WorldWideScience

Sample records for hydrogenated silicon films

  1. Orientationally ordered ridge structures of aluminum films on hydrogen terminated silicon

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Pantleon, Karen

    2006-01-01

    Films of aluminum deposited onto Si(100) substrates show a surface structure of parallel ridges. On films deposited on oxidized silicon substrates the direction of the ridges is arbitrary, but on films deposited on hydrogen-terminated Si(100) the ridges are oriented parallel to the < 110 > direct......Films of aluminum deposited onto Si(100) substrates show a surface structure of parallel ridges. On films deposited on oxidized silicon substrates the direction of the ridges is arbitrary, but on films deposited on hydrogen-terminated Si(100) the ridges are oriented parallel to the ... > directions on the silicon substrate. The ridge structure appears when the film thickness is above 500 nm, and increasing the film thickness makes the structure more distinct. Anodic oxidation enhances the structure even further. X-ray diffraction indicates that grains in the film have mostly (110) facets...

  2. Formation of apatite on hydrogenated amorphous silicon (a-Si:H) film deposited by plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Liu Xuanyong; Chu, Paul K.; Ding Chuanxian

    2007-01-01

    Hydrogenated amorphous silicon films were fabricated on p-type, 100 mm diameter silicon wafers by plasma-enhanced chemical vapor deposition (PECVD) using silane and hydrogen. The structure and composition of the hydrogenated amorphous silicon films were investigated using micro-Raman spectroscopy and cross-sectional transmission electron microscopy (XTEM). The hydrogenated amorphous silicon films were subsequently soaked in simulated body fluids to evaluate apatite formation. Carbonate-containing hydroxyapatite (bone-like apatite) was formed on the surface suggesting good bone conductivity. The amorphous structure and presence of surface Si-H bonds are believed to induce apatite formation on the surface of the hydrogenated amorphous silicon film. A good understanding of the surface bioactivity of silicon-based materials and means to produce a bioactive surface is important to the development of silicon-based biosensors and micro-devices that are implanted inside humans

  3. Formation of apatite on hydrogenated amorphous silicon (a-Si:H) film deposited by plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xuanyong [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China) and Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: xyliu@mail.sic.ac.cn; Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: paul.chu@cityu.edu.hk; Ding Chuanxian [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2007-01-15

    Hydrogenated amorphous silicon films were fabricated on p-type, 100 mm diameter <1 0 0> silicon wafers by plasma-enhanced chemical vapor deposition (PECVD) using silane and hydrogen. The structure and composition of the hydrogenated amorphous silicon films were investigated using micro-Raman spectroscopy and cross-sectional transmission electron microscopy (XTEM). The hydrogenated amorphous silicon films were subsequently soaked in simulated body fluids to evaluate apatite formation. Carbonate-containing hydroxyapatite (bone-like apatite) was formed on the surface suggesting good bone conductivity. The amorphous structure and presence of surface Si-H bonds are believed to induce apatite formation on the surface of the hydrogenated amorphous silicon film. A good understanding of the surface bioactivity of silicon-based materials and means to produce a bioactive surface is important to the development of silicon-based biosensors and micro-devices that are implanted inside humans.

  4. Hydrogen in hydrogenated amorphous silicon thick film and its relation to the photoresponse of the film in contact with molybdenum

    International Nuclear Information System (INIS)

    Sridhar, N.; Chung, D.D.L.

    1992-01-01

    This paper reports that hydrogenated amorphous silicon films of thickness 0.5-7 μm on molybdenum substrates were deposited from silane by dc glow discharge and studied by mass spectrometric observation of the evolution of hydrogen upon heating and correlating this information with the photoresponse. The films were found to contain two types of hydrogen, namely weak bonded hydrogen, which evolved at 365 degrees C and was the minority, and strongly bonded hydrogen, which evolved at 460-670 degrees C and was the majority. The proportion of strongly bonded hydrogen increased with increasing film thickness and with increasing substrate temperature during deposition. The total amount of hydrogen increased when the substrate temperature was decreased from 350 to 275 degrees C. The strongly bonded hydrogen resided throughout the thickness of the film, whereas the weakly bonded hydrogen resided near the film surface. The evolution of the strongly bonded hydrogen was diffusion controlled, with an activation energy of 1.6 eV. The strongly bonded hydrogen enhanced the photoresponse, whereas the weakly bonded hydrogen degraded the photoresponse

  5. Optical characterisation of sputtered hydrogenated amorphous silicon thin films

    International Nuclear Information System (INIS)

    Mellassi, K.; Chafik El Idrissi, M.; Chouiyakh, A.; Rjeb, A.; Barhdadi, A.

    2000-09-01

    The present work is devoted to the study of some optical properties of hydrogenated amorphous silicon (a-Si:H) thin films prepared by radio-frequency cathodic sputtering technique. It is essentially focused on investigating separately the effects of increasing partial hydrogen pressure during the deposition stage, and the effects of post deposition thermal annealing on the main optical parameters of the deposited layers (refraction index, optical gap Urbach energy, etc.). We show that low hydrogen pressures allow a saturation of the dangling bonds in the material, while high pressures lead to the creation of new defects. We also show that thermal annealing under moderate temperatures allows a good improvement of the structural quality of deposited films. (author)

  6. Dual mechanical behaviour of hydrogen in stressed silicon nitride thin films

    International Nuclear Information System (INIS)

    Volpi, F.; Braccini, M.; Pasturel, A.; Devos, A.; Raymond, G.; Morin, P.

    2014-01-01

    In the present article, we report a study on the mechanical behaviour displayed by hydrogen atoms and pores in silicon nitride (SiN) films. A simple three-phase model is proposed to relate the physical properties (stiffness, film stress, mass density, etc.) of hydrogenated nanoporous SiN thin films to the volume fractions of hydrogen and pores. This model is then applied to experimental data extracted from films deposited by plasma enhanced chemical vapour deposition, where hydrogen content, stress, and mass densities range widely from 11% to 30%, −2.8 to 1.5 GPa, and 2.0 to 2.8 g/cm 3 , respectively. Starting from the conventional plotting of film's Young's modulus against film porosity, we first propose to correct the conventional calculation of porosity volume fraction with the hydrogen content, thus taking into account both hydrogen mass and concentration. The weight of this hydrogen-correction is found to evolve linearly with hydrogen concentration in tensile films (in accordance with a simple “mass correction” of the film density calculation), but a clear discontinuity is observed toward compressive stresses. Then, the effective volume occupied by hydrogen atoms is calculated taking account of the bond type (N-H or Si-H bonds), thus allowing a precise extraction of the hydrogen volume fraction. These calculations applied to tensile films show that both volume fractions of hydrogen and porosity are similar in magnitude and randomly distributed against Young's modulus. However, the expected linear dependence of the Young's modulus is clearly observed when both volume fractions are added. Finally, we show that the stiffer behaviour of compressive films cannot be only explained on the basis of this (hydrogen + porosity) volume fraction. Indeed this stiffness difference relies on a dual mechanical behaviour displayed by hydrogen atoms against the film stress state: while they participate to the stiffness in compressive films, hydrogen atoms mainly

  7. Analysis of structure and defects in thin silicon films deposited from hydrogen diluted silane

    International Nuclear Information System (INIS)

    Elzakker, G. van; Nadazdy, V.; Tichelaar, F.D.; Metselaar, J.W.; Zeman, M.

    2006-01-01

    Thin silicon layers have been deposited from silane diluted with hydrogen. The dilution ratio R (R = [H 2 ]/[SiH 4 ]) has been varied between R = 0 and R = 40. The structural properties of Si:H films have been studied using transmission electron microscopy imaging and Raman spectroscopy. The phase evolution from the amorphous phase into the mixed and eventually microcrystalline phase strongly depends on the hydrogen dilution. The initiation of the microcrystalline growth occurs between R = 20 and R = 25. The phase transition becomes more abrupt with increasing hydrogen dilution. Optoelectronic properties of the layers have been determined. Increasing hydrogen dilution results in films with increasing effective defect density and Urbach energy, which is related to inhomogeneous growth. The charge deep-level transient spectroscopy technique (Q-DLTS) was applied for the first time on hydrogen diluted thin silicon films in order to investigate the energy distribution of the defect states in these layers as a function of the dilution ratio R. The Q-DLTS spectra indicate a difference in defect-state distribution when the films evolve from the amorphous phase into the microcrystalline phase

  8. Effect of silane/hydrogen ratio on microcrystalline silicon thin films by remote inductively coupled plasma

    Science.gov (United States)

    Guo, Y. N.; Wei, D. Y.; Xiao, S. Q.; Huang, S. Y.; Zhou, H. P.; Xu, S.

    2013-05-01

    Hydrogenated microcrystalline silicon (μc-Si:H) thin films were prepared by remote low frequency inductively coupled plasma (ICP) chemical vapor deposition system, and the effect of silane/hydrogen ratio on the microstructure and electrical properties of μc-Si:H films was systematically investigated. As silane/hydrogen ratio increases, the crystalline volume fraction Fc decreases and the ratio of the intensity of (220) peak to that of (111) peak drops as silane flow rate is increased. The FTIR result indicates that the μc-Si:H films prepared by remote ICP have a high optical response with a low hydrogen content, which is in favor of reducing light-induced degradation effect. Furthermore, the processing window of the phase transition region for remote ICP is much wider than that for typical ICP. The photosensitivity of μc-Si:H films can exceed 100 at the transition region and this ensures the possibility of the fabrication of microcrystalline silicon thin film solar cells with a open-circuit voltage of about 700 mV.

  9. Vibrational Spectroscopy of Chemical Species in Silicon and Silicon-Rich Nitride Thin Films

    Directory of Open Access Journals (Sweden)

    Kirill O. Bugaev

    2012-01-01

    Full Text Available Vibrational properties of hydrogenated silicon-rich nitride (SiN:H of various stoichiometry (0.6≤≤1.3 and hydrogenated amorphous silicon (a-Si:H films were studied using Raman spectroscopy and Fourier transform infrared spectroscopy. Furnace annealing during 5 hours in Ar ambient at 1130∘C and pulse laser annealing were applied to modify the structure of films. Surprisingly, after annealing with such high-thermal budget, according to the FTIR data, the nearly stoichiometric silicon nitride film contains hydrogen in the form of Si–H bonds. From analysis of the FTIR data of the Si–N bond vibrations, one can conclude that silicon nitride is partly crystallized. According to the Raman data a-Si:H films with hydrogen concentration 15% and lower contain mainly Si–H chemical species, and films with hydrogen concentration 30–35% contain mainly Si–H2 chemical species. Nanosecond pulse laser treatments lead to crystallization of the films and its dehydrogenization.

  10. Optically induced paramagnetism in amorphous hydrogenated silicon nitride thin films

    International Nuclear Information System (INIS)

    Warren, W.L.; Kanicki, J.; Buchwald, W.R.; Rong, F.C.; Harmatz, M.

    1992-01-01

    This paper reports that the creation mechanisms of Si and N dangling bond defect centers in amorphous hydrogenated silicon nitride thin films by ultra-violet (UV) illumination are investigated. The creation efficiency and density of Si centers in the N-rich films are independent of illumination temperature, strongly suggesting that the creation mechanism of the spins in electronic in nature, i.e., a charge transfer mechanism. However, our results suggest that the creation of the Si dangling bond in the Si-rich films are different. Last, we find that the creation of the N dangling-bond in N-rich films can be fit to a stretched exponential time dependence, which is characteristic of dispersive charge transport

  11. Fracture properties of hydrogenated amorphous silicon carbide thin films

    International Nuclear Information System (INIS)

    Matsuda, Y.; King, S.W.; Bielefeld, J.; Xu, J.; Dauskardt, R.H.

    2012-01-01

    The cohesive fracture properties of hydrogenated amorphous silicon carbide (a-SiC:H) thin films in moist environments are reported. Films with stoichiometric compositions (C/Si ≈ 1) exhibited a decreasing cohesive fracture energy with decreasing film density similar to other silica-based hybrid organic–inorganic films. However, lower density a-SiC:H films with non-stoichiometric compositions (C/Si ≈ 5) exhibited much higher cohesive fracture energy than the films with higher density stoichiometric compositions. One of the non-stoichiometric films exhibited fracture energy (∼9.5 J m −2 ) greater than that of dense silica glasses. The increased fracture energy was due to crack-tip plasticity, as demonstrated by significant pileup formation during nanoindentation and a fracture energy dependence on film thickness. The a-SiC:H films also exhibited a very low sensitivity to moisture-assisted cracking compared with other silica-based hybrid films. A new atomistic fracture model is presented to describe the observed moisture-assisted cracking in terms of the limited Si-O-Si suboxide bond formation that occurs in the films.

  12. Enhanced photoluminescence from ring resonators in hydrogenated amorphous silicon thin films at telecommunications wavelengths.

    Science.gov (United States)

    Patton, Ryan J; Wood, Michael G; Reano, Ronald M

    2017-11-01

    We report enhanced photoluminescence in the telecommunications wavelength range in ring resonators patterned in hydrogenated amorphous silicon thin films deposited via low-temperature plasma enhanced chemical vapor deposition. The thin films exhibit broadband photoluminescence that is enhanced by up to 5 dB by the resonant modes of the ring resonators due to the Purcell effect. Ellipsometry measurements of the thin films show a refractive index comparable to crystalline silicon and an extinction coefficient on the order of 0.001 from 1300 nm to 1600 nm wavelengths. The results are promising for chip-scale integrated optical light sources.

  13. Hydrogenated amorphous silicon thin film anode for proton conducting batteries

    Science.gov (United States)

    Meng, Tiejun; Young, Kwo; Beglau, David; Yan, Shuli; Zeng, Peng; Cheng, Mark Ming-Cheng

    2016-01-01

    Hydrogenated amorphous Si (a-Si:H) thin films deposited by chemical vapor deposition were used as anode in a non-conventional nickel metal hydride battery using a proton-conducting ionic liquid based non-aqueous electrolyte instead of alkaline solution for the first time, which showed a high specific discharge capacity of 1418 mAh g-1 for the 38th cycle and retained 707 mAh g-1 after 500 cycles. A maximum discharge capacity of 3635 mAh g-1 was obtained at a lower discharge rate, 510 mA g-1. This electrochemical discharge capacity is equivalent to about 3.8 hydrogen atoms stored in each silicon atom. Cyclic voltammogram showed an improved stability 300 mV below the hydrogen evolution potential. Both Raman spectroscopy and Fourier transform infrared spectroscopy studies showed no difference to the pre-existing covalent Si-H bond after electrochemical cycling and charging, indicating a non-covalent nature of the Si-H bonding contributing to the reversible hydrogen storage of the current material. Another a-Si:H thin film was prepared by an rf-sputtering deposition followed by an ex-situ hydrogenation, which showed a discharge capacity of 2377 mAh g-1.

  14. On the structural and optical properties of sputtered hydrogenated amorphous silicon thin films

    International Nuclear Information System (INIS)

    Barhdadi, A.; Chafik El ldrissi, M.

    2002-08-01

    The present work is essentially focused on the study of optical and structural properties of hydrogenated amorphous silicon thin films (a-Si:H) prepared by radio-frequency cathodic sputtering. We examine separately the influence of hydrogen partial pressure during film deposition, and the effect of post-deposition thermal annealings on the main optical characteristics of the layers such as refraction index, optical gap and Urbach energy. Using the grazing X-rays reflectometry technique, thin film structural properties are examined immediately after films deposition as well as after surface oxidation or annealing. We show that low hydrogen pressures allow a saturation of dangling bonds in the layers, while high doses lead to the creation of new defects. We show also that thermal annealing under moderate temperatures improves the structural quality of the deposited layers. For the films examined just after deposition, the role of hydrogen appears in the increase of their density. For those analysed after a short stay in the ambient, hydrogen plays a protective role against the oxidation of their surfaces. This role disappears for a long time stay in the ambient. (author)

  15. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    International Nuclear Information System (INIS)

    Mouro, J.; Gualdino, A.; Chu, V.; Conde, J. P.

    2013-01-01

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n + -type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three different types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force

  16. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    Energy Technology Data Exchange (ETDEWEB)

    Mouro, J.; Gualdino, A.; Chu, V. [Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC-MN) and IN – Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Conde, J. P. [Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC-MN) and IN – Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Department of Bioengineering, Instituto Superior Técnico (IST), 1049-001 Lisbon (Portugal)

    2013-11-14

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three different types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.

  17. Hydrogen diffusion between plasma-deposited silicon nitride-polyimide polymer interfaces

    International Nuclear Information System (INIS)

    Nguyen, S.V.; Kerbaugh, M.

    1988-01-01

    This paper reports a nuclear reaction analysis (NRA) for hydrogen technique used to analyze the hydrogen concentration near plasma enhanced chemical vapor deposition (PECVD) silicon nitride-polyimide interfaces at various nitride-deposition and polyimide-polymer-curing temperatures. The CF 4 + O 2 (8% O 2 ) plasma-etch-rate variation of PECVD silicon nitride films deposited on polyimide appeared to correlate well with the variation of hydrogen-depth profiles in the nitride films. The NRA data indicate that hydrogen-depth-profile fluctuation in the nitride films is due to hydrogen diffusion between the nitride-polyimide interfaces during deposition. Annealing treatment of polyimide films in a hydrogen atmosphere prior to the nitride film deposition tends to enhance the hydrogen-depth-profile uniformity in the nitride films, and thus substantially reduces or eliminates variation in the nitride plasma-etch rate

  18. Effect of silane dilution on intrinsic stress in glow discharge hydrogenated amorphous silicon films

    Science.gov (United States)

    Harbison, J. P.; Williams, A. J.; Lang, D. V.

    1984-02-01

    Measurements of the intrinsic stress in hydrogenated amorphous silicon (a-Si : H) films grown by rf glow discharge decomposition of silane diluted to varying degrees in argon are presented. Films are found to grow under exceedingly high compressive stress. Low values of macroscopic film density and low stress values are found to correlate with high growth rate. An abrupt drop in stress occurs between 2 and 3% silane at precisely the point where columnar growth morphology appears. No corresponding abrupt change is noted in density, growth rate, or plasma species concentrations as determined by optical emissioin spectroscopy. Finally a model of diffusive incorporation of hydrogen or some gaseous impurity during growth into the bulk of the film behind the growing interface is proposed to explain the results.

  19. Study of some structural properties of hydrogenated amorphous silicon thin films prepared by radiofrequency cathodic sputtering

    International Nuclear Information System (INIS)

    Mellassi, K.; Chafik El Idrissi, M.; Barhdadi, A.

    2001-08-01

    In this work, we have used the grazing X-rays reflectometry technique to characterise hydrogenated amorphous silicon thin films deposited by radio-frequency cathodic sputtering. Relfectometry measurements are taken immediately after films deposition as well as after having naturally oxidised their surfaces during a more or less prolonged stay in the ambient. For the films examined just after deposition, the role of hydrogen appears in the increase of their density. For those analysed after a short stay in the ambient, hydrogen plays a protective role against the oxidation of their surfaces. This role disappears when the stay in the ambient is so long. (author)

  20. Hydrogenated amorphous silicon coatings may modulate gingival cell response

    Science.gov (United States)

    Mussano, F.; Genova, T.; Laurenti, M.; Munaron, L.; Pirri, C. F.; Rivolo, P.; Carossa, S.; Mandracci, P.

    2018-04-01

    Silicon-based materials present a high potential for dental implant applications, since silicon has been proven necessary for the correct bone formation in animals and humans. Notably, the addition of silicon is effective to enhance the bioactivity of hydroxyapatite and other biomaterials. The present work aims to expand the knowledge of the role exerted by hydrogen in the biological interaction of silicon-based materials, comparing two hydrogenated amorphous silicon coatings, with different hydrogen content, as means to enhance soft tissue cell adhesion. To accomplish this task, the films were produced by plasma enhanced chemical vapor deposition (PECVD) on titanium substrates and their surface composition and hydrogen content were analyzed by means of X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectrophotometry (FTIR) respectively. The surface energy and roughness were measured through optical contact angle analysis (OCA) and high-resolution mechanical profilometry respectively. Coated surfaces showed a slightly lower roughness, compared to bare titanium samples, regardless of the hydrogen content. The early cell responses of human keratinocytes and fibroblasts were tested on the above mentioned surface modifications, in terms of cell adhesion, viability and morphometrical assessment. Films with lower hydrogen content were endowed with a surface energy comparable to the titanium surfaces. Films with higher hydrogen incorporation displayed a lower surface oxidation and a considerably lower surface energy, compared to the less hydrogenated samples. As regards mean cell area and focal adhesion density, both a-Si coatings influenced fibroblasts, but had no significant effects on keratinocytes. On the contrary, hydrogen-rich films increased manifolds the adhesion and viability of keratinocytes, but not of fibroblasts, suggesting a selective biological effect on these cells.

  1. Infrared analysis of thin films amorphous, hydrogenated carbon on silicon

    CERN Document Server

    Jacob, W; Schwarz-Selinger, T

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, ...

  2. Photodecomposition of Hg - Photo - CVD monosilane. Application to hydrogenated amorphous silicon thin films

    International Nuclear Information System (INIS)

    Aka, B.

    1989-04-01

    The construction of a Hg-photo-CVD device is discussed. The system enables the manufacturing of hydrogenous thin films of amorphous silicon from monosilane compound. The reaction mechanisms taking place in the gaseous phase and at the surface, and the optimal conditions for the amorphous silicon film growth are studied. The analysis technique is based on the measurement of the difference between the condensation points of the gaseous components of the mixture obtained from the monosilane photolysis. A kinetic simplified model is proposed. Conductivity measurements are performed and the heat treatment effects are analyzed. Trace amounts of oxygen and carbon are found in the material. No Hg traces are detected by SIMS analysis [fr

  3. Characterization of hydrogenated amorphous silicon. Some behaviors of hydrogen and impurities studied by film characterization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Imura, Takeshi; Kubota, Kazuyoshi; Ushita, Katsumi; Hiraki, Akio

    1980-06-01

    Rutherford backscattering spectrometry and infrared absorption measurement were applied to determine composition in hydrogenated amorphous silicon fabricated either by glow discharge in SiH/sub 4/ plus H/sub 2/ or by reactive sputtering in Ar containing H/sub 2/ in a tetrode or diode sputtering apparatus. The atomic density of Si, the content and depth distribution of H, and the amount of impurities such as Ar were studied for the films deposited under several conditions of substrate temperature and gas pressure and constitution. Some difference was clarified between glow-discharge and sputter deposited films.

  4. DEB-silicone rubber hydrogen absorbing Raman detection technology research

    International Nuclear Information System (INIS)

    Yang Suolong; Zhong Jingrong; Wang Huang; Yang Kaixu; Xiao Jiqun; Liu Jiaxi; Liao Junsheng

    2012-01-01

    The DEB-Pd/C hydrogen getter powder and DEB-Pd/C-silicone rubber getter film were prepared and used for hydrogen detection in close systems by laser Raman method. The DEB alkanes Raman peak intensity changes with the getter time were monitored by Raman spectrometer. As a result, silicone rubber has good compatibility with DEB getter, slow access to hydrogen and good flexible. The alkanes peak intensity-getter time followed a exponential rule. DEB getter films are suitable for Raman on-line monitor of cumulative hydrogen of a closed system at long time. (authors)

  5. Determination of hydrogen concentration in amorphous silicon films by nuclear elastic scattering (NES) of 100 MeV 3He2+

    International Nuclear Information System (INIS)

    Iwami, M.; Imura, T.; Hiraki, A.

    1981-01-01

    Nuclear elastic scattering (NES) of 100 MeV 3 He 2+ ions was used to determine the amount of hydrogen atoms in hydrogenated amorphous silicon film fabricated by reactive sputtering. The total amount of hydrogen in this film was determined to be (1.12 +- 0.1) x 10 22 cm -3 within the accuracy of approximately 10%. (author)

  6. High Growth Rate Deposition of Hydrogenated Amorphous Silicon-Germanium Films and Devices Using ECR-PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Hydrogenated amorphous silicon germanium films (a-SiGe:H) and devices have been extensively studied because of the tunable band gap for matching the solar spectrum and mature the fabrication techniques. a-SiGe:H thin film solar cells have great potential for commercial manufacture because of very low cost and adaptability to large-scale manufacturing. Although it has been demonstrated that a-SiGe:H thin films and devices with good quality can be produced successfully, some issues regarding growth chemistry have remained yet unexplored, such as the hydrogen and inert-gas dilution, bombardment effect, and chemical annealing, to name a few. The alloying of the SiGe introduces above an order-of-magnitude higher defect density, which degrades the performance of the a-SiGe:H thin film solar cells. This degradation becomes worse when high growth-rate deposition is required. Preferential attachment of hydrogen to silicon, clustering of Ge and Si, and columnar structure and buried dihydride radicals make the film intolerably bad. The work presented here uses the Electron-Cyclotron-Resonance Plasma-Enhanced Chemical Vapor Deposition (ECR-PECVD) technique to fabricate a-SiGe:H films and devices with high growth rates. Helium gas, together with a small amount of H2, was used as the plasma species. Thickness, optical band gap, conductivity, Urbach energy, mobility-lifetime product, I-V curve, and quantum efficiency were characterized during the process of pursuing good materials. The microstructure of the a-(Si,Ge):H material was probed by Fourier-Transform Infrared spectroscopy. They found that the advantages of using helium as the main plasma species are: (1) high growth rate--the energetic helium ions break the reactive gas more efficiently than hydrogen ions; (2) homogeneous growth--heavy helium ions impinging on the surface promote the surface mobility of the reactive radicals, so that heteroepitaxy growth as clustering of Ge and Si, columnar structure are

  7. Hydrogen concentration profiles and chemical bonding in silicon nitride

    International Nuclear Information System (INIS)

    Peercy, P.S.; Stein, H.J.; Doyle, B.L.; Picraux, S.T.

    1978-01-01

    The complementary technique of nuclear reaction analysis and infrared absorption were used to study the concentration profile and chemical bonding of hydrogen in silicon nitride for different preparation and annealing conditions. Silicon nitride prepared by chemical vapor deposition from ammonia-silane mixtures is shown to have hydrogen concentrations of 8.1 and 6.5 at.% for deposition temperatures of 750 and 900 0 C, respectively. Plasma deposition at 300 0 C from these gases results in hydrogen concentrations of approximately 22 at.%. Comparison of nuclear reaction analysis and infrared absorption measurements after isothermal annealing shows that all of the hydrogen retained in the films remains bonded to either silicon or nitrogen and that hydrogen release from the material on annealing is governed by various trap energies involving at least two N-H and one Si-H trap. Reasonable estimates of the hydrogen release rates can be made from the effective diffusion coefficient obtained from measurements of hydrogen migration in hydrogen implanted and annealed films

  8. Flash-lamp-crystallized polycrystalline silicon films with high hydrogen concentration formed from Cat-CVD a-Si films

    International Nuclear Information System (INIS)

    Ohdaira, Keisuke; Tomura, Naohito; Ishii, Shohei; Matsumura, Hideki

    2011-01-01

    We investigate residual forms of hydrogen (H) atoms such as bonding configuration in poly-crystalline silicon (poly-Si) films formed by the flash-lamp-induced crystallization of catalytic chemical vapor deposited (Cat-CVD) a-Si films. Raman spectroscopy reveals that at least part of H atoms in flash-lamp-crystallized (FLC) poly-Si films form Si-H 2 bonds as well as Si-H bonds with Si atoms even using Si-H-rich Cat-CVD a-Si films, which indicates the rearrangement of H atoms during crystallization. The peak desorption temperature during thermal desorption spectroscopy (TDS) is as high as 900 o C, similar to the reported value for bulk poly-Si.

  9. Plasma processing of microcrystalline silicon films : filling in the gaps

    NARCIS (Netherlands)

    Bronneberg, A.C.

    2012-01-01

    Hydrogenated microcrystalline silicon (µc-Si:H) is a mixed-phase material consisting of crystalline silicon grains, hydrogenated amorphous silicon (a-Si:H) tissue, and voids. Microcrystalline silicon is extensively used as absorber layer in thin-film tandem solar cells, combining the advantages of a

  10. Infrared analysis of thin films: amorphous, hydrogenated carbon on silicon

    International Nuclear Information System (INIS)

    Jacob, Wolfgang; Keudell, Achim von; Schwarz-Selinger, Thomas

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, an experimentally measured spectrum has to be simulated using the full formalism including the Kramers-Kronig relation. Infrared absorption spectra and the resulting k spectra in the range of the CH vibrational bands around 3000 cm -1 are presented for a variety of a-C:H layers. The shape and the total intensity of the peak are quite sensitive to the film structure. Soft, polymerlike hydrocarbon layers are characterized by a well structured, intense IR absorption band, while hard, amorphous, hydrogenated carbon layers exhibit a structureless, broad IR absorption band with relative low intensity. The k spectra of the CH vibrational bands can be considered as fingerprint for the type of a-C:H film. (author)

  11. Fabrication of heterojunction solar cells by using microcrystalline hydrogenated silicon oxide film as an emitter

    International Nuclear Information System (INIS)

    Banerjee, Chandan; Sritharathikhun, Jaran; Konagai, Makoto; Yamada, Akira

    2008-01-01

    Wide gap, highly conducting n-type hydrogenated microcrystalline silicon oxide (μc-SiO : H) films were prepared by very high frequency plasma enhanced chemical vapour deposition at a very low substrate temperature (170 deg. C) as an alternative to amorphous silicon (a-Si : H) for use as an emitter layer of heterojunction solar cells. The optoelectronic properties of n-μc-SiO : H films prepared for the emitter layer are dark conductivity = 0.51 S cm -1 at 20 nm thin film, activation energy = 23 meV and E 04 = 2.3 eV. Czochralski-grown 380 μm thick p-type (1 0 0) oriented polished silicon wafers with a resistivity of 1-10 Ω cm were used for the fabrication of heterojunction solar cells. Photovoltaic parameters of the device were found to be V oc = 620 mV, J sc = 32.1 mA cm -2 , FF = 0.77, η = 15.32% (active area efficiency)

  12. Light-induced defect creation in hydrogenated polymorphous silicon

    International Nuclear Information System (INIS)

    Morigaki, K.; Takeda, K.; Hikita, H.; Roca i Cabarrocas, P.

    2005-01-01

    Light-induced defect creation in hydrogenated polymorphous silicon (pm-Si:H) is investigated from electron spin resonance measurements and is compared with that in hydrogenated amorphous silicon (a-Si:H). Light-induced defect creation occurs at room temperature similarly for both types of films prepared at 250 deg. C. Thermal annealing of light-induced defects is also investigated as a function of temperature. Different behaviours of annealing characteristics for pm-Si:H from those for a-Si:H are observed and discussed. In particular, we observed a decrease of the light-induced defect creation efficiency with repeated light-soaking-annealing cycles and discuss it with respect to the hydrogen bonding in pm-Si:H films

  13. Excellent Silicon Surface Passivation Achieved by Industrial Inductively Coupled Plasma Deposited Hydrogenated Intrinsic Amorphous Silicon Suboxide

    Directory of Open Access Journals (Sweden)

    Jia Ge

    2014-01-01

    Full Text Available We present an alternative method of depositing a high-quality passivation film for heterojunction silicon wafer solar cells, in this paper. The deposition of hydrogenated intrinsic amorphous silicon suboxide is accomplished by decomposing hydrogen, silane, and carbon dioxide in an industrial remote inductively coupled plasma platform. Through the investigation on CO2 partial pressure and process temperature, excellent surface passivation quality and optical properties are achieved. It is found that the hydrogen content in the film is much higher than what is commonly reported in intrinsic amorphous silicon due to oxygen incorporation. The observed slow depletion of hydrogen with increasing temperature greatly enhances its process window as well. The effective lifetime of symmetrically passivated samples under the optimal condition exceeds 4.7 ms on planar n-type Czochralski silicon wafers with a resistivity of 1 Ωcm, which is equivalent to an effective surface recombination velocity of less than 1.7 cms−1 and an implied open-circuit voltage (Voc of 741 mV. A comparison with several high quality passivation schemes for solar cells reveals that the developed inductively coupled plasma deposited films show excellent passivation quality. The excellent optical property and resistance to degradation make it an excellent substitute for industrial heterojunction silicon solar cell production.

  14. Determination of hydrogen concentration in amorphous silicon films by nuclear elastic scattering (NES) of 100 MeV /sup 3/He/sup 2 +/

    Energy Technology Data Exchange (ETDEWEB)

    Iwami, M; Imura, T; Hiraki, A [Osaka Univ., Suita (Japan). Faculty of Engineering; Itahashi, T [Osaka Univ., Suita (Japan). Research Center for Nuclear Physics; Fukuda, T [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Tanaka, M [Kobe Tokiwa Junior Coll., Nagata (Japan)

    1981-06-01

    Nuclear elastic scattering (NES) of 100 MeV /sup 3/He/sup 2 +/ ions was used to determine the amount of hydrogen atoms in hydrogenated amorphous silicon film fabricated by reactive sputtering. The total amount of hydrogen in this film was determined to be (1.12 +- 0.1) x 10/sup 22/ cm/sup -3/ within the accuracy of approximately 10%.

  15. Effect of the hydrogen flow rate on the structural and optical properties of hydrogenated amorphous silicon thin films prepared by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ben Amor, Sana; Dimassi, Wissem; Ali Tebai, Mohamed; Ezzaouia, Hatem [Photovoltaic Laboratory Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif (Tunisia)

    2012-10-15

    Hydrogenated amorphous silicon (a-Si:H) thin films were deposited from pure silane (SiH{sub 4}) and hydrogen (H{sub 2}) gas mixture by plasma enhanced chemical vapor deposition (PECVD) method at low temperature (400 C) using high rf power (60 W). The structural and optical properties of these films are systematically investigated as a function of the flow rate of hydrogen (F{sub H2}).The surface morphology is analyzed by atomic force microscopy (AFM). The characterization of these films with low angle X-ray diffraction revealed that the crystallite size in the films tends to decrease with increase in (F{sub H2}). The Fourier transform infrared (FTIR) spectroscopic analysis showed that at low values of (F{sub H2}),the hydrogen bonding in Si:H films shifts from di-hydrogen (Si-H{sub 2}) and (Si-H{sub 2})n complexes to the mono-hydrogen (Si-H) bonding configuration. Finally, for these optimized conditions, the deposition rate decreases with increasing (F{sub H2}). (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Composition and optical properties tunability of hydrogenated silicon carbonitride thin films deposited by reactive magnetron sputtering

    Science.gov (United States)

    Bachar, A.; Bousquet, A.; Mehdi, H.; Monier, G.; Robert-Goumet, C.; Thomas, L.; Belmahi, M.; Goullet, A.; Sauvage, T.; Tomasella, E.

    2018-06-01

    Radiofrequency reactive magnetron sputtering was used to deposit hydrogenated amorphous silicon carbonitride (a-SiCxNy:H) at 400 °C by sputtering a silicon target under CH4 and N2 reactive gas mixture. Rutherford backscattering spectrometry revealed that the change of reactive gases flow rate (the ratio R = FN2/(FN2+FCH4)) induced a smooth chemical composition tunability from a silicon carbide-like film for R = 0 to a silicon nitride-like one at R = 1 with a large area of silicon carbonitrides between the two regions. The deconvolution of Fourier Transform InfraRed and X-ray photoelectron spectroscopy spectrum highlighted a shift of the chemical environment of the deposited films corresponding to the changes seen by RBS. The consequence of these observations is that a control of refractive index in the range of [1.9-2.5] at λ = 633 nm and optical bandgap in the range [2 eV-3.8 eV] have been obtained which induces that these coatings can be used as antireflective coatings in silicon photovoltaic cells.

  17. Hydrogenation of polycrystalline silicon thin films

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Mates, Tomáš; Knížek, Karel; Ledinský, Martin; Fejfar, Antonín; Kočka, Jan; Yamazaki, T.; Uraoka, Y.; Fuyuki, T.

    2006-01-01

    Roč. 501, - (2006), s. 144-148 ISSN 0040-6090 R&D Projects: GA MŠk ME 537; GA MŽP(CZ) SM/300/1/03; GA AV ČR(CZ) IAA1010316; GA AV ČR(CZ) IAA1010413; GA ČR(CZ) GA202/03/0789 Institutional research plan: CEZ:AV0Z1010914 Keywords : polycrystalline silicon * atmospheric pressure chemical vapour deposition * hydrogen passivation * photoluminescence * Raman spectroscopy * Si-H 2 bonding * hydrogen molecules Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.666, year: 2006

  18. Investigation of the degradation of a thin-film hydrogenated amorphous silicon photovoltaic module

    Energy Technology Data Exchange (ETDEWEB)

    van Dyk, E.E.; Audouard, A.; Meyer, E.L. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Woolard, C.D. [Department of Chemistry, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2007-01-23

    The degradation of a thin-film hydrogenated single-junction amorphous silicon (a-Si:H) photovoltaic (PV) module has been studied. We investigated the different modes of electrical and physical degradation of a-Si:H PV modules by employing a degradation and failure assessment procedure used in conjunction with analytical techniques, including, scanning electron microscopy (SEM) and thermogravimetry. This paper reveals that due to their thickness, thin films are very sensitive to the type of degradation observed. Moreover, this paper deals with the problems associated with the module encapsulant, poly(ethylene-co-vinylacetate) (EVA). The main objective of this study was to establish the influence of outdoor environmental conditions on the performance of a thin-film PV module comprising a-Si:H single-junction cells. (author)

  19. Highly conducting p-type nanocrystalline silicon thin films preparation without additional hydrogen dilution

    Science.gov (United States)

    Patra, Chandralina; Das, Debajyoti

    2018-04-01

    Boron doped nanocrystalline silicon thin film has been successfully prepared at a low substrate temperature (250 °C) in planar inductively coupled RF (13.56 MHz) plasma CVD, without any additional hydrogen dilution. The effect of B2H6 flow rate on structural and electrical properties of the films has been studied. The p-type nc-Si:H films prepared at 5 ≤ B2H6 (sccm) ≤ 20 retains considerable amount of nanocrystallites (˜80 %) with high conductivity ˜101 S cm-1 and dominant crystallographic orientation which has been correlated with the associated increased ultra- nanocrystalline component in the network. Such properties together make the material significantly effective for utilization as p-type emitter layer in heterojunction nc-Si solar cells.

  20. Hydrogenated Nano-/Micro-Crystalline Silicon Thin-Films for Thermoelectrics

    Science.gov (United States)

    Acosta, E.; Wight, N. M.; Smirnov, V.; Buckman, J.; Bennett, N. S.

    2018-06-01

    Thermoelectric technology has not yet been able to reach full-scale market penetration partly because most commercial materials employed are scarce/costly, environmentally unfriendly and in addition provide low conversion efficiency. The necessity to tackle some of these hurdles leads us to investigate the suitability of n-type hydrogenated microcrystalline silicon (μc-Si: H) in the fabrication of thermoelectric devices, produced by plasma enhanced chemical vapour deposition (PECVD), which is a mature process of proven scalability. This study reports an approach to optimise the thermoelectric power factor (PF) by varying the dopant concentration by means of post-annealing without impacting film morphology, at least for temperatures below 550°C. Results show an improvement in PF of more than 80%, which is driven by a noticeable increase of carrier mobility and Seebeck coefficient in spite of a reduction in carrier concentration. A PF of 2.08 × 10-4 W/mK2 at room temperature is reported for n-type films of 1 μm thickness, which is in line with the best values reported in recent literature for similar structures.

  1. Hydrogenated Nano-/Micro-Crystalline Silicon Thin-Films for Thermoelectrics

    Science.gov (United States)

    Acosta, E.; Wight, N. M.; Smirnov, V.; Buckman, J.; Bennett, N. S.

    2017-11-01

    Thermoelectric technology has not yet been able to reach full-scale market penetration partly because most commercial materials employed are scarce/costly, environmentally unfriendly and in addition provide low conversion efficiency. The necessity to tackle some of these hurdles leads us to investigate the suitability of n-type hydrogenated microcrystalline silicon (μc-Si: H) in the fabrication of thermoelectric devices, produced by plasma enhanced chemical vapour deposition (PECVD), which is a mature process of proven scalability. This study reports an approach to optimise the thermoelectric power factor (PF) by varying the dopant concentration by means of post-annealing without impacting film morphology, at least for temperatures below 550°C. Results show an improvement in PF of more than 80%, which is driven by a noticeable increase of carrier mobility and Seebeck coefficient in spite of a reduction in carrier concentration. A PF of 2.08 × 10-4 W/mK2 at room temperature is reported for n-type films of 1 μm thickness, which is in line with the best values reported in recent literature for similar structures.

  2. High-pressure condition of SiH{sub 4}+Ar+H{sub 2} plasma for deposition of hydrogenated nanocrystalline silicon film

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, A.; Kumar, Sushil; Dixit, P.N.; Gope, Jhuma; Rauthan, C.M.S. [Plasma Processed Materials Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Hashmi, S.A. [Department of Physics and Astro Physics, University of Delhi, Delhi 110007 (India)

    2008-10-15

    The characteristics of 13.56-MHz discharged SiH{sub 4}+Ar+H{sub 2} plasma at high pressure (2-8 Torr), used for the deposition of hydrogenated nanocrystalline silicon (nc-Si:H) films in a capacitively coupled symmetric PECVD system, has been investigated. Plasma parameters such as average electron density, sheath field and bulk field are extracted from equivalent circuit model of the plasma using outputs (current, voltage and phase) of RF V-I probe under different pressure conditions. The conditions of growth in terms of plasma parameters are correlated with properties of the hydrogenated nanocrystalline silicon films characterized by Raman, AFM and dc conductivity. The film deposited at 4 Torr of pressure, where relatively low sheath/bulk field ratio is observed, exhibits high crystallinity and conductivity. The crystalline volume fraction of the films estimated from the Raman spectra is found to vary from 23% to 79%, and the trend of variation is similar to the RF real plasma impedance data. (author)

  3. Effect of power on the growth of nanocrystalline silicon films

    International Nuclear Information System (INIS)

    Kumar, Sushil; Dixit, P N; Rauthan, C M S; Parashar, A; Gope, Jhuma

    2008-01-01

    Nanocrystalline silicon thin films were grown using a gaseous mixture of silane, hydrogen and argon in a plasma-enhanced chemical vapor deposition system. These films were deposited away from the conventional low power regime normally used for the deposition of device quality hydrogenated amorphous silicon films. It was observed that, with the increase of applied power, there is a change in nanocrystalline phases which were embedded in the amorphous matrix of silicon. Atomic force microscopy micrographs show that these films contain nanocrystallite of 20-100 nm size. Laser Raman and photoluminescence peaks have been observed at 514 cm -1 and 2.18 eV, respectively, and particle sizes were estimated using the same as 8.24 nm and 3.26 nm, respectively. It has also been observed that nanocrystallites in these films enhanced the optical bandgap and electrical conductivity

  4. Effect of power on the growth of nanocrystalline silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sushil; Dixit, P N; Rauthan, C M S; Parashar, A; Gope, Jhuma [Plasma Processed Materials Group, National Physical Laboratory, Dr K S Krishnan Road, New Delhi 110 012 (India)], E-mail: skumar@mail.nplindia.ernet.in

    2008-08-20

    Nanocrystalline silicon thin films were grown using a gaseous mixture of silane, hydrogen and argon in a plasma-enhanced chemical vapor deposition system. These films were deposited away from the conventional low power regime normally used for the deposition of device quality hydrogenated amorphous silicon films. It was observed that, with the increase of applied power, there is a change in nanocrystalline phases which were embedded in the amorphous matrix of silicon. Atomic force microscopy micrographs show that these films contain nanocrystallite of 20-100 nm size. Laser Raman and photoluminescence peaks have been observed at 514 cm{sup -1} and 2.18 eV, respectively, and particle sizes were estimated using the same as 8.24 nm and 3.26 nm, respectively. It has also been observed that nanocrystallites in these films enhanced the optical bandgap and electrical conductivity.

  5. Development of Thin Film Amorphous Silicon Tandem Junction Based Photocathodes Providing High Open-Circuit Voltages for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    F. Urbain

    2014-01-01

    Full Text Available Hydrogenated amorphous silicon thin film tandem solar cells (a-Si:H/a-Si:H have been developed with focus on high open-circuit voltages for the direct application as photocathodes in photoelectrochemical water splitting devices. By temperature variation during deposition of the intrinsic a-Si:H absorber layers the band gap energy of a-Si:H absorber layers, correlating with the hydrogen content of the material, can be adjusted and combined in a way that a-Si:H/a-Si:H tandem solar cells provide open-circuit voltages up to 1.87 V. The applicability of the tandem solar cells as photocathodes was investigated in a photoelectrochemical cell (PEC measurement set-up. With platinum as a catalyst, the a-Si:H/a-Si:H based photocathodes exhibit a high photocurrent onset potential of 1.76 V versus the reversible hydrogen electrode (RHE and a photocurrent of 5.3 mA/cm2 at 0 V versus RHE (under halogen lamp illumination. Our results provide evidence that a direct application of thin film silicon based photocathodes fulfills the main thermodynamic requirements to generate hydrogen. Furthermore, the presented approach may provide an efficient and low-cost route to solar hydrogen production.

  6. Hydrogen adsorption and desorption with 3D silicon nanotube-network and film-network structures: Monte Carlo simulations

    International Nuclear Information System (INIS)

    Li, Ming; Kang, Zhan; Huang, Xiaobo

    2015-01-01

    Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-network (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials

  7. Influence of argon dilution on growth and properties of hydrogenated nanocrystalline silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, A. [Plasma Processed Materials Group, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Department of Physics and Astro Physics, University of Delhi, Delhi 110007 (India); Kumar, Sushil; Gope, Jhuma; Rauthan, C.M.S.; Dixit, P.N. [Plasma Processed Materials Group, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Hashmi, S.A. [Department of Physics and Astro Physics, University of Delhi, Delhi 110007 (India)

    2010-05-15

    The effect of argon concentration (66-87%) in total gaseous mixture (SiH{sub 4}+H{sub 2}+Ar) on growth and properties of hydrogenated nanocrystalline silicon films deposited by RF (13.56 MHz) PECVD technique was investigated. Raman and XRD measurements revealed increasing argon fraction favored enhancement of crystallinity, enlargement of crystallites and relaxation of strained bonds. Photoluminescence spectra of nc-Si:H films exhibited two radiative transitions in the photon energy ranges of 2.8-3.1 eV and 1.6-2.1 eV. The high energy PL peaks are attributed to surface effect of the films whereas peaks in the range of 1.6-2.1 eV are due to nanocrystallinity in the films. Argon dilution also helped enhancement of deposition rate and conductivity of the films. A film deposited at 81% of argon fraction possesses high crystallinity (75%), conductivity in the order of 10{sup -5} ({omega} cm){sup -1}, size of the crystallite (Raman=12 nm, XRD=18 nm), and low residual stress (125 MPa). (author)

  8. Characterization of amorphous silicon films by Rutherford backscattering spectrometry. [1. 5-MeV Ho/sup +/

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, K; Imura, T; Iwami, M; Hiraki, A [Osaka Univ., Suita (Japan). Dept. of Electrical Engineering; Satou, M [Government Industrial Research Inst., Osaka, Ikeda (Japan); Fujimoto, F [Tokyo Univ. (Japan). Coll. of General Education; Hamakawa, Y [Osaka Univ., Toyonaka (Japan). Faculty of Engineering Science; Minomura, S [Tokyo Univ. (Japan). Inst. for Solid State Physics; Tanaka, K [Electrotechnical Lab., Tanashi, Tokyo (Japan)

    1980-01-01

    Rutherford backscattering spectrometry (RBS) was applied to the characterization of amorphous silicon films prepared by glow discharge in silane, tetrode- and diode-sputterings of silicon target in ambient argon or hydrogen diluted by argon. This method was able to detect at least 5 at.% hydrogen atoms in amorphous silicon through the change of stopping power. Hydrogen content in films made by glow discharge at the substrate temperature 25/sup 0/C to 300/sup 0/C and at 2 torr of silane gas varied from 50% to 20%. A strong trend was found for oxygen to dissolve into films: Films produced by diode sputtering in argon gas with higher pressure than 3 x 10/sup -2/ torr absorbed oxygen. The potential and fitness of the RBS method for the characterization of amorphous silicon films are emphasized and demonstrated.

  9. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  10. Hydrogenated amorphous silicon sensors based on thin film on ASIC technology

    CERN Document Server

    Despeisse, M; Anelli, G; Jarron, P; Kaplon, J; Rusack, R; Saramad, S; Wyrsch, N

    2006-01-01

    The performance and limitations of a novel detector technology based on the deposition of a thin-film sensor on top of processed integrated circuits have been studied. Hydrogenated amorphous silicon (a-Si:H) films have been deposited on top of CMOS circuits developed for these studies and the resulting "thin-film on ASIC" (TFA) detectors are presented. The leakage current of the a-Si:H sensor at high reverse biases turns out to be an important parameter limiting the performance of a TFA detector. Its detailed study and the pixel segmentation of the detector are presented. High internal electric fields (in the order of 10/sup 4/-10/sup 5/ V/cm) can be built in the a-Si:H sensor and overcome the low mobility of electrons and holes in a-Si:H. Signal induction by generated carrier motion and speed in the a-Si:H sensor have been studied with a 660 nm pulsed laser on a TFA detector based on an ASIC integrating 5 ns peaking time pre- amplifiers. The measurement set-up also permits to study the depletion of the senso...

  11. Improvement of crystalline silicon surface passivation by hydrogen plasma treatment

    International Nuclear Information System (INIS)

    Martin, I.; Vetter, M.; Orpella, A.; Voz, C.; Puigdollers, J.; Alcubilla, R.; Kharchenko, A.V.; Roca i Cabarrocas, P.

    2004-01-01

    A completely dry low-temperature process has been developed to passivate 3.3 Ω cm p-type crystalline silicon surface with excellent results. Particularly, we have investigated the use of a hydrogen plasma treatment, just before hydrogenated amorphous silicon carbide (a-SiC x :H) deposition, without breaking the vacuum. We measured effective lifetime, τ eff , through a quasi-steady-state photoconductance technique. Experimental results show that hydrogen plasma treatment improves surface passivation compared to classical HF dip. S eff values lower than 19 cm s -1 were achieved using a hydrogen plasma treatment and an a-SiC x :H film deposited at 300 deg. C

  12. Optical and passivating properties of hydrogenated amorphous silicon nitride deposited by plasma enhanced chemical vapour deposition for application on silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wight, Daniel Nilsen

    2008-07-01

    quality, etch rate. The response of these parameters to high temperature anneals were correlated with structural changes in the silicon nitride films as measured by using the hydrogen bond concentration. Plasma enhanced chemical vapour deposition allows continuous variation in nearly all deposition parameters. The parameters studied in this work are the gas flow ratios and excitation power. In both direct and remote deposition systems, the increase in deposition power density lead to higher activation of ammonia which in turn lead to augmented incorporation of nitrogen into the films and thus lower refractive index. For a direct system, the same parameter change lead to a drastic fall in passivation quality of Czochralski silicon attributed to an increase in ion bombardment as well as the general observation that as deposited passivation tends to increase with refractive index. Silicon nitride films with variations in refractive index were also made by varying the silane-to-ammonia gas flow ratio. This simple parameter adjustment makes plasma enhanced chemical vapour deposited silicon nitride applicable to double layer anti-reflective coatings simulated in this work. The films were found to have an etch rate in 5% hydrofluoric acid that decreased with increasing refractive index. This behaviour is attributed to the decreasing concentration of nitrogen-to-hydrogen bonds in the films. Such bonds at the surface of silicon nitride have been suggested to be involved in the main reaction mechanism when etching silicon nitride in hydrofluoric acid. Annealing the films lead to a drastic fall in etch rates and was linked to the release of hydrogen from the nitrogen-hydrogen bonds. (author). 115 refs., 35 figs., 6 tabs

  13. Biocompatibility of Hydrogen-Diluted Amorphous Silicon Carbide Thin Films for Artificial Heart Valve Coating

    Science.gov (United States)

    Rizal, Umesh; Swain, Bhabani S.; Rameshbabu, N.; Swain, Bibhu P.

    2018-01-01

    Amorphous silicon carbide (a-SiC:H) thin films were synthesized using trichloromethylsilane by a hot wire chemical vapor deposition process. The deposited films were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, x-ray diffraction and x-ray photoelectron spectroscopy to confirm its chemical bonding, structural network and composition of the a-SiC:H films. The optical microscopy images reveal that hydrogen dilution increased the surface roughness and pore density of a-SiC:H thin film. The Raman spectroscopy and FTIR spectra reveal chemical network consisting of Si-Si, C-C and Si-C bonds, respectively. The XRD spectroscopy and Raman spectroscopy indicate a-SiC:H still has short-range order. In addition, in vitro cytotoxicity test ensures the behavior of cell-semiconductor hybrid to monitor the proper coordination. The live-dead assays and MTT assay reveal an increase in green nucleus cell, and cell viability is greater than 88%, respectively, showing non-toxic nature of prepared a-SiC:H film. Moreover, the result indicated by direct contact assay, and cell prefers to adhere and proliferate on a-SiC:H thin films having a positive effect as artificial heart valve coating material.

  14. Electronic transport in mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films

    Science.gov (United States)

    Wienkes, Lee Raymond

    Interest in mixed-phase silicon thin film materials, composed of an amorphous semiconductor matrix in which nanocrystalline inclusions are embedded, stems in part from potential technological applications, including photovoltaic and thin film transistor technologies. Conventional mixed-phase silicon films are produced in a single plasma reactor, where the conditions of the plasma must be precisely tuned, limiting the ability to adjust the film and nanoparticle parameters independently. The films presented in this thesis are deposited using a novel dual-plasma co-deposition approach in which the nanoparticles are produced separately in an upstream reactor and then injected into a secondary reactor where an amorphous silicon film is being grown. The degree of crystallinity and grain sizes of the films are evaluated using Raman spectroscopy and X-ray diffraction respectively. I describe detailed electronic measurements which reveal three distinct conduction mechanisms in n-type doped mixed-phase amorphous/nanocrystalline silicon thin films over a range of nanocrystallite concentrations and temperatures, covering the transition from fully amorphous to ~30% nanocrystalline. As the temperature is varied from 470 to 10 K, we observe activated conduction, multiphonon hopping (MPH) and Mott variable range hopping (VRH) as the nanocrystal content is increased. The transition from MPH to Mott-VRH hopping around 100K is ascribed to the freeze out of the phonon modes. A conduction model involving the parallel contributions of these three distinct conduction mechanisms is shown to describe both the conductivity and the reduced activation energy data to a high accuracy. Additional support is provided by measurements of thermal equilibration effects and noise spectroscopy, both done above room temperature (>300 K). This thesis provides a clear link between measurement and theory in these complex materials.

  15. Effect of hydrogen passivation on polycrystalline silicon thin films

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Mates, Tomáš; Ledinský, Martin; Oswald, Jiří; Fejfar, Antonín; Kočka, Jan; Yamazaki, T.; Uraoka, Y.; Fuyuki, T.

    2005-01-01

    Roč. 487, - (2005), s. 152-156 ISSN 0040-6090 R&D Projects: GA AV ČR(CZ) IAA1010316; GA AV ČR(CZ) IAA1010413; GA ČR(CZ) GD202/05/H003 Institutional research plan: CEZ:AV0Z10100521 Keywords : hydrogen passivation * polycrystalline silicon * photoluminescence * Raman spectroscopy * Si-H 2 * hydrogen molecules Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.569, year: 2005

  16. Effects of phosphorus on the electrical characteristics of plasma deposited hydrogenated amorphous silicon carbide thin films

    Science.gov (United States)

    Alcinkaya, Burak; Sel, Kivanc

    2018-01-01

    The properties of phosphorus doped hydrogenated amorphous silicon carbide (a-SiCx:H) thin films, that were deposited by plasma enhanced chemical vapor deposition technique with four different carbon contents (x), were analyzed and compared with those of the intrinsic a-SiCx:H thin films. The carbon contents of the films were determined by X-ray photoelectron spectroscopy. The thickness and optical energies, such as Tauc, E04 and Urbach energies, of the thin films were determined by UV-Visible transmittance spectroscopy. The electrical properties of the films, such as conductivities and activation energies were analyzed by temperature dependent current-voltage measurements. Finally, the conduction mechanisms of the films were investigated by numerical analysis, in which the standard transport mechanism in the extended states and the nearest neighbor hopping mechanism in the band tail states were taken into consideration. It was determined that, by the effect of phosphorus doping the dominant conduction mechanism was the standard transport mechanism for all carbon contents.

  17. Impact of hydrogen dilution on optical properties of intrinsic hydrogenated amorphous silicon films prepared by high density plasma chemical vapor deposition for solar cell applications

    Science.gov (United States)

    Chen, Huai-Yi; Lee, Yao-Jen; Chang, Chien-Pin; Koo, Horng-Show; Lai, Chiung-Hui

    2013-01-01

    P-i-n single-junction hydrogenated amorphous silicon (a-Si:H) thin film solar cells were successfully fabricated in this study on a glass substrate by high density plasma chemical vapor deposition (HDP-CVD) at low power of 50 W, low temperature of 200°C and various hydrogen dilution ratios (R). The open circuit voltage (Voc ), short circuit current density (Jsc ), fill factor (FF) and conversion efficiency (η) of the solar cell as well as the refractive index (n) and absorption coefficient (α) of the i-layer at 600 nm wavelength rise with increasing R until an abrupt drop at high hydrogen dilution, i.e. R > 0.95. However, the optical energy bandgap (Eg ) of the i-layer decreases with the R increase. Voc and α are inversely correlated with Eg . The hydrogen content affects the i-layer and p/i interface quality of the a-Si:H thin film solar cell with an optimal value of R = 0.95, which corresponds to solar cell conversion efficiency of 3.85%. The proposed a-Si:H thin film solar cell is expected to be improved in performance.

  18. Development of Doped Microcrystalline Silicon Oxide and its Application to Thin‑Film Silicon Solar Cells

    NARCIS (Netherlands)

    Lambertz, A.

    2015-01-01

    The aim of the present study is the development of doped microcrystalline silicon oxide (µc‑SiOx:H) alloys and its application in thin‑film silicon solar cells. The doped µc‑SiOx:H material was prepared from carbon dioxide (CO2), silane (SiH4), hydrogen (H2) gas mixtures using plasma enhanced

  19. Chemical and structural properties of polymorphous silicon thin films grown from dichlorosilane

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez-Macías, C.; Monroy, B.M.; Huerta, L.; Canseco-Martínez, M.A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, Coyoacán, C.P. 04510 México, D.F. (Mexico); Picquart, M. [Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa, A.P. 55-534, 09340 México, D.F. (Mexico); Santoyo-Salazar, J. [Departamento de Física, CINVESTAV-IPN, A.P. 14-740, C.P. 07000 México, D.F. (Mexico); Sánchez, M.F. García [Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Av. I.P.N. 2580, Gustavo A. Madero, 07340 México .D.F. (Mexico); Santana, G., E-mail: gsantana@iim.unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, Coyoacán, C.P. 04510 México, D.F. (Mexico)

    2013-11-15

    We have examined the effects of hydrogen dilution (R{sub H}) and deposition pressure on the morphological, structural and chemical properties of polymorphous silicon thin films (pm-Si:H), using dichlorosilane as silicon precursor in the plasma enhanced chemical vapor deposition (PECVD) process. The use of silicon chlorinated precursors enhances the crystallization process in as grown pm-Si:H samples, obtaining crystalline fractions from Raman spectra in the range of 65–95%. Atomic Force Microscopy results show the morphological differences obtained when the chlorine chemistry dominates the growth process and when the plasma–surface interactions become more prominent. Augmenting R{sub H} causes a considerable reduction in both roughness and topography, demonstrating an enhancement of ion bombardment and attack of the growing surface. X-ray Photoelectron Spectroscopy results show that, after ambient exposure, there is low concentration of oxygen inside the films grown at low R{sub H}, present in the form of Si-O, which can be considered as structural defects. Instead, oxidation increases with deposition pressure and dilution, along with film porosity, generating a secondary SiO{sub x} phase. For higher pressure and dilution, the amount of chlorine incorporated to the film decreases congruently with HCl chlorine extraction processes involving atomic hydrogen interactions with the surface. In all cases, weak silicon hydride (Si-H) bonds were not detected by infrared spectroscopy, while bonding configurations associated to the silicon nanocrystal surface were clearly observed. Since these films are generally used in photovoltaic devices, analyzing their chemical and structural properties such as oxygen incorporation to the films, along with chlorine and hydrogen, is fundamental in order to understand and optimize their electrical and optical properties.

  20. Modified MIS-structure based on nanoporous silicon with enhanced sensitivity to the hydrogen containing gases

    Energy Technology Data Exchange (ETDEWEB)

    Gorbanyuk, T.; Evtukh, A.; Litovchenko, V.; Solntsev, V. [Institute of Semiconductor Physics, Kiev (Ukraine)

    2008-07-01

    The gas sensitivity of metal-insulator-semiconductor (MIS)-structures based on nanoporous silicon with active electrodes from palladium/tungsten oxide composite has been studied. It was found that the using of palladium/tungsten oxide composite (instead of thin palladium film) leads to enhanced sensitivity of MIS structures to hydrogen sulphide in air. The mechanism of this phenomenon has been established. The enhanced H{sub 2}S sensitivity is explained in the following way. The microparticles of tungsten trioxide inside palladium matrix stimulate the dissociation of hydrogen sulphide molecules, and hydrogen atoms and/or protons flow down to palladium surface, are absorbed by palladium volume, diffuse to palladium/oxidized nanoporous silicon interface. Hydrogen atoms adsorbed at the interface are polarized and give rise to a dipole layer. As a result, the voltage shift of the capacity-voltage (C-V) curve proportional to the measured gas concentration is observed. The surface microstructure of Pd/WO{sub 3} composite was studied by AFM microscopy. The chemical content of the composite film has been investigated by SIMS. It was found that the composite film on nanoporous silicon surface poses the holes with the size about 0.05 {mu}m, the mean separation between tungsten oxide microparticles is 1-2 {mu}m. It also was found that the using of the additional double layer polymer film (polymer film (phthalocyanine zinc)/semicon-ductor film (cadmium sulphide)) on composite film surface leads to the additional enhancement of the gas sensitivity to hydrogen sulphide. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Characterization of nanocrystalline silicon germanium film and ...

    African Journals Online (AJOL)

    The nanocrystalline silicon-germanium films (Si/Ge) and Si/Ge nanotubes have low band gaps and high carrier mobility, thus offering appealing potential for absorbing gas molecules. Interaction between hydrogen molecules and bare as well as functionalized Si/Ge nanofilm and nanotube was investigated using Monte ...

  2. Improvement in the degradation resistance of silicon nanostructures by the deposition of diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Klyui, N. I., E-mail: klyui@isp.kiev.ua; Semenenko, M. A.; Khatsevich, I. M.; Makarov, A. V.; Kabaldin, A. N. [National Academy of Sciences of Ukraine, Lashkarev Institute of Semiconductor Physics (Ukraine); Fomovskii, F. V. [Kremenchug National University (Ukraine); Han, Wei [Jilin University, College of Physics (China)

    2015-08-15

    It is established that the deposition of a diamond-like film onto a structure with silicon nanoclusters in a silicon dioxide matrix yields an increase in the long-wavelength photoluminescence intensity of silicon nanoclusters due to the passivation of active-recombination centers with hydrogen and a shift of the photoluminescence peak to the region of higher photosensitivity of silicon-based solar cells. It is also shown that, due to the deposited diamond-like film, the resistance of such a structure to degradation upon exposure to γ radiation is improved, which is also defined by the effect of the passivation of radiation-induced activerecombination centers by hydrogen that is released from the films during treatment.

  3. Measurement of hydrogen in BCN films by nuclear reaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Haruyuki; Hirose, Yukio; Sasaki, Toshihiko [Kanazawa Univ. (Japan); Awazu, Kaoru [Industrial Research Inst., of Ishikawa, Kanazawa (Japan); Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-07-01

    Hydrogen is a very common contaminant in carbon films. It can strongly influence on mechanical, physical and chemical properties of the films. The analysis of hydrogen is therefore a crucial problem produce the films with the properties required. Ion beam techniques using nuclear reactions are effective for the quantitative determination of hydrogen concentration. A specially designed spectrometer is employed for the detailed determination of hydrogen concentrations by detecting 4.43MeV {gamma}-rays from the resonant nuclear reactions {sup 1}H({sup 15}N, {alpha}{gamma}){sup 12}C at the 6.385MeV. In this study, the BCN films were formed on silicon substrate by ion beam assisted deposition (IBAD), in which boron and carbon were deposited by electron beam heating of B{sub 4}C solid and nitrogen was supplied by ion implantation simultaneously. The concentrations of hydrogen in BCN films were measured using RNRA. The mechanical properties of BCN films were evaluated using an ultra-micro-hardness tester. It was confirmed that the hardness of BCN films increased with increasing the concentration of hydrogen. (author)

  4. The dependence of the Tauc and Cody optical gaps associated with hydrogenated amorphous silicon on the film thickness: αl Experimental limitations and the impact of curvature in the Tauc and Cody plots

    Science.gov (United States)

    Mok, Tat M.; O'Leary, Stephen K.

    2007-12-01

    Using a model for the optical spectrum associated with hydrogenated amorphous silicon, explicitly taking into account fundamental experimental limitations encountered, we theoretically determine the dependence of the Tauc and Cody optical gaps associated with hydrogenated amorphous silicon on the thickness of the film. We compare these results with that obtained from experiment. We find that the curvature in the Tauc plot plays a significant role in influencing the determination of the Tauc optical gap associated with hydrogenated amorphous silicon, thus affirming an earlier hypothesis of Cody et al. We also find that the spectral dependence of the refractive index plays an important role in influencing the determination of the Cody optical gap. It is thus clear that care must be exercised when drawing conclusions from the dependence of the Tauc and Cody optical gaps associated with hydrogenated amorphous silicon on the thickness of the film.

  5. Low-temperature synthesis of homogeneous nanocrystalline cubic silicon carbide films

    International Nuclear Information System (INIS)

    Cheng Qijin; Xu, S.

    2007-01-01

    Silicon carbide films are fabricated by inductively coupled plasma chemical vapor deposition from feedstock gases silane and methane heavily diluted with hydrogen at a low substrate temperature of 300 deg. C. Fourier transform infrared absorption spectroscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy analyses show that homogeneous nanocrystalline cubic silicon carbide (3C-SiC) films can be synthesized at an appropriate silane fraction X[100%xsilane flow(SCCM)/silane+methane flow(SCCM)] in the gas mixture. The achievement of homogeneous nanocrystalline 3C-SiC films at a low substrate temperature of 300 deg. C is a synergy of a low deposition pressure (22 mTorr), high inductive rf power (2000 W), heavy dilution of feedstock gases silane and methane with hydrogen, and appropriate silane fractions X (X≤33%) in the gas mixture employed in our experiments

  6. Forming of nanocrystal silicon films by implantation of high dose of H+ in layers of silicon on isolator and following fast thermal annealing

    International Nuclear Information System (INIS)

    Tyschenko, I.E.; Popov, V.P.; Talochkin, A.B.; Gutakovskij, A.K.; Zhuravlev, K.S.

    2004-01-01

    Formation of nanocrystalline silicon films during rapid thermal annealing of the high-dose H + ion implanted silicon-on-insulator structures was studied. It was found, that Si nanocrystals had formed alter annealings at 300-400 deg C, their formation being strongly limited by the hydrogen content in silicon and also by the annealing time. It was supposed that the nucleation of crystalline phase occurred inside the silicon islands between micropores. It is conditioned by ordering Si-Si bonds as hydrogen atoms are leaving their sites in silicon network. No coalescence of micropores takes place during the rapid thermal annealing at the temperatures up to ∼ 900 deg C. Green-orange photoluminescence was observed on synthesized films at room temperature [ru

  7. Infrared-transmission spectra and hydrogen content of hydrogenated amorphous silicon

    Science.gov (United States)

    Hu, Yuehi; Chen, Guanghua; Wu, Yueying; Yin, Shengyi; Gao, Zhuo; Wang, Qing; Song, Xuemei; Deng, Jinxiang

    2004-05-01

    In this paper, two kinds of methods of calculating the hydrogen content of a-Si:H thin film by means of the wagging mode and the stretching modes of infrared-transmission spectra, are investigated. The reason for the difference in these two calculation results is analyzed. If the contents of SiH2 and (SiH2) n are indicated in terms of a structure factor F=(/840+/880)//2000, it is shown that the calculation results obtained from the two different methods are almost equal when the refractive index n is approximately 3.4 or the fitting thickness is between 0.71 and 0.89 μm in the case of a small F. It is shown that the ways of fabrication of thin film can influences silicon-hydrogen bonding configuration of a-Si: H film, and different ways of fabrication can lead to different contents of SiH2 and (SiH2) n . The uniformity of the thin film with a big F is bad. In this case, there is great difference between the thickness measured by the SurfCom408A surface profile apparatus and the thickness obtained by fitting the fringes; and the hydrogen contents of a-Si:H films obtained by means of the wagging mode and the stretching modes are different, too. But the fabrication of the MWECR CVD assisted by CAT CVD can effectively restrain the formation of SiH2 and (SiH2) n .

