent to Forsmark and Oskarshamn. Population density, ecological data and carbon budget

    Truve, Johan; Cederlund, Goeran [Svensk Naturfoervaltning AB, Ramsberg (Sweden)

    2005-06-01

    The Swedish Nuclear Fuel and Waste Management Co is in the process of selecting a safe and environmentally acceptable location for the deep-level repository of radioactive waste. SKB has expressed the importance of monitoring mammal species that are of interest both in biodiversity issues and for local hunting and recreational purposes. Two of the major goals are to: 1) monitor dynamics of population density over several years; 2) obtain information that is essential for modelling of energy/carbon flows in the biosphere and ultimately calculations of the risks of exposure to radionuclides. This report contributes to the major goals by presenting: Results from surveys of mammal abundance in the study sites near Forsmark and Oskarshamn, and a comparison with data from other surveys. A summary of traits associated to demography, resource selection and spatial distribution. A model framework that can be used to model the future development of populations. A plausible future scenario for mammal species. Mammal contribution to fluxes of energy and material in the ecosystem. Estimated harvest rates of mammals in the study sites. General conclusions that can be drawn from the survey are that population densities of the most common species are in the same range as many other populations. Lynx, wild boar, red deer and fallow deer are expanding in the areas. Marine mammals have not been surveyed but at least grey seals are important top consumers in the coastal ecosystem. Red listed species resident in the areas are Lynx, Otter, Whiskered bat, Natterer's bat, Nathusius' pipistrelle and Harbour seal. Annual production of the mammal species that were surveyed was 40-50 mg carbon/m2 and year. Hunters harvest nearly half of the production each year. Future developments for the populations are briefly discussed and a model framework that can be used to make better quantitative predictions is presented.

  1. Mammals in the areas adjacent to Forsmark and Oskarshamn. Population density, ecological data and carbon budget

    Truve, Johan; Cederlund, Goeran [Svensk Naturfoervaltning AB, Ramsberg (Sweden)

    2005-06-01

    The Swedish Nuclear Fuel and Waste Management Co is in the process of selecting a safe and environmentally acceptable location for the deep-level repository of radioactive waste. SKB has expressed the importance of monitoring mammal species that are of interest both in biodiversity issues and for local hunting and recreational purposes. Two of the major goals are to: 1) monitor dynamics of population density over several years; 2) obtain information that is essential for modelling of energy/carbon flows in the biosphere and ultimately calculations of the risks of exposure to radionuclides. This report contributes to the major goals by presenting: Results from surveys of mammal abundance in the study sites near Forsmark and Oskarshamn, and a comparison with data from other surveys. A summary of traits associated to demography, resource selection and spatial distribution. A model framework that can be used to model the future development of populations. A plausible future scenario for mammal species. Mammal contribution to fluxes of energy and material in the ecosystem. Estimated harvest rates of mammals in the study sites. General conclusions that can be drawn from the survey are that population densities of the most common species are in the same range as many other populations. Lynx, wild boar, red deer and fallow deer are expanding in the areas. Marine mammals have not been surveyed but at least grey seals are important top consumers in the coastal ecosystem. Red listed species resident in the areas are Lynx, Otter, Whiskered bat, Natterer's bat, Nathusius' pipistrelle and Harbour seal. Annual production of the mammal species that were surveyed was 40-50 mg carbon/m2 and year. Hunters harvest nearly half of the production each year. Future developments for the populations are briefly discussed and a model framework that can be used to make better quantitative predictions is presented.

  2. Mammals in the areas adjacent to Forsmark and Oskarshamn. Population density, ecological data and carbon budget

    Truve, Johan; Cederlund, Goeran

    2005-06-01

    The Swedish Nuclear Fuel and Waste Management Co is in the process of selecting a safe and environmentally acceptable location for the deep-level repository of radioactive waste. SKB has expressed the importance of monitoring mammal species that are of interest both in biodiversity issues and for local hunting and recreational purposes. Two of the major goals are to: 1) monitor dynamics of population density over several years; 2) obtain information that is essential for modelling of energy/carbon flows in the biosphere and ultimately calculations of the risks of exposure to radionuclides. This report contributes to the major goals by presenting: Results from surveys of mammal abundance in the study sites near Forsmark and Oskarshamn, and a comparison with data from other surveys. A summary of traits associated to demography, resource selection and spatial distribution. A model framework that can be used to model the future development of populations. A plausible future scenario for mammal species. Mammal contribution to fluxes of energy and material in the ecosystem. Estimated harvest rates of mammals in the study sites. General conclusions that can be drawn from the survey are that population densities of the most common species are in the same range as many other populations. Lynx, wild boar, red deer and fallow deer are expanding in the areas. Marine mammals have not been surveyed but at least grey seals are important top consumers in the coastal ecosystem. Red listed species resident in the areas are Lynx, Otter, Whiskered bat, Natterer's bat, Nathusius' pipistrelle and Harbour seal. Annual production of the mammal species that were surveyed was 40-50 mg carbon/m2 and year. Hunters harvest nearly half of the production each year. Future developments for the populations are briefly discussed and a model framework that can be used to make better quantitative predictions is presented

  3. Chemical characteristics of surface systems in the Forsmark area. Visualisation and statistical evaluation of data from surface water, precipitation, shallow groundwater, and regolith

    NONE

    2006-02-15

    The Swedish Nuclear Fuel and Waste management Co (SKB) initiated site investigations for a deep repository for spent nuclear fuel at two different sites in Sweden, Forsmark and Oskarshamn, in 2002. This report evaluates the results from chemical investigations of the surface system in the Forsmark area during the period November 2002 - March 2005. The evaluation includes data from surface waters (lakes, streams and the sea), precipitation, shallow groundwater and regolith (till, soil, peat, sediments and biota) in the area. Results from surface waters are not presented in this report since these were treated in a recently published report. The main focus of the study is to visualize the vast amount of data collected hitherto in the site investigations, and to give a chemical characterisation of the investigated media at the site. The results will be used to support the site descriptive models, which in turn are used for safety assessment studies and for the environmental impact assessment. The data used consist of water chemical composition in lakes, streams, coastal sites, and in precipitation, predominantly sampled on a monthly basis, and in groundwater from soil tubes and wells, sampled up to four times per year. Moreover, regolith data includes information on the chemical composition of till, soil, sediment and vegetation samples from the area. The characterisations include all measured chemical parameters, i.e. major and minor constituents, trace elements, nutrients, isotopes and radio nuclides, as well as field measured parameters. The evaluation of data from each medium has been divided into the following parts: Characterisation of individual sampling sites, and comparisons within and among sampling sites as well as comparisons with local, regional and national reference data; Analysis of time trends and seasonal variation (for shallow groundwater); Exploration of relationships among the various chemical parameters. For all investigated parameters, the

  4. Chemical characteristics of surface systems in the Forsmark area. Visualisation and statistical evaluation of data from shallow groundwater, precipitation, and regolith

    Troejbom, Mats; Soederbaeck, Bjoern

    2006-02-01

    The Swedish Nuclear Fuel and Waste management Co (SKB) initiated site investigations for a deep repository for spent nuclear fuel at two different sites in Sweden, Forsmark and Oskarshamn, in 2002. This report evaluates the results from chemical investigations of the surface system in the Forsmark area during the period November 2002 - March 2005. The evaluation includes data from surface waters (lakes, streams and the sea), precipitation, shallow groundwater and regolith (till, soil, peat, sediments and biota) in the area. Results from surface waters are not presented in this report since these were treated in a recently published report. The main focus of the study is to visualize the vast amount of data collected hitherto in the site investigations, and to give a chemical characterisation of the investigated media at the site. The results will be used to support the site descriptive models, which in turn are used for safety assessment studies and for the environmental impact assessment. The data used consist of water chemical composition in lakes, streams, coastal sites, and in precipitation, predominantly sampled on a monthly basis, and in groundwater from soil tubes and wells, sampled up to four times per year. Moreover, regolith data includes information on the chemical composition of till, soil, sediment and vegetation samples from the area. The characterisations include all measured chemical parameters, i.e. major and minor constituents, trace elements, nutrients, isotopes and radio nuclides, as well as field measured parameters. The evaluation of data from each medium has been divided into the following parts: Characterisation of individual sampling sites, and comparisons within and among sampling sites as well as comparisons with local, regional and national reference data; Analysis of time trends and seasonal variation (for shallow groundwater); Exploration of relationships among the various chemical parameters. For all investigated parameters, the

  5. Updated model for radionuclide transport in the near-surface till at Forsmark - Implementation of decay chains and sensitivity analyses

    Pique, Angels; Pekala, Marek; Molinero, Jorge; Duro, Lara; Trinchero, Paolo; Vries, Luis Manuel de

    2013-02-01

    The Forsmark area has been proposed for potential siting of a deep underground (geological) repository for radioactive waste in Sweden. Safety assessment of the repository requires radionuclide transport from the disposal depth to recipients at the surface to be studied quantitatively. The near-surface quaternary deposits at Forsmark are considered a pathway for potential discharge of radioactivity from the underground facility to the biosphere, thus radionuclide transport in this system has been extensively investigated over the last years. The most recent work of Pique and co-workers (reported in SKB report R-10-30) demonstrated that in case of release of radioactivity the near-surface sedimentary system at Forsmark would act as an important geochemical barrier, retarding the transport of reactive radionuclides through a combination of retention processes. In this report the conceptual model of radionuclide transport in the quaternary till at Forsmark has been updated, by considering recent revisions regarding the near-surface lithology. In addition, the impact of important conceptual assumptions made in the model has been evaluated through a series of deterministic and probabilistic (Monte Carlo) sensitivity calculations. The sensitivity study focused on the following effects: 1. Radioactive decay of 135 Cs, 59 Ni, 230 Th and 226 Ra and effects on their transport. 2. Variability in key geochemical parameters, such as the composition of the deep groundwater, availability of sorbing materials in the till, and mineral equilibria. 3. Variability in hydraulic parameters, such as the definition of hydraulic boundaries, and values of hydraulic conductivity, dispersivity and the deep groundwater inflow rate. The overarching conclusion from this study is that the current implementation of the model is robust (the model is largely insensitive to variations in the parameters within the studied ranges) and conservative (the Base Case calculations have a tendency to

  6. Updated model for radionuclide transport in the near-surface till at Forsmark - Implementation of decay chains and sensitivity analyses

    Pique, Angels; Pekala, Marek; Molinero, Jorge; Duro, Lara; Trinchero, Paolo; Vries, Luis Manuel de [Amphos 21 Consulting S.L., Barcelona (Spain)

    2013-02-15

    The Forsmark area has been proposed for potential siting of a deep underground (geological) repository for radioactive waste in Sweden. Safety assessment of the repository requires radionuclide transport from the disposal depth to recipients at the surface to be studied quantitatively. The near-surface quaternary deposits at Forsmark are considered a pathway for potential discharge of radioactivity from the underground facility to the biosphere, thus radionuclide transport in this system has been extensively investigated over the last years. The most recent work of Pique and co-workers (reported in SKB report R-10-30) demonstrated that in case of release of radioactivity the near-surface sedimentary system at Forsmark would act as an important geochemical barrier, retarding the transport of reactive radionuclides through a combination of retention processes. In this report the conceptual model of radionuclide transport in the quaternary till at Forsmark has been updated, by considering recent revisions regarding the near-surface lithology. In addition, the impact of important conceptual assumptions made in the model has been evaluated through a series of deterministic and probabilistic (Monte Carlo) sensitivity calculations. The sensitivity study focused on the following effects: 1. Radioactive decay of {sup 135}Cs, {sup 59}Ni, {sup 230}Th and {sup 226}Ra and effects on their transport. 2. Variability in key geochemical parameters, such as the composition of the deep groundwater, availability of sorbing materials in the till, and mineral equilibria. 3. Variability in hydraulic parameters, such as the definition of hydraulic boundaries, and values of hydraulic conductivity, dispersivity and the deep groundwater inflow rate. The overarching conclusion from this study is that the current implementation of the model is robust (the model is largely insensitive to variations in the parameters within the studied ranges) and conservative (the Base Case calculations have a

  7. Vegetation mapping with satellite data of the Forsmark and Tierp regions

    Boresjoe-Bronge, Laine; Wester, Kjell [SwedPower, Stockholm (Sweden)

    2002-04-01

    SKB (Swedish Nuclear Fuel and Waste Management Co) performs a siting program for deep repository of spent nuclear fuel that includes survey of three potential sites. The SKB siting process has now reached the site investigation phase. There are several fields of investigations performed in this phase. One of them is description of the surface ecosystems. The surface ecosystems are mapped both on a regional (50-100 km{sup 2} ) and a local level (1 km{sup 2} ). Two inventory methods are used, remote sensing (satellite data/aerial photographs) for the regional level, and field inventory for the detailed level. As a part of the surface ecosystem characterisation on the regional level vegetation mapping using satellite data has been performed over the three potential deep depository sites, Forsmark, Tierp and Oskarshamn. The user requirements for the vegetation mapping of the potential sites are the following: Dominated species in the tree layer, shrub layer, field layer and ground layer shall be described both on regional and local level; Dominated species in all layers shall be quantified regarding share and percentage of ground cover, or absence of cover (vegetation free ground); The regional and the local inventory shall have identical or comparable classification systems; The classification system and the method used shall make it possible to scale the results from local to regional level and vice versa; The produced layers shall be presented in digital form and make it possible to model biomass and turnover of organic matter (carbon, nutrients, water); The produced information shall in a first phase be of use for planning and for making nature and environmental considerations. Data sources used in the study include geo-referenced SPOT4 XI data (20 m ground resolution), geo-referenced Landsat TM data (30 m ground resolution), soil type data, topographic map data and colour infrared aerial photographs. The production of vegetation layers has been carried out in two

  8. Vegetation mapping with satellite data of the Forsmark and Tierp regions

    Boresjoe-Bronge, Laine; Wester, Kjell

    2002-04-01

    SKB (Swedish Nuclear Fuel and Waste Management Co) performs a siting program for deep repository of spent nuclear fuel that includes survey of three potential sites. The SKB siting process has now reached the site investigation phase. There are several fields of investigations performed in this phase. One of them is description of the surface ecosystems. The surface ecosystems are mapped both on a regional (50-100 km 2 ) and a local level (1 km 2 ). Two inventory methods are used, remote sensing (satellite data/aerial photographs) for the regional level, and field inventory for the detailed level. As a part of the surface ecosystem characterisation on the regional level vegetation mapping using satellite data has been performed over the three potential deep depository sites, Forsmark, Tierp and Oskarshamn. The user requirements for the vegetation mapping of the potential sites are the following: Dominated species in the tree layer, shrub layer, field layer and ground layer shall be described both on regional and local level; Dominated species in all layers shall be quantified regarding share and percentage of ground cover, or absence of cover (vegetation free ground); The regional and the local inventory shall have identical or comparable classification systems; The classification system and the method used shall make it possible to scale the results from local to regional level and vice versa; The produced layers shall be presented in digital form and make it possible to model biomass and turnover of organic matter (carbon, nutrients, water); The produced information shall in a first phase be of use for planning and for making nature and environmental considerations. Data sources used in the study include geo-referenced SPOT4 XI data (20 m ground resolution), geo-referenced Landsat TM data (30 m ground resolution), soil type data, topographic map data and colour infrared aerial photographs. The production of vegetation layers has been carried out in two steps. In

  9. Vegetation in the Forsmark biotest basin, 1974-1986

    Renstroem, S.; Svensson, Roger; Wigren-Svensson, M.

    1990-05-01

    Since 1980, Forsmark Power Plants has discharged large amount of cooling water into the Biotest basin. In 1974, before the dam was constructed, and 1980 to 1986, the macrophytic algae and higher vegetation inside and around the basin has been investigated. The observed changes are mainly caused by the increased water temperature causing lack of ice cover during the winter, the embankment reducing the exposition, the heavy water stream through the basin and the reduced light transmission in the water. The macroscopic vegetation in the Biotest basin was originally distributed all over the lake, but is now mainly found in more shallow water. The deepest part, a passage from the input of the cooling water to the output, totally lack vegetation. The reason for this is a combination of the heavy stream, raised temperature and reduced light transmission. The total biomass of macroscopic vegetation in the basin has been reduced from c. 70 metric ton in 1980 to c. 27 ton in 1982 and 1986. Among the most important species, the production of Chara spp. and Potamogeton pectinatus have been strongly reduced, while Cladophora glomerata and Vaucheria sp. have increased. Especially for Vaucheria, the raised temperature has been of vital importance. Among other species, Tolypella nidifica first increased, but has now totally disappeared. Zannichellia palustris was the only phanerogam which increased all the time. It is Z. palustris var. major which stands for the increase, while Z. palustris var. repens has disappeared from the basin. The shore vegetation, mainly reeds, has expanded conspicuously. From 1974 to 1980, the shore vegetation was favoured by the reduced exposition caused by the embankment. Since then, the raised temperature and absence of ice cover have resulted in an accelerating expansion of mainly Phragmites communis. Scirpus tabernaemontani and S. maritimus were first increasing, but do not seem to be able to compete with Phragmites in the long run. (au)

  10. Hydrogeochemistry and Genesis Analysis of Thermal and Mineral Springs in Arxan, Northeastern China

    Xiaomin Gu

    2017-01-01

    Full Text Available In this work, the hydrogeochemistry and environmental isotopic compositions of thermal and mineral springs in Arxan, northeastern China, were used to assess the genesis of the thermal system hosted by deep-seated faults. The reservoir temperature was calculated using the mineral saturation index and geothermometers. According to isotopic analysis, the spring water was of meteoric origin. Sixteen springs in the Arxan geothermal system with outlet temperatures ranging from 10.9 to 41.0 °C were investigated. The water samples can be classified into four groups by using a Piper diagram. The aquifer in which the Group I and Group III samples were obtained was a shallow cold aquifer of the Jurassic system, which is related to the local groundwater system and contains HCO3–Ca·Na groundwater. The Group II and Group IV samples were recharged by deeply circulating meteoric water with HCO3–Na and HCO3·SO4–Na·Ca groundwater, respectively. The springs rise from the deep basement faults. The estimated thermal reservoir temperature is 50.9–68.8 °C, and the proportion of shallow cold water ranges from 54% to 87%. A conceptual flow model based on hydrogeochemical results and hydrogeological features is given to describe the geothermal system of the Arxan springs.

