WorldWideScience

Sample records for hydrogenated silicon films

  1. Infrared analysis of thin films amorphous, hydrogenated carbon on silicon

    CERN Document Server

    Jacob, W; Schwarz-Selinger, T

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, ...

  2. Orientationally ordered ridge structures of aluminum films on hydrogen terminated silicon

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Pantleon, Karen

    2006-01-01

    > directions on the silicon substrate. The ridge structure appears when the film thickness is above 500 nm, and increasing the film thickness makes the structure more distinct. Anodic oxidation enhances the structure even further. X-ray diffraction indicates that grains in the film have mostly (110) facets......Films of aluminum deposited onto Si(100) substrates show a surface structure of parallel ridges. On films deposited on oxidized silicon substrates the direction of the ridges is arbitrary, but on films deposited on hydrogen-terminated Si(100) the ridges are oriented parallel to the

  3. Enhanced photoluminescence from ring resonators in hydrogenated amorphous silicon thin films at telecommunications wavelengths.

    Science.gov (United States)

    Patton, Ryan J; Wood, Michael G; Reano, Ronald M

    2017-11-01

    We report enhanced photoluminescence in the telecommunications wavelength range in ring resonators patterned in hydrogenated amorphous silicon thin films deposited via low-temperature plasma enhanced chemical vapor deposition. The thin films exhibit broadband photoluminescence that is enhanced by up to 5 dB by the resonant modes of the ring resonators due to the Purcell effect. Ellipsometry measurements of the thin films show a refractive index comparable to crystalline silicon and an extinction coefficient on the order of 0.001 from 1300 nm to 1600 nm wavelengths. The results are promising for chip-scale integrated optical light sources.

  4. Hydrogen related crystallization in intrinsic hydrogenated amorphous silicon films prepared by reactive radiofrequency magnetron sputtering at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Senouci, D. [Laboratoire de Genie Physique, Universite Ibn-Khaldoun, 14000 Tiaret (Algeria); LPCMME, Departement de Physique, Universite d' Oran Es-senia, 3100, Oran (Algeria); Baghdad, R., E-mail: r_baghdad@mail.univ-tiaret.dz [Laboratoire de Genie Physique, Universite Ibn-Khaldoun, 14000 Tiaret (Algeria); Belfedal, A.; Chahed, L. [LPCMME, Departement de Physique, Universite d' Oran Es-senia, 3100, Oran (Algeria); Portier, X. [CIMAP, CEA, CNRS UMR 6252-ENSICAEN, UCBN, 6 Bvd Marechal Juin, 14050 Caen Cedex (France); Charvet, S. [LPMC, UFR des Sciences, Universite de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens (France); Kim, K.H. [LPICM, Laboratoire de Physique des Interfaces et Couches Minces, CNRS UMR 7647, Ecole Polytechnique, 91128 Palaiseau (France); TOTAL S.A., Gas and Power, R and D Division, Courbevoie (France); Roca i Cabarrocas, P. [LPICM, Laboratoire de Physique des Interfaces et Couches Minces, CNRS UMR 7647, Ecole Polytechnique, 91128 Palaiseau (France); Zellama, K. [LPMC, UFR des Sciences, Universite de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens (France)

    2012-11-01

    We present an investigation on the transition from amorphous to nanocrystalline silicon and associated hydrogen changes during the first steps of hydrogenated nanocrystalline silicon growth for films elaborated by reactive radiofrequency magnetron sputtering at a substrate temperature as low as room temperature and for deposition times varying from 3 to 60 min. Complementary experimental techniques have been used to characterize the films in their as-deposited state. They are completed by thermal hydrogen effusion experiments conducted in the temperature range, from room temperature to 800 Degree-Sign C. The results show that, during the initial stages of growth, the presence of a hydrogen-rich layer is necessary to initiate the crystallization process. - Highlights: Black-Right-Pointing-Pointer Nanocrystalline silicon growth at room temperature. Black-Right-Pointing-Pointer Transition from amorphous to nanocrystalline silicon. Black-Right-Pointing-Pointer Chemical reactions of H atoms with strained Si-Si bonds. Black-Right-Pointing-Pointer H selective etching and chemical transport caused the silicon nucleation.

  5. Passivation and etching of fine-grained polycrystalline silicon films by hydrogen treatment

    Energy Technology Data Exchange (ETDEWEB)

    Slaoui, A.; Pihan, E.; Ka, I.; Mbow, N.A.; Roques, S.; Koebel, J.M. [InESS-CNRS, 23 rue du Loess, B.P. 20, F-67037 Strasbourg, France ()

    2006-09-06

    Here we investigated the effects of hydrogen treatment on highly defected polycrystalline silicon solar cells in terms of defects passivation and surface etching. The poly-Si films were formed by high-temperature chemical vapour deposition. The hydrogen treatment was carried out through deposition of a-SiN{sub x}:H layer followed by a thermal treatment or by direct hydrogen plasma. The deposition of silicon nitride layers on polysilicon cells led to a slight increase in the open-circuit voltage without damage to the surface. In contrast, after plasma hydrogenation, the results revealed an etching process of the emitter simultaneously with an important increase of the measured open-circuit voltage by a factor 2, reaching 420 mV. (author)

  6. Flash lamp annealing of spray coated films containing oxidized or hydrogen terminated silicon nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Falko, E-mail: falko.seidel@physik.tu-chemnitz.de [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Toader, Iulia G. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Koth, Stephan [Institute for Print and Media Technology, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Fritzsche, Ronny [Coordination Chemistry, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Schäfer, Philipp; Bülz, Daniel [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Büchter, Benjamin [Coordination Chemistry, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Gordan, Ovidiu D.; Freitag, Hans [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Jakob, Alexander; Buschbeck, Roy [Inorganic Chemistry, Technische Universität Chemnitz, D-09107 Chemnitz,Germany (Germany); Hietschold, Michael [Solid Surface Analysis, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Lang, Heinrich [Inorganic Chemistry, Technische Universität Chemnitz, D-09107 Chemnitz,Germany (Germany); Mehring, Michael [Coordination Chemistry, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Baumann, Reinhard [Institute for Print and Media Technology, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Zahn, Dietrich R.T. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)

    2014-07-01

    A variety of silicon nanoparticle (Si NP) powders is studied with diffuse-reflectance infrared Fourier-transform spectroscopy before and after treatment with hydrofluoric acid. As received Si NPs and surface passivated Si NPs are dispersed in organic dispersion media such ethanol. A spray coating system is used to spray the Si NPs onto molybdenum substrates under nitrogen atmosphere. During film growth an in-line spectroscopic ellipsometer monitors the deposition process. In addition, a Xe-lamp enables to flash films in order to melt Si NPs together. Si NP films are then investigated using atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. Eventually, a difference in surface termination (e.g. state of surface oxidation and hydrogen passivation) between Si NP amounts of three selected providers was found. Furthermore, the dispersion stability of Si NP powder in dry ethanol (> 99%), the film roughness after processing, and the melting of Si NP films is found to depend strongly on the surface termination of the NPs. - Highlights: • Silicon nanoparticle suspensions are spray coated on molybdenum substrates. • Spectroscopic ellipsometry and atomic force microscopy watch the deposition. • After deposition a light flash anneals the sample to fuse silicon nanoparticles. • Silicon nanoparticle surface oxidation correlates with the effects of annealing.

  7. Study on the excimer laser annealed amorphous hydrogenated silicon carbon films deposited by PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosone, G. [CNR-INFM CRS-Coherentia, Complesso Universitario MSA, Napoli (Italy); Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Complesso Universitario MSA, Napoli (Italy); Basa, D.K. [Utkal University, Bhubaneswar (India); Coscia, U. [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Complesso Universitario MSA, Napoli (Italy); CNISM Unita' di Napoli, Complesso Universitario MSA, Napoli (Italy); Tresso, E.; Celasco, E. [Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino (Italy); Chiodoni, A. [Materials and Microsystems Laboratory, chi-LAB, Politecnico di Torino (Italy); Pinto, N.; Murri, R. [Dipartimento di Fisica, Universita' di Camerino (Italy)

    2010-04-15

    Hydrogenated amorphous silicon carbon films of different carbon content were deposited by plasma enhanced chemical vapour deposition at low substrate temperature (200 C) and were subjected to excimer laser annealing. X-ray diffraction spectra and field emission scanning electron microscopy images demonstrate that carbon content plays an important role in facilitating the crystallization process induced by the excimer laser treatment (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Electrical characteristics and hydrogen concentration of chemical vapor deposited silicon dioxide films: Effect of water treatment

    Science.gov (United States)

    Li, S. C.; Murarka, S. P.

    1992-11-01

    The effect of exposing chemical vapor deposited silicon dioxide directly to water has been investigated. Unlike the effect of the water-related traps in thermally grown silicon dioxide, the capacitance-voltage (C-V) shift due to diffused-in water molecules is directly observed without using the method of avalanche injection. The resonate nuclear reaction technique with 15N ion beam has been used to measure the hydrogen concentration of water-boiled, as-deposited, and rapid thermal-annealed silicon dioxide films. These depth profiles show that the hydrogen-containing species, that are most likely water molecules, diffuse in and out and redistribute in the as-deposited and rapid thermal-annealed films. These hydrogen depth profiles also indicate that the amount of diffused-in water molecules in the oxide is limited by the solubility of the water in the oxide. The solubility of water in the oxide annealed at high temperatures is found to be significantly lower than that in the as-deposited oxide. It is found that diffused-in water molecules, in order to satisfy the water solubility of the oxide, play a compensating role in controlling the oxide charges. Water molecules would continue to diffuse in, and interact with oxide charges and produce charges with reverse polarity that compensate the existing oxide charges until water solubility is satisfied.

  9. Investigation of the degradation of a thin-film hydrogenated amorphous silicon photovoltaic module

    Energy Technology Data Exchange (ETDEWEB)

    van Dyk, E.E.; Audouard, A.; Meyer, E.L. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Woolard, C.D. [Department of Chemistry, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2007-01-23

    The degradation of a thin-film hydrogenated single-junction amorphous silicon (a-Si:H) photovoltaic (PV) module has been studied. We investigated the different modes of electrical and physical degradation of a-Si:H PV modules by employing a degradation and failure assessment procedure used in conjunction with analytical techniques, including, scanning electron microscopy (SEM) and thermogravimetry. This paper reveals that due to their thickness, thin films are very sensitive to the type of degradation observed. Moreover, this paper deals with the problems associated with the module encapsulant, poly(ethylene-co-vinylacetate) (EVA). The main objective of this study was to establish the influence of outdoor environmental conditions on the performance of a thin-film PV module comprising a-Si:H single-junction cells. (author)

  10. Effects of phosphorus on the electrical characteristics of plasma deposited hydrogenated amorphous silicon carbide thin films

    Science.gov (United States)

    Alcinkaya, Burak; Sel, Kivanc

    2018-01-01

    The properties of phosphorus doped hydrogenated amorphous silicon carbide (a-SiCx:H) thin films, that were deposited by plasma enhanced chemical vapor deposition technique with four different carbon contents (x), were analyzed and compared with those of the intrinsic a-SiCx:H thin films. The carbon contents of the films were determined by X-ray photoelectron spectroscopy. The thickness and optical energies, such as Tauc, E04 and Urbach energies, of the thin films were determined by UV-Visible transmittance spectroscopy. The electrical properties of the films, such as conductivities and activation energies were analyzed by temperature dependent current-voltage measurements. Finally, the conduction mechanisms of the films were investigated by numerical analysis, in which the standard transport mechanism in the extended states and the nearest neighbor hopping mechanism in the band tail states were taken into consideration. It was determined that, by the effect of phosphorus doping the dominant conduction mechanism was the standard transport mechanism for all carbon contents.

  11. Structural and optical properties of amorphous hydrogenated silicon carbonitride films produced by PECVD

    Science.gov (United States)

    Vassallo, E.; Cremona, A.; Ghezzi, F.; Dellera, F.; Laguardia, L.; Ambrosone, G.; Coscia, U.

    2006-09-01

    Amorphous hydrogenated silicon carbonitride thin films (a-Si:C:N:H), deposited by plasma enhanced chemical vapour deposition (PECVD) using hexamethyldisilazane (HMDSN) as monomer and Ar as feed gas, have been investigated for their structural and optical properties as a function of the deposition RF plasma power, in the range of 100-300 W. The films have been analysed by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), UV-vis-NIR spectrophotometry and atomic force microscopy (AFM). From the analysis of the FT-IR spectra it results that the films become more amorphous and inorganic as RF plasma power increases. The incorporation of oxygen in the deposited layers, mainly due to the atmospheric attack, has been evaluated by XPS and FT-IR spectroscopy. Reflectance/transmittance spectra, acquired in the range of 200-2500 nm, allow to descrive the film absorption edge for interband transitions. A relationship between the optical energy band gap, deduced from the absorption coefficient curve, and the deposition RF plasma power has been investigated. The reduction of the optical energy gap from 3.85 to 3.69 eV and the broadening of the optical absorption tail with RF plasma power increasing from 100 to 300 W are ascribed to the growth of structural disorder, while the increase of the refractive index, evaluated at 630 nm, is attributed to a slight densification of the film. The AFM analysis confirms the amorphous character of the films and shows how the deposited layers become rougher when RF plasma power increases. The wettability of the film has been studied and related to the chemical composition and to the morphology of the deposited layers.

  12. Structural and optical properties of amorphous hydrogenated silicon carbonitride films produced by PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Vassallo, E. [Istituto di Fisica del Plasma, CNR, Milan (Italy)]. E-mail: vassallo@ifp.cnr.it; Cremona, A. [Istituto di Fisica del Plasma, CNR, Milan (Italy); Ghezzi, F. [Istituto di Fisica del Plasma, CNR, Milan (Italy); Dellera, F. [Istituto di Fisica del Plasma, CNR, Milan (Italy); Laguardia, L. [Istituto di Fisica del Plasma, CNR, Milan (Italy); Ambrosone, G. [INFM-Universita di Napoli Federico II, Dip. di Scienze Fisiche, Naples (Italy); Coscia, U. [INFM-Universita di Napoli Federico II, Dip. di Scienze Fisiche, Naples (Italy)

    2006-09-15

    Amorphous hydrogenated silicon carbonitride thin films (a-Si:C:N:H), deposited by plasma enhanced chemical vapour deposition (PECVD) using hexamethyldisilazane (HMDSN) as monomer and Ar as feed gas, have been investigated for their structural and optical properties as a function of the deposition RF plasma power, in the range of 100-300 W. The films have been analysed by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), UV-vis-NIR spectrophotometry and atomic force microscopy (AFM). From the analysis of the FT-IR spectra it results that the films become more amorphous and inorganic as RF plasma power increases. The incorporation of oxygen in the deposited layers, mainly due to the atmospheric attack, has been evaluated by XPS and FT-IR spectroscopy. Reflectance/transmittance spectra, acquired in the range of 200-2500 nm, allow to descrive the film absorption edge for interband transitions. A relationship between the optical energy band gap, deduced from the absorption coefficient curve, and the deposition RF plasma power has been investigated. The reduction of the optical energy gap from 3.85 to 3.69 eV and the broadening of the optical absorption tail with RF plasma power increasing from 100 to 300 W are ascribed to the growth of structural disorder, while the increase of the refractive index, evaluated at 630 nm, is attributed to a slight densification of the film. The AFM analysis confirms the amorphous character of the films and shows how the deposited layers become rougher when RF plasma power increases. The wettability of the film has been studied and related to the chemical composition and to the morphology of the deposited layers.

  13. Structural characterization of the interface structure of amorphous silicon thin films after post-deposition argon or hydrogen plasma treatment

    Science.gov (United States)

    Neumüller, Alex; Sergeev, Oleg; Vehse, Martin; Agert, Carsten

    2017-05-01

    The interfaces in silicon thin film solar cells and silicon heterojunction solar cells are considered to be very important for the solar cell conversion efficiency. This work studies the interface properties of hydrogenated amorphous silicon thin films deposited on crystalline silicon wafers after post-deposition hydrogen plasma treatment (HPT) or argon plasma treatment (APT). The investigation extends our previous study by examining the structural changes resulting from the post-deposition plasma treatment on silicon thin film solar cells. We analyzed the ellipsometry and infrared spectra of our samples to gain a deeper understanding of the fundamental plasma treatment effects. By using post-deposition APT and HPT, we were able to reduce the material stress and improve the structure of these layers. Our results show that APT yields a more compact material with fewer voids and less distinct localized tail states. We discuss the effect of APT and HPT on the most crucial interface in silicon heterojunction solar cells, the i-a-Si:H/c-Si interface. We propose to introduce APT as a post-deposition process step in the fabrication of silicon heterojunction solar cells.

  14. Acoustically induced optical second harmonic generation in hydrogenated amorphous silicon films

    CERN Document Server

    Ebothe, J; Cabarrocas, P R I; Godet, C; Equer, B

    2003-01-01

    Acoustically induced second harmonic generation (AISHG) in hydrogenated amorphous silicon (a-Si : H) films of different morphology has been observed. We have found that with increasing acoustical power, the optical SHG of Gd : YAB laser light (lambda = 2.03 mu m) increases and reaches its maximum value at an acoustical power density of about 2.10 W cm sup - sup 2. With decreasing temperature, the AISHG signal strongly increases below 48 K and correlates well with the temperature behaviour of differential scanning calorimetry indicating near-surface temperature phase transition. The AISHG maxima were observed at acoustical frequencies of 10-11, 14-16, 20-22 and 23-26 kHz. The independently performed measurements of the acoustically induced IR spectra have shown that the origin of the observed phenomenon is the acoustically induced electron-phonon anharmonicity in samples of different morphology.

  15. Modeling of the static and dynamic behavior of hydrogenated amorphous silicon thin-film transistors

    Science.gov (United States)

    Servati, P.; Nathan, A.

    2002-05-01

    This article reports on physically based models for hydrogenated amorphous silicon (a-Si:H) inverted staggered thin-film transistors (TFT), which accurately predict both the static and dynamic characteristics of the TFT. The model is implemented in VerilogA hardware description language, which comes as a standard feature in most circuit simulation environments. The static model includes both forward and reverse regimes of operation. The model for leakage current takes into account the physical mechanisms responsible for the source of the reverse current, viz., the formation of the conducting channels at the back and front a-Si:H/a-SiNx:H interfaces and their relative dominance at different bias conditions. The dynamic model includes the different charge components associated with the tail states, deep states, interfaces, and traps and their associated time constants. Good agreement between modeling and experimental results is obtained.

  16. Recrystallized thin-film silicon solar cell on graphite substrate with laser single side contact and hydrogen passivation

    Directory of Open Access Journals (Sweden)

    Li Da

    2015-01-01

    Full Text Available Laser single side contact formation (LSSC and the hydrogen passivation process are studied and developed for crystalline silicon thin film (CSiTF solar cells on graphite substrates. The results demonstrate that these two methods can improve cell performance by increasing the open circuit voltage and fill factor. In comparison with our previous work, we have achieved an increase of 3.4% absolute cell efficiency for a 40 μm thick 4 cm2 aperture area silicon thin film solar cell on graphite substrate. Current density-voltage (J-V measurement, quantum efficiency (QE and light beam induced current (LBiC are used as characterization methods.

  17. Hydrogen adsorption and desorption with 3D silicon nanotube-network and film-network structures: Monte Carlo simulations

    Science.gov (United States)

    Li, Ming; Huang, Xiaobo; Kang, Zhan

    2015-08-01

    Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-network (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials.

  18. Hydrogenated Nano-/Micro-Crystalline Silicon Thin-Films for Thermoelectrics

    Science.gov (United States)

    Acosta, E.; Wight, N. M.; Smirnov, V.; Buckman, J.; Bennett, N. S.

    2017-11-01

    Thermoelectric technology has not yet been able to reach full-scale market penetration partly because most commercial materials employed are scarce/costly, environmentally unfriendly and in addition provide low conversion efficiency. The necessity to tackle some of these hurdles leads us to investigate the suitability of n-type hydrogenated microcrystalline silicon (μc-Si: H) in the fabrication of thermoelectric devices, produced by plasma enhanced chemical vapour deposition (PECVD), which is a mature process of proven scalability. This study reports an approach to optimise the thermoelectric power factor (PF) by varying the dopant concentration by means of post-annealing without impacting film morphology, at least for temperatures below 550°C. Results show an improvement in PF of more than 80%, which is driven by a noticeable increase of carrier mobility and Seebeck coefficient in spite of a reduction in carrier concentration. A PF of 2.08 × 10-4 W/mK2 at room temperature is reported for n-type films of 1 μm thickness, which is in line with the best values reported in recent literature for similar structures.

  19. The Synthesis and Structural Properties of Crystalline Silicon Quantum Dots upon Thermal Annealing of Hydrogenated Amorphous Si-Rich Silicon Carbide Films

    Science.gov (United States)

    Wen, Guozhi; Zeng, Xiangbin; Li, Xianghu

    2016-08-01

    Silicon quantum dots (QDs) embedded in non-stoichiometric hydrogenated silicon carbide (SiC:H) thin films have been successfully synthesized by plasma-enhanced chemical vapor deposition and post-annealing. The chemical composition analyses have been carried out by x-ray photoelectron spectroscopy (XPS). The bonding configurations have been deduced from Fourier transform infrared absorption measurements (FTIR). The evolution of microstructure with temperature has been characterized by glancing incident x-ray diffraction (XRD) and Raman diffraction spectroscopy. XPS and FTIR show that it is in Si-rich feature and there are a few hydrogenated silicon clusters in the as-grown sample. XRD and Raman diffraction spectroscopy show that it is in amorphous for the as-grown sample, while crystalline silicon QDs have been synthesized in the 900°C annealed sample. Silicon atoms precipitation from the SiC matrix or silicon phase transition from amorphous SiC is enhanced with annealing temperature increase. The average sizes of silicon QDs are about 5.1 nm and 5.6 nm, the number densities are as high as 1.7 × 1012 cm-2 and 3.2 × 1012 cm-2, and the crystalline volume fractions are about 58.3% and 61.3% for the 900°C and 1050°C annealed samples, respectively. These structural properties analyses provide an understanding about the synthesis of silicon QDs upon thermal annealing for applications in next generation optoelectronic and photovoltaic devices.

  20. High Growth Rate Deposition of Hydrogenated Amorphous Silicon-Germanium Films and Devices Using ECR-PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Hydrogenated amorphous silicon germanium films (a-SiGe:H) and devices have been extensively studied because of the tunable band gap for matching the solar spectrum and mature the fabrication techniques. a-SiGe:H thin film solar cells have great potential for commercial manufacture because of very low cost and adaptability to large-scale manufacturing. Although it has been demonstrated that a-SiGe:H thin films and devices with good quality can be produced successfully, some issues regarding growth chemistry have remained yet unexplored, such as the hydrogen and inert-gas dilution, bombardment effect, and chemical annealing, to name a few. The alloying of the SiGe introduces above an order-of-magnitude higher defect density, which degrades the performance of the a-SiGe:H thin film solar cells. This degradation becomes worse when high growth-rate deposition is required. Preferential attachment of hydrogen to silicon, clustering of Ge and Si, and columnar structure and buried dihydride radicals make the film intolerably bad. The work presented here uses the Electron-Cyclotron-Resonance Plasma-Enhanced Chemical Vapor Deposition (ECR-PECVD) technique to fabricate a-SiGe:H films and devices with high growth rates. Helium gas, together with a small amount of H2, was used as the plasma species. Thickness, optical band gap, conductivity, Urbach energy, mobility-lifetime product, I-V curve, and quantum efficiency were characterized during the process of pursuing good materials. The microstructure of the a-(Si,Ge):H material was probed by Fourier-Transform Infrared spectroscopy. They found that the advantages of using helium as the main plasma species are: (1) high growth rate--the energetic helium ions break the reactive gas more efficiently than hydrogen ions; (2) homogeneous growth--heavy helium ions impinging on the surface promote the surface mobility of the reactive radicals, so that heteroepitaxy growth as clustering of Ge and Si, columnar structure are

  1. Silicon nanocrystal inks, films, and methods

    Science.gov (United States)

    Wheeler, Lance Michael; Kortshagen, Uwe Richard

    2015-09-01

    Silicon nanocrystal inks and films, and methods of making and using silicon nanocrystal inks and films, are disclosed herein. In certain embodiments the nanocrystal inks and films include halide-terminated (e.g., chloride-terminated) and/or halide and hydrogen-terminated nanocrystals of silicon or alloys thereof. Silicon nanocrystal inks and films can be used, for example, to prepare semiconductor devices.

  2. Low hydrogen content silicon nitride films deposited at room temperature with a multipolar ECR plasma source

    NARCIS (Netherlands)

    Isai, I.G.; Holleman, J.; Wallinga, Hans; Woerlee, P.H.

    2004-01-01

    Silicon nitride layers with very low hydrogen content (less than 1 atomic percent) were deposited at near room temperature, from N2 and SiH4, with a multipolar electron cyclotron resonance plasma. The influences of pressure and nitrogen flow rate on physical and electrical properties were studied in

  3. Impact of contamination on hydrogenated amorphous silicon thin films and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Woerdenweber, Jan

    2011-09-26

    This thesis deals with atmospheric contamination and cross-contamination of boron (single-chamber process) of the intrinsic absorber layer (i-layer) of p-i-n thin film solar cells based on hydrogenated amorphous silicon. The atmospheric contaminations were introduced by means of intentional leaks. Hereby, the focus is on the influence of contamination species (oxygen and nitrogen), quantity of contamination (leak flow), source of contamination (leaks at chamber wall or in the process gas pipe), and plasma power on the properties of solar cells. Thereby, the minimum requirements for the purity of vacuum and process gas as well as leak conditions of the recipient and gas pipe system have been determined. Additionally, deposition regimes were developed, where the incorporation of impurities is significantly suppressed. For standard processes critical levels of nitrogen and oxygen contamination are determined to be {proportional_to} 4 x 10{sup 18} cm{sup -3} and {proportional_to} 2 x 10{sup 19} cm{sup -3}, respectively, for a leak situated at the chamber wall. Above these concentrations the solar cell efficiency deteriorates. In literature, incorporation of oxygen and nitrogen in doping configuration is assumed to be the reason for the cell deterioration. This assumption is supported by additional material studies of contaminated absorber layers done in this work. The difference in critical concentration is due to the higher doping efficiency of nitrogen compared to that for oxygen. Nevertheless, applying an air leak the critical concentrations of O and N are reached almost simultaneously since the incorporation probability of oxygen is about one order of magnitude higher compared to that for nitrogen. Applying a leak in the process gas pipe the critical oxygen contamination level increases to {proportional_to} 2 x 10{sup 20} cm{sup -3} whereas the critical nitrogen level remains unchanged compared to a chamber wall leak. Applying a deposition regime with a very high

  4. Atmospheric Pressure Plasma CVD of Amorphous Hydrogenated Silicon Carbonitride (a-SiCN:H) Films Using Triethylsilane and Nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan Guruvenket; Steven Andrie; Mark Simon; Kyle W. Johnson; Robert A. Sailer

    2011-10-04

    Amorphous hydrogenated silicon carbonitride (a-SiCN:H) thin films are synthesized by atmospheric pressure plasma enhanced chemical vapor (AP-PECVD) deposition using the Surfx Atomflow{trademark} 250D APPJ source with triethylsilane (HSiEt{sub 3}, TES) and nitrogen as the precursor and the reactive gases, respectively. The effect of the substrate temperature (T{sub s}) on the growth characteristics and the properties of a-SiCN:H films was evaluated. The properties of the films were investigated via scanning electron microscopy (SEM), atomic force microscopy (AFM) for surface morphological analyses, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) for chemical and compositional analyses; spectroscopic ellipsometry for optical properties and thickness determination and nanoindentation to determine the mechanical properties of the a-SiCN:H films. Films deposited at low T{sub s} depict organic like features, while the films deposited at high T{sub s} depict ceramic like features. FTIR and XPS studies reveal that an increases in T{sub s} helps in the elimination of organic moieties and incorporation of nitrogen in the film. Films deposited at T{sub s} of 425 C have an index of refraction (n) of 1.84 and hardness (H) of 14.8 GPa. A decrease in the deposition rate between T{sub s} of 25 and 250 C and increase in deposition rate between T{sub s} of 250 and 425 C indicate that the growth of a-SiCN:H films at lower T{sub s} are surface reaction controlled, while at high temperatures film growth is mass-transport controlled. Based on the experimental results, a potential route for film growth is proposed.

  5. Investigation of amorphous silicon carbide:hydrogen and Parylene-C thin films as encapsulation materials for neural interface devices

    Science.gov (United States)

    Hsu, Jui-Mei

    Neural interface devices have been developed for neuroscience and neuroprosthetics applications to record and stimulate nerve signals. Chronic use of these devices is prevented by their lack of long-term stability due to device failure or immune system responses. Fully integrated, wireless, silicon-based neural interface (INI) devices are being developed to address the main failure modes by eliminating the wired connections. Furthermore, chronic stable, conformal, hermetic, biocompatible, and electrically insulating coating materials that sustain chronic implantation and guarantee stable recording or stimulation are needed. Even though a large selection of materials has been proposed and tested for this purpose, to date, no encapsulation material or coating process presented in scientific literature has been thoroughly characterized or qualified as long-term hermetic encapsulation for silicon micro-electrode arrays. In this work, hydrogenated amorphous silicon carbide (a-SiCx:H) and Parylene-C films were investigated as encapsulation materials. The deposition parameters and corresponding film properties were explored and correlated with the encapsulation characteristics. The bond configuration of the deposited a-SiCx:H films was analyzed by FT-IR in order to develop films with strong chemical structure and low defect density. Film properties were optimized based on the bond configuration and process temperature requirements ( 12 months). Oxygen plasma etching processes necessary for deinsulation of the electrode tips and the etching performance on the Parylene-C were investigated, and the relationship between tip exposure and electrode impedance was studied. Excellent encapsulation properties of Parylene-C were demonstrated. The correlation between process parameters and Parylene-C properties was investigated, including surface topography, adhesion, and crystallinity.

  6. Composite Palladium-Cobalt Oxide Films Modified N-silicon Electrode for Photo-electrochemical Detection of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Zhang Yijun

    2016-01-01

    Full Text Available A novel nonenzymatic hydrogen peroxide (H2O2 sensor was fabricated, based on composite Pd-Co oxide films modified n-silicon electrode. The modified electrode was consisted of platinum coated n-silicon as substrate prepared by vacuum evaporating a platinum coating and composite Pd-Co oxide films deposited by electrochemical technique. The morphology of the modified electrode was characterized via scanning electron microscope (SEM. The analytical performances of the modified electrode for determination of H2O2 were investigated by cyclic voltammetry (CV and chronoamperometry. A new two electrodes photo-electrochemical cell has been used as sensor for H2O2 determination by photocurrent measurements at zero voltage. The sensor showed good photocurrent responses by adding different concentrations of H2O2 with a good stability. The linear ranges for the detection of H2O2 are 2 to 48 μM with a detection limit of 0.57 μM in pH=7.0 phosphate buffer solution (PBS. In addition, the sensor also exhibited superior stability, anti-interference and portability. These features demonstrated that the new photo-electrochemical sensor was suitable for detection of H2O2 on site outdoors.

  7. Scattering matrix analysis for evaluating the photocurrent in hydrogenated-amorphous-silicon-based thin film solar cells.

    Science.gov (United States)

    Shin, Myunghun; Lee, Seong Hyun; Lim, Jung Wook; Yun, Sun Jin

    2014-11-01

    A scattering matrix (S-matrix) analysis method was developed for evaluating hydrogenated amorphous silicon (a-Si:H)-based thin film solar cells. In this approach, light wave vectors A and B represent the incoming and outgoing behaviors of the incident solar light, respectively, in terms of coherent wave and incoherent intensity components. The S-matrix determines the relation between A and B according to optical effects such as reflection and transmission, as described by the Fresnel equations, scattering at the boundary surfaces, or scattering within the propagation medium, as described by the Beer-Lambert law and the change in the phase of the propagating light wave. This matrix can be used to evaluate the behavior of angle-incident coherent and incoherent light simultaneously, and takes into account not only the light scattering process at material boundaries (haze effects) but also nonlinear optical processes within the material. The optical parameters in the S-matrix were determined by modeling both a 2%-gallium-doped zinc oxide transparent conducting oxide and germanium-compounded a-Si:H (a-SiGe:H). Using the S-matrix equations, the photocurrent for an a-Si:H/a-SiGe:H tandem cell and the optical loss in semitransparent a-Si:H solar cells for use in building-integrated photovoltaic applications were analyzed. The developed S-matrix method can also be used as a general analysis tool for various thin film solar cells.

  8. Optical properties of amorphous hydrogenated and microcrystalline silicon films prepared by plasma enhanced chemical vapor deposition and re-crystallized at moderate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Netrvalova, Marie; Prusakova, Lucie; Sutta, Pavol [New Technologies - Research Centre, University of West Bohemia, Univerzitni 8, 30614 Plzen (Czech Republic); Mullerova, Jarmila [Faculty of Electrical Engineering, University of Zilina, ul. kpt. J. Nalepku 1390, 03101 Liptovsky Mikulas (Slovakia)

    2011-09-15

    Amorphous hydrogenated silicon films different in thickness (600 - 2400 nm) were deposited by plasma enhanced chemical vapour deposition on Corning glass substrates at 250 C using silan 10% / argon 90% gas mixture. The samples were consequently isothermally heated in a high temperature vacuum chamber at 0.1 Pa and at temperatures from 580 to 620 C. In order to evaluate structural and optical properties of the films X-ray diffraction analysis, Raman spectrometry and optical spectrophotometry were used. Crystalline state (amorphous or microcrystalline), optical band gaps, refractive indices, extinction coefficients, absorption coefficients were determined. X-ray diffraction analysis indicated that originally deposited films were amorphous with different degree of homogeneity depending on the film thickness. After the heat treatment the films became polycrystalline with crystallite sizes 40-50 nm without particular dependence on the recrystallization process used. Raman spectrometry confirmed the results obtained from X-ray diffraction and furthermore revealed the residual amorphous phase 20-25% in volume. Optical spectrophotometry has shown that the values of refractive indices of thermally treated films approach the mono-crystalline silicon refractive index. Extinction coefficients of the thermally treated films are slightly higher than those for monocrystalline silicon. Absorption coefficients for thermally treated films reached quite high values near the absorption edge of the original amorphous material, which can be advantageous for tandem solar cell technologies. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Microspot-based ELISA in microfluidics: chemiluminescence and colorimetry detection using integrated thin-film hydrogenated amorphous silicon photodiodes.

    Science.gov (United States)

    Novo, Pedro; Prazeres, Duarte Miguel França; Chu, Virginia; Conde, João Pedro

    2011-12-07

    Microfluidic technology has the potential to decrease the time of analysis and the quantity of sample and reactants required in immunoassays, together with the potential of achieving high sensitivity, multiplexing, and portability. A lab-on-a-chip system was developed and optimized using optical and fluorescence microscopy. Primary antibodies are adsorbed onto the walls of a PDMS-based microchannel via microspotting. This probe antibody is then recognised using secondary FITC or HRP labelled antibodies responsible for providing fluorescence or chemiluminescent and colorimetric signals, respectively. The system incorporated a micron-sized thin-film hydrogenated amorphous silicon photodiode microfabricated on a glass substrate. The primary antibody spots in the PDMS-based microfluidic were precisely aligned with the photodiodes for the direct detection of the antibody-antigen molecular recognition reactions using chemiluminescence and colorimetry. The immunoassay takes ~30 min from assay to the integrated detection. The conditions for probe antibody microspotting and for the flow-through ELISA analysis in the microfluidic format with integrated detection were defined using antibody solutions with concentrations in the nM-μM range. Sequential colorimetric or chemiluminescence detection of specific antibody-antigen molecular recognition was quantitatively detected using the photodiode. Primary antibody surface densities down to 0.182 pmol cm(-2) were detected. Multiplex detection using different microspotted primary antibodies was demonstrated.

  10. Near infrared photoluminescence of the hydrogenated amorphous silicon thin films with in-situ embedded silicon nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Stuchlík, Jiří; Purkrt, Adam; Ledinský, Martin; Kupčík, Jaroslav

    2017-01-01

    Roč. 61, č. 2 (2017), s. 136-140 ISSN 0862-5468 R&D Projects: GA ČR GC16-10429J Grant - others:AV ČR(CZ) KONNECT-007 Program:Bilaterální spolupráce Institutional support: RVO:68378271 ; RVO:61388980 Keywords : amorphous silicon * chemical vapor deposition * photothermal deflection spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.439, year: 2016

  11. Gas doping ratio effects on p-type hydrogenated nanocrystalline silicon thin films grown by hot-wire chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, P.Q. [Solar Energy Institute, Department of Physics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)], E-mail: robt@sjtu.edu.cn; Zhou, Z.B. [Solar Energy Institute, Department of Physics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)], E-mail: zbzhou@sjtu.edu.cn; Chan, K.Y. [Thin Film Laboratory, Faculty of Engineering, Multimedia University, Jalan Multimedia, Cyberjaya 63100, Selangor (Malaysia); Tang, D.Y.; Cui, R.Q.; Dou, X.M. [Solar Energy Institute, Department of Physics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2008-12-30

    Hydrogenated nanocrystalline silicon (nc-Si:H) grown by hot-wire chemical vapor deposition (HWCVD) has recently drawn significant attention in the area of thin-film large area optoelectronics due to possibility of high deposition rate. We report on the effects of diborane (B{sub 2}H{sub 6}) doping ratio on the microstructural and optoelectrical properties of the p-type nc-Si:H thin films grown by HWCVD at low substrate temperature of 200 deg. C and with high hydrogen dilution ratio of 98.8%. An attempt has been made to elucidate the boron doping mechanism of the p-type nc-Si:H thin films deposited by HWCVD and the correlation between the B{sub 2}H{sub 6} doping ratio, crystalline volume fraction, optical band gap and dark conductivity.

  12. Rapid crystallization of a-Si:H films with various silicon-to-hydrogen bonding configurations using rapid energy transfer annealing

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y.-L. [Department of Electrical Engineering, National Chung Hsing University, Taichung 402, Taiwan (China)]. E-mail: yljiang@nchu.edu.tw; Chang, Y.-C. [Department of Electrical Engineering, National Chung Hsing University, Taichung 402, Taiwan (China)

    2006-04-03

    Hydrogenated amorphous silicon (a-Si:H) films were prepared by changing substrate temperature of plasma-enhanced chemical vapor deposition to induce different contents of monohydride and polyhydride bonds, which were then crystallized into polysilicon (poly-Si) films by rapid energy transfer annealing. Fourier transform infrared and transmission spectra show that the formation of numerous polyhydride bonds increases the hydrogen content and reduces the refractive index of a-Si:H films. The rise in the concentration of polyhydride bonds in as-deposited a-Si:H films can result in the increase of ultraviolet reflectance, small peak shift, and change in full width at half maximum of Raman scattering and X-ray diffraction peaks of the obtained poly-Si films after annealing. These results demonstrate that high-concentration polyhydride bonds can promote the rapid crystallization of a-Si:H and obtain high-crystallinity poly-Si films. Transmission electron microscopy identifies that the poly-Si films have the typical dendrite-like grain structure.

  13. Study of structural and electronic environments of hydrogenated amorphous silicon carbonitride (a-SiCN:H) films deposited by hot wire chemical vapor deposition

    Science.gov (United States)

    Swain, Bibhu P.; Hwang, Nong M.

    2008-06-01

    Hydrogenated amorphous silicon carbon nitride (a-SiCN:H) thin films were deposited by hot wire chemical vapor deposition (HWCVD) using SiH 4, CH 4, NH 3 and H 2 as precursors. The effects of the H 2 dilution on structural and chemical bonding of a-SiCN:H has been investigated by Raman and X-ray photoelectron spectroscopy (XPS). Increasing the H 2 flow rate in the precursor gas more carbon is introduced into the a-SiCN:H network resulting in decrease of silicon content in the film from 41 at.% to 28.8 at.% and sp 2 carbon cluster increases when H 2 flow rate is increased from 0 to 20 sccm.

  14. Study of structural and electronic environments of hydrogenated amorphous silicon carbonitride (a-SiCN:H) films deposited by hot wire chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Bibhu P. [National Research Laboratory of Charged Nanoparticles, School of Materials Science and Engineering, Seoul National University, Seoul (Korea, Republic of)], E-mail: swain@snu.ac.kr; Hwang, Nong M. [National Research Laboratory of Charged Nanoparticles, School of Materials Science and Engineering, Seoul National University, Seoul (Korea, Republic of)

    2008-06-30

    Hydrogenated amorphous silicon carbon nitride (a-SiCN:H) thin films were deposited by hot wire chemical vapor deposition (HWCVD) using SiH{sub 4}, CH{sub 4}, NH{sub 3} and H{sub 2} as precursors. The effects of the H{sub 2} dilution on structural and chemical bonding of a-SiCN:H has been investigated by Raman and X-ray photoelectron spectroscopy (XPS). Increasing the H{sub 2} flow rate in the precursor gas more carbon is introduced into the a-SiCN:H network resulting in decrease of silicon content in the film from 41 at.% to 28.8 at.% and sp{sup 2} carbon cluster increases when H{sub 2} flow rate is increased from 0 to 20 sccm.

  15. Application of metal nanowire networks on hydrogenated amorphous silicon thin film solar cells

    Science.gov (United States)

    Xie, Shouyi; Hou, Guofu; Chen, Peizhuan; Jia, Baohua; Gu, Min

    2017-02-01

    We demonstrate the application of metal nanowire (NW) networks as a transparent electrode on hydrogenated amorphous Si (a-Si:H) solar cells. We first systematically investigate the optical performances of the metal NW networks on a-Si:H solar cells in different electrode configurations through numerical simulations to fully understand the mechanisms to guide the experiments. The theoretically optimized configuration is discovered to be metal NWs sandwiched between a 40 nm indium tin oxide (ITO) layer and a 20 nm ITO layer. The overall performances of the solar cells integrated with the metal NW networks are experimentally studied. It has been found the experimentally best performing NW integrated solar cell deviates from the theoretically predicated design due to the performance degradation induced by the fabrication complicity. A 6.7% efficiency enhancement was achieved for the solar cell with metal NW network integrated on top of a 60 nm thick ITO layer compared to the cell with only the ITO layer due to enhanced electrical conductivity by the metal NW network.

  16. Characterization of nanocrystalline silicon germanium film and ...

    African Journals Online (AJOL)

    The nanocrystalline silicon-germanium films (Si/Ge) and Si/Ge nanotubes have low band gaps and high carrier mobility, thus offering appealing potential for absorbing gas molecules. Interaction between hydrogen molecules and bare as well as functionalized Si/Ge nanofilm and nanotube was investigated using Monte ...

  17. Amorphous silicon for thin-film transistors

    NARCIS (Netherlands)

    Schropp, Rudolf Emmanuel Isidore

    1987-01-01

    Hydrogenated amorphous silicon (a-Si:H) has considerable potential as a semiconducting material for large-area photoelectric and photovoltaic applications. Moreover, a-Si:H thin-film transistors (TFT’s) are very well suited as switching devices in addressable liquid crystal display panels and

  18. Flexible Electronics: High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells (Adv. Mater. 28/2016).

    Science.gov (United States)

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    On page 5939, J. V. Badding and co-workers describe the unrolling of a flexible hydrogenated amorphous silicon solar cell, deposited by high-pressure chemical vapor deposition. The high-pressure deposition process is represented by the molecules of silane infiltrating the small voids between the rolled up substrate, facilitating plasma-free deposition over a very large area. The high-pressure approach is expected to also find application for 3D nanoarchitectures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Characterization of amorphous hydrogenated carbon films ...

    Indian Academy of Sciences (India)

    Amorphous hydrogenated carbon films (-C:H) on -type (100) silicon wafers were prepared with a middle frequency pulsed unbalanced magnetron sputtering technique (MFPUMST) at different ratios of methane–argon gases. The band characteristics, mechanical properties as well as refractive index were measured by ...

  20. Thin film hydrogen sensor

    Science.gov (United States)

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  1. Effect of TCO/μc-Si:H Interface Modification on Hydrogenated Microcrystalline Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Shin-Wei Liang

    2013-01-01

    Full Text Available The effects of H2 plasma exposure on optical, electrical, and structural properties of fluorine-doped tin oxide (FTO and AZO/FTO substrates have been investigated. With increasing the time of H2-plasma exposure, the hydrogen radical and ions penetrated through the FTO surface to form more suboxides such as SnO and metallic Sn, which was confirmed by the XPS analysis. The Sn reduction on the FTO surface can be effectively eliminated by capping the FTO with a very thin layer of sputtered aluminum-doped zinc oxide (AZO, as confirmed by the XPS analysis. By using the AZO/FTO as front TCO with the subsequent annealing, the p-i-n μc-Si:H cell exhibited a significantly enhanced JSC from 15.97 to 19.40 mA/cm2 and an increased conversion efficiency from 5.69% to 7.09%. This significant enhancement was ascribed to the effective elimination of the Sn reduction on the FTO surface by the thin AZO layer during the Si-based thin-film deposition with hydrogen-rich plasma exposure. Moreover, the subsequent annealing of the sputtered AZO could lead to less defects as well as a better interface of AZO/FTO.

  2. Development of Doped Microcrystalline Silicon Oxide and its Application to Thin‑Film Silicon Solar Cells

    NARCIS (Netherlands)

    Lambertz, A.

    2015-01-01

    The aim of the present study is the development of doped microcrystalline silicon oxide (µc‑SiOx:H) alloys and its application in thin‑film silicon solar cells. The doped µc‑SiOx:H material was prepared from carbon dioxide (CO2), silane (SiH4), hydrogen (H2) gas mixtures using plasma enhanced

  3. Development of Hydrogenated Microcrystalline Silicon-Germanium Alloys for Improving Long-Wavelength Absorption in Si-Based Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Yen-Tang Huang

    2014-01-01

    Full Text Available Hydrogenated microcrystalline silicon-germanium (μc-Si1-xGex:H alloys were developed for application in Si-based thin-film solar cells. The effects of the germane concentration (RGeH4 and the hydrogen ratio (RH2 on the μc-Si1-xGex:H alloys and the corresponding single-junction thin-film solar cells were studied. The behaviors of Ge incorporation in a-Si1-xGex:H and μc-Si1-xGex:H were also compared. Similar to a-Si1-xGex:H, the preferential Ge incorporation was observed in μc-Si1-xGex:H. Moreover, a higher RH2 significantly promoted Ge incorporation for a-Si1-xGex:H, while the Ge content was not affected by RH2 in μc-Si1-xGex:H growth. Furthermore, to eliminate the crystallization effect, the 0.9 μm thick absorbers with a similar crystalline volume fraction were applied. With the increasing RGeH4, the accompanied increase in Ge content of μc-Si1-xGex:H narrowed the bandgap and markedly enhanced the long-wavelength absorption. However, the bias-dependent EQE measurement revealed that too much Ge incorporation in absorber deteriorated carrier collection and cell performance. With the optimization of RH2 and RGeH4, the single-junction μc-Si1-xGex:H cell achieved an efficiency of 5.48%, corresponding to the crystalline volume fraction of 50.5% and Ge content of 13.2 at.%. Compared to μc-Si:H cell, the external quantum efficiency at 800 nm had a relative increase by 33.1%.

  4. Vibrational Spectroscopy of Chemical Species in Silicon and Silicon-Rich Nitride Thin Films

    Directory of Open Access Journals (Sweden)

    Kirill O. Bugaev

    2012-01-01

    Full Text Available Vibrational properties of hydrogenated silicon-rich nitride (SiN:H of various stoichiometry (0.6≤≤1.3 and hydrogenated amorphous silicon (a-Si:H films were studied using Raman spectroscopy and Fourier transform infrared spectroscopy. Furnace annealing during 5 hours in Ar ambient at 1130∘C and pulse laser annealing were applied to modify the structure of films. Surprisingly, after annealing with such high-thermal budget, according to the FTIR data, the nearly stoichiometric silicon nitride film contains hydrogen in the form of Si–H bonds. From analysis of the FTIR data of the Si–N bond vibrations, one can conclude that silicon nitride is partly crystallized. According to the Raman data a-Si:H films with hydrogen concentration 15% and lower contain mainly Si–H chemical species, and films with hydrogen concentration 30–35% contain mainly Si–H2 chemical species. Nanosecond pulse laser treatments lead to crystallization of the films and its dehydrogenization.

  5. Excellent Silicon Surface Passivation Achieved by Industrial Inductively Coupled Plasma Deposited Hydrogenated Intrinsic Amorphous Silicon Suboxide

    Directory of Open Access Journals (Sweden)

    Jia Ge

    2014-01-01

    Full Text Available We present an alternative method of depositing a high-quality passivation film for heterojunction silicon wafer solar cells, in this paper. The deposition of hydrogenated intrinsic amorphous silicon suboxide is accomplished by decomposing hydrogen, silane, and carbon dioxide in an industrial remote inductively coupled plasma platform. Through the investigation on CO2 partial pressure and process temperature, excellent surface passivation quality and optical properties are achieved. It is found that the hydrogen content in the film is much higher than what is commonly reported in intrinsic amorphous silicon due to oxygen incorporation. The observed slow depletion of hydrogen with increasing temperature greatly enhances its process window as well. The effective lifetime of symmetrically passivated samples under the optimal condition exceeds 4.7 ms on planar n-type Czochralski silicon wafers with a resistivity of 1 Ωcm, which is equivalent to an effective surface recombination velocity of less than 1.7 cms−1 and an implied open-circuit voltage (Voc of 741 mV. A comparison with several high quality passivation schemes for solar cells reveals that the developed inductively coupled plasma deposited films show excellent passivation quality. The excellent optical property and resistance to degradation make it an excellent substitute for industrial heterojunction silicon solar cell production.

  6. Analysis of intermediate pressure SiH4/He capacitively coupled plasma for deposition of an amorphous hydrogenated silicon film in consideration of thermal diffusion effects

    Science.gov (United States)

    Kim, Ho Jun; Lee, Hae June

    2017-08-01

    To achieve rapid, uniform deposition of an amorphous hydrogenated silicon (a-Si:H) film, a capacitively coupled plasma (CCP) is often used at an intermediate pressure (>100 Pa), with a silane (SiH4)-based mixture. At these pressures, heavy particle interactions (such as ion-ion, ion-neutral, and neutral-neutral reactions) contribute significantly to the formation of precursor radicals. By adding a consideration of the thermal diffusion effects to the neutral transport equation, the chemical processes have been numerically analyzed with variation in the number fraction of SiH4 and electrode spacing using a two-dimensional fluid model of radio frequency discharges in a cylindrically symmetric CCP reactor. The non-uniformity of the deposition rate profiles increases consistently as electrode spacing increases, although the non-uniformity of the plasma parameters decreases with the increase of electrode spacing. The simulated deposition rate profiles match well with the experimental data for the change of electrode spacing. Based on the validation of our model, we propose predictive designs to potentially improve the reactor and process by modifying the thermal and electrical surface conditions.

  7. Hydrogenation of Laser-crystallized a-Si:H Films

    OpenAIRE

    M.V. Khenkin; D.V. Amasev; A.G. Kazanskii; P.A. Forsh

    2015-01-01

    Ultrafast laser processing of semiconductors is a rapidly developing field of material science at the moment. In particular, femtosecond laser crystallization of amorphous hydrogenated silicon thin films has a big potential in photovoltaics. However laser treatment causes dehydrogenation process which decreases materials’ photosensitivity and thus limiting its application for optoelectronics. In present paper we studied photoelectric properties of laser-modified amorphous silicon films. Two d...

  8. Compensation of decreased ion energy by increased hydrogen dilution in plasma deposition of thin film silicon solar cells at low substrate temperatures

    NARCIS (Netherlands)

    Verkerk, A.D.; de Jong, M.M.; Rath, J.K.; Brinza, M.; Schropp, R.E.I.; Goedheer, W.J.; Krzhizhanovskaya, V.V.; Gorbachev, Y.E.; Orlov, K.E.; Khilkevitch, E.M.; Smirnov, A.S.

    2009-01-01

    In order to deposit thin film silicon solar cells on plastics and papers, the deposition process needs to be adapted for low deposition temperatures. In a very high frequency plasma-enhanced chemical vapor deposition (VHF PECVD) process, both the gas phase and the surface processes are affected by

  9. Effects of interface and bulk properties of gate-dielectric on the performance and stability of hydrogenated amorphous silicon thin-film transistors

    Science.gov (United States)

    Ando, M.; Wakagi, M.; Onisawa, K.

    2015-12-01

    In order to investigate the effects of interface and bulk properties of gate insulator on the threshold voltage (Vth) and the gate-bias induced instability of hydrogenated amorphous silicon thin-film transistors (a-Si:H TFTs), four kinds of TFT structures were fabricated with SiNx and SiOx insulators stacked to make different combinations of the bulk and interface in the gate-dielectric layers. It was found that the Vth and the stability are independently controlled by tuning stoichiometry and thickness of the SiOx insertion layer between a-Si:H and SiNx. In TFTs with SiOx insertion layer of 50 nm thickness, on increasing oxygen/silicon (O/Si = x) ratio from 1.7 to 1.9, Vth increased from 0 V to 9 V. In these TFTs with a relatively thick SiOx insertion layer, positive Vth shift with negative bias stress was observed, confirmed to be due to defect creation in a-Si:H with the thermalization barrier energy of 0.83 eV. On reducing the thickness of the SiOx insertion layer down to approximately 1 nm, thin enough for hole injection through SiOx by tunneling effect, stable operation was obtained while keeping the high Vth value under negative stress bias. These results are consistently explained as follows: (1) the high value for Vth is caused by the dipole generated at the interface between a-Si:H and SiOx; and (2) two causes for Vth shift, charge injection to the gate insulator and defect creation in a-Si:H, are mutually related to each other through the "effective bias stress," Vbseff = Vbs - ΔVfb (Vbs: applied bias stress and ΔVfb: flat band voltage shift due to the charge injection). It was experimentally confirmed that there should be an optimum thickness of SiOx insertion layer of approximately 1 nm with stable high Vth, where enhanced injection increases ΔVfb, reduces Vbseff to reduce defect creation, and totally minimizes Vth shift.

  10. Compositional analysis of silicon oxide/silicon nitride thin films

    Directory of Open Access Journals (Sweden)

    Meziani Samir

    2016-06-01

    Full Text Available Hydrogen, amorphous silicon nitride (SiNx:H abbreviated SiNx films were grown on multicrystalline silicon (mc-Si substrate by plasma enhanced chemical vapour deposition (PECVD in parallel configuration using NH3/SiH4 gas mixtures. The mc-Si wafers were taken from the same column of Si cast ingot. After the deposition process, the layers were oxidized (thermal oxidation in dry oxygen ambient environment at 950 °C to get oxide/nitride (ON structure. Secondary ion mass spectroscopy (SIMS, Rutherford backscattering spectroscopy (RBS, Auger electron spectroscopy (AES and energy dispersive X-ray analysis (EDX were employed for analyzing quantitatively the chemical composition and stoichiometry in the oxide-nitride stacked films. The effect of annealing temperature on the chemical composition of ON structure has been investigated. Some species, O, N, Si were redistributed in this structure during the thermal oxidation of SiNx. Indeed, oxygen diffused to the nitride layer into Si2O2N during dry oxidation.

  11. Growth of gallium nitride and aluminum gallium nitride thin films using conventional and pendeo-expitaxial growth processes on hydrogen(6)-silicon carbide(0001) and silicon(111) substrates

    Science.gov (United States)

    Gehrke, Thomas

    Pendeo-epitaxy (PE) of individual GaN and AlxGa1-x N films and single- and multi-layer heterostructures of these materials with low densities of dislocations and without coalescence boundaries have been achieved on striped GaN seed layers previously grown on AlN/6H-SiC (0001) substrates using metallorganic chemical vapor deposition (MOCVD). A reduction in the dislocation density of approximately five orders of magnitude was achieved in the laterally grown regions between the GaN stripes. The RMS roughness of the (112¯0) side wall of the uncoalesced areas of GaN was 0.099 nm. The application of a mask on the [11¯00] oriented GaN stripes hindered the vertical propagation of threading dislocations during regrowth; however, it also caused tilting in the moving fronts and associated crystallographic misregistry in the areas of coalescence over the stripes as well as the generation of dislocations propagating from the resulting boundaries. All of these problems were eliminated by the exclusion of the masks, as determined via X-ray diffraction and scanning and transmission electron microscopies. A comparative study of fully coalesced PE-AlxGa1-xN films with conventionally grown AlxGa1-xN films was conducted using scanning electron microscopy, X-ray diffraction (XRD), and high resolution scanning Auger microprobe analysis. An XRD FWHM of 794 arcsec was measured for PE-Al 10Ga90N films; this is comparable to conventionally grown films on these substrates. A variation of 1% in the atomic Al content of the Al10Ga90N films was determined to be related to the position in the microstructure. Films of PE-GaN and PE-AlxGa1-xN were also grown on Si(111) substrates via the use of an intermediate 3C-SiC transition layer capped by a high-temperature AlN(0001) buffer layer. The 3C-SiC transition layer eliminated chemical reactions between the Si and the NH3 and between the Si and Ga metal derived from the decomposition of triethylgallium. A similar reduction in the dislocation

  12. Dynamics of hydrogen in hydrogenated amorphous silicon

    Indian Academy of Sciences (India)

    bonding configuration due to hydrogen migration have been proposed as a mechanism of defect generation in a-Si:H [6,7]. Thus hydrogen plays a dual role in a-Si:H: (1) acting as a .... the sphere of radius R0 and allows to express. ∆F as a function of localization radius R0. Using eqs (10) and (11), the volume integration.

  13. Role of SiNx Barrier Layer on the Performances of Polyimide Ga₂O₃-doped ZnO p-i-n Hydrogenated Amorphous Silicon Thin Film Solar Cells.

    Science.gov (United States)

    Wang, Fang-Hsing; Kuo, Hsin-Hui; Yang, Cheng-Fu; Liu, Min-Chu

    2014-02-07

    In this study, silicon nitride (SiNx) thin films were deposited on polyimide (PI) substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD) system. The gallium-doped zinc oxide (GZO) thin films were deposited on PI and SiNx/PI substrates at room temperature (RT), 100 and 200 °C by radio frequency (RF) magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10-3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH₄ = 20 sccm and NH₃ = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~1000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si) thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells' properties were also investigated. We had found that substrates to get the optimally solar cells' efficiency were 200 °C-deposited GZO-SiNx/PI.

  14. Role of SiNx Barrier Layer on the Performances of Polyimide Ga2O3-doped ZnO p-i-n Hydrogenated Amorphous Silicon Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2014-02-01

    Full Text Available In this study, silicon nitride (SiNx thin films were deposited on polyimide (PI substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD system. The gallium-doped zinc oxide (GZO thin films were deposited on PI and SiNx/PI substrates at room temperature (RT, 100 and 200 °C by radio frequency (RF magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~1000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI.

  15. Role of SiNx Barrier Layer on the Performances of Polyimide Ga2O3-doped ZnO p-i-n Hydrogenated Amorphous Silicon Thin Film Solar Cells

    Science.gov (United States)

    Wang, Fang-Hsing; Kuo, Hsin-Hui; Yang, Cheng-Fu; Liu, Min-Chu

    2014-01-01

    In this study, silicon nitride (SiNx) thin films were deposited on polyimide (PI) substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD) system. The gallium-doped zinc oxide (GZO) thin films were deposited on PI and SiNx/PI substrates at room temperature (RT), 100 and 200 °C by radio frequency (RF) magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si) thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI. PMID:28788494

  16. In situ probing of surface hydrides on hydrogenated amorphous silicon using attenuated total reflection infrared spectroscopy

    CERN Document Server

    Kessels, W M M; Sanden, M C M; Aydil, E S

    2002-01-01

    An in situ method based on attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) is presented for detecting surface silicon hydrides on plasma deposited hydrogenated amorphous silicon (a-Si:H) films and for determining their surface concentrations. Surface silicon hydrides are desorbed by exposing the a-Si:H films to low energy ions from a low density Ar plasma and by comparing the infrared spectrum before and after this low energy ion bombardment, the absorptions by surface hydrides can sensitively be separated from absorptions by bulk hydrides incorporated into the film. An experimental comparison with other methods that utilize isotope exchange of the surface hydrogen with deuterium showed good agreement and the advantages and disadvantages of the different methods are discussed. Furthermore, the determination of the composition of the surface hydrogen bondings on the basis of the literature data on hydrogenated crystalline silicon surfaces is presented, and quantification of the h...

  17. Plasma deposition of thin film silicon at low substrate temperature and at high growth rate

    NARCIS (Netherlands)

    Verkerk, A.D.

    2009-01-01

    To expand the range of applications for thin film solar cells incorporating hydrogenated amorphous silicon (a-Si:H) and hydrogenated nanocrystalline silicon (nc-Si:H), the growth rate has to be increased 0.5 or less to several nm/s and the substrate temperature should be lowered to around 100 C. In

  18. Growth mechanisms and characterization of hydrogenated amorphous-silicon-alloy films. Final subcontract report, 15 February 1991--14 April 1994

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, A.; Tanenbaum, D.; Laracuente, A.; Kalra, P. [National Inst. of Standards and Technology, Boulder, CO (United States)

    1994-07-01

    This report describes work performed to better understand the atomic-scale structure of glow-discharge-produced a-Si:H, a-Ge:H, and a-Si:Ge:H films; its effect on film quality; and its dependence on deposition discharge conditions. Hydrogenated a-Si films are from a silane rf discharge onto atomically flat crystal Si and GaAs substrates. The substrates are then transferred in a scanning tunneling microscope, where the atomic-scale surface morphology is measured. The films were deposited using device-quality deposition conditions; IR absorption, {sigma}{sub L}, and {sigma}{sub D} indicate high-quality intrinsic films. From the thickness dependence of the surface morphology, we determined that the films initially conform smoothly to an atomically flat Si or GaAs substrate, but as the thickness increases the roughness steadily increases to approximately 10% of the length of the scanned region. The surface of 100--400-nm-thick films is highly inhomogeneous, with steep hills and canyons in some areas and large atomically smooth regions in others. These unexpectedly large surface irregularities indicate severe and often connected void structures in the growing film, as well as relatively limited-range surface diffusion of the incorporating SiH{sub 3} radicals. On the other hand, large atomically flat surface were occasionally found, indicating the possibility of growing a homogeneous and compact amorphous film if appropriate growth conditions could be discovered.

  19. Similarities in the electrical conduction processes in hydrogenated amorphous silicon oxynitride and silicon nitride

    CERN Document Server

    Kato, H; Ohki, Y; Seol, K S; Noma, T

    2003-01-01

    Electrical conduction at high fields was examined in a series of hydrogenated amorphous silicon oxynitride and silicon nitride films with different nitrogen contents deposited by plasma-enhanced chemical vapour deposition. It was shown that the conduction is attributable to the Poole-Frenkel (PF) emission in the two materials. The energy depths of the PF sites and the dependences on the sample's chemical composition are quite similar for the two samples. It is considered that the PF sites in the two materials are identical.

  20. CW laser induced crystallization of thin amorphous silicon films deposited by EBE and PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Said-Bacar, Z., E-mail: zabardjade@yahoo.fr [InESS (UMR 7163 CNRS-UDS), 23 rue de Loess, 67037 Strasbourg Cedex 2 (France); Prathap, P. [InESS (UMR 7163 CNRS-UDS), 23 rue de Loess, 67037 Strasbourg Cedex 2 (France); Cayron, C. [CEA, LITEN, DEHT, Minatec, 17 rue des Martyrs, 38054 Cedex 9 (France); Mermet, F. [IREPA LASER, Pole API - Parc d' Innovation, 67400 Illkirch (France); Leroy, Y.; Antoni, F.; Slaoui, A.; Fogarassy, E. [InESS (UMR 7163 CNRS-UDS), 23 rue de Loess, 67037 Strasbourg Cedex 2 (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer The effect of hydrogen in CW laser crystallization of hydrogenated amorphous silicon thin films has been investigated. Black-Right-Pointing-Pointer Large hydrogen content results in decohesion of the films due to hydrogen effusion. Black-Right-Pointing-Pointer Very low hydrogen content or hydrogen free amorphous silicon film are suitable for crystallization induced by CW laser. Black-Right-Pointing-Pointer Grains of size between 20 and 100 {mu}m in width and about 200 {mu}m in long in scanning direction are obtained with these latter films. - Abstract: This work presents the Continuous Wave (CW) laser crystallization of thin amorphous silicon (a-Si) films deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD) and by Electron Beam Evaporation (EBE) on low cost glass substrate. The films are characterized by Elastic Recoil Detection Analysis (ERDA) and by Fourier-Transform Infrared (FTIR) spectroscopy to evaluate the hydrogen content. Analysis shows that the PECVD films contain a high hydrogen concentration ({approx}10 at.%) while the EBE films are almost hydrogen-free. It is found that the hydrogen is in a bonding configuration with the a-Si network and in a free form, requiring a long thermal annealing for exodiffusion before the laser treatment to avoid explosive effusion. The CW laser crystallization process of the amorphous silicon films was operated in liquid phase regime. We show by Electron Backscatter Diffraction (EBSD) that polysilicon films with large grains can be obtained with EBE as well as for the PECVD amorphous silicon provided that for the latest the hydrogen content is lower than 2 at.%.

  1. Computational investigation of hydrogen adsorption in silicon ...

    Indian Academy of Sciences (India)

    124, No. 1, January 2012, pp. 255–260. c Indian Academy of Sciences. Computational investigation of hydrogen adsorption in silicon-lithium binary clusters. #. NARESH K JENA, K ... room temperature applications.3 Though a large num- ber of materials ... of the cluster systems have been carried out by using the electronic ...

  2. Density of states at mid gap in hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Yahya, E.; Shanks, H.R.

    1986-01-01

    The density of states distributions near mid gap in a series of hydrogenated amorphous silicon films have been determined from space charge limited current measurements. The measurements were made on Au/aSi:H Schottky diode structures prepared by reactive rf sputter deposition. Samples with hydrogen concentrations near 16% as determined from infrared absorption had densities of states of 3 x 10/sup 14/ states/cm/sup 3/ eV. The experimental results indicate that high quality aSi:H films with low densities of states can be obtained under certain deposition conditions and that the density of states at mid gap is hydrogen concentration dependent with a minimum near 16%. For a given hydrogen concentration, films thicker than 2 ..mu..m yielded the lowest density of states consistent with a model in which diffusion currents can be neglected and where surface and interface layers have a higher defect density than the bulk of the film. 7 refs., 8 figs.

  3. National solar technology roadmap: Film-silicon PV

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, Brian [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2007-06-01

    Silicon photovoltaic (PV) technologies are addressed in two different technology roadmaps: Film-Silicon PV and Wafer-Silicon PV. This Film-Silicon PV roadmap applies to all silicon-film technologies that rely on a supporting substrate such as glass, polymer, aluminum, stainless steel, or metallurgical-grade silicon. Such devices typically use amorphous, nanocrystalline, fine-grained polycrystalline, or epitaxial silicon layers that are 1–20 μm thick.

  4. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

    2011-07-01

    We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

  5. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    A major issue encountered during fabrication of triple junction -Si solar cells on polyimide substrates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and Gouldflex), and the ...

  6. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    TECS

    Abstract. A major issue encountered during fabrication of triple junction a-Si solar cells on polyimide sub- strates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and ...

  7. Role of the Fermi level in the formation of electronic band-tails and mid-gap states of hydrogenated amorphous silicon in thin-film solar cells

    Science.gov (United States)

    Bidiville, A.; Matsui, T.; Sai, H.; Matsubara, K.

    2017-09-01

    Hydrogenated amorphous silicon solar cells in p-i-n and n-i-p configurations were made with the intrinsic absorber layer deposited at different temperatures, between 200 and 350 °C. Using Fourier-transform photocurrent spectroscopy, the sub-gap absorption was measured, allowing the evaluation of the band-tail width and mid-gap defect quantity of the intrinsic absorber layer of the working device. When deposited at high temperature (>200 °C), p-i-n cells showed a larger performance decrease than n-i-p cells, along with broader band-tails as well as a larger number of defects created in the absorber layer. Hydrogen content measurements showed that for high temperature deposition (>200 °C), the Si-H bond becomes markedly less stable if the Fermi level of the intrinsic layer is shifted toward the valence band by an adjacent p-layer. Furthermore, by annealing samples at different stages of their layer stack deposition, the impact of the band-tail and mid-gap defect states on the open-circuit voltage and on the fill factor was evaluated. Based on these insights, we propose a model to predict the losses of solar cell parameters.