  8. On the effects of hydrogenation of thin film polycrystalline silicon: A key factor to improve heterojunction solar cells

    Czech Academy of Sciences Publication Activity Database

    Qiu, Y.; Kunz, O.; Fejfar, Antonín; Ledinský, Martin; Teik Chan, B.; Gordon, I.; Van Gestel, D.; Venkatachalm, S.; Egan, R.

    2014-01-01

    Roč. 122, MAR (2014), s. 31-39 ISSN 0927-0248 R&D Projects: GA MŠk 7E10061; GA MŠk(CZ) LM2011026 EU Projects: European Commission(XE) 240826 - PolySiMode Institutional support: RVO:68378271 Keywords : silicon * thin films * polycrystalline * hydrogenation * Raman spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.337, year: 2014 http://www.sciencedirect.com/science/article/pii/S0927024813006016

  9. Dependence of RF power on the content and configuration of hydrogen in amorphous hydrogenated silicon by reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Imura, T; Ushita, K; Mogi, K; Hiraki, A [Osaka Univ., Suita (Japan). Faculty of Engineering

    1981-06-01

    Infrared absorption spectra at stretching bands of Si-H were investigated in hydrogenated amorphous silicon fabricated by reactive sputtering in the atmosphere of Ar and H/sub 2/ (10 mole%) at various input rf powers in the range from 0.8 to 3.8 W/cm/sup 2/. Hydrogen content mainly due to the configuration of Si=H/sub 2/ in the film increased with the decreasing rf power, as the deposition rate was decreased. On the other hand, the quantity of the monohydride (Si-H) configuration depended less on the power. Attachment of hydrogen molecules onto the fresh and reactive surface of silicon deposited successively was proposed for possible process of hydrogen incusion into amorphous silicon resulting in Si=H/sub 2/ configuration. The photoconductivity increased as the input power became higher, when the deposition rate also increased linearly with the power.

  10. Hydrogen molecules and hydrogen-related defects in crystalline silicon

    Science.gov (United States)

    Fukata, N.; Sasaki, S.; Murakami, K.; Ishioka, K.; Nakamura, K. G.; Kitajima, M.; Fujimura, S.; Kikuchi, J.; Haneda, H.

    1997-09-01

    We have found that hydrogen exists in molecular form in crystalline silicon treated with hydrogen atoms in the downstream of a hydrogen plasma. The vibrational Raman line of hydrogen molecules is observed at 4158 cm-1 for silicon samples hydrogenated between 180 and 500 °C. The assignment of the Raman line is confirmed by its isotope shift to 2990 cm-1 for silicon treated with deuterium atoms. The Raman intensity has a maximum for hydrogenation at 400 °C. The vibrational Raman line of the hydrogen molecules is broad and asymmetric. It consists of at least two components, possibly arising from hydrogen molecules in different occupation sites in crystalline silicon. The rotational Raman line of hydrogen molecules is observed at 590 cm-1. The Raman band of Si-H stretching is observed for hydrogenation temperatures between 100 and 500 °C and the intensity has a maximum for hydrogenation at 250 °C.

  11. Hydrogen molecules and hydrogen-related defects in crystalline silicon

    OpenAIRE

    Fukata, N.; Sasak, S.; Murakami, K.; Ishioka, K.; Nakamura, K. G.; Kitajima, M.; Fujimura, S.; Kikuchi, J.; Haneda, H.

    1997-01-01

    We have found that hydrogen exists in molecular form in crystalline silicon treated with hydrogen atoms in the downstream of a hydrogen plasma. The vibrational Raman line of hydrogen molecules is observed at 4158cm-1 for silicon samples hydrogenated between 180 and 500 °C. The assignment of the Raman line is confirmed by its isotope shift to 2990cm-1 for silicon treated with deuterium atoms. The Raman intensity has a maximum for hydrogenation at 400 °C. The vibrational Raman line of the hydro...

  12. Nuclear reaction analysis of hydrogen in amorphous silicon and silicon carbide films

    International Nuclear Information System (INIS)

    Guivarc'h, A.; Le Contellec, M.; Richard, J.; Ligeon, E.; Fontenille, J.; Danielou, R.

    1980-01-01

    The 1 H( 11 B, α)αα nuclear reaction is used to determine the H content and the density of amorphous semiconductor Si 1 -sub(x)Csub(x)H 2 and SiHsub(z) thin films. Rutherford backscattering is used to determine the x values and infrared transmission to study the hydrogen bonds. We have observed a transfer or/and a release of hydrogen under bombardment by various ions and we show that this last effect must be taken into account for a correct determination of the hydrogen content. An attempt is made to correlate the hydrogen release with electronic and nuclear energy losses. (orig.)

  13. In and Ga Codoped ZnO Film as a Front Electrode for Thin Film Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Duy Phong Pham

    2014-01-01

    Full Text Available Doped ZnO thin films have attracted much attention in the research community as front-contact transparent conducting electrodes in thin film silicon solar cells. The prerequisite in both low resistivity and high transmittance in visible and near-infrared region for hydrogenated microcrystalline or amorphous/microcrystalline tandem thin film silicon solar cells has promoted further improvements of this material. In this work, we propose the combination of major Ga and minor In impurities codoped in ZnO film (IGZO to improve the film optoelectronic properties. A wide range of Ga and In contents in sputtering targets was explored to find optimum optical and electrical properties of deposited films. The results show that an appropriate combination of In and Ga atoms in ZnO material, followed by in-air thermal annealing process, can enhance the crystallization, conductivity, and transmittance of IGZO thin films, which can be well used as front-contact electrodes in thin film silicon solar cells.

  14. Compositional analysis of silicon oxide/silicon nitride thin films

    Directory of Open Access Journals (Sweden)

    Meziani Samir

    2016-06-01

    Full Text Available Hydrogen, amorphous silicon nitride (SiNx:H abbreviated SiNx films were grown on multicrystalline silicon (mc-Si substrate by plasma enhanced chemical vapour deposition (PECVD in parallel configuration using NH3/SiH4 gas mixtures. The mc-Si wafers were taken from the same column of Si cast ingot. After the deposition process, the layers were oxidized (thermal oxidation in dry oxygen ambient environment at 950 °C to get oxide/nitride (ON structure. Secondary ion mass spectroscopy (SIMS, Rutherford backscattering spectroscopy (RBS, Auger electron spectroscopy (AES and energy dispersive X-ray analysis (EDX were employed for analyzing quantitatively the chemical composition and stoichiometry in the oxide-nitride stacked films. The effect of annealing temperature on the chemical composition of ON structure has been investigated. Some species, O, N, Si were redistributed in this structure during the thermal oxidation of SiNx. Indeed, oxygen diffused to the nitride layer into Si2O2N during dry oxidation.

  15. Electrochemical deposition of Prussian blue on hydrogen terminated silicon(111)

    International Nuclear Information System (INIS)

    Zhao Jianwei; Zhang Yan; Shi Chuanguo; Chen, Hongyuan; Tong Lianming; Zhu Tao; Liu Zhongfan

    2006-01-01

    Electrochemical deposition of Prussian blue (PB) was performed by cyclic voltammetry on hydrogen terminated n-type Si(111) surface. The characterization of the samples based on atomic force microscopy and X-ray diffraction spectroscopy showed a nanocrystal form of the PB films on the silicon surface. The thickness of PB films as a function of the potential cycling number was monitored simultaneously by Raman spectroscopy, proving that the growth of the films is in a good controllable manner

  16. High-Pressure Water-Vapor Annealing for Enhancement of a-Si:H Film Passivation of Silicon Surface

    International Nuclear Information System (INIS)

    Guo Chun-Lin; Wang Lei; Zhang Yan-Rong; Zhou Hai-Feng; Liang Feng; Yang Zhen-Hui; Yang De-Ren

    2014-01-01

    We investigate the effect of amorphous hydrogenated silicon (a-Si:H) films passivated on silicon surfaces based on high-pressure water-vapor annealing (HWA). The effective carrier lifetime of samples reaches the maximum value after 210°C, 90min HWA. Capacitance-voltage measurement reveals that the HWA not only greatly reduces the density of interface states (D it ), but also decreases the fixed charges (Q fixed ) mainly caused by bulk defects. The change of hydrogen and oxygen in the film is measured by a spectroscopic ellipsometer and a Fourier-transform infrared (FTIR) spectrometer. All these results show that HWA is a useful method to improve the passivation effect of a-Si:H films deposited on silicon surfaces

  17. Thin film silicon by a microwave plasma deposition technique: Growth and devices, and, interface effects in amorphous silicon/crystalline silicon solar cells

    Science.gov (United States)

    Jagannathan, Basanth

    Thin film silicon (Si) was deposited by a microwave plasma CVD technique, employing double dilution of silane, for the growth of low hydrogen content Si films with a controllable microstructure on amorphous substrates at low temperatures (prepared by this technique. Such films showed a dark conductivity ˜10sp{-6} S/cm, with a conduction activation energy of 0.49 eV. Film growth and properties have been compared for deposition in Ar and He carrier systems and growth models have been proposed. Low temperature junction formation by undoped thin film silicon was examined through a thin film silicon/p-type crystalline silicon heterojunctions. The thin film silicon layers were deposited by rf glow discharge, dc magnetron sputtering and microwave plasma CVD. The hetero-interface was identified by current transport analysis and high frequency capacitance methods as the key parameter controlling the photovoltaic (PV) response. The effect of the interface on the device properties (PV, junction, and carrier transport) was examined with respect to modifications created by chemical treatment, type of plasma species, their energy and film microstructure interacting with the substrate. Thermally stimulated capacitance was used to determine the interfacial trap parameters. Plasma deposition of thin film silicon on chemically clean c-Si created electron trapping sites while hole traps were seen when a thin oxide was present at the interface. Under optimized conditions, a 10.6% efficient cell (11.5% with SiOsb2 A/R) with an open circuit voltage of 0.55 volts and a short circuit current density of 30 mA/cmsp2 was fabricated.

  18. Glow discharge-deposited amorphous silicon films for low-cost solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Grabmaier, J G; Plaettner, R D; Stetter, W [Siemens A.G., Muenchen (Germany, F.R.). Forschungslaboratorien

    1980-01-01

    Due to their high absorption constant, glow discharge-deposited amorphous silicon (a-Si) films are of great interest for low-cost solar cells. Using SiH/sub 4/ and SiX/sub 4//H/sub 2/ (X = Cl or F) gas mixtures in an inductively or capacitively excited reactor, a-Si films with thicknesses up to several micrometers were deposited on substrates of glass, silica and silicon. The optical and electrical properties of the films were determined by measuring the IR absorption spectra, dark conductivity, photoconductivity, and photoluminescence. Hydrogen, chlorine, or fluorine were incorporated in the films in order to passivate dangling bonds in the amorphous network.

  19. Three-dimensional atomic mapping of hydrogenated polymorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wanghua, E-mail: wanghua.chen@polytechnique.edu; Roca i Cabarrocas, Pere [LPICM, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau (France); Pareige, Philippe [GPM, CNRS, Université et INSA de Rouen, Normandie Université, 76801 Saint Etienne du Rouvray (France)

    2016-06-20

    Hydrogenated polymorphous silicon (pm-Si:H) is a nanostructured material consisting of silicon nanocrystals embedded in an amorphous silicon matrix. Its use as the intrinsic layer in thin film p-i-n solar cells has led to good cell properties in terms of stability and efficiency. Here, we have been able to assess directly the concentration and distribution of nanocrystals and impurities (dopants) in p-i-n solar cells, by using femtosecond laser-assisted atom probe tomography (APT). An effective sample preparation method for APT characterization is developed. Based on the difference in atomic density between hydrogenated amorphous and crystalline silicon, we are able to distinguish the nanocrystals from the amorphous matrix by using APT. Moreover, thanks to the three-dimensional reconstruction, we demonstrate that Si nanocrystals are homogeneously distributed in the entire intrinsic layer of the solar cell. The influence of the process pressure on the incorporation of nanocrystals and their distribution is also investigated. Thanks to APT we could determine crystalline fractions as low as 4.2% in the pm-Si:H films, which is very difficult to determine by standard techniques, such as X-ray diffraction, Raman spectroscopy, and spectroscopic ellipsometry. Moreover, we also demonstrate a sharp p/i interface in our solar cells.

  20. Plasma deposition of thin film silicon at low substrate temperature and at high growth rate

    NARCIS (Netherlands)

    Verkerk, A.D.|info:eu-repo/dai/nl/304831719

    2009-01-01

    To expand the range of applications for thin film solar cells incorporating hydrogenated amorphous silicon (a-Si:H) and hydrogenated nanocrystalline silicon (nc-Si:H), the growth rate has to be increased 0.5 or less to several nm/s and the substrate temperature should be lowered to around 100 C. In

  1. Amorphous silicon films doped with BF3 and PF5

    International Nuclear Information System (INIS)

    Ortiz, A.; Muhl, S.; Sanchez, A.; Monroy, R.; Pickin, W.

    1984-01-01

    By using gaseous discharge process, thin films of hydrogenated amorphous silicon (a-Si:H) were produced. This process consists of Silane (SiH 4 ) decomposition at low pressure, in a chamber. (A.C.A.S.) [pt

  2. Hydrogenated amorphous silicon photoresists for HgCdTe patterning

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, R.E.; DeHart, C.; Wang, L.; Dinan, J.H.; Johnson, J.N.

    1997-07-01

    A process to use a hydrogenated amorphous silicon (a-Si:H) film as a dry photoresist mask for plasma etching of HgCdTe has been demonstrated. The a-Si:H films were deposited using standard plasma enhanced chemical vapor deposition with pure silane as the source gas. X-ray photoelectron spectra show that virtually no oxide grows on the surface of an a-Si:H film after 3 hours in air, indicating that it is hydrogen passivated. Ultraviolet light frees hydrogen from the surface and enhances the oxide growth rate. A pattern of 60 micron square pixels was transferred from a contact mask to the surface of an a-Si:H film by ultraviolet enhanced oxidation in air. For the conditions used, the oxide thickness was 0.5--1.0 nm. Hydrogen plasmas were used to develop this pattern by removing the unexposed regions of the film. A hydrogen plasma etch selectivity between oxide and a-Si:H of greater than 500:1 allows patterns as thick as 700 nm to be generated with this very thin oxide. These patterns were transferred into HgCdTe by etching in an electron cyclotron resonance plasma. An etch selectivity between a-Si:H and HgCdTe of greater than 4:1 was observed after etching 2,500 nm into the HgCdTe. All of the steps are compatible with processing in vacuum.

  3. Contribution to the analysis of hydrogenated amorphous silicon by nuclear methods

    International Nuclear Information System (INIS)

    Jeannerot, Luc.

    1981-01-01

    The physico chemical characterization of hydrogenated amorphous silicon thin films (0,5 to 2 μm thick) makes use of nuclear microanalysis for quantitative determination and depth profiling of the elements hydrogen, oxygen, argon and carbon. Concerning the methods, performances of the hydrogen analysis using the 1 H( 15 N, αγ) nuclear reaction are presented emphasizing the precision and the analytical consequences of the interaction ion-material. For charged particles data processing (mainly Rutherford backscattering) computer treatments have been developed either for concentration profile obtention as for spectra prediction of given material configurations. The essential results concerning hydrogenated silicon prepared by RF sputtering are on one hand the correlation between the oxygen incorporation and the beam-induced hydrogen effusion and in the other hand the role of the substrate in the impurities incorporation. From the study of the elaboration conditions of the material a tentative interpretation is made for the incorporation and the role of oxygen [fr

  4. Silicon surface damage caused by reactive ion etching in fluorocarbon gas mixtures containing hydrogen

    International Nuclear Information System (INIS)

    Norstroem, H.; Blom, H.; Ostling, M.; Nylandsted Larsen, A.; Keinonen, J.; Berg, S.

    1991-01-01

    For selective etching of SiO 2 on silicon, gases or gas mixtures containing hydrogen are often used. Hydrogen from the glow discharge promotes the formation of a thin film polymer layer responsible for the selectivity of the etching process. The reactive ion etch (RIE) process is known to create damage in the silicon substrate. The influence of hydrogen on the damage and deactivation of dopants is investigated in the present work. The distribution of hydrogen in silicon, after different etching and annealing conditions have been studied. The influence of the RIE process on the charge carrier concentration in silicon has been investigated. Various analytical techniques like contact resistivity measurements, four point probe measurements, and Hall measurements have been used to determine the influence of the RIE process on the electrical properties of processed silicon wafers. The hydrogen profile in as-etched and post annealed wafers was determined by the 1 H( 15 N,αγ) 12 C nuclear reaction. The depth of the deactivated surface layer is discussed in terms of the impinging hydrogen ion energy, i.e., the possibility of H + ions to pick up an energy equal to the peak-to-peak voltage of the rf signal

  5. Silicon nitride and intrinsic amorphous silicon double antireflection coatings for thin-film solar cells on foreign substrates

    International Nuclear Information System (INIS)

    Li, Da; Kunz, Thomas; Wolf, Nadine; Liebig, Jan Philipp; Wittmann, Stephan; Ahmad, Taimoor; Hessmann, Maik T.; Auer, Richard; Göken, Mathias; Brabec, Christoph J.

    2015-01-01

    Hydrogenated intrinsic amorphous silicon (a-Si:H) was investigated as a surface passivation method for crystalline silicon thin film solar cells on graphite substrates. The results of the experiments, including quantum efficiency and current density-voltage measurements, show improvements in cell performance. This improvement is due to surface passivation by an a-Si:H(i) layer, which increases the open circuit voltage and the fill factor. In comparison with our previous work, we have achieved an increase of 0.6% absolute cell efficiency for a 40 μm thick 4 cm 2 aperture area on the graphite substrate. The optical properties of the SiN x /a-Si:H(i) stack were studied using spectroscopic ellipsometer techniques. Scanning transmission electron microscopy inside a scanning electron microscope was applied to characterize the cross section of the SiN x /a-Si:H(i) stack using focus ion beam preparation. - Highlights: • We report a 10.8% efficiency for thin-film silicon solar cell on graphite. • Hydrogenated intrinsic amorphous silicon was applied for surface passivation. • SiN x /a-Si:H(i) stacks were characterized by spectroscopic ellipsometer techniques. • Cross-section micrograph was obtained by scanning transmission electron microscopy. • Quantum efficiency and J-V measurements show improvements in the cell performance

  6. Materials and Light Management for High-Efficiency Thin-Film Silicon Solar Cells

    OpenAIRE

    Tan, H.

    2015-01-01

    Direct conversion of sunlight into electricity is one of the most promising approaches to provide sufficient renewable energy for humankind. Solar cells are such devices which can efficiently generate electricity from sunlight through the photovoltaic effect. Thin-film silicon solar cells, a type of photovoltaic (PV) devices which deploy the chemical-vapor-deposited hydrogenated amorphous silicon (a-Si:H) and nanocrystalline silicon (nc-Si:H) and their alloys as the absorber layers and doped ...

  7. Rapid Thermal Annealing and Hydrogen Passivation of Polycrystalline Silicon Thin-Film Solar Cells on Low-Temperature Glass

    Directory of Open Access Journals (Sweden)

    Mason L. Terry

    2007-01-01

    Full Text Available The changes in open-circuit voltage (Voc, short-circuit current density (Jsc, and internal quantum efficiency (IQE of aLuminum induced crystallization, ion-assisted deposition (ALICIA polycrystalline silicon thin-film solar cells on low-temperature glass substrates due to rapid thermal anneal (RTA treatment and subsequent remote microwave hydrogen plasma passivation (hydrogenation are examined. Voc improvements from 130 mV to 430 mV, Jsc improvements from 1.2 mA/cm2 to 11.3 mA/cm2, and peak IQE improvements from 16% to > 70% are achieved. A 1-second RTA plateau at 1000°C followed by hydrogenation increases the Jsc by a factor of 5.5. Secondary ion mass spectroscopy measurements are used to determine the concentration profiles of dopants, impurities, and hydrogen. Computer modeling based on simulations of the measured IQE data reveals that the minority carrier lifetime in the absorber region increases by 3 orders of magnitude to about 1 nanosecond (corresponding to a diffusion length of at least 1 μm due to RTA and subsequent hydrogenation. The evaluation of the changes in the quantum efficiency and Voc due to RTA and hydrogenation with computer modeling significantly improves the understanding of the limiting factors to cell performance.

  8. Room temperature photoluminescence spectrum modeling of hydrogenated amorphous silicon carbide thin films by a joint density of tail states approach and its application to plasma deposited hydrogenated amorphous silicon carbide thin films

    International Nuclear Information System (INIS)

    Sel, Kıvanç; Güneş, İbrahim

    2012-01-01

    Room temperature photoluminescence (PL) spectrum of hydrogenated amorphous silicon carbide (a-SiC x :H) thin films was modeled by a joint density of tail states approach. In the frame of these analyses, the density of tail states was defined in terms of empirical Gaussian functions for conduction and valance bands. The PL spectrum was represented in terms of an integral of joint density of states functions and Fermi distribution function. The analyses were performed for various values of energy band gap, Fermi energy and disorder parameter, which is a parameter that represents the width of the energy band tails. Finally, the model was applied to the measured room temperature PL spectra of a-SiC x :H thin films deposited by plasma enhanced chemical vapor deposition system, with various carbon contents, which were determined by X-ray photoelectron spectroscopy measurements. The energy band gap and disorder parameters of the conduction and valance band tails were determined and compared with the optical energies and Urbach energies, obtained by UV–Visible transmittance measurements. As a result of the analyses, it was observed that the proposed model sufficiently represents the room temperature PL spectra of a-SiC x :H thin films. - Highlights: ► Photoluminescence spectra (PL) of the films were modeled. ► In the model, joint density of tail states and Fermi distribution function are used. ► Various values of energy band gap, Fermi energy and disorder parameter are applied. ► The model was applied to the measured PL of the films. ► The proposed model represented the room temperature PL spectrum of the films.

  9. Properties of hydrogenated amorphous silicon (a-Si:H) deposited using a microwave Ecr plasma

    International Nuclear Information System (INIS)

    Mejia H, J.A.

    1996-01-01

    Hydrogenated amorphous silicon (a-Si:H) films have been widely applied to semiconductor devices, such as thin film transistors, solar cells and photosensitive devices. In this work, the first Si-H-Cl alloys (obtained at the National Institute for Nuclear Research of Mexico) were formed by a microwave electron cyclotron resonance (Ecr) plasma CVD method. Gaseous mixtures of silicon tetrachloride (Si Cl 4 ), hydrogen and argon were used. The Ecr plasma was generated by microwaves at 2.45 GHz and a magnetic field of 670 G was applied to maintain the discharge after resonance condition (occurring at 875 G). Si and Cl contents were analyzed by Rutherford Backscattering Spectrometry (RBS). It was found that, increasing proportion of Si Cl 4 in the mixture or decreasing pressure, the silicon and chlorine percentages decrease. Optical gaps were obtained by spectrophotometry. Decreasing temperature, optical gap values increase from 1.4 to 1.5 eV. (Author)

  10. Sub-bandgap optical absorption spectroscopy of hydrogenated microcrystalline silicon thin films prepared using hot-wire CVD (Cat-CVD) process

    International Nuclear Information System (INIS)

    Goktas, O.; Isik, N.; Okur, S.; Gunes, M.; Carius, R.; Klomfass, J.; Finger, F.

    2006-01-01

    Hydrogenated microcrystalline silicon (μc-Si:H) thin films with different silane concentration (SC) have been prepared using the HW-CVD technique. Dual beam photoconductivity (DBP), photothermal deflection spectroscopy (PDS), and transmission measurements have been used to investigate the optical properties of the μc-Si:H films. Two different sub-bandgap absorption, α(hν), methods have been applied and analyzed to obtain a better insight into the electronic states involved. A good agreement has been obtained in the absorption spectrum obtained from the PDS and DBP measurements at energies above the bandgap. Differences between PDS and DBP spectra exist below the bandgap energy where DBP spectra always give lower α(hν) values and show a dependence on the SC. For some films, differences exist in the α(hν) spectra when the DBP measurements are carried out through the film and substrate side. In addition, for some films, there remains fringe pattern left on the spectrum after the calculation of the fringe-free absorption spectrum, which indicates structural inhomogeneities present throughout the film

  11. Cobalt nanosheet arrays supported silicon film as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Huang, X.H.; Wu, J.B.; Cao, Y.Q.; Zhang, P.; Lin, Y.; Guo, R.Q.

    2016-01-01

    Cobalt nanosheet arrays supported silicon film is prepared and used as anode materials for lithium ion batteries. The film is fabricated using chemical bath deposition, hydrogen reduction and radio-frequency magnetron sputtering techniques. The microstructure and morphology are characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). In this composite film, the silicon layer is supported by interconnected aligned cobalt nanosheet arrays that act as the three-dimensional current collector and buffering network. The electrochemical performance as anode materials for lithium ion batteries is investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge tests. The results show that the film prepared by sputtering for 1500 s exhibits high capacity, good rate capability and stable cycle ability. It is believed that the cobalt nanosheet arrays play important roles in the electrochemical performance of the silicon layer.

  12. Ion beam studied of silicon oxynitride and silicon nitroxide thin layers

    International Nuclear Information System (INIS)

    Oude Elferink, J.B.

    1989-01-01

    In this the processes occurring during high temperature treatments of silicon oxynitride and silicon oxide layers are described. Oxynitride layers with various atomic oxygen to nitrogen concentration ration (O/N) are considered. The high energy ion beam techniques Rutherford backscattering spectroscopy, elastic recoil detection and nuclear reaction analysis have been used to study the layer structures. A detailed discussion of these ion beam techniques is given. Numerical methods used to obtain quantitative data on elemental compositions and depth profiles are described. The electrical compositions and depth profiles are described. The electrical properties of silicon nitride films are known to be influenced by the behaviour of hydrogen in the film during high temperature anneling. Investigations of the behaviour of hydrogen are presented. Oxidation of silicon (oxy)nitride films in O 2 /H 2 0/HCl and nitridation of silicon dioxide films in NH 3 are considered since oxynitrides are applied as an oxidation mask in the LOCOS (Local oxidation of silicon) process. The nitridation of silicon oxide layers in an ammonia ambient is considered. The initial stage and the dependence on the oxide thickness of nitrogen and hydrogen incorporation are discussed. Finally, oxidation of silicon oxynitride layers and of silicon oxide layers are compared. (author). 76 refs.; 48 figs.; 1 tab

  13. Growth of boron doped hydrogenated nanocrystalline cubic silicon carbide (3C-SiC) films by Hot Wire-CVD

    Energy Technology Data Exchange (ETDEWEB)

    Pawbake, Amit [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Mayabadi, Azam; Waykar, Ravindra; Kulkarni, Rupali; Jadhavar, Ashok [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Waman, Vaishali [Modern College of Arts, Science and Commerce, Shivajinagar, Pune 411 005 (India); Parmar, Jayesh [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Bhattacharyya, Somnath [Department of Metallurgical and Materials Engineering, IIT Madras, Chennai 600 036 (India); Ma, Yuan‐Ron [Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China); Devan, Rupesh; Pathan, Habib [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Jadkar, Sandesh, E-mail: sandesh@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-04-15

    Highlights: • Boron doped nc-3C-SiC films prepared by HW-CVD using SiH{sub 4}/CH{sub 4}/B{sub 2}H{sub 6}. • 3C-Si-C films have preferred orientation in (1 1 1) direction. • Introduction of boron into SiC matrix retard the crystallanity in the film structure. • Film large number of SiC nanocrystallites embedded in the a-Si matrix. • Band gap values, E{sub Tauc} and E{sub 04} (E{sub 04} > E{sub Tauc}) decreases with increase in B{sub 2}H{sub 6} flow rate. - Abstract: Boron doped nanocrystalline cubic silicon carbide (3C-SiC) films have been prepared by HW-CVD using silane (SiH{sub 4})/methane (CH{sub 4})/diborane (B{sub 2}H{sub 6}) gas mixture. The influence of boron doping on structural, optical, morphological and electrical properties have been investigated. The formation of 3C-SiC films have been confirmed by low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FTIR) spectroscopy and high resolution-transmission electron microscopy (HR-TEM) analysis whereas effective boron doping in nc-3C-SiC have been confirmed by conductivity, charge carrier activation energy, and Hall measurements. Raman spectroscopy and HR-TEM analysis revealed that introduction of boron into the SiC matrix retards the crystallanity in the film structure. The field emission scanning electron microscopy (FE-SEM) and non contact atomic force microscopy (NC-AFM) results signify that 3C-SiC film contain well resolved, large number of silicon carbide (SiC) nanocrystallites embedded in the a-Si matrix having rms surface roughness ∼1.64 nm. Hydrogen content in doped films are found smaller than that of un-doped films. Optical band gap values, E{sub Tauc} and E{sub 04} decreases with increase in B{sub 2}H{sub 6} flow rate.

  14. Substrate temperature dependence of microcrystallinity in plasma-deposited, boron-doped hydrogenated silicon alloys

    International Nuclear Information System (INIS)

    Rajeswaran, G.; Kampas, F.J.; Vanier, P.E.; Sabatini, R.L.; Tafto, J.

    1983-01-01

    The glow-discharge decomposition of silane diluted in hydrogen using diborane as a dopant results in the deposition of p-type microcrystalline silicon films at relatively low temperatures. The conductivity of these films is critically dependent on the substrate temperature when the ratio of silane flow rate to total gas flow rate is 1%. Electron micrographs show that highly conducting films contain numerous clusters of 2.5-nm crystallites that are embedded in an amorphous medium

  15. Characterization of defects in hydrogenated amorphous silicon deposited on different substrates by capacitance techniques

    International Nuclear Information System (INIS)

    Darwich, R.; Roca i Cabarrocas, P.

    2011-01-01

    Hydrogenated amorphous silicon (a-Si:H) thin films deposited on crystalline silicon and Corning glass substrate were analyzed using different capacitance techniques. The distribution of localized states and some electronic properties were studied using the temperature, frequency and bias dependence of the Schottky barrier capacitance and deep level transient spectroscopy. Our results show that the distribution of the gap states depends on the type of substrate. We have found that the films deposited on c-Si substrate represent only one positively charged or prerelaxed neutral deep state and one interface state, while the films deposited on glass substrate have one interface state and three types of deep defect states, positively or prerelaxed neutral, neutral and negatively charged.

  16. Hydrogenated amorphous silicon-selenium alloys - a short journey through parameter space

    International Nuclear Information System (INIS)

    Al-Dallal, S.; Al-Alawi, S.M.; Aljishi, S.

    1999-01-01

    Hydrogenated amorphous silicon-selenium alloy thin films were grown by capacity coupled radio frequency glow discharge decomposition of (SiH/sub 4/ + He) and (H/sub 2/S + He) gas mixtures. In this work we report on a study to correlate the deposition parameters of a-Si, Se:H thin films with its optical, electronic and spectroscopic properties. The alloy composition was varied by changing the gas volume ratio R/sub v/ = [H/sub 2/Se]/[SiH/sub 4/]. The films are characterized via infrared spectroscopy, photoconductivity, photoluminescence, constant current method and conductivity measurements. (author)

  17. Structural and photoluminescent properties of a composite tantalum oxide and silicon nanocrystals embedded in a silicon oxide film

    International Nuclear Information System (INIS)

    Díaz-Becerril, T.; Herrera, V.; Morales, C.; García-Salgado, G.; Rosendo, E.; Coyopol, A.; Galeazzi, R.; Romano, R.; Nieto-Caballero, F.G.; Sarmiento, J.

    2017-01-01

    Tantalum oxide crystals encrusted in a silicon oxide matrix were synthesized by using a hot filament chemical vapor deposition system (HFCVD). A solid source composed by a mixture in different percentages of Ta 2 O 5 and silicon (Si) powders were used as reactants. The films were grown at 800 °C and 1000 °C under hydrogen ambient. The deposited films were characterized by X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and photoluminescence (PL) at room temperature. From the XPS results it was confirmed the formation of a mixture of Tantalum oxide, silicon oxide and Si nanoparticles (Ta 2 O 5- SiO 2 -Si(nc)) as seen from the Si (2p) and Ta (4f) lines corresponding to Si + and Ta + states respectively. Ta 2 O 5 and Si nanocrystals (Si-NCs) embedded in the silicon oxide films were observed on HRTEM images which corroborate the XPS results. Finally the emission properties of the films exhibited a broad band from 400 to 850 nm caused by the independent PL properties of tantalum oxide and Si-NCs that compose the film. The intensity of the emissions was observed to be dependent on both temperature of deposition and the ratio Ta 2 O 5 /Si, used as initial reactants. Results from this work might supply useful data for the development of future light emitter devices.

  18. Crystalline silicon films grown by pulsed dc magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Reinig, Peter; Fenske, Frank; Fuhs, Walther; Selle, Burkhardt [Hahn-Meitner-Institut Berlin, Abt. Silizium-Photovoltaik, Kekulestr. 5, D-12489 Berlin (Germany)

    2002-04-01

    Pulsed dc magnetron sputtering is used as a novel method for the deposition of crystalline silicon films on glass substrates. Hydrogen-free polycrystalline Si-films are deposited with high deposition rates at temperatures of 400-450 C and pulse frequencies f in the range 0-250 kHz. Strong preferential (100) orientation of the crystallites is observed with increasing f. High frequency and similarly high negative substrate bias cause an increase of the Ar content and an enhancement of structural disorder. Measurements of the transient floating potential suggest that the observed structural effects are related to bombardment of the growing film by Ar{sup +} ions of high energy.

  19. Microstructure Related Characterization of a-Si:H Thin Films PECVD Deposited under Varied Hydrogen Dilution

    Directory of Open Access Journals (Sweden)

    Veronika Vavrunkova

    2007-01-01

    Full Text Available We report on the structure and optical properties of hydrogenated silicon thin films deposited by plasma - enhanced chemical vapor deposition (PECVD from silane diluted with hydrogen in a wide dilution range. The samples deposited with dilutions below 30 were detected as amorphous hydrogenated silicon (a-Si:H with crystalline grains of several nanometers in size which represent the medium-range order of a-Si:H. The optical characterization confirmed increasing ordering with the increasing dilution. The optical band gap was observed to be increasing function of the dilution.

  20. Influence of hydrogen effusion from hydrogenated silicon nitride layers on the regeneration of boron-oxygen related defects in crystalline silicon

    International Nuclear Information System (INIS)

    Wilking, S.; Ebert, S.; Herguth, A.; Hahn, G.

    2013-01-01

    The degradation effect boron doped and oxygen-rich crystalline silicon materials suffer from under illumination can be neutralized in hydrogenated silicon by the application of a regeneration process consisting of a combination of slightly elevated temperature and carrier injection. In this paper, the influence of variations in short high temperature steps on the kinetics of the regeneration process is investigated. It is found that hotter and longer firing steps allowing an effective hydrogenation from a hydrogen-rich silicon nitride passivation layer result in an acceleration of the regeneration process. Additionally, a fast cool down from high temperature to around 550 °C seems to be crucial for a fast regeneration process. It is suggested that high cooling rates suppress hydrogen effusion from the silicon bulk in a temperature range where the hydrogenated passivation layer cannot release hydrogen in considerable amounts. Thus, the hydrogen content of the silicon bulk after the complete high temperature step can be increased resulting in a faster regeneration process. Hence, the data presented here back up the theory that the regeneration process might be a hydrogen passivation of boron-oxygen related defects

  1. Hydrogen Incorporation during Aluminium Anodisation on Silicon Wafer Surfaces

    International Nuclear Information System (INIS)

    Lu, Pei Hsuan Doris; Strutzberg, Hartmuth; Wenham, Stuart; Lennon, Alison

    2014-01-01

    Hydrogen can act to reduce recombination at silicon surfaces for solar cell devices and consequently the ability of dielectric layers to provide a source of hydrogen for this purpose is of interest. However, due to the ubiquitous nature of hydrogen and its mobility, direct measurements of hydrogen incorporation in dielectric layers are challenging. In this paper, we report the use of secondary ion mass spectrometry measurements to show that deuterium from an electrolyte can be incorporated in an anodic aluminium oxide (AAO) layer and be introduced into an underlying amorphous silicon layer during anodisation of aluminium on silicon wafers. After annealing at 400 °C, the concentration of deuterium in the AAO was reduced by a factor of two, as the deuterium was re-distributed to the interface between the amorphous silicon and AAO and to the amorphous silicon. The assumption that hydrogen, from an aqueous electrolyte, could be similarly incorporated in AAO, is supported by the observation that the hydrogen content in the underlying amorphous silicon was increased by a factor of ∼ 3 after anodisation. Evidence for hydrogen being introduced into crystalline silicon after aluminium anodisation was provided by electrochemical capacitance voltage measurements indicating boron electrical deactivation in the underlying crystalline silicon. If introduced hydrogen can electrically deactivate dopant atoms at the surface, then it is reasonable to assume that it could also deactivate recombination-active states at the crystalline silicon interface therefore enabling higher minority carrier lifetimes in the silicon wafer

  2. Dependence of the saturated light-induced defect density on macroscopic properties of hydrogenated amorphous silicon

    OpenAIRE

    Park, H. R.; Liu, J. Z.; Roca i Cabarrocas, P.; Maruyama, A.; Isomura, M.; Wagner, S.; Abelson, J. R.; Finger, F.

    2008-01-01

    We report a study of the saturated light-induced defect density Ns,sat in 37 hydrogenated (and in part fluorinated) amorphous silicon [a-Si:H(F)] films grown in six different reactors under widely different conditions. Ns,sat was attained by exposing the films to light from a krypton ion laser (λ=647.1 nm). Ns,sat is determined by the constant photocurrent method and lies between 5×1016 and 2×1017 cm−3. Ns,sat drops with decreasing optical gap Eopt and hydrogen content cH, but is not correlat...

  3. A Comparison of Photo-Induced Hysteresis Between Hydrogenated Amorphous Silicon and Amorphous IGZO Thin-Film Transistors.

    Science.gov (United States)

    Ha, Tae-Jun; Cho, Won-Ju; Chung, Hong-Bay; Koo, Sang-Mo

    2015-09-01

    We investigate photo-induced instability in thin-film transistors (TFTs) consisting of amorphous indium-gallium-zinc-oxide (a-IGZO) as active semiconducting layers by comparing with hydrogenated amorphous silicon (a-Si:H). An a-IGZO TFT exhibits a large hysteresis window in the illuminated measuring condition but no hysteresis window in the dark condition. On the contrary, a large hysteresis window measured in the dark condition in a-Si:H was not observed in the illuminated condition. Even though such materials possess the structure of amorphous phase, optical responses or photo instability in TFTs looks different from each other. Photo-induced hysteresis results from initially trapped charges at the interface between semiconductor and dielectric films or in the gate dielectric which possess absorption energy to interact with deep trap-states and affect the movement of Fermi energy level. In order to support our claim, we also perform CV characteristics in photo-induced hysteresis and demonstrate thermal-activated hysteresis. We believe that this work can provide important information to understand different material systems for optical engineering which includes charge transport and band transition.

  4. Application of hydrogen-plasma technology for property modification of silicon and producing the silicon-based structures

    International Nuclear Information System (INIS)

    Fedotov, A.K.; Mazanik, A.V.; Ul'yashin, A.G.; Dzhob, R; Farner, V.R.

    2000-01-01

    Effects of atomic hydrogen on the properties of Czochralski-grown single crystal silicon as well as polycrystalline shaped silicon have been investigated. It was established that the buried defect layers created by high-energy hydrogen or helium ion implantation act as a good getter centers for hydrogen atoms introduced in silicon in the process of hydrogen plasma hydrogenation. Atomic hydrogen was shown to be active as a catalyzer significantly enhancing the rate of thermal donors formation in p-type single crystal silicon. This effect can be used for n-p- and p-n-p-silicon based device structures producing [ru

  5. Structural and photoluminescent properties of a composite tantalum oxide and silicon nanocrystals embedded in a silicon oxide film

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-Becerril, T., E-mail: tomas.diaz.be@gmail.com; Herrera, V.; Morales, C.; García-Salgado, G.; Rosendo, E.; Coyopol, A., E-mail: acoyopol@gmail.com; Galeazzi, R.; Romano, R.; Nieto-Caballero, F.G.; Sarmiento, J.

    2017-04-15

    Tantalum oxide crystals encrusted in a silicon oxide matrix were synthesized by using a hot filament chemical vapor deposition system (HFCVD). A solid source composed by a mixture in different percentages of Ta{sub 2}O{sub 5} and silicon (Si) powders were used as reactants. The films were grown at 800 °C and 1000 °C under hydrogen ambient. The deposited films were characterized by X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and photoluminescence (PL) at room temperature. From the XPS results it was confirmed the formation of a mixture of Tantalum oxide, silicon oxide and Si nanoparticles (Ta{sub 2}O{sub 5-}SiO{sub 2}-Si(nc)) as seen from the Si (2p) and Ta (4f) lines corresponding to Si{sup +} and Ta{sup +} states respectively. Ta{sub 2}O{sub 5} and Si nanocrystals (Si-NCs) embedded in the silicon oxide films were observed on HRTEM images which corroborate the XPS results. Finally the emission properties of the films exhibited a broad band from 400 to 850 nm caused by the independent PL properties of tantalum oxide and Si-NCs that compose the film. The intensity of the emissions was observed to be dependent on both temperature of deposition and the ratio Ta{sub 2}O{sub 5}/Si, used as initial reactants. Results from this work might supply useful data for the development of future light emitter devices.

  6. Mechanism for hydrogen diffusion in amorphous silicon

    International Nuclear Information System (INIS)

    Biswas, R.; Li, Q.; Pan, B.C.; Yoon, Y.

    1998-01-01

    Tight-binding molecular-dynamics calculations reveal a mechanism for hydrogen diffusion in hydrogenated amorphous silicon. Hydrogen diffuses through the network by successively bonding with nearby silicons and breaking their Si endash Si bonds. The diffusing hydrogen carries with it a newly created dangling bond. These intermediate transporting states are densely populated in the network, have lower energies than H at the center of stretched Si endash Si bonds, and can play a crucial role in hydrogen diffusion. copyright 1998 The American Physical Society

  7. Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;

    Science.gov (United States)

    Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil

    2017-09-01

    In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.

  8. Optimization of growth parameters of hydrogenated amorphous silicon-sulphur alloys

    International Nuclear Information System (INIS)

    Al-Dallal, S.; Aljishi, S.; Arekat, S.; Al-alawi, S.M.; Hammam, H.

    1995-01-01

    Hydrogenated amorphous silicon sulphur thin films were grown by capacitively coupled radio frequency glow discharge decomposition of SiH/sub 4/ + He) and H/sub 2/S + He) gas mixtures. In this work we report on a study undertaken to instigative the effect of deposition conditions on the optoelectronic properties of a-Si,S:H films. Three series of deposition conditions on the optoelectronic properties of a-Si,S:H films. Three series of films were prepared using a constant flow rate of the gaseous mixture while varying one of the other deposition parameters: substrate temperature, RF powder and process pressure. The films are characterized via IR measurements, optical transmission, photothermal deflection spectroscopy, photoluminescence, the constant photocurrent methods and conductivity measurements. Results indicate that a relatively high power level and a high substrate temperature are necessary to obtain the best films. (author) 8 figs

  9. Influence of post-hydrogenation upon electrical, optical and structural properties of hydrogen-less sputter-deposited amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Gerke, S., E-mail: sebastian.gerke@uni-konstanz.de [Department of Physics, University of Konstanz, Konstanz, 78457 (Germany); Becker, H.-W.; Rogalla, D. [RUBION — Central Unit for Ion Beams and Radioisotopes, University of Bochum, Bochum, 44780 (Germany); Singer, F.; Brinkmann, N.; Fritz, S.; Hammud, A.; Keller, P.; Skorka, D.; Sommer, D. [Department of Physics, University of Konstanz, Konstanz, 78457 (Germany); Weiß, C. [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, 79110 Freiburg (Germany); Flege, S. [Department of Materials Science, TU Darmstadt, Darmstadt 64287 (Germany); Hahn, G. [Department of Physics, University of Konstanz, Konstanz, 78457 (Germany); Job, R. [Department of Electrical Engineering and Computer Science, Münster University of Applied Sciences, Steinfurt 48565 (Germany); Terheiden, B. [Department of Physics, University of Konstanz, Konstanz, 78457 (Germany)

    2016-01-01

    Amorphous silicon (a-Si) is common in the production of technical devices and can be deposited by several techniques. In this study intrinsic and doped, hydrogen-less amorphous silicon films are RF magnetron sputter deposited and post-hydrogenated in a remote hydrogen plasma reactor at a temperature of 370 °C. Secondary ion mass spectrometry of a boron doped (p) a-Si layer shows that the concentration of dopants in the sputtered layer becomes the same as present in the sputter-target. Improved surface passivation of phosphorous doped 5 Ω cm, FZ, (n) c-Si can be achieved by post-hydrogenation yielding a minority carrier lifetime of ~ 360 μs finding an optimum for ~ 40 nm thin films, deposited at 325 °C. This relatively low minority carrier lifetime indicates high disorder of the hydrogen-less sputter deposited amorphous network. Post-hydrogenation leads to a decrease of the number of localized states within the band gap. Optical band gaps (Taucs gab as well as E{sub 04}) can be determined to ~ 1.88 eV after post-hydrogenation. High resolution transmission electron microscopy and optical Raman investigations show that the sputtered layers are amorphous and stay like this during post-hydrogenation. As a consequence of the missing hydrogen during deposition, sputtered a-Si forms a rough surface compared to CVD a-Si. Atomic force microscopy points out that the roughness decreases by up to 25% during post-hydrogenation. Nuclear resonant reaction analysis permits the investigation of hydrogen depth profiles and allows determining the diffusion coefficients of several post-hydrogenated samples from of a model developed within this work. A dependency of diffusion coefficients on the duration of post-hydrogenation indicates trapping diffusion as the main diffusion mechanism. Additional Fourier transform infrared spectroscopy measurements show that hardly any interstitial hydrogen exists in the post-hydrogenated a-Si layers. The results of this study open the way for

  10. Study on structural properties of epitaxial silicon films on annealed double layer porous silicon

    International Nuclear Information System (INIS)

    Yue Zhihao; Shen Honglie; Cai Hong; Lv Hongjie; Liu Bin

    2012-01-01

    In this paper, epitaxial silicon films were grown on annealed double layer porous silicon by LPCVD. The evolvement of the double layer porous silicon before and after thermal annealing was investigated by scanning electron microscope. X-ray diffraction and Raman spectroscopy were used to investigate the structural properties of the epitaxial silicon thin films grown at different temperature and different pressure. The results show that the surface of the low-porosity layer becomes smooth and there are just few silicon-bridges connecting the porous layer and the substrate wafer. The qualities of the epitaxial silicon thin films become better along with increasing deposition temperature. All of the Raman peaks of silicon films with different deposition pressure are situated at 521 cm -1 under the deposition temperature of 1100 °C, and the Raman intensity of the silicon film deposited at 100 Pa is much closer to that of the monocrystalline silicon wafer. The epitaxial silicon films are all (4 0 0)-oriented and (4 0 0) peak of silicon film deposited at 100 Pa is more symmetric.

  11. Thermal post-deposition treatment effects on nanocrystalline hydrogenated silicon prepared by PECVD under different hydrogen flow rates

    Energy Technology Data Exchange (ETDEWEB)

    Amor, Sana Ben, E-mail: sana.benamor1@gmail.com [Photovoltaic Laboratory Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif (Tunisia); University of Applied Medical Sciences of Hafr El Baten (Saudi Arabia); Meddeb, Hosny; Daik, Ridha; Othman, Afef Ben; Slama, Sonia Ben; Dimassi, Wissem; Ezzaouia, Hatem [Photovoltaic Laboratory Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif (Tunisia)

    2016-01-01

    Graphical abstract: At high annealing temperatures, many atoms do not suffer the attraction of surface species due to the thermal agitation and consequently few atoms are adsorbed. As the temperature is lowered the adsorption is more efficient to the point that is no more atoms in the gas phase. Indeed at relatively low temperatures, the atoms have too little energy to escape from the surface or even to vibrate against it. They lost their degree of freedom in the direction perpendicular to the surface. But this does not prevent the atoms to diffuse along the surface. As a result, the layer's thickness decrease with increasing the annealing temperature. - Highlights: The results extracted from this work are: • The post-deposition thermal treatment improves the crystallinity the film at moderate temperature (500 °C). • The higher annealing temperature can lead to decrease the silicon–hydrogen bonds and increase the Si–Si bonds. • Moderate annealing temperature (700 °C) seems to be crucial for obtaining high minority carrier life times. • Hydrogen effusion phenomenon start occurring at 500–550 °C and get worsen at 900 °C. - Abstract: In this paper, hydrogenated nanocrystalline silicon (nc-Si:H) thin films were deposited on mono-crystalline silicon substrate by plasma enhanced chemical vapor deposition (PECVD) under different hydrogen flow rates followed by a thermal treatment in an infrared furnace at different temperature ranging from 300 to 900 °C. The investigated structural, morphological and optoelectronic properties of samples were found to be strongly dependent on the annealing temperature. Raman spectroscopy revealed that nc-Si:H films contain crystalline, amorphous and mixed structures as well. We find that post-deposition thermal treatment may lead to a tendency for structural improvement and a decrease of the disorder in the film network at moderate temperature under 500 °C. As for annealing at higher temperature up to 900

  12. Confined high-pressure chemical deposition of hydrogenated amorphous silicon.

    Science.gov (United States)

    Baril, Neil F; He, Rongrui; Day, Todd D; Sparks, Justin R; Keshavarzi, Banafsheh; Krishnamurthi, Mahesh; Borhan, Ali; Gopalan, Venkatraman; Peacock, Anna C; Healy, Noel; Sazio, Pier J A; Badding, John V

    2012-01-11

    Hydrogenated amorphous silicon (a-Si:H) is one of the most technologically important semiconductors. The challenge in producing it from SiH(4) precursor is to overcome a significant kinetic barrier to decomposition at a low enough temperature to allow for hydrogen incorporation into a deposited film. The use of high precursor concentrations is one possible means to increase reaction rates at low enough temperatures, but in conventional reactors such an approach produces large numbers of homogeneously nucleated particles in the gas phase, rather than the desired heterogeneous deposition on a surface. We report that deposition in confined micro-/nanoreactors overcomes this difficulty, allowing for the use of silane concentrations many orders of magnitude higher than conventionally employed while still realizing well-developed films. a-Si:H micro-/nanowires can be deposited in this way in extreme aspect ratio, small-diameter optical fiber capillary templates. The semiconductor materials deposited have ~0.5 atom% hydrogen with passivated dangling bonds and good electronic properties. They should be suitable for a wide range of photonic and electronic applications such as nonlinear optical fibers and solar cells. © 2011 American Chemical Society

  13. Fluorescence and thermoluminescence in silicon oxide films rich in silicon

    International Nuclear Information System (INIS)

    Berman M, D.; Piters, T. M.; Aceves M, M.; Berriel V, L. R.; Luna L, J. A.

    2009-10-01

    In this work we determined the fluorescence and thermoluminescence (TL) creation spectra of silicon rich oxide films (SRO) with three different silicon excesses. To study the TL of SRO, 550 nm of SRO film were deposited by Low Pressure Chemical Vapor Deposition technique on N-type silicon substrates with resistivity in the order of 3 to 5 Ω-cm with silicon excess controlled by the ratio of the gases used in the process, SRO films with Ro= 10, 20 and 30 (12-6% silicon excess) were obtained. Then, they were thermally treated in N 2 at high temperatures to diffuse and homogenize the silicon excess. In the fluorescence spectra two main emission regions are observed, one around 400 nm and one around 800 nm. TL creation spectra were determined by plotting the integrated TL intensity as function of the excitation wavelength. (Author)

  14. A hybrid tandem solar cell based on hydrogenated amorphous silicon and dye-sensitized TiO{sub 2} film

    Energy Technology Data Exchange (ETDEWEB)

    Hao Sancun [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, 362021 (China); Institute of Photo-Electronics of Nankai University, Tianjin 300071 (China); Jiangsu Shuangdeng Group Co. Ltd, Thaizhou, Jiangsu, 225526 (China); Wu Jihuai, E-mail: jhwu@hqu.edu.cn [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, 362021 (China); Sun Zhonglin [Institute of Photo-Electronics of Nankai University, Tianjin 300071 (China)

    2012-01-01

    Hydrogenated amorphous silicon film (a-Si:H) as top cell is introduced to dye-sensitized titanium dioxide nanocrystalline solar cell (DSSC) as bottom cell to assemble a hybrid tandem solar cell. The hybrid tandem solar cell fabricated with the thicknesses a-Si:H layer of 235 nm, ZnO/Pt interlayer of 100 nm and DSSC layer of 8.5 {mu}m achieves a photo-to-electric energy conversion efficiency of 8.31%, a short circuit current density of 10.61 mA{center_dot}cm{sup -2} and an open-circuit voltage of 1.45 V under a simulated solar light irradiation of 100 mW{center_dot}cm{sup -2}.

  15. Experimental study of the hysteresis in hydrogenated amorphous silicon thin-film transistors for an active matrix organic light-emitting diode

    International Nuclear Information System (INIS)

    Lee, Jae-Hoon; Shin, Kwang-Sub; Park, Joong-Hyun; Han, Min-Koo

    2006-01-01

    An experimental scheme for validating the cause of the hysteresis phenomenon in hydrogenated amorphous-silicon-thin-film transistors (a-Si:H TFTs) is reported. A different gate starting voltage to the desired gate voltage has been considered to prove an effect of filling an acceptor-like or donor-like state in the interface. The integration time of the semiconductor parameter analyzer has also been controlled to investigate the effect between the de-trapping rate and hysteresis. The experimental results show that the previous data voltage in the (n-1)th frame affects the OLED current in the (n)th frame.

  16. Hydrogen passivation of silicon sheet solar cells

    International Nuclear Information System (INIS)

    Tsuo, Y.S.; Milstein, J.B.

    1984-01-01

    Significant improvements in the efficiencies of dendritic web and edge-supported-pulling silicon sheet solar cells have been obtained after hydrogen ion beam passivation for a period of ten minutes or less. We have studied the effects of the hydrogen ion beam treatment with respect to silicon material damage, silicon sputter rate, introduction of impurities, and changes in reflectance. The silicon sputter rate for constant ion beam flux of 0.60 +- 0.05 mA/cm 2 exhibits a maximum at approximately 1400-eV ion beam energy

  17. Effect of low-energy hydrogen ion implantation on dendritic web silicon solar cells

    Science.gov (United States)

    Rohatgi, A.; Meier, D. L.; Rai-Choudhury, P.; Fonash, S. J.; Singh, R.

    1986-01-01

    The effect of a low-energy (0.4 keV), short-time (2-min), heavy-dose (10 to the 18th/sq cm) hydrogen ion implant on dendritic web silicon solar cells and material was investigated. Such an implant was observed to improve the cell open-circuit voltage and short-circuit current appreciably for a number of cells. In spite of the low implant energy, measurements of internal quantum efficiency indicate that it is the base of the cell, rather than the emitter, which benefits from the hydrogen implant. This is supported by the observation that the measured minority-carrier diffusion length in the base did not change when the emitter was removed. In some cases, a threefold increase of the base diffusion length was observed after implantation. The effects of the hydrogen implantation were not changed by a thermal stress test at 250 C for 111 h in nitrogen. It is speculated that hydrogen enters the bulk by traveling along dislocations, as proposed recently for edge-defined film-fed growth silicon ribbon.

  18. Internal structure of mixed phase hydrogenated silicon thin films made at 39 degrees

    Czech Academy of Sciences Publication Activity Database

    Bronsveld, P.C.P.; Rath, J.K.; Schropp, R.E.I.; Mates, Tomáš; Fejfar, Antonín; Rezek, Bohuslav; Kočka, Jan

    2006-01-01

    Roč. 89, - (2006), 051922/1-051922/3 ISSN 0003-6951 Institutional research plan: CEZ:AV0Z10100521 Keywords : transmission electron microscope * atomic force microscope * silicon films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.977, year: 2006

  19. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

    2011-07-01

    We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

  20. Hydrogen isotopic substitution experiments in nanostructured porous silicon

    International Nuclear Information System (INIS)

    Palacios, W.D.; Koropecki, R.R.; Arce, R.D.; Busso, A.

    2008-01-01

    Nanostructured porous silicon is usually prepared by electrochemical anodization of monocrystalline silicon using a fluorine-rich electrolyte. As a result of this process, the silicon atoms conserve their original crystalline location, and many of the dangling bonds appearing on the surface of the nanostructure are saturated by hydrogen coming from the electrolyte. This work presents an IR study of the effects produced by partial substitution of water in the electrolytic solution by deuterium oxide. The isotopic effects on the IR spectra are analyzed for the as-prepared samples and for the samples subjected to partial thermal effusion of hydrogen and deuterium. We demonstrate that, although deuterium is chemically indistinguishable from hydrogen, it presents a singular behaviour when used in porous silicon preparation. We found that deuterium preferentially bonds forming Si-DH groups. A possible explanation of the phenomenon is presented, based on the different diffusivities of hydrogen and deuterium

  1. Hydrogen isotopic substitution experiments in nanostructured porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, W.D. [Facultad de Ciencias Exactas y Naturales y Agrimensura - (UNNE), Avenida Libertad 5500, 3400 Corrientes (Argentina); Koropecki, R.R. [INTEC (CONICET-UNL), Gueemes 3450, 3000 Santa Fe (Argentina)], E-mail: rkoro@intec.ceride.gov.ar; Arce, R.D. [INTEC (CONICET-UNL), Gueemes 3450, 3000 Santa Fe (Argentina); Busso, A. [Facultad de Ciencias Exactas y Naturales y Agrimensura - (UNNE), Avenida Libertad 5500, 3400 Corrientes (Argentina)

    2008-04-30

    Nanostructured porous silicon is usually prepared by electrochemical anodization of monocrystalline silicon using a fluorine-rich electrolyte. As a result of this process, the silicon atoms conserve their original crystalline location, and many of the dangling bonds appearing on the surface of the nanostructure are saturated by hydrogen coming from the electrolyte. This work presents an IR study of the effects produced by partial substitution of water in the electrolytic solution by deuterium oxide. The isotopic effects on the IR spectra are analyzed for the as-prepared samples and for the samples subjected to partial thermal effusion of hydrogen and deuterium. We demonstrate that, although deuterium is chemically indistinguishable from hydrogen, it presents a singular behaviour when used in porous silicon preparation. We found that deuterium preferentially bonds forming Si-DH groups. A possible explanation of the phenomenon is presented, based on the different diffusivities of hydrogen and deuterium.

  2. MOCVD ZnO/Screen Printed Ag Back Reflector for Flexible Thin Film Silicon Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Amornrat Limmanee

    2014-01-01

    Full Text Available We have prepared Ag back electrode by screen printing technique and developed MOCVD ZnO/screen printed Ag back reflector for flexible thin film silicon solar cell application. A discontinuity and poor contact interface between the MOCVD ZnO and screen printed Ag layers caused poor open circuit voltage (Voc and low fill factor (FF; however, an insertion of a thin sputtered ZnO layer at the interface could solve this problem. The n type hydrogenated amorphous silicon (a-Si:H film is preferable for the deposition on the surface of MOCVD ZnO film rather than the microcrystalline film due to its less sensitivity to textured surface, and this allowed an improvement in the FF. The n-i-p flexible amorphous silicon solar cell using the MOCVD ZnO/screen printed Ag back reflector showed an initial efficiency of 6.2% with Voc=0.86 V, Jsc=12.4 mA/cm2, and FF = 0.58 (1 cm2. The identical quantum efficiency and comparable performance to the cells using conventional sputtered Ag back electrode have verified the potential of the MOCVD ZnO/screen printed Ag back reflector and possible opportunity to use the screen printed Ag thick film for flexible thin film silicon solar cells.

  3. Optical and electronic properties of HWCVD and PECVD silicon films irradiated using excimer and Nd:Yag lasers

    International Nuclear Information System (INIS)

    Shaikh, M.Z.; O'Neill, K.A.; Anthony, S.; Persheyev, S.K.; Rose, M.J.

    2006-01-01

    Thin silicon film samples were deposited using HWCVD and PECVD techniques to study the influence of laser annealing on their optical and electronic properties. Samples were annealed in air using a XeCl excimer and Nd:Yag lasers. Excimer laser annealing (ELA) at 50 to 222 mJ/cm 2 increased conductivity in PECVD films by 2 to 3 orders of magnitude and in HWCVD films by 1 to 2 orders of magnitude. ELA was also seen to decrease the optical gap in PECVD films by 0.5 eV and HWCVD films by 0.15 eV. Silicon-oxygen bond content was higher in as-deposited HWCVD films than PECVD films. Hydrogen content (at.%) in PECVD films was higher than HWCVD for higher H dilution ratios. A Nd:Yag laser 3-beam interference pattern was used to produce a periodic array of crystals in both PECVD and HWCVD films

  4. Hydrogen retention properties of lithium film

    International Nuclear Information System (INIS)

    Kanaya, Koh; Yamauchi, Yuji; Hirohata, Yuko; Hino, Tomoaki; Mori, Kintaro

    1998-01-01

    Hydrogen retention properties of Li films and lithium oxide-lithium hydroxide (Li 2 O-LiOH) mixed films were investigated by two methods, hydrogen ion irradiation and hydrogen glow discharge. In a case of the hydrogen ion irradiation, thermal desorption spectrum of hydrogen retained in Li 2 O-LiOH film had two desorption peaks at around 470 K and 570 K. The ratio between retained hydrogen and Li atom was about 0.7. In a case of the hydrogen glow discharge, the hydrogen was also gettered in Li film during the discharge. The ratio of H/Li was almost 0.9. Most of gettered hydrogen desorbed by a baking with a temperature of 370 K. On the contrary, when the Li film exposed to the atmosphere was irradiated by the hydrogen plasma, the desorption of H 2 O was observed in addition to the adsorption of H 2 . (author)

  5. Hydrogen diffusion at moderate temperatures in p-type Czochralski silicon

    International Nuclear Information System (INIS)

    Huang, Y.L.; Ma, Y.; Job, R.; Ulyashin, A.G.

    2004-01-01

    In plasma-hydrogenated p-type Czochralski silicon, rapid thermal donor (TD) formation is achieved, resulting from the catalytic support of hydrogen. The n-type counter doping by TD leads to a p-n junction formation. A simple method for the indirect determination of the diffusivity of hydrogen via applying the spreading resistance probe measurements is presented. Hydrogen diffusion in silicon during both plasma hydrogenation and post-hydrogenation annealing is investigated. The impact of the hydrogenation duration, annealing temperature, and resistivity of the silicon wafers on the hydrogen diffusion is discussed. Diffusivities of hydrogen are determined in the temperature range 270-450 deg. C. The activation energy for the hydrogen diffusion is deduced to be 1.23 eV. The diffusion of hydrogen is interpreted within the framework of a trap-limited diffusion mechanism. Oxygen and hydrogen are found to be the main traps

  6. Laser plasma generation of hydrogen-free diamond-like carbon thin films on Zr-2.5Nb CANDU pressure tube materials and silicon wafers with a pulsed high-power CO2 laser

    International Nuclear Information System (INIS)

    Ebrahim, N.A.; Mouris, J.F.; Hoffmann, C.R.J.; Davis, R.W.

    1995-06-01

    We report the first experiments on the laser plasma deposition of hydrogen-free, diamond-like carbon (DLC) films on Zr-2.5Nb CANDU pressure-tube materials and silicon substrates, using the short-pulse, high-power, CO 2 laser in the High-Power Laser Laboratory at Chalk River Laboratories. The films were (AFM). The thin films show the characteristic signature of DLC films in the Raman spectra obtained using a krypton-ion (Kr + ) laser. The Vickers ultra-low-load microhardness tests show hardness of the coated surface of approximately 7000 Kg force mm -2 , which is consistent with the hardness associated with DLC films. AFM examination of the film morphology shows diamond-like crystals distributed throughout the film, with film thicknesses of up to 0.5 μm generated with 50 laser pulses. With significantly more laser pulses, it is expected that very uniform diamond-like films would be produced. These experiments suggest that it should be possible to deposit hydrogen-free, diamond-like films of relevance to nuclear reactor components with a high-power and high-repetition-rate laser facility. (author). 7 refs., 2 tabs., 15 figs

  7. Control of wettability of hydrogenated amorphous carbon thin films by laser-assisted micro- and nanostructuring

    International Nuclear Information System (INIS)

    Pfleging, Wilhelm; Kohler, Robert; Torge, Maika; Trouillet, Vanessa; Danneil, Friederike; Stueber, Michael

    2011-01-01

    A flexible and rapid surface functionalization of amorphous carbon films shows a great potential for various application fields such as biological surfaces and tribological systems. For this purpose, the combination of thin film deposition and subsequent laser material processing was investigated. Amorphous carbon layers doped with hydrogen were deposited on silicon wafers by reactive direct-current magnetron sputtering. Films with three different hydrogen contents were synthesized. Subsequent to the thin film deposition process, UV laser material processing at wavelengths of 193 nm or 248 nm was performed with respect to chemical surface modification and surface structuring on micro- and nanometer scale. Depending on structure size and laser-induced chemical surface modification the adjustment of the surface energy and wetting behaviour in a broad range from hydrophobic to hydrophilic was possible. The chemical modification and the ablation mechanisms near the ablation threshold were strongly influenced by the hydrogen content in amorphous carbon thin films. Structural and chemical information of the as-deposited and modified films was obtained by Raman spectroscopy, X-ray photoelectron spectroscopy and contact angle measurements.

  8. Porous silicon-based direct hydrogen sulphide fuel cells.

    Science.gov (United States)

    Dzhafarov, T D; Yuksel, S Aydin

    2011-10-01

    In this paper, the use of Au/porous silicon/Silicon Schottky type structure, as a direct hydrogen sulphide fuel cell is demonstrated. The porous silicon filled with hydrochlorid acid was developed as a proton conduction membrane. The Au/Porous Silicon/Silicon cells were fabricated by first creating the porous silicon layer in single-crystalline Si using the anodic etching under illumination and then deposition Au catalyst layer onto the porous silicon. Using 80 mM H2S solution as fuel the open circuit voltage of 0.4 V was obtained and maximum power density of 30 W/m2 at room temperature was achieved. These results demonstrate that the Au/Porous Silicon/Silicon direct hydrogen sulphide fuel cell which uses H2S:dH2O solution as fuel and operates at room temperature can be considered as the most promising type of low cost fuel cell for small power-supply units.

  9. Solid state photochemistry. Subpanel A-2(b): Metastability in hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, D. [Solarex Corporation, Newton, PA (United States)

    1996-09-01

    All device quality amorphous silicon based materials exhibit degradation in electronic properties when exposed to sunlight. The photo-induced defects are associated with Si dangling bonds that are created by the recombination and/or trapping of photogenerated carriers. The defects are metastable and can be annealed out at temperatures of about 150 to 200 degrees Centigrade. The density of metastable defects is larger in films that are contaminated with > 10{sup 19} per cubic cm of impurities such as oxygen, carbon and nitrogen. However, recent experimental results indicate that some metastable defects are still present in films with very low impurity concentrations. The photo-induced defects typically saturate after 100 to 1000 hours of exposure to one sun illumination depending on the deposition conditions. There is also experimental evidence that photo-induced structural changes are occurring in the amorphous silicon based materials and that hydrogen may be playing an important role in both the photo-induced structural changes and in the creation of metastable defects.