  11. Hydrogeochemistry and statistical analysis applied to understand fluoride provenance in the Guarani Aquifer System, Southern Brazil.

    Marimon, Maria Paula C; Roisenberg, Ari; Suhogusoff, Alexandra V; Viero, Antonio Pedro

    2013-06-01

    High fluoride concentrations (up to 11 mg/L) have been reported in the groundwater of the Guarani Aquifer System (Santa Maria Formation) in the central region of the state of Rio Grande do Sul, Southern Brazil. In this area, dental fluorosis is an endemic disease. This paper presents the geochemical data and the combination of statistical analysis (Principal components and cluster analyses) and geochemical modeling to achieve the hydrogeochemistry of the groundwater and discusses the possible fluoride origin. The groundwater from the Santa Maria Formation is comprised of four different geochemical groups. The first group corresponds to a sodium chloride groundwater which evolves to sodium bicarbonate, the second one, both containing fluoride anomalies. The third group is represented by calcium bicarbonate groundwater, and in the fourth, magnesium is the distinctive parameter. The statistical and geochemical analyses supported by isotopic measurements indicated that groundwater may have originated from mixtures of deeper aquifers and the fluoride concentrations could be derived from rock/water interactions (e.g., desorption from clay minerals).

  12. Hydrogeochemistry of the drinking water sources of Derebogazi Village (Kahramanmaras) and their effects on human health.

    Uras, Yusuf; Uysal, Yagmur; Arikan, Tugba Atilan; Kop, Alican; Caliskan, Mustafa

    2015-06-01

    The aim of this study was to investigate the sources of drinking water for Derebogazi Village, Kahramanmaras Province, Turkey, in terms of hydrogeochemistry, isotope geochemistry, and medical geology. Water samples were obtained from seven different water sources in the area, all of which are located within quartzite units of Paleozoic age, and isotopic analyses of (18)O and (2)H (deuterium) were conducted on the samples. Samples were collected from the region for 1 year. Water quality of the samples was assessed in terms of various water quality parameters, such as temperature, pH, conductivity, alkalinity, trace element concentrations, anion-cation measurements, and metal concentrations, using ion chromatography, inductively coupled plasma (ICP) mass spectrometry, ICP-optical emission spectrometry techniques. Regional health surveys had revealed that the heights of local people are significantly below the average for the country. In terms of medical geology, the sampled drinking water from the seven sources was deficient in calcium and magnesium ions, which promote bone development. Bone mineral density screening tests were conducted on ten females using dual energy X-ray absorptiometry to investigate possible developmental disorder(s) and potential for mineral loss in the region. Of these ten women, three had T-scores close to the osteoporosis range (T-score < -2.5).

  13. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Forsmark

    Vidstrand, Patrik (TerraSolve AB, Floda (Sweden)); Follin, Sven (SF GeoLogic AB, Taeby (Sweden)); Zugec, Nada (Bergab, Stockholm (Sweden))

    2010-12-15

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. Hydraulic-mechanical (H-M) issues are also handled but no coupled flow modelling is done. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle for subsequent use in safety assessment applications within SKB's project SR-Site. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 19,000 years. The simulation results comprise residual fluid pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance, the speed of the ice sheet margin, the bedrock hydraulic and transport properties, the temperature at the ice-subsurface interface close to the ice sheet margin, and the initial hydrochemical conditions.

  14. Groundwater flow modelling of periods with periglacial and glacial climate conditions - Forsmark

    Vidstrand, Patrik; Follin, Sven; Zugec, Nada

    2010-12-01

    As a part of the license application for a final repository for spent nuclear fuel at Forsmark, the Swedish Nuclear Fuel and Waste Management Company (SKB) has undertaken a series of groundwater flow modelling studies. These represent time periods with different hydraulic conditions and the simulations carried out contribute to the overall evaluation of the repository design and long-term radiological safety. The groundwater flow modelling study reported here comprises a coupled thermal-hydraulic-chemical (T-H-C) analysis of periods with periglacial and glacial climate conditions. Hydraulic-mechanical (H-M) issues are also handled but no coupled flow modelling is done. The objective of the report is to provide bounding hydrogeological estimates at different stages during glaciation and deglaciation of a glacial cycle for subsequent use in safety assessment applications within SKB's project SR-Site. Three cases with different climate conditions are analysed here: (i) Temperate case, (ii) Glacial case without permafrost, and (iii) Glacial case with permafrost. The glacial periods are transient and encompass approximately 19,000 years. The simulation results comprise residual fluid pressures, Darcy fluxes, and water salinities, as well as advective transport performance measures obtained by particle tracking such as flow path lengths, travel times and flow-related transport resistances. The modelling is accompanied by a sensitivity study that addresses the impact of the following matters: the direction of the ice sheet advance, the speed of the ice sheet margin, the bedrock hydraulic and transport properties, the temperature at the ice-subsurface interface close to the ice sheet margin, and the initial hydrochemical conditions

  15. Forsmark - System 522. Recursive linear regression for the determination of heating rate

    Carlsson, B.

    1980-01-01

    The heating rate for reactor tank and steam tubes is limited. The algorithm of the heating rate has been implemented on the computer and compared with real data from Forsmark-2. The evaluation of data shows a considerable improvement of the determination of derivata which contributes to information during heating events. (G.B.)

  16. Impact assessment of the impact on nature values of the construction and operation of the repository for spent nuclear fuel at Forsmark; Konsekvensbedoemning av paaverkan paa naturvaerden av anlaeggande och drift av slutfoervar foer anvaent kaernbraensle i Forsmark

    Allmer, Johan (Ekologigruppen AB, Stockholm (Sweden))

    2011-03-15

    Construction and operation of a repository at Soederviken in Forsmark, Oesthammar municipality means impact, effects and consequences for the environment. This report describes the natural conditions and natural values in Forsmark with particular focus on Soederviken. Furthermore, an assessment of consequences for the natural environment in the development and operation of a repository at Soederviken. Assessment of impacts from water activities are treated in a special report.

  17. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Forsmark

    Aneljung, Maria; Gustafsson, Lars-Goeran

    2007-04-01

    The hydrological modelling system MIKE SHE has been used to describe near-surface groundwater flow, transport mechanisms and the contact between ground- and surface water at the Forsmark site. The surface water system at Forsmark is described with the 1D modelling tool MIKE 11, which is fully and dynamically integrated with MIKE SHE. In spring 2007, a new data freeze will be available and a process of updating, rebuilding and calibrating the MIKE SHE model will start, based on the latest data set. Prior to this, it is important to gather as much knowledge as possible on calibration methods and to define critical calibration parameters and areas within the model. In this project, an optimization of the numerical description and an initial calibration of the MIKE SHE model has been made, and an updated base case has been defined. Data from 5 surface water level monitoring stations, 4 surface water discharge monitoring stations and 32 groundwater level monitoring stations (SFM soil boreholes) has been used for model calibration and evaluation. The base case simulations generally show a good agreement between calculated and measured water levels and discharges, indicating that the total runoff from the area is well described by the model. Moreover, with two exceptions (SFM0012 and SFM0022) the base case results show very good agreement between calculated and measured groundwater head elevations for boreholes installed below lakes. The model also shows a reasonably good agreement between calculated and measured groundwater head elevations or depths to phreatic surfaces in many other points. The following major types of calculation-measurement differences can be noted: Differences in groundwater level amplitudes due to transpiration processes. Differences in absolute mean groundwater head, due to differences between borehole casing levels and the interpolated DEM. Differences in absolute mean head elevations, due to local errors in hydraulic conductivity values

  18. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Forsmark

    Aneljung, Maria; Gustafsson, Lars-Goeran [DHI Water and Environment AB, Goeteborg (Sweden)

    2007-04-15

    The hydrological modelling system MIKE SHE has been used to describe near-surface groundwater flow, transport mechanisms and the contact between ground- and surface water at the Forsmark site. The surface water system at Forsmark is described with the 1D modelling tool MIKE 11, which is fully and dynamically integrated with MIKE SHE. In spring 2007, a new data freeze will be available and a process of updating, rebuilding and calibrating the MIKE SHE model will start, based on the latest data set. Prior to this, it is important to gather as much knowledge as possible on calibration methods and to define critical calibration parameters and areas within the model. In this project, an optimization of the numerical description and an initial calibration of the MIKE SHE model has been made, and an updated base case has been defined. Data from 5 surface water level monitoring stations, 4 surface water discharge monitoring stations and 32 groundwater level monitoring stations (SFM soil boreholes) has been used for model calibration and evaluation. The base case simulations generally show a good agreement between calculated and measured water levels and discharges, indicating that the total runoff from the area is well described by the model. Moreover, with two exceptions (SFM0012 and SFM0022) the base case results show very good agreement between calculated and measured groundwater head elevations for boreholes installed below lakes. The model also shows a reasonably good agreement between calculated and measured groundwater head elevations or depths to phreatic surfaces in many other points. The following major types of calculation-measurement differences can be noted: Differences in groundwater level amplitudes due to transpiration processes. Differences in absolute mean groundwater head, due to differences between borehole casing levels and the interpolated DEM. Differences in absolute mean head elevations, due to local errors in hydraulic conductivity values

  19. Hydrogeochemistry of Groundwater and Arsenic Adsorption Characteristics of Subsurface Sediments in an Alluvial Plain, SW Taiwan

    Libing Liao

    2016-12-01

    Full Text Available Many studies were conducted to investigate arsenic mobilization in different alluvial plains worldwide. However, due to the unique endemic disease associated with arsenic (As contamination in Taiwan, a recent research was re-initiated to understand the transport behavior of arsenic in a localized alluvial plain. A comprehensive approach towards arsenic mobility, binding, and chemical speciation was applied to correlate groundwater hydrogeochemistry with parameters of the sediments that affected the As fate and transport. The groundwater belongs to a Na-Ca-HCO3 type with moderate reducing to oxidizing conditions (redox potential = −192 to 8 mV. Groundwater As concentration in the region ranged from 8.89 to 1131 μg/L with a mean of 343 ± 297 μg/L, while the As content in the core sediments varied from 0.80 to 22.8 mg/kg with a mean of 9.9 ± 6.2 mg/kg. A significant correlation was found between As and Fe, Mn, or organic matter, as well as other elements such as Ni, Cu, Zn, and Co in the core sediments. Sequential extraction analysis indicated that the organic matter and Fe/Mn oxyhydroxides were the major binding pools of As. Batch adsorption experiments showed that the sediments had slightly higher affinity for As(III than for As(V under near neutral pH conditions and the As adsorption capacity increased as the contents of Fe oxyhydroxides as well as the organic matter increased.

  20. Assessment of hydro-geochemistry and groundwater quality of Rajshahi City in Bangladesh

    Mostafa, M. G.; Uddin, S. M. Helal; Haque, A. B. M. H.

    2017-12-01

    The study was carried out to understand the hydro-geochemistry and ground water quality in the Rajshahi City of Bangladesh. A total of 240 groundwater samples were collected in 2 years, i.e., 2009 and 2010 covering the pre-monsoon, monsoon and post-monsoon seasons. Aquifer soil samples were collected from 30 locations during the monsoon in 2000. All the samples were analyzed for various physicochemical parameters according to standard methods of analysis, these includes pH, electrical conductivity, total dissolved solids, total hardness, and total alkalinity, major cations such as Na+, K+, Ca2+, Mg2+, and Fe2+, major anions such as HCO3 -, NO3 -, Cl-, and SO4 2- and heavy metals such as Mn, Zn, Cu, As, Cd and Pb. The results illustrated that the groundwater was slightly acidic to neutral in nature, total hardness observed in all samples fall under the hard to a very hard category. The bicarbonate and calcium concentration in the groundwater exceeded the permissible limits may be due to the dissolution of calcite. The concentration of calcium, iron, manganese, arsenic and lead were far above the permissible limit in most of the shallow tube well samples. The study found that the major hydrochemical facies was identified to be calcium-bicarbonate-type (CaHCO3). A higher concentration of metals including Fe, Mn, As and Pb was found indicating various health hazards. The rock-water interaction was the major geochemical process controlling the chemistry of groundwater in the study area. The study results revealed that the quality of the groundwater in Rajshahi City area was of great concern and not suitable for human consumption without adequate treatment.

  1. Hydrogeochemistry and Stable Isotope Studies of Groundwater in the Ga West Municipal Area, Ghana

    Saka, David

    2011-07-01

    This study assesses groundwater in the Ga West Municipal Area of Ghana using hydrogeochemistry and stable isotope approaches. High salinity groundwaters are obtained in the municipality which poses problems for current and future domestic water supply exploitation. The increase in salinity is related to the dissolution of minerals in the host rocks and the evaporative concentration of solutes. The dominant groundwater composition in both shallow and deep wells sampled is Na-Cl, with concentration increasing substantially with well depths. The mixing process between freshwater and saline water was observed in the shift from CaHCO3 facies to Ca-Cl facies. Schoeller diagrams showed that groundwater movement in the study area is mostly vertical, moving from the shallow groundwaters towards the deep groundwaters. There were however few exceptions where no relationship was established between the shallow and the deep groundwaters. The oxygen and hydrogen isotope compositions in the groundwater samples suggest that groundwater recharge is of meteoric origin, with few samples showing evidence of evaporation. An average deuterium excess of rainfall of 14.2‰ was observed, which indicates the significance of kinetic evaporation due to low humidity conditions prevalent in the study area. The d-excess also indicates modern recharge along the Akwapim-Togo Ranges. Groundwater analysis for trace metals indicates that 93% of the groundwaters have Iron concentration above recommended limits. However, Cu, Zn, Pb, Cd and Cr have values within the acceptable limits. Generally, about 40% of the groundwaters sampled are not suitable for drinking and domestic purposes based on comparison with international standards for drinking water. (au)

  2. Modelling of water-rock interaction at TVO investigation sites

    Pitkaenen, P.; Leino-Forsman, H.

    1992-12-01

    The geochemistry of the groundwater at the Kivetty, Syyry and Olkiluoto site investigation areas in Finland for nuclear waste disposal is evaluated. The hydrogeological data is collected from boreholes drilled down to 100-m depth into crystalline bedrock. The interpretation is based on groundwater chemistry and isotope data, mineralogical data, and the structure and hydrology of the bedrock, using correlation diagrams and the thermodynamic calculations (PHREEQE,EQ3NR). The hydrogeochemistry and major processes controlling the groundwater chemistry are discussed

  3. Final disposal Forsmark, Simpevarp and Laxemar. Inflow of ground water and influence on hydrogeologic and hydrologic conditions; Slutfoervar Forsmark, Simpevarp och Laxemar. Inlaeckage av grundvatten samt paaverkan paa hydrogeologiska och hydrologiska foerhaallanden

    Werner, Kent [Golder Associates AB, Stockholm (Sweden)

    2006-10-15

    This report summarizes the description of the natural (uninfluenced) hydrogeological and hydrological conditions at the possible final repository locations Forsmark, Simpevarp and Laxemar. For each site, the description is based on SKB's site descriptions version 1.2. The report provides assessments of the inflow and the effects on the surroundings (groundwater drawdown and the associated area of influence) due to construction, operation, and closing of a repository for spent nuclear fuel at the above locations. The assessment of the effects of the repository on its surroundings is primarily based on calculation results from two numerical flow models, DarcyTools and MOUSESHE (for Simpevarp, only DarcyTools has been used). The basis for the modelling is SKB's site descriptions version 1.2, which will be updated in the form of new versions. Moreover, the models are based on a preliminary layout of the repository at each location. Hence, the flow models will be developed further when the site descriptions are updated. The results may also be affected by changes of the repository layout. The modelling projects have been performed in the same order as they are presented in the report (Forsmark, Simpevarp and Laxemar). Some aspects of the numerical models, and the coupling between them, have been developed and improved during the course of work. Examples on major differences between the models include the technique to simulate grouting in DarcyTools, and the possibility to visualize modelling results from this model, for instance on other types of background maps. The results show a small inflow and a small area of influence for a repository at Forsmark. The upper parts of the repository (c 100 m depth and upwards) give the largest contribution to the inflow and the area of influence. This indicates that the effects on the surroundings from the deep and the near surface parts of the repository can be analysed separately. For a repository at Simpevarp and