  8. Method for rapid, controllable growth and thickness, of epitaxial silicon films

    Science.gov (United States)

    Wang, Qi [Littleton, CO; Stradins, Paul [Golden, CO; Teplin, Charles [Boulder, CO; Branz, Howard M [Boulder, CO

    2009-10-13

    A method of producing epitaxial silicon films on a c-Si wafer substrate using hot wire chemical vapor deposition by controlling the rate of silicon deposition in a temperature range that spans the transition from a monohydride to a hydrogen free silicon surface in a vacuum, to obtain phase-pure epitaxial silicon film of increased thickness is disclosed. The method includes placing a c-Si substrate in a HWCVD reactor chamber. The method also includes supplying a gas containing silicon at a sufficient rate into the reaction chamber to interact with the substrate to deposit a layer containing silicon thereon at a predefined growth rate to obtain phase-pure epitaxial silicon film of increased thickness.

  9. Ground state structures and properties of small hydrogenated silicon ...

    Indian Academy of Sciences (India)

    We present results for ground state structures and properties of small hydrogenated silicon clusters using the Car–Parrinello molecular dynamics with simulated annealing. We discuss the nature of bonding of hydrogen in these clusters. We find that hydrogen can form a bridge like Si–H–Si bond connecting two silicon ...

  10. Mechanical Properties of Silicon Carbonitride Thin Films

    Science.gov (United States)

    Peng, Xiaofeng; Hu, Xingfang; Wang, Wei; Song, Lixin

    2003-02-01

    Silicon carbonitride thin films were synthesized by reactive rf sputtering a silicon carbide target in nitrogen and argon atmosphere, or sputtering a silicon nitride target in methane and argon atmosphere, respectively. The Nanoindentation technique (Nanoindenter XP system with a continuous stiffness measurement technique) was employed to measure the hardness and elastic modulus of thin films. The effects of sputtering power on the mechanical properties are different for the two SiCN thin films. With increasing sputtering power, the hardness and the elastic modulus decrease for the former but increase for the latter. The tendency is similar to the evolution trend of Si-C bonds in SiCN materials. This reflects that Si-C bonds provide greater hardness for SiCN thin films than Si-N and C-N bonds.

  11. Transformation of microcrystalline silicon films by excimer-laser-induced crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, I.-C. [Department of Electrical Engineering, Da-Yeh University, Changhua 515, Taiwan (China); Lien, S.-Y. [Department of Materials Engineering, National Chung Hsing University, 250 Kuo Kuang Rd., Taichung Taiwan 402, (China); Wuu, D.-S. [Department of Materials Engineering, National Chung Hsing University, 250 Kuo Kuang Rd., Taichung Taiwan 402 (China)]. E-mail: dsw@dragon.nchu.edu.tw

    2005-02-01

    We describe the excimer-laser-induced crystallization of microcrystalline silicon films deposited by plasma-enhanced chemical vapor deposition (PECVD). Microcrystalline silicon films containing 2 at.% hydrogen can be used as precursor films for the laser recrystallization process without a dehydrogenation step, and provide a wider laser energy fluence process window than the previous explosive recrystallization for low temperature polysilicon (poly-Si) thin-film transistor (TFT) fabrication. Ellipsometry, transmission electron microscopy (TEM), and atomic force microscopy (AFM) are used to evaluate the laser irradiated films. Specially, we describe using atomic force microscopy to obtain plane-view grain microstructure images.

  12. Nanolithography on hydrogen terminateed silicon by scanning probe microscopy

    NARCIS (Netherlands)

    Schönenberger, Christian; Kramer, Niels; Kramer, N.

    1996-01-01

    Scanning-probe microscopes (SPM), i.e. the scanning-tunneling and force microscopes, can be used to locally oxidize hydrogen-terminated silicon and hydrogenated amorphous silicon. Because of its reliability and potential for pattern transfer, this lithography process has found great attention and

  13. characterization of nanocrystalline silicon germanium film

    African Journals Online (AJOL)

    a

    The nanocrystalline silicon-germanium films (Si/Ge) and Si/Ge nanotubes have low ... Si/Ge nanostructures are considered as candidates with high potential for ... more attractive material than PS for both fundamental research and industrial ...

  14. Metallic nanostructure formation limited by the surface hydrogen on silicon.

    Science.gov (United States)

    Perrine, Kathryn A; Teplyakov, Andrew V

    2010-08-03

    Constant miniaturization of electronic devices and interfaces needed to make them functional requires an understanding of the initial stages of metal growth at the molecular level. The use of metal-organic precursors for metal deposition allows for some control of the deposition process, but the ligands of these precursor molecules often pose substantial contamination problems. One of the ways to alleviate the contamination problem with common copper deposition precursors, such as copper(I) (hexafluoroacetylacetonato) vinyltrimethylsilane, Cu(hfac)VTMS, is a gas-phase reduction with molecular hydrogen. Here we present an alternative method to copper film and nanostructure growth using the well-defined silicon surface. Nearly ideal hydrogen termination of silicon single-crystalline substrates achievable by modern surface modification methods provides a limited supply of a reducing agent at the surface during the initial stages of metal deposition. Spectroscopic evidence shows that the Cu(hfac) fragment is present upon room-temperature adsorption and reacts with H-terminated Si(100) and Si(111) surfaces to deposit metallic copper. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to follow the initial stages of copper nucleation and the formation of copper nanoparticles, and X-ray energy dispersive spectroscopy (XEDS) confirms the presence of hfac fragments on the surfaces of nanoparticles. As the surface hydrogen is consumed, copper nanoparticles are formed; however, this growth stops as the accessible hydrogen is reacted away at room temperature. This reaction sets a reference for using other solid substrates that can act as reducing agents in nanoparticle growth and metal deposition.

  15. Normal and anti Meyer-Neldel rule in conductivity of highly crystallized undoped microcrystalline silicon films

    OpenAIRE

    Ram, Sanjay K.; Kumar, Satyendra; Cabarrocas, P. Roca i

    2007-01-01

    We have studied the electrical conductivity behavior of highly crystallized undoped hydrogenated microcrystalline silicon films having different microstructures. The dark conductivity is seen to follow Meyer Neldel rule (MNR) in some films and anti MNR in others, which has been explained on the basis of variation in the film microstructure and the corresponding changes in the effective density of states distributions. A band tail transport and statistical shift of Fermi level are used to expl...

  16. Hydrogenation of zirconium film by implantation of hydrogen ions

    Science.gov (United States)

    Liu, Yang; Fang, Kaihong; Lv, Huiyi; Liu, Jiwei; Wang, Boyu

    2017-03-01

    In order to understand the drive-in target in a D-D type neutron generator, it is essential to study the mechanism of the interaction between hydrogen ion beams and the hydrogen-absorbing metal film. The present research concerns the nucleation of hydride within zirconium film implanted with hydrogen ions. Doses of 30 keV hydrogen ions ranging from 4.30 × 1017 to 1.43 × 1018 ions cm-2 were loaded into the zirconium film through the ion beam implantation technique. Features of the surface morphology and transformation of phase structures were investigated with scanning electron microscopy, atomic force microscopy and x-ray diffraction. Confirmation of the formation of δ phase zirconium hydride in the implanted samples was first made by x-ray diffraction, and the different stages in the gradual nucleation and growth of zirconium hydride were then observed by atomic force microscope and scanning electron microscopy.

  17. Ground state structures and properties of small hydrogenated silicon ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. We present results for ground state structures and properties of small hydrogenated silicon clus- ters using the Car–Parrinello molecular dynamics with simulated annealing. We discuss the nature of bonding of hydrogen in these clusters. We find that hydrogen can form a bridge like Si–H–Si bond connecting two ...

  18. On the effect of the underlying ZnO:Al layer on the crystallization kinetics of hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Sharma, K.; Ponomarev, M. V.; M. C. M. van de Sanden,; Creatore, M.

    2013-01-01

    In this contribution, we analyze the thickness effect of the underlying aluminum doped-zinc oxide (ZnO:Al) layers on the structural properties and crystallization kinetics of hydrogenated amorphous silicon (a-Si:H) thin films. It is shown that the disorder in as-deposited a-Si:H films, as probed by

  19. Deposition and characterization of amorphous silicon with embedded nanocrystals and microcrystalline silicon for thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, R., E-mail: rambrosi@uacj.mx [Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Puebla (Mexico); Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, UACJ, C.J., Chihuahua (Mexico); Moreno, M.; Torres, A. [Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Puebla (Mexico); Carrillo, A. [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, UACJ, C.J., Chihuahua (Mexico); Vivaldo, I.; Cosme, I. [Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Puebla (Mexico); Heredia, A. [Universidad Popular Autónoma del Estado de Puebla, Puebla (Mexico)

    2015-09-15

    Highlights: • Nanostructured silicon thin films were deposited by PECVD. • Polymorphous and microcrystalline were obtained varying the pressure and power. • Structural and optoelectronics properties were studied. • The σ{sub dark} changed by 5 order of magnitude under illumination, V{sub d} was at 2.5 A/s. • The evidence of embedded nanocrystals into the amorphous matrix was investigated. - Abstract: Amorphous silicon thin films with embedded nanocrystals and microcrystalline silicon were deposited by the standard Radio Frequency (RF) Plasma Enhanced Chemical Vapor Deposition (PECVD) technique, from SiH{sub 4}, H{sub 2}, Ar gas mixture at substrate temperature of 200 °C. Two series of films were produced varying deposition parameters as chamber pressure and RF power density. The chemical bonding in the films was characterized by Fourier transform infrared spectroscopy, where it was observed a correlation between the hydrogen content and the morphological and electrical properties in the films. Electrical and optical parameters were extracted in both series of films, as room temperature conductivity (σ{sub RT}), activation energy (E{sub a}), and optical band gap (E{sub g}). As well, structural analysis in the films was performed by Raman spectroscopy and Atomic Force Microscopy (AFM), which gives an indication of the films crystallinity. The photoconductivity changed in a range of 2 and 6 orders of magnitude from dark to AM 1.5 illumination conditions, which is of interest for thin film solar cells applications.

  20. Diffusion of Hydrogen in Proton Implanted Silicon: Dependence on the Hydrogen Concentration

    CERN Document Server

    Faccinelli, Martin; Jelinek, Moriz; Wuebben, Thomas; Laven, Johannes G; Schulze, Hans-Joachim; Hadley, Peter

    2016-01-01

    The reported diffusion constants for hydrogen in silicon vary over six orders of magnitude. This spread in measured values is caused by the different concentrations of defects in the silicon that has been studied. Hydrogen diffusion is slowed down as it interacts with impurities. By changing the material properties such as the crystallinity, doping type and impurity concentrations, the diffusivity of hydrogen can be changed by several orders of magnitude. In this study the influence of the hydrogen concentration on the temperature dependence of the diffusion in high energy proton implanted silicon is investigated. We show that the Arrhenius parameters, which describe this temperature dependence decrease with increasing hydrogen concentration. We propose a model where the relevant defects that mediate hydrogen diffusion become saturated with hydrogen at high concentrations. When the defects that provide hydrogen with the lowest energy positions in the lattice are saturated, hydrogen resides at energetically le...

  1. Photoluminescence enhancement through silicon implantation on SRO-LPCVD films

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Sanchez, A., E-mail: amorales@inaoep.mx [INAOE, Electronics Department, Apartado 51, Puebla 72000 (Mexico); Leyva, K.M.; Aceves, M. [INAOE, Electronics Department, Apartado 51, Puebla 72000 (Mexico); Barreto, J.; Dominguez, C. [Instituto de Microelectronica de Barcelona, IMB-CNM (CSIC), Barcelona (Spain); Luna-Lopez, J.A.; Carrillo, J. [CIDS-BUAP, Apdo. 1651, Puebla 72000 (Mexico); Pedraza, J. [INAOE, Electronics Department, Apartado 51, Puebla 72000 (Mexico)

    2010-10-25

    Photoluminescence (PL) properties of thin and thick silicon-rich oxide (SRO) and silicon implanted SRO (SI-SRO) films with different silicon excess fabricated by low pressure chemical vapor deposition (LPCVD) were studied. The effects of the annealing temperature and silicon implantation on the PL were also studied. Maximum luminescence intensity was observed with an annealing temperature of 1150 and 1100 deg. C for thin and thick SRO films, respectively. The PL intensity is strongly enhanced when SRO films are implanted with silicon, especially for thin SRO films. Thin SI-SRO films emit up to six times more than non-implanted films, meanwhile the PL in thick SI-SRO films is only improved less than two times. Therefore, thin SI-SRO films are an interesting alternative for applications such as the fabrication of efficient Si-nps based LEDs.

  2. Application of genetic algorithms to hydrogenated silicon clusters

    Indian Academy of Sciences (India)

    Hydrogenated silicon; genetic algorithms; differential evolution; ab initio calculation. ... with the earlier work conducted using the simulated annealing technique. ... Department of Metallurgical and Materials Engineering, Indian Institute of ...

  3. Anti-reflective nanoporous silicon for efficient hydrogen production

    Science.gov (United States)

    Oh, Jihun; Branz, Howard M

    2014-05-20

    Exemplary embodiments are disclosed of anti-reflective nanoporous silicon for efficient hydrogen production by photoelectrolysis of water. A nanoporous black Si is disclosed as an efficient photocathode for H.sub.2 production from water splitting half-reaction.

  4. Hydrogen isotopic substitution experiments in nanostructured porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, W.D. [Facultad de Ciencias Exactas y Naturales y Agrimensura - (UNNE), Avenida Libertad 5500, 3400 Corrientes (Argentina); Koropecki, R.R. [INTEC (CONICET-UNL), Gueemes 3450, 3000 Santa Fe (Argentina)], E-mail: rkoro@intec.ceride.gov.ar; Arce, R.D. [INTEC (CONICET-UNL), Gueemes 3450, 3000 Santa Fe (Argentina); Busso, A. [Facultad de Ciencias Exactas y Naturales y Agrimensura - (UNNE), Avenida Libertad 5500, 3400 Corrientes (Argentina)

    2008-04-30

    Nanostructured porous silicon is usually prepared by electrochemical anodization of monocrystalline silicon using a fluorine-rich electrolyte. As a result of this process, the silicon atoms conserve their original crystalline location, and many of the dangling bonds appearing on the surface of the nanostructure are saturated by hydrogen coming from the electrolyte. This work presents an IR study of the effects produced by partial substitution of water in the electrolytic solution by deuterium oxide. The isotopic effects on the IR spectra are analyzed for the as-prepared samples and for the samples subjected to partial thermal effusion of hydrogen and deuterium. We demonstrate that, although deuterium is chemically indistinguishable from hydrogen, it presents a singular behaviour when used in porous silicon preparation. We found that deuterium preferentially bonds forming Si-DH groups. A possible explanation of the phenomenon is presented, based on the different diffusivities of hydrogen and deuterium.

  5. Optical and passivating properties of hydrogenated amorphous silicon nitride deposited by plasma enhanced chemical vapour deposition for application on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wight, Daniel Nilsen

    2008-07-01

    quality, etch rate. The response of these parameters to high temperature anneals were correlated with structural changes in the silicon nitride films as measured by using the hydrogen bond concentration. Plasma enhanced chemical vapour deposition allows continuous variation in nearly all deposition parameters. The parameters studied in this work are the gas flow ratios and excitation power. In both direct and remote deposition systems, the increase in deposition power density lead to higher activation of ammonia which in turn lead to augmented incorporation of nitrogen into the films and thus lower refractive index. For a direct system, the same parameter change lead to a drastic fall in passivation quality of Czochralski silicon attributed to an increase in ion bombardment as well as the general observation that as deposited passivation tends to increase with refractive index. Silicon nitride films with variations in refractive index were also made by varying the silane-to-ammonia gas flow ratio. This simple parameter adjustment makes plasma enhanced chemical vapour deposited silicon nitride applicable to double layer anti-reflective coatings simulated in this work. The films were found to have an etch rate in 5% hydrofluoric acid that decreased with increasing refractive index. This behaviour is attributed to the decreasing concentration of nitrogen-to-hydrogen bonds in the films. Such bonds at the surface of silicon nitride have been suggested to be involved in the main reaction mechanism when etching silicon nitride in hydrofluoric acid. Annealing the films lead to a drastic fall in etch rates and was linked to the release of hydrogen from the nitrogen-hydrogen bonds. (author). 115 refs., 35 figs., 6 tabs

  6. Microstructure Related Characterization of a-Si:H Thin Films PECVD Deposited under Varied Hydrogen Dilution

    Directory of Open Access Journals (Sweden)

    Veronika Vavrunkova

    2007-01-01

    Full Text Available We report on the structure and optical properties of hydrogenated silicon thin films deposited by plasma - enhanced chemical vapor deposition (PECVD from silane diluted with hydrogen in a wide dilution range. The samples deposited with dilutions below 30 were detected as amorphous hydrogenated silicon (a-Si:H with crystalline grains of several nanometers in size which represent the medium-range order of a-Si:H. The optical characterization confirmed increasing ordering with the increasing dilution. The optical band gap was observed to be increasing function of the dilution.

  7. Ultrathin polypyrrole films on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Intelmann, Carl Matthias [Hahn-Meitner-Institut Berlin GmbH, Department Silicon Photovoltaics, Kekulestrasse 5, 12489 Berlin (Germany)], E-mail: matthias.intelmann@hmi.de; Syritski, Vitali [Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Tsankov, Dimiter [Institute of Organic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 9, 1113 Sofia (Bulgaria); Hinrichs, Karsten [ISAS-Institute for Analytical Sciences, Department Berlin, Albert-Einstein-Strasse 9, 12489 Berlin (Germany); Rappich, Joerg [Hahn-Meitner-Institut Berlin GmbH, Department Silicon Photovoltaics, Kekulestrasse 5, 12489 Berlin (Germany)

    2008-04-20

    The electrochemical deposition of polypyrrole (PPy) on p-Si(1 0 0) electrodes was investigated. The electrodeposition was performed in aqueous electrolyte solutions utilising cyclic voltammetry. Thin, adhesive, uniform PPy films were successfully deposited on p-Si(1 0 0) electrodes. The Si/PPy interface was characterised with infrared spectroscopic ellipsometry (IR-SE) and photoluminescence (PL) measurements to obtain information of a possible oxidation of the Si interface and charge carrier recombination at the interface, respectively. Very small amounts of interfacial silicon oxides have been found at the Si/PPy interface. PL measurements lead to the assumption that electrodeposition of PPy onto the Si electrodes generated only very few additional non-radiative recombination-active (nr) defects. Hence, polypyrrole is an excellent passivation of nr defects at the silicon surface.

  8. Influence of screening effect on hydrogen passivation of hole silicon

    CERN Document Server

    Aleksandrov, O V

    2002-01-01

    The simulation of hole silicon passivation during hydrogen diffusion with account of hydrogen-acceptor pairs formation, internal electrical field and screening effect has been carried out. Screening by free carriers of hydrogen and acceptor ions results in shortening their interaction radii and slacking the concentration dependence of hydrogen diffusivity at high level of silicon doping. The consistency of simulated and experimental profiles of holes and hydrogen-acceptor pairs is reached in a broad band of doping levels from 4 x 10 sup 1 sup 4 to 1.2 x 10 sup 2 sup 0 cm sup - sup 3 at the pair binding energy of 0.70-0.79 eV while the radius of the Coulomb interaction of hydrogen and boron ions is equal to 35 A under low doping and decrease with increasing doping level

  9. Porous silicon-based direct hydrogen sulphide fuel cells.

    Science.gov (United States)

    Dzhafarov, T D; Yuksel, S Aydin

    2011-10-01

    In this paper, the use of Au/porous silicon/Silicon Schottky type structure, as a direct hydrogen sulphide fuel cell is demonstrated. The porous silicon filled with hydrochlorid acid was developed as a proton conduction membrane. The Au/Porous Silicon/Silicon cells were fabricated by first creating the porous silicon layer in single-crystalline Si using the anodic etching under illumination and then deposition Au catalyst layer onto the porous silicon. Using 80 mM H2S solution as fuel the open circuit voltage of 0.4 V was obtained and maximum power density of 30 W/m2 at room temperature was achieved. These results demonstrate that the Au/Porous Silicon/Silicon direct hydrogen sulphide fuel cell which uses H2S:dH2O solution as fuel and operates at room temperature can be considered as the most promising type of low cost fuel cell for small power-supply units.

  10. Amorphous Silicon Nanowires Grown on Silicon Oxide Film by Annealing

    Science.gov (United States)

    Yuan, Zhishan; Wang, Chengyong; Chen, Ke; Ni, Zhonghua; Chen, Yunfei

    2017-08-01

    In this paper, amorphous silicon nanowires (α-SiNWs) were synthesized on (100) Si substrate with silicon oxide film by Cu catalyst-driven solid-liquid-solid mechanism (SLS) during annealing process (1080 °C for 30 min under Ar/H2 atmosphere). Micro size Cu pattern fabrication decided whether α-SiNWs can grow or not. Meanwhile, those micro size Cu patterns also controlled the position and density of wires. During the annealing process, Cu pattern reacted with SiO2 to form Cu silicide. More important, a diffusion channel was opened for Si atoms to synthesis α-SiNWs. What is more, the size of α-SiNWs was simply controlled by the annealing time. The length of wire was increased with annealing time. However, the diameter showed the opposite tendency. The room temperature resistivity of the nanowire was about 2.1 × 103 Ω·cm (84 nm diameter and 21 μm length). This simple fabrication method makes application of α-SiNWs become possible.

  11. Improved conductivity of aluminum-doped ZnO: The effect of hydrogen diffusion from a hydrogenated amorphous silicon capping layer

    NARCIS (Netherlands)

    Ponomarev, M. V.; Sharma, K.; Verheijen, M. A.; M. C. M. van de Sanden,; Creatore, M.

    2012-01-01

    Plasma-deposited aluminum-doped ZnO (ZnO:Al) demonstrated a resistivity gradient as function of the film thickness, extending up to about 600 nm. This gradient decreased sharply when the ZnO:Al was capped by a hydrogenated amorphous silicon layer (a-Si:H) and subsequently treated according to the

  12. Polycystalline silicon thin films for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Christian Claus

    2012-01-15

    For the thin polycrystalline Si films fabricated with the aluminium-induced-layer-exchange (ALILE) process a good structural quality up to a layer-thickness value of 10 nm was determined. For 5 nm thick layers however after the layer exchange no closes poly-silicon film was present. In this case the substrate was covered with spherically arranged semiconductor material. Furthermore amorphous contributions in the layer could be determined. The electrical characterization of the samples at room temperature proved a high hole concentration in the range 10{sup 18} cm{sup -3} up to 9.10{sup 19} cm{sup -3}, which is influenced by the process temperature and the layer thickness. Hereby higher hole concentrations at higher process temperatures and thinner films were observed. Furthermore above 150-200 K a thermically activated behaviour of the electrical conductivity was observed. At lower temperatures a deviation of the measured characteristic from the exponential Arrhenius behaviour was determined. For low temperatures (below 20 K) the conductivity follows the behaviour {sigma}{proportional_to}[-(T{sub 0}/T){sup 1/4}]. The hole mobility in the layers was lowered by a passivation step, which can be explained by defect states at the grain boundaries. The for these very thin layers present situation was simulated in the framework of the model of Seto, whereby both the defect states at the grain boundaries (with an area density Q{sub t}) and the defect states at the interfaces (with an area density Q{sub it}) were regarded. By this the values Q{sub t}{approx}(3-4).10{sup 12} cm{sup -2} and Q{sub it}{approx}(2-5).10{sup 12} cm{sup -2} could be determined for these thin ALILE layers on quartz substrates. Additionally th R-ALILE process was studied, which uses the reverse precursor-layer sequence substrate/amorphous silicon/oxide/aluminium. Hereby two steps in the crystallization process of the R-ALILE process were found. First a substrate/Al-Si mixture/poly-Si layer structure

  13. Electonic properties of hydrogenated amorphous silicon-germanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bullot, J.; Galin, M.; Gauthier, M. (Universite de Paris-Sud, Orsay (France)); Bourdon, B. (CIT-Alcatel Transmission, Marcoussis (France))

    1983-06-01

    The electronic properties of some binary hydrogenated amorphous silicon-germanium alloys a-Sisub(x)Gesub(1-x):H in the silicon rich region (x > 0.6) are investigated. Experimental evidence is presented of photo-induced effects similar to those described in Si:H (Staebler-Wronski effect). The electronic properties are then studied from the dual point of view of the germanium content dependence and of the photo and thermal histories of the films. The dark conductivity changes between the annealed state and the light-soaked state are interpreted in terms of the variation of the temperature coefficient of the Fermi level. The photoconductivity efficiency is shown to remain close to that of a-Si:H for 1 > x >= 0.9 and to strongly decrease when the germanium content is further increased: the photoresponse of the Sisub(0.62)Gesub(0.38) alloy is 10/sup 4/ times smaller than that of a-Si:H. This deterioration of the photoconductive properties is explained in terms of the increase of the density of gap states following Ge substitution. This conclusion is based on the study of the width of the exponential absorption edge and on the results of photoconductivity time response studies. The latter data are interpreted by means of the model of Rose of trapping and recombination kinetics and it is found that for x approximately 0.6 the density of states at 0.4-0.5 eV below the mobility edge is 7 x 10/sup 17/ eV/sup -1/ cm/sup -3/ as compared to 2.4 x 10/sup 16/ eV/sup -1/ cm/sup -3/ for x = 0.97.

  14. Chemical and structural properties of polymorphous silicon thin films grown from dichlorosilane

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez-Macías, C.; Monroy, B.M.; Huerta, L.; Canseco-Martínez, M.A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, Coyoacán, C.P. 04510 México, D.F. (Mexico); Picquart, M. [Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa, A.P. 55-534, 09340 México, D.F. (Mexico); Santoyo-Salazar, J. [Departamento de Física, CINVESTAV-IPN, A.P. 14-740, C.P. 07000 México, D.F. (Mexico); Sánchez, M.F. García [Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Av. I.P.N. 2580, Gustavo A. Madero, 07340 México .D.F. (Mexico); Santana, G., E-mail: gsantana@iim.unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, Coyoacán, C.P. 04510 México, D.F. (Mexico)

    2013-11-15

    We have examined the effects of hydrogen dilution (R{sub H}) and deposition pressure on the morphological, structural and chemical properties of polymorphous silicon thin films (pm-Si:H), using dichlorosilane as silicon precursor in the plasma enhanced chemical vapor deposition (PECVD) process. The use of silicon chlorinated precursors enhances the crystallization process in as grown pm-Si:H samples, obtaining crystalline fractions from Raman spectra in the range of 65–95%. Atomic Force Microscopy results show the morphological differences obtained when the chlorine chemistry dominates the growth process and when the plasma–surface interactions become more prominent. Augmenting R{sub H} causes a considerable reduction in both roughness and topography, demonstrating an enhancement of ion bombardment and attack of the growing surface. X-ray Photoelectron Spectroscopy results show that, after ambient exposure, there is low concentration of oxygen inside the films grown at low R{sub H}, present in the form of Si-O, which can be considered as structural defects. Instead, oxidation increases with deposition pressure and dilution, along with film porosity, generating a secondary SiO{sub x} phase. For higher pressure and dilution, the amount of chlorine incorporated to the film decreases congruently with HCl chlorine extraction processes involving atomic hydrogen interactions with the surface. In all cases, weak silicon hydride (Si-H) bonds were not detected by infrared spectroscopy, while bonding configurations associated to the silicon nanocrystal surface were clearly observed. Since these films are generally used in photovoltaic devices, analyzing their chemical and structural properties such as oxygen incorporation to the films, along with chlorine and hydrogen, is fundamental in order to understand and optimize their electrical and optical properties.

  15. Synchrotron radiation photoemission study of metal overlayers on hydrogenated amorphous silicon at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pi, J.

    1990-09-21

    In this dissertation, metals deposited on a hydrogenated amorphous silicon (a-Si:H) film at room temperature are studied. The purpose of this work is mainly understanding the electronic properties of the interface, using high-resolution synchrotron radiation photoemission techniques as a probe. Atomic hydrogen plays an important role in passivating dangling bonds of a-Si:H films, thus reducing the gap-state distribution. In addition, singly bonded hydrogen also reduces states at the top of the valence band which are now replaced by deeper Si-H bonding states. The interface is formed by evaporating metal on an a-Si:H film in successive accumulations at room temperature. Au, Ag, and Cr were chosen as the deposited metals. Undoped films were used as substrates. Since some unique features can be found in a-Si:H, such as surface enrichment of hydrogen diffused from the bulk and instability of the free surface, we do not expect the metals/a-Si:H interface to behave exactly as its crystalline counterpart. Metal deposits, at low coverages, are found to gather preferentially around regions deficient in hydrogen. As the thickness is increased, some Si atoms in those regions are likely to leave their sites to intermix with metal overlayers like Au and Cr. 129 refs., 30 figs.

  16. Heat-Induced Agglomeration of Amorphous Silicon Nanoparticles Toward the Formation of Silicon Thin Film.

    Science.gov (United States)

    Jang, Bo Yun; Kim, Ja Young; Seo, Gyeongju; Shin, Chae-Ho; Ko, Chang Hyun

    2016-01-01

    The thermal behavior of silicon nanoparticles (Si NPs) was investigated for the preparation of silicon thin film using a solution process. TEM analysis of Si NPs, synthesized by inductively coupled plasma, revealed that the micro-structure of the Si NPs was amorphous and that the Si NPs had melted and merged at a comparatively low temperature (~750 °C) considering bulk melting temperature of silicon (1414 °C). A silicon ink solution was prepared by dispersing amorphous Si NPs in propylene glycol (PG). It was then coated onto a silicon wafer and a quartz plate to form a thin film. These films were annealed in a vacuum or in an N₂ environment to increase their film density. N2 annealing at 800 °C and 1000 °C induced the crystallization of the amorphous thin film. An elemental analysis by the SIMS depth profile showed that N₂annealing at 1000 °C for 180 min drastically reduced the concentrations of carbon and oxygen inside the silicon thin film. These results indicate that silicon ink prepared using amorphous Si NPs in PG can serve as a proper means of preparing silicon thin film via solution process.

  17. Silicon nitride and intrinsic amorphous silicon double antireflection coatings for thin-film solar cells on foreign substrates

    Energy Technology Data Exchange (ETDEWEB)

    Li, Da; Kunz, Thomas [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Photovoltaics and Thermosensoric, Haberstr. 2a, 91058 Erlangen (Germany); Wolf, Nadine [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Energy Efficiency, Am Galgenberg 87, 97074 Wuerzburg (Germany); Liebig, Jan Philipp [Materials Science and Engineering, Institute I, University of Erlangen-Nuremberg, Martensstr. 5, 91058 Erlangen (Germany); Wittmann, Stephan; Ahmad, Taimoor; Hessmann, Maik T.; Auer, Richard [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Photovoltaics and Thermosensoric, Haberstr. 2a, 91058 Erlangen (Germany); Göken, Mathias [Materials Science and Engineering, Institute I, University of Erlangen-Nuremberg, Martensstr. 5, 91058 Erlangen (Germany); Brabec, Christoph J. [Bavarian Center for Applied Energy Research (ZAE Bayern), Division: Photovoltaics and Thermosensoric, Haberstr. 2a, 91058 Erlangen (Germany); Institute of Materials for Electronics and Energy Technology, University of Erlangen-Nuremberg, Martensstr. 7, 91058 Erlangen (Germany)

    2015-05-29

    Hydrogenated intrinsic amorphous silicon (a-Si:H) was investigated as a surface passivation method for crystalline silicon thin film solar cells on graphite substrates. The results of the experiments, including quantum efficiency and current density-voltage measurements, show improvements in cell performance. This improvement is due to surface passivation by an a-Si:H(i) layer, which increases the open circuit voltage and the fill factor. In comparison with our previous work, we have achieved an increase of 0.6% absolute cell efficiency for a 40 μm thick 4 cm{sup 2} aperture area on the graphite substrate. The optical properties of the SiN{sub x}/a-Si:H(i) stack were studied using spectroscopic ellipsometer techniques. Scanning transmission electron microscopy inside a scanning electron microscope was applied to characterize the cross section of the SiN{sub x}/a-Si:H(i) stack using focus ion beam preparation. - Highlights: • We report a 10.8% efficiency for thin-film silicon solar cell on graphite. • Hydrogenated intrinsic amorphous silicon was applied for surface passivation. • SiN{sub x}/a-Si:H(i) stacks were characterized by spectroscopic ellipsometer techniques. • Cross-section micrograph was obtained by scanning transmission electron microscopy. • Quantum efficiency and J-V measurements show improvements in the cell performance.

  18. Nanostructured silicon based thin film transistors processed in the plasma dark region.

    Science.gov (United States)

    Pereira, L; Aguas, H; Gomes, L; Barquinha, P; Fortunato, E; Martins, R

    2010-04-01

    Nanostructured silicon (na-Si:H) thin films were fabricated using plasma enhanced chemical vapour deposition (PECVD) technique under high silane hydrogen dilution and a discharge frequency of 27 MHz, where the substrate was located in the dark region of the plasma, protected by a grounded metal grid. By not exposing the growth surface directly to the plasma we avoid the silicon growth surface to sustain a high ion bombardment leading to a less defective surface and highly compact films. The intrinsic films grown under these conditions were used to produce the channel region of thin film transistors (TFTs) with a bottom gate staggered configuration, integrating different dielectric layers. The devices produced exhibit a field effect mobility close to 1.84 cm2 V(-1) s(-1), threshold voltage around 2 V, on/off ratio above 10(7) and sub-threshold slope below 0.5 V/decade, depending on the dielectric used.

  19. Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Guy Beaucarne

    2007-01-01

    with plasma-enhanced chemical vapor deposition (PECVD. In spite of the fundamental limitation of this material due to its disorder and metastability, the technology is now gaining industrial momentum thanks to the entry of equipment manufacturers with experience with large-area PECVD. Microcrystalline Si (also called nanocrystalline Si is a material with crystallites in the nanometer range in an amorphous matrix, and which contains less defects than amorphous silicon. Its lower bandgap makes it particularly appropriate as active material for the bottom cell in tandem and triple junction devices. The combination of an amorphous silicon top cell and a microcrystalline bottom cell has yielded promising results, but much work is needed to implement it on large-area and to limit light-induced degradation. Finally thin-film polysilicon solar cells, with grain size in the micrometer range, has recently emerged as an alternative photovoltaic technology. The layers have a grain size ranging from 1 μm to several tens of microns, and are formed at a temperature ranging from 600 to more than 1000∘C. Solid Phase Crystallization has yielded the best results so far but there has recently been fast progress with seed layer approaches, particularly those using the aluminum-induced crystallization technique.

  20. Atomic hydrogen induced defect kinetics in amorphous silicon

    NARCIS (Netherlands)

    Peeters, F. J. J.; Zheng, J.; Aarts, I. M. P.; Pipino, A. C. R.; Kessels, W. M. M.; van de Sanden, M. C. M.

    2017-01-01

    Near-infrared evanescent-wave cavity ring-down spectroscopy (CRDS) has been applied to study the defect evolution in an amorphous silicon (a-Si:H) thin film subjected to a directed beam of atomic H with a flux of (0.4–2) × 1014 cm−2 s−1. To this end, a 42 ± 2 nm a-Si:H film was grown on the total

  1. Variation in the structure and optical properties of polymorphous silicon thin films using dichlorosilane as silicon precursor

    Energy Technology Data Exchange (ETDEWEB)

    Remolina, A.; Hamui, L.; Monroy, B.M.; Garcia-Sanchez, M.F.; Santana, G. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, AP 70-360, Cd. Universitaria, Coyoacan, C. P. 04510, Mexico D. F. (Mexico); Ponce, A. [Centro de Investigacion en Quimica Aplicada, Blvd. Enrique Reyna Hermosillo 140, C. P. 25290, Saltillo, Coahuila (Mexico); Picquart, M. [Departamento de Fisica, Universidad Autonoma Metropolitana, AP 55-534, Av. Sn Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340, Mexico D. F. (Mexico)

    2011-03-15

    Polymorphous silicon thin films were obtained by plasma enhanced chemical vapor deposition using dichlorosilane as silicon precursor. The RF power and the dichlorosilane to hydrogen flow rate ratio were varied to obtain different crystalline fractions and average sizes of silicon nanocrystals embedded in the amorphous silicon matrix. Microscopy images confirmed the existence of nanocrystallites with averages sizes between 2 and 6 nm. Broader size distributions were obtained with increasing RF power. Raman results confirmed that different nanocrystalline fractions (from 12% to 54%) can be achieved in these films by regulating the selected growth parameters. The optical band gap calculated by the Tauc model from UV-visible transmittance measurements varies between 1.8 to 2.3 eV. The relationship between the optical properties is discussed in terms of the different nanostructures of the samples. Depending on their absorption properties and effective band gap, these materials can be suitable for application in thin film solar cell devices (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. CIGS thin films for photoelectrolytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda, R.; Miranda, M.; Pantoja, J. [CIE-UNAM, Morelos (Mexico); Sebastian, P.J. [CIE-UNAM, Morelos (Mexico)]|[IMP, Yucatan (Mexico). Programa de Investigacion y Desarrollo de Ductos

    2003-07-01

    A sustainable energy economy will depend in large part on hydrogen as an energy vector. Its big advantage is its zero emission when burning or oxidation in a fuel cell, which gains added relevance when the hydrogen is produced using renewable energy such as photoelectrochemical cells. High efficiencies in solar to electrical conversion have been shown for CIGS based solar cells. The CIGS film precursors were prepared by electrodeposition from an electrochemical bath using the potentiostatic method. The precursors underwent annealing in a selenium (Se) atmosphere at 550 degrees Celsius and later on, film composition was adjusted to stoichiometric by evaporating extra indium (In) and gallium (Ga) and annealing in an Se atmosphere. Techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM-EDAX), atomic force microscopy (AFM) and opto-electronic methods were used to characterize CIGS films. The electrochemical measurements were effected in a three electrode cell. The results obtained by XRD showed a hexagonal chalcopyrite structure for the polycrystalline films and the grain structure improved with post-deposition physical vapor deposition (PVD) composition adjustment and annealing. SEM and AFM yielded similar results. 6 refs., 4 figs.

  3. Silicon surface barrier detectors used for liquid hydrogen density measurement

    Science.gov (United States)

    James, D. T.; Milam, J. K.; Winslett, H. B.

    1968-01-01

    Multichannel system employing a radioisotope radiation source, strontium-90, radiation detector, and a silicon surface barrier detector, measures the local density of liquid hydrogen at various levels in a storage tank. The instrument contains electronic equipment for collecting the density information, and a data handling system for processing this information.

  4. Donor-hydrogen complexes in crystalline silicon

    NARCIS (Netherlands)

    Liang, Z.N.; Niesen, L; Haas, C; Denteneer, P.J.H.

    1996-01-01

    Experimental results are presented on the study of Sb-H complexes in crystalline silicon, employing Sb-119 --> Sn-119 source Mossbauer spectroscopy and a low-energy H implantation technique. In addition to a visible component, we observe a large decrease of the Mossbauer intensity associated with

  5. Diffusion and impurity segregation in hydrogen-implanted silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Barcz, A., E-mail: barcz@ite.waw.pl [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Kozubal, M.; Ratajczak, J.; Gołaszewska, K. [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Jakieła, R.; Dyczewski, J.; Wojciechowski, T. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Celler, G. K. [Institute for Advanced Materials, Devices, and Nanotechnology (IAMDN)/Department of Materials Science and Engineering, Rutgers University, New Brunswick, New Jersey 08901 (United States)

    2014-06-14

    Diffusion and segregation behavior of hydrogen and oxygen in silicon carbide subjected to H implantation and subsequent annealing were studied with a number of analytical techniques including Secondary Ion Mass Spectrometry (SIMS), Rutherford backscattering spectrometry in channeling geometry, field emission scanning electron microscopy, optical microscopy, cross-sectional transmission electron microscopy, and atomic force microscopy. H{sup +} implantation was carried out with energies of 200 keV, 500 keV, or 1 MeV to doses of 1 × 10{sup 16}, 1 × 10{sup 17}, or 2 × 10{sup 17} ion/cm{sup 2}, and thermal treatment was conducted in flowing argon for 1 to 2 h at temperatures of 740, 780, 1000, or 1100 °C. The process of migration and eventual loss of hydrogen in a point defect regime is postulated to proceed to a large extent through ionized vacancies. This conclusion was derived from the observed substantial difference in H mobilities in n- vs. p-type SiC as the population of ionized vacancies is governed by the Fermi-Dirac statistics, i.e., the position of the Fermi level. For higher doses, a well defined buried planar zone forms in SiC at the maximum of deposited energy, comprising numerous microvoids and platelets that are trapping sites for hydrogen atoms. At a certain temperature, a more or less complete exfoliation of the implanted layer is observed. For a 1 MeV implant heated to 1100 °C in nominally pure argon, SIMS profiling reveals a considerable oxygen peak of 10{sup 16} O atoms/cm{sup 2} situated at a depth close to that of the peak of the implanted H{sup +}. Similarly, 1100 °C annealing of a 200 keV implant induces the formation of a thin oxide (4 nm), located at the interface between the implanted layer and the substrate as evidenced by both SIMS and HRTEM. The measurements were taken on the part of the sample that remained un-exfoliated. In view of a lack of convincing evidence that a hexagonal SiC might contain

  6. Simulation of silicon nanoparticles stabilized by hydrogen at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Galashev, Alexander Y., E-mail: galashev@ecko.uran.r [Russian Academy of Sciences, Ural Division, Institute of Industrial Ecology (Russian Federation)

    2010-10-15

    The stability of different silicon nanoparticles are investigated at a high temperature. The temperature dependence of the physicochemical properties of 60- and 73-atom silicon nanoparticles are investigated using the molecular dynamics method. The 73-atom particles have a crystal structure, a random atomic packing, and a packing formed by inserting a 13-atom icosahedron into a 60-atom fullerene. They are surrounded by a 'coat' from 60 atoms of hydrogen. The nanoassembled particle at the presence of a hydrogen 'coat' has the most stable number (close to four) of Si-Si bonds per atom. The structure and kinetic properties of a hollow single-layer fullerene-structured Si{sub 60} cluster are considered in the temperature range 10 K {<=} T {<=} 1760 K. Five series of calculations are conducted, with a simulation of several media inside and outside the Si{sub 60} cluster, specifically, the vacuum and interior spaces filled with 30 and 60 hydrogen atoms with and without the exterior hydrogen environment of 60 atoms. Fullerene surrounded by a hydrogen 'coat' and containing 60 hydrogen atoms in the interior space has a higher stability. Such cluster has smaller self-diffusion coefficients at high temperatures. The fullerene stabilized with hydrogen is stable to the formation of linear atomic chains up to the temperatures 270-280 K.

  7. Aluminium-induced crystallization of amorphous silicon films deposited by DC magnetron sputtering on glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kezzoula, F., E-mail: kezzoula@usa.com [UDTS 2Bd Frantz Fanon 7 merveilles Algiers (Algeria); Laboratory of Materials, Mineral and Composite (LMMC), Boumerdes University (Algeria); Hammouda, A. [UPR CNRS 3079 CEMHTI - 1D Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2 (France); Equipe Couches Minces, Laboratoire de Physique des Materiaux, Faculte de Physique, USTHB, Algiers (Algeria); Universite d' Orleans, 45067 Orleans Cedex 2 (France); Kechouane, M. [Equipe Couches Minces, Laboratoire de Physique des Materiaux, Faculte de Physique, USTHB, Algiers (Algeria); Simon, P. [UPR CNRS 3079 CEMHTI - 1D Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2 (France); Universite d' Orleans, 45067 Orleans Cedex 2 (France); Abaidia, S.E.H. [Laboratory of Materials, Mineral and Composite (LMMC), Boumerdes University (Algeria); Keffous, A. [UDTS 2Bd Frantz Fanon 7 merveilles Algiers (Algeria); Cherfi, R. [Equipe Couches Minces, Laboratoire de Physique des Materiaux, Faculte de Physique, USTHB, Algiers (Algeria); Menari, H.; Manseri, A. [UDTS 2Bd Frantz Fanon 7 merveilles Algiers (Algeria)

    2011-09-15

    Amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) films were deposited by DC magnetron sputtering technique with argon and hydrogen plasma mixture on Al deposited by thermal evaporation on glass substrates. The a-Si/Al and a-Si:H/Al thin films were annealed at different temperatures ranging from 250 to 550 deg. C during 4 h in vacuum-sealed bulb. The effects of annealing temperature on optical, structural and morphological properties of as-grown as well as the vacuum-annealed a-Si/Al and a-Si:H/Al thin films are presented in this contribution. The averaged transmittance of a-Si:H/Al film increases upon increasing the annealing temperature. XRD measurements clearly evidence that crystallization is initiated at 450 deg. C. The number and intensity of diffraction peaks appearing in the diffraction patterns are more important in a-Si:H/Al than that in a-Si/Al layers. Results show that a-Si:H films deposited on Al/glass crystallize above 450 deg. C and present better crystallization than the a-Si layers. The presence of hydrogen induces an improvement of structural properties of poly-Si prepared by aluminium-induced crystallization (AIC).

  8. Deposition of silicon films in presence of nitrogen plasma— A ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. A design, development and validation work of plasma based 'activated reactive evaporation (ARE) system' is implemented for the deposition of the silicon films in presence of nitrogen plasma on substrate maintained at room temperature. This plasma based deposition system involves evaporation of pure silicon by.

  9. Light management in thin-film silicon solar cells

    NARCIS (Netherlands)

    Isabella, O.

    2013-01-01

    Solar energy can fulfil mankind’s energy needs and secure a more balanced distribution of primary sources of energy. Wafer-based and thin-film silicon solar cells dominate todays’ photovoltaic market because silicon is a non-toxic and abundant material and high conversion efficiencies are achieved

  10. Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;

    Science.gov (United States)

    Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil

    2017-09-01

    In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.

  11. Microcrystalline silicon films and solar cells investigatet by photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Merdzhanova, T.

    2005-07-01

    A systematic investigation on photoluminescence (PL) properties of microcrystalline silicon ({mu}c-Si:H) films with structural composition changing from highly crystalline to predominantly amorphous is presented. The samples were prepared by PECVD and HWCVD with different silane concentration in hydrogen (SC). By using photoluminescence in combination with Raman spectroscopy the relationship between electronic properties and the microstructure of the material is studied. The PL spectra of {mu}c-Si:H reveal a rather broad ({proportional_to}0.13 eV) featureless band at about 1 eV ('{mu}c'-Si-band). In mixed phase material of crystalline and amorphous regions, a band at about 1.3 eV with halfwidth of about 0.3 eV is found in addition to '{mu}c'-Si-band, which is attributed to the amorphous phase ('a'-Si-band). Similarly to amorphous silicon, the '{mu}c'-Si-band is assigned to recombination between electrons and holes in band tail states. An additional PL band centred at about 0.7 eV with halfwidth slightly broader than the '{mu}c'-Si-band is observed only for films prepared at high substrate temperature and it is preliminarily assigned to defect-related transitions as in polycrystalline silicon. With decreasing crystalline volume fraction, the '{mu}c'-Si-band shifts continuously to higher energies for all {mu}c-Si:H films but the linewidth of the PL spectra is almost unaffected. This is valid for all deposition conditions investigated. The results are interpreted, assuming decrease of the density of band tail states with decreasing crystalline volume fraction. A simple model is proposed to simulate PL spectra and V{sub oc} in {mu}c-Si:H solar cells as a function of temperature, based on carrier distributions in quasi-equilibrium conditions. In the model is assumed symmetric density of states distributions for electrons and holes in the conduction and the valence band tail states. The best agreement between

  12. Silicon thin-film transistor backplanes on flexible substrates

    Science.gov (United States)

    Kattamis, Alexis Z.

    Flexible large area electronics, especially for displays, is a rapidly growing field. Since hydrogenated amorphous silicon thin-film transistors (a-Si:H TFTs) have become the industry standard for liquid crystal displays, it makes sense that they be used in any transition from glass substrates to flexible substrates. The goal of this thesis work was to implement a-Si:H backplane technology on stainless steel and clear plastic substrates, with minimal recipe changes to ensure high device quality. When fabricating TFTs on flexible substrates many new issues arise, from thin-film fracture to overlay alignment errors. Our approach was to maintain elevated deposition temperatures (˜300°C) and engineer methods to minimize these problems, rather than reducing deposition temperatures. The resulting TFTs exhibit more stable operation than their low temperature counterparts and are therefore similar to the TFTs produced on glass. Two display projects using a-Si:H TFTs will be discussed in detail. They are an active-matrix organic light emitting display (AMOLED) on stainless steel and an active-matrix electrophoretic display (AMEPD) on clear plastic, with TFTs deposited at 250°C-280°C. Achieving quality a-Si:H TFTs on these substrates required addressing a host of technical challenges, including surface roughness and feature misalignment. Nanocrystalline silicon (nc-Si) was also implemented on a clear plastic substrate as a possible alternative to a-Si:H. nc-Si:H TFTs can be deposited using the same techniques as a-Si:H but yield carrier mobilities one order of magnitude greater. Their large mobilities could enable high resolution OLED displays and system-on-panel electronics.

  13. Hydrogen responses of ultrathin Pd films and nanowire networks with a Ti buffer layer.

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, X. Q.; Wang, Y. L.; Xiao, Z. L.; Latimer, M. L.; Xu, T.; Kwok, W. K. (Materials Science Division); (Northern Illinois Univ.)

    2012-01-01

    We report on hydrogen responses of ultrathin films and nanowire networks of palladium on titanium buffered silicon substrates and filtration membranes, respectively. We found that in both systems signatures such as retarding responses and saturation of the resistance changes at high hydrogen concentrations associated with the transition from Pd/H solid solution to Pd hydride diminish with decreasing the thickness of the palladium layer from 7 to 2 nm. Our results not only reveal a new way to suppress the phase transition in Pd/H system but also provide an alternative approach to achieve fast and sensitive hydrogen sensors with a wide concentration detection range.

  14. Surface chemistry of a hydrogenated mesoporous p-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Media, El-Mahdi, E-mail: belhadidz@tahoo.fr; Outemzabet, Ratiba, E-mail: oratiba@hotmail.com

    2017-02-15

    Highlights: • Due to its large specific surface porous silicon is used as substrate for drug therapy and biosensors. • We highlight the evidency of the contribution of the hydrides (SiHx) in the formation of the porous silicon. • The responsible species in the porous silicon formation are identified and quantified at different conditions. • By some chemical treatments we show that silicon surface can be turn from hydrophobic to hydrophilic. - Abstract: The finality of this work is devoted to the grafting of organic molecules on hydrogen passivated mesoporous silicon surfaces. The study would aid in the development for the formation of organic monolayers on silicon surface to be exploited for different applications such as the realisation of biosensors and medical devices. The basic material is silicon which has been first investigated by FTIR at atomistic plane during the anodic forward and backward polarization (i.e. “go” and “return”). For this study, we applied a numerical program based on least squares method to infrared absorbance spectra obtained by an in situ attenuated total reflection on p-type silicon in diluted HF electrolyte. Our numerical treatment is based on the fitting of the different bands of IR absorbance into Gaussians corresponding to the different modes of vibration of molecular groups such as siloxanes and hydrides. An adjustment of these absorbance bands is done systematically. The areas under the fitted bands permit one to follow the intensity of the different modes of vibration that exist during the anodic forward and backward polarization in order to compare the reversibility of the phenomenon of the anodic dissolution of silicon. It permits also to follow the evolution between the hydrogen silicon termination at forward and backward scanning applied potential. Finally a comparison between the states of the initial and final surface was carried out. We confirm the presence of clearly four and three distinct vibration modes

  15. Tuning structural and magnetic properties of Fe films on Si substrates by hydrogenation processing

    Energy Technology Data Exchange (ETDEWEB)

    Sandu, S.G. [National Institute of Materials Physics, 077125 Bucharest-Magurele (Romania); Bucharest University, Faculty of Physics, 077125 Bucharest-Magurele (Romania); Palade, P.; Schinteie, G. [National Institute of Materials Physics, 077125 Bucharest-Magurele (Romania); Birsan, A. [National Institute of Materials Physics, 077125 Bucharest-Magurele (Romania); Bucharest University, Faculty of Physics, 077125 Bucharest-Magurele (Romania); Trupina, L. [National Institute of Materials Physics, 077125 Bucharest-Magurele (Romania); Kuncser, V., E-mail: kuncser@infim.ro [National Institute of Materials Physics, 077125 Bucharest-Magurele (Romania)

    2014-02-15

    Highlights: • Fe films have been grown on Si(0 0 1) substrates and subsequently hydrogenated. • As deposited films present soft magnetic character and a strong magnetic texture. • Structural and magnetic properties can be tuned via hydrogenation treatments. • Ferromagnetic/semiconductor interfaces might be manipulated via hydrogenation. -- Abstract: In order to study specific phenomena at ferromagnetic/semiconducting interfaces, of potentially high interest in spintronics and information technology, structural aspects and magnetic properties of Fe thin films grown on Si(0 0 1) substrates by RF sputtering have been investigated using {sup 57}Fe conversion electron Mössbauer spectroscopy (CEMS) and magneto-optic Keer effect (MOKE). Films of different thicknesses have been deposited either directly on crystalline Si substrates or on Cu buffer layers. An inherent Fe oxide layer is observed in all as prepared films, with a relative thickness decreasing drastically with the deposition time. The Cu buffer layer does not diminish either the interfacial diffusion or the oxidation process. An efficient method to prepare sharper oxygen- and silicon-free interfaces for an improved spin injection, via thermal treatment in hydrogen atmosphere, is proposed. Accordingly, the hydrogenation treatments are very efficient in the modification of the ferromagnetic film structure, phase composition, magnetic properties and interfacial mixing.

  16. Structure and optical characterization of silicon nitride films deposited by r.f. magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Xiaoyun; Xu, Zheng; Zhao, Suling [Beijing Jiaotong Univ. (China). Key Lab. of Luminescence and Optical Information, Ministry of Education; Tang, Yu; Zhou, Chunlan; Wang, Wenjing [Chinese Academy of Sciences, Beijing (China). Inst. of Electrical Engineering

    2008-07-01

    Silicon nitride films were deposited by radio frequency (r.f.) magnetron sputtering in an Ar-N{sub 2} gas mixture at a low substrate temperature. Subsequently the samples were annealed in pure N{sub 2} ambience. Influences of the Ar/N{sub 2} gas flow ratio as well as annealing on the optical properties and structure were studied. The optical properties of the films before annealing were examined using transmittance spectra. The composition of the samples was investigated by Fourier transform infrared (FTIR) spectra. Microstructure of the films was investigated using atomic force microscope (AFM). The films after annealing compared to former present a more compact construct, which is very dependent on the hydrogen concentration in the film. (orig.)

  17. Spectroscopic ellipsometry characterization of thin-film silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Jellison, G.E. Jr.; Modine, F.A. [Oak Ridge National Lab., TN (United States); Doshi, P.; Rohatgi, A. [Georiga Inst. of Technology, Atlanta, GA (United States)

    1997-05-01

    We have measured and analyzed the optical characteristics of a series of silicon nitride thin films prepared by plasma-enhanced chemical vapor deposition on silicon substrates for photovoltaic applications. Spectroscopic ellipsometry measurements were made by using a two-channel spectroscopic polarization modulator ellipsometer that measures N, S, and C data simultaneously. The data were fit to a model consisting of air / roughness / SiN / crystalline silicon. The roughness was modeled using the Bruggeman effective medium approximation, assuming 50% SiN, 50% voids. The optical functions of the SiN film were parameterized using a model by Jellison and Modine. All the {Chi}{sup 2} are near 1, demonstrating that this model works extremely well for all SiN films. The measured dielectric functions were used to make optimized SiN antireflection coatings for crystalline silicon solar cells.

  18. Thermal conductivity of amorphous and nanocrystalline silicon films prepared by hot-wire chemical-vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jugdersuren, B.; Kearney, B. T.; Queen, D. R.; Metcalf, T. H.; Culbertson, J. C.; Chervin, C. N.; Stroud, R. M.; Nemeth, W.; Wang, Q.; Liu, Xiao

    2017-07-01

    We report 3..omega.. thermal conductivity measurements of amorphous and nanocrystalline silicon thin films from 85 to 300 K prepared by hot-wire chemical-vapor deposition, where the crystallinity of the films is controlled by the hydrogen dilution during growth. The thermal conductivity of the amorphous silicon film is in agreement with several previous reports of amorphous silicon prepared by a variety of deposition techniques. The thermal conductivity of the as-grown nanocrystalline silicon film is 70% higher and increases 35% more after an anneal at 600 degrees C. They all have similarly weak temperature dependence. Structural analysis shows that the as-grown nanocrystalline silicon is approximately 60% crystalline, nanograins and grain boundaries included. The nanograins, averaging 9.1 nm in diameter in the as-grown film, are embedded in an amorphous matrix. The grain size increases to 9.7 nm upon annealing, accompanied by the disappearance of the amorphous phase. We extend the models of grain boundary scattering of phonons with two different non-Debye dispersion relations to explain our result of nanocrystalline silicon, confirming the strong grain size dependence of heat transport for nanocrystalline materials. However, the similarity in thermal conductivity between amorphous and nanocrystalline silicon suggests the heat transport mechanisms in both structures may not be as dissimilar as we currently understand.

  19. Patterning of hydrogenated microcrystalline silicon growth by magnetic field

    Czech Academy of Sciences Publication Activity Database

    Fejfar, Antonín; Stuchlík, Jiří; Mates, Tomáš; Ledinský, Martin; Honda, Shinya; Kočka, Jan

    2005-01-01

    Roč. 87, č. 1 (2005), 011901/1-011901/3 ISSN 0003-6951 R&D Projects: GA AV ČR(CZ) IAA1010316; GA AV ČR(CZ) IAA1010413; GA ČR(CZ) GD202/05/H003 Institutional research plan: CEZ:AV0Z10100521 Keywords : hydrogenated microcrystalline silicon * magnet ic field growth Subject RIV: BM - Solid Matter Physics ; Magnet ism Impact factor: 4.127, year: 2005

  20. The Abrasion Resistance and Adhesion of Hfcvd Boron and Silicon-Doped Diamond Films on WC-Co Drawing Dies

    Science.gov (United States)

    Wang, Liang; Liu, Jinfei; Tang, Tang; Sun, Fanghong; Xie, Nan

    Diamond films have been deposited on the interior hole surface of cobalt-cemented tungsten carbide (WC-Co) drawing dies from acetone, trimethyl borate (C3H9BO3), tetraethoxysilane (C8H20O4Si, TEOS) and hydrogen mixture by hot-filament chemical vapor deposition (HFCVD) method. The structures and quality of as-deposited diamond films are characterized with field-emission scanning electron microscopy (FESEM) and Raman spectroscopy. The abrasion ratio and the adhesive strength of as-deposited diamond films are evaluated by copper wire drawing tests and ultrasonic lapping tests, respectively. The results suggest that diamond films with small grain size and high growth rate can be obtained due to the mutual effects of boron and silicon impurities in the gas phases. The results of ultrasonic lapping tests show that diamond films doped with boron and/or silicon can bear the severe erosion of the large diamond powder. Diamond films peeling off within the reduction zone of the drawing dies cannot be observed after testing of 2h. The abrasion ratio of boron and silicon-added diamond films is five times that of diamond films without any addition. Adding boron and/or silicon in the diamond films is proved to be an efficient way to obtain high-adhesive-strength and high-abrasion-resistance diamond-coated drawing dies.

  1. Polycrystalline silicon thin-film solar cells on various substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenjing [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100080 (China); Xu, Ying [Beijing Solar Energy Research Institute, Beijing 100083 (China); Shen, Hui [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510070 (China)

    2006-03-15

    Thin-film polycrystalline silicon solar cells have been fabricated on various substrates, such as inactive P{sup ++} mono-crystalline silicon substrates, p{sup ++} mono-Si substrates covered by thermally oxidized SiO{sub 2} and ceramic substrates by means of a rapid thermal chemical vapour deposition (RTCVD) technique. Zone melting recrystallization (ZMR) was applied in the process in order to enlarge the grain size of the deposited silicon thin film. The deposition conditions were studied. The scanning rate of the ZMR process was investigated. The best conversion efficiency of 15.12% (AM1.5G, 24.5 C) has been achieved on inactive P{sup ++} mono-crystalline silicon substrates without cell surface texture and 10.21% (AM1.5, 24.5 C) on p{sup ++} c-Si substrates covered by thermally oxidized SiO{sub 2} with the cell area of 1.07 cm{sup 2}. The polycrystalline silicon thin film was also deposited on Al{sub 2}O{sub 3} substrates by a RTCVD process. A simple ZMR process was used without any intermediate layer and cap layers. The maximum grain size of the silicon thin film was about one millimeter in width and a few millimeters in length after ZMR. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Crystallization of HWCVD amorphous silicon thin films at elevated temperatures

    CSIR Research Space (South Africa)

    Muller, TFG

    2006-01-01

    Full Text Available conditions where the hydrogen content would be minimal and the films would still exhibit good optical properties. Experimental data shows that by varying deposition conditions the transition to the nano/microcrystalline phase can be achieved. Transitional...

  3. Thermochemical hydrogen sensor based on Pt-coated nanofiber catalyst deposited on pyramidally textured thermoelectric film

    Science.gov (United States)

    Kim, Seil; Song, Yoseb; Lee, Young-In; Choa, Yong-Ho

    2017-09-01

    The hydrogen gas-sensing performance has been systemically investigated of a new type of thermochemical hydrogen (TCH) sensor, composed of pyramidally textured thermoelectric (TE) film and catalytic Pt-coated nanofibers (NFs) deposited over the TE film. The TE film was composed of stoichiometric Bi2Te3, synthesized by means of cost-effective electrochemical deposition onto a textured silicon wafer. The resulting pyramidally textured TE film played a critical role in maximizing hydrogen gas flow around the overlying Pt NFs, which were synthesized by means of electrospinning followed by sputtering and acted as a heating catalyst. The optimal temperature increase of the Pt NFs was determined by means of optimizations of the electrospinning and sputtering durations. The output voltage signal of the optimized TCH sensor based on Pt NFs was 17.5 times higher than that of a Pt thin film coated directly onto the pyramidal TE material by using the same sputtering duration, under the fixed conditions of 3 vol% H2 in air at room temperature. This observation can be explained by the increased surface area of (111) planes accessible on the Pt-coated NFs. The best response time and recovery time observed for the optimized TCH sensor based on Pt-coated NFs were respectively 17 and 2 s under the same conditions. We believe that this type of TCH sensor can be widely used for supersensitive hydrogen gas detection by employing small-size Pt NFs and various chalcogenide thin films with high thermoelectric performance.

  4. DC and AC electroluminescence in silicon nanoparticles embedded in silicon-rich oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Sanchez, A; Aceves-Mijares, M [INAOE, Electronics Department, Apartado 51, Puebla, 72000 (Mexico); Barreto, J; DomInguez, C [Instituto de Microelectronica de Barcelona, IMB-CNM (CSIC), Barcelona (Spain); Peralvarez, M; Garrido, B [EME, Departament d' Electronica, Universitat de Barcelona, MartI i Franques 1, 08028 Barcelona (Spain); Luna-Lopez, J A, E-mail: amorales@inaoep.mx [CIDS-BUAP, Apartado 1651, Puebla, Pue, 72000 (Mexico)

    2010-02-26

    Electroluminescent properties of silicon-rich oxide (SRO) films were studied using metal oxide semiconductor-(MOS)-like devices. Thin SRO films with 4 at.% of silicon excess were deposited by low pressure chemical vapour deposition followed by a thermal annealing at 1100 deg. C. Intense continuous visible and infrared luminescence has been observed when devices are reversely and forwardly bias, respectively. After an electrical stress, the continuous electroluminescence (EL) is quenched but devices show strong field-effect EL with pulsed polarization. A model based on conductive paths-across the SRO film- has been proposed to explain the EL behaviour in these devices.

  5. Adsorption of hydrogen on clean and modified magnesium films

    DEFF Research Database (Denmark)

    Johansson, Martin; Ostenfeld, Christopher Worsøe; Chorkendorff, Ib

    2006-01-01

    The sticking of hydrogen on 400 A thick magnesium films, grown under ultrahigh vacuum conditions, have been measured under conditions relevant for hydrogen storage, i.e., elevated temperatures and pressures. A model which describes the hydrogenation and desorption kinetics of the pure magnesium f...

  6. Buried contact multijunction thin film silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Green, M. [Univ. of New South Wales, Sydney (Australia)

    1995-08-01

    In early 1994, the Center for Photovoltaic Devices and Systems announced the filing of patent applications on an improved silicon thin film photovoltaic module approach. With material costs estimated to be about 20 times lower than those in present silicon solar cell modules along with other production advantages, this technology appears likely to make low cost, high performance solar modules available for the first time. This paper describes steps involved in making a module and module performance.

  7. Silicon Nanowires with MoSx and Pt as Electrocatalysts for Hydrogen Evolution Reaction

    Directory of Open Access Journals (Sweden)

    S. H. Hsieh

    2016-01-01

    Full Text Available A convenient method was used for synthesizing Pt-nanoparticle/MoSx/silicon nanowires nanocomposites. Obtained Pt-MoSx/silicon nanowires electrocatalysts were characterized by transmission electron microscopy (TEM. The hydrogen evolution reaction efficiency of the Pt-MoSx/silicon nanowire nanocomposite catalysts was assessed by examining polarization and electrolysis measurements under solar light irradiations. The electrochemical characterizations demonstrate that Pt-MoSx/silicon nanowire electrodes exhibited an excellent catalytic activity for hydrogen evolution reaction in an acidic electrolyte. The hydrogen production capability of Pt-MoSx/silicon nanowires is also comparable to MoSx/silicon nanowires and Pt/silicon nanowires. Electrochemical impedance spectroscopy experiments suggest that the enhanced performance of Pt-MoSx/silicon nanowires can be attributed to the fast electron transfer between Pt-MoSx/silicon nanowire electrodes and electrolyte interfaces.

  8. Crystalline silicon surface passivation by thermal ALD deposited Al doped ZnO thin films

    Directory of Open Access Journals (Sweden)

    Jagannath Panigrahi

    2017-03-01

    Full Text Available The evidence of good quality silicon surface passivation using thermal ALD deposited Al doped zinc oxide (AZO thin films is demonstrated. AZO films are prepared by introducing aluminium precursor in between zinc and oxygen precursors during the deposition. The formation of AZO is confirmed by ellipsometry, XRD and Hall measurements. Effective minority carrier lifetime (τeff greater than 1.5ms at intermediate bulk injection levels is realized for symmetrically passivated p-type silicon surfaces under optimised annealing conditions of temperature and time in hydrogen ambient. The best results are realised at 450°C annealing for >15min. Such a layer may lead to implied open circuit voltage gain of 80mV.

  9. Thin-film silicon for flexible metal-air batteries.

    Science.gov (United States)

    Garamoun, Ahmed; Schubert, Markus B; Werner, Jürgen H

    2014-12-01

    Due to its high energy density, theoretical studies propose silicon as a promising candidate material for metal-air batteries. Herein, for the first time, experimental results detail the use of n-type doped amorphous silicon and silicon carbide as fuel in Si-air batteries. Thin-film silicon is particularly interesting for flexible and rolled batteries with high specific energies. Our Si-air batteries exhibit a specific capacity of 269 Ah kg(-1) and an average cell voltage of 0.85 V at a discharge current density of 7.9 μA cm(-2) , corresponding to a specific energy of 229 Wh kg(-1) . Favorably in terms of safety, low concentrated alkaline solution serves as electrolyte. Discharging of the Si-air cells continues as long as there is silicon available for oxidation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Behaviors of hydrogen in C-SiC films with IR and SIMS analyses

    CERN Document Server

    Huang, N K; Xiong, Q; Liu, Y G; Wang, D Z; Lei, J R

    2002-01-01

    C-SiC films with different content of SiC were prepared with magnetron sputtering deposition followed by Ar sup + ion bombardment. Secondary ion mass spectroscopy depth profiles of hydrogen for the samples of C-SiC coated stainless steel and stainless steel substrate after H sup + ion implantation and thermal annealing show different hydrogen concentrations in C-SiC coatings and stainless steel. Infrared (IR) transmission measurement was selected to study the mechanism of hydrogen retention by C-SiC films. The vibrational spectra in the range between 400 and 3200 cm sup - sup 1 in IR transmission spectra show the Si-CH sub 3 , Si-CH sub 2 , Si-H, CH sub 2 , CH sub 3 etc. bonds, which are responsible for retaining hydrogen. Apart from the mode above, there also exist bonds related to carbon and silicon such as Si-C, C=C. The contamination of oxygen entered the film to form C=O and SiO sub 2 configurations and hydrogen contamination also formed Si-CH sub 2 mode in the films.