  10. Polymorphous silicon thin films produced in dusty plasmas: application to solar cells

    International Nuclear Information System (INIS)

    Roca i Cabarrocas, Pere; Chaabane, N; Kharchenko, A V; Tchakarov, S

    2004-01-01

    We summarize our current understanding of the optimization of PIN solar cells produced by plasma enhanced chemical vapour deposition from silane-hydrogen mixtures. To increase the deposition rate, the discharge is operated under plasma conditions close to powder formation, where silicon nanocrystals contribute to the deposition of so-called polymorphous silicon thin films. We show that the increase in deposition rate can be achieved via an accurate control of the plasma parameters. However, this also results in a highly defective interface in the solar cells due to the bombardment of the P-layer by positively charged nanocrystals during the deposition of the I-layer. We show that decreasing the ion energy by increasing the total pressure or by using silane-helium mixtures allows us to increase both the deposition rate and the solar cells efficiency, as required for cost effective thin film photovoltaics

  11. Analysis of IV characteristics of solar cells made of hydrogenated amorphous, polymorphous and microcrystalline silicon

    International Nuclear Information System (INIS)

    Hamadeh, H.

    2009-03-01

    The IV characteristics of pin solar cells made of amorphous, polymorphous and microcrystalline silicon were investigated. The temperature dependence was measured in the temperature range between 150 K and 395 K. This range covers the most terrestrial applications condition. Using simplex procedure, the IV parameter of the cells were deduce using line fitting. It has been shown that polymorphous silicon shows electrical properties that are close to properties of microcrystalline silicon but as it is well known, polymorphous silicon shows higher absorption similar to amorphous silicon. The polymorphous silicon solar cells showed higher efficiencies, lower shunting and higher filling factors. In the above mentioned temperature range, polymorphous silicon is the better material for the manufacturing of thin film hydrogenated silicon pin solar cells. More investigations concerning the structural properties are necessary to make stronger conclusions in regards to the stability of the material, what we hope to do in the future. (author)

  12. Effect of hydrogen on the microstructure of silicon carbide

    International Nuclear Information System (INIS)

    Fischman, G.S.

    1985-01-01

    The effect of hydrogenation on the microstructure of a pressureless sintered silicon carbide was studied. Samples which were annealed in a 40:60 mole % H 2 :Ar atmosphere at 1400 0 C for 50 hours were microstructurally compared with unannealed samples and samples that had been annealed in a similar manner but using an argon atmosphere. The results were also compared with microstructural results obtained from in situ studies using both hydrogen and argon atmospheres. These results were compared with a thermodynamic model which was constructed using a free energy minimization technique. The observed effects of hydrogenation were surface decarburization and amorphization throughout the silicon carbide material. Other observations include the thermally induced growth of microcrystalline silicon and accelerated amorphization around the silicon microcrystals in samples used in hydrogen in situ studies. An analysis of the microstructure of the reference material was also performed

  13. Local structure reconstruction in hydrogenated amorphous silicon from angular correlation and synchrotron diffraction studies

    International Nuclear Information System (INIS)

    Britton, D.T.; Minani, E.; Knoesen, D.; Schut, H.; Eijt, S.W.H.; Furlan, F.; Giles, C.; Haerting, M.

    2006-01-01

    Hydrogenated amorphous silicon (a-Si:H) is a widely used thin film semiconductor material which is still incompletely understood. It is generally assumed to form a continuous random network, with a high concentration of coordination defects (dangling bonds), which are hydrogen terminated. Neither the exact nature of these sites nor the degree of medium range order has been fully determined. In this paper, we present the first results for the local structure, from a combined study using angular correlation of positron annihilation radiation (ACAR) and synchrotron radiation diffraction. Reciprocal space information is obtained directly, for the mesoscale structure and the local defect structure, from the orientation dependent diffraction and 2D-ACAR patterns, respectively. Furthermore, inversion of both patterns yields a comparison of real space information through maps of the silicon-silicon pair correlation function and the electron-positron autocorrelation function B 2γ (r). From this information, it is possible to identify the dominant structural defect as a vacancy-size dangling bond cluster, around which the network strain is fully relaxed

  14. HR-EELS study of hydrogen bonding configuration, chemical and thermal stability of detonation nanodiamond films

    Energy Technology Data Exchange (ETDEWEB)

    Michaelson, Sh.; Akhvlediani, R. [Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Petit, T.; Girard, H.A.; Arnault, J.C. [CEA, LIST, Diamond Sensors Laboratory, F-91191 Gif sur Yvette (France); Hoffman, A., E-mail: choffman@tx.technion.ac.il [Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

    2014-06-01

    Nano-diamond films composed of 3–10 nm grains prepared by the detonation method and deposited onto silicon substrates by drop-casting were examined by high resolution electron energy loss spectroscopy (HR-EELS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and secondary ion mass spectroscopy (SIMS). The impact of (i) ex-situ ambient annealing at 400 °C and (ii) ex-situ hydrogenation on hydrogen bonding and its thermal stability were examined. In order to clarify the changes in hydrogen bonding configuration detected on the different surfaces as a function of thermal annealing, in-situ hydrogenation by thermally activated atomic hydrogen was performed and examined. This study provides direct evidence that the exposure to ambient conditions and medium temperature ambient annealing have a pronounced effect on the hydrogen-carbon bonding configuration onto the nano-diamond surfaces. In-situ 1000 °C annealing results in irreversible changes of the film surface and partial nano-diamond silicidation.

  15. Impact of contamination on hydrogenated amorphous silicon thin films and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Woerdenweber, Jan

    2011-09-26

    This thesis deals with atmospheric contamination and cross-contamination of boron (single-chamber process) of the intrinsic absorber layer (i-layer) of p-i-n thin film solar cells based on hydrogenated amorphous silicon. The atmospheric contaminations were introduced by means of intentional leaks. Hereby, the focus is on the influence of contamination species (oxygen and nitrogen), quantity of contamination (leak flow), source of contamination (leaks at chamber wall or in the process gas pipe), and plasma power on the properties of solar cells. Thereby, the minimum requirements for the purity of vacuum and process gas as well as leak conditions of the recipient and gas pipe system have been determined. Additionally, deposition regimes were developed, where the incorporation of impurities is significantly suppressed. For standard processes critical levels of nitrogen and oxygen contamination are determined to be {proportional_to} 4 x 10{sup 18} cm{sup -3} and {proportional_to} 2 x 10{sup 19} cm{sup -3}, respectively, for a leak situated at the chamber wall. Above these concentrations the solar cell efficiency deteriorates. In literature, incorporation of oxygen and nitrogen in doping configuration is assumed to be the reason for the cell deterioration. This assumption is supported by additional material studies of contaminated absorber layers done in this work. The difference in critical concentration is due to the higher doping efficiency of nitrogen compared to that for oxygen. Nevertheless, applying an air leak the critical concentrations of O and N are reached almost simultaneously since the incorporation probability of oxygen is about one order of magnitude higher compared to that for nitrogen. Applying a leak in the process gas pipe the critical oxygen contamination level increases to {proportional_to} 2 x 10{sup 20} cm{sup -3} whereas the critical nitrogen level remains unchanged compared to a chamber wall leak. Applying a deposition regime with a very high

  16. Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer

    Science.gov (United States)

    Lee, Kwang Hong; Bao, Shuyu; Wang, Yue; Fitzgerald, Eugene A.; Seng Tan, Chuan

    2018-01-01

    The material properties and bonding behavior of silane-based silicon oxide layers deposited by plasma-enhanced chemical vapor deposition were investigated. Fourier transform infrared spectroscopy was employed to determine the chemical composition of the silicon oxide films. The incorporation of hydroxyl (-OH) groups and moisture absorption demonstrates a strong correlation with the storage duration for both as-deposited and annealed silicon oxide films. It is observed that moisture absorption is prevalent in the silane-based silicon oxide film due to its porous nature. The incorporation of -OH groups and moisture absorption in the silicon oxide films increase with the storage time (even in clean-room environments) for both as-deposited and annealed silicon oxide films. Due to silanol condensation and silicon oxidation reactions that take place at the bonding interface and in the bulk silicon, hydrogen (a byproduct of these reactions) is released and diffused towards the bonding interface. The trapped hydrogen forms voids over time. Additionally, the absorbed moisture could evaporate during the post-bond annealing of the bonded wafer pair. As a consequence, defects, such as voids, form at the bonding interface. To address the problem, a thin silicon nitride capping film was deposited on the silicon oxide layer before bonding to serve as a diffusion barrier to prevent moisture absorption and incorporation of -OH groups from the ambient. This process results in defect-free bonded wafers.

  17. Silicon wafer wettability and aging behaviors: Impact on gold thin-film morphology

    KAUST Repository

    Yang, Xiaoming

    2014-10-01

    This paper reports on the wettability and aging behaviors of the silicon wafers that had been cleaned using a piranha (3:1 mixture of sulfuric acid (H2SO4, 96%) and hydrogen peroxide (H2O 2, 30%), 120 °C), SC1 (1:1:5 mixture of NH4OH, H 2O2 and H2O, at 80°C) or HF solution (6 parts of 40% NH4F and 1 part of 49% HF, at room temperature) solution, and treated with gaseous plasma. The silicon wafers cleaned using the piranha or SC1 solution were hydrophilic, and the water contact angles on the surfaces would increase along with aging time, until they reached the saturated points of around 70°. The contact angle increase rate of these wafers in a vacuum was much faster than that in the open air, because of loss of water, which was physically adsorbed on the wafer surfaces. The silicon wafers cleaned with the HF solution were hydrophobic. Their contact angle decreased in the atmosphere, while it increased in the vacuum up to 95°. Gold thin films deposited on the hydrophilic wafers were smoother than that deposited on the hydrophobic wafers, because the numerous oxygen groups formed on the hydrophilic surfaces would react with gold adatoms in the sputtering process to form a continuous thin film at the nucleation stage. The argon, nitrogen, oxygen gas plasma treatments could change the silicon wafer surfaces from hydrophobic to hydrophilic by creating a thin (around 2.5 nm) silicon dioxide film, which could be utilized to improve the roughness and adhesion of the gold thin film. © 2014 Elsevier Ltd. All rights reserved.

  18. Silicon wafer wettability and aging behaviors: Impact on gold thin-film morphology

    KAUST Repository

    Yang, Xiaoming; Zhong, Zhaowei; Diallo, Elhadj; Wang, Zhihong; Yue, Weisheng

    2014-01-01

    This paper reports on the wettability and aging behaviors of the silicon wafers that had been cleaned using a piranha (3:1 mixture of sulfuric acid (H2SO4, 96%) and hydrogen peroxide (H2O 2, 30%), 120 °C), SC1 (1:1:5 mixture of NH4OH, H 2O2 and H2O, at 80°C) or HF solution (6 parts of 40% NH4F and 1 part of 49% HF, at room temperature) solution, and treated with gaseous plasma. The silicon wafers cleaned using the piranha or SC1 solution were hydrophilic, and the water contact angles on the surfaces would increase along with aging time, until they reached the saturated points of around 70°. The contact angle increase rate of these wafers in a vacuum was much faster than that in the open air, because of loss of water, which was physically adsorbed on the wafer surfaces. The silicon wafers cleaned with the HF solution were hydrophobic. Their contact angle decreased in the atmosphere, while it increased in the vacuum up to 95°. Gold thin films deposited on the hydrophilic wafers were smoother than that deposited on the hydrophobic wafers, because the numerous oxygen groups formed on the hydrophilic surfaces would react with gold adatoms in the sputtering process to form a continuous thin film at the nucleation stage. The argon, nitrogen, oxygen gas plasma treatments could change the silicon wafer surfaces from hydrophobic to hydrophilic by creating a thin (around 2.5 nm) silicon dioxide film, which could be utilized to improve the roughness and adhesion of the gold thin film. © 2014 Elsevier Ltd. All rights reserved.

  19. Electronic properties of intrinsic and doped amorphous silicon carbide films

    International Nuclear Information System (INIS)

    Vetter, M.; Voz, C.; Ferre, R.; Martin, I.; Orpella, A.; Puigdollers, J.; Andreu, J.; Alcubilla, R.

    2006-01-01

    Hydrogenated amorphous silicon carbide (a-SiC x : H) films have shown excellent surface passivation of crystalline silicon. With the aim of large area deposition of these films the influence of the rf plasma power was investigated. It is found that homogenous deposition with effective surface recombination velocity lower than 100 cms -1 is possible up to 6'' diameter in a simple parallel plate reactor by optimizing deposition parameters. For application in solar cell processes the conductivity of these a-SiC x : H films might become of importance since good surface passivation results from field-effect passivation which needs an insulating dielectric layer. Therefore, the temperature dependence of the dark dc conductivity of these films was investigated in the temperature range from - 20 to 260 deg. C. Two transition temperatures, T s ∼80 deg. C and T s ∼170 deg. C, were found where conductivity increases, resp. decreases over-exponential. From Arrhenius plots activation energy (E a ) and conductivity pre-factor (σ 0 ) were calculated for a large number of samples with different composition. A correlation between E a and σ 0 was found giving a Meyer-Neldel relation with a slope of 59 mV, corresponding to a material characteristic temperature T m = 400 deg. C, and an intercept at σ 00 = 0.1 Ω -1 cm -1

  20. Thick film hydrogen sensor

    Science.gov (United States)

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  1. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    Science.gov (United States)

    Patki, Gauri Dilip

    Hydrogen is a promising energy carrier, for use in fuel cells, engines, and turbines for transportation or mobile applications. Hydrogen is desirable as an energy carrier, because its oxidation by air releases substantial energy (thermally or electrochemically) and produces only water as a product. In contrast, hydrocarbon energy carriers inevitably produce CO2, contributing to global warming. While CO2 capture may prove feasible in large stationary applications, implementing it in transportation and mobile applications is a daunting challenge. Thus a zero-emission energy carrier like hydrogen is especially needed in these cases. Use of H2 as an energy carrier also brings new challenges such as safe handling of compressed hydrogen and implementation of new transport, storage, and delivery processes and infrastructure. With current storage technologies, hydrogen's energy per volume is very low compared to other automobile fuels. High density storage of compressed hydrogen requires combinations of high pressure and/or low temperature that are not very practical. An alternative for storage is use of solid light weight hydrogenous material systems which have long durability, good adsorption properties and high activity. Substantial research has been conducted on carbon materials like activated carbon, carbon nanofibers, and carbon nanotubes due to their high theoretical hydrogen capacities. However, the theoretical values have not been achieved, and hydrogen uptake capacities in these materials are below 10 wt. %. In this thesis we investigated the use of silicon for hydrogen generation. Hydrogen generation via water oxidation of silicon had been ignored due to slow reaction kinetics. We hypothesized that the hydrogen generation rate could be improved by using high surface area silicon nanoparticles. Our laser-pyrolysis-produced nanoparticles showed surprisingly rapid hydrogen generation and high hydrogen yield, exceeding the theoretical maximum of two moles of H2 per

  2. Characterization of silicon oxynitride films prepared by the simultaneous implantation of oxygen and nitrogen ions into silicon

    International Nuclear Information System (INIS)

    Hezel, R.; Streb, W.

    1985-01-01

    Silicon oxynitride films about 5 nm in thickness were prepared by simultaneously implanting 5 keV oxygen and nitrogen ions into silicon at room temperature up to saturation. These films with concentrations ranging from pure silicon oxide to silicon nitride were characterized using Auger electron spectroscopy, electron energy loss spectroscopy and depth-concentration profiling. The different behaviour of the silicon oxynitride films compared with those of silicon oxide and silicon nitride with regard to thermal stability and hardness against electron and argon ion irradiation is pointed out. (Auth.)

  3. Hydrogenated amorphous silicon p-i-n solar cells deposited under well controlled ion bombardment using pulse-shaped substrate biasing

    NARCIS (Netherlands)

    Wank, M. A.; van Swaaij, R.; R. van de Sanden,; Zeman, M.

    2012-01-01

    We applied pulse-shaped biasing (PSB) to the expanding thermal plasma deposition of intrinsic hydrogenated amorphous silicon layers at substrate temperatures of 200 degrees C and growth rates of about 1?nm/s. Fourier transform infrared spectroscopy of intrinsic films showed a densification with

  4. Application of hydrogen-doped In2O3 transparent conductive oxide to thin-film microcrystalline Si solar cells

    International Nuclear Information System (INIS)

    Koida, Takashi; Sai, Hitoshi; Kondo, Michio

    2010-01-01

    Hydrogen-doped In 2 O 3 (IO:H) films with high electron mobility and improved near-infrared (NIR) transparency have been applied as a transparent conducting oxide (TCO) electrode in substrate-type hydrogenated microcrystalline silicon (μc-Si:H) solar cells. The incorporation of IO:H, instead of conventional Sn-doped In 2 O 3 , improved the short-circuit current density (J sc ) and the resulting conversion efficiency. Optical analysis of the solar cells and TCO films revealed that the improvement in J sc is due to the improved spectral sensitivity in the visible and NIR wavelengths by reduction of absorption loss caused by free carriers in the TCO films.

  5. High-Performance and Omnidirectional Thin-Film Amorphous Silicon Solar Cell Modules Achieved by 3D Geometry Design.

    Science.gov (United States)

    Yu, Dongliang; Yin, Min; Lu, Linfeng; Zhang, Hanzhong; Chen, Xiaoyuan; Zhu, Xufei; Che, Jianfei; Li, Dongdong

    2015-11-01

    High-performance thin-film hydrogenated amorphous silicon solar cells are achieved by combining macroscale 3D tubular substrates and nanoscaled 3D cone-like antireflective films. The tubular geometry delivers a series of advantages for large-scale deployment of photovoltaics, such as omnidirectional performance, easier encapsulation, decreased wind resistance, and easy integration with a second device inside the glass tube. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. High-temperature laser annealing for thin film polycrystalline silicon solar cell on glass substrate

    Science.gov (United States)

    Chowdhury, A.; Schneider, J.; Dore, J.; Mermet, F.; Slaoui, A.

    2012-06-01

    Thin film polycrystalline silicon films grown on glass substrate were irradiated with an infrared continuous wave laser for defects annealing and/or dopants activation. The samples were uniformly scanned using an attachment with the laser system. Substrate temperature, scan speed and laser power were varied to find suitable laser annealing conditions. The Raman spectroscopy and Suns- V oc analysis were carried out to qualify the films quality after laser annealing. A maximum enhancement of the open circuit voltage V oc of about 100 mV is obtained after laser annealing of as-grown polysilicon structures. A strong correlation was found between the full width half maximum of the Si crystalline peak and V oc. It is interpreted as due to defects annealing as well as to dopants activation in the absorbing silicon layer. The maximum V oc reached is 485 mV after laser treatment and plasma hydrogenation, thanks to defects passivation.

  7. Photophysical and photochemical investigations of fullerene presence in amorphous hydrogenated carbon films

    Science.gov (United States)

    Chen, J. Q.; Meeker, D. L.; Barashkov, N. N.

    1997-07-01

    The plasma-enhanced chemical vapor deposition system was used to grow amorphous hydrogenated carbon films deposited on silicon substrates. Extracts of the films were obtained by treatment with boiling cyclohexane solvent. The absorption spectra of these extracts showed the existence of small quantities of fullerenes. Using the molar extinction coefficient of C60 in cyclohexane, the mass of fullerenes in the films was estimated to be about 0.019 mg. C60 induced fluorescence quenching of anthracene was also observed. Additional evidence for the presence of fullerenes was based on their capability to accelerate the photo-oxidation of anthracene through the generation of singlet oxygen with a high quantum yield under ultraviolet irradiation.

  8. Hydrogenated amorphous silicon p–i–n solar cells deposited under well controlled ion bombardment using pulse-shaped substrate biasing

    NARCIS (Netherlands)

    Wank, M.A.; Swaaij, van R.A.C.M.M.; Sanden, van de M.C.M.; Zeman, M.

    2012-01-01

    We applied pulse-shaped biasing (PSB) to the expanding thermal plasma deposition of intrinsic hydrogenated amorphous silicon layers at substrate temperatures of 200¿°C and growth rates of about 1¿nm/s. Fourier transform infrared spectroscopy of intrinsic films showed a densification with increasing

  9. Surface morphology and grain analysis of successively industrially grown amorphous hydrogenated carbon films (a-C:H) on silicon

    Science.gov (United States)

    Catena, Alberto; McJunkin, Thomas; Agnello, Simonpietro; Gelardi, Franco M.; Wehner, Stefan; Fischer, Christian B.

    2015-08-01

    Silicon (1 0 0) has been gradually covered by amorphous hydrogenated carbon (a-C:H) films via an industrial process. Two types of these diamond-like carbon (DLC) coatings, one more flexible (f-DLC) and one more robust (r-DLC), have been investigated. Both types have been grown by a radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique with acetylene plasma. Surface morphologies have been studied in detail by atomic force microscopy (AFM) and Raman spectroscopy has been used to investigate the DLC structure. Both types appeared to have very similar morphology and sp2 carbon arrangement. The average height and area for single grains have been analyzed for all depositions. A random distribution of grain heights was found for both types. The individual grain structures between the f- and r-type revealed differences: the shape for the f-DLC grains is steeper than for the r-DLC grains. By correlating the average grain heights to the average grain areas for all depositions a limited region is identified, suggesting a certain regularity during the DLC deposition mechanisms that confines both values. A growth of the sp2 carbon entities for high r-DLC depositions is revealed and connected to a structural rearrangement of carbon atom hybridizations and hydrogen content in the DLC structure.

  10. "Silicon millefeuille": From a silicon wafer to multiple thin crystalline films in a single step

    Science.gov (United States)

    Hernández, David; Trifonov, Trifon; Garín, Moisés; Alcubilla, Ramon

    2013-04-01

    During the last years, many techniques have been developed to obtain thin crystalline films from commercial silicon ingots. Large market applications are foreseen in the photovoltaic field, where important cost reductions are predicted, and also in advanced microelectronics technologies as three-dimensional integration, system on foil, or silicon interposers [Dross et al., Prog. Photovoltaics 20, 770-784 (2012); R. Brendel, Thin Film Crystalline Silicon Solar Cells (Wiley-VCH, Weinheim, Germany 2003); J. N. Burghartz, Ultra-Thin Chip Technology and Applications (Springer Science + Business Media, NY, USA, 2010)]. Existing methods produce "one at a time" silicon layers, once one thin film is obtained, the complete process is repeated to obtain the next layer. Here, we describe a technology that, from a single crystalline silicon wafer, produces a large number of crystalline films with controlled thickness in a single technological step.

  11. Ultrafast Terahertz Conductivity of Photoexcited Nanocrystalline Silicon

    DEFF Research Database (Denmark)

    Cooke, David; MacDonald, A. Nicole; Hryciw, Aaron

    2007-01-01

    The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described by a class...... in the silicon nanocrystal films is dominated by trapping at the Si/SiO2 interface states, occurring on a 1–100 ps time scale depending on particle size and hydrogen passivation......The ultrafast transient ac conductivity of nanocrystalline silicon films is investigated using time-resolved terahertz spectroscopy. While epitaxial silicon on sapphire exhibits a free carrier Drude response, silicon nanocrystals embedded in glass show a response that is best described...

  12. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    King, Sean W., E-mail: sean.king@intel.com; Tanaka, Satoru; Davis, Robert F. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nemanich, Robert J. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-09-15

    Due to the extreme chemical inertness of silicon carbide (SiC), in-situ thermal desorption is commonly utilized as a means to remove surface contamination prior to initiating critical semiconductor processing steps such as epitaxy, gate dielectric formation, and contact metallization. In-situ thermal desorption and silicon sublimation has also recently become a popular method for epitaxial growth of mono and few layer graphene. Accordingly, numerous thermal desorption experiments of various processed silicon carbide surfaces have been performed, but have ignored the presence of hydrogen, which is ubiquitous throughout semiconductor processing. In this regard, the authors have performed a combined temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) investigation of the desorption of molecular hydrogen (H{sub 2}) and various other oxygen, carbon, and fluorine related species from ex-situ aqueous hydrogen fluoride (HF) and in-situ remote hydrogen plasma cleaned 6H-SiC (0001) surfaces. Using XPS, the authors observed that temperatures on the order of 700–1000 °C are needed to fully desorb C-H, C-O and Si-O species from these surfaces. However, using TPD, the authors observed H{sub 2} desorption at both lower temperatures (200–550 °C) as well as higher temperatures (>700 °C). The low temperature H{sub 2} desorption was deconvoluted into multiple desorption states that, based on similarities to H{sub 2} desorption from Si (111), were attributed to silicon mono, di, and trihydride surface species as well as hydrogen trapped by subsurface defects, steps, or dopants. The higher temperature H{sub 2} desorption was similarly attributed to H{sub 2} evolved from surface O-H groups at ∼750 °C as well as the liberation of H{sub 2} during Si-O desorption at temperatures >800 °C. These results indicate that while ex-situ aqueous HF processed 6H-SiC (0001) surfaces annealed at <700 °C remain terminated by some surface C–O and

  13. Hydrogen adsorption in metal-decorated silicon carbide nanotubes

    Science.gov (United States)

    Singh, Ram Sevak; Solanki, Ankit

    2016-09-01

    Hydrogen storage for fuel cell is an active area of research and appropriate materials with excellent hydrogen adsorption properties are highly demanded. Nanotubes, having high surface to volume ratio, are promising storage materials for hydrogen. Recently, silicon carbide nanotubes have been predicted as potential materials for future hydrogen storage application, and studies in this area are ongoing. Here, we report a systematic study on hydrogen adsorption properties in metal (Pt, Ni and Al) decorated silicon carbide nanotubes (SiCNTs) using first principles calculations based on density functional theory. The hydrogen adsorption properties are investigated by calculations of adsorption energy, electronic band structure, density of states (DOS) and Mulliken charge population analysis. Our findings show that hydrogen adsorptions on Pt, Ni and Al-decorated SiCNTs undergo spontaneous exothermic reactions with significant modulation of electronic structure of SiCNTs in all cases. Importantly, according to the Mulliken charge population analysis, dipole-dipole interaction causes chemisorptions of hydrogen in Pt, Ni and Al decorated SiCNTs with formation of chemical bonds. The study is a platform for the development of metal decorated SiCNTs for hydrogen adsorption or hydrogen storage application.

  14. Characterization of 13 and 30 mum thick hydrogenated amorphous silicon diodes deposited over CMOS integrated circuits for particle detection application

    CERN Document Server

    Despeisse, M; Commichau, S C; Dissertori, G; Garrigos, A; Jarron, P; Miazza, C; Moraes, D; Shah, A; Wyrsch, N; Viertel, Gert M; 10.1016/j.nima.2003.11.022

    2004-01-01

    We present the experimental results obtained with a novel monolithic silicon pixel detector which consists in depositing a n-i-p hydrogenated amorphous silicon (a-Si:H) diode straight above the readout ASIC (this technology is called Thin Film on ASIC, TFA). The characterization has been performed on 13 and 30mum thick a-Si:H films deposited on top of an ASIC containing a linear array of high- speed low-noise transimpedance amplifiers designed in a 0.25mum CMOS technology. Experimental results presented have been obtained with a 600nm pulsed laser. The results of charge collection efficiency and charge collection speed of these structures are discussed.

  15. Laser process for extended silicon thin film solar cells

    International Nuclear Information System (INIS)

    Hessmann, M.T.; Kunz, T.; Burkert, I.; Gawehns, N.; Schaefer, L.; Frick, T.; Schmidt, M.; Meidel, B.; Auer, R.; Brabec, C.J.

    2011-01-01

    We present a large area thin film base substrate for the epitaxy of crystalline silicon. The concept of epitaxial growth of silicon on large area thin film substrates overcomes the area restrictions of an ingot based monocrystalline silicon process. Further it opens the possibility for a roll to roll process for crystalline silicon production. This concept suggests a technical pathway to overcome the limitations of silicon ingot production in terms of costs, throughput and completely prevents any sawing losses. The core idea behind these thin film substrates is a laser welding process of individual, thin silicon wafers. In this manuscript we investigate the properties of laser welded monocrystalline silicon foils (100) by micro-Raman mapping and spectroscopy. It is shown that the laser beam changes the crystalline structure of float zone grown silicon along the welding seam. This is illustrated by Raman mapping which visualizes compressive stress as well as tensile stress in a range of - 147.5 to 32.5 MPa along the welding area.

  16. Micro-cutting of silicon implanted with hydrogen and post-implantation thermal treatment

    Science.gov (United States)

    Jelenković, Emil V.; To, Suet; Sundaravel, B.; Xiao, Gaobo; Huang, Hu

    2016-07-01

    It was reported that non-amorphizing implantation by hydrogen has a potential in improving silicon machining. Post-implantation high-temperature treatment will affect implantation-induced damage, which can have impact on silicon machining. In this article, a relation of a thermal annealing of hydrogen implanted in silicon to micro-cutting experiment is investigated. Hydrogen ions were implanted into 4″ silicon wafers with 175 keV, 150 keV, 125 keV and doses of 2 × 1016 cm-2, 2 × 1016 cm-2 and 3 × 1016 cm-2, respectively. In this way, low hydrogen atom-low defect concentration was created in the region less than ~0.8 μm deep and high hydrogen atom-high defect concentration was obtained at silicon depth of ~0.8-1.5 μm. The post-implantation annealing was carried out at 300 and 400 °C in nitrogen for 1 h. Physical and electrical properties of implanted and annealed samples were characterized by secondary ion mass spectroscopy (SIMS), X-ray diffraction (XRD), Rutherford backscattering (RBS) and nanoindentation. Plunge cutting experiment was carried out in and silicon crystal direction. The critical depth of cut and cutting force were monitored and found to be influenced by the annealing. The limits of hydrogen implantation annealing contribution to the cutting characteristics of silicon are discussed in light of implantation process and redistribution of hydrogen and defects generation during annealing process.

  17. Nanoindentation-induced pile-up in hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    Pantchev, B; Danesh, P; Wiezorek, J; Schmidt, B

    2010-01-01

    Nanoindentation-induced material extrusion around the nanoindent (pile-up) leads to an overestimation of elastic modulus, E, and nanohardness, H, when the test results are evaluated using the Oliver and Pharr method. Factors affecting the pile-up during testing are residual stresses in film and ratio of film and substrate mechanical properties. Nanoindentation of hydrogenated amorphous silicon (a-Si:H) films has been carried out with the aim to study the effect of residual compressive stress on the pile-up in this material. To distinguish the contribution of compressive stress to the appearance of pile-up ion implantation has been used as a tool, which reduces the compressive stress in a-Si:H. Scanning probe microscope has been used for the imaging of the indent and evaluation of the pile-up. The values of E and H have been obtained from the experimental load-displacement curves using depth profiling with Berkovich tip, which has created negligible pile-up. A sharper cube corner tip has been used to study the pile-up. It has been established that pile-up is determined by the material plasticity, when the compressive stress is below 200 MPa. The contribution of mechanical stress to the pile-up is essential for the stress as high, as about 500 MPa.

  18. Oxide film assisted dopant diffusion in silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Tin, Chin-Che, E-mail: cctin@physics.auburn.ed [Department of Physics, Auburn University, Alabama 36849 (United States); Mendis, Suwan [Department of Physics, Auburn University, Alabama 36849 (United States); Chew, Kerlit [Department of Electrical and Electronic Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kuala Lumpur (Malaysia); Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin [Physical Technical Institute, Uzbek Academy of Sciences, 700084 Tashkent (Uzbekistan); Atabaev, Bakhtiyar [Institute of Electronics, Uzbek Academy of Sciences, 700125 Tashkent (Uzbekistan); Adedeji, Victor [Department of Chemistry, Geology and Physics, Elizabeth City State University, North Carolina 27909 (United States); Rusli [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore)

    2010-10-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  19. Oxide film assisted dopant diffusion in silicon carbide

    International Nuclear Information System (INIS)

    Tin, Chin-Che; Mendis, Suwan; Chew, Kerlit; Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin; Atabaev, Bakhtiyar; Adedeji, Victor; Rusli

    2010-01-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  20. Effect of hydrogen doping on the properties of Al and F co-doped ZnO films for thin film silicon solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fang-Hsing, E-mail: fansen@dragon.nchu.edu.tw; Yang, Tung-Hsin

    2016-04-30

    Aluminum and fluorine co-doped zinc oxide (AFZO) thin films were prepared in Ar + H{sub 2} atmospheres by rf magnetron sputtering at room temperature. The structural, electrical, and optical properties of the prepared films were investigated using X-ray diffraction, scanning electron microscopy, atomic force microscopy, Hall-effect measurement, X-ray photoelectron spectroscopy, and ultraviolet–visible spectrometry, and their dependence on deposition atmosphere (i.e. H{sub 2} / (H{sub 2} + Ar) ratio) was studied. The resulting films showed a (0 0 2) diffraction peak, indicating a typical wurtzite structure, and the optimal film crystallinity was obtained with the H{sub 2} / (H{sub 2} + Ar) ratio of 3%. The electrical resistivity of AFZO films decreased to 9.16 × 10{sup −4} Ω-cm, which was lower than ZnO:Al and ZnO:F films due to double doping effect of Al and F. The resistivity further decreased to below 5 × 10{sup −4} Ω-cm for the AFZO film with the H{sub 2} / (H{sub 2} + Ar) ratio of 3%–5%. All the films regardless of hydrogen content displayed high transmittances (> 92%) in the visible wavelength range. Applying the developed AFZO films as front transparent electrodes, amorphous Si thin film solar cells were fabricated and the open-circuit voltage, fill factor, and efficiency of the cell with the hydrogenated AFZO film were improved in contrast to those without the hydrogenated film. - Highlights: • H{sub 2} doping improves optoelectronic properties of Al, F co-doped ZnO (AFZO) films. • Resistivity of AFZO films decreases to 4.4 × 10{sup −4} Ω-cm with the 3% H{sub 2}/(Ar + H{sub 2}) ratio. • AFZO films show high average visible transmittances of above 92%. • Efficiency of a-Si thin film solar cells is improved by AFZO:H as front electrode.

  1. Photophysical and photochemical investigations of fullerene presence in amorphous hydrogenated carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.Q.; Meeker, D.L. [The Physics Program, University of Texas at Dallas, Richardson, Texas 75083 (United States); Barashkov, N.N. [Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75083 (United States)

    1997-07-01

    The plasma-enhanced chemical vapor deposition system was used to grow amorphous hydrogenated carbon films deposited on silicon substrates. Extracts of the films were obtained by treatment with boiling cyclohexane solvent. The absorption spectra of these extracts showed the existence of small quantities of fullerenes. Using the molar extinction coefficient of C{sub 60} in cyclohexane, the mass of fullerenes in the films was estimated to be about 0.019 mg. C{sub 60} induced fluorescence quenching of anthracene was also observed. Additional evidence for the presence of fullerenes was based on their capability to accelerate the photo-oxidation of anthracene through the generation of singlet oxygen with a high quantum yield under ultraviolet irradiation. {copyright} {ital 1997 American Institute of Physics.}

  2. Increasing the deposition rate of microcrystalline and amorphous silicon thin films for photovoltaic applications - Phase IV: 1997-1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This report on behalf of the Swiss Federal Office of Energy (SFOE) describes Phase IV of the project to test the feasibility and usefulness of Very High Frequency (VHF) plasma operation in large-area reactors suitable for the production of solar cell panels using thinly-deposited micro-crystalline silicon films. The report discusses the results of fast-deposition tests and trials using high-current DC arcs and VHF techniques to obtain deposition rates and film quality suitable for industrial processes for the production of thin-film solar cell panels. The effects of alternative plasma chemistry were also studied by adding silicon tetrafluoride to the standard silane/hydrogen mixtures. The report is concluded with calculations for optimum radio-frequency (RF) contact configuration for large area reactors with 1 m{sup 2} electrodes.

  3. Electrical characterization of MIS devices using PECVD SiN{sub x}:H films for application of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jin-Su; Cho, Jun-Sik; Park, Joo-Hyung; Ahn, Seung-Kyu; Shin, Kee-Shik; Yoon, Kyung-Hoon [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Yi, Jun-Sin [Sungkyunkwan University, Suwon (Korea, Republic of)

    2012-07-15

    The surface passivation of crystalline silicon solar cells using plasma enhanced chemical vapor deposition (PECVD), hydrogenated, silicon-nitride (SiN{sub x}:H) thin films has become significant due to a low-temperature, low-cost and very effective defect passivation process. Also, a good quality antireflection coating can be formed. In this work, SiN{sub x}:H thin films were deposited by varying the gas ratio R (=NH{sub 3}/SiH{sub 4}+NH{sub 3}) and were annealed by rapid thermal processing (RTP). Metal-insulator- semiconductor (MIS) devices were fabricated using SiN{sub x}:H thin films as insulator layers and they were analyzed in the temperature range of 100 - 400 K by using capacitance-voltage (C-V) and current-voltage (I-V) measurements. The annealed SiN{sub x}:H thin films were evaluated by using the electrical properties at different temperature to determine the effect of surface passivation. We achieved an energy conversion efficiency of 18.1% under one-sun standard testing conditions for large-area (156 mm x 156 mm) crystalline-silicon solar cells.

  4. Lifetime degradation of n-type Czochralski silicon after hydrogenation

    Science.gov (United States)

    Vaqueiro-Contreras, M.; Markevich, V. P.; Mullins, J.; Halsall, M. P.; Murin, L. I.; Falster, R.; Binns, J.; Coutinho, J.; Peaker, A. R.

    2018-04-01

    Hydrogen plays an important role in the passivation of interface states in silicon-based metal-oxide semiconductor technologies and passivation of surface and interface states in solar silicon. We have shown recently [Vaqueiro-Contreras et al., Phys. Status Solidi RRL 11, 1700133 (2017)] that hydrogenation of n-type silicon slices containing relatively large concentrations of carbon and oxygen impurity atoms {[Cs] ≥ 1 × 1016 cm-3 and [Oi] ≥ 1017 cm-3} can produce a family of C-O-H defects, which act as powerful recombination centres reducing the minority carrier lifetime. In this work, evidence of the silicon's lifetime deterioration after hydrogen injection from SiNx coating, which is widely used in solar cell manufacturing, has been obtained from microwave photoconductance decay measurements. We have characterised the hydrogenation induced deep level defects in n-type Czochralski-grown Si samples through a series of deep level transient spectroscopy (DLTS), minority carrier transient spectroscopy (MCTS), and high-resolution Laplace DLTS/MCTS measurements. It has been found that along with the hydrogen-related hole traps, H1 and H2, in the lower half of the gap reported by us previously, hydrogenation gives rise to two electron traps, E1 and E2, in the upper half of the gap. The activation energies for electron emission from the E1 and E2 trap levels have been determined as 0.12, and 0.14 eV, respectively. We argue that the E1/H1 and E2/H2 pairs of electron/hole traps are related to two energy levels of two complexes, each incorporating carbon, oxygen, and hydrogen atoms. Our results show that the detrimental effect of the C-O-H defects on the minority carrier lifetime in n-type Si:O + C materials can be very significant, and the carbon concentration in Czochralski-grown silicon is a key parameter in the formation of the recombination centers.

  5. Characterization of 13 and 30 μm thick hydrogenated amorphous silicon diodes deposited over CMOS integrated circuits for particle detection application

    International Nuclear Information System (INIS)

    Despeisse, M.; Anelli, G.; Commichau, S.; Dissertori, G.; Garrigos, A.; Jarron, P.; Miazza, C.; Moraes, D.; Shah, A.; Wyrsch, N.; Viertel, G.

    2004-01-01

    We present the experimental results obtained with a novel monolithic silicon pixel detector which consists in depositing a n-i-p hydrogenated amorphous silicon (a-Si:H) diode straight above the readout ASIC (this technology is called Thin Film on ASIC, TFA). The characterization has been performed on 13 and 30 μm thick a-Si:H films deposited on top of an ASIC containing a linear array of high-speed low-noise transimpedance amplifiers designed in a 0.25 μm CMOS technology. Experimental results presented have been obtained with a 600 nm pulsed laser. The results of charge collection efficiency and charge collection speed of these structures are discussed

  6. Deposition of thin layers of boron nitrides and hydrogenated microcrystalline silicon assisted by high current direct current arc plasma; Deposition assistee par un plasma a arc a haut courant continu de couches minces de Nitrure de Bore et de Silicium microcristallin hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Franz, D. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    1999-09-01

    In the frame of this thesis, a high current direct current arc (HCDCA) used for the industrial deposition of diamond, has been adapted to study the deposition of two types of coatings: a) boron nitride, whose cubic phase is similar to diamond, for tribological applications, b) hydrogenated microcrystalline silicon, for applications in the semiconductor fields (flat panel displays, solar cells,...). For the deposition of these coatings, the substrates were placed in the diffusion region of the arc. The substrate heating is mainly due to atomic species recombining on its surface. The deposition temperature, varying from 300 to 900 {sup o}C according to the films deposited, is determined by the substrate position, the arc power and the injected gas fluxes, without the use of any external heating or cooling system. Measurements performed on the arc plasma show that the electronic temperature is around 2 eV (23'000 K) while the gas temperature is lower than 5500 K. Typical electronic densities are in the range of 10{sup 12}-10{sup 1'}3 cm{sup -3}. For the deposition of boron nitride films, different boron precursors were used and a wide parameter range was investigated. The extreme difficulty of synthesising cubic boron nitride films by chemical vapour deposition (CVD) did not allow to stabilize the cubic phase of boron nitride in HCDCA. Coatings resulted in hexagonal or amorphous boron nitride with a chemical composition close to stoichiometric. The presence of hydrogen leads to the deposition of rough and porous films. Negative biasing of the samples, for positive ion bombardment, is commonly used to stabilize the cubic phase. In HCDCA and in our biasing range, only a densification of the films could be observed. A boron nitride deposition plasma study by infrared absorption spectroscopy in a capacitive radio frequency reactor has demonstrated the usefulness of this diagnostic for the understanding of the various chemical reactions which occur in this kind

  7. Directed dewetting of amorphous silicon film by a donut-shaped laser pulse

    International Nuclear Information System (INIS)

    Yoo, Jae-Hyuck; Zheng, Cheng; Grigoropoulos, Costas P; In, Jung Bin; Sakellari, Ioanna; Raman, Rajesh N; Matthews, Manyalibo J; Elhadj, Selim

    2015-01-01

    Irradiation of a thin film with a beam-shaped laser is proposed to achieve site-selectively controlled dewetting of the film into nanoscale structures. As a proof of concept, the laser-directed dewetting of an amorphous silicon thin film on a glass substrate is demonstrated using a donut-shaped laser beam. Upon irradiation of a single laser pulse, the silicon film melts and dewets on the substrate surface. The irradiation with the donut beam induces an unconventional lateral temperature profile in the film, leading to thermocapillary-induced transport of the molten silicon to the center of the beam spot. Upon solidification, the ultrathin amorphous silicon film is transformed to a crystalline silicon nanodome of increased height. This morphological change enables further dimensional reduction of the nanodome as well as removal of the surrounding film material by isotropic silicon etching. These results suggest that laser-based dewetting of thin films can be an effective way for scalable manufacturing of patterned nanostructures. (paper)

  8. Directed dewetting of amorphous silicon film by a donut-shaped laser pulse.

    Science.gov (United States)

    Yoo, Jae-Hyuck; In, Jung Bin; Zheng, Cheng; Sakellari, Ioanna; Raman, Rajesh N; Matthews, Manyalibo J; Elhadj, Selim; Grigoropoulos, Costas P

    2015-04-24

    Irradiation of a thin film with a beam-shaped laser is proposed to achieve site-selectively controlled dewetting of the film into nanoscale structures. As a proof of concept, the laser-directed dewetting of an amorphous silicon thin film on a glass substrate is demonstrated using a donut-shaped laser beam. Upon irradiation of a single laser pulse, the silicon film melts and dewets on the substrate surface. The irradiation with the donut beam induces an unconventional lateral temperature profile in the film, leading to thermocapillary-induced transport of the molten silicon to the center of the beam spot. Upon solidification, the ultrathin amorphous silicon film is transformed to a crystalline silicon nanodome of increased height. This morphological change enables further dimensional reduction of the nanodome as well as removal of the surrounding film material by isotropic silicon etching. These results suggest that laser-based dewetting of thin films can be an effective way for scalable manufacturing of patterned nanostructures.

  9. RBS/channeling analysis of hydrogen-implanted single crystals of FZ silicon and 6H silicon

    International Nuclear Information System (INIS)

    Irwin, R.B.

    1984-01-01

    Single crystals of FZ silicon and 6H silicon carbide were implanted with hydrogen ions (50 and 80 keV, respectively) to fluences from 2 x 10 16 H + /cm 2 to 2 x 10 18 H+/cm 2 . The implantations were carried out at three temperatures: approx.95K, 300 K, and approx.800 K. Swelling of the samples was measured by surface profilometry. RBS/channeling was used to obtain the damage profiles and to determine the amount of hydrogen retained in the lattice. The damage profiles are centered around X/sub m/ for the implants into silicon and around R/sub p/ for silicon carbide. For silicon carbide implanted at 95 K and 300 K and for silicon implanted at 95 K, the peak damage region is amorphous for fluences above 8 x 10 16 H + /cm 2 , 4 x 10 17 H + /cm 2 , and 2 x 10 17 H + /cm 2 , respectively. Silicon implanted at 300 and 800 K and silicon carbide implanted at 800 K remain crystalline up to fluences of 1 x 10 18 H + /cm 2 . The channeling damage results agree with previously reported TEM and electron diffraction data. The predictions of a simple disorder-accumulation model with a linear annealing term explains qualitatively the observed damage profiles in silicon carbide. Quantitatively, however, the model predicts faster development of the damage profiles than is observed at low fluences in both silicon and silicon carbide. For samples implanted at 300 and 800 K, the model also predicts substantially less peak disorder than is observed. The effect of the surface, the retained hydrogen, the shape of S/sub D/(X), and the need for a nonlinear annealing term may be responsible for the discrepancy

  10. Shallow hydrogen-related donors in silicon

    International Nuclear Information System (INIS)

    Hartung, J.; Weber, J.

    1993-01-01

    Photothermal ionization spectroscopy on neutron-irradiated and subsequently hydrogen-plasma-treated silicon reveals the existence of new shallow donors. The binding energies of the observed effective-mass-like donors are between 34 and 53 meV. The optical dipole transitions of the different donors are shifted towards higher energies by ΔE=0.1--0.2 cm -1 , when deuterium is used in the plasma instead of hydrogen. This isotope shift of the optical dipole transitions between the electronic levels of the defects is direct proof of the incorporation of hydrogen in these defects

  11. Development of Hydrogenated Microcrystalline Silicon-Germanium Alloys for Improving Long-Wavelength Absorption in Si-Based Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Yen-Tang Huang

    2014-01-01

    Full Text Available Hydrogenated microcrystalline silicon-germanium (μc-Si1-xGex:H alloys were developed for application in Si-based thin-film solar cells. The effects of the germane concentration (RGeH4 and the hydrogen ratio (RH2 on the μc-Si1-xGex:H alloys and the corresponding single-junction thin-film solar cells were studied. The behaviors of Ge incorporation in a-Si1-xGex:H and μc-Si1-xGex:H were also compared. Similar to a-Si1-xGex:H, the preferential Ge incorporation was observed in μc-Si1-xGex:H. Moreover, a higher RH2 significantly promoted Ge incorporation for a-Si1-xGex:H, while the Ge content was not affected by RH2 in μc-Si1-xGex:H growth. Furthermore, to eliminate the crystallization effect, the 0.9 μm thick absorbers with a similar crystalline volume fraction were applied. With the increasing RGeH4, the accompanied increase in Ge content of μc-Si1-xGex:H narrowed the bandgap and markedly enhanced the long-wavelength absorption. However, the bias-dependent EQE measurement revealed that too much Ge incorporation in absorber deteriorated carrier collection and cell performance. With the optimization of RH2 and RGeH4, the single-junction μc-Si1-xGex:H cell achieved an efficiency of 5.48%, corresponding to the crystalline volume fraction of 50.5% and Ge content of 13.2 at.%. Compared to μc-Si:H cell, the external quantum efficiency at 800 nm had a relative increase by 33.1%.

  12. Properties of hydrogenated amorphous silicon (a-Si:H) deposited using a microwave Ecr plasma; Propiedades del a-Si:H depositado utilizando un plasma de microondas

    Energy Technology Data Exchange (ETDEWEB)

    Mejia H, J A

    1997-12-31

    Hydrogenated amorphous silicon (a-Si:H) films have been widely applied to semiconductor devices, such as thin film transistors, solar cells and photosensitive devices. In this work, the first Si-H-Cl alloys (obtained at the National Institute for Nuclear Research of Mexico) were formed by a microwave electron cyclotron resonance (Ecr) plasma CVD method. Gaseous mixtures of silicon tetrachloride (Si Cl{sub 4}), hydrogen and argon were used. The Ecr plasma was generated by microwaves at 2.45 GHz and a magnetic field of 670 G was applied to maintain the discharge after resonance condition (occurring at 875 G). Si and Cl contents were analyzed by Rutherford Backscattering Spectrometry (RBS). It was found that, increasing proportion of Si Cl{sub 4} in the mixture or decreasing pressure, the silicon and chlorine percentages decrease. Optical gaps were obtained by spectrophotometry. Decreasing temperature, optical gap values increase from 1.4 to 1.5 eV. (Author).

  13. Carrier mobilities in microcrystalline silicon films

    International Nuclear Information System (INIS)

    Bronger, T.; Carius, R.

    2007-01-01

    For a better understanding of electronic transport mechanisms in thin-film silicon solar cell quality films, we have investigated the Hall mobility for electrons in microcrystalline/amorphous silicon over a range of crystallinities and doping concentrations. We find that Hall mobility increases with increasing doping concentration in accordance with earlier measurements. With increasing amorphous fraction, the measured mobility decreases suggesting a negative influence of the additional disorder. The results suggest a differential mobility model in which mobility depends on the energy level of the carriers that contribute to the electrical current

  14. Tuning the optical properties of RF-PECVD grown μc-Si:H thin films using different hydrogen flow rate

    Science.gov (United States)

    Dushaq, Ghada; Nayfeh, Ammar; Rasras, Mahmoud

    2017-07-01

    In this paper we study the effect of H2/SiH4 dilution ratio (R) on the structural and optical properties of hydrogenated microcrystalline silicon embedded in amorphous matrix thin films. The thin films are prepared using standard RF-PECVD process at substrate temperature of 200 °C. The effect of hydrogen dilution ratio on the optical index of refraction and the absorption coefficient were investigated. It was observed that by incorporating higher hydrogen flow rate in the films with low SiH4 concentration, the optical index of refraction can be tuned over a broad range of wavelengths due to the variation of crystalline properties of the produced films. By varying the hydrogen flow of μc-Si:H samples, ∼8% and 12% reduction in the index of refraction at 400 nm and at 1500 nm can be achieved, respectively. In addition a 78% reduction in surface roughness is obtained when 60sccm of H2 is used in the deposition compared to the sample without any H2 incorporation.

  15. High-frequency conductivity of optically excited charge carriers in hydrogenated nanocrystalline silicon investigated by spectroscopic femtosecond pump–probe reflectivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    He, Wei [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom); Yurkevich, Igor V. [Aston University, Nonlinearity and Complexity Research Group, Birmingham B4 7ET (United Kingdom); Zakar, Ammar [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom); Kaplan, Andrey, E-mail: a.kaplan.1@bham.ac.uk [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom)

    2015-10-01

    We report an investigation into the high-frequency conductivity of optically excited charge carriers far from equilibrium with the lattice. The investigated samples consist of hydrogenated nanocrystalline silicon films grown on a thin film of silicon oxide on top of a silicon substrate. For the investigation, we used an optical femtosecond pump–probe setup to measure the reflectance change of a probe beam. The pump beam ranged between 580 and 820 nm, whereas the probe wavelength spanned 770 to 810 nm. The pump fluence was fixed at 0.6 mJ/cm{sup 2}. We show that at a fixed delay time of 300 fs, the conductivity of the excited electron–hole plasma is described well by a classical conductivity model of a hot charge carrier gas found at Maxwell–Boltzmann distribution, while Fermi–Dirac statics is not suitable. This is corroborated by values retrieved from pump–probe reflectance measurements of the conductivity and its dependence on the excitation wavelength and carrier temperature. The conductivity decreases monotonically as a function of the excitation wavelength, as expected for a nondegenerate charge carrier gas. - Highlights: • We study high‐frequency conductivity of excited hydrogenated nanocrystalline silicon. • Reflectance change was measured as a function of pump and probe wavelength. • Maxwell–Boltzmann transport theory was used to retrieve the conductivity. • The conductivity decreases monotonically as a function of the pump wavelength.

  16. Role of SiNx Barrier Layer on the Performances of Polyimide Ga2O3-doped ZnO p-i-n Hydrogenated Amorphous Silicon Thin Film Solar Cells

    Science.gov (United States)

    Wang, Fang-Hsing; Kuo, Hsin-Hui; Yang, Cheng-Fu; Liu, Min-Chu

    2014-01-01

    In this study, silicon nitride (SiNx) thin films were deposited on polyimide (PI) substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD) system. The gallium-doped zinc oxide (GZO) thin films were deposited on PI and SiNx/PI substrates at room temperature (RT), 100 and 200 °C by radio frequency (RF) magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si) thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI. PMID:28788494

  17. Role of SiNx Barrier Layer on the Performances of Polyimide Ga2O3-doped ZnO p-i-n Hydrogenated Amorphous Silicon Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2014-02-01

    Full Text Available In this study, silicon nitride (SiNx thin films were deposited on polyimide (PI substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD system. The gallium-doped zinc oxide (GZO thin films were deposited on PI and SiNx/PI substrates at room temperature (RT, 100 and 200 °C by radio frequency (RF magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~1000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI.

  18. Effect of TiO{sub 2} nanopatterns on the performance of hydrogenated amorphous silicon thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Joon-Ho [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Yang, Ji-Hwan; Lim, Koeng Su [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Han, Kang-Soo; Kim, Yang-Doo; Lee, Heon; Song, Jun-Hyuk [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Kyoung-Kook [Department of Nano-Optical Engineering, Korea Polytechnic University, Gyeonggi 429-793 (Korea, Republic of); Seong, Tae-Yeon, E-mail: tyseong@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2012-07-31

    We investigate how TiO{sub 2} nanopatterns formed onto ZnO:Al (AZO) films affect the performance of hydrogenated amorphous silicon (a-Si:H) solar cells. Scanning electron microscopy results show that the dome-shaped TiO{sub 2} nanopatterns (300 nm in diameter) having a period of 500 nm are formed onto AZO films and vary from 60 to 180 nm in height. Haze factor increases with an increase in the height of the nanopatterns in the wavelength region below 530 nm. Short circuit current density also increases with an increase in the height of the nanopatterns. As the nanopatterns increases in height, the fill factor of the cells slightly increases, reaches maximum (0.64) at 100 nm, and then decreases. Measurements show that a-Si:H solar cells fabricated with 100 nm-high TiO{sub 2} nanopatterns exhibit the highest conversion efficiency (6.34%) among the solar cells with the nanopatterns and flat AZO sample. - Highlights: Black-Right-Pointing-Pointer We investigated the height effect of TiO{sub 2} nanopatterns on the a-Si:H solar cells. Black-Right-Pointing-Pointer Light scattering and anti-reflection were introduced by TiO{sub 2} nanopatterns. Black-Right-Pointing-Pointer a-Si:H Solar cells with the 100 nm-high TiO{sub 2} nanopatterns showed highest efficiency.

  19. Thin film silicon photovoltaics: Architectural perspectives and technological issues

    Energy Technology Data Exchange (ETDEWEB)

    Mercaldo, Lucia Vittoria; Addonizio, Maria Luisa; Noce, Marco Della; Veneri, Paola Delli; Scognamiglio, Alessandra; Privato, Carlo [ENEA, Portici Research Center, Piazzale E. Fermi, 80055 Portici (Napoli) (Italy)

    2009-10-15

    Thin film photovoltaics is a particularly attractive technology for building integration. In this paper, we present our analysis on architectural issues and technological developments of thin film silicon photovoltaics. In particular, we focus on our activities related to transparent and conductive oxide (TCO) and thin film amorphous and microcrystalline silicon solar cells. The research on TCO films is mainly dedicated to large-area deposition of zinc oxide (ZnO) by low pressure-metallorganic chemical vapor deposition. ZnO material, with a low sheet resistance (<8 {omega}/sq) and with an excellent transmittance (>82%) in the whole wavelength range of photovoltaic interest, has been obtained. ''Micromorph'' tandem devices, consisting of an amorphous silicon top cell and a microcrystalline silicon bottom cell, are fabricated by using the very high frequency plasma enhanced chemical vapor deposition technique. An initial efficiency of 11.1% (>10% stabilized) has been obtained. (author)

  20. Amorphous silicon prepared from silane-hydrogen mixture

    International Nuclear Information System (INIS)

    Pietruszko, S.M.

    1982-09-01

    Amorphous silicon films prepared from a d.c. discharge of 10% SiH 4 - 90% H 2 mixture are found to have properties similar to those made from 100% SiH 4 . These films are found to be quite stable against prolonged light exposure. The effect of nitrogen on the properties of these films was investigated. It was found that instead of behaving as a classical donor, nitrogen introduces deep levels in the material. Field effect experiments on a-Si:H films at the bottom (film-substrate interface) and the top (film-vacuum interface) of the film are also reported. (author)

  1. Hydrogen kinetics in a-Si:H and a-SiC:H thin films investigated by real-time ERD

    Energy Technology Data Exchange (ETDEWEB)

    Halindintwali, S., E-mail: shalindintwali@uwc.ac.za [Physics Department, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Khoele, J. [Physics Department, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Nemroaui, O. [Department of Mechatronics, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535 (South Africa); Comrie, C.M. [Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Materials Research Department, iThemba LABS, P.O. Box 722, Somerset West 7129 (South Africa); Theron, C.C. [Physics Department, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa)

    2015-04-15

    Hydrogen effusion from hydrogenated amorphous silicon (a-Si:H) and amorphous silicon carbide (a-Si{sub 1−x}C{sub x}:H) thin films during a temperature ramp between RT and 600 °C was studied by in situ real-time elastic recoil detection analysis. Point to point contour maps show the hydrogen depth profile and its evolution with the ramped temperature. This paper proposes a diffusion limited evolution model to study H kinetic properties from total retained H contents recorded in a single ramp. In a compact a-Si:H layer where H predominantly effuses at high temperatures between 500 and 600 °C, an activation energy value of ∼1.50 eV and a diffusion pre-factor of 0.41 × 10{sup −4} cm{sup 2}/s were obtained. Applied to an non-stoichiometric a-Si{sub 1−x}C{sub x}:H film in the same range of temperature, the model led to reduced values of activation energy and diffusion prefactor of ∼0.33 eV and 0.59 × 10{sup −11} cm{sup 2}/s, respectively.

  2. High photoconductive hydrogenated silicon by reactive sputtering in helium containing atmosphere

    International Nuclear Information System (INIS)

    Ohbiki, Tohru; Imura, Takeshi; Hiraki, Akio

    1982-01-01

    Mixed phase of amorphous and microcrystalline silicon-hydrogen alloys has been fabricated by reactive sputtering in He containing H 2 of which mole fraction is less than about 5 mole%. The degree of the crystallization, evaluated by electron microscopy and optical absorption spectroscopy, becomes high as the amount of H 2 in the atmosphere increases. The conductivity in dark and photoconductivity increase as the partial pressure of H 2 increases (form 0 to 1 mole%) and also as the pressure during sputtering increases. This increase in conductivity and photoconductivity is supposed to be related to the development of microcrystals. The highest photoconductivity is observed at the H 2 mole fraction of about 1 mole%. This film contains a small amount of microcrystals and show the photoconductivity higher by 2 orders of magnitude than that in a film sputter-deposited in Ar and H 2 atmosphere in the same apparatus. (author)

  3. Crystalline silicon films sputtered on molybdenum A study of the silicon-molybdenum interface

    Energy Technology Data Exchange (ETDEWEB)

    Reinig, P.; Fenske, F.; Fuhs, W.; Schoepke, A.; Selle, B

    2003-04-15

    Polycrystalline silicon films were grown on molybdenum (Mo)-coated substrates at high deposition rate using the pulsed magnetron sputtering technique. Our study investigates the silicon-molybdenum interface of these films to elucidate stimulating mechanisms for an ordered crystalline silicon thin film growth. Both Auger electron spectroscopy and Rutherford backscattering reveal that at a substrate temperature as low as T{sub S}=450 deg. C during the deposition process intermixing of Si and Mo at the Si-Mo interface takes place leading to a compositional ratio Mo:Si of about 1:2. By Raman spectroscopy hexagonal {beta}-MoSi{sub 2} could be identified as the dominant phase in this intermixed region. The dependence of the resulting thickness of the reacted interface layer on the deposition conditions is not fully understood yet.

  4. Crystalline silicon films sputtered on molybdenum A study of the silicon-molybdenum interface

    International Nuclear Information System (INIS)

    Reinig, P.; Fenske, F.; Fuhs, W.; Schoepke, A.; Selle, B.

    2003-01-01

    Polycrystalline silicon films were grown on molybdenum (Mo)-coated substrates at high deposition rate using the pulsed magnetron sputtering technique. Our study investigates the silicon-molybdenum interface of these films to elucidate stimulating mechanisms for an ordered crystalline silicon thin film growth. Both Auger electron spectroscopy and Rutherford backscattering reveal that at a substrate temperature as low as T S =450 deg. C during the deposition process intermixing of Si and Mo at the Si-Mo interface takes place leading to a compositional ratio Mo:Si of about 1:2. By Raman spectroscopy hexagonal β-MoSi 2 could be identified as the dominant phase in this intermixed region. The dependence of the resulting thickness of the reacted interface layer on the deposition conditions is not fully understood yet

  5. Dominant rate process of silicon surface etching by hydrogen chloride gas

    International Nuclear Information System (INIS)

    Habuka, Hitoshi; Suzuki, Takahiro; Yamamoto, Sunao; Nakamura, Akio; Takeuchi, Takashi; Aihara, Masahiko

    2005-01-01

    Silicon surface etching and its dominant rate process are studied using hydrogen chloride gas in a wide concentration range of 1-100% in ambient hydrogen at atmospheric pressure in a temperature range of 1023-1423 K, linked with the numerical calculation accounting for the transport phenomena and the surface chemical reaction in the entire reactor. The etch rate, the gaseous products and the surface morphology are experimentally evaluated. The dominant rate equation accounting for the first-order successive reactions at silicon surface by hydrogen chloride gas is shown to be valid. The activation energy of the dominant surface process is evaluated to be 1.5 x 10 5 J mol - 1 . The silicon deposition by the gaseous by-product, trichlorosilane, is shown to have a negligible influence on the silicon etch rate

  6. Influence of screening effect on hydrogen passivation of hole silicon

    International Nuclear Information System (INIS)

    Aleksandrov, O.V.

    2002-01-01

    The simulation of hole silicon passivation during hydrogen diffusion with account of hydrogen-acceptor pairs formation, internal electrical field and screening effect has been carried out. Screening by free carriers of hydrogen and acceptor ions results in shortening their interaction radii and slacking the concentration dependence of hydrogen diffusivity at high level of silicon doping. The consistency of simulated and experimental profiles of holes and hydrogen-acceptor pairs is reached in a broad band of doping levels from 4 x 10 14 to 1.2 x 10 20 cm -3 at the pair binding energy of 0.70-0.79 eV while the radius of the Coulomb interaction of hydrogen and boron ions is equal to 35 A under low doping and decrease with increasing doping level [ru

  7. Effect of PECVD deposition parameters on structural and optoelectronics properties of hydrogenated polymorphous silicon thin films deposited by dichlorosilane for implementation in solar cells

    International Nuclear Information System (INIS)

    Álvarez-Macías, C.; Hernández González, Oscar Daniel; Barrera Calva, Enrique; Gómez González, L.; Santana, G.

    2015-01-01

    Hydrogenated polymorphous silicon (pm-Si: H) thin films were deposited at room temperature by plasma enhanced chemical vapor deposition (PECVD) using SiH2Cl2 as precursor gas. We examine the effect of deposition pressure (250 y 500 mTorr) and H2 dilution (flow rates 25, 50, 75 y 100 sccm) on the structural and optoelectronics properties. The nano-structural properties was confirmed by Raman spectroscopy studies in terms of the changes in crystallite sizes and their volume fractions. On the other hand, by FTIR analysis we notice bond configurations associated to photostability of the nanostructures, which was confirmed by Light soaking experiments during 250h. We found a tunable band gap and important behaviors on the electronic transport properties measurements for samples with high and low incorporation of oxygen whose compositions were determined by XPS measurements. Understanding structural and chemical properties of pm- Si: H thin films is key towards optimizing their electrical and optical properties for applications in solar cells. (full text)

  8. Hydrogen-induced structural changes in polycrystalline silicon as revealed by positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Arole, V.M.; Takwale, M.G.; Bhide, V.G.

    1989-01-01

    Hydrogen passivation of polycrystalline silicon wafer is carried out in order to reduce the deleterious effects of grain boundaries. A systematic variation is made in the process parameters implemented during hydrogen passivation and the results of room temperature resistivity measurements are reported. As an efficient tool to study the structure change, positron lifetime spectroscopic measurements are performed on original and hydrogenated polycrystalline silicon wafers and a systematic correlation is sought between the changes that take place in the electrical and structural properties of polycrystalline silicon wafer, brought about by hydrogen passivation. (author)

  9. Hydrogenation of gold-related levels in silicon by electrolytic doping

    International Nuclear Information System (INIS)

    Pearton, S.J.; Hansen, W.L.; Haller, E.E.; Kahn, J.M.

    1984-01-01

    The deep gold-related donor and acceptor levels in silicon have been neutralized to several μm depth by introducing atomic hydrogen using an electrolytic method. Using phosphoric or sulfuric acid as the electrolyte, it is possible to dope the crystalline silicon with hydrogen at elevated temperatures (200--280 0 C) allowing direct comparison with other means of introduction, such as hydrogen plasma exposure. We find the electrolytic method is not as efficient as plasma treatment for the same conditions, possibly due to oxide formation during the immersion in the acid

  10. Investigation of positive roles of hydrogen plasma treatment for interface passivation based on silicon heterojunction solar cells

    International Nuclear Information System (INIS)

    Zhang, Liping; Liu, Wenzhu; Liu, Jinning; Shi, Jianhua; Meng, Fanying; Liu, Zhengxin; Guo, Wanwu; Bao, Jian

    2016-01-01

    The positive roles of H 2 -plasma treatment (HPT) have been investigated by using different treatment procedures in view of the distinctly improved passivation performance of amorphous-crystalline silicon heterojunctions (SHJs). It has been found that a hydrogenated amorphous silicon thin film and crystalline silicon (a-Si:H/c-Si) interface with a high stretching mode (HSM) is detrimental to passivation. A moderate pre-HPT introduces atomic H, which plays an effective tuning role in decreasing the interfacial HSM; unfortunately, an epitaxial layer is formed. Further improvement in passivation can be achieved in terms of increasing the HSM of a-Si:H film treated by appropriate post-HPT based on the a-Si:H thickness. The minority carrier lifetime of crystalline wafers can be improved by treated films containing a certain quantity of crystallites. The microstructure factor R and the maximum intensity of the dielectric function ε 2max have been found to be critical microstructure parameters that describe high-quality a-Si:H passivation layers, which are associated with the amorphous-to-microcrystalline transition phase induced by multi-step HPT. Finally, the open circuit voltage and conversion efficiency of the SHJ solar cell can be improved by implementing an effective HPT process. (paper)

  11. Amorphous silicon ionizing particle detectors

    Science.gov (United States)

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  12. Film thickness determining method of the silicon isotope superlattices by SIMS

    International Nuclear Information System (INIS)

    Takano, Akio; Shimizu, Yasuo; Itoh, Kohei M.