  4. Quality control of GPS deformation data from Forsmark and analysis of crustal deformation in the local scale

    Ekman, Lennart; Ekman, Mats

    2013-03-01

    A network comprising seven GPS stations was established at Forsmark, Sweden, within about 10 km radius from the centre of the investigation area for a final repository for spent nuclear fuel with the purpose of monitoring slow rock motion. During the period November 2005 to December 2009, GPS data were collected in eighteen intermittent measurement campaigns, each with a duration of between three and seven days. As shown in Gustafson and Ljungberg (2010), the data expose a considerable scatter, indicating a non-linear variability of the GPS baseline velocities. However, the commission narrated in Gustafson and Ljungberg (2010) was restricted to account only for the field performance of the GPS measurement campaign and to present the resulting measurement data per se, merely supplemented with a linear regression solution for the baseline motions. The preliminary interpretation of GPS data in Gustafson and Ljungberg (2010) was in the present report followed by a closer examination where the non-linear variability is modelled as sinusoidal. Evidence for sinusoidal variations were also found in resulting data from GPS measurements at the Aespoe/Laxemar area at Oskarshamn (Sjoeberg et al. 2004), as well as in GPS data from several sites in western, middle and north-eastern Finland (Ollikainen et al. 2004, Ahola et al. 2008, Poutanen et al. 2010). We here postulate that the baseline velocities are characterized by a long-term linear drift superposed by a non-linear sinusoidal motion. This was modelled in two steps. Initially an Auto Regressive (AR) model was applied and the linear trends between the GPS stations were estimated. In a second step, an Auto Regressive Moving Average (ARMA) model was estimated for (almost) all baselines. The residuals between the original data and the one-step predictor for the ARMA model were then used to estimate new linear trends for the baselines. Our analysis of the Forsmark GPS data indicates relative motions more than 10 times slower

  5. Quality control of GPS deformation data from Forsmark and analysis of crustal deformation in the local scale

    Ekman, Lennart; Ekman, Mats [LE Geokonsult AB, Baelinge (Sweden)

    2013-03-15

    A network comprising seven GPS stations was established at Forsmark, Sweden, within about 10 km radius from the centre of the investigation area for a final repository for spent nuclear fuel with the purpose of monitoring slow rock motion. During the period November 2005 to December 2009, GPS data were collected in eighteen intermittent measurement campaigns, each with a duration of between three and seven days. As shown in Gustafson and Ljungberg (2010), the data expose a considerable scatter, indicating a non-linear variability of the GPS baseline velocities. However, the commission narrated in Gustafson and Ljungberg (2010) was restricted to account only for the field performance of the GPS measurement campaign and to present the resulting measurement data per se, merely supplemented with a linear regression solution for the baseline motions. The preliminary interpretation of GPS data in Gustafson and Ljungberg (2010) was in the present report followed by a closer examination where the non-linear variability is modelled as sinusoidal. Evidence for sinusoidal variations were also found in resulting data from GPS measurements at the Aespoe/Laxemar area at Oskarshamn (Sjoeberg et al. 2004), as well as in GPS data from several sites in western, middle and north-eastern Finland (Ollikainen et al. 2004, Ahola et al. 2008, Poutanen et al. 2010). We here postulate that the baseline velocities are characterized by a long-term linear drift superposed by a non-linear sinusoidal motion. This was modelled in two steps. Initially an Auto Regressive (AR) model was applied and the linear trends between the GPS stations were estimated. In a second step, an Auto Regressive Moving Average (ARMA) model was estimated for (almost) all baselines. The residuals between the original data and the one-step predictor for the ARMA model were then used to estimate new linear trends for the baselines. Our analysis of the Forsmark GPS data indicates relative motions more than 10 times slower

  6. Report of comment to the Nuclear Power Inspectorate concerning the final waste repository at Forsmark (SFR)

    1983-04-01

    The institute gives its support to the construction of the final depository of low and medium level radioactive waste at Forsmark. The main outline has been presented by the Swedish Nuclear Fuel Supply Company in their application. Prior to putting into operation necessary instructions have to be issued and prior to closing the depository its impact on the environment is to be examined. (G.B.)

  7. Simulated carbon and water processes of forest ecosystems in Forsmark and Oskarshamn during a 100-year period

    Gustafsson, David; Jansson, Per-Erik; Gaerdenaes, Annemieke; Eckersten, Henrik

    2006-12-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is currently investigating the Forsmark and Oskarshamn areas for possible localisation of a repository for spent nuclear fuel. Important components of the investigations are characterizations of the land surface ecosystems in the areas with respect to hydrological and biological processes, and their implications for the fate of radionuclide contaminants entering the biosphere from a shallow groundwater contamination. In this study, we simulate water balance and carbon turnover processes in forest ecosystems representative for the Forsmark and Oskarshamn areas for a 100-year period using the ecosystem process model CoupModel. The CoupModel describes the fluxes of water and matter in a one-dimensional soil-vegetation-atmosphere system, forced by time series of meteorological variables. The model has previously been parameterized for many of the vegetation systems that can be found in the Forsmark and Oskarshamn areas: spruce/pine forests, willow, grassland and different agricultural crops. This report presents a platform for further use of models like CoupModel for investigations of radionuclide turnover in the Forsmark and Oskarshamn area based on SKB data, including a data set of meteorological forcing variables for Forsmark 1970-2004, suitable for simulations of a 100-year period representing the present day climate, a hydrological parameterization of the CoupModel for simulations of the forest ecosystems in the Forsmark and Oskarshamn areas, and simulated carbon budgets and process descriptions for Forsmark that correspond to a possible steady state of the soil storage of the forest ecosystem

  8. Simulated carbon and water processes of forest ecosystems in Forsmark and Oskarshamn during a 100-year period

    Gustafsson, David; Jansson, Per-Erik [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Land and Water Resources Engineering; Gaerdenaes, Annemieke [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil Sciences; Eckersten, Henrik [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Crop Production Ecology

    2006-12-15

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is currently investigating the Forsmark and Oskarshamn areas for possible localisation of a repository for spent nuclear fuel. Important components of the investigations are characterizations of the land surface ecosystems in the areas with respect to hydrological and biological processes, and their implications for the fate of radionuclide contaminants entering the biosphere from a shallow groundwater contamination. In this study, we simulate water balance and carbon turnover processes in forest ecosystems representative for the Forsmark and Oskarshamn areas for a 100-year period using the ecosystem process model CoupModel. The CoupModel describes the fluxes of water and matter in a one-dimensional soil-vegetation-atmosphere system, forced by time series of meteorological variables. The model has previously been parameterized for many of the vegetation systems that can be found in the Forsmark and Oskarshamn areas: spruce/pine forests, willow, grassland and different agricultural crops. This report presents a platform for further use of models like CoupModel for investigations of radionuclide turnover in the Forsmark and Oskarshamn area based on SKB data, including a data set of meteorological forcing variables for Forsmark 1970-2004, suitable for simulations of a 100-year period representing the present day climate, a hydrological parameterization of the CoupModel for simulations of the forest ecosystems in the Forsmark and Oskarshamn areas, and simulated carbon budgets and process descriptions for Forsmark that correspond to a possible steady state of the soil storage of the forest ecosystem.

  9. The Laxemar and Forsmark repositories. An analysis of the water inflow distribution

    Svensson, Urban

    2006-12-01

    A numerical simulation model is used to estimate the water inflow distribution to the Laxemar and Forsmark repositories. In particular statistics for the inflow to individual deposition holes, i.e. inflow distribution expressed as litre/min, deposition hole, is requested. Different grouting efficiencies are evaluated, including no grouting. The simulations are based on the code DarcyTools version 3.0, which was also used in simulations of the impact of the Repositories in Forsmark and Laxemar. Both the code and the simulations include many novel features and all simulations should hence be regarded as tentative. For the Laxemar repository it is found that less than 2% of all deposition holes will have an inflow larger than 1.0 l/min. This number will increase to about 20% if the inflow limit is put to 0.1 l/min. For the Forsmark repository it is found that 99.9% of all deposition holes will have an inflow smaller than 0.01 l/min

  10. Site selection - siting of the final repository for spent nuclear fuel

    2011-03-01

    SKB has selected Forsmark as the site for the final repository for spent nuclear fuel. The site selection is the end result of an extensive siting process that began in the early 1990s. The strategy and plan for the work was based on experience from investigations and development work over a period of more than ten years prior to then. This document describes the siting work and SKB's choice of site for the final repository. It also presents the information on which the choice was based and the reasons for the decisions made along the way. The document comprises Appendix PV to applications under the Nuclear Activities Act and the Environmental Code for licences to build and operate an encapsulation plant adjacent to the central interim storage facility for spent nuclear fuel in Oskarshamn, and to build and operate a final repository for spent nuclear fuel in Forsmark in Oesthammar Municipality

  11. Site selection - siting of the final repository for spent nuclear fuel

    2011-03-15

    SKB has selected Forsmark as the site for the final repository for spent nuclear fuel. The site selection is the end result of an extensive siting process that began in the early 1990s. The strategy and plan for the work was based on experience from investigations and development work over a period of more than ten years prior to then. This document describes the siting work and SKB's choice of site for the final repository. It also presents the information on which the choice was based and the reasons for the decisions made along the way. The document comprises Appendix PV to applications under the Nuclear Activities Act and the Environmental Code for licences to build and operate an encapsulation plant adjacent to the central interim storage facility for spent nuclear fuel in Oskarshamn, and to build and operate a final repository for spent nuclear fuel in Forsmark in Oesthammar Municipality

  12. Hydrogeochemistry of high-temperature geothermal systems in China: A review

    Guo, Qinghai

    2012-01-01

    As an important part of the Mediterranean-Himalayas geothermal belt, southern Tibet and western Yunnan are the regions of China where high-temperature hydrothermal systems are intensively distributed, of which Rehai, Yangbajing and Yangyi have been investigated systematically during the past several decades. Although much work has been undertaken at Rehai, Yangbajing and Yangyi to study the regional geology, hydrogeology, geothermal geology and geophysics, the emphasis of this review is on hydrogeochemical studies carried out in these geothermal fields. Understanding the geochemistry of geothermal fluids and their environmental impact is critical for sustainable exploitation of high-temperature hydrothermal resources in China. For comparison, the hydrogeochemistry of several similar high-temperature hydrothermal systems in other parts of the world are also included in this review. It has been confirmed by studies on Cl − and stable isotope geochemistry that magma degassing makes an important contribution to the geothermal fluids from Rehai, Yangbajing and Yangyi, though meteoric water is still the major source of recharge for these hydrothermal systems. However, the mechanisms of magma heat sources appear to be quite different in the three systems, as recorded by the 3 He/ 4 He ratios of escaping geothermal gases. A mantle-derived magma intrusion to shallow crust is present below Rehai, although the intruding magma has been heavily hybridized by crustal material. By contrast, the heat sources below Yangbajing and Yangyi are inferred to be remelted continental crust. Besides original sources, the geochemistry of characteristic constituents in the geothermal fluids have also been affected by temperature-dependent fluid–rock interactions, boiling and redox condition changes occurring in the upper part of hydrothermal systems, and mixing with cold near-surface waters. The geothermal fluids from Rehai, Yangbajing and Yangyi contain very high concentrations of some

  13. Using the PCRaster-POLFLOW approach to GIS-based modelling of coupled groundwater-surface water hydrology in the Forsmark Area

    Jarsjoe, Jerker; Shibuo, Yoshihiro; Destouni, Georgia

    2004-09-01

    The catchment-scale hydrologic modelling approach PCRaster-POLFLOW permits the integration of environmental process modelling functions with classical GIS functions such as database maintenance and screen display. It has previously successfully been applied at relatively large river basins and catchments, such as Rhine, Elbe and Norrstroem, for modelling stream water flow and nutrient transport. In this study, we review the PCRaster-POLFLOW modelling approach and apply it using a relatively fine spatial resolution to the smaller catchment of Forsmark. As input we use data from SKB's database, which includes detailed data from Forsmark (and Simpevarp), since these locations are being investigated as part of the process to find a suitable location for a deep repository for spent nuclear fuel. We show, by comparison with independently measured, area-averaged runoff data, that the PCRaster-POLFLOW model produces results that, without using site-specific calibration, agree well with these independent measurements. In addition, we deliver results for four planned hydrological stations within the Forsmark catchment thus allowing for future direct comparisons with streamflow monitoring. We also show that, and how, the PCRaster-POLFLOW model in its present state can be used for predicting average seasonal streamflow. The present modelling exercise provided insights into possible ways of extending and using the PCRaster-POLFLOW model for applications beyond its current main focus of surface water hydrology. In particular, regarding analysis of possible surface water-groundwater interactions, we identify the Analytic Element Method for groundwater modelling together with its GIS-based pre- and post processor ArcFlow as suitable and promising for use in combination with the PCRaster-POLFLOW modelling approach. Furthermore, for transport modelling, such as that of radionuclides entering the coupled shallow groundwater-surface water hydrological system from possible deep

  14. Using the PCRaster-POLFLOW approach to GIS-based modelling of coupled groundwater-surface water hydrology in the Forsmark Area

    Jarsjoe, Jerker; Shibuo, Yoshihiro; Destouni, Georgia [Stockholm Univ. (Sweden). Dept. of Physical Geography and Quaternary Geology

    2004-09-01

    The catchment-scale hydrologic modelling approach PCRaster-POLFLOW permits the integration of environmental process modelling functions with classical GIS functions such as database maintenance and screen display. It has previously successfully been applied at relatively large river basins and catchments, such as Rhine, Elbe and Norrstroem, for modelling stream water flow and nutrient transport. In this study, we review the PCRaster-POLFLOW modelling approach and apply it using a relatively fine spatial resolution to the smaller catchment of Forsmark. As input we use data from SKB's database, which includes detailed data from Forsmark (and Simpevarp), since these locations are being investigated as part of the process to find a suitable location for a deep repository for spent nuclear fuel. We show, by comparison with independently measured, area-averaged runoff data, that the PCRaster-POLFLOW model produces results that, without using site-specific calibration, agree well with these independent measurements. In addition, we deliver results for four planned hydrological stations within the Forsmark catchment thus allowing for future direct comparisons with streamflow monitoring. We also show that, and how, the PCRaster-POLFLOW model in its present state can be used for predicting average seasonal streamflow. The present modelling exercise provided insights into possible ways of extending and using the PCRaster-POLFLOW model for applications beyond its current main focus of surface water hydrology. In particular, regarding analysis of possible surface water-groundwater interactions, we identify the Analytic Element Method for groundwater modelling together with its GIS-based pre- and post processor ArcFlow as suitable and promising for use in combination with the PCRaster-POLFLOW modelling approach. Furthermore, for transport modelling, such as that of radionuclides entering the coupled shallow groundwater-surface water hydrological system from possible deep

  15. Groundwater mixing and mineralization processes in a mountain-oasis-desert basin, northwest China: hydrogeochemistry and environmental tracer indicators

    Ma, Bin; Jin, Menggui; Liang, Xing; Li, Jing

    2018-02-01

    Hydrogeochemistry and environmental tracers (2H, 18O, 87Sr/86Sr) in precipitation, river and reservoir water, and groundwater have been used to determine groundwater recharge sources, and to identify mixing characteristics and mineralization processes in the Manas River Basin (MRB), which is a typical mountain-oasis-desert ecosystem in arid northwest China. The oasis component is artificial (irrigation). Groundwater with enriched stable isotope content originates from local precipitation and surface-water leakage in the piedmont alluvial-oasis plain. Groundwater with more depleted isotopes in the north oasis plain and desert is recharged by lateral flow from the adjacent mountains, for which recharge is associated with high altitude and/or paleo-water infiltrating during a period of much colder climate. Little evaporation and isotope exchange between groundwater and rock and soil minerals occurred in the mountain, piedmont and oasis plain. Groundwater δ2H and δ18O values show more homogeneous values along the groundwater flow direction and with well depths, indicating inter-aquifer mixing processes. A regional contrast of groundwater allows the 87Sr/86Sr ratios and δ18O values to be useful in a combination with Cl, Na, Mg, Ca and Sr concentrations to distinguish the groundwater mixing characteristics. Two main processes are identified: groundwater lateral-flow mixing and river leakage in the piedmont alluvial-oasis plain, and vertical mixing in the north oasis plain and the desert. The 87Sr/86Sr ratios and selected ion ratios reveal that carbonate dissolution and mixing with silicate from the southern mountain area are primarily controlling the strontium isotope hydrogeochemistry.