  11. Morphological and optical properties of silicon thin films by PLD

    Energy Technology Data Exchange (ETDEWEB)

    Ayouchi, R. [Departamento de Fisica, Instituto Superior Tecnico, Lisboa (Portugal)], E-mail: rachid.ayouchi@ist.utl.pt; Schwarz, R.; Melo, L.V.; Ramalho, R. [Departamento de Fisica, Instituto Superior Tecnico, Lisboa (Portugal); Alves, E.; Marques, C.P. [Instituto Tecnologico e Nuclear, ITN, Sacavem (Portugal); Santos, L.; Almeida, R. [Departamento de Engenharia de Materiais, Instituto Superior Tecnico, Lisboa (Portugal); Conde, O. [Departamento de Fisica, Facultade de Ciencias da Universidade de Lisboa, Lisboa (Portugal)

    2009-03-01

    Silicon thin films have been prepared on sapphire substrates by pulsed laser deposition (PLD) technique. The films were deposited in vacuum from a silicon target at a base pressure of 10{sup -6} mbar in the temperature range from 400 to 800 deg. C. A Q-switched Nd:YAG laser (1064 nm, 5 ns duration, 10 Hz) at a constant energy density of 2 J x cm{sup -2} has been used. The influence of the substrate temperature on the structural, morphological and optical properties of the Si thin films was investigated. Spectral ellipsometry and atomic force microscopy (AFM) were used to study the thickness and the surface roughness of the deposited films. Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased deposition temperature.

  12. Evaluation of hydrogen and oxygen impurity levels on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, M.J.; Wielunski, L.S.; Netterfield, R.P.; Martin, P.J.; Leistner, A. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1996-12-31

    This paper reports on surface analytical techniques used to quantify surface concentrations of impurities such as oxygen and hydrogen. The following analytical techniques were used: Rutherford and Backscattering, elastic recoil detection, time-of-flight SIMS, spectroscopic ellipsometry, x-ray photoelectron spectroscopy. The results have shown a spread in thickness of oxide layer, ranging from unmeasurable to 1.6 nm. The data must be considered as preliminary at this stage, but give some insight into the suitability of the techniques and a general idea of the significance of impurities at the monolayer level. These measurements have been carried out on a small number of silicon surfaces both semiconductor grade <111> crystalline material and silicon which has been used in sphere fabrication. 5 refs., 1 fig.

  13. A DLTS study of hydrogen doped czochralski-grown silicon

    Energy Technology Data Exchange (ETDEWEB)

    Jelinek, M. [Infineon Technologies Austria AG, 9500 Villach (Austria); Laven, J.G. [Infineon Technologies AG, 81726 Munich (Germany); Kirnstoetter, S. [Institute of Solid State Physics, Graz University of Technology, 8010 Graz (Austria); Schustereder, W. [Infineon Technologies Austria AG, 9500 Villach (Austria); Schulze, H.-J. [Infineon Technologies AG, 81726 Munich (Germany); Rommel, M. [Fraunhofer Institute of Integrated Systems and Devices IISB, 91058 Erlangen (Germany); Frey, L. [Fraunhofer Institute of Integrated Systems and Devices IISB, 91058 Erlangen (Germany); Chair of Electron Devices, FAU Erlangen-Nuremberg, 91058 Erlangen (Germany)

    2015-12-15

    In this study we examine proton implanted and subsequently annealed commercially available CZ wafers with the DLTS method. Depth-resolved spreading resistance measurements are shown, indicating an additional peak in the induced doping profile, not seen in the impurity-lean FZ reference samples. The additional peak lies about 10–15 μm deeper than the main peak near the projected range of the protons. A DLTS characterization in the depth of the additional peak indicates that it is most likely not caused by classical hydrogen-related donors known also from FZ silicon but by an additional donor complex whose formation is assisted by the presence of silicon self-interstitials.

  14. Hydrogen recycle and isotope exchange from dense carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Clausing, R.E.; Heatherly, L.

    1987-03-01

    Dense carbon films were prepared by deposition from hydrogen plasmas to which methane was added. The initial hydrogen recycle coefficient from the films ranges from more than two to less than one. The films contain large amounts of hydrogen (up to 50 at. %). They adjust themselves to provide recycling coefficients near unity. Isotope changeover times tend to be long. The reservoir of hydrogen instantly available to the plasma to maintain or stabilize the recycle coefficient and isotopic composition of the plasma is 10/sup 15/ cm/sup -2/ or greater depending on film preparation, temperature, and prior plasma exposure conditions. Simulator observations tend to support and improve the understanding of the observations in TEXTOR and JET; however, they also point out the need for control of film deposition and operating parameters to provide desirable and reproducible properties. The films and the hydrogen isotopes they contain can be removed easily by plasma processes. Since the hydrogen in these films is relatively immobile except in the zone reached by energetic particles, or at temperatures above 400/sup 0/C, dense carbon films may be useful in managing the tritium recovery from near-term fusion experiments.

  15. Correlation between photo response and nanostructures of silicon quantum dots in annealed Si-rich nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pei Ling [Department of Aeronautics and Astronautics and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan, ROC (China); Gau, Chie, E-mail: gauc@mail.ncku.edu.tw [Department of Aeronautics and Astronautics and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan, ROC (China); Liu, Chien Wei [Department of Mechanical Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan, ROC (China)

    2013-02-01

    Synthesis and characterization of silicon quantum dots (Si QDs) materials are carried out. The Si QDs were prepared from a hydrogenated silicon rich nitride film that is deposited by the plasma enhanced chemical vapor deposition process with a gas mixture of SiH{sub 4} and NH{sub 3} at flow ratios from 0.5 to 2. The Si QDs can be precipitated from the hydrogenated silicon rich nitride film by a high temperature annealing. The optimum density of the Si QDs precipitated amounts to 6.4 × 10{sup 12} cm{sup −2}, as calculated from transmission electron microscope images, for flow ratio of SiH{sub 4} versus NH{sub 3} at 2, and particle sizes less than 6 nm. The dots density within the film becomes concentrated when the flow ratio of SiH{sub 4} versus NH{sub 3} increases. The intensity of photo response increases drastically when the dots density becomes large. - Highlights: ► Silicon quantum dots (Si QDs) precipitated from deposited films were identified. ► All Si QDs obtained exhibit similar sizes but different densities. ► Correlation between photo response and amount of Si QDs was established. ► The photo response increases with increasing density of Si QDs in the film.

  16. Light-induced metastable structural changes in hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, H. [Univ. of Chicago, IL (United States)

    1996-09-01

    Light-induced defects (LID) in hydrogenated amorphous silicon (a-Si:H) and its alloys limit the ultimate efficiency of solar panels made with these materials. This paper reviews a variety of attempts to find the origin of and to eliminate the processes that give rise to LIDs. These attempts include novel deposition processes and the reduction of impurities. Material improvements achieved over the past decade are associated more with the material`s microstructure than with eliminating LIDs. We conclude that metastable LIDs are a natural by-product of structural changes which are generally associated with non-radiative electron-hole recombination in amorphous semiconductors.

  17. Silicon exfoliation by hydrogen implantation: Actual nature of precursor defects

    Energy Technology Data Exchange (ETDEWEB)

    Kuisseu, Pauline Sylvia Pokam, E-mail: pauline-sylvia.pokam-kuisseu@cnrs-orleans.fr [CEMHTI-CNRS, 3A, rue de la férollerie, 45071 Orléans (France); Pingault, Timothée; Ntsoenzok, Esidor [CEMHTI-CNRS, 3A, rue de la férollerie, 45071 Orléans (France); Regula, Gabrielle [IM2NP-CNRS-Université d’Aix-Marseille, Avenue Escadrille Normandie Niemen, 13397 Marseille (France); Mazen, Frédéric [CEA-Leti, MINATEC campus, 17, rue des Martyrs, 38054 Grenoble Cedex 9 (France); Sauldubois, Audrey [Université d’Orléans, rue de Chartres – Collegium ST, 45067 Orléans (France); Andreazza, Caroline [ICMN-CNRS-Université d’Orléans, 1b rue de la férollerie, 45071 Orléans (France)

    2017-06-15

    MeV energy hydrogen implantation in silicon followed by a thermal annealing is a very smart way to produce high crystalline quality silicon substrates, much thinner than what can be obtained by diamond disk or wire sawing. Using this kerf-less approach, ultra-thin substrates with thicknesses between 15 µm and 100 µm, compatible with microelectronic and photovoltaic applications are reported. But, despite the benefits of this approach, there is still a lack of fundamental studies at this implantation energy range. However, if very few papers have addressed the MeV energy range, a lot of works have been carried out in the keV implantation energy range, which is the one used in the smart-cut® technology. In order to check if the nature and the growth mechanism of extended defects reported in the widely studied keV implantation energy range could be extrapolated in the MeV range, the thermal evolution of extended defects formed after MeV hydrogen implantation in (100) Si was investigated in this study. Samples were implanted at 1 MeV with different fluences ranging from 6 × 10{sup 16} H/cm{sup 2} to 2 × 10{sup 17} H/cm{sup 2} and annealed at temperatures up to 873 K. By cross-section transmission electron microscopy, we found that the nature of extended defects in the MeV range is quite different of what is observed in the keV range. In fact, in our implantation conditions, the generated extended defects are some kinds of planar clusters of gas-filled lenses, instead of platelets as commonly reported in the keV energy range. This result underlines that hydrogen behaves differently when it is introduced in silicon at high or low implantation energy. The activation energy of the growth of these extended defects is independent of the chosen fluence and is between (0.5–0.6) eV, which is very close to the activation energy reported for atomic hydrogen diffusion in a perfect silicon crystal.

  18. Silicon wafer wettability and aging behaviors: Impact on gold thin-film morphology

    KAUST Repository

    Yang, Xiaoming

    2014-10-01

    This paper reports on the wettability and aging behaviors of the silicon wafers that had been cleaned using a piranha (3:1 mixture of sulfuric acid (H2SO4, 96%) and hydrogen peroxide (H2O 2, 30%), 120 °C), SC1 (1:1:5 mixture of NH4OH, H 2O2 and H2O, at 80°C) or HF solution (6 parts of 40% NH4F and 1 part of 49% HF, at room temperature) solution, and treated with gaseous plasma. The silicon wafers cleaned using the piranha or SC1 solution were hydrophilic, and the water contact angles on the surfaces would increase along with aging time, until they reached the saturated points of around 70°. The contact angle increase rate of these wafers in a vacuum was much faster than that in the open air, because of loss of water, which was physically adsorbed on the wafer surfaces. The silicon wafers cleaned with the HF solution were hydrophobic. Their contact angle decreased in the atmosphere, while it increased in the vacuum up to 95°. Gold thin films deposited on the hydrophilic wafers were smoother than that deposited on the hydrophobic wafers, because the numerous oxygen groups formed on the hydrophilic surfaces would react with gold adatoms in the sputtering process to form a continuous thin film at the nucleation stage. The argon, nitrogen, oxygen gas plasma treatments could change the silicon wafer surfaces from hydrophobic to hydrophilic by creating a thin (around 2.5 nm) silicon dioxide film, which could be utilized to improve the roughness and adhesion of the gold thin film. © 2014 Elsevier Ltd. All rights reserved.

  19. Transparent conducting oxide layers for thin film silicon solar cells

    NARCIS (Netherlands)

    Rath, J.K.|info:eu-repo/dai/nl/304830585; Liu, Y.|info:eu-repo/dai/nl/304831743; de Jong, M.M.|info:eu-repo/dai/nl/325844208; de Wild, J.|info:eu-repo/dai/nl/314641378; Schuttauf, J.A.|info:eu-repo/dai/nl/314118039; Brinza, M.|info:eu-repo/dai/nl/304823325; Schropp, R.E.I.|info:eu-repo/dai/nl/072502584

    2009-01-01

    Texture etching of ZnO:1%Al layers using diluted HCl solution provides excellent TCOs with crater type surface features for the front contact of superstrate type of thin film silicon solar cells. The texture etched ZnO:Al definitely gives superior performance than Asahi SnO2:F TCO in case of

  20. Transparent conductive oxides for thin-film silicon solar cells

    NARCIS (Netherlands)

    Löffler, J.

    2005-01-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses,

  1. KRYPTON INCORPORATION IN SPUTTERED SILICON FILMS

    NARCIS (Netherlands)

    GREUTER, MJW; NIESEN, L; HAKVOORT, RA; DEROODE, J; VANVEEN, A; BERNTSEN, AJM; SLOOF, WG

    1993-01-01

    The incorporation of Kr in sputtered a-Si films has been investigated in a systematic way by varying the Kr to Si flux, yielding Kr concentrations up to 5 at %. Compositions were determined with X-ray microanalysis. A model has been applied to describe the composition of the growing film. The layers

  2. Unusual hydrogen peroxide decomposition on stoichiometric insulating oxide ultrathin films

    CERN Document Server

    Song, Zhenjun

    2016-01-01

    The hydrogen peroxide dissociation on MgO(001) films deposited on Mo(001) surface is investigated by employing periodic density-functional theory methods. The pristine MgO(001) surface showing chemical inertness prefers the weak adsorbing molecular configuration and is extremely difficult to react with hydrogen peroxide. As far as we know, energetically favorable decomposition state of hydrogen peroxide has never been obtained on MgO(001) surface. In this work the hydrogen peroxide is successfully dissociated on perfect stoichiometric MgO(001) films by depositing on transition metal substrate, without any activation barrier. The spontaneous dissociation of hydrogen peroxide on metal supported oxide films is rationalized by characterizing the geometric structures and electronic structures.

  3. Silicon nanocrystal films for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Lechner, Robert W.

    2009-02-06

    Whether nanoparticles of silicon are really suited for such applications, whether layers fabricated from this exhibit semiconducting properties, whether they can be doped, and whether for instance via the doping the conductivity can be tuned, was studied in the present thesis. Starting material for this were on the one hand spherical silicon nanocrystals with a sharp size distribution and mean diameters in the range from 4-50 nm. Furthermore silicon particle were available, which are with 50-500 nm distinctly larger and exhibit a broad distribution of the mean size and a polycrystalline fine structure with strongly bifurcated external morphology. The small conductivities and tje low mobility values of the charge carriers in the layers of silicon nanocrystals suggest to apply suited thermal after-treatment procedures. So was found that the aluminium-induced layer exchange (ALILE) also can be transferred to the porous layers of nanocrystals. With the deuteron passivation a method was available to change the charge-carrier concentration in the polycrystalline layers. Additionally to ALILE laser crystallization as alternative after-treatment procedure of the nanocrystal layers was studied.

  4. Structural evolution of nanocrystalline silicon thin films synthesized in high-density, low-temperature reactive plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Qijin; Ostrikov, Kostya [CSIRO Materials Science and Engineering, Lindfield, NSW 2070 (Australia); Xu Shuyan [Plasma Sources and Application Center, NIE, Nanyang Technological University, 1 Nanyang Walk, 637616 (Singapore)], E-mail: Kostya.Ostrikov@csiro.au

    2009-05-27

    Silicon thin films with a variable content of nanocrystalline phase were deposited on single-crystal silicon and glass substrates by inductively coupled plasma-assisted chemical vapor deposition using a silane precursor without any hydrogen dilution in the low substrate temperature range from 100 to 300 deg. C. The structural and optical properties of the deposited films are systematically investigated by Raman spectroscopy, x-ray diffraction, Fourier transform infrared absorption spectroscopy, UV/vis spectroscopy, scanning electron microscopy and high-resolution transmission electron microscopy. It is shown that the structure of the silicon thin films evolves from the purely amorphous phase to the nanocrystalline phase when the substrate temperature is increased from 100 to 150 deg. C. It is found that the variations of the crystalline fraction f{sub c}, bonded hydrogen content C{sub H}, optical bandgap E{sub Tauc}, film microstructure and growth rate R{sub d} are closely related to the substrate temperature. In particular, at a substrate temperature of 300 deg. C, the nanocrystalline Si thin films of our interest feature a high growth rate of 1.63 nm s{sup -1}, a low hydrogen content of 4.0 at.%, a high crystalline fraction of 69.1%, a low optical bandgap of 1.55 eV and an almost vertically aligned columnar structure with a mean grain size of approximately 10 nm. It is also shown that the low-temperature synthesis of nanocrystalline Si thin films without any hydrogen dilution is attributed to the outstanding dissociation ability of the high-density inductively coupled plasmas and effective plasma-surface interactions during the growth process. Our results offer a highly effective yet simple and environmentally friendly technique to synthesize high-quality nanocrystalline Si films, vitally needed for the development of new-generation solar cells and other emerging nanotechnologies.

  5. Spectroscopic Ellipsometry Studies of n-i-p Hydrogenated Amorphous Silicon Based Photovoltaic Devices

    Directory of Open Access Journals (Sweden)

    Laxmi Karki Gautam

    2016-02-01

    Full Text Available Optimization of thin film photovoltaics (PV relies on characterizing the optoelectronic and structural properties of each layer and correlating these properties with device performance. Growth evolution diagrams have been used to guide production of materials with good optoelectronic properties in the full hydrogenated amorphous silicon (a-Si:H PV device configuration. The nucleation and evolution of crystallites forming from the amorphous phase were studied using in situ near-infrared to ultraviolet spectroscopic ellipsometry during growth of films prepared as a function of hydrogen to reactive gas flow ratio R = [H2]/[SiH4]. In conjunction with higher photon energy measurements, the presence and relative absorption strength of silicon-hydrogen infrared modes were measured by infrared extended ellipsometry measurements to gain insight into chemical bonding. Structural and optical models have been developed for the back reflector (BR structure consisting of sputtered undoped zinc oxide (ZnO on top of silver (Ag coated glass substrates. Characterization of the free-carrier absorption properties in Ag and the ZnO + Ag interface as well as phonon modes in ZnO were also studied by spectroscopic ellipsometry. Measurements ranging from 0.04 to 5 eV were used to extract layer thicknesses, composition, and optical response in the form of complex dielectric function spectra (ε = ε1 + iε2 for Ag, ZnO, the ZnO + Ag interface, and undoped a-Si:H layer in a substrate n-i-p a-Si:H based PV device structure.

  6. MOCVD ZnO/Screen Printed Ag Back Reflector for Flexible Thin Film Silicon Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Amornrat Limmanee

    2014-01-01

    Full Text Available We have prepared Ag back electrode by screen printing technique and developed MOCVD ZnO/screen printed Ag back reflector for flexible thin film silicon solar cell application. A discontinuity and poor contact interface between the MOCVD ZnO and screen printed Ag layers caused poor open circuit voltage (Voc and low fill factor (FF; however, an insertion of a thin sputtered ZnO layer at the interface could solve this problem. The n type hydrogenated amorphous silicon (a-Si:H film is preferable for the deposition on the surface of MOCVD ZnO film rather than the microcrystalline film due to its less sensitivity to textured surface, and this allowed an improvement in the FF. The n-i-p flexible amorphous silicon solar cell using the MOCVD ZnO/screen printed Ag back reflector showed an initial efficiency of 6.2% with Voc=0.86 V, Jsc=12.4 mA/cm2, and FF = 0.58 (1 cm2. The identical quantum efficiency and comparable performance to the cells using conventional sputtered Ag back electrode have verified the potential of the MOCVD ZnO/screen printed Ag back reflector and possible opportunity to use the screen printed Ag thick film for flexible thin film silicon solar cells.

  7. Thin-film microcrystalline silicon solar cells: 11.9% efficiency and beyond

    Science.gov (United States)

    Sai, Hitoshi; Matsui, Takuya; Kumagai, Hideo; Matsubara, Koji

    2018-02-01

    High-efficiency thin-film hydrogenated microcrystalline silicon solar cells (µc-Si:H) were developed using a periodically textured substrate at a relatively high growth rate of ∼1 nm s‑1. A record efficiency of 11.9% was independently confirmed in a µc-Si:H cell with an absorber thickness of approximately 2 µm. An improvement in fill factor contributed largely to realizing the record efficiency. The potential for further efficiency improvements was examined on the basis of suns–V OC measurement, indicating that an efficiency of 12.5% is practically achievable.

  8. Thermochemical hydrogen generation of indium oxide thin films

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2017-03-01

    Full Text Available Development of alternative energy resources is an urgent requirement to alleviate current energy constraints. As such, hydrogen gas is gaining attention as a future alternative energy source to address existing issues related to limited energy resources and air pollution. In this study, hydrogen generation by a thermochemical water-splitting process using two types of In2O3 thin films was investigated. The two In2O3 thin films prepared by chemical vapor deposition (CVD and sputtering deposition systems contained different numbers of oxygen vacancies, which were directly related to hydrogen generation. The as-grown In2O3 thin film prepared by CVD generated a large amount of hydrogen because of its abundant oxygen vacancies, while that prepared by sputtering had few oxygen vacancies, resulting in low hydrogen generation. Increasing the temperature of the In2O3 thin film in the reaction chamber caused an increase in hydrogen generation. The oxygen-vacancy-rich In2O3 thin film is expected to provide a highly effective production of hydrogen as a sustainable and efficient energy source.

  9. Investigation of nanocrystalline Gd films loaded with hydrogen

    KAUST Repository

    Hruška, Petr

    2015-01-01

    The present work reports on microstructure studies of hydrogen-loaded nanocrystalline Gd films prepared by cold cathode beam sputtering on sapphire (112¯0) substrates. The Gd films were electrochemically step-by-step charged with hydrogen and the structural development with increasing concentration of absorbed hydrogen was studied by transmission electron microscopy and in-situ   X-ray diffraction using synchrotron radiation. The relaxation of hydrogen-induced stresses was examined by acoustic emission measurements. In the low concentration range absorbed hydrogen occupies preferentially vacancy-like defects at GBs typical for nanocrystalline films. With increasing hydrogen concentration hydrogen starts to occupy interstitial sites. At the solid solution limit the grains gradually transform into the ββ-phase (GdH2). Finally at high hydrogen concentrations xH>2.0xH>2.0 H/Gd, the film structure becomes almost completely amorphous. Contrary to bulk Gd specimens, the formation of the γγ-phase (GdH3) was not observed in this work.

  10. Doped nanocrystalline silicon oxide for use as (intermediate) reflecting layers in thin-film silicon solar cells

    NARCIS (Netherlands)

    Babal, P.

    2014-01-01

    In summary, this thesis shows the development and nanostructure analysis of doped silicon oxide layers. These layers are applied in thin-film silicon single and double junction solar cells. Concepts of intermediate reflectors (IR), consisting of silicon and/or zinc oxide, are applied in tandem

  11. Effect of oxygen on the hydrogenation properties of magnesium films

    DEFF Research Database (Denmark)

    Ostenfeld, Christopher Worsøe; Chorkendorff, Ib

    2006-01-01

    The effect of magnesium oxide on the magnesium and hydrogen desorption properties of magnesium films have been investigated. We find that by capping metallic magnesium films with oxide overlayers the apparent desorption energy of magnesium is increased from 146 kJ/mol to 314 kJ/mol. The results...... are discussed in light of previous investigations of ball-milled magnesium powders....

  12. Laser annealing of thin film polycrystalline silicon solar cell

    Directory of Open Access Journals (Sweden)

    Chowdhury A.

    2013-11-01

    Full Text Available Performances of thin film polycrystalline silicon solar cell grown on glass substrate, using solid phase crystallization of amorphous silicon can be limited by low dopant activation and high density of defects. Here, we investigate line shaped laser induced thermal annealing to passivate some of these defects in the sub-melt regime. Effect of laser power and scan speed on the open circuit voltage of the polysilicon solar cells is reported. The processing temperature was measured by thermal imaging camera. Enhancement of the open circuit voltage as high as 210% is achieved using this method. The results are discussed.

  13. The effect of amorphous silicon surface hydrogenation on morphology, wettability and its implication on the adsorption of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Filali, Larbi, E-mail: larbifilali5@gmail.com [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria); Brahmi, Yamina; Sib, Jamal Dine [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria); Bouhekka, Ahmed [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria); Département de Physique, Université Hassiba Ben Bouali, 02000 Chlef (Algeria); Benlakehal, Djamel; Bouizem, Yahya; Kebab, Aissa; Chahed, Larbi [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria)

    2016-10-30

    Highlights: • Hydrogenation of the surfaces had the effect of reducing the roughness by way of shadow etching. • Roughness was the driving factor affecting the wettability of the hydrogenated surfaces. • Bovine Serum Albumin proteins favored the surfaces with highest hydrogen content. • Surface modification induced secondary structure change of adsorbed proteins. - Abstract: We study the effect of amorphous silicon (a-Si) surface hydrogenation on Bovine Serum Albumin (BSA) adsorption. A set of (a-Si) films was prepared by radio frequency magnetron sputtering (RFMS) and after deposition; they were treated in molecular hydrogen ambient at different pressures (1–3 Pa). Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy and spectroscopic ellipsometry (SE) were used to study the hydrogenation effect and BSA adsorption. Atomic force microscopy (AFM) was used to evaluate morphological changes caused by hydrogenation. The wettability of the films was measured using contact angle measurement, and in the case of the hydrogenated surfaces, it was found to be driven by surface roughness. FTIR-ATR spectroscopy and SE measurements show that proteins had the strongest affinity toward the surfaces with the highest hydrogen content and their secondary structure was affected by a significant decrease of the α-helix component (-27%) compared with the proteins adsorbed on the un-treated surface, which had a predominantly α-helix (45%) structure. The adsorbed protein layer was found to be densely packed with a large thickness (30.9 nm) on the hydrogen-rich surfaces. The most important result is that the surface hydrogen content was the dominant factor, compared to wettability and morphology, for protein adsorption.

  14. Tunable removal rates of silicon dioxide, silicon nitride and polysilicon films during chemical mechanical polishing

    Science.gov (United States)

    Dandu, Veera P. R.

    Achieving a high Si3N4 removal rate and a relatively low SiO2 removal rate, which is challenging but promising for emerging applications for sub-32 nm node devices, was investigated. This was thought to be impossible as the removal of Si3N4 usually follows a two-step mechanism in which silicon nitride is hydrolyzed first and then removed during CMP. Therefore, additives normally used to suppress the SiO 2 removal rate would tend to suppress the S3N4 removal rate as well. However, it was shown that by using a specific type of a cationic polymer in ceria-based dispersions, a low SiO2 removal rate (FinFET fabrication, where a polysilicon layer has to be selectively polished/protected with respect to silicon dioxide and/or silicon nitride layers. Several dispersions were identified which yield tunable removal rates of polysilicon (from <2 nm/min to ˜1 microm/min), silicon dioxide (<2 nm/min to ˜500 nm/min) and silicon nitride (<2 nm/min to ˜120 nm/min) films. This has been made possible by using several additives in ceria and silica based dispersions with and without surface functionalization at different pH values. A fundamental investigation of the interaction of the additive(s) with the abrasives, SiO2 Si3N4, and polysilicon films was also carried out in order to elucidate the removal mechanisms. Zeta potential measurements, UV-Vis Spectroscopy, adsorption isotherms and thermo gravimetric analysis were performed to understand the adsorption behavior of these additives on abrasives and polishing films at different pH values. It was observed that the Ce3+ on the surface of the ceria abrasives is reacting with the silicon dioxide and suboxide on the silicon nitride surfaces during polishing. Also, it appears that electrostatic interactions in conjunction with the reactivity of the active sites on the surface of abrasives play a vital role in determining the removal rates of silicon dioxide, silicon nitride and polysilicon films.

  15. Formation of silicon nanoparticles from high temperature annealed silicon rich silicon oxynitride films

    Science.gov (United States)

    Slaoui, Abdelilah; Ehrhardt, Fabien; Delachat, Florian; Ferblantier, Gérald; Muller, Dominique

    2012-10-01

    Silicon rich silicon oxynitride layers were deposited by ECR-PECVD in order to form silicon nanoparticles upon high thermal annealing at 1100°C. The effect of the gas precursor type and flows on the atomic composition and the structural properties was assessed by RBS and ERDA analysis as well as by Raman spectroscopy. The morphological and crystalline properties of the resulting nanoparticles were investigated by TEM analysis. We have found that the silicon nanoparticules average size and the crystalline fraction depend strongly on the silicon excess in the SiN and SiON layer.

  16. Highly efficient ultrathin-film amorphous silicon solar cells on top of imprinted periodic nanodot arrays

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wensheng, E-mail: yws118@gmail.com; Gu, Min, E-mail: mgu@swin.edu.au [Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Tao, Zhikuo [College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Ong, Thiam Min Brian [Plasma Sources and Application Center, NIE, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore)

    2015-03-02

    The addressing of the light absorption and conversion efficiency is critical to the ultrathin-film hydrogenated amorphous silicon (a-Si:H) solar cells. We systematically investigate ultrathin a-Si:H solar cells with a 100 nm absorber on top of imprinted hexagonal nanodot arrays. Experimental evidences are demonstrated for not only notable silver nanodot arrays but also lower-cost ITO and Al:ZnO nanodot arrays. The measured external quantum efficiency is explained by the simulation results. The J{sub sc} values are 12.1, 13.0, and 14.3 mA/cm{sup 2} and efficiencies are 6.6%, 7.5%, and 8.3% for ITO, Al:ZnO, and silver nanodot arrays, respectively. Simulated optical absorption distribution shows high light trapping within amorphous silicon layer.

  17. Polycrystalline silicon thin-film solar cells with plasmonic-enhanced light-trapping.

    Science.gov (United States)

    Varlamov, Sergey; Rao, Jing; Soderstrom, Thomas

    2012-07-02

    One of major approaches to cheaper solar cells is reducing the amount of semiconductor material used for their fabrication and making cells thinner. To compensate for lower light absorption such physically thin devices have to incorporate light-trapping which increases their optical thickness. Light scattering by textured surfaces is a common technique but it cannot be universally applied to all solar cell technologies. Some cells, for example those made of evaporated silicon, are planar as produced and they require an alternative light-trapping means suitable for planar devices. Metal nanoparticles formed on planar silicon cell surface and capable of light scattering due to surface plasmon resonance is an effective approach. The paper presents a fabrication procedure of evaporated polycrystalline silicon solar cells with plasmonic light-trapping and demonstrates how the cell quantum efficiency improves due to presence of metal nanoparticles. To fabricate the cells a film consisting of alternative boron and phosphorous doped silicon layers is deposited on glass substrate by electron beam evaporation. An Initially amorphous film is crystallised and electronic defects are mitigated by annealing and hydrogen passivation. Metal grid contacts are applied to the layers of opposite polarity to extract electricity generated by the cell. Typically, such a ~2 μm thick cell has a short-circuit current density (Jsc) of 14-16 mA/cm(2), which can be increased up to 17-18 mA/cm(2) (~25% higher) after application of a simple diffuse back reflector made of a white paint. To implement plasmonic light-trapping a silver nanoparticle array is formed on the metallised cell silicon surface. A precursor silver film is deposited on the cell by thermal evaporation and annealed at 23°C to form silver nanoparticles. Nanoparticle size and coverage, which affect plasmonic light-scattering, can be tuned for enhanced cell performance by varying the precursor film thickness and its annealing

  18. Flotation of Metallurgical Grade Silicon and Silicon Metal from Slag by Selective Hydrogen Fluoride-Assisted Flotation

    Science.gov (United States)

    Larsen, E.; Kleiv, R. A.

    2017-12-01

    Flotation experiments performed on metallurgical grade silicon have demonstrated that silicon (Si) can be floated in diluted solutions of hydrogen fluoride (HF) and a frother. The recovery was found to depend on HF conditioning time, frother type, and the concentration of both HF and frother. Although Brij 58 produced the highest recoveries of the frothers that was tested, good recoveries were also obtained for Flotanol C07. Chemical analyses showed that the flotation products were purer than the corresponding feed materials, and that most impurity elements were concentrated in the tailings. A case study on cleaning of slag containing 36 pct metallurgical silicon showed promising results concerning the recovery of silicon by flotation.

  19. Controlled delamination of metal films by hydrogen loading

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Eugen

    2008-11-18

    n this work we quantitatively determine the adhesion energy between metal films and their substrates. Therefore a new controlled buckling technique is established, applying the strong compressive in-plane stress that results in thin films clamped on rigid substrates during hydrogen loading. When the elastic energy stored in the H-loaded thin film exceeds the adhesion energy between film and substrate, delamination occurs. At the onset of delamination, a critical hydrogen concentration, a critical stress value and a critical bending of the substrate are present, which are quantitative measures for the adhesion energy and permit its calculation. As the critical values are determined at the onset of delamination, plastic deformation is negligible, which denies the quantitative determination of adhesion energies in conventional test setups. In multilayer-systems, adhesion energies between substrates and films that hardly absorb hydrogen can be measured by the controlled buckling technique, when the films of interest are coated with hydrogen absorbing films (active layer). The measurements are performed easily and can be repeated under the same test conditions, while variables such as the thickness of the coating materials or the boundary surface structure can be varied and optimized. In this work the adhesion energies of different materials on polycarbonate and niobium on sapphire are investigated. (orig.)

  20. Surface characterization of the atmospheric contamination of hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Charenton, J.C.; Sacher, E.; McIntyre, N.S.

    1988-01-01

    Hydrogenated amorphous silicon (a-Si:H), plasma deposited under positive substrate bias, is shown to undergo atmospheric contamination after removal from the preparation chamber. The contamination rate follows complex-order kinetics and is over within 10/sup 4/ s. Auger spectroscopy depth profiles, obtained through Ar ion etching, are different than those for substrates self-biased during deposition. The same chemical structures appear to exist as are found on crystalline Si surfaces, as is evident from the fact that, when the a-Si:H surface is etched to the point where the Si:C:O ratios are the same as found on crystalline Si, the surface tensions are identical.

  1. Low cost thin film poly-silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This report presents the results of a project to design and develop a high density plasma based thin-film poly-silicon (TFPS) deposition system based on PQL proprietary advanced plasma technology to produce semiconductor quality TFPS for fabricating a TFPS solar cell. Details are given of the TFPS deposition system, the material development programme, solar cell structure, and cell efficiencies. The reproducibility of the deposition process and prospects for commercial exploitation are discussed.

  2. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    Science.gov (United States)

    Patki, Gauri Dilip

    Hydrogen is a promising energy carrier, for use in fuel cells, engines, and turbines for transportation or mobile applications. Hydrogen is desirable as an energy carrier, because its oxidation by air releases substantial energy (thermally or electrochemically) and produces only water as a product. In contrast, hydrocarbon energy carriers inevitably produce CO2, contributing to global warming. While CO2 capture may prove feasible in large stationary applications, implementing it in transportation and mobile applications is a daunting challenge. Thus a zero-emission energy carrier like hydrogen is especially needed in these cases. Use of H2 as an energy carrier also brings new challenges such as safe handling of compressed hydrogen and implementation of new transport, storage, and delivery processes and infrastructure. With current storage technologies, hydrogen's energy per volume is very low compared to other automobile fuels. High density storage of compressed hydrogen requires combinations of high pressure and/or low temperature that are not very practical. An alternative for storage is use of solid light weight hydrogenous material systems which have long durability, good adsorption properties and high activity. Substantial research has been conducted on carbon materials like activated carbon, carbon nanofibers, and carbon nanotubes due to their high theoretical hydrogen capacities. However, the theoretical values have not been achieved, and hydrogen uptake capacities in these materials are below 10 wt. %. In this thesis we investigated the use of silicon for hydrogen generation. Hydrogen generation via water oxidation of silicon had been ignored due to slow reaction kinetics. We hypothesized that the hydrogen generation rate could be improved by using high surface area silicon nanoparticles. Our laser-pyrolysis-produced nanoparticles showed surprisingly rapid hydrogen generation and high hydrogen yield, exceeding the theoretical maximum of two moles of H2 per

  3. Phosphorous and aluminum gettering in Silicon-Film{trademark} Product II material

    Energy Technology Data Exchange (ETDEWEB)

    Cotter, J.E.; Barnett, A.M.; Hall, R.B. [AstroPower, Inc., Newark, DE (United States)] [and others

    1995-08-01

    Gettering processes are being developed for the Silicon-Film{trademark} Product II solar cell structure. These processes have been developed specifically for films of silicon grown on dissimilar substrates with barrier layers. Gettering with both phosphorous- and aluminum-based processing sequences has resulted in enhancement of minority carrier diffusion length. Long diffusion lengths have allowed the characterization of light trapping in thin films of silicon grown on barrier-coated substrates.

  4. High-temperature laser annealing for thin film polycrystalline silicon solar cell on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, A.; Slaoui, A. [InESS-UdS-CNRS, Strasbourg (France); Schneider, J. [CSG Solar AG, Thalheim (Germany); Fraunhofer Centre for Silicon Photovoltaics, Halle (Germany); Dore, J. [CSG Solar AG, Thalheim (Germany); Suntech R and D Australia Pty Ltd, Sydney (Australia); Mermet, F. [IREPA Laser, Strasbourg (France)

    2012-06-15

    Thin film polycrystalline silicon films grown on glass substrate were irradiated with an infrared continuous wave laser for defects annealing and/or dopants activation. The samples were uniformly scanned using an attachment with the laser system. Substrate temperature, scan speed and laser power were varied to find suitable laser annealing conditions. The Raman spectroscopy and Suns-V{sub oc} analysis were carried out to qualify the films quality after laser annealing. A maximum enhancement of the open circuit voltage V{sub oc} of about 100 mV is obtained after laser annealing of as-grown polysilicon structures. A strong correlation was found between the full width half maximum of the Si crystalline peak and V{sub oc}. It is interpreted as due to defects annealing as well as to dopants activation in the absorbing silicon layer. The maximum V{sub oc} reached is 485 mV after laser treatment and plasma hydrogenation, thanks to defects passivation. (orig.)

  5. Pd thin films on flexible substrate for hydrogen sensor

    Energy Technology Data Exchange (ETDEWEB)

    Öztürk, Sadullah [Fatih Sultan Mehmet Vakıf University, Engineering Faculty, Istanbul (Turkey); Kılınç, Necmettin, E-mail: nkilinc@nigde.edu.tr [Nigde University, Mechatronics Engineering Department, 51245 Nigde (Turkey); Nigde University, Nanotechnology Application and Research Center, 51245 Nigde (Turkey)

    2016-07-25

    In this work, palladium (Pd) thin films were prepared via RF sputtering method with various thicknesses (6 nm, 20 nm and 60 nm) on both a flexible substrate and a hard substrate. Hydrogen (H{sub 2}) sensing properties of Pd films on flexible substrate have been investigated depending on temperatures (25–100 °C) and H{sub 2} concentrations (600 ppm – 10%). The effect of H{sub 2} on structural properties of the films was also studied. The films were characterized by Scanning Electron Microscopy (SEM) and X-ray diffraction. It is found that whole Pd films on hard substrate show permanent structural deformation after exposed to 10% H{sub 2} for 30 min. But, this H{sub 2} exposure does not causes any structural deformation for 6 nm Pd film on flexible substrate and 6 nm Pd film on flexible substrate shows reversible sensor response up to 10% H{sub 2} concentration without any structural deformation. On the other hand, Pd film sensors that have the thicknesses 20 nm and 60 nm on flexible substrate are irreversible for higher H{sub 2} concentration (>2%) with film deformation. The sensor response of 6 nm Pd film on flexible substrate increased with increasing H{sub 2} concentration up 4% and then saturated. The sensitivity of the film decreased with increasing operation temperature. - Highlights: • Pd thin films fabricated by RF sputtering on both flexible and hard substrates. • Structural deformation observed for films on hard substrate after exposing 10% H{sub 2}. • 6 nm Pd film on flexible substrate shows reversible sensor response up to 10% H{sub 2}. • H{sub 2} sensing properties of film on flexible substrate investigated depending on temperature and concentration. • The sensitivity of the film decreased with increasing operation temperature.

  6. Silicon nanowires in polymer nanocomposites for photovoltaic hybrid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ben Dkhil, S., E-mail: sadok.bendekhil@gmail.com [Laboratoire Physique des Materiaux, Structures et Proprietes Groupe Physique des Composants et Dispositifs Nanometriques, 7021 Jarzouna, Bizerte (Tunisia); Ingenierie des Materiaux Polymeres, IMP, UMR CNRS 5223, Universite Claude Bernard - Lyon 1, 15, boulevard Latarjet, 69622 Villeurbanne (France); Bourguiga, R. [Laboratoire Physique des Materiaux, Structures et Proprietes Groupe Physique des Composants et Dispositifs Nanometriques, 7021 Jarzouna, Bizerte (Tunisia); Davenas, J. [Ingenierie des Materiaux Polymeres, IMP, UMR CNRS 5223, Universite Claude Bernard - Lyon 1, 15, boulevard Latarjet, 69622 Villeurbanne (France); Cornu, D. [Institut Europeen des Membranes, UMR CNRS 5635, Ecole Nationale superieure de Chimie, Universite de Montpellier, 1919 route de Mende, F34000 Montpellier (France)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Hybrid solar cells based on blends of poly(N-vinylcarbazole) and silicon nanowires have been fabricated. Black-Right-Pointing-Pointer We have investigated the charge transfer between PVK and SiNWs by the way of the quenching of the PVK photoluminescence. Black-Right-Pointing-Pointer The relation between the morphology of the composite thin films and the charge transfer between SiNWs and PVK has been examined. Black-Right-Pointing-Pointer We have investigated the effects of SiNWs concentration on the photovoltaic characteristics leading to the optimization of a critical SiNWs concentration. - Abstract: Hybrid thin films combining the high optical absorption of a semiconducting polymer film and the electronic properties of silicon fillers have been investigated in the perspective of the development of low cost solar cells. Bulk heterojunction photovoltaic materials based on blends of a semiconductor polymer poly(N-vinylcarbazole) (PVK) as electron donor and silicon nanowires (SiNWs) as electron acceptor have been studied. Composite PVK/SiNWs films were cast from a common solvent mixture. UV-visible spectrometry and photoluminescence of the composites have been studied as a function of the SiNWs concentration. Photoluminescence spectroscopy (PL) shows the existence of a critical SiNWs concentration of about 10 wt % for PL quenching corresponding to the most efficient charge pair separation. The photovoltaic (PV) effect has been studied under illumination. The optimum open-circuit voltage V{sub oc} and short-circuit current density J{sub sc} are obtained for 10 wt % SiNWs whereas a degradation of these parameters is observed at higher SiNWs concentrations. These results are correlated to the formation of aggregates in the composite leading to recombination of the photogenerated charge pairs competing with the dissociation mechanism.

  7. Active Oxidation of Liquid Silicon in the Presence of Hydrogen: Extension of the Ratto Model

    Science.gov (United States)

    Vadon, Mathieu; Delannoy, Yves; Chichignoud, Guy

    2017-06-01

    The rate of oxidation of silicon has been studied in the presence of hydrogen, in order to predict the rate of boron removal from liquid silicon in liquid/gas processes where a chemical equilibrium exists at the surface. A new 1D model for the reactive boundary layer above liquid silicon has been developed from existing literature, adding two gaseous species H2 and H2O. The classical model (O2 only) gives a layer of silica aerosol just above the surface, for oxygen pressures above some pascals. Adding some hydrogen, this layer is displaced away from the silicon and vanishes if the hydrogen ratio is sufficient. We applied this model on liquid silicon oxidation experiments with theoretically predicted mass boundary layer thicknesses for impinging jets. The needed thickness to reproduce the experimental purification rate on our plasma process is compatible with our model.

  8. Silicon carbide-based hydrogen gas sensors for high-temperature applications

    National Research Council Canada - National Science Library

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-01-01

    .... In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC...

  9. Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates

    Science.gov (United States)

    de Jong, M. M.

    2013-01-01

    In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic substrates can be a solution. In this thesis, we investigate the possibilities of depositing thin film solar cells directly onto cheap plastic substrates. Micro-textured glass and sheets, which have a wide range of applications, such as in green house, lighting etc, are applied in these solar cells for light trapping. Thin silicon films can be produced by decomposing silane gas, using a plasma process. In these types of processes, the temperature of the growing surface has a large influence on the quality of the grown films. Because plastic substrates limit the maximum tolerable substrate temperature, new methods have to be developed to produce device-grade silicon layers. At low temperature, polysilanes can form in the plasma, eventually forming dust particles, which can deteriorate device performance. By studying the spatially resolved optical emission from the plasma between the electrodes, we can identify whether we have a dusty plasma. Furthermore, we found an explanation for the temperature dependence of dust formation; Monitoring the formation of polysilanes as a function of temperature using a mass-spectrometer, we observed that the polymerization rate is indeed influenced by the substrate temperature. For solar cell substrate material, our choice was polycarbonate (PC), because of its low cost, its excellent transparency and its relatively high glass transition temperature of 130-140°C. At 130°C we searched for deposition recipes for device quality silicon, using a very high frequency plasma enhanced chemical deposition process. By diluting the feedstock silane with hydrogen gas, the silicon quality can be improved for amorphous silicon (a-Si), until we reach the

  10. Fabrication of silicon films from patterned protruded seeds

    Directory of Open Access Journals (Sweden)

    Huang Zeng

    2017-05-01

    Full Text Available Thin, flexible silicon crystals are starting up applications such as light-weighted flexible solar cells, SOI, flexible IC chips, 3D ICs imagers and 3D CMOS imagers on the demand of high performance with low cost. Kerfless wafering technology by direct conversion of source gases into mono-crystalline wafers on reusable substrates is highly cost-effective and feedstock-effective route to cheap wafers with the thickness down to several microns. Here we show a prototype for direct conversion of silicon source gases to wafers by using the substrate with protruded seeds. A reliable and controllable method of wafer-scaled preparation of protruded seed patterns has been developed by filling liquid wax into a rod array as the mask for the selective removal of oxide layer on the rod head. Selectively epitaxial growth is performed on the protruded seeds, and the voidless film is formed by the merging of neighboring seeds through growing. And structured hollows are formed between the grown film and the substrate, which would offer the transferability of the grown film and the reusability of the protruded seeds.

  11. Nanocomposites Based on Polyethylene and Nanocrystalline Silicon Films

    Directory of Open Access Journals (Sweden)

    Olkhov Anatoliy Aleksandrovich

    2014-12-01

    Full Text Available High-strength polyethylene films containing 0.5-1.0 wt. % of nanocrystalline silicon (nc-Si were synthesized. Samples of nc-Si with an average core diameter of 7-10 nm were produced by plasmochemical method and by laser-induced decomposition of monosilane. Spectral studies revealed almost complete (up to ~95 % absorption of UV radiation in 200- 400 nm spectral region by 85 micron thick film if the nc-Si content approaches to 1.0 wt. %. The density function of particle size in the starting powders and polymer films containing immobilized silicon nanocrystallites were obtained using the modeling a complete profile of X-ray diffraction patterns, assuming spherical grains and the lognormal distribution. The results of X-ray analysis shown that the crystallite size distribution function remains almost unchanged and the crystallinity of the original polymer increases to about 10 % with the implantation of the initial nc-Si samples in the polymer matrix.

  12. The effect of hydrogen on the morphology of n-type silicon electrodes under electrochemical conditions

    DEFF Research Database (Denmark)

    Goldar, A.; Roser, S.J.; Caruana, D.

    2001-01-01

    We study the electrochemical roughening of a silicon electrode surface during the hydrogen evolution reaction in a fluoride electrolyte using neutron reflection. We demonstrate that as the roughening process modifies the morphology of the silicon surface we can follow the changes by observing...

  13. Effect of argon flow on promoting boron doping for in-situ grown silicon nitride thin films containing silicon quantum dots

    Science.gov (United States)

    Liu, Jia; Liu, Bin; Zhang, Xisheng; Guo, Xiaojia; (Frank Liu, Shengzhong

    2017-07-01

    Boron-doped silicon nitride thin films (SiNx) containing silicon quantum dots (Si QD) were prepared in situ by plasma enhanced chemical vapor deposition. With the aim of optimizing the performance of thin films, the mixed gas including argon and hydrogen was applied as dilution. The effects of Ar flow on the structural, electrical and optical properties of B-doped SiNx thin films were systemically studied through various characterizations. By tuning the Ar flow, the properties, such as QD size, crystallinity and optical band gap, can be effectively controlled. The B-doping efficiency in thin films was proved to be promoted by introducing moderate Ar flow. The maximum values of dark conductivity (1.52 S cm-1) and carrier concentration (2.41 × 1019 cm-3) were obtained for the B-doped SiNx thin films at the Ar flow of 200 sccm. Furthermore, the mechanism on the promotion in B-doping was illustrated in detail in this paper.

  14. Passivation of cobalt nanocluster assembled thin films with hydrogen

    DEFF Research Database (Denmark)

    Romero, C.P.; Volodin, A.; Di Vece, M.

    2012-01-01

    The effect of hydrogen passivation on bare and Pd capped cobalt nanocluster assembled thin films was studied with Rutherford backscattering spectrometry (RBS) and magnetic force microscopy (MFM) after exposure to ambient conditions. The nanoclusters are produced in a laser vaporization cluster...

  15. Silicon nanomembranes as a means to evaluate stress evolution in deposited thin films

    Science.gov (United States)

    Anna M. Clausen; Deborah M. Paskiewicz; Alireza Sadeghirad; Joseph Jakes; Donald E. Savage; Donald S. Stone; Feng Liu; Max G. Lagally

    2014-01-01

    Thin-film deposition on ultra-thin substrates poses unique challenges because of the potential for a dynamic response to the film stress during deposition. While theoretical studies have investigated film stress related changes in bulk substrates, little has been done to learn how stress might evolve in a film growing on a compliant substrate. We use silicon...

  16. Effects of doping concentration on the microstructural and optoelectrical properties of boron doped amorphous and nanocrystalline silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chao, E-mail: chaosong@hstc.edu.cn; Wang, Xiang; Huang, Rui; Song, Jie; Guo, Yanqing

    2013-10-01

    Boron doped hydrogenated amorphous silicon thin films were prepared by plasma-enhanced chemical vapor deposition technique at various flow rate of diborane (F{sub B}). As-deposited samples were thermally annealed at the temperature of 800 °C to obtain the doped nanocrystalline silicon (nc-Si) films. The effect of boron concentration on the microstructural, optical and electrical properties of the films was investigated. X-ray photoelectron spectroscopy (XPS) measurements demonstrated the presence of the substitutional boron in the doped films. It was found that thermal annealing can efficiently activate the dopants in films accompanying with formation of nc-Si grains. Based on the temperature-dependent conductivity measurements, it was shown that the dark conductivity of doped amorphous samples increases monotonously with the increase of doping content. While the dark conductivity of doped nc-Si films is not only determined by the concentration of dopant but also the crystallinity of the films. As increasing the flow rate of diborane, the crystallinity of doped nc-Si films decreases, which causes the decrease of dark conductivity. Finally, the high dark conductivity of 178.68 S cm{sup −1} of the B-doped nc-Si thin films can be obtained. - Highlights: • The crystallized fraction decreases as increasing the flow rate of diborane. • Dark conductivity of amorphous films increases with increase of doping content. • High conductivity of 178.68 S cm{sup −1} of B-doped nc-Si film is obtained.

  17. Effect of power on growth of nanocrystalline silicon films deposited by VHF PECVD technique for solar cell applications

    Science.gov (United States)

    Juneja, Sucheta; Verma, Payal; Savelyev, Dmitry A.; Khonina, Svetlana N.; Sudhakar, S.; Kumar, Sushil

    2016-04-01

    An investigation of the effect of power on the deposition of nanocrystalline silicon thin films were carried out using a gaseous mixture of silane and hydrogen in the 60MHz assisted VHF plasma enhanced chemical vapor deposition (PECVD) technique. The power was varied from 10 to 50 watt maintaining all other parameters constant. Corresponding layer properties w.r.t. material microstructure, optical, hydrogen content and electrical transport are studied in detail. The structural properties have been studied by Raman spectroscopy and x-ray diffraction (XRD). The presence of nano-sized crystals and their morphology have been investigated using atomic force microscopy (AFM). The role of bonded hydrogen content in the films have been studied from the results of Fourier transform infrared spectroscopy. It was observed from the results that with increase in power, crystalline volume fraction increases and crystallite size changes from 4 to 9 nm. The optical band gap varies from 1.7 to 2.1eV due to quantum confinement effect and which further can be explained with reduced hydrogen content. These striking features of nc-Si films can be used to fabricate stable thin film solar cells.

  18. Silicon-Film{trademark} Solar Cells by a Flexible Manufacturing System

    Energy Technology Data Exchange (ETDEWEB)

    Culik, J. S.; Rand, J. A.; Bai, Y.; Bower, J. R.; Cummings, J. R.; Goncharovsky, I.; Jonczyk, R.; Sims, P. E.; Hall, R. B.; Barnett, A. M.

    1999-09-13

    AstroPower is developing a manufacturing process for Silicon-Film{trademark} solar cell production under the Photovoltaic Manufacturing Technology (PVMaT) cost-share program. This document reports on results from the first phase of a three-phase effort. Progress is reported on developing new procedures and equipment for in-line wet-chemical processes, metallization processes, sheet fabrication, solar cell processing, module assembly, solar cell testing, metallurgical-grade silicon purification, and recycling of Silicon-Film{trademark} sheet materials. Future concepts and goals for the Silicon-Film{trademark} process are also discussed.

  19. Characterization of nanocrystalline silicon germanium film and nanotube in adsorption gas by Monte Carlo and Langevin dynamic simulation

    Directory of Open Access Journals (Sweden)

    M. Monajjemi

    2008-08-01

    Full Text Available The nanocrystalline silicon-germanium films (Si/Ge and Si/Ge nanotubes have low band gaps and high carrier mobility, thus offering appealing potential for absorbing gas molecules. Interaction between hydrogen molecules and bare as well as functionalized Si/Ge nanofilm and nanotube was investigated using Monte Carlo (MC and Langevin dynamic (LD simulation methods. It was found that the binding energy of the H2 on the Si/Ge surface is weak, and be enhanced by increasing curvature of surface to tube form and increasing temperature. The structural, total energy and energy band gaps of H2 absorbed nanocrystalline silicon germanium film (Si/Ge and as it passes through Si/Ge nanotube was also studied. They are computed with MC and LD simulation the methods at different temperatures. All the calculations were carried out using HyperChem 7.0 program package.

  20. Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, P. [National Isotope Centre, GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Becker, H.-W. [RUBION, Ruhr-University Bochum (Germany); Williams, G.V.M. [The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Hübner, R.; Heinig, K.-H. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Markwitz, A., E-mail: a.markwitz@gns.cri.nz [National Isotope Centre, GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand)

    2017-03-01

    Highlights: • This paper reports for the first time redistribution of hydrogen atoms in diamond like carbon thin films during ion implantation of low energy magnetic ions. • The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. • Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications. - Abstract: Hydrogenated diamond-like carbon films produced by C{sub 3}H{sub 6} deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.

  1. From amorphous to nanocrystalline: the effect of nanograins in an amorphous matrix on the thermal conductivity of hot-wire chemical-vapor deposited silicon films

    Science.gov (United States)

    Kearney, B. T.; Jugdersuren, B.; Queen, D. R.; Metcalf, T. H.; Culbertson, J. C.; Desario, P. A.; Stroud, R. M.; Nemeth, W.; Wang, Q.; Liu, Xiao

    2018-02-01

    We have measured the thermal conductivity of amorphous and nanocrystalline silicon films with varying crystalline content from 85 K to room temperature. The films were prepared by the hot-wire chemical-vapor deposition, where the crystalline volume fraction is determined by the hydrogen (H2) dilution ratio to the processing silane gas (SiH4), R  =  H2/SiH4. We varied R from 1 to 10, where the films transform from amorphous for R  conductivities of the two amorphous silicon films are similar and consistent with the most previous reports with thicknesses no larger than a few μm deposited by a variety of techniques. The thermal conductivities of the three nanocrystalline silicon films are also similar, but are about 50–70% higher than those of their amorphous counterparts. The heat conduction in nanocrystalline silicon films can be understood as the combined contribution in both amorphous and nanocrystalline phases, where increased conduction through improved nanocrystalline percolation path outweighs increased interface scattering between silicon nanocrystals and the amorphous matrix.

  2. From Amorphous to Nanocrystalline: The Effect of Nanograins in Amorphous Matrix on the Thermal Conductivity of Hot-Wire Chemical-Vapor Deposited Silicon Films

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, William M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kearney, B. T. [Naval Research Laboratory; Jugdersuren, B. [Sotera Defense Solutions Inc.; Queen, D. R. [Naval Research Laboratory; Metcalf, Thomas H. [Naval Research Laboratory; Culbertson, J. C. [Naval Research Laboratory; Desario, P. A. [Naval Research Laboratory; Stroud, R. M. [Naval Research Laboratory; Wang, Q. [Formerly NREL; Liu, Xiao [Naval Research Laboratory

    2017-12-28

    We have measured the thermal conductivity of amorphous and nanocrystalline silicon films with varying crystalline content from 85K to room temperature. The films were prepared by the hot-wire chemical-vapor deposition, where the crystalline volume fraction is determined by the hydrogen (H2) dilution ratio to the processing silane gas (SiH4), R=H2/SiH4. We varied R from 1 to 10, where the films transform from amorphous for R < 3 to mostly nanocrystalline for larger R. Structural analyses show that the nanograins, averaging from 2 to 9nm in sizes with increasing R, are dispersed in the amorphous matrix. The crystalline volume fraction increases from 0 to 65% as R increases from 1 to 10. The thermal conductivities of the two amorphous silicon films are similar and consistent with the most previous reports with thicknesses no larger than a few um deposited by a variety of techniques. The thermal conductivities of the three nanocrystalline silicon films are also similar, but are about 50-70% higher than those of their amorphous counterparts. The heat conduction in nanocrystalline silicon films can be understood as the combined contribution in both amorphous and nanocrystalline phases, where increased conduction through improved nanocrystalline percolation path outweighs increased interface scattering between silicon nanocrystals and the amorphous matrix.

  3. Laser direct writing of oxide structures on hydrogen-passivated silicon surfaces

    DEFF Research Database (Denmark)

    Müllenborn, Matthias; Birkelund, Karen; Grey, Francois

    1996-01-01

    on amorphous and crystalline silicon surfaces in order to determine the depassivation mechanism. The minimum linewidth achieved is about 450 nm using writing speeds of up to 100 mm/s. The process is fully compatible with local oxidation of silicon by scanning probe lithography. Wafer-scale patterns can......A focused laser beam has been used to induce oxidation of hydrogen-passivated silicon. The scanning laser beam removes the hydrogen passivation locally from the silicon surface, which immediately oxidizes in air. The process has been studied as a function of power density and excitation wavelength...... be generated by laser direct oxidation and complemented with nanometer resolution by scanning probe techniques. The combined micro- and nanoscale pattern can be transferred to the silicon in a single etching step by either wet or dry etching techniques. (C) 1996 American Institute of Physics....

  4. Characterization of amorphous hydrogenated carbon films ...

    Indian Academy of Sciences (India)

    sp3 fraction. References. Buijnsters J G, Camero M and Vazquez L 2006 Phys. Rev. B74. 155417. Chowdhury S, Laugier M T and Rahman I Z 2004 Thin Solid Films. 468 149. Clin M, Durand-Drouhin O, Zeinert A and Picot J C 1999 Dia. Relat. Mater. 8 527. Dai H Y, Wang L W, Jiang H and Huang N K 2007 Chin. Phys. Lett.

  5. Lithographically patterned silicon nanostructures on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Megouda, Nacera [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Universite Lille1, Parc de la Haute Borne, 50 Avenue de Halley-BP 70478, 59658 Villeneuve d' Ascq and Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, CNRS-8520), Cite Scientifique, Avenue Poincare-B.P. 60069, 59652 Villeneuve d' Ascq (France); Faculte des Sciences, Universite Mouloud Mammeri, Tizi-Ouzou (Algeria); Unite de Developpement de la Technologie du Silicium (UDTS), 2 Bd. Frantz Fanon, B.P. 140 Alger-7 merveilles, Alger (Algeria); Piret, Gaeelle; Galopin, Elisabeth; Coffinier, Yannick [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Universite Lille1, Parc de la Haute Borne, 50 Avenue de Halley-BP 70478, 59658 Villeneuve d' Ascq and Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, CNRS-8520), Cite Scientifique, Avenue Poincare-B.P. 60069, 59652 Villeneuve d' Ascq (France); Hadjersi, Toufik, E-mail: hadjersi@yahoo.com [Unite de Developpement de la Technologie du Silicium (UDTS), 2 Bd. Frantz Fanon, B.P. 140 Alger-7 merveilles, Alger (Algeria); Elkechai, Omar [Faculte des Sciences, Universite Mouloud Mammeri, Tizi-Ouzou (Algeria); and others

    2012-06-01

    The paper reports on controlled formation of silicon nanostructures patterns by the combination of optical lithography and metal-assisted chemical dissolution of crystalline silicon. First, a 20 nm-thick gold film was deposited onto hydrogen-terminated silicon substrate by thermal evaporation. Gold patterns (50 {mu}m Multiplication-Sign 50 {mu}m spaced by 20 {mu}m) were transferred onto the silicon wafer by means of photolithography. The etching process of crystalline silicon in HF/AgNO{sub 3} aqueous solution was studied as a function of the silicon resistivity, etching time and temperature. Controlled formation of silicon nanowire arrays in the unprotected areas was demonstrated for highly resistive silicon substrate, while silicon etching was observed on both gold protected and unprotected areas for moderately doped silicon. The resulting layers were characterized using scanning electron microscopy (SEM).

  6. Hydrogen shielding film with self-healing function coated on stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, K.; Yamazaki, T.; Ikeshoji, T.T.; Suzumura, A.; Noko, M. [Tokyo Inst. of Technology, Tokyo (Japan)

    2007-07-01

    It is important to prevent hydrogen gas from permeating through stainless steel substances, and especially from penetrating into them In order to establish infrastructure for hydrogen energy resource. Characteristics of hydrogen permeation for the 316 stainless steel with different surface coating films are investigated in this study. Examined surfaces are natural iron and chromium oxide films, chromium oxide films formed by low concentrated oxygen, and carbon films. The low concentrated oxide films and carbon films were deposited by glow discharge plasma after annealing and ion sputter cleaning. A stationary hydrogen flux from the stainless steel surface was measured by using a system with an orifice. The pressure difference of the specimen was maintained to be constant by controlling the gas flow rate from the orifice in low pressure vessel. The calculated value of hydrogen permeability, K, for natural oxide films on the 316 stainless steel substrate was 0.75 x 10{sup -12}. It was 2.37 times smaller than that of the chromium oxide films. The natural oxide film is considered to play the desorption-role as a hydrogen shielding film rather than adsorption-role, since the specimen with carbon film on high pressure side and natural oxide film on low pressure side had lower hydrogen permeation than the inverted specimen setting. Throughout these experiments, it had come up that the diamond-like carbon film would function as an effective hydrogen shielding film. It is also expected for the film to have a self-healing capacity when it is used under hydrogenous ambient. Small defects for hydrogen gas in the films might be healed promptly with replenishing hydrogen atoms from the atmosphere. We also attempted the hydrogen permeation test for this film, and high performance was obtained. Self-healing possibility was also indicated for this film over these permeation tests. (orig.)

  7. Sputter-deposited low reflectance vanadium oxide-molybdenum oxide thin films on silicon

    Science.gov (United States)

    Nayak, Manish Kumar; Esther, A. Carmel Mary; Bera, Parthasarathi; Dey, Arjun

    2017-09-01

    A single layer antireflective, smart, crystalline and nanocolumnar pulsed RF magnetron sputtered vanadium oxide-molybdenum oxide thin film on silicon is proposed for the alternate antireflective material for silicon based futuristic solar cell application. The VO-MO film with 130 nm thickness grown at 200 W shows significant low reflectance (1% within the 500-600 nm region). The VO-MO film with lowest reflectance shows a phase transition at around 55 °C which is beneficial due to film inherent variable IR emittance behaviour which may be helpful for eliminating excess heat load generated during in-service of silicon solar cell.

  8. Spray Pyrolyzed Polycrystalline Tin Oxide Thin Film as Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    Ganesh E. Patil

    2010-09-01

    Full Text Available Polycrystalline tin oxide (SnO2 thin film was prepared by using simple and inexpensive spray pyrolysis technique (SPT. The film was characterized for their phase and morphology by X-ray diffraction (XRD and scanning electron microscopy (SEM, respectively. The crystallite size calculated from the XRD pattern is 84 nm. Conductance responses of the polycrystalline SnO2 were measured towards gases like hydrogen (H2, liquefied petroleum gas (LPG, ethanol vapors (C2H5OH, NH3, CO, CO2, Cl2 and O2. The gas sensing characteristics were obtained by measuring the sensor response as a function of various controlling factors like operating temperature, operating voltages (1 V, 5 V, 10 V 15 V, 20 V and 25 V and concentration of gases. The sensor response measurement showed that the SnO2 has maximum response to hydrogen. Furthermore; the SnO2 based sensor exhibited fast response and good recovery towards hydrogen at temperature 150 oC. The result of response towards H2 reveals that SnO2 thin film prepared by SPT would be a suitable material for the fabrication of the hydrogen sensor.

  9. Plasmonic properties of gold nanoparticles covered by silicon suboxide thin film

    Science.gov (United States)

    Baranov, Evgeniy; Zamchiy, Alexandr; Safonov, Aleksey; Starinskiy, Sergey; Khmel, Sergey

    2017-10-01

    The optical properties of nanocomposite material consisting of gold nanoparticles without/with silicon suboxide thin film were obtained. The gold film was deposited by thermal vacuum evaporation and then it was annealed in a vacuum chamber to form gold nanoparticles. The silicon suboxide thin films were deposited by the gas-jet electron beam plasma chemical vapor deposition method. The intensity of the localized surface plasmon resonance increased and the plasmon maximum peak shifted from 520 nm to 537 nm.

  10. Crystallization of Electrodeposited Germanium Thin Film on Silicon (100).

    Science.gov (United States)

    Abidin, Mastura Shafinaz Zainal; Matsumura, Ryo; Anisuzzaman, Mohammad; Park, Jong-Hyeok; Muta, Shunpei; Mahmood, Mohamad Rusop; Sadoh, Taizoh; Hashim, Abdul Manaf

    2013-11-06

    We report the crystallization of electrodeposited germanium (Ge) thin films on n-silicon (Si) (100) by rapid melting process. The electrodeposition was carried out in germanium (IV) chloride: propylene glycol (GeCl₄:C₃H₈O₂) electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD) images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA) at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm-1 corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm-1 corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES) reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.

  11. Crystallization of Electrodeposited Germanium Thin Film on Silicon (100

    Directory of Open Access Journals (Sweden)

    Abdul Manaf Hashim

    2013-11-01

    Full Text Available We report the crystallization of electrodeposited germanium (Ge thin films on n-silicon (Si (100 by rapid melting process. The electrodeposition was carried out in germanium (IV chloride: propylene glycol (GeCl4:C3H8O2 electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm−1 corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm−1 corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.

  12. Comparing n- and p-type polycrystalline silicon absorbers in thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Deckers, J. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); ESAT, KU Leuven, Kardinaal Mercierlaan 94, B-3001 Heverlee, Leuven (Belgium); Bourgeois, E. [Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Jivanescu, M. [Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Leuven (Belgium); Abass, A. [Photonics Research Group (INTEC), Ghent University-imec, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); Van Gestel, D.; Van Nieuwenhuysen, K.; Douhard, B. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); D' Haen, J.; Nesladek, M.; Manca, J. [Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Gordon, I.; Bender, H. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); Stesmans, A. [Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Leuven (Belgium); Mertens, R.; Poortmans, J. [imec, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); ESAT, KU Leuven, Kardinaal Mercierlaan 94, B-3001 Heverlee, Leuven (Belgium)

    2015-03-31

    We have investigated fine grained polycrystalline silicon thin films grown by direct chemical vapor deposition on oxidized silicon substrates. More specifically, we analyze the influence of the doping type on the properties of this model polycrystalline silicon material. This includes an investigation of defect passivation and benchmarking of minority carrier properties. In our investigation, we use a variety of characterization techniques to probe the properties of the investigated polycrystalline silicon thin films, including Fourier Transform Photoelectron Spectroscopy, Electron Spin Resonance, Conductivity Activation, and Suns-Voc measurements. Amphoteric silicon dangling bond defects are identified as the most prominent defect type present in these layers. They are the primary recombination center in the relatively lowly doped polysilicon thin films at the heart of the current investigation. In contrast with the case of solar cells based on Czochralski silicon or multicrystalline silicon wafers, we conclude that no benefit is found to be associated with the use of n-type dopants over p-type dopants in the active absorber of the investigated polycrystalline silicon thin-film solar cells. - Highlights: • Comparison of n- and p-type absorbers for thin-film poly-Si solar cells • Extensive characterization of the investigated layers' characteristics • Literature review pertaining the use of n-type and p-type dopants in silicon.