    2008-01-01

    It is becoming important to evaluate silicon self-diffusion with progress of a silicon semiconductor industry. In order to evaluate the self-diffusion of silicon, silicon isotope superlattices (SLs) is the only marker. For this reason, it is important to correctly evaluate a film thickness and a depth distribution of isotope SLs by secondary ion mass spectrometry (SIMS). As for film thickness, it is difficult to estimate the thicknesses correctly if the cycles of SLs are short. In this work, first, we report the determination of the film thickness for short-period SLs using mixing roughness-information (MRI) analysis to SIMS profile. Next, the uncertainty of the conventional method to determine the film thicknesses of SLs is determined. It was found that the conventional methods cannot correctly determine film thickness of short-period-isotope SLs where film thickness differs for every layer

  13. Size modulation of nanocrystalline silicon embedded in amorphous silicon oxide by Cat-CVD

    International Nuclear Information System (INIS)

    Matsumoto, Y.; Godavarthi, S.; Ortega, M.; Sanchez, V.; Velumani, S.; Mallick, P.S.

    2011-01-01

    Different issues related to controlling size of nanocrystalline silicon (nc-Si) embedded in hydrogenated amorphous silicon oxide (a-SiO x :H) deposited by catalytic chemical vapor deposition (Cat-CVD) have been reported. Films were deposited using tantalum (Ta) and tungsten (W) filaments and it is observed that films deposited using tantalum filament resulted in good control on the properties. The parameters which can affect the size of nc-Si domains have been studied which include hydrogen flow rate, catalyst and substrate temperatures. The deposited samples are characterized by X-ray diffraction, HRTEM and micro-Raman spectroscopy, for determining the size of the deposited nc-Si. The crystallite formation starts for Ta-catalyst around the temperature of 1700 o C.

  14. Investigation of nanocrystalline Gd films loaded with hydrogen

    KAUST Repository

    Hruška, Petr; Čí žek, Jakub; Dobroň, Patrik; Anwand, Wolfgang; Mü cklich, Arndt; Gemma, Ryota; Wagner, Stefan; Uchida, Helmut; Pundt, Astrid

    2015-01-01

    The present work reports on microstructure studies of hydrogen-loaded nanocrystalline Gd films prepared by cold cathode beam sputtering on sapphire (112¯0) substrates. The Gd films were electrochemically step-by-step charged with hydrogen and the structural development with increasing concentration of absorbed hydrogen was studied by transmission electron microscopy and in-situ   X-ray diffraction using synchrotron radiation. The relaxation of hydrogen-induced stresses was examined by acoustic emission measurements. In the low concentration range absorbed hydrogen occupies preferentially vacancy-like defects at GBs typical for nanocrystalline films. With increasing hydrogen concentration hydrogen starts to occupy interstitial sites. At the solid solution limit the grains gradually transform into the ββ-phase (GdH2). Finally at high hydrogen concentrations xH>2.0xH>2.0 H/Gd, the film structure becomes almost completely amorphous. Contrary to bulk Gd specimens, the formation of the γγ-phase (GdH3) was not observed in this work.

  15. Thermochemical hydrogen generation of indium oxide thin films

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2017-03-01

    Full Text Available Development of alternative energy resources is an urgent requirement to alleviate current energy constraints. As such, hydrogen gas is gaining attention as a future alternative energy source to address existing issues related to limited energy resources and air pollution. In this study, hydrogen generation by a thermochemical water-splitting process using two types of In2O3 thin films was investigated. The two In2O3 thin films prepared by chemical vapor deposition (CVD and sputtering deposition systems contained different numbers of oxygen vacancies, which were directly related to hydrogen generation. The as-grown In2O3 thin film prepared by CVD generated a large amount of hydrogen because of its abundant oxygen vacancies, while that prepared by sputtering had few oxygen vacancies, resulting in low hydrogen generation. Increasing the temperature of the In2O3 thin film in the reaction chamber caused an increase in hydrogen generation. The oxygen-vacancy-rich In2O3 thin film is expected to provide a highly effective production of hydrogen as a sustainable and efficient energy source.

  16. Influence of screening effect on hydrogen passivation of hole silicon

    CERN Document Server

    Aleksandrov, O V

    2002-01-01

    The simulation of hole silicon passivation during hydrogen diffusion with account of hydrogen-acceptor pairs formation, internal electrical field and screening effect has been carried out. Screening by free carriers of hydrogen and acceptor ions results in shortening their interaction radii and slacking the concentration dependence of hydrogen diffusivity at high level of silicon doping. The consistency of simulated and experimental profiles of holes and hydrogen-acceptor pairs is reached in a broad band of doping levels from 4 x 10 sup 1 sup 4 to 1.2 x 10 sup 2 sup 0 cm sup - sup 3 at the pair binding energy of 0.70-0.79 eV while the radius of the Coulomb interaction of hydrogen and boron ions is equal to 35 A under low doping and decrease with increasing doping level

  17. Silicon-integrated thin-film structure for electro-optic applications

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick Joseph

    2000-01-01

    A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.

  18. Deposition of a-SiC:H using organosilanes in an argon/hydrogen plasma

    International Nuclear Information System (INIS)

    Maya, L.

    1993-01-01

    Selected organosilanes were examined as precursors for the deposition of amorphous hydrogenated silicon carbide in an argon/hydrogen plasma. Effect of process variables on the quality of the films was established by means of FTIR, Auger spectroscopy, XPS, XRD, chemical analysis, and weight losses upon pyrolysis. For a given power level there is a limiting feeding rate of the precursor under which operation of the system is dominated by thermodynamics and leads to high quality silicon carbide films that are nearly stoichiometric and low in hydrogen. Beyond that limit, carbosilane polymer formation and excessive hydrogen incorporation takes place. The hydrogen content of the plasma affects the deposition rate and the hydrogen content of the film. In the thermodynamically dominated regime the nature of the precursor has no effect on the quality of the film, it affects only the relative utilization efficiency

  19. Photoconduction in silicon rich oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Luna-Lopez, J A; Carrillo-Lopez, J; Flores-Gracia, F J; Garcia-Salgado, G [CIDS-ICUAP, Benemerita Universidad Autonoma de Puebla. Ed. 103 D and C, col. San Manuel, Puebla, Pue. Mexico 72570 (Mexico); Aceves-Mijares, M; Morales-Sanchez, A, E-mail: jluna@buap.siu.m, E-mail: jluna@inaoep.m [INAOE, Luis Enrique Erro No. 1, Apdo. 51, Tonantzintla, Puebla, Mexico 72000 (Mexico)

    2009-05-01

    Photoconduction of silicon rich oxide (SRO) thin films were studied by current-voltage (I-V) measurements, where ultraviolet (UV) and white (Vis) light illumination were applied. SRO thin films were deposited by low pressure chemical vapour deposition (LPCVD) technique, using SiH{sub 4} (silane) and N{sub 2}O (nitrous oxide) as reactive gases at 700 {sup 0}. The gas flow ratio, Ro = [N{sub 2}O]/[SiH{sub 4}] was used to control the silicon excess. The thickness and refractive index of the SRO films were 72.0 nm, 75.5 nm, 59.1 nm, 73.4 nm and 1.7, 1.5, 1.46, 1.45, corresponding to R{sub o} = 10, 20, 30 and 50, respectively. These results were obtained by null ellipsometry. Si nanoparticles (Si-nps) and defects within SRO films permit to obtain interesting photoelectric properties as a high photocurrent and photoconduction. These effects strongly depend on the silicon excess, thickness and structure type. Two different structures (Al/SRO/Si and Al/SRO/SRO/Si metal-oxide-semiconductor (MOS)-like structures) were fabricated and used as devices. The photocurrent in these structures is dominated by the generation of carriers due to the incident photon energies ({approx}3.0-1.6 eV and 5 eV). These structures showed large photoconductive response at room temperature. Therefore, these structures have potential applications in optoelectronics devices.

  20. Microstructure and initial growth characteristics of the low temperature microcrystalline silicon films on silicon nitride surface

    International Nuclear Information System (INIS)

    Park, Young-Bae; Rhee, Shi-Woo

    2001-01-01

    Microstructure and initial growth characteristics of the hydrogenated microcrystalline Si (μc-Si:H) films grown on hydrogenated amorphous silicon nitride (a-SiN x :H) surface at low temperature were investigated using high resolution transmission electron microscope and micro-Raman spectroscopy. With increasing the Si and Si - H contents in the SiN x :H surfaces, μc-Si crystallites, a few nanometers in size, were directly grown on amorphous nitride surfaces. It is believed that the crystallites were grown through the nucleation and phase transition from amorphous to crystal in a hydrogen-rich ambient of gas phase and growing surface. The crystallite growth characteristics on the dielectric surface were dependent on the stoichiometric (x=N/Si) ratio corresponding hydrogen bond configuration of the SiN x :H surface. Surface facetting and anisotropic growth of the Si crystallites resulted from the different growth rate on the different lattice planes of Si. No twins and stacking faults were observed in the (111) lattice planes of the Si crystallites surrounding the a-Si matrix. This atomic-scale structure was considered to be the characteristic of the low temperature crystallization of the μc-Si:H by the strain relaxation of crystallites in the a-Si:H matrix. [copyright] 2001 American Institute of Physics

  1. High photoconductive hydrogenated silicon by reactive sputtering in helium containing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Ohbiki, Tohru; Imura, Takeshi; Hiraki, Akio

    1982-08-01

    Mixed phase of amorphous and microcrystalline silicon-hydrogen alloys has been fabricated by reactive sputtering in He containing H/sub 2/ of which mole fraction is less than about 5 mole%. The degree of the crystallization, evaluated by electron microscopy and optical absorption spectroscopy, becomes high as the amount of H/sub 2/ in the atmosphere increases. The conductivity in dark and photoconductivity increase as the partial pressure of H/sub 2/ increases (form 0 to 1 mole%) and also as the pressure during sputtering increases. This increase in conductivity and photoconductivity is supposed to be related to the development of microcrystals. The highest photoconductivity is observed at the H/sub 2/ mole fraction of about 1 mole%. This film contains a small amount of microcrystals and show the photoconductivity higher by 2 orders of magnitude than that in a film sputter-deposited in Ar and H/sub 2/ atmosphere in the same apparatus.

  2. Sensitive Capacitive-type Hydrogen Sensor Based on Ni Thin Film in Different Hydrogen Concentrations.

    Science.gov (United States)

    Pour, Ghobad Behzadi; Aval, Leila Fekri; Eslami, Shahnaz

    2018-04-01

    Hydrogen sensors are micro/nano-structure that are used to locate hydrogen leaks. They are considered to have fast response/recovery time and long lifetime as compared to conventional gas sensors. In this paper, fabrication of sensitive capacitive-type hydrogen gas sensor based on Ni thin film has been investigated. The C-V curves of the sensor in different hydrogen concentrations have been reported. Dry oxidation was done in thermal chemical vapor deposition furnace (TCVD). For oxidation time of 5 min, the oxide thickness was 15 nm and for oxidation time 10 min, it was 20 nm. The Ni thin film as a catalytic metal was deposited on the oxide film using electron gun deposition. Two MOS sensors were compared with different oxide film thickness and different hydrogen concentrations. The highest response of the two MOS sensors with 15 nm and 20 nm oxide film thickness in 4% hydrogen concentration was 87.5% and 65.4% respectively. The fast response times for MOS sensors with 15 nm and 20 nm oxide film thickness in 4% hydrogen concentration was 8 s and 21 s, respectively. By increasing the hydrogen concentration from 1% to 4%, the response time for MOS sensor (20nm oxide thickness), was decreased from 28s to 21s. The recovery time was inversely increased from 237s to 360s. The experimental results showed that the MOS sensor based on Ni thin film had a quick response and a high sensitivity.

  3. Modeling of hydrogen passivation process of silicon for solar cells applications

    International Nuclear Information System (INIS)

    Kuznicki, Z.T.; Ciach, R.; Gorley, P.M.; Voznyy, M.V.

    2001-01-01

    In this paper, results of investigation of evolution equations' system describing hydrogen passivation of silicon are presented. Using Lie group theory the classification of invariant solutions and initial system reduction to systems of ordinary differential equations (ODEs) is carried out for admissible infinitesimal operators under constant hydrogen atoms diffusivity in the sample. Possibility of analytical solution of passivation problem is shown. Analysis of system behavior taking into account diffusion and dissociation mechanisms is performed. It is ascertained that free hydrogen atoms diffusion in the sample and 'defect-hydrogen' dissociation spoil passivation. Analytical dependences obtained make it possible to predict spatial and time defect distribution under hydrogen passivation of silicon depending on experimental conditions

  4. Influence of Chemical Composition and Structure in Silicon Dielectric Materials on Passivation of Thin Crystalline Silicon on Glass.

    Science.gov (United States)

    Calnan, Sonya; Gabriel, Onno; Rothert, Inga; Werth, Matteo; Ring, Sven; Stannowski, Bernd; Schlatmann, Rutger

    2015-09-02

    In this study, various silicon dielectric films, namely, a-SiOx:H, a-SiNx:H, and a-SiOxNy:H, grown by plasma enhanced chemical vapor deposition (PECVD) were evaluated for use as interlayers (ILs) between crystalline silicon and glass. Chemical bonding analysis using Fourier transform infrared spectroscopy showed that high values of oxidant gases (CO2 and/or N2), added to SiH4 during PECVD, reduced the Si-H and N-H bond density in the silicon dielectrics. Various three layer stacks combining the silicon dielectric materials were designed to minimize optical losses between silicon and glass in rear side contacted heterojunction pn test cells. The PECVD grown silicon dielectrics retained their functionality despite being subjected to harsh subsequent processing such as crystallization of the silicon at 1414 °C or above. High values of short circuit current density (Jsc; without additional hydrogen passivation) required a high density of Si-H bonds and for the nitrogen containing films, additionally, a high N-H bond density. Concurrently high values of both Jsc and open circuit voltage Voc were only observed when [Si-H] was equal to or exceeded [N-H]. Generally, Voc correlated with a high density of [Si-H] bonds in the silicon dielectric; otherwise, additional hydrogen passivation using an active plasma process was required. The highest Voc ∼ 560 mV, for a silicon acceptor concentration of about 10(16) cm(-3), was observed for stacks where an a-SiOxNy:H film was adjacent to the silicon. Regardless of the cell absorber thickness, field effect passivation of the buried silicon surface by the silicon dielectric was mandatory for efficient collection of carriers generated from short wavelength light (in the vicinity of the glass-Si interface). However, additional hydrogen passivation was obligatory for an increased diffusion length of the photogenerated carriers and thus Jsc in solar cells with thicker absorbers.

  5. Annealing temperature dependence of photoluminescent characteristics of silicon nanocrystals embedded in silicon-rich silicon nitride films grown by PECVD

    International Nuclear Information System (INIS)

    Chao, D.S.; Liang, J.H.

    2013-01-01

    Recently, light emission from silicon nanostructures has gained great interest due to its promising potential of realizing silicon-based optoelectronic applications. In this study, luminescent silicon nanocrystals (Si–NCs) were in situ synthesized in silicon-rich silicon nitride (SRSN) films grown by plasma-enhanced chemical vapor deposition (PECVD). SRSN films with various excess silicon contents were deposited by adjusting SiH 4 flow rate to 100 and 200 sccm and keeping NH 3 one at 40 sccm, and followed by furnace annealing (FA) treatments at 600, 850 and 1100 °C for 1 h. The effects of excess silicon content and post-annealing temperature on optical properties of Si–NCs were investigated by photoluminescence (PL) and Fourier transform infrared spectroscopy (FTIR). The origins of two groups of PL peaks found in this study can be attributed to defect-related interface states and quantum confinement effects (QCE). Defect-related interface states lead to the photon energy levels almost kept constant at about 3.4 eV, while QCE results in visible and tunable PL emission in the spectral range of yellow and blue light which depends on excess silicon content and post-annealing temperature. In addition, PL intensity was also demonstrated to be highly correlative to the excess silicon content and post-annealing temperature due to its corresponding effects on size, density, crystallinity, and surface passivation of Si–NCs. Considering the trade-off between surface passivation and structural properties of Si–NCs, an optimal post-annealing temperature of 600 °C was suggested to maximize the PL intensity of the SRSN films

  6. Silicon Nano wires with MoS_x and Pt as Electrocatalysts for Hydrogen Evolution Reaction

    International Nuclear Information System (INIS)

    Hsieh, S.H.; Ho, S.T.; Chen, W.J.

    2016-01-01

    A convenient method was used for synthesizing Pt-nanoparticle//silicon nano wires nano composites. Obtained Pt-/silicon nano wires electrocatalysts were characterized by transmission electron microscopy (TEM). The hydrogen evolution reaction efficiency of the Pt-/silicon nano wire nano composite catalysts was assessed by examining polarization and electrolysis measurements under solar light irradiations. The electrochemical characterizations demonstrate that Pt-/silicon nano wire electrodes exhibited an excellent catalytic activity for hydrogen evolution reaction in an acidic electrolyte. The hydrogen production capability of Pt-/silicon nano wires is also comparable to /silicon nano wires and Pt/silicon nano wires. Electrochemical impedance spectroscopy experiments suggest that the enhanced performance of Pt-/silicon nano wires can be attributed to the fast electron transfer between Pt-/silicon nano wire electrodes and electrolyte interfaces.

  7. Microcrystalline silicon carbide alloys prepared with HWCVD as highly transparent and conductive window layers for thin film solar cells

    International Nuclear Information System (INIS)

    Finger, F.; Astakhov, O.; Bronger, T.; Carius, R.; Chen, T.; Dasgupta, A.; Gordijn, A.; Houben, L.; Huang, Y.; Klein, S.; Luysberg, M.; Wang, H.; Xiao, L.

    2009-01-01

    Crystalline silicon carbide alloys have a very high potential as transparent conductive window layers in thin-film solar cells provided they can be prepared in thin-film form and at compatible deposition temperatures. The low-temperature deposition of such material in microcrystalline form (μc-Si:C:H) was realized by use of monomethylsilane precursor gas diluted in hydrogen with the Hot-Wire Chemical Vapor Deposition process. A wide range of deposition parameters has been investigated and the structural, electronic and optical properties of the μc-SiC:H thin films have been studied. The material, which is strongly n-type from unintentional doping, has been used as window layer in n-side illuminated microcrystalline silicon solar cells. High short-circuit current densities are obtained due to the high transparency of the material resulting in a maximum solar cell conversion efficiency of 9.2%.

  8. Quantum chemical simulation of hydrogen like states in silicon and diamond

    International Nuclear Information System (INIS)

    Gel'fand, R.B.; Gordeev, V.A.; Gorelkinskij, Yu.V.

    1989-01-01

    The quantum-chemical methods of the complete neglect of differential overlap (CNDO) and intermediate neglect of differential overlap (INDO) are used to calculate the electronic structure of atomic hydrogen (muonium) located at different interstital sites of the silicon and diamond crystal lattices. The electronic g- and hyperfine interaction tensors of the impure atom are determined.The results obtained are compared with the experimental data on the 'normal' (Mu') and 'anomalous' (Mu * ) muonium centers as well as on the hydrogen-bearing Si-AA9 EPR center which is a hydrogen-bearing analogue of (Mu * ). The most likely localization sites for hydrogen (muonium) atoms in silicon and diamond crystals are established. 22 refs

  9. A study of semiconducting properties of hydrogen containing passive films

    International Nuclear Information System (INIS)

    Zeng, Y.M.; Luo, J.L.; Norton, P.R.

    2004-01-01

    Mott-Schottky and photoelectrochemical measurements were used to explore the effects of hydrogen and chloride ions on the electronic properties of the passive film on X70 micro-alloyed steel in a solution of 0.5 M NaHCO 3 . Mott-Schottky analyses have shown that hydrogen increases the capacitance and donor density, and decreases the flat band potential and the space charge layer thickness of the passive film. The photocurrent of the film is remarkably increased by hydrogen. The effects of hydrogen become more pronounced with an increase in the hydrogen charging current densities. Hydrogen has no noticeable effect on the band gap energy E g and the process by which hole-electron pairs are photo-generated in the film. The presence of chloride ions in the solution produces some similar effects on the electronic properties of the passive film to those observed with hydrogen, but reduces the photocurrent and increases the band gap energy of the film. No significant synergistic effects on the electronic properties of the passive film were observed in the presence of hydrogen and Cl - . These results provide very useful information for elucidating the mechanism by which hydrogen changes the properties of passive film and then promotes localized corrosion

  10. Thin-film silicon solar cell technology

    Czech Academy of Sciences Publication Activity Database

    Shah, A. V.; Schade, H.; Vaněček, Milan; Meier, J.; Vallat-Sauvain, E.; Wyrsch, N.; Kroll, U.; Droz, C.; Bailat, J.

    2004-01-01

    Roč. 12, - (2004), s. 113-142 ISSN 1062-7995 R&D Projects: GA MŽP SN/320/11/03 Institutional research plan: CEZ:AV0Z1010914 Keywords : thin-film silicon modules * hydrogenerated amorphous silicon(a-Si:H) * hydrogenerated microcrystalline (ćc-Si:H) * transparent conductive oxydes(TCOs) * building-integrated photovoltaics(BIPV) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.196, year: 2004

  11. Effect of surface irradiation during the photo-CVD deposition of a-Si:H thin films. Hikari CVD ho ni yoru amorphous silicon sakuseiji no kiban hikari reiki koka

    Energy Technology Data Exchange (ETDEWEB)

    Tasaka, K.; Doering, H.; Hashimoto, K.; Fujishima, A. (The University of Tokyo, Tokyo (Japan))

    1990-12-06

    This paper shows the impact of the irradiation from an additional light source during the deposition of hydrogenated amorphous silicon by photo-CVD deposition. Using a mercury sensitized photo-CVD process from Disilan (Si {sub 2} H {sub 6}) and hydrogen, silicon was deposited. A 40W low pressure mercury lamp was applied as the light source. A portion of the substrate was in addition irradiated using an Xg-He lamp through a thermal filter. Irradiation of the substrate using only Xg-He lamp produced no deposition, since this light has a wavelength which is too long to produce the SiH {sub 3}-radicals needed for Si deposition. The additional Xg-He light source was discovered to cause an increased thickness of deposited a-Si:H film and a transmission of the band structure. The reasons of these are considered that the influence of irradiation is not limited to film thickness, but that irradiation also impacts the composition of the a-Si:H film so as to cause a reduction in the hydrogen content. 10 figs., 1 tab.

  12. Growth and Etch Rate Study of Low Temperature Anodic Silicon Dioxide Thin Films

    Directory of Open Access Journals (Sweden)

    Akarapu Ashok

    2014-01-01

    Full Text Available Silicon dioxide (SiO2 thin films are most commonly used insulating films in the fabrication of silicon-based integrated circuits (ICs and microelectromechanical systems (MEMS. Several techniques with different processing environments have been investigated to deposit silicon dioxide films at temperatures down to room temperature. Anodic oxidation of silicon is one of the low temperature processes to grow oxide films even below room temperature. In the present work, uniform silicon dioxide thin films are grown at room temperature by using anodic oxidation technique. Oxide films are synthesized in potentiostatic and potentiodynamic regimes at large applied voltages in order to investigate the effect of voltage, mechanical stirring of electrolyte, current density and the water percentage on growth rate, and the different properties of as-grown oxide films. Ellipsometry, FTIR, and SEM are employed to investigate various properties of the oxide films. A 5.25 Å/V growth rate is achieved in potentiostatic mode. In the case of potentiodynamic mode, 160 nm thickness is attained at 300 V. The oxide films developed in both modes are slightly silicon rich, uniform, and less porous. The present study is intended to inspect various properties which are considered for applications in MEMS and Microelectronics.

  13. Light-Induced Degradation of Thin Film Silicon Solar Cells

    International Nuclear Information System (INIS)

    Hamelmann, F U; Weicht, J A; Behrens, G

    2016-01-01

    Silicon-wafer based solar cells are still domination the market for photovoltaic energy conversion. However, most of the silicon is used only for mechanical stability, while only a small percentage of the material is needed for the light absorption. Thin film silicon technology reduces the material demand to just some hundred nanometer thickness. But even in a tandem stack (amorphous and microcrystalline silicon) the efficiencies are lower, and light-induced degradation is an important issue. The established standard tests for characterisation are not precise enough to predict the performance of thin film silicon solar cells under real conditions, since many factors do have an influence on the degradation. We will show some results of laboratory and outdoor measurements that we are going to use as a base for advanced modelling and simulation methods. (paper)

  14. Impact of Various Charge States of Hydrogen on Passivation of Dislocation in Silicon

    Science.gov (United States)

    Song, Lihui; Lou, Jingjing; Fu, Jiayi; Ji, Zhenguo

    2018-03-01

    Dislocation, one of typical crystallographic defects in silicon, is detrimental to the minority carrier lifetime of silicon wafer. Hydrogen passivation is able to reduce the recombination activity of dislocation, however, the passivation efficacy is strongly dependent on the experimental conditions. In this paper, a model based on the theory of hydrogen charge state control is proposed to explain the passivation efficacy of dislocation correlated to the peak temperature of thermal annealing and illumination intensity. Experimental results support the prediction of the model that a mix of positively charged hydrogen and negatively charged hydrogen at certain ratio can maximise the passivation efficacy of dislocation, leading to a better power conversion efficiency of silicon solar cell with dislocation in it.

  15. Hydrogen passivation of multi-crystalline silicon solar cells

    Institute of Scientific and Technical Information of China (English)

    胡志华; 廖显伯; 刘祖明; 夏朝凤; 陈庭金

    2003-01-01

    The effects of hydrogen passivation on multi-crystalline silicon (mc-Si) solar cells are reported in this paper.Hydrogen plasma was generated by means of ac glow discharge in a hydrogen atmosphere. Hydrogen passivation was carried out with three different groups of mc-Si solar cells after finishing contacts. The experimental results demonstrated that the photovoltaic performances of the solar cell samples have been improved after hydrogen plasma treatment, with a relative increase in conversion efficiency up to 10.6%. A calculation modelling has been performed to interpret the experimental results using the model for analysis of microelectronic and photonic structures developed at Pennsylvania State University.

  16. The application of thick hydrogenated amorphous silicon layers to charged particle and x-ray detection

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Cho, G.; Fujieda, I.; Kaplan, S.N.; Qureshi, S.; Street, R.A.

    1989-04-01

    We outline the characteristics of thick hydrogenated amorphous silicon layers which are optimized for the detection of charged particles, x-rays and γ-rays. Signal amplitude as a function of the linear energy transfer of various particles are given. Noise sources generated by the detector material and by the thin film electronics - a-Si:H or polysilicon proposed for pixel position sensitive detectors readout are described, and their relative amplitudes are calculated. Temperature and neutron radiation effects on leakage currents and the corresponding noise changes are presented. 17 refs., 12 figs., 2 tabs

  17. Disilane chemisorption on Si(x)Ge(1-x)(100)-(2 x 1): molecular mechanisms and implications for film growth rates.

    Science.gov (United States)

    Ng, Rachel Qiao-Ming; Tok, E S; Kang, H Chuan

    2009-07-28

    At low temperatures, hydrogen desorption is known to be the rate-limiting process in silicon germanium film growth via chemical vapor deposition. Since surface germanium lowers the hydrogen desorption barrier, Si(x)Ge((1-x)) film growth rate increases with the surface germanium fraction. At high temperatures, however, the molecular mechanisms determining the epitaxial growth rate are not well established despite much experimental work. We investigate these mechanisms in the context of disilane adsorption because disilane is an important precursor used in film growth. In particular, we want to understand the molecular steps that lead, in the high temperature regime, to a decrease in growth rate as the surface germanium increases. In addition, there is a need to consider the issue of whether disilane adsorbs via silicon-silicon bond dissociation or via silicon-hydrogen bond dissociation. It is usually assumed that disilane adsorption occurs via silicon-silicon bond dissociation, but in recent work we provided theoretical evidence that silicon-hydrogen bond dissociation is more important. In order to address these issues, we calculate the chemisorption barriers for disilane on silicon germanium using first-principles density functional theory methods. We use the calculated barriers to estimate film growth rates that are then critically compared to the experimental data. This enables us to establish a connection between the dependence of the film growth rate on the surface germanium content and the kinetics of the initial adsorption step. We show that the generally accepted mechanism where disilane chemisorbs via silicon-silicon bond dissociation is not consistent with the data for film growth kinetics. Silicon-hydrogen bond dissociation paths have to be included in order to give good agreement with the experimental data for high temperature film growth rate.

  18. Characterization of thin-film silicon materials and solar cells through numerical modeling

    NARCIS (Netherlands)

    Pieters, B.E.

    2008-01-01

    At present most commercially available solar cells are made of crystalline silicon (c-Si). The disadvantages of crystalline silicon solar cells are the high material cost and energy consumption during production. A cheaper alternative can be found in thin-film silicon solar cells. The thin-film

  19. Properties of non-stoichiometric nitrogen doped LPCVD silicon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, F.; Mahamdi, R. [Departement d' Electronique, Universite Mentouri, Constantine (Algeria); Beghoul, M.R. [Departement d' Electronique, Universite de Jijel (Algeria); Temple-Boyer, P. [CNRS, LAAS, Toulouse (France); Universite de Toulouse, UPS, INSA, INP, ISAE, LAAS, Toulouse (France); Bouridah, H.

    2010-02-15

    The influence of nitrogen on the internal structure and so on the electrical properties of silicon thin films obtained by low-pressure chemical vapor deposition (LPCVD) was studied using several investigation methods. We found by using Raman spectroscopy and SEM observations that a strong relationship exists between the structural order of the silicon matrix and the nitrogen ratio in film before and after thermal treatment. As a result of the high disorder caused by nitrogen on silicon network during the deposit phase of films, the crystallization phenomena in term of nucleation and crystalline growth were found to depend upon the nitrogen content. Resistivity measurements results show that electrical properties of NIDOS films depend significantly on structural properties. It was appeared that for high nitrogen content, the films tend to acquire an insulator behavior. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Microspot-based ELISA in microfluidics: chemiluminescence and colorimetry detection using integrated thin-film hydrogenated amorphous silicon photodiodes.

    Science.gov (United States)

    Novo, Pedro; Prazeres, Duarte Miguel França; Chu, Virginia; Conde, João Pedro

    2011-12-07

    Microfluidic technology has the potential to decrease the time of analysis and the quantity of sample and reactants required in immunoassays, together with the potential of achieving high sensitivity, multiplexing, and portability. A lab-on-a-chip system was developed and optimized using optical and fluorescence microscopy. Primary antibodies are adsorbed onto the walls of a PDMS-based microchannel via microspotting. This probe antibody is then recognised using secondary FITC or HRP labelled antibodies responsible for providing fluorescence or chemiluminescent and colorimetric signals, respectively. The system incorporated a micron-sized thin-film hydrogenated amorphous silicon photodiode microfabricated on a glass substrate. The primary antibody spots in the PDMS-based microfluidic were precisely aligned with the photodiodes for the direct detection of the antibody-antigen molecular recognition reactions using chemiluminescence and colorimetry. The immunoassay takes ~30 min from assay to the integrated detection. The conditions for probe antibody microspotting and for the flow-through ELISA analysis in the microfluidic format with integrated detection were defined using antibody solutions with concentrations in the nM-μM range. Sequential colorimetric or chemiluminescence detection of specific antibody-antigen molecular recognition was quantitatively detected using the photodiode. Primary antibody surface densities down to 0.182 pmol cm(-2) were detected. Multiplex detection using different microspotted primary antibodies was demonstrated.

  1. Evolution of optical constants of silicon dioxide on silicon from ultrathin films to thick films

    Energy Technology Data Exchange (ETDEWEB)

    Cai Qingyuan; Zheng Yuxiang; Mao Penghui; Zhang Rongjun; Zhang Dongxu; Liu Minghui; Chen Liangyao, E-mail: yxzheng@fudan.edu.c [Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China)

    2010-11-10

    A series of SiO{sub 2} films with thickness range 1-600 nm have been deposited on crystal silicon (c-Si) substrates by electron beam evaporation (EBE) method. Variable-angle spectroscopic ellipsometry (VASE) in combination with a two-film model (ambient-oxide-interlayer substrate) was used to determine the optical constants and thicknesses of the investigated films. The refractive indices of SiO{sub 2} films thicker than 60 nm are close to those of bulk SiO{sub 2}. For the thin films deposited at the rate of {approx}1.0 nm s{sup -1}, the refractive indices increase with decreasing thickness from {approx}60 to {approx}10 nm and then drop sharply with decreasing thickness below {approx}10 nm. However, for thin films deposited at the rates of {approx}0.4 and {approx}0.2 nm s{sup -1}, the refractive indices monotonically increase with decreasing thickness below 60 nm. The optical constants of the ultrathin film depend on the morphology of the film, the stress exerted on the film, as well as the stoichiometry of the oxide film.

  2. Evolution of optical constants of silicon dioxide on silicon from ultrathin films to thick films

    International Nuclear Information System (INIS)

    Cai Qingyuan; Zheng Yuxiang; Mao Penghui; Zhang Rongjun; Zhang Dongxu; Liu Minghui; Chen Liangyao

    2010-01-01

    A series of SiO 2 films with thickness range 1-600 nm have been deposited on crystal silicon (c-Si) substrates by electron beam evaporation (EBE) method. Variable-angle spectroscopic ellipsometry (VASE) in combination with a two-film model (ambient-oxide-interlayer substrate) was used to determine the optical constants and thicknesses of the investigated films. The refractive indices of SiO 2 films thicker than 60 nm are close to those of bulk SiO 2 . For the thin films deposited at the rate of ∼1.0 nm s -1 , the refractive indices increase with decreasing thickness from ∼60 to ∼10 nm and then drop sharply with decreasing thickness below ∼10 nm. However, for thin films deposited at the rates of ∼0.4 and ∼0.2 nm s -1 , the refractive indices monotonically increase with decreasing thickness below 60 nm. The optical constants of the ultrathin film depend on the morphology of the film, the stress exerted on the film, as well as the stoichiometry of the oxide film.

  3. Effect of starting point formation on the crystallization of amorphous silicon films by flash lamp annealing

    Science.gov (United States)

    Sato, Daiki; Ohdaira, Keisuke

    2018-04-01

    We succeed in the crystallization of hydrogenated amorphous silicon (a-Si:H) films by flash lamp annealing (FLA) at a low fluence by intentionally creating starting points for the trigger of explosive crystallization (EC). We confirm that a partly thick a-Si part can induce the crystallization of a-Si films. A periodic wavy structure is observed on the surface of polycrystalline silicon (poly-Si) on and near the thick parts, which is a clear indication of the emergence of EC. Creating partly thick a-Si parts can thus be effective for the control of the starting point of crystallization by FLA and can realize the crystallization of a-Si with high reproducibility. We also compare the effects of creating thick parts at the center and along the edge of the substrates, and a thick part along the edge of the substrates leads to the initiation of crystallization at a lower fluence.

  4. Hydrogen absorption by thin Pd/Nb films deposited on glass

    International Nuclear Information System (INIS)

    Reisfeld, G.; Jisrawi, N.M.; Ruckman, M.W.; Strongin, M.

    1996-01-01

    Hydrogen absorption by 200 endash 2000-A-thick Pd-capped Nb films, between 5 and 110 degree C, was studied by simultaneous four-probe resistivity and volumetric measurements. The resistivity as a function of hydrogen concentration was measured while charging the films with hydrogen, and was used to compute the change in hydrogen concentration in the film, during the reaction with oxygen. For the thinnest films (200 A thick), the hydrogen charging and discharging curves indicate that a first-order gas-liquid-like phase transition with a T c of 70 endash 75 degree C takes place. The H-Nb phase diagram for the 200-A film looks like the H/bulk Nb α-α' phase diagram which has a higher T c (173 degree C). We attribute the substantial modifications of the film close-quote s phase diagram to the clamping of the Nb film at its interfaces with glass and Pd and to the nanostructure of the films. copyright 1996 The American Physical Society

  5. Modelling of the hydrogen effects on the morphogenesis of hydrogenated silicon nano-structures in a plasma reactor

    International Nuclear Information System (INIS)

    Brulin, Q.

    2006-01-01

    This work pursues the goal of understanding mechanisms related to the morphogenesis of hydrogenated silicon nano-structures in a plasma reactor through modeling techniques. Current technologies are first reviewed with an aim to understand the purpose behind their development. Then follows a summary of the possible studies which are useful in this particular context. The various techniques which make it possible to simulate the trajectories of atoms by molecular dynamics are discussed. The quantum methods of calculation of the interaction potential between chemical species are then developed, reaching the conclusion that only semi-empirical quantum methods are sufficiently fast to be able to implement an algorithm of quantum molecular dynamics on a reasonable timescale. From the tools introduced, a reflection on the nature of molecular metastable energetic states is presented for the theoretical case of the self-organized growth of a linear chain of atoms. This model - which consists of propagating the growth of a chain by the successive addition of the atom which least increases the electronic energy of the chain - shows that the Fermi level is a parameter essential to self organization during growth. This model also shows that the structure formed is not necessarily a total minimum energy structure. From all these numerical tools, the molecular growth of clusters can be simulated by using parameters from magnetohydrodynamic calculation results of plasma reactor modeling (concentrations of the species, interval between chemical reactions, energy of impact of the reagents...). The formation of silicon-hydrogen clusters is thus simulated by the successive capture of silane molecules. The structures formed in simulation at the operating temperatures of the plasma reactor predict the formation of spherical clusters constituting an amorphous silicon core covered by hydrogen. These structures are thus not in a state of minimum energy, contrary to certain experimental

  6. Theory of structure and properties of hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Chiarotti, G.L.; Car, R. (International School of Advanced Studies, Trieste (Italy) Interuniversitario Nazionale di Fisica della Materia (INFM), Trieste (Italy). Lab. Tecnologie Avanzate Superfici e Catalisi); Buda, F. (International School of Advanced Studies, Trieste (Italy) Ohio State Univ., Columbus, OH (USA). Dept. of Physics); Parrinello, M. (International School of Advanced Studies, Trieste

    1990-01-01

    We have generated a computer model of hydrogenated amorphous silicon by first-principles molecular dynamics. Our results are in good agreement with the available experimental data, and provide new insight into the microscopic structure of this material. This should lead to a better understanding of the hydrogenation process. 13 refs., 2 figs.

  7. Influence of Microwave Power on the Properties of Hydrogenated Diamond-Like Carbon Films Prepared by ECR Plasma Enhanced DC Magnetron Sputtering

    International Nuclear Information System (INIS)

    Ru Lili; Huang Jianjun; Gao Liang; Qi Bing

    2010-01-01

    Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hydrogen gas are introduced separately as the ECR working gas to investigate the influence of microwave power on the microstructure and electrical property of the H-DLC films deposited on P-type silicon substrates. A series of characterization methods including the Raman spectrum and atomic force microscopy are used. Results show that, within a certain range, the increase in microwave power affects the properties of the thin films, namely the sp 3 ratio, the hardness, the nanoparticle size and the resistivity all increase while the roughness decreases with the increase in microwave power. The maximum of resistivity amounts to 1.1 x 10 9 Ω · cm. At the same time it is found that the influence of microwave power on the properties of H-DLC films is more pronounced when argon gas is applied as the ECR working gas, compared to hydrogen gas.

  8. Band gap engineering of hydrogenated amorphous carbon thin films for solar cell application

    Science.gov (United States)

    Dwivedi, Neeraj; Kumar, Sushil; Dayal, Saurabh; Rauthan, C. M. S.; Panwar, O. S.; Malik, Hitendra K.

    2012-10-01

    In this work, self bias variation, nitrogen introduction and oxygen plasma (OP) treatment approaches have been used for tailoring the band gap of hydrogenated amorphous carbon (a-C:H) thin films. The band gap of a-C:H and modified a- C:H films is varied in the range from 1.25 eV to 3.45 eV, which is found to be nearly equal to the full solar spectrum (1 eV- 3.5 eV). Hence, such a-C:H and modified a-C:H films are found to be potential candidate for the development of full spectrum solar cells. Besides this, computer aided simulation with considering variable band gap a-C:H and modified a- C:H films as window layer for amorphous silicon p-i-n solar cells is also performed by AFORS-HET software and maximum efficiency as ~14 % is realized. Since a-C:H is hard material, hence a-C:H and modified a-C:H films as window layer may avoid the use of additional hard and protective coating particularly in n-i-p configuration.

  9. Crystallization of silicon films of submicron thickness by blue-multi-laser-diode annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mugiraneza, Jean de Dieu; Shirai, Katsuya; Suzuki, Toshiharu; Okada, Tatsuya; Noguchi, Takashi [University of the Ryukyus, Okinawa (Japan); Matsushima, Hideki; Hashimoto, Takao; Ogino, Yoshiaki; Sahota, Eiji [Hitachi Computer Peripherals Co. Ltd, Kanagawa (Japan)

    2012-01-15

    Blue-Multi-Laser-Diode Annealing (BLDA) was performed in the continuous wave (CW) mode on Si films as thick as 0.5 {mu}m and 1 {mu}m deposited by rf sputtering. As a result of controlling the laser power from 4.0 to 4.8 W, a whole Si layer of 0.5 {mu}m in thickness was completely crystallized and consisted of a columnar structure of fine grains beneath a partially melted Si surface owing to the high temperature gradient along the depth in the Si layer. After additional hydrogenation in a furnace ambient, the ratio of the photo/dark current under AM 1.5 illumination distinctly improved to 6 times higher than that of as-deposited condition. The BLDA is expected to be applied to thin-film solar cells and/or to thin film transistor (TFT) photo-sensor systems on panels as a new low-temperature poly-silicon (LTPS) fabrication technique.

  10. Surface chemistry of a hydrogenated mesoporous p-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Media, El-Mahdi, E-mail: belhadidz@tahoo.fr; Outemzabet, Ratiba, E-mail: oratiba@hotmail.com

    2017-02-15

    Highlights: • Due to its large specific surface porous silicon is used as substrate for drug therapy and biosensors. • We highlight the evidency of the contribution of the hydrides (SiHx) in the formation of the porous silicon. • The responsible species in the porous silicon formation are identified and quantified at different conditions. • By some chemical treatments we show that silicon surface can be turn from hydrophobic to hydrophilic. - Abstract: The finality of this work is devoted to the grafting of organic molecules on hydrogen passivated mesoporous silicon surfaces. The study would aid in the development for the formation of organic monolayers on silicon surface to be exploited for different applications such as the realisation of biosensors and medical devices. The basic material is silicon which has been first investigated by FTIR at atomistic plane during the anodic forward and backward polarization (i.e. “go” and “return”). For this study, we applied a numerical program based on least squares method to infrared absorbance spectra obtained by an in situ attenuated total reflection on p-type silicon in diluted HF electrolyte. Our numerical treatment is based on the fitting of the different bands of IR absorbance into Gaussians corresponding to the different modes of vibration of molecular groups such as siloxanes and hydrides. An adjustment of these absorbance bands is done systematically. The areas under the fitted bands permit one to follow the intensity of the different modes of vibration that exist during the anodic forward and backward polarization in order to compare the reversibility of the phenomenon of the anodic dissolution of silicon. It permits also to follow the evolution between the hydrogen silicon termination at forward and backward scanning applied potential. Finally a comparison between the states of the initial and final surface was carried out. We confirm the presence of clearly four and three distinct vibration modes

  11. Hydrogen in disordered and amorphous solids

    International Nuclear Information System (INIS)

    Bambakidis, G; Bowman, R.C.

    1986-01-01

    This book presents information on the following topoics: elements of the theory of amorphous semiconductors; electronic structure of alpha-SiH; fluctuation induced gap states in amorphous hydrogenated silicon; hydrogen on semiconductor surfaces; the influence of hydrogen on the defects and instabilities in hydrogenated amorphous silicon; deuteron magnetic resonance in some amorphous semiconductors; formation of amorphous metals by solid state reactions of hydrogen with an intermetallic compound; NMR studies of the hydrides of disordered and amorphous alloys; neutron vibrational spectroscopy of disordered metal-hydrogen system; dynamical disorder of hydrogen in LaNi /SUB 5-y/ M /SUB y/ hydrides studied by quasi-elastic neutron scattering; recent studies of intermetallic hydrides; tritium in Pd and Pd /SUB 0.80/ Sg /SUB 0.20/ ; and determination of hydrogen concentration in thin films of absorbing materials

  12. Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices

    Directory of Open Access Journals (Sweden)

    Ana Luz Muñoz-Rosas

    2018-03-01

    Full Text Available Nowadays, the use of plasmonic metal layers to improve the photonic emission characteristics of several semiconductor quantum dots is a booming tool. In this work, we report the use of silicon quantum dots (SiQDs embedded in a silicon nitride thin film coupled with an ultra-thin gold film (AuNPs to fabricate light emitting devices. We used the remote plasma enhanced chemical vapor deposition technique (RPECVD in order to grow two types of silicon nitride thin films. One with an almost stoichiometric composition, acting as non-radiative spacer; the other one, with a silicon excess in its chemical composition, which causes the formation of silicon quantum dots imbibed in the silicon nitride thin film. The ultra-thin gold film was deposited by the direct current (DC-sputtering technique, and an aluminum doped zinc oxide thin film (AZO which was deposited by means of ultrasonic spray pyrolysis, plays the role of the ohmic metal-like electrode. We found that there is a maximum electroluminescence (EL enhancement when the appropriate AuNPs-spacer-SiQDs configuration is used. This EL is achieved at a moderate turn-on voltage of 11 V, and the EL enhancement is around four times bigger than the photoluminescence (PL enhancement of the same AuNPs-spacer-SiQDs configuration. From our experimental results, we surmise that EL enhancement may indeed be due to a plasmonic coupling. This kind of silicon-based LEDs has the potential for technology transfer.

  13. Improving optical properties of silicon nitride films to be applied in the middle infrared optics by a combined high-power impulse/unbalanced magnetron sputtering deposition technique.

    Science.gov (United States)

    Liao, Bo-Huei; Hsiao, Chien-Nan

    2014-02-01

    Silicon nitride films are prepared by a combined high-power impulse/unbalanced magnetron sputtering (HIPIMS/UBMS) deposition technique. Different unbalance coefficients and pulse on/off ratios are applied to improve the optical properties of the silicon nitride films. The refractive indices of the Si3N4 films vary from 2.17 to 2.02 in the wavelength ranges of 400-700 nm, and all the extinction coefficients are smaller than 1×10(-4). The Fourier transform infrared spectroscopy and x-ray diffractometry measurements reveal the amorphous structure of the Si3N4 films with extremely low hydrogen content and very low absorption between the near IR and middle IR ranges. Compared to other deposition techniques, Si3N4 films deposited by the combined HIPIMS/UBMS deposition technique possess the highest refractive index, the lowest extinction coefficient, and excellent structural properties. Finally a four-layer coating is deposited on both sides of a silicon substrate. The average transmittance from 3200 to 4800 nm is 99.0%, and the highest transmittance is 99.97% around 4200 nm.

  14. Determination of density of band-gap states of hydrogenated amorphous silicon suboxide thin films

    International Nuclear Information System (INIS)

    Bacioglu, A.

    2005-01-01

    Variation of density of gap states of PECVD silicon suboxide films with different oxygen concentrations was evaluated through electrical and optical measurements. Optical transmission and constant photocurrent method (CPM) were used to determine absorption coefficient as a function of photon energy. From these measurements the localized density of states between the valance band mobility edge and Fermi level has been determined. To determine the variation of conduction band edge, steady state photoconductivity (SSPC), photoconductivity response time (PCRT) and transient photoconductivity (TPC) measurements were utilized. Results indicate that the conduction and valance band edges, both, widen monotonically with oxygen content

  15. Characteristics of hydrogen co-doped ZnO : Al thin films

    International Nuclear Information System (INIS)

    Lee, S H; Lee, T S; Lee, K S; Cheong, B; Kim, W M; Kim, Y D

    2008-01-01

    ZnO films co-doped with H and Al (HAZO) were prepared by sputtering ZnO targets containing 1 wt% Al 2 O 3 on Corning glass at a substrate temperature of 150 deg. C with Ar and H 2 /Ar gas mixtures. The effects of hydrogen addition to Al-doped ZnO (AZO) films with low Al content on the electrical, the optical and the structural properties of the as-grown films as well as the vacuum- and air-annealed films were examined. Secondary ion mass spectroscopy analysis showed that the hydrogen concentration increased with increasing H 2 in sputter gas. For the as-deposited films, the free carrier number increased with increasing H 2 . The Hall mobility increased at low hydrogen content, reaching a maximum before decreasing with a further increase of H 2 content in sputter gas. Annealing at 300 deg. C resulted in the removal of hydrogen, causing a decrease in the carrier concentration. It was shown that hydrogen might exist as single isolated interstitial hydrogen bound with oxygen, thereby acting like an anionic dopant. Also, it was shown that the addition of hydrogen to ZnO films doped with low metallic dopant concentration could yield transparent conducting films with very low absorption loss as well as with proper electrical properties, which is suitable for thin film solar cell applications

  16. The analysis of structural and electronic environments of silicon network in HWCVD deposited a-SiC:H films

    International Nuclear Information System (INIS)

    Swain, Bibhu P.

    2007-01-01

    Hydrogenated amorphous silicon carbon alloys (a-SiC:H) films were deposited by hot wire chemical vapour deposition (HWCVD) using SiH 4 and C 2 H 2 as precursor gases. a-SiC:H films were characterized by Fourier Transform Infrared (FTIR) spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Solid-state plasmon of Si network shifts from 19.2 to 20.5 eV by varying C 2 H 2 flow rate from 2 to 10 sccm. Incorporation of carbon content changes the valence band structure and s orbital is more dominant than sp and p orbital with carbon incorporation

  17. Controlled delamination of metal films by hydrogen loading

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Eugen

    2008-11-18

    n this work we quantitatively determine the adhesion energy between metal films and their substrates. Therefore a new controlled buckling technique is established, applying the strong compressive in-plane stress that results in thin films clamped on rigid substrates during hydrogen loading. When the elastic energy stored in the H-loaded thin film exceeds the adhesion energy between film and substrate, delamination occurs. At the onset of delamination, a critical hydrogen concentration, a critical stress value and a critical bending of the substrate are present, which are quantitative measures for the adhesion energy and permit its calculation. As the critical values are determined at the onset of delamination, plastic deformation is negligible, which denies the quantitative determination of adhesion energies in conventional test setups. In multilayer-systems, adhesion energies between substrates and films that hardly absorb hydrogen can be measured by the controlled buckling technique, when the films of interest are coated with hydrogen absorbing films (active layer). The measurements are performed easily and can be repeated under the same test conditions, while variables such as the thickness of the coating materials or the boundary surface structure can be varied and optimized. In this work the adhesion energies of different materials on polycarbonate and niobium on sapphire are investigated. (orig.)

  18. Physical and electrical characteristics of silicon oxynitride films with various refractive indices

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Jeng-Hwa; Hsieh, Jung-Yu; Lin, Hsing-Ju; Tang, Wei-Yao; Chiang, Chun-Ling; Yang, Ling-Wu; Yang, Tahone; Chen, Kuang-Chao; Lu, Chih-Yuan [Macronix International Co. Ltd, No 16, Li-Hsin Road, Hsinchu Science Park, Hsinchu 300, Taiwan (China); Lo, Yun-Shan; Wu, Tai-Bor, E-mail: jhliao@mxic.com.t [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China)

    2009-09-07

    This study explores the relationship between both the physical and the electrical characteristics of silicon oxynitride (SiON) films and the refractive index. The single wafer rapid thermal process modules were used for low pressure chemical vapour deposition of SiON films. A series of SiON films with refractive index between 1.50 and 1.83 were fabricated. Fourier transform infrared absorption spectroscopy and x-ray photoelectron spectroscopy identified the chemical bonding configurations of different SiON films: the Si-N bonds are replaced by Si-O bonds as the refractive index of the SiON films declines. Moreover, the Si atomic ratio is kept between 35% and 40% while the oxygen atomic ratio increases and the nitrogen atomic ratio decreases as the refractive index of the SiON film declines. The electrical characteristics of different SiON-based silicon-oxide-nitride-oxide-silicon (SONOS) devices suggest that (1) the dielectric constant increases with increasing refractive index of the SiON film and (2) the charge-trap density is inversely proportional to the oxygen concentration in the SiON film. Based on these results, the SiON films with various refractive indices can provide a wider application for silicon-based devices, such as SONOS and MOS devices.

  19. Physical and electrical characteristics of silicon oxynitride films with various refractive indices

    International Nuclear Information System (INIS)

    Liao, Jeng-Hwa; Hsieh, Jung-Yu; Lin, Hsing-Ju; Tang, Wei-Yao; Chiang, Chun-Ling; Yang, Ling-Wu; Yang, Tahone; Chen, Kuang-Chao; Lu, Chih-Yuan; Lo, Yun-Shan; Wu, Tai-Bor

    2009-01-01

    This study explores the relationship between both the physical and the electrical characteristics of silicon oxynitride (SiON) films and the refractive index. The single wafer rapid thermal process modules were used for low pressure chemical vapour deposition of SiON films. A series of SiON films with refractive index between 1.50 and 1.83 were fabricated. Fourier transform infrared absorption spectroscopy and x-ray photoelectron spectroscopy identified the chemical bonding configurations of different SiON films: the Si-N bonds are replaced by Si-O bonds as the refractive index of the SiON films declines. Moreover, the Si atomic ratio is kept between 35% and 40% while the oxygen atomic ratio increases and the nitrogen atomic ratio decreases as the refractive index of the SiON film declines. The electrical characteristics of different SiON-based silicon-oxide-nitride-oxide-silicon (SONOS) devices suggest that (1) the dielectric constant increases with increasing refractive index of the SiON film and (2) the charge-trap density is inversely proportional to the oxygen concentration in the SiON film. Based on these results, the SiON films with various refractive indices can provide a wider application for silicon-based devices, such as SONOS and MOS devices.

  20. Crystalline Silicon Solar Cells with Thin Silicon Passivation Film Deposited prior to Phosphorous Diffusion

    Directory of Open Access Journals (Sweden)

    Ching-Tao Li

    2014-01-01

    Full Text Available We demonstrate the performance improvement of p-type single-crystalline silicon (sc-Si solar cells resulting from front surface passivation by a thin amorphous silicon (a-Si film deposited prior to phosphorus diffusion. The conversion efficiency was improved for the sample with an a-Si film of ~5 nm thickness deposited on the front surface prior to high-temperature phosphorus diffusion, with respect to the samples with an a-Si film deposited on the front surface after phosphorus diffusion. The improvement in conversion efficiency is 0.4% absolute with respect to a-Si film passivated cells, that is, the cells with an a-Si film deposited on the front surface after phosphorus diffusion. The new technique provided a 0.5% improvement in conversion efficiency compared to the cells without a-Si passivation. Such performance improvements result from reduced surface recombination as well as lowered contact resistance, the latter of which induces a high fill factor of the solar cell.

  1. Investigate of analysis for hydrogen contents in carbon films

    International Nuclear Information System (INIS)

    Yasui, Haruyuki; Hirose, Yukio; Sasaki, Toshihiko; Awazu, Kaoru; Naramoto, Hiroshi

    2001-01-01

    Hydrogen is a very common contaminant in carbon films. It can strongly influences on mechanical, physical and chemical properties of the films. The analysis of hydrogen is therefore a crucial problem to prepare the films with the reproducible property. We were measured two kinds of methods. Ion beam techniques using nuclear reactions are established methods for the quantitative determination of hydrogen concentration. A spectrometer has been constructed for the determination of hydrogen concentrations by detecting 4.43 MeV γ-rays from the resonant nuclear reactions 1 H( 15 N, α γ) 12 C at the 6.385 MeV. And the other measurement of hydrogen is GDOES (Glow Discharge Optical Emission Spectroscopy), with its high sputtering rates, had been used previously for depth profiling analysis of thin films. The depth profiling analysis was carried out at an argon atmosphere by applying an RF of 13.56 MHz. The sampling time interval was 0.1 sec. The detailed hydrogen analysis was made on BCN (Boron Carbonitride) and DLC (Diamond-like Carbon) thin films. The BCN films were prepared by ion beam assisted deposition, in which boron and carbon were deposited by electron beam heating of B 4 C solid and nitrogen was supplied by implantation simultaneously. The DLC films were prepared by HPPC (Hybrid-pulse plasma coating) system. It was a new coating system that we developed which consists fundamentally of plasma CVD (chemical vapor deposition) and ion-mixing. In this paper, we reported the comparison of analysis for hydrogen contents between RNRA and GDOES. (author)

  2. Investigate of analysis for hydrogen contents in carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Haruyuki; Hirose, Yukio; Sasaki, Toshihiko [Kanazawa Univ., Kanazawa, Ishikawa (Japan); Awazu, Kaoru [Industrial Research Institute of Ishikawa, Kanazawa, Ishikawa (Japan); Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-07-01

    Hydrogen is a very common contaminant in carbon films. It can strongly influences on mechanical, physical and chemical properties of the films. The analysis of hydrogen is therefore a crucial problem to prepare the films with the reproducible property. We were measured two kinds of methods. Ion beam techniques using nuclear reactions are established methods for the quantitative determination of hydrogen concentration. A spectrometer has been constructed for the determination of hydrogen concentrations by detecting 4.43 MeV {gamma}-rays from the resonant nuclear reactions {sup 1}H({sup 15}N, {alpha} {gamma}){sup 12}C at the 6.385 MeV. And the other measurement of hydrogen is GDOES (Glow Discharge Optical Emission Spectroscopy), with its high sputtering rates, had been used previously for depth profiling analysis of thin films. The depth profiling analysis was carried out at an argon atmosphere by applying an RF of 13.56 MHz. The sampling time interval was 0.1 sec. The detailed hydrogen analysis was made on BCN (Boron Carbonitride) and DLC (Diamond-like Carbon) thin films. The BCN films were prepared by ion beam assisted deposition, in which boron and carbon were deposited by electron beam heating of B{sub 4}C solid and nitrogen was supplied by implantation simultaneously. The DLC films were prepared by HPPC (Hybrid-pulse plasma coating) system. It was a new coating system that we developed which consists fundamentally of plasma CVD (chemical vapor deposition) and ion-mixing. In this paper, we reported the comparison of analysis for hydrogen contents between RNRA and GDOES. (author)

  3. The effect of amorphous silicon surface hydrogenation on morphology, wettability and its implication on the adsorption of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Filali, Larbi, E-mail: larbifilali5@gmail.com [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria); Brahmi, Yamina; Sib, Jamal Dine [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria); Bouhekka, Ahmed [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria); Département de Physique, Université Hassiba Ben Bouali, 02000 Chlef (Algeria); Benlakehal, Djamel; Bouizem, Yahya; Kebab, Aissa; Chahed, Larbi [Laboratoire de Physique des Couches Minces et Matériaux pour l' Electronique, Université d' Oran 1, Ahmed Ben Bella, BP 1524, El M' naouar 31100 Oran (Algeria)

    2016-10-30

    Highlights: • Hydrogenation of the surfaces had the effect of reducing the roughness by way of shadow etching. • Roughness was the driving factor affecting the wettability of the hydrogenated surfaces. • Bovine Serum Albumin proteins favored the surfaces with highest hydrogen content. • Surface modification induced secondary structure change of adsorbed proteins. - Abstract: We study the effect of amorphous silicon (a-Si) surface hydrogenation on Bovine Serum Albumin (BSA) adsorption. A set of (a-Si) films was prepared by radio frequency magnetron sputtering (RFMS) and after deposition; they were treated in molecular hydrogen ambient at different pressures (1–3 Pa). Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy and spectroscopic ellipsometry (SE) were used to study the hydrogenation effect and BSA adsorption. Atomic force microscopy (AFM) was used to evaluate morphological changes caused by hydrogenation. The wettability of the films was measured using contact angle measurement, and in the case of the hydrogenated surfaces, it was found to be driven by surface roughness. FTIR-ATR spectroscopy and SE measurements show that proteins had the strongest affinity toward the surfaces with the highest hydrogen content and their secondary structure was affected by a significant decrease of the α-helix component (-27%) compared with the proteins adsorbed on the un-treated surface, which had a predominantly α-helix (45%) structure. The adsorbed protein layer was found to be densely packed with a large thickness (30.9 nm) on the hydrogen-rich surfaces. The most important result is that the surface hydrogen content was the dominant factor, compared to wettability and morphology, for protein adsorption.

  4. Surface electronic properties of discontinuous Pd films during hydrogen exposure

    International Nuclear Information System (INIS)

    Zhao, Ming; Nagata, Shinji; Shikama, Tatsuo; Inouye, Aichi; Yamamoto, Shunya; Yoshikawa, Masahito

    2011-01-01

    This paper explored the change in the surface resistance of the discontinuous palladium (Pd) films during hydrogen exposure. In our experiments, we observed a remarkable rise in the electrical resistance of the discontinuous film which consists of nano-sized particles, when it was exposed to thin hydrogen. By studying the resistance change ratio before and after hydrogen exposure, we have found that it demonstrates an inverse exponential relationship with the ratio of on-film particle radius to the inter island separation. This suggests that the change in the film resistance under hydrogen exposure is primarily associated with the variation of surface work function which is caused by the hydrogen absorption on the Pd surface. (author)

  5. Laser annealed HWCVD and PECVD thin silicon films. Electron field emission

    International Nuclear Information System (INIS)

    O'Neill, K.A.; Shaikh, M.Z.; Lyttle, G.; Anthony, S.; Fan, Y.C.; Persheyev, S.K.; Rose, M.J.

    2006-01-01

    Electron Field Emission (FE) properties of various laser annealed thin silicon films on different substrates were investigated. HWCVD microcrystalline and PECVD amorphous silicon films were irradiated with Nd : YAG and XeCl Excimer lasers at varying energy densities. Encouraging FE results were mainly from XeCl Excimer laser processed PECVD and HWCVD films on metal backplanes. FE measurements were complemented by the study of film surface morphology. Geometric field enhancement factors from surface measurements and Fowler-Nordheim Theory (FNT) were compared. FE properties of the films were also found to be particularly influenced by the backplane material

  6. Silicon based multilayer photoelectrodes for photoelectrolysis of water to produce hydrogen from the sun

    Science.gov (United States)

    Faruque, Faisal

    The main objective of this work is to study different materials for the direct photosynthesis of hydrogen from water. A variety of photocatalysts such as titanium dioxide, titanium oxy-nitride, silicon carbide, and gallium nitride are being investigated by others for the clean production of hydrogen for fuel cells and hydrogen economy. Our approach was to deposit suitable metallic regions on photocatalyst nanoparticles to direct the efficient synthesis of hydrogen to a particular site for convenient collection. We studied different electrode metals such as gold, platinum, titanium, palladium, and tungsten. We also studied different solar cell materials such as silicon (p- and n-types), silicon carbide and titanium dioxide semiconductors in order to efficiently generate electrons under illumination. We introduced a novel silicon-based multilayer photosynthesis device to take advantage of suitable properties of silicon and tungsten to efficiently produce hydrogen. The device consisted of a silicon (0.5mm) substrate, a deposited atomic layer of Al2O 3 (1nm), a doped polysilicon (0.1microm), and finally a tungsten nanoporous (5-10nm) layer acting as an interface electrode with water. The Al2O 3 layer was introduced to reduce leakage current and to prevent the spreading of the diffused p-n junction layer between the silicon and doped polysilicon layers. The surface of the photoelectrode was coated with nanotextured tungsten nanopores (TNP), which increased the surface area of the electrodes to the electrolyte, assisting in electron-hole mobility, and acting as a photocatalyst. The reported device exhibited a fill factor (%FF) of 27.22% and solar-to-hydrogen conversion efficiency of 0.03174%. This thesis describes the structures of the device, and offers a characterization and comparison between different photoelectrodes.

  7. High-rate synthesis of microcrystalline silicon films using high-density SiH4/H2 microwave plasma

    International Nuclear Information System (INIS)

    Jia, Haijun; Saha, Jhantu K.; Ohse, Naoyuki; Shirai, Hajime

    2007-01-01

    A high electron density (> 10 11 cm -3 ) and low electron temperature (1-2 eV) plasma is produced by using a microwave plasma source utilizing a spoke antenna, and is applied for the high-rate synthesis of high quality microcrystalline silicon (μc-Si) films. A very fast deposition rate of ∼ 65 A/s is achieved at a substrate temperature of 150 deg. C with a high Raman crystallinity and a low defect density of (1-2) x 10 16 cm -3 . Optical emission spectroscopy measurements reveal that emission intensity of SiH and intensity ratio of H α /SiH are good monitors for film deposition rate and film crystallinity, respectively. A high flux of film deposition precursor and atomic hydrogen under a moderate substrate temperature condition is effective for the fast deposition of highly crystallized μc-Si films without creating additional defects as well as for the improvement of film homogeneity

  8. Conciliating surface superhydrophobicities and mechanical strength of porous silicon films

    Science.gov (United States)

    Wang, Fuguo; Zhao, Kun; Cheng, Jinchun; Zhang, Junyan

    2011-01-01

    Hydrophobic surfaces on Mechanical stable macroporous silicon films were prepared by electrochemical etching with subsequent octadecyltrichlorosilane (OTS) modification. The surface morphologies were controlled by current densities and the mechanical properties were adjusted by their corresponding porosities. Contrast with the smooth macroporous silicon films with lower porosities (34.1%) and microporous silicon with higher porosities (97%), the macroporous film with a rough three-dimension (3D) surface and a moderate pore to cross-section area ratio (37.8%, PSi2‧) exhibited both good mechanical strength (Yong' modulus, shear modulus and collapse strength are 64.2, 24.1 and 0.32 GPa, respectively) and surface superhydrophobicity (water contact angle is 158.4 ± 2° and sliding angle is 2.7 ± 1°). This result revealed that the surface hydrophobicities (or the surface roughness) and mechanical strength of porous films could be conciliated by pore to cross-section area ratios control and 3D structures construction. Thus, the superhydrophobic surfaces on mechanical stable porous films could be obtained by 3D structures fabrication on porous film with proper pore to cross-section area ratios.

  9. Comparative study of the biodegradability of porous silicon films in simulated body fluid.

    Science.gov (United States)

    Peckham, J; Andrews, G T

    2015-01-01

    The biodegradability of oxidized microporous, mesoporous and macroporous silicon films in a simulated body fluid with ion concentrations similar to those found in human blood plasma were studied using gravimetry. Film dissolution rates were determined by periodically weighing the samples after removal from the fluid. The dissolution rates for microporous silicon were found to be higher than those for mesoporous silicon of comparable porosity. The dissolution rate of macroporous silicon was much lower than that for either microporous or mesoporous silicon. This is attributed to the fact that its specific surface area is much lower than that of microporous and mesoporous silicon. Using an equation adapted from [Surf. Sci. Lett. 306 (1994), L550-L554], the dissolution rate of porous silicon in simulated body fluid can be estimated if the film thickness and specific surface area are known.

  10. Defect generation/passivation by low energy hydrogen implant for silicon solar cells

    International Nuclear Information System (INIS)

    Sopori, B.L.; Zhou, T.Q.; Rozgonyi, G.A.

    1990-01-01

    Low energy ion implant is shown to produce defects in silicon. These defects include surface damage, hydrogen agglomeration, formation of platelets with (111) habit plane and decoration of dislocations. Hydrogen also produces an inversion type of surface on boron doped silicon. These effects indicate that a preferred approach for passivation is to incorporate hydrogen from the back side of the cell. A backside H + implant technique is described. The results show that degree of passivation differs for various devices. A comparison of the defect structures of hydrogenated devices indicates that the structure and the distribution of defects in the bulk of the material plays a significant role in determining the degree of passivation

  11. Study of the bistable hydrogen donors properties in silicon implanted by the protons

    International Nuclear Information System (INIS)

    Abdullin, Kh.A.; Gorelkinskij, Yu.V.; Serikkanov, A.S.

    2003-01-01

    The proton implantation in silicon with doses 10 16 -10 17 cm -2 leads to formation of the hydrogen supersaturated solid solution in the Si. At the room temperature the hydrogen mobility on radiation defects limited by the H atom capture is inappreciably low. Thermal annealing at 400-500 Deg. C results in the decay and rebuilding of hydrogen-containing radiation defects and precipitants, that leads to reduction of the free energy of the system. Precipitation occurring in the form of nano-cluster defects formation, containing the hydrogen atoms. Thermal annealing of the silicon implanted by hydrogen at ∼450 Deg. C during 20 min. causing the hydrogen precipitation process and defects agglomeration leads to donor centers formation registering by the Hall effect

  12. Optical properties of amorphous silicon: Some problem areas

    International Nuclear Information System (INIS)

    Ravindra, N.M.; Chelle, F. de; Ance, C.; Ferraton, J.P.; Berger, J.M.; Coulibaly, S.P.