  16. Water Activities in Forsmark (Part I). Removal of groundwater from final repository for spent fuel; Vattenverksamhet i Forsmark (del I). Bortledande av grundvatten fraan slutfoervarsanlaeggningen foer anvaent kaernbraensle

    Werner, Kent [EmpTec (Sweden); Hamren, Ulrika; Collinder, Per [Ekologigruppen AB (Sweden)

    2010-12-15

    The construction, operation and decommissioning of the repository for spent nuclear fuel in Forsmark are associated with a number of measures that constitute water operations according to Chapter 11 in the Environmental Code. This report is an appendix to the Environmental Impact Assessment (EIA) and describes water operations in the form of groundwater diversion from the repository (the report is also included in the permit application according to the Nuclear Activities Act). The main objective of the report is to describe hydrogeological and hydrological effects and the consequences that may arise in the surroundings of the repository due to the groundwater diversion. Moreover, the report presents prevention measures to reduce the effects of the groundwater diversion and mitigation measures that aim at its consequences

  17. Recharge and discharge of near-surface groundwater in Forsmark. Comparison of classification methods

    Werner, Kent [Golder Associates AB, Uppsala (Sweden); Johansson, Per-Olof [Artesia Grundvattenkonsult AB, Taeby (Sweden); Brydsten, Lars [Umeaa University, Dept. of Ecology and Environmental Science (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2007-03-15

    This report presents and compares data and models for identification of near-surface groundwater recharge and discharge (RD) areas in Forsmark. The general principles of groundwater recharge and discharge are demonstrated and applied to interpret hydrological and hydrogeological observations made in the Forsmark area. 'Continuous' RD classification methods considered in the study include topographical modelling, map overlays, and hydrological-hydrogeological flow modelling. 'Discrete' (point) methods include field-based and hydrochemistry-based RD classifications of groundwater monitoring well locations. The topographical RD modelling uses the digital elevation model as the only input. The map overlays use background maps of Quaternary deposits, soils, and ground- and field layers of the vegetation/land use map. Further, the hydrological-hydrogeological modelling is performed using the MIKE SHE-MIKE 11 software packages, taking into account e.g. topography, meteorology, hydrogeology, and geometry of watercourses and lakes. The best between-model agreement is found for the topography-based model and the MIKE SHE-MIKE 11 model. The agreement between the topographical model and the map overlays is less good. The agreement between the map overlays on the one hand, and the MIKE SHE and field-based RD classifications on the other, is thought to be less good, as inferred from the comparison made with the topography-based model. However, much improvement of the map overlays can likely be obtained, e.g. by using 'weights' and calibration (such exercises were outside the scope of the present study). For field-classified 'recharge wells', there is a good agreement to the hydrochemistry-based (Piper plot) well classification, but less good for the field-classified 'discharge wells'. In addition, the concentration of the age-dating parameter tritium shows low variability among recharge wells, but a large spread among discharge

  18. Recharge and discharge of near-surface groundwater in Forsmark. Comparison of classification methods

    Werner, Kent; Johansson, Per-Olof; Brydsten, Lars; Bosson, Emma; Berglund, Sten

    2007-03-01

    This report presents and compares data and models for identification of near-surface groundwater recharge and discharge (RD) areas in Forsmark. The general principles of groundwater recharge and discharge are demonstrated and applied to interpret hydrological and hydrogeological observations made in the Forsmark area. 'Continuous' RD classification methods considered in the study include topographical modelling, map overlays, and hydrological-hydrogeological flow modelling. 'Discrete' (point) methods include field-based and hydrochemistry-based RD classifications of groundwater monitoring well locations. The topographical RD modelling uses the digital elevation model as the only input. The map overlays use background maps of Quaternary deposits, soils, and ground- and field layers of the vegetation/land use map. Further, the hydrological-hydrogeological modelling is performed using the MIKE SHE-MIKE 11 software packages, taking into account e.g. topography, meteorology, hydrogeology, and geometry of watercourses and lakes. The best between-model agreement is found for the topography-based model and the MIKE SHE-MIKE 11 model. The agreement between the topographical model and the map overlays is less good. The agreement between the map overlays on the one hand, and the MIKE SHE and field-based RD classifications on the other, is thought to be less good, as inferred from the comparison made with the topography-based model. However, much improvement of the map overlays can likely be obtained, e.g. by using 'weights' and calibration (such exercises were outside the scope of the present study). For field-classified 'recharge wells', there is a good agreement to the hydrochemistry-based (Piper plot) well classification, but less good for the field-classified 'discharge wells'. In addition, the concentration of the age-dating parameter tritium shows low variability among recharge wells, but a large spread among discharge wells. The usefulness of hydrochemistry-based RD

  19. Quantitative distribution of aquatic plant and animal communities in the Forsmark-area

    Kautsky, H.; Plantman, P.; Borgiel, M.

    1999-12-01

    , rock) a luxuriant growth of the bladder wrack (Fucus vesiculosus) could be seen. Also, the moss Fontinalis dalecarlica was not unusual. This moss is frequently observed in the Gulf of Bothnia but does not occur in the Baltic proper. Among the animals, the blue mussel (Mytilus edulis) was to a large extent missing, although suitable substrate was present. In the Bothnian Sea the marine mussel Mytilus extends up to the Northern Quark, but usually only scattered, few individuals are found at each site along the whole coast. The blue mussel never has the same mass-occurrence as can be observed in the Stockholm archipelago and further south in the Baltic proper. Thus, the ecosystem of the SFR-area has a function somewhat different from the Baltic proper as the filter feeders lack to a large extent. The species biomass was determined by collecting 54 quantitative samples (usually 12 samples per transect). At comparable depths, when excluding the bladder wrack (Fucus vesiculosus) and the blue mussel (Mytilus edulis) the total depth distribution of plant and animal biomass was similar those of the Graesoe-Singoe area (ranging between 30-60 g dry weight m -2 of plants and 20-50 g of animals). However, the total biomass of both the bladder wrack (Fucus vesiculosus) and the filter feeding blue mussel (Mytilus edulis) was considerable lower in the Forsmark area. This can to some extent be explained by the difference in dominating substrate (mostly rocky) as well as a larger influence from the Baltic proper in the Graesoe-Singoe area. For the low amounts of Mytilus see explanation given above

  20. Quantitative distribution of aquatic plant and animal communities in the Forsmark-area

    Kautsky, H; Plantman, P; Borgiel, M [Stockholm Univ. (Sweden). Dept. of Systems Ecology

    1999-12-15

    , rock) a luxuriant growth of the bladder wrack (Fucus vesiculosus) could be seen. Also, the moss Fontinalis dalecarlica was not unusual. This moss is frequently observed in the Gulf of Bothnia but does not occur in the Baltic proper. Among the animals, the blue mussel (Mytilus edulis) was to a large extent missing, although suitable substrate was present. In the Bothnian Sea the marine mussel Mytilus extends up to the Northern Quark, but usually only scattered, few individuals are found at each site along the whole coast. The blue mussel never has the same mass-occurrence as can be observed in the Stockholm archipelago and further south in the Baltic proper. Thus, the ecosystem of the SFR-area has a function somewhat different from the Baltic proper as the filter feeders lack to a large extent. The species biomass was determined by collecting 54 quantitative samples (usually 12 samples per transect). At comparable depths, when excluding the bladder wrack (Fucus vesiculosus) and the blue mussel (Mytilus edulis) the total depth distribution of plant and animal biomass was similar those of the Graesoe-Singoe area (ranging between 30-60 g dry weight m{sup -2} of plants and 20-50 g of animals). However, the total biomass of both the bladder wrack (Fucus vesiculosus) and the filter feeding blue mussel (Mytilus edulis) was considerable lower in the Forsmark area. This can to some extent be explained by the difference in dominating substrate (mostly rocky) as well as a larger influence from the Baltic proper in the Graesoe-Singoe area. For the low amounts of Mytilus see explanation given above.

  1. Quantitative distribution of aquatic plant and animal communities in the Forsmark-area

    Kautsky, H.; Plantman, P.; Borgiel, M. [Stockholm Univ. (Sweden). Dept. of Systems Ecology

    1999-12-15

    (boulders, rock) a luxuriant growth of the bladder wrack (Fucus vesiculosus) could be seen. Also, the moss Fontinalis dalecarlica was not unusual. This moss is frequently observed in the Gulf of Bothnia but does not occur in the Baltic proper. Among the animals, the blue mussel (Mytilus edulis) was to a large extent missing, although suitable substrate was present. In the Bothnian Sea the marine mussel Mytilus extends up to the Northern Quark, but usually only scattered, few individuals are found at each site along the whole coast. The blue mussel never has the same mass-occurrence as can be observed in the Stockholm archipelago and further south in the Baltic proper. Thus, the ecosystem of the SFR-area has a function somewhat different from the Baltic proper as the filter feeders lack to a large extent. The species biomass was determined by collecting 54 quantitative samples (usually 12 samples per transect). At comparable depths, when excluding the bladder wrack (Fucus vesiculosus) and the blue mussel (Mytilus edulis) the total depth distribution of plant and animal biomass was similar those of the Graesoe-Singoe area (ranging between 30-60 g dry weight m{sup -2} of plants and 20-50 g of animals). However, the total biomass of both the bladder wrack (Fucus vesiculosus) and the filter feeding blue mussel (Mytilus edulis) was considerable lower in the Forsmark area. This can to some extent be explained by the difference in dominating substrate (mostly rocky) as well as a larger influence from the Baltic proper in the Graesoe-Singoe area. For the low amounts of Mytilus see explanation given above.

  2. Expected extreme sea levels at Forsmark and Laxemar-Simpevarp up until year 2100

    Brydsten, Lars; Engqvist, Anders; Naeslund, Jens-Ove; Lindborg, Tobias

    2009-01-01

    Literature data on factors that can affect the highest expected shoreline during the operational lifetime of a final repository up until ca 2100 AD have been compiled for Forsmark and Laxemar/Simpevarp. The study takes into consideration eustasy (global sea level), isostasy (isostatic rebound) and their trends, as well as regional (North Sea) and local (Baltic Sea) annual extremes of today's sea levels and those in year 2100. The most uncertain factor of these is the future global sea level change. For this factor, three possible scenarios have been included from the literature, forming an rough uncertainty interval around a case with an 'intermediate' global sea level. To this end, the study thus makes use of information on global sea level change that has been published since the IPCC's (UN Intergovernmental Panel on Climate Change) most recent report (2007). The local cumulative impact on the shoreline of the eustatic and isostatic components for both the Forsmark and Laxemar/Simpevarp coastal areas is that the maximum sea level occurs at the end of the investigation period, by year 2100. The interaction of these estimates is discussed in terms of coastal oceanographic aspects and estimated return periods for local extreme sea level-impacting events, including estimated storm surge. Maximum sea levels in year 2100 based on the sea level rise estimates by Rahmstorf are + 254 cm for Forsmark and + 297 cm for Laxemar/Simpevarp, both of these levels with an uncertainty interval of about ± 70 cm. The numbers apply for the worst possible case in regard to future sea level rise, and for occasions of short duration during heavy storms. In this context it is important to note that the data on which these estimates are based are the subject of intense research, and that revisions are therefore to be expected

  3. Expected extreme sea levels at Forsmark and Laxemar-Simpevarp up until year 2100

    Brydsten, Lars (Umeaa Univ., Umeaa (Sweden)); Engqvist, Anders (Royal Institute of Technology, Stockholm (Sweden)); Naeslund, Jens-Ove; Lindborg, Tobias (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2009-01-15

    Literature data on factors that can affect the highest expected shoreline during the operational lifetime of a final repository up until ca 2100 AD have been compiled for Forsmark and Laxemar/Simpevarp. The study takes into consideration eustasy (global sea level), isostasy (isostatic rebound) and their trends, as well as regional (North Sea) and local (Baltic Sea) annual extremes of today's sea levels and those in year 2100. The most uncertain factor of these is the future global sea level change. For this factor, three possible scenarios have been included from the literature, forming an rough uncertainty interval around a case with an 'intermediate' global sea level. To this end, the study thus makes use of information on global sea level change that has been published since the IPCC's (UN Intergovernmental Panel on Climate Change) most recent report (2007). The local cumulative impact on the shoreline of the eustatic and isostatic components for both the Forsmark and Laxemar/Simpevarp coastal areas is that the maximum sea level occurs at the end of the investigation period, by year 2100. The interaction of these estimates is discussed in terms of coastal oceanographic aspects and estimated return periods for local extreme sea level-impacting events, including estimated storm surge. Maximum sea levels in year 2100 based on the sea level rise estimates by Rahmstorf are + 254 cm for Forsmark and + 297 cm for Laxemar/Simpevarp, both of these levels with an uncertainty interval of about +- 70 cm. The numbers apply for the worst possible case in regard to future sea level rise, and for occasions of short duration during heavy storms. In this context it is important to note that the data on which these estimates are based are the subject of intense research, and that revisions are therefore to be expected

  4. Geochemical modelling study on the age and evolution of the groundwater at the Romuvaara site

    Pitkaenen, P; Vuorinen, U; Leino-Forsman, H [Technical Research Centre of Finland, Espoo (Finland); Snellman, M [Imatran Voima Oy, Helsinki (Finland)

    1996-09-01

    The objective of the study was to interpret the processes and factors which control the hydrogeochemistry (e.g. pH and redox conditions) in the radioactive waste disposal environment. A model of the hydrogeochemical evolution and the chemical flowpaths in different parts of the bedrock at the Romuvaara (in Finland) site has been created. The significance of chemical reactions along different flowpaths is calculated. Furthermore, the consistency of the hydrogeochemical model and the hydrogeological model is examined. (107 refs.).

  5. Geochemical modelling study on the age and evolution of the groundwater at the Romuvaara site

    Pitkaenen, P.; Vuorinen, U.; Leino-Forsman, H.; Snellman, M.

    1996-09-01

    The objective of the study was to interpret the processes and factors which control the hydrogeochemistry (e.g. pH and redox conditions) in the radioactive waste disposal environment. A model of the hydrogeochemical evolution and the chemical flowpaths in different parts of the bedrock at the Romuvaara (in Finland) site has been created. The significance of chemical reactions along different flowpaths is calculated. Furthermore, the consistency of the hydrogeochemical model and the hydrogeological model is examined. (107 refs.)

  6. A basis for modelling of radionuclide flow in the Forsmark biotest basin

    Notter, M.; Snoeijs, P.; Argaerde, L.; Elert, M.

    1987-01-01

    Certain radionuclides are discharged together with the cooling water of Forsmark power station. Of these, Mn-54, Co-60, Zn-65 and Ag-110 m are easily detectable in the environment. This report gives a conceptual five-compartment model for the flows of radionuclides within the basin ecosystem. The available data from biological and radio-ecological investigations in the biotest basin were used to quantify the amounts of radionuclides in each of the reservoirs. The subsystem water-sediment-primary producers was pointed out to be the most interesting part of the ecosystem for studying radionuclides with mathematical modelling in the future. (orig./DG)

  7. From Site Data to Safety Assessment: Analysis of Present and Future Hydrological Conditions at a Coastal Site in Sweden

    Berglund, Sten; Bosson, Emma; Sassner, Mona

    2013-01-01

    This paper presents an analysis of present and future hydrological conditions at the Forsmark site in Sweden, which has been proposed as the site for a geological repository for spent nuclear fuel. Forsmark is a coastal site that changes in response to shoreline displacement. In the considered time frame (until year 10 000 ad), the hydrological system will be affected by landscape succession associated with shoreline displacement and changes in vegetation, regolith stratigraphy, and climate. Based on extensive site investigations and modeling of present hydrological conditions, the effects of different processes on future site hydrology are quantified. As expected, shoreline displacement has a strong effect on local hydrology (e.g., groundwater flow) in areas that change from sea to land. The comparison between present and future land areas emphasizes the importance of climate variables relative to other factors for main hydrological features such as water balances

  8. Safety assessment input for site selection - the Swedish example - 59031

    Andersson, Johan

    2012-01-01

    Svensk Kaernbraenslehantering AB (SKB) has performed comprehensive investigations of two candidate sites for a final repository for Sweden's spent nuclear fuel. In March 2011 SKB decided to submit licence applications for a final repository at Forsmark. Before selection, SKB stated that the site that offers the best prospects for achieving long-term safety in practice would be selected. Based on experiences previous safety assessments, a number of issues related to long-term safety need to be considered in the context of site comparison. The factors include sensitivity to climate change such as periods of permafrost and glaciations, rock mechanics evolution including the potential for thermally induced spalling and sensitivity to potential future earthquakes, current and future groundwater flow, evolution of groundwater composition and proximity to mineral resources. Each of these factors related to long-term safety for the two candidate sites is assessed in a comparative analysis of site characteristics. The assessment also considers differences in biosphere conditions and in the confidence of the site descriptions. The comparison is concluded by an assessment on how the identified differences would affect the estimated radiological risk from a repository located at either of the sites. The assessment concludes that there are a number of safety related site characteristics for which the analyses do not show any decisive differences in terms of implications on safety, between the sites Forsmark and Laxemar. However, the frequency of water conducting fractures at repository depth is much smaller at Forsmark than at Laxemar. This difference, in turn, affects the future stability of the current favourable groundwater composition, which combined with the much higher flows at Laxemar would, for the current repository design, lead to a breach in the safety functions for the buffer and the canister for many more deposition positions at Laxemar than at Forsmark. Thereby

  9. Bedrock geology Forsmark. Modelling stage 2.3. Implications for and verification of the deterministic geological models based on complementary data

    Stephens, Michael B. (Geological Survey of Sweden, Uppsala (Sweden)); Simeonov, Assen (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Isaksson, Hans (GeoVista AB, Luleaa (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company is in the process of completing site descriptive modelling at two locations in Sweden, with the objective to site a deep geological repository for spent nuclear fuel. At Forsmark, the results of the stage 2.2 geological modelling formed the input for downstream users. Since complementary ground and borehole geological and geophysical data, acquired after model stage 2.2, were not planned to be included in the deterministic rock domain, fracture domain and deformation zone models supplied to the users, it was deemed necessary to evaluate the implications of these stage 2.3 data for the stage 2.2 deterministic geological models and, if possible, to make use of these data to verify the models. This report presents the results of the analysis of the complementary stage 2.3 geological and geophysical data. Model verification from borehole data has been implemented in the form of a prediction-outcome test. The stage 2.3 geological and geophysical data at Forsmark mostly provide information on the bedrock outside the target volume. Additional high-resolution ground magnetic data and the data from the boreholes KFM02B, KFM11A, KFM12A and HFM33 to HFM37 can be included in this category. Other data complement older information of identical character, both inside and outside this volume. These include the character and kinematics of deformation zones and fracture mineralogy. In general terms, it can be stated that all these new data either confirm the geological modelling work completed during stage 2.2 or are in good agreement with the data that were used in this work. In particular, although the new high-resolution ground magnetic data modify slightly the position and trace length of some stage 2.2 deformation zones at the ground surface, no new or modified deformation zones with a trace length longer than 3,000 m at the ground surface have emerged. It is also apparent that the revision of fracture orientation data