  13. Mechanical and electrical properties of RF magnetron sputter deposited amorphous silicon-rich silicon nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dergez, D.; Schneider, M., E-mail: michael.schneider@tuwien.ac.at; Bittner, A.; Pawlak, N.; Schmid, U.

    2016-05-01

    Amorphous silicon nitride thin films in a thickness range of 40 to 500 nm are deposited onto (100) silicon wafers using radio frequency magnetron sputter deposition. Analysis of variance techniques are used to determine which deposition parameter has a significant impact on the film properties. The biaxial stress of the layers is found to be compressive independent of the plasma chamber pressure levels and to increase with increasing plasma power. The chemical composition of the films is silicon-rich, resulting in an index of refraction (IOR) of 2.55 independent of deposition conditions. Both IOR and X-ray photoelectron spectroscopy measurements indicate a nitrogen to silicon ratio in the range of 0.71–0.85. The etch rates for HF wet chemical etching and for CF{sub 4}:O{sub 2} reactive ion etching are found to be much higher compared to direct current sputter deposited silicon nitride films with only a weak dependency on the deposition conditions. Temperature dependent leakage current measurements using Au/Cr/SiN{sub x}/Si structures between 25 and 300 °C show two dominating leakage current mechanisms: ohmic conduction dominates at low applied electric field values below 0.1 MV/cm and Poole–Frenkel type conduction above 0.3 MV/cm. The extracted electrical parameters such as the activation energy or the barrier height are found to be nearly unaffected by the deposition parameters. - Highlights: • RF reactive sputter deposited Si-rich silicon nitride thin films are investigated. • Deposition conditions show nearly no impact on film stress or chemical composition. • Wet and dry etch rates decrease with increasing process chamber pressure levels. • Electrical behaviour is dependent on film thickness, but not on deposition conditions.

  14. Thin film silicon modules: contributions to low cost industrial production

    Energy Technology Data Exchange (ETDEWEB)

    Shah, A. [Universite de Neuchatel, Neuchatel (Switzerland)

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) discusses the research work done during the two-year period 2003-04 at the Thin-Film Solar Cell Laboratory of the Institute of Microtechnology (IMT) at the University of Neuchatel in Switzerland. The transition from fundamental research work to concrete industrialisation issues, and changes within the research staff are discussed. The main results of the work done are presented, including basic techniques for the production of p-i-n solar cells on glass, new technologies for the deposition of n-i-p cells on low-cost flexible substrates and the optimisation of zinc oxide deposition methods. The key role played by substrate chemistry and roughness in the nucleation and growth of micro-crystalline silicon layers is looked at and diagnostic tools for the analysis of micro-crystalline solar cells are discussed.

  15. Hydrogen response of porous palladium nano-films

    Science.gov (United States)

    Gupta, D.; Barman, P. B.; Hazra, S. K.

    2015-08-01

    Palladium nanoparticles were synthesized by reducing sodium tetrachloropalladate at 100°C using Ethylene Glycol as reducing agent. The nanoparticles were characterized by TEM (Transmission Electron Microscopy), and optical absorption spectroscopy. The average particle size (films were prepared by drying the nanoparticles precipitate on cleaned glass substrates. The high porosity of these films, as revealed by Atomic Force Microscopy (AFM) studies, made these films suitable for hydrogen sensor applications. The resistance of the films, measured by making silver paste contacts on the porous surface, changed upon exposure to 1000 ppm hydrogen in nitrogen. Optimum sensor response was obtained at 50°C, beyond which it deteriorated. The total response comprising of initial rise and subsequent fall in resistance, is due to the formation of Pd-hydrides (whose resistivity is higher relative to Pd), and closure of interparticle gaps due to lattice expansion of palladium, respectively. A detailed analysis of the results based on the sensing mechanism has been discussed in the paper.

  16. Silicon-Light: a European FP7 Project Aiming at High Efficiency Thin Film Silicon Solar Cells on Foil

    DEFF Research Database (Denmark)

    Soppe, W.; Haug, F.-J.; Couty, P.

    2011-01-01

    calculations of ideal nanotextures for light trapping in thin film silicon solar cells; the fabrication of masters and the replication and roll-to-roll fabrication of these nanotextures. Further, results on ITO variants with improved work function are presented. Finally, the status of cell fabrication on foils......Silicon-Light is a European FP7 project, which started January 1st, 2010 and aims at development of low cost, high-efficiency thin film silicon solar cells on foil. Three main routes are explored to achieve these goals: a) advanced light trapping by implementing nanotexturization through UV Nano...... with nanotexture is shown. Microcrystalline and amorphous silicon single junction cells with stable efficiencies with more than 8 % have been made, paving the way towards a-Si/ c-Si tandem cells with more than 11% efficiency....

  17. Photo-excited hot carrier dynamics in hydrogenated amorphous silicon imaged by 4D electron microscopy

    Science.gov (United States)

    Liao, Bolin; Najafi, Ebrahim; Li, Heng; Minnich, Austin J.; Zewail, Ahmed H.

    2017-09-01

    Charge carrier dynamics in amorphous semiconductors has been a topic of intense research that has been propelled by modern applications in thin-film solar cells, transistors and optical sensors. Charge transport in these materials differs fundamentally from that in crystalline semiconductors owing to the lack of long-range order and high defect density. Despite the existence of well-established experimental techniques such as photoconductivity time-of-flight and ultrafast optical measurements, many aspects of the dynamics of photo-excited charge carriers in amorphous semiconductors remain poorly understood. Here, we demonstrate direct imaging of carrier dynamics in space and time after photo-excitation in hydrogenated amorphous silicon (a-Si:H) by scanning ultrafast electron microscopy (SUEM). We observe an unexpected regime of fast diffusion immediately after photoexcitation, together with spontaneous electron-hole separation and charge trapping induced by the atomic disorder. Our findings demonstrate the rich dynamics of hot carrier transport in amorphous semiconductors that can be revealed by direct imaging based on SUEM.

  18. Superefficient thin film multilayer catalyst for generating hydrogen from sodium borohydride

    Science.gov (United States)

    Hu, Lunghao; Ceccato, R.; Raj, R.

    A multilayer catalyst consisting of a electrophoretically deposited thin film of carbon nanotubes (CNTs) on a substrate of carbon fibers, followed by a coating of polymer-derived silicon carbonitride (SiCN), which is then decorated with a monolayer of transition metals is shown to perform at the upperbound of the phenomemological prediction from an earlier work [1]. A figure-of-merit for first order kinetics is equal to 4600 L min -1 [NaBH 4] -1 g met -1, which is nearly 30 times the value reported in literature, is achieved. This high FOM is attributed to the CNT-thin film, as opposed to the thick CNT-paper used in previous work, thus needing merely 0.15 wt% quantities of precious metals for effective catalysis. This new architecture corroborates the concepts that: (i) the catalytic activity derives mainly from the surface of the CNT substrate, and (ii) the silicon carbonitride interlayer is instrumental in dispersing the transition metals into a monolayer. The hydrogen generation rate (HGR) for zero order kinetics, which is obtained when [NaBH 4] > 0.03 M, is measured to be 75 L min -1 g met -1, which is among the higher values reported in the literature. The present multilayer catalysts are able to perform without fading for many cycles, presumably because the bondings in the substrate are predominantly covalent. This feature adds further uniqueness to this multilayer catalyst.

  19. Synthesis of Ag-doped hydrogenated carbon thin films by a hybrid ...

    Indian Academy of Sciences (India)

    At higher Ar concentration in plasma, Ag content increased whereas deposition rate of the film decreased. FTIR study showed that the films contained a significant amount of hydrogen and, as a result of an increase in the Ag content in the hydrogenated DLC film, s p 2 bond content also increased. The TEM cross sectional ...

  20. Water Splitting Using Porous Silicon Photo-electrodes for Hydrogen Production

    Science.gov (United States)

    Ali, M.; Starkov, V. V.; Gosteva, E. A.; Druzhinin, A. V.; Sattar, S.

    2017-11-01

    This paper presents the efficiency study results of using gradient-porous silicon structures with different morphology, as photo-anodes for photo-electrochemical dissociation of water. The results of a study of the physicochemical properties of gradient-porous silicon structures show the relatively low cost and simplicity of the technological process, as well as the possibility of forming structures with predefined properties, allow the creation of effective devices for artificial photosynthesis based on porous silicon for subsequent use in hydrogen energy.

  1. Conformational study of protein interactions with hydrogen-passivated amorphous silicon surfaces: Effect of pH

    Science.gov (United States)

    Brahmi, Yamina; Filali, Larbi; Sib, Jamal Dine; Bouhekka, Ahmed; Benlakehal, Djamel; Bouizem, Yahya; Kebab, Aissa; Chahed, Larbi

    2017-11-01

    The adsorption of Bovine Serum Albumin (BSA) proteins on amorphous silicon (a-Si) surfaces was studied with respect to solution pH. Thin films of a-Si were deposited using radio-frequency magnetron sputtering at room temperature and then treated in a hydrogen ambient to form a hydrogenated a-Si surface layer (a-Si:H). The interactions of the as-deposited and hydrogenated surfaces with the proteins at neutral, acidic, and basic environments was probed by means of Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy, Spectroscopic Ellipsometry (SE), and Atomic Force Microscopy (AFM), to study the influence of the charge of proteins on their adsorption and conformation on the a-Si:H surface, compared with the a-Si surface. The results show that the charge of the proteins has a significant effect on their interactions with these two substrates but in dissimilar ways. For the as-deposited substrate, these interactions are predictably coulombic since the surface is charged. For the hydrogenated substrate, the adsorption of the proteins depends on their conformation which is heavily affected by pH, and the size of their footprint (adsorption mode) on the surface.

  2. Dealloyed Ruthenium Film Catalysts for Hydrogen Generation from Chemical Hydrides

    Directory of Open Access Journals (Sweden)

    Ramis B. Serin

    2017-07-01

    Full Text Available Thin-film ruthenium (Ru and copper (Cu binary alloys have been prepared on a Teflon™ backing layer by cosputtering of the precious and nonprecious metals, respectively. Alloys were then selectively dealloyed by sulfuric acid as an etchant, and their hydrogen generation catalysts performances were evaluated. Sputtering time and power of Cu atoms have been varied in order to tailor the hydrogen generation performances. Similarly, dealloying time and the sulfuric acid concentration have also been altered to tune the morphologies of the resulted films. A maximum hydrogen generation rate of 35 mL min−1 was achieved when Cu sputtering power and time were 200 W and 60 min and while acid concentration and dealloying time were 18 M and 90 min, respectively. It has also been demonstrated that the Ru content in the alloy after dealloying gradually increased with the increasing the sputtering power of Cu. After 90 min dealloying, the Ru to Cu ratio increased to about 190 times that of bare alloy. This is the key issue for observing higher catalytic activity. Interestingly, we have also presented template-free nanoforest-like structure formation within the context of one-step alloying and dealloying used in this study. Last but not least, the long-time hydrogen generation performances of the catalysts system have also been evaluated along 3600 min. During the first 600 min, the catalytic activity was quite stable, while about 24% of the catalytic activity decayed after 3000 min, which still makes these systems available for the development of robust catalyst systems in the area of hydrogen generation.

  3. High-frequency conductivity of optically excited charge carriers in hydrogenated nanocrystalline silicon investigated by spectroscopic femtosecond pump–probe reflectivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    He, Wei [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom); Yurkevich, Igor V. [Aston University, Nonlinearity and Complexity Research Group, Birmingham B4 7ET (United Kingdom); Zakar, Ammar [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom); Kaplan, Andrey, E-mail: a.kaplan.1@bham.ac.uk [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom)

    2015-10-01

    We report an investigation into the high-frequency conductivity of optically excited charge carriers far from equilibrium with the lattice. The investigated samples consist of hydrogenated nanocrystalline silicon films grown on a thin film of silicon oxide on top of a silicon substrate. For the investigation, we used an optical femtosecond pump–probe setup to measure the reflectance change of a probe beam. The pump beam ranged between 580 and 820 nm, whereas the probe wavelength spanned 770 to 810 nm. The pump fluence was fixed at 0.6 mJ/cm{sup 2}. We show that at a fixed delay time of 300 fs, the conductivity of the excited electron–hole plasma is described well by a classical conductivity model of a hot charge carrier gas found at Maxwell–Boltzmann distribution, while Fermi–Dirac statics is not suitable. This is corroborated by values retrieved from pump–probe reflectance measurements of the conductivity and its dependence on the excitation wavelength and carrier temperature. The conductivity decreases monotonically as a function of the excitation wavelength, as expected for a nondegenerate charge carrier gas. - Highlights: • We study high‐frequency conductivity of excited hydrogenated nanocrystalline silicon. • Reflectance change was measured as a function of pump and probe wavelength. • Maxwell–Boltzmann transport theory was used to retrieve the conductivity. • The conductivity decreases monotonically as a function of the pump wavelength.

  4. Kinetic Monte Carlo study on the evolution of silicon surface roughness under hydrogen thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gang; Wang, Yu; Wang, Junzhuan; Pan, Lijia; Yu, Linwei; Zheng, Youdou; Shi, Yi, E-mail: yshi@nju.edu.cn

    2017-08-31

    Highlights: • The KMC method is adopted to investigate the relationships between surface evolution and hydrogen thermal treatment conditions. • The reduction in surface roughness is divided into two stages at relatively low temperatures, both exhibiting exponential dependence on the time. • The optimized surface structure can be obtained by precisely adjusting thermal treatment temperatures and hydrogen pressures. - Abstract: The evolution of a two-dimensional silicon surface under hydrogen thermal treatment is studied by kinetic Monte Carlo simulations, focusing on the dependence of the migration behaviors of surface atoms on both the temperature and hydrogen pressure. We adopt different activation energies to analyze the influence of hydrogen pressure on the evolution of surface morphology at high temperatures. The reduction in surface roughness is divided into two stages, both exhibiting exponential dependence on the equilibrium time. Our results indicate that a high hydrogen pressure is conducive to obtaining optimized surfaces, as a strategy in the applications of three-dimensional devices.

  5. On the Mechanisms of Hydrogen Implantation Induced Silicon Surface Layer Cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Hochbauer, Tobias [Univ. of Marburg (Germany)

    2001-11-01

    The “Ion-Cut”, a layer splitting process by hydrogen ion implantation and subsequent annealing is a versatile and efficient technique of transferring thin silicon surface layers from bulk substrates onto other substrates, thus enabling the production of silicon-oninsulator (SOI) materials. Cleavage is induced by the coalescence of the highly pressurized sub-surface H2-gas bubbles, which form upon thermal annealing. A fundamental understanding of the basic mechanisms on how the cutting process occurs is still unclear, inhibiting further optimization of the Ion-Cut process. This work elucidates the physical mechanisms behind the Ion-Cut process in hydrogen-implanted silicon. The investigation of the cleavage process reveals the cut to be largely controlled by the lattice damage, generated by the hydrogen ion irradiation process, and its effects on the local stress field and the fracture toughness within the implantation zone rather than by the depth of maximum H-concentration. Furthermore, this work elucidates the different kinetics in the H-complex formations in silicon crystals with different conductivity types, and examines the mechanically induced damage accumulation caused by the crack propagation through the silicon sample in the splitting step of the Ion-Cut process. Additionally, the influence of boron pre-implantation on the Ion-Cut in hydrogen implanted silicon is investigated. These studies reveal, that both, the atomic interaction between the boron implant and the hydrogen implant and the shift of the Fermi level due to the electrical activation of the implanted boron have a tremendous enhancing effect on the Ion-Cut process.

  6. On the Mechanisms of Hydrogen Implantation Induced Silicon Surface Layer Cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Hochbauer, Tobias Franz [Univ. of Marburg (Germany)

    2002-08-01

    The “Ion-Cut”, a layer splitting process by hydrogen ion implantation and subsequent annealing is a versatile and efficient technique of transferring thin silicon surface layers from bulk substrates onto other substrates, thus enabling the production of silicon-oninsulator (SOI) materials. Cleavage is induced by the coalescence of the highly pressurized sub-surface H2-gas bubbles, which form upon thermal annealing. A fundamental understanding of the basic mechanisms on how the cutting process occurs is still unclear, inhibiting further optimization of the Ion-Cut process. This work elucidates the physical mechanisms behind the Ion-Cut process in hydrogen-implanted silicon. The investigation of the cleavage process reveals the cut to be largely controlled by the lattice damage, generated by the hydrogen ion irradiation process, and its effects on the local stress field and the fracture toughness within the implantation zone rather than by the depth of maximum H-concentration. Furthermore, this work elucidates the different kinetics in the H-complex formations in silicon crystals with different conductivity types, and examines the mechanically induced damage accumulation caused by the crack propagation through the silicon sample in the splitting step of the Ion-Cut process. Additionally, the influence of boron pre-implantation on the Ion-Cut in hydrogen implanted silicon is investigated. These studies reveal, that both, the atomic interaction between the boron implant and the hydrogen implant and the shift of the Fermi level due to the electrical activation of the implanted boron have a tremendous enhancing effect on the Ion-Cut process.

  7. The role of grain boundaries in the mechanism of plasma immersion hydrogenation of nanocrystalline magnesium films

    Energy Technology Data Exchange (ETDEWEB)

    Pranevicius, L. [Vytautas Magnus University, Physics Department, 58 K. Donelaicio St., 44248 Kaunas (Lithuania)]. E-mail: l.pranevicius@gmf.vdu.lt; Milcius, D. [Lithuanian Energy Institute, Surface Treatment Laboratory, 3 Breslaujos St., 44403 Kaunas (Lithuania); Pranevicius, L.L. [Vytautas Magnus University, Physics Department, 58 K. Donelaicio St., 44248 Kaunas (Lithuania); Lithuanian Energy Institute, Surface Treatment Laboratory, 3 Breslaujos St., 44403 Kaunas (Lithuania); Templier, C. [Laboratoire de Metallurgie Physique, Universite de Poitiers, Bd. 3, Teleport 2, B.P. 179, 86960 Futuroscope (France); Bobrovaite, B. [Vytautas Magnus University, Physics Department, 58 K. Donelaicio St., 44248 Kaunas (Lithuania); Barnackas, I. [Vytautas Magnus University, Physics Department, 58 K. Donelaicio St., 44248 Kaunas (Lithuania)

    2006-04-15

    In this paper, attention in focused on the nanostructured magnesium films for hydrogen storage. It is shown that 2 {mu}m thick Mg film is transformed into MgH{sub 2} film under high-flux and fluence hydrogen plasma immersion ion implantation at 450 K for 15 min. All hydrogen desorbs at temperature about 530 K, which corresponds to the decomposition of MgH{sub 2} {sup {yields}} Mg + H{sub 2}{up_arrow}. The macroscopic and microscopic observations show that magnesium film undergoes a high deformation and restructuring during hydrogenation-dehydrogenation reaction. The suggested hydrogenation model is based upon the incorporation of excess of hydrogen atoms in grain boundaries of nanocrystalline Mg film driven by the increase in surface chemical potential associated with the implantation flux. The results provide new aspects of hydriding of thin nanocrystalline film materials under highly non-equalibrium conditions on the surface.

  8. Complex nano-patterning of structural, optical, electrical and electron emission properties of amorphous silicon thin films by scanning probe

    Science.gov (United States)

    Fait, Jan; Čermák, Jan; Stuchlík, Jiří; Rezek, Bohuslav

    2018-01-01

    Preparation of nanoscale templates represents an important step for synthesis and assembly of diverse nanostructures and nanoscale devices. We show that complex nano-structural templates in a thin (40 nm) layer of hydrogenated amorphous silicon (a-Si:H) can be prepared by using locally applied electric field in an atomic force microscope (AFM). Depth of the resulting structures (1-40 nm) can be controlled by the process parameters (magnitude of electric field, exposure time, or nano-sweeping of the tip). We demonstrate that complex patterns can be scribed into the a-Si:H layer in that way. The prepared patterns exhibit different structural, optical, electrical, and electron emission properties, compared to the surroundings as detected by Raman micro-spectroscopy, scanning electron microscopy (SEM), and conductive AFM. The silicon thin films with locally modified properties can be useful in themselves or can serve as templates for further nanoscale growth or assembly.

  9. Disilane as a growth rate catalyst of plasma deposited microcrystalline silicon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrakellis, P.; Amanatides, E., E-mail: lef@plasmatech.gr; Mataras, D. [Department of Chemical Engineering, Plasma Technology Laboratory, University of Patras, P.O. Box 140, 26504 Patras (Greece); Kalampounias, A. G. [University of Ioannina, Dep. of Chemistry, 45110, Ioannina (Greece); Spiliopoulos, N. [Department of Physics, University of Patras, P.O. Box 140, 26504 Patras (Greece); Lahootun, V.; Coeuret, F.; Madec, A. [Air Liquide CRCD,1 chemin de la porte des Loges, Les Loges en Josas, 78354 Jouy en Josas (France)

    2016-07-15

    The effect of small disilane addition on the gas phase properties of silane-hydrogen plasmas and the microcrystalline silicon thin films growth is presented. The investigation was conducted in the high pressure regime and for constant power dissipation in the discharge with the support of plasma diagnostics, thin film studies and calculations of discharge microscopic parameters and gas dissociation rates. The experimental data and the calculations show a strong effect of disilane on the electrical properties of the discharge in the pressure window from 2 to 3 Torr that is followed by significant raise of the electron number density and the drop of the sheaths electric field intensity. Deposition rate measurements show an important four to six times increase even for disilane mole fractions as low as 0.3 %. The deposition rate enhancement was followed by a drop of the material crystalline volume fraction but films with crystallinity above 40 % were deposited with different combinations of total gas pressure, disilane and silane molar ratios. The enhancement was partly explained by the increase of the electron impact dissociation rate of silane which rises by 40% even for 0.1% disilane mole fraction. The calculations of the gas usage, the dissociation and the deposition efficiencies show that the beneficial effect on the growth rate is not just the result of the increase of Si-containing molecules density but significant changes on the species participating to the deposition and the mechanism of the film growth are caused by the disilane addition. The enhanced participation of the highly sticking to the surface radical such as disilylene, which is the main product of disilane dissociation, was considered as the most probable reason for the significant raise of the deposition efficiency. The catalytic effect of such type of radical on the surface reactivity of species with lower sticking probability is further discussed, while it is also used to explain the restricted

  10. Disilane as a growth rate catalyst of plasma deposited microcrystalline silicon thin films

    Science.gov (United States)

    Dimitrakellis, P.; Kalampounias, A. G.; Spiliopoulos, N.; Amanatides, E.; Mataras, D.; Lahootun, V.; Coeuret, F.; Madec, A.

    2016-07-01

    The effect of small disilane addition on the gas phase properties of silane-hydrogen plasmas and the microcrystalline silicon thin films growth is presented. The investigation was conducted in the high pressure regime and for constant power dissipation in the discharge with the support of plasma diagnostics, thin film studies and calculations of discharge microscopic parameters and gas dissociation rates. The experimental data and the calculations show a strong effect of disilane on the electrical properties of the discharge in the pressure window from 2 to 3 Torr that is followed by significant raise of the electron number density and the drop of the sheaths electric field intensity. Deposition rate measurements show an important four to six times increase even for disilane mole fractions as low as 0.3 %. The deposition rate enhancement was followed by a drop of the material crystalline volume fraction but films with crystallinity above 40 % were deposited with different combinations of total gas pressure, disilane and silane molar ratios. The enhancement was partly explained by the increase of the electron impact dissociation rate of silane which rises by 40% even for 0.1% disilane mole fraction. The calculations of the gas usage, the dissociation and the deposition efficiencies show that the beneficial effect on the growth rate is not just the result of the increase of Si-containing molecules density but significant changes on the species participating to the deposition and the mechanism of the film growth are caused by the disilane addition. The enhanced participation of the highly sticking to the surface radical such as disilylene, which is the main product of disilane dissociation, was considered as the most probable reason for the significant raise of the deposition efficiency. The catalytic effect of such type of radical on the surface reactivity of species with lower sticking probability is further discussed, while it is also used to explain the restricted

  11. High-efficient n-i-p thin-film silicon solar cells

    NARCIS (Netherlands)

    Yang, G.

    2015-01-01

    In this thesis we present results of the development of n-i-p thin-film silicon solar cells on randomly textured substrates, aiming for highly efficient micromorph solar cells (i.e., solar cells based on a ?c-Si:H bottom cell and a-Si:H top cell). For the efficiency of n-i-p thin-film silicon solar

  12. Water vapor selective thin film nanocomposite membranes prepared by functionalized Silicon nanoparticles

    NARCIS (Netherlands)

    Baig, Muhammad Irshad; Ingole, Pravin G.; Jeon, Jae deok; Hong, Seong Uk; Choi, Won Kil; Jang, Boyun; Lee, Hyung Keun

    2017-01-01

    In this work, we have reported a facile method to improve the water vapor permeation performance of thin film nanocomposite membranes by tailoring the surface properties of Silicon nanoparticles. Inductively coupled plasma technique was utilized to synthesize amorphous Silicon nanoparticles (~. 10.

  13. Quantitative Auger depth profiling of LPCVD and PECVD silicon nitride films

    NARCIS (Netherlands)

    Keim, Enrico G.; Aïte, Kamal; Aïte, Kamal

    1989-01-01

    Thin silicon nitride films (100–210 nm) with refractive indices varying from 1.90 to 2.10 were deposited on silicon substrates by low pressure chemical vapour deposition (LPCVD) and plasma enhanced chemical vapour deposition (PECVD). Rutherford backscattering spectrometry (RBS), ellipsometry,

  14. Mechanism of fatigue in micron-scale films of polycrystalline silicon for microelectromechanical applications

    Energy Technology Data Exchange (ETDEWEB)

    Muhlstein, C.L.; Stach, E.A.; Ritchie, R.O.

    2001-08-02

    Reported nearly a decade ago, cyclic fatigue failure in silicon thin films has remained a mystery. Silicon does not display the room temperature plasticity or extrinsic toughening mechanisms necessary to cause fatigue in either ductile (e.g., metals) or brittle (e.g., ceramics and ordered mintermetallic) materials.

  15. Carrier collection losses in interface passivated amorphous silicon thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Neumüller, A., E-mail: alex.neumueller@next-energy.de; Sergeev, O.; Vehse, M.; Agert, C. [NEXT ENERGY EWE Research Centre for Energy Technology at the University of Oldenburg, Carl-von-Ossietzky-Straße 15, 26129 Oldenburg (Germany); Bereznev, S.; Volobujeva, O. [Department of Materials Science, Tallinn University of Technology, Ehitajate Tee 5, Tallinn 19086 (Estonia); Ewert, M.; Falta, J. [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen (Germany)

    2016-07-25

    In silicon thin-film solar cells the interface between the i- and p-layer is the most critical. In the case of back diffusion of photogenerated minority carriers to the i/p-interface, recombination occurs mainly on the defect states at the interface. To suppress this effect and to reduce recombination losses, hydrogen plasma treatment (HPT) is usually applied. As an alternative to using state of the art HPT we apply an argon plasma treatment (APT) before the p-layer deposition in n-i-p solar cells. To study the effect of APT, several investigations were applied to compare the results with HPT and no plasma treatment at the interface. Carrier collection losses in resulting solar cells were examined with spectral response measurements with and without bias voltage. To investigate single layers, surface photovoltage and X-ray photoelectron spectroscopy (XPS) measurements were conducted. The results with APT at the i/p-interface show a beneficial contribution to the carrier collection compared with HPT and no plasma treatment. Therefore, it can be concluded that APT reduces the recombination centers at the interface. Further, we demonstrate that carrier collection losses of thin-film solar cells are significantly lower with APT.

  16. Thermal ideality factor of hydrogenated amorphous silicon p-i-n solar cells

    NARCIS (Netherlands)

    Kind, R.; Van Swaaij, R.A.C.M.M.; Rubinelli, F.A.; Solntsev, S.; Zeman, M.

    2011-01-01

    The performance of hydrogenated amorphous silicon (a-Si:H) p-i-n solar cells is limited, as they contain a relatively high concentration of defects. The dark current voltage (JV) characteristics at low forward voltages of these devices are dominated by recombination processes. The recombination rate

  17. Stable, high-efficiency amorphous silicon solar cells with low hydrogen content

    Energy Technology Data Exchange (ETDEWEB)

    Fortmann, C.M.; Hegedus, S.S. (Institute of Energy Conversion, Newark, DE (United States))

    1992-12-01

    Results and conclusions obtained during a research program of the investigation of amorphous silicon and amorphous silicon based alloy materials and solar cells fabricated by photo-chemical vapor and glow discharge depositions are reported. Investigation of the effects of the hydrogen content in a-si:H i-layers in amorphous silicon solar cells show that cells with lowered hydrogen content i-layers are more stable. A classical thermodynamic formulation of the Staebler-Wronski effect has been developed for standard solar cell operating temperatures and illuminations. Methods have been developed to extract a lumped equivalent circuit from the current voltage characteristic of a single junction solar cell in order to predict its behavior in a multijunction device.

  18. RF Magnetron Sputtering Aluminum Oxide Film for Surface Passivation on Crystalline Silicon Wafers

    Directory of Open Access Journals (Sweden)

    Siming Chen

    2013-01-01

    Full Text Available Aluminum oxide films were deposited on crystalline silicon substrates by reactive RF magnetron sputtering. The influences of the deposition parameters on the surface passivation, surface damage, optical properties, and composition of the films have been investigated. It is found that proper sputtering power and uniform magnetic field reduced the surface damage from the high-energy ion bombardment to the silicon wafers during the process and consequently decreased the interface trap density, resulting in the good surface passivation; relatively high refractive index of aluminum oxide film is benefic to improve the surface passivation. The negative-charged aluminum oxide film was then successfully prepared. The surface passivation performance was further improved after postannealing by formation of an SiOx interfacial layer. It is demonstrated that the reactive sputtering is an effective technique of fabricating aluminum oxide surface passivation film for low-cost high-efficiency crystalline silicon solar cells.

  19. XPS and XAES studies of the amorphous hydrogenated carbon/silicon interface

    Science.gov (United States)

    Montero, I.; Galán, L.; Rueda, F.; Perrière, J.

    1993-12-01

    Low-pressure multipolar-plasma assisted deposition on c-Si substrates has been used to grow carbon films. Angle-resolved XPS and XAES were used to analyze the initial stages of the growth as a function of the ion deposition energy. A good signal-to-noise ratio allowed us to study simultaneously the film and the relatively deep inteface without any damage to the samples. Channeling RBS, NRA and ERDA were also used to complete the analysis. The same as in the a-C: H film, the physical and chemical nature of the film/substrate interface also varies with the ionic energy impinging on the substrate. After deposition, the original native silicon oxide, 10 Å thick, is either left practically unmodified for polymer-like films or an oxicarbide SiO 1.3C 0.3 + 20%SiC about 50 Å thick is formed for "diamond-like" films.

  20. Effects of ambient conditions on the adhesion of cubic boron nitride films on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Cardinale, G.F.; Howitt, D.G. [California Univ., Davis, CA (United States). Dept. of Mechanical Engineering; Mirkarimi, P.B.; McCarty, K.F.; Klaus, E.J.; Medlin, D.L. [Sandia National Labs., Livermore, CA (United States)

    1994-08-01

    Effect of environmental conditions on cubic boron nitride (cBN) film adhesion to silicon substrates was studied. cBN films were deposited onto (100)-oriented silicon substrates by ion-assisted pulsed laser deposition. Irradiating ions were mixtures of nitrogen with argon, krypton, and xenon. Under room-ambient conditions, the films delaminated in the following time order: N/Xe, N/Kr, and N/Ar. cBN films deposited using N/Xe ion-assisted deposition were exposed to four environmental conditions for several weeks: a 1-mTorr vacuum, high humidity, dry oxygen, and dry nitrogen. Films exposed to the humid environment delaminated whereas those stored under vacuum or in dry gases did not. Films stored in dry nitrogen were removed after nearly two weeks and placed in the high-humidity chamber; these films subsequently delaminated within 14 hours.

  1. Continuous palladium-based thin films for hydrogen detection

    Science.gov (United States)

    Corso, Alain J.; Angiola, Marco; Tessarolo, Enrico; Guidolin, Martino; Donazzan, Alberto; Martucci, Alessandro; Pelizzo, Maria G.

    2017-05-01

    Metallic films of palladium (Pd) and palladium-tin (Pd-Sn) have been deposited by evaporation technique. They were used as sensitive material for optical sensor by measuring the variation of absorbance. All samples were then oxidized by annealing at 500°C in low vacuum atmosphere. All the films were investigated by X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) to observe the influence of the structure and morphology on the optical properties of the films, carrying useful information for the sensing properties of the different sensing materials. Furthermore, the sensing performances were tested by monitoring the variation on the optical absorbance induced during the absorption / desorption of hydrogen gas. While the use of Pd for gas sensing has been widely covered for electrical and SPR sensors, this work aims to extend our comprehension of the optical sensing behavior, especially in absorbance-mode, of the thin films of PdO, Pd-Sn and PdO-SnO2.

  2. A thin-film silicon/silicon hetero-junction hybrid solar cell for photoelectrochemical water-reduction applications

    NARCIS (Netherlands)

    Vasudevan, R.A.; Thanawala, Z; Han, L.; Buijs, Thom; Tan, H.; Deligiannis, D.; Perez Rodriguez, P.; Digdaya, I.A.; Smith, W.A.; Zeman, M.; Smets, A.H.M.

    2016-01-01

    A hybrid tandem solar cell consisting of a thin-film, nanocrystalline silicon top junction and a siliconheterojunction bottom junction is proposed as a supporting solar cell for photoelectrochemical applications.Tunneling recombination junction engineering is shown to be an important consideration

  3. Bio-inspired co-catalysts bonded to a silicon photocathode for solar hydrogen evolution

    DEFF Research Database (Denmark)

    Hou, Yidong; Abrams, Billie; Vesborg, Peter Christian Kjærgaard

    2011-01-01

    part of the spectrum is utilized for hydrogen evolution while the blue part is reserved for the more difficult oxygen evolution. The samples have been illuminated with a simulated red part of the solar spectrum i.e. long wavelength (" > 620 nm) part of simulated AM 1.5G radiation. The current densities...... deposited on various supports. It will be demonstrated how this overpotential can be eliminated by depositing the same type of hydrogen evolution catalyst on p-type Si which can harvest the red part of the solar spectrum. Such a system could constitute the cathode part of a tandem dream device where the red...... at the reversible potential match the requirement of a photoelectrochemical hydrogen production system with a solar-to-hydrogen efficiency in excess of 10%. The experimental observations are supported by DFT calculations of the Mo3S4 cluster adsorbed on the hydrogen-terminated silicon surface providing insights...

  4. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Sangchoel Kim

    2013-10-01

    Full Text Available We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5 layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  5. Silicon carbide-based hydrogen gas sensors for high-temperature applications.

    Science.gov (United States)

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-10-09

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  6. Pronounced Surface Band Bending of Thin-Film Silicon Revealed by Modeling Core Levels Probed with Hard X-rays.

    Science.gov (United States)

    Wippler, David; Wilks, Regan G; Pieters, Bart E; van Albada, Sacha J; Gerlach, Dominic; Hüpkes, Jürgen; Bär, Marcus; Rau, Uwe

    2016-07-13

    Enhancing the probing depth of photoemission studies by using hard X-rays allows the investigation of buried interfaces of real-world device structures. However, it also requires the consideration of photoelectron-signal attenuation when evaluating surface effects. Here, we employ a computational model incorporating surface band bending and exponential photoelectron-signal attenuation to model depth-dependent spectral changes of Si 1s and Si 2s core level lines. The data were acquired from hydrogenated boron-doped microcrystalline thin-film silicon, which is applied in silicon-based solar cells. The core level spectra, measured by hard X-ray photoelectron spectroscopy using different excitation energies, reveal the presence of a 0.29 nm thick surface oxide layer. In the silicon film a downward surface band bending of eVbb = -0.65 eV over ∼6 nm obtained via inverse modeling explains the observed core level shifts and line broadening. Moreover, the computational model allows the extraction of the "real" Si 1s and Si 2s bulk core level binding energies as 1839.13 and 150.39 eV, and their natural Lorentzian line widths as 496 and 859 meV, respectively. These values significantly differ from those directly extracted from the measured spectra. Because band bending usually occurs at material surfaces we highly recommend the detailed consideration of signal integration over depth for quantitative statements from depth-dependent measurements.

  7. 1D-NANOSTRUCTURES on Silicon Carbide Thin Films

    Science.gov (United States)

    Soukiassian, P. G.

    2004-06-01

    The atomic scale ordering and properties of cubic silicon carbide thin film surfaces are investigated by room and high temperature scanning tunneling microscopy. In this review, I focus on the Si-terminated β-SiC(100) surfaces only. Self-formation of Si atomic lines and dimer vacancy chains on the β-SiC(100) surface is taking place at the phase transition between the 3×2 (Si rich) and c(4×2) surface reconstructions. Using a rigorous protocol in surface preparation, it is possible to build very long, very straight and defect free Si atomic lines, forming a very large superlattice of massively parallel lines. These self-organized atomic lines are driven by stress. They have unprecedented characteristics with the highest thermal stability ever achieved for nanostructures on a surface (900°C) and the longest atomic lines ever built on a surface (μn scale long). Investigating their dynamics, we learn that their dismantling at high temperature results from collective and individual mechanisms including one-by-one dimer removal. Overall, this is a model system especially suitable in nanophysics and nanotechnologies.

  8. Film forming properties of silicon nanoparticles on SixNy coated substrates during excimer laser annealing

    Science.gov (United States)

    Caninenberg, M.; Kiesler, D.; Benson, N.; Schmechel, R.

    2017-05-01

    In this article we investigate the film forming properties of excimer laser annealed silicon nanoparticles on non-silicon substrates. In contrast to their film forming properties on oxide free silicon substrates, the nanoparticle thin film tends to dewet and form a porous μ-structure on the silicon nitrite covered glass model substrates considered for our investigation. This is quantified using a SEM study in conjunction with image processing software, in order to evaluate the μ-structure size and inter μ-structure distance in dependence of the laser energy density. To generalize our results, the film forming process is described using a COMSOL Multiphysics ® fluid dynamics model, which solves the Navier Stokes equation for incompressible Newtonian fluids. To account for the porous nanoparticle thin film structure in the simulation, an effective medium approach is used by applying a conservative level set one phase method to our mesh. This effort allows us to predict the Si melt film formation ranging from a porous Si μ-structure to a compact 100% density Si thin film in dependence of the substrate / thin film interaction, as well as the laser energy used for the nanoparticle processing.

  9. Ferroelectric and piezoelectric properties of epitaxial PZT films and devices on silicon

    NARCIS (Netherlands)

    Nguyen, Duc Minh

    2010-01-01

    In this thesis, the integration of lead zirconate titanate Pb(Zr,Ti)O3 (PZT) thin films into piezoelectric microelectromechanical systems (MEMS) based on silicon is studied. In these structures, all epitaxial oxide layers (thin film/electrode/buffer-layer(s)) were deposited by pulsed laser

  10. Structural and optical properties of ZnO films grown on silicon and ...

    Indian Academy of Sciences (India)

    Structural and optical properties of ZnO films grown on silicon and their applications in MOS devices in conjunction with ZrO2 as a gate dielectric ... Using metal insulator semiconductor (MIS) capacitor structures, the reliability and the leakage current characteristics of ZrO2 films have been studied both at room and high ...

  11. Improved thin film solar cell with Rayleigh scattering in porous silicon pipes

    Energy Technology Data Exchange (ETDEWEB)

    Skryshevsky, V.A.; Laugier, A. (Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France). Lab. de Physique de la Matiere)

    1999-06-01

    The development of thin film solar cells on cheap substrates requires new approaches to enhance the cell efficiency. In the present work we analyse solar cells with porous silicon diffusor arrays in the form of pipes within the deposited silicon layer. The contribution of Rayleigh scattering on full randomized nanosize crystallites of porous silicon pipes to the cell efficiency was simulated depending on the pipe geometry, their depth in the silicon film, surface recombination rate and diffusion length. The simulation shows that the efficiency improvement, due to the performance of light trapping, achieves significant values at the technical attainable characteristics of the porous layer. The effect of light trapping increases with the insertion of pipe arrays close to the rear side of the cell and for Si films having a low diffusion length. The work states that the geometric dimensions of pipes drastically alter the benefit of this cell design. (orig.) 20 refs.

  12. The structure study of thin boron and silicon carbonitride films by diffraction of synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fainer, N.I. E-mail: nadezhda@che.nsk.su; Kosinova, M.L.; Yurjev, G.S.; Maximovski, E.A.; Rumyantsev, Yu.M.; Asanov, I.P

    2000-06-21

    Crystalline structure and phase composition of thin boron and silicon carbonitride films were investigated using diffraction of synchrotron radiation (SR). These films were synthesized by RPECVD using nontraditional volatile precursors. The diffraction measurements were performed at the station 'Anomalous Scattering', existed at the second canal of colliding electron-positron beam accelerator VEPP-3 of the Siberian center of SR (Institute of Nuclear Physics of SB RAS, Novosibirsk, Russia). The formation of polycrystalline novel phase not coinciding with known phases of boron carbide and boron nitride was observed in boron carbonitride films by diffraction experiments. The boron carbonitride films are not a mixture of boron carbide and boron nitride phases. We propose that these films are probably BCN phase. The X-ray diffraction and RHEED investigations revealed fine crystals of hexagonal Si{sub 3}N{sub 4} phase in amorphous matrix of silicon carbonitride films.

  13. The structure study of thin boron and silicon carbonitride films by diffraction of synchrotron radiation

    Science.gov (United States)

    Fainer, N. I.; Kosinova, M. L.; Yurjev, G. S.; Maximovski, E. A.; Rumyantsev, Yu. M.; Asanov, I. P.

    2000-06-01

    Crystalline structure and phase composition of thin boron and silicon carbonitride films were investigated using diffraction of synchrotron radiation (SR). These films were synthesized by RPECVD using nontraditional volatile precursors. The diffraction measurements were performed at the station "Anomalous Scattering", existed at the second canal of colliding electron-positron beam accelerator VEPP-3 of the Siberian center of SR (Institute of Nuclear Physics of SB RAS, Novosibirsk, Russia). The formation of polycrystalline novel phase not coinciding with known phases of boron carbide and boron nitride was observed in boron carbonitride films by diffraction experiments. The boron carbonitride films are not a mixture of boron carbide and boron nitride phases. We propose that these films are probably BCN phase. The X-ray diffraction and RHEED investigations revealed fine crystals of hexagonal Si 3N 4 phase in amorphous matrix of silicon carbonitride films.

  14. Assembly of europium organic framework–gold nanoparticle composite thin films on silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Deep, Akash, E-mail: dr.akashdeep@gmail.com [Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30 C, Chandigarh 160030 (India); Academy of Scientific and Innovative Research, CSIR-CSIO, Sector 30 C, Chandigarh 160030 (India); Kaur, Rajnish [Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30 C, Chandigarh 160030 (India); Academy of Scientific and Innovative Research, CSIR-CSIO, Sector 30 C, Chandigarh 160030 (India); Kumar, Parveen [Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30 C, Chandigarh 160030 (India); Kumar, Pawan; Paul, A.K. [Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30 C, Chandigarh 160030 (India); Academy of Scientific and Innovative Research, CSIR-CSIO, Sector 30 C, Chandigarh 160030 (India)

    2014-08-28

    Metal organic frameworks are a sub-class of coordination polymers and rapidly generating huge research interests in several technological areas. One of the emerging areas of their potential applications is the photovoltaics. The present study proposes the assembly of europium organic framework–gold nanoparticle nanocomposite thin film on silicon substrate. Microscopic, X-ray diffraction, surface area measurement and thermal studies have indicated the formation of the desired thin film. Spectral studies have been used to highlight their solid state optical property. Current–voltage studies have established semiconducting property of the above thin films. - Highlights: • Thin film of europium organic framework/gold nanoparticles is prepared on silicon. • Fairly homogeneous films with a roughness factor of 5–10 nm are obtained. • Above thin films offer solid-state photoluminescence and semiconducting properties.

  15. Bismuth onion thin film in situ grown on silicon wafer synthesized through a hydrothermal approach

    Science.gov (United States)

    Zhao, Yue; Liu, Hong; Liu, Jin; Hu, Chenguo; Wang, Jiyang

    2010-10-01

    Bismuth onion structured nanospheres with the same structure as carbon onions have been synthesized and observed. The nanospheres were synthesized through a hydrothermal method using bismuth hydroxide and silicon wafer as reactants. By controlling the heating temperature, heating time, and the pressure, nanoscale bismuth spheres can be in situ synthesized on silicon wafer, and forms a bismuth onion film on the substrate. The electronic property of the films was investigated. A formation mechanism of the formation of bismuth onions and the onion film has been proposed on the basis of experimental observations.

  16. Metastable Defects in Hydrogenated Amorphous Silicon Formed by Optical and Electron-Beam Irradiation

    Science.gov (United States)

    Grimbergen, Michael N.

    1995-01-01

    The performance of thin film transistors, solar cells and other devices employing hydrogenated amorphous silicon is limited by metastable dangling bond defects. This thesis focuses on characterizing metastable defects by studying their density as formed by optical (band gap) excitation and keV electron beam irradiation. Particular emphasis is placed on saturation at high irradiation levels for accelerated testing and predicted device performance. The techniques used to measure defect density, constant photoconductivity (CPM) and photothermal deflection spectroscopy (PDS) are described, along with experimental results highlighting some of the limitations of the two techniques. The most significant limitations are found to be surface absorption for PDS and electron occupancy defect considerations for the case of CPM. For example, d.c. CPM is shown to be more appropriate than a.c. CPM for low defect density materials. Defect densities formed by the two forms of excitation are compared quantitatively under steady-state and relaxation conditions. The differences observed are ascribed to irradiation energy differences, with ionizing radiation creating an additional set of metastable dangling bond defects. The steady-state behavior of light-induced defects is qualitatively consistent with a temperature- and generation rate-dependent model, while the electron beam-induced defect density is temperature independent. Comparison of annealing behavior between optically-induced and electron beam-induced defect densities reveals rapid relaxation of the electron-induced density to the density observed for optically-induced defects, suggesting possible use of electron-beam irradiation as a rapid means of predicting effects of optical irradiation.

  17. High spatial resolution radiation detectors based on hydrogenated amorphous silicon and scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Tao [Univ. of California, Berkeley, CA (United States). Dept. of Engineering-Nuclear Engineering

    1995-05-01

    Hydrogenated amorphous silicon (a-Si:H) as a large-area thin film semiconductor with ease of doping and low-cost fabrication capability has given a new impetus to the field of imaging sensors; its high radiation resistance also makes it a good material for radiation detectors. In addition, large-area microelectronics based on a-Si:H or polysilicon can be made with full integration of peripheral circuits, including readout switches and shift registers on the same substrate. Thin a-Si:H p-i-n photodiodes coupled to suitable scintillators are shown to be suitable for detecting charged particles, electrons, and X-rays. The response speed of CsI/a-Si:H diode combinations to individual particulate radiation is limited by the scintillation light decay since the charge collection time of the diode is very short (< 10ns). The reverse current of the detector is analyzed in term of contact injection, thermal generation, field enhanced emission (Poole-Frenkel effect), and edge leakage. A good collection efficiency for a diode is obtained by optimizing the p layer of the diode thickness and composition. The CsI(Tl) scintillator coupled to an a-Si:H photodiode detector shows a capability for detecting minimum ionizing particles with S/N ~20. In such an arrangement a p-i-n diode is operated in a photovoltaic mode (reverse bias). In addition, a p-i-n diode can also work as a photoconductor under forward bias and produces a gain yield of 3--8 for shaping times of 1 {micro}s. The mechanism of the formation of structured CsI scintillator layers is analyzed. Initial nucleation in the deposited layer is sensitive to the type of substrate medium, with imperfections generally catalyzing nucleation. Therefore, the microgeometry of a patterned substrate has a significant effect on the structure of the CsI growth.

  18. Selective permeation of hydrogen gas using cellulose nanofibril film.

    Science.gov (United States)

    Fukuzumi, Hayaka; Fujisawa, Shuji; Saito, Tsuguyuki; Isogai, Akira

    2013-05-13

    Biobased membranes that can selectively permeate hydrogen gas have been developed from aqueous dispersions of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (TOCN) prepared from wood cellulose: TOCN-coated plastic films and self-standing TOCN films. Compared with TOCNs with sodium, lithium, potassium, and cesium carboxylate groups, TOCN with free carboxyl groups (TOCN-COOH) had much high and selective H2 gas permeation performance. Because permeabilities of H2, N2, O2, and CO2 gases through the membranes primarily depended on their kinetic diameters, the gas permeation behavior of the various TOCNs can be explained in terms of a diffusion mechanism. Thus, the selective H2 gas permeability for TOCN-COOH was probably due to a larger average size in free volume holes present between nanofibrils in the layer and film than those of other TOCNs with metal carboxylate groups. The obtained results indicate that TOCN-COOH membranes are applicable as biobased H2 gas separation membranes in fuel cell electric power generation systems.

  19. R and D activities of silicon-based thin-film solar cells in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuwen; Wang, Wenjing; Li, Xudong; Xu, Ying [Beijing Solar Energy Institute, No. 3 Huayuan Road, Beijing 100083 (China); Geng, Xinhua [Institute of Photo-electronic Thin Film Device and Technology, Nankai University, Tianjin, 300071 (China)

    2006-03-15

    The status and progress of R and D activities of silicon-based thin-film solar cells in China are described briefly in this paper, including amorphous Si solar cells and microcrystalline Si film solar cells based on PECVD technology and polycrystalline film solar cells based on RTCVD technology. Especially, the microcrystalline thin-film solar cells and the tandem solar cells of amorphous Si with microcrystalline Si have made great progress. The polycrystalline film solar cells have made remarkable achievements as well. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Optical near-field lithography on hydrogen-passivated silicon surfaces

    DEFF Research Database (Denmark)

    Madsen, Steen; Müllenborn, Matthias; Birkelund, Karen

    1996-01-01

    We report on a novel lithography technique for patterning of hydrogen-passivated amorphous silicon surfaces. A reflection mode scanning near-field optical microscope with uncoated fiber probes has been used to locally oxidize a thin amorphous silicon layer. Lines of 110 nm in width, induced...... by the optical near field, were observed after etching in potassium hydroxide. The uncoated fibers can also induce oxidation without light exposure, in a manner similar to an atomic force microscope, and linewidths of 50 nm have been achieved this way. (C) 1996 American Institute of Physics....

  1. Hydrogen passivation of polycrystalline Si thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorka, Benjamin

    2010-12-15

    Hydrogen passivation is a key process step in the fabrication of polycrystalline Si (poly-Si) thin film solar cells. In this work a parallel plate rf plasma setup was used for the hydrogen passivation treatment. The main topics that have been investigated are (i) the role of plasma parameters (like hydrogen pressure, electrode gap and plasma power), (ii) the dynamics of the hydrogen treatment and (iii) passivation of poly-Si with different material properties. Passivation was characterized by measuring the open-circuit voltage V{sub OC} of poly-Si reference samples. Optimum passivation conditions were found by measurements of the breakdown voltage V{sub brk} of the plasma for different pressures p and electrode gaps d. For each pressure, the best passivation was achieved at a gap d that corresponded to the minimum in V{sub brk}. Plasma simulations were carried out, which indicate that best V{sub OC} corresponds to a minimum in ion energy. V{sub OC} was not improved by a larger H flux. Investigations of the passivation dynamic showed that a plasma treatment in the lower temperature range ({<=}400 C) is slow and takes several hours for the V{sub OC} to saturate. Fast passivation can be successfully achieved at elevated temperatures around 500 C to 600 C with a plateau time of 10 min. It was found that prolonged hydrogenation leads to a loss in V{sub OC}, which is less pronounced within the observed optimum temperature range (500 C-600 C). Electron beam evaporation has been investigated as an alternative method to fabricate poly-Si absorbers. The material properties have been tuned by alteration of substrate temperature T{sub dep}=200-700 C and were characterized by Raman, ESR and V{sub OC} measurements. Largest grains were obtained after solid phase crystallization (SPC) of a-Si, deposited in the temperature range of 300 C. The defect concentration of Si dangling bonds was lowered by passivation by about one order of magnitude. The lowest dangling bond concentration

  2. Computations to model three-center bonds in hydrogenated amorphous silicon

    Science.gov (United States)

    Snyder, Lawrence C.; Moskowitz, Jules W.; Topiol, Sid

    1982-12-01

    Effective-potential ab initio self-consistent-field molecular-orbital computations of electronic wave functions and total energy have been made on the molecule H3SiH.SiH3, which was chosen to model the paramagnetic three-center bonded system T0 postulated by Fisch and Licciardello to exchange charge and produce the diamagnetic anion T- and cation T+ exothermically (in a process with negative U) with states in the gap of hydrogenated amorphous silicon. Structural computations described here predict a three-center bonded system for T+, which is symmetrical. For T0 and T- a much weaker three-center bond is found. It is more appropriate to describe T0 and T- as SiH4 weakly associated with SiH3 and SiH-3, respectively. We find that stability of the three-center bond of T+ provides a driving force of 33 kcal/mole for charge transfer, while the 1-kcal "hydrogen bond" of T- is unimportant in this regard. We are unable to estimate reliably the sign of U for charge transfer by T0 embedded in hydrogenated amorphous silicon because of the large uncertainty in our estimates of the Born cavity energy: Our results do not exclude the possibility that U is negative. We suggest that at low concentrations of hydrogen in hydrogenated amorphous silicon, a more probable process is for a dangling bond of silicon proximate to a Si-H bond to form T+ with the transfer of its electron to an isolated dangling bond. We model this process with the reaction T0+SiH3=T++SiH3-.

  3. Transport properties of hydrogen passivated silicon nanotubes and silicon nanotube field effect transistors

    KAUST Repository

    Montes Muñoz, Enrique

    2017-01-24

    We investigate the electronic transport properties of silicon nanotubes attached to metallic electrodes from first principles, using density functional theory and the non-equilibrium Green\\'s function method. The influence of the surface termination is studied as well as the dependence of the transport characteristics on the chirality, diameter, and length. Strong electronic coupling between nanotubes and electrodes is found to be a general feature that results in low contact resistance. The conductance in the tunneling regime is discussed in terms of the complex band structure. Silicon nanotube field effect transistors are simulated by applying a uniform potential gate. Our results demonstrate very high values of transconductance, outperforming the best commercial silicon field effect transistors, combined with low values of sub-threshold swing.

  4. Origin of reverse annealing effect in hydrogen-implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Di, Zengfeng [Los Alamos National Laboratory; Nastasi, Michael A [Los Alamos National Laboratory; Wang, Yongqiang [Los Alamos National Laboratory

    2009-01-01

    In contradiction to conventional damage annealing, thermally annealed H-implanted Si exhibits an increase in damage or reverse annealing behavior, whose mechanism has remained elusive. On the basis of quantitative high resolution transmission electron microscopy combined with channeling Rutherford backscattering analysis, we conclusively elucidate that the reverse annealing effect is due to the nucleation and growth of hydrogen-induce platelets. Platelets are responsible for an increase in the height and width the channeling damage peak following increased isochronal anneals.

  5. Synthesis of superlow friction carbon films from highly hydrogenated methane plasmas.

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, A.; Eryilmaz, O. L.; Nilufer, I. B.; Fenske, G. R.

    2000-10-13

    In this study, we investigated the friction and wear performance of diamondlike carbon films (DLC) derived from increasingly hydrogenated methane plasmas. The films were deposited on steel substrates by a plasma-enhanced chemical vapor deposition process at room temperature and the tribological tests were performed in dry nitrogen. Tests results revealed a close correlation between the hydrogen in source gas plasma and the friction and wear coefficients of the DLC films. Specifically, films grown in plasmas with higher hydrogen-to-carbon ratios had much lower friction coefficients and wear rates than did films derived from source gases with lower hydrogen-to-carbon ratios. The lowest friction coefficient (0.003) was achieved with a film derived from 25% methane--75% hydrogen, while a coefficient of 0.015 was found for films derived from pure methane. Similar correlations were observed for wear rates. Films derived from hydrogen-rich plasmas had the least wear, while films derived from pure methane suffered the highest wear. We used a combination of surface analytical methods to characterize the structure and chemistry of the DLC films and worn surfaces.

  6. Passivation of textured crystalline silicon surfaces by catalytic CVD silicon nitride films and catalytic phosphorus doping

    Science.gov (United States)

    Ohdaira, Keisuke; Cham, Trinh Thi; Matsumura, Hideki

    2017-10-01

    Silicon nitride (SiN x ) films formed by catalytic chemical vapor deposition (Cat-CVD) and phosphorus (P)-doped layers formed by catalytic impurity doping (Cat-doping) are applied for the passivation of pyramid-shaped textured crystalline Si (c-Si) surfaces formed by anisotropic etching in alkaline solution. Lower surface recombination velocities (SRVs) tend to be obtained when smaller pyramids are formed on c-Si surfaces. P Cat-doping is effective for reducing the SRV of textured c-Si surfaces as in the case of flat c-Si surfaces. We realize SRVs of textured c-Si surfaces of ∼8.0 and ∼6.7 cm/s for only SiN x passivation and for the combination of SiN x and P Cat-doping, respectively. These structures also have high optical transparency and low Auger recombination loss, and are of great worth in application for the surface passivation of interdigitated back-contact c-Si solar cells.

  7. Porous-like structures prepared by temperature-pressure treatment of heavily hydrogenated silicon

    Energy Technology Data Exchange (ETDEWEB)

    Misiuk, A. [Institute of Electron Technology, Al. Lotnikow 46, 02-668 Warsaw (Poland); Shalimov, A.; Bak-Misiuk, J. [Institute of Physics, PAS, Al. Lotnikow 32, 02-668 Warsaw (Poland); Surma, B. [Institute of Electron Technology, Al. Lotnikow 46, 02-668 Warsaw (Poland); Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Wnuk, A. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Antonova, I.V. [Institute of Semiconductor Physics, SB RAS, Lavrentieva 13, 630090 Novosibirsk (Russian Federation); Zavodinsky, V.G.; Gnidenko, A.A. [Institute of Materials Science, RAS, Tikhookeanskaya 153, 680042 Khabarovsk (Russian Federation)

    2005-06-01

    Microstructure and related properties of Czochralski silicon heavily doped with hydrogen by implantation (hydrogen dose 2.7 x 10{sup 17} cm{sup -2}, at 24 keV) or by hydrogen plasma etching (reference samples) and treated at up to 1270 K (HT) under argon pressure up to 1.1 GPa (HP) are investigated. The structure of HT-HP treated Cz-Si:H is similar to that of porous (spongy) Si. Visible photoluminescence at 2.0-2.8 eV originates from accumulation of hydrogen and oxygen atoms near the sample surface. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Fluorescence and thermoluminescence in silicon oxide films rich in silicon; Fluorescencia y termoluminiscencia en peliculas de oxido de silicio rico en silicio

    Energy Technology Data Exchange (ETDEWEB)

    Berman M, D.; Piters, T. M. [Centro de Investigacion en Fisica, Universidad de Sonora, Apdo. Postal 5-088, Hermosillo 83190, Sonora (Mexico); Aceves M, M.; Berriel V, L. R. [Instituto Nacional de Astrofisica, Optica y Electronica, Apdo. Postal 51, Puebla 72000, Puebla (Mexico); Luna L, J. A. [CIDS, Benemerita Universidad Autonoma de Puebla, Apdo. Postal 1651, Puebla 72000, Puebla (Mexico)

    2009-10-15

    In this work we determined the fluorescence and thermoluminescence (TL) creation spectra of silicon rich oxide films (SRO) with three different silicon excesses. To study the TL of SRO, 550 nm of SRO film were deposited by Low Pressure Chemical Vapor Deposition technique on N-type silicon substrates with resistivity in the order of 3 to 5 {omega}-cm with silicon excess controlled by the ratio of the gases used in the process, SRO films with Ro= 10, 20 and 30 (12-6% silicon excess) were obtained. Then, they were thermally treated in N{sub 2} at high temperatures to diffuse and homogenize the silicon excess. In the fluorescence spectra two main emission regions are observed, one around 400 nm and one around 800 nm. TL creation spectra were determined by plotting the integrated TL intensity as function of the excitation wavelength. (Author)

  9. Effects of hydrogen flow on properties of hydrogen doped ZnO thin films prepared by RF magnetron sputtering

    Science.gov (United States)

    Hu, Yuehui; Chen, Yichuan; Chen, Jun; Chen, Xinhua; Ma, Defu

    2014-03-01

    The hydrogen doped ZnO (ZnO:H) thin films were deposited on quartz glass substrates by radio frequency magnetron sputtering. The doping characteristics of ZnO:H thin films with varied hydrogen flow ratio were investigated. At low hydrogen flow ratio (H2/(H2+Ar)≤0.02), the ZnO:H thin films exhibited dominant (002) peaks from X-ray diffraction and the lattice constants became smaller. The particles were mainly a columnar structure. The particles' size became smaller, and the island-like structure appeared on the thin films surface. In addition, the low resistivity properties of ZnO:H thin films was ascribed to the increase of the carriers concentration and carriers mobility; When the hydrogen flow ratio was more than 0.02 ( M≥0.02), two absorption bands at 1400-1800 cm-1 and 3200-3900 cm-1 were observed from the FT-IR spectra, which indicated that the ZnO:H thin films had typical Zn-H bonding, O-H bonding (hydroxyl), and Zn-H-O bonding (like-hydroxyl). The scanning electron microscope (SEM) results show that a large number of hydroxyl agglomeration formed an island-like structure on the thin films surface. The absorption peak at about 575 cm-1 in the Raman spectra indicated that oxygen vacancies (VO) defects were produced in the process of high hydrogen doping. In this condition, the low resistivity properties of ZnO:H thin films were mainly due to the increasing electron concentration resulted from VO. Meanwhile, the Raman absorption peaks at approximately 98 cm-1 and 436 cm-1 became weaker, and the (002) XRD diffraction peak quenched and the lattice constants increased, which shows that the ZnO:H thin films no longer presented a typical ZnO hexagonal wurtzite structure. With the increasing of hydrogen flow ratio, the optical transmittance of ZnO:H thin films in the ultraviolet band show a clear Burstein-Moss shift effect, which further explained that electron concentration was increased due to the increasing VO with high hydrogen doping concentration. Moreover

  10. Highly stressed carbon film coatings on silicon potential applications

    CERN Multimedia

    Sharda, T

    2002-01-01

    The fabrication of highly stressed and strongly adhered nanocrystalline diamond films on Si substrates is presented. A microwave plasma CVD method with controlled and continuous bias current density was used to grow the films. The stress/curvature of the films can be varied and controlled by altering the BCD. Potential applications for these films include particle physics and x-ray optics.

  11. Organic silicon compounds anf hydrogen sulfide removal from biogas by mineral and adsorbent

    Science.gov (United States)

    Choi, J.

    2015-12-01

    Biogas utilized for energy production needs to be free from organic silicon compounds and hydrogen sulfide , as their burning has damaging effects on utilities and humans; organic silicon compounds and hydrogen sulfide can be found in biogas produced from biomass wastes, due to their massive industrial use in synthetic product,such as cosmetics, detergents and paints.Siloxanes and hydrogen sulfide removal from biogas can be carried out by various methods (Ajhar et al., 2010); aim of the present work is to find a single practical andeconomic way to drastically and simultaneously reduce both hydrogen sulfide and the siloxanes concentration to less than 1 ppm. Some commercial activated carbons previously selected (Monteleoneet al., 2011) as being effective in hydrogen sulfide up taking have been tested in an adsorption measurement apparatus, by flowing both hydrogen sulphide and volatile siloxane (Decamethycyclopentasiloxane or D5) in a nitrogen stream,typically 25-300 ppm D5 over N2, through an clay minerals, Fe oxides and Silica; the adsorption process was analyzed by varying some experimental parameters (concentration, grain size, bed height). The best silica shows an adsorption capacity of 0.2 g D5 per gram of silica. The next thermo gravimetric analysis (TGA) confirms the capacity data obtained experimentally by the breakthrough curve tests.The capacity results depend on D5 and hydrogen sulphide concentrations. A regenerative silica process is then carried out byheating the silica bed up to 200 ° C and flushing out the adsorbed D5 and hydrogen sulphide samples in a nitrogen stream in athree step heating procedure up to 200 ° C. The adsorption capacity is observed to degrade after cyclingthe samples through several adsorption-desorption cycles.

  12. Superefficient thin film multilayer catalyst for generating hydrogen from sodium borohydride

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Lunghao [Department of Materials Engineering and Industrial Technologies, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309-0427 (United States); Ceccato, R. [Department of Materials Engineering and Industrial Technologies, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Raj, R. [Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309-0427 (United States)

    2011-01-15

    A multilayer catalyst consisting of a electrophoretically deposited thin film of carbon nanotubes (CNTs) on a substrate of carbon fibers, followed by a coating of polymer-derived silicon carbonitride (SiCN), which is then decorated with a monolayer of transition metals is shown to perform at the upperbound of the phenomemological prediction from an earlier work. A figure-of-merit for first order kinetics is equal to 4600 L min{sup -1}[NaBH{sub 4}]{sup -1}g{sub met}{sup -1}, which is nearly 30 times the value reported in literature, is achieved. This high FOM is attributed to the CNT-thin film, as opposed to the thick CNT-paper used in previous work, thus needing merely 0.15 wt% quantities of precious metals for effective catalysis. This new architecture corroborates the concepts that: (i) the catalytic activity derives mainly from the surface of the CNT substrate, and (ii) the silicon carbonitride interlayer is instrumental in dispersing the transition metals into a monolayer. The hydrogen generation rate (HGR) for zero order kinetics, which is obtained when [NaBH{sub 4}]> 0.03 M, is measured to be 75 L min{sup -1}g{sub met}{sup -1}, which is among the higher values reported in the literature. The present multilayer catalysts are able to perform without fading for many cycles, presumably because the bondings in the substrate are predominantly covalent. This feature adds further uniqueness to this multilayer catalyst. (author)

  13. Role of hydrogen in the photoinduced evolution of porous silicon luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Koropecki, R.R.; Arce, R. [INTEC (CONICET-UNL), Gueemes 3450, S3000GLN Santa Fe (Argentina); Spies, C. [Facultad de Ingenieria Quimica (UNL), Santiago del Estero 2829, S3000 Santa Fe (Argentina); Gennaro, A.M. [INTEC (CONICET-UNL), Gueemes 3450, S3000GLN Santa Fe (Argentina); Facultad de Bioquimica y Ciencias Biologicas (UNL), Ciudad Universitaria, 3000 Santa Fe (Argentina); Schmidt, J. [INTEC (CONICET-UNL), Gueemes 3450, S3000GLN Santa Fe (Argentina); Facultad de Ingenieria Quimica (UNL), Santiago del Estero 2829, S3000 Santa Fe (Argentina)

    2007-07-01

    Photo-induced post preparation evolution effects in porous silicon were studied by IR, EPR, photoluminescence, and hydrogen effusion spectroscopies. The results show that two independent mechanisms are present during the photo-induced evolution. We also show that hydrogen photo-effusion takes place, in agreement with our previously proposed model. Photo-effusion experiments performed in vacuum, combined with IR and photoluminescence spectroscopies allow to discriminate the competing mechanisms present in the evolution of the photoluminescence. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Indications of chemical bond contrast in AFM images of a hydrogen-terminated silicon surface.

    Science.gov (United States)

    Labidi, Hatem; Koleini, Mohammad; Huff, Taleana; Salomons, Mark; Cloutier, Martin; Pitters, Jason; Wolkow, Robert A

    2017-02-13

    The origin of bond-resolved atomic force microscope images remains controversial. Moreover, most work to date has involved planar, conjugated hydrocarbon molecules on a metal substrate thereby limiting knowledge of the generality of findings made about the imaging mechanism. Here we report the study of a very different sample; a hydrogen-terminated silicon surface. A procedure to obtain a passivated hydrogen-functionalized tip is defined and evolution of atomic force microscopy images at different tip elevations are shown. At relatively large tip-sample distances, the topmost atoms appear as distinct protrusions. However, on decreasing the tip-sample distance, features consistent with the silicon covalent bonds of the surface emerge. Using a density functional tight-binding-based method to simulate atomic force microscopy images, we reproduce the experimental results. The role of the tip flexibility and the nature of bonds and false bond-like features are discussed.