    1983-08-01

    In this presentation we essentially attempt to throw light on some problem areas concerning the various optical properties of amorphous silicon. The problems seem to emerge from the classical methods employed to determine the optical properties like the optical gap, urbach tail parameter and other related characteristics. Additional problems have emerged in recent years by virtue of many attempts to generalize the property-behaviour relationships for amorphous silicon without attributing any importance to the method of preparation of the films. It should be noted here that although many authors believe disorder to be the controlling parameter, we are of the opinion that at least for films containing fairly large concentrations of hydrogen, the hydrogen concentration has an equally important role to play. The present study has been carried out for films prepared by glow-discharge and chemical vapour deposition. (author)

  13. Stoichiometry of Silicon Dioxide Films Obtained by Ion-Beam Sputtering

    Science.gov (United States)

    Telesh, E. V.; Dostanko, A. P.; Gurevich, O. V.

    2018-03-01

    The composition of SiOx films produced by ion-beam sputtering (IBS) of silicon and quartz targets were studied by infrared spectrometry. Films with thicknesses of 150-390 nm were formed on silicon substrates. It was found that increase in the partial pressure of oxygen in the working gas, increase in the temperature of the substrate, and the presence of a positive potential on the target during reactive IBS of silicon shifted the main absorption band νas into the high-frequency region and increased the composition index from 1.41 to 1.85. During IBS of a quartz target the stoichiometry of the films deteriorates with increase of the energy of the sputtering argon ions. This may be due to increase of the deposition rate. Increase in the current of the thermionic compensator, increase of the substrate temperature, and addition of oxygen led to the formation of SiOx films with improved stoichiometry.

  14. Dielectric, ferroelectric, and thermodynamic properties of silicone oil modified PVDF films for energy storage application

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Bingcheng; Wang, Xiaohui, E-mail: wxh@tsinghua.edu.cn, E-mail: llt-dms@mail.tsinghua.edu.cn; Li, Longtu, E-mail: wxh@tsinghua.edu.cn, E-mail: llt-dms@mail.tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Sun, Hui [Aero-Engine Control System Institute, Aviation Industry Corporation of China, Jiangsu, Wuxi 214063 (China)

    2016-06-13

    Silicone oil modified poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) films were fabricated by the blending, casting, and hot-molding methods. The dielectric constant was increased for the 7.4 wt. % and 17.0 wt. % silicone oil modified P(VDF-HFP) films, while the dielectric loss for all blend films are decreased. D-E loops of 7.4 wt. % and 17.0 wt. % silicone oil modified P(VDF-HFP) films become slimmer than the pristine P(VDF-HFP) films. The maximum discharged energy density of 10.3 J/cm{sup 3} was obtained in 7.4 wt. % silicone oil modified P(VDF-HFP) films at the external electric field of 398 kV/mm. The Gibbs energy, miscibility, and phase behavior of binary mixture of P(VDF-HFP) silicone oil were investigated using molecular simulations and the extended Flory–Huggins model revealing favorable interactions and compatibility between P(VDF-HFP) and silicone oil.

  15. Composite silicon nanostructure arrays fabricated on optical fibre by chemical etching of multicrystal silicon film

    International Nuclear Information System (INIS)

    Zuo, Zewen; Zhu, Kai; Ning, Lixin; Cui, Guanglei; Qu, Jun; Huang, Wanxia; Shi, Yi; Liu, Hong

    2015-01-01

    Integrating nanostructures onto optical fibers presents a promising strategy for developing new-fashioned devices and extending the scope of nanodevices’ applications. Here we report the first fabrication of a composite silicon nanostructure on an optical fiber. Through direct chemical etching using an H 2 O 2 /HF solution, multicrystal silicon films with columnar microstructures are etched into a vertically aligned, inverted-cone-like nanorod array embedded in a nanocone array. A faster dissolution rate of the silicon at the void-rich boundary regions between the columns is found to be responsible for the separation of the columns, and thus the formation of the nanostructure array. The morphology of the nanorods primarily depends on the microstructure of the columns in the film. Through controlling the microstructure of the as-grown film and the etching parameters, the structural control of the nanostructure is promising. This fabrication method can be extended to a larger length scale, and it even allows roll-to-roll processing. (paper)

  16. Composite silicon nanostructure arrays fabricated on optical fibre by chemical etching of multicrystal silicon film.

    Science.gov (United States)

    Zuo, Zewen; Zhu, Kai; Ning, Lixin; Cui, Guanglei; Qu, Jun; Huang, Wanxia; Shi, Yi; Liu, Hong

    2015-04-17

    Integrating nanostructures onto optical fibers presents a promising strategy for developing new-fashioned devices and extending the scope of nanodevices' applications. Here we report the first fabrication of a composite silicon nanostructure on an optical fiber. Through direct chemical etching using an H2O2/HF solution, multicrystal silicon films with columnar microstructures are etched into a vertically aligned, inverted-cone-like nanorod array embedded in a nanocone array. A faster dissolution rate of the silicon at the void-rich boundary regions between the columns is found to be responsible for the separation of the columns, and thus the formation of the nanostructure array. The morphology of the nanorods primarily depends on the microstructure of the columns in the film. Through controlling the microstructure of the as-grown film and the etching parameters, the structural control of the nanostructure is promising. This fabrication method can be extended to a larger length scale, and it even allows roll-to-roll processing.

  17. TXRF analysis of trace metals in thin silicon nitride films

    International Nuclear Information System (INIS)

    Vereecke, G.; Arnauts, S.; Verstraeten, K.; Schaekers, M.; Heyrts, M.M.

    2000-01-01

    As critical dimensions of integrated circuits continue to decrease, high dielectric constant materials such as silicon nitride are being considered to replace silicon dioxide in capacitors and transistors. The achievement of low levels of metal contamination in these layers is critical for high performance and reliability. Existing methods of quantitative analysis of trace metals in silicon nitride require high amounts of sample (from about 0.1 to 1 g, compared to a mass of 0.2 mg for a 2 nm thick film on a 8'' silicon wafer), and involve digestion steps not applicable to films on wafers or non-standard techniques such as neutron activation analysis. A novel approach has recently been developed to analyze trace metals in thin films with analytical techniques currently used in the semiconductor industry. Sample preparation consists of three steps: (1) decomposition of the silicon nitride matrix by moist HF condensed at the wafer surface to form ammonium fluosilicate. (2) vaporization of the fluosilicate by a short heat treatment at 300 o C. (3) collection of contaminants by scanning the wafer surface with a solution droplet (VPD-DSC procedure). The determination of trace metals is performed by drying the droplet on the wafer and by analyzing the residue by TXRF, as it offers the advantages of multi-elemental analysis with no dilution of the sample. The lower limits of detection for metals in 2 nm thick films on 8'' silicon wafers range from about 10 to 200 ng/g. The present study will focus on the matrix effects and the possible loss of analyte associated with the evaporation of the fluosilicate salt, in relation with the accuracy and the reproducibility of the method. The benefits of using an internal standard will be assessed. Results will be presented from both model samples (ammonium fluoride contaminated with metallic salts) and real samples (silicon nitride films from a production tool). (author)

  18. GHz-rate optical parametric amplifier in hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    Wang, Ke-Yao; Foster, Amy C

    2015-01-01

    We demonstrate optical parametric amplification operating at GHz-rates at telecommunications wavelengths using a hydrogenated amorphous silicon waveguide through the nonlinear optical process of four-wave mixing. We investigate how the parametric amplification scales with repetition rate. The ability to achieve amplification at GHz-repetition rates shows hydrogenated amorphous silicon’s potential for telecommunication applications and a GHz-rate optical parametric oscillator. (paper)

  19. Enhanced photoluminescence from porous silicon by hydrogen-plasma etching

    International Nuclear Information System (INIS)

    Wang, Q.; Gu, C.Z.; Li, J.J.; Wang, Z.L.; Shi, C.Y.; Xu, P.; Zhu, K.; Liu, Y.L.

    2005-01-01

    Porous silicon (PS) was etched by hydrogen plasma. On the surface a large number of silicon nanocone arrays and nanocrystallites were formed. It is found that the photoluminescence of the H-etched porous silicon is highly enhanced. Correspondingly, three emission centers including red, green, and blue emissions are shown to contribute to the enhanced photoluminescence of the H-etched PS, which originate from the recombination of trapped electrons with free holes due to Si=O bonding at the surface of the silicon nanocrystallites, the quantum size confinement effect, and oxygen vacancy in the surface SiO 2 layer, respectively. In particular, the increase of SiO x (x<2) formed on the surface of the H-etched porous silicon plays a very important role in enhancing the photoluminescence properties

  20. Stress hysteresis and mechanical properties of plasma-enhanced chemical vapor deposited dielectric films

    Science.gov (United States)

    Thurn, Jeremy; Cook, Robert F.; Kamarajugadda, Mallika; Bozeman, Steven P.; Stearns, Laura C.

    2004-02-01

    A comprehensive survey is described of the responses of three plasma-enhanced chemical vapor deposited dielectric film systems to thermal cycling and indentation contact. All three films—silicon oxide, silicon nitride, and silicon oxy-nitride—exhibited significant nonequilibrium permanent changes in film stress on thermal cycling or annealing. The linear relationship between stress and temperature changed after the films were annealed at 300 °C, representing a structural alteration in the film reflecting a change in coefficient of thermal expansion or biaxial modulus. A double-substrate method was used to deduce both thermoelastic properties before and after the anneal of selected films and the results were compared with the modulus deconvoluted from small-scale depth-sensing indentation experiments (nanoindentation). Rutherford backscattering spectrometry and hydrogen forward scattering were used to deduce the composition of the films and it was found that all the films contained significant amounts of hydrogen.

  1. Suppression of nanoindentation-induced phase transformation in crystalline silicon implanted with hydrogen

    Science.gov (United States)

    Jelenković, Emil V.; To, Suet

    2017-09-01

    In this paper the effect of hydrogen implantation in silicon on nanoindentation-induced phase transformation is investigated. Hydrogen ions were implanted in silicon through 300 nm thick oxide with double energy implantation (75 and 40 keV). For both energies implantation dose was 4 × 1016 cm-2. Some samples were thermally annealed at 400 °C. The micro-Raman spectroscopy was applied on nanoindentation imprints and the obtained results were related to the pop out/elbow appearances in nanoindentatioin unloading-displacement curves. The Raman spectroscopy revealed a suppression of Si-XII and Si-III phases and formation of a-Si in the indents of hydrogen implanted Si. The high-resolution x-ray diffraction measurements were taken to support the analysis of silicon phase formation during nanoindentation. Implantation induced strain, high hydrogen concentration, and platelets generation were found to be the factors that control suppression of c-Si phases Si-XII and Si-III, as well as a-Si phase enhancement during nanoindentation. [Figure not available: see fulltext.

  2. Structural, optical and electrical properties of quasi-monocrystalline silicon thin films obtained by rapid thermal annealing of porous silicon layers

    International Nuclear Information System (INIS)

    Hajji, M.; Khardani, M.; Khedher, N.; Rahmouni, H.; Bessais, B.; Ezzaouia, H.; Bouchriha, H.

    2006-01-01

    Quasi-mono-crystalline silicon (QMS) layers have a top surface like crystalline silicon with small voids in the body. Such layers are reported to have a higher absorption coefficient than crystalline silicon at the interesting range of the solar spectrum for photovoltaic application. In this work we present a study of the structural, optical and electrical properties of quasimonocrystalline silicon thin films. Quasimonocrystalline silicon thin films were obtained from porous silicon, which has been annealed at a temperature ranging from 950 to 1050 deg. C under H 2 atmosphere for different annealing durations. The porous layers were prepared by conventional electrochemical anodization using a double tank cell and a HF / Ethanol electrolyte. Porous silicon is formed on highly doped p + -type silicon substrates that enable us to prevent back contacts for the anodization. Atomic Force Microscope (AFM) was used to study the morphological quality of the prepared layers. Optical properties were extracted from transmission and reflectivity spectra. Dark I-V characteristics were used to determine the electrical conductivity of quasimonocrystalline silicon thin films. Results show an important improvement of the absorption coefficient of the material and electrical conductivity reaches a value of twenty orders higher than that of starting mesoporous silicon

  3. Origins of hole traps in hydrogenated nanocrystalline and amorphous silicon revealed through machine learning

    Science.gov (United States)

    Mueller, Tim; Johlin, Eric; Grossman, Jeffrey C.

    2014-03-01

    Genetic programming is used to identify the structural features most strongly associated with hole traps in hydrogenated nanocrystalline silicon with very low crystalline volume fraction. The genetic programming algorithm reveals that hole traps are most strongly associated with local structures within the amorphous region in which a single hydrogen atom is bound to two silicon atoms (bridge bonds), near fivefold coordinated silicon (floating bonds), or where there is a particularly dense cluster of many silicon atoms. Based on these results, we propose a mechanism by which deep hole traps associated with bridge bonds may contribute to the Staebler-Wronski effect.

  4. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Misra, A. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-10-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. One promising option to meet this goal is direct photoelectrolysis in which light absorbed by semiconductor-based photoelectrodes produces electrical power internally to split water into hydrogen and oxygen. Under this program, direct solar-to-chemical conversion efficiencies as high as 7.8 % have been demonstrated using low-cost, amorphous-silicon-based photoelectrodes. Detailed loss analysis models indicate that solar-to-chemical conversion greater than 10% can be achieved with amorphous-silicon-based structures optimized for hydrogen production. In this report, the authors describe the continuing progress in the development of thin-film catalytic/protective coatings, results of outdoor testing, and efforts to develop high efficiency, stable prototype systems.

  5. Real-time observations of interface formation for barium strontium titanate films on silicon

    Science.gov (United States)

    Mueller, A. H.; Suvorova, N. A.; Irene, E. A.; Auciello, O.; Schultz, J. A.

    2002-05-01

    Ba.5Sr.5TiO3 (BST) film growth by ion sputtering on bare and thermally oxidized silicon was observed in real time using in-situ spectroscopic ellipsometry and time of flight ion scattering and recoil spectrometry techniques. At the outset of BST film deposition on silicon, an approximately 30 Å film with intermediate static dielectric constant (K˜12) and refractive index (n˜2.6 at photon energies of 1.5-3.25 eV) interface layer formed on bare silicon. The interface layer growth rate was greatly reduced on an oxidized silicon substrate. The results have profound implications on the static dielectric constant of BST.

  6. Real-time observations of interface formation for barium strontium titanate films on silicon

    International Nuclear Information System (INIS)

    Mueller, A.H.; Suvorova, N.A.; Irene, E.A.; Auciello, O.; Schultz, J.A.

    2002-01-01

    Ba .5 Sr .5 TiO 3 (BST) film growth by ion sputtering on bare and thermally oxidized silicon was observed in real time using in-situ spectroscopic ellipsometry and time of flight ion scattering and recoil spectrometry techniques. At the outset of BST film deposition on silicon, an approximately 30 Aa film with intermediate static dielectric constant (K∼12) and refractive index (n∼2.6 at photon energies of 1.5-3.25 eV) interface layer formed on bare silicon. The interface layer growth rate was greatly reduced on an oxidized silicon substrate. The results have profound implications on the static dielectric constant of BST

  7. Microstructure and high-temperature tribological properties of Si-doped hydrogenated diamond-like carbon films

    Science.gov (United States)

    Zhang, Teng Fei; Wan, Zhi Xin; Ding, Ji Cheng; Zhang, Shihong; Wang, Qi Min; Kim, Kwang Ho

    2018-03-01

    Si-doped DLC films have attracted great attention for use in tribological applications. However, their high-temperature tribological properties remain less investigated, especially in harsh oxidative working conditions. In this study, Si-doped hydrogenated DLC films with various Si content were synthesized and the effects of the addition of Si on the microstructural, mechanical and high-temperature tribological properties of the films were investigated. The results indicate that Si doping leads to an obvious increase in the sp3/sp2 ratio of DLC films, likely due to the silicon atoms preferentially substitute the sp2-hybridized carbon atoms and augment the number of sp3 sites. With Si doping, the mechanical properties, including hardness and adhesion strength, were improved, while the residual stress of the DLC films was reduced. The addition of Si leads to higher thermal and mechanical stability of DLC films because the Si atoms inhibit the graphitization of the films at an elevated temperature. Better high-temperature tribological properties of the Si-DLC films under oxidative conditions were observed, which can be attributed to the enhanced thermal stability and formation of a Si-containing lubricant layer on the surfaces of the wear tracks. The nano-wear resistance of the DLC films was also improved by Si doping.

  8. Passivation of cobalt nanocluster assembled thin films with hydrogen

    DEFF Research Database (Denmark)

    Romero, C.P.; Volodin, A.; Di Vece, M.

    2012-01-01

    The effect of hydrogen passivation on bare and Pd capped cobalt nanocluster assembled thin films was studied with Rutherford backscattering spectrometry (RBS) and magnetic force microscopy (MFM) after exposure to ambient conditions. The nanoclusters are produced in a laser vaporization cluster...... source in which the helium carrier gas was mixed with hydrogen. RBS revealed that oxidation of the Co nanoclusters is considerably reduced by the presence of hydrogen during cluster formation. The capping did not modify the influence of the passivation. The hydrogen passivation method is especially...... effective in cases when capping of the films is not desirable, for example for magnetic studies. Clear differences in the magnetic domain structures between hydrogen passivated and non-passivated Co nanocluster films were demonstrated by MFM and are attributed to a difference in inter-cluster magnetic...

  9. RBS and XRD analysis of silicon doped titanium diboride films

    International Nuclear Information System (INIS)

    Mollica, S.; Sood, D.K.; Ghantasala, M.K.; Kothari, R.

    1999-01-01

    Titanium diboride is a newly developed material suitable for protective coatings. Its high temperature oxidation resistance at temperatures of 700 deg C and beyond is limited due to its poor oxidative behaviour. This paper presents a novel approach to improving the coatings' oxidative characteristics at temperatures of 700 deg C by doping with silicon. Titanium diboride films were deposited onto Si(100) wafer substrates using a DC magnetron sputtering system. Films were deposited in two different compositions, one at pure TiB 2 and the other with 20 % Si doping. These samples were vacuum annealed at 700 deg C at 1x10 -6 Torr to investigate the anaerobic behaviour of the material at elevated temperatures and to ensure that they were crystalline. Samples were then oxidised in air at 700 deg C to investigate their oxidation resistance. Annealing the films at 700 deg C in air results in the oxidation of the film as titanium and boron form TiO 2 and B 2 O 3 . Annealing is seen to produce only minor changes in the films. There is some silicon diffusion from the substrate at elevated temperatures, which is related to the porous nature of the deposited film and the high temperature heat treatments. However, silicon doped films showed relatively less oxidation characteristics after annealing in air compared with the pure TiB 2 samples

  10. Passivation mechanism in silicon heterojunction solar cells with intrinsic hydrogenated amorphous silicon oxide layers

    Science.gov (United States)

    Deligiannis, Dimitrios; van Vliet, Jeroen; Vasudevan, Ravi; van Swaaij, René A. C. M. M.; Zeman, Miro

    2017-02-01

    In this work, we use intrinsic hydrogenated amorphous silicon oxide layers (a-SiOx:H) with varying oxygen content (cO) but similar hydrogen content to passivate the crystalline silicon wafers. Using our deposition conditions, we obtain an effective lifetime (τeff) above 5 ms for cO ≤ 6 at. % for passivation layers with a thickness of 36 ± 2 nm. We subsequently reduce the thickness of the layers using an accurate wet etching method to ˜7 nm and deposit p- and n-type doped layers fabricating a device structure. After the deposition of the doped layers, τeff appears to be predominantly determined by the doped layers themselves and is less dependent on the cO of the a-SiOx:H layers. The results suggest that τeff is determined by the field-effect rather than by chemical passivation.

  11. Growth of YBCO superconducting thin films on CaF sub 2 buffered silicon

    CERN Document Server

    Bhagwat, S S; Patil, J M; Shirodkar, V S

    2000-01-01

    CaF sub 2 films were grown on silicon using the neutral cluster beam deposition technique. These films were highly crystalline and c-axis oriented. Superconducting YBCO thin films were grown on the Ca F sub 2 buffered silicon using the laser ablation technique. These films showed T sub c (onset) at 90 K and Tc(zero) at 86 K. X-ray diffraction analysis showed that the YBCO films were also oriented along the c-axis.

  12. Hydrogen, oxygen and hydroxyl on porous silicon surface: A joint density-functional perturbation theory and infrared spectroscopy approach

    International Nuclear Information System (INIS)

    Alfaro, Pedro; Palavicini, Alessio; Wang, Chumin

    2014-01-01

    Based on the density functional perturbation theory (DFPT), infrared absorption spectra of porous silicon are calculated by using an ordered pore model, in which columns of silicon atoms are removed along the [001] direction and dangling bonds are initially saturated with hydrogen atoms. When these atoms on the pore surface are gradually replaced by oxygen ones, the ab-initio infrared absorption spectra reveal oxygen, hydroxyl, and coupled hydrogen–oxygen vibrational modes. In a parallel way, freestanding porous silicon samples were prepared by using electrochemical etching and they were further thermally oxidized in a dry oxygen ambient. Fourier transform infrared spectroscopy was used to investigate the surface modifications caused by oxygen adsorption. In particular, the predicted hydroxyl and oxygen bound to the silicon pore surface are confirmed. Finally, a global analysis of measured transmittance spectra has been performed by means of a combined DFPT and thin-film optics approach. - Highlights: • The density functional perturbation theory is used to study infrared absorption. • An ordered pore model is used to investigate the oxidation in porous silicon (PSi). • Infrared transmittance spectra of oxidized PSi freestanding samples are measured

  13. Preparation and characterization of polymer-derived amorphous silicon carbide with silicon-rich stoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takashi, E-mail: mtakashi@jaist.ac.jp [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Iwasaka, Akira [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Takagishi, Hideyuki [Faculty of Symbiotic System Science, Fukushima University, 1 Kanayagawa, Fukushima-shi, Fukushima 960-1296 (Japan); Shimoda, Tatsuya [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2016-08-01

    Polydihydrosilane with pendant hexyl groups was synthesized to obtain silicon-rich amorphous silicon carbide (a-SiC) films via the solution route. Unlike conventional polymeric precursors, this polymer requires neither catalysts nor oxidation for its synthesis and cross-linkage. Therefore, the polymer provides sufficient purity for the fabrication of semiconducting a-SiC. Here, we investigated the correlation of Si/C stoichiometry between the polymer and the resultant a-SiC film. The structural, optical, and electrical properties of the films with various carbon contents were also explored. Experimental results suggested that the excess carbon that did not participate in Si−C configurations was decomposed and was evaporated during polymer-to-SiC conversion. Consequently, the upper limit of the carbon in resultant a-SiC film was < 50 at.%; namely, the polymer provided silicon-rich a-SiC, whereas the conventionally used polycarbosilane inevitably provides carbon-rich one. These features of this unusual polymer open up a frontier of polymer-derived SiC and solution-processed SiC electronics. - Highlights: • Polymeric precursor solution for silicon carbide (SiC) is synthesized. • Semiconducting amorphous SiC is prepared via solution route. • The excess carbon is decomposed during cross-linking resulting in Si-rich SiC films. • The grown SiC films contain substantial amount of hydrogen atoms as SiH{sub n}/CH{sub n} entities. • Presence of CH{sub n} entities induces dangling bonds, causing poor electrical properties.

  14. Electron and ion beam degradation effects in AES analysis of silicon nitride thin films

    International Nuclear Information System (INIS)

    Fransen, F.; Vanden Berghe, R.; Vlaeminck, R.; Hinoul, M.; Remmerie, J.; Maes, H.E.

    1985-01-01

    Silicon nitride films are currently investigated by AES combined with ion profiling techniques for their stoichiometry and oxygen content. During this analysis, ion beam and primary electron effects were observed. The effect of argon ion bombardment is the preferential sputtering of nitrogen, forming 'covalent' silicon at the surface layer (AES peak at 91 eV). The electron beam irradiation results in a decrease of the covalent silicon peak, either by an electron beam annealing effect in the bulk of the silicon nitride film, or by an ionization enhanced surface diffusion process of the silicon (electromigration). By the electron beam annealing, nitrogen species are liberated in the bulk of the silicon nitride film and migrate towards the surface where they react with the covalent silicon. The ionization enhanced diffusion originates from local charging of the surface, induced by the electron beam. (author)

  15. Broadband wavelength conversion in hydrogenated amorphous silicon waveguide with silicon nitride layer

    Science.gov (United States)

    Wang, Jiang; Li, Yongfang; Wang, Zhaolu; Han, Jing; Huang, Nan; Liu, Hongjun

    2018-01-01

    Broadband wavelength conversion based on degenerate four-wave mixing is theoretically investigated in a hydrogenated amorphous silicon (a-Si:H) waveguide with silicon nitride inter-cladding layer (a-Si:HN). We have found that enhancement of the non-linear effect of a-Si:H waveguide nitride intermediate layer facilitates broadband wavelength conversion. Conversion bandwidth of 490 nm and conversion efficiency of 11.4 dB were achieved in a numerical simulation of a 4 mm-long a-Si:HN waveguide under 1.55 μm continuous wave pumping. This broadband continuous-wave wavelength converter has potential applications in photonic networks, a type of readily manufactured low-cost highly integrated optical circuits.

  16. A Low-Stress, Elastic, and Improved Hardness Hydrogenated Amorphous Carbon Film

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2015-01-01

    Full Text Available The evolution of hydrogenated amorphous carbon films with fullerene-like microstructure was investigated with a different proportion of hydrogen supply in deposition. The results showed at hydrogen flow rate of 50 sccm, the deposited films showed a lower compressive stress (lower 48.6%, higher elastic recovery (higher 19.6%, near elastic recovery rate 90%, and higher hardness (higher 7.4% compared with the films deposited without hydrogen introduction. Structural analysis showed that the films with relatively high sp2 content and low bonded hydrogen content possessed high hardness, elastic recovery rate, and low compressive stress. It was attributed to the curved graphite microstructure, which can form three-dimensional covalently bonded network.

  17. Structure of hydrogenated amorphous silicon from ab initio molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Buda, F. (Department of Physics, The Ohio State University, 174 West 18th Avenue, Columbus, Ohio (USA)); Chiarotti, G.L. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Laboratorio Tecnologie Avanzate Superfici e Catalisi del Consorzio Interuniversitario Nazionale di Fisica della Materia, Padriciano 99, I-34012 Trieste (Italy)); Car, R. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Institut Romard de Recherche Numerique en Physique des Materiaux, CH-1015 Lausanne, Switzerland Department of Condensed Matter Physics, University of Geneva, CH-1211 Geneva (Switzerland)); Parrinello, M. (IBM Research Division, Zurich Research Laboratory, CH-8803 Rueschlikon (Switzerland))

    1991-09-15

    We have generated a model of hydrogenated amorphous silicon by first-principles molecular dynamics. Our results are in good agreement with the available experimental data and provide new insight into the microscopic structure of this material. The calculation lends support to models in which monohydride complexes are prevalent, and indicates a strong tendency of hydrogen to form small clusters.

  18. Ion assisted deposition of SiO2 film from silicon

    Science.gov (United States)

    Pham, Tuan. H.; Dang, Cu. X.

    2005-09-01

    Silicon dioxide, SiO2, is one of the preferred low index materials for optical thin film technology. It is often deposited by electron beam evaporation source with less porosity and scattering, relatively durable and can have a good laser damage threshold. Beside these advantages the deposition of critical optical thin film stacks with silicon dioxide from an E-gun was severely limited by the stability of the evaporation pattern or angular distribution of the material. The even surface of SiO2 granules in crucible will tend to develop into groove and become deeper with the evaporation process. As the results, angular distribution of the evaporation vapor changes in non-predicted manner. This report presents our experiments to apply Ion Assisted Deposition process to evaporate silicon in a molten liquid form. By choosing appropriate process parameters we can get SiO2 film with good and stable property.

  19. Fluorescence and thermoluminescence in silicon oxide films rich in silicon; Fluorescencia y termoluminiscencia en peliculas de oxido de silicio rico en silicio

    Energy Technology Data Exchange (ETDEWEB)

    Berman M, D.; Piters, T. M. [Centro de Investigacion en Fisica, Universidad de Sonora, Apdo. Postal 5-088, Hermosillo 83190, Sonora (Mexico); Aceves M, M.; Berriel V, L. R. [Instituto Nacional de Astrofisica, Optica y Electronica, Apdo. Postal 51, Puebla 72000, Puebla (Mexico); Luna L, J. A. [CIDS, Benemerita Universidad Autonoma de Puebla, Apdo. Postal 1651, Puebla 72000, Puebla (Mexico)

    2009-10-15

    In this work we determined the fluorescence and thermoluminescence (TL) creation spectra of silicon rich oxide films (SRO) with three different silicon excesses. To study the TL of SRO, 550 nm of SRO film were deposited by Low Pressure Chemical Vapor Deposition technique on N-type silicon substrates with resistivity in the order of 3 to 5 {omega}-cm with silicon excess controlled by the ratio of the gases used in the process, SRO films with Ro= 10, 20 and 30 (12-6% silicon excess) were obtained. Then, they were thermally treated in N{sub 2} at high temperatures to diffuse and homogenize the silicon excess. In the fluorescence spectra two main emission regions are observed, one around 400 nm and one around 800 nm. TL creation spectra were determined by plotting the integrated TL intensity as function of the excitation wavelength. (Author)

  20. Achievement report for fiscal 1997. Technological development for practical application of a solar energy power generation system /development of technology to manufacture solar cells/development of technology to manufacture thin film solar cells (development of technology to manufacture materials and substrates (development of technology to manufacture silicon crystal based high-quality materials and substrates)); 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyo denchi seizo gijutsu kaihatsu, usumaku taiyo denchi seizo gijutsu kaihatsu, zairyo kiban seizo gijutsu kaihatsu (silicon kesshokei kohinshitsu zairyo kiban no seizo gujutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    It is intended to develop thin film solar cells capable of mass production with high photo-stability and at low cost. Thus, the objective of the present research is to analyze the growth process of micro crystal silicon based thin films, the crystal being a high quality silicon crystal based material, and develop technology to manufacture high-quality micro crystal silicon thin films based on the findings therefrom. It was found that, when silicon source is available in cathode, pure hydrogen plasma forms micro crystal silicon films by using the plasma as a result of the chemical transportation effect from the silicon source. It was revealed that the crystal formation due to hydrogen plasma exposure is performed substantially by the crystals forming the films due to the chemical transportation effect, rather than crystallization in the vicinity of the surface. The crystal formation under this experiment was concluded that the formation takes place during film growth accompanied by diffusion of film forming precursors on the surface on which the film grows. According to the result obtained so far, the most important issue in the future is particularly the control of crystal growing azimuth by reducing the initially formed amorphous layer by controlling the stress in the initial phase for film formation, and by controlling the film forming precursors. (NEDO)

  1. Y-Ba-Cu-O superconducting film on oxidized silicon

    International Nuclear Information System (INIS)

    Gupta, R.P.; Khokle, W.S.; Dubey, R.C.; Singhal, S.; Nagpal, K.C.; Rao, G.S.T.; Jain, J.D.

    1988-01-01

    We report thick superconducting films of Y-Ba-Cu-O on oxidized silicon substrates. The critical temperatures for onset and zero resistance are 96 and 77 K, respectively. X-ray diffraction analysis predicts 1, 2, 3 composition and orthorhombic phase of the film

  2. Nickel-induced crystallization of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J A; Arce, R D; Buitrago, R H [INTEC (CONICET-UNL), Gueemes 3450, S3000GLN Santa Fe (Argentina); Budini, N; Rinaldi, P, E-mail: jschmidt@intec.unl.edu.a [FIQ - UNL, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2009-05-01

    The nickel-induced crystallization of hydrogenated amorphous silicon (a-Si:H) is used to obtain large grained polycrystalline silicon thin films on glass substrates. a-Si:H is deposited by plasma enhanced chemical vapour deposition at 200 deg. C, preparing intrinsic and slightly p-doped samples. Each sample was divided in several pieces, over which increasing Ni concentrations were sputtered. Two crystallization methods are compared, conventional furnace annealing (CFA) and rapid thermal annealing (RTA). The crystallization was followed by optical microscopy and scanning electron microscopy observations, X-ray diffraction, and reflectance measurements in the UV region. The large grain sizes obtained - larger than 100{mu}m for the samples crystallized by CFA - are very encouraging for the preparation of low-cost thin film polycrystalline silicon solar cells.

  3. Large-grain polycrystalline silicon film by sequential lateral solidification on a plastic substrate

    International Nuclear Information System (INIS)

    Kim, Yong-Hae; Chung, Choong-Heui; Yun, Sun Jin; Moon, Jaehyun; Park, Dong-Jin; Kim, Dae-Won; Lim, Jung Wook; Song, Yoon-Ho; Lee, Jin Ho

    2005-01-01

    A large-grain polycrystalline silicon film was obtained on a plastic substrate by sequential lateral solidification. With various combinations of sputtering powers and Ar working gas pressures, the conditions for producing dense amorphous silicon (a-Si) and SiO 2 films were optimized. The successful crystallization of the a-Si film is attributed to the production of a dense a-Si film that has low argon content and can endure high-intensity laser irradiation

  4. Study of porogen removal by atomic hydrogen generated by hot wire chemical vapor deposition for the fabrication of advanced low-k thin films

    Energy Technology Data Exchange (ETDEWEB)

    Godavarthi, S., E-mail: srinivas@cinvestav.mx [Program of Nanoscience and Nanotechnology, Cinvestav-IPN (Mexico); Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Fisicas, Av. Universidad, Cuernavaca, Morelos (Mexico); Wang, C.; Verdonck, P. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Matsumoto, Y.; Koudriavtsev, I. [Program of Nanoscience and Nanotechnology, Cinvestav-IPN (Mexico); SEES, Electrical Engineering Department, Cinvestav-IPN (Mexico); Dutt, A. [SEES, Electrical Engineering Department, Cinvestav-IPN (Mexico); Tielens, H.; Baklanov, M.R. [imec, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-01-30

    In order to obtain low-k dielectric films, a subtractive technique, which removes sacrificial porogens from a hydrogenated silicon oxycarbide (SiOC:H) film, has been used successfully by different groups in the past. In this paper, we report on the porogen removal from porogenated SiOC:H films, using a hot wire chemical vapor deposition (HWCVD) equipment. Molecular hydrogen is dissociated into atomic hydrogen by the hot wires and these atoms may successfully remove the hydrocarbon groups from the porogenated SiOC:H films. The temperature of the HWCVD filaments proved to be a determining factor. By Fourier transform infrared spectroscopy, X-ray reflectivity (XRR), secondary ion mass spectrometry (SIMS), ellipsometric porosimetry and capacitance-voltage analyses, it was possible to determine that for temperatures higher than 1700 °C, efficient porogen removal occurred. For temperatures higher than 1800 °C, the presence of OH groups was detected. The dielectric constant was the lowest, 2.28, for the samples processed at a filament temperature of 1800 °C, although porosity measurements showed higher porosity for the films deposited at the higher temperatures. XRR and SIMS analyses indicated densification and Tungsten (W) incorporation at the top few nanometers of the films.

  5. Study of an Amorphous Silicon Oxide Buffer Layer for p-Type Microcrystalline Silicon Oxide/n-Type Crystalline Silicon Heterojunction Solar Cells and Their Temperature Dependence

    Directory of Open Access Journals (Sweden)

    Taweewat Krajangsang

    2014-01-01

    Full Text Available Intrinsic hydrogenated amorphous silicon oxide (i-a-SiO:H films were used as front and rear buffer layers in crystalline silicon heterojunction (c-Si-HJ solar cells. The surface passivity and effective lifetime of these i-a-SiO:H films on an n-type silicon wafer were improved by increasing the CO2/SiH4 ratios in the films. Using i-a-SiO:H as the front and rear buffer layers in c-Si-HJ solar cells was investigated. The front i-a-SiO:H buffer layer thickness and the CO2/SiH4 ratio influenced the open-circuit voltage (Voc, fill factor (FF, and temperature coefficient (TC of the c-Si-HJ solar cells. The highest total area efficiency obtained was 18.5% (Voc=700 mV, Jsc=33.5 mA/cm2, and FF=0.79. The TC normalized for this c-Si-HJ solar cell efficiency was −0.301%/°C.

  6. A study of the chemical, mechanical, and surface properties of thin films of hydrogenated amorphous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Vandentop, G.J.

    1990-07-01

    Amorphous hydrogenated carbon (a-C:H) films were studied with the objective of elucidating the nucleation and growth mechanisms, and the origin of their unique physical properties. The films were deposited onto Si(100) substrates both on the powered (negatively self-biased) and on the grounded electrodes from methane in an rf plasma (13.56 MHz) at 65 mTorr and 300 to 370 K. The films produced at the powered electrode exhibited superior mechanical properties, such as high hardness. A mass spectrometer was used to identify neutral species and positive ions incident on the electrodes from the plasma, and also to measure ion energies. The effect of varying ion energy flux on the properties of a-C:H films was investigated using a novel pulsed biasing technique. It was demonstrated that ions were not the dominant deposition species as the total ion flux measured was insufficient to account for the observed deposition rate. The interface between thin films of a-C:H and silicon substrates was investigated using angle resolved x-ray photoelectron spectroscopy. A silicon carbide layer was detected at the interface of a hard a-C:H film formed at the powered electrode. At the grounded electrode, where the kinetic energy is low, no interfacial carbide layer was observed. Scanning tunneling microscopy and high energy electron energy loss spectroscopy was used to investigate the initial stages of growth of a-C:H films. On graphite substrates, films formed at the powered electrode were observed to nucleate in clusters approximately 50 {Angstrom} in diameter, while at the grounded electrode no cluster formation was observed. 58 figs.

  7. Deposition of magnetoelectric hexaferrite thin films on substrates of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Saba; Izadkhah, Hessam; Vittoria, Carmine

    2016-12-15

    Magnetoelectric M-type hexaferrite thin films (SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19}) were deposited using Pulsed Laser Deposition (PLD) technique on Silicon substrate. A conductive oxide layer of Indium-Tin Oxide (ITO) was deposited as a buffer layer with the dual purposes of 1) to reduce lattice mismatch between the film and silicon and 2) to lower applied voltages to observe magnetoelectric effects at room temperature on Silicon based devices. The film exhibited magnetoelectric effects as confirmed by vibrating sample magnetometer (VSM) techniques in voltages as low as 0.5 V. Without the oxide conductive layer the required voltages to observe magnetoelectric effects was typically about 1000 times larger. The magnetoelectric thin films were characterized by X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy, vibrating sample magnetometer, and ferromagnetic resonance techniques. We measured saturation magnetization of 650 G, and coercive field of about 150 Oe for these thin films. The change in remanence magnetization was measured in the presence of DC voltages and the changes in remanence were in the order of 15% with the application of only 0.5 V (DC voltage). We deduced a magnetoelectric coupling, α, of 1.36×10{sup −9} s m{sup −1} in SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19} thin films.

  8. Ground state structures and properties of small hydrogenated silicon

    Indian Academy of Sciences (India)

    Unknown

    To understand the structural evolutions and properties of silicon cluster due to hydrogenation ... partly due to the growing importance of these systems in applications like .... of the system. Using the Lagrangian (1), equations of motions for the.

  9. Silicon-Light: a European FP7 Project Aiming at High Efficiency Thin Film Silicon Solar Cells on Foil

    DEFF Research Database (Denmark)

    Soppe, W.; Haug, F.-J.; Couty, P.

    2011-01-01

    Silicon-Light is a European FP7 project, which started January 1st, 2010 and aims at development of low cost, high-efficiency thin film silicon solar cells on foil. Three main routes are explored to achieve these goals: a) advanced light trapping by implementing nanotexturization through UV Nano...... calculations of ideal nanotextures for light trapping in thin film silicon solar cells; the fabrication of masters and the replication and roll-to-roll fabrication of these nanotextures. Further, results on ITO variants with improved work function are presented. Finally, the status of cell fabrication on foils...

  10. Activation of erbium films for hydrogen storage

    International Nuclear Information System (INIS)

    Brumbach, Michael T.; Ohlhausen, James A.; Zavadil, Kevin R.; Snow, Clark S.; Woicik, Joseph C.

    2011-01-01

    Hydriding of metals can be routinely performed at high temperature in a rich hydrogen atmosphere. Prior to the hydrogen loading process, a thermal activation procedure is required to promote facile hydrogen sorption into the metal. Despite the wide spread utilization of this activation procedure, little is known about the chemical and electronic changes that occur during activation and how this thermal pretreatment leads to increased rates of hydrogen uptake. This study utilized variable kinetic energy X-ray photoelectron spectroscopy to interrogate the changes during in situ thermal annealing of erbium films, with results confirmed by time-of-flight secondary ion mass spectrometry and low energy ion scattering. Activation can be identified by a large increase in photoemission between the valence band edge and the Fermi level and appears to occur over a two stage process. The first stage involves desorption of contaminants and recrystallization of the oxide, initially impeding hydrogen loading. Further heating overcomes the first stage and leads to degradation of the passive surface oxide leading to a bulk film more accessible for hydrogen loading.

  11. Improvement of silicon direct bonding using surfaces activated by hydrogen plasma treatment

    CERN Document Server

    Choi, W B; Lee Jae Sik; Sung, M Y

    2000-01-01

    The plasma surface treatment, using hydrogen gas, of silicon wafers was studied as a pretreatment for silicon direct bonding. Chemical reactions of the hydrogen plasma with the surfaces were used for both surface activation and removal of surface contaminants. Exposure of the silicon wafers to the plasma formed an active oxide layer on the surface. This layer was hydrophilic. The surface roughness and morphology were examined as functions of the plasma exposure time and power. The surface became smoother with shorter plasma exposure time and lower power. In addition, the plasma surface treatment was very efficient in removing the carbon contaminants on the silicon surface. The value of the initial surface energy, as estimated by using the crack propagation method, was 506 mJ/M sup 2 , which was up to about three times higher than the value for the conventional direct bonding method using wet chemical treatments.

  12. Investigation of carbon nanotube-containing film on silicon substrates and its tribological behavior

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhiyong [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Cheng, Xianhua, E-mail: xhcheng@sjtu.edu.cn [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2015-11-15

    Highlights: • CNT-containing film was self-assembled on silicon substrates. • CNTs are strongly bonded with the substrates by chemical combination between La and oxygen-containing functional groups. • CNT-containing film has excellent friction reduction, load-carrying capacity and anti-wear ability. - Abstract: Carbon nanotubes (CNTs) were functionalized with Lanthanum (La) modifier and appropriate acid-treatment methods. CNT-containing film was deposited on silicon substrates via a self-assembly process. The formation and microstructure of La treated CNTs and CNT-containing film were characterized by high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray photoelectron spectrometry (XPS) and water contact angle (WCA). Its tribological properties were evaluated with a UMT-2MT reciprocating friction tester. The results show that CNTs were adsorbed on silicon substrates by means of chemically bonding between La and oxygen-containing functional groups. The friction coefficient of the silicon substrates is reduced from 0.87 to 0.12 after the deposition of CNT-containing film on its surface. CNT-containing film shows excellent antiwear, friction reducing ability and load-carrying capacity due to excellent mechanical and self-lubrication properties of CNTs.

  13. INFLUENCE OF THE SILICON INTERLAYER ON DIAMOND-LIKE CARBON FILMS DEPOSITED ON GLASS SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Deiler Antonio Lima Oliveira

    2012-06-01

    Full Text Available Diamond-like carbon (DLC films as a hard protective coating have achieved great success in a diversity of technological applications. However, adhesion of DLC films to substrates can restrict their applications. The influence of a silicon interlayer in order to improve DLC adhesion on glass substrates was investigated. Amorphous silicon interlayer and DLC films were deposited using plasma enhanced chemical vapor deposition from silane and methane, respectively. The bonding structure, transmittance, refraction index, and adherence of the films were also evaluated regarding the thickness of the silicon interlayer. Raman scattering spectroscopy did not show any substantial difference in DLC structure due to the interlayer thickness of the silicon. Optical measurements showed a sharp decrease of transmittance in the ultra-violet region caused by the fundamental absorption of the light. In addition, the absorption edge of transmittance shifted toward longer wavelength side in the ultra-violet region as the thickness of the silicon interlayer increased. The tribological results showed an increase of DLC adherence as the silicon interlayer increased, which was characterized by less cracks around the grooves.

  14. Adsorption of hydrogen on clean and modified magnesium films

    DEFF Research Database (Denmark)

    Johansson, Martin; Ostenfeld, Christopher Worsøe; Chorkendorff, Ib

    2006-01-01

    films at H/Mg ratios less than 2% is developed. The activation barrier for hydrogen dissociation is 72 +/- 15 kJ/mole H-2, and a stagnant hydrogen uptake is observed. For platinum-catalyzed films, the barrier is significantly reduced, and there is no stagnation in the uptake rate....

  15. Morphological and optical properties of silicon thin films by PLD

    International Nuclear Information System (INIS)

    Ayouchi, R.; Schwarz, R.; Melo, L.V.; Ramalho, R.; Alves, E.; Marques, C.P.; Santos, L.; Almeida, R.; Conde, O.

    2009-01-01

    Silicon thin films have been prepared on sapphire substrates by pulsed laser deposition (PLD) technique. The films were deposited in vacuum from a silicon target at a base pressure of 10 -6 mbar in the temperature range from 400 to 800 deg. C. A Q-switched Nd:YAG laser (1064 nm, 5 ns duration, 10 Hz) at a constant energy density of 2 J x cm -2 has been used. The influence of the substrate temperature on the structural, morphological and optical properties of the Si thin films was investigated. Spectral ellipsometry and atomic force microscopy (AFM) were used to study the thickness and the surface roughness of the deposited films. Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased deposition temperature

  16. Hydrogen content and density in nanocrystalline carbon films of a predominant diamond character

    International Nuclear Information System (INIS)

    Hoffman, A.; Heiman, A.; Akhvlediani, R.; Lakin, E.; Zolotoyabko, E.; Cyterman, C.

    2003-01-01

    Nanocrystalline carbon films possessing a prevailing diamond or graphite character, depending on substrate temperature, can be deposited from a methane hydrogen mixture by the direct current glow discharge plasma chemical vapor deposition method. While at a temperature of ∼880 deg. C, following the formation of a thin precursor graphitic film, diamond nucleation occurs and a nanodiamond film grows, at higher and lower deposition temperatures the films maintain their graphitic character. In this study the hydrogen content, density and nanocrystalline phase composition of films deposited at various temperatures are investigated. We aim to elucidate the role of hydrogen in nanocrystalline films with a predominant diamond character. Secondary ion mass spectroscopy revealed a considerable increase of the hydrogen concentration in the films that accompanies the growth of nanodiamond. It correlates with near edge x-ray adsorption spectroscopy measurements, that showed an appearance of spectroscopic features associated with the diamond structure, and with a substantial increase of the film density detected by x-ray reflectivity. Electron energy loss spectroscopy showed that nanocrystalline diamond films can be deposited from a CH 4 /H 2 mixture with hydrogen concentration in the 80%-95% range. For a deposition temperature of 880 deg. C, the highest diamond character of the films was found for a hydrogen concentration of 91% of H 2 . The deposition temperature plays an important role in diamond formation, strongly influencing the content of adsorbed hydrogen with an optimum at 880 deg. C. It is suggested that diamond nucleation and growth of the nanodiamond phase is driven by densification of the deposited graphitic films which results in high local compressive stresses. Nanodiamond formation is accompanied by an increase of hydrogen concentration in the films. It is suggested that hydrogen retention is critical for stabilization of nanodiamond crystallites. At lower

  17. Piezoresistive silicon thin film sensor array for biomedical applications

    International Nuclear Information System (INIS)

    Alpuim, P.; Correia, V.; Marins, E.S.; Rocha, J.G.; Trindade, I.G.; Lanceros-Mendez, S.

    2011-01-01

    N-type hydrogenated nanocrystalline silicon thin film piezoresistors, with gauge factor - 28, were deposited on rugged and flexible polyimide foils by Hot-wire chemical vapor deposition using a tantalum filament heated to 1750 o C. The piezoresistive response under cyclic quasi-static and dynamical (up to 100 Hz) load conditions is reported. Test structures, consisting of microresistors having lateral dimensions in the range from 50 to 100 μm and thickness of 120 nm were defined in an array by reactive ion etching. Metallic pads, forming ohmic contacts to the sensing elements, were defined by a lift-off process. A readout circuit for the array consisting in a mutiplexer on each row and column of the matrix is proposed. The digital data will be processed, interpreted and stored internally by an ultra low-power micro controller, also responsible for the communication of two-way wireless data, e.g. from inside to outside the human body.

  18. Optical characterization of hydrogen-free CeO2 doped DLC films deposited by unbalanced magnetron sputtering

    International Nuclear Information System (INIS)

    Zhang Zhenyu; Zhou Hongxiu; Guo Dongming; Gao Hang; Kang Renke

    2008-01-01

    A novel kind of hydrogen-free CeO 2 doped diamond-like carbon (DLC) films with thickness of 180-200 nm were deposited on silicon by unbalanced magnetron sputtering. Reduced reflectance and increased lifetime are expected with respect to pure DLC films, making these coatings good candidates as optical protective coatings for IR windows and solar cells. X-ray photoelectron spectroscopy confirms that CeO 2 is formed within the DLC films. Auger electron spectroscopy exhibits that the C, O, and Ce elements distribute uniformly across the film thickness, and C element diffuses into the Si substrate at the interface between the substrate and film. AFM shows that nanoparticles with diameter of around 50 nm are formed on the surface of deposited films, whose surface roughness is in the range of 1.3-2.3 nm. Raman spectra show the CeO 2 doped DLC films are amorphous DLC films, and both the G frequency and relative intensity ratio I D /I G are higher than those of pure DLC films. The photoluminescence of CeO 2 doped DLC films is obviously more intense than that of a pure DLC film, which indicates a promising potential as optical protective films for solar cells and IR window

  19. Analysis of the crystalline characteristics of nc-Si:H thin film using a hyperthermal neutral beam generated by an inclined slot-excited antenna

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong-Bae; Kim, Young-Woo; Kim, Dae Chul; Kim, Jongsik; Hong, Seung Pyo; Yoo, Suk Jae; Oh, Kyoung Suk, E-mail: ksoh@nfri.re.kr

    2013-11-29

    The deposition of hydrogenated nano-crystal silicon (nc-Si:H) thin film for manufacturing quantum dot solar cells, which has received attention due to the use of this film third-generation solar cells, is studied here. A hyperthermal neutral beam (HNB) generated by an inclined slot-excited antenna plasma source is used to reduce damage to the silicon thin film and deposition of the crystalline thin film is carried out on a substrate at a low temperature (< 200 °C). The size and the crystalline fraction of the nc-Si:H of the deposited thin film were analyzed by scanning transmission electron microscopy and a Raman microscope. As a result, silicon crystals 1–10 nm in size were observed in the amorphous silicon matrix. According to previous studies, the size and the crystalline fraction of nc-Si:H in deposited thin films increase as the hydrogen flow rate is increased. However, the increment of hydrogen flow rate decreases the deposition rate rapidly. The size and the crystalline fraction of nc-Si:H are adjustable by varying the substrate temperature and HNB energy without a change of the hydrogen flow rate. There are optimum conditions between the HNB energy and the substrate temperature for an appropriate amount of nc-Si:H in silicon thin film. - Highlights: • The appropriate hyperthermal neutral beam energy seems to assist film formation. • The Si crystal size can be adjusted by varying hyperthermal neutral beam energy. • The nc-Si:H 1 ∼ 10 in nm size was observed in the amorphous silicon matrix.

  20. Hydrogen interaction with radiation defects in p-type silicon

    CERN Document Server

    Feklisova, O V; Yakimov, E B; Weber, J

    2001-01-01

    Hydrogen interaction with radiation defects in p-type silicon has been investigated by deep-level non-stationary spectroscopy. Hydrogen is introduced into the high-energy electron-irradiated crystals under chemical etching in acid solutions at room temperature followed by the reverse-bias annealing at 380 K. It is observed that passivation of the irradiation-induced defects is accompanied by formation of novel electrically active defects with hydrogen-related profiles. Effect of hydrogen on the electrical activity of the C sub s C sub i complexes is shown for the first time. Based on the spatial distribution and passivation kinetics, possible nature of the novel complexes is analyzed. The radii for hydrogen capture by vacancies, K-centers, C sub s C sub i centers and the novel complexes are determined

  1. Nanocomposites Based on Polyethylene and Nanocrystalline Silicon Films

    Directory of Open Access Journals (Sweden)

    Olkhov Anatoliy Aleksandrovich

    2014-12-01

    Full Text Available High-strength polyethylene films containing 0.5-1.0 wt. % of nanocrystalline silicon (nc-Si were synthesized. Samples of nc-Si with an average core diameter of 7-10 nm were produced by plasmochemical method and by laser-induced decomposition of monosilane. Spectral studies revealed almost complete (up to ~95 % absorption of UV radiation in 200- 400 nm spectral region by 85 micron thick film if the nc-Si content approaches to 1.0 wt. %. The density function of particle size in the starting powders and polymer films containing immobilized silicon nanocrystallites were obtained using the modeling a complete profile of X-ray diffraction patterns, assuming spherical grains and the lognormal distribution. The results of X-ray analysis shown that the crystallite size distribution function remains almost unchanged and the crystallinity of the original polymer increases to about 10 % with the implantation of the initial nc-Si samples in the polymer matrix.

  2. Structural and optical properties of surface-hydrogenated silicon nanocrystallites prepared by reactive pulsed laser ablation

    International Nuclear Information System (INIS)

    Makino, Toshiharu; Inada, Mitsuru; Umezu, Ikurou; Sugimura, Akira

    2005-01-01

    Pulsed laser ablation (PLA) in an inert background gas is a promising technique for preparing Si nanoparticles. Although an inert gas is appropriate for preparing pure material, a reactive background gas can be used to prepare compound nanoparticles. We performed PLA in hydrogen gas to prepare hydrogenated silicon nanoparticles. The mean diameter of the primary particles measured using transmission electron microscopy was approximately 5 nm. The hydrogen content in the deposits was very high and estimated to be about 20%. The infrared absorption corresponding to Si-H n (n = 1, 2, 3) bonds on the surface were observed at around 2100 cm -1 . The Raman scattering peak corresponding to crystalline Si was observed, and that corresponding to amorphous Si was negligibly small. These results indicate that the Si nanoparticles were not an alloy of Si and hydrogen but Si nanocrystallite (nc-Si) covered by hydrogen or hydrogenated amorphous silicon. This means that PLA in reactive H 2 gas is a promising technique for preparing surface passivated nc-Si. The deposition mechanism and optical properties of the surface passivated silicon nanocrystallites are discussed

  3. Polycystalline silicon thin films for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Christian Claus

    2012-01-15

    For the thin polycrystalline Si films fabricated with the aluminium-induced-layer-exchange (ALILE) process a good structural quality up to a layer-thickness value of 10 nm was determined. For 5 nm thick layers however after the layer exchange no closes poly-silicon film was present. In this case the substrate was covered with spherically arranged semiconductor material. Furthermore amorphous contributions in the layer could be determined. The electrical characterization of the samples at room temperature proved a high hole concentration in the range 10{sup 18} cm{sup -3} up to 9.10{sup 19} cm{sup -3}, which is influenced by the process temperature and the layer thickness. Hereby higher hole concentrations at higher process temperatures and thinner films were observed. Furthermore above 150-200 K a thermically activated behaviour of the electrical conductivity was observed. At lower temperatures a deviation of the measured characteristic from the exponential Arrhenius behaviour was determined. For low temperatures (below 20 K) the conductivity follows the behaviour {sigma}{proportional_to}[-(T{sub 0}/T){sup 1/4}]. The hole mobility in the layers was lowered by a passivation step, which can be explained by defect states at the grain boundaries. The for these very thin layers present situation was simulated in the framework of the model of Seto, whereby both the defect states at the grain boundaries (with an area density Q{sub t}) and the defect states at the interfaces (with an area density Q{sub it}) were regarded. By this the values Q{sub t}{approx}(3-4).10{sup 12} cm{sup -2} and Q{sub it}{approx}(2-5).10{sup 12} cm{sup -2} could be determined for these thin ALILE layers on quartz substrates. Additionally th R-ALILE process was studied, which uses the reverse precursor-layer sequence substrate/amorphous silicon/oxide/aluminium. Hereby two steps in the crystallization process of the R-ALILE process were found. First a substrate/Al-Si mixture/poly-Si layer structure

  4. Post-deposition thermal annealing studies of hydrogenated microcrystalline silicon deposited at 40 deg. C

    International Nuclear Information System (INIS)

    Bronsveld, P.C.P.; Wagt, H.J. van der; Rath, J.K.; Schropp, R.E.I.; Beyer, W.

    2007-01-01

    Post-deposition thermal annealing studies, including gas effusion measurements, measurements of infrared absorption versus annealing state, cross-sectional transmission electron microscopy (X-TEM) and atomic force microscopy (AFM), are used for structural characterization of hydrogenated amorphous and microcrystalline silicon films, prepared by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) at low substrate temperature (T S ). Such films are of interest for application in thin semiconductor devices deposited on cheap plastics. For T S ∼ 40 deg. C, H-evolution shows rather complicated spectra for (near-) microcrystalline material, with hydrogen effusion maxima seen at ∼ 200-250 deg. C, 380 deg. C and ∼ 450-500 deg. C, while for the amorphous material typical spectra for good-quality dense material are found. Effusion experiments of implanted He demonstrate for the microcrystalline material the presence of a rather open (void-rich) structure. A similar tendency can be concluded from Ne effusion experiments. Fourier Transform infrared (FTIR) spectra of stepwise annealed samples show Si-H bond rupture already at annealing temperatures of 150 deg. C. Combined AFM/X-TEM studies reveal a columnar microstructure for all of these (near-) microcrystalline materials, of which the open structure is the most probable explanation of the shift of the H-effusion maximum in (near-) microcrystalline material to lower temperature

  5. Application of plasma silicon nitride to crystalline thin-film silicon solar cells. Paper

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.; Oberbeck, L.; Rinke, T.J.; Berge, C.; Bergmann, R.B.

    2002-07-01

    We use plasma-enhanced chemical vapour deposition to deposit silicon nitride (SiN{sub x}) films at low temperature(400 C) onto the front surface of two different types of crystalline thin-film Si solar cells. The silicon nitride acts as an excellent antireflection coating on Si and provides a very high degree of electronic surface passivation over a wide range of compositions, including near-stoichiometric and Si-rich SiN{sub x}. Application of stoichiometric SiN{sub x} to non-textured thin-film cells, epitaxially grown at low temperature by ion-assisted deposition onto a monocrystalline Si substrate, results in an open-circuit voltage of 622 mV, a short-circuit current density of 26.6 mA/cm{sup 2} and an efficiency of 12.7%. It is shown that the SiN{sub x}-passivated in-situ grown n{sup +}-emitter of this cell type allows to reach open-circuit voltages of up to 667 mV. Silicon-rich SiN{sub x} is applied to the phosphorus-diffused n{sup +}-emitter of a textured thin-film cell on a glass superstrate fabricated by layer-transfer. The emitter saturation current density of these cells is only 40-64 fA/cm{sup 2}, which allows for open-circuit voltages of up to 699 mV. An impressively high open-circuit voltage of 638 mV and a short-circuit current density of 32.0 mA/cm{sup 2} are obtained for a 25 {mu}m thick SiN{sub x}-passivated, random pyramid-textured transfer cell. A transfer cell efficiency of 15.3% is independently confirmed.

  6. Large Area Thin Film Silicon: Synergy between Displays and Solar Cells

    NARCIS (Netherlands)

    Schropp, R.E.I.

    2012-01-01

    Thin-film silicon technology has changed our society, owing to the rapid advance of its two major application fields in communication (thin-film displays) and sustainable energy (thin-film solar cells). Throughout its development, advances in these application fields have always benefitted each

  7. Fabrication of Hydrogenated Amorphous Germanium Thin Layer Film and ItsCharacterization

    International Nuclear Information System (INIS)

    Agus-Santoso; Lely-Susita RM; Tjipto-Sujitno

    2000-01-01

    Fabrication of hydrogenated amorphous Germanium thin film by vacuumevaporation method and then deposition with hydrogen atom by glow dischargeplasma radio frequency has been done. This germanium amorphous (a-Ge) thinfilm involves a lot of dangling bonds in the network due to the irregularityof the atomic structures and it will decrease is conductivity. To improve theband properties of (a-Ge) thin film layer a hydrogenated plasma isintroduced. Process of introducing of the hydrogen into the a-Ge film is meanto reduce the dangling bonds so that the best electric conductivity of a Ge:Hthin film will obtained. To identify the hydrogen atom in the sample acharacterization using infrared spectrometer has been done, as well as themeasurement of conductivity of the samples. From the characterization usinginfrared spectroscopy the existence of hydrogen atom was found at absorptionpeak with wave number 1637.5 cm -1 , while the optimum conductivity of thesample 1634.86 Ω -1 cm -1 was achieved at 343 o K. (author)

  8. Preparation and Hydrogen Absorption/Desorption of Nanoporous Palladium Thin Films

    Directory of Open Access Journals (Sweden)

    Wen-Chung Li

    2009-12-01

    Full Text Available Nanoporous Pd (np-Pd was prepared by co-sputtering Pd-Ni alloy films onto Si substrates, followed by chemical dealloying with sulfuric acid. X-ray diffractometry and chemical analysis were used to track the extent of dealloying. The np-Pd structure was changed from particle-like to sponge-like by diluting the sulfuric acid etchant. Using suitable precursor alloy composition and dealloying conditions, np-Pd films were prepared with uniform and open sponge-like structures, with interconnected ligaments and no cracks, yielding a large amount of surface area for reactions with hydrogen. Np-Pd films exhibited shorter response time for hydrogen absorption/desorption than dense Pd films, showing promise for hydrogen sensing.

  9. Probing the phase composition of silicon films in situ by etch product detection

    International Nuclear Information System (INIS)

    Dingemans, G.; Donker, M. N. van den; Gordijn, A.; Kessels, W. M. M.; Sanden, M. C. M. van de

    2007-01-01

    Exploiting the higher etch probability for amorphous silicon relative to crystalline silicon, the transiently evolving phase composition of silicon films in the microcrystalline growth regime was probed in situ by monitoring the etch product (SiH 4 ) gas density during a short H 2 plasma treatment step. Etch product detection took place by the easy-to-implement techniques of optical emission spectroscopy and infrared absorption spectroscopy. The phase composition of the films was probed as a function of the SiH 4 concentration during deposition and as a function of the film thickness. The in situ results were corroborated by Raman spectroscopy and solar cell analysis

  10. Deposition of silicon films in presence of nitrogen plasma— A ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. A design, development and validation work of plasma based 'activated reactive evaporation (ARE) system' is implemented for the deposition of the silicon films in presence of nitrogen plasma on substrate maintained at room temperature. This plasma based deposition system involves evaporation of pure silicon by.

  11. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes/polymer composite thin film.

    Science.gov (United States)

    Rajanna, Pramod Mulbagal; Gilshteyn, Evgenia; Yagafarov, Timur; Alekseeva, Alena; Anisimov, Anton; Sergeev, Oleg; Neumueller, Alex; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert

    2018-01-09

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and a thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high quality SWCNTs with an enhanced conductivity by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with different SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit Jsc, open-circuit Voc, and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and efficiency of 3.4% under simulated one-sun AM 1.5G direct illumination. © 2018 IOP Publishing Ltd.

  12. Silicon exfoliation by hydrogen implantation: Actual nature of precursor defects

    Energy Technology Data Exchange (ETDEWEB)

    Kuisseu, Pauline Sylvia Pokam, E-mail: pauline-sylvia.pokam-kuisseu@cnrs-orleans.fr [CEMHTI-CNRS, 3A, rue de la férollerie, 45071 Orléans (France); Pingault, Timothée; Ntsoenzok, Esidor [CEMHTI-CNRS, 3A, rue de la férollerie, 45071 Orléans (France); Regula, Gabrielle [IM2NP-CNRS-Université d’Aix-Marseille, Avenue Escadrille Normandie Niemen, 13397 Marseille (France); Mazen, Frédéric [CEA-Leti, MINATEC campus, 17, rue des Martyrs, 38054 Grenoble Cedex 9 (France); Sauldubois, Audrey [Université d’Orléans, rue de Chartres – Collegium ST, 45067 Orléans (France); Andreazza, Caroline [ICMN-CNRS-Université d’Orléans, 1b rue de la férollerie, 45071 Orléans (France)

    2017-06-15

    MeV energy hydrogen implantation in silicon followed by a thermal annealing is a very smart way to produce high crystalline quality silicon substrates, much thinner than what can be obtained by diamond disk or wire sawing. Using this kerf-less approach, ultra-thin substrates with thicknesses between 15 µm and 100 µm, compatible with microelectronic and photovoltaic applications are reported. But, despite the benefits of this approach, there is still a lack of fundamental studies at this implantation energy range. However, if very few papers have addressed the MeV energy range, a lot of works have been carried out in the keV implantation energy range, which is the one used in the smart-cut® technology. In order to check if the nature and the growth mechanism of extended defects reported in the widely studied keV implantation energy range could be extrapolated in the MeV range, the thermal evolution of extended defects formed after MeV hydrogen implantation in (100) Si was investigated in this study. Samples were implanted at 1 MeV with different fluences ranging from 6 × 10{sup 16} H/cm{sup 2} to 2 × 10{sup 17} H/cm{sup 2} and annealed at temperatures up to 873 K. By cross-section transmission electron microscopy, we found that the nature of extended defects in the MeV range is quite different of what is observed in the keV range. In fact, in our implantation conditions, the generated extended defects are some kinds of planar clusters of gas-filled lenses, instead of platelets as commonly reported in the keV energy range. This result underlines that hydrogen behaves differently when it is introduced in silicon at high or low implantation energy. The activation energy of the growth of these extended defects is independent of the chosen fluence and is between (0.5–0.6) eV, which is very close to the activation energy reported for atomic hydrogen diffusion in a perfect silicon crystal.

  13. Superhard PVD carbon films deposited with different gradients with and without additions of titanium and silicon

    International Nuclear Information System (INIS)

    Bauer, C.

    2003-10-01

    This work focusses on thin carbon-based films, deposited by magnetron sputtering with additional argon ion bombardment (0 eV to 800 eV) without extra adhesive layer on hard metal inserts. As one possibility of increasing the reduced adherence of hard carbon films the deposition of films with additions of titanium and silicon is studied. The aim of this work is to examine the influence of a modification of the transition between substrate and film by realizing three different types of deposition gradients. The pure carbon films are amorphous, the dominant network of atoms is formed by sp 2 bonded atoms. The amount of sp 3 bonded atoms is up to 30% and is influenced by the bombarding argon ion energy. Carbon films with additions of silicon are amorphous, only in films with a high amount of titanium (approx. 20 at%) nanocomposites of titanium carbide crystals with diameters of less than 5 nm in an amorphous carbon matrix were found. The mechanical properties and the behavior of single layer carbon films strongly depend on the argon ion energy. An increase of this energy leads to higher film hardness and higher residual stress and results in the delamination of superhard carbon films on hard metal substrates. The adhesion of single layer films for ion energies of more than 200 eV is significantly improved by additions of titanium and silicon, respectively. The addition of 23 at% silicon and titanium, respectively leads to a high reduction of the residual stress. In a non-reactive PVD process thin films were deposited with a continuously gradient in chemical composition. The results of the investigations of the films with two different concentrations of titanium and silicon, respectively show that carbon-based films with a good adhesion could be deposited. The combination of the two gradients in structure and properties and in chemical composition leads in the system with carbon and silicon carbide to hard and very adhesive films. Especially for carbon films with a high

  14. Microcrystalline silicon films and solar cells investigatet by photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Merdzhanova, T.