  10. Bedrock geology Forsmark. Modelling stage 2.3. Implications for and verification of the deterministic geological models based on complementary data

    Stephens, Michael B.; Simeonov, Assen; Isaksson, Hans

    2008-12-01

    The Swedish Nuclear Fuel and Waste Management Company is in the process of completing site descriptive modelling at two locations in Sweden, with the objective to site a deep geological repository for spent nuclear fuel. At Forsmark, the results of the stage 2.2 geological modelling formed the input for downstream users. Since complementary ground and borehole geological and geophysical data, acquired after model stage 2.2, were not planned to be included in the deterministic rock domain, fracture domain and deformation zone models supplied to the users, it was deemed necessary to evaluate the implications of these stage 2.3 data for the stage 2.2 deterministic geological models and, if possible, to make use of these data to verify the models. This report presents the results of the analysis of the complementary stage 2.3 geological and geophysical data. Model verification from borehole data has been implemented in the form of a prediction-outcome test. The stage 2.3 geological and geophysical data at Forsmark mostly provide information on the bedrock outside the target volume. Additional high-resolution ground magnetic data and the data from the boreholes KFM02B, KFM11A, KFM12A and HFM33 to HFM37 can be included in this category. Other data complement older information of identical character, both inside and outside this volume. These include the character and kinematics of deformation zones and fracture mineralogy. In general terms, it can be stated that all these new data either confirm the geological modelling work completed during stage 2.2 or are in good agreement with the data that were used in this work. In particular, although the new high-resolution ground magnetic data modify slightly the position and trace length of some stage 2.2 deformation zones at the ground surface, no new or modified deformation zones with a trace length longer than 3,000 m at the ground surface have emerged. It is also apparent that the revision of fracture orientation data

  11. Water activities in Forsmark (Part II). The final disposal facility for spent fuel: water activities above ground; Vattenverksamhet i Forsmark (del II). Slutfoervarsanlaeggningen foer anvaent kaernbraensle: Vattenverksamheter ovan mark

    Werner, Kent [EmpTec (Sweden); Hamren, Ulrika; Collinder, Per [Ekologigruppen AB (Sweden); Ridderstolpe, Peter [WRS Uppsala AB (Sweden)

    2010-09-15

    The construction of the repository for spent nuclear fuel in Forsmark is associated with a number of measures above ground that constitute water operations according to Chapter 11 in the Swedish Environmental Code. This report, which is an appendix to the Environmental Impact Assessment, describes these water operations, their effects and consequences, and planned measures

  12. Water activities in Forsmark (Part II). The final disposal facility for spent fuel: water activities above ground

    Werner, Kent; Hamren, Ulrika; Collinder, Per; Ridderstolpe, Peter

    2010-09-01

    The construction of the repository for spent nuclear fuel in Forsmark is associated with a number of measures above ground that constitute water operations according to Chapter 11 in the Swedish Environmental Code. This report, which is an appendix to the Environmental Impact Assessment, describes these water operations, their effects and consequences, and planned measures

  13. Experience from the MTO program at the Forsmark nuclear power plant

    Rollenhagen, C.; Andersson, O.

    1996-01-01

    Within the nuclear industry there are two events which have had a significant impact on the way of thinking and attitudes to safety, although in different ways. The TMI accident at Harrisburg, USA put the focus on the man-machine interface, the way of working and attitudes to safety. The accident at Chernobyl focused on safety management and safety culture. After the Chernobyl accident, safety culture (IAEA INSAG-4) became a commonly used concept which included an overall perspective on safety and an understanding of the interaction between man, technology and organizational matters (MTO). As a result of this understanding, the MTO concept was introduced at the Forsmark nuclear power plant already in 1988 and is today a conceptual way of thinking which is well integrated in the line organization. One of the purposes of this paper is to present some of the work that has been done at Forsmark nuclear power plant under the heading of MTO, both in the past and more recently. (author) 4 figs., 2 tabs

  14. Review of possible correlations between in situ stress and PFL fracture transmissivity data at Forsmark

    Martin, Derek (University of Alberta (United States)); Follin, Sven (SF GeoLogic AB (Sweden))

    2011-11-15

    In laboratory samples, the fracture transmissivity decreases significantly as the confining stress increases. While these experimental relationships are widely accepted and validated on laboratory samples, it is unknown if such relationships exist in situ or if these relationships can be scaled from the centimetre-scale laboratory tests to the metre-scale of in situ fractures. The purpose of this work is to assess the relationship between the structural-hydraulic data gathered in deep, cored boreholes at Forsmark and the in situ stress state acting on the these fractures. In conclusion, there does not appear to be sufficient evidence from these analyses to support the notion that the magnitude of the flow along the fractures at Forsmark is solely controlled by the in situ stress acting on the fracture. This should not be surprising because the majority of the fractures formed more than 1 billion years ago and the current in situ stress state has only been active for the past 12 million years. It is more likely that the transmissivity values are controlled by fracture roughness, open channels within the fracture, fracture stiffness and fracture infilling material

  15. Hydrogeology and hydrogeochemistry at a site of strategic importance: the Pareja Limno-reservoir drainage basin (Guadalajara, central Spain)

    Molina-Navarro, Eugenio; Sastre-Merlín, Antonio; Vicente, Rosa; Martínez-Pérez, Silvia

    2014-08-01

    A small calcareous basin in central Spain was studied to establish the role of groundwater in the Pareja Limno-reservoir. Limno-reservoirs aim to preserve a constant water level in the riverine zone of large reservoirs to mitigate the impacts arising from their construction. Groundwater flow contribution (mean 60 %) was derived by recharge estimation. In situ measurements (spring discharge, electrical conductivity and sulfate) were undertaken and spring discharge was compared with a drought index. Twenty-eight springs were monitored and three hydrogeological units (HGUs) were defined: a carbonate plateau (HGU1), the underlying aquitard (HGU2), and the gypsum-enriched HGU3. HGU1 is the main aquifer and may play a role in the preservation of the limno-reservoir water level. Hydrogeochemical sampling was conducted and the code PHREEQC used to describe the main geochemical processes. Weathering and dissolution of calcite and gypsum seem to control the hydrogeochemical processes in the basin. Water progresses from Ca2+-HCO3 - in the upper basin to Ca2+-SO4 2- in the lower basin, where HGU3 outcrops. A clear temporal pattern was observed in the limno-reservoir, with salinity decreasing in winter and increasing in summer. This variation was wider at the river outlet, but the mixing of the river discharge with limno-reservoir water buffered it.

  16. Hydrogeological Site Descriptive Model - a strategy for its development during Site Investigations

    Rhen, Ingvar [SWECO VIAK AB, Goeteborg (Sweden); Follin, Sven [SF GeoLogic AB, Stockholm (Sweden); Hermanson, Jan [Golder Associates, Stockholm (Sweden)

    2003-04-01

    The report is to present a strategy for the development of the Site Descriptive Hydrogeological Model within the SKB Site Investigation Programme. The report, and similar reports from the Geology, Rock Mechanics, Thermal properties, Hydrogeochemistry, Transport Properties and Surface Ecosystem disciplines are intended to guide SKB Site Descriptive Modelling but also to provide the authorities with an overview of how the modelling should be performed. Thus the objectives of this report are to: provide guidelines for the modelling of different sites resulting in consistent handling of modelling issues during the Site Investigations, provide a structure for the modelling sequence that is suitable for the establishment of a Site Descriptive model and provide some necessary details that should be considered in a Site Descriptive model.

  17. Hydrogeological Site Descriptive Model - a strategy for its development during Site Investigations

    Rhen, Ingvar; Follin, Sven; Hermanson, Jan

    2003-04-01

    The report is to present a strategy for the development of the Site Descriptive Hydrogeological Model within the SKB Site Investigation Programme. The report, and similar reports from the Geology, Rock Mechanics, Thermal properties, Hydrogeochemistry, Transport Properties and Surface Ecosystem disciplines are intended to guide SKB Site Descriptive Modelling but also to provide the authorities with an overview of how the modelling should be performed. Thus the objectives of this report are to: provide guidelines for the modelling of different sites resulting in consistent handling of modelling issues during the Site Investigations, provide a structure for the modelling sequence that is suitable for the establishment of a Site Descriptive model and provide some necessary details that should be considered in a Site Descriptive model

  18. Hydrogeochemistry and isotope hydrology of surface water and groundwater systems in the Ellembelle district, Ghana, West Africa

    Edjah, A. K. M.; Akiti, T. T.; Osae, S.; Adotey, D.; Glover, E. T.

    2017-05-01

    An integrated approach based on the hydrogeochemistry and the isotope hydrology of surface water and groundwater was carried out in the Ellembelle district of the Western Region of Ghana. Measurement of physical parameters (pH, temperature, salinity, total dissolved solutes, total hardness and conductivity), major ions (Ca2+, Mg2+, Na+, K+, HCO3 -, Cl-, SO4 2- and NO3 -), and stable isotopes (δ2H and δ18O) in 7 rivers, 13 hand-dug wells and 18 boreholes were taken. Na+ was the dominant cation and HCO3 - was the dominant anion for both rivers and groundwater. The dominant hydrochemical facies for the rivers were Na-K-HCO3 - type while that of the groundwater (hand-dug wells and boreholes) were Na-Cl and Na-HCO3 - type. According to the Gibbs diagram, majority of the rivers fall in the evaporation-crystallization field and majority of the hand-dug wells and the boreholes fall in the rock dominance field. From the stable isotope composition measurements, all the rivers appeared to be evaporated, 60 % of the hand-dug wells and 70 % of the boreholes clustered along and in between the global meteoric water line and the local meteoric water line, suggesting an integrative and rapid recharge from meteoric origin.

  19. Calibration and analysis of soil carbon efflux estimates with closed chambers at Forsmark and Laxemar

    Tagesson, Torbern (Dept. of Physical Geography and Ecosystem Analysis, Lund Univ., Lund (SE))

    2006-08-15

    The Forsmark and the Laxemar investigation areas are examined by the Swedish Nuclear Fuel and Waste Management Co. for a possible construction of a deep repository for nuclear waste. In the case of a future leakage of waste, the radioactive isotopes could end up in the ecosystems above the repository. The fate of the radionuclides and their possible radiological impacts are then highly determined by ecosystem carbon cycling. An important part of the carbon cycling is the soil carbon effluxes, and in the investigation areas soil carbon effluxes have been examined with the closed chamber technique. This paper is divided into two parts. Firstly, there were problems with the equipment measuring the soil carbon dioxide efflux, and the first part is a description of the problem, how it was corrected and its possible causes. The second part is a manual in how to analyse data and calculate annual estimates of soil carbon efflux. The field measurement by the EGM-4 is just an occasional estimate of the soil carbon efflux at a certain spot and at a certain point in time. To make an interpretation of the measurements, it is essential to analyse the data and to temporally extrapolate them. It is necessary to prepare the raw data for the analysis. The problems with the EGM-4 doing the measurements at the Forsmark and the Laxemar investigation area makes it necessary to correct the data taken up by this EGM-4. The data should also be separated into soil respiration and gross primary production (GPP). Soil carbon dioxide effluxes should be changed to soil carbon effluxes. Soil carbon effluxes are strongly controlled by abiotic factors; temperature is the main factor to influence soil respiration and photosynthetically active radiation (PAR) and air temperature are the main factors to influence GPP. Regression with soil respiration against temperature and with GPP against PAR or temperature can therefore be done. These equations can then be used on datasets with temperature and PAR

  20. A preliminary carbon budget for two oligotrophic hardwater lakes in the Forsmark area, Sweden

    Nilsson, Eva [Uppsala Univ. (Sweden). Dept. of Limnology

    2001-06-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is responsible for management and disposal of Swedish radioactive waste. The company is planning to construct repositories that will keep radioactive waste away from humans for hundreds of thousands of years. In a safety assessment of the repositories hypothetical releases are used to evaluate the robustness of the repositories. It is important to know how the radioactive nuclides would react if they were released and by which way they could enter the living biota. SFR are responsible for the disposal of low radioactive waste and close to the nuclear plant in Forsmark there is a storage for low radioactive waste. At the moment this storage is located in the bedrock far below the sea level but due to land-rise in the area it will in the future be located above sea level. Hence, it is of importance to know how the surface ecosystems in the area are functioning. A carbon budget for the aquatic ecosystem above SFR in Oeresundsgrepen exist, but it is also important to have a carbon budget for the surface systems in the Forsmark area since SFR in the future will be situated above sea level. Carbon budgets can be used to get a picture of how an ecosystem functions. The carbon flow shows how carbon is transported through a food web from lower trophic levels, e.g. plants and bacteria to higher trophic levels such as fish. Oligotrophic hardwater lakes are the most important lakes in the Forsmark area. This report aims to give a picture of a potential flow of carbon through the ecosystem in two oligotrophic hard-water lakes, Lake Haellefjaerd and Lake Eckarfjaerden. Macrophyte, mainly Chara, were calculated to make up the largest part of the biomass and production in both lakes. Benthic bacteria and microphytobenthos (benthic photosynthesising microorganisms) were other large contributors to the production. Benthic bacteria were found responsible for a major part of respiration and, hence, consumption of carbon in the

  1. Calibration and analysis of soil carbon efflux estimates with closed chambers at Forsmark and Laxemar

    Tagesson, Torbern

    2006-08-01

    The Forsmark and the Laxemar investigation areas are examined by the Swedish Nuclear Fuel and Waste Management Co. for a possible construction of a deep repository for nuclear waste. In the case of a future leakage of waste, the radioactive isotopes could end up in the ecosystems above the repository. The fate of the radionuclides and their possible radiological impacts are then highly determined by ecosystem carbon cycling. An important part of the carbon cycling is the soil carbon effluxes, and in the investigation areas soil carbon effluxes have been examined with the closed chamber technique. This paper is divided into two parts. Firstly, there were problems with the equipment measuring the soil carbon dioxide efflux, and the first part is a description of the problem, how it was corrected and its possible causes. The second part is a manual in how to analyse data and calculate annual estimates of soil carbon efflux. The field measurement by the EGM-4 is just an occasional estimate of the soil carbon efflux at a certain spot and at a certain point in time. To make an interpretation of the measurements, it is essential to analyse the data and to temporally extrapolate them. It is necessary to prepare the raw data for the analysis. The problems with the EGM-4 doing the measurements at the Forsmark and the Laxemar investigation area makes it necessary to correct the data taken up by this EGM-4. The data should also be separated into soil respiration and gross primary production (GPP). Soil carbon dioxide effluxes should be changed to soil carbon effluxes. Soil carbon effluxes are strongly controlled by abiotic factors; temperature is the main factor to influence soil respiration and photosynthetically active radiation (PAR) and air temperature are the main factors to influence GPP. Regression with soil respiration against temperature and with GPP against PAR or temperature can therefore be done. These equations can then be used on datasets with temperature and PAR

  2. A preliminary carbon budget for two oligotrophic hardwater lakes in the Forsmark area, Sweden

    Nilsson, Eva

    2001-06-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is responsible for management and disposal of Swedish radioactive waste. The company is planning to construct repositories that will keep radioactive waste away from humans for hundreds of thousands of years. In a safety assessment of the repositories hypothetical releases are used to evaluate the robustness of the repositories. It is important to know how the radioactive nuclides would react if they were released and by which way they could enter the living biota. SFR are responsible for the disposal of low radioactive waste and close to the nuclear plant in Forsmark there is a storage for low radioactive waste. At the moment this storage is located in the bedrock far below the sea level but due to land-rise in the area it will in the future be located above sea level. Hence, it is of importance to know how the surface ecosystems in the area are functioning. A carbon budget for the aquatic ecosystem above SFR in Oeresundsgrepen exist, but it is also important to have a carbon budget for the surface systems in the Forsmark area since SFR in the future will be situated above sea level. Carbon budgets can be used to get a picture of how an ecosystem functions. The carbon flow shows how carbon is transported through a food web from lower trophic levels, e.g. plants and bacteria to higher trophic levels such as fish. Oligotrophic hardwater lakes are the most important lakes in the Forsmark area. This report aims to give a picture of a potential flow of carbon through the ecosystem in two oligotrophic hard-water lakes, Lake Haellefjaerd and Lake Eckarfjaerden. Macrophyte, mainly Chara, were calculated to make up the largest part of the biomass and production in both lakes. Benthic bacteria and microphytobenthos (benthic photosynthesising microorganisms) were other large contributors to the production. Benthic bacteria were found responsible for a major part of respiration and, hence, consumption of carbon in the

  3. Comparative analysis of safety related site characteristics

    Andersson, Johan

    2010-12-01

    This document presents a comparative analysis of site characteristics related to long-term safety for the two candidate sites for a final repository for spent nuclear fuel in Forsmark (municipality of Oesthammar) and in Laxemar (municipality of Oskarshamn) from the point of view of site selection. The analyses are based on the updated site descriptions of Forsmark /SKB 2008a/ and Laxemar /SKB 2009a/, together with associated updated repository layouts and designs /SKB 2008b and SKB 2009b/. The basis for the comparison is thus two equally and thoroughly assessed sites. However, the analyses presented here are focussed on differences between the sites rather than evaluating them in absolute terms. The document serves as a basis for the site selection, from the perspective of long-term safety, in SKB's application for a final repository. A full evaluation of safety is made for a repository at the selected site in the safety assessment SR-Site /SKB 2011/, referred to as SR-Site main report in the following

  4. Comparative analysis of safety related site characteristics

    Andersson, Johan (ed.)