  15. Silicon Light: a European FP7 project aiming at high efficiency thin film silicon solar cells on foil. Monolithic series interconnection of flexible thin-film PV devices

    Energy Technology Data Exchange (ETDEWEB)

    Soppe, W. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Haug, F.J. [Ecole Polytechnique Federale de Lausanne EPFL, Photovoltaics and Thin Film Electronics Laboratory, Rue A.-L. Breguet 2, 2000 Neuchatel (Switzerland); Couty, P. [VHFTechnologies SA, Rue Edouard-Verdan 2, CH-1400 Yverdon-les-Bains (Switzerland); Duchamp, M. [Technical University of Denmark, Center for Electron Nanoscopy, DK-2800 Kongens Lyngby (Denmark); Schipper, W. [Nanoptics GmbH, Innungstr.5, 21244 Buchholz (Germany); Krc, J. [University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana (Slovenia); Sanchez, G. [Universidad Politecnica de Valencia, I.U.I. Centro de Tecnologia Nanofotonica, 46022 Valencia (Spain); Leitner, K. [Umicore Thin Film Products AG, Balzers (Liechtenstein); Wang, Q. [Shanghai Jiaotong University, Research Institute of Micro/Nanometer Science and Technology, 800 Dongchuan Road, Min Hang, 200240 Shanghai (China)

    2011-09-15

    Silicon-Light is a European FP7 project, which started January 1st, 2010 and aims at development of low cost, high-efficiency thin film silicon solar cells on foil. Three main routes are explored to achieve these goals: (a) advanced light trapping by implementing nanotexturization through UV Nano Imprinting Lithography (UV-NIL); (b) growth of crack-free silicon absorber layers on highly textured substrates; (c) development of new TCOs which should combine the best properties of presently available materials like ITO and AZO. The paper presents the midterm status of the project results, showing model calculations of ideal nanotextures for light trapping in thin film silicon solar cells; the fabrication of masters and the replication and roll-to-roll fabrication of these nanotextures. Further, results on ITO variants with improved work function are presented. Finally, the status of cell fabrication on foils with nanotexture is shown. Microcrystalline and amorphous silicon single junction cells with stable efficiencies with more than 8% have been made, paving the way towards a-Si/{mu}c-Si tandem cells with more than 11% efficiency.

  16. Effect of antireflection coating on the crystallization of amorphous silicon films by flash lamp annealing

    Science.gov (United States)

    Sonoda, Yuki; Ohdaira, Keisuke

    2017-04-01

    We succeed in decreasing the fluence of a flash-lamp pulse required for the crystallization of electron-beam (EB)-evaporated amorphous silicon (a-Si) films using silicon nitride (SiN x ) antireflection films. The antireflection effect of SiN x is confirmed not only when SiN x is placed on the surface of a-Si or flash lamp annealing (FLA) is performed from the film side, but also when SiN x is inserted between glass and a-Si and a flash pulse is supplied from the glass side. We also quantitatively confirm, by calculating flash-lamp pulse energies actually reaching a-Si films using reflectance spectra, that the reduction in the fluence of a flash-lamp pulse for the crystallization of a-Si films is due to the antireflection effect of SiN x .

  17. Effect of ZDDP concentration on the thermal film formation on steel, hydrogenated non-doped and Si-doped DLC

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, S. [Laboratory for Tribology and Interface Nanotechnology, University of Ljubljana, Ljubljana (Slovenia); Kovač, J. [Jozef Stefan Institute, Jamova 19, 1000 Ljubljana (Slovenia); Kalin, M., E-mail: mitjan.kalin@tint.fs.uni-lj.si [Laboratory for Tribology and Interface Nanotechnology, University of Ljubljana, Ljubljana (Slovenia)

    2016-10-15

    Highlights: • The effect of the ZDDP concentrations onto the steel, H-DLC and Si-DLC surfaces is investigated. • ZDDP film structure on the DLC coatings is different from steel. • Different concentrations of ZDDP do not affect the final chemical structure of the ZDDP film on any of the studied surfaces. • The thickness of the thermal film is linear with the concentration for a given surface. • The reactivity of the ZDDP film is higher on the steel surface than on the DLC coatings. - Abstract: This work focuses on the ZDDP concentration (1, 5 and 20 wt%) to form a ZDDP film on surfaces during static thermal tests at 150 °C. Silicon-doped and hydrogenated DLC coatings, as well as steel as reference, were studied using Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The results show that, on the three surfaces, the structure of the ZDDP thermal film consists of identical groups of pyrophosphate and zinc oxide, while the sulphuric groups are dissimilar. On the steel surface, the sulphuric part consists of a mixture of organic sulphide and sulphohydryl groups, but on H-DLC and Si-DLC only organic sulphide groups are found; there are no sulphohydryl groups. Moreover, both ATR-FTIR and XPS show that different concentrations of ZDDP do not affect the final chemical structure of the ZDDP thermal film on any of the studied surfaces. In addition, the XPS results show that the thickness of the thermal film is linear with the concentration for the whole range from 1 to 20 wt%, supporting also its uniform chemical structure. These thicknesses further show that the reactivity of the ZDDP film is higher on the steel surface than on the DLC coatings.

  18. Back contact to film silicon on metal for photovoltaic cells

    Science.gov (United States)

    Branz, Howard M.; Teplin, Charles; Stradins, Pauls

    2013-06-18

    A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.

  19. Study of structure and phase composition of nanocrystal silicon carbonitride films

    CERN Document Server

    Fainer, N I; Rumyantsev, Y M; Kosinova, M L; Kuznetsov, F A

    2001-01-01

    The novel ternary silicon carbonitride films were synthesised by RPECVD using hexamethyldisilazane Si sub 2 NH(CH sub 3) sub 6 as a volatile single-source precursor. Different analysis techniques such as IR, Raman spectroscopy, ellipsometry, XPS, SEM, HRTEM, and SAED were used to study their physical and chemical properties. Maximum attention has been concentrated on the application of synchrotron radiation in structure and phase investigation of thin films. On the basis of data of SEM, HRTEM and diffraction of synchrotron radiation, it was established that silicon carbonitride films represent a distribution of nanocrystals (20-90 A) in an amorphous matrix. The nanocrystalline component is a pseudo alpha-Si sub 3 N sub 4 phase faceted by high-index planes. This phase can contain carbon atoms which have insufficient influence on the modification of the alpha-Si sub 3 N sub 4 lattice parameters due to the similar atomic radius of carbon and silicon.

  20. Study of structure and phase composition of nanocrystal silicon carbonitride films

    Energy Technology Data Exchange (ETDEWEB)

    Fainer, N.I. E-mail: nadezhda@che.nsk.su; Maximovski, E.A.; Rumyantsev, Y.M.; Kosinova, M.L.; Kuznetsov, F.A

    2001-09-01

    The novel ternary silicon carbonitride films were synthesised by RPECVD using hexamethyldisilazane Si{sub 2}NH(CH{sub 3}){sub 6} as a volatile single-source precursor. Different analysis techniques such as IR, Raman spectroscopy, ellipsometry, XPS, SEM, HRTEM, and SAED were used to study their physical and chemical properties. Maximum attention has been concentrated on the application of synchrotron radiation in structure and phase investigation of thin films. On the basis of data of SEM, HRTEM and diffraction of synchrotron radiation, it was established that silicon carbonitride films represent a distribution of nanocrystals (20-90 A) in an amorphous matrix. The nanocrystalline component is a pseudo {alpha}-Si{sub 3}N{sub 4} phase faceted by high-index planes. This phase can contain carbon atoms which have insufficient influence on the modification of the {alpha}-Si{sub 3}N{sub 4} lattice parameters due to the similar atomic radius of carbon and silicon.

  1. Study of structure and phase composition of nanocrystal silicon carbonitride films

    Science.gov (United States)

    Fainer, N. I.; Maximovski, E. A.; Rumyantsev, Yu. M.; Kosinova, M. L.; Kuznetsov, F. A.

    2001-09-01

    The novel ternary silicon carbonitride films were synthesised by RPECVD using hexamethyldisilazane Si 2NH(CH 3) 6 as a volatile single-source precursor. Different analysis techniques such as IR, Raman spectroscopy, ellipsometry, XPS, SEM, HRTEM, and SAED were used to study their physical and chemical properties. Maximum attention has been concentrated on the application of synchrotron radiation in structure and phase investigation of thin films. On the basis of data of SEM, HRTEM and diffraction of synchrotron radiation, it was established that silicon carbonitride films represent a distribution of nanocrystals (20-90 Å) in an amorphous matrix. The nanocrystalline component is a pseudo α-Si 3N 4 phase faceted by high-index planes. This phase can contain carbon atoms which have insufficient influence on the modification of the α-Si 3N 4 lattice parameters due to the similar atomic radius of carbon and silicon.

  2. Ion assisted deposition of SiO2 film from silicon

    Science.gov (United States)

    Pham, Tuan. H.; Dang, Cu. X.

    2005-09-01

    Silicon dioxide, SiO2, is one of the preferred low index materials for optical thin film technology. It is often deposited by electron beam evaporation source with less porosity and scattering, relatively durable and can have a good laser damage threshold. Beside these advantages the deposition of critical optical thin film stacks with silicon dioxide from an E-gun was severely limited by the stability of the evaporation pattern or angular distribution of the material. The even surface of SiO2 granules in crucible will tend to develop into groove and become deeper with the evaporation process. As the results, angular distribution of the evaporation vapor changes in non-predicted manner. This report presents our experiments to apply Ion Assisted Deposition process to evaporate silicon in a molten liquid form. By choosing appropriate process parameters we can get SiO2 film with good and stable property.

  3. Heterojunction Solar Cells Based on Silicon and Composite Films of Graphene Oxide and Carbon Nanotubes.

    Science.gov (United States)

    Yu, LePing; Tune, Daniel; Shearer, Cameron; Shapter, Joseph

    2015-09-07

    Graphene oxide (GO) sheets have been used as the surfactant to disperse single-walled carbon nanotubes (CNT) in water to prepare GO/CNT electrodes that are applied to silicon to form a heterojunction that can be used in solar cells. GO/CNT films with different ratios of the two components and with various thicknesses have been used as semitransparent electrodes, and the influence of both factors on the performance of the solar cell has been studied. The degradation rate of the GO/CNT-silicon devices under ambient conditions has also been explored. The influence of the film thickness on the device performance is related to the interplay of two competing factors, namely, sheet resistance and transmittance. CNTs help to improve the conductivity of the GO/CNT film, and GO is able to protect the silicon from oxidation in the atmosphere. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Influence of thin fluoropolymer film deposition on wettability of the silicon oxide nanowires array

    Directory of Open Access Journals (Sweden)

    Baranov Evgeniy

    2016-01-01

    Full Text Available In this work, we studied influence of fluoropolymer thin film deposition on wettability of the silicon oxide nanowires array. Deposition of fluoropolymer coating on the silicon oxide nanowires array changes the surface properties from hydrophilic to hydrophobic, and micro and nano scale surface roughness does not change significantly. In addition, it was shown that the deposition of fluoropolymer coating on nanowires protects the nanostructures from bundling together as a result of the attractive capillary forces that arise during evaporative drying.

  5. Hot wire deposited hydrogenated amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mahan, A.H.; Iwaniczko, E.; Nelson, B.P.; Reedy, R.C. Jr.; Crandall, R.S. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    This paper details the results of a study in which low H content, high deposition rate hot wire (HW) deposited amorphous silicon (a-Si:H) has been incorporated into a substrate solar cell. The authors find that the treatment of the top surface of the HW i layer while it is being cooled from its high deposition temperature is crucial to device performance. They present data concerning these surface treatments, and correlate these treatments with Schottky device performance. The authors also present first generation HW n-i-p solar cell efficiency data, where a glow discharge (GD) {mu}c-Si(p) layer was added to complete the partial devices. No light trapping layer was used to increase the device Jsc. Their preliminary investigations have yielded efficiencies of up to 6.8% for a cell with a 4000 {Angstrom} thick HW i-layer, which degrade less than 10% after a 900 hour light soak. The authors suggest avenues for further improvement of their devices.

  6. Effect of Nanotube Film Thickness on the Performance of Nanotube-Silicon Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Daniel D. Tune

    2013-12-01

    Full Text Available The results of measurements on solar cells made from randomly aligned thin films of single walled carbon nanotubes (SWCNTs on n-type monocrystalline silicon are presented. The films are made by vacuum filtration from aqueous TritonX-100 suspensions of large diameter arc-discharge SWCNTs. The dependence of the solar cell performance on the thickness of the SWCNT film is shown in detail, as is the variation in performance due to doping of the SWCNT film with SOCl2.

  7. Atomic White-Out: Enabling Atomic Circuitry through Mechanically Induced Bonding of Single Hydrogen Atoms to a Silicon Surface.

    Science.gov (United States)

    Huff, Taleana R; Labidi, Hatem; Rashidi, Mohammad; Koleini, Mohammad; Achal, Roshan; Salomons, Mark H; Wolkow, Robert A

    2017-09-26

    We report the mechanically induced formation of a silicon-hydrogen covalent bond and its application in engineering nanoelectronic devices. We show that using the tip of a noncontact atomic force microscope (NC-AFM), a single hydrogen atom could be vertically manipulated. When applying a localized electronic excitation, a single hydrogen atom is desorbed from the hydrogen-passivated surface and can be transferred to the tip apex, as evidenced from a unique signature in frequency shift curves. In the absence of tunnel electrons and electric field in the scanning probe microscope junction at 0 V, the hydrogen atom at the tip apex is brought very close to a silicon dangling bond, inducing the mechanical formation of a silicon-hydrogen covalent bond and the passivation of the dangling bond. The functionalized tip was used to characterize silicon dangling bonds on the hydrogen-silicon surface, which was shown to enhance the scanning tunneling microscope contrast, and allowed NC-AFM imaging with atomic and chemical bond contrasts. Through examples, we show the importance of this atomic-scale mechanical manipulation technique in the engineering of the emerging technology of on-surface dangling bond based nanoelectronic devices.

  8. A Low-Stress, Elastic, and Improved Hardness Hydrogenated Amorphous Carbon Film

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2015-01-01

    Full Text Available The evolution of hydrogenated amorphous carbon films with fullerene-like microstructure was investigated with a different proportion of hydrogen supply in deposition. The results showed at hydrogen flow rate of 50 sccm, the deposited films showed a lower compressive stress (lower 48.6%, higher elastic recovery (higher 19.6%, near elastic recovery rate 90%, and higher hardness (higher 7.4% compared with the films deposited without hydrogen introduction. Structural analysis showed that the films with relatively high sp2 content and low bonded hydrogen content possessed high hardness, elastic recovery rate, and low compressive stress. It was attributed to the curved graphite microstructure, which can form three-dimensional covalently bonded network.

  9. Modelling of an ultra-thin silicatene/silicon-carbide hybrid film

    Science.gov (United States)

    Schlexer, Philomena; Pacchioni, Gianfranco

    2016-09-01

    Recently, a well-ordered silicatene/silicon-carbide hybrid thin-film supported on Ru(0 0 0 1) has been reported (2015 Surf. Sci. 632 9-13). The thin-film consist of a monolayer of corner sharing (SiO4)-tetrahedra on top of a (Si2C3) monolayer supported on the Ru(0 0 0 1) surface. This silicatene/silicon-carbide hybrid system may exhibit interesting properties for nano-technological applications and represents another example of a 2D material. We explore the physical and chemical properties of the silicatene/silicon-carbide thin-film using DFT and compare the vibrational spectra with existing experimental data. The characteristics of the silicatene/silicon-carbide hybrid system are compared with those of the bilayer-silicatene (pure SiO2 film). We found large differences in the adsorption modes of the two thin-films on the Ru(0 0 0 1) support. Whereas the bilayer-silicatene physisorbs on the Ru(0 0 0 1) surface, the silicatene/silicon-carbide layer binds via chemisorption. The chemical properties of the two thin-films were probed by adsorption of H atoms at various positions, as well as by Al-doping and the formation of hydroxyl groups (Al-OH). These results show that despite the similar structure of the top layer and the identical metal support (Ru), the mixed silicatene/silicon-carbide system behaves quite differently from the pure silica two-layer counterpart.

  10. Very high-cycle fatigue failure in micron-scale polycrystalline silicon films : Effects of environment and surface oxide thickness

    NARCIS (Netherlands)

    Alsem, D. H.; Boyce, B. L.; Stach, E. A.; De Hosson, J. Th. M.; Ritchie, R. O.

    2007-01-01

    Fatigue failure in micron-scale polycrystalline silicon structural films, a phenomenon that is not observed in bulk silicon, can severely impact the durability and reliability of microelectromechanical system devices. Despite several studies on the very high-cycle fatigue behavior of these films (up

  11. Nonlinear Analysis of Actuation Performance of Shape Memory Alloy Composite Film Based on Silicon Substrate

    Directory of Open Access Journals (Sweden)

    Shuangshuang Sun

    2014-01-01

    Full Text Available The mechanical model of the shape memory alloy (SMA composite film with silicon (Si substrate was established by the method of mechanics of composite materials. The coupled action between the SMA film and Si substrate under thermal loads was analyzed by combining static equilibrium equations, geometric equations, and physical equations. The material nonlinearity of SMA and the geometric nonlinearity of bending deformation were both considered. By simulating and analyzing the actuation performance of the SMA composite film during one cooling-heating thermal cycle, it is found that the final cooling temperature, boundary condition, and the thickness of SMA film have significant effects on the actuation performance of the SMA composite film. Besides, the maximum deflection of the SMA composite film is affected obviously by the geometric nonlinearity of bending deformation when the thickness of SMA film is very large.

  12. Investigation of bonded hydrogen defects in nanocrystalline diamond films grown with nitrogen/methane/hydrogen plasma at high power conditions

    Science.gov (United States)

    Tang, C. J.; Hou, Haihong; Fernandes, A. J. S.; Jiang, X. F.; Pinto, J. L.; Ye, H.

    2017-02-01

    In this work, we investigate the influence of some growth parameters such as high microwave power ranging from 3.0 to 4.0 kW and N2 additive on the incorporation of bonded hydrogen defects in nanocrystalline diamond (NCD) films grown through a small amount of pure N2 addition into conventional 4% CH4/H2 plasma using a 5 kW microwave plasma CVD system. Incorporation form and content of hydrogen point defects in the NCD films produced with pure N2 addition was analyzed by employing Fourier-transform infrared (FTIR) spectroscopy for the first time. A large amount of hydrogen related defects was detected in all the produced NCD films with N2 additive ranging from 29 to 87 μm thick with grain size from 47 nm to 31 nm. Furthermore, a specific new H related sharp absorption peak appears in all the NCD films grown with pure N2/CH4/H2 plasma at high powers and becomes stronger at powers higher than 3.0 kW and is even stronger than the 2920 cm-1 peak, which is commonly found in CVD diamond films. Based on these experimental findings, the role of high power and pure nitrogen addition on the growth of NCD films including hydrogen defect formation is analyzed and discussed.

  13. Multi-Objective Optimization of Thin-Film Silicon Solar Cells with Metallic and Dielectric Nanoparticles

    Directory of Open Access Journals (Sweden)

    Giovanni Aiello

    2017-01-01

    Full Text Available Thin-film solar cells enable a strong reduction of the amount of silicon needed to produce photovoltaic panels but their efficiency lowers. Placing metallic or dielectric nanoparticles over the silicon substrate increases the light trapping into the panel thanks to the plasmonic scattering from nanoparticles at the surface of the cell. The goal of this paper is to optimize the geometry of a thin-film solar cell with silver and silica nanoparticles in order to improve its efficiency, taking into account the amount of silver. An efficient evolutionary algorithm is applied to perform the optimization with a reduced computing time.

  14. Dynamics of interstitial hydrogen molecules in crystalline silicon

    Science.gov (United States)

    Estreicher, S. K.; Wells, K.; Fedders, P. A.; Ordejón, Pablo

    2001-07-01

    The static and dynamic properties of interstitial H2, HD and D2 molecules in crystalline silicon are obtained from ab initio molecular-dynamics simulations with atomic-like basis sets. The static (T = 0) calculations agree with those of most other authors: the centre of mass (CM) of H2 is at the tetrahedral interstitial (T) site, the molecule is a nearly-free rotator, and the activation energy for diffusion is 0.90 eV. However, these results fail to explain a number of experimental observations, such as why H2 is infrared (IR) active, why the expected ortho/para splitting is not present, why the symmetry is C1, why the piezospectroscopic tensors of H2 and D2 are identical or why the exposure to an H/D mix results in a single HD line which is not only at the wrong place but also much weaker than expected. In the present work, we extend the static calculations to include the constant-temperature dynamics for H2 in Si. At T>0 K, the CM of the molecule no longer remains at the T site. Instead, H2 `bounces' off the walls of its tetrahedral cage and exchanges energy with the host crystal. The average position of the CM is away from the T site along . Under uniaxial stress, the CM shifts off that axis and the molecule has C1 symmetry. The H-H stretch frequency calculated from the Fourier transform of the v-v autocorrelation function is close to the measured one. Since the potential energy experienced by H2 in Si near the T site is very flat, we argue that H2 should be a nearly free quantum mechanical rotator. Up to room temperature, only the j = 0 and j = 1 rotational states are occupied, H2 resembles a sphere rather than a dumbbell, the symmetry is determined by the position of the CM and HD is equivalent to DH in any symmetry. The rapid motion of the CM implies that an ortho-to-para transition will occur if a large magnetic moment is nearby. Several candidates are proposed. Since nuclear quantum effects are not included in our calculations, we cannot address the

  15. The investigation of silicon and boron carbonitride films structure by diffraction of synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Maximovski, E.A.; Yurjev, G.S.; Kosinova, M.L.; Fainer, N.I.; Rumyantsev, Yu.M. [Rossijskaya Akademiya Nauk, Novosibirsk (Russian Federation). Inst. of Inorganic Chemistry

    2000-07-01

    Phase composition and crystalline structure of silicon and boron carbonitride thin layers were investigated using synchrotron radiation (SR) and created technique of registration of weak diffraction signals with the following mathematical and computer treatment. These films were synthesized by RPECVD using nontraditional volatile precursors. The X-ray diffraction using SR and RHEED investigations revealed the former of fine crystals of hexagonal Si{sub 3}N{sub 4} phase in amorphous matrix of silicon carbonitride films. The formation of polycrystalline novel phase not coinciding with known phases of boron carbide and boron nitride was observed in boron carbonitride films. The boron carbonitride films are no the mixture of boron carbide and boron nitride phases. (orig.)

  16. Thermal recrystallization of physical vapor deposition based germanium thin films on bulk silicon (100)

    KAUST Repository

    Hussain, Aftab M.

    2013-08-16

    We demonstrate a simple, low-cost, and scalable process for obtaining uniform, smooth surfaced, high quality mono-crystalline germanium (100) thin films on silicon (100). The germanium thin films were deposited on a silicon substrate using plasma-assisted sputtering based physical vapor deposition. They were crystallized by annealing at various temperatures ranging from 700 °C to 1100 °C. We report that the best quality germanium thin films are obtained above the melting point of germanium (937 °C), thus offering a method for in-situ Czochralski process. We show well-behaved high-κ /metal gate metal-oxide-semiconductor capacitors (MOSCAPs) using this film. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Phosphorus-doped Amorphous Silicon Nitride Films Applied to Crystalline Silicon Solar Cells

    NARCIS (Netherlands)

    Feinäugle, Matthias

    2008-01-01

    The Photovoltaics Group at the Universitat Politècnica de Catalunya is investigating silicon carbide (SiC) for the electronic passivation of the surface of crystalline silicon solar cells. The doping of SiC passivation layers with phosphorus resulted in a clear improvement of the minority carrier

  18. A Detailed Analysis of Visible Defects Formed in Commercial Silicon Thin-Film Modules During Outdoor Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Andreas; Johnston, Steve; Olivera-Pimentel, Guillermo; Siegloch, Max; Pieters, Bart; Rau, Uwe

    2016-11-21

    We analyzed defects in silicon thin-film tandem (a-Si:H/..mu..c-Si:H) modules from an outdoor installation in India. The inspection of several affected modules reveals that most of the defects -- which optically appear as bright spots -- were formed primarily nearby the separation and series connection laser lines. Cross-sectional SEM analysis reveals that the bright spots emerge due to electrical isolation, caused by a delamination of the cell from the front TCO in the affected area. In addition, the morphology of the a-Si:H top cell differs in the delaminated area compared to the surrounding unaffected area. We propose that these effects are potentially caused by an explosive and thermally triggered liberation of hydrogen from the a-Si:H layer. Electrical and thermal measurements reveal that these defects can impact the cell performance significantly.

  19. Formation, structure, and reactivity of amino-terminated organic films on silicon substrates.

    Science.gov (United States)

    Kim, Joonyeong; Seidler, Paul; Wan, Lai Sze; Fill, Catherine

    2009-01-01

    Amino-functionalized organic films were prepared by self-assembling 3-aminopropyltriethoxysilane (APTES) on silicon wafers in either anhydrous toluene or phosphate-buffered saline (PBS) for varied deposition times. Fourier transform infrared spectroscopy (FTIR) and ellipsometry have shown that the structure and thickness of APTES films are governed by the deposition time and reaction solution. Deposition from an anhydrous toluene solution produces APTES films ranging from 10 to 144 A in thickness, depending on the reaction time. FTIR spectra indicate that film growth initially proceeds by adsorption of APTES to the silicon surface followed by siloxane condensation, and after an extended period of time APTES molecules accumulate on the underlying APTES film by either covalent or noncovalent interactions. In contrast, spectroscopically indistinguishable APTES films in thickness ranging from 8 to 13 A were formed when deposition was conducted in aqueous solutions. Measured water contact angles indicate that APTES films deposited in aqueous solutions are more hydrophilic compared to those prepared in toluene solutions. Fluorescence measurements revealed that APTES films prepared in toluene solutions contain more reactive surface amino groups by ca. 3 to 10 times than those prepared in aqueous solutions for the identical reaction time.

  20. Quadruple-Junction Thin-Film Silicon-Based Solar Cells

    NARCIS (Netherlands)

    Si, F.T.

    2017-01-01

    The direct utilization of sunlight is a critical energy source in a sustainable future. One of the options is to convert the solar energy into electricity using thin-film silicon-based solar cells (TFSSCs). Solar cells in a triple-junction configuration have exhibited the highest energy conversion

  1. Light management in large area thin-film silicon solar modules

    Czech Academy of Sciences Publication Activity Database

    Losio, P.A.; Caglar, O.; Cashmore, J.S.; Hötzel, J.E.; Ristau, S.; Holovský, Jakub; Remeš, Zdeněk; Sinicco, I.

    2015-01-01

    Roč. 143, Dec (2015), s. 375-385 ISSN 0927-0248 R&D Projects: GA ČR(CZ) GA14-05053S Institutional support: RVO:68378271 Keywords : micromorph * thin-film silicon solar cells * light management * ZnO Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.732, year: 2015

  2. In-situ transmission measurements as process control for thin-film silicon solar cells

    NARCIS (Netherlands)

    Meier, M.; Muthmann, S.; Flikweert, A. J.; Dingemans, G.; M. C. M. van de Sanden,; Gordijn, A.

    2011-01-01

    In this work, in-situ transmission measurements using plasma as light source are presented for the determination of growth rate and crystallinity during silicon thin-film growth. The intensity of distinct plasma emission lines was measured at the backside of the transparent substrates on which

  3. Structural and optical properties of ZnO films grown on silicon and ...

    Indian Academy of Sciences (India)

    TECS

    Abstract. Photoluminescence (PL) properties of undoped ZnO thin films grown by rf magnetron sputtering on silicon substrates have been investigated. ZnO/Si substrates are characterized by Rutherford backscat- tering (RBS), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and X-ray photoelectron spectro-.

  4. Materials and Light Management for High-Efficiency Thin-Film Silicon Solar Cells

    NARCIS (Netherlands)

    Tan, H.

    2015-01-01

    Direct conversion of sunlight into electricity is one of the most promising approaches to provide sufficient renewable energy for humankind. Solar cells are such devices which can efficiently generate electricity from sunlight through the photovoltaic effect. Thin-film silicon solar cells, a type of

  5. Utilization of geometrci light trapping in thin film silicon solar cells: simulations and experiments

    NARCIS (Netherlands)

    Jong, de M.M.; Sonneveld, P.J.; Baggerman, J.; Rijn, van C.J.M.; Rath, J.K.; Schropp, R.E.I.

    2014-01-01

    In this study, we present a new light absorption enhancement method for p-i-n thin film silicon solar cells using pyramidal surface structures, larger than the wavelength of visible light. Calculations show a maximum possible current enhancement of 45% compared with cells on a flat substrate. We

  6. A mathematical model and simulation results of plasma enhanced chemical vapor deposition of silicon nitride films

    NARCIS (Netherlands)

    Konakov, S.A.; Krzhizhanovskaya, V.V.

    2015-01-01

    We developed a mathematical model of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride thin films from SiH4-NH3-N2-Ar mixture, an important application in modern materials science. Our multiphysics model describes gas dynamics, chemical physics, plasma physics and electrodynamics.

  7. Tin dioxide sol-gel derived thin films deposited on porous silicon

    NARCIS (Netherlands)

    Cobianu, C.; Savaniu, Cristian; Buiu, Octavian; Dascalu, Dan; Zaharescu, Maria; Parlog, Constanta; van den Berg, Albert; Pecz, Bela

    1997-01-01

    Undoped and Sb-doped SnO2 sol¿gel derived thin films have been prepared for the first time from tin (IV) ethoxide precursor and SbCl3 in order to be utilised for gas sensing applications where porous silicon is used as a substrate. Transparent, crack-free and adherent layers were obtained on

  8. Tin dioxide sol-gel derived thin films deposited on porous silicon

    NARCIS (Netherlands)

    Cobianu, C.; Savaniu, Cristian; Buiu, Octavian; Zaharescu, Maria; Parlog, Constanta; van den Berg, Albert; Pecz, Bela; Dascula, Dan

    1996-01-01

    Undoped and Sb-doped SnO2 sol–gel derived thin films have been prepared for the first time from tin (IV) ethoxide precursor and SbCl3 in order to be utilised for gas sensing applications where porous silicon is used as a substrate. Transparent, crack-free and adherent layers were obtained on

  9. Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates

    NARCIS (Netherlands)

    de Jong, M.M.|info:eu-repo/dai/nl/325844208

    2013-01-01

    In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic

  10. Designing optimized nano textures for thin-film silicon solar cells

    NARCIS (Netherlands)

    Jäger, K.; Fischer, M.; Van Swaaij, R.A.C.M.M.; Zeman, M.

    2013-01-01

    Thin-film silicon solar cells (TFSSC), which can be manufactured from abundant materials solely, contain nano-textured interfaces that scatter the incident light. We present an approximate very fast algorithm that allows optimizing the surface morphology of two-dimensional nano-textured interfaces.

  11. Ultrafast terahertz conductivity and transient optical absorption spectroscopy of silicon nanocrystal thin films

    DEFF Research Database (Denmark)

    Titova, Lyubov V.; Harthy, Rahma Al; Cooke, David

    We use time-resolved THz spectroscopy and transient optical absorption spectroscopy as two complementary techniques to study ultrafast carrier dynamics in silicon nanocrystal thin films. We find that the photoconductive dynamics in these materials is dominated by interface trapping, and we observe...

  12. The Effects of Hydrogen on the Potential-Energy Surface of Amorphous Silicon

    Science.gov (United States)

    Joly, Jean-Francois; Mousseau, Normand

    2012-02-01

    Hydrogenated amorphous silicon (a-Si:H) is an important semiconducting material used in many applications from solar cells to transistors. In 2010, Houssem et al. [1], using the open-ended saddle-point search method, ART nouveau, studied the characteristics of the potential energy landscape of a-Si as a function of relaxation. Here, we extend this study and follow the impact of hydrogen doping on the same a-Si models as a function of doping level. Hydrogen atoms are first attached to dangling bonds, then are positioned to relieve strained bonds of fivefold coordinated silicon atoms. Once these sites are saturated, further doping is achieved with a Monte-Carlo bond switching method that preserves coordination and reduces stress [2]. Bonded interactions are described with a modified Stillinger-Weber potential and non-bonded Si-H and H-H interactions with an adapted Slater-Buckingham potential. Large series of ART nouveau searches are initiated on each model, resulting in an extended catalogue of events that characterize the evolution of potential energy surface as a function of H-doping. [4pt] [1] Houssem et al., Phys Rev. Lett., 105, 045503 (2010)[0pt] [2] Mousseau et al., Phys Rev. B, 41, 3702 (1990)

  13. Nitrogen and hydrogen related infrared absorption in CVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Titus, E. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal)]. E-mail: elby@mec.ua.pt; Ali, N. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Cabral, G. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Madaleno, J.C. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Neto, V.F. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Gracio, J. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Ramesh Babu, P [Materials Ireland, Polymer research Centre, School of Physics, Dublin (Ireland); Sikder, A.K. [Department of Physics, Indian Institute of Technology (IIT), Bombay (India); Okpalugo, T.I. [Northern Ireland Bio-Engineering Centre, NIBEC, University of Ulster (United Kingdom); Misra, D.S. [Department of Physics, Indian Institute of Technology (IIT), Bombay (India)

    2006-09-25

    In this paper, we investigate on the presence of hydrogen and nitrogen related infrared absorptions in chemical vapour deposited (CVD) diamond films. Investigations were carried out in cross sections of diamond windows, deposited using hot filament CVD (HFCVD). The results of Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) and Raman spectroscopy carried out in a cross section of self-standing diamond sheets are presented. The FTIR spectra showed several features that have not been reported before. In order to confirm the frequency of nitrogen related vibrations, ab-initio calculations were carried out using GAMESS program. The investigations showed the presence of several C-N related peaks in one-phonon (1000-1333 cm{sup -1}). The deconvolution of the spectra in the three-phonon region (2700-3150 cm{sup -1}) also showed a number of vibration modes corresponding to sp {sup m}CH {sub n} phase of carbon. Elastic recoil detection analysis (ERDA) was employed to compare the H content measured using FTIR technique. Using these measurements we point out that the oscillator strength of the different IR modes varies depending upon the structure and H content of CVD diamond sheets.

  14. Silicon-Light: a European project aiming at high efficiency thin film silicon solar cells on foil

    Directory of Open Access Journals (Sweden)

    Soppe W.

    2014-07-01

    Full Text Available In the European project Silicon-Light we developed concepts and technologies to increase conversion efficiencies of thin film silicon solar cells on foil. Main focus was put on improved light management, using NIL for creating light scattering textures, improved TCOs using sputtering, and improved silicon absorber material made by PECVD. On foil we achieved initial cell efficiencies of 11% and on rigid substrates stable efficiencies of 11.6% were achieved. Finally, the project demonstrated the industrial scale feasibility of the developed technologies and materials. Cost of ownership calculations showed that implementation of these technologies on large scale would enable the production of these high efficiency solar modules at manufacturing cost of 0.65 €/Wp with encapsulation costs (0.20 €/Wp being the dominant costs. Life cycle analysis showed that large scale production of modules based on the technologies developed in Silicon-Light would have an energy payback time of 0.85 years in Central European countries.

  15. Complementary Metal-Oxide-Silicon Field-Effect-Transistors Featuring Atomically Flat Gate Insulator Film/Silicon Interface

    Science.gov (United States)

    Kuroda, Rihito; Teramoto, Akinobu; Nakao, Yukihisa; Suwa, Tomoyuki; Konda, Masahiro; Hasebe, Rui; Li, Xiang; Isogai, Tatsunori; Tanaka, Hiroaki; Sugawa, Shigetoshi; Ohmi, Tadahiro

    2009-04-01

    In this paper, we demonstrate newly developed process technology to fabricate complementary metal-oxide-silicon field-effect transistors (CMOSFETs) having atomically flat gate insulator film/silicon interface on (100) orientated silicon surface. They include 1,200 °C ultraclean argon ambient annealing technology for surface atomically flattening and radical oxidation technology for device isolation, flatness recovery after ion implantation, and gate insulator formation. The fabricated CMOSFET with atomically flat interface exhibit very high current drivability such as 923 and 538 µA/µm for n-channel MOSFET (nMOS) and p-channel MOSFET (pMOS) at gate length of 100 nm when combined with very low resistance source and drain contacts, four orders of magnitude lower 1/ f noise characteristics when combined with damage free plasma processes, and one decade longer time dependent dielectric breakdown (TDDB) lifetime in comparison to devices with a conventional flatness. The developed technology effectively improves the performance of the silicon-based CMOS large-scale integrated circuits (LSI).

  16. Field electron emission from hydrogen plasma treated nano-ZnO thin films.

    Science.gov (United States)

    Wang, Xiao-Ping; Liu, Xin-Xin; Wang, Li-Jun; Li, Huai-Hui; Mei, Cui-Yu; Liu, Xiao-Fei; Can, Yang

    2012-08-01

    A nano-Zno films are deposited on the Mo film/ceramic substrates by using the electron beam vapor deposition technique. Then a hydrogen plasma treated method is used to improve the characteristics of ZnO thin films by microwave plasma chemical vapor deposition system. Effects of process parameters on morphologies and structures of the ZnO thin films are detected and analysed by field emission scanning electron microscopy, X-ray diffraction spectrum and energy dispersive spectrum. The experimental result indicates that the hydrogen plasma treated techniques can essentially reduce the surface resistance and improve the field emission current density of the nano-ZnO thin films. For the hydrogen plasma treated sample, its field emission current density can increased more than three times at 2.2 V/microm electric field condition.

  17. Metal-insulator transition properties of sputtered silicon-doped and un-doped vanadium dioxide films at terahertz range

    Science.gov (United States)

    Zhang, Huafu; Wu, Zhiming; Niu, Ruihua; Wu, Xuefei; he, Qiong; Jiang, Yadong

    2015-03-01

    Silicon-doped and un-doped vanadium dioxide (VO2) films were synthesized on high-purity single-crystal silicon substrates by means of reactive direct current magnetron sputtering followed by thermal annealing. The structure, morphology and metal-insulator transition properties of silicon-doped VO2 films at terahertz range were measured and compared to those of un-doped VO2 films. X-ray diffraction and scanning electron microscopy indicated that doping the films with silicon significantly affects the preferred crystallographic orientation and surface morphologies (grain size, pores and characteristics of grain boundaries). The temperature dependence of terahertz transmission shows that the transition temperature, hysteresis width and transition sharpness greatly depend on the silicon contents while the transition amplitude was relatively insensitive to the silicon contents. Interestingly, the VO2 film doped with a silicon content of 4.6 at.% shows excellent terahertz switching characteristics, namely a small hysteresis width of 4.5 °C, a giant transmission modulation ratio of about 82% and a relatively low transition temperature of 56.1 °C upon heating. This work experimentally indicates that silicon doping can effectively control not only the surface morphology but also the metal-insulator transition characteristics of VO2 films at terahertz range.

  18. Silicon carbide recovered from photovoltaic industry waste as photocatalysts for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu [College of Chemical Engineering, Sichuan University, Chengdu, 610064 (China); Hu, Yu [College of Material Science and Enginneering, Sichuan University, Chengdu, 610064 (China); Zeng, Hongmei [College of Chemistry, Sichuan University, Chengdu, 610064 (China); Zhong, Lin, E-mail: zhonglin@scu.edu.cn [College of Chemical Engineering, Sichuan University, Chengdu, 610064 (China); Liu, Kewei; Cao, Hongmei [College of Chemistry, Sichuan University, Chengdu, 610064 (China); Li, Wei [College of Material Science and Enginneering, Sichuan University, Chengdu, 610064 (China); Yan, Hongjian, E-mail: hjyan@scu.edu.cn [College of Chemistry, Sichuan University, Chengdu, 610064 (China)

    2017-05-05

    Highlights: • SiC was recovered from photovoltaic industry waste. • The recovered SiC is mainly consist of 3C-SiC, 6H-SiC and some silicon oxycarbides. • The recovered SiC shows photocatalytic H{sub 2} evolution from water. - Abstract: In recent years, the focus on creating a dependable and efficient means to recycle or recover the valuable parts from the waste material has drawn significantly attention as an environmentally friendly way to deal with the industrial wastes. The silicon carbide (SiC) crystalline is one of reusable material in the slurry wastes generated during wafer slicing. Here we report the use of recovered SiC from the slurry wastes as photocatalysts to produce hydrogen in the presence of Na{sub 2}SO{sub 3}-Na{sub 2}S as electron donor. The recovered SiC were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy spectra (XPS), UV–vis (UV–vis) spectroscopy, and photoluminescence (PL) spectroscopy. The morphology of SiC loaded with 1 wt% Pt as cocatalyst by thermal-reduction method was observed by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (TEM). The experimental results reveal that the recovered SiC is mainly consist of 3C-SiC, 6H-SiC and some silicon oxycarbides on the surface of the SiC. The highest hydrogen production rate is 191.8 μmol h{sup −1} g{sup −1}. This study provides a way to recycle crystalline SiC from the discharged waste in the photovoltaic industry and reuse it as photocatalyst to yield hydrogen with the advantage of low energy consumption, low pollution and easy operation.

  19. Optical Absorption Enhancement in CdTe Thin Films by Microstructuration of the Silicon Substrate

    Directory of Open Access Journals (Sweden)

    Jesús Rangel-Cárdenas

    2017-06-01

    Full Text Available In this work, the reflectance, optical absorption, and band gap have been determined for CdTe thin films grown on planar and microstructured substrates. The treated surface was prepared by laser ablation of a silicon wafer, forming holes in a periodic arrangement. Thin films were grown by pulsed laser ablation on silicon samples kept at 200 °C inside a vacuum chamber. The presence of CdTe was verified with X-ray diffraction and Raman spectroscopy indicating a nanocrystalline zinc blended structure. The optical absorption of thin films was calculated by using the Fresnel laws and the experimental reflectance spectrum. Results show that reflectance of 245 nm films deposited on modified substrates is reduced by up to a factor of two than the obtained on unchanged silicon and the optical absorption is 16% higher at ~456 nm. Additionally, it was determined that the band gap energy for planar and microstructured films is about 1.44 eV for both cases.

  20. Nanostructured antifouling poly(ethylene glycol) films for silicon-based microsystems.

    Science.gov (United States)

    Sharma, Sadhana; Desai, Tejal A

    2005-02-01

    The creation of antifouling surfaces is one of the major prerequisites for silicon-based micro-electrical-mechanical systems for biomedical and analytical applications (known as BioMEMS). Poly(ethylene glycol) (PEG), a water-soluble, nontoxic, and nonimmunogenic polymer has the unique ability to reduce nonspecific protein adsorption and cell adhesion and, therefore, is generally coupled with a wide variety of surfaces to improve their biocompatibility. To this end, we have analyzed PEG thin films of various grafting densities (i.e., number of PEG chains per unit area) coupled to silicon using a single-step PEG-silane coupling reaction scheme using variable-angle ellipsometry. Initial PEG concentration and coupling time were varied to attain different grafting densities. These data were theoretically analyzed to understand the phenomenon of PEG film formation. Furthermore, all the PEG films were evaluated for their ability to control biofouling using albumin and fibrinogen as the model proteins. PEG thin films formed by using higher PEG concentrations ( > or = 10 mM PEG) or coupling time ( > or = 1 h) demonstrated enhanced protein fouling resistance behavior. This analysis is expected to be useful to form PEG films of desired grafting density on silicon substrates for appropriate application.

  1. Spin transport, magnetoresistance, and electrically detected magnetic resonance in amorphous hydrogenated silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Mutch, Michael J. [Intercollege Program of Materials, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Lenahan, Patrick M. [Intercollege Program of Materials, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); King, Sean W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States)

    2016-08-08

    We report on a study of spin transport via electrically detected magnetic resonance (EDMR) and near-zero field magnetoresistance (MR) in silicon nitride films. Silicon nitrides have long been important materials in solid state electronics. Although electronic transport in these materials is not well understood, electron paramagnetic resonance studies have identified a single dominating paramagnetic defect and have also provided physical and chemical descriptions of the defects, called K centers. Our EDMR and MR measurements clearly link the near-zero field MR response to the K centers and also indicate that K center energy levels are approximately 3.1 eV above the a-SiN:H valence band edge. In addition, our results suggest an approach for the study of defect mediated spin-transport in inorganic amorphous insulators via variable electric field and variable frequency EDMR and MR which may be widely applicable.

  2. Modification of rubber surface with hydrogenated diamond-like carbon thin films

    NARCIS (Netherlands)

    Pei, Y. T.; Bui, X. L.; De Hosson, J. Th. M.; Laudon, M; Romanowicz, B

    2009-01-01

    Thin films of hydrogenated diamond-like carbon (DLC) have been deposited on hydrogenated nitrile butadiene rubber (HNBR) for reduction of friction and enhancement of wear resistance of dynamic rubber seals, by sputtering graphite targets in C(2)H(2)/Ar plasma. The wax removal and pre-deposition

  3. Deposition and characterization of hydrogenated diamond-like carbon thin films on rubber seals

    NARCIS (Netherlands)

    Pei, Y.T.; Bui, X.L.; Hosson, J.Th.M. De

    2010-01-01

    Thin films of hydrogenated diamond-like carbon (DLC) have been deposited on hydrogenated nitrile butadiene rubber (HNBR) for reduction of friction and enhancement of wear resistance of dynamic rubber seals. The wax removal and pre-deposition plasma treatment of HNBR substrates are proven to be

  4. Reduction of a thin chromium oxide film on Inconel surface upon treatment with hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vesel, Alenka, E-mail: alenka.vesel@guest.arnes.si [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Mozetic, Miran [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Balat-Pichelin, Marianne [PROMES-CNRS Laboratory, 7 Rue du four solaire, 66120 Font Romeu Odeillo (France)

    2016-11-30

    Highlights: • Oxidized Inconel alloy was exposed to hydrogen at temperatures up to 1500 K. • Oxide reduction in hydrogen plasma started at approximately 1300 K. • AES depth profiling revealed complete reduction of oxides in plasma. • Oxides were not reduced, if the sample was heated just in hydrogen atmosphere. • Surface of reduced Inconel preserved the same composition as the bulk material. - Abstract: Inconel samples with a surface oxide film composed of solely chromium oxide with a thickness of approximately 700 nm were exposed to low-pressure hydrogen plasma at elevated temperatures to determine the suitable parameters for reduction of the oxide film. The hydrogen pressure during treatment was set to 60 Pa. Plasma was created by a surfaguide microwave discharge in a quartz glass tube to allow for a high dissociation fraction of hydrogen molecules. Auger electron depth profiling (AES) was used to determine the decay of the oxygen in the surface film and X-ray diffraction (XRD) to measure structural modifications. During hydrogen plasma treatment, the oxidized Inconel samples were heated to elevated temperatures. The reduction of the oxide film started at temperatures of approximately 1300 K (considering the emissivity of 0.85) and the oxide was reduced in about 10 s of treatment as revealed by AES. The XRD showed sharper substrate peaks after the reduction. Samples treated in hydrogen atmosphere under the same conditions have not been reduced up to approximately 1500 K indicating usefulness of plasma treatment.

  5. XPS study of palladium sensitized nano porous silicon thin film

    Indian Academy of Sciences (India)

    type monocrystalline silicon of 2–5 Ω cm resistivity and (100) orientation by electrochemical anodization method using HF and ethanol as the electrolytes. High density of surface states, arising due to its nano structure, is responsible for the ...

  6. Microcrystalline silicon for thin-film solar cells

    NARCIS (Netherlands)

    Gordijn, Aad

    2005-01-01

    Microcrystalline silicon (μc-Si:H) is a material that is promising for application in solar cells and that has interesting material properties. This thesis reports on the study of the plasma properties in the growth process, the optoelectronic material properties, and the device application of both

  7. Friction and wear of hydrogenated and hydrogen-free diamond-like carbon films: Relative humidity dependent character

    Science.gov (United States)

    Shi, Jing; Gong, Zhenbin; Wang, Yongfu; Gao, Kaixiong; Zhang, Junyan

    2017-11-01

    In this study, tribological properties of hydrogenated and hydrogen free diamond-like carbon films at various relative humidity (RH) were investigated to understand the friction mechanism in the presence of water molecules. At normal load of 2N, DLC-H film's friction coefficient was 0.06 at RH14% while DLC film's friction coefficient was 0.19 at RH17%. With the increase of RH, their friction coefficient converged to about 0.15. This character remained unaltered when the normal load was 5N. Results show that low friction of DLC-H film at low RH was attributed to the low shear force aroused by graphitic tribofilm at wear care center. However, the high friction of DLC film was mainly endowed by the high adhesive force aroused by σ dangling bonds. At high RH, solid-to-solid contact was isolated by water molecules confined between the counterfaces, where capillary was a dominant factor for friction. In addition to the capillary force, the absence of tribofilm was also accountable. These two factors lead to the level off of friction coefficient for DLC-H and DLC films. Moreover, for both DLC-H and DLC films, tribo-oxidization was proved to be closely related to wear rate with the assist of H2O molecules during sliding.

  8. Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides

    DEFF Research Database (Denmark)

    Kuyken, B.; Ji, Hua; Clemmen, S.

    2011-01-01

    We propose hydrogenated amorphous silicon nanowires as a platform for nonlinear optics in the telecommunication wavelength range. Extraction of the nonlinear parameter of these photonic nanowires reveals a figure of merit larger than 2. It is observed that the nonlinear optical properties...... of these waveguides degrade with time, but that this degradation can be reversed by annealing the samples. A four wave mixing conversion efficiency of + 12 dB is demonstrated in a 320 Gbit/s serial optical waveform data sampling experiment in a 4 mm long photonic nanowire....

  9. Electronic, structural and optical properties of hydrogenated silicon nanocrystals: the role of the excited states

    Energy Technology Data Exchange (ETDEWEB)

    Cantele, G.; Ninno, D.; Iadonisi, G. [Coherentia-INFM and Universita di Napoli ' ' Federico II' ' - Dipartimento di Scienze Fisiche, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli (Italy); Degoli, Elena; Bisi, O.; Ossicini, Stefano [INFM-S' ' 3 and Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia, via Fogliani, 42100 Reggio Emilia (Italy); Luppi, Eleonora; Magri, Rita [INFM-S' ' 3 and Dipartimento di Fisica, Universita di Modena e Reggio Emilia, via Campi 213/A, 41100 Modena (Italy)

    2005-06-01

    In this paper we report on a first-principle calculation of the electronic and structural properties of hydrogenated silicon nanocrystals both in the ground- and in an excited-state configuration. The presence of an electron-hole pair created under excitation is taken into account and its effects on both the electronic spectrum and the cluster geometry are pointed out. The interpretation of the results is done within a four-level model, which also allows the explanation of the experimentally observed Stokes shift. Size-related aspects are also analysed and discussed. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Experimental study on surface wrinkling of silicon monoxide film on compliant substrate under thermally induced loads

    Science.gov (United States)

    Li, Chuanwei; Kong, Yingxiao; Jiang, Wenchong; Wang, Zhiyong; Li, Linan; Wang, Shibin

    2017-06-01

    The wrinkling of a silicon monoxide thin film on a compliant poly(dimethylsiloxane) (PDMS) substrate structure was experimentally investigated in this study. The self-expansion effect of PDMS during film deposition was utilized to impose a pretensile strain on the structure through a specially made fixture. A laser scanning confocal microscope (LSCM) system with an in situ heating stage was employed for the real-time measurement. The Young’s modulus of the silicon monoxide thin film as well as the PDMS substrate was measured on the basis of the elasticity theory. Moreover, the effects of temperature variations on geometric parameters in the postbuckling state, such as wavelength and amplitude, were analyzed. It was proved that wavelength is relatively immune to thermal loads, while amplitude is much more sensitive.

  11. Low temperature magnetron sputter deposition of polycrystalline silicon thin films using high flux ion bombardment

    Science.gov (United States)

    Gerbi, Jennifer E.; Abelson, John R.

    2007-03-01

    We demonstrate that the microstructure of polycrystalline silicon thin films depends strongly on the flux of low energy ions that bombard the growth surface during magnetron sputter deposition. The deposition system is equipped with external electromagnetic coils which, through the unbalanced magnetron effect, provide direct control of the ion flux independent of the ion energy. We report the influence of low energy (thin films onto amorphous substrates. We use spectroscopic ellipsometry, Raman scattering, x-ray diffraction, and cross sectional transmission electron microscopy to analyze the film microstructure. We demonstrate that increasing the flux ratio of Ar+ ions to silicon neutrals (J+/J0) during growth by an order of magnitude (from 3 to 30) enables the direct nucleation of polycrystalline Si on glass and SiO2 coated Si at temperatures below 400°C. We discuss possible mechanisms for this enhancement of crystalline microstructure, including the roles of enhanced adatom mobility and the formation of shallow, mobile defects.

  12. Thin film polycrystalline silicon: Promise and problems in displays and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fonash, S.J. [Pennsylvania State Univ., University Park, PA (United States)

    1995-08-01

    Thin film polycrystalline Si (poly-Si) with its carrier mobilities, potentially good stability, low intragrain defect density, compatibility with silicon processing, and ease of doping activation is an interesting material for {open_quotes}macroelectronics{close_quotes} applications such as TFTs for displays and solar cells. The poly-Si films needed for these applications can be ultra-thin-in the 500{Angstrom} to 1000{Angstrom} thickness range for flat panel display TFTs and in the 4{mu}m to 10{mu}m thickness range for solar cells. Because the films needed for these microelectronics applications can be so thin, an effective approach to producing the films is that of crystallizing a-Si precursor material. Unlike cast materials, poly-Si films made this way can be produced using low temperature processing. Unlike deposited poly-Si films, these crystallized poly-Si films can have grain widths that are much larger than the film thickness and almost atomically smooth surfaces. This thin film poly-Si crystallized from a-Si precursor films, and its promise and problems for TFTs and solar cells, is the focus of this discussion.

  13. The complex interface chemistry of thin-film silicon/zinc oxide solar cell structures.

    Science.gov (United States)

    Gerlach, D; Wimmer, M; Wilks, R G; Félix, R; Kronast, F; Ruske, F; Bär, M

    2014-12-21

    The interface between solid-phase crystallized phosphorous-doped polycrystalline silicon (poly-Si(n(+))) and aluminum-doped zinc oxide (ZnO:Al) was investigated using spatially resolved photoelectron emission microscopy. We find the accumulation of aluminum in the proximity of the interface. Based on a detailed photoemission line analysis, we also suggest the formation of an interface species. Silicon suboxide and/or dehydrated hemimorphite have been identified as likely candidates. For each scenario a detailed chemical reaction pathway is suggested. The chemical instability of the poly-Si(n(+))/ZnO:Al interface is explained by the fact that SiO2 is more stable than ZnO and/or that H2 is released from the initially deposited a-Si:H during the crystallization process. As a result, Zn (a deep acceptor in silicon) is "liberated" close to the silicon/zinc oxide interface presenting the inherent risk of forming deep defects in the silicon absorber. These could act as recombination centers and thus limit the performance of silicon/zinc oxide based solar cells. Based on this insight some recommendations with respect to solar cell design, material selection, and process parameters are given for further knowledge-based thin-film silicon device optimization.

  14. Atomic configuration and charge state of hydrogen at dislocations in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Vysotskii, N. V., E-mail: mrdestroyed@yandex.ru; Loshachenko, A. S., E-mail: a.loshachenko@spbu.ru; Vyvenko, O. F., E-mail: vyvenko@gmail.com [St. Petersburg State University (Russian Federation)

    2017-03-15

    The effect of the introduction of hydrogen upon the vibration spectra and electrical characteristics of samples with dislocation networks at the interface of bonded silicon wafers was studied. In order to improve the sensitivity of measurements and to distinguish the signal from dislocation networks in Raman spectra, thin foils conventionally prepared for transmission electron microscopy were used as the sample under investigation. In the samples with dislocation networks, a Raman peak at 2000 cm{sup –1} was observed. This peak survived after annealing at a temperature of T = 500°C and was not observed in reference samples. Comparison of the experimental data with currently available theoretical calculations allowed one to attribute the observed peak to neutral hydrogen atoms H{sup 0} at the center of Si–Si bonds. The peak is metastable in the ideal lattice, but becomes stable in the vicinity of dislocations.

  15. Sputtering of cryogenic films of hydrogen by keV ions

    DEFF Research Database (Denmark)

    Schou, Jørgen; Hilleret, Noel

    2009-01-01

    The sputtering yield induced by keV hydrogen ions measured at CERN and at Risø National Laboratory for solid H2 and D2 at temperatures below 4.2 K decreases with increasing film thickness from about 100 x 10(15)molecules/cm2. For a film thickness comparable to or larger than the ion range the dat...

  16. Microstructure and tribological performance of diamond-like carbon films deposited on hydrogenated rubber

    NARCIS (Netherlands)

    Pal, J.P. van der; Martinez Martinez, Diego; Pei, Y.T.; Rudolf, P.; Hosson, J.Th.M. De

    2012-01-01

    In this paper, the microstructure and tribological performance of diamond-like carbon (DLC) films prepared by plasma chemical vapor deposition on hydrogenated nitrile butadiene rubbers (HNBR) are studied. Different negative variations of temperature during film growth were selected by proper changes

  17. The kinetics of Cr layer coated on TiNi films for hydrogen absorption

    Indian Academy of Sciences (India)

    Abstract. The effect of hydrogen absorption on electrical resistance with temperature for TiNi and TiNi–Cr thin films was investigated. The TiNi thin films of thickness 800. Å were deposited at different angles under 10−5 Torr pressure by thermal evaporation on the glass substrate at room temperature. A layer of.

  18. Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction

    Science.gov (United States)

    Toet, Daniel; Sigmon, Thomas W.

    2003-01-01

    A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

  19. Silicon Dioxide Thin Film Mediated Single Cell Nucleic Acid Isolation

    Science.gov (United States)

    Bogdanov, Evgeny; Dominova, Irina; Shusharina, Natalia; Botman, Stepan; Kasymov, Vitaliy; Patrushev, Maksim

    2013-01-01

    A limited amount of DNA extracted from single cells, and the development of single cell diagnostics make it necessary to create a new highly effective method for the single cells nucleic acids isolation. In this paper, we propose the DNA isolation method from biomaterials with limited DNA quantity in sample, and from samples with degradable DNA based on the use of solid-phase adsorbent silicon dioxide nanofilm deposited on the inner surface of PCR tube. PMID:23874571

  20. Effect of Hydrogen on Vacancy Formation in Sputtered Cu Films Studied by Positron Annihilation Spectroscopy

    Science.gov (United States)

    Yabuuchi, Atsushi; Kihara, Teruo; Kubo, Daichi; Mizuno, Masataka; Araki, Hideki; Onishi, Takashi; Shirai, Yasuharu

    2013-04-01

    As a part of the LSI interconnect fabrication process, a post-deposition high-pressure annealing process is proposed for embedding copper into trench structures. The embedding property of sputtered Cu films has been recognized to be improved by adding hydrogen to the sputtering argon gas. In this study, to elucidate the effect of hydrogen on vacancy formation in sputtered Cu films, normal argon-sputtered and argon-hydrogen-sputtered Cu films were evaluated by positron annihilation spectroscopy. As a result, monovacancies with a concentration of more than 10-4 were observed in the argon-hydrogen-sputtered Cu films, whereas only one positron lifetime component corresponding to the grain boundary was detected in the normal argon-sputtered Cu films. This result means monovacancies are stabilized by adding hydrogen to sputtering gas. In the annealing process, the stabilized monovacancies began clustering at around 300 °C, which indicates the dissociation of monovacancy-hydrogen bonds. The introduced monovacancies may promote creep deformation during high-pressure annealing.

  1. Process for producing organic products containing silicon, hydrogen, nitrogen, and carbon by the direct reaction between elemental silicon and organic amines and products formed thereby

    Science.gov (United States)

    Pugar, E.A.; Morgan, P.E.D.

    1988-04-04

    A process is disclosed for producing, at a low temperature, a high purity organic reaction product consisting essentially of silicon, hydrogen, nitrogen, and carbon. The process comprises reacting together a particulate elemental high purity silicon with a high purity reactive amine reactant in a liquid state at a temperature of from about O/degree/C up to about 300/degree/C. A high purity silicon carbide/silicon nitride ceramic product can be formed from this intermediate product, if desired, by heating the intermediate product at a temperature of from about 1200-1700/degree/C for a period from about 15 minutes up to about 2 hours or the organic reaction product may be employed in other chemical uses.

  2. A Highly Selective Photoresist Ashing Process for Silicon Nitride Films by Addition of Trifluoromethane

    Science.gov (United States)

    Saito, Makoto; Eto, Hideo; Makino, Nobuaki; Omiya, Kayoko; Homma, Tetsuya; Nagatomo, Takao

    2001-09-01

    A highly selective photoresist ashing process was developed for the fabrication of thin-film transistor liquid-crystal displays (TFT-LCDs). This ashing process utilizes downflow plasma consisting of a carbon trifluoromethane/oxygen (CHF3/O2) gas mixture at a low temperature. The etching selectivity of photoresist films to silicon nitride (SiN) film increased when using the CHF3/O2 gas mixture plasma, as compared to that when using the carbon tetrafluoride/oxygen (CF4/O2) gas mixture plasma. At the CHF3 gas flow rate of 30 sccm, a high etching selectivity ratio of about 1080 for the photoresist films to the SiN films was achieved at room temperature. On the basis of surface analysis results for SiN films and plasma analysis results for the CHF3/O2 gas mixture, a mechanism for the high etching selectivity of the photoresist films was proposed. Reaction products that were formed on SiN films by the CHF3/O2 gas mixture plasma obstructed the etching of SiN films by fluorine (F) radicals, resulting in the high selectivity. It was found that the CHF3/O2 gas mixture plasma reacted with SiN, resulting in the formation of a protective reaction product that is considered to be an ammonium salt such as (NH4)2SiF6.

  3. A Step toward High-Energy Silicon-Based Thin Film Lithium Ion Batteries.

    Science.gov (United States)

    Reyes Jiménez, Antonia; Klöpsch, Richard; Wagner, Ralf; Rodehorst, Uta C; Kolek, Martin; Nölle, Roman; Winter, Martin; Placke, Tobias

    2017-05-23

    The next generation of lithium ion batteries (LIBs) with increased energy density for large-scale applications, such as electric mobility, and also for small electronic devices, such as microbatteries and on-chip batteries, requires advanced electrode active materials with enhanced specific and volumetric capacities. In this regard, silicon as anode material has attracted much attention due to its high specific capacity. However, the enormous volume changes during lithiation/delithiation are still a main obstacle avoiding the broad commercial use of Si-based electrodes. In this work, Si-based thin film electrodes, prepared by magnetron sputtering, are studied. Herein, we present a sophisticated surface design and electrode structure modification by amorphous carbon layers to increase the mechanical integrity and, thus, the electrochemical performance. Therefore, the influence of amorphous C thin film layers, either deposited on top (C/Si) or incorporated between the amorphous Si thin film layers (Si/C/Si), was characterized according to their physical and electrochemical properties. The thin film electrodes were thoroughly studied by means of electrochemical impedance spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. We can show that the silicon thin film electrodes with an amorphous C layer showed a remarkably improved electrochemical performance in terms of capacity retention and Coulombic efficiency. The C layer is able to mitigate the mechanical stress during lithiation of the Si thin film by buffering the volume changes and to reduce the loss of active lithium during solid electrolyte interphase formation and cycling.

  4. Growth of (100)-highly textured BaBiO{sub 3} thin films on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ferreyra, C. [GIyA and INN, CNEA, Av. Gral Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Departamento de Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria, Buenos Aires (Argentina); Marchini, F. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Departamento de Química Inorgánica, Analítica y Química-Física, INQUIMAE-CONICET, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, Buenos Aires (Argentina); Granell, P. [INTI, CMNB, Av. Gral Paz 5445, B1650KNA San Martín, Buenos Aires (Argentina); Golmar, F. [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); INTI, CMNB, Av. Gral Paz 5445, B1650KNA San Martín, Buenos Aires (Argentina); Escuela de Ciencia y Tecnología, UNSAM, Campus Miguelete, 1650 San Martín, Buenos Aires (Argentina); Albornoz, C. [GIyA and INN, CNEA, Av. Gral Paz 1499, 1650 San Martín, Buenos Aires (Argentina); and others

    2016-08-01

    We report on the growth and characterization of non-epitaxial but (100)-highly textured BaBiO{sub 3} thin films on silicon substrates. We have found the deposition conditions that optimize the texture, and show that the textured growth is favoured by the formation of a BaO layer at the first growth stages. X-ray diffraction Φ-scans, together with the observation that the same textured growth is found on films grown on Pt and SiO{sub 2} buffered Si, demonstrate the absence of epitaxy. Finally, we have shown that our (100)-oriented BaBiO{sub 3} films can be used as suitable buffers for the growth of textured heterostructures on silicon, which could facilitate the integration of potential devices with standard electronics. - Highlights: • BaBiO{sub 3} thin films were grown on Si substrates and characterized. • Films prepared using optimized conditions are highly textured in the (100) direction. • The absence of in-plane texture was demonstrated by X-ray diffraction. • Our films are suitable buffers for the growth of (100)-textured oxide heterostructures.

  5. Thin film PV standing tall side-by-side with multi-crystalline silicon: also in terms of reliability

    Science.gov (United States)

    Dhere, Neelkanth G.; Ward, Allan; Wieting, Robert; Guha, Subhendu; Dhere, Ramesh G.

    2015-09-01

    Triple junction hydrogenated amorphous silicon (a-Si:H) have shown exceptionally good reliability and durability. Cadmium telluride, CdTe PV modules have shown the lowest production cost without subsidies. Copper-indium gallium selenide sulfide (CIGS) and cadmium telluride (CdTe) cells and modules have been showing efficiencies equal or greater than those of multi-crystalline, (mx-Si), PV modules. Early generation CIGS and CdTe PV modules had a different qualification standard 61646 as compared to 61215 for crystalline silicon, (c-Si), PV modules. This, together with small vulnerability in harsh climates, was used to create doubts about their reliability. Recently CdTe and CIGS glass-to-glass modules have passed the rigorous accelerated tests, especially as long as the edge seals are not compromised. Moreover, the cumulative shipment of these modules is more than 12 GW demonstrating the customer confidence in these products. Hence it can be stated that also in terms of the reliability and durability all the thin film PV modules stand tall and compare favorably with mx-Si.

  6. Mechanics of silicon nitride thin-film stressors on a transistor-like geometry

    Directory of Open Access Journals (Sweden)

    S. Reboh

    2013-10-01

    Full Text Available To understand the behavior of silicon nitride capping etch stopping layer stressors in nanoscale microelectronics devices, a simplified structure mimicking typical transistor geometries was studied. Elastic strains in the silicon substrate were mapped using dark-field electron holography. The results were interpreted with the aid of finite element method modeling. We show, in a counterintuitive sense, that the stresses developed by the film in the vertical sections around the transistor gate can reach much higher values than the full sheet reference. This is an important insight for advanced technology nodes where the vertical contribution of such liners is predominant over the horizontal part.

  7. Modulation of the Casimir force by laser pulses: Influence of oxide films on the silicon surface

    Science.gov (United States)

    Klimchitskaya, G. L.; Bukina, M. N.; Churkin, Yu. V.; Yurova, V. A.

    2010-10-01

    The possibility of modulating the Casimir force that acts in an air medium between a gold sphere and a silicon plate irradiated by laser pulses has been studied. It has been demonstrated that the oxide film that is formed on the silicon surface in air hardly affects the possibility of modulating the Casimir force when the distances between interacting bodies are of the order of 100 nm. With an increase in the distance, the modulation depth decreases; however, this region is of less practical interest, because the Casimir forces become too weak.

  8. Characterisation of PZT thin film micro-actuators using a silicon micro-force sensor

    OpenAIRE

    Duval, Fabrice; Wilson, Stephen; Ensell, Graham; Evanno, Nicolas; Cain, Markys; Whatmore, Roger

    2007-01-01

    This paper reports on the measurements of displacement and blocking force of piezoelectric micro-cantilevers. The free displacement was studied using a surface profiler and a laser vibrometer. The experimental data were compared with an analytical model which showed that the PZT thin film has a Young's modulus of 110 GPa and a piezoelectric coefficient d31,f of 30 pC/N. The blocking force was investigated by means of a micro-machined silicon force sensor based on the silicon piezoresistive ef...