    2005-07-01

    A systematic investigation on photoluminescence (PL) properties of microcrystalline silicon ({mu}c-Si:H) films with structural composition changing from highly crystalline to predominantly amorphous is presented. The samples were prepared by PECVD and HWCVD with different silane concentration in hydrogen (SC). By using photoluminescence in combination with Raman spectroscopy the relationship between electronic properties and the microstructure of the material is studied. The PL spectra of {mu}c-Si:H reveal a rather broad ({proportional_to}0.13 eV) featureless band at about 1 eV ('{mu}c'-Si-band). In mixed phase material of crystalline and amorphous regions, a band at about 1.3 eV with halfwidth of about 0.3 eV is found in addition to '{mu}c'-Si-band, which is attributed to the amorphous phase ('a'-Si-band). Similarly to amorphous silicon, the '{mu}c'-Si-band is assigned to recombination between electrons and holes in band tail states. An additional PL band centred at about 0.7 eV with halfwidth slightly broader than the '{mu}c'-Si-band is observed only for films prepared at high substrate temperature and it is preliminarily assigned to defect-related transitions as in polycrystalline silicon. With decreasing crystalline volume fraction, the '{mu}c'-Si-band shifts continuously to higher energies for all {mu}c-Si:H films but the linewidth of the PL spectra is almost unaffected. This is valid for all deposition conditions investigated. The results are interpreted, assuming decrease of the density of band tail states with decreasing crystalline volume fraction. A simple model is proposed to simulate PL spectra and V{sub oc} in {mu}c-Si:H solar cells as a function of temperature, based on carrier distributions in quasi-equilibrium conditions. In the model is assumed symmetric density of states distributions for electrons and holes in the conduction and the valence band tail states. The best agreement between

  15. Visible photoluminescence from hydrogenated silicon particles suspended in a silane plasma

    International Nuclear Information System (INIS)

    Courteille, C.; Dorier, J.L.; Dutta, J.; Hollenstein, C.; Howling, A.A.; Stoto, T.

    1994-09-01

    Visible photoluminescence at room temperature has been observed in amorphous hydrogenated silicon particulates during their formation in a silane radio-frequency plasma. Oxygen injection along with mass spectrometry measurements demonstrate that oxygen has no influence on the photoluminescence. The appearance of visible photoluminescence coincides with a particle agglomeration phase as shown by laser light scattering experiments, and electron microscopy shows silicon nanocrystals within these particulates. These observations of visible photoluminescence are consistent with the model of quantum confinement in the silicon nanocrystals. (author) 5 figs., 45 refs

  16. Monolithically interconnected Silicon-Film{trademark} module technology: Annual technical report, 25 November 1997--24 November 1998

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.B.; Ford, D.H.; Rand, J.A.; Ingram, A.E.

    1999-11-11

    AstroPower continued its development of an advanced thin-silicon-based photovoltaic module product. This module combines the performance advantages of thin, light-trapped silicon layers with the capability of integration into a low-cost, monolithically interconnected array. This report summarizes the work carried out over the first year of a three-year, cost-shared contract, which has yielded the following results: Development of a low-cost, insulating, ceramic substrate that provides mechanical support at silicon growth temperatures, is matched to the thermal expansion of silicon, provides the optical properties required for light trapping through random texturing, and can be formed in large areas on a continuous basis. Different deposition techniques have been investigated, and AstroPower has developed deposition processes for the back conductive layer, the p-type silicon layer, and the mechanical/chemical barrier layer. Polycrystalline films of silicon have been grown on ceramics using AstroPower's Silicon-Film{trademark} process. These films are from 50 to 75 {micro}m thick, with columnar grains extending through the thickness of the film. Aspect ratios from 5:1 to 20:1 have been observed in these films.

  17. Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films

    International Nuclear Information System (INIS)

    Gupta, P.; Becker, H.-W.; Williams, G.V.M.; Hübner, R.; Heinig, K.-H.; Markwitz, A.

    2017-01-01

    Highlights: • This paper reports for the first time redistribution of hydrogen atoms in diamond like carbon thin films during ion implantation of low energy magnetic ions. • The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. • Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications. - Abstract: Hydrogenated diamond-like carbon films produced by C_3H_6 deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.

  18. Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, P. [National Isotope Centre, GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Becker, H.-W. [RUBION, Ruhr-University Bochum (Germany); Williams, G.V.M. [The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Hübner, R.; Heinig, K.-H. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Markwitz, A., E-mail: a.markwitz@gns.cri.nz [National Isotope Centre, GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand)

    2017-03-01

    Highlights: • This paper reports for the first time redistribution of hydrogen atoms in diamond like carbon thin films during ion implantation of low energy magnetic ions. • The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. • Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications. - Abstract: Hydrogenated diamond-like carbon films produced by C{sub 3}H{sub 6} deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.

  19. Optical near-field lithography on hydrogen-passivated silicon surfaces

    DEFF Research Database (Denmark)

    Madsen, Steen; Müllenborn, Matthias; Birkelund, Karen

    1996-01-01

    by the optical near field, were observed after etching in potassium hydroxide. The uncoated fibers can also induce oxidation without light exposure, in a manner similar to an atomic force microscope, and linewidths of 50 nm have been achieved this way. (C) 1996 American Institute of Physics.......We report on a novel lithography technique for patterning of hydrogen-passivated amorphous silicon surfaces. A reflection mode scanning near-field optical microscope with uncoated fiber probes has been used to locally oxidize a thin amorphous silicon layer. Lines of 110 nm in width, induced...

  20. Experimental analysis of silicon oxycarbide thin films and waveguides

    Science.gov (United States)

    Memon, Faisal Ahmed; Morichetti, Francesco; Somaschini, Claudio; Iseni, Giosue; Melloni, Andrea

    2017-05-01

    Silicon oxycarbide (SiOC) thin films are produced with reactive rf magnetron sputtering of a silicon carbide (SiC) target on Si (100) and SiO2/Si substrates under varying deposition conditions. The optical properties of the deposited SiOC thin films are characterized with spectroscopic ellispometry at multiple angles of incidence over a wavelength range 300- 1600 nm. The derived optical constants of the SiOC films are modeled with Tauc-Lorentz model. The refractive index n of the SiOC films range from 1.45 to 1.85 @ 1550 nm and the extinction coefficient k is estimated to be less than 10-4 in the near-infrared region above 1000 nm. The topography of SiOC films is studied with SEM and AFM giving rms roughness of 0.9 nm. Channel waveguides with a SiOC core with a refractive index of 1.7 have been fabricated to demonstrate the potential of sputtered SiOC for integrated photonics applications. Propagation loss as low as 0.39 +/- 0.05 dB/mm for TE and 0.41 +/- 0.05 dB/mm for TM polarizations at telecommunication wavelength 1550 nm is demonstrated.

  1. Improvement in switching characteristics and long-term stability of Zn-O-N thin-film transistors by silicon doping

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsuji

    2017-06-01

    Full Text Available The effects of silicon doping on the properties of Zn-O-N (ZnON films and on the device characteristics of ZnON thin-film transistors (TFTs were investigated by co-sputtering silicon and zinc targets. Silicon doping was effective at decreasing the carrier concentration in ZnON films; therefore, the conductivity of the films can be controlled by the addition of a small amount of silicon. Doped silicon atoms also form bonds with nitrogen atoms, which suppresses nitrogen desorption from the films. Furthermore, Si-doped ZnON-TFTs are demonstrated to exhibit less negative threshold voltages, smaller subthreshold swings, and better long-term stability than non-doped ZnON-TFTs.

  2. Disorder in silicon films grown epitaxially at low temperature

    International Nuclear Information System (INIS)

    Schwarzkopf, J.; Selle, B.; Bohne, W.; Roehrich, J.; Sieber, I.; Fuhs, W.

    2003-01-01

    Homoepitaxial Si films were prepared by electron cyclotron resonance plasma enhanced chemical vapor deposition on Si(100) substrates at temperatures of 325-500 deg. C using H 2 , Ar, and SiH 4 as process gases. The gas composition, substrate temperature, and substrate bias voltage were systematically varied to study the breakdown of epitaxial growth. Information from ion beam techniques, like Rutherford backscattering and heavy-ion elastic recoil detection analysis, was combined with transmission and scanning electron micrographs to examine the transition from ordered to amorphous growth. The results suggest that the breakdown proceeds in two stages: (i) highly defective but still ordered growth with a defect density increasing with increasing film thickness and (ii) formation of conically shaped amorphous precipitates. The hydrogen content is found to be directly related to the degree of disorder which acts as sink for excessive hydrogen. Only in almost perfect epitaxially grown films is the hydrogen level low, and an exponential tail of the H concentration into the crystalline substrate is observed as a result of the diffusive transport of hydrogen

  3. Analysis of the silicon market: Will thin films profit?

    International Nuclear Information System (INIS)

    Sark, W.G.J.H.M. van; Brandsen, G.W.; Fleuster, M.; Hekkert, M.P.

    2007-01-01

    The photovoltaic industry has been growing with astonishing rates over the past years. The supply of silicon to the wafer-based industry has recently become a problem. This paper presents a thorough analysis of the PV industry and quantifies the silicon shortage. It is expected that this leads to a decrease in production in 2006 rather than the usual increase. Due to a mismatch in expansion plans of silicon feedstock manufacturers and solar cell manufacturers, a large cell overcapacity will persist up to 2010. The thin-film PV market is expected to profit from the silicon shortage problem; its market share may substantially increase to about 25% in 2010

  4. Analysis of the silicon market: Will thin films profit?

    Energy Technology Data Exchange (ETDEWEB)

    Sark, W.G.J.H.M. van; Brandsen, G.W. [Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Utrecht (Netherlands). Department of Science, Technology and Society; Fleuster, M. [Solland Solar Energy, Heerlen (Netherlands); Hekkert, M.P. [Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Utrecht (Netherlands). Department of Innovation Studies

    2007-06-15

    The photovoltaic industry has been growing with astonishing rates over the past years. The supply of silicon to the wafer-based industry has recently become a problem. This paper presents a thorough analysis of the PV industry and quantifies the silicon shortage. It is expected that this leads to a decrease in production in 2006 rather than the usual increase. Due to a mismatch in expansion plans of silicon feedstock manufacturers and solar cell manufacturers, a large cell overcapacity will persist up to 2010. The thin-film PV market is expected to profit from the silicon shortage problem; its market share may substantially increase to about 25% in 2010. (author)

  5. Crystalline silicon thin film growth by ECR plasma CVD for solar cells

    International Nuclear Information System (INIS)

    Licai Wang

    1999-07-01

    This thesis describes the background, motivation and work carried out towards this PhD programme entitled 'Crystalline Silicon Thin Film Growth by ECR Plasma CVD for Solar Cells'. The fundamental principles of silicon solar cells are introduced with a review of silicon thin film and bulk solar cells. The development and prospects for thin film silicon solar cells are described. Some results of a modelling study on thin film single crystalline solar cells are given which has been carried out using a commercially available solar cell simulation package (PC-1D). This is followed by a description of thin film deposition techniques. These include Chemical Vapour Deposition (CVD) and Plasma-Assisted CVD (PACVD). The basic theory and technology of the emerging technique of Electron Cyclotron Resonance (ECR) PACVD, which was used in this research, are introduced and the potential advantages summarised. Some of the basic methods of material and cell characterisation are briefly described, together with the work carried out in this research. The growth by ECR PACVD at temperatures 2 illumination. The best efficiency in the ECR grown structures was 13.76% using an epitaxial emitter. Cell performance was analysed in detail and the factors controlling performance identified by fitting self-consistently the fight and dark current-voltage and spectral response data using PC-1D. Finally, the conclusions for this research and suggestions for further work are outlined. (author)

  6. Effective hydrogenation and surface damage induced by MW-ECR plasma of fine-grained polycrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Madi, D. [Institut d' Electronique du Solide et des Systemes (InESS)-CNRS/UdS, Strasbourg (France); Universite de Jijel, Laboratoire d' Etudes et de Modelisation en Electrotechnique (LAMEL), Faculte des Sciences de l' Ingenieur, Jijel (Algeria); Prathap, P.; Focsa, A.; Slaoui, A. [Institut d' Electronique du Solide et des Systemes (InESS)-CNRS/UdS, Strasbourg (France); Birouk, B. [Universite de Jijel, Laboratoire d' Etudes et de Modelisation en Electrotechnique (LAMEL), Faculte des Sciences de l' Ingenieur, Jijel (Algeria)

    2010-06-15

    This work reports the investigations on the effects of the hydrogenation process of thin film polycrystalline n{sup +}pp{sup +} mesa silicon cells using MW-ECR plasma in a conventional PECVD system. Different operating parameters such as MW-ECR power, annealing temperature and the doping level of the emitter region were varied. The n{sup +}-type emitter regions were obtained by phosphorus diffusion in a conventional furnace using an oxide doping source containing phosphorus (P507 or P509 solutions, from Filmtronics Inc.). The MW hydrogenation was carried out at a sample temperature of 400 C for 60 min. Both types of emitters formed from P507 and P509 showed V{sub oc} of 155 mV and 206 mV, which increased linearly to 305 mV and 331 mV, respectively, after hydrogenation when the MW power varied from 200 to 650 W. However, the sheet resistances of the n{sup +} emitter region showed a slight increase depending upon hydrogenation power because of its etching. In a further study, hydrogenated samples were annealed in neutral or forming gas (FG) and we observed interesting results on V{sub oc} in the presence of FG. The FG annealing temperature study revealed a strong dependence of V{sub oc} on MW power, which affected the etching level of emitter and emitter dopant concentration, which controls the diffusion of hydrogen ions during post-hydrogenation step. The results were explained in detail by combining the effects of MW power and dopant level of the emitter. (orig.)

  7. Activation of boron and phosphorus atoms implanted in polycrystalline silicon films at low temperatures

    International Nuclear Information System (INIS)

    Andoh, Nobuyuki; Sameshima, Toshiyuki; Andoh, Yasunori

    2005-01-01

    Phosphorus atoms implanted in laser crystallized polycrystalline silicon films were activated by a heat treatment in air at 260 deg. C for 1, 3 and 24 h. Analysis of ultraviolet reflectivity of phosphorus-doped silicon films implanted by ion doping method at 4 keV revealed that the thickness of the top disordered layer formed by ion bombardment was 6 nm. It is reduced to 4 nm by a 3 h heat treatment at 260 deg. C by recrystallization of disordered region. The electrical conductance of silicon films implanted increased to 1.7x10 5 S/sq after 3 h heat treatment

  8. Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Melikhova, O.; Čížek, J.; Lukáč, F.; Vlček, M.; Novotný, M.; Bulíř, J.; Lančok, J.; Anwand, W.; Brauer, G.; Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P.

    2013-01-01

    Highlights: ► Thin ZnO films and high quality ZnO crystal were electrochemically doped with hydrogen. ► Hydrogen absorbed in ZnO causes plastic deformation both in ZnO crystal and thin films. ► In ZnO crystal a sub-surface region with very high density of defects was formed. ► Moreover, plastic deformation causes specific surface modification of ZnO crystal. ► In ZnO films hydrogen-induced plastic deformation introduced defects in the whole film. -- Abstract: ZnO films with thickness of ∼80 nm were grown by pulsed laser deposition (PLD) on MgO (1 0 0) single crystal and amorphous fused silica (FS) substrates. Structural studies of ZnO films and a high quality reference ZnO single crystal were performed by slow positron implantation spectroscopy (SPIS). It was found that ZnO films exhibit significantly higher density of defects than the reference ZnO crystal. Moreover, the ZnO film deposited on MgO substrate exhibits higher concentration of defects than the film deposited on amorphous FS substrate most probably due to a dense network of misfit dislocations. The ZnO films and the reference ZnO crystal were subsequently loaded with hydrogen by electrochemical cathodic charging. SPIS characterizations revealed that absorbed hydrogen introduces new defects into ZnO

  9. Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Melikhova, O., E-mail: oksivmel@yahoo.com [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, CZ-180 00 Praha 8 (Czech Republic); Čížek, J.; Lukáč, F.; Vlček, M. [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, CZ-180 00 Praha 8 (Czech Republic); Novotný, M.; Bulíř, J.; Lančok, J. [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague (Czech Republic); Anwand, W.; Brauer, G. [Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, PO Box 510 119, D-01314 Dresden (Germany); Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P. [National Centre for Plasma Science and Technology, School of Physical Sciences, Glasnevin, Dublin 9 (Ireland)

    2013-12-15

    Highlights: ► Thin ZnO films and high quality ZnO crystal were electrochemically doped with hydrogen. ► Hydrogen absorbed in ZnO causes plastic deformation both in ZnO crystal and thin films. ► In ZnO crystal a sub-surface region with very high density of defects was formed. ► Moreover, plastic deformation causes specific surface modification of ZnO crystal. ► In ZnO films hydrogen-induced plastic deformation introduced defects in the whole film. -- Abstract: ZnO films with thickness of ∼80 nm were grown by pulsed laser deposition (PLD) on MgO (1 0 0) single crystal and amorphous fused silica (FS) substrates. Structural studies of ZnO films and a high quality reference ZnO single crystal were performed by slow positron implantation spectroscopy (SPIS). It was found that ZnO films exhibit significantly higher density of defects than the reference ZnO crystal. Moreover, the ZnO film deposited on MgO substrate exhibits higher concentration of defects than the film deposited on amorphous FS substrate most probably due to a dense network of misfit dislocations. The ZnO films and the reference ZnO crystal were subsequently loaded with hydrogen by electrochemical cathodic charging. SPIS characterizations revealed that absorbed hydrogen introduces new defects into ZnO.

  10. Effect of hydrogen on stresses in anodic oxide film on titanium

    International Nuclear Information System (INIS)

    Kim, Joong-Do; Pyun, Su-Il; Seo, Masahiro

    2003-01-01

    Stresses in anodic oxide film on titanium thin film/glass electrode in pH 8.4 borate solution were investigated by a bending beam method. The increases in compressive stress observed with cathodic potential sweeps after formation of anodic oxide film were attributed to the volume expansion due to the compositional change of anodic oxide film from TiO 2 to TiO 2-x (OH) x . The instantaneous responses of changes in stress, Δσ, in the anodic oxide film to potential steps demonstrated the reversible characteristic of the TiO 2-x (OH) x formation reaction. In contrast, the transient feature of Δσ for the titanium without anodic oxide film represented the irreversible formation of TiH x at the metal/oxide interphase. The large difference in stress between with and without the oxide film, has suggested that most of stresses generated during the hydrogen absorption/desorption reside in the anodic oxide film. A linear relationship between changes in stress, Δ(Δσ) des , and electric charge, ΔQ des , during hydrogen desorption was found from the current and stress transients, manifesting that the stress changes were crucially determined by the amount of hydrogen desorbed from the oxide film. The increasing tendency of -Δ(Δσ) des with increasing number of potential steps and film formation potential were discussed in connection with the increase in desorption amount of hydrogen in the oxide film with increasing absorption/desorption cycles and oxide film thickness

  11. Interaction of hydrogen and oxygen with continuous or granular films of palladium

    Energy Technology Data Exchange (ETDEWEB)

    Mikhalenko, I.I.; Prokopov, A.M.; Yagodovskii, V.D.

    1986-03-01

    The authors use desorption and conductometric methods in establishing the existence of three species of adsorbed hydrogen on continuous Pd films and two species on Pd films with a granular structure. Preoxidation of the surface of the continuous films does not affect the rate or kinetic order of hydrogen sorption; oxidation/reduction treatment changes these parameters, but the magnitude of Edes of hydrogen remains unchanged.

  12. Effect of hydrogen on the diode properties of reactively sputtered amorphous silicon Schottky barrier structures

    International Nuclear Information System (INIS)

    Morel, D.L.; Moustakas, T.D.

    1981-01-01

    The diode properties of reactively sputtered hydrogenated amorphous silicon Schottky barrier structures (a-SiH/sub x/ /Pt) have been investigated. We find a systematic relation between the changes in the open circuit voltage, the barrier height, and the diode quality factor. These results are accounted for by assuming that hydrogen incorporation into the amorphous silicon network removes states from the top of the valence band and sharpens the valence-band tail. Interfacial oxide layers play a significant role in the low hydrogen content, and low band-gap regime

  13. Surface roughening of silicon, thermal silicon dioxide, and low-k dielectric coral films in argon plasma

    International Nuclear Information System (INIS)

    Yin Yunpeng; Sawin, Herbert H.

    2008-01-01

    The surface roughness evolutions of single crystal silicon, thermal silicon dioxide (SiO 2 ), and low dielectric constant film coral in argon plasma have been measured by atomic force microscopy as a function of ion bombardment energy, ion impingement angle, and etching time in an inductively coupled plasma beam chamber, in which the plasma chemistry, ion energy, ion flux, and ion incident angle can be adjusted independently. The sputtering yield (or etching rate) scales linearly with the square root of ion energy at normal impingement angle; additionally, the angular dependence of the etching yield of all films in argon plasma followed the typical sputtering yield curve, with a maximum around 60 deg. -70 deg. off-normal angle. All films stayed smooth after etching at normal angle but typically became rougher at grazing angles. In particular, at grazing angles the rms roughness level of all films increased if more material was removed; additionally, the striation structure formed at grazing angles can be either parallel or transverse to the beam impingement direction, which depends on the off-normal angle. More interestingly, the sputtering caused roughness evolution at different off-normal angles can be qualitatively explained by the corresponding angular dependent etching yield curve. In addition, the roughening at grazing angles is a strong function of the type of surface; specifically, coral suffers greater roughening compared to thermal silicon dioxide

  14. Noise and degradation of amorphous silicon devices

    NARCIS (Netherlands)

    Bakker, J.P.R.

    2003-01-01

    Electrical noise measurements are reported on two devices of the disordered semiconductor hydrogenated amorphous silicon (a-Si:H). The material is applied in sandwich structures and in thin-film transistors (TFTs). In a sandwich configuration of an intrinsic layer and two thin doped layers, the

  15. Frequency dependence of the active impedance component of silicon thin-film resistors

    International Nuclear Information System (INIS)

    Belogurov, S.V.; Gostilo, V.V.; Yurov, A.S.

    1987-01-01

    A high-resistant resistor on the silicon thin-film substrate considerably superior in noise and frequency performance than commercial resistors is described. The frequency dependence of the active impedance component is tested for determining noise and frequency dependences of silicon thin-film resistors. The obtained results permit to calculate the energy equivalent of resistor noise in nuclear radiation detection units at any temperature according to its frequency characteristic at room temperature

  16. Pulsed Laser Deposition of Zinc Sulfide Thin Films on Silicon: The influence of substrate orientation and preparation on thin film morphology and texture

    OpenAIRE

    Heimdal, Carl Philip J

    2014-01-01

    The effect of orientation and preparation of silicon substrates on the growth morphology and crystalline structure of ZnS thin films deposited by pulsed laser deposition (PLD) has been investigated through scanning electron microscopy (SEM) and grazing incidence x-ray diffraction (GIXRD). ZnS thin films were grown on silicon (100) and (111), on HF-treated and untreated silicon (100) as well as substrates coated with Al, Ge and Au. The ZnS films showed entirely different morphologies for ZnS f...

  17. Silicon surface passivation using thin HfO2 films by atomic layer deposition

    International Nuclear Information System (INIS)

    Gope, Jhuma; Vandana; Batra, Neha; Panigrahi, Jagannath; Singh, Rajbir; Maurya, K.K.; Srivastava, Ritu; Singh, P.K.

    2015-01-01

    Graphical abstract: - Highlights: • HfO 2 films using thermal ALD are studied for silicon surface passivation. • As-deposited thin film (∼8 nm) shows better passivation with surface recombination velocity (SRV) <100 cm/s. • Annealing improves passivation quality with SRV ∼20 cm/s for ∼8 nm film. - Abstract: Hafnium oxide (HfO 2 ) is a potential material for equivalent oxide thickness (EOT) scaling in microelectronics; however, its surface passivation properties particularly on silicon are not well explored. This paper reports investigation on passivation properties of thermally deposited thin HfO 2 films by atomic layer deposition system (ALD) on silicon surface. As-deposited pristine film (∼8 nm) shows better passivation with <100 cm/s surface recombination velocity (SRV) vis-à-vis thicker films. Further improvement in passivation quality is achieved with annealing at 400 °C for 10 min where the SRV reduces to ∼20 cm/s. Conductance measurements show that the interface defect density (D it ) increases with film thickness whereas its value decreases after annealing. XRR data corroborate with the observations made by FTIR and SRV data.

  18. Wafer scale nano-membrane supported on a silicon microsieve using thin-film transfer technology

    NARCIS (Netherlands)

    Unnikrishnan, S.; Jansen, Henricus V.; Berenschot, Johan W.; Elwenspoek, Michael Curt

    A new micromachining method to fabricate wafer scale nano-membranes is described. The delicate thin-film nano-membrane is supported on a robust silicon microsieve fabricated by plasma etching. The silicon sieve is micromachined independently of the thin-film, which is later transferred onto it by

  19. Compositional analysis of silicon nitride films on Si and GaAs by backscattering spectrometry and nuclear resonance reaction analysis

    International Nuclear Information System (INIS)

    Kumar, Sanjiv; Raju, V.S.

    2004-01-01

    This paper describes the application of proton and α-backscattering spectrometry for the determination of atomic ratio of Si to N in 1100-5000 A silicon nitride films on Si and GaAs. The conventional α-Rutherford backscattering spectrometry is suitable for the analysis of films on Si; it is rather inadequate for films on GaAs due to higher background from the substrate. It is shown that these films can be analysed by 14 N(α,α) 14 N scattering with 3.5 MeV α-particles. Proton elastic scattering with enhanced cross sections for 28 Si(p,p) 28 Si and 14 N(p,p) 14 N scatterings, is also suitable for analysing films on GaAs. However, the analysis of films on Si by this technique is difficult due to interferences between the signals of Si from the film and the substrate. In addition, the hydrogen content in films is determined by 1 H( 19 F,αγ) 16 O nuclear reaction analysis using the resonance at 6.4 MeV. The combination of backscattering spectrometry with nuclear reaction analysis provides compositional analysis of ternary Si 1-(x+y) N x H y films

  20. Structures of sub-monolayered silicon carbide films

    International Nuclear Information System (INIS)

    Baba, Y.; Sekiguchi, T.; Shimoyama, I.; Nath, Krishna G.

    2004-01-01

    The electronic and geometrical structures of silicon carbide thin films are presented. The films were deposited on graphite by ion-beam deposition using tetramethylsilane (TMS) as an ion source. In the Si K-edge near-edge X-ray absorption fine structure (NEXAFS) spectra for sub-monolayered film, sharp peaks due to the resonance from Si 1s to π*-like orbitals were observed, suggesting the existence of Si=C double bonds. On the basis of the polarization dependencies of the Si 1s → π* peak intensities, it is elucidated that the direction of the π*-like orbitals is just perpendicular to the surface. We conclude that the sub-monolayered SiC x film has a flat-lying hexagonal structure of which configuration is analogous to the single sheet of graphite

  1. Ideality and Tunneling Level Systems (TLS) in amorphous silicon films.

    Science.gov (United States)

    Hellman, Frances

    Heat capacity, sound velocity, and internal friction of covalently bonded amorphous silicon (a-Si) films with and without hydrogen show that low energy excitations commonly called tunneling or two level systems (TLS) can be tuned over nearly 3 decades, from below detectable limits to the range commonly seen in glassy systems. This tuning is accomplished by growth temperature, thickness, growth rate, light soaking or annealing. We see a strong correlation with atomic density in a-Si and in literature analysis of other glasses, as well as with dangling bond density, sound velocity, and bond angle distribution as measured by Raman spectroscopy, but TLS density varies by orders of magnitude while these other measures of disorder vary by less than a factor of two. The lowest TLS films are grown at temperatures near 0.8 of the theoretical glass transition temperature of Si, similar to work on polymer films and suggestive that the high surface mobility at relatively low temperature of vapor deposition can produce materials close to an ideal glass, with higher density, lower energy, and low TLS due to fewer nearby configurations with similarly low energy. The TLS measured by heat capacity and internal friction are strongly correlated for pure a-Si, but not for hydrogenated a-Si, suggesting that the standard TLS model works for a-Si, but that a-Si:H possess TLS that are decoupled from the acoustic waves measured by internal friction. Internal friction measures those TLS that introduce mechanical damping; we are in the process of measuring low T dielectric loss which yield TLS with dipole moments in order to explore the correlation between different types of TLS. Additionally, a strong correlation is found between an excess T3 term (well above the sound velocity-derived Debye contribution) and the linear term in heat capacity, suggesting a common origin. I thank members of my research group and my collaborators for contributions to this work and NSF-DMR-1508828 for support.

  2. Dislocation/hydrogen interaction mechanisms in hydrided nanocrystalline palladium films

    International Nuclear Information System (INIS)

    Amin-Ahmadi, Behnam; Connétable, Damien; Fivel, Marc; Tanguy, Döme; Delmelle, Renaud; Turner, Stuart; Malet, Loic; Godet, Stephane; Pardoen, Thomas; Proost, Joris; Schryvers, Dominique

    2016-01-01

    The nanoscale plasticity mechanisms activated during hydriding cycles in sputtered nanocrystalline Pd films have been investigated ex-situ using advanced transmission electron microscopy techniques. The internal stress developing within the films during hydriding has been monitored in-situ. Results showed that in Pd films hydrided to β-phase, local plasticity was mainly controlled by dislocation activity in spite of the small grain size. Changes of the grain size distribution and the crystallographic texture have not been observed. In contrast, significant microstructural changes were not observed in Pd films hydrided to α-phase. Moreover, the effect of hydrogen loading on the nature and density of dislocations has been investigated using aberration-corrected TEM. Surprisingly, a high density of shear type stacking faults has been observed after dehydriding, indicating a significant effect of hydrogen on the nucleation energy barriers of Shockley partial dislocations. Ab-initio calculations of the effect of hydrogen on the intrinsic stable and unstable stacking fault energies of palladium confirm the experimental observations.

  3. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes and polymer composite thin film

    Science.gov (United States)

    Rajanna, Pramod M.; Gilshteyn, Evgenia P.; Yagafarov, Timur; Aleekseeva, Alena K.; Anisimov, Anton S.; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G.

    2018-03-01

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.

  4. Gas-temperature control in VHF- PECVD process for high-rate (>5 nm/s) growth of microcrystalline silicon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sobajima, Yasushi; Higuchi, Takuya; Chantana, Jakapan; Toyama, Toshihiko; Sada, Chitose; Matsuda, Akihisa; Okamoto, Hiroaki [Graduate School of Engineering Science, Osaka University, Toyonaka City (Japan)

    2010-04-15

    Surface-heating phenomenon by the radiation from high density plasma during growth of microcrystalline silicon ({mu}c-Si:H) thin films at high rate (> 5 nm/sec) is one of the crucial issues to be solved for obtaining high quality intrinsic-layer material for solar cells. We have utilized an optical emission spectroscopy (OES) in the plasma to observe the time evolution of gas temperature during film growth as well as the film-growth rate under {mu}c-Si:H deposition conditions at high rate. Gas temperature has been successfully controlled by changing total flow rate of monosilane (SiH{sub 4})/hydrogen (H{sub 2}) gas mixture, leading to a drastic improvement of optoelectronic properties in the resulting {mu}c-Si:H. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Helium ion beam induced electron emission from insulating silicon nitride films under charging conditions

    Science.gov (United States)

    Petrov, Yu. V.; Anikeva, A. E.; Vyvenko, O. F.

    2018-06-01

    Secondary electron emission from thin silicon nitride films of different thicknesses on silicon excited by helium ions with energies from 15 to 35 keV was investigated in the helium ion microscope. Secondary electron yield measured with Everhart-Thornley detector decreased with the irradiation time because of the charging of insulating films tending to zero or reaching a non-zero value for relatively thick or thin films, respectively. The finiteness of secondary electron yield value, which was found to be proportional to electronic energy losses of the helium ion in silicon substrate, can be explained by the electron emission excited from the substrate by the helium ions. The method of measurement of secondary electron energy distribution from insulators was suggested, and secondary electron energy distribution from silicon nitride was obtained.

  6. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    TECS

    Film adhesion in amorphous silicon solar cells. A R M YUSOFF*, M N SYAHRUL and K HENKEL. Malaysia Energy Centre, 8th Floor, North Wing, Sapura @ Mines, 7, Jalan Tasik, The Mines Resort City,. 43300 Seri Kembangan, Selangor Darul Ehsan. MS received 11 April 2007. Abstract. A major issue encountered ...

  7. The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells

    NARCIS (Netherlands)

    Demontis, V.; Sanna, C.; Melskens, J.; Santbergen, R.; Smets, A.H.M.; Damiano, A.; Zeman, M.

    2013-01-01

    Thin oxide interlayers are commonly added to the back reflector of thin-film silicon solar cells to increase their current. To gain more insight in the enhancement mechanism, we tested different back reflector designs consisting of aluminium-doped zinc oxide (ZnO:Al) and/or hydrogenated silicon

  8. Titanium-silicon films prepared by spin and dip-coating

    International Nuclear Information System (INIS)

    Nassar, Eduardo J.; Ciuffi, Katia J.; Goncalves, Rogeria R.; Messaddeq, Younes; Ribeiro, Sidney J.L.

    2003-01-01

    The conditions for the preparation of luminescent materials, consisting of Eu 3+ ions entrapped in a titanium matrix, in the form of a thin film, using the sol-gel process, are described. The films were obtained from sols prepared with TEOS and TEOT, in the presence of acetylacetone as the hydrolysis-retarding agent, using the dip-coating and spin-coating techniques. The influence of these techniques on the films based on titanium and silicon are presented. The Eu 3+ was used as a luminescent probe. The films have been characterized by luminescence, reflection and transmittance. The thickness of the films could be related to the preparation procedure. Transparent thin films have been prepared by dip-coating technique. (author)

  9. Chemical Bonding States of TiC Films before and after Hydrogen Ion Irradiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    TiC films deposited by rf magnetron sputtering followed by Ar+ ion bombardment were irradiated with a hydrogen ion beam. X-ray photoelectron spectroscopy (XPS) was used for characterization of the chemical bonding states of C and Ti elements of the TiC films before and after hydrogen ion irradiation, in order to understand the effect of hydrogen ion irradiation on the films and to study the mechanism of hydrogen resistance of TiC films. Conclusions can be drawn that ion bombardment at moderate energy can cause preferential physical sputtering of carbon atoms from the surface of low atomic number (Z) material. This means that ion beam bombardment leads to the formation of a non-stoichiometric composition of TiC on the surface.TiC films prepared by ion beam mixing have the more excellent characteristic of hydrogen resistance. One important cause, in addition to TiC itself, is that there are many vacant sites in TiC created by ion beam mixing.These defects can easily trap hydrogen and effectively enhance the effect of hydrogen resistance.

  10. Dry-film polymer waveguide for silicon photonics chip packaging.

    Science.gov (United States)

    Hsu, Hsiang-Han; Nakagawa, Shigeru

    2014-09-22

    Polymer waveguide made by dry film process is demonstrated for silicon photonics chip packaging. With 8 μm × 11.5 μm core waveguide, little penalty is observed up to 25 Gbps before or after the light propagate through a 10-km long single-mode fiber (SMF). Coupling loss to SMF is 0.24 dB and 1.31 dB at the polymer waveguide input and output ends, respectively. Alignment tolerance for 0.5 dB loss increase is +/- 1.0 μm along both vertical and horizontal directions for the coupling from the polymer waveguide to SMF. The dry-film polymer waveguide demonstrates promising performance for silicon photonics chip packaging used in next generation optical multi-chip module.

  11. Quantitative Auger depth profiling of LPCVD and PECVD silicon nitride films

    International Nuclear Information System (INIS)

    Keim, E.G.; Aite, K.

    1989-01-01

    Thin silicon nitride films (100-210 nm) with refractive indices varying from 1.90 to 2.10 were deposited on silicon substrates by low pressure chemical vapour deposition (LPCVD) and plasma enhanced chemical vapour deposition (PECVD). Rutherford backscattering spectrometry (RBS), ellipsometry, surface profiling measurements and Auger electron spectroscopy (AES) in combination with Ar + sputtering were used to characterize these films. We have found that the use of (p-p)heights of the Si LVV and N KLL Auger transitions in the first derivative of the energy distribution (dN(E)/dE) leads to an accurate determination of the silicon nitride composition in Auger depth profiles over a wide range of atomic Si/N ratios. Moreover, we have shown that the Si KLL Auger transition, generally considered to be a better probe than the low energy Si LVV Auger transition in determining the chemical composition of silicon nitride layers, leads to deviating results. (orig.)

  12. Band engineering of amorphous silicon ruthenium thin film and its near-infrared absorption enhancement combined with nano-holes pattern on back surface of silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Anran; Zhong, Hao [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Li, Wei, E-mail: wli@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Gu, Deen; Jiang, Xiangdong [School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Jiang, Yadong [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-10-30

    Highlights: • The increase of Ru concentration leads to a narrower bandgap of a-Si{sub 1-x}Ru{sub x} thin film. • The absorption coefficient of a-Si{sub 1-x}Ru{sub x} is higher than that of SiGe. • A double-layer absorber comprising of a-Si{sub 1-x}Ru{sub x} film and Si nano-holes layer is achieved. - Abstract: Silicon is widely used in semiconductor industry but has poor performance in near-infrared photoelectronic devices because of its bandgap limit. In this study, a narrow bandgap silicon rich semiconductor is achieved by introducing ruthenium (Ru) into amorphous silicon (a-Si) to form amorphous silicon ruthenium (a-Si{sub 1-x}Ru{sub x}) thin films through co-sputtering. The increase of Ru concentration leads to an enhancement of light absorption and a narrower bandgap. Meanwhile, a specific light trapping technique is employed to realize high absorption of a-Si{sub 1-x}Ru{sub x} thin film in a finite thickness to avoid unnecessary carrier recombination. A double-layer absorber comprising of a-Si{sub 1-x}Ru{sub x} thin film and silicon random nano-holes layer is formed on the back surface of silicon substrates, and significantly improves near-infrared absorption while the leaky light intensity is less than 5%. This novel absorber, combining narrow bandgap thin film with light trapping structure, may have a potential application in near-infrared photoelectronic devices.

  13. Silicon-micromachined microchannel plates

    CERN Document Server

    Beetz, C P; Steinbeck, J; Lemieux, B; Winn, D R

    2000-01-01

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of approx 0.5 to approx 25 mu m, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200 deg. C, also compatible with high-temperature brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposite...

  14. Plasmonic scattering back reflector for light trapping in flat nano-crystalline silicon solar cells

    NARCIS (Netherlands)

    van Dijk, L.; van de Groep, J.; Veldhuizen, L.W.; Di Vece, M.; Polman, A.; Schropp, R.E.I.

    2016-01-01

    Most types of thin film solar cells require light management to achieve sufficient light absorptance. We demonstrate a novel process for fabricating a scattering back reflector for flat, thin film hydrogenated nanocrystalline silicon (nc-Si:H) solar cells. This scattering back reflector consists of

  15. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Sangchoel Kim

    2013-10-01

    Full Text Available We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5 layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  16. Diffusion of hydrogen from plasma source by grain boundaries in EFG silicon

    International Nuclear Information System (INIS)

    Fedotov, A.; Saad, Anis M.H.; Drozdov, N.; Mazanik, A.; Ulyashin, A.; Fahrner, W.R.; Stognii, A.

    2001-01-01

    Diffusion of atomized hydrogen along grain boundaries (GBs) studied by transformation of their electrical activity in p-type silicon bi crystalline samples cut from EFG silicon crystals was investigated. The changes in electrical activity of GBs was estimated relative to both minority (MiC) and majority (MaC) carriers and demonstrated the correlation between the type, structure and thermal pre-history of GBs. It was shown on the base of this study that diffusion along GBs depends essentially on three factors: type of GBs, state of ribbons (as-grown or annealed) and concurrence of grain boundary dangling bonds and boron passivation effects. The model of the longitudinal hydrogen diffusion that explains these results is proposed

  17. Frequency effects and properties of plasma deposited fluorinated silicon nitride

    International Nuclear Information System (INIS)

    Chang, C.; Flamm, D.L.; Ibbotson, D.E.; Mucha, J.A.

    1988-01-01

    The properties of low-hydrogen, fluorinated plasma-enhanced chemical vapor deposition (PECVD) silicon nitride films grown using NF 3 /SiH 4 /N 2 feed mixtures in 200 kHz and 14 MHz discharges were compared. High-energy ion bombardment at 200 kHz is expected to enhance surface diffusion and chemical reconstruction. Compared to fluorinated silicon nitride deposited at 14 MHz under otherwise comparable conditions, the 200 kHz films had a lower Si--H bond concentration (approx. 21 cm -3 ), lower total hydrogen content (5--8 x 10 21 cm -3 ), better resistance to oxidation, lower compressive stress (-0.7 to -1.5 Gdyne/cm), and higher density (3.1 g/cm 3 ). The dielectric constant of better low-frequency Class I films was constant to 500 MHz, while that of high-frequency films fell up to 15% between 100 Hz and 10 MHz. The absorption edges of low-frequency PECVD fluorinated silicon nitride films were between 5.0 and 6.1 eV, which compare with 4.4 to 5.6 eV for the high-excitation frequency fluorinated material and 3 to 4 eV for conventional PECVD nitride. However high-frequency films may have fewer trap centers and a lower dielectric constant. 14 MHz p-SiN:F films grown with NH 3 as an auxiliary nitrogen source showed absorption edges similar to low-frequency material grown from NF 3 /SiH 4 /N 2 , but they have substantially more N--H bonding. The dielectric constant and absorption edge of these films were comparable to those of low-frequency p-SiN:F from NF 3 /SiH 4 /N 2

  18. Silicon nitride gradient film as the underlayer of ultra-thin tetrahedral amorphous carbon overcoat for magnetic recording slider

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guigen, E-mail: wanggghit@yahoo.com [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Kuang Xuping; Zhang Huayu; Zhu Can [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Han Jiecai [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Center for Composite Materials, Harbin Institute of Technology, Harbin 150080 (China); Zuo Hongbo [Center for Composite Materials, Harbin Institute of Technology, Harbin 150080 (China); Ma Hongtao [SAE Technologies Development (Dongguan) Co., Ltd., Dongguan 523087 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The ultra-thin carbon films with different silicon nitride (Si-N) film underlayers were prepared. Black-Right-Pointing-Pointer It highlighted the influences of Si-N underlayers. Black-Right-Pointing-Pointer The carbon films with Si-N underlayers obtained by nitriding especially at the substrate bias of -150 V, can exhibit better corrosion protection properties - Abstract: There are higher technical requirements for protection overcoat of magnetic recording slider used in high-density storage fields for the future. In this study, silicon nitride (Si-N) composition-gradient films were firstly prepared by nitriding of silicon thin films pre-sputtered on silicon wafers and magnetic recording sliders, using microwave electron cyclotron resonance plasma source. The ultra-thin tetrahedral amorphous carbon films were then deposited on the Si-N films by filtered cathodic vacuum arc method. Compared with amorphous carbon overcoats with conventional silicon underlayers, the overcoats with Si-N underlayers obtained by plasma nitriding especially at the substrate bias of -150 V, can provide better corrosion protection for high-density magnetic recording sliders.

  19. Silicon nitride gradient film as the underlayer of ultra-thin tetrahedral amorphous carbon overcoat for magnetic recording slider

    International Nuclear Information System (INIS)

    Wang Guigen; Kuang Xuping; Zhang Huayu; Zhu Can; Han Jiecai; Zuo Hongbo; Ma Hongtao

    2011-01-01

    Highlights: ► The ultra-thin carbon films with different silicon nitride (Si-N) film underlayers were prepared. ► It highlighted the influences of Si-N underlayers. ► The carbon films with Si-N underlayers obtained by nitriding especially at the substrate bias of −150 V, can exhibit better corrosion protection properties - Abstract: There are higher technical requirements for protection overcoat of magnetic recording slider used in high-density storage fields for the future. In this study, silicon nitride (Si-N) composition-gradient films were firstly prepared by nitriding of silicon thin films pre-sputtered on silicon wafers and magnetic recording sliders, using microwave electron cyclotron resonance plasma source. The ultra-thin tetrahedral amorphous carbon films were then deposited on the Si-N films by filtered cathodic vacuum arc method. Compared with amorphous carbon overcoats with conventional silicon underlayers, the overcoats with Si-N underlayers obtained by plasma nitriding especially at the substrate bias of −150 V, can provide better corrosion protection for high-density magnetic recording sliders.

  20. Mechanical and tribological properties of silicon nitride films synthesized by ion beam enhanced deposition

    International Nuclear Information System (INIS)

    Chen Yuanru; Li Shizhuo; Zhang Xushou; Liu Hong; Yang Genqing; Qu Baochun

    1991-01-01

    This article describes preliminary investigations of mechanical and tribological properties of silicon nitride film formed by ion beam enhanced deposition (IBED) on GH37 (Ni-based alloys) steel. The films were synthesized by silicon vapor deposition with a rate of 1 A/s and by 40 keV nitrogen ion bombardment simultaneously. The thickness of the film was about 5000 A. X-ray photoelectron spectroscopy and infrared absorption spectroscopy revealed that a stoichiometric Si 3 N 4 film was formed. The observation of TEM showed that the IBED Si 3 N 4 film normally had an amorphous structure. However, electron diffraction patterns revealed a certain crystallinity. The mechanical and tribological properties of the films were investigated with a scratch tester, microhardness meter, and a ball-on-disc tribometer respectively. Results show that the adhesive strength between film and substrate is about 51 N, the Vickers microhardness with a load of 0.2 N is 980, the friction coefficient measured for steel against silicon nitride film ranges from 0.1 to 0.15, and the wear rate of coatings is about 6.8x10 -5 mm 3 /(mN). Finally, the relationship among thermal annealing, crystallinity and tribological characteristics of the Si 3 N 4 film is discussed. (orig.)

  1. Tuning the cathodoluminescence of porous silicon films

    International Nuclear Information System (INIS)

    Biaggi-Labiosa, A.; Fonseca, L.F.; Resto, O.; Balberg, I.

    2008-01-01

    We have obtained intense cathodoluminescence (CL) emission from electron beam modified porous silicon films by excitation with electrons with kinetic energies below 2 keV. Two types of CL emissions were observed, a stable one and a non-stable one. The first type is obtained in well-oxidized samples and is characterized by a spectral peak that is red shifted with respect to the photoluminescence (PL) peak. The physically interesting and technologically promising CL is however the CL that correlates closely with the PL. Tuning of this CL emission was achieved by controlling the average size of the nanostructure thus showing that the origin of this CL emission is associated with the quantum confinement and the surface chemistry effects that are known to exist in the porous silicon system. We also found that the electron bombardment causes microscale morphological modifications of the films, but the nanoscale features appear to be unchanged. The structural changes are manifested by the increase in the density of the nanoparticles which explains the significant enhancement of the PL that follows the electron irradiation

  2. Formation of hydrogen-related traps in electron-irradiated n-type silicon by wet chemical etching

    International Nuclear Information System (INIS)

    Tokuda, Yutaka; Shimada, Hitoshi

    1998-01-01

    Interaction of hydrogen atoms and vacancy-related defects in 10 MeV electron-irradiated n-type silicon has been studied by deep-level transient spectroscopy. Hydrogen has been incorporated into electron-irradiated n-type silicon by wet chemical etching. The reduction of the concentration of the vacancy-oxygen pair and divacancy occurs by the incorporation of hydrogen, while the formation of the NH1 electron trap (E c - 0.31 eV) is observed. Further decrease of the concentration of the vacancy-oxygen pair and further increase of the concentration of the NH1 trap are observed upon subsequent below-band-gap light illumination. It is suggested that the trap NH1 is tentatively ascribed to the vacancy-oxygen pair which is partly saturated with hydrogen

  3. The atomic hydrogen flux during microcrystalline silicon solar cell deposition

    NARCIS (Netherlands)

    Sanden, van de M.C.M.; Dingemans, G.; van den Donker, M.N.; Hrunski, D.; Gordijn, A.; Kessels, W.M.M.

    2009-01-01

    Etch product detection by in situ optical emission spectroscopy is used to detect the phase transition from amorphous to microcrystalline silicon. In this contribution it is demonstrated that a calibrated version of this technique can be used to determine the absolute hydrogen flux under

  4. High performance multilayered nano-crystalline silicon/silicon-oxide light-emitting diodes on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Darbari, S; Shahmohammadi, M; Mortazavi, M; Mohajerzadeh, S [Thin Film and Nano-Electronic Laboratory, School of ECE, University of Tehran, Tehran (Iran, Islamic Republic of); Abdi, Y [Nano-Physics Research Laboratory, Department of Physics, University of Tehran, Tehran (Iran, Islamic Republic of); Robertson, M; Morrison, T, E-mail: mohajer@ut.ac.ir [Department of Physics, Acadia University, Wolfville, NS (Canada)

    2011-09-16

    A low-temperature hydrogenation-assisted sequential deposition and crystallization technique is reported for the preparation of nano-scale silicon quantum dots suitable for light-emitting applications. Radio-frequency plasma-enhanced deposition was used to realize multiple layers of nano-crystalline silicon while reactive ion etching was employed to create nano-scale features. The physical characteristics of the films prepared using different plasma conditions were investigated using scanning electron microscopy, transmission electron microscopy, room temperature photoluminescence and infrared spectroscopy. The formation of multilayered structures improved the photon-emission properties as observed by photoluminescence and a thin layer of silicon oxy-nitride was then used for electrical isolation between adjacent silicon layers. The preparation of light-emitting diodes directly on glass substrates has been demonstrated and the electroluminescence spectrum has been measured.

  5. Reduction in Recombination Current Density in Boron Doped Silicon Using Atomic Hydrogen

    Science.gov (United States)

    Young, Matthew Garett

    The solar industry has grown immensely in recent years and has reached a point where solar energy has now become inexpensive enough that it is starting to emerge as a mainstream electrical generation source. However, recent economic analysis has suggested that for solar to become a truly wide spread source of electricity, the costs still need to plummet by a factor of 8x. This demands new and innovative concepts to help lower such cost. In pursuit of this goal, this dissertation examines the use of atomic hydrogen to lessen the recombination current density in the boron doped region of n-type silicon solar cells. This required the development of a boron diffusion process that maintained the bulk lifetime of n-type silicon such that the recombination current density could be extracted by photoconductance spectroscopy. It is demonstrated that by hydrogenating boron diffusions, the majority carrier concentration can be controlled. By using symmetrically diffused test structures with quinhydrone-methanol surface passivation the recombination current density of a hydrogenated boron profile is shown to be less than that of a standard boron profile, by as much as 30%. This is then applied to a modified industrial silicon solar cell process to demonstrate an efficiency enhancement of 0.4%.

  6. Carrier collection losses in interface passivated amorphous silicon thin-film solar cells

    International Nuclear Information System (INIS)

    Neumüller, A.; Sergeev, O.; Vehse, M.; Agert, C.; Bereznev, S.; Volobujeva, O.; Ewert, M.; Falta, J.

    2016-01-01

    In silicon thin-film solar cells the interface between the i- and p-layer is the most critical. In the case of back diffusion of photogenerated minority carriers to the i/p-interface, recombination occurs mainly on the defect states at the interface. To suppress this effect and to reduce recombination losses, hydrogen plasma treatment (HPT) is usually applied. As an alternative to using state of the art HPT we apply an argon plasma treatment (APT) before the p-layer deposition in n-i-p solar cells. To study the effect of APT, several investigations were applied to compare the results with HPT and no plasma treatment at the interface. Carrier collection losses in resulting solar cells were examined with spectral response measurements with and without bias voltage. To investigate single layers, surface photovoltage and X-ray photoelectron spectroscopy (XPS) measurements were conducted. The results with APT at the i/p-interface show a beneficial contribution to the carrier collection compared with HPT and no plasma treatment. Therefore, it can be concluded that APT reduces the recombination centers at the interface. Further, we demonstrate that carrier collection losses of thin-film solar cells are significantly lower with APT.

  7. Carrier collection losses in interface passivated amorphous silicon thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Neumüller, A., E-mail: alex.neumueller@next-energy.de; Sergeev, O.; Vehse, M.; Agert, C. [NEXT ENERGY EWE Research Centre for Energy Technology at the University of Oldenburg, Carl-von-Ossietzky-Straße 15, 26129 Oldenburg (Germany); Bereznev, S.; Volobujeva, O. [Department of Materials Science, Tallinn University of Technology, Ehitajate Tee 5, Tallinn 19086 (Estonia); Ewert, M.; Falta, J. [Institute of Solid State Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen (Germany)

    2016-07-25

    In silicon thin-film solar cells the interface between the i- and p-layer is the most critical. In the case of back diffusion of photogenerated minority carriers to the i/p-interface, recombination occurs mainly on the defect states at the interface. To suppress this effect and to reduce recombination losses, hydrogen plasma treatment (HPT) is usually applied. As an alternative to using state of the art HPT we apply an argon plasma treatment (APT) before the p-layer deposition in n-i-p solar cells. To study the effect of APT, several investigations were applied to compare the results with HPT and no plasma treatment at the interface. Carrier collection losses in resulting solar cells were examined with spectral response measurements with and without bias voltage. To investigate single layers, surface photovoltage and X-ray photoelectron spectroscopy (XPS) measurements were conducted. The results with APT at the i/p-interface show a beneficial contribution to the carrier collection compared with HPT and no plasma treatment. Therefore, it can be concluded that APT reduces the recombination centers at the interface. Further, we demonstrate that carrier collection losses of thin-film solar cells are significantly lower with APT.

  8. Remote PECVD silicon nitride films with improved electrical properties for GaAs P-HEMT passivation

    CERN Document Server

    Sohn, M K; Kim, K H; Yang, S G; Seo, K S

    1998-01-01

    In order to obtain thin silicon nitride films with excellent electrical and mechanical properties, we employed RPECVD (Remote Plasma Enhanced Chemical Vapor Deposition) process which produces less plasma-induced damage than the conventional PECVD. Through the optical and electrical measurements of the deposited films, we optimized the various RPECVD process parameters. The optimized silicon nitride films showed excellent characteristics such as small etch rate (approx 33 A/min by 7:1 BHF), high breakdown field (>9 MV/cm), and low compressive stress (approx 3.3x10 sup 9 dyne/cm sup 2). We successfully applied thin RPECVD silicon nitride films to the surface passivation of GaAs pseudomorphic high electron mobility transistors (P-HEMTs) with negligible degradations in DC and RF characteristics.

  9. Compensation of decreased ion energy by increased hydrogen dilution in plasma deposition of thin film silicon solar cells at low substrate temperatures

    NARCIS (Netherlands)

    Verkerk, A.D.; de Jong, M.M.; Rath, J.K.; Brinza, M.; Schropp, R.E.I.; Goedheer, W.J.; Krzhizhanovskaya, V.V.; Gorbachev, Y.E.; Orlov, K.E.; Khilkevitch, E.M.; Smirnov, A.S.

    2009-01-01

    In order to deposit thin film silicon solar cells on plastics and papers, the deposition process needs to be adapted for low deposition temperatures. In a very high frequency plasma-enhanced chemical vapor deposition (VHF PECVD) process, both the gas phase and the surface processes are affected by

  10. Non-Vacuum Processed Polymer Composite Antireflection Coating Films for Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdullah Uzum

    2016-08-01

    Full Text Available A non-vacuum processing method for preparing polymer-based ZrO2/TiO2 multilayer structure antireflection coating (ARC films for crystalline silicon solar cells by spin coating is introduced. Initially, ZrO2, TiO2 and surface deactivated-TiO2 (SD-TiO2 based films were examined separately and the effect of photocatalytic properties of TiO2 film on the reflectivity on silicon surface was investigated. Degradation of the reflectance performance with increasing reflectivity of up to 2% in the ultraviolet region was confirmed. No significant change of the reflectance was observed when utilizing SD-TiO2 and ZrO2 films. Average reflectance (between 300 nm–1100 nm of the silicon surface coated with optimized polymer-based ZrO2 single or ZrO2/SD-TiO2 multilayer composite films was decreased down to 6.5% and 5.5%, respectively. Improvement of photocurrent density (Jsc and conversion efficiency (η of fabricated silicon solar cells owing to the ZrO2/SD-TiO2 multilayer ARC could be confirmed. The photovoltaic properties of Jsc, the open-circuit photo voltage (VOC, the fill factor (FF, and the η were 31.42 mA cm−2, 575 mV, 71.5% and 12.91%. Efficiency of the solar cells was improved by the ZrO2-polymer/SD-TiO2 polymer ARC composite layer by a factor of 0.8% with an increase of Jsc (2.07 mA cm−2 compared to those of fabricated without the ARC.

  11. Direct-current substrate bias effects on amorphous silicon sputter-deposited films for thin film transistor fabrication

    International Nuclear Information System (INIS)

    Jun, Seung-Ik; Rack, Philip D.; McKnight, Timothy E.; Melechko, Anatoli V.; Simpson, Michael L.

    2005-01-01

    The effect that direct current (dc) substrate bias has on radio frequency-sputter-deposited amorphous silicon (a-Si) films has been investigated. The substrate bias produces a denser a-Si film with fewer defects compared to unbiased films. The reduced number of defects results in a higher resistivity because defect-mediated conduction paths are reduced. Thin film transistors (TFTs) that were completely sputter deposited were fabricated and characterized. The TFT with the biased a-Si film showed lower leakage (off-state) current, higher on/off current ratio, and higher transconductance (field effect mobility) than the TFT with the unbiased a-Si film

  12. Grafting of Ring-Opened Cyclopropylamine Thin Films on Silicon (100) Hydride via UV Photoionization.

    Science.gov (United States)

    Tung, J; Ching, J Y; Ng, Y M; Tew, L S; Khung, Y L

    2017-09-13

    The grafting of cyclopropylamine onto a silicon (100) hydride (Si-H) surface via a ring-opening mechanism using UV photoionization is described here. In brief, radicals generated from the Si-H surface upon UV irradiation were found to behave in classical hydrogen abstraction theory manner by which the distal amine group was first hydrogen abstracted and the radical propagated down to the cyclopropane moiety. This subsequently liberated the strained bonds of the cyclopropane group and initiated the surface grafting process, producing a thin film approximately 10-15 nm in height. Contact angle measurements also showed that such photoionization irradiation had yielded an extremely hydrophilic surface (∼21.3°) and X-ray photoelectron spectroscopy also confirmed the coupling was through the Si-C linkage. However, when the surface underwent high-temperature hydrosilylation (>160 °C), the reaction proceeded predominantly through the nucleophilic NH 2 group to form a Si-N linkage to the surface. This rendered the surface hydrophobic and hence suggested that the Si-H homolysis model may not be the main process. To the best of our knowledge, this was the first attempt reported in the literature to use photoionization to directly graft cyclopropylamine onto a silicon surface and in due course generate a highly rich NH-terminated surface that was found to be highly bioactive in promoting cell viability on the basis of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide studies.

  13. A DLTS study of hydrogen doped czochralski-grown silicon

    Energy Technology Data Exchange (ETDEWEB)

    Jelinek, M. [Infineon Technologies Austria AG, 9500 Villach (Austria); Laven, J.G. [Infineon Technologies AG, 81726 Munich (Germany); Kirnstoetter, S. [Institute of Solid State Physics, Graz University of Technology, 8010 Graz (Austria); Schustereder, W. [Infineon Technologies Austria AG, 9500 Villach (Austria); Schulze, H.-J. [Infineon Technologies AG, 81726 Munich (Germany); Rommel, M. [Fraunhofer Institute of Integrated Systems and Devices IISB, 91058 Erlangen (Germany); Frey, L. [Fraunhofer Institute of Integrated Systems and Devices IISB, 91058 Erlangen (Germany); Chair of Electron Devices, FAU Erlangen-Nuremberg, 91058 Erlangen (Germany)

    2015-12-15

    In this study we examine proton implanted and subsequently annealed commercially available CZ wafers with the DLTS method. Depth-resolved spreading resistance measurements are shown, indicating an additional peak in the induced doping profile, not seen in the impurity-lean FZ reference samples. The additional peak lies about 10–15 μm deeper than the main peak near the projected range of the protons. A DLTS characterization in the depth of the additional peak indicates that it is most likely not caused by classical hydrogen-related donors known also from FZ silicon but by an additional donor complex whose formation is assisted by the presence of silicon self-interstitials.

  14. Hydrogen storage in thin film magnesium-scandium alloys

    International Nuclear Information System (INIS)

    Niessen, R.A. H.; Notten, P.H. L.

    2005-01-01

    Thorough electrochemical materials research has been performed on thin films of novel magnesium-scandium hydrogen storage alloys. It was found that palladium-capped thin films of Mg x Sc (1-x) with different compositions (ranging from x=0.50 -0.90) show an increase in hydrogen storage capacity of more than 5-20% as compared to their bulk equivalents using even higher discharge rates. The maximum reversible hydrogen storage capacity at the optimal composition (Mg 80 Sc 20 ) amounts to 1795-bar mAh/g corresponding to a hydrogen content of 2.05 H/M or 6.7-bar wt.%, which is close to five times that of the commonly used hydride-forming materials in commercial NiMH batteries. Galvanostatic intermittent titration technique (GITT) measurements show that the equilibrium pressure during discharge is lower than that of bulk powders by one order of magnitude (10 -7 -bar mbar versus 10 -6 -bar mbar, respectively)

  15. Achievement report for fiscal 1991 on Sunshine Program-entrusted research and development. Research and development of amorphous silicon solar cells (Research on amorphous silicon interface); 1991 nendo amorphous silicon taiyo denchi no kenkyu kaihatsu seika hokokusho. Amorphous silicon no kaimen no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    The amorphous solar cell interface has been under study for the enhancement of efficiency and reliability in amorphous solar cells, and this is the compilation of the results achieved in fiscal 1991. In the effort to enhance delta-doped amorphous silicon solar cell efficiency, an amorphous Si solar cell is built using a ZnO film as the transparent conductive film. As the result, an a-Si solar cell with a conversion efficiency of 11.5% is obtained. In the research on the suppression of photodegradation in a-Si, from the viewpoint that a reduction in the amount of hydrogen contained excessively in the film will be effective in decelerating photodegradation, a photoexcited hydrogen radical treatment method is newly proposed, and basic studies are conducted on it. As the result, it is found that an a-Si film processed by a 20-second hydrogen treatment at a substrate temperature of 460 degrees C exhibits a lower photodegradation rate than an ordinary a-Si film. In the research on the deposition of amorphous Si film, a VHF frequency is used instead of 13.56MHz for plasma, and an amorphous Si film is deposited efficiently at a lower voltage at which ions cause less damage. (NEDO)

  16. Doping efficiency analysis of highly phosphorous doped epitaxial/amorphous silicon emitters grown by PECVD for high efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    El-Gohary, H.G.; Sivoththaman, S. [Waterloo Univ., ON (Canada). Dept. of Electrical and Computer Engineering

    2008-08-15

    The efficient doping of hydrogenated amorphous and crystalline silicon thin films is a key factor in the fabrication of silicon solar cells. The most popular method for developing those films is plasma enhanced chemical vapor deposition (PECVD) because it minimizes defect density and improves doping efficiency. This paper discussed the preparation of different structure phosphorous doped silicon emitters ranging from epitaxial to amorphous films at low temperature. Phosphine (PH{sub 3}) was employed as the doping gas source with the same gas concentration for both epitaxial and amorphous silicon emitters. The paper presented an analysis of dopant activation by applying a very short rapid thermal annealing process (RTP). A spreading resistance profile (SRP) and SIMS analysis were used to detect both the active dopant and the dopant concentrations, respectively. The paper also provided the results of a structural analysis for both bulk and cross-section at the interface using high-resolution transmission electron microscopy and Raman spectroscopy, for epitaxial and amorphous films. It was concluded that a unity doping efficiency could be achieved in epitaxial layers by applying an optimized temperature profile using short time processing rapid thermal processing technique. The high quality, one step epitaxial layers, led to both high conductive and high doping efficiency layers.

  17. Studying the noise parameters of thin-film silicon resistors

    International Nuclear Information System (INIS)

    Belogurov, S.V.; Gostilo, V.V.; Yurov, A.S.

    1986-01-01

    The results of studies on spectral density and energy noise equivalent of thin-film resistors on the base of amorphous silicon and KIM and KVM commercial high-ohmic resistors are presented. Dependence of the active part of impedance on frequency is shown to be the main source of redundant noise in resistors. Dependence of spectral density of noise voltage of current noises of silicon resistors on applied voltage is described by the formula S T =B V 2 /f 1.6 with the values B=(1.4-1.7)x10 -12 Hz 0.6 . As to noise parameters the silicon resistor is superior to commercial resistors

  18. Amorphous Silicon-Germanium Films with Embedded Nanocrystals for Thermal Detectors with Very High Sensitivity

    Directory of Open Access Journals (Sweden)

    Cesar Calleja

    2016-01-01

    Full Text Available We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nanocrystals in a plasma enhanced chemical vapor deposition (PECVD reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR, which is a signature of the sensitivity in thermal detectors (microbolometers. Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9% K−1. Our results show that amorphous silicon-germanium films with embedded nanocrystals can be used as thermosensitive films in high performance infrared focal plane arrays (IRFPAs used in commercial thermal cameras.

  19. The effects of varying plasma parameters on silicon thin film growth by ECR plasma CVD

    International Nuclear Information System (INIS)

    Summers, S.; Reehal, H.S.; Shirkoohi, G.H.

    2001-01-01

    The technique of electron cyclotron resonance (ECR) plasma enhanced chemical vapour deposition (PECVD) is increasingly being used in electronic and photonic device applications. ECR offers a number of advantages including improved control of the deposition process, less damage to the growing film and the possibility of high deposition rates. ECR occurs in a plasma under appropriate magnetic and electric field conditions. In most cases, as in our system, this is achieved with a combination of 2.45 GHz microwave radiation and a 0.0875 T magnetic field, due to the use of standardized microwave supplies. We have studied the effects on silicon film growth of changing the magnetic field configuration to produce one or more planes of ECR within the system, and of changing the positions of the plane(s) relative to the deposition substrate. The films were grown in silane-hydrogen discharges. The magnetic field in our system was provided by two electromagnets. It was measured experimentally for a number of operating current values and then a detailed profile achieved by modelling using a proprietary software package. A process condition discharge under identical magnetic field configurations to growth was analysed by the use of a Langmuir probe and the results correlated with film properties determined by Raman spectroscopy and Dektak profilometry. (author)

  20. Radical species involved in hotwire (catalytic) deposition of hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    Zheng Wengang; Gallagher, Alan

    2008-01-01

    Threshold ionization mass spectroscopy is used to measure the radicals that cause deposition of hydrogenated amorphous silicon by 'hotwire' (HW), or 'catalytic,' chemical vapor deposition. We provide the probability of silane (SiH 4 ) decomposition on the HW, and of Si and H release from the HW. The depositing radicals, and H atoms, are measured versus conditions to obtain their radical-silane reaction rates and contributions to film growth. A 0.01-3 Pa range of silane pressures and 1400-2400 K range of HW temperatures were studied, encompassing optimum device production conditions. Si 2 H 2 is the primary depositing radical under optimum conditions, accompanied by a few percent of Si atoms and a lot of H-atom reactions. Negligible SiH n radical production is observed and only a small flux of disilane is produced, but at the higher pressures some Si 3 H n is observed. A Si-SiH 4 reaction rate coefficient of 1.65 * 10 -11 cm 3 /s and a H + SiH 4 reaction rate coefficient of 5 * 10 -14 cm 3 /s are measured

  1. Hydrogenated Amorphous Silicon Sensor Deposited on Integrated Circuit for Radiation Detection

    CERN Document Server

    Despeisse, M; Jarron, P; Kaplon, J; Moraes, D; Nardulli, A; Powolny, F; Wyrsch, N

    2008-01-01

    Radiation detectors based on the deposition of a 10 to 30 mum thick hydrogenated amorphous silicon (a-Si:H) sensor directly on top of integrated circuits have been developed. The performance of this detector technology has been assessed for the first time in the context of particle detectors. Three different circuits were designed in a quarter micron CMOS technology for these studies. The so-called TFA (Thin-Film on ASIC) detectors obtained after deposition of a-Si:H sensors on the developed circuits are presented. High internal electric fields (104 to 105 V/cm) can be built in the a-Si:H sensor and overcome the low mobility of electrons and holes in this amorphous material. However, the deposited sensor's leakage current at such fields turns out to be an important parameter which limits the performance of a TFA detector. Its detailed study is presented as well as the detector's pixel segmentation. Signal induction by generated free carrier motion in the a-Si:H sensor has been characterized using a 660 nm pul...