    2010-12-15

    This document presents a comparative analysis of site characteristics related to long-term safety for the two candidate sites for a final repository for spent nuclear fuel in Forsmark (municipality of Oesthammar) and in Laxemar (municipality of Oskarshamn) from the point of view of site selection. The analyses are based on the updated site descriptions of Forsmark /SKB 2008a/ and Laxemar /SKB 2009a/, together with associated updated repository layouts and designs /SKB 2008b and SKB 2009b/. The basis for the comparison is thus two equally and thoroughly assessed sites. However, the analyses presented here are focussed on differences between the sites rather than evaluating them in absolute terms. The document serves as a basis for the site selection, from the perspective of long-term safety, in SKB's application for a final repository. A full evaluation of safety is made for a repository at the selected site in the safety assessment SR-Site /SKB 2011/, referred to as SR-Site main report in the following

  5. The biotest basin of the Forsmark nuclear power plant, Sweden. An experiment on the ecosystem level

    Grimaas, U.

    1979-01-01

    Biotope models of various sizes and enclosed waters in connection with radionuclide release constitute important tools for radioecological experiments, representing an intermediate step between field and laboratory conditions. The biotest basin at Forsmark is especially constructed for investigations on the effects of radioactivity and heat on a brackish water ecosystem. The basin encloses a water area of 1km 2 in the outer archipelago of the region and is fed with cooling water and released radionuclides by a discharge tunnel. The quantities of the discharges into the basin are adjustable. The biotest experiment permits a quantification of the retention and transport of radionuclides at the various trophic levels. Of special value is the possibility to work with known populations of fish. The approach has the advantage of experimental ecology - the control of important parameters - under the impact of all environmental factors in a complete ecosystem. (author)

  6. BIM som Informationsbärare in i Förvaltningen : En studie vid Forsmarks Kraftgrupp

    Svens, Therése

    2013-01-01

    BIM, Building Information Modeling, börjar vinna mark inom byggbranschen i Sverige och är en vedertagen process i vart och vartannat byggprojekt. Forsmarks Kraftgrupp står inför både upprustningar av sina anläggningar och nyproduktion av bland annat kontor, verkstad och hotell. BIM framstår nu som en lukrativ metod för att dra ner på projektkostnaderna, men även för att få ytterligare ordning och struktur på den enorma mängd dokumentation som ackumulerat under de dryga trettio åren av drift. ...

  7. Characteristics and ontogeny of oligotrophic hardwater lakes in the Forsmark area, central Sweden

    Brunberg, A.K.; Blomqvist, P. [Uppsala Univ. (Sweden). Dept. of Limnology

    1999-12-01

    This is the first part of a report characterising the lakes of Uppsala county, with special emphasis on the coastal lakes in the Forsmark area.The aim of the study is to characterise different main types of lakes within the Forsmark area and to create a basis for prediction of their ontogeny, that can be used also for new lakes which due to shoreline displacement will be formed during the next 10 000 years. Areas where future research is needed to fully understand the functioning of the lake ecosystems and their ontogeny should also be identified. This first part of the study identifies and describes one of the most common lake types in the area, the oligotrophic hardwater lake. The geology in the catchments of the Forsmark area includes a bedrock dominated by granites and gneisses, covered by calcareous glacial till and postglacial clay. The catchments are dominated by forest, and the oligotrophic hardwater lakes are to a large extent surrounded by mires. Inflow as well as outflow of water is often diffuse, via the surrounding mire. The lakes are small and shallow, with nutrient poor and highly alkaline water. Three key habitats have been identified within the lakes; the pelagic zone, characterised by low production of biota;, the presumably moderately productive emergent macrophyte zone, dominated by Sphagnum and Phragmites;, and the light exposed soft-bottom zone with Chara meadows and an unusually rich and presumably highly productive microbial sediment community. The oligotrophic hardwater lakes have their origin as depressions in the bottom of the Baltic Sea, which are successively transported upwards due to the land-rise process in the area. As the basins are isolated from the sea , a gradual change from a brackish to freshwater conditions occur. When the lakes have become completely isolated, the oligotrophic hardwater stage follows, due to inflow of carbonate-rich and well buffered groundwater. In the next successional stage, Sphagnum mosses start to

  8. Characteristics and ontogeny of oligotrophic hardwater lakes in the Forsmark area, central Sweden

    Brunberg, A.K.; Blomqvist, P.

    1999-12-01

    This is the first part of a report characterising the lakes of Uppsala county, with special emphasis on the coastal lakes in the Forsmark area.The aim of the study is to characterise different main types of lakes within the Forsmark area and to create a basis for prediction of their ontogeny, that can be used also for new lakes which due to shoreline displacement will be formed during the next 10 000 years. Areas where future research is needed to fully understand the functioning of the lake ecosystems and their ontogeny should also be identified. This first part of the study identifies and describes one of the most common lake types in the area, the oligotrophic hardwater lake. The geology in the catchments of the Forsmark area includes a bedrock dominated by granites and gneisses, covered by calcareous glacial till and postglacial clay. The catchments are dominated by forest, and the oligotrophic hardwater lakes are to a large extent surrounded by mires. Inflow as well as outflow of water is often diffuse, via the surrounding mire. The lakes are small and shallow, with nutrient poor and highly alkaline water. Three key habitats have been identified within the lakes; the pelagic zone, characterised by low production of biota;, the presumably moderately productive emergent macrophyte zone, dominated by Sphagnum and Phragmites;, and the light exposed soft-bottom zone with Chara meadows and an unusually rich and presumably highly productive microbial sediment community. The oligotrophic hardwater lakes have their origin as depressions in the bottom of the Baltic Sea, which are successively transported upwards due to the land-rise process in the area. As the basins are isolated from the sea , a gradual change from a brackish to freshwater conditions occur. When the lakes have become completely isolated, the oligotrophic hardwater stage follows, due to inflow of carbonate-rich and well buffered groundwater. In the next successional stage, Sphagnum mosses start to

  9. Solute transport in coupled inland-coastal water systems. General conceptualisation and application to Forsmark

    Jarsjoe, Jerker; Destouni, Georgia; Persson, Klas; Prieto, Carmen (Dept. of Physical Geography, Quaternary Geology, Stockholm Univ., Stockholm (Sweden))

    2007-12-15

    We formulate a general theoretical conceptualisation of solute transport from inland sources to downstream recipients, considering main recipient load contributions from all different nutrient and pollutant sources that may exist within any catchment. Since the conceptualisation is model independent, its main hydrological factors and mass delivery factors can be quantified on the basis of inputs to and outputs from any considered analytical or numerical model. Some of the conceptually considered source contribution and transport pathway combinations are however commonly neglected in catchment-scale solute transport and attenuation modelling, in particular those related to subsurface sources, diffuse sources at the land surface and direct groundwater transport into the recipient. The conceptual framework provides a possible tool for clarification of underlying and often implicit model assumptions, which can be useful for e.g. inter-model comparisons. In order to further clarify and explain research questions that may be of particular importance for transport pathways from deep groundwater surrounding a repository, we concretise and interpret some selected transport scenarios for model conditions in the Forsmark area. Possible uncertainties in coastal discharge predictions, related to uncertain spatial variation of evapotranspiration within the catchment, were shown to be small for the relatively large, focused surface water discharges from land to sea, because local differences were averaged out along the length of the main water flow paths. In contrast, local flux values within the diffuse groundwater flow field from land to sea are more uncertain, although estimates of mean values and total sums of submarine groundwater discharge (SGD) along some considerable coastline length may be robust. The present results show that 80% to 90% of the total coastal discharge of Forsmark occurred through focused flows in visible streams, whereas the remaining 10% to 20% was

  10. Solute transport in coupled inland-coastal water systems. General conceptualisation and application to Forsmark

    Jarsjoe, Jerker; Destouni, Georgia; Persson, Klas; Prieto, Carmen

    2007-12-01

    We formulate a general theoretical conceptualisation of solute transport from inland sources to downstream recipients, considering main recipient load contributions from all different nutrient and pollutant sources that may exist within any catchment. Since the conceptualisation is model independent, its main hydrological factors and mass delivery factors can be quantified on the basis of inputs to and outputs from any considered analytical or numerical model. Some of the conceptually considered source contribution and transport pathway combinations are however commonly neglected in catchment-scale solute transport and attenuation modelling, in particular those related to subsurface sources, diffuse sources at the land surface and direct groundwater transport into the recipient. The conceptual framework provides a possible tool for clarification of underlying and often implicit model assumptions, which can be useful for e.g. inter-model comparisons. In order to further clarify and explain research questions that may be of particular importance for transport pathways from deep groundwater surrounding a repository, we concretise and interpret some selected transport scenarios for model conditions in the Forsmark area. Possible uncertainties in coastal discharge predictions, related to uncertain spatial variation of evapotranspiration within the catchment, were shown to be small for the relatively large, focused surface water discharges from land to sea, because local differences were averaged out along the length of the main water flow paths. In contrast, local flux values within the diffuse groundwater flow field from land to sea are more uncertain, although estimates of mean values and total sums of submarine groundwater discharge (SGD) along some considerable coastline length may be robust. The present results show that 80% to 90% of the total coastal discharge of Forsmark occurred through focused flows in visible streams, whereas the remaining 10% to 20% was

  11. Closure of the Spent Fuel Repository in Forsmark - Studies of alternative concepts for sealing of ramp, shafts and investigation boreholes

    Gylling, Bjoern [SKB AB, Stockholm (Sweden); Luterkort, David [SGI, Stockholm (Sweden); Johansson, Roland [Miljoe- och Energikonsult AB, Ekeroe (Sweden)

    2012-12-15

    In March 2011, SKB submitted applications under the Nuclear Activities Act and the Environmental Code for the construction and operation of a final repository for spent nuclear fuel in Forsmark. An important supporting document for the application under the Nuclear Activities Act was the SR-Site safety assessment. As a part of the work with the application and as background material for SR-Site, SKB prepared production reports, including the closure production report. The closure production report presented definitions, requirements and design premises, a reference design and the initial state for repository closure. SR-Site evaluated the reference design and related design premises that were presented in the closure production report. SR-Site thereby concluded that the design premises on which the reference design were based are adequate. Relaxing the requirements would require additional sensitivity analyses focusing on the hydraulic properties of the access, main and transport tunnels. SR-Site further concluded that the reference design could likely be simplified without violating the current design premises. Furthermore, additional simplifications could probably be made if the design premises could be revised. This has been studied in the project 'Closure - concept studies', whose results are presented in this report. SR-Site also evaluated the reference design for investigation boreholes that is presented in the production report. The evaluation showed that the impact of improper borehole seals is very moderate. Further, SR-Site concludes that the current design premises are appropriate but possibly too strict, since even open boreholes seem to have a limited impact on the groundwater flow in the repository. Since it might be difficult to inspect the outcome of the current design of borehole sealing, it could be of interest to assess whether a solution that may result in higher effective permeability of the borehole seals would provide sufficiently

  12. Summary report of the experiences from TVO's site investigations

    Oehberg, A.; Saksa, P.; Ahokas, H.; Ruotsalainen, P.; Snellman, M.

    1994-09-01

    In 1992 Teollisuuden Voima Oy (TVO) completed preliminary site investigations for radioactive waste disposal at five sites in Finland. The aim of this report was the compilation of the experiences from TVO's site investigations. The main interest was focused on investigation strategies and the most important investigation methods for the conceptual modelling. The objective of the preliminary site investigations was to obtain data on the bedrock properties in order to evaluate the areas. The programme was divided into four stages, each stage having its own subobjective. The site-specific investigation programme for each site included a large common part and a small site-specific part. The strategies (objectives) and experiences from different disciplines, geology, hydrogeochemistry, geophysics and geohydrology, are presented in the report. The conceptual modelling work procedure including both bedrock and groundwater modelling is described briefly using the Olkiluoto site as an example. Each of the other areas has undergone similar phases of work. (52 refs., 45 figs., 5 tabs.)

  13. Origin and hydrogeochemistry of a shallow flow-through lake on a Pleistocene piedmont, northern Spanish Meseta

    Margarita Jambrina

    2013-06-01

    Full Text Available The Cristo lagoon, situated on Neogene deposits in the northern Spanish Meseta, occupies a shallow depression on a Pleistocene piedmont. The development of the lacustrine depression on the piedmont was favoured by the fault network, reinforced by substrateloss by weathering, probably during the late Quaternary. Even during the hot summer season, salinity is low, with concentrations of total dissolved solids (TDS being around 150 mg L–1. Only when the lagoon is almost dry do TDS concentrations exceed 500 mg L–1, sometimes rising as high as 1700 mg L–1. Whenthe lake level is high, lake chemistry is dominated by Na+, Ca2+, HCO3– and Cl–. During drier stages, there is a relative increase in Ca2+, Mg2+, Cl–, and SO42–, trending toward a calcium chloride-sulphate brine. Values of pH are above 9 during late spring and summer, resulting primarily from evaporative degassing favoured by the shallow depth of water, and secondarily from photosynthesis by the abundant submerged macrophytes. The infilling deposits, less than 0.5 m thick, are dark brown, massive, sandy muds consisting of quartz and clays (illite, kaolinite, smectite, all of which are allogenic in origin. The main source of dissolved sulphate was the oxidation of sulphides during weathering of lower Palaeozoic rocks in the catchment area. The 13C-depleted nature of dissolved inorganic carbon indicates an origin mostly by respiration and oxidation of organic matter. Geomorphology and hydrogeochemistry indicate a flow-through lake dominated essentially by groundwater flows. 

  14. Hydrogeochemistry of deep groundwaters of mafic and ultramafic rocks in Finland

    Ruskeeniemi, T.; Blomqvist, R.; Lindberg, A.; Ahonen, L.; Frape, S.

    1996-12-01

    The present work reports and interprets the hydrogeochemical and hydrogeological data obtained from deep groundwaters in various mafic-ultramafic formations in Finland. The work is mainly based on the results of the research project 'Geochemistry of deep groundwaters' financed by the Ministry of Trade and Industry and the Geological Survey of Finland. Five sites were selected for this study: (1) Juuka, (2) Keminmaa, (3) Maentsaelae, (4) Ranua, and (5) Ylivieska. Keminmaa and Ranua are located in Early Proterozoic layered intrusions dated at 2.44 Ga. The Juuka site lies within the massive Miihkali serpentinite, which is thought to represent the ultramafic part of a Proterozoic (1.97 Ga) ophiolite complex. The Maentsaelae gabbro represents the deep parts of the Svecofennian volcanic sequence, while the Ylivieska mafic-ultramafic intrusion is one of a group of Svecokarelian Ni-potential intrusions 1.9 Ga in age. For reference, groundwaters from four other sites are also briefly described. Three of these sites are located within the nickel mining regions of Enonkoski, Kotalahti and Vammala, while the fourth is a small Ni mineralization at Hyvelae, Noormarkku. The four reference sites are all of Svecokarelian age. (refs.)

  15. Hydrogeochemistry of deep groundwaters of mafic and ultramafic rocks in Finland

    Ruskeeniemi, T.; Blomqvist, R.; Lindberg, A.; Ahonen, L. [Geological Survey of Finland, Espoo (Finland); Frape, S. [Waterloo Univ., ON (Canada)

    1996-12-01

    The present work reports and interprets the hydrogeochemical and hydrogeological data obtained from deep groundwaters in various mafic-ultramafic formations in Finland. The work is mainly based on the results of the research project `Geochemistry of deep groundwaters` financed by the Ministry of Trade and Industry and the Geological Survey of Finland. Five sites were selected for this study: (1) Juuka, (2) Keminmaa, (3) Maentsaelae, (4) Ranua, and (5) Ylivieska. Keminmaa and Ranua are located in Early Proterozoic layered intrusions dated at 2.44 Ga. The Juuka site lies within the massive Miihkali serpentinite, which is thought to represent the ultramafic part of a Proterozoic (1.97 Ga) ophiolite complex. The Maentsaelae gabbro represents the deep parts of the Svecofennian volcanic sequence, while the Ylivieska mafic-ultramafic intrusion is one of a group of Svecokarelian Ni-potential intrusions 1.9 Ga in age. For reference, groundwaters from four other sites are also briefly described. Three of these sites are located within the nickel mining regions of Enonkoski, Kotalahti and Vammala, while the fourth is a small Ni mineralization at Hyvelae, Noormarkku. The four reference sites are all of Svecokarelian age. (refs.).