  9. Effect of charged deep states in hydrogenated amorphous silicon on the behavior of iron oxides nanoparticles deposited on its surface

    Science.gov (United States)

    Gmucová, Katarína; Weis, Martin; Nádaždy, Vojtech; Capek, Ignác; Šatka, Alexander; Chitu, Lívia; Cirák, Július; Majková, Eva

    2008-08-01

    Langmuir-Blodgett technique has been used for the deposition of ordered two-dimensional arrays of iron oxides (Fe 3O 4/Fe 2O 3) nanoparticles onto the photovoltaic hydrogenated amorphous silicon (a-Si:H) thin film. Electric field at the a-Si:H/iron oxides nanoparticles interface was directly in the electrochemical cell modified by light soaking and bias voltage (negative or positive) pretreatment resulting in the change of the dominant type of charged deep states in the a-Si:H layer. Induced reversible changes in the nanoparticle redox behavior have been observed. We suggest two possible explanations of the data obtained, both of them are needed to describe measured electrochemical signals. The first one consists in the electrocatalytical effect caused by the defect states (negatively or positively charged) in the a-Si:H layer. The second one consists in the possibility to manipulate the nanoparticle cores in the prepared structure immersed in aqueous solution via the laser irradiation under specific bias voltage. In this case, the nanoparticle cores are assumed to be covered with surface clusters of heterovalent complexes created onto the surface regions with prevailing ferrous or ferric valency. Immersed in the high viscosity surrounding composed of the wet organic nanoparticle envelope these cores are able to perform a field-assisted pivotal motion. The local electric field induced by the deep states in the a-Si:H layer stabilizes their "orientation ordering" in an energetically favourable position.

  10. Ultrafast deposition of silicon nitride and semiconductor silicon thin films by Hot Wire Chemical Vapor Deposition

    NARCIS (Netherlands)

    Schropp, R.E.I.; van der Werf, C.H.M.; Verlaan, V.; Rath, J.K.; Li, H. B. T.

    2009-01-01

    The technology of Hot Wire Chemical Vapor Deposition (HWCVD) or Catalytic Chemical Vapor Deposition (Cat-CVD) has made great progress during the last couple of years. This review discusses examples of significant progress. Specifically, silicon nitride deposition by HWCVD (HW-SiNx) is highlighted,

  11. Synthesis of amorphous hydrogenated carbon thin films by magnetized radio-frequency discharge in argon–acetylene mixture at very low gas pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hamdan, Ahmad, E-mail: ahmad.ba.hamdan@gmail.com; Al Makdessi, Georges; Margot, Joëlle

    2016-01-29

    This paper presents a characterization study of carbon thin films grown on crystalline silicon substrates using a magnetized high-frequency discharge in argon–acetylene mixture at very low pressure. Thin films with different morphological structure are obtained. Depending on the gas pressure, acetylene percentage and process time, it is possible to categorize the surface film morphology into three categories: smooth, cracked or microstructured. Moreover, when applying external magnetic field, it has been observed that depending on the substrate direction (perpendicular or parallel) to the reactor axis, it is possible to obtain different film morphologies. For specific conditions, energetic argon ions are formed which lead to film surface damaging and to their inclusion when they impinge the film surface. Chemical pathways and most likely isomers that contribute to the growth are also identified and discussed. Synthesizing materials in such low pressure conditions is of particular interest for better understanding the complex phenomena taking place in the plasma such as instabilities induced by particles and infra-red spectra of carbonaceous interstellar dust. - Highlights: • Deposition of amorphous hydrogenated carbon by magnetized RF-discharge • Modifying the film morphology by changing the pressure and the C{sub 2}H{sub 2} percentage • Studying the effect of the magnetic field on the film structure.

  12. In Situ Synthesis of Reduced Graphene Oxide-Reinforced Silicone-Acrylate Resin Composite Films Applied in Erosion Resistance

    Directory of Open Access Journals (Sweden)

    Yang Cao

    2015-01-01

    Full Text Available The reduced graphene oxide reinforced silicone-acrylate resin composite films (rGO/SAR composite films were prepared by in situ synthesis method. The structure of rGO/SAR composite films was characterized by Raman spectrum, atomic force microscope, scanning electron microscopy, and thermogravimetric analyzer. The results showed that the rGO were uniformly dispersed in silicone-acrylate resin matrix. Furthermore, the effect of rGO loading on mechanical properties of composite films was investigated by bulge test. A significant enhancement (ca. 290% and 320% in Young’s modulus and yield stress was obtained by adding the rGO to silicone-acrylate resin. At the same time, the adhesive energy between the composite films and metal substrate was also improved to be about 200%. Moreover, the erosion resistance of the composite films was also investigated as function of rGO loading. The rGO had great effect on the erosion resistance of the composite films, in which the Rcorr (ca. 0.8 mm/year of composite film was far lower than that (28.7 mm/year of pure silicone-acrylate resin film. Thus, this approach provides a novel route to investigate mechanical stability of polymer composite films and improve erosion resistance of polymer coating, which are very important to be used in mechanical-corrosion coupling environments.

  13. Behavioral data of thin-film single junction amorphous silicon (a-Si) photovoltaic modules under outdoor long term exposure

    National Research Council Canada - National Science Library

    Kichou, Sofiane; Silvestre, Santiago; Nofuentes, Gustavo; Torres-Ramírez, Miguel; Chouder, Aissa; Guasch, Daniel

    2016-01-01

    Four years׳ behavioral data of thin-film single junction amorphous silicon (a-Si) photovoltaic (PV) modules installed in a relatively dry and sunny inland site with a Continental-Mediterranean climate...

  14. Vapor Sensor Realized in an Ultracompact Polarization Interferometer Built of a Freestanding Porous-Silicon Form Birefringent Film

    National Research Council Canada - National Science Library

    O, Beom-Hoan; Liu, Rong; Li, Yang Y; Sailor, Michael J; Fainman, Yeshaiahu

    2005-01-01

    .... The simulation accurately predicts the polarization interference signal, which is used to estimate the effective refractive indexes characterizing the form birefringence of a porous-silicon film with 0.001 accuracy...

  15. Performance and Transient Behavior of Vertically Integrated Thin-film Silicon Sensors

    Directory of Open Access Journals (Sweden)

    Christophe Ballif

    2008-08-01

    Full Text Available Vertical integration of amorphous hydrogenated silicon diodes on CMOS readout chips offers several advantages compared to standard CMOS imagers in terms of sensitivity, dynamic range and dark current while at the same time introducing some undesired transient effects leading to image lag. Performance of such sensors is here reported and their transient behaviour is analysed and compared to the one of corresponding amorphous silicon test diodes deposited on glass. The measurements are further compared to simulations for a deeper investigation. The long time constant observed in dark or photocurrent decay is found to be rather independent of the density of defects present in the intrinsic layer of the amorphous silicon diode.

  16. Impact of solid-phase crystallization of amorphous silicon on the chemical structure of the buried Si/ZnO thin film solar cell interface

    Energy Technology Data Exchange (ETDEWEB)

    Bar, M.; Wimmer, M.; Wilks, R. G.; Roczen, M.; Gerlach, D.; Ruske, F.; Lips, K.; Rech, B.; Weinhardt, L.; Blum, M.; Pookpanratana, S.; Krause, S.; Zhang, Y.; Heske, C.; Yang, W.; Denlinger, J. D.

    2010-04-30

    The chemical interface structure between phosphorus-doped hydrogenated amorphous silicon and aluminum-doped zinc oxide thin films is investigated with soft x-ray emission spectroscopy (XES) before and after solid-phase crystallization (SPC) at 600C. In addition to the expected SPC-induced phase transition from amorphous to polycrystalline silicon, our XES data indicates a pronounced chemical interaction at the buried Si/ZnO interface. In particular, we find an SPC-enhanced formation of Si-O bonds and the accumulation of Zn in close proximity to the interface. For an assumed closed and homogeneous SiO2 interlayer, an effective thickness of (5+2)nm after SPC could be estimated.

  17. Ultrafast all-optical arithmetic logic based on hydrogenated amorphous silicon microring resonators

    Science.gov (United States)

    Gostimirovic, Dusan; Ye, Winnie N.

    2016-03-01

    For decades, the semiconductor industry has been steadily shrinking transistor sizes to fit more performance into a single silicon-based integrated chip. This technology has become the driving force for advances in education, transportation, and health, among others. However, transistor sizes are quickly approaching their physical limits (channel lengths are now only a few silicon atoms in length), and Moore's law will likely soon be brought to a stand-still despite many unique attempts to keep it going (FinFETs, high-k dielectrics, etc.). This technology must then be pushed further by exploring (almost) entirely new methodologies. Given the explosive growth of optical-based long-haul telecommunications, we look to apply the use of high-speed optics as a substitute to the digital model; where slow, lossy, and noisy metal interconnections act as a major bottleneck to performance. We combine the (nonlinear) optical Kerr effect with a single add-drop microring resonator to perform the fundamental AND-XOR logical operations of a half adder, by all-optical means. This process is also applied to subtraction, higher-order addition, and the realization of an all-optical arithmetic logic unit (ALU). The rings use hydrogenated amorphous silicon as a material with superior nonlinear properties to crystalline silicon, while still maintaining CMOS-compatibility and the many benefits that come with it (low cost, ease of fabrication, etc.). Our method allows for multi-gigabit-per-second data rates while maintaining simplicity and spatial minimalism in design for high-capacity manufacturing potential.

  18. Leakage current mechanisms and their dependence on composition in silicon carbonitride thin films

    Science.gov (United States)

    Vijayakumar, Vishnuvardhanan; Varadarajan, Bhadri

    2015-04-01

    Electrical conduction in amorphous silicon carbonitride (a-SiCN:H) thin films deposited by plasma enhanced chemical vapor deposition (PECVD) is investigated for varying carbon to nitrogen ratios at room temperature. Films deposited with a lower carbon/nitrogen ratio showed two modes of electrical conduction; namely, Schottky emission mode below 2.3 MV cm-1 electric field and Poole-Frenkel mode from 2.3 MV cm-1 up to the breakdown field. Films with higher carbon/nitrogen ratios showed only Poole-Frenkel mode of conduction throughout the entire range of operation up to the breakdown field. The carbon rich films exhibited higher leakage currents attributed to its shallow defect energy levels leading to its higher Poole-Frenkel conductivity.

  19. Novel lighter weight crystalline silicon photovoltaic module using acrylic-film as a cover sheet

    Science.gov (United States)

    Kajisa, Taira; Miyauchi, Haruko; Mizuhara, Kazumi; Hayashi, Kentaro; Tokimitsu, Tooru; Inoue, Masanao; Hara, Kohjiro; Masuda, Atsushi

    2014-09-01

    Lighter weight multicrystalline silicon photovoltaic (PV) modules were investigated by substitution of acrylic thin film for standard glass as a cover sheet. Acrylic-film PV mini modules were fabricated with the composition determined from stress simulation results and tested for long-term reliability against thermal changes and humidity. The results revealed that the acrylic-film-cover-sheet PV module satisfied the qualifying standards of all the reliability tests in both the module appearance after tests and the electrical properties. Moreover, the PV module proved to be durable in the impact resistance test, even though the cover sheet was thinner. In addition, the electrical properties of the PV module were unaffected in the potential-induced degradation (PID) test, whereas those of the standard glass module were significantly deteriorated. These results indicated that it is possible for the lighter weight acrylic-film PV module to be used in the immediate future.

  20. Improved PECVD Si x N y film as a mask layer for deep wet etching of the silicon

    Science.gov (United States)

    Han, Jianqiang; Yin, Yi Jun; Han, Dong; Dong, LiZhen

    2017-09-01

    Although plasma enhanced chemical vapor deposition (PECVD) silicon nitride (Si x N y ) films have been extensively investigated by many researchers, requirements of film properties vary from device to device. For some applications utilizing Si x N y film as the mask Layer for deep wet etching of the silicon, it is very desirable to obtain a high quality film. In this study, Si x N y films were deposited on silicon substrates by PECVD technique from the mixtures of NH3 and 5% SiH4 diluted in Ar. The deposition temperature and RF power were fixed at 400 °C and 20 W, respectively. By adjusting the SiH4/NH3 flow ratio, Si x N y films of different compositions were deposited on silicon wafers. The stoichiometry, residual stress, etch rate in 1:50 HF, BHF solution and 40% KOH solution of deposited Si x N y films were measured. The experimental results show that the optimum SiH4/NH3 flow ratio at which deposited Si x N y films can perfectly protect the polysilicon resistors on the front side of wafers during KOH etching is between 1.63 and 2.24 under the given temperature and RF power. Polysilicon resistors protected by the Si x N y films can withstand 6 h 40% KOH double-side etching at 80 °C. At the range of SiH4/NH3 flow ratios, the Si/N atom ratio of films ranges from 0.645 to 0.702, which slightly deviate the ideal stoichiometric ratio of LPCVD Si3N4 film. In addition, the silicon nitride films with the best protection effect are not the films of minimum etch rate in KOH solution.

  1. Depth Profile Analysis of Amorphous Silicon Thin Film Solar Cells by Pulsed Radiofrequency Glow Discharge Time of Flight Mass Spectrometry

    Science.gov (United States)

    Alvarez-Toral, Aitor; Sanchez, Pascal; Menéndez, Armando; Pereiro, Rosario; Sanz-Medel, Alfredo; Fernández, Beatriz

    2015-02-01

    Among the different solar cell technologies, amorphous silicon (a-Si:H) thin film solar cells (TFSCs) are today very promising and, so, TFSCs analytical characterization for quality control issues is increasingly demanding. In this line, depth profile analysis of a-Si:H TFSCs on steel substrate has been investigated by using pulsed radiofrequency glow discharge-time of flight mass spectrometry (rf-PGD-TOFMS). First, to discriminate potential polyatomic interferences for several analytes (e.g., 28Si+, 31P+, and 16O+) appropriate time positions along the GD pulse profile were selected. A multi-matrix calibration approach, using homogeneous certified reference materials without hydrogen as well as coated laboratory-made standards containing hydrogen, was employed for the methodological calibration. Different calibration strategies (in terms of time interval selection on the pulse profile within the afterglow region) have been compared, searching for optimal calibration graphs correlation. Results showed that reliable and fast quantitative depth profile analysis of a-Si:H TFSCs by rf-PGD-TOFMS can be achieved.

  2. Analysis of defects in low-temperature polycrystalline silicon thin films related to surface-enhanced Raman scattering

    Science.gov (United States)

    Kitahara, Kuninori; Yeh, Wenchang; Hara, Akito

    2018-01-01

    The analysis of Raman scattering (RS) spectroscopy is presented for low-temperature polycrystalline silicon (poly-Si) thin films on glass substrates fabricated by excimer laser crystallization. In this material, RS is enhanced by specific protrusions at the grain boundary (GB). As a result, the Si lattice mode predominantly reflects the characteristics of GB and its neighborhood. A combination of low-damage hydrogenation and RS analysis enables the detection of lattice defects as Si–hydrogen (H) local vibration modes (LVMs). The characteristics of LVMs peculiar to this material are examined by chemical etching and postannealing. One of the dominant LVMs centered at ∼2000 cm‑1 is assigned to H-terminated dangling bonds in the amorphous structures at GB, which is also enhanced by protrusions. The other dominant band centered at ∼2100 cm‑1 is attributed to the strained Si–Si lattice near the Si/underlayer interface in grains that is broken and stabilized by extrinsic H atoms.

  3. Hydrogen kinetics in a-Si:H and a-SiC:H thin films investigated by real-time ERD

    Energy Technology Data Exchange (ETDEWEB)

    Halindintwali, S., E-mail: shalindintwali@uwc.ac.za [Physics Department, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Khoele, J. [Physics Department, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Nemroaui, O. [Department of Mechatronics, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535 (South Africa); Comrie, C.M. [Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Materials Research Department, iThemba LABS, P.O. Box 722, Somerset West 7129 (South Africa); Theron, C.C. [Physics Department, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa)

    2015-04-15

    Hydrogen effusion from hydrogenated amorphous silicon (a-Si:H) and amorphous silicon carbide (a-Si{sub 1−x}C{sub x}:H) thin films during a temperature ramp between RT and 600 °C was studied by in situ real-time elastic recoil detection analysis. Point to point contour maps show the hydrogen depth profile and its evolution with the ramped temperature. This paper proposes a diffusion limited evolution model to study H kinetic properties from total retained H contents recorded in a single ramp. In a compact a-Si:H layer where H predominantly effuses at high temperatures between 500 and 600 °C, an activation energy value of ∼1.50 eV and a diffusion pre-factor of 0.41 × 10{sup −4} cm{sup 2}/s were obtained. Applied to an non-stoichiometric a-Si{sub 1−x}C{sub x}:H film in the same range of temperature, the model led to reduced values of activation energy and diffusion prefactor of ∼0.33 eV and 0.59 × 10{sup −11} cm{sup 2}/s, respectively.

  4. Structural and optical properties of thin films porous amorphous silicon carbide formed by Ag-assisted photochemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Boukezzata, A., E-mail: assiab2006@yahoo.fr [Silicon Technology Development Unit (UDTS), 02 Bd. Frantz FANON, B.P. 140 Algiers (Algeria); Keffous, A., E-mail: keffousa@yahoo.fr [Silicon Technology Development Unit (UDTS), 02 Bd. Frantz FANON, B.P. 140 Algiers (Algeria); Cheriet, A.; Belkacem, Y.; Gabouze, N.; Manseri, A. [Silicon Technology Development Unit (UDTS), 02 Bd. Frantz FANON, B.P. 140 Algiers (Algeria); Nezzal, G. [Houari Boumediene University (USTHB), Chemical Faculty, Algiers (Algeria); Kechouane, M.; Bright, A. [Houari Boumediene University, Physical Faculty, Algiers (Algeria); Guerbous, L. [Algerian Nuclear Research Center (CRNA), Algiers (Algeria); Menari, H. [Silicon Technology Development Unit (UDTS), 02 Bd. Frantz FANON, B.P. 140 Algiers (Algeria)

    2010-07-01

    In this work, we present the formation of porous layers on hydrogenated amorphous SiC (a-SiC: H) by Ag-assisted photochemical etching using HF/K{sub 2}S{sub 2}O{sub 8} solution under UV illumination at 254 nm wavelength. The amorphous films a-SiC: H were elaborated by d.c. magnetron sputtering using a hot pressed polycrystalline 6H-SiC target. Because of the high resistivity of the SiC layer, around 1.6 M{Omega} cm and in order to facilitate the chemical etching, a thin metallic film of high purity silver (Ag) has been deposited under vacuum onto the thin a-SiC: H layer. The etched surface was characterized by scanning electron microscopy, secondary ion mass spectroscopy, infrared spectroscopy and photoluminescence. The results show that the morphology of etched a-SiC: H surface evolves with etching time. For an etching time of 20 min the surface presents a hemispherical crater, indicating that the porous SiC layer is perforated. Photoluminescence characterization of etched a-SiC: H samples for 20 min shows a high and an intense blue PL, whereas it has been shown that the PL decreases for higher etching time. Finally, a dissolution mechanism of the silicon carbide in 1HF/1K{sub 2}S{sub 2}O{sub 8} solution has been proposed.

  5. The Effect of Thickness of Silver Thin Film on Structural and Optical Properties of Porous Silicon

    Science.gov (United States)

    Cetinel, A.; Ozdogan, M.; Utlu, G.; Artunc, N.; Sahin, G.; Tarhan, E.

    In this study, porous silicon (PS) samples were prepared on n-type silicon (100) wafers by electrochemical etching method, varying the current density from 20 to 100mA/cm2 and keeping constant HF concentration (10%) and etching time of 15min. Then, Ag thin films, which have 10, 50 and 100nm film thicknesses, were deposited on PS layers by using thermal evaporation to investigate the influence of Ag film thickness on structural and optical properties of PS. The structural and optical properties of PS and Ag deposited PS layers have been investigated by XRD, FE-SEM, Raman and photoluminescence (PL) spectroscopy. FE-SEM XRD and Raman analyzes indicate that average pore size and porosity of PS layers increase with the increasing current density. Further, Ag nanoparticles have embedded in pore channel. PL measurement reveals that higher porosity of PS would be better to form the Ag-PS nano-composite material leading to stronger PL band. The PL spectra of PS and Ag-PS samples indicate that PL bands show blue shift with increasing current density and film thickness. Consequently, it has been found that the structural and optical properties of PS depend on current density and Ag film thickness individually.

  6. Sputtered Al-doped ZnO transparent conducting thin films suitable for silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ayadi, Z., E-mail: Zouhaier.BenAyadi@fsg.rnu.tn [Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée à l' Environnement, Université de Gabès, Faculté des Sciences de Gabès, Cité Erriadh Manara Zrig, 6072 Gabès (Tunisia); Mahdhi, H. [Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée à l' Environnement, Université de Gabès, Faculté des Sciences de Gabès, Cité Erriadh Manara Zrig, 6072 Gabès (Tunisia); Djessas, K. [Laboratoire Procédés, Matériaux et Energie Solaire (PROMES-CNRS), TECNOSUD, Rambla de la Thermodynamique, 66100 Perpignan (France); Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 68860, Perpignan Cedex9 (France); Gauffier, J.L. [Département de Génie Physique, INSA de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse cedex 4 (France); and others

    2014-02-28

    Highly transparent conducting Al-doped zinc oxide (AZO) thin films have been grown onto p-type porous silicon substrates by RF-magnetron sputtering at room temperature using aluminum doped nanocrystalline powder. The obtained AZO films were polycrystalline with a hexagonal wurtzite structure and preferentially oriented in the (002) crystallographic direction. The films are highly transparent in the visible wavelength region with a transmittance higher than 85% and an electrical resistivity of 1.56 × 10{sup −4} Ω·cm was obtained at room temperature. On the other hand, we have studied the position of the p–n junction involved in the In{sub 2}O{sub 3}:SnO{sub 2}/(n)AZO/Si(p) structure, by electron-beam induced current technique. Current density–voltage characterizations in dark and under illumination were also investigated. The cell exhibits an efficiency of 5%. - Highlights: • Al-doped zinc oxide (AZO) thin films were grown by RF-magnetron sputtering. • AZO nanopowder compacted target was prepared by a sol–gel method. • AZO thin films are polycrystalline and have preferred orientation along c-axis. • We report a photovoltaic effect in Si(p)/porous silicon/AZO heterostructure. • The cell exhibits an efficiency of 5%.

  7. Preparation of Macroporous Epitaxial Quartz Films on Silicon by Chemical Solution Deposition.

    Science.gov (United States)

    Carretero-Genevrier, Adrián; Gich, Martí

    2015-12-21

    This work describes the detailed protocol for preparing piezoelectric macroporous epitaxial quartz films on silicon(100) substrates. This is a three-step process based on the preparation of a sol in a one-pot synthesis which is followed by the deposition of a gel film on Si(100) substrates by evaporation induced self-assembly using the dip-coating technique and ends with a thermal treatment of the material to induce the gel crystallization and the growth of the quartz film. The formation of a silica gel is based on the reaction of a tetraethyl orthosilicate and water, catalyzed by HCl, in ethanol. However, the solution contains two additional components that are essential for preparing mesoporous epitaxial quartz films from these silica gels dip-coated on Si. Alkaline earth ions, like Sr(2+) act as glass melting agents that facilitate the crystallization of silica and in combination with cetyl trimethylammonium bromide (CTAB) amphiphilic template form a phase separation responsible of the macroporosity of the films. The good matching between the quartz and silicon cell parameters is also essential in the stabilization of quartz over other SiO2 polymorphs and is at the origin of the epitaxial growth.

  8. ERDA. Technique for hydrogen content and depth profile in thin film metal hydride

    Energy Technology Data Exchange (ETDEWEB)

    Jain, I.P.; Jain, Ankur; Jain, Pragya [Rajasthan Univ., Jaipur (India). Centre for Non Conventional Energy Resources

    2010-07-01

    The use of thin films for hydrogen storage has become very important as the main process of absorption and desorption of hydrogen takes place on the surface of the material. The incorporation of hydrogen into thin film form is relatively new field of research and provides an opportunity to examine a number of unusual properties, which are not visible in the bulk hydrides. Considerable amount of work has been done in our laboratory to investigate hydrogen absorption mechanism in FeTi, LaNi, and MmNi{sub 4.5}Al{sub 0.5} thin film metal hydrides. Over the past few decades thin films are analyzed using ion beam analysis techniques where an energetic incident ion provides depth information on the basis of the energy lost by it and the creation of possible secondary particles in the sample. One of the most commonly used such techniques is Rutherford Backscattering (RBS) which makes use of {alpha} particles of few MeV energy and is based on the principle of elastic scattering. One of the main drawbacks of RBS is its poor sensitivity for light elements present in a heavier matrix. Hence hydrogen cannot be detected using RBS as backscattering of ions from hydrogen is not possible. The limitations of RBS are overcome by another technique, Elastic Recoil Detection Analysis (ERDA), in which the yield and energy of particle ejected out of thin film sample under swift heavy ion beam irradiation is detected giving the quantitative information concerning the depth distribution of light elements in a sample. In the present work ERDA technique is being presented with its principle, design, working and application for hydrogen content and depth profile in thin film hydride. (orig.)

  9. Observation by conductive-probe atomic force microscopy of strongly inverted surface layers at the hydrogenated amorphous silicon/crystalline silicon heterojunctions

    Science.gov (United States)

    Maslova, O. A.; Alvarez, J.; Gushina, E. V.; Favre, W.; Gueunier-Farret, M. E.; Gudovskikh, A. S.; Ankudinov, A. V.; Terukov, E. I.; Kleider, J. P.

    2010-12-01

    Heterojunctions made of hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si) are examined by conducting probe atomic force microscopy. Conductive channels at both (n )a-Si:H/(p)c-Si and (p)a-Si:H/(n)c-Si interfaces are clearly revealed. These are attributed to two-dimension electron and hole gases due to strong inversion layers at the c-Si surface in agreement with previous planar conductance measurements. The presence of a hole gas in (p )a-Si:H/(n)c-Si structures implies a quite large valence band offset (EVc-Si-EVa-Si:H>0.25 eV).

  10. Epitaxial ferromagnetic oxide thin films on silicon with atomically sharp interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Coux, P. de [Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona (Spain); CEMES-CNRS, 29 rue Jeanne Marvig, BP 94347, Toulouse Cedex 4 (France); Bachelet, R.; Fontcuberta, J.; Sánchez, F., E-mail: fsanchez@icmab.es [Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona (Spain); Warot-Fonrose, B. [CEMES-CNRS, 29 rue Jeanne Marvig, BP 94347, Toulouse Cedex 4 (France); Skumryev, V. [Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain and Dep. de Física, Univ. Autònoma de Barcelona, 08193 Bellaterra (Spain); Lupina, L.; Niu, G.; Schroeder, T. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany)

    2014-07-07

    A bottleneck in the integration of functional oxides with silicon, either directly grown or using a buffer, is the usual formation of an amorphous interfacial layer. Here, we demonstrate that ferromagnetic CoFe{sub 2}O{sub 4} films can be grown epitaxially on Si(111) using a Y{sub 2}O{sub 3} buffer layer, and remarkably the Y{sub 2}O{sub 3}/Si(111) interface is stable and remains atomically sharp. CoFe{sub 2}O{sub 4} films present high crystal quality and high saturation magnetization.

  11. Growth and tribological properties of diamond films on silicon and tungsten carbide substrates

    Science.gov (United States)

    Radhika, R.; Ramachandra Rao, M. S.

    2016-11-01

    Hot filament chemical vapor deposition technique was used to deposit microcrystalline diamond (MCD) and nanocrystalline diamond (NCD) films on silicon (Si) and tungsten carbide (WC-6Co) substrates. Friction coefficient of larger diamond grains deposited on WC-6Co substrate shows less value approximately 0.2 while this differs marginally on films grown on Si substrate. The study claims that for a less friction coefficient, the grain size is not necessarily smaller. However, the less friction coefficient (less than 0.1 saturated value) in MCD and NCD deposited on Si is explained by the formation of graphitized tribolayer. This layer easily forms when diamond phase is thermodynamically unstable.

  12. Strong anisotropy of lateral electrical transport in (110) porous silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Forsh, P.; Zhigunov, D.; Osminkina, L.; Timoshenko, V.; Kashkarov, P. [Moscow State M. V. Lomonosov University, Physics Department, 119992 Moscow (Russian Federation)

    2005-06-01

    We study the lateral electrical transport in free-standing porous silicon films prepared by anodic etching of heavily boron-doped (110)Si wafers. It is shown that the lateral dark conductivity and photoconductivity are significantly higher along the [1 anti 10] in-plane crystallographic direction than that along the [001] one. The electrical transport anisotropy decreases under light illumination and with increasing temperature. The experimental results are explained by using an effective-medium approximation and taking into account potential barriers between anisotropic Si nanocrystals assembling the films. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Ultrahigh-performance (100)-oriented polycrystalline silicon thin-film transistors and their microscopic crystal structures

    Science.gov (United States)

    Thuy Nguyen, Thi; Hiraiwa, Mitsuhisa; Kuroki, Shin-Ichiro

    2017-05-01

    A multiline beam continuous-wave laser lateral crystallization (MLB-CLC) method was developed to realize a predominantly (100)-oriented polycrystalline silicon (poly-Si) film with a high biaxial tensile strain. Low-temperature poly-Si (LTPS) thin film transistors (TFTs) with an ultrahigh maximum electron field effect mobility of 1010 cm2 V-1 s-1 were realized. The correlation between the performance and microscopic crystallinity of the TFTs was investigated. The performance enhancement of TFTs brings about highly (100)-surface-oriented large Si crystallites with a high biaxial tensile strain and grain boundaries being parallel to the current flow.

  14. Large-area Silicon-Film{trademark} panels and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rand, J.A.; Barnett, A.M.; Checchi, J.C. [AstroPower, Inc., Newark, DE (United States)] [and others

    1997-01-01

    This report describes AstroPower`s success in improving its material and processing capabilities during the first phase of this 3-year contract through the Photovoltaic Manufacturing Technology (PVMaT) program. Key results include the demonstration of a 14.6%-efficient Silicon-Film{trademark} solar cell. This laboratory result (1.0 cm{sup 2}) provides the direction needed to develop and optimize continuous, in-line production processes. The continuous nature of the Silicon-Film{trademark} sheet fabrication process is being extended into the solar-cell processing sequence. Plans are in place to make the wafer cleaning, gettering, and diffusion steps all continuous during the scope of this program.

  15. Reduction mechanism of fluoroethylene carbonate for stable solid–electrolyte interphase film on silicon anode.

    Science.gov (United States)

    Chen, Xilin; Li, Xiaolin; Mei, Donghai; Feng, Ju; Hu, Mary Y; Hu, Jianzhi; Engelhard, Mark; Zheng, Jianming; Xu, Wu; Xiao, Jie; Liu, Jun; Zhang, Ji-Guang

    2014-02-01

    Fluoroethylene carbonate (FEC) is an effective electrolyte additive that can significantly improve the cycling ability of silicon and other anode materials. However, the fundamental mechanism of this improvement is still not well understood. Based on the results obtained from (6)Li NMR and X-ray photoelectron spectroscopy studies, we propose a molecular-level mechanism for how FEC affects the formation of solid electrolyte interphase (SEI) film: 1) FEC is reduced through the opening of the five-membered ring leading to the formation of lithium poly(vinyl carbonate), LiF, and some dimers; 2) the FEC-derived lithium poly(vinyl carbonate) enhances the stability of the SEI film. The proposed reduction mechanism opens a new path to explore new electrolyte additives that can improve the cycling stability of silicon-based electrodes.

  16. Enhanced red photoluminescence of quartz by silicon nanocrystals thin film deposition

    Science.gov (United States)

    Momeni, A.; Pourgolestani, M.; Taheri, M.; Mansour, N.

    2018-03-01

    The room-temperature photoluminescence properties of silicon nanocrystals (SiNCs) thin film on a quartz substrate were investigated, which presents the red emission enhancement of quartz. We show that the photoluminescence intensity of quartz, in the wavelength range of 640-700 nm, can be enhanced as much as 15-fold in the presence of the SiNCs thin film. Our results reveal that the defect states at the SiNCs/SiO2 interface can be excited more efficiently by indirect excitation via the SiNCs, leading to the prominent red photoluminescence enhancement under the photo-excitation in the range of 440-470 nm. This work suggests a simple pathway to improve silicon-based light emitting devices for photonic applications.

  17. Scattering of long wavelengths into thin silicon photovoltaic films by plasmonic silver nanoparticles

    Science.gov (United States)

    Osgood, R. M.; Bullion, K. M.; Giardini, S. A.; Carlson, J. B.; Stenhouse, P.; Kingsborough, R.; Liberman, V.; Parameswaran, L.; Rothschild, M.; Miller, O.; Kooi, S.; Joannopoulos, J.; Jeffrey, F.; Braymen, S.; Gill, H. Singh; Kumar, J.

    2014-10-01

    Nanoparticles and nanostructures with plasmonic resonances are currently being employed to enhance the efficiency of solar cells. 1-3 Ag stripe arrays have been shown theoretically to enhance the short-circuit current of thin silicon layers. 4 Monolayers of Ag nanoparticles with diameter d thin polymer layers with thicknesses thin (100 nm films deposited on glass and flexible polymer substrates, the latter originating in a roll-to-roll manufacturing process. Ag nanoparticles are held in place and aggregation is prevented with a polymer overcoat. We observe interesting wavelength shifts between maxima in specular and diffuse scattering that depend on particle size and shape, indicating that the nanoparticles substantially modify the scattering into the thin silicon film.

  18. Spectra of fast neutrons using a lithiated glass film on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Steven E-mail: truassayist1@aol.com; Stephan, Andrew C.; Womble, Phillip C.; Begtrup, Gavi; Dai Sheng

    2003-06-01

    Experimental results of a neutron detector manufactured by coating a silicon charged particle detector with a film of lithiated glass are presented. The silicon surface barrier detector (SBD) responds to the {sup 6}Li(n, alpha)triton reaction products generated in the thin film of lithiated glass entering the SBD. Neutron spectral information is present in the pulse height spectrum. An energy response is seen that clearly shows that neutrons from a Pu-Be source and from a deuterium-tritium (D-T) pulsed neutron generator can be differentiated and counted above a gamma background. The significant result is that the fissile content within a container can be measured using a pulsed D-T neutron generator using the neutrons that are counted in the interval between the pulses.

  19. Defect annealing processes for polycrystalline silicon thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Steffens, S., E-mail: simon.steffens@helmholtz-berlin.de [Helmholtz-Zentrum Berlin, Berlin (Germany); Becker, C. [Helmholtz-Zentrum Berlin, Berlin (Germany); Zollondz, J.-H., E-mail: hzollondz@masdarpv.com [CSG Solar AG, Thalheim (Germany); Chowdhury, A.; Slaoui, A. [L’Institut d’Électronique du Solide et des Systèmes, Strasbourg (France); Lindekugel, S. [Fraunhofer-Institut für Solare Energiesysteme, Freiburg (Germany); Schubert, U.; Evans, R. [Suntech R and D Australia Pty Ltd, Sydney (Australia); Rech, B. [Helmholtz-Zentrum Berlin, Berlin (Germany)

    2013-05-15

    Highlights: ► Defect annealing processes were applied to polycrystalline silicon thin films. ► Conventional rapid thermal annealing was compared to novel annealing processes using a laser system and a zone-melting recrystallization setup. ► The open circuit voltages could be enhanced from below 170 mV up to 482 mV. ► Increase in Sun's-V{sub OC} values with decrease in FWHM of the TO Raman phonon of crystalline silicon. ► Solar cells were fabricated for I–V-measurements: Best solar cell efficiency of 6.7%. -- Abstract: A variety of defect healing methods was analyzed for optimization of polycrystalline silicon (poly-Si) thin-film solar cells on glass. The films were fabricated by solid phase crystallization of amorphous silicon deposited either by plasma enhanced chemical vapor deposition (PECVD) or by electron-beam evaporation (EBE). Three different rapid thermal processing (RTP) set-ups were compared: A conventional rapid thermal annealing oven, a dual wavelength laser annealing system and a movable two sided halogen lamp oven. The two latter processes utilize focused energy input for reducing the thermal load introduced into the glass substrates and thus lead to less deformation and impurity diffusion. Analysis of the structural and electrical properties of the poly-Si thin films was performed by Suns-V{sub OC} measurements and Raman spectroscopy. 1 cm{sup 2} cells were prepared for a selection of samples and characterized by I–V-measurements. The poly-Si material quality could be extremely enhanced, resulting in increase of the open circuit voltages from about 100 mV (EBE) and 170 mV (PECVD) in the untreated case up to 480 mV after processing.

  20. Dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Jesper B.; Christensen, Erik N.

    2017-01-01

    We numerically demonstrate dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating using a finite-difference mode solver. The proposed structure exhibits spectrally-flattened near-zero anomalous dispersion within the telecom wavelength range. We also numerica...... numerically predict the wavelength conversion efficiency for degenerate four-wave mixing, and obtain a 3 dB bandwidth of 80 nm....

  1. Comparative study of LPE and VPE silicon thin film on porous sacrificial layer

    Energy Technology Data Exchange (ETDEWEB)

    Fave, A.; Quoizola, S.; Kraiem, J.; Kaminski, A.; Lemiti, M.; Laugier, A

    2004-03-22

    Thin film single crystal silicon on foreign substrate is an attractive way to realize cheap and efficient photovoltaic devices. In this paper we will compare epitaxial growth of silicon thin film on double porous sacrificial layers obtained by liquid or vapor phase epitaxy (LPE or VPE). Porous silicon is formed by electrochemical anodisation of monocrystalline silicon in a HF/ethanol solution. VPE is achieved in an atmospheric pressure chemical vapor deposition (APCVD) reactor under H{sub 2} atmosphere. Growth rate is in between 0.5-3 {mu}m/min. LPE is realised in a graphite sliding boat using indium or tin as solvent. Growth rate is in the range 0.1-1 {mu}m/min depending on the temperature, the cooling rate and the solvent. We discuss the substrate orientation, temperature, growth rate, layer homogeneity and electrical properties of the epilayers for both growing techniques. Diffusion length and mobility are measured respectively with LBIC and Hall effect technique. The values obtained for p-type ({mu}>100 V/cm{sup 2}/s and L{sub n}>100 {mu}m) allows the realisation of solar cell using interdigitated technology on the top of this layer, which is detached and transferred onto mullite substrate.

  2. Hydrogen storage characteristics of Ti– and V–based thin films

    Directory of Open Access Journals (Sweden)

    Z. Tarnawski

    2016-06-01

    Full Text Available Series of thin films of single-, bi- and tri-layered structure consisting of Ti, V, TiO2 and V2O5 layer and/or mixed Ti–V–Ni layer with different layer sequences and thicknesses were prepared by the sputtering technique on Si and SiO2 substrates. The layer chemical composition and thickness were determined by a combined analysis of X-ray diffraction, X-ray reflectometry, Rutherford backscattering and optical reflectivity spectra. The films were hydrogenated at 1 bar at 300 °C and/or at high pressures up to 100 bar at room temperature. The hydrogen concentration and hydrogen profile was determined by means of a secondary ion mass spectroscopy and N-15 Nuclear Reaction Analysis. The highest hydrogen storage with a concentration up to 50 at.% was found in the pure Ti layers, while it amounts to about 30 at.% in the metallic Ti–V–Ni layers. A large hydrogen storage (up to 20 at.% was also found in the V2O5 layers, while no hydrogen accumulation was found in the TiO2 layers. Hydrogen could remove the preferential orientation of the Ti films and induce a complete transition of V2O5 to VO2.

  3. Deposition of thin layers of boron nitrides and hydrogenated microcrystalline silicon assisted by high current direct current arc plasma; Deposition assistee par un plasma a arc a haut courant continu de couches minces de Nitrure de Bore et de Silicium microcristallin hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Franz, D. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    1999-09-01

    In the frame of this thesis, a high current direct current arc (HCDCA) used for the industrial deposition of diamond, has been adapted to study the deposition of two types of coatings: a) boron nitride, whose cubic phase is similar to diamond, for tribological applications, b) hydrogenated microcrystalline silicon, for applications in the semiconductor fields (flat panel displays, solar cells,...). For the deposition of these coatings, the substrates were placed in the diffusion region of the arc. The substrate heating is mainly due to atomic species recombining on its surface. The deposition temperature, varying from 300 to 900 {sup o}C according to the films deposited, is determined by the substrate position, the arc power and the injected gas fluxes, without the use of any external heating or cooling system. Measurements performed on the arc plasma show that the electronic temperature is around 2 eV (23'000 K) while the gas temperature is lower than 5500 K. Typical electronic densities are in the range of 10{sup 12}-10{sup 1'}3 cm{sup -3}. For the deposition of boron nitride films, different boron precursors were used and a wide parameter range was investigated. The extreme difficulty of synthesising cubic boron nitride films by chemical vapour deposition (CVD) did not allow to stabilize the cubic phase of boron nitride in HCDCA. Coatings resulted in hexagonal or amorphous boron nitride with a chemical composition close to stoichiometric. The presence of hydrogen leads to the deposition of rough and porous films. Negative biasing of the samples, for positive ion bombardment, is commonly used to stabilize the cubic phase. In HCDCA and in our biasing range, only a densification of the films could be observed. A boron nitride deposition plasma study by infrared absorption spectroscopy in a capacitive radio frequency reactor has demonstrated the usefulness of this diagnostic for the understanding of the various chemical reactions which occur in this kind

  4. Lifetime analysis of laser crystallized silicon films on glass

    Energy Technology Data Exchange (ETDEWEB)

    Kühnapfel, Sven; Amkreutz, Daniel; Gall, Stefan [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH - Institut Silizium-Photovoltaik, Berlin (Germany); Huang, Jialiang; Teal, Anthony; Kampwerth, Henner; Varlamov, Sergey [University of New South Wales, Sydney (Australia)

    2015-08-07

    Only recently, the quality of liquid phase crystallized silicon directly on glass substrates made a huge leap towards the quality of multi-crystalline wafers with open circuit voltages well above 600 mV. In this paper, we investigate the material quality in order to identify the factors limiting further performance improvements. We employ photoluminescence imaging on a state of the art test structure with lifetime calibration by transient photoluminescence. The resulting lifetime map is converted into an effective diffusion length map and the origin of regions with short lifetimes is investigated with electron backscattering and transmission electron microscopy. High local dislocation densities in areas with dissociated coincidence site lattice boundaries were found to be responsible for the localised quenching of the photoluminescence signal.

  5. Atomic Layer Deposition TiO2 Films and TiO2/SiNx Stacks Applied for Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Zu-Po Yang

    2016-08-01

    Full Text Available Titanium oxide (TiO2 films and TiO2/SiNx stacks have potential in surface passivation, anti-reflection coatings and carrier-selective contact layers for crystalline Si solar cells. A Si wafer, deposited with 8-nm-thick TiO2 film by atomic layer deposition, has a surface recombination velocity as low as 14.93 cm/s at the injection level of 1.0 × 1015 cm−3. However, the performance of silicon surface passivation of the deposited TiO2 film declines as its thickness increases, probably because of the stress effects, phase transformation, atomic hydrogen and thermal stability of amorphous TiO2 films. For the characterization of 66-nm-thick TiO2 film, the results of transmission electron microscopy show that the anatase TiO2 crystallinity forms close to the surface of the Si. Secondary ion mass spectrometry shows the atomic hydrogen at the interface of TiO2 and Si which serves for chemical passivation. The crystal size of anatase TiO2 and the homogeneity of TiO2 film can be deduced by the measurements of Raman spectroscopy and spectroscopic ellipsometry, respectively. For the passivating contacts of solar cells, in addition, a stack composed of 8-nm-thick TiO2 film and a plasma-enhanced chemical-vapor-deposited 72-nm-thick SiNx layer has been investigated. From the results of the measurement of the reflectivity and effective carrier lifetime, TiO2/SiNx stacks on Si wafers perform with low reflectivity and some degree of surface passivation for the Si wafer.

  6. Band engineering of amorphous silicon ruthenium thin film and its near-infrared absorption enhancement combined with nano-holes pattern on back surface of silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Anran; Zhong, Hao [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Li, Wei, E-mail: wli@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Gu, Deen; Jiang, Xiangdong [School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Jiang, Yadong [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-10-30

    Highlights: • The increase of Ru concentration leads to a narrower bandgap of a-Si{sub 1-x}Ru{sub x} thin film. • The absorption coefficient of a-Si{sub 1-x}Ru{sub x} is higher than that of SiGe. • A double-layer absorber comprising of a-Si{sub 1-x}Ru{sub x} film and Si nano-holes layer is achieved. - Abstract: Silicon is widely used in semiconductor industry but has poor performance in near-infrared photoelectronic devices because of its bandgap limit. In this study, a narrow bandgap silicon rich semiconductor is achieved by introducing ruthenium (Ru) into amorphous silicon (a-Si) to form amorphous silicon ruthenium (a-Si{sub 1-x}Ru{sub x}) thin films through co-sputtering. The increase of Ru concentration leads to an enhancement of light absorption and a narrower bandgap. Meanwhile, a specific light trapping technique is employed to realize high absorption of a-Si{sub 1-x}Ru{sub x} thin film in a finite thickness to avoid unnecessary carrier recombination. A double-layer absorber comprising of a-Si{sub 1-x}Ru{sub x} thin film and silicon random nano-holes layer is formed on the back surface of silicon substrates, and significantly improves near-infrared absorption while the leaky light intensity is less than 5%. This novel absorber, combining narrow bandgap thin film with light trapping structure, may have a potential application in near-infrared photoelectronic devices.

  7. Charge deep-level transient spectroscopy study of high-energy-electron-beam-irradiated hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Klaver, A.; Nádaždy, V.; Zeman, M.; Swaaiij, R.A.C.M.M.

    2006-01-01

    We present a study of changes in the defect density of states in hydrogenated amorphous silicon (a-Si:H) due to high-energy electron irradiation using charged deep-level transient spectroscopy. It was found that defect states near the conduction band were removed, while in other band gap regions the

  8. Modelling of the hydrogen effects on the morphogenesis of hydrogenated silicon nano-structures in a plasma reactor; Modelisation des effets de l'hydrogene sur la morphogenese des nanostructures de silicium hydrogene dans un reacteur plasma

    Energy Technology Data Exchange (ETDEWEB)

    Brulin, Q

    2006-01-15

    This work pursues the goal of understanding mechanisms related to the morphogenesis of hydrogenated silicon nano-structures in a plasma reactor through modeling techniques. Current technologies are first reviewed with an aim to understand the purpose behind their development. Then follows a summary of the possible studies which are useful in this particular context. The various techniques which make it possible to simulate the trajectories of atoms by molecular dynamics are discussed. The quantum methods of calculation of the interaction potential between chemical species are then developed, reaching the conclusion that only semi-empirical quantum methods are sufficiently fast to be able to implement an algorithm of quantum molecular dynamics on a reasonable timescale. From the tools introduced, a reflection on the nature of molecular metastable energetic states is presented for the theoretical case of the self-organized growth of a linear chain of atoms. This model - which consists of propagating the growth of a chain by the successive addition of the atom which least increases the electronic energy of the chain - shows that the Fermi level is a parameter essential to self organization during growth. This model also shows that the structure formed is not necessarily a total minimum energy structure. From all these numerical tools, the molecular growth of clusters can be simulated by using parameters from magnetohydrodynamic calculation results of plasma reactor modeling (concentrations of the species, interval between chemical reactions, energy of impact of the reagents...). The formation of silicon-hydrogen clusters is thus simulated by the successive capture of silane molecules. The structures formed in simulation at the operating temperatures of the plasma reactor predict the formation of spherical clusters constituting an amorphous silicon core covered by hydrogen. These structures are thus not in a state of minimum energy, contrary to certain experimental

  9. Internal friction study of microplasticity of aluminum thin films on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Y.; Tanahashi, K.; Asano, S. [Nagoya Institute of Technology, Nagoya (Japan)

    1995-12-01

    Internal friction in aluminum thin films 0.2 to 2.0 {mu}m thick on silicon substrates has been investigated between 180 and 360 K as a function of strain amplitude by means of a free-decay method of flexural vibration. According to the constitutive equation, the internal friction in the film alone can be evaluated separately from the data on the film/substrate composite. The amplitude-dependent part of internal friction in aluminum films is found in the strain range approximately two orders of magnitude higher than that for bulk aluminum. On the basis of the microplasticity theory, the amplitude-dependent internal friction can be converted into the plastic strain as a function of the effective stress on dislocation motion. The mechanical responses thus obtained for aluminum films show that the plastic strain of the order of 10-9 in creases nonlinearly with increasing stress. These curves tend to shift to a higher stress with decreasing film thickness and also with decreasing temperature, both indicating a suppression of the microplastic deformation. At all temperatures examined, the microflow stress at a constant level of the plastic strain varies inversely with the film thickness, which qualitatively agrees with the variation in macroscopic yield stress. 36 refs., 7 figs.

  10. Tuning the conductivity of vanadium dioxide films on silicon by swift heavy ion irradiation

    Directory of Open Access Journals (Sweden)

    H. Hofsäss

    2011-09-01

    Full Text Available We demonstrate the generation of a persistent conductivity increase in vanadium dioxide thin films grown on single crystal silicon by irradiation with 1 GeV 238U swift heavy ions at room temperature. VO2 undergoes a temperature driven metal-insulator-transition (MIT at 67 °C. After room temperature ion irradiation with high electronic energy loss of 50 keV/nm the conductivity of the films below the transition temperature is strongly increased proportional to the ion fluence of 5·109 U/cm2 and 1·1010 U/cm2. At high temperatures the conductivity decreases slightly. The ion irradiation slightly reduces the MIT temperature. This observed conductivity change is persistent and remains after heating the samples above the transition temperature and subsequent cooling. Low temperature measurements down to 15 K show no further MIT below room temperature. Although the conductivity increase after irradiation at such low fluences is due to single ion track effects, atomic force microscopy (AFM measurements do not show surface hillocks, which are characteristic for ion tracks in other materials. Conductive AFM gives no evidence for conducting ion tracks but rather suggests the existence of conducting regions around poorly conducting ion tracks, possible due to stress generation. Another explanation of the persistent conductivity change could be the ion-induced modification of a high resistivity interface layer formed during film growth between the vanadium dioxide film and the n-Silicon substrate. The swift heavy ions may generate conducting filaments through this layer, thus increasing the effective contact area. Swift heavy ion irradiation can thus be used to tune the conductivity of VO2 films on silicon substrates.

  11. Room Temperature Reactivity Of Silicon Nanocrystals With Solvents: The Case Of Ketone And Hydrogen Production From Secondary Alcohols: Catalysis?

    KAUST Repository

    El Demellawi, Jehad K.

    2015-05-29

    Although silicon nanoparticles dispersed in liquids are used in various applications ranging from bio-labeling to hydrogen production, their reactivities with their solvents and their catalytic properties re-main still unexplored. Here, we discovered that, because of their surface structures and mechanical strain, silicon nanoparticles react strongly with their solvents and may act as catalysts for the dehydrogenation, at room temperature, of secondary alcohols (e.g. isopropanol) to ketones and hydrogen. This catalytic reaction was followed by gas chromatography, pH measurements, mass spectroscopy and solidstate NMR. This discovery provides new understanding of the role played by silicon nanoparticles, and nanosilicon in general, in their stability in solvents in general as well as being candidates in catalysis.

  12. Silicon and aluminum doping effects on the microstructure and properties of polymeric amorphous carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoqiang, E-mail: lxq_suse@sina.com [Material Corrosion and Protection Key Laboratory of Sichuan province, Sichuan University of Science and Engineering, Zigong 643000 (China); Hao, Junying, E-mail: jyhao@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Xie, Yuntao [Material Corrosion and Protection Key Laboratory of Sichuan province, Sichuan University of Science and Engineering, Zigong 643000 (China)

    2016-08-30

    Highlights: • Evolution of nanostructure and properties of the polymeric amorphous carbon films were firstly studied. • Si doping enhanced polymerization of the hydrocarbon chains and Al doping resulted in increase in the ordered carbon clusters of polymeric amorphous carbon films. • Soft polymeric amorphous carbon films exhibited an unconventional frictional behaviors with a superior wear resistance. • The mechanical and vacuum tribological properties of the polymeric amorphous carbon films were significantly improved by Si and Al co-doping. - Abstract: Polymeric amorphous carbon films were prepared by radio frequency (R.F. 13.56 MHz) magnetron sputtering deposition. The microstructure evolution of the deposited polymeric films induced by silicon (Si) and aluminum(Al) doping were scrutinized through infrared spectroscopy, multi-wavelength Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The comparative results show that Si doping can enhance polymerization and Al doping results in an increase in the ordered carbon clusters. Si and Al co-doping into polymeric films leads to the formation of an unusual dual nanostructure consisting of cross-linked polymer-like hydrocarbon chains and fullerene-like carbon clusters. The super-high elasticity and super-low friction coefficients (<0.002) under a high vacuum were obtained through Si and Al co-doping into the films. Unconventionally, the co-doped polymeric films exhibited a superior wear resistance even though they were very soft. The relationship between the microstructure and properties of the polymeric amorphous carbon films with different elements doping are also discussed in detail.

  13. Growth, etching, and stability of sputtered ZnO:Al for thin-film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Jorj Ian

    2011-07-01

    Aluminum-doped zinc oxide (ZnO:Al) can fulfill many requirements in thin-film solar cells, acting as (1) a transparent contact through which the incident light is transmitted, (2) part of the back reflector, and (3) a source of light scattering. Magnetron sputtered ZnO:Al thin-films are highly transparent, conductive, and are typically texturized by post-deposition etching in a dilute hydrochloric acid (HCl) solution to achieve light scattering. The ZnO:Al thin-film electronic and optical properties, as well as the surface texture after etching, depend on the deposition conditions and the post-deposition treatments. Despite having been used in thin-film solar cells for more than a decade, many aspects regarding the growth, effects of heat treatments, environmental stability, and etching of sputtered ZnO:Al are not fully understood. This work endeavors to further the understanding of ZnO:Al for the purpose improving silicon thin-film solar cell efficiency and reducing ZnO:Al production costs. With regard to the growth of ZnO:Al, the influence of various deposition conditions on the resultant electrical and structural properties and their evolution with film thickness were studied. The surface electrical properties extracted from a multilayer model show that while carrier concentration of the surface layer saturates already at film thickness of 100 nm, the surface mobility continues to increases with film thickness, and it is concluded that electronic transport across grain boundaries limits mobility in ZnO:Al thin films. ZnO:Al deposited onto a previously etched ZnO:Al surface grows epitaxially, preserving both the original orientation and grain structure. Further, it is determined that a typical ZnO:Al used in thin-film silicon solar cells grows Zn-terminated on glass substrates. Concerning the affects of heat treatments and stability, it is demonstrated that a layer of amorphous silicon can protect ZnO:Al from degradation during annealing, and the mobility of Zn

  14. Reversible loading of epitaxial Y(00.1) films with hydrogen

    Science.gov (United States)

    Remhof, A.; Song, G.; Sutter, Ch.; Theis-Bröhl, K.; Zabel, H.

    1998-03-01

    Yttrium can be loaded with hydrogen up to high concentrations causing dramatic structural and electronic changes of the host lattice. We report on the reversibility of hydrogen loading in thin, monocrystalline Y-films grown by MBE on Nb/Al_2O3 substrates. During hydrogen loading, the Yttrium film undergoes structural transitions from the cubic dihydride to the hexagonal trihydride phase, while the structural coherence and the in-plane epitaxial relation to the Nb buffer layer is maintained. The transition from YH2 to YH3 occurs at room temperature at a hydrogen pressure of 10 mbar and is completely reversible. Reversibility is also observed for deuteration of Y. However, the kinetics is more sluggish. Although the YH2 structure is chemically stable, isotope exchange with deuterium takes place rapidly. (A. Remhof, G. Song, K. Theis-Bröhl, H. Zabel, Phys. Rev. B 56) R2897 (1997)

  15. Low-Temperature Carrier Transport in Ionic-Liquid-Gated Hydrogen-Terminated Silicon

    Science.gov (United States)

    Sasama, Yosuke; Yamaguchi, Takahide; Tanaka, Masashi; Takeya, Hiroyuki; Takano, Yoshihiko

    2017-11-01

    We fabricated ionic-liquid-gated field-effect transistors on the hydrogen-terminated (111)-oriented surface of undoped silicon. Ion implantation underneath electrodes leads to good ohmic contacts, which persist at low temperatures down to 1.4 K. The sheet resistance of the channel decreases by more than five orders of magnitude as the gate voltage is changed from 0 to -1.6 V at 220 K. This is caused by the accumulation of hole carriers. The sheet resistance shows thermally activated behavior at temperatures below 10 K, which is attributed to hopping transport of the carriers. The activation energy decreases towards zero with increasing carrier density, suggesting the approach to an insulator-metal transition. We also report the variation of device characteristics induced by repeated sweeps of the gate voltage.

  16. Characterization of silicon carbide epitaxial films by differential reflectance spectroscopy

    Science.gov (United States)

    Shturbin, Anatoly V.; Titkov, Ilya E.; Panevin, Vadim Y.; Vorobjev, Leonid E.; Witman, Renata F.

    2000-01-01

    We are presenting a simple non-destructive method for characterizing SiC samples (Lely-crystals, CREE-substrates, and epitaxial films). With our method we observed ultraviolet differential reflection spectra of SiC samples and compared with pure Lely-crystal to estimate their structural quality. Our optical differential method is based on the experimental fact that doping of a crystal leads to appreciable changes of the optical fundamental absorption spectrum, which we interpreted as a uniform broadening and a shift of differential spectra. The broadening of absorption peaks can be caused not only by doping, but also by any defects of the crystal lattice (neutral impurities, clusters, micro-pipes and others), that destroy its periodicity. The shifts of these peaks inform us about the free carrier concentration. The experiment has shown we can detect minimum free carriers concentration up to nmin equals (ND-NA) equals 6 (DOT) 1015 cm-3. Besides we can detect minimal frequency of impacts with lattice defects as vmin equals 3 (DOT) 1012 s-1. Converting to charged centers concentration it equals (ND + NA) equals 5 (DOT) 1016 cm-3. Considering the small depth of light probe (less than 0.1 micrometers ) and delicacy of thin films, our contactless method is mostly applicable for its testing.

  17. In-situ plasma hydrogenated TiO{sub 2} thin films for enhanced photoelectrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Aadesh P.; Kodan, Nisha [Thin Film Laboratory, Department of Physics, Indian Institute of Technology, Hauz Khas, New Delhi 110016 (India); Mehta, Bodh R., E-mail: brmehta@physics.iitd.ac.in [Thin Film Laboratory, Department of Physics, Indian Institute of Technology, Hauz Khas, New Delhi 110016 (India); Dey, Avishek; Krishnamurthy, Satheesh [Materials Engineering, The Open University, Milton Keynes, MK7 6AA (United Kingdom)

    2016-04-15

    Highlights: • Growth of TiO{sub 2} thin films with in-situ plasma hydrogenation. • Presence of Ti{sup 2+} states in addition to Ti{sup 3+} states present in pristine TiO{sub 2}. • Change in VBM, work function and band gap in iH:TiO{sub 2}. • Enhanced photocurrent density as compared to pristine TiO{sub 2} films. - Abstract: In this paper, we report the effect of in-situ plasma hydrogenation of TiO{sub 2} (iH:TiO{sub 2}) thin films by the incorporation of known amount of hydrogen in the Ar plasma during rf-sputter deposition of TiO{sub 2} films. As compared to pristine TiO{sub 2} films (∼0.43 mA/cm2 at 0.23 V vs Ag/AgCl), hydrogenated TiO{sub 2} showed enhanced photoelectrochemical activity in terms of improved photocurrent density of ∼1.08 mA/cm2 (at 0.23 V vs Ag/AgCl). These results are explained in terms of reduction in band gap energy, shift in valence band maximum away from the Fermi level, improved donor density and more negative flat band potential in iH:TiO{sub 2} sample. The presence of Ti{sup 2+} states in iH:TiO{sub 2} films in addition to Ti{sup 3+} states in pristine TiO{sub 2} act as additional electronic states in the TiO{sub 2} band gap and increases the optical absorption in the visible region. This method of in-situ hydrogenation can be used as a general method for improving the properties of metal oxide thin films for photoelectrochemical and photocatalytic applications.

  18. Super hydrogen and helium barrier with polyelectolyte nanobrick wall thin film.

    Science.gov (United States)

    Tzeng, Ping; Lugo, Elva L; Mai, Garret D; Wilhite, Benjamin A; Grunlan, Jaime C

    2015-01-01

    In an effort to impart light gas (i.e., H2 and He) barrier to polymer substrates, thin films of polyethylenimine (PEI), poly(acrylic acid) (PAA), and montmorrilonite (MMT) clay are deposited via layer-by-layer (LbL) assembly. A five "quadlayer" (122 nm) coating deposited on 51 μm polystyrene is shown to lower both hydrogen and helium permeability three orders of magnitude against bare polystyrene, demonstrating better performance than thick-laminated ethylene vinyl-alcohol (EVOH) copolymer film and even metallized polyolefin/polyester film. These excellent barrier properties are attributed to a "nanobrick wall" structure. This highly flexible coating represents the first demonstration of an LbL deposited film with low hydrogen and helium permeability and is an ideal candidate for several packaging and protection applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, Andreas, E-mail: A.Markwitz@gns.cri.nz [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Gupta, Prasanth [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, Berit [GNS Science, Lower Hutt (New Zealand); Hübner, René [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Leveneur, Jerome; Zondervan, Albert [GNS Science, Lower Hutt (New Zealand); Becker, Hans-Werner [RUBION, Ruhr-University Bochum (Germany)

    2016-03-15

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction {sup 1}H({sup 15}N, αγ){sup 12}C (E{sub res} = 6.385 MeV). The films produced at 3.0–10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp{sup 2} hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  20. Plasma-enhanced chemical vapor deposited silicon oxynitride films for optical waveguide bridges for use in mechanical sensors

    DEFF Research Database (Denmark)

    Storgaard-Larsen, Torben; Leistiko, Otto

    1997-01-01

    In this paper the influence of RF power, ammonia flow, annealing temperature, and annealing time on the optical and mechanical properties of plasma-enhanced chemically vapor deposited silicon oxynitride films, is presented. A low refractive index (1.47 to 1.48) film having tensile stress has been...

  1. Hydrogen-Induced Buckling of Pd Films Deposited on Various Substrates

    KAUST Repository

    Vlček, Marián

    2015-07-01

    A Pd-H system is a model system suitable for studying interactions of hydrogen with metals. In the present work, we studied hydrogen-induced buckling of thin Pd films deposited on various substrates with different bonding strengths (sapphire, glimmer) and also the effect of deposition temperature. Lattice expansion and phase transitions were investigated by X-ray diffraction of synchrotron radiation. The influence of the substrate and microstructure of the film on the buckling process and phase transformation to palladium hydride are discussed.

  2. Silicon template preparation for the fabrication of thin patterned gold films via template stripping

    Science.gov (United States)

    Schmidl, G.; Dellith, J.; Dellith, A.; Teller, N.; Zopf, D.; Li, G.; Dathe, A.; Mayer, G.; Hübner, U.; Zeisberger, M.; Stranik, O.; Fritzsche, W.

    2015-12-01

    Metallic nanostructures play an important role in the vast field of modern nanophotonics, which ranges from the life sciences to biomedicine and beyond. Gold is a commonly-used and attractive material for plasmonics in the visible wavelength range, most importantly due to its chemical stability. In the present work, we focused on the different methods of plasmonic nanostructure fabrication that possess the greatest potential for cost-efficient fabrication. Initially, reusable (1 0 0) silicon templates were prepared. For this purpose, three different lithography methods (i.e. e-beam, optical, and nanoparticle lithography) were used that correspond to the desired structural scales. The application of a subsequent anisotropic crystal orientation-dependent wet etching process produced well-defined pyramidal structures in a wide variety of sizes, ranging from several microns to less than 100 nm. Finally, a 200 nm-thick gold layer was deposited by means of confocal sputtering on the silicon templates and stripped in order to obtain gold films that feature a surface replica of the initial template structure. The surface roughness that was achieved on the stripped films corresponds well with the roughness of the template used. This makes it possible to prepare cost-efficient high-quality structured films in large quantities with little effort. The gold films produced were thoroughly characterized, particularly with respect to their plasmonic response.

  3. Silicon-based thin films as bottom electrodes in chalcogenide nonvolatile memories

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Yun [IT Convergence and Components Laboratory, Electronics and Telecommunications Research Institute (ETRI), Yuseong-gu, Daejeon 305-350 (Korea, Republic of)], E-mail: seungyun@etri.re.kr; Yoon, Sung-Min; Choi, Kyu-Jeong; Lee, Nam-Yeal; Park, Young-Sam; Ryu, Sang-Ouk; Yu, Byoung-Gon; Kim, Sang-Hoon; Lee, Sang-Heung [IT Convergence and Components Laboratory, Electronics and Telecommunications Research Institute (ETRI), Yuseong-gu, Daejeon 305-350 (Korea, Republic of)

    2007-10-31

    The effect of the electrical resistivity of a silicon-germanium (SiGe) thin film on the phase transition in a GeSbTe (GST) chalcogenide alloy and the manufacturing aspect of the fabrication process of a chalcogenide memory device employing the SiGe film as bottom electrodes were investigated. While p-type SiGe bottom electrodes were formed using in situ doping techniques, n-type ones could be made in a different manner where phosphorus atoms diffused from highly doped silicon underlayers to undoped SiGe films. The p-n heterojunction did not form between the p-type GST and n-type SiGe layers, and the semiconduction type of the SiGe alloys did not influence the memory device switching. It was confirmed that an optimum resistivity value existed for memory operation in spite of proportionality of Joule heating to electrical resistivity. The very high resistivity of the SiGe film had no effect on the reduction of reset current, which might result from the resistance decrease of the SiGe alloy at high temperatures.

  4. Experimental Investigation of Size Effects on the Thermal Conductivity of Silicon-Germanium Alloy Thin Films

    Science.gov (United States)

    Cheaito, Ramez; Duda, John C.; Beechem, Thomas E.; Hattar, Khalid; Ihlefeld, Jon F.; Medlin, Douglas L.; Rodriguez, Mark A.; Campion, Michael J.; Piekos, Edward S.; Hopkins, Patrick E.

    2012-11-01

    We experimentally investigate the role of size effects and boundary scattering on the thermal conductivity of silicon-germanium alloys. The thermal conductivities of a series of epitaxially grown Si1-xGex thin films with varying thicknesses and compositions were measured with time-domain thermoreflectance. The resulting conductivities are found to be 3 to 5 times less than bulk values and vary strongly with film thickness. By examining these measured thermal conductivities in the context of a previously established model, it is shown that long wavelength phonons, known to be the dominant heat carriers in alloy films, are strongly scattered by the film boundaries, thereby inducing the observed reductions in heat transport. These results are then generalized to silicon-germanium systems of various thicknesses and compositions; we find that the thermal conductivities of Si1-xGex superlattices are ultimately limited by finite size effects and sample size rather than periodicity or alloying. This demonstrates the strong influence of sample size in alloyed nanosystems. Therefore, if a comparison is to be made between the thermal conductivities of superlattices and alloys, the total sample thicknesses of each must be considered.

  5. Immobilization of Reduced Graphene Oxide on Hydrogen-Terminated Silicon Substrate as a Transparent Conductive Protector.

    Science.gov (United States)

    Tu, Yudi; Utsunomiya, Toru; Kokufu, Sho; Soga, Masahiro; Ichii, Takashi; Sugimura, Hiroyuki

    2017-10-17

    Silicon is a promising electrode material for photoelectrochemical and photocatalytic reactions. However, the chemically active surface of silicon will be easily oxidized when exposed to the oxidation environment. We immobilized graphene oxide (GO) onto hydrogen-terminated silicon (H-Si) and reduced it through ultraviolet (UV) and vacuum-ultraviolet (VUV) irradiation. This acted as an ultrathin conductive layer to protect H-Si from oxidation. The elemental evolution of GO was studied by X-ray photoelectron spectroscopy, and it was found that GO was partially reduced soon after the deposition onto H-Si and further reduced after UV or VUV light irradiation. The VUV photoreduction demonstrated ca. 100 times higher efficiency compared to the UV reduction based on the irradiation dose. The saturated oxygen-to-carbon ratio (RO/C) of the reduced graphene oxide (rGO) was 0.21 ± 0.01, which is lower than the photoreduction of GO on SiO2 substrate. This indicated the H-Si played an important role in assisting the photoreduction of GO. No obvious exfoliation of rGO was observed after sonicating the rGO-covered H-Si sample in water, which indicated rGO was immobilized on H-Si. The electrical conductivity of H-Si surface was maintained in the rGO-covered region while the exposed H-Si region became insulating, which was observed by conductive atomic force microscopy. The rGO was verified capable to protect the active H-Si against the oxidation under an ambient environment.