  2. Quadruple-Junction Thin-Film Silicon-Based Solar Cells

    NARCIS (Netherlands)

    Si, F.T.

    2017-01-01

    The direct utilization of sunlight is a critical energy source in a sustainable future. One of the options is to convert the solar energy into electricity using thin-film silicon-based solar cells (TFSSCs). Solar cells in a triple-junction configuration have exhibited the highest energy conversion

  3. Silicon epitaxy on textured double layer porous silicon by LPCVD

    International Nuclear Information System (INIS)

    Cai Hong; Shen Honglie; Zhang Lei; Huang Haibin; Lu Linfeng; Tang Zhengxia; Shen Jiancang

    2010-01-01

    Epitaxial silicon thin film on textured double layer porous silicon (DLPS) was demonstrated. The textured DLPS was formed by electrochemical etching using two different current densities on the silicon wafer that are randomly textured with upright pyramids. Silicon thin films were then grown on the annealed DLPS, using low-pressure chemical vapor deposition (LPCVD). The reflectance of the DLPS and the grown silicon thin films were studied by a spectrophotometer. The crystallinity and topography of the grown silicon thin films were studied by Raman spectroscopy and SEM. The reflectance results show that the reflectance of the silicon wafer decreases from 24.7% to 11.7% after texturing, and after the deposition of silicon thin film the surface reflectance is about 13.8%. SEM images show that the epitaxial silicon film on textured DLPS exhibits random pyramids. The Raman spectrum peaks near 521 cm -1 have a width of 7.8 cm -1 , which reveals the high crystalline quality of the silicon epitaxy.

  4. High-temperature effect of hydrogen on sintered alpha-silicon carbide

    Science.gov (United States)

    Hallum, G. W.; Herbell, T. P.

    1986-01-01

    Sintered alpha-silicon carbide was exposed to pure, dry hydrogen at high temperatures for times up to 500 hr. Weight loss and corrosion were seen after 50 hr at temperatures as low as 1000 C. Corrosion of SiC by hydrogen produced grain boundary deterioration at 1100 C and a mixture of grain and grain boundary deterioration at 1300 C. Statistically significant strength reductions were seen in samples exposed to hydrogen for times greater than 50 hr and temperatures above 1100 C. Critical fracture origins were identified by fractography as either general grain boundary corrision at 1100 C or as corrosion pits at 1300 C. A maximum strength decrease of approximately 33 percent was seen at 1100 and 1300 C after 500 hr exposure to hydrogen. A computer assisted thermodynamic program was also used to predict possible reaction species of SiC and hydrogen.

  5. Modelling of the hydrogen effects on the morphogenesis of hydrogenated silicon nano-structures in a plasma reactor; Modelisation des effets de l'hydrogene sur la morphogenese des nanostructures de silicium hydrogene dans un reacteur plasma

    Energy Technology Data Exchange (ETDEWEB)

    Brulin, Q

    2006-01-15

    This work pursues the goal of understanding mechanisms related to the morphogenesis of hydrogenated silicon nano-structures in a plasma reactor through modeling techniques. Current technologies are first reviewed with an aim to understand the purpose behind their development. Then follows a summary of the possible studies which are useful in this particular context. The various techniques which make it possible to simulate the trajectories of atoms by molecular dynamics are discussed. The quantum methods of calculation of the interaction potential between chemical species are then developed, reaching the conclusion that only semi-empirical quantum methods are sufficiently fast to be able to implement an algorithm of quantum molecular dynamics on a reasonable timescale. From the tools introduced, a reflection on the nature of molecular metastable energetic states is presented for the theoretical case of the self-organized growth of a linear chain of atoms. This model - which consists of propagating the growth of a chain by the successive addition of the atom which least increases the electronic energy of the chain - shows that the Fermi level is a parameter essential to self organization during growth. This model also shows that the structure formed is not necessarily a total minimum energy structure. From all these numerical tools, the molecular growth of clusters can be simulated by using parameters from magnetohydrodynamic calculation results of plasma reactor modeling (concentrations of the species, interval between chemical reactions, energy of impact of the reagents...). The formation of silicon-hydrogen clusters is thus simulated by the successive capture of silane molecules. The structures formed in simulation at the operating temperatures of the plasma reactor predict the formation of spherical clusters constituting an amorphous silicon core covered by hydrogen. These structures are thus not in a state of minimum energy, contrary to certain experimental

  6. Silicon-micromachined microchannel plates

    International Nuclear Information System (INIS)

    Beetz, Charles P.; Boerstler, Robert; Steinbeck, John; Lemieux, Bryan; Winn, David R.

    2000-01-01

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of ∼0.5 to ∼25 μm, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200 deg. C, also compatible with high-temperature brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposited or nucleated in the channels or the first strike surface. Results on resistivity, secondary emission and gain are presented

  7. γ-irradiation effect on gas diffusion in polymer films. Part I : Hydrogen diffusion through mylar film

    International Nuclear Information System (INIS)

    Rao, K.A.; Pushpa, K.K.; Iyer, R.M.

    1980-01-01

    γ-irradiation of polymers results in further crosslinking in the polymer or breakdown of the polymer or a combination of both these phenomena depending on the type of polymer, the dose as well as the environment in which irradiation is carried out. The gas diffusion through polymer films is expected to vary depending on these changes. With a view to A evaluate the feasibility of effecting selective diffusion of specific gases and also to correlate the change in diffusion rates with the polymer characteristics these studies have been initiated. Hydrogen diffusion through mylar film γ-irradiated under varying conditions upto a dose of approximately 50 Mrads is reported in this paper. The results indicate negligible change in hydrogen diffusion rates on γ-irradiation. However, γ-irradiation induced crosslinking of acrylic acid on Mylar reduced the hydrogen diffusion rate. The hydrogen diffusion studies may also be useful in finding the glass transition temperature of polymer films as is apparent from the gas diffusion curves. (author)

  8. Reciprocal space analysis of the microstructure of luminescent and nonluminescent porous silicon films

    International Nuclear Information System (INIS)

    Lee, S.R.; Barbour, J.C.; Medernach, J.W.; Stevenson, J.O.; Custer, J.S.

    1994-01-01

    The microstructure of anodically prepared porous silicon films was determined using a novel X-ray diffraction technique. This technique uses double-crystal diffractometry combined with position-sensitive X- ray detection to efficiently and quantitatively image the reciprocal space structure of crystalline materials. Reciprocal space analysis of newly prepared, as well as aged, p - porous silicon films showed that these films exhibit a very broad range of crystallinity. This material appears to range in structure from a strained, single-crystal, sponge-like material exhibiting long-range coherency to isolated, dilated nanocrystals embedded in an amorphous matrix. Reciprocal space analysis of n + and p + porous silicon showed these materials are strained single-crystals with a spatially-correlated array of vertical pores. The vertical pores in these crystals may be surrounded by nanoporous or nanocrystalline domains as small as a few nm in size which produce diffuse diffraction indicating their presence. The photoluminescence of these films was examined using 488 nm Ar laser excitation in order to search for possible correlations between photoluminescent intensity and crystalline microstructure

  9. The influence of the electrical asymmetry effect on deposition uniformity of thin silicon film

    Energy Technology Data Exchange (ETDEWEB)

    Hrunski, D., E-mail: Dzmitry.Hrunski@leyboldoptics.com; Janssen, A.; Fritz, T.; Hegemann, T.; Clark, C.; Schreiber, U.; Grabosch, G.

    2013-04-01

    The deposition of amorphous and microcrystalline silicon is an important step in the production of thin silicon film solar panels. Deposition rate, layer uniformity and material quality are key attributes for achieving high efficiency in such panels. Due to the multilayer structure of tandem solar cells (more than 6 thin silicon layers), it is becoming increasingly important to improve the uniformity of deposition without sacrificing deposition rate and material quality. This paper reports the results of an investigation into the influence of the electrical asymmetry effect (EAE) on the uniformity of deposited layers. 13.56 MHz + 27.12 MHz excitation frequencies were used for thin silicon film deposition in a Gen5 reactor (1100 × 1400 mm). To change the plasma properties, the DC self bias voltage on the RF electrode was varied by adjustment of the phase angle between the two frequencies applied. It was found that the layers deposited by EAE method have better uniformity than layers deposited in single frequency 27.12 MHz discharge. The EAE provides additional opportunities for improvement of uniformity, deposition rate and material quality. - Highlights: ► The electrical asymmetry effect technique tested for thin silicon film deposition ► Bias voltage has an influence on film uniformity. ► Minimized the deterioration of layer uniformity while increasing discharge frequency.

  10. Effects of plasma-deposited silicon nitride passivation on the radiation hardness of CMOS integrated circuits

    International Nuclear Information System (INIS)

    Clement, J.J.

    1980-01-01

    The use of plasma-deposited silicon nitride as a final passivation over metal-gate CMOS integrated circuits degrades the radiation hardness of these devices. The hardness degradation is manifested by increased radiation-induced threshold voltage shifts caused principally by the charging of new interface states and, to a lesser extent, by the trapping of holes created upon exposure to ionizing radiation. The threshold voltage shifts are a strong function of the deposition temperature, and show very little dependence on thickness for films deposited at 300 0 C. There is some correlation between the threshold voltage shifts and the hydrogen content of the PECVD silicon nitride films used as the final passivation layer as a function of deposition temperature. The mechanism by which the hydrogen contained in these films may react with the Si/SiO 2 interface is not clear at this point

  11. Effect of pyrolysis atmospheres on the morphology of polymer-derived silicon oxynitrocarbide ceramic films coated aluminum nitride surface and the thermal conductivity of silicone rubber composites

    Science.gov (United States)

    Chiu, Hsien T.; Sukachonmakul, Tanapon; Wang, Chen H.; Wattanakul, Karnthidaporn; Kuo, Ming T.; Wang, Yu H.

    2014-02-01

    Amorphous silicon oxycarbide (SiOC) and silicon oxynitrocarbide (SiONC) ceramic films coated aluminum nitride (AlN) were prepared by using preceramic-polysilazane (PSZ) with dip-coating method, followed by pyrolysis at 700 °C in different (air, Ar, N2 and NH3) atmospheres to converted PSZ into SiOCair and SiONC(Ar,N2andNH3) ceramic. The existence of amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface was characterized by FTIR, XRD and XPS. The interfacial adhesion between silicone rubber and AlN was significantly improved after the introduction of amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface. It can be observed from AFM that the pyrolysis of PSZ at different atmosphere strongly affected to films morphology on AlN surface as SiOCair and SiONCNH3 ceramic films were more flat and smooth than SiONCN2 and SiONCAr ceramic films. Besides, the enhancement of the thermal conductivity of silicone rubber composites was found to be related to the decrease in the surface roughness of SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface. This present work provided an alternative surface modification of thermally conductive fillers to improve the thermal conductivity of silicon rubber composites by coating with amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films.

  12. Development of practical application technology for photovoltaic power generation systems in fiscal 1997. Development of technologies to manufacture application type thin film solar cells with new structure (development of technologies to manufacture amorphous silicon and thin film poly-crystal silicon hybrid thin film solar cells); 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Usumaku taiyo denchi no seizo gijutsu kaihatsu, oyogata shinkozo usumaku taiyo denchi no seizo gijutsu kaihatsu (amorphous silicon/usumaku takessho silicon hybrid usumaku taiyo denchi no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research and development was performed with an objective to manufacture amorphous silicon and thin film poly-crystal silicon hybrid solar cells with large area and at low cost, being a high-efficiency next generation solar cell. The research was performed based on a principle that low-cost substrates shall be used, that a manufacturing process capable of forming amorphous silicon films with large area shall be based on, and that silicon film with as thin as possible thickness shall be used. Fiscal 1997 has started research and development on making the cells hybrid with amorphous silicon cells. As a result of the research and development, such achievements have been attained as using texture structure on the rear layer in thin poly-crystal silicon film solar cells with a thickness of two microns, and having achieved conversion efficiency of 10.1% by optimizing the junction interface forming conditions. A photo-deterioration test was carried out on hybrid cells which combine the thin poly-crystal silicon film cells having STAR structure with the amorphous silicon cells. Stabilization efficiency of 11.5% was attained after light has been irradiated for 500 hours or longer. (NEDO)

  13. Silicon surface barrier detectors used for liquid hydrogen density measurement

    Science.gov (United States)

    James, D. T.; Milam, J. K.; Winslett, H. B.

    1968-01-01

    Multichannel system employing a radioisotope radiation source, strontium-90, radiation detector, and a silicon surface barrier detector, measures the local density of liquid hydrogen at various levels in a storage tank. The instrument contains electronic equipment for collecting the density information, and a data handling system for processing this information.

  14. Dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Jesper B.; Christensen, Erik N.

    2017-01-01

    We numerically demonstrate dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating using a finite-difference mode solver. The proposed structure exhibits spectrally-flattened near-zero anomalous dispersion within the telecom wavelength range. We also numerica......We numerically demonstrate dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating using a finite-difference mode solver. The proposed structure exhibits spectrally-flattened near-zero anomalous dispersion within the telecom wavelength range. We also...

  15. Effects of excitation intensity on the photocurrent response of thin film silicon solar modules

    Science.gov (United States)

    Kim, Q.; Shumka, A.; Trask, J.

    1986-01-01

    Photocurrent responses of amorphous thin film silicon solar modules at room temperature were studied at different excitation intensities using various monochromatic light sources. Photocurrent imaging techniques have been effectively used to locate rapidly, and non-destructively, failure and defect sites in the multilayer thin film device. Differences observed in the photocurrent response characteristics for two different cells in the same amorphous thin film silicon solar module suggest the possibility of the formation of dissimilarly active devices, even though the module is processed in the same fabrication process. Possible mechanisms are discussed.

  16. A thin-film silicon/silicon hetero-junction hybrid solar cell for photoelectrochemical water-reduction applications

    NARCIS (Netherlands)

    Vasudevan, R.A.; Thanawala, Z; Han, L.; Buijs, Thom; Tan, H.; Deligiannis, D.; Perez Rodriguez, P.; Digdaya, I.A.; Smith, W.A.; Zeman, M.; Smets, A.H.M.

    2016-01-01

    A hybrid tandem solar cell consisting of a thin-film, nanocrystalline silicon top junction and a siliconheterojunction bottom junction is proposed as a supporting solar cell for photoelectrochemical applications.Tunneling recombination junction engineering is shown to be an important consideration

  17. Progress in thin-film silicon solar cells based on photonic-crystal structures

    Science.gov (United States)

    Ishizaki, Kenji; De Zoysa, Menaka; Tanaka, Yoshinori; Jeon, Seung-Woo; Noda, Susumu

    2018-06-01

    We review the recent progress in thin-film silicon solar cells with photonic crystals, where absorption enhancement is achieved by using large-area resonant effects in photonic crystals. First, a definitive guideline for enhancing light absorption in a wide wavelength range (600–1100 nm) is introduced, showing that the formation of multiple band edges utilizing higher-order modes confined in the thickness direction and the introduction of photonic superlattice structures enable significant absorption enhancement, exceeding that observed for conventional random scatterers. Subsequently, experimental evidence of this enhancement is demonstrated for a variety of thin-film Si solar cells: ∼500-nm-thick ultrathin microcrystalline silicon cells, few-µm-thick microcrystalline silicon cells, and ∼20-µm-thick thin single-crystalline silicon cells. The high short-circuit current densities and/or efficiencies observed for each cell structure confirm the effectiveness of using multiple band-edge resonant modes of photonic crystals for enhancing broadband absorption in actual solar cells.

  18. Research and development of photovoltaic power system. Development of novel technologies for fabrication of high quality silicon thin films for solar cells; Taiyoko hatsuden system no kenkyu kaihatsu. Kohinshitsu silicon usumaku sakusei gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T [Kanazawa University, Ishikawa (Japan). Faculty of Engineering

    1994-12-01

    Described herein are the results of the FY1994 research program for development of novel technologies for fabrication of high quality thin films of silicon for solar cells. The study on the mechanisms and effects of chemical annealing reveals that the film structure greatly varies depending on substrate temperature during the hydrotreatment process, based on the tests with substrate temperature, deposition of superthin film (T1) and hydrotreatment (T2) as the variable parameters. Chemical annealing at low temperature produces a high-quality a-Si:H film of low defect content. The study on fabrication of thin polycrystalline silicon films at low temperature observes on real time the process of deposition of the thin films on polycrystalline silicon substrates, where a natural oxide film is removed beforehand from the substrate. The results indicate that a thin polycrystalline silicon film of 100% crystallinity can be formed even on a polycrystalline silicon substrate by controlling starting gas composition and substrate temperature. The layer-by-layer method is used as the means for forming the seed crystals on a glass substrate, where deposition and hydrotreatment are repeated alternately, to produce the thin crystalline silicon films of high crystallinity. 3 figs.

  19. Slow positron beam study of hydrogen ion implanted ZnO thin films

    International Nuclear Information System (INIS)

    Hu, Yi; Xue, Xudong; Wu, Yichu

    2014-01-01

    The effects of hydrogen related defect on the microstructure and optical property of ZnO thin films were investigated by slow positron beam, in combination with x-ray diffraction, infrared and photoluminescence spectroscopy. The defects were introduced by 90 keV proton irradiation with doses of 1×10 15 and 1×10 16 ions cm −2 . Zn vacancy and OH bonding (V Zn +OH) defect complex were identified in hydrogen implanted ZnO film by positron annihilation and infrared spectroscopy. The formation of these complexes led to lattice disorder in hydrogen implanted ZnO film and suppressed the luminescence process. - Highlights: • Hydrogen introduced by ion implantation can form hydrogen-related defect complex. • V Zn +OH defect complex is identified by positron annihilation and IR spectroscopy. • Irradiation defects suppress the luminescence process

  20. Self-assembled thin film of imidazolium ionic liquid on a silicon surface: Low friction and remarkable wear-resistivity

    International Nuclear Information System (INIS)

    Gusain, Rashi; Kokufu, Sho; Bakshi, Paramjeet S.; Utsunomiya, Toru; Ichii, Takashi; Sugimura, Hiroyuki; Khatri, Om P.

    2016-01-01

    Graphical abstract: - Highlights: • Ionic liquid thin film is deposited on a silicon surface via covalent interaction. • Chemical and morphological features of ionic liquid thin film are probed by XPS and AFM. • Ionic liquid thin film exhibited low and steady friction along with remarkable wear-resistivity. - Abstract: Imidazolium-hexafluorophosphate (ImPF_6) ionic liquid thin film is prepared on a silicon surface using 3-chloropropyltrimethoxysilane as a bifunctional chemical linker. XPS result revealed the covalent grafting of ImPF_6 thin film on a silicon surface. The atomic force microscopic images demonstrated that the ImPF_6 thin film is composed of nanoscopic pads/clusters with height of 3–7 nm. Microtribological properties in terms of coefficient of friction and wear-resistivity are probed at the mean Hertzian contact pressure of 0.35–0.6 GPa under the rotational sliding contact. The ImPF_6 thin film exhibited low and steady coefficient of friction (μ = 0.11) along with remarkable wear-resistivity to protect the underlying silicon substrate. The low shear strength of ImPF_6 thin film, the covalent interaction between ImPF_6 ionic liquid thin film and underlying silicon substrate, and its regular grafting collectively reduced the friction and improved the anti-wear property. The covalently grafted ionic liquid thin film further shows immense potential to expand the durability and lifetime of M/NEMS based devices with significant reduction of the friction.

  1. Self-assembled thin film of imidazolium ionic liquid on a silicon surface: Low friction and remarkable wear-resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Gusain, Rashi [CSIR-Indian Institute of Petroleum, Mohkampur, Dehardun 248005 (India); Academy of Scientific and Innovative Research, New Delhi 110025 (India); Kokufu, Sho [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Bakshi, Paramjeet S. [CSIR-Indian Institute of Petroleum, Mohkampur, Dehardun 248005 (India); Utsunomiya, Toru; Ichii, Takashi; Sugimura, Hiroyuki [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Khatri, Om P., E-mail: opkhatri@iip.res.in [CSIR-Indian Institute of Petroleum, Mohkampur, Dehardun 248005 (India); Academy of Scientific and Innovative Research, New Delhi 110025 (India)

    2016-02-28

    Graphical abstract: - Highlights: • Ionic liquid thin film is deposited on a silicon surface via covalent interaction. • Chemical and morphological features of ionic liquid thin film are probed by XPS and AFM. • Ionic liquid thin film exhibited low and steady friction along with remarkable wear-resistivity. - Abstract: Imidazolium-hexafluorophosphate (ImPF{sub 6}) ionic liquid thin film is prepared on a silicon surface using 3-chloropropyltrimethoxysilane as a bifunctional chemical linker. XPS result revealed the covalent grafting of ImPF{sub 6} thin film on a silicon surface. The atomic force microscopic images demonstrated that the ImPF{sub 6} thin film is composed of nanoscopic pads/clusters with height of 3–7 nm. Microtribological properties in terms of coefficient of friction and wear-resistivity are probed at the mean Hertzian contact pressure of 0.35–0.6 GPa under the rotational sliding contact. The ImPF{sub 6} thin film exhibited low and steady coefficient of friction (μ = 0.11) along with remarkable wear-resistivity to protect the underlying silicon substrate. The low shear strength of ImPF{sub 6} thin film, the covalent interaction between ImPF{sub 6} ionic liquid thin film and underlying silicon substrate, and its regular grafting collectively reduced the friction and improved the anti-wear property. The covalently grafted ionic liquid thin film further shows immense potential to expand the durability and lifetime of M/NEMS based devices with significant reduction of the friction.

  2. Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries

    KAUST Repository

    Cui, Li-Feng

    2010-07-27

    Silicon is an attractive alloy-type anode material because of its highest known capacity (4200 mAh/g). However, lithium insertion into and extraction from silicon are accompanied by a huge volume change, up to 300%, which induces a strong strain on silicon and causes pulverization and rapid capacity fading due to the loss of the electrical contact between part of silicon and current collector. Si nanostructures such as nanowires, which are chemically and electrically bonded to the current collector, can overcome the pulverization problem, however, the heavy metal current collectors in these systems are larger in weight than Si active material. Herein we report a novel anode structure free of heavy metal current collectors by integrating a flexible, conductive carbon nanotube (CNT) network into a Si anode. The composite film is free-standing and has a structure similar to the steel bar reinforced concrete, where the infiltrated CNT network functions as both mechanical support and electrical conductor and Si as a high capacity anode material for Li-ion battery. Such free-standing film has a low sheet resistance of ∼30 Ohm/sq. It shows a high specific charge storage capacity (∼2000 mAh/g) and a good cycling life, superior to pure sputtered-on silicon films with similar thicknesses. Scanning electron micrographs show that Si is still connected by the CNT network even when small breaking or cracks appear in the film after cycling. The film can also "ripple up" to release the strain of a large volume change during lithium intercalation. The conductive composite film can function as both anode active material and current collector. It offers ∼10 times improvement in specific capacity compared with widely used graphite/copper anode sheets. © 2010 American Chemical Society.

  3. Low-energy excitations in amorphous films of silicon and germanium

    International Nuclear Information System (INIS)

    Liu, X.; Pohl, R.O.

    1998-01-01

    We present measurements of internal friction and shear modulus of amorphous Si (a-Si) and amorphous Ge (a-Ge) films on double-paddle oscillators at 5500 Hz from 0.5 K up to room temperature. The temperature- independent plateau in internal friction below 10 K, which is common to all amorphous solids, also exists in these films. However, its magnitude is smaller than found for all other amorphous solids studied to date. Furthermore, it depends critically on the deposition methods. For a-Si films, it decreases in the sequence of electron-beam evaporation, sputtering, self-ion implantation, and hot-wire chemical-vapor deposition (HWCVD). Annealing can also reduce the internal friction of the amorphous films considerably. Hydrogenated a-Si with 1 at.% H prepared by HWCVD leads to an internal friction more than two orders of magnitude smaller than observed for all other amorphous solids. The internal friction increases after the hydrogen is removed by effusion. Our results are compared with earlier measurements on a-Si and a-Ge films, none of which had the sensitivity achieved here. The variability of the low-energy tunneling states in the a-Si and a-Ge films may be a consequence of the tetrahedrally bonded covalent continuous random network. The perfection of this network, however, depends critically on the preparation conditions, with hydrogen incorporation playing a particularly important role. copyright 1998 The American Physical Society

  4. Slow positron beam study of hydrogen ion implanted ZnO thin films

    Science.gov (United States)

    Hu, Yi; Xue, Xudong; Wu, Yichu

    2014-08-01

    The effects of hydrogen related defect on the microstructure and optical property of ZnO thin films were investigated by slow positron beam, in combination with x-ray diffraction, infrared and photoluminescence spectroscopy. The defects were introduced by 90 keV proton irradiation with doses of 1×1015 and 1×1016 ions cm-2. Zn vacancy and OH bonding (VZn+OH) defect complex were identified in hydrogen implanted ZnO film by positron annihilation and infrared spectroscopy. The formation of these complexes led to lattice disorder in hydrogen implanted ZnO film and suppressed the luminescence process.

  5. Characterization of chemical vapour deposited diamond films: correlation between hydrogen incorporation and film morphology and quality

    International Nuclear Information System (INIS)

    Tang, C J; Neves, A J; Carmo, M C

    2005-01-01

    In order to tailor diamond synthesized through chemical vapour deposition (CVD) for different applications, many diamond films of different colours and variable quality were deposited by a 5 kW microwave plasma CVD reactor under different growth conditions. The morphology, quality and hydrogen incorporation of these films were characterized using scanning electron microscopy (SEM), Raman and Fourier-transform infrared (FTIR) spectroscopy, respectively. From this study, a general trend between hydrogen incorporation and film colour, morphology and quality was found. That is, as the films sorted by colour gradually become darker, ranging from white through grey to black, high magnification SEM images illustrate that the smoothness of the well defined crystalline facet gradually decreases and second nucleation starts to appear on it, indicating gradual degradation of the crystalline quality. Correspondingly, Raman spectra evidence that the diamond Raman peak at 1332 cm -1 becomes broader and the non-diamond carbon band around 1500 cm -1 starts to appear and becomes stronger, confirming increase of the non-diamond component and decrease of the phase purity of the film, while FTIR spectra show that the CH stretching band and the two CVD diamond specific peaks around 2830 cm -1 rise rapidly, and this indicates that the total amount of hydrogen incorporated into the film increases significantly

  6. Microanalysis on the Hydrogen Ion Irradiated 50 wt pct TiC-C Films

    Institute of Scientific and Technical Information of China (English)

    Hui JIANG; Yaoguang LIU; Ningkang HUANG

    2007-01-01

    The 50 wt pct TiC-C films were prepared on stainless steel substrates by using a technique of ion beam mixing.These films were irradiated by hydrogen ion beam with a dose of 1×1018 ions/cm2 and an energy of 5 keV.Microanalysis of X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) were used to analyze the films before and after hydrogen ion irradiation and to study the mechanism of hydrogen resistance.

  7. PLA and single component silicone rubber blends for sub-zero temperature blown film packaging applications

    Science.gov (United States)

    Meekum, Utai; Khiansanoi, Apichart

    2018-06-01

    The poly(lactic acid) (PLA) blend with single component silicone rubber in the presence of reactive amino silane coupling agent and polyester polyols plasticizer were studied. The manufacturing of film packaging for sub-zero temperature applications from the PLA blend was the main objective. The mechanical properties, especially the impact strengths, of PLA/silicone blends were significantly depended on the silicone loading. The outstanding impact strengths, tested at sub-zero temperature, of the blend having silicone content of 8.0 phr was achieved. It was chosen as the best candidate for the processability improvement. Adding the talc filler into the PLA/silicone blend to enhance the rheological properties was investigated. The ductility of the talc filled blends were decreased with increasing the filler contents. However, the shear viscosity of the blend was raised with talc loading. The blend loaded with 40 phr of talc filler was justified as the optimal formula for the blown film process testing and it was successfully performed with a few difficulties. The obtained blown film showed relative good flexibility in comparison with LDPE but it has low transparency.

  8. Laser controlled magnetism in hydrogenated fullerene films

    International Nuclear Information System (INIS)

    Makarova, Tatiana L.; Shelankov, Andrei L.; Kvyatkovskii, Oleg E.; Zakharova, Irina B.; Buga, Sergei G.; Volkov, Aleksandr P.

    2011-01-01

    Room temperature ferromagnetic-like behavior in fullerene photopolymerized films treated with monatomic hydrogen is reported. The hydrogen treatment controllably varies the paramagnetic spin concentration and laser induced polymerization transforms the paramagnetic phase to a ferromagnetic-like one. Excess laser irradiation destroys magnetic ordering, presumably due to structural changes, which was continuously monitored by Raman spectroscopy. We suggest an interpretation of the data based on first-principles density-functional spin-unrestricted calculations which show that the excess spin from mono-atomic hydrogen is delocalized within the host fullerene and the laser-induced polymerization promotes spin exchange interaction and spin alignment in the polymerized phase.

  9. Patterning of hydrogenated microcrystalline silicon growth by magnetic field

    Czech Academy of Sciences Publication Activity Database

    Fejfar, Antonín; Stuchlík, Jiří; Mates, Tomáš; Ledinský, Martin; Honda, Shinya; Kočka, Jan

    2005-01-01

    Roč. 87, č. 1 (2005), 011901/1-011901/3 ISSN 0003-6951 R&D Projects: GA AV ČR(CZ) IAA1010316; GA AV ČR(CZ) IAA1010413; GA ČR(CZ) GD202/05/H003 Institutional research plan: CEZ:AV0Z10100521 Keywords : hydrogenated microcrystalline silicon * magnetic field growth Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.127, year: 2005

  10. Effect of oxygen and hydrogen on the optical and electrical characteristics of porous silicon. Towards sensor applications

    International Nuclear Information System (INIS)

    Green, S.

    2000-02-01

    The effect of adsorbed oxygen and hydrogen gas on porous silicon has been investigated using two different techniques, viz. optical and electrical. The photoluminescence quenching by oxygen and hydrogen was found to be reversible with a response time of the order of 3000 s. Unlike any reported porous silicon gas quenching systems, both the extent and rate of quenching were found to be a function of photoluminescence wavelength. The quenching is attributed to charge transfer from the conduction band of porous silicon to the lowest unoccupied molecular orbital of oxygen and hydrogen, respectively. Surface conductance measurements (aluminium contacts) show that the principal charge transfer process is via tunnelling, with some conduction through the underlying bulk p-type silicon layer. Symmetrical current-voltage plots were obtained for this system which were attributed to pinning of the aluminium-porous silicon Fermi level at mid-gap by the high surface trap density. An approximate doubling of the aluminium electrode separation was found to reduce approximately fourfold the initial rate of increase in surface conductance on adsorption of oxygen at a pressure of 10 torr. To the best of the author's knowledge this is the first time that such an effect has been reported in a room temperature solid state gas sensor. Gas sensitivity measurements using surface contacts show a logarithmic response to the concentration of oxygen up to a pressure of 100 torr with a rapid response, of 300 s. A 39% increase in surface conductance occurs on exposure of the device to 100 torr of oxygen. The surface conductance of the device decreases by 34% on exposure to one atmosphere of hydrogen with a response time of the order 2000 s. Transverse conductance (DC) measurements show that Au/PS/p-Si/Al..Ag devices behave like a field-dependent diode. An admittance spectroscopy technique has been applied to porous silicon for the first time to calculate g 0 , the trap density at the Fermi level

  11. Ultrathin Nanocrystalline Diamond Films with Silicon Vacancy Color Centers via Seeding by 2 nm Detonation Nanodiamonds.

    Science.gov (United States)

    Stehlik, Stepan; Varga, Marian; Stenclova, Pavla; Ondic, Lukas; Ledinsky, Martin; Pangrac, Jiri; Vanek, Ondrej; Lipov, Jan; Kromka, Alexander; Rezek, Bohuslav

    2017-11-08

    Color centers in diamonds have shown excellent potential for applications in quantum information processing, photonics, and biology. Here we report chemical vapor deposition (CVD) growth of nanocrystalline diamond (NCD) films as thin as 5-6 nm with photoluminescence (PL) from silicon-vacancy (SiV) centers at 739 nm. Instead of conventional 4-6 nm detonation nanodiamonds (DNDs), we prepared and employed hydrogenated 2 nm DNDs (zeta potential = +36 mV) to form extremely dense (∼1.3 × 10 13 cm -2 ), thin (2 ± 1 nm), and smooth (RMS roughness < 0.8 nm) nucleation layers on an Si/SiO x substrate, which enabled the CVD growth of such ultrathin NCD films in two different and complementary microwave (MW) CVD systems: (i) focused MW plasma with an ellipsoidal cavity resonator and (ii) pulsed MW plasma with a linear antenna arrangement. Analytical ultracentrifuge, infrared and Raman spectroscopies, atomic force microscopy, and scanning electron microscopy are used for detailed characterization of the 2 nm H-DNDs and the nucleation layer as well as the ultrathin NCD films. We also demonstrate on/off switching of the SiV center PL in the NCD films thinner than 10 nm, which is achieved by changing their surface chemistry.

  12. Study on the Hydrogenated ZnO-Based Thin Film Transistors. Part 1

    Science.gov (United States)

    2011-04-30

    growth of a- IGZO channel layers, but most of the devices exhibited enhancement-mode operation. The second approach studied the effect of hydrogenation of a... IGZO channel layers during post-annealing. Even though the device quality improved, depletion-mode operation was not achieved. Depletion-mode... IGZO film on the performance of thin film transistors 5 Chapter 2. Hydrogenation of a- IGZO channel layer in the thin film transistors 12

  13. Amorphous Silicon-Germanium Films with Embedded Nano crystals for Thermal Detectors with Very High Sensitivity

    International Nuclear Information System (INIS)

    Calleja, C.; Torres, A.; Rosales-Quintero, P.; Moreno, M.

    2016-01-01

    We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nano crystals in a plasma enhanced chemical vapor deposition (PECVD) reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR), which is a signature of the sensitivity in thermal detectors (micro bolometers). Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9%K -1 ). Our results show that amorphous silicon-germanium films with embedded nano crystals can be used as thermo sensitive films in high performance infrared focal plane arrays (IRFPAs) used in commercial thermal cameras.

  14. Properties of amorphous silicon thin films synthesized by reactive particle beam assisted chemical vapor deposition

    International Nuclear Information System (INIS)

    Choi, Sun Gyu; Wang, Seok-Joo; Park, Hyeong-Ho; Jang, Jin-Nyoung; Hong, MunPyo; Kwon, Kwang-Ho; Park, Hyung-Ho

    2010-01-01

    Amorphous silicon thin films were formed by chemical vapor deposition of reactive particle beam assisted inductively coupled plasma type with various reflector bias voltages. During the deposition, the substrate was heated at 150 o C. The effects of reflector bias voltage on the physical and chemical properties of the films were systematically studied. X-ray diffraction and Raman spectroscopy results showed that the deposited films were amorphous and the films under higher reflector voltage had higher internal energy to be easily crystallized. The chemical state of amorphous silicon films was revealed as metallic bonding of Si atoms by using X-ray photoelectron spectroscopy. An increase in reflector voltage induced an increase of surface morphology of films and optical bandgap and a decrease of photoconductivity.

  15. Thermal recrystallization of physical vapor deposition based germanium thin films on bulk silicon (100)

    KAUST Repository

    Hussain, Aftab M.

    2013-08-16

    We demonstrate a simple, low-cost, and scalable process for obtaining uniform, smooth surfaced, high quality mono-crystalline germanium (100) thin films on silicon (100). The germanium thin films were deposited on a silicon substrate using plasma-assisted sputtering based physical vapor deposition. They were crystallized by annealing at various temperatures ranging from 700 °C to 1100 °C. We report that the best quality germanium thin films are obtained above the melting point of germanium (937 °C), thus offering a method for in-situ Czochralski process. We show well-behaved high-κ /metal gate metal-oxide-semiconductor capacitors (MOSCAPs) using this film. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Electrical conductivity of free-standing mesoporous silicon thin films

    International Nuclear Information System (INIS)

    Khardani, M.; Bouaicha, M.; Dimassi, W.; Zribi, M.; Aouida, S.; Bessais, B.

    2006-01-01

    The effective electrical conductivity of free-standing p + -type porous silicon layers having porosities ranging from 30% to 80% was studied at both experimental and theoretical sides. An Effective Medium Approximation (EMA) model was used as a theoretical support. The porous silicon (PS) films were prepared by the electrochemical etching method for different values of the anodic current density. In order to model the PS electrical conductivity, the free-standing porous layer was assumed to be formed of three phases; vacuum, oxide and Si nanocrystallites. The analytical expression of the electrical conductivity of the Si nanocrystallites was established using the quantum confinement theory. This enables us to correlate the electrical conductivity of the mesoporous film to the value of the effective band gap energy estimated from the absorption coefficient. A perfect agreement between the theoretical and the experimental electrical conductivity values was obtained for all prospected PS porosities

  17. Experimental and numerical investigations of a hydrogen-assisted laser-induced materials transfer procedure

    International Nuclear Information System (INIS)

    Toet, D.; Smith, P. M.; Sigmon, T. W.; Thompson, M. O.

    2000-01-01

    We present investigations of the mechanisms of a laser-induced transfer technique, which can be used for the spatially selective deposition of materials such as Si. This transfer is effected by irradiating the backside of a hydrogenated amorphous silicon film, deposited on a transparent substrate with an excimer laser pulse. The resulting release and accumulation of hydrogen at the film/substrate interface propels the silicon onto an adjacent receptor wafer. Time-resolved infrared transmission measurements indicate that the amorphous film is melted by the laser pulse and breaks into droplets during ejection. These droplets travel towards the receptor substrate and coalesce upon arrival. The transfer velocity increases as a function of fluence, the rate of increase dropping noticeably around the full melt threshold of the film. At this fluence, the transfer velocity reaches values of around 1000 m/s for typical films. Atomic force microscopy reveals that films transferred below the full melt threshold only partially cover the receptor substrate, while uniform, well-adhering films, which can be smoothed by subsequent laser irradiation, are obtained above it. Transfer of hydrogen-free Si films, on the other hand, does not occur until much higher fluences. The dynamics of the process have been simulated using a semiquantitative numerical model. In this model, hydrogen released from the melt front is instantaneously accumulated at the interface with an initial kinetic energy given by the melting temperature of Si and the enthalpy of solution. The resulting pressure accelerates the Si film, the dynamics of which are modeled using Newtonian mechanics, and the gas cools adiabatically as its kinetic energy is converted to the film's momentum. The results of the calculations are in good agreement with the experimental data. (c) 2000 American Institute of Physics

  18. Optical approach to thermopower and conductivity measurements in thin-film semiconductors

    International Nuclear Information System (INIS)

    Dersch, H.; Amer, N.M.

    1984-01-01

    An optical beam deflection technique is applied to measure the Joule and Peltier heat generated by electric currents through thin-film semiconductors. The method yields a spatially resolved conductivity profile and allows the determination of Peltier coefficients. Results obtained on doped hydrogenated amorphous silicon films are presented

  19. Silicon nitride films fabricated by a plasma-enhanced chemical vapor deposition method for coatings of the laser interferometer gravitational wave detector

    Science.gov (United States)

    Pan, Huang-Wei; Kuo, Ling-Chi; Huang, Shu-Yu; Wu, Meng-Yun; Juang, Yu-Hang; Lee, Chia-Wei; Chen, Hsin-Chieh; Wen, Ting Ting; Chao, Shiuh

    2018-01-01

    Silicon is a potential substrate material for the large-areal-size mirrors of the next-generation laser interferometer gravitational wave detector operated in cryogenics. Silicon nitride thin films uniformly deposited by a chemical vapor deposition method on large-size silicon wafers is a common practice in the silicon integrated circuit industry. We used plasma-enhanced chemical vapor deposition to deposit silicon nitride films on silicon and studied the physical properties of the films that are pertinent to application of mirror coatings for laser interferometer gravitational wave detectors. We measured and analyzed the structure, optical properties, stress, Young's modulus, and mechanical loss of the films, at both room and cryogenic temperatures. Optical extinction coefficients of the films were in the 10-5 range at 1550-nm wavelength. Room-temperature mechanical loss of the films varied in the range from low 10-4 to low 10-5 within the frequency range of interest. The existence of a cryogenic mechanical loss peak depended on the composition of the films. We measured the bond concentrations of N - H , Si - H , Si - N , and Si - Si bonds in the films and analyzed the correlations between bond concentrations and cryogenic mechanical losses. We proposed three possible two-level systems associated with the N - H , Si - H , and Si - N bonds in the film. We inferred that the dominant source of the cryogenic mechanical loss for the silicon nitride films is the two-level system of exchanging position between a H+ and electron lone pair associated with the N - H bond. Under our deposition conditions, superior properties in terms of high refractive index with a large adjustable range, low optical absorption, and low mechanical loss were achieved for films with lower nitrogen content and lower N - H bond concentration. Possible pairing of the silicon nitride films with other materials in the quarter-wave stack is discussed.

  20. Ferroelectric and piezoelectric properties of epitaxial PZT films and devices on silicon

    NARCIS (Netherlands)

    Nguyen, Duc Minh

    2010-01-01

    In this thesis, the integration of lead zirconate titanate Pb(Zr,Ti)O3 (PZT) thin films into piezoelectric microelectromechanical systems (MEMS) based on silicon is studied. In these structures, all epitaxial oxide layers (thin film/electrode/buffer-layer(s)) were deposited by pulsed laser

  1. Correlating the silicon surface passivation to the nanostructure of low-temperature a-Si:H after rapid thermal annealing

    NARCIS (Netherlands)

    Macco, B.; Melskens, J.; Podraza, N.J.; Arts, K.; Pugh, C.; Thomas, O.; Kessels, W.M.M.

    2017-01-01

    Using an inductively coupled plasma, hydrogenated amorphous silicon (a-Si:H) films have been prepared at very low temperatures (<50 °C) to provide crystalline silicon (c-Si) surface passivation. Despite the limited nanostructural quality of the a-Si:H bulk, a surprisingly high minority carrier

  2. Porous Silicon Hydrogen Sensor at Room Temperature: The Effect of Surface Modification and Noble Metal Contacts

    Directory of Open Access Journals (Sweden)

    Jayita KANUNGO

    2009-04-01

    Full Text Available Porous silicon (PS was fabricated by anodization of p-type crystalline silicon of resistivity 2-5 Ω cm. After formation, the PS surface was modified by the solution containing noble metal like Pd. Pd-Ag catalytic contact electrodes were deposited on porous silicon and on p-Silicon to fabricate Pd-Ag/PS/p-Si/Pd-Ag sensor structure to carry out the hydrogen sensing experiments. The Sensor was exposed to 1% hydrogen in nitrogen as carrier gas at room temperature (270C. Pd modified sensor showed minimum fluctuations and consistent performance with 86% response, response time and recovery time of 24 sec and 264 sec respectively. The stability experiments were studied for both unmodified and Pd modified sensor structures for a period of about 24 hours and the modified sensors showed excellent durability with no drift in response behavior.

  3. Silicon-based thin films as bottom electrodes in chalcogenide nonvolatile memories

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Yun [IT Convergence and Components Laboratory, Electronics and Telecommunications Research Institute (ETRI), Yuseong-gu, Daejeon 305-350 (Korea, Republic of)], E-mail: seungyun@etri.re.kr; Yoon, Sung-Min; Choi, Kyu-Jeong; Lee, Nam-Yeal; Park, Young-Sam; Ryu, Sang-Ouk; Yu, Byoung-Gon; Kim, Sang-Hoon; Lee, Sang-Heung [IT Convergence and Components Laboratory, Electronics and Telecommunications Research Institute (ETRI), Yuseong-gu, Daejeon 305-350 (Korea, Republic of)

    2007-10-31

    The effect of the electrical resistivity of a silicon-germanium (SiGe) thin film on the phase transition in a GeSbTe (GST) chalcogenide alloy and the manufacturing aspect of the fabrication process of a chalcogenide memory device employing the SiGe film as bottom electrodes were investigated. While p-type SiGe bottom electrodes were formed using in situ doping techniques, n-type ones could be made in a different manner where phosphorus atoms diffused from highly doped silicon underlayers to undoped SiGe films. The p-n heterojunction did not form between the p-type GST and n-type SiGe layers, and the semiconduction type of the SiGe alloys did not influence the memory device switching. It was confirmed that an optimum resistivity value existed for memory operation in spite of proportionality of Joule heating to electrical resistivity. The very high resistivity of the SiGe film had no effect on the reduction of reset current, which might result from the resistance decrease of the SiGe alloy at high temperatures.

  4. Improved performance of silicon-nanoparticle film-coated dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravindra Kumar; Bedja, Idriss M. [CRC, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433 (Saudi Arabia); Aldwayyan, Abdullah Saleh [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2012-11-15

    Silicon (Si) nanoparticles with average size of 13 nm and orange-red luminescence under UV absorption were synthesized using electrochemical etching of silicon wafers. A film of Si nanoparticles with thickness of 0.75 {mu}m to 2.6 {mu}m was coated on the glass (TiO{sub 2} side) of a dye-sensitized solar cell (DSSC). The cell exhibited nearly 9% enhancement in power conversion efficiency ({eta}) at film thickness of {proportional_to}2.4 {mu}m under solar irradiation of 100 mW/cm{sup 2} (AM 1.5) with improved fill factor and short-circuit current density. This study revealed for the first time that the Si-nanoparticle film converting UV into visible light and helping in homogeneous irradiation, can be utilized for improving the efficiency of the DSSCs. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Transparent conductive oxides for thin-film silicon solar cells

    NARCIS (Netherlands)

    Löffler, J.

    2005-01-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses,

  6. Improved PECVD Si x N y film as a mask layer for deep wet etching of the silicon

    Science.gov (United States)

    Han, Jianqiang; Yin, Yi Jun; Han, Dong; Dong, LiZhen

    2017-09-01

    Although plasma enhanced chemical vapor deposition (PECVD) silicon nitride (Si x N y ) films have been extensively investigated by many researchers, requirements of film properties vary from device to device. For some applications utilizing Si x N y film as the mask Layer for deep wet etching of the silicon, it is very desirable to obtain a high quality film. In this study, Si x N y films were deposited on silicon substrates by PECVD technique from the mixtures of NH3 and 5% SiH4 diluted in Ar. The deposition temperature and RF power were fixed at 400 °C and 20 W, respectively. By adjusting the SiH4/NH3 flow ratio, Si x N y films of different compositions were deposited on silicon wafers. The stoichiometry, residual stress, etch rate in 1:50 HF, BHF solution and 40% KOH solution of deposited Si x N y films were measured. The experimental results show that the optimum SiH4/NH3 flow ratio at which deposited Si x N y films can perfectly protect the polysilicon resistors on the front side of wafers during KOH etching is between 1.63 and 2.24 under the given temperature and RF power. Polysilicon resistors protected by the Si x N y films can withstand 6 h 40% KOH double-side etching at 80 °C. At the range of SiH4/NH3 flow ratios, the Si/N atom ratio of films ranges from 0.645 to 0.702, which slightly deviate the ideal stoichiometric ratio of LPCVD Si3N4 film. In addition, the silicon nitride films with the best protection effect are not the films of minimum etch rate in KOH solution.

  7. Ion beam deposited epitaxial thin silicon films

    International Nuclear Information System (INIS)

    Orrman-Rossiter, K.G.; Al-Bayati, A.H.; Armour, D.G.; Donnelly, S.E.; Berg, J.A. van den

    1991-01-01

    Deposition of thin films using low energy, mass-separated ion beams is a potentially important low temperature method of producing epitaxial layers. In these experiments silicon films were grown on Si (001) substrates using 10-200 eV 28 Si + and 30 Si + ions at substrate temperatures in the range 273-1073 K, under ultrahigh-vacuum conditions (deposition pressure -7 Pa). The film crystallinity was assessed in situ using medium energy ion scattering (MEIS). Films of crystallinity comparable to bulk samples were grown using 10-40 eV 28 Si + and 30 Si + ions at deposition temperatures in the range 623-823 K. These experiments confirmed the role of key experimental parameters such as ion energy, substrate temperature during deposition, and the surface treatment prior to deposition. It was found that a high temperature in situ anneal (1350-1450 K) gave the best results for epitaxial nucleation, whereas low energy (20-40 eV) Cl + ion bombardment resulted in amorphous film growth. The deposition energy for good epitaxial growth indicates that it is necessary to provide enough energy to induce local mobility but not to cause atomic displacements leading to the buildup of stable defects, e.g. divacancies, below the surface layer of the growing film. (orig.)

  8. Microfabricated hydrogen sensitive membranes

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, A.; Kraetz, L. [Lehrstuhl fuer Thermische Verfahrenstechnik, Technische Universitaet Kaiserslautern (Germany); Detemple, P.; Schmitt, S.; Hessel, V. [Institut fuer Mikrotechnik Mainz GmbH, Mainz (Germany); Faqir, N. [University of Jordan, Amman (Jordan); Bart, H.J.

    2009-01-15

    Thin, defect-free palladium, palladium/copper and palladium/silver hydrogen absorbing membranes were microfabricated. A dual sputtering technique was used to deposit the palladium alloy membranes of only 1 {mu}m thickness on a nonporous silicon substrate. Advanced silicon etching (ASE) was applied on the backside to create a mechanically stable support structure for the thin films. Performance evaluation was carried out for different gases in a temperature range of 20 C to 298 C at a constant differential pressure of 110 kPa at the two sides of the membrane. The composite membranes show an excellent permeation rate of hydrogen, which appears to be 0.05 Pa m{sup 3} s{sup -1} and 0.01.10{sup -3} Pa m{sup 3} s{sup -1} at 20 C for the microfabricated 23 % silver and the 53 % copper composite membranes, respectively. The selectivity to hydrogen over a gas mixture containing, in addition to hydrogen, carbon monoxide, carbon dioxide and nitrogen was measured. The mass spectrometer did not detect any CO{sub 2} or CO, showing that the membrane is completely hydrogen selective. The microfabricated membranes exhibit both high mechanical strength (they easily withstand pressures up to 4 bar) and high thermal stability (up to 650 C). (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  9. Preparation of hydrogenated amorphous carbon films using a microsecond-pulsed DC capacitive-coupled plasma chemical vapor deposition system operated at high frequency up to 400 kHz

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-06-01

    Hydrogenated amorphous carbon (a-C:H) films are deposited on silicon (Si) substrates using a high-repetition microsecond-pulsed DC plasma chemical vapor deposition (CVD) system from acetylene (C2H2) at a gas pressure of 15 Pa inside a custom-made vacuum chamber. The plasma discharge characteristics, hydrocarbon species, and the microstructure of the resulting films are examined at various pulse repetition rates from 50 to 400 kHz and a fixed duty cycle of 50%. The optical emission spectra confirmed the increase in electron excitation energy from 1.09 to 1.82 eV and the decrease in the intensity ratio of CH/C2 from 1.04 to 0.75 with increasing pulse frequency, indicating the enhanced electron impact dissociation of C2H2 gas. With increasing pulse frequency, the deposition rate gradually increased, reaching a maximum rate of 60 nm/min at 200 kHz, after which a progressive decrease was noted, whereas the deposition area was almost uniform for all the prepared films. Clear trends of increasing sp3 content (amorphization) and decreasing hydrogen (H) content in the films were observed as the pulse repetition rate increased, while most of the hydrogen atoms bonded to carbon atoms by sp3 hybridization rather than by sp2 hybridization.

  10. A new computer-aided simulation model for polycrystalline silicon film resistors

    Science.gov (United States)

    Ching-Yuan Wu; Weng-Dah Ken

    1983-07-01

    A general transport theory for the I-V characteristics of a polycrystalline film resistor has been derived by including the effects of carrier degeneracy, majority-carrier thermionic-diffusion across the space charge regions produced by carrier trapping in the grain boundaries, and quantum mechanical tunneling through the grain boundaries. Based on the derived transport theory, a new conduction model for the electrical resistivity of polycrystalline film resitors has been developed by incorporating the effects of carrier trapping and dopant segregation in the grain boundaries. Moreover, an empirical formula for the coefficient of the dopant-segregation effects has been proposed, which enables us to predict the dependence of the electrical resistivity of phosphorus-and arsenic-doped polycrystalline silicon films on thermal annealing temperature. Phosphorus-doped polycrystalline silicon resistors have been fabricated by using ion-implantation with doses ranged from 1.6 × 10 11 to 5 × 10 15/cm 2. The dependence of the electrical resistivity on doping concentration and temperature have been measured and shown to be in good agreement with the results of computer simulations. In addition, computer simulations for boron-and arsenic-doped polycrystalline silicon resistors have also been performed and shown to be consistent with the experimental results published by previous authors.

  11. Solid-phase crystallization of amorphous silicon on ZnO:Al for thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Becker, C.; Conrad, E.; Dogan, P.; Fenske, F.; Gorka, B.; Haenel, T.; Lee, K.Y.; Rau, B.; Ruske, F.; Weber, T.; Gall, S.; Rech, B. [Helmholtz-Zentrum Berlin fuer Materialien und Energie (formerly Hahn-Meitner-Institut Berlin), Kekulestr. 5, D-12489 Berlin (Germany); Berginski, M.; Huepkes, J. [Institute of Photovoltaics, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany)

    2009-06-15

    The suitability of ZnO:Al thin films for polycrystalline silicon (poly-Si) thin-film solar cell fabrication was investigated. The electrical and optical properties of 700 -nm-thick ZnO:Al films on glass were analyzed after typical annealing steps occurring during poly-Si film preparation. If the ZnO:Al layer is covered by a 30 nm thin silicon film, the initial sheet resistance of ZnO:Al drops from 4.2 to 2.2 {omega} after 22 h annealing at 600 C and only slightly increases for a 200 s heat treatment at 900 C. A thin-film solar cell concept consisting of poly-Si films on ZnO:Al coated glass is introduced. First solar cell results will be presented using absorber layers either prepared by solid-phase crystallization (SPC) or by direct deposition at 600 C. (author)

  12. Influence of thin film nickel pretreatment on catalytic thermal chemical vapor deposition of carbon nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Tiggelaar, R.M. [Mesoscale Chemical Systems, MESA" + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Thakur, D.B.; Nair, H.; Lefferts, L.; Seshan, K. [Catalytic Processes and Materials, MESA" + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Gardeniers, J.G.E., E-mail: j.g.e.gardeniers@utwente.nl [Mesoscale Chemical Systems, MESA" + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2013-05-01

    Nickel and other metal nanoparticles are known to be active as catalysts in the synthesis of carbon nanofibers. In this paper we investigate how dewetting and break-up of nickel thin films depends on film thickness, film–substrate interaction and pretreatment conditions. This is evaluated for films evaporated on oxidized silicon and fused silica substrates with or without tantalum coating, which were subsequently exposed to different pretreatment atmospheres (vacuum, nitrogen, air and hydrogen; 1 h, 650 °C). Atomic force microscopy, scanning electron microscopy and energy dispersive X-ray analysis were used to characterize the films. Pretreated Ni films were subjected to a thermal catalytic chemical vapor deposition procedure with brief ethylene exposures (0.5–3 min, 635 °C). It was found that only on the spherical nanoparticles originating from a hydrogen pretreatment of a Ni film with Ta adhesion layer, homogeneously distributed, randomly-oriented, well-attached, and semi-crystalline carbon nanofibers be synthesized. - Highlights: • On the formation of nanoparticles required for carbon nanofiber (CNF) synthesis • Various evaporated thin films on oxidized silicon and fused silica: Ni and Ni/Ta • Pretreatment of nickel-based thin films in vacuum, nitrogen, air and hydrogen • Only on reduced Ni/Ta fast – within 3 min – initiation of CNF nucleation and growth.

  13. Permeation mechanisms of pulsed microwave plasma deposited silicon oxide films for food packaging applications

    International Nuclear Information System (INIS)

    Deilmann, Michael; Grabowski, Mirko; Theiss, Sebastian; Bibinov, Nikita; Awakowicz, Peter

    2008-01-01

    Silicon oxide barrier layers are deposited on polyethylene terephthalate as permeation barriers for food packaging applications by means of a low pressure microwave plasma. Hexamethyldisiloxane (HMDSO) and oxygen are used as process gases to deposit SiO x coatings via pulsed low pressure plasmas. The layer composition of the coating is investigated by Fourier transform infrared spectroscopy and energy dispersive x-ray spectroscopy to show correlations with barrier properties of the films. The oxygen permeation barrier is determined by the carrier gas method using an electrochemical detector. The transition from low to high barrier films is mapped by the transition from organic SiO x C y H z layers to quartz-like SiO 1.7 films containing silanol bound hydrogen. A residual permeation as low as J = 1 ± 0.3 cm 3 m -2 day -1 bar -1 is achieved, which is a good value for food packaging applications. Additionally, the activation energy E p of oxygen permeation is analysed and a strong increase from E p = 31.5 kJ mol -1 for SiO x C y H z -like coatings to E p = 53.7 kJ mol -1 for SiO 1.7 films is observed by increasing the oxygen dilution of HMDSO:O 2 plasma. The reason for the residual permeation of high barrier films is discussed and coating defects are visualized by capacitively coupled atomic oxygen plasma etching of coated substrates. A defect density of 3000 mm -2 is revealed

  14. A novel non-sequential hydrogen-pulsed deep reactive ion etching of silicon

    International Nuclear Information System (INIS)

    Gharooni, M; Mohajerzadeh, A; Sandoughsaz, A; Khanof, S; Mohajerzadeh, S; Asl-Soleimani, E

    2013-01-01

    A non-sequential pulsed-mode deep reactive ion etching of silicon is reported that employs continuous etching and passivation based on SF 6 and H 2 gases. The passivation layer, as an important step for deep vertical etching of silicon, is feasible by hydrogen pulses in proper time-slots. By adjusting the etching parameters such as plasma power, H 2 and SF 6 flows and hydrogen pulse timing, the process can be controlled for minimum underetch and high etch-rate at the same time. High-aspect-ratio features can be realized with low-density plasma power and by controlling the reaction chemistry. The so-called reactive ion etching lag has been minimized by operating the reactor at higher pressures. X-ray photoelectron spectroscopy and scanning electron microscopy have been used to study the formation of the passivation layer and the passivation mechanism. (paper)

  15. Potential of ITO nanoparticles formed by hydrogen treatment in PECVD for improved performance of back grid contact crystalline silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sourav; Mitra, Suchismita; Dhar, Sukanta; Ghosh, Hemanta; Banerjee, Chandan, E-mail: chandanbanerjee74@gmail.com; Datta, Swapan K.; Saha, Hiranmoy

    2015-09-15

    Highlights: • Indium tin oxide (ITO) nanoparticles as back scatterers in c-Si solar cells. • ITO NP have comparatively low dissipative losses and tunable optical properties. • ITO NP formed by hydrogen plasma treatment on sputtered ITO film. • Enhanced absorption and carrier collection at longer wavelengths due to enhanced light trapping. - Abstract: This paper discusses the prospect of using indium tin oxide (ITO) nanoparticles as back scatterers in crystalline silicon solar cells instead of commonly used metal nanoparticles as ITO nanoparticles have comparatively low dissipative losses and tunable optical properties. ITO nanoparticles of ∼5–10 nm size is developed on the rear side of the solar cell by deposition of ∼5–10 nm thick ITO layer by DC magnetron sputtering followed by hydrogen treatment in PECVD. The silicon solar cell is fabricated in the laboratory using conventional method with grid metal contact at the back surface. Various characterizations like FESEM, TEM, AFM, XRD, EQE and IV characteristics are performed to analyze the morphology, chemical composition, optical characteristics and electrical performance of the device. ITO nanoparticles at the back surface of the solar cell significantly enhances the short circuit current, open circuit voltage and efficiency of the solar cell. These enhancements may be attributed to the increased absorption and carrier collection at longer wavelengths of solar spectrum due to enhanced light trapping by the ITO nanoparticles and surface passivation by the hydrogen treatment of the back surface.

  16. Infrared absorption study of hydrogen incorporation in thick nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Tang, C.J.; Neves, A.J.; Carmo, M.C.

    2005-01-01

    We present an infrared (IR) optical absorbance study of hydrogen incorporation in nanocrystalline diamond films. The thick nanocrystalline diamond films were synthesized by microwave plasma-assisted chemical vapor deposition and a high growth rate about 3.0 μm/h was achieved. The morphology, phase quality, and hydrogen incorporation were assessed by means of scanning electron microscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). Large amount of hydrogen bonded to nanocrystalline diamond is clearly evidenced by the huge CH stretching band in the FTIR spectrum. The mechanism of hydrogen incorporation is discussed in light of the growth mechanism of nanocrystalline diamond. This suggests the potential of nanocrystalline diamond for IR electro-optical device applications

  17. NO2 sensing properties of amorphous silicon films

    International Nuclear Information System (INIS)

    Georgieva, V; Gadjanova, V; Donkov, N; Stefanov, P; Sendova-Vassileva, M; Grechnikov, A

    2012-01-01

    The sensitivity to NO 2 was studied of amorphous silicon thin films obtained by e-beam evaporation. The process was carried out at an operational-mode vacuum of 1.5x10 -5 Torr at a deposition rate of 170 nm/min. The layer's structure was analyzed by Raman spectroscopy, while its composition was determined by X-ray photoemission spectroscopy (XPS). To estimate their sensitivity to NO 2 , the Si films were deposited on a 16-MHz quartz crystal microbalance (QCM) and the correlation was used between the QCM frequency variation and the mass-loading after exposure to NO 2 in concentrations from 10 ppm to 5000 ppm. A considerable sensitivity of the films was found in the interval 1000 ppm-2500 ppm NO 2 , leading to frequency shifts from 131 Hz to 208 Hz. The results obtained on the films' sorption properties can be applied to the development sensor elements.

  18. High growth rate of a-SiC:H films using ethane carbon source by HW

    Indian Academy of Sciences (India)

    Hydrogenated amorphous silicon carbide (a-SiC:H) thin films were prepared ... Total hydrogen content drops from 22.6 to 14.4 at.% when deposition pressure is increased. Raman spectra show increase in structural disorder with increase in ...

  19. Hydrogen-Induced Buckling of Pd Films Deposited on Various Substrates

    KAUST Repository

    Vlček, Marián

    2015-07-01

    A Pd-H system is a model system suitable for studying interactions of hydrogen with metals. In the present work, we studied hydrogen-induced buckling of thin Pd films deposited on various substrates with different bonding strengths (sapphire, glimmer) and also the effect of deposition temperature. Lattice expansion and phase transitions were investigated by X-ray diffraction of synchrotron radiation. The influence of the substrate and microstructure of the film on the buckling process and phase transformation to palladium hydride are discussed.

  20. Hydrogen-Induced Buckling of Pd Films Deposited on Various Substrates

    KAUST Repository

    Vlček, Mariá n; Luká č, František; Vlach, Martin; Prochá zka, Ivan; Wagner, Stefan; Uchida, Helmut; Pundt, Astrid; Gemma, Ryota; Čí žek, Jakub

    2015-01-01

    A Pd-H system is a model system suitable for studying interactions of hydrogen with metals. In the present work, we studied hydrogen-induced buckling of thin Pd films deposited on various substrates with different bonding strengths (sapphire, glimmer) and also the effect of deposition temperature. Lattice expansion and phase transitions were investigated by X-ray diffraction of synchrotron radiation. The influence of the substrate and microstructure of the film on the buckling process and phase transformation to palladium hydride are discussed.

  1. Anti-reflection coatings for silicon solar cells from hydrogenated diamond like carbon

    Science.gov (United States)

    Das, Debajyoti; Banerjee, Amit

    2015-08-01

    Aiming towards a specific application as antireflection coatings (ARC) in Si solar cells, the growth of hydrogenated diamond like carbon (HDLC) films, by RF magnetron sputtering, has been optimized through comprehensive optical and structural studies. Various physical properties of the films e.g., (ID/IG) ratio in the Raman spectra, percentage of sp3 hybridization in XPS spectra, H-content in the network, etc., have been correlated with different ARC application properties e.g., transmittance, reflectance, optical band gap, refractive index, surface roughness, etc. The ARC properties have been optimized on unheated substrates, through systematic variations of RF power, gas flow rate, gas pressure and finally controlled introduction of hydrogen to the DLC network at its most favorable plasma parameters. The optimum HDLC films possess (T700)max ∼ 95.8%, (R700)min ∼ 3.87%, (n700)min ∼ 1.62 along with simultaneous (Eg)max ∼ 2.53 eV and ∼75.6% of sp3 hybridization in the C-network, corresponding to a bonded H-content of ∼23 at.%. Encouraging improvements in the ARC properties over the optimized DLC film were obtained with the controlled addition of hydrogen, and the optimum HDLC films appear quite promising for applications in Si solar cells. Systematic materials development has been performed through comprehensive understanding of the parameter space and its optimization, as elaborately discussed.

  2. Two different carbon-hydrogen complexes in silicon with closely spaced energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Stübner, R., E-mail: ronald.stuebner@physik.tu-dresden.de, E-mail: kolkov@ifpan.edu.pl; Kolkovsky, Vl., E-mail: ronald.stuebner@physik.tu-dresden.de, E-mail: kolkov@ifpan.edu.pl; Weber, J. [Technische Universität Dresden, Institut für Angewandte Physik, 01062 Dresden (Germany)

    2015-08-07

    An acceptor and a single donor state of carbon-hydrogen defects (CH{sub A} and CH{sub B}) are observed by Laplace deep level transient spectroscopy at 90 K. CH{sub A} appears directly after hydrogenation by wet chemical etching or hydrogen plasma treatment, whereas CH{sub B} can be observed only after a successive annealing under reverse bias at about 320 K. The activation enthalpies of these states are 0.16 eV for CH{sub A} and 0.14 eV for CH{sub B}. Our results reconcile previous controversial experimental results. We attribute CH{sub A} to the configuration where substitutional carbon binds a hydrogen atom on a bond centered position between carbon and the neighboring silicon and CH{sub B} to another carbon-hydrogen defect.

  3. Fatigue characteristics of polycrystalline silicon thin-film membrane and its dependence on humidity

    International Nuclear Information System (INIS)

    Tanemura, Tomoki; Yamashita, Shuichi; Wado, Hiroyuki; Takeuchi, Yukihiro; Tsuchiya, Toshiyuki; Tabata, Osamu

    2013-01-01

    This paper describes fatigue characteristics of a polycrystalline silicon thin-film membrane under different humidity evaluated by out-of-plane resonant vibration. The membrane, without the surface of sidewalls by patterning of photolithography and etching process, was applied to evaluate fatigue characteristics precisely against the changes in the surrounding humidity owing to narrower deviation in the fatigue lifetime. The membrane has 16 mm square-shaped multilayered films consisting of a 250 or 500 nm thick polysilicon film on silicon dioxide and silicon nitride underlying layers. A circular weight of 12 mm in diameter was placed at the center of the membrane to control the resonant frequency. Stress on the polysilicon film was generated by deforming the membrane oscillating the weight in the out-of-plane direction. The polysilicon film was fractured by fatigue damage accumulation under cyclic stress. The lifetime of the polysilicon membrane extended with lower relative humidity, especially at 5%RH. The results of the fatigue tests were well formulated with Weibull's statistics and Paris’ law. The dependence of fatigue characteristics on humidity has been quantitatively revealed for the first time. The crack growth rate indicated by the fatigue index decreased with the reduction in humidity, whereas the deviation of strength represented by the Weibull modulus was nearly constant against humidity. (paper)

  4. Spray Pyrolyzed Polycrystalline Tin Oxide Thin Film as Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    Ganesh E. Patil

    2010-09-01

    Full Text Available Polycrystalline tin oxide (SnO2 thin film was prepared by using simple and inexpensive spray pyrolysis technique (SPT. The film was characterized for their phase and morphology by X-ray diffraction (XRD and scanning electron microscopy (SEM, respectively. The crystallite size calculated from the XRD pattern is 84 nm. Conductance responses of the polycrystalline SnO2 were measured towards gases like hydrogen (H2, liquefied petroleum gas (LPG, ethanol vapors (C2H5OH, NH3, CO, CO2, Cl2 and O2. The gas sensing characteristics were obtained by measuring the sensor response as a function of various controlling factors like operating temperature, operating voltages (1 V, 5 V, 10 V 15 V, 20 V and 25 V and concentration of gases. The sensor response measurement showed that the SnO2 has maximum response to hydrogen. Furthermore; the SnO2 based sensor exhibited fast response and good recovery towards hydrogen at temperature 150 oC. The result of response towards H2 reveals that SnO2 thin film prepared by SPT would be a suitable material for the fabrication of the hydrogen sensor.

  5. Stress evaluation of chemical vapor deposited silicon dioxide films

    International Nuclear Information System (INIS)

    Maeda, Masahiko; Itsumi, Manabu

    2002-01-01

    Film stress of chemical vapor deposited silicon dioxide films was evaluated. All of the deposited films show tensile intrinsic stresses. Oxygen partial pressure dependence of the intrinsic stress is very close to that of deposition rate. The intrinsic stress increases with increasing the deposition rate under the same deposition temperature, and decreases with increasing substrate temperature. Electron spin resonance (ESR) active defects in the films were observed when the films were deposited at 380 deg. C and 450 deg. C. The ESR signal intensity decreases drastically with increasing deposition temperature. The intrinsic stress correlates very closely to the intensity of the ESR-active defects, that is, the films with larger intrinsic stress have larger ESR-active defects. It is considered that the intrinsic stress was generated because the voids caused by local bond disorder were formed during random network formation among the SiO 4 tetrahedra. This local bond disorder also causes the ESR-active defects

  6. Hydrogenated TiO{sub 2} film for enhancing photovoltaic properties of solar cells and self-sensitized effect

    Energy Technology Data Exchange (ETDEWEB)

    He, Hongcai; Yang, Kui; Wang, Ning, E-mail: ning-wang@uestc.edu.cn; Luo, Feifei; Chen, Haijun [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2013-12-07

    Hydrogenated TiO{sub 2} film was obtained by annealing TiO{sub 2} film at 350 °C for 2 h with hydrogen, and TiO{sub 2} films were prepared by screen printing on fluorine-doped tin oxide glass. Structural characterization by X-ray diffraction and electron microscopy did not show obvious difference between hydrogenated TiO{sub 2} film and pristine TiO{sub 2} film. Through optical and electrochemical characterization, the hydrogenated TiO{sub 2} film showed enhanced absorption and narrowed band gap, as well as reduced TiO{sub 2} surface impedance and dark current. As a result, an obviously enhanced photovoltaic effect was observed in the solar cell with hydrogenated TiO{sub 2} as photoanode without adding any dye due to the self-sensitized effect of hydrogenated TiO{sub 2} film, which excited electrons injecting internal conduction band of TiO{sub 2} to generate more photocurrent.

  7. The effect of hydrogen absorption on the electrical resistivities of SmCo5 and LaNi5 films

    International Nuclear Information System (INIS)

    Sakaguchi, H.; Nagai, H.; Adachi, G.; Shiokawa, J.

    1985-01-01

    Many studies have been carried out to clarify the absorption mechanism of hydrogen with a bulk of hexagonal CaCu 5 -type intermetallic compounds, such as LaNi 5 . The studies on films, however, have been scarcely carried out because of the difficulty in preparing an intermetallic compound film owing to the difference in the vapour pressure of the component metals. Some homogeneous LaNi 5 films were obtained by the authors using the technique of flash evaporation. Then it was found that they do not pulverize during the hydrogen absorption-desorption cycle. Therefore, it has been possible to measure the electrical resistivity using such films. The objects of our study were to reveal the mechanism of hydrogen absorption through the electrical property, and to apply the film to the functional materials, for instance, a hydrogen separation film. The hydrogen separation was attempted by the authors using the LaNi 5 film. A SmCo 5 film was a suitable candidate because the mass of hydrogen contained in this film should be smaller than that in the LaNi 5 film. In this paper we present a study on the properties of SmCo 5 films under a hydrogen atmosphere, as well as on LaNi 5 films. (author)

  8. Hydrogen loss and its improved retention in hydrogen plasma treated a-SiNx:H films: ERDA study with 100 MeV Ag7+ ions

    Science.gov (United States)

    Bommali, R. K.; Ghosh, S.; Khan, S. A.; Srivastava, P.

    2018-05-01

    Hydrogen loss from a-SiNx:H films under irradiation with 100 MeV Ag7+ ions using elastic recoil detection analysis (ERDA) experiment is reported. The results are explained under the basic assumptions of the molecular recombination model. The ERDA hydrogen concentration profiles are composed of two distinct hydrogen desorption processes, limited by rapid molecular diffusion in the initial stages of irradiation, and as the fluence progresses a slow process limited by diffusion of atomic hydrogen takes over. Which of the aforesaid processes dominates, is determined by the continuously evolving Hydrogen concentration within the films. The first process dominates when the H content is high, and as the H concentration falls below a certain threshold (Hcritical) the irradiation generated H radicals have to diffuse through larger distances before recombining to form H2, thereby significantly bringing down the hydrogen evolution rate. The ERDA measurements were also carried out for films treated with low temperature (300 °C) hydrogen plasma annealing (HPA). The HPA treated films show a clear increase in Hcritical value, thus indicating an improved diffusion of atomic hydrogen, resulting from healing of weak bonds and passivation of dangling bonds. Further, upon HPA films show a significantly higher H concentration relative to the as-deposited films, at advanced fluences. These results indicate the potential of HPA towards improved H retention in a-SiNx:H films. The study distinguishes clearly the presence of two diffusion processes in a-SiNx:H whose diffusion rates differ by an order of magnitude, with atomic hydrogen not being able to diffuse further beyond ∼ 1 nm from the point of its creation.

  9. Effect of the stoichiometry of Si-rich silicon nitride thin films on their photoluminescence and structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Torchynska, T.V., E-mail: ttorch@esfm.ipn.mx [ESFM—Instituto Politecnico Nacional, Mexico DF 07738 (Mexico); Casas Espinola, J.L. [ESFM—Instituto Politecnico Nacional, Mexico DF 07738 (Mexico); Vergara Hernandez, E. [UPIITA—Instituto Politecnico Nacional, Mexico DF 07320 (Mexico); Khomenkova, L., E-mail: khomen@ukr.net [V. Lashkaryov Institute of Semiconductor Physics, 45 Pr. Nauky, 03028 Kyiv (Ukraine); Delachat, F.; Slaoui, A. [ICube, 23 rue du Loess, BP 20 CR, 67037 Strasbourg Cedex 2 (France)

    2015-04-30

    Si-rich Silicon nitride films were grown on silicon substrates by plasma enhanced chemical vapor deposition. The film stoichiometry was controlled via the variation of NH{sub 3}/SiH{sub 4} ratio from 0.45 up to 1.0. Thermal annealing at 1100 °C for 30 min in the nitrogen flow was applied to form the Si nanocrystals in the films that have been investigated by means of photoluminescence and Raman scattering methods, as well as transmission electron microscopy. Several emission bands have been detected with the peak positions at: 2.8–3.0 eV, 2.5–2.7 eV, 2.10–2.25 eV, and 1.75–1.98 eV. The temperature dependences of photoluminescence spectra were studied with the aim to confirm the types of optical transitions and the nature of light emitting defects in silicon nitride. The former three bands were assigned to the defects in silicon nitride, whereas the last one (1.75–1.98 eV) was attributed to the exciton recombination inside of Si nanocrystals. The photoluminescence mechanism is discussed. - Highlights: • Substoichiometric silicon nitride films were grown by PECVD technique. • The variation of the NH{sub 3}/SiH{sub 4} ratio controls excess Si content in the films. • Both Si nanocrystals and amorphous Si phase were observed in annealed films. • Temperature evolution of carrier recombination via Si nanocrystals and host defects.

  10. Atomic scale simulations of hydrogen implantation defects in hydrogen implanted silicon - smart Cut technology

    International Nuclear Information System (INIS)

    Bilteanu, L.

    2010-12-01

    The topic of this thesis is related to the implantation step of the SmartCut TM technology. This technology uses hydrogen in order to transfer silicon layers on insulating substrates. The transfer is performed through a fracture induced by the formation of bidimensional defects well known in literature as 'platelets'. More exactly, we have studied within this thesis work the defects appearing in the post implant state and the evolution of the implantation damage towards a state dominated by platelets. The study is organised into two parts: in the first part we present the results obtained by atomic scale simulations while in the second part we present an infrared spectroscopy study of the evolution of defects concentrations after annealing at different temperatures. The atomic scale simulations have been performed within the density functional theory and they allowed us to compute the formation energies and the migration and recombination barriers. The defects included in our study are: the atomic and diatomic interstitials, the hydrogenated vacancies and multi-vacancies and the several platelets models. The obtained energies allowed us to build a stability hierarchy for these types of defects. This scheme has been confronted with some infrared analysis on hydrogen implanted silicon samples (37 keV) in a sub-dose regime which does not allow usually the formation of platelets during the implantation step. The analysis of the infrared data allowed the detailed description of the defects concentration based on the behaviour of peaks corresponding to the respective defects during annealing. The comparison between these evolutions and the energy scheme obtained previously allowed the validation of an evolution scenario of defects towards the platelet state. (author)

  11. Structural and optical properties of ZnO films grown on silicon and ...

    Indian Academy of Sciences (India)

    TECS

    Abstract. Photoluminescence (PL) properties of undoped ZnO thin films grown by rf magnetron sputtering on silicon .... voluted O1 s and (c) typical Zr 3d spectra of ZrO2/ZnO/Si film. .... strate doping concentration (NB) of ≈ 2⋅5 × 1015 cm–3 is.

  12. Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides.

    Science.gov (United States)

    Wang, Ke-Yao; Foster, Amy C

    2012-04-15

    We demonstrate wavelength conversion through nonlinear parametric processes in hydrogenated amorphous silicon (a-Si:H) with maximum conversion efficiency of -13 dB at telecommunication data rates (10 GHz) using only 15 mW of pump peak power. Conversion bandwidths as large as 150 nm (20 THz) are measured in continuous-wave regime at telecommunication wavelengths. The nonlinear refractive index of the material is determined by four-wave mixing (FWM) to be n(2)=7.43×10(-13) cm(2)/W, approximately an order of magnitude larger than that of single crystal silicon. © 2012 Optical Society of America

  13. Electrochemical preparation of hematite nanostructured films for solar hydrogen production

    Directory of Open Access Journals (Sweden)

    Ebadzadeh T.

    2012-10-01

    Full Text Available Photoelectrochemical water splitting is a clean and promising technique for using a renewable source of energy, i.e., solar energy, to produce hydrogen. In this work electrochemical formation of iron oxyhydroxide and its conversion to hematite (α- Fe2O3 through thermal treatment have been studied. Oxyhydroxide iron compounds have been prepared onto SnO2/F covered glass substrate by potential cycling with two different potential sweep rate values; then calcined at 520 °C in air to obtain α-Fe2O3 nanostrutured films for their implementation as photoanode in a photoelectrochemical cell. X-ray diffraction analysis allowed finding that iron oxides films have nanocrystalline character. Scanning electron microscopy revealed that films have nanostructured morphology. The obtained results are discussed considering the influence of potential sweep rate employed during the preparation of iron oxyhydroxide film on optical, structural and morphological properties of hematite nanostructured films. Results show that films have acceptable characteristics as photoanode in a photoelectrochemical cell for hydrogen generation from water.

  14. Spectra of fast neutrons using a lithiated glass film on silicon

    International Nuclear Information System (INIS)

    Wallace, Steven; Stephan, Andrew C.; Womble, Phillip C.; Begtrup, Gavi; Dai Sheng

    2003-01-01

    Experimental results of a neutron detector manufactured by coating a silicon charged particle detector with a film of lithiated glass are presented. The silicon surface barrier detector (SBD) responds to the 6 Li(n, alpha)triton reaction products generated in the thin film of lithiated glass entering the SBD. Neutron spectral information is present in the pulse height spectrum. An energy response is seen that clearly shows that neutrons from a Pu-Be source and from a deuterium-tritium (D-T) pulsed neutron generator can be differentiated and counted above a gamma background. The significant result is that the fissile content within a container can be measured using a pulsed D-T neutron generator using the neutrons that are counted in the interval between the pulses

  15. Bovine serum albumin adsorption on passivated porous silicon layers

    Science.gov (United States)

    Lockwood, David; Boukherroub, Rabah

    2005-03-01

    Hydrogen-terminated porous silicon (pSi) films were fabricated through electrochemical anodization of crystalline Si in HF-based solutions. The pSi-H surface was chemically functionalized by thermal reaction with undecylenic acid to produce an organic monolayer covalently attached to the silicon surface through Si-C bonds and bearing an acid terminal group. Bovine serum albumin (BSA) was then adsorbed onto the modified surface. SEM showed that the porous films were damaged and partially lifted off the Si substrate after a prolonged BSA adsorption. Ellipsometry revealed that the BSA had penetrated ˜ 1.3 micrometers into the porous structure. The film damage results from BSA anchoring itself tightly through strong electrostatic interactions to the acid-covered Si sidewalls. A change in surface tension during BSA film formation then causes the pSi layer to buckle and lift-off the underlying Si substrate. FTIR results from the modified pSi surfaces showed the presence of strong characteristic Amide I, II and III vibrational bands after BSA adsorption.

  16. Formation of a Polycrystalline Silicon Thin Film by Using Blue Laser Diode Annealing

    Science.gov (United States)

    Choi, Young-Hwan; Ryu, Han-Youl

    2018-04-01

    We report the crystallization of an amorphous silicon thin film deposited on a SiO2/Si wafer using an annealing process with a high-power blue laser diode (LD). The laser annealing process was performed using a continuous-wave blue LD of 450 nm in wavelength with varying laser output power in a nitrogen atmosphere. The crystallinity of the annealed poly-silicon films was investigated using ellipsometry, electron microscope observation, X-ray diffraction, and Raman spectroscopy. Polysilicon grains with > 100-nm diameter were observed to be formed after the blue LD annealing. The crystal quality was found to be improved as the laser power was increased up to 4 W. The demonstrated blue LD annealing is expected to provide a low-cost and versatile solution for lowtemperature poly-silicon processes.

  17. Very high-cycle fatigue failure in micron-scale polycrystalline silicon films : Effects of environment and surface oxide thickness

    NARCIS (Netherlands)

    Alsem, D. H.; Boyce, B. L.; Stach, E. A.; De Hosson, J. Th. M.; Ritchie, R. O.

    2007-01-01

    Fatigue failure in micron-scale polycrystalline silicon structural films, a phenomenon that is not observed in bulk silicon, can severely impact the durability and reliability of microelectromechanical system devices. Despite several studies on the very high-cycle fatigue behavior of these films (up

  18. Hydrogen termination of CVD diamond films by high-temperature annealing at atmospheric pressure

    NARCIS (Netherlands)

    Seshan, V.; Ullien, D.; Castellanos-Gomez, A.; Sachdeva, S.; Murthy, D.H.K.; Savenije, T.J.; Ahmad, H.A.; Nunney, T.S.; Janssens, S.D.; Haenen, K.; Nesládek, M.; Van der Zant, H.S.J.; Sudhölter, E.J.R.; De Smet, L.C.P.M.

    2013-01-01

    A high-temperature procedure to hydrogenate diamond films using molecular hydrogen at atmospheric pressure was explored. Undoped and doped chemical vapour deposited (CVD) polycrystalline diamond films were treated according to our annealing method using a H2 gas flow down to ?50 ml/min (STP) at

  19. Studies of hydrogen incorporation in hydrogenated amorphous carbon films by infrared absorption spectroscopy

    International Nuclear Information System (INIS)

    Alameh, R.; Bounouh, Y.; Sadki, A.; Naud, C.; Theye, M.L.

    1997-01-01

    Author.Hydrogenated amorphous carbon (a-C:H) films presently attract considerable interest because of their potential applications in the domain of multifunctional coatings: transparent in the infrared, very hard, chemically inert, etc...This material is rather complex since it contains C atoms in both sp 3 (diamond) and sp 2 (graphite) electronic configurations, as well as a large concentration of H atoms. Its properties are strongly dependent on the deposition conditions which determine the film microstructure, i.e. the relative proportions of sp 3 and sp 2 C sites, their connection in the network and the hydrogen bonding modes. It has been suggested that the sp 2 C sites tend to cluster into unsaturated chains ans rings, which are then embedded in the sp 3 C sites m atrix . Hydrogen incorporation plays a crucial role in this intrinsic microheterogeneity, which determines the electronic properties, and especially the gap value, of a-C:H. We here present and discuss the results of Fourrier transform infrared absorption spectroscopy measurements performed on a-C:H films prepared under different conditions and submitted to controlled annealing cycles, which exhibit quite different optical gap values (from 1 to 2.5 eV). We carefully analyze the absorption bands detected in the 400-7500 cm -1 spectral range in terms of the vibration modes of C-H and C-C bonds in different local environments and we interpret the results in relation with the film microstructure and optical properties. Special attention is also paid to the absorption background and to the variations of the whole absorption spectra with measurement temperature

  20. Nickel silicide thin films as masking and structural layers for silicon bulk micro-machining by potassium hydroxide wet etching

    International Nuclear Information System (INIS)

    Bhaskaran, M; Sriram, S; Sim, L W

    2008-01-01

    This paper studies the feasibility of using titanium and nickel silicide thin films as mask materials for silicon bulk micro-machining. Thin films of nickel silicide were found to be more resistant to wet etching in potassium hydroxide. The use of nickel silicide as a structural material, by fabricating micro-beams of varying dimensions, is demonstrated. The micro-structures were realized using these thin films with wet etching using potassium hydroxide solution on (1 0 0) and (1 1 0) silicon substrates. These results show that nickel silicide is a suitable alternative to silicon nitride for silicon bulk micro-machining

  1. Development of thin-film Si HYBRID solar module

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Akihiko; Gotoh, Masahiro; Sawada, Toru; Fukuda, Susumu; Yoshimi, Masashi; Yamamoto, Kenji; Nomura, Takuji [Kaneka Corporation, 2-1-1, Hieitsuji, Otsu, Shiga 520-0104 (Japan)

    2009-06-15

    The device current-voltage (I-V) characteristics of thin-film silicon stacked tandem solar modules (HYBRID modules), consisting of a hydrogenated amorphous silicon (a-Si:H) cell and a thin-film crystalline silicon solar cell ({mu}c-Si), have been investigated under various spectral irradiance distributions. The performance of the HYBRID module varied periodically in natural sunlight due to the current-limiting property of the HYBRID module and the environmental effects. The behavior based on the current-limiting property was demonstrated by the modelling of the I-V curves using the linear interpolation method for each component cell. The improvement of the performance for the HYBRID module in natural sunlight will also be discussed from the viewpoint of the device design of the component cells. (author)

  2. Deposition of controllable preferred orientation silicon films on glass by inductively coupled plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Li Junshuai; Wang Jinxiao; Yin Min; Gao Pingqi; He Deyan; Chen Qiang; Li Yali; Shirai, Hajime

    2008-01-01

    An inductively coupled plasma (ICP) system with the adjustable distance between the inductance coil and substrates was designed to effectively utilize the spatial confinement of ICP discharge, and then control the gas-phase transport process. The effects of the gas phase processes on the crystallinity and preferred orientation of silicon films deposited on glass were systematically investigated. The investigation was conducted in the ICP-chemical vapor deposition process with the precursor gas of a SiH 4 /H 2 mixture at a substrate temperature of 350 deg. Highly crystallized silicon films with different preferred orientations, (111) or (220), could be selectively deposited by adjusting the SiH 4 dilution ratio [R=[SiH 4 ]/([SiH 4 ]+[H 2 ])] or total working pressure. When the total working pressure is 20 Pa, the crystallinity of the silicon films increases with the increase of the SiH 4 dilution ratio, while the preferred orientation was changed from (111) to (220). In the case of the fixed SiH 4 dilution (10%), the silicon film with I (220) /I (111) of about 3.5 and Raman crystalline fraction of about 89.6% has been deposited at 29.7 nm/min when the total working pressure was increased to 40 Pa. At the fixed SiH 4 partial pressure of 2 Pa, the film crystallinity decreases and the preferred orientation is always (111) with increasing the H 2 partial pressure from 18 to 58 Pa. Atomic force microscope reveals that the film deposited at a relatively high H 2 partial pressure has a very rough surface caused by the devastating etching of H atoms to the silicon network

  3. Piezoresistive pressure sensor using low-temperature aluminium induced crystallization of sputter-deposited amorphous silicon film

    International Nuclear Information System (INIS)

    Tiwari, Ruchi; Chandra, Sudhir

    2013-01-01

    In the present work, we have investigated the piezoresistive properties of silicon films prepared by the radio frequency magnetron sputtering technique, followed by the aluminium induced crystallization (AIC) process. Orientation and grain size of the polysilicon films were studied by x-ray diffraction analysis and found to be in the range 30–50 nm. Annealing of the Al–Si stack on an oxidized silicon substrate was performed in air ambient at 300–550 °C, resulting in layer exchange and transformation from amorphous to polysilicon phase. Van der Pauw and Hall measurement techniques were used to investigate the sheet resistance and carrier mobility of the resulting polycrystalline silicon film. The effect of Al thickness on the sheet resistance and mobility was also studied in the present work. A piezoresistive pressure sensor was fabricated on an oxidized silicon substrate in a Wheatstone bridge configuration, comprising of four piezoresistors made of polysilicon film obtained by the AIC process. The diaphragm was formed by the bulk-micromachining of silicon substrate. The response of the pressure sensor with applied negative pressure in 10–95 kPa range was studied. The gauge factor was estimated to be 5 and 18 for differently located piezoresistors on the diaphragm. The sensitivity of the pressure sensor was measured to be ∼ 30 mV MPa −1 , when the Wheatstone bridge was biased at 1 V input voltage. (paper)

  4. Silicon nanowires in polymer nanocomposites for photovoltaic hybrid thin films

    International Nuclear Information System (INIS)

    Ben Dkhil, S.; Bourguiga, R.; Davenas, J.; Cornu, D.

    2012-01-01

    Highlights: ► Hybrid solar cells based on blends of poly(N-vinylcarbazole) and silicon nanowires have been fabricated. ► We have investigated the charge transfer between PVK and SiNWs by the way of the quenching of the PVK photoluminescence. ► The relation between the morphology of the composite thin films and the charge transfer between SiNWs and PVK has been examined. ► We have investigated the effects of SiNWs concentration on the photovoltaic characteristics leading to the optimization of a critical SiNWs concentration. - Abstract: Hybrid thin films combining the high optical absorption of a semiconducting polymer film and the electronic properties of silicon fillers have been investigated in the perspective of the development of low cost solar cells. Bulk heterojunction photovoltaic materials based on blends of a semiconductor polymer poly(N-vinylcarbazole) (PVK) as electron donor and silicon nanowires (SiNWs) as electron acceptor have been studied. Composite PVK/SiNWs films were cast from a common solvent mixture. UV–visible spectrometry and photoluminescence of the composites have been studied as a function of the SiNWs concentration. Photoluminescence spectroscopy (PL) shows the existence of a critical SiNWs concentration of about 10 wt % for PL quenching corresponding to the most efficient charge pair separation. The photovoltaic (PV) effect has been studied under illumination. The optimum open-circuit voltage V oc and short-circuit current density J sc are obtained for 10 wt % SiNWs whereas a degradation of these parameters is observed at higher SiNWs concentrations. These results are correlated to the formation of aggregates in the composite leading to recombination of the photogenerated charge pairs competing with the dissociation mechanism.

  5. Novel Cyclosilazane-Type Silicon Precursor and Two-Step Plasma for Plasma-Enhanced Atomic Layer Deposition of Silicon Nitride.

    Science.gov (United States)

    Park, Jae-Min; Jang, Se Jin; Lee, Sang-Ick; Lee, Won-Jun

    2018-03-14

    We designed cyclosilazane-type silicon precursors and proposed a three-step plasma-enhanced atomic layer deposition (PEALD) process to prepare silicon nitride films with high quality and excellent step coverage. The cyclosilazane-type precursor, 1,3-di-isopropylamino-2,4-dimethylcyclosilazane (CSN-2), has a closed ring structure for good thermal stability and high reactivity. CSN-2 showed thermal stability up to 450 °C and a sufficient vapor pressure of 4 Torr at 60 °C. The energy for the chemisorption of CSN-2 on the undercoordinated silicon nitride surface as calculated by density functional theory method was -7.38 eV. The PEALD process window was between 200 and 500 °C, with a growth rate of 0.43 Å/cycle. The best film quality was obtained at 500 °C, with hydrogen impurity of ∼7 atom %, oxygen impurity less than 2 atom %, low wet etching rate, and excellent step coverage of ∼95%. At 300 °C and lower temperatures, the wet etching rate was high especially at the lower sidewall of the trench pattern. We introduced the three-step PEALD process to improve the film quality and the step coverage on the lower sidewall. The sequence of the three-step PEALD process consists of the CSN-2 feeding step, the NH 3 /N 2 plasma step, and the N 2 plasma step. The H radicals in NH 3 /N 2 plasma efficiently remove the ligands from the precursor, and the N 2 plasma after the NH 3 plasma removes the surface hydrogen atoms to activate the adsorption of the precursor. The films deposited at 300 °C using the novel precursor and the three-step PEALD process showed a significantly improved step coverage of ∼95% and an excellent wet etching resistance at the lower sidewall, which is only twice as high as that of the blanket film prepared by low-pressure chemical vapor deposition.

  6. The Refractive Index Measurement Of Silicon Dioxide Thin Film by the Coupling Prism Method

    International Nuclear Information System (INIS)

    Budianto, Anwar; Hariyanto, Sigit; Subarkah

    1996-01-01

    Refractive index of silicon dioxide thin film that doped with phosphor (SiO 2 :P) above the pure silicon dioxide substrate has been measured by light coupling prism method. The method principle is focusing the light on coupling prism base so that the light propagates into the waveguide layer while the reflected one forms a mode in the observation plane. The SiO 2 thin film as waveguide layer has a refractive index that give the thick and refractive index relation. The He-Ne laser as light source has the wavelength λ 0,6328 μm. The refractive index measurement of the thin film with the substrate refractive index n sb = 1,47 and the thin film thick d = 2μm gives n g = 1,5534 ± 0,01136. This method can distinguish the refractive index of thin film about 6% to the refractive index of substrate

  7. Application of CBD-Zinc Sulfide Film as an Antireflection Coating on Very Large Area Multicrystalline Silicon Solar Cell

    Directory of Open Access Journals (Sweden)

    U. Gangopadhyay

    2007-01-01

    Full Text Available The low-cost chemical bath deposition (CBD technique is used to prepare CBD-ZnS films as antireflective (AR coating for multicrystalline silicon solar cells. The uniformity of CBD-ZnS film on large area of textured multicrystalline silicon surface is the major challenge of CBD technique. In the present work, attempts have been made for the first time to improve the rate of deposition and uniformity of deposited film by controlling film stoichiometry and refractive index and also to minimize reflection loss by proper optimization of molar percentage of different chemical constituents and deposition conditions. Reasonable values of film deposition rate (12.13 Å′/min., good film uniformity (standard deviation <1, and refractive index (2.35 along with a low percentage of average reflection (6-7% on a textured mc-Si surface are achieved with proper optimization of ZnS bath. 12.24% efficiency on large area (125 mm × 125 mm multicrystalline silicon solar cells with CBD-ZnS antireflection coating has been successfully fabricated. The viability of low-cost CBD-ZnS antireflection coating on large area multicrystalline silicon solar cell in the industrial production level is emphasized.

  8. Deposition of silicon oxynitride films by low energy ion beam assisted nitridation at room temperature

    Science.gov (United States)

    Youroukov, S.; Kitova, S.; Danev, G.

    2008-05-01

    The possibility is studied of growing thin silicon oxynitride films by e-gun evaporation of SiO and SiO2 together with concurrent bombardment with low energy N2+ ions from a cyclotron resonance (ECR) source at room temperature of substrates. The degree of nitridation and oxidation of the films is investigated by means of X-ray spectroscopy. The optical characteristics of the films, their environmental stability and adhesion to different substrates are examined. The results obtained show than the films deposited are transparent. It is found that in the case of SiO evaporation with concurrent N2+ ion bombardment, reactive implantation of nitrogen within the films takes place at room temperature of the substrate with the formation of a new silicon oxynitride compound even at low ion energy (150-200 eV).

  9. Formation of aluminum films on silicon by ion beam deposition: a comparison with ionized cluster beam deposition

    International Nuclear Information System (INIS)

    Zuhr, R.A.; Haynes, T.E.; Galloway, M.D.; Tanaka, S.; Yamada, A.; Yamada, I.

    1991-01-01

    The direct ion beam deposition (IBD) technique has been used to study the formation of oriented aluminum films on single crystal silicon substrates. In the IBD process, thin film growth is accomplished by decelerating a magnetically analyzed ion beam to low energies (10-200 eV) for direct deposition onto the substrate under UHV conditions. The aluminum-on-silicon system is one which has been studied extensively by ionized cluster beam (ICB) deposition. This technique has produced intriguing results for aluminum, with oriented crystalline films being formed at room temperature in spite of the 25% mismatch in lattice constant between aluminum and silicon. In this work, we have studied the formation of such films by IBD, with emphasis on the effects of ion energy, substrate temperature, and surface cleanliness. Oriented films have been grown on Si(111) at temperatures from 40 to 300degC and with ion energies of 30-120 eV per ion. Completed films were analyzed by ion scattering, X-ray diffraction, scanning-electron microscopy, and optical microscopy. Results achieved for thin films grown by IBD are comparable to those for similar films grown by ICB deposition. (orig.)

  10. Bright luminance from silicon dioxide film with carbon nanotube electron beam exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su Woong; Hong, Ji Hwan; Kang, Jung Su; Callixte, Shikili; Park, Kyu Chang, E-mail: kyupark@khu.ac.kr

    2016-02-15

    We observed the bright bluish-white luminescence with naked eye from carbon nanotube electron beam exposed silicon dioxide (SiO{sub 2}) thin film on Si substrate. The luminescence shows a peak intensity at 2.7 eV (460 nm) with wide spread up to 600 nm after the C-beam exposed on SiO{sub 2} thin film. The C-beam exposure system is composed of carbon nanotube emitters as electron beam source. The brightness strongly depend on the exposure condition. Luminescence characteristic was optimized by C-beam adjustment to observe with the naked eye. The cause of luminescence in the C-beam exposed SiO{sub 2} thin film is analyzed by CL microscopy, FT-IR, AFM and ellipsometer. Decrease of Si–O bonding was observed after C-beam exposure, and this reveals that oxygen deficient defects which are irradiation-sensitive cause 2.7 eV peak of luminescence. - Highlights: • We observed bright luminescence for SiO{sub 2} thin film with naked eye by carbon nanotube electron beam (C-beam) exposure technique. • The bright luminance from C-beam exposed SiO{sub 2} film will open novel silicon optoelectronics.

  11. Transparent sculptured titania films for enhanced light absorption in thin-film Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Kai-Hsiang, E-mail: khhung@itri.org.tw [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan (China); Chiou, Guan-Di; Wong, Ming-Show [Department of Materials Science and Engineering, National Dong Hwa University, Hualien, Taiwan (China); Wang, Yu-Chih [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan (China); Chung, I-Shan [Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan (China)

    2011-12-30

    This study presents a description of the enhancement of light absorption in thin-film silicon (Si) solar cells by using sculptured titania (TiO{sub 2}) films. We used an electron-beam evaporation system with a glancing angle deposition (GLAD) method to deposit porous TiO{sub 2} films on fluorine-doped SnO{sub 2} (FTO) substrates. The GLAD TiO{sub 2}/FTO films were used as conductive electrodes in hydrogenated microcrystalline silicon ({mu}c-Si:H) solar cells. Transmission electron microscopy revealed that the GLAD TiO{sub 2} films are composed of sculptured nano-pillars on an FTO surface, and this nanostructure provides a synergistic route for light scattering enhancement. The GLAD TiO{sub 2}/FTO exhibited a 68% improvement of optical haze (at {lambda} = 600 nm). The {mu}c-Si:H solar cells consisting of the GLAD-nanostructured TiO{sub 2} resulted in a 5% improvement of short-circuit current (J{sub sc}) and yielded a cell efficiency of 6.6%.

  12. A clean measurement of the hydrogen retardation of the rate of solid phase epitaxy in silicon

    International Nuclear Information System (INIS)

    Liu, A.C.Y.; McCallum, J.C.

    1999-01-01

    The rate retarding effects of the impurity hydrogen on solid phase epitaxy (SPE) in silicon have yet to be completely understood. Existing measurements of this behaviour do not coincide exactly, however, several features have attained prominence. Firstly, a linear decrease in the SPE rate is detected up until a certain concentration of hydrogen. Subsequent to this point the rate remains almost constant at around half the intrinsic rate. It is conjectured that the hydrogen bonds to and passivates the defects whose agency enables the incorporation of atoms from the amorphous phase to the crystalline. This rate reduction increases until the defect population is saturated. At this point the reduction in rate ceases. Secondly, a dependence on temperature has not been consolidated, in contrast with the trends observed with the doping species. Here a method is proposed for producing a controlled concentration of hydrogen for the advancing amorphous/crystalline interface to encounter during epitaxy. A bubble layer is formed in crystalline silicon approximately 0.6μm beneath the surface through the implantation of hydrogen at 65 keV with fluences of 4 x 10 16 /cm 2 and 3 x 10 16 /cm 2 and annealing for 1 hour at 850 deg C in dry argon. The anneal doesn't out gas all the introduced hydrogen, leaving a remnant gas pressure in the bubbles. The hydrogen implants at the two fluences should yield two samples with different amounts of hydrogen trapped in the bubbles. A buried amorphous layer is created to encompass the bubble layer containing this residual contaminant through silicon self implantation at appropriate energies and fluences. The progress of the front interface of the buried amorphous layer is monitored by time resolved reflectivity (TRR) as SPE is effected at various temperatures

  13. Improved amorphous/crystalline silicon interface passivation for heterojunction solar cells by low-temperature chemical vapor deposition and post-annealing treatment.

    Science.gov (United States)

    Wang, Fengyou; Zhang, Xiaodan; Wang, Liguo; Jiang, Yuanjian; Wei, Changchun; Xu, Shengzhi; Zhao, Ying

    2014-10-07

    In this study, hydrogenated amorphous silicon (a-Si:H) thin films are deposited using a radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) system. The Si-H configuration of the a-Si:H/c-Si interface is regulated by optimizing the deposition temperature and post-annealing duration to improve the minority carrier lifetime (τeff) of a commercial Czochralski (Cz) silicon wafer. The mechanism of this improvement involves saturation of the microstructural defects with hydrogen evolved within the a-Si:H films due to the transformation from SiH2 into SiH during the annealing process. The post-annealing temperature is controlled to ∼180 °C so that silicon heterojunction solar cells (SHJ) could be prepared without an additional annealing step. To achieve better performance of the SHJ solar cells, we also optimize the thickness of the a-Si:H passivation layer. Finally, complete SHJ solar cells are fabricated using different temperatures for the a-Si:H film deposition to study the influence of the deposition temperature on the solar cell parameters. For the optimized a-Si:H deposition conditions, an efficiency of 18.41% is achieved on a textured Cz silicon wafer.

  14. Extended defects and hydrogen interactions in ion implanted silicon

    Science.gov (United States)

    Rangan, Sanjay

    The structural and electrical properties of extended defects generated because of ion implantation and the interaction of hydrogen with these defects have been studied in this work. Two distinct themes have been studied, the first where defects are a detrimental and the second where they are useful. In the first scenario, transient enhanced diffusion of boron has been studied and correlated with defect evolution studies due to silicon and argon ion implants. Spreading resistance profiles (SRP) correlated with deep level transient spectroscopy (DLTS) measurements, reveal that a low anneal temperatures (TED at low anneal temperatures (550°C, the effect of hydrogen is lost, due to its out-diffusion. Moreover, due to catastrophic out-diffusion of hydrogen, additional damage is created resulting in deeper junctions in hydrogenated samples, compared to the non-hydrogenated ones. Comparing defect evolution due to Si and Ar ion implants at different anneal temperatures, while the type of defects is the same in the two cases, their (defect) dissolution occurs at lower anneal temperatures (˜850°C) for Si implants. Dissolution for Ar implants seems to occur at higher anneal temperatures. The difference has been attributed to the increased number of vacancies created by Ar to that of silicon implant. In second aspect, nano-cavity formation due to vacancy agglomeration has been studied by helium ion implantation and furnace anneal, where the effect of He dose, implant energy and anneal time have been processing parameters that have been varied. Cavities are formed only when the localized concentration of He is greater than 3 x 1020 cm-3. While at high implant doses, a continuous cavity layer is formed, at low implant doses a discontinuous layer is observed. The formation of cavities at low doses has been observed for the first time. Variation of anneal times reveal that cavities are initially facetted (for short anneal times) and tend to become spherical when annealed for

  15. Reliability assessment of ultra-thin HfO2 films deposited on silicon wafer

    International Nuclear Information System (INIS)

    Fu, Wei-En; Chang, Chia-Wei; Chang, Yong-Qing; Yao, Chih-Kai; Liao, Jiunn-Der

    2012-01-01

    Highlights: ► Nano-mechanical properties on annealed ultra-thin HfO 2 film are studied. ► By AFM analysis, hardness of the crystallized HfO 2 film significantly increases. ► By nano-indention, the film hardness increases with less contact stiffness. ► Quality assessment on the annealed ultra-thin films can thus be achieved. - Abstract: Ultra-thin hafnium dioxide (HfO 2 ) is used to replace silicon dioxide to meet the required transistor feature size in advanced semiconductor industry. The process integration compatibility and long-term reliability for the transistors depend on the mechanical performance of ultra-thin HfO 2 films. The criteria of reliability including wear resistance, thermal fatigue, and stress-driven failure rely on film adhesion significantly. The adhesion and variations in mechanical properties induced by thermal annealing of the ultra-thin HfO 2 films deposited on silicon wafers (HfO 2 /SiO 2 /Si) are not fully understood. In this work, the mechanical properties of an atomic layer deposited HfO 2 (nominal thickness ≈10 nm) on a silicon wafer were characterized by the diamond-coated tip of an atomic force microscope and compared with those of annealed samples. The results indicate that the annealing process leads to the formation of crystallized HfO 2 phases for the atomic layer deposited HfO 2 . The HfSi x O y complex formed at the interface between HfO 2 and SiO 2 /Si, where the thermal diffusion of Hf, Si, and O atoms occurred. The annealing process increases the surface hardness of crystallized HfO 2 film and therefore the resistance to nano-scratches. In addition, the annealing process significantly decreases the harmonic contact stiffness (or thereafter eliminate the stress at the interface) and increases the nano-hardness, as measured by vertically sensitive nano-indentation. Quality assessments on as-deposited and annealed HfO 2 films can be thereafter used to estimate the mechanical properties and adhesion of ultra-thin HfO 2

  16. Electrochemical and hydrothermal deposition of ZnO on silicon: from continuous films to nanocrystals

    International Nuclear Information System (INIS)

    Balucani, M.; Nenzi, P.; Chubenko, E.; Klyshko, A.; Bondarenko, V.

    2011-01-01

    This article presents the study of the electrochemical deposition of zinc oxide from the non-aqueous solution based on dimethyl sulfoxide and zinc chloride into the porous silicon matrix. The features of the deposition process depending on the thickness of the porous silicon layer are presented. It is shown that after deposition process the porous silicon matrix is filled with zinc oxide nanocrystals with a diameter of 10–50 nm. The electrochemically deposited zinc oxide layers on top of porous silicon are shown to have a crystalline structure. It is also shown that zinc oxide crystals formed by hydrothermal method on the surface of electrochemically deposited zinc oxide film demonstrate ultra-violet luminescence. The effect of the porous silicon layer thickness on the morphology of the zinc oxide is shown. The structures obtained demonstrated two luminescence bands peaking at the 375 and 600 nm wavelengths. Possible applications of ZnO nanostructures, porous and continuous polycrystalline ZnO films such as gas sensors, light-emitting diodes, photovoltaic devices, and nanopiezo energy generators are considered. Aspects of integration with conventional silicon technology are also discussed.

  17. Friction and wear of hydrogenated and hydrogen-free diamond-like carbon films: Relative humidity dependent character

    Science.gov (United States)

    Shi, Jing; Gong, Zhenbin; Wang, Yongfu; Gao, Kaixiong; Zhang, Junyan

    2017-11-01

    In this study, tribological properties of hydrogenated and hydrogen free diamond-like carbon films at various relative humidity (RH) were investigated to understand the friction mechanism in the presence of water molecules. At normal load of 2N, DLC-H film's friction coefficient was 0.06 at RH14% while DLC film's friction coefficient was 0.19 at RH17%. With the increase of RH, their friction coefficient converged to about 0.15. This character remained unaltered when the normal load was 5N. Results show that low friction of DLC-H film at low RH was attributed to the low shear force aroused by graphitic tribofilm at wear care center. However, the high friction of DLC film was mainly endowed by the high adhesive force aroused by σ dangling bonds. At high RH, solid-to-solid contact was isolated by water molecules confined between the counterfaces, where capillary was a dominant factor for friction. In addition to the capillary force, the absence of tribofilm was also accountable. These two factors lead to the level off of friction coefficient for DLC-H and DLC films. Moreover, for both DLC-H and DLC films, tribo-oxidization was proved to be closely related to wear rate with the assist of H2O molecules during sliding.

  18. Interaction of atomic hydrogen with ethylene adsorbed on nickel films

    International Nuclear Information System (INIS)

    Korchak, V.N.; Tret'yakov, I.I.; Kislyuk, M.U.

    1976-01-01

    The reactivity of ethylene adsorbed on the pure films of nickel at various temperatures was studied with respect to hydrogen atoms generated in the gaseous phase. The experiments were conducted in a glass vacuum apparatus enabling one to obtain the highest vacuum up to 2x20 -10 torr. The catalyst, nickel films, was produced by their deposition onto the walls of the glass reactor at a pressure of the residual gas of 10 -9 torr and a temperature of the walls of 25 deg C. Gas purity was analyzed by the mass spectrometric method. The ethylene adsorbed at the temperatures below 173 deg K reacted readily with the hydrogen atoms to yield ethane. The process ran without practically any activation energy involved and was limited by the attachment of the first hydrogen atom to the ethylene molecule. The efficiency of this interaction was 0.02 of the number of the hydrogen atoms collisions against the surface occupied by the ethylene. The adsorption of the ethylene at room and higher temperatures was accompanied by its disproportioning with the release of the hydrogen into the gaseous phase and a serious destruction of the ethylene molecules adsorbed to produce hydrogen residues interacting with neither molecular nor atomic hydrogen [ru

  19. Hydrogenation properties of pure magnesium and magnesium-aluminium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Domenech-Ferrer, Roger; Gurusamy Sridharan, Madana; Garcia, Gemma; Pi, Francesc; Rodriguez-Viejo, Javier [Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain)

    2007-06-10

    We have studied the hydrogenation/dehydrogenation behaviour of multilayered stacks of Pd/Mg/Pd and Pd-Fe(Ti)-Mg-Al-Mg-Fe(Ti)-Pd grown by electron beam physical vapour deposition. The palladium coating was deposited at both sides of the structure to ensure a fast dissociation rate and good transport properties for hydrogen as well as to avoid oxidation of magnesium either from atmosphere as from the substrate surface. Fe and Ti layers were included in the stack composition in order to assess their possible catalyst effect as well as to prevent the formation of Mg{sub x}Pd{sub y} intermetallics during the thermal treatments. We have studied the structure evolution after thermal treatments as well as after the hydrogenation and dehydrogenation processes using XRD. We have also followed the reactions kinetics by resistometry and differential scanning calorimetry. The nanostructured Mg films have been hydrogenated at temperature as low as 50 C in few minutes. Adding aluminium to magnesium has improved its hydrogenation capacity. We have also observed that the formation of an Mg{sub x}Al{sub y} intermetallic before hydrogenation improves the storage capacity. We have confirmed that titanium is a better catalyst for the hydrogenation/dehydrogenation of the Mg films. (author)

  20. Silicon oxynitride films deposited by reactive high power impulse magnetron sputtering using nitrous oxide as a single-source precursor

    Energy Technology Data Exchange (ETDEWEB)

    Hänninen, Tuomas, E-mail: tuoha@ifm.liu.se; Schmidt, Susann; Jensen, Jens; Hultman, Lars; Högberg, Hans [Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping SE-581 83 (Sweden)

    2015-09-15

    Silicon oxynitride thin films were synthesized by reactive high power impulse magnetron sputtering of silicon in argon/nitrous oxide plasmas. Nitrous oxide was employed as a single-source precursor supplying oxygen and nitrogen for the film growth. The films were characterized by elastic recoil detection analysis, x-ray photoelectron spectroscopy, x-ray diffraction, x-ray reflectivity, scanning electron microscopy, and spectroscopic ellipsometry. Results show that the films are silicon rich, amorphous, and exhibit a random chemical bonding structure. The optical properties with the refractive index and the extinction coefficient correlate with the film elemental composition, showing decreasing values with increasing film oxygen and nitrogen content. The total percentage of oxygen and nitrogen in the films is controlled by adjusting the gas flow ratio in the deposition processes. Furthermore, it is shown that the film oxygen-to-nitrogen ratio can be tailored by the high power impulse magnetron sputtering-specific parameters pulse frequency and energy per pulse.

  1. Characterization of boron nitride thin films prepared from a polymer precursor

    International Nuclear Information System (INIS)

    Chan, V.Z.; Rothman, J.B.; Palladino, P.; Sneddon, L.G.; Composto, R.J.

    1996-01-01

    Excellent quality boron nitride (BN) thin films on silicon have been produced by a simple procedure involving spincoating solutions of the open-quote open-quote single-source close-quote close-quote polymeric-precursor polyborazylene, (B 3 N 3 H ∼4 ) x , on a silicon substrate, followed by pyrolysis at 900 degree C. Rutherford backscattering spectrometry (RBS) indicates that the B/N ratios are 1.37 and 1.09 for conversions carried out in a vacuum oven at 900 and 1250 degree C, respectively. Forward recoil spectrometry (FRES) showed that the atomic percent of residual hydrogen is 10 and 9%, respectively. Plain-view and cross-sectional scanning electron microscopy (SEM) studies showed that the samples annealed at 900 degree C were clean and uniform in thickness. A thickness of 800x10 15 atoms/cm 2 was determined by ion scattering. Films annealed to 1250 degree C likewise showed a continuous unbroken boron nitride layer, but also exhibited morphological features resulting from reactions of the underlying silicon oxide-silicon interface in the substrate. Auger electron spectroscopy and atomic force microscopy showed that the BN coating produced at this higher temperature remained unbroken but had a surface area of ∼15% covered by dimples 2 endash 7 nm in depth. Compared to typical films made by chemical vapor deposition, BN films produced from this open-quote open-quote single-source close-quote close-quote method have lower hydrogen and carbon concentrations. copyright 1996 Materials Research Society

  2. Investigation of deposition characteristics and properties of high-rate deposited silicon nitride films prepared by atmospheric pressure plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Kakiuchi, H.; Nakahama, Y.; Ohmi, H.; Yasutake, K.; Yoshii, K.; Mori, Y.

    2005-01-01

    Silicon nitride (SiN x ) films have been prepared at extremely high deposition rates by the atmospheric pressure plasma chemical vapor deposition (AP-PCVD) technique on Si(001) wafers from gas mixtures containing He, H 2 , SiH 4 and N 2 or NH 3 . A 150 MHz very high frequency (VHF) power supply was used to generate high-density radicals in the atmospheric pressure plasma. Deposition rate, composition and morphology of the SiN x films prepared with various deposition parameters were studied by scanning electron microscopy and Auger electron spectroscopy. Fourier transformation infrared (FTIR) absorption spectroscopy was also used to characterize the structure and the chemical bonding configurations of the films. Furthermore, etching rate with buffered hydrofluoric acid (BHF) solution, refractive index and capacitance-voltage (C-V) characteristics were measured to evaluate the dielectric properties of the films. It was found that effective passivation of dangling bonds and elimination of excessive hydrogen atoms at the film-growing surface seemed to be the most important factor to form SiN x film with a dense Si-N network. The C-V curve of the optimized film showed good interface properties, although further improvement was necessary for use in the industrial metal-insulator-semiconductor (MIS) applications

  3. Application of CBD-Zinc Sulfide Film as an Antireflection Coating on Very Large Area Multicrystalline Silicon Solar Cell

    OpenAIRE

    U. Gangopadhyay; K. Kim; S. K. Dhungel; H. Saha; J. Yi

    2007-01-01

    The low-cost chemical bath deposition (CBD) technique is used to prepare CBD-ZnS films as antireflective (AR) coating for multicrystalline silicon solar cells. The uniformity of CBD-ZnS film on large area of textured multicrystalline silicon surface is the major challenge of CBD technique. In the present work, attempts have been made for the first time to improve the rate of deposition and uniformity of deposited film by controlling film stoichiometry and refractive index and also to minimize...

  4. Structural and electronic characterization of 355 nm laser-crystallized silicon: Interplay of film thickness and laser fluence

    International Nuclear Information System (INIS)

    Semler, Matthew R.; Swenson, Orven F.; Hoey, Justin M.; Guruvenket, Srinivasan; Gette, Cody R.; Hobbie, Erik K.

    2014-01-01

    We present a detailed study of the laser crystallization of amorphous silicon thin films as a function of laser fluence and film thickness. Silicon films grown through plasma-enhanced chemical vapor deposition were subjected to a Q-switched, diode-pumped solid-state laser operating at 355 nm. The crystallinity, morphology, and optical and electronic properties of the films are characterized through transmission and reflectance spectroscopy, resistivity measurements, Raman spectroscopy, X-ray diffraction, atomic force microscopy, and optical and scanning-electron microscopy. Our results reveal a unique surface morphology that strongly couples to the electronic characteristics of the films, with a minimum laser fluence at which the film properties are optimized. A simple scaling model is used to relate film morphology to conductivity in the laser-processed films

  5. Proton irradiation effects of amorphous silicon solar cell for solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Yousuke; Oshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Sasaki, Susumu; Kuroda, Hideo; Ushirokawa, Akio

    1997-03-01

    Flexible amorphous silicon(fa-Si) solar cell module, a thin film type, is regarded as a realistic power generator for solar power satellite. The radiation resistance of fa-Si cells was investigated by the irradiations of 3,4 and 10 MeV protons. The hydrogen gas treatment of the irradiated fa-Si cells was also studied. The fa-Si cell shows high radiation resistance for proton irradiations, compared with a crystalline silicon solar cell. (author)

  6. INFLUENCE OF ELECTROPOLYMERIZATION METHOD ON MORPHOLOGIES AND CAPACITIVE PROPERTIES OF POLYPYRROLE FILMS GROWING ON SILICON

    OpenAIRE

    IMENE CHIKOUCHE; ALI SAHARI; AHMED ZOUAOUI

    2014-01-01

    Two methods of Pyrrole electropolymerization were investigated to prepare polypyrrole films growing onto n-doped silicon n-Si (111): Polypyrrole films prepared by galvanostatic method exhibits toroidal morphology for thin films, and mixture of toroidal and globular morphologies for thick films. Polypyrrole films obtained from this method were characterized by lower surface roughness. Electropolymerization of pyrrole by potentiodynamic method provided Polypyrrole films with beans-like structur...

  7. Effect of ZDDP concentration on the thermal film formation on steel, hydrogenated non-doped and Si-doped DLC

    Science.gov (United States)

    Akbari, S.; Kovač, J.; Kalin, M.

    2016-10-01

    This work focuses on the ZDDP concentration (1, 5 and 20 wt%) to form a ZDDP film on surfaces during static thermal tests at 150 °C. Silicon-doped and hydrogenated DLC coatings, as well as steel as reference, were studied using Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The results show that, on the three surfaces, the structure of the ZDDP thermal film consists of identical groups of pyrophosphate and zinc oxide, while the sulphuric groups are dissimilar. On the steel surface, the sulphuric part consists of a mixture of organic sulphide and sulphohydryl groups, but on H-DLC and Si-DLC only organic sulphide groups are found; there are no sulphohydryl groups. Moreover, both ATR-FTIR and XPS show that different concentrations of ZDDP do not affect the final chemical structure of the ZDDP thermal film on any of the studied surfaces. In addition, the XPS results show that the thickness of the thermal film is linear with the concentration for the whole range from 1 to 20 wt%, supporting also its uniform chemical structure. These thicknesses further show that the reactivity of the ZDDP film is higher on the steel surface than on the DLC coatings.

  8. The role of surface oxides on hydrogen sorption kinetics in titanium thin films

    Science.gov (United States)

    Hadjixenophontos, Efi; Michalek, Lukas; Roussel, Manuel; Hirscher, Michael; Schmitz, Guido

    2018-05-01

    Titanium is presently discussed as a catalyst to accelerate the hydrogenation kinetics of hydrogen storage materials. It is however known that H absorption in Ti decisively depends on the surface conditions (presence or absence of the natural surface oxide). In this work, we use Ti thin films of controlled thickness (50-800 nm) as a convenient tool for quantifying the atomic transport. XRD and TEM investigations allow us to follow the hydrogenation progress inside the film. Hydrogenation of TiO2/Ti bi-layers is studied at 300 °C, for different durations (10 s to 600 min) and at varying pressures of pure H2 atmosphere. Under these conditions, the hydrogenation is found to be linear in time. By comparing films with and without TiO2, as well as by studying the pressure dependence of hydrogenation, it is demonstrated that hydrogen transport across the oxide represents the decisive kinetic barrier rather than the splitting of H2 molecules at the surface. Hydrogenation appears by a layer-like reaction initiated by heterogeneous nucleation at the backside interface to the substrate. The linear growth constant and the H diffusion coefficient inside the oxide are quantified, as well as a reliable lower bound to the hydrogen diffusion coefficient in Ti is derived. The pressure dependence of hydrogen absorption is quantitatively modelled.

  9. Characteristics of thin-film transistors based on silicon nitride passivation by excimer laser direct patterning

    International Nuclear Information System (INIS)

    Chen, Chao-Nan; Huang, Jung-Jie

    2013-01-01

    This study explored the removal of silicon nitride using KrF laser ablation technology with a high threshold fluence of 990 mJ/cm 2 . This technology was used for contact hole patterning to fabricate SiN x -passivation-based amorphous-silicon thin films in a transistor device. Compared to the photolithography process, laser direct patterning using KrF laser ablation technology can reduce the number of process steps by at least three. Experimental results showed that the mobility and threshold voltages of thin film transistors patterned using the laser process were 0.16 cm 2 /V-sec and 0.2 V, respectively. The device performance and the test results of gate voltage stress reliability demonstrated that laser direct patterning is a promising alternative to photolithography in the panel manufacturing of thin-film transistors for liquid crystal displays. - Highlights: ► KrF laser ablation technology is used to remove silicon nitride. ► A simple method for direct patterning contact-hole in thin-film-transistor device. ► Laser technology reduced processing by at least three steps

  10. Visible and infrared photoluminescence from erbium-doped silicon nanocrystals produced by rf sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cerqueira, M.F.; Alpuim, P. [Departamento de Fisica, Universidade do Minho, Braga (Portugal); Losurdo, M. [Plasma Chemistry Research Center, CNR, Bari (Italy); Monteiro, T.; Soares, M.J.; Peres, M. [Departamento de Fisica, Universidade de Aveiro, Aveiro (Portugal); Stepikova, M. [Institute for Physics of Microstructures RAS, 603600 Nizhnij Novgorod GSP-105 (Russian Federation)

    2007-06-15

    Erbium-doped low-dimensional Si films with different microstructures were deposited by reactive magnetron sputtering on glass substrates by varying the hydrogen flow rate during deposition. Amorphous, micro- and nanocrystalline samples, consisting of Si nanocrystalls embedded in silicon-based matrices with different structures, were achieved with optical properties in the visible and IR depending on nanocrystalline fraction and matrix structure and chemical composition. Structural characterization was performed by X-ray diffraction in the grazing incidence geometry and Raman spectroscopy. The chemical composition was studied using RBS/ERD techniques. Spectroscopic ellipsometry was combined with the previous techniques to further resolve the film microstructure and composition. In particular, the distribution along the film thickness of the volume fractions of nanocrystalline/amorphous silicon and SiO{sub x} phases has been obtained. In this contribution we discuss visible and infrared photoluminescence as a function of sample microstructure and of the oxygen/hydrogen concentration ratio present in the matrix. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Atomic hydrogen and oxygen adsorptions in single-walled zigzag silicon nanotubes

    International Nuclear Information System (INIS)

    Chen, Haoliang; Ray, Asok K.

    2013-01-01

    Ab initio calculations have been performed to study the electronic and geometric structure properties of zigzag silicon nanotubes. Full geometry and spin optimizations have been performed without any symmetry constraints with an all electron 3-21G* basis set and the B3LYP hybrid functional. The largest zigzag SiNT studied here, (12, 0), has a binding energy per atom of 3.584 eV. Atomic hydrogen and oxygen adsorptions on (9, 0) and (10, 0) nanotubes have also been studied by optimizing the distances of the adatoms from both inside and outside the tube. The adatom is initially placed in four adsorption sites-parallel bridge (PB), zigzag bridge (ZB), hollow, and on-top site. The on-top site is the most preferred site for hydrogen atom adsorbed on (9, 0), with an adsorption energy of 3.0 eV and an optimized distance of 1.49 Å from the adatom to the nearest silicon atom. For oxygen adsorption on (9, 0), the most preferred site is the ZB site, with an adsorption energy of 5.987 eV and an optimized distance of 1.72 Å. For atomic hydrogen adsorption on (10, 0), the most preferred site is also the on-top site with an adsorption energy of 3.174 eV and an optimized distance of 1.49 Å. For adsorption of atomic oxygen on (10, 0), the most preferred site is PB site, with an adsorption energy of 6.306 eV and an optimized distance of 1.71 Å. The HOMO–LUMO gaps of (9, 0) after adsorptions of hydrogen and oxygen atoms decrease while the HOMO–LUMO gaps of (10, 0) increase after adsorption of hydrogen and oxygen

  12. Vacuum arc plasma deposition of thin titanium dioxide films on silicone elastomer as a functional coating for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Boudot, Cécile, E-mail: cecile.boudot@tum.de [Technical University of Munich, Department of Mechanical Engineering, Boltzmannstraße 15, D-85748 Garching bei München (Germany); Kühn, Marvin; Kühn-Kauffeldt, Marina; Schein, Jochen [Institute for Plasma Technology and Mathematics, University of Federal Armed Forces Munich, Werner-Heisenberg-Weg 39, D-85577 Neubiberg (Germany)

    2017-05-01

    Silicone elastomer is a promising material for medical applications and is widely used for implants with blood and tissue contact. However, its strong hydrophobicity limits adhesion of tissue cells to silicone surfaces, which can impair the healing process. To improve the biological properties of silicone, a triggerless pulsed vacuum cathodic arc plasma deposition technique was applied to deposit titanium dioxide (TiO{sub 2}) films onto the surface. Scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and contact angle measurements were used for coating characterization. Deposited films were about 150 nm thick and exhibited good adhesion to the underlying silicone substrate. Surface wettability and roughness both increased after deposition of the TiO{sub 2} layer. In addition, cell-biological investigations demonstrated that the in-vitro cytocompatibility of TiO{sub 2}-coated samples was greatly improved without impacting silicone's nontoxicity. For validation of use in medical devices, further investigations were conducted and demonstrated stability of surface properties in an aqueous environment for a period of 68 days and the coating's resistance to several sterilization methods. - Highlights: • Vacuum arc plasma was applied to deposit titanium dioxide films onto silicone. • Thickness, roughness and composition of the films were determined. • Cytocompatibility of coated silicone elastomer is greatly improved. • Films have good adhesion to the substrate and are stable, non-toxic and sterilizable.

  13. Note: Durability analysis of optical fiber hydrogen sensor based on Pd-Y alloy film.

    Science.gov (United States)

    Huang, Peng-cheng; Chen, You-ping; Zhang, Gang; Song, Han; Liu, Yi

    2016-02-01

    The Pd-Y alloy sensing film has an excellent property for hydrogen detection, but just for one month, the sensing film's property decreases seriously. To study the failure of the sensing film, the XPS spectra analysis was used to explore the chemical content of the Pd-Y alloy film, and analysis results demonstrate that the yttrium was oxidized. The paper presented that such an oxidized process was the potential reason of the failure of the sensing film. By understanding the reason of the failure of the sensing film better, we could improve the manufacturing process to enhance the property of hydrogen sensor.

  14. Laser shock ignition of porous silicon based nano-energetic films

    International Nuclear Information System (INIS)

    Plummer, A.; Gascooke, J.; Shapter, J.; Kuznetsov, V. A.; Voelcker, N. H.

    2014-01-01

    Nanoporous silicon films on a silicon wafer were loaded with sodium perchlorate and initiated using illumination with infrared laser pulses to cause laser thermal ignition and laser-generated shock waves. Using Photon Doppler Velocimetry, it was determined that these waves are weak stress waves with a threshold intensity of 131 MPa in the silicon substrate. Shock generation was achieved through confinement of a plasma, generated upon irradiation of an absorptive paint layer held against the substrate side of the wafer. These stress waves were below the threshold required for sample fracturing. Exploiting either the laser thermal or laser-generated shock mechanisms of ignition may permit use of pSi energetic materials in applications otherwise precluded due to their environmental sensitivity

  15. Laser shock ignition of porous silicon based nano-energetic films

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, A.; Gascooke, J.; Shapter, J. [School of Chemical and Physical Sciences, Flinders University, 5042, Bedford Park (Australia); Centre of Expertise in Energetic Materials (CEEM), Bedford Park (Australia); Kuznetsov, V. A., E-mail: nico.voelcker@unisa.edu.au, E-mail: Valerian.Kuznetsov@dsto.defence.gov.au [School of Chemical and Physical Sciences, Flinders University, 5042, Bedford Park (Australia); Centre of Expertise in Energetic Materials (CEEM), Bedford Park (Australia); Weapons and Combat Systems Division, Defence Science and Technology Organisation, Edinburgh 5111 (Australia); Voelcker, N. H., E-mail: nico.voelcker@unisa.edu.au, E-mail: Valerian.Kuznetsov@dsto.defence.gov.au [Mawson Institute, University of South Australia, 5095, Mawson Lakes (Australia)

    2014-08-07

    Nanoporous silicon films on a silicon wafer were loaded with sodium perchlorate and initiated using illumination with infrared laser pulses to cause laser thermal ignition and laser-generated shock waves. Using Photon Doppler Velocimetry, it was determined that these waves are weak stress waves with a threshold intensity of 131 MPa in the silicon substrate. Shock generation was achieved through confinement of a plasma, generated upon irradiation of an absorptive paint layer held against the substrate side of the wafer. These stress waves were below the threshold required for sample fracturing. Exploiting either the laser thermal or laser-generated shock mechanisms of ignition may permit use of pSi energetic materials in applications otherwise precluded due to their environmental sensitivity.

  16. Initial damage processes for diamond film exposure to hydrogen plasma

    International Nuclear Information System (INIS)

    Deslandes, A.; Guenette, M.C.; Samuell, C.M.; Karatchevtseva, I.; Ionescu, M.; Cohen, D.D.; Blackwell, B.; Corr, C.; Riley, D.P.

    2013-01-01

    Graphical abstract: -- Highlights: • Exposing chemical vapour deposited (CVD) diamond films in a recently constructed device, MAGPIE, specially commissioned to simulate fusion plasma conditions. • Non-diamond material is etched from the diamond. • There is no hydrogen retention observed, which suggests diamond is an excellent candidate for plasma facing materials. • Final structure of the surface is dependent on synergistic effects of etching and ion-induced structural change. -- Abstract: Diamond is considered to be a possible alternative to other carbon based materials as a plasma facing material in nuclear fusion devices due to its high thermal conductivity and resistance to chemical erosion. In this work CVD diamond films were exposed to hydrogen plasma in the MAGnetized Plasma Interaction Experiment (MAGPIE): a linear plasma device at the Australian National University which simulates plasma conditions relevant to nuclear fusion. Various negative sample stage biases of magnitude less than 500 V were applied to control the energies of impinging ions. Characterisation results from SEM, Raman spectroscopy and ERDA are presented. No measureable quantity of hydrogen retention was observed, this is either due to no incorporation of hydrogen into the diamond structure or due to initial incorporation as a hydrocarbon followed by subsequent etching back into the plasma. A model is presented for the initial stages of diamond erosion in fusion relevant hydrogen plasma that involves chemical erosion of non-diamond material from the surface by hydrogen radicals and damage to the subsurface region from energetic hydrogen ions. These results show that the initial damage processes in this plasma regime are comparable to previous studies of the fundamental processes as reported for less extreme plasma such as in the development of diamond films

  17. Bio-inspired co-catalysts bonded to a silicon photocathode for solar hydrogen evolution

    DEFF Research Database (Denmark)

    Hou, Yidong; Abrams, Billie; Vesborg, Peter Christian Kjærgaard

    2011-01-01

    The production of fuels directly or indirectly from sunlight represents one of the major challenges to the development of a sustainable energy system. Hydrogen is the simplest fuel to produce and while platinum and other noble metals are efficient catalysts for photoelectrochemical hydrogen...... at the reversible potential match the requirement of a photoelectrochemical hydrogen production system with a solar-to-hydrogen efficiency in excess of 10%. The experimental observations are supported by DFT calculations of the Mo3S4 cluster adsorbed on the hydrogen-terminated silicon surface providing insights...... deposited on various supports. It will be demonstrated how this overpotential can be eliminated by depositing the same type of hydrogen evolution catalyst on p-type Si which can harvest the red part of the solar spectrum. Such a system could constitute the cathode part of a tandem dream device where the red...

  18. Deposition of silicon oxynitride films by low energy ion beam assisted nitridation at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Youroukov, S; Kitova, S; Danev, G [Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 109, 113 Sofia (Bulgaria)], E-mail: skitova@clf.bas.bg

    2008-05-01

    The possibility is studied of growing thin silicon oxynitride films by e-gun evaporation of SiO and SiO{sub 2} together with concurrent bombardment with low energy N{sub 2}{sup +} ions from a cyclotron resonance (ECR) source at room temperature of substrates. The degree of nitridation and oxidation of the films is investigated by means of X-ray spectroscopy. The optical characteristics of the films, their environmental stability and adhesion to different substrates are examined. The results obtained show than the films deposited are transparent. It is found that in the case of SiO evaporation with concurrent N{sub 2}{sup +} ion bombardment, reactive implantation of nitrogen within the films takes place at room temperature of the substrate with the formation of a new silicon oxynitride compound even at low ion energy (150-200 eV)

  19. Heterojunction Solar Cells Based on Silicon and Composite Films of Graphene Oxide and Carbon Nanotubes.

    Science.gov (United States)

    Yu, LePing; Tune, Daniel; Shearer, Cameron; Shapter, Joseph

    2015-09-07

    Graphene oxide (GO) sheets have been used as the surfactant to disperse single-walled carbon nanotubes (CNT) in water to prepare GO/CNT electrodes that are applied to silicon to form a heterojunction that can be used in solar cells. GO/CNT films with different ratios of the two components and with various thicknesses have been used as semitransparent electrodes, and the influence of both factors on the performance of the solar cell has been studied. The degradation rate of the GO/CNT-silicon devices under ambient conditions has also been explored. The influence of the film thickness on the device performance is related to the interplay of two competing factors, namely, sheet resistance and transmittance. CNTs help to improve the conductivity of the GO/CNT film, and GO is able to protect the silicon from oxidation in the atmosphere. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Evaluation of hydrogen and oxygen impurity levels on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, M.J.; Wielunski, L.S.; Netterfield, R.P.; Martin, P.J.; Leistner, A. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1996-12-31

    This paper reports on surface analytical techniques used to quantify surface concentrations of impurities such as oxygen and hydrogen. The following analytical techniques were used: Rutherford and Backscattering, elastic recoil detection, time-of-flight SIMS, spectroscopic ellipsometry, x-ray photoelectron spectroscopy. The results have shown a spread in thickness of oxide layer, ranging from unmeasurable to 1.6 nm. The data must be considered as preliminary at this stage, but give some insight into the suitability of the techniques and a general idea of the significance of impurities at the monolayer level. These measurements have been carried out on a small number of silicon surfaces both semiconductor grade <111> crystalline material and silicon which has been used in sphere fabrication. 5 refs., 1 fig.