  16. The potential for cold climate conditions and permafrost in Forsmark in the next 60 000 years

    Brandefelt, Jenny; Naeslund, Jens-Ove; Zhang, Qiong; Hartikainen, Juha

    2013-05-01

    This report presents results of a study devoted to extend the current knowledge of the climate in Sweden in the next ∼60,000 years (60 ka). Specifically, the potential of cold climate and permafrost development in south-central Sweden, and in the Forsmark region, over this time horizon was investigated. The climate system is an interactive system consisting of five major components: the atmosphere, the hydrosphere, the cryo sphere, the land surface and the biosphere, forced or influenced by various external forcing mechanisms, of which the most important is the Sun. Also the direct effect of human activities on the climate system is considered an external forcing. The latitudinal and seasonal distribution of incoming solar radiation (insolation) varies on millennial time scales due to variations in the Earth's orbit and axial tilt. These variations, together with variations in the atmospheric CO 2 concentration, are viewed as two main factors in determining the climate variation between interglacial (warmer) and glacial (colder) climates. Summer insolation at high northern latitudes is at a minimum 17 ka and 54 ka after present (AP). These periods were therefore identified as potential future periods of cold climate conditions in high northern latitudes in general and in south-central Sweden in particular. Due to human emissions of carbon to the atmosphere, the atmospheric CO 2 concentration is currently 392 ppmv (2011 AD), a substantial increase as compared to the range of atmospheric CO 2 concentrations of 180-295 ppmv found in ice cores for the last 400 ka. The future atmospheric CO 2 concentration is determined by i) future human carbon emissions to the atmosphere, ii) possible emissions due to feedbacks in the climate system, and iii) by the global carbon cycle. To investigate the potential of cold climate conditions in south-central Sweden in the next 60 ka the future air temperature in Forsmark was estimated based on simulations with an Earth system model

  17. The potential for cold climate conditions and permafrost in Forsmark in the next 60 000 years

    Brandefelt, Jenny; Naeslund, Jens-Ove [Svensk Kaernbraenslehantering, Stockholm (Sweden); Zhang, Qiong [Dept. of Meteorology, Stockholm Univ., Stockholm (Sweden); Hartikainen, Juha [School of Engineering, Aalto Univ., Aalto (Finland)

    2013-05-15

    This report presents results of a study devoted to extend the current knowledge of the climate in Sweden in the next {approx}60,000 years (60 ka). Specifically, the potential of cold climate and permafrost development in south-central Sweden, and in the Forsmark region, over this time horizon was investigated. The climate system is an interactive system consisting of five major components: the atmosphere, the hydrosphere, the cryo sphere, the land surface and the biosphere, forced or influenced by various external forcing mechanisms, of which the most important is the Sun. Also the direct effect of human activities on the climate system is considered an external forcing. The latitudinal and seasonal distribution of incoming solar radiation (insolation) varies on millennial time scales due to variations in the Earth's orbit and axial tilt. These variations, together with variations in the atmospheric CO{sub 2} concentration, are viewed as two main factors in determining the climate variation between interglacial (warmer) and glacial (colder) climates. Summer insolation at high northern latitudes is at a minimum 17 ka and 54 ka after present (AP). These periods were therefore identified as potential future periods of cold climate conditions in high northern latitudes in general and in south-central Sweden in particular. Due to human emissions of carbon to the atmosphere, the atmospheric CO{sub 2} concentration is currently 392 ppmv (2011 AD), a substantial increase as compared to the range of atmospheric CO{sub 2} concentrations of 180-295 ppmv found in ice cores for the last 400 ka. The future atmospheric CO{sub 2} concentration is determined by i) future human carbon emissions to the atmosphere, ii) possible emissions due to feedbacks in the climate system, and iii) by the global carbon cycle. To investigate the potential of cold climate conditions in south-central Sweden in the next 60 ka the future air temperature in Forsmark was estimated based on

  18. Modelling transport of water and solutes in future wetlands in Forsmark

    Vikstroem, Maria; Gustafsson, Lars-Goeran [DHI Water and Environment AB, Vaexjoe (Sweden)

    2006-03-15

    The Forsmark area consists of a number of natural wetlands. As a part of the evaluation of wetlands in the safety assessment for the area, possible future wetlands are being studied with respect to hydrology and transport mechanisms. A sensitivity analyses is performed to point out the governing parameters for the wetland hydraulics. The analysis of future wetlands is carried out using the hydrological model system Mike SHE. Mike SHE has been used to describe the near-surface hydrology for a regional model area in Forsmark. Three types of areas have been chosen. Today's lake Bolundfjaerden is because of its shallow depth likely to develop into a mire in the future. As it is situated in the downstream part of the regional model area, the runoff to the lake from upstream surface water system is significant. Lake Eckarfjaerden is situated in the upstream part of the catchment at a higher altitude and with a smaller inflow. Lake Puttan is situated above a planned layout of the repository and has a potential to receive discharges from a repository. It also lies in the downstream part of a large discharge area. The topography of the future mires is assumed to be flat, up to today's mean water level in each lake. To transport the surface runoff through the wetland, streams or water courses are assumed to form within the peat. The analyses of future wetlands in the Forsmark area show that the hydraulic conditions that exists today will somewhat alter as the peat is formed. For Bolundsfjaerden, where there during present conditions are weak discharge areas, a recharge area has formed during the summer. This can be explained by the amount of surface water that forms on the surface which increases the head elevation in the upper soil layers. The same holds for Eckarfjaerden, while Puttan after the peat has developed still is a discharge area due to its naturally strong discharge position close to the sea. Different vegetation and development stages for the peat have

  19. Modelling transport of water and solutes in future wetlands in Forsmark

    Vikstroem, Maria; Gustafsson, Lars-Goeran

    2006-03-01

    The Forsmark area consists of a number of natural wetlands. As a part of the evaluation of wetlands in the safety assessment for the area, possible future wetlands are being studied with respect to hydrology and transport mechanisms. A sensitivity analyses is performed to point out the governing parameters for the wetland hydraulics. The analysis of future wetlands is carried out using the hydrological model system Mike SHE. Mike SHE has been used to describe the near-surface hydrology for a regional model area in Forsmark. Three types of areas have been chosen. Today's lake Bolundfjaerden is because of its shallow depth likely to develop into a mire in the future. As it is situated in the downstream part of the regional model area, the runoff to the lake from upstream surface water system is significant. Lake Eckarfjaerden is situated in the upstream part of the catchment at a higher altitude and with a smaller inflow. Lake Puttan is situated above a planned layout of the repository and has a potential to receive discharges from a repository. It also lies in the downstream part of a large discharge area. The topography of the future mires is assumed to be flat, up to today's mean water level in each lake. To transport the surface runoff through the wetland, streams or water courses are assumed to form within the peat. The analyses of future wetlands in the Forsmark area show that the hydraulic conditions that exists today will somewhat alter as the peat is formed. For Bolundsfjaerden, where there during present conditions are weak discharge areas, a recharge area has formed during the summer. This can be explained by the amount of surface water that forms on the surface which increases the head elevation in the upper soil layers. The same holds for Eckarfjaerden, while Puttan after the peat has developed still is a discharge area due to its naturally strong discharge position close to the sea. Different vegetation and development stages for the peat have been

  20. Study of the possibility of localising a channel instability in Forsmark-1

    Karlsson, J.K-H.; Pazsit, I.

    1998-01-01

    A special type of instability occurred in the Swedish BWR Forsmark 1 in 1996. In contrast to the better known global or regional instabilities, the decay ratio appeared to be very high in one half of the core and quite low in the other half. A more detailed analysis showed that the most likely reason for the observed behaviour is a local perturbation of thermohydraulic character induced by the incorrect positioning of a fuel assembly. In such a case it is of importance to determine the position of the unseated assembly already during operation so that it can be easily found during reloading. The subject of this paper is to report on development and application of a method by which the position of such a local perturbation can be determined. The method can be separated into two parts that support and complement each other. First a visualisation technique was elaborated which displays the space-time behaviour of the neutron flux oscillations in the core. This visualisation expedites a very good qualitative comprehension of the situation and can be useful for the operators. It also gives a basis for the application of the localisation algorithm. Second, a quantitative localisation method, based on reactor physical models of the perturbation and of the transfer function between the perturbation and the flux oscillations, was elaborated. This latter takes noise spectra from selected detectors as input and yields the perturbation position as output. The strength of the method lies in its potentially high spatial resolution, which is smaller than the typical distance between two adjacent LPRM detectors. The method was tested on simulated data, and then applied to the Forsmark measurements. The location of the disturbance, found by the algorithm, is in accordance with independent judgements for the case, and close to a position where an unseated assembly was found during refuelling. The purpose of this study was to develop and test the localisation method. To apply the

  1. The hydrogeochemistry of four inactive tailings impoundments: Perspectives on tailings pore-water evolution

    Blowes, D.W.; Cherry, J.A.; Reardon, E.J.

    1987-01-01

    Extensive hydrogeochemical investigations are currently underway at three inactive tailings impoundments in Canada. These programs include detailed measurements of pore-water and gas-phase geochemistry through the vadose zone and the groundwater zone. An extensive piezometer network has been installed at each location to monitor the groundwater flow regime. All of the impoundments studied have been inactive for 15 to 25 years, sufficient time for extensive tailings pore-water evolution. The study areas include a very high-sulfide impoundment, a low-sulfide, high-carbonate impoundment, a low-sulfide, very low-carbonate impoundment, and a moderately high-sulfide impoundment. The pore water at each of the sites has evolved in a distinctly different and characteristic manner, representing broad styles of tailings pore-water evolution. At the high sulfide impoundment the oxidation of sulfide minerals has resulted in low pH, high redox potential conditions, with Fe 2+ concentrations in excess of 60,000 mg/L. At a depth of about 40 cm a 10 cm thick layer of ferrous and calcium sulfate minerals has precipitated. This hardpan layer limits the downward movement of O 2 and infiltrating pore waters. As a result, the pore water chemistry, both above and below the hardpan layer, has remained relatively unchanged over the past 10 years. The low-sulfide, high-carbonate tailings are sufficiently well buffered that no low pH conditions are present. The high pH conditions limit the concentrations of the metals released by sulfide mineral oxidation to levels that are two or three orders of magnitude less than is observed at the high-sulfide site. Pore waters at the low-sulfide, low-carbonate site were sampled by other researchers from the University of Waterloo

  2. Hydro-geochemistry and retention of phosphorus in drainage filters and constructed wetlands

    Canga, Eriona; Kjærgaard, Charlotte; Iversen, Bo Vangsø

    Research Council, aims at providing the scientific basis for developing cost-effective filter technologies targeting P-retention and N-removal in agricultural subsurface drainage. The project studies different approaches of implementing the filter technologies including drainage well filters as well...... typically applied to point sources. This calls for a shift of paradigm towards the development of new, cost-efficient technologies to mitigate site-specific nutrient losses in drainage. A newly launched Danish research project “SUPREME-TECH” (2010-2015) (www.supreme-tech.dk) funded by the Danish Strategic...... in drainage water to below environmental threshold values (

  3. Solid/liquid partition coefficients (K{sub d}) and plant/soil concentration ratios (CR) for selected soils, tills and sediments at Forsmark

    Sheppard, Steve (ECOMatters Inc. (Canada)); Sohlenius, Gustav (Sveriges geologiska undersoekning (Sweden)); Omberg, Lars-Gunnar (ALS Scandinavia AB (Sweden)); Borgiel, Mikael (Sveriges Vattenekologer AB (Sweden)); Grolander, Sara (Facilia AB (Sweden)); Norden, Sara (Svensk Kaernbraenslehantering AB (Sweden))

    2011-11-15

    Solid/liquid partition coefficients (K{sub d}) are used to indicate the relative mobility of radionuclides and elements of concern from nuclear fuel waste, as well as from other sources. To indicate the uptake of radionuclides in biota concentration ratios (CR) between soil and biota are used. This report summarized K{sub d} data for regolith and marine sediments based on concentrations of 69 indigenous stable elements measured from samples collected at the Forsmark site and CR data concerning cereals growing on these soils. The samples included 50 regolith samples from agricultural land and wetlands, 8 samples of till collected at different depths, and two marine sediment samples. In addition, cereal grains, stems and roots were collected from 4 sites for calculation of CRs. The regolith samples represented the major 5 deposits, which can be used as arable land, at the site (clayey till, glacial clay, clay gyttja and peat (cultivated and undisturbed)). K{sub d} values were generally lower for peat compared to clay soils. There were also clear differences in K{sub d} resulting from differences in soil chemistry within each regolith type. Soil pH was the most important factor, and K{sub d} values for many elements were lower in acidic clay soils compared to basic clay soils. Although there were only a few samples of sandy till and marine sediment, the K{sub d} values were generally consistent with the corresponding regolith K{sub d} values. Of the different cereal parts the grain always had the lowest CR. In most cases, the root CR was significantly higher than the grain CR, whereas only for a few elements were the grain and stem CR values different

  4. Solid/liquid partition coefficients (Kd) and plant/soil concentration ratios (CR) for selected soils, tills and sediments at Forsmark

    Sheppard, Steve; Sohlenius, Gustav; Omberg, Lars-Gunnar; Borgiel, Mikael; Grolander, Sara; Norden, Sara

    2011-11-01

    Solid/liquid partition coefficients (K d ) are used to indicate the relative mobility of radionuclides and elements of concern from nuclear fuel waste, as well as from other sources. To indicate the uptake of radionuclides in biota concentration ratios (CR) between soil and biota are used. This report summarized K d data for regolith and marine sediments based on concentrations of 69 indigenous stable elements measured from samples collected at the Forsmark site and CR data concerning cereals growing on these soils. The samples included 50 regolith samples from agricultural land and wetlands, 8 samples of till collected at different depths, and two marine sediment samples. In addition, cereal grains, stems and roots were collected from 4 sites for calculation of CRs. The regolith samples represented the major 5 deposits, which can be used as arable land, at the site (clayey till, glacial clay, clay gyttja and peat (cultivated and undisturbed)). K d values were generally lower for peat compared to clay soils. There were also clear differences in K d resulting from differences in soil chemistry within each regolith type. Soil pH was the most important factor, and K d values for many elements were lower in acidic clay soils compared to basic clay soils. Although there were only a few samples of sandy till and marine sediment, the K d values were generally consistent with the corresponding regolith K d values. Of the different cereal parts the grain always had the lowest CR. In most cases, the root CR was significantly higher than the grain CR, whereas only for a few elements were the grain and stem CR values different

  5. Long-term safety for KBS-3 repositories at Forsmark and Laxemar - a first evaluation. Main Report of the SR-Can project

    Hedin, Allan

    2006-10-01

    This document is the main report from the safety assessment project SR-Can. The SR-Can project is a preparatory stage for the SR-Site assessment, the report that will be used in support of SKB's application for a final repository. The purposes of the safety assessment SR-Can are the following: 1. To make a first assessment of the safety of potential KBS-3 repositories at Forsmark and Laxemar to dispose of canisters as specified in the application for the encapsulation plant. 2. To provide feedback to design development, to SKB's RandD programme, to further site investigations and to future safety assessment projects. 3. To foster a dialogue with the authorities that oversee SKB's activities, i.e. the Swedish Nuclear Power Inspectorate, SKI, and the Swedish Radiation Protection Authority, SSI, regarding interpretation of applicable regulations, as a preparation for the SR-Site project. The assessment relates to the KBS-3 disposal concept in which copper canisters with a cast iron insert containing spent nuclear fuel are surrounded by bentonite clay and deposited at approximately 500 m depth in saturated, granitic rock. Preliminary data from the Forsmark and Laxemar sites, presently being investigated by SKB as candidates for a KBS-3 repository are used in the assessment. An important aim of this report is to demonstrate the proper handling of requirements placed on the safety assessment in applicable regulations. Therefore, regulations issued by the Swedish Nuclear Power Inspectorate and the Swedish Radiation Protection Institute are reproduced in an Appendix where references are given to sections in the main text where the handling of the different requirements is discussed. The principal acceptance criterion requires that 'the annual risk of harmful effects after closure does not exceed 10 -6 for a representative individual in the group exposed to the greatest risk'. 'Harmful effects' refer to cancer and hereditary effects. The risk limit corresponds to an

  6. Long-term safety for KBS-3 repositories at Forsmark and Laxemar - a first evaluation. Main Report of the SR-Can project

    Hedin, Allan (ed.)

    2006-10-15

    This document is the main report from the safety assessment project SR-Can. The SR-Can project is a preparatory stage for the SR-Site assessment, the report that will be used in support of SKB's application for a final repository. The purposes of the safety assessment SR-Can are the following: 1. To make a first assessment of the safety of potential KBS-3 repositories at Forsmark and Laxemar to dispose of canisters as specified in the application for the encapsulation plant. 2. To provide feedback to design development, to SKB's RandD programme, to further site investigations and to future safety assessment projects. 3. To foster a dialogue with the authorities that oversee SKB's activities, i.e. the Swedish Nuclear Power Inspectorate, SKI, and the Swedish Radiation Protection Authority, SSI, regarding interpretation of applicable regulations, as a preparation for the SR-Site project. The assessment relates to the KBS-3 disposal concept in which copper canisters with a cast iron insert containing spent nuclear fuel are surrounded by bentonite clay and deposited at approximately 500 m depth in saturated, granitic rock. Preliminary data from the Forsmark and Laxemar sites, presently being investigated by SKB as candidates for a KBS-3 repository are used in the assessment. An important aim of this report is to demonstrate the proper handling of requirements placed on the safety assessment in applicable regulations. Therefore, regulations issued by the Swedish Nuclear Power Inspectorate and the Swedish Radiation Protection Institute are reproduced in an Appendix where references are given to sections in the main text where the handling of the different requirements is discussed. The principal acceptance criterion requires that 'the annual risk of harmful effects after closure does not exceed 10{sup -6} for a representative individual in the group exposed to the greatest risk'. 'Harmful effects' refer to cancer and hereditary effects

  7. Review of the conclusions of the 1996 workshop on safety culture, in Forsmark, Sweden

    Eckered, T [PROMENT LTD (Sweden)

    1997-09-01

    The IAEA/SiP Senior Managers Workshop on International Promotion of Safety Culture for the NPPs with RBMK reactors was organized by IAEA and the Swedish International Project Nuclear Safety (SiP). It took place at the Forsmark NPP, Sweden, from 1 to 4 October 1996. The objective of the workshop were to provide a forum managers to exchange national and international experience on factors influencing safety culture, to better understand these factors and to further enhance promotion of safety culture. The Workshop participants started work by agreeing to seek the answers to the following three questions: 1. What constitutes a good Safety Culture? 2. What is good and bad in our own countries and plants from a Safety Culture point of view? 3. Where can we find advice and help from our colleagues to improve our own Safety Culture? This was the first workshop specifically addressing Safety Culture in RBMK countries. The aim was therefore not to produce good practices, but to lay a foundation for further work and development. A follow-up workshop should deepen the understanding of the SC concept and address specific SC matters identified at this Workshop.