  6. Intrinsic Gettering in Nitrogen-Doped and Hydrogen-Annealed Czochralski-Grown Silicon Wafers

    Science.gov (United States)

    Goto, Hiroyuki; Pan, Lian-Sheng; Tanaka, Masafumi; Kashima, Kazuhiko

    2001-06-01

    The properties of nitrogen-doped and hydrogen-annealed Czochralski-grown silicon (NHA-CZ-Si) wafers were investigated in this study. The quality of the subsurface was investigated by monitoring the generation lifetime of minority carriers, as measured by the capacitance-time measurements of a metal oxide silicon capacitor (MOS C-t). The intrinsic gettering (IG) ability was investigated by determining the nickel concentration on the surface and in the subsurface as measured by graphite furnace atomic absorption spectrometry (GFAAS) after the wafer was deliberately contaminated with nickel. From the results obtained, the generation lifetimes of these NHA-CZ-Si wafers were determined to be almost the same as, or a little longer than those of epitaxial wafers, and the IG ability was proportional to the total volume of oxygen precipitates [i.e., bulk micro defects (BMDs)], which was influenced by the oxygen and nitrogen concentrations in the wafers. Therefore, it is suggested that the subsurface of the NHA-CZ-Si wafers is of good quality and the IG capacity is controllable by the nitrogen and oxygen concentrations in the wafers.

  7. Characterization of electrochemically deposited films from aqueous and ionic liquid cobalt precursors toward hydrogen evolution reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dushatinski, Thomas; Huff, Clay; Abdel-Fattah, Tarek M., E-mail: fattah@cnu.edu

    2016-11-01

    Highlights: • Co films deposition via aqueous and ionic liquid Precursors. • Hydrogen evolution produced from reactive surfaces. • Co deposited films characterized by SEM, AFM, EDX and XRD techniques. - Abstract: Electrodepositions of cobalt films were achieved using an aqueous or an ethylene glycol based non-aqueous solution containing choline chloride (vitamin B4) with cobalt chloride hexahydrate precursor toward hydrogen evolution reactions from sodium borohydride (NaBH{sub 4}) as solid hydrogen feedstock (SHF). The resulting cobalt films had reflectivity at 550 nm of 2.2% for aqueously deposited films (ACoF) and 1.3% for non-aqueously deposited films (NCoF). Surface morphology studied by scanning electron microscopy showed a positive correlation between particle size and thickness. The film thicknesses were tunable between >100 μm and <300 μm for each film. The roughness (Ra) value measurements by Dektak surface profiling showed that the NCoF (Ra = 165 nm) was smoother than the ACoF (Ra = 418 nm). The NCoFs and ACoFs contained only α phase (FCC) crystallites. The NCoFs were crystalline while the ACoFs were largely amorphous from X-ray diffraction analysis. The NCoF had an average Vickers hardness value of 84 MPa as compared to 176 MPa for ACoF. The aqueous precursor has a single absorption maximum at 510 nm and the non-aqueous precursor had three absorption maxima at 630, 670, and 695 nm. The hydrogen evolution reactions over a 1 cm{sup 2} catalytic surface with aqueous NaBH{sub 4} solutions generated rate constants (K) = equal to 4.9 × 10{sup −3} min{sup −1}, 4.6 × 10{sup −3} min{sup −1}, and 3.3 × 10{sup −3} min{sup −1} for ACoF, NCoF, and copper substrate respectively.

  8. The kinetics of Cr layer coated on TiNi films for hydrogen absorption

    Indian Academy of Sciences (India)

    The effect of hydrogen absorption on electrical resistance with temperature for TiNi and TiNi–Cr thin films was investigated. The TiNi thin films of thickness 800 Å were deposited at different angles ( = 0°, 30°, 45°, 60° and 75°) under 10−5 Torr pressure by thermal evaporation on the glass substrate at room temperature.

  9. Multi-Walled Carbon Nanotube-Doped Tungsten Oxide Thin Films for Hydrogen Gas Sensing

    Directory of Open Access Journals (Sweden)

    Adisorn Tuantranont

    2010-08-01

    Full Text Available In this work we have fabricated hydrogen gas sensors based on undoped and 1 wt% multi-walled carbon nanotube (MWCNT-doped tungsten oxide (WO3 thin films by means of the powder mixing and electron beam (E-beam evaporation technique. Hydrogen sensing properties of the thin films have been investigated at different operating temperatures and gas concentrations ranging from 100 ppm to 50,000 ppm. The results indicate that the MWCNT-doped WO3 thin film exhibits high sensitivity and selectivity to hydrogen. Thus, MWCNT doping based on E-beam co-evaporation was shown to be an effective means of preparing hydrogen gas sensors with enhanced sensing and reduced operating temperatures. Creation of nanochannels and formation of p-n heterojunctions were proposed as the sensing mechanism underlying the enhanced hydrogen sensitivity of this hybridized gas sensor. To our best knowledge, this is the first report on a MWCNT-doped WO3 hydrogen sensor prepared by the E-beam method.

  10. A COMPARISON OF THE ENVIRONMENTAL IMPACT OF SOLAR POWER GENERATION USING MULTICRYSTALLINE SILICON AND THIN FILM OF AMORPHOUS SILICON SOLAR CELLS: CASE STUDY IN THAILAND

    Directory of Open Access Journals (Sweden)

    Wasin Khaenson

    2017-07-01

    Full Text Available This paper studies the environmental impact of two different forms of solar power generation in Thailand - that of multicrystalline silicon solar cells, and that of thin film amorphous silicon solar cells. It takes as its study two of the largest solar cell power plants of their kind in Thailand; a multicrystalline silicon plant in the north (generating 90 MW and a thin film amorphous silicon plant in the centre (generating 55 MW. The Life Cycle Assessment tool (LCA was used to assess the environmental impact of each stage of the process, from the manufacture of the cells, through to their transportation, installation and eventual recycling. The functional unit of the study was the generation of 1 kWh of power transmitted and distributed by the Electricity Generating Authority of Thailand (EGAT and Provincial Electricity Authority (PEA. The environmental impact results were calculated in terms of eco-points (Pt per functional unit of 1 kWh. The characterised data for 1 kWh of solar power generation was then compared with data for 1 kWh of combined cycle and thermal power generation (both in Thailand, using the same set of characterisation factors. After analyzing the results, both forms of solar power energy generation were found to impact upon the studied categories of Human Health, Ecosystem Quality and Resource Depletion, whilst also highlighting the importance of the solar cell module recycling process in decreasing the overall environmental impact. When the two solar cell technologies were compared, the overall impact of the multicrystalline silicon solar cell was found to be higher than that of the thin film amorphous silicon solar cell. Furthermore, when assessing the overall impact against non-renewable power generating technologies such as combined cycle and thermal power generation, the thin film amorphous silicon solar cells were found to have the lowest environmental impact of all technologies studied.

  11. Aluminum–Titanium Alloy Back Contact Reducing Production Cost of Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Wu

    2016-11-01

    Full Text Available In this study, metal films are fabricated by using an in-line reactive direct current magnetron sputtering system. The aluminum–titanium (AlTi back contacts are prepared by changing the pressure from 10 mTorr to 25 mTorr. The optical, electrical and structural properties of the metal back contacts are investigated. The solar cells with the AlTi had lower contact resistance than those with the silver (Ag back contact, resulting in a higher fill factor. The AlTi contact can achieve a solar cell conversion efficiency as high as that obtained from the Ag contact. These findings encourage the potential adoption of AlTi films as an alternative back contact to silver for silicon thin-film solar cells.

  12. Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Soumyadipta, E-mail: soumya.005@gmail.com; Yang, Yue; Wang, Liping, E-mail: liping.wang@asu.edu [School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287 (United States)

    2015-01-19

    In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC. By careful tuning of the optical properties of metamaterial, it is possible to excite electrical and magnetic resonances for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

  13. Nanosized graphene sheets enhanced photoelectric behavior of carbon film on p-silicon substrate

    Science.gov (United States)

    Yang, Lei; Hu, Gaijuan; Zhang, Dongqing; Diao, Dongfeng

    2016-07-01

    We found that nanosized graphene sheets enhanced the photoelectric behavior of graphene sheets embedded carbon (GSEC) film on p-silicon substrate, which was deposited under low energy electron irradiation in electron cyclotron resonance plasma. The GSEC/p-Si photodiode exhibited good photoelectric performance with photoresponsivity of 206 mA/W, rise and fall time of 2.2, and 4.3 μs for near-infrared (850 nm) light. The origin of the strong photoelectric behavior of GSEC film was ascribed to the appearance of graphene nanosheets, which led to higher barrier height and photoexcited electron-collection efficiency. This finding indicates that GSEC film has the potential for photoelectric applications.

  14. Polycrystalline Silicon Thin-Film Solar Cells on AIT-Textured Glass Superstrates

    Directory of Open Access Journals (Sweden)

    Per I. Widenborg

    2007-01-01

    Full Text Available A new glass texturing method (AIT—aluminium-induced texturisation has recently been developed by our group. In the present work, the potential of this method is explored by fabricating PLASMA poly-Si thin-film solar cells on glass superstrates that were textured with the AIT method. Using an interdigitated metallisation scheme with a full-area Al rear contact, PLASMA cells with an efficiency of up to 7% are realised. This promising result shows that the AIT glass texturing method is fully compatible with the fabrication of poly-Si thin-film solar cells on glass using solid phase crystallisation (SPC of PECVD-deposited amorphous silicon precursor diodes. As such, there are now two distinctly different glass texturing methods—the AIT method and CSG Solar's glass bead method—that are known to be capable of producing efficient SPC poly-Si thin-film solar cells on glass.

  15. Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon

    Science.gov (United States)

    Lang, S. B.; Tofail, S. A. M.; Kholkin, A. L.; Wojtaś, M.; Gregor, M.; Gandhi, A. A.; Wang, Y.; Bauer, S.; Krause, M.; Plecenik, A.

    2013-01-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone- a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics. PMID:23884324

  16. Behavior of hydrogen atoms in boron films during H{sub 2} and He glow discharge and thermal desorption

    Energy Technology Data Exchange (ETDEWEB)

    Tsuzuki, K.; Natsir, M.; Inoue, N. [and others

    1995-09-01

    Hydrogen absorption and desorption characteristics in boron films deposited on a graphite liner have been studied. Number of hydrogen atoms absorbed in the films is estimated from a decrease in hydrogen pressure during a hydrogen glow discharge. It was 1.9 x 10{sup 17} atoms/cm{sup 2} in the 1 hour discharge after an evacuation of H atoms contained in the original boron films by thermal desorption. Hydrogen atoms were absorbed continuously without saturation for 3 hours during the discharge. Number of H atoms absorbed reached to 2.6 x 10{sup 17} atoms/cm{sup 2} at 3 hour. A discharge in helium was carried out to investigate H desorption characteristics from hydrogen implanted boron films. It was verified that reactivity for hydrogen absorption was recovered after the He discharge. Hydrogen atoms were accumulated in the films by repetition of alternate He and H{sub 2} discharge. Thermal desorption experiments have been carried out by raising the liner temperature up to 500degC for films after 1 hour, 3 hours hydrogen discharge and 6 times repetition of H{sub 2}/He discharges. Most of H atoms in the films were desorbed for all these cases. The slow absorption process was confirmed through the thermal desorption experiments. (author).

  17. Fabrication of Large-Grain Thick Polycrystalline Silicon Thin Films via Aluminum-Induced Crystallization for Application in Solar Cells

    Directory of Open Access Journals (Sweden)

    Hsiao-Yeh Chu

    2013-01-01

    Full Text Available The fabrication of large-grain 1.25 μm thick polycrystalline silicon (poly-Si films via two-stage aluminum-induced crystallization (AIC for application in thin-film solar cells is reported. The induced 250 nm thick poly-Si film in the first stage is used as the seed layer for the crystallization of a 1 μm thick amorphous silicon (a-Si film in the second stage. The annealing temperatures in the two stages are both 500°C. The effect of annealing time (15, 30, 60, and 120 minutes in the second stage on the crystallization of a-Si film is investigated using X-ray diffraction (XRD, scanning electron microscopy, and Raman spectroscopy. XRD and Raman results confirm that the induced poly-Si films are induced by the proposed process.

  18. The nanoindentation behaviour of hard and soft films on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Beegan, D.; Chowdhury, S.; Laugier, M.T

    2004-11-01

    Carbon nitride and copper films of thickness 550 and 400 nm, respectively have been sputter deposited on silicon substrates. The indentation behaviour of these films is investigated by analysis of the load-displacement curves and by imaging of the residual indents. The Oliver and Pharr method is used to calculate the hardness from the load-displacement curve, while the contact area measured by atomic force microscopy is used in the traditional hardness equation: H=P/A. The carbon nitride films exhibited neither pile-up nor sink-in behaviour and the hardnesses determined by both methods are very similar. The copper films showed pile-up at the indent edges at nearly all loads, and there is then a large difference between the hardness values measured by the two methods. Both films show the effect of the substrate on the hardness values as the indentation depth increases. In order to distinguish the 'true' film hardness from the measured composite hardness, Korsunksy's composite hardness model is applied.

  19. Structural and electrical properties of an Au film system deposited on silicone oil surfaces

    CERN Document Server

    Yang Bo; Jin Jin Sheng; Ye Quan Lin; Lao Yan Feng; Jiao Zheng Kuan; Ye Gao Xiang

    2002-01-01

    An Au thin film system, deposited on silicone oil surfaces by the thermal deposition method, has been fabricated and its structure as well as electrical properties has been studied. A web-shaped characteristic surface morphology of the films is observed. The dc sheet resistance R of the metal films on the liquid surfaces is measured during and after deposition in situ by the four-probe method. The time dependence of the sheet resistance can be explained in terms of the film growth mechanism on the oil surface. The anomalous I-V characteristics of the film system can be interpreted as a competition among the local Joule heating, hopping and tunnelling effects. It is found that the dc third-harmonic coefficient B sub 0 and the zero-power resistance R sub 0 satisfy the power-law relation B sub 0 propor to R sub 0 sup 2 sup + sup w and the exponent w is close to zero. This result indicates that the hopping and tunnelling effects in the samples are much stronger than those of the other film systems. We also find I...

  20. Remote PECVD silicon nitride films with improved electrical properties for GaAs P-HEMT passivation

    CERN Document Server

    Sohn, M K; Kim, K H; Yang, S G; Seo, K S

    1998-01-01

    In order to obtain thin silicon nitride films with excellent electrical and mechanical properties, we employed RPECVD (Remote Plasma Enhanced Chemical Vapor Deposition) process which produces less plasma-induced damage than the conventional PECVD. Through the optical and electrical measurements of the deposited films, we optimized the various RPECVD process parameters. The optimized silicon nitride films showed excellent characteristics such as small etch rate (approx 33 A/min by 7:1 BHF), high breakdown field (>9 MV/cm), and low compressive stress (approx 3.3x10 sup 9 dyne/cm sup 2). We successfully applied thin RPECVD silicon nitride films to the surface passivation of GaAs pseudomorphic high electron mobility transistors (P-HEMTs) with negligible degradations in DC and RF characteristics.

  1. Self-assembled thin film of imidazolium ionic liquid on a silicon surface: Low friction and remarkable wear-resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Gusain, Rashi [CSIR-Indian Institute of Petroleum, Mohkampur, Dehardun 248005 (India); Academy of Scientific and Innovative Research, New Delhi 110025 (India); Kokufu, Sho [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Bakshi, Paramjeet S. [CSIR-Indian Institute of Petroleum, Mohkampur, Dehardun 248005 (India); Utsunomiya, Toru; Ichii, Takashi; Sugimura, Hiroyuki [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Khatri, Om P., E-mail: opkhatri@iip.res.in [CSIR-Indian Institute of Petroleum, Mohkampur, Dehardun 248005 (India); Academy of Scientific and Innovative Research, New Delhi 110025 (India)

    2016-02-28

    Graphical abstract: - Highlights: • Ionic liquid thin film is deposited on a silicon surface via covalent interaction. • Chemical and morphological features of ionic liquid thin film are probed by XPS and AFM. • Ionic liquid thin film exhibited low and steady friction along with remarkable wear-resistivity. - Abstract: Imidazolium-hexafluorophosphate (ImPF{sub 6}) ionic liquid thin film is prepared on a silicon surface using 3-chloropropyltrimethoxysilane as a bifunctional chemical linker. XPS result revealed the covalent grafting of ImPF{sub 6} thin film on a silicon surface. The atomic force microscopic images demonstrated that the ImPF{sub 6} thin film is composed of nanoscopic pads/clusters with height of 3–7 nm. Microtribological properties in terms of coefficient of friction and wear-resistivity are probed at the mean Hertzian contact pressure of 0.35–0.6 GPa under the rotational sliding contact. The ImPF{sub 6} thin film exhibited low and steady coefficient of friction (μ = 0.11) along with remarkable wear-resistivity to protect the underlying silicon substrate. The low shear strength of ImPF{sub 6} thin film, the covalent interaction between ImPF{sub 6} ionic liquid thin film and underlying silicon substrate, and its regular grafting collectively reduced the friction and improved the anti-wear property. The covalently grafted ionic liquid thin film further shows immense potential to expand the durability and lifetime of M/NEMS based devices with significant reduction of the friction.

  2. Carriers reactivation in p{sup +}-type porous silicon accompanies hydrogen desorption

    Energy Technology Data Exchange (ETDEWEB)

    Rivolo, P.; Geobaldo, F.; Salvador, G.P.; Pallavidino, L.; Garrone, E. [Dip. Scienza dei Materiali e Ingegneria Chimica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Ugliengo, P. [Dip. Chimica IFM, Universita di Torino, Via Giuria 7, 10125 Torino (Italy)

    2005-06-01

    FTIR spectra of p{sup +}-type mesoporous silicon (m-PS) outgassed in the 300-600 K range show a loss of transparency with increasing temperature, more pronounced at low frequencies. This is evidence of free-carrier formation. Previous work (F. Geobaldo et al., Sensors and Actuators B, in press [1]) concerning the reversible interaction of NO{sub 2} and NH{sub 3} has shown the presence at the surface of adsorption sites involving Si/B pairs. Thermal treatment of the sample causes desorption of molecular hydrogen, released through the homolytic splitting of Si-H bonds. Besides meeting each other forming a H{sub 2} molecule, H atoms may interact with an adsorption site, by creating a new H-Si-B bond. This new bond needs one additional electron to be formed and injection of a hole takes place into the solid. At higher temperatures, surface hydrogen is almost totally removed and the sample transparency recovered. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Upconversion and tribological properties of β-NaYF{sub 4}:Yb,Er film synthesized on silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chuanying [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Cheng, Xianhua, E-mail: xhcheng@sjtu.edu.cn [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-05-15

    Highlights: • β-NaYF{sub 4}:Yb,Er upconversion (UC) film was synthesized on silicon substrate. • Tribological test was used to qualitatively evaluate the adhesion of the UC film. • The UC film was combined with Si substrate by covalent chemical bonds. • The method used in this work can be applicable for other UC films. - Abstract: In this work, β-NaYF{sub 4}:Yb,Er upconversion (UC) film was successfully prepared on silicon (Si) substrate via self-assemble method for the first time. The chemical composition and surface morphology of the UC film were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), water contact angle (WCA), X-ray power diffraction (XRD), and scanning electron microscopy (SEM) measurements. To investigate the effects of KH-560 primer film and chemical reactions on the UC luminescence properties of β-NaYF{sub 4}:Yb,Er UC film, decay profiles of the 540 nm and 655 nm radiations were measured. Furthermore, tribological test was applied to qualitatively evaluate the adhesion of the UC film. The results indicate that the UC film has been successfully prepared on Si substrate by covalent chemical bonds. This work provides a facile way to synthesize β-NaYF{sub 4}:Yb,Er UC film with robust adhesion to the substrate, which can be applicable for other UC films.

  4. Increased Optoelectronic Quality and Uniformity of Hydrogenated p-InP Thin Films

    KAUST Repository

    Wang, Hsin-Ping

    2016-06-08

    The thin-film vapor-liquid-solid (TF-VLS) growth technique presents a promising route for high quality, scalable and cost-effective InP thin films for optoelectronic devices. Towards this goal, careful optimization of material properties and device performance is of utmost interest. Here, we show that exposure of polycrystalline Zn-doped TF-VLS InP to a hydrogen plasma (in the following referred to as hydrogenation) results in improved optoelectronic quality as well as lateral optoelectronic uniformity. A combination of low temperature photoluminescence and transient photocurrent spectroscopy were used to analyze the energy position and relative density of defect states before and after hydrogenation. Notably, hydrogenation reduces the intra-gap defect density by one order of magnitude. As a metric to monitor lateral optoelectronic uniformity of polycrystalline TF-VLS InP, photoluminescence and electron beam induced current mapping reveal homogenization of the grain versus grain boundary upon hydrogenation. At the device level, we measured more than 260 TF-VLS InP solar cells before and after hydrogenation to verify the improved optoelectronic properties. Hydrogenation increased the average open-circuit voltage (VOC) of individual TF-VLS InP solar cells by up to 130 mV, and reduced the variance in VOC for the analyzed devices.

  5. Increased Optoelectronic Quality and Uniformity of Hydrogenated p-InP Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hsin-Ping; Sutter-Fella, Carolin M.; Lobaccaro, Peter; Hettick, Mark; Zheng, Maxwell; Lien, Der-Hsien; Miller, D. Westley; Warren, Charles W.; Roe, Ellis T.; Lonergan, Mark C.; Guthrey, Harvey L.; Haegel, Nancy M.; Ager, Joel W.; Carraro, Carlo; Maboudian, Roya; He, Jr-Hau; Javey, Ali

    2016-07-12

    The thin-film vapor-liquid-solid (TF-VLS) growth technique presents a promising route for high quality, scalable, and cost-effective InP thin films for optoelectronic devices. Toward this goal, careful optimization of material properties and device performance is of utmost interest. Here, we show that exposure of polycrystalline Zn-doped TF-VLS InP to a hydrogen plasma (in the following referred to as hydrogenation) results in improved optoelectronic quality as well as lateral optoelectronic uniformity. A combination of low temperature photoluminescence and transient photocurrent spectroscopy was used to analyze the energy position and relative density of defect states before and after hydrogenation. Notably, hydrogenation reduces the relative intragap defect density by 1 order of magnitude. As a metric to monitor lateral optoelectronic uniformity of polycrystalline TF-VLS InP, photoluminescence and electron beam induced current mapping reveal homogenization of the grain versus grain boundary upon hydrogenation. At the device level, we measured more than 260 TF-VLS InP solar cells before and after hydrogenation to verify the improved optoelectronic properties. Hydrogenation increased the average open-circuit voltage (VOC) of individual TF-VLS InP solar cells by up to 130 mV and reduced the variance in VOC for the analyzed devices.

  6. Growth and hydrogenation of ultra-thin Mg films on Mo(111)

    DEFF Research Database (Denmark)

    Ostenfeld, Christopher Worsøe; Davies, Jonathan Conrad; Vegge, Tejs

    2005-01-01

    The growth and hydrogenation of ultra-thin magnesium overlayers have been investigated on a Mo(1 1 1) single crystal substrate. For increasing magnesium coverages we observe intermediate stages in the TPD and LEISS profiles, which illustrate the transition from one monolayer to multilayer growth....... Hydrogen cannot be adsorbed on magnesium films under UHV conditions. However, when evaporating Mg in a hydrogen background, a hydrogen overlayer is seen to adsorb at the Mg surface, due to the catalytic interaction with the Mo(1 1 1) substrate and subsequent spill-over. We show that two monolayers of Mg...... are necessary to sustain this purely adsorbed state. Using predissociated hydrogen we show that the hydride formation is self-stabilizing and the hydride only decomposes at a temperature where a considerable desorption of magnesium occurs....

  7. ZnO transparent conductive oxide for thin film silicon solar cells

    Science.gov (United States)

    Söderström, T.; Dominé, D.; Feltrin, A.; Despeisse, M.; Meillaud, F.; Bugnon, G.; Boccard, M.; Cuony, P.; Haug, F.-J.; Faÿ, S.; Nicolay, S.; Ballif, C.

    2010-03-01

    There is general agreement that the future production of electric energy has to be renewable and sustainable in the long term. Photovoltaic (PV) is booming with more than 7GW produced in 2008 and will therefore play an important role in the future electricity supply mix. Currently, crystalline silicon (c-Si) dominates the market with a share of about 90%. Reducing the cost per watt peak and energy pay back time of PV was the major concern of the last decade and remains the main challenge today. For that, thin film silicon solar cells has a strong potential because it allies the strength of c-Si (i.e. durability, abundancy, non toxicity) together with reduced material usage, lower temperature processes and monolithic interconnection. One of the technological key points is the transparent conductive oxide (TCO) used for front contact, barrier layer or intermediate reflector. In this paper, we report on the versatility of ZnO grown by low pressure chemical vapor deposition (ZnO LP-CVD) and its application in thin film silicon solar cells. In particular, we focus on the transparency, the morphology of the textured surface and its effects on the light in-coupling for micromorph tandem cells in both the substrate (n-i-p) and superstrate (p-i-n) configurations. The stabilized efficiencies achieved in Neuchâtel are 11.2% and 9.8% for p-i-n (without ARC) and n-i-p (plastic substrate), respectively.

  8. Photoelectrochemical characterization of p-type silicon electrodes covered with tunnelling nitride dielectric films

    Energy Technology Data Exchange (ETDEWEB)

    Lana-Villarreal, T. [Laboratory of Electrocatalysis, UMR 6503, Universite de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex (France); Departament de Quimica Fisica and Institut Universitari d' Electroquimica, Universitat d' Alacant, Ap. 99, E-03080 Alacant (Spain); Straboni, A. [Laboratoire de Metallurgie Physique, UMR 6630, SP2MI, Universite de Poitiers, Boulevard Marie et Pierre Curie, Teleport 2, BP 30179, 86962 Futuroscope, Chasseneuil Cedex (France); Pichon, Luc [Laboratoire de Metallurgie Physique, UMR 6630, SP2MI, Universite de Poitiers, Boulevard Marie et Pierre Curie, Teleport 2, BP 30179, 86962 Futuroscope, Chasseneuil Cedex (France); Alonso-Vante, N. [Laboratory of Electrocatalysis, UMR 6503, Universite de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex (France)]. E-mail: nicolas.alonso.vante@univ-poitiers.fr

    2007-06-25

    The photoelectrochemical behaviour of p-Si(100) single crystal electrodes in aqueous solution, covered with a very thin nitride film, was studied. The silicon surface nitridation was achieved in a N{sub 2}-H{sub 2} plasma at floating potential. The as-grown insulating Si{sub 3}N{sub 4} layers, with thickness inferior to 3.1 nm, allow the electrons to tunnel in the presence of an electric field by the Fowler-Nordheim tunnelling mechanism. However, the p-Si(100)/Si{sub 3}N{sub 4}-electrolyte interface generated lower photocurrent densities than those generated by naked p-Si(100) electrodes. In contrast, the nitridated silicon surface displayed a significant stability improvement in aqueous electrolyte (neutral pH). An overvoltage higher than 0.6 V for water oxidation on a p-Si(100) covered with a 2.4 nm Si{sub 3}N{sub 4} layer was measured. The results show that silicon covered with a nitridated thin film may be useful to stabilize electrodes in photoelectrochemical applications.

  9. Photoluminescence, time-resolved emission and photoresponse of plasma-modified porous silicon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Benyahia, Be., E-mail: benyahiabedra@hotmail.com [Unité de Développement de la Technologie du Silicium, 2 Boulevard Frantz Fanon, B.P. 140, Alger-7 Merveilles, Algiers 16200 (Algeria); Guerbous, L. [Centre de Recherche Nucléaire d' Alger, 2 Boulevard Frantz Fanon, B.P. 399, Alger-Gare, Algiers 16000 (Algeria); Gabouze, N.; Mahmoudi, Br. [Unité de Développement de la Technologie du Silicium, 2 Boulevard Frantz Fanon, B.P. 140, Alger-7 Merveilles, Algiers 16200 (Algeria)

    2013-07-01

    Photoluminescence and photoelectrical study on plasma-modified porous silicon (PS) thin films is presented. Porous silicon passivated by hydrocarbon groups (CH{sub x}) shows an intense broad and stable photoluminescence (PL) band centered at 623 nm whereas the maximum of the photosensitivity spectrum is placed around 400 nm. Along with its potential utilization for silicon-based light emitters' fabrication, it could also represent an appealing option for the improvement of energy conversion efficiency in silicon-based solar cells whether by using its luminescence properties (photon down-conversion) or the excess photocurrent produced by an improved high-energy photon's absorption. Excitation spectra (PLE) under steady-state conditions are reported. PLE shows that visible PL is excited by light from UV region. The time-resolved photoluminescence of CH{sub x}/PS in the range of some tenth of μs are investigated at room temperature. The PL decay line shape, in CH{sub x}/PS is well described by stretched exponential. The photosensitivity spectroscopy shows a significant increase of absorption at high photon energy excitation. - Highlights: • Coating porous silicon (PS) by hydrocarbon (CH{sub x}) reduces nonradiative transition. • Drop of the photoluminescence (PL) intensity. • The PL of CH{sub x}/PS is due to radiative transitions at 1.8 and 1.87 eV. • Photosensitivity revealed an excess spectral response (SR) at high-energy excitation. • For photovoltaic PL and SR could be used for the evolution of the silicon solar cells.

  10. Enhancing Hydrogen Diffusion in Silica Matrix by Using Metal Ion Implantation to Improve the Emission Properties of Silicon Nanocrystals

    Directory of Open Access Journals (Sweden)

    J. Bornacelli

    2014-01-01

    Full Text Available Efficient silicon-based light emitters continue to be a challenge. A great effort has been made in photonics to modify silicon in order to enhance its light emission properties. In this aspect silicon nanocrystals (Si-NCs have become the main building block of silicon photonic (modulators, waveguide, source, and detectors. In this work, we present an approach based on implantation of Ag (or Au ions and a proper thermal annealing in order to improve the photoluminescence (PL emission of Si-NCs embedded in SiO2. The Si-NCs are obtained by ion implantation at MeV energy and nucleated at high depth into the silica matrix (1-2 μm under surface. Once Si-NCs are formed inside the SiO2 we implant metal ions at energies that do not damage the Si-NCs. We have observed by, PL and time-resolved PL, that ion metal implantation and a subsequent thermal annealing in a hydrogen-containing atmosphere could significantly increase the emission properties of Si-NCs. Elastic Recoil Detection measurements show that the samples with an enhanced luminescence emission present a higher hydrogen concentration. This suggests that ion metal implantation enhances the hydrogen diffusion into silica matrix allowing a better passivation of surface defects on Si NCs.

  11. Studies on the effect of hydrogen doping during deposition of Al:ZnO films using RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Shantheyanda, Bojanna P. [Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816 (United States); Sundaram, Kalpathy B., E-mail: sundaram@mail.ucf.edu [Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816 (United States); Shiradkar, Narendra S. [Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816 (United States)

    2012-12-01

    Aluminum doped ZnO (ZnO:Al) films were deposited using rf magnetron sputtering in the presence of hydrogen gas in the chamber. A comparative study of the films deposited with and without hydrogen was performed. The XPS studies indicated that the decrease in resistivity of ZnO:Al films with the introduction of hydrogen gas is attributed to the reduced adsorption of oxygen species in the film grain boundaries. The average percentage transmission in the visible region of the films was around 92-95% and band gap was found to be about in the range of 3.15-3.17 eV. The lowest resistivity of 1.8 Multiplication-Sign 10{sup -4} {Omega} cm was achieved for the ZnO:Al film deposited with hydrogen.

  12. The influence of charge effect on the growth of hydrogenated amorphous silicon by the hot-wire chemical vapor deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.; Nelson, B.P.; Iwaniczko, E.; Mahan, A.H.; Crandall, R.S.; Benner, J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    The authors observe at lower substrate temperatures that the scatter in the dark conductivity on hydrogenated amorphous silicon (a-Si:H) films grown on insulating substrates (e.g., Corning 7059 glass) by the hot-wire chemical vapor deposition technique (HWCVD) can be five orders of magnitude or more. This is especially true at deposition temperatures below 350 C. However, when the authors grow the same materials on substrates with a conductive grid, virtually all of their films have acceptable dark conductivity (< 5 {times} 10{sup {minus}10} S/cm) at all deposition temperatures below 425 C. This is in contrast to only about 20% of the materials grown in this same temperature range on insulating substrates having an acceptable dark conductivity. The authors estimated an average energy of 5 eV electrons reaching the growing surface in vacuum, and did additional experiments to see the influence of both the electron flux and the energy of the electrons on the film growth. Although these effects do not seem to be important for growing a-Si:H by HWCVD on conductive substrates, they help better understand the important parameters for a-Si:H growth, and thus, to optimize these parameters in other applications of HWCVD technology.

  13. Hydrogen-induced stress relaxation in thin Pd films: influence of carbon implementation.

    Science.gov (United States)

    Nowakowski, Robert; Grzeszczak, Patrycja; Dus, Ryszard

    2007-02-13

    The influence of carbon impurities on mechanical properties of thin Pd film in the process of hydride formation and its disintegration has been investigated "in situ" by means of atomic force microscopy (AFM). Pd interaction with hydrogen leads to the formation of hydride PdHx, if critical conditions of pressure and temperature are reached (equilibrium hydrogen pressure over PdHx at 298 K is approximately 1 kPa). The lattice constant of PdHx is larger than that of the original metal, and the hydride formation generates high stress within the film. As a consequence, the reversible formation of well organized mesoscopic protrusions on the film surface is observed. In this paper, we focus our investigation on the mechanical response which occurs when, prior to hydride generation, carbon atoms are incorporated into the bulk of the film. The systems characterized by carbon incorporation from the two opposite sides of thin palladium film (HOPG substrate and hydrocarbon fragments deposit from a gas-phase reached by preadsorption of ethylene) are compared. For both cases the mechanism of mechanical response is the same, but very different from that registered for pure thin palladium film. Carbon impurities induce, during PdHx decomposition, creation of an organized network of cracks which divides the continuous film into separated domains. The mechanisms of carbon introduction occurring in both cases have been proposed.

  14. Morphological studies of microcrystalline silicon for thin-film solar cells by raman spectroscopy and TEM

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Vitalij; Hachmann, Wiebke; Sacher, Marc; Heinzmann, Ulrich [University of Bielefeld (Germany); Janzen, Daniel; Gruss, Stefan; Stiebig, Helmut [Malibu GmbH and Co. KG, Bielefeld (Germany)

    2010-07-01

    Thin-film amorphous and microcrystalline silicon are promising materials for photovoltaics as they have the potential to reduce the solar cell costs. In case of microcrystalline silicon the crystalline volume fraction is an important issue for the quality of solar cells as it is related to the microstructure of the material and the defect density. Using an AKT PECVD system optimized for amorphous silicon layer deposition we deposited microcrystalline silicon diodes on 1300 mm x 1100 mm glass-TCO superstrates under variation of deposition time, RF power, silane concentration and distance of the electrodes. Focusing on the crystalline fraction and especially its lateral homogeneity over the 1.4 m{sup 2} area we analyzed the intrinsic layer by Raman spectroscopy on different positions. Two excitation wavelength (473 nm and 633 nm) are used in ordner to get depth dependent information of the crystallinity. TEM observations of cross-section of chosen samples confirmed the spectroscopy given results. Based on the lateral information achieved the process was optimized, and a correlation between crystalline volume fraction and local cell efficiency is discussed.

  15. Possible correlation effects of surface state electrons on a solid hydrogen film

    NARCIS (Netherlands)

    Mugele, Friedrich Gunther; Albrecht, Uwe; Leiderer, Paul; Kono, Kimitoshi

    1992-01-01

    We have investigated the transport properties of surface state electrons on thin quench-condensed hydrogen films for various electron densities. The surface state electron mobility showed a continuous dependence on the plasma parameter Gamma in the range from 20 to 130, indicating a strong influence

  16. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.; Misra, A.; Miller, E. [Univ. of Hawaii, Honolulu, HI (United States)

    1998-08-01

    A significant component of the US DOE Hydrogen Program is the development of a practical technology for the direct production of hydrogen using a renewable source of energy. High efficiency photoelectrochemical systems to produce hydrogen directly from water using sunlight as the energy source represent one of the technologies identified by DOE to meet this mission. Reactor modeling and experiments conducted at UH provide strong evidence that direct solar-to-hydrogen conversion efficiency greater than 10% can be expected using photoelectrodes fabricated from low-cost, multijunction (MJ) amorphous silicon solar cells. Solar-to-hydrogen conversion efficiencies as high as 7.8% have been achieved using a 10.3% efficient MJ amorphous silicon solar cell. Higher efficiency can be expected with the use of higher efficiency solar cells, further improvement of the thin film oxidation and reduction catalysts, and optimization of the solar cell for hydrogen production rather than electricity production. Hydrogen and oxygen catalysts developed under this project are very stable, exhibiting no measurable degradation in KOH after over 13,000 hours of operation. Additional research is needed to fully optimize the transparent, conducting coatings which will be needed for large area integrated arrays. To date, the best protection has been afforded by wide bandgap amorphous silicon carbide films.

  17. Superior light trapping in thin film silicon solar cells through nano imprint lithography

    Energy Technology Data Exchange (ETDEWEB)

    Soppe, W.J.; Dorenkamper, M.S.; Schropp, R.E.I.; Pex, P.P.A.C.

    2013-10-15

    ECN and partners have developed a fabrication process based on nanoimprint lithography (NIL) of textures for light trapping in thin film solar cells such as thin-film silicon, OPV, CIGS and CdTe. The process can be applied in roll-to-roll mode when using a foil substrate or in roll-to-plate mode when using a glass substrate. The lacquer also serves as an electrically insulating layer for cells if steel foil is used as substrate, to enable monolithic series interconnection. In this paper we will show the superior light trapping in thin film silicon solar cells made on steel foil with nanotextured back contacts. We have made single junction a-Si and {mu}c-Si and a-Si/{mu}c-Si tandem cells, where we applied several types of nano-imprints with random and periodic structures. We will show that the nano-imprinted back contact enables more than 30% increase of current in comparison with non-textured back contacts and that optimized periodic textures outperform state-of-the-art random textures. For a-Si cells we obtained Jsc of 18 mA/cm{sup 2} and for {mu}c-Si cells more than 24 mA/cm{sup 2}. Tandem cells with a total Si absorber layer thickness of only 1350 nm have an initial efficiency of 11%.

  18. Laser-induced chemical vapor deposition of nanostructured silicon carbonitride thin films

    Science.gov (United States)

    Besling, W. F. A.; Goossens, A.; Meester, B.; Schoonman, J.

    1998-01-01

    Laser-induced chemical vapor deposition of silicon carbonitride thin films has been investigated using a continuous wave CO2 laser in parallel configuration with the substrate. The reactant gases in this process, hexamethyl disilazane and ammonia, are rapidly heated by CO2 laser radiation due to their absorption of the laser energy. Polymerlike silicon carbonitride films or agglomerated nanosized particles are formed depending on process conditions. Dense, smooth films or nanostructured deposits have been synthesized at low substrate temperatures (Tssilicon and can be obtained with controlled microstructures. Surface morphology, composition, and type of chemical bonding have been studied with electron microscopy and spectroscopic analysis and are correlated to the most important laser process parameters. X-ray photoelectron spectroscopy and reflectance Fourier transform infrared spectroscopy show that the deposits consist of Si-N, Si-C, and Si-O bonds, linked together in a x-ray amorphous, polymerlike structure. The nitrogen content is about 40% and can be varied by adding ammonia to the reactant gas flow. The layers are readily contaminated with oxygen after exposure to air, caused by hydrolysis and/or oxidation.

  19. Atomic Layer Deposition of Silicon Nitride Thin Films: A Review of Recent Progress, Challenges, and Outlooks

    Directory of Open Access Journals (Sweden)

    Xin Meng

    2016-12-01

    Full Text Available With the continued miniaturization of devices in the semiconductor industry, atomic layer deposition (ALD of silicon nitride thin films (SiNx has attracted great interest due to the inherent benefits of this process compared to other silicon nitride thin film deposition techniques. These benefits include not only high conformality and atomic-scale thickness control, but also low deposition temperatures. Over the past 20 years, recognition of the remarkable features of SiNx ALD, reinforced by experimental and theoretical investigations of the underlying surface reaction mechanism, has contributed to the development and widespread use of ALD SiNx thin films in both laboratory studies and industrial applications. Such recognition has spurred ever-increasing opportunities for the applications of the SiNx ALD technique in various arenas. Nevertheless, this technique still faces a number of challenges, which should be addressed through a collaborative effort between academia and industry. It is expected that the SiNx ALD will be further perceived as an indispensable technique for scaling next-generation ultra-large-scale integration (ULSI technology. In this review, the authors examine the current research progress, challenges and future prospects of the SiNx ALD technique.

  20. Combining light-harvesting with detachability in high-efficiency thin-film silicon solar cells.

    Science.gov (United States)

    Ram, Sanjay K; Desta, Derese; Rizzoli, Rita; Bellettato, Michele; Lyckegaard, Folmer; Jensen, Pia B; Jeppesen, Bjarke R; Chevallier, Jacques; Summonte, Caterina; Larsen, Arne Nylandsted; Balling, Peter

    2017-06-01

    Efforts to realize thin-film solar cells on unconventional substrates face several obstacles in achieving good energy-conversion efficiency and integrating light-management into the solar cell design. In this report a technique to circumvent these obstacles is presented: transferability and an efficient light-harvesting scheme are combined for thin-film silicon solar cells by the incorporation of a NaCl layer. Amorphous silicon solar cells in p-i-n configuration are fabricated on reusable glass substrates coated with an interlayer of NaCl. Subsequently, the solar cells are detached from the substrate by dissolution of the sacrificial NaCl layer in water and then transferred onto a plastic sheet, with a resultant post-transfer efficiency of 9%. The light-trapping effect of the surface nanotextures originating from the NaCl layer on the overlying solar cell is studied theoretically and experimentally. The enhanced light absorption in the solar cells on NaCl-coated substrates leads to significant improvement in the photocurrent and energy-conversion efficiency in solar cells with both 350 and 100 nm thick absorber layers, compared to flat-substrate solar cells. Efficient transferable thin-film solar cells hold a vast potential for widespread deployment of off-grid photovoltaics and cost reduction.

  1. Stabilization of amorphous structure in silicon thin film by adding germanium

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Nobuaki [Nanosystem Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Toshiba Corporation, 33 Shin-Isogo-Cho, Isogo-ku, Yokohama 235-0017 (Japan); Shigeta, Yukichi [Nanosystem Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan)

    2015-06-21

    The stabilization of the amorphous structure in amorphous silicon film by adding Ge atoms was studied using Raman spectroscopy. Amorphous Si{sub 1−x}Ge{sub x} (x = 0.0, 0.03, 0.14, and 0.27) films were deposited on glass substrates from electron beam evaporation sources and annealed in N{sub 2} atmosphere. The change in the amorphous states and the phase transition from amorphous to crystalline were characterized using the TO, LO, and LA phonons in the Raman spectra. The temperature of the transition from the amorphous phase to the crystalline phase was higher for the a-Si{sub 1−x}Ge{sub x} (x = 0.03, 0.14) films, and the crystallization was hindered. The reason why the addition of a suitable quantity of Ge atoms into the three-dimensional amorphous silicon network stabilizes its amorphous structure is discussed based on the changes in the Raman signals of the TO, LO, and LA phonons during annealing. The characteristic bond length of the Ge atoms allows them to stabilize the random network of the amorphous Si composed of quasi-tetrahedral Si units, and obstruct its rearrangement.

  2. Comparison of Light Trapping in Silicon Nanowire and Surface Textured Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Rion Parsons

    2017-04-01

    Full Text Available The optics of axial silicon nanowire solar cells is investigated and compared to silicon thin-film solar cells with textured contact layers. The quantum efficiency and short circuit current density are calculated taking a device geometry into account, which can be fabricated by using standard semiconductor processing. The solar cells with textured absorber and textured contact layers provide a gain of short circuit current density of 4.4 mA/cm2 and 6.1 mA/cm2 compared to a solar cell on a flat substrate, respectively. The influence of the device dimensions on the quantum efficiency and short circuit current density will be discussed.

  3. Integration of field emitter array and thin-film transistor using polycrystalline silicon process technology

    CERN Document Server

    Song, Y H; Kang, S Y; Park Jeong Man; Cho, K I

    1998-01-01

    We present the monolithic integration of a gated polycrystalline silicon field emitter array (poly-Si FEA) and a thin-film transistor(TFT) on an insulating substrate for active-matrix field emission displays (AMFEDs). The TFT was designed to have low off-state currents even at a high drain voltage. Amorphous silicon has been used as a starting material of the poly-Si FEA for improving surface smoothness and uniformity of the tips, and the gate holes have been formed by using an etch-back process. The integrated poly-Si TFT controlled electron emissions of the poly-Si FEA actively, resulting in great improvement in the emission reliability along with a low-voltage control, below 15 V, of field emission, The developed technology has potential applications in AMFEDs on glass substrates.

  4. Surface-Mediated Hydrogen Bonding of Proteinogenic α-Amino Acids on Silicon.

    Science.gov (United States)

    Rahsepar, Fatemeh R; Moghimi, Nafiseh; Leung, K T

    2016-05-17

    Understanding the adsorption, film growth mechanisms, and hydrogen bonding interactions of biological molecules on semiconductor surfaces has attracted much recent attention because of their applications in biosensors, biocompatible materials, and biomolecule-based electronic devices. One of the most challenging questions when studying the behavior of biomolecules on a metal or semiconductor surface is "What are the driving forces and film growth mechanisms for biomolecular adsorption on these surfaces?" Despite a large volume of work on self-assembly of amino acids on single-crystal metal surfaces, semiconductor surfaces offer more direct surface-mediated interactions and processes with biomolecules. This is due to their directional surface dangling bonds that could significantly perturb hydrogen bonding arrangements. For all the proteinogenic biomolecules studied to date, our group has observed that they generally follow a "universal" three-stage growth process on Si(111)7×7 surface. This is supported by corroborating data obtained from a three-pronged approach of combining chemical-state information provided by X-ray photoelectron spectroscopy (XPS) and the site-specific local density-of-state images obtained by scanning tunneling microscopy (STM) with large-scale quantum mechanical modeling based on the density functional theory with van der Waals corrections (DFT-D2). Indeed, this three-stage growth process on the 7×7 surface has been observed for small benchmark biomolecules, including glycine (the simplest nonchiral amino acid), alanine (the simplest chiral amino acid), cysteine (the smallest amino acid with a thiol group), and glycylglycine (the smallest (di)peptide of glycine). Its universality is further validated here for the other sulfur-containing proteinogenic amino acid, methionine. We use methionine as an example of prototypical proteinogenic amino acids to illustrate this surface-mediated process. This type of growth begins with the formation of

  5. Investigation of hydrogen concentration and hardness of ion irradiated organically modified silicate thin films

    Science.gov (United States)

    Qi, Y.; Prenzel, T.; Harriman, T. A.; Wang, Y. Q.; Lucca, D. A.; Williams, D.; Nastasi, M.; Dong, J.; Mehner, A.

    2010-06-01

    A study of the effects of ion irradiation of organically modified silicate thin films on the loss of hydrogen and increase in hardness is presented. NaOH catalyzed SiNa wO xC yH z thin films were synthesized by sol-gel processing from tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto Si substrates. After drying at 300 °C, the films were irradiated with 125 keV H + or 250 keV N 2+ at fluences ranging from 1 × 10 14 to 2.5 × 10 16 ions/cm 2. Elastic Recoil Detection (ERD) was used to investigate resulting hydrogen concentration as a function of ion fluence and irradiating species. Nanoindentation was used to measure the hardness of the irradiated films. FT-IR spectroscopy was also used to examine resulting changes in chemical bonding. The resulting hydrogen loss and increase in hardness are compared to similarly processed acid catalyzed silicate thin films.

  6. Improved electrical stability of CdS thin film transistors through Hydrogen-based thermal treatments

    KAUST Repository

    Salas Villaseñor, Ana L.

    2014-06-01

    Thin film transistors (TFTs) with a bottom-gate configuration were fabricated using a photolithography process with chemically bath deposited (CBD) cadmium sulfide (CdS) films as the active channel. Thermal annealing in hydrogen was used to improve electrical stability and performance of the resulting CdS TFTs. Hydrogen thermal treatments results in significant V T instability (V T shift) improvement while increasing the I on/I off ratio without degrading carrier mobility. It is demonstrated that after annealing V T shift and I on/I off improves from 10 V to 4.6 V and from 105 to 10 9, respectively. Carrier mobility remains in the order of 14.5 cm2 V s-1. The reduced V T shift and performance is attributed to a reduction in oxygen species in the CdS after hydrogen annealing, as evaluated by Fourier transform infrared spectroscopy (FTIR). © 2014 IOP Publishing Ltd.

  7. Electron spin resonance investigaton of semiconductor materials for application in thin-film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Lihong

    2012-07-01

    In the present work, hydrogenated silicon and its alloys silicon carbide and silicon oxide have been investigated using electron spin resonance (ESR). The microstructure of these materials ranges from highly crystalline to amorphous. The correlation between the paramagnetic defects, microstructure, optical and electrical properties has been discussed. Correspondingly, these properties were characterized by the spin density (N{sub S}), g-value and the lineshape of ESR spectra, Infrared (I{sup IR}{sub C}) and/or Raman crystallinity (I{sup RS}{sub C}) as well as optical absorption and electrical dark conductivity ({sigma}{sub D}). 1. As the light absorber, Si layers essentially should have low defect density and good stability against light exposure. The spin density (N{sub S}) measured by ESR is often used as a measure for the paramagnetic defect density (N{sub D}) in the material. However, ESR sample preparation procedures can potentially cause discrepancy between N{sub S} and N{sub D}. Using Mo-foil, Al-foil and ZnO:Al-covered glass as sacrificial substrates, {mu}c-Si:H and a-Si:H films were deposited by plasma-enhanced chemical vapor deposition (PECVD), and ESR powder samples have been prepared with corresponding procedures. Possible preparation-related metastability and instability effects have been investigated in terms of substrate dependence, HCl-etching and atmosphere exposure. A sequence of 'preparation - annealing - air-exposure - annealing' has been designed to investigate the metastability and instability effects. N{sub S} after post-preparation air exposure is higher than in the annealed states, especially for the highly crystalline {mu}c-Si:H material the discrepancy reached one order of magnitude. Low temperature ESR measurements at 40 K indicated that atmospheric exposure leads to a redistribution of the defect states which in turn influence the evaluated N{sub S}. In annealed conditions the samples tend to have lower N{sub S} presumably due

  8. Investigation of mechanical properties of CVD grown titanium silicon nitride thin films under reduced atmosphere

    Science.gov (United States)

    Guha, Spandan; Das, Soham; Bandyopadhyay, Asish; Das, Santanu; Swain, Bibhu P.

    2018-01-01

    Titanium silicon nitride (TiSiN) thin films were deposited by thermal chemical vapour deposition using TiO2 + Si3N4 powder with different H2 flow rates. Morphological, structural, and mechanical properties of deposited TiSiN films were characterized using different techniques by SEM, XRD, Raman, and nano-indentation. SEM images reveal that surface roughness of TiSiN thin films decreased with increasing of H2 flow rate. The Raman spectroscopy indicated that the intensity of acoustic phonon mode decreases, whereas intensity of optical phonon mode increases with increasing of H2 flow rate. The maximum hardness, Young's modulus, and yield strength of the TiSiN films are 18.23, 185.26, and 83.2 GPa, respectively. The crystallite size and lattice strain of TiSiN thin films vary 2.08-4.43 nm and 0.02-0.055, respectively, for different H2 flow rates. The quantitative and qualitative analyses of TiSiN thin were carried out using the Origin 9.0 software.

  9. Insight into excimer laser crystallization exploiting ellipsometry: Effect of silicon film precursor

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, Maria [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM sez. Bari, Via Orabona 4, 70125 Bari (Italy)], E-mail: maria.losurdo@ba.imip.cnr.it; Giangregorio, Maria M.; Sacchetti, Alberto; Capezzuto, Pio; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM sez. Bari, Via Orabona 4, 70125 Bari (Italy); Mariucci, Luigi; Fortunato, Guglielmo [IFN-CNR, Via Cineto Romano, 42 - 00156 Rome (Italy)

    2007-07-16

    The optical diagnostic of spectroscopic ellipsometry is shown to be an effective tool to investigate the mechanism of excimer laser crystallization (ELC) of silicon thin films. A detailed spectroscopic ellipsometric investigation of the microstructures of polycrystalline Si films obtained on SiO{sub 2}/Si wafers by ELC of a-Si:H and nc-Si films deposited, respectively, by SiH{sub 4} plasma enhanced chemical vapor deposition (PECVD) and SiF{sub 4}-PECVD is presented. It is shown that ellipsometric spectra of the pseudodielectric function of polysilicon thin films allows to discern the three different ELC regimes of partial melting, super lateral growth and complete melting. Exploiting ellipsometry and atomic force microscopy, it is shown that ELC of nc-Si has very low energy density threshold of 95 mJ/cm{sup 2} for complete melting, and that re-crystallization to large grains of {approx} 2 {mu}m can be achieved by multi-shot irradiation at an energy density as low as 260 mJ/cm{sup 2} when using nc-Si when compared to 340 mJ/cm{sup 2} for the ELC of a-Si films.

  10. Control of discharge conditions to reduce hydrogen content in low Z films produced with DC glow

    Energy Technology Data Exchange (ETDEWEB)

    Natsir, M.; Sagara, A.; Tsuzuki, K.; Tsuchiya, B.; Hasegawa, Y.; Motojima, O.

    1995-09-01

    Boronization at near room temperature has been performed in plasma processing teststand (PPT) by using a 5 % diborane gases B{sub 2}H{sub 6} in He on electrically floating or unfloating Al samples under various conditions on DC glow discharge power or total gas pressure. The hydrogen concentration was analyzed by using elastic recoil detection method (ERD) and a new modified normalizing technique with Rutherford back scattering (RBS). Results showed that a high growth rate of film formation and floating surface were effective in reducing hydrogen concentration in B films. This result was in good agreement with earlier measurements of H with flash filament (FF) desorption method. In particular the H/B ratio was reduced by decreasing ions but increasing radicals for B film formation. (author).

  11. Optical and Electrical Effects of p-type μc-SiOx:H in Thin-Film Silicon Solar Cells on Various Front Textures

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2014-01-01

    Full Text Available p-type hydrogenated microcrystalline silicon oxide (µc-SiOx:H was developed and implemented as a contact layer in hydrogenated amorphous silicon (a-Si:H single junction solar cells. Higher transparency, sufficient electrical conductivity, low ohmic contact to sputtered ZnO:Al, and tunable refractive index make p-type µc-SiOx:H a promising alternative to the commonly used p-type hydrogenated microcrystalline silicon (µc-Si:H contact layers. In this work, p-type µc-SiOx:H layers were fabricated with a conductivity of up to 10−2 S/cm and a Raman crystallinity of above 60%. Furthermore, we present p-type µc-SiOx:H films with a broad range of optical properties (2.1 eV < band gap E04<2.8 eV and 1.6 < refractive index n<2.6. These properties can be tuned by adapting deposition parameters, for example, the CO2/SiH4 deposition gas ratio. A conversion efficiency improvement of a-Si:H solar cells is achieved by applying p-type µc-SiOx:H contact layer compared to the standard p-type µc-Si:H contact layer. As another aspect, the influence of the front side texture on a-Si:H p-i-n solar cells with different p-type contact layers, µc-Si:H and µc-SiOx:H, is investigated. Furthermore, we discuss the correlation between the decrease of Voc and the cell surface area derived from AFM measurements.

  12. Novel Recycling Method for Boron Removal from Silicon by Thermal Plasma Treatment Coupled with Steam and Hydrogen Gases

    Directory of Open Access Journals (Sweden)

    Su-Hyun Baek

    2017-09-01

    Full Text Available Boron (B separation from photovoltaic silicon (Si remains a research challenge in the recycling field. In this study, a novel B-removal process was developed using thermal plasma treatment coupled with steam and hydrogen gases. Experiments were performed on artificially B-doped Si using various plasma conditions of mixed argon (Ar/steam/hydrogen gases and varied refining time. The B concentration in all of the samples decreased with increasing refining time. The use of the plasma mixed with Ar/steam/hydrogen gases resulted in a significant improvement of the efficiency of B removal compared with the Ar/steam plasma refining. In addition, with increasing steam content in the plasma with mixed Ar/steam/hydrogen gases, the B-removal rates increased.

  13. White light emitting silicon nano-crystals-polymeric hybrid films prepared by single batch solution based method

    Energy Technology Data Exchange (ETDEWEB)

    Balci, Mustafa H. [Department of Materials Science and Engineering, NTNU, 7491 Trondheim (Norway); Aas, Lars Martin Sandvik; Kildemo, Morten; Sæterli, Ragnhild; Holmestad, Randi; Lindgren, Mikael [Department of Physics, NTNU, 7491 Trondheim (Norway); Grande, Tor [Department of Materials Science and Engineering, NTNU, 7491 Trondheim (Norway); Einarsrud, Mari-Ann, E-mail: Mari-Ann.Einarsrud@ntnu.no [Department of Materials Science and Engineering, NTNU, 7491 Trondheim (Norway)

    2016-03-31

    Silicon nano-crystals have been studied intensively due to their photoluminescence properties and possible applications in new generation opto-electronic devices. Their importance in lightning and display technologies is increasing due to the abundance and non-toxicity of silicon. Here we report a single batch solution based synthesis route to silicon nano-crystal organic hybrid films exhibiting white light photoluminescence at room temperature upon excitation by ultraviolet light. Films prepared by ethylene glycol terminated Si nano-crystals showed maximum 240 nm red shift in photoluminescence response upon excitation at 350 nm. The shift was found to decrease in order for hybrid films fabricated using acrylic acid, 1-octanol acid and oleic acid terminated Si nano-crystals. The mean size of the Si nano-crystals (~ 2–10 nm) estimated by Raman spectroscopy were smallest for the ethylene glycol capped Si nano-crystal films. The calculated Tauc bandgaps of the hybrid films varied between 1.51 and 2.35 eV. - Highlights: • White light emitting Si nanocrystal hybrid films were synthesized at low temperature • The effect of the surface termination of the Si nano-crystals is reported • A red shift in photoluminescence response was observed • The hybrid films are new candidate white light emitting diodes • The hybrid films can be used in solar cell applications for spectral-shifting control.

  14. Surface modification of ZnO-Films as transparent conductive oxide layer for silicon thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Luekermann, Florian; Moenkemoeller, Viola; Brechling, Armin; Sacher, Marc; Heinzmann, Ulrich [Molecular and Surface Physics, Bielefeld University (Germany); Kurz, Henning; Hamelmann, Frank; Stiebig, Helmut [Malibu GmbH, Bielefeld (Germany)

    2009-07-01

    Transparent conductive oxides are used as front electrode in thin film solar cells. Especially ZnO deposited by Low Pressure Chemical Vapor Deposition provides useful features for solar cells. On the one hand ZnO shows a good conductivity and on the other hand a rough surface consisting of pyramidal grains which possess a good light scattering capability. To influence this light scattering, two different kinds of treatments have been applied on the ZnO surface: etching with diluted HCl and Reactive Ion Etching with Ar and O{sub 2}. The main interest is focused on the change of surface morphology and the resulting changes in light scattering and transmission. HCl etching leads to an increasing surface roughness as well as diffuse transmittance. Ar/O{sub 2} bombardment decreases the roughness and thus the scattering. The lowered roughness enhances the growth of the a-Si absorber layer and reduces the formation of pinholes. Finally the properties of amorphous silicon solar cells deposited on treated ZnO-films are compared with those deposited on untreated films.

  15. Application of CBD-Zinc Sulfide Film as an Antireflection Coating on Very Large Area Multicrystalline Silicon Solar Cell

    Directory of Open Access Journals (Sweden)

    J. Yi

    2008-03-01

    Full Text Available The low-cost chemical bath deposition (CBD technique is used to prepare CBD-ZnS films as antireflective (AR coating for multicrystalline silicon solar cells. The uniformity of CBD-ZnS film on large area of textured multicrystalline silicon surface is the major challenge of CBD technique. In the present work, attempts have been made for the first time to improve the rate of deposition and uniformity of deposited film by controlling film stoichiometry and refractive index and also to minimize reflection loss by proper optimization of molar percentage of different chemical constituents and deposition conditions. Reasonable values of film deposition rate (12.13 Å′/min., good film uniformity (standard deviation <1, and refractive index (2.35 along with a low percentage of average reflection (6-7% on a textured mc-Si surface are achieved with proper optimization of ZnS bath. 12.24% efficiency on large area (125 mm × 125 mm multicrystalline silicon solar cells with CBD-ZnS antireflection coating has been successfully fabricated. The viability of low-cost CBD-ZnS antireflection coating on large area multicrystalline silicon solar cell in the industrial production level is emphasized.

  16. Permeation of "Hydromer" Film: An Elastomeric Hydrogen-Capturing Biopolymer.

    Energy Technology Data Exchange (ETDEWEB)

    Karnesky, Richard A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Friddle, Raymond William [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Whaley, Josh A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Smith, Geoffrey [New Mexico State Univ., Las Cruces, NM (United States)

    2015-12-01

    This report analyzes the permeation resistance of a novel and proprietary polymer coating for hydrogen isotope resistance that was developed by New Mexico State University. Thermal gravimetric analysis and thermal desoprtion spectroscopy show the polymer is stable thermally to approximately 250 deg C. Deuterium gas-driven permeation experiments were conducted at Sandia to explore early evidence (obtained using Brunauer - Emmett - Teller) of the polymer's strong resistance to hydrogen. With a relatively small amount of the polymer in solution (0.15%), a decrease in diffusion by a factor of 2 is observed at 100 and 150 deg C. While there was very little reduction in permeability, the preliminary findings reported here are meant to demonstrate the sensitivity of Sandia's permeation measurements and are intended to motivate the future exploration of thicker barriers with greater polymer coverage.

  17. Structural and emission properties of Tb3+-doped nitrogen-rich silicon oxynitride films

    Science.gov (United States)

    Labbé, C.; An, Y.-T.; Zatryb, G.; Portier, X.; Podhorodecki, A.; Marie, P.; Frilay, C.; Cardin, J.; Gourbilleau, F.

    2017-03-01

    Terbium doped silicon oxynitride host matrix is suitable for various applications such as light emitters compatible with CMOS technology or frequency converter systems for photovoltaic cells. In this study, amorphous Tb3+ ion doped nitrogen-rich silicon oxynitride (NRSON) thin films were fabricated using a reactive magnetron co-sputtering method, with various N2 flows and annealing conditions, in order to study their structural and emission properties. Rutherford backscattering (RBS) measurements and refractive index values confirmed the silicon oxynitride nature of the films. An electron microscopy analysis conducted for different annealing temperatures (T A) was also performed up to 1200 °C. Transmission electron microscopy (TEM) images revealed two different sublayers. The top layer showed porosities coming from a degassing of oxygen during deposition and annealing, while in the region close to the substrate, a multilayer-like structure of SiO2 and Si3N4 phases appeared, involving a spinodal decomposition. Upon a 1200 °C annealing treatment, a significant density of Tb clusters was detected, indicating a higher thermal threshold of rare earth (RE) clusterization in comparison to the silicon oxide matrix. With an opposite variation of the N2 flow during the deposition, the nitrogen excess parameter (Nex) estimated by RBS measurements was introduced to investigate the Fourier transform infrared (FTIR) spectrum behavior and emission properties. Different vibration modes of the Si-N and Si-O bonds have been carefully identified from the FTIR spectra characterizing such host matrices, especially the ‘out-of-phase’ stretching vibration mode of the Si-O bond. The highest Tb3+ photoluminescence (PL) intensity was obtained by optimizing the N incorporation and the annealing conditions. In addition, according to these conditions, the integrated PL intensity variation confirmed that the silicon nitride-based host matrix had a higher thermal threshold of rare earth

  18. Plasma monitoring and PECVD process control in thin film silicon-based solar cell manufacturing

    Directory of Open Access Journals (Sweden)

    Gabriel Onno

    2014-02-01

    Full Text Available A key process in thin film silicon-based solar cell manufacturing is plasma enhanced chemical vapor deposition (PECVD of the active layers. The deposition process can be monitored in situ by plasma diagnostics. Three types of complementary diagnostics, namely optical emission spectroscopy, mass spectrometry and non-linear extended electron dynamics are applied to an industrial-type PECVD reactor. We investigated the influence of substrate and chamber wall temperature and chamber history on the PECVD process. The impact of chamber wall conditioning on the solar cell performance is demonstrated.

  19. Chemical etching of zinc oxide for thin-film silicon solar cells.

    Science.gov (United States)

    Hüpkes, Jürgen; Owen, Jorj I; Pust, Sascha E; Bunte, Eerke

    2012-01-16

    Chemical etching is widely applied to texture the surface of sputter-deposited zinc oxide for light scattering in thin-film silicon solar cells. Based on experimental findings from the literature and our own results we propose a model that explains the etching behavior of ZnO depending on the structural material properties and etching agent. All grain boundaries are prone to be etched to a certain threshold, that is defined by the deposition conditions and etching solution. Additionally, several approaches to modify the etching behavior through special preparation and etching steps are provided. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Silicon-Film(TM) Solar Cells by a Flexible Manufacturing System: Final Report, 16 April 1998 -- 31 March 2001

    Energy Technology Data Exchange (ETDEWEB)

    Rand, J.

    2002-02-01

    This report describes the overall goal to engineer and develop flexible manufacturing methods and equipment to process Silicon-Film solar cells and modules. Three major thrusts of this three-year effort were to: develop a new larger-area (208 mm x 208 mm) Silicon-Film solar cell, the APx-8; construct and operate a new high-throughput wafer-making system; and develop a 15-MW single-thread manufacturing process. Specific technical accomplishments from this period are: Increase solar cell area by 80%, increase the generation capacity of a Silicon-Film wafer-making system by 350%, use a new in-line HF etch system in solar cell production, design and develop an in-line NaOH etch system, eliminate cassettes in solar cell processing, and design a new family of module products.

  1. Transient Photoinduced Absorption in Ultrathin As-grown Nanocrystalline Silicon Films

    Directory of Open Access Journals (Sweden)

    Lioutas Ch

    2007-01-01

    Full Text Available AbstractWe have studied ultrafast carrier dynamics in nanocrystalline silicon films with thickness of a few nanometers where boundary-related states and quantum confinement play an important role. Transient non-degenerated photoinduced absorption measurements have been employed to investigate the effects of grain boundaries and quantum confinement on the relaxation dynamics of photogenerated carriers. An observed long initial rise of the photoinduced absorption for the thicker films agrees well with the existence of boundary-related states acting as fast traps. With decreasing the thickness of material, the relaxation dynamics become faster since the density of boundary-related states increases. Furthermore, probing with longer wavelengths we are able to time-resolve optical paths with faster relaxations. This fact is strongly correlated with probing in different points of the first Brillouin zone of the band structure of these materials.

  2. Disorder Improves Light Absorption in Thin Film Silicon Solar Cells with Hybrid Light Trapping Structure

    Directory of Open Access Journals (Sweden)

    Yanpeng Shi

    2016-01-01

    Full Text Available We present a systematic simulation study on the impact of disorder in thin film silicon solar cells with hybrid light trapping structure. For the periodical structures introducing certain randomness in some parameters, the nanophotonic light trapping effect is demonstrated to be superior to their periodic counterparts. The nanophotonic light trapping effect can be associated with the increased modes induced by the structural disorders. Our study is a systematic proof that certain disorder is conceptually an advantage for nanophotonic light trapping concepts in thin film solar cells. The result is relevant to the large field of research on nanophotonic light trapping which currently investigates and prototypes a number of new concepts including disordered periodic and quasiperiodic textures. The random effect on the shape of the pattern (position, height, and radius investigated in this paper could be a good approach to estimate the influence of experimental inaccuracies for periodic or quasi-periodic structures.

  3. Operando formation of an ultra-low friction boundary film from synthetic magnesium silicon hydroxide additive

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Qiuying; Rudenko, Pavlo; Miller, Dean J.; Wen, Jianguo; Berman, Diana; Zhang, Yuepeng; Arey, Bruce; Zhu, Zihua; Erdemir, Ali

    2017-06-01

    The paper reports the operando and self-healing formation of DLC films at sliding contact surfaces by the addition of synthetic magnesium silicon hydroxide (MSH) nanoparticles to base oil. The formation of such films leads to a reduction of the coefficient of friction by nearly an order of magnitude and substantially reduces wear losses. The ultralow friction layer characterized by transmission electron microscope (TEM), electron energy loss spectroscopy (EELS), and Raman spectroscopy consists of amorphous DLC containing SiOx that forms in a continuous and self-repairing manner during operation. This environmentally benign and simple approach offers promise for significant advances in lubrication and reduced energy losses in engines and other mechanical systems.

  4. Utilizing of the medium-energy ion scattering spectrometry for the composition investigation of graphene oxide films on silicon surface

    OpenAIRE

    AFROSIMOV V.V.; Dideykin, A. T.; SAKHAROV V.I.; SERENKOV I.T.; VUL S.P.

    2014-01-01

    The possibilities of Medium-Energy Ion Scattering (MEIS) spectrometry combined with ion channeling for the estimation of the composition of single layer graphene oxide films and produced graphene layers deposited on the surface of standard silicon substrates was investigated. It was found that the oxygen amount in the natural surface silicon oxide ranges from 2-8 times the possible oxygen content in a graphene oxide layer. This causes difficulties in the estimation of the oxygen concentration...

  5. Photoelectron yield spectroscopy and inverse photoemission spectroscopy evaluations of p-type amorphous silicon carbide films prepared using liquid materials

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Tatsuya, E-mail: mtatsuya@jaist.ac.jp, E-mail: mtakashi@jaist.ac.jp [Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Masuda, Takashi, E-mail: mtatsuya@jaist.ac.jp, E-mail: mtakashi@jaist.ac.jp; Inoue, Satoshi; Shimoda, Tatsuya [Green Device Research Center, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1211 (Japan); Yano, Hiroshi; Iwamuro, Noriyuki [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai, Tsukuba, Ibaraki 305-8573 (Japan)

    2016-05-15

    Phosphorus-doped amorphous silicon carbide films were prepared using a polymeric precursor solution. Unlike conventional polymeric precursors, this polymer requires neither catalysts nor oxidation for its synthesis and cross-linkage, providing semiconducting properties in the films. The valence and conduction states of resultant films were determined directly through the combination of inverse photoemission spectroscopy and photoelectron yield spectroscopy. The incorporated carbon widened energy gap and optical gap comparably in the films with lower carbon concentrations. In contrast, a large deviation between the energy gap and the optical gap was observed at higher carbon contents because of exponential widening of the band tail.

  6. Asymmetric electrostatic and hydrophobic-hydrophilic interaction forces between mica surfaces and silicone polymer thin films.

    Science.gov (United States)

    Donaldson, Stephen H; Das, Saurabh; Gebbie, Matthew A; Rapp, Michael; Jones, Louis C; Roiter, Yuri; Koenig, Peter H; Gizaw, Yonas; Israelachvili, Jacob N

    2013-11-26

    We have synthesized model hydrophobic silicone thin films on gold surfaces by a two-step covalent grafting procedure. An amino-functionalized gold surface reacts with monoepoxy-terminated polydimethylsiloxane (PDMS) via a click reaction, resulting in a covalently attached nanoscale thin film of PDMS, and the click chemistry synthesis route provides great selectivity, reproducibility, and stability in the resulting model hydrophobic silicone thin films. The asymmetric interaction forces between the PDMS thin films and mica surfaces were measured with the surface forces apparatus in aqueous sodium chloride solutions. At an acidic pH of 3, attractive interactions are measured, resulting in instabilities during both approach (jump-in) and separation (jump-out from adhesive contact). Quantitative analysis of the results indicates that the Derjaguin-Landau-Verwey-Overbeek theory alone, i.e., the combination of electrostatic repulsion and van der Waals attraction, cannot fully describe the measured forces and that the additional measured adhesion is likely due to hydrophobic interactions. The surface interactions are highly pH-dependent, and a basic pH of 10 results in fully repulsive interactions at all distances, due to repulsive electrostatic and steric-hydration interactions, indicating that the PDMS is negatively charged at high pH. We describe an interaction potential with a parameter, known as the Hydra parameter, that can account for the extra attraction (low pH) due to hydrophobicity as well as the extra repulsion (high pH) due to hydrophilic (steric-hydration) interactions. The interaction potential is general and provides a quantitative measure of interfacial hydrophobicity/hydrophilicity for any set of interacting surfaces in aqueous solution.

  7. Effect of surface irradiation during the photo-CVD deposition of a-Si:H thin films. Hikari CVD ho ni yoru amorphous silicon sakuseiji no kiban hikari reiki koka

    Energy Technology Data Exchange (ETDEWEB)

    Tasaka, K.; Doering, H.; Hashimoto, K.; Fujishima, A. (The University of Tokyo, Tokyo (Japan))

    1990-12-06

    This paper shows the impact of the irradiation from an additional light source during the deposition of hydrogenated amorphous silicon by photo-CVD deposition. Using a mercury sensitized photo-CVD process from Disilan (Si {sub 2} H {sub 6}) and hydrogen, silicon was deposited. A 40W low pressure mercury lamp was applied as the light source. A portion of the substrate was in addition irradiated using an Xg-He lamp through a thermal filter. Irradiation of the substrate using only Xg-He lamp produced no deposition, since this light has a wavelength which is too long to produce the SiH {sub 3}-radicals needed for Si deposition. The additional Xg-He light source was discovered to cause an increased thickness of deposited a-Si:H film and a transmission of the band structure. The reasons of these are considered that the influence of irradiation is not limited to film thickness, but that irradiation also impacts the composition of the a-Si:H film so as to cause a reduction in the hydrogen content. 10 figs., 1 tab.

  8. Oxidation of hydrogen-passivated silicon surfaces by scanning near-field optical lithography using uncoated and aluminum-coated fiber probes

    DEFF Research Database (Denmark)

    Madsen, Steen; Bozhevolnyi, Sergey I.; Birkelund, Karen

    1997-01-01

    Optically induced oxidation of hydrogen-passivated silicon surfaces using a scanning near-field optical microscope was achieved with both uncoated and aluminum-coated fiber probes. Line scans on amorphous silicon using uncoated fiber probes display a three-peak profile after etching in potassium...

  9. Electronic and Optical Properties of Small Hydrogenated Silicon Quantum Dots Using Time-Dependent Density Functional Theory

    Directory of Open Access Journals (Sweden)

    Muhammad Mus-’ab Anas

    2015-01-01

    Full Text Available This paper presents a systematic study of the absorption spectrum of various sizes of small hydrogenated silicon quantum dots of quasi-spherical symmetry using the time-dependent density functional theory (TDDFT. In this study, real-time and real-space implementation of TDDFT involving full propagation of the time-dependent Kohn-Sham equations were used. The experimental results for SiH4 and Si5H12 showed good agreement with other earlier calculations and experimental data. Then these calculations were extended to study larger hydrogenated silicon quantum dots with diameter up to 1.6 nm. It was found that, for small quantum dots, the absorption spectrum is atomic-like while, for relatively larger (1.6 nm structure, it shows bulk-like behavior with continuous plateau with noticeable peak. This paper also studied the absorption coefficient of silicon quantum dots as a function of their size. Precisely, the dependence of dot size on the absorption threshold is elucidated. It was found that the silicon quantum dots exhibit direct transition of electron from HOMO to LUMO states; hence this theoretical contribution can be very valuable in discerning the microscopic processes for the future realization of optoelectronic devices.

  10. Piezoresistive pressure sensor using low-temperature aluminium induced crystallization of sputter-deposited amorphous silicon film

    Science.gov (United States)

    Tiwari, Ruchi; Chandra, Sudhir

    2013-09-01

    In the present work, we have investigated the piezoresistive properties of silicon films prepared by the radio frequency magnetron sputtering technique, followed by the aluminium induced crystallization (AIC) process. Orientation and grain size of the polysilicon films were studied by x-ray diffraction analysis and found to be in the range 30-50 nm. Annealing of the Al-Si stack on an oxidized silicon substrate was performed in air ambient at 300-550 °C, resulting in layer exchange and transformation from amorphous to polysilicon phase. Van der Pauw and Hall measurement techniques were used to investigate the sheet resistance and carrier mobility of the resulting polycrystalline silicon film. The effect of Al thickness on the sheet resistance and mobility was also studied in the present work. A piezoresistive pressure sensor was fabricated on an oxidized silicon substrate in a Wheatstone bridge configuration, comprising of four piezoresistors made of polysilicon film obtained by the AIC process. The diaphragm was formed by the bulk-micromachining of silicon substrate. The response of the pressure sensor with applied negative pressure in 10-95 kPa range was studied. The gauge factor was estimated to be 5 and 18 for differently located piezoresistors on the diaphragm. The sensitivity of the pressure sensor was measured to be ˜ 30 mV MPa-1, when the Wheatstone bridge was biased at 1 V input voltage.

  11. Effects of RF plasma treatment on spray-pyrolyzed copper oxide films on silicon substrates

    Science.gov (United States)

    Madera, Rozen Grace B.; Martinez, Melanie M.; Vasquez, Magdaleno R., Jr.

    2018-01-01

    The effects of radio-frequency (RF) argon (Ar) plasma treatment on the structural, morphological, electrical and compositional properties of the spray-pyrolyzed p-type copper oxide films on n-type (100) silicon (Si) substrates were investigated. The films were successfully synthesized using 0.3 M copper acetate monohydrate sprayed on precut Si substrates maintained at 350 °C. X-ray diffraction revealed cupric oxide (CuO) with a monoclinic structure. An apparent improvement in crystallinity was realized after Ar plasma treatment, attributed to the removal of residues contaminating the surface. Scanning electron microscope images showed agglomerated monoclinic grains and revealed a reduction in size upon plasma exposure induced by the sputtering effect. The current–voltage characteristics of CuO/Si showed a rectifying behavior after Ar plasma exposure with an increase in turn-on voltage. Four-point probe measurements revealed a decrease in sheet resistance after plasma irradiation. Fourier transform infrared spectral analyses also showed O–H and C–O bands on the films. This work was able to produce CuO thin films via spray pyrolysis on Si substrates and enhancement in their properties by applying postdeposition Ar plasma treatment.

  12. ECR plasma synthesis of silicon nitride films on GaAs and InSb

    Energy Technology Data Exchange (ETDEWEB)

    Barbour, J.C.; Lovejoy, M.L.; Ashby, C.I.H.; Howard, A.J.; Custer, J.S.; Shul, R.J.

    1993-12-31

    Growth of high-quality dielectric films from Electron Cyclotron Resonance (ECR) plasmas provides for low-temperature surface passivation of compound semiconductors. Silicon nitride (SiN{sub x}) films were grown at temperatures from 30 to 250 C on GaAs substrates. Stress in films was measured as a function of bias applied during growth (varied from 0 to 200 V), and of sample annealing treatments. Composition profiles of the samples were measured using ion beam analysis. The GaAs photoluminescence (PL) signal after SiN{sub x} growth without an applied bias (ion energy {congruent}30 eV) was twice as large as the PL signal from the cleaned GaAs substrate. The PL signal from samples biased at -50 and -100 V indicated that damage degraded the passivation quality, while atomic force microscopy of these samples showed a three fold increase in rms surface roughness relative to unbiased samples. The sample grown with a bias of -200 V showed the largest reduction in film stress but also the smallest PL signal.

  13. Simulations of laser-induced dynamics in free-standing thin silicon films

    Science.gov (United States)

    Zier, Tobias; Zijlstra, Eeuwe S.; Krylow, Sergej; Garcia, Martin E.

    2017-10-01

    Femtosecond-laser pulses can induce tremendous structural changes in materials. In most cases these changes are accompanied by a structural reconstruction of the materials' surface. So far, ab initio methods were not able to simulate laser-excited materials with open boundary conditions, like, films due to technical problems. We have succeeded in overcoming these problems and in performing molecular dynamics simulations of laser-excited thin silicon films. This new stage of ab initio molecular dynamics simulations will influence widely the field of laser-excited solids in both, experiment and theory, allowing to address questions that were unreachable before. Our results indicate that for a moderate excitation strength a breathing mode is induced in the whole film in the direction perpendicular to the surface. In the high intensity regime we predict the time-evolution of experimentally accessible structure factor intensities dependent on the depth into the surface. The results indicate that the surfaces are more resilient than the film center to the femtosecond-laser excitation.

  14. Light-trapping design of graphene transparent electrodes for efficient thin-film silicon solar cells.

    Science.gov (United States)

    Zhao, Yongxiang; Chen, Fei; Shen, Qiang; Zhang, Lianmeng

    2012-09-01

    In this paper, the performance of solar cells with graphene transparent electrodes is compared with cells using conventional indium tin oxide (ITO) electrodes, and it is demonstrated the optical absorption of solar cells with bare graphene structure is worse than that of bare ITO structure because of the higher refractive index of graphene. To enhance the light trapping of graphene-based thin-film solar cells, a simple two-layer SiO(2)/SiC structure is proposed as antireflection coatings deposited on top of graphene transparent electrodes, and the thickness of each layer is optimized by differential evolution in order to enhance the optical absorption of a-Si:H thin-film solar cells to the greatest degree. The optimization results demonstrate the optimal SiO(2)/SiC/graphene structure can obtain 37.30% enhancement with respect to bare ITO structure, which has obviously exceeded the light-trapping enhancement of 34.15% for the optimal SiO(2)/SiC/ITO structure. Therefore, with the aid of the light-trapping structure, the graphene films are a very promising indium-free transparent electrode substitute for the conventional ITO electrode for use in cost-efficient thin-film silicon solar cells.

  15. Characterization of the interface between highly conductive Ga:ZnO films and the silicon substrate

    Science.gov (United States)

    Gabás, M.; Ochoa-Martínez, E.; Navarrete-Astorga, E.; Landa-Cánovas, A. R.; Herrero, P.; Agulló-Rueda, F.; Palanco, S.; Martínez-Serrano, J. J.; Ramos-Barrado, J. R.

    2017-10-01

    Gallium-doped zinc oxide films are an interesting alternative for transparent conductive materials. To improve their performance, the interface between the grown layer and the substrate must be fully understood. Accordingly, ZnO and Ga:ZnO films have been deposited onto p-type doped Si (111) substrates by magnetron sputtering for 1, 2, 3 and 20 min and their interfaces characterized by transmission electron microscopy, photoelectron spectroscopy, spectroscopic ellipsometry and impedance spectroscopy. The combination of transmission electron microscopy techniques suggested a more complex interface chemistry in the Ga:ZnO/Si case, a point confirmed by x-ray photoelectron spectroscopy measurements on very thin films. While the ZnO/Si interface consists mostly of silicon oxides, zinc silicates and some Zn0, the Ga:ZnO/Si interface, besides these constituents, has a noticeable amount of Ga:ZnO and small quantities of Ga0. The band alignment deduced from the photoelectron spectroscopy measurements, together with the layers and Si band gap values, evidences a higher work function for the doped film and a smaller conduction band barrier for the Ga:ZnO/Si interface. Concerning the optical and electrical characteristics, spectroscopic ellipsometry revealed no significant differences between the two interfaces, while impedance spectroscopy measurements demonstrated that the Ga:ZnO/Si interface is less resistive than the ZnO/Si one.

  16. Hydrogenated Amorphous Silicon Germanium Active Layer for Top Cell of a Multi Junction Cell Structure.

    Science.gov (United States)

    Cho, Jaehyun; Iftiquar, S M; Kim, Minbum; Park, Jinjoo; Jung, Junhee; Kim, Jiwoong; Yi, Junsin

    2016-05-01

    Intrinsic hydrogenated amorphous silicon-germanium (a-SiGe:H) alloy is generally used in the bottom cell because of its low band gap. The a-SiGe:H has a higher photo conductivity in comparison to the a-Si:H; thus, it is expected that the a-SiGe:H can show better short circuit current density than that of the a-Si:H based solar cell. Therefore, we optimized a-SiGe:H active layer that can be a suitable choice for the front cell of a multi junction.solar cell. Furthermore, we carried out a comparative study of the solar cells that have a-SiGe:H and a-Si:H as respective active layers. The a-SiGe:H based solar cells show higher short circuit current density, while the a-Si:H based cells show higheropen circuit voltage. The current-voltage characteristics of these cells are as follows: (a) V(oc) = 770 mV, J(sc) = 15.0 mA/cm2, FF = 64.5%, and η = 7.47% for a-SiGe:H based cell; and (b) V(oc) = 826 mV, J(sc) = 13.63 mA/cm2, FF = 72.0%, and η = 8.1% for a-Si:H based cell.

  17. The boron-tailing myth in hydrogenated amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Stuckelberger, M., E-mail: michael.stuckelberger@alumni.ethz.ch; Bugnon, G.; Despeisse, M.; Schüttauf, J.-W.; Haug, F.-J.; Ballif, C. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin-Film Electronics Laboratory, Rue de la Maladière 71, CH-2000 Neuchâtel (Switzerland); Park, B.-S. [SIMS Services, Evans Analytical Group, 810 Kifer Road, Sunnyvale, California 94086 (United States)

    2015-11-16

    The boron-tailing effect in hydrogenated amorphous silicon (a-Si:H) solar cells describes the reduced charge collection specifically in the blue part of the spectrum for absorber layers deposited above a critical temperature. This effect limits the device performance of state-of-the art solar cells: For enhanced current density (reduced bandgap), the deposition temperature should be as high as possible, but boron tailing gets detrimental above 200 °C. To investigate this limitation and to show potential paths to overcome it, we deposited high-efficiency a-Si:H solar cells, varying the deposition temperatures of the p-type and the intrinsic absorber (i) layers between 150 and 250 °C. Using secondary ion mass spectroscopy, we study dedicated stacks of i-p-i layers deposited at different temperatures. This allows us to track boron diffusion at the p-i and i-p interfaces as they occur in the p-i-n and n-i-p configurations of a-Si:H solar cells for different deposition conditions. Finally, we prove step-by-step that the common explanation for boron tailing—boron diffusion from the p layer into the i layer leading to enhanced recombination—is not generally true and propose an alternative explanation for the experimentally observed drop in the external quantum efficiency at short wavelengths.

  18. Imaging the Hydrogen Absorption Dynamics of Individual Grains in Polycrystalline Palladium Thin Films in 3D

    Energy Technology Data Exchange (ETDEWEB)

    Yau, Allison [Department; Harder, Ross J. [Advanced; Kanan, Matthew W. [Department; Ulvestad, Andrew [Materials

    2017-09-13

    Defects such as dislocations and grain boundaries often control the properties of polycrystalline materials. In nanocrystalline materials, investigating this structure-function relationship while preserving the sample remains challenging because of the short length scales and buried interfaces involved. Here we use Bragg coherent diffractive imaging to investigate the role of structural inhomogeneity on the hydriding phase transformation dynamics of individual Pd grains in polycrystalline films in three-dimensional detail. In contrast to previous reports on single- and polycrystalline nanoparticles, we observe no evidence of a hydrogen-rich surface layer and consequently no size dependence in the hydriding phase transformation pressure over a 125-325 nm size range. We do observe interesting grain boundary dynamics, including reversible rotations of grain lattices while the material remains in the hydrogen-poor phase. The mobility of the grain boundaries, combined with the lack of a hydrogen-rich surface layer, suggests that the grain boundaries are acting as fast diffusion sites for the hydrogen atoms. Such hydrogen-enhanced plasticity in the hydrogen poor phase provides insight into the switch from the size-dependent behavior of single-crystal nanoparticles to the lower transformation pressures of polycrystalline materials and may play a role in hydrogen embrittlement.

  19. Development of a reaxff reactive force field for silicon/oxygen/hydrogen/fluoride interactions and applications to hydroxylation and friction

    Science.gov (United States)

    Yeon, Jejoon

    higher strain energy. In addition, we found three distinct hydroxylation paths -- H3O+ formation reaction from the adsorbed water, proton donation from H3O+, and the direct dissociation of the adsorbed water molecule. Because water molecules and their hydrogen bond network behave differently with respect to temperature ranges, silanol formation is also affected by temperature. The formation of surface hydroxyl in an amorphous silica double slit displays a similar tendency: SiOH formation prefers high-strain sites. Silanol formation related with H3O + formation and dissociation is observed in hydroxylation of amorphous SiO2, similar with the results from silica nano wire simulation. These results are particularly relevant to the tribological characteristics of surfaces, enabling the prediction of the attachment site of the lubrication film on silica surfaces with a locally strained geometry.

  20. Improvement in switching characteristics and long-term stability of Zn-O-N thin-film transistors by silicon doping

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsuji

    2017-06-01

    Full Text Available The effects of silicon doping on the properties of Zn-O-N (ZnON films and on the device characteristics of ZnON thin-film transistors (TFTs were investigated by co-sputtering silicon and zinc targets. Silicon doping was effective at decreasing the carrier concentration in ZnON films; therefore, the conductivity of the films can be controlled by the addition of a small amount of silicon. Doped silicon atoms also form bonds with nitrogen atoms, which suppresses nitrogen desorption from the films. Furthermore, Si-doped ZnON-TFTs are demonstrated to exhibit less negative threshold voltages, smaller subthreshold swings, and better long-term stability than non-doped ZnON-TFTs.

  1. Palladium/aluminum nitride/silicon carbide based hydrogen sensor: A materials approach

    Science.gov (United States)

    Rahman, Md. Habibur

    From the perspective of safety in storing and transporting hydrogen a safe hydrogen infrastructure should include a system of detectors to pinpoint leaks, and generate alarms in order to notify of leakage, and a system of cut-off points, all of which will be regularly tested. Existing techniques for detecting hydrogen have numerous drawbacks especially with respect to high temperature harsh environment. The requirements to overcome these drawbacks often exceed the capabilities of traditional materials, which lead the use of SiC and AlN in developing the proposed sensor: the main focus of this dissertation work. Such devices can operate at temperatures as high as 400°C while ordinary Si-based devices fail at around 140°C. In this work, three different types of SiC as well as two different types of Si substrates were used and four different thicknesses of AlN films were deposited 132 on them to investigate the effects of substrate materials and their carrier concentration, thickness of AlN layer, experimental parameters such as temperature, flow rate, etc. on the electrical as well as sensing behavior of the devices. The device with high carrier concentration substrate can not be operated as conventional MIS capacitor due to the absence of bias induced depletion layer responsible for the bias shift in presence of H2. The sensor response is obtained by measuring the change in the forward current versus voltage profile as a function of the presence of the gas. The device response is strongly flow rate dependent but independent of flow rate for sufficiently high flow, namely 250 sccm and above. The response is independent of AlN thickness at least in the investigated range of 25 nm to 200 nm. In a practical device application the operating temperature has to be controlled as the response magnitude increases with increase in temperature. The device made with 3C-SiC has much lower sensitivity to hydrogen than the device made on 6H-SiC.

  2. Poly(3-hexylthiophene) films by electrospray deposition for crystalline silicon/organic hybrid junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hiate, Taiga; Miyauchi, Naoto; Tang, Zeguo; Ishikawa, Ryo; Ueno, Keiji; Shirai, Hajime [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 858-3676 (Japan)

    2012-10-15

    The electrospray deposition (ESD) of poly(3-hexylthiophene) (P3HT) and conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) on P3HT for use in crystalline silicon/organic hybrid heterojunction solar cells on CZ crystalline silicon (c-Si) (100) wafer was investigated using real-time characterization by spectroscopic ellipsometry (SE). In contrast to the nonuniform deposition of products frequently obtained by conventional spin-coating, a uniform deposition of P3HT and PEDOT:PSS films were achieved on flat and textured hydrophobic c-Si(100) wafers by adjusting the deposition conditions. The c-Si/P3HT/PEDOT:PSS heterojunction solar cells exhibited efficiencies of 4.1 and 6.3% on flat and textured c-Si(100) wafers, respectively. These findings suggest that ESD is a promising method for the uniform deposition of P3HT and PEDOT:PSS films on flat and textured hydrophobic substrates. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Orientation of One-Dimensional Silicon Polymer Films Studied by X-Ray Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Md. Abdul Mannan

    2012-01-01

    Full Text Available Molecular orientations for thin films of one-dimensional silicon polymers grown by vacuum evaporation have been assigned by near-edge X-ray absorption fine structure (NEXAFS using linearly polarized synchrotron radiation. The polymer investigated was polydimethylsilane (PDMS which is the simplest stable silicon polymer, and one of the candidate materials for one-dimensional molecular wire. For PDMS films deposited on highly oriented pyrolytic graphite (HOPG, four resonance peaks have been identified in the Si K-edge NEXAFS spectra. Among these peaks, the intensities of the two peaks lower-energy at 1842.0 eV and 1843.2 eV were found to be strongly polarization dependent. The peaks are assigned to the resonance excitations from the Si 1s to σ∗ pyz and σ∗ px orbitals localized at the Si–C and Si–Si bonds, respectively. Quantitative evaluation of the polarization dependence of the NEXAFS spectra revealed that the molecules are self-assembled on HOPG surface, and the backbones of the PDMS are oriented nearly parallel to the surface. The observed orientation is opposite to the previously observed results for PDMS on the other surfaces such as oxide (indium tin oxide and metal (polycrystalline copper. The flat-lying feature of PDMS observed only on HOPG surface is attributed to the interaction between CH bonds in PDMS and π orbitals in HOPG surface.

  4. Effects of silicon porosity on physical properties of ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Bouzourâa, M.-B. [Université de Tunis El Manar, Faculté des Sciences de Tunis, Unité de nanomatériaux et photonique, 2092 El Manar - Tunis (Tunisia); Université Lorraine, Institut Jean Barriol, LCP-A2MC, 1 Bd Arago, 57078 Metz (France); Naciri, A. En, E-mail: aotmane.en-naciri@univ-lorraine.fr [Université Lorraine, Institut Jean Barriol, LCP-A2MC, 1 Bd Arago, 57078 Metz (France); Moadhen, A. [Université de Tunis El Manar, Faculté des Sciences de Tunis, Unité de nanomatériaux et photonique, 2092 El Manar - Tunis (Tunisia); Rinnert, H. [Université Lorraine, Institut Jean Lamour, 54506 Vanduvre-lès-Nancy (France); Guendouz, M. [Université Européenne de Bretagne, CNRS FOTON-UMR 6082, 6 rue de Kérampont, BP 80518, 22305 Lannion Cedex (France); Battie, Y. [Université Lorraine, Institut Jean Barriol, LCP-A2MC, 1 Bd Arago, 57078 Metz (France); Chaillou, A. [Université Européenne de Bretagne, CNRS FOTON-UMR 6082, 6 rue de Kérampont, BP 80518, 22305 Lannion Cedex (France); and others

    2016-06-01

    We report on structural and optical properties of ZnO thin films deposited on different Si-based substrates presenting different porosities. ZnO layers were prepared by sol gel method and deposited on crystalline silicon (ZnO/Si), mesoporous silicon (ZnO/PS{sup +}) and nanoporous silicon (ZnO/PS{sup −}) by spin coating. Several techniques such as scanning electron microscope (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence spectroscopy (PL) and spectroscopic ellipsometry (SE) were used to study the influence of the pore size of porous silicon (PS) on physical properties of ZnO films. SEM images revealed the formation of ZnO granular nanoparticles on Si, PS{sup −} and PS{sup +} substrates. We show by the XRD analysis that hexagonal crystallized (002) ZnO is mainly obtained for ZnO/PS{sup −} system causing by a strong absorption of the capillary effect and high adhesion to PS{sup −} surface. An intense PL related to ZnO and PS{sup −} was demonstrated for ZnO/PS{sup −} in UV and visible ranges. Optical properties of ZnO were determined and analyzed by SE using Tanguy dispersion model. For each sample, a specific optical model was carried out. SE confirms a good physical properties of ZnO/PS{sup −} comparing to ZnO/Si and ZnO/PS{sup +}. For example, the good crystallinity is characterized by low damping factor value (Γ). This value was found by SE to be low (29 meV) for the ZnO/PS{sup −}, while the damping factors of ZnO/Si and ZnO/PS{sup +} are 47 meV and 70 meV, respectively. The amplitude of dielectric function of ZnO/PS{sup −} around 3.4 eV reveals an increase of grain size and crystallinity of ZnO layer. - Highlights: • ZnO/PS{sup −} system can be considered as the best substrate for depositing the ZnO film. • ZnO/PS{sup −} system which exhibits large emission in both UV and visible domains. • Photoluminescence and ellipsometry show good optical properties of ZnO/PS{sup −}. • ZnO/PS{sup −} as a

  5. Electrical transport mechanisms and structure of hydrogenated and non-hydrogenated nanocrystalline Ga{sub 1−x}Mn{sub x}As films

    Energy Technology Data Exchange (ETDEWEB)

    Angelico, João C., E-mail: jcangelico@facol.br [Universidade Estadual Paulista, UNESP, Bauru, SP 17033-360 (Brazil); Pereira, André L.J. [Instituto Tecnológico de Aeronáutica ITA, 12228-900 São José dos Campos, SP (Brazil); Arruda, Larisa B. de; Dias da Silva, José H. [Universidade Estadual Paulista, UNESP, Bauru, SP 17033-360 (Brazil)

    2015-05-05

    Highlights: • Ga{sub 1−x}Mn{sub x}As films were produced by the RF magnetron sputtering technique. • The structures of the films were analyzed by Rietveld refinement. • Electrical conductivity was analyzed with basis on the structure and morphology. • Space charge limited current regime was identified in the films without manganese. • The electrical transport of the sample with manganese showed only “Ohmic regime”. - Abstract: The mechanisms of electrical conductivity in hydrogenated and non-hydrogenated nanocrystalline Ga{sub 1−x}Mn{sub x}As (0.000 ⩽ x ⩽ 0.081) films were analyzed, first from a macroscopic perspective, followed by microscopic analysis to investigate the energy levels for trapping electric charges. The analysis of the current–voltage and resistivity–temperature characteristics allowed the development of a model based on the morphology and structure of the films. This model takes into account the main aspects of the transport above 300 K. Space charge limited current (SCLC) mechanism was observed in Mn-free films and is associated with deep trap states located at 0.10 and 0.22 eV below the conduction band. In samples containing Mn, the dark conductivity is highly dependent on the presence of hydrogen. This effect was related to the grain boundaries and interstitial regions of the films, in which the density of gap states is expected to be reduced by the presence of hydrogen.

  6. Rapid surface functionalization of hydrogen-terminated silicon by alkyl silanols

    NARCIS (Netherlands)

    Escorihuela Fuentes, J.; Zuilhof, H.

    2017-01-01

    Surface functionalization of inorganic semiconductor substrates, particularly silicon, has focused attention toward many technologically important applications, involving photovoltaic energy, biosensing and catalysis. For such modification processes, oxide-free (H-terminated) silicon surfaces are

  7. Hydrogen dissociation in the deposition of GaN films with ECR-PECVD process

    Science.gov (United States)

    Fu, S. L.; Wang, C. A.; Ding, L. C.; Qin, Y. X.

    2017-12-01

    The hydrogen dissociation and its effect on the GaN film growth in the ECR-PECVD process are investigated in this paper. We use N2 and trimethylgallium (TMG) as N and Ga sources respectively in the ECR- PECVD process. The results show that the rate of hydrogen dissociation increases with the microwave power and it becomes higher at high microwave power (> 500 W). However, this population increase of the H species dissociated from the TMG gas in ECR plasma is not enough to change the growth condition from Ga-rich to N-rich.

  8. Cross-Linking Poly(lactic acid) Film Surface by Neutral Hyperthermal Hydrogen Molecule Bombardment.

    Science.gov (United States)

    Du, Wangli; Shao, Hong; He, Zhoukun; Tang, Changyu; Liu, Yu; Shen, Tao; Zhu, Yan; Lau, Woon-ming; Hui, David

    2015-12-16

    Constructing a dense cross-linking layer on a polymer film surface is a good way to improve the water resistance of poly(lactic acid) (PLA). However, conventional plasma treatments have failed to achieve the aim as a result of the unavoidable surface damage arising from the charged species caused by the uncontrolled high energy coming from colliding ions and electrons. In this work, we report a modified plasma method called hyperthermal hydrogen-induced cross-linking (HHIC) technology to construct a dense cross-linking layer on PLA film surfaces. This method produces energy-controlled neutral hyperthermal hydrogen, which selectively cleaves C-H bonds by molecule collision from the PLA film without breaking other bonds (e.g., C-C bonds in the polymer backbone), and results in subsequent cross-linking of the carbon radicals generated from the organic molecules. The formation of a dense cross-linking layer can serve as a barrier layer to significantly improve both the hydrophobicity and water vapor barrier property of the PLA film. Because of the advantage of selective cleavage of C-H bonds by HHIC treatment, the original physical properties (e.g., mechanical strength and light transmittance) of the PLA films are well-preserved.

  9. Hydrogenated TiO{sub 2} film for enhancing photovoltaic properties of solar cells and self-sensitized effect

    Energy Technology Data Exchange (ETDEWEB)

    He, Hongcai; Yang, Kui; Wang, Ning, E-mail: ning-wang@uestc.edu.cn; Luo, Feifei; Chen, Haijun [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2013-12-07

    Hydrogenated TiO{sub 2} film was obtained by annealing TiO{sub 2} film at 350 °C for 2 h with hydrogen, and TiO{sub 2} films were prepared by screen printing on fluorine-doped tin oxide glass. Structural characterization by X-ray diffraction and electron microscopy did not show obvious difference between hydrogenated TiO{sub 2} film and pristine TiO{sub 2} film. Through optical and electrochemical characterization, the hydrogenated TiO{sub 2} film showed enhanced absorption and narrowed band gap, as well as reduced TiO{sub 2} surface impedance and dark current. As a result, an obviously enhanced photovoltaic effect was observed in the solar cell with hydrogenated TiO{sub 2} as photoanode without adding any dye due to the self-sensitized effect of hydrogenated TiO{sub 2} film, which excited electrons injecting internal conduction band of TiO{sub 2} to generate more photocurrent.

  10. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Misra, A. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-10-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. One promising option to meet this goal is direct photoelectrolysis in which light absorbed by semiconductor-based photoelectrodes produces electrical power internally to split water into hydrogen and oxygen. Under this program, direct solar-to-chemical conversion efficiencies as high as 7.8 % have been demonstrated using low-cost, amorphous-silicon-based photoelectrodes. Detailed loss analysis models indicate that solar-to-chemical conversion greater than 10% can be achieved with amorphous-silicon-based structures optimized for hydrogen production. In this report, the authors describe the continuing progress in the development of thin-film catalytic/protective coatings, results of outdoor testing, and efforts to develop high efficiency, stable prototype systems.

  11. Influence of van der Waals interactions on morphology and dynamics in ultrathin liquid films at silicon oxide interfaces

    OpenAIRE

    Täuber, Daniela; Trenkmann, Ines; von Borczyskowski, Christian

    2015-01-01

    Single molecule tracer diffusion studies of evaporating (thinning) ultrathin tetrakis-2-ethyl-hexoxysilane (TEHOS) films on silicon with 100 nm thermal oxide reveal a considerable slowdown of the molecular mobility within less than 4 nm above the substrate (corresponding to a few molecular TEHOS layers). This is related to restricted mobility and structure formation of the liquid in this region, in agreement with information obtained from a long-time ellipsometric study of thinning TEHOS film...

  12. Vanadium dioxide thin films prepared on silicon by low temperature MBE growth and ex-situ annealing

    Science.gov (United States)

    Homm, Pia; van Bilzen, Bart; Menghini, Mariela; Locquet, Jean-Pierre; Ivanova, Todora; Sanchez, Luis; Sanchis, Pablo

    Vanadium dioxide (VO2) is a material that shows an insulator to metal transition (IMT) near room temperature. This property can be exploited for applications in field effect devices, electro-optical switches and nonlinear circuit components. We have prepared VO2 thin films on silicon wafers by combining a low temperature MBE growth with an ex-situ annealing at high temperature. We investigated the structural, electrical and optical characteristics of films with thicknesses ranging from 10 to 100 nm. We have also studied the influence of the substrate cleaning. The films grown with our method are polycrystalline with a preferred orientation in the (011) direction of the monoclinic phase. For the films produced on silicon with a native oxide, an IMT at around 75 °C is observed. The magnitude of the resistance change across the IMT decreases with thickness while the refractive index at room temperature corresponds with values reported in the literature for thin films. The successful growth of VO2 films on silicon with good electrical and optical properties is an important step towards the integration of VO2 in novel devices. The authors acknowledge financial support from the FWO project G052010N10 and EU-FP7 SITOGA project. PH acknowledges support from Becas Chile - CONICYT.

  13. Galvanic corrosion of structural non-stoichiometric silicon nitride thin films and its implications on reliability of microelectromechanical devices

    Energy Technology Data Exchange (ETDEWEB)

    Broas, M., E-mail: mikael.broas@aalto.fi; Mattila, T. T.; Paulasto-Kröckel, M. [Department of Electrical Engineering and Automation, Aalto University, Espoo, P.O. Box 13500, FIN-00076 Aalto (Finland); Liu, X.; Ge, Y. [Department of Materials Science and Engineering, Aalto University, Espoo, P.O. Box 16200, FIN-00076 Aalto (Finland)

    2015-06-28

    This paper describes a reliability assessment and failure analysis of a poly-Si/non-stoichiometric silicon nitride thin film composite structure. A set of poly-Si/SiN{sub x} thin film structures were exposed to a mixed flowing gas (MFG) environment, which simulates outdoor environments, for 90 days, and an elevated temperature and humidity (85 °C/95% R.H.) test for 140 days. The mechanical integrity of the thin films was observed to degrade during exposure to the chemically reactive atmospheres. The degree of degradation was analyzed with nanoindentation tests. Statistical analysis of the forces required to initiate a fracture in the thin films indicated degradation due to the exposure to the MFG environment in the SiN{sub x} part of the films. Scanning electron microscopy revealed a porous-like reaction layer on top of SiN{sub x}. The morphology of the reaction layer resembled that of galvanically corroded poly-Si. Transmission electron microscopy further clarified the microstructure of the reaction layer which had a complex multi-phase structure extending to depths of ∼100 nm. Furthermore, the layer was oxidized two times deeper in a 90 days MFG-tested sample compared to an untested reference. The formation of the layer is proposed to be caused by galvanic corrosion of elemental silicon in non-stoichiometric silicon nitride during hydrofluoric acid etching. The degradation is proposed to be due uncontrolled oxidation of the films during the stress tests.

  14. Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries

    KAUST Repository

    Cui, Li-Feng

    2010-07-27

    Silicon is an attractive alloy-type anode material because of its highest known capacity (4200 mAh/g). However, lithium insertion into and extraction from silicon are accompanied by a huge volume change, up to 300%, which induces a strong strain on silicon and causes pulverization and rapid capacity fading due to the loss of the electrical contact between part of silicon and current collector. Si nanostructures such as nanowires, which are chemically and electrically bonded to the current collector, can overcome the pulverization problem, however, the heavy metal current collectors in these systems are larger in weight than Si active material. Herein we report a novel anode structure free of heavy metal current collectors by integrating a flexible, conductive carbon nanotube (CNT) network into a Si anode. The composite film is free-standing and has a structure similar to the steel bar reinforced concrete, where the infiltrated CNT network functions as both mechanical support and electrical conductor and Si as a high capacity anode material for Li-ion battery. Such free-standing film has a low sheet resistance of ∼30 Ohm/sq. It shows a high specific charge storage capacity (∼2000 mAh/g) and a good cycling life, superior to pure sputtered-on silicon films with similar thicknesses. Scanning electron micrographs show that Si is still connected by the CNT network even when small breaking or cracks appear in the film after cycling. The film can also "ripple up" to release the strain of a large volume change during lithium intercalation. The conductive composite film can function as both anode active material and current collector. It offers ∼10 times improvement in specific capacity compared with widely used graphite/copper anode sheets. © 2010 American Chemical Society.

  15. Heat capacity of quantum adsorbates: Hydrogen and helium on evaporated gold films

    Energy Technology Data Exchange (ETDEWEB)

    Birmingham, J.T. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1996-06-01

    The author has constructed an apparatus to make specific heat measurements of quantum gases adsorbed on metallic films at temperatures between 0.3 and 4 K. He has used this apparatus to study quench-condensed hydrogen films between 4 and 923 layers thick with J = 1 concentrations between 0.28 and 0.75 deposited on an evaporated gold surface. He has observed that the orientational ordering of the J = 1 molecules depends on the substrate temperature during deposition of the hydrogen film. He has inferred that the density of the films condensed at the lowest temperatures is 25% higher than in bulk H{sub 2} crystals and have observed that the structure of those films is affected by annealing at 3.4 K. The author has measured the J = 1 to J = 0 conversion rate to be comparable to that of the bulk for thick films; however, he found evidence that the gold surface catalyzes conversion in the first two to four layers. He has also used this apparatus to study films of {sup 4}He less than one layer thick adsorbed on an evaporated gold surface. He shows that the phase diagram of the system is similar to that for {sup 4}He/graphite although not as rich in structure, and the phase boundaries occur at different coverages and temperatures. At coverages below about half a layer and at sufficiently high temperatures, the {sup 4}He behaves like a two-dimensional noninteracting Bose gas. At lower temperatures and higher coverages, liquidlike and solidlike behavior is observed. The Appendix shows measurements of the far-infrared absorptivity of the high-{Tc} superconductor La{sub 1.87}Sr{sub 0.13}CuO{sub 4}.

  16. Mechanisms of Current Flow in the Diode Structure with an n + - p-Junction Formed by Thermal Diffusion of Phosphorus From Porous Silicon Film

    Science.gov (United States)

    Tregulov, V. V.; Litvinov, V. G.; Ermachikhin, A. V.

    2018-01-01

    Temperature dependences of current-voltage characteristics of the photoelectric converter with an antireflective film of porous silicon and an n + -p-junction formed by thermal diffusion of phosphorus from a porous film is studied. The porous silicon film was saturated with phosphorus during its growing by electrochemical method. It is shown that the current flow processes in the structure under study are significantly influenced by traps.

  17. Silicon nitride films fabricated by a plasma-enhanced chemical vapor deposition method for coatings of the laser interferometer gravitational wave detector

    Science.gov (United States)

    Pan, Huang-Wei; Kuo, Ling-Chi; Huang, Shu-Yu; Wu, Meng-Yun; Juang, Yu-Hang; Lee, Chia-Wei; Chen, Hsin-Chieh; Wen, Ting Ting; Chao, Shiuh

    2018-01-01

    Silicon is a potential substrate material for the large-areal-size mirrors of the next-generation laser interferometer gravitational wave detector operated in cryogenics. Silicon nitride thin films uniformly deposited by a chemical vapor deposition method on large-size silicon wafers is a common practice in the silicon integrated circuit industry. We used plasma-enhanced chemical vapor deposition to deposit silicon nitride films on silicon and studied the physical properties of the films that are pertinent to application of mirror coatings for laser interferometer gravitational wave detectors. We measured and analyzed the structure, optical properties, stress, Young's modulus, and mechanical loss of the films, at both room and cryogenic temperatures. Optical extinction coefficients of the films were in the 10-5 range at 1550-nm wavelength. Room-temperature mechanical loss of the films varied in the range from low 10-4 to low 10-5 within the frequency range of interest. The existence of a cryogenic mechanical loss peak depended on the composition of the films. We measured the bond concentrations of N - H , Si - H , Si - N , and Si - Si bonds in the films and analyzed the correlations between bond concentrations and cryogenic mechanical losses. We proposed three possible two-level systems associated with the N - H , Si - H , and Si - N bonds in the film. We inferred that the dominant source of the cryogenic mechanical loss for the silicon nitride films is the two-level system of exchanging position between a H+ and electron lone pair associated with the N - H bond. Under our deposition conditions, superior properties in terms of high refractive index with a large adjustable range, low optical absorption, and low mechanical loss were achieved for films with lower nitrogen content and lower N - H bond concentration. Possible pairing of the silicon nitride films with other materials in the quarter-wave stack is discussed.

  18. Time-of-flight studies of emission of {mu}t from frozen hydrogen films

    Energy Technology Data Exchange (ETDEWEB)

    Huber, T.M. [Gustavus Adolphus College (United States); Adamczak, A. [Institute of Nuclear Physics (Poland); Bailey, J.M. [Chester Technology (United Kingdom); Beer, G.A. [University of Victoria (Canada); Beveridge, J.L. [TRIUMF (Canada); Ellerbusch, B.P. [Gustavus Adolphus College (United States); Fujiwara, M.C. [University of British Columbia (Canada); Jacot-Guillarmod, R. [Universite de Fribourg (Switzerland); Kammel, P. [University of California Berkeley (United States); Kim, S.K. [Jeonbuk National University (Korea, Republic of); Knowles, P.E. [Universite de Fribourg (Switzerland); Kunselman, A.R. [University of Wyoming (United States); Lindquist, G.J. [Gustavus Adolphus College (United States); Maier, M. [University of Victoria (Canada); Markushin, V.E. [Paul Scherrer Institute (Switzerland); Marshall, G.M. [TRIUMF (Canada); Martoff, C.J. [Temple University (United States); Mason, G.R. [University of Victoria (Canada); Mulhauser, F. [Universite de Fribourg (Switzerland); Olin, A. [TRIUMF (Canada)] (and others)

    1999-06-15

    In recent TRIUMF experiments, a {mu}{sup -} beam is stopped in a solid hydrogen film with a small fraction of T{sub 2}. The Ramsauer-Townsend (RT) mechanism allows {mu}t to escape into vacuum with a few eV of energy. To study the emission process, an imaging system was used to determine the position of muon decays. Experimental histograms are in good agreement with a Monte Carlo simulation.

  19. Transparent conducting oxide contacts and textured metal back reflectors for thin film silicon solar cells

    Science.gov (United States)

    Franken, R. H.-J.

    2006-09-01

    With the growing population and the increasing environmental problems of the 'common' fossil and nuclear energy production, the need for clean and sustainable energy sources is evident. Solar energy conversion, such as in photovoltaic (PV) systems, can play a major role in the urgently needed energy transition in electricity production. At the present time PV module production is dominated by the crystalline wafer technology. Thin film silicon technology is an alternative solar energy technology that operates at lower efficiencies, however, it has several significant advantages, such as the possibility of deposition on cheap (flexible) substrates and the much smaller silicon material consumption. Because of the small thickness of the solar cells, light trapping schemes are needed in order to obtain enough light absorption and current generation. This thesis describes the research on thin film silicon solar cells with the focus on the optimization of the transparent conducting oxide (TCO) layers and textured metal Ag substrate layers for the use as enhanced light scattering back reflectors in n-i-p type of solar cells. First we analyzed ZnO:Al (TCO) layers deposited in an radio frequent (rf) magnetron deposition system equipped with a 7 inch target. We have focused on the improvement of the electrical properties without sacrificing the optical properties by increasing the mobility and decreasing the grain boundary density. Furthermore, we described some of the effects on light trapping of ZnO:Al enhanced back reflectors. The described effects are able to explain the observed experimental data. Furthermore, we present a relation between the surface morphology of the Ag back contact and the current enhancement in microcrystalline (muc-Si:H) solar cells. We show the importance of the lateral feature sizes of the Ag surface on the light scattering and introduce a method to characterize the quality of the back reflector by combining the vertical and lateral feature sizes

  20. On Ultrafast Photoconductivity Dynamics and Crystallinity of Black Silicon

    DEFF Research Database (Denmark)

    Porte, Hendrik Pieter; Turchinovich, Dmitry; Persheyev, Saydulla

    2013-01-01

    We investigate the carrier dynamics of thin films of black silicon, amorphous hydrogenated silicon which under laser annealing forms a microstructured surface with extremely high broadband optical absorption. We use Raman spectroscopy to determine the degree of crystallinity of the annealed surfa...... with high energy leading edge of the annealing laser results in black silicon with the largest photon-to-electron conversion efficiency, largest mobility, and longest carrier lifetime....

  1. Direct measurement of free-energy barrier to nucleation of crystallites in amorphous silicon thin films

    Science.gov (United States)

    Shi, Frank G.

    1994-01-01

    A method is introduced to measure the free-energy barrier W(sup *), the activation energy, and activation entropy to nucleation of crystallites in amorphous solids, independent of the energy barrier to growth. The method allows one to determine the temperature dependence of W(sup *), and the effect of the preparation conditions of the initial amorphous phase, the dopants, and the crystallization methds on W(sup *). The method is applied to determine the free-energy barrier to nucleation of crystallites in amorphous silicon (a-Si) thin films. For thermally induced nucleation in a-Si thin films with annealing temperatures in the range of from 824 to 983 K, the free-energy barrier W(sup *) to nucleation of silicon crystals is about 2.0 - 2.1 eV regardless of the preparation conditions of the films. The observation supports the idea that a-Si transforms into an intermediate amorphous state through the structural relaxation prior to the onset of nucleation of crystallites in a-Si. The observation also indicates that the activation entropy may be an insignificant part of the free-energy barrier for the nucleation of crystallites in a-Si. Compared with the free-energy barrier to nucleation of crystallites in undoped a-Si films, a significant reduction is observed in the free-energy barrier to nucleation in Cu-doped a-Si films. For a-Si under irradiation of Xe(2+) at 10(exp 5) eV, the free-energy barrier to ion-induced nucleation of crystallites is shown to be about half of the value associated with thermal-induced nucleation of crystallites in a-Si under the otherwise same conditions, which is much more significant than previously expected. The present method has a general kinetic basis; it thus should be equally applicable to nucleation of crystallites in any amorphous elemental semiconductors and semiconductor alloys, metallic and polymeric glasses, and to nucleation of crystallites in melts and solutions.

  2. Carrier Transport in Films of Alkyl-Ligand-Terminated Silicon Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ting; Skinner, Brian; Xie, Wei; Shklovskii, B. I.; Kortshagen, Uwe R.

    2014-08-28

    Silicon nanocrystals (Si NCs) have shown great promise for electroluminescent and photoluminescent applications. In order to optimize the properties of Si NC devices, however, electronic transport in Si NC films needs to be thoroughly understood. Here we present a systematic study of the temperature and electric field dependence of conductivity in films of alkyl-ligand-terminated Si NCs, which to date have shown the highest potential for device applications. Our measurements suggest that the conductivity is limited by the ionization of rare NCs containing donor impurities. At low bias, this ionization is thermally activated, with an ionization energy equal to twice the NC charging energy. As the bias is increased, the ionization energy is reduced by the electric field, as determined by the Poole-Frenkel effect. At large bias and sufficiently low temperature, we observe cold ionization of electrons from donor-containing NCs, with a characteristic tunneling length of about 1 nm. The temperature- and electric-field-dependent conductance measurements presented here provide a systematic and comprehensive picture for electron transport in lightly doped nanocrystal films.

  3. ANNEALING OF POLYCRYSTALLINE THIN FILM SILICON SOLAR CELLS IN WATER VAPOUR AT SUB-ATMOSPHERIC PRESSURES

    Directory of Open Access Journals (Sweden)

    Peter Pikna

    2014-10-01

    Full Text Available Thin film polycrystalline silicon (poly-Si solar cells were annealed in water vapour at pressures below atmospheric pressure. PN junction of the sample was contacted by measuring probes directly in the pressure chamber filled with steam during passivation. Suns-VOC method and a Lock-in detector were used to monitor an effect of water vapour to VOC of the solar cell during whole passivation process (in-situ. Tested temperature of the sample (55°C – 110°C was constant during the procedure. Open-circuit voltage of a solar cell at these temperatures is lower than at room temperature. Nevertheless, voltage response of the solar cell to the light flash used during Suns-VOC measurements was good observable. Temperature dependences for multicrystalline wafer-based and polycrystalline thin film solar cells were measured and compared. While no significant improvement of thin film poly-Si solar cell parameters by annealing in water vapour at under-atmospheric pressures was observed up to now, in-situ observation proved required sensitivity to changing VOC at elevated temperatures during the process.

  4. Effect of cell thickness on the electrical and optical properties of thin film silicon solar cell

    Science.gov (United States)

    Zaki, A. A.; El-Amin, A. A.

    2017-12-01

    In this work Electrical and optical properties of silicon thin films with different thickness were measured. The thickness of the Si films varied from 100 to 800 μm. The optical properties of the cell were studied at different thickness. A maximum achievable current density (MACD) generated by a planar solar cell, was measured for different values of the cell thickness which was performed by using photovoltaic (PV) optics method. It was found that reducing the values of the cell thickness improves the open-circuit voltage (VOC) and the fill factor (FF) of the solar cell. The optical properties were measured for thin film Si (TF-Si) at different thickness by using the double beam UV-vis-NIR spectrophotometer in the wavelength range of 300-2000 nm. Some of optical parameters such as refractive index with dispersion relation, the dispersion energy, the oscillator energy, optical band gap energy were calculated by using the spectra for the TF-Si with different thickness.

  5. Microstructure and tribological performance of diamond-like carbon films deposited on hydrogenated rubber

    Energy Technology Data Exchange (ETDEWEB)

    Pal, J.P. van der [Materials Innovation Institute M2i, Department of Applied Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Martinez-Martinez, D., E-mail: d.martinez.martinez@rug.nl [Materials Innovation Institute M2i, Department of Applied Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Pei, Y.T., E-mail: y.pei@rug.nl [Materials Innovation Institute M2i, Department of Applied Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Rudolf, P. [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); De Hosson, J.Th.M. [Materials Innovation Institute M2i, Department of Applied Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2012-12-01

    In this paper, the microstructure and tribological performance of diamond-like carbon (DLC) films prepared by plasma chemical vapor deposition on hydrogenated nitrile butadiene rubbers (HNBR) are studied. Different negative variations of temperature during film growth were selected by proper changes of the bias voltage. Raman measurements show a similar bonding regardless of the voltages used. A columnar growth and a tile-like microstructure of the DLC films were identified by scanning electron microscopy. Patch sizes can be correlated with the deposition conditions. The coefficient of friction (CoF) of DLC film coated HNBR was found to be much lower than that of the unprotected rubber, and more reduced for the DLC films with smaller patch sizes, which is explained by a better flexibility and conformity of the film during testing. In one of the samples, unexpected low CoF was observed, which was attributed to a modification of the mechanical properties of the rubber during the plasma treatment at high voltage. This issue was confirmed by X-ray photoelectron spectroscopy, which indicated a modification of the cross linking in the rubber. - Highlights: Black-Right-Pointing-Pointer Bias voltage does not vary the chemical bonding and surface morphology of films. Black-Right-Pointing-Pointer Film structure is patched, whose size depends on the etching and deposition voltages. Black-Right-Pointing-Pointer The frictional behavior can be correlated with the patch size of the films. Black-Right-Pointing-Pointer Surface analysis showed that rubber x-linking is modified by etching at high voltage. Black-Right-Pointing-Pointer Modification of rubber x-linking leads to a different frictional behavior.

  6. Substrate bias effect on crystallinity of polycrystalline silicon thin films prepared by pulsed ion-beam evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Fazlat; Gunji, Michiharu; Yang, Sung-Chae; Suzuki, Tsuneo; Suematsu, Hisayuki; Jiang, Weihua; Yatsui, Kiyoshi [Nagaoka Univ. of Technology, Extreme Energy-Density Research Inst., Nagaoka, Niigata (Japan)

    2002-06-01

    The deposition of polycrystalline silicon thin films has been tried by a pulsed ion-beam evaporation method, where high crystallinity and deposition rate have been achieved without heating the substrate. The crystallinity and the deposition rate were improved by applying bias voltage to the substrate, where instantaneous substrate heating might have occurred by ion-bombardment. (author)

  7. Electrical properties of low pressure chemical vapor deposited silicon nitride thin films for temperatures up to 650 °C

    NARCIS (Netherlands)

    Tiggelaar, Roald M.; Groenland, A.W.; Sanders, Remco G.P.; Gardeniers, Johannes G.E.

    2009-01-01

    The results of a study on electrical conduction in low pressure chemical vapor deposited silicon nitride thin films for temperatures up to 650 °C are described. Current density versus electrical field characteristics are measured as a function of temperature for 100 and 200 nm thick stoichiometric

  8. New applications of r.f.-sputtered glass films as protection and bonding layers in silicon micromachining

    NARCIS (Netherlands)

    Berenschot, Johan W.; Gardeniers, Johannes G.E.; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt

    1994-01-01

    Different r.f-sputtered borosilicate glass films are characterized. Layers sputtered in 100% Ar and annealed in N2 at 550 °C for 3.5 h are found to be best applicable as protection layers in anisotropic etching of Si in KOH solutions and as bonding layers in silicon micromachining. For in situ

  9. Deposition and properties of silicon oxynitride films with low propagation losses by inductively coupled PECVD at 150 °C

    NARCIS (Netherlands)

    Rangarajan, B.; Kovalgin, Alexeij Y.; Schmitz, Jurriaan

    2013-01-01

    Silicon oxynitride films were deposited at 150 °C using inductively coupled plasma enhanced chemical vapor deposition, aiming towards low-temperature fabrication of waveguide material with low optical losses in the visible and near-infrared range. The influence of the deposition parameters such as

  10. Characterization of epitaxial Pb(Zr,Ti)O3 thin films deposited by pulsed laser deposition on silicon cantilevers

    NARCIS (Netherlands)

    Nguyen, M.D.; Nazeer, H.; Karakaya, K.; Pham, S.V.; Steenwelle, R.; Dekkers, M.; Abelmann, L.; Blank, D.H.A.; Rijnders, G.

    2010-01-01

    This paper reports on the piezoelectric-microelectromechanical system micro-fabrication process and the behavior of piezoelectric stacks actuated silicon cantilevers. All oxide layers in the piezoelectric stacks, such as buffer-layer/bottom-electrode/film/top-electrode: YSZ/SrRuO\\3/Pb(Zr,

  11. Characterization of epitaxial Pb(Zr,Ti)O3 thin films deposited by pulsed laser deposition on silicon cantilevers

    NARCIS (Netherlands)

    Nguyen, Duc Minh; Nazeer, H.; Karakaya, K.; Pham Van So, P.V.S.; Steenwelle, Ruud Johannes Antonius; Dekkers, Jan M.; Abelmann, Leon; Blank, David H.A.; Rijnders, Augustinus J.H.M.

    2010-01-01

    This paper reports on the piezoelectric-microelectromechanical system micro-fabrication process and the behavior of piezoelectric stacks actuated silicon cantilevers. All oxide layers in the piezoelectric stacks, such as buffer-layer/bottom-electrode/film/top-electrode: YSZ/SrRuO3/Pb(Zr,Ti)3/SrRuO3,

  12. First-principles study of hydrogen-enhanced phosphorus diffusion in silicon

    Energy Technology Data Exchange (ETDEWEB)

    The Anh, Le, E-mail: letheanh@jaist.ac.jp; Lam, Pham Tien; Manoharan, Muruganathan; Matsumura, Hideki; Otsuka, Nobuo; Hieu Chi, Dam [School of Materials Science, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomishi, Ishikawa 923-1292 (Japan); Tien Cuong, Nguyen [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi (Viet Nam); Mizuta, Hiroshi [School of Materials Science, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomishi, Ishikawa 923-1292 (Japan); Nanoelectronics and Nanotechnologies Research Group, Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, Highfield, Southampton, Hampshire SO17 1BJ (United Kingdom)

    2016-01-28

    We present a first-principles study on the interstitial-mediated diffusion process of neutral phosphorus (P) atoms in a silicon crystal with the presence of mono-atomic hydrogen (H). By relaxing initial Si structures containing a P atom and an H atom, we derived four low-energy P-H-Si defect complexes whose formation energies are significantly lower than those of P-Si defect complexes. These four defect complexes are classified into two groups. In group A, an H atom is located near a Si atom, whereas in group B, an H atom is close to a P atom. We found that the H atom pairs with P or Si atom and changes the nature bonding between P and Si atoms from out-of-phase conjugation to in-phase conjugation. This fact results in the lower formation energies compare to the cases without H atom. For the migration of defect complexes, we have found that P-H-Si defect complexes can migrate with low barrier energies if an H atom sticks to either P or Si atom. Group B complexes can migrate from one lattice site to another with an H atom staying close to a P atom. Group A complexes cannot migrate from one lattice site to another without a transfer of an H atom from one Si atom to another Si atom. A change in the structure of defect complexes between groups A and B during the migration results in a transfer of an H atom between P and Si atoms. The results for diffusion of group B complexes show that the presence of mono-atomic H significantly reduces the activation energy of P diffusion in a Si crystal, which is considered as a summation of formation energy and migration barrier energy, leading to the enhancement of diffusion of P atoms at low temperatures, which has been suggested by recent experimental studies.

  13. Boron doping compensation of hydrogenated amorphous and polymorphous germanium thin films for infrared detection applications

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, M., E-mail: mmoreno@inaoep.mx [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico); Delgadillo, N. [Universidad Autónoma de Tlaxcala, Av. Universidad No. 1, Z. P. 90006 Tlaxcala (Mexico); Torres, A. [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico); Ambrosio, R. [Technology and Engineering Institute, Ciudad Juarez University UACJ, Av. Del Charro 450N, Z. P. 32310 Chihuahua (Mexico); Rosales, P.; Kosarev, A.; Reyes-Betanzo, C.; Hidalga-Wade, J. de la; Zuniga, C.; Calleja, W. [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico)

    2013-12-02

    In this work we have studied boron doping of hydrogenated amorphous germanium a-Ge:H and polymorphous germanium (pm-Ge:H) in low regimes, in order to compensate the material from n-type (due to oxygen contamination that commonly occurs during plasma deposition) to intrinsic, and in this manner improve the properties that are important for infrared (IR) detection, as activation energy (E{sub a}) and temperature coefficient of resistance (TCR). Electrical, structural and optical characterization was performed on the films produced. Measurements of the temperature dependence of conductivity, room temperature conductivity (σ{sub RT}), E{sub a} and current–voltage characteristics under IR radiation were performed in the compensated a-Ge:H and pm-Ge:H films. Our results demonstrate that, effectively, the values of E{sub a}, TCR and IR detection are improved on the a-Ge:H/pm-Ge:H films, using boron doping in low regimes, which results of interest for infrared detectors. - Highlights: • We reported boron doping compensation of amorphous and polymorphous germanium. • The films were deposited by plasma enhanced chemical vapor deposition. • The aim is to use the films as thermo-sensing elements in un-cooled microbolometers. • Those films have advantages over boron doped a-Si:H used in commercial detectors.

  14. Growth and characterization of germanium epitaxial film on silicon (001 with germane precursor in metal organic chemical vapour deposition (MOCVD chamber

    Directory of Open Access Journals (Sweden)

    Kwang Hong Lee

    2013-09-01

    Full Text Available The quality of germanium (Ge epitaxial film grown directly on a silicon (Si (001 substrate with 6° off-cut using conventional germane precursor in a metal organic chemical vapour deposition (MOCVD system is studied. The growth sequence consists of several steps at low temperature (LT at 400 °C, intermediate temperature ramp (LT-HT of ∼10 °C/min and high temperature (HT at 600 °C. This is followed by post-growth annealing in hydrogen at temperature ranging from 650 to 825 °C. The Ge epitaxial film of thickness ∼ 1 μm experiences thermally induced tensile strain of 0.11 % with a treading dislocation density (TDD of ∼107/cm2 and the root-mean-square (RMS roughness of ∼ 0.75 nm. The benefit of growing Ge epitaxial film using MOCVD is that the subsequent III-V materials can be grown in-situ without the need of breaking the vacuum hence it is manufacturing worthy.

  15. Resistance fluctuations in insulating silicon films with superconducting nanoprecipitates – superconductor-to-metal or vortex matter phase transition?

    Directory of Open Access Journals (Sweden)

    V. Heera

    2015-11-01

    Full Text Available Silicon films with Ga-rich nanoprecipitates are superconductors or insulators in dependence on their normal state resistance. Even in the insulating state of the film superconducting nanoprecipitates exist below the critical temperature of 7 K and determine its complex transport behavior. In this range sometimes large, random resistance jumps appear that are accompanied by little temperature changes. The resistance fluctuates between a well-defined low-resistance value and a broader band of higher resistances. Jumps to higher resistance are associated with a temperature decrease and vice versa. We present experimental results on these fluctuations and suppose a first order phase transition in the film as probable origin.

  16. Adhesion improvement of hydrogenated diamond-like carbon thin films by pre-deposition plasma treatment of rubber substrate

    NARCIS (Netherlands)

    Bui, X.L.; Pei, Y.T.; Mulder, E.D.G.; Hosson, J.Th.M. De

    2009-01-01

    For reduction of friction and enhancement of wear resistance of dynamic rubber seals, thin films of hydrogenated diamond-like carbon (DLC) have been deposited on hydrogenated nitrile butadiene rubber (HNBR) via magnetron-enhanced plasma chemical vapor deposition (ME-PCVD). Pre-deposition plasma

  17. Positron depth profiling of the structural and electronic structure transformations of hydrogenated Mg-based thin films

    NARCIS (Netherlands)

    Eijt, S.W.H.; Kind, R.; Singh, S.; Schut, H.; Legerstee, W.J.; Hendrikx, R.W.A.; Svetchnikov, V.L.; Westerwaal, R.J.; Dam, B.

    2009-01-01

    We report positron depth-profiling studies on the hydrogen sorption behavior and phase evolution of Mg-based thin films. We show that the main changes in the depth profiles resulting from the hydrogenation to the respective metal hydrides are related to a clear broadening in the observed electron

  18. Dependence of optical properties and hardness on carbon content in silicon carbonitride films deposited by plasma ion immersion processing technique

    Energy Technology Data Exchange (ETDEWEB)

    Afanasyev-Charkin, I.V.; Nastasi, M. E-mail: nasty@lanl.gov

    2003-05-01

    Materials with Si-C-N composition are of great interest due to their remarkable properties such as high hardness and oxidation resistance. In this study amorphous silicon nitride and silicon carbonitride films were deposited on glass, fused silica, and carbon substrates by the plasma immersion ion processing technique. Gas pressure during the deposition was kept around 0.13 Pa (1 mTorr) and SiH{sub 4}, N{sub 2}, Ar and C{sub 2}H{sub 2} gas mixtures were used. Film hardness, composition and UV-visible optical absorption were characterized using nanoindentation, ion beam analysis techniques, and UV-visible spectroscopy, respectively. The films exhibit high transparency in the visible and near UV regions. Addition of the carbon to the films causes decrease in the density of the films, as well as decrease in hardness and transparency. These results suggest that in the low energy regime of PIIP the deposition of hard carbon composites with nitrogen and silicon does not take place.

  19. Structural and Electrical Properties of Polysilicon Films Prepared by AIC Process for a Polycrystalline Silicon Solar Cell Seed Layer

    Directory of Open Access Journals (Sweden)

    Hyejeong Jeong

    2012-01-01

    Full Text Available Polycrystalline silicon (pc-Si films are produced by aluminum-induced crystallization (AIC process for a polycrystalline silicon solar cell seed layer, and the structural and electrical properties of the films are analyzed. The used structure is glass/Al/ Al2O3/a-Si, and the thickness of Al2O3 layer was varied from 2 nm to 20 nm to investigate the influence of the Al2O3 layer thickness on the formation of the polycrystalline silicon. The annealing temperature and annealing time were fixed to 400∘C and 5 hours, respectively, for the AIC process conditions. As a result, it is observed that the average grain size of the pc-Si films is rapidly smaller with increasing the thickness of Al2O3 layer, whereas the film quality, as defects and Hall mobility, was gradually degraded with only small difference. We obtained the maximum average grain size of 15 μm for the pc-Si film with the thickness of Al2O3 layer of 4 nm. The best resistivity and the Hall mobility was 6.1×10−2 Ω⋅cm and 90.91 cm2/Vs, respectively, in the case of 8 nm thick Al oxide layer.

  20. Gas Permeation, Mechanical Behavior and Cytocompatibility of Ultrathin Pure and Doped Diamond-Like Carbon and Silicon Oxide Films

    Directory of Open Access Journals (Sweden)

    Juergen M. Lackner

    2013-12-01

    Full Text Available Protective ultra-thin barrier films gather increasing economic interest for controlling permeation and diffusion from the biological surrounding in implanted sensor and electronic devices in future medicine. Thus, the aim of this work was a benchmarking of the mechanical oxygen permeation barrier, cytocompatibility, and microbiological properties of inorganic ~25 nm thin films, deposited by vacuum deposition techniques on 50 µm thin polyetheretherketone (PEEK foils. Plasma-activated chemical vapor deposition (direct deposition from an ion source was applied to deposit pure and nitrogen doped diamond-like carbon films, while physical vapor deposition (magnetron sputtering in pulsed DC mode was used for the formation of silicon as well as titanium doped diamond-like carbon films. Silicon oxide films were deposited by radio frequency magnetron sputtering. The results indicate a strong influence of nanoporosity on the oxygen transmission rate for all coating types, while the low content of microporosity (particulates, etc. is shown to be of lesser importance. Due to the low thickness of the foil substrates, being easily bent, the toughness as a measure of tendency to film fracture together with the elasticity index of the thin films influence the oxygen barrier. All investigated coatings are non-pyrogenic, cause no cytotoxic effects and do not influence bacterial growth.