  8. Application of noise analysis for the study of core local instability at Forsmark 1

    Oguma, Ritsuo

    1997-10-01

    Core local instability was recently experienced at Forsmark 1 BWR. The event has been studied by applying noise analysis to data collected in January 1997 for the stability test. The result indicated that there was a region in the left corner of the core which was subject to instability due to neutronic and thermal-hydraulic coupling. The result of the noise analysis suggested two types of disturbance source, one in the vicinity of the detector string LPRM10 having resonant oscillation at 0.5 Hz and another relatively wide band noise in the neighbourhood of LPRM18. Three hypotheses have been examined as the possible cause, operational factor, abnormal fuel assembly, and wide band low frequency disturbance. Although the real cause has not been made clear from the noise analysis, it is likely that the operational factor played an important role as the cause. Further investigations are expected to be performed in the future. In order to detect the local instability it is important to have a stability monitor with a capability of monitoring a sufficient number of LPRMs so as to cover the whole core. This is important since local instability is a type of anomaly which should not occur during reactor operation

  9. The Physical Mechanism of Core-Wide and Local Instabilities at the Forsmark-1 BWR

    Analytis, G. Th.

    1998-10-01

    During the last 15 years, the problem of BWR instabilities has attracted the attention of a number of researchers. From the theoretical point of view, one would be interested in physically understanding the mechanisms responsible for the in- and out-of-phase core wide power oscillations observed at certain operating points of the power-flow map in different BWRs. From the practical point of view, one must try to avoid these 'incidents' since either locally, or globally, the power may substantially exceed the prescribed levels. In this work, we shall use RAMONA3-12 and analyse a rather unusual instability incident at Forsmark-1 in which in addition to the core-wide fundamental spatial mode oscillation, there were local large amplitude power oscillations at different radial positions in the core. We were able to reproduce these unusual experimental findings by assuming that there are large amplitude Density Wave Oscillations (DWOs) in different bundles, induced by the fact that these bundles were not seated properly into the lower fuel support plate. (author)

  10. Using the EPRI Risk-Informed ISI Methodology on Piping Systems in Forsmark 3

    O' Regan, Patrick (Electric Power Research Inst., Knoxville, TN (United States)); Moody, Jim (JHM Consulting, Strafford (United States)); Loetman, Jan (Forsmarks Kraftgrupp AB (Sweden)); Sandstedt, Johan (Risk Pilot AB, Stockholm (Sweden))

    2010-12-15

    The objective of this project was a pilot plant demonstration of the EPRI RI-ISI Methodology to selected systems at Forsmark, Unit 3 (F3). This scope of this study encompasses five systems and is based upon F3 implementation of SKIFs guidance as well as other consideration as documented in the PMT program. As described in section 2, five systems were selected for evaluation. These systems were selected because they allow this project to focus on a number of issues of interest in developing a RI-ISI methodology and RI-ISI program. This includes the following: - Several different types of degradation may be identified, - Several different types of 'consequence of failure' may be identified, - Different types of safety systems are evaluated - Non-safety systems are evaluated Using the results of this application, insights and comparisons between SKIFS and the EPRI methodologies' are provided including the following: - Consequence of pressure boundary failure (PBF) as described in Section 3.14. - Degradation mechanism evaluation as described in Section 4.8. - Risk ranking as described in Section 5. - Element selection for inspection as described in Section 6. - Risk impact as described in Section 7

  11. Review of the conclusions of the 1996 workshop on safety culture, in Forsmark, Sweden

    Eckered, T.

    1997-01-01

    The IAEA/SiP Senior Managers Workshop on International Promotion of Safety Culture for the NPPs with RBMK reactors was organized by IAEA and the Swedish International Project Nuclear Safety (SiP). It took place at the Forsmark NPP, Sweden, from 1 to 4 October 1996. The objective of the workshop were to provide a forum managers to exchange national and international experience on factors influencing safety culture, to better understand these factors and to further enhance promotion of safety culture. The Workshop participants started work by agreeing to seek the answers to the following three questions: 1. What constitutes a good Safety Culture? 2. What is good and bad in our own countries and plants from a Safety Culture point of view? 3. Where can we find advice and help from our colleagues to improve our own Safety Culture? This was the first workshop specifically addressing Safety Culture in RBMK countries. The aim was therefore not to produce good practices, but to lay a foundation for further work and development. A follow-up workshop should deepen the understanding of the SC concept and address specific SC matters identified at this Workshop

  12. Using the EPRI Risk-Informed ISI Methodology on Piping Systems in Forsmark 3

    O'Regan, Patrick; Moody, Jim; Loetman, Jan; Sandstedt, Johan

    2010-12-01

    The objective of this project was a pilot plant demonstration of the EPRI RI-ISI Methodology to selected systems at Forsmark, Unit 3 (F3). This scope of this study encompasses five systems and is based upon F3 implementation of SKIFs guidance as well as other consideration as documented in the PMT program. As described in section 2, five systems were selected for evaluation. These systems were selected because they allow this project to focus on a number of issues of interest in developing a RI-ISI methodology and RI-ISI program. This includes the following: - Several different types of degradation may be identified, - Several different types of 'consequence of failure' may be identified, - Different types of safety systems are evaluated - Non-safety systems are evaluated Using the results of this application, insights and comparisons between SKIFS and the EPRI methodologies' are provided including the following: - Consequence of pressure boundary failure (PBF) as described in Section 3.14. - Degradation mechanism evaluation as described in Section 4.8. - Risk ranking as described in Section 5. - Element selection for inspection as described in Section 6. - Risk impact as described in Section 7

  13. Long-term development of the super-regional area of Olkiluoto/Forsmark/Laxemar. Minutes from the Posiva and SKB workshop

    Lindborg, Tobias; Rubio Lind, Lotta (eds.)

    2006-12-15

    minutes were delimited in the description of the surface system part of the geosphere-biosphere system and its development in time, primarily in terms of geometry and sea water salinity. However, no effort was made to discuss the geological evolution of the area or any parameter in the bedrock separately. Instead, the focus was to list, describe and suggest the parameters and variables of the surface system that can be described in a common way for the three sites Olkiluoto (Finland), Forsmark and Laxemar (both in Sweden)

  14. Long-term development of the super-regional area of Olkiluoto/Forsmark/Laxemar. Minutes from the Posiva and SKB workshop

    Lindborg, Tobias; Rubio Lind, Lotta

    2006-12-01

    minutes were delimited in the description of the surface system part of the geosphere-biosphere system and its development in time, primarily in terms of geometry and sea water salinity. However, no effort was made to discuss the geological evolution of the area or any parameter in the bedrock separately. Instead, the focus was to list, describe and suggest the parameters and variables of the surface system that can be described in a common way for the three sites Olkiluoto (Finland), Forsmark and Laxemar (both in Sweden)

  15. A review of published literature on the effects of permafrost on the hydrogeochemistry of bedrock

    Cascoyne, M.

    2000-06-01

    Salt-rejection into the aqueous phase from permafrost growth ('aggradation') during the onset of cold-climate conditions in the Pleistocene period is a mechanism that could account for the presence of saline groundwaters in the Fennoscandian Shield. This report describes the results of a review of scientific literature on the subject of permafrost, to search for and evaluate information which may indicate whether this mechanism is feasible for sites such as Olkiluoto and Aespoe on the Baltic Sea coast. The geomorphological characteristics of permafrost (such as development of patterned ground, ice wedging, pingo growth) have been studied in detail in the literature and provide an understanding of the effects of pore water expulsion and saline water formation. Evidence of salt-rejection during permafrost aggradation is found in results of analyses of the chemical and isotopic compositions of water in pingos and open taliks published in North American, Chinese and Russian literature over the last fifty years. While most studies have concentrated on shallow permafrost in soils and sediments, deep-drilling by the oil and gas industry has shown that permafrost may extend both laterally and to considerable depth. For instance, permafrost on the north slope of Alaska is laterally continuous over an area of at least 1000 km 2 and is associated with fluids of salinities up to 130 g/L. Also, in northern Siberia, permafrost has been observed to depths of over 900 m. Saline waters are ubiquitous in coastal areas that are currently underlain by permafrost. However, it is not clear how much of the salinity has been produced by the freezing process and how much is simply due to leaching of saline soils and sediments by groundwaters and the presence of residual seawater in the sediments. Possible indicators of concentration by freezing include the presence of brines (i.e. waters of greater salinity than seawater), mineral precipitates (e.g. mirabilite) that are formed on freezing

  16. A review of published literature on the effects of permafrost on the hydrogeochemistry of bedrock

    Gascoyne, M.

    2000-04-01

    Salt-rejection into the aqueous phase from permafrost growth during the onset of cold-climate conditions in the Pleistocene period is a mechanism that could account for the presence of saline groundwaters in the Fennoscandian Shield. This report describes the results of a review of scientific literature on the subject of permafrost, to search for and evaluate information which may indicate whether this mechanism is feasible for sites such as Olkiluoto and Aespoe on the Baltic Sea coast. The geomorphological characteristics of permafrost (such as development of patterned ground, ice wedging, pingo growth) have been studied in detail in the literature and provide an understanding of the effects of pore water expulsion and saline water formation. Evidence of salt-rejection during permafrost aggradation is found in results of analyses of the chemical and isotopic compositions of water in pingos and open taliks published in North American, Chinese and Russian literature over the last fifty years. While most studies have concentrated on shallow permafrost in soils and sediments, deep-drilling by the oil and gas industry has shown that permafrost may extend both laterally and to considerable depth. For instance, permafrost on the north slope of Alaska is laterally continuous over an area of at least 1000 km 2 and is associated with fluids of salinities up to 130 g/L. Also, in northern Siberia, permafrost has been observed to depths of over 900 m. Saline waters are ubiquitous in coastal areas that are currently underlain by permafrost. However, it is not clear how much of the salinity has been produced by the freezing process and how much is simply due to leaching of saline soils and sediments by ground- waters and the presence of residual seawater in the sediments. Possible indicators of concentration by freezing include the presence of brines (i.e.waters of greater salinity than seawater), mineral precipitates (e.g. mirabilite) that are formed on freezing of seawater

  17. A review of published literature on the effects of permafrost on the hydrogeochemistry of bedrock

    Gascoyne, M. [Gascoyne GeoProjects Inc., Pinawa (Canada)

    2000-04-01

    Salt-rejection into the aqueous phase from permafrost growth during the onset of cold-climate conditions in the Pleistocene period is a mechanism that could account for the presence of saline groundwaters in the Fennoscandian Shield. This report describes the results of a review of scientific literature on the subject of permafrost, to search for and evaluate information which may indicate whether this mechanism is feasible for sites such as Olkiluoto and Aespoe on the Baltic Sea coast. The geomorphological characteristics of permafrost (such as development of patterned ground, ice wedging, pingo growth) have been studied in detail in the literature and provide an understanding of the effects of pore water expulsion and saline water formation. Evidence of salt-rejection during permafrost aggradation is found in results of analyses of the chemical and isotopic compositions of water in pingos and open taliks published in North American, Chinese and Russian literature over the last fifty years. While most studies have concentrated on shallow permafrost in soils and sediments, deep-drilling by the oil and gas industry has shown that permafrost may extend both laterally and to considerable depth. For instance, permafrost on the north slope of Alaska is laterally continuous over an area of at least 1000 km{sup 2} and is associated with fluids of salinities up to 130 g/L. Also, in northern Siberia, permafrost has been observed to depths of over 900 m. Saline waters are ubiquitous in coastal areas that are currently underlain by permafrost. However, it is not clear how much of the salinity has been produced by the freezing process and how much is simply due to leaching of saline soils and sediments by ground- waters and the presence of residual seawater in the sediments. Possible indicators of concentration by freezing include the presence of brines (i.e.waters of greater salinity than seawater), mineral precipitates (e.g. mirabilite) that are formed on freezing of

  18. A review of published literature on the effects of permafrost on the hydrogeochemistry of bedrock

    Cascoyne, M. [Gascoyne GeoProjects Inc. (Canada)

    2000-06-01

    Salt-rejection into the aqueous phase from permafrost growth ('aggradation') during the onset of cold-climate conditions in the Pleistocene period is a mechanism that could account for the presence of saline groundwaters in the Fennoscandian Shield. This report describes the results of a review of scientific literature on the subject of permafrost, to search for and evaluate information which may indicate whether this mechanism is feasible for sites such as Olkiluoto and Aespoe on the Baltic Sea coast. The geomorphological characteristics of permafrost (such as development of patterned ground, ice wedging, pingo growth) have been studied in detail in the literature and provide an understanding of the effects of pore water expulsion and saline water formation. Evidence of salt-rejection during permafrost aggradation is found in results of analyses of the chemical and isotopic compositions of water in pingos and open taliks published in North American, Chinese and Russian literature over the last fifty years. While most studies have concentrated on shallow permafrost in soils and sediments, deep-drilling by the oil and gas industry has shown that permafrost may extend both laterally and to considerable depth. For instance, permafrost on the north slope of Alaska is laterally continuous over an area of at least 1000 km{sup 2} and is associated with fluids of salinities up to 130 g/L. Also, in northern Siberia, permafrost has been observed to depths of over 900 m. Saline waters are ubiquitous in coastal areas that are currently underlain by permafrost. However, it is not clear how much of the salinity has been produced by the freezing process and how much is simply due to leaching of saline soils and sediments by groundwaters and the presence of residual seawater in the sediments. Possible indicators of concentration by freezing include the presence of brines (i.e. waters of greater salinity than seawater), mineral precipitates (e.g. mirabilite) that are

  19. Landscape control on the hydrogeochemistry of As, Co and Pb in a boreal stream network

    Wällstedt, Teresia; Björkvald, Louise; Laudon, Hjalmar; Borg, Hans; Mörth, Carl-Magnus

    2017-08-01

    In a boreal stream network, stream water concentrations of As, Co and Pb (filtered, 30% wetland), which was suggested to be controlled by atmospheric deposition in combination with high DOC release from the wetlands. For Co, the highest concentrations were found in the forest dominated sites (>98% forest), which were attributed to the weathering of minerogenic sources. Contrasting response to runoff events could also be related to landscape type; during the spring flood, decreasing concentrations of As, Co and Pb were observed in the wetland dominated catchments due to dilution, while increasing concentrations during spring flood were observed in the mixed catchments (2-30% wetland) and to some degree in the forested catchments, probably due to flushing of the organic-rich riparian sources. Further, metal speciation was calculated using the geochemical equilibrium model Visual MINTEQ. This suggests that dissolved inorganic species of As and Co dominated in headwater streams with low pH while DOC had a major influencing role for Pb. In the larger mixed streams where pH was higher and precipitation of e.g. colloidal Fe and Mn (hydr)oxides was favoured, the major influencing factor was instead adsorption to colloidal Fe for As and Pb, while association to organic matter and colloids of e.g. Mn influenced the concentrations of Co. We thus conclude that landscape type and the magnitude of the runoff events are of great importance for the spatial and temporal variations of As, Co and Pb in this boreal stream network. Projected climate change, with increasing runoff, may therefore influence riverine concentrations and fluxes differently, depending on the prevailing landscape type.

  20. Hydrogeochemistry of deep groundwaters in the central part of the Fennoscandian Shields

    Blomqvist, R.

    1999-01-01

    Saline groundwaters are frequent in the central part of the Fennoscandian Shield. The results indicate large variations in groundwater chemistry and in the spatial distribution of saline groundwaters. The depths of the fresh/saline groundwater boundaries vary considerably but generally the boundary is located at 300-600 m. In some cases fresh bicarbonate groundwaters are encountered throughout the drill hole. More commonly, however, bicarbonate waters occur only as an upper layer, up to a few hundred metres in extent, overlying chloride waters of varying salinity. In coastal areas saline groundwaters are frequently found much closer to ground surface. Long-term water-rock interaction and incursions of present/ancient sea water are considered the main processes affecting the evolution of the saline groundwater bodies, while isolation from the surface-close hydrological cycle seems to be a prerequisite for the preservation of these waters. Ancient preferential leaching of low-Rb/Sr minerals (most likely plagioclase) and/or fluid inclusions are the main contribution for dissolved solids in water-rock interaction. The strontium isotope results imply that saline groundwaters in crystalline rocks do not evolve as isolated small pockets with a restricted volume of rock but may constitute more open systems in which lateral hydrogeochemical interaction extends over distances of at least hundreds of metres. One potential mechanism for formation of young calcites is related to glacial rebound where release of stress and increase in temperature in fractures make the groundwaters oversaturated with respect to calcite. Δ 18 depleted groundwaters have been observed from several sampling sites in Finland, indicative of glacial meltwater intrusion in the bedrock. As saline waters have been documented to have long residence times and are not associated with active meteoric water circulation, bedrock suites hosted by saline groundwaters could be considered as potential